UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERIA GEOLOGICA, MINERA Y METALURGICA

PROSPECCIÓN GEOLÓGICA Y GEOQUÍMICA DEL DISEMINADO POLIMETÁLICO HUINAC - LA MERCED - AIJA -ANCASH

INFORME DE SUFICIENCIA

PARA OPTAR EL TITULO PROFESIONAL DE:

INGENIERO GEÓLOGO

PRESENTADO POR:

MANUEL VELARDE MENDOZA

Lima - Perú

2012

INDICE

I.	Introducción	1
II.	Objetivos y Metodología del Trabajo	1
	2.1 Objetivos 2.2 Metodología de Trabajo	
III.	Consideraciones Generales	4
	3.1 Ubicación y Acceso3.2 Historia del Distrito	
IV.	Geología Regional	6
	4.1 Estratigrafía4.2 Tectónica4.3 Metalogenia Regional	
V.	Geología Local	17
	5.1 Litología 5.2 Estructural 5.3 Mineralización	
VI.	Geoquímica Superficial	30
	6.1 Metodología de Muestreo6.2 Control de Calidad del Análisis Geoquímico	
	6.2.1 Duplicados6.2.2 Estándar6.2.3 Blancos	
	 6.3 Correlación de Pearson 6.4 Tratamiento Estadístico de Datos Geoquímicos 6.5 Planos Geoquímicos y Niveles de Prioridad de Anomalías 6.6 Distribución de Isovalores Metálicos 	

VII. Relogueo De Los Taladros Perforados	62
 7.1 Información Obtenida 7.2 Extracción de Muestras 7.3 Interpretación de Resultados 7.4 Correlación de Pearson de los Taladros Perforados 	
VIII. Perfiles Litogeoquímicos	72
IX. Taladros Propuestos	78
X. Interpretación Y Discusión De Resultados	85
Conclusiones	
Recomendaciones	

Bibliografía

PROSPECCIÓN GEOLÓGICA Y GEOQUÍMICA DEL DISEMINADO POLIMETÁLICO HUINAC - LA MERCED - AIJA -ANCASH

I. INTRODUCCION

El área de estudio se encuentra en la Provincia de Aija, Distrito de la Merced, consta de 12 hectáreas y pertenece a los denuncios de la Cia. Minera Huinac SAC.

En el área se realizó un trabajo completo de prospección, que comprende el cartografiado geológico, muestreo geoquímico superficial, relogueo y remuestreo de taladros.

Los estudios fueron realizados tomando en cuenta las posibilidades económicas y las herramientas con las que disponía la empresa, dándole un principal énfasis a la determinación de zonas con potencial a ser explotadas a corto plazo.

II. OBJETIVOS Y METODOLOGIA DEL TRABAJO

2.1 Objetivos

El objetivo de la presente monografía, es la de recopilar, ordenar e interpretar todos los datos obtenidos, con la finalidad de determinar el potencial económico y obtener evidencias de la génesis del depósito, para luego proponer un programa de perforación a desarrollar, en una segunda etapa de prospección.

2.2 Metodología de Trabajo

Etapa de Generación (Gabinete)

 Recopilación y evaluación de información geológica, proveniente de visitas a la zona de estudio, mencionadas en publicaciones antiguas, como la de Raimondi en 1873, Carlos E. Velarde en 1908 y la realizada por Alfred J. Bodenlos y Jhon A. Straczek en 1940.

- Recopilación de información geológica adicional de los boletines de Ingemmet.
- Evaluación de los informes de los trabajos realizados en la zona del diseminado de Huinac por el Ing. Oscar Caira, en los años 2001, 2007 y 2008.
- Digitalización y georeferenciación de las fotografías aéreas tomadas en el área de estudio, por el Instituto Aerofotográfico de la Fuerza Aérea del Perú, en el año 1974.
- Preparación de los mapas topográficos para la realización del cartografiado geológico.
- Determinación de la densidad de la malla de muestreo y preparación de los planos con la ubicación de las muestras programadas.

Etapa de Campo

- Nuevo logueo de los tres taladros perforados el año 2008.
- Extracción de muestras para análisis multielementales, en todo el taladro, incluyendo los tramos no analizados previamente, en los 3 taladros perforados el año 2008.
- Introducción de muestras de control de calidad (QA-QC) entre las muestras de los taladros.
- Cartografiado geológico a 1:5000 de toda el área correspondiente a los denuncios en la zona de explotación de Minera Huinac SAC.
- Cartografiado geológico 1:1000 del área del diseminado Huinac.
- Preparación de las calicatas para la extracción de muestras.
- Extracción de muestras en las calicatas.
- Extracción de muestras en los afloramientos rocosos.

 Introducción de muestras de control del calidad (QA-QC) entre las muestras del Diseminado Huinac.

Etapa de análisis e interpretación (Gabinete y Laboratorio)

- Elaboración de los planos litológicos y estructurales.
- Control de calidad (QA-QC) del análisis geoquímico.
- Tratamiento estadístico de datos geoquímicos.
- Elaboración de planos geoquímicos.
- Elaboración de perfiles litogeoquímicos.
- Elaboración de los planos correspondientes a los taladros propuestos para una próxima campaña de exploración.
- Elaboración del trabajo final.

III. CONSIDERACIONES GENERALES

3.1 Ubicación y Acceso

El área de estudio se encuentra en el paraje de Huinac, distrito de La Merced, provincia de Aija, departamento de Ancash.

El área se encuentra incluida en el Cuadrángulo de Huaraz (20 H), perteneciente a la Carta Geológica Nacional a escala 1: 100000, desarrollada por INGEMMET.

El acceso al área de estudio se realiza por vía terrestre, vía bus interprovincial y camioneta, con el siguiente recorrido:

Tramo	Medio de Transporte	Tiempo de Viaje	Kilómetros	Observación
Lima – Huaraz	Bus Interprovincial	8:00 horas	400	Asfaltado
Huaraz – Huinac	Camioneta	2:30 horas	80	Asfaltado - Afirmado

Tabla Nº 1: Recorrido de acceso al área de estudio.

Figura Nº 1: Ubicación de la Mina Huinac.

3.2 Historia del Distrito

- El área de Huinac ha sido trabajada desde la época de los españoles hasta 1885.
- Posteriormente el área fue explotada por los señores Cáceres entre 1930 y 1940 a razón de 10 TM mensuales.
- Luego la compañía minera Santa Elena, adquiere los derechos del yacimiento y lo explota hasta 1948, a razón de 150 TM diarias, dejándolo en abandono después de ese año.
- El área fue denunciada por pequeños mineros.
- En 1965, Don Raúl Vizcarra Álvarez, adquiere los derechos a los pequeños mineros y constituye la Empresa Minera Huaraz.
- A comienzos del año 2000, la empresa cambia de razón social a Minera Huinac SAC, explotando el yacimiento hasta la actualidad a razón de 2000 TM mensuales.

IV. GEOLOGIA REGIONAL

4.1 Estratigrafia

4.1.1 Grupo Goyllarisquizga

Formacion Chimú

Esta Formación aflora al nor-noroeste de Pariacoto (Huaraz), donde ha sido cortada por intrusiones del Batolito de la costa, constituyen núcleos de anticlinales con rumbo NW-SE.

La Formación Chimú se compone de areniscas, ortocuarcitas de grano medio a grueso, intercalaciones de lutitas negras y capas de carbón antracítico en la parte inferior, alcanzando espesores de 500 a 700 m.

Su medio deposicional debió ser de llanuras bajas próximas al mar, afectadas por acción de corrientes fluviales, formando amplios bosques con condiciones favorables para la formación de capas de carbón.

La Formación Chimú no contiene fósiles marinos confiables para su datacion, pero al estar entre la Formación Oyón (Neocomiano) y la Formación Santa (Valanginiano Superior), su edad ha sido considerada del Valanginiano Inferior a Medio (Cretáceo Inferior).

Formación Santa

La Formación Santa, que suprayace concordante ó con ligera discordancia paralela a la Formación Chimú, se encuentra aflorando en casi todos los lugares donde se ha cartografiado esta última.

Comprende calizas azul grisáceo y lutitas calcáreas abigarradas, seguidas de calizas negras, margas y lutitas oscuras fosilíferas.

Presenta estratos de 10 cm a 1 m y tiene un espesor casi constante de 100 a 150 m.

Esta Formación corresponde a una transgresión marina de aguas someras, se la ha datado con una edad del Valanginiano Superior.

Formación Carhuaz

La Formación Carhuaz yace concordante a la Formación Santa, aflorando al norte y noroeste del cuadrángulo de Huaraz, es principalmente arcillosa y está constituida de lutitas fosilíferas con intercalaciones de areniscas, yeso y capas delgadas de calizas en la parte inferior.

Esta Formación contiene fósiles que indican una edad Valanginiano Superior (Cretácico Inferior), la parte superior corresponde al Barremiano, con lutitas, lutitas arenosas y areniscas de color pardo rojizo, en capas delgadas.

Foto Nº 1: Formaciones Chimú, Santa y Carhuaz mostrando plegamiento, quebrada Parin.

Formacion Farrat

La Formación Farrat es una unidad con un espesor mínimo, cercano a los 20 m, tiene una litología arenosa propia de un ambiente fluvial en zona de llanura. Está formada por bancos de areniscas y cuarcitas grises blanquecinas con estratificación cruzada, intercaladas con lutitas grises a pardo rojizas. Su edad corresponde al Aptiano.

4.1.2 Grupo Calipuy

En los Andes septentrionales, se depositó el Grupo Calipuy, consistente en una gruesa serie de derrames andesíticos, dacíticos, riolíticos y piroclásticos, en bancos medianos a potentes de colores grises y verdosos. Localmente contiene intercalaciones de areniscas, lutitas y calizas silicificadas.

El Grupo Calipuy tiene un espesor de 2000 m a 3000 m, de estratos volcánicos variados, fue depositado luego de una etapa de plegamiento, erosión y levantamiento de las unidades anteriores, por lo cual presenta generalmente gran discordancia con las unidades Mesozoicas.

Las dataciones de K-Ar le han dado una edad desde el Eoceno Superior al Mioceno (Terciario).

Foto Nº 2: Secuencia de aglomerados, lavas y piroclásticos del Grupo Calipuy, aguas arriba de Coris.

Foto N° 3: Bomba piroclástica en aglomerado de Grupo Calipuy, Cerro Huinac.

ERATEMA	SISTEMA	SERIE	UNIDAD LITOEBTRATIORAFICA	GROSOR (m)	COLUMNA			
CEN	CUATERN.	HOLOCENA			ABO TO	DEPOSITOS ALUVIALES DEPOSITOS OLACIOFLUVIALES Y MORRENICOS		
0	NEOGENO	PLIOCENA	Fm. FORTALEZA	700	Y TUT YT	TOBAS LAPILLI, CLARAS Y FRIABLES.		
Z		NIOCENA	SUPERIOR		TTTTT	SECUENCIA VOLCANICA DE LAVAS Y ROCAS PIROCLASTICAS GRUESAS		
0		OLIGOCENA	GRUPO					DE COMPOSICION ANDEBITICA CON IGNIMBRITICAS Y TOBAS DACITICAS.
CA	PALEOG.	EOCENA	CALIPUY			BECUENCIAS LAVICA S DE ANDESITAS Y RIODACITAS		
			FORMACION			LAVAS, ALNOHADILLAS INTERCALADOS CON ALQUNOS AGLOMERADOS.		
M			JUNCO	2000		FLUIOS LAVICOS, LAVAS BRECHADAS Y HORIZONTES TOBACEOS		
8 0 Z 0 1	CRETACEO	I N F R I O	Fm. 1000		ARENISCAS, LIMOARCILITAS Y CALIZAS SILICIFICADAS GRISES Y VERDES CON LUTITAS GRIS OSCURAS.			
C A			Fm. CHIMU		7 7 7 7	ARENISCAS CUARZOSAS BLANCA MACIZO EN ESTRATOS DE 1 & 3m. DE GROSOR SU PARTE BASAL, INTERCALADO CON LIMOARCILITAS GRISES Y NIVELES DE CARIXON		

Figura Nº 2: Columna estratigráfica de la cuenca de Huarmey y Santa.

Figura Nº 3: Geología Regional del cuadrángulo de Huaraz.

4.2 Tectónica

En el cuadrángulo de Huaraz podemos observar la evolución estructural de la cuenca del Santa, esta cuenca se desarrolló entre la falla Cordillera Blanca y el Eje Tapacocha.

Podemos observar las unidades estratigráficas del Grupo Goyllarisquizga, que afloran a manera de ventanas, circundadas por rocas del Grupo Calipuy.

Esta cuenca ha estado levantada con respecto a las cuencas Huarmey y Chavín, formado una plataforma estructural donde las secuencias Cretáceas, se depositaron con grosores relativamente menores, imposibilitando la depositación de la Formación Chicama.

Se extiende a lo largo de una franja NW-SE que abarca desde Chiquián hasta la latitud de Trujillo, donde en su lado oriental se pone en contacto con la Formación Chicama, en fallamiento inverso en una prolongación de la falla Cordillera Blanca. En la margen occidental, el Eje Tapacocha se puede seguir a lo largo de una franja diagonal que sigue continuamente a las hojas de Casma y Santa Rosa.

La deformación en esta zona está dada por plegamientos simétricos de moderado a fuerte buzamiento de sus flancos, pudiendo observarse a lo largo de las carreteras; Cañón - Aija, Recuay - Cotaparaco y Pariacoto-Huaraz, estos plegamientos corresponde a un basamento rígido de las secuencias siliceoclásticas de las formaciones Oyón y Chimú, con una deformación menos evidente que la cuenca Chavín, marcando la transición de las facies del miogeosinclinal al eugeosinclinal.

Los alineamientos de las fallas con una dirección N10°W, sugieren una compresión casi E-W, asociado con una distensión NE-SW, mientras que los plegamientos siguieron la tendencia andina con una dirección promedio de N 45°W.

Figura Nº 4: Esquema Diagramático de las relaciones Estratigráficas y Facies desde el Paleozoico Superior Huarmey – La Unión (Según: Bol. 76, Serie A, INGEMMET)

4.3 Metalogenia Regional

La zona de estudio se encuentra ubicada en la franja metalogenética XXI de epitermales de Au-Ag del Mioceno hospedados en rocas volcánicas Cenozoicas. Se distribuye ampliamente en el dominio volcánico Cenozoico de la Cordillera Occidental.

En el norte (5º-9º30') está controlada por fallas NW-SE que van cambiando a WNW-ESE al aproximarse a la deflexión de Cajamarca, para luego pasar a N-S, conforme se aproximan a la deflexión de Huancabamba.

Esta franja agrupa a depósitos de Au-Ag (Pb-Zn-Cu) tipo alta, baja e intermedia sulfuración. Según sus edades de mineralización, se les puede subdividir en dos épocas metalogenéticas de 18-13 Ma y 12-8 Ma. Entre los depósitos que se encuentran hospedados en rocas volcánicas se encuentran Quiruvilca, Pierina, Tamboraque y Santa Rita. Algunos de los depósitos están relacionados con centros volcánicos, como es el caso de Quesquenda (Alto Chicama), Quiruvilca, Alto Dorado, Matala, Macón y Alto Cruz-Ticas (Rivera et al., 2005).

Asimismo, destaca la presencia de epitermales de Au-Ag (Pb-Zn) de baja sulfuración, similares a Calera, Caylloma y Selene.

En la época metalogenética de 12-8 Ma, en el norte del Perú se encuentran depósitos de Au-Ag del distrito minero de Yanacocha, Tantahuatay y La Zanja, así como, las vetas y cuerpos de reemplazamiento de Pb-Zn-Cu (Ag, Au).

		I state and the	COORDE	NADAS UTM			-	-	-
N"	Nombre	Ubicación	Norte	Este	Yacimiento	Leves	Mineraliz.	Alteración	Descrip.
1	Huarón Mina	Recuay Catac	8.916.572	222.096	Filoneano	2.90z/tcAg 1.1%Pb	Galena Esfalerita		Ag.Pb.Zn en calizas
2	Sta.Rita de Jirac Mina	Huaraz Pira	8.940.588	202.328	Filoneano	4.9%Zn 0.52%Pb 380z/tcAg 0.34%Cu	Arsenopirita Marcasita Calcopirita		Ag,Pb,Zn en esquistos biotíticos
3	Javier Rodrigo Mina	Recuay Aija	8.915.570	211.127	Filoneano	4.59%Pb 15Oz/tcAg	Gaiena		granodionta
4	Aija Mina	Alja Alja	8.919.315	218.417	Filoneano	2.3%Pb 2.00z/tcAg	Esfalerita Galena		Ag,Pb,Zn en brecha
6	Pilar	Huaraz Restauración	8.930.368	216.503	Filoneano	3.80z/tcAg	Galena Galena Arn	Cloritización	Ag y Pb en andesitas
6	Angelito 4	Alja	8.915.358	223.692	Filoneano	2.30z/tcAg 2.18%Pb	Galena Esfalerita		Ag,Pb en andesitas
7	Virgen de las Mercedes.Mina	Recuay Ticapampa	8.939.631	221.925	Filoneano	5.10z/toAg 5.70%Zn 6.5%Pb	Galena Blenda		Ag.Pb,Zn en andesitas
8	Riqueza Mina	Bolognesi Aquia	8.900.867	218.558	Filoneano	5.58%Pb 5.6Oz/tcAg 2.42%Zp	Galena Esfalerita	Silicificación Piritización	Ag.Pb.Zn en calizas
9	Cinco Hermanos Mina	Huaraz independ.	8.921.132	214.744	Filoneano	1.01%Pb 13.86%Zn	Blenda Esfalerita	Silicificación	Pb,Zn en pizarras
10	Juan.Julio 2 Mina	Recuay Catac	8.916.576	222.097	Filoneano	4.8Oz/tcAg 3.77%Pb 4.64%Zn	Esfaierita Galena Calcopirita	Planet in	
11	Los Tres Mosquet Mina	Huari Chavin	8.944.830	218.225	Filoneano	17Oz/lcAg 27.4%Pb	Galena Arg. Esfalerita	Silicificación	Ag,Pb en calizas
12	Orquidea Mina	Recuay Ticapampa	8.923.032	222.049	Filoneano	8%Pb 14%Zn	Galena Esfalerita Calcopirita		Ag,Pb,Zn en andesitzs
13	La Florida Mina	Recusy Ticapampa	8.919.315	218.417	Filoneano	63.5%Pb 17Oz/IcAg 3.2%Cu	Galena Esfalerita Calcopirita		Ag,Pb,Zn en andesitas
14	Sta. Cruz 2 Mina	Alja La Merced	8.934.108	223.796	Filoneano	29.4%Pb 2.9%Zn 109Oz/tcAg	Galena Esfalerita Calcopirita		Ag,Pb,Zn en andesitas
15	Sta. Teobalda Mina	Recuay Ticapampa	8.910.148	225.804	Filoneano	18.75%Pb 1.08%Cu 18.6%7p	Galena Esfalerita	ature A	Ag,Pb,Zn,Cu en andesitas
16	Palmira Mina	Huaraz Huaraz	8.937.690	209.125	Filoneano	2.50z/tcAg 3.7%Pb	Galena Arg. Esfalerita		Ag,Pb,Zn en andesitas
17	Sta.Rita Mina	Aija Sta.Rita	8.937.529	188.987	Filoneano	18.44%Pb 5.00z/tcAg	Galena Esfalerita		Pb,Ag en andesitas
18	Purisima de Cotaparaco Mica	Recuay Cotaparaco	8.898.997	214.916	Filoneano	12.50z/tcAg 1.7%Pb 0.04%Cu	Galena Esfalerita	Silicificación	Ag,Pb,Zn,Cu en calizas
19	Huinco	Huaraz	8.927.650	205.300	Filoneano	0.011104	Galena Esfalerita		Pb,Zn en rocas voic.
20	Mercedita Mina	Huaraz Restauracion	8.941.489	223.743	Filoneano	2.39%Pb 10.33%Zn 2.50z//cAc	Galena Esfalerita		Ag,Pb,Zn en traquitas
21	Jecanca Mina	Huaraz Huaraz	8.947.931	221.865	Filoneano	11.13%Pb 21.46%Zn 9.007/teAc	Esfalerita Galena		Ag,Pb,Zn,Cu en calizas
22	Sn. Juan de Malvas,Mina	Alja Cochapeti	8.901.266	210.142	Cuerpos	3.10z/tcAg 7.6%Zn 10.8%Zn	Galena Esfalerita Calconirita		Ag.Pb.Zn,Cu en calizas
23	Lora V, Mina	Recuay	8.894.074	222.268	Filoneano	21.87%Cu 6.60z/tcAp	Calcopirita		Cu.Ag en andesitas
24	Virgen de las	Recuay	8.939.779	221.100	Filoneano	7.60z/tcAg 5.80%Zn	Galena.Blen Calcopirita		Cu,Ag,Zn en andesitas
25	Dorado IV Mina	Huaraz	8.925.984	187.252	Filoneano	16.75%Cu 8.10z/tcAg	Calcopirita		Cu.Ag en andesitas

Figura Nº 5: Principales recursos mineros del cuadrángulo de Huaraz.

	Nombre	and the second se	COORDENADAS UTM			Real Property lies and the second			Constant Constant
N*		Ubicación	Norte	Este	Yacimiento	Leyes	Mineraliz.	Alteración	Descrip.
26	Hercules Mina	Recuay Aija	8.920.556	237.161	Vetas	3.92%Pb 3.61%Zn 8.0Oz/tcAg	Galena Arg. Esfalerita Calcopirita	Silicificación Piritización Turmaliniz	Ag,Pb,Zn, e dacitas
27	Huancapeti Mina	Recuay Alja	8.920.670	222.798	Vetas	1.69%Pb 3.44%Zn 9.9Oz/tcAg	Galena Arg. Esfalerita Calcopirita		Ag,Pb,Zn, e dacitas
28	Sn.Hilarión Mina	Aija Aija	8.917.627	217.238	Vetas	6.4Oz/tcAg 8.9%Pb 5.87%Zn 2.37%Cu	Galena Arg. Esfalerita		Pb,Ag,Zn,C
29	Boliche Mina	Huaraz Huaraz	8.944.063	222.595	Filoneano	7.00	Galena Esfalerita Estibina	3	Pb,Zn,Sb er andesitas
30	Neruda Mina	Huaraz Cotaparaco	8.899.000	225.100	Filoneano	15%Pb 12%Zn	Galena Esfalerita		Pb,Zn en endesitas
31	C. Panicocha Prosp.	Aija	8.917.527	215.826	Filoneano	283gr/tmAg	Galena		Ag,Pb,Zn,C
32	Huarangayoc Mina	Huaraz Pariacoto	8.942.305	182.843	Filoneano	7000	Galena Esfalerita Calcopirita		Pb,Zn,Cu, e andesitas
33	Adriana Mina	Huaraz Pira	8.940.023	199.686	Cuerpos	mar	Calcopirita Oro	1.1	Cu,Au en andesitas
34	B.Aires Mina	Casma Yaután	8.944.750	171.500	Cuerpo	80%CaCO3 2.93%SiO2	Caliza	Piritización	Calizas
35	Norka 3 Cantera	Recuay Ticapampa	8.924.845	218.374	Estratificado	Sale -	Caliza		Caliza
36	Salomón 21 Mina	-	8.944.188	215.144	Manto	80%CaCO3	Travertino		Travertino e andesitas
37	S.Cheucayán Mina	Huaraz Huaraz	8.948.217	223.540	Estratos		Arcilla	GATE.	Arcilla en aluvial
38	Sta.Ana J.F Mina	Huaraz Cochabamba	8.947.923	185.786	Manto	96%CaCO3	Caliza		Caliza
39	Sn.Santiago Nº 1, Mina	Casma Yaután	8.947.856	174.094	Manto	47%CaCO3 76%SiO2 79%SO4Ca	Caliza	abre (a	Caliza
40	Treita y uno de Mayo Prosp.	Huaraz	8.939.256	197.578	Estratos	101367	Arcilla Caolín	Card al	Arcillas
41	Sta Ana Nº2 Mina	Huaraz Cochabamba	8.947.646	185.788	Manto	91%CaCO3	Caliza		Caliza
42	Sn. Martin Mina	Huaraz Huaraz	8.921.042	203.764	Estratos		Yeso	1	Caliza en Yeso
43	C" Cashapampa Mina	Aija Aija	8.917.138	211.848	Estratos		Yeso	A STREET	Caliza en Yeso
44	Huarco Mina	Huaraz Cotaparaco	8,870,600	245,800	Sedimentario		Bentonita	Hidrotermal	Bentonita en roca volcánica

PRINCIPALES RECURSOS MINEROS DEL CUADRANGULO DE HUARAZ (20-h)

Figura Nº 6: Principales recursos mineros del cuadrángulo de Huaraz (continuación).

Figura Nº 7: Ubicación de los principales recursos mineros del cuadrángulo de Huaraz (Según: Bol. 76, Serie A, INGEMMET).

V. GEOLOGIA LOCAL

5.1 Litología

En el área de estudio se encuentran principalmente aflorando las Lutitas de la formación Carhuaz, con intrusiones de subvolcánicos andesíticos, sobreyacidas por los volcánicos andesíticos del grupo Callipuy.

Se han identificado los siguientes tipos de rocas.

5.1.1 Rocas Sedimentarias

Calizas Bituminosas

Se encuentran al sur del área de estudio, pertenecen a la formación Santa y se encuentran infrayaciendo a la formación Carhuaz.

Presentan un color negro oscuro por la presencia de bitumen y pirita diseminada por la alteración regional existente.

Lutitas Bituminosas

Se encuentran presentes al sur del área de estudio, con colores gris y marrón, con esporádicas intercalaciones de calizas.

Pertenecen a la formación Carhuaz y se encuentran formando un anticlinal erosionado, cuyo eje tiene rumbo NW-SE y pasa por el medio del área de estudio.

Se encuentran metamorfizada en zonas, con pirita diseminada, además de estar fuertemente fracturadas a causa del tectonismo.

Foto Nº 5: Lutitas negras de la formación Carhuaz.

Foto $N^{\circ}\ 5:$ Lutitas negras (interior mina).

5.1.2 Rocas Metamórficas

Pizarras Blanquecinas

El contacto de las lutitas pertenecientes a la formación Carhuaz, con los intrusivos presentes en el área de estudio, ha generado una pizarra metamórfica blanquecina, con abundante pirita diseminada y venilleo entrecruzado de pirita y carbonatos.

Es la roca caja de muchas de las vetas presentes en el área de estudio, siendo mayor su metamorfismo cerca de las mismas.

Foto Nº 6: Pizarras blanquecinas de las formación Carhuaz.

Foto Nº 7: Pizarras blanquecinas (interior mina).

5.1.3 Rocas Intrusivas

Andesitas Porfiríticas Subvolcánicas

Las rocas intrusivas son principalmente andesitas porfiríticas subvolcánicas, las cuales están intruyendo irregularmente las lutitas de la Formación Carhuaz.

Estas se encuentran interdigitadas y en forma irregular, presentando alteraciones de sericitización y propilitización frecuente en las mismas.

Cuando las vetas presentes en el área de estudio, tienen éstas rocas intrusivas como caja, mejora su potencial, así mismo su contenido mineral.

Foto Nº 8: Andesitas porfiríticas subvolcánicas (muestra de superficie).

Foto Nº 9: Andesitas porfiríticas subvolcánicas (muestra de interior mina).

5.1.4 Rocas Volcánicas

Andesitas Porfiríticas

Las andesitas porfiríticas y microporfiríticas pertenecientes a la formación Callipuy, se encuentran presentes en el área de estudio, sobreyaciendo a las lutitas de la formación Carhuaz.

Su coloración es entre verdosa y violácea, siendo su seudo estratificación concordante con los flancos del anticlinal que atraviesa el área.

Foto Nº 10: Andesita porfirítica gris violácea.

Aglomerados volcánicos

Hacia el este del área de estudio, se encuentran aflorando aglomerados volcánicos, tanto de cuarzo con arenisca y carbonatos, así como un aglomerado formado por fragmentos angulosos de andesita.

Foto Nº 10: Aglomerados volcánicos.

Brechas Piroclásticas

Es la roca caja de la mineralización, son clastos angulosos de lutita negra piritizada, con tamaños que verían desde centímetros a varios metros, en una matriz arcillosa desagregada.

En la brecha también se encuentran bloques de roca argilizada, donde aún se pueden observar relictos de fenocristales de plagioclasas.

En base a las observaciones de campo, se ha propuesto que la brecha piroclástica es un flujo piroclástico de bloques y cenizas, asociado a los domos andesíticos presentes en el área, siendo las cenizas alteradas por los flujos hidrotermales a arcillas.

Por el tamaño de los bloques, la roca caja se le asignado la denominación de brecha piroclástica.

Foto N° 11: Galena en fragmento de brecha de matriz arcillosa (zona de tajo abierto).

Foto Nº 12: Sulfuros en brecha piroclástica de matriz arcillosa (zona de tajo abierto).

Foto Nº 13: Venilla de sulfuros en brecha piroclástica de matriz arcillosa (zona de tajo abierto).

Figura N° 8: Origen de los flujos piroclásticos. (A) Flujo de bloques y cenizas asociado a flujos lávicos y domos; (B) Flujo de escoria y cenizas, por colapso vertical de columnas eruptivas explosivas; (C) Flujo directamente del cráter del volcán. (Según: Volcanic Textures)

5.2 Estructural

El área de estudio es atravesada por un anticlinal erosionado, con rumbo NW, se pueden observar los flancos claramente definidos a ambos lados de las quebradas.

El yacimiento es principalmente explotado por vetas polimetálicas, las cuales son rellenos de fallas pre-existentes, se pueden reconocer 3 sistemas de estructuras principales:

> NW-SE NE-SW ENE-WSW

5.3 Mineralización

La mineralización en el área de estudio es polimetálica, principalmente sulfuros, habiendo identificado pirita, galena argentífera, esfalerita y tetraedrita.

Los sulfuros se encuentran en cristales diseminados en la matriz de la brecha piroclástica, además rellenando microfracturas.

Al SE del área de estudio, se encuentran las vetas polimetálicas actualmente en explotación, son del tipo rosario y se caracterizan por altos valores de Ag, Zn, Pb y valores económicos de Cu.

Las vetas son principalmente carbonatos con sulfuros, con textura crustiforme, habiéndose identificado calcita y rodocrosita, galena, esfalerita y pirita, la tetraedrita no se aprecia a simple vista.

En un previo estudio microscópico del mineral enviado a la planta, se pudo identificar la asociación de galena con tetraedrita, identificando a la fleibergita como mena de Ag a mayor profundidad.

A estas vetas se les ha dado la clasificación de Cordilleranas, que corresponderían a vetas mesotermales con algunas características epitermales.

Foto N° 14: Se puede apreciar en la imagen microscópica, la identificación de galena y cobres grises (tetraedrita), además de esfalerita y pirita.

Foto Nº 15: Tajo subterráneo en explotación, buzando hacia el NE.

VI. GEOQUÍMICA SUPERFICIAL

6.1 Muestreo Geoquímico

Los primeros trabajos realizados en el diseminado constan principalmente en la señalización de los puntos de extracción de muestras en el área, formando una malla de 50 m x 50 m.

Se programaron 2 tipos de muestras:

- Muestras de roca en calicatas: calicatas de 0.8 x 0.8 m de lado con un máximo de 1.20 m de profundidad, el objetivo es atravesar la cobertura Cuaternaria, la zona de óxidos y llegar a roca relativamente fresca, de la cual se extraerá una muestra tipo chip, tratando de sacar homogéneamente fragmentos de toda la superficie de la roca descubierta.
- Muestras en afloramientos de roca: muestras que se extraen en el mismo afloramiento rocoso, se marca una cruz de 1.00 m de largo con 0.30 m de ancho, se saca una capa superficial de aproximadamente 10 cm de profundidad, luego se procede a extraer la muestra, aproximadamente 1 kg de la franja vertical y 1 kg adicional de la franja horizontal.

Figura Nº 8: Diagrama para la toma de muestras en afloramientos rocosos.

Se marcaron 144 puntos de extracción de muestras en toda el área de interés, algunos puntos no se marcaron por estar en una zona de mucha pendiente, de mucha cobertura Cuaternaria o debajo de una zona de botadero de desmonte.

Se han extraído 87 muestras, las cuales incluyen 63 muestras de calicata en roca, 11 muestras de afloramiento en roca, 13 muestras de control de calidad (QA/QC).

Py: pirita OxFe: óxidos de fierro Lim: limonita

Código	Este	Norte	Cota	Тіро	Descripción
1001	205850	8927848	4460	Calicata- Roca	Brecha piroclástica de matriz arcillosa deleznable, py diseminada (3%), presencia de OxFe, fragmentos líticos argilizados, profundidad de muestra: 90 cm.
1002	205798	8927850	4453	Calicata- Roca	Brecha piroclástica de matriz arcillosa deleznable, py diseminada (5%), fragmentos líticos argilizados (lutitas), profundidad de muestra: 100 cm.
1003	205750	8927851	4443	Calicata- Roca	Brecha piroclástica de matriz arcillosa, con capas de OxFe (Lim), profundidad de muestra: 80 cm.
1004	205700	8927850	4438	Calicata- Roca	Brecha piroclástica de matriz arcillosa, moderadamente deleznable, py diseminada (8%), en venillas y oquedades, líticos milimétricos piritizados y fragmentos de andesita argilizada, profundidad de muestra: 70 cm.
1005	205650	8927850	4436	Calicata- Roca	Brecha piroclástica de matriz arcillosa, presencia de OxFe (Lim), profundidad de muestra: 100 cm.
1006	205601	8927848	4432	Calicata- Roca	Brecha piroclástica de matriz arcillosa, presencia de líticos milimétricos (lutita- pizarra) con py granular, py diseminada (3%), profundidad de muestra: 80 cm.
1007	205551	8927849	4424	Calicata- Roca	Brecha piroclástica de matriz arcillosa, presencia de líticos milimétricos (lutita- pizarra) con py granular, py diseminada (3%).
1008	205500	8927850	4411	Calicata- Roca	Brecha piroclástica de matriz arcillosa, presencia de OxFe (20%), py fina diseminada (2%), profundidad de muestra: 90 cm.
1010	205408	8927853	4396	Calicata- Roca	Brecha de matriz de OxFe (Lim- Ocre) con fragmentos de andesita moderadamente argilizada, esporádicos líticos (lutitas-pizarras), PM: 50 cm.
1012	205299	8927850	4426	Calicata- Roca	Roca argilizada, py diseminada granular (15%) y en venillas, OxFe en fracturas y venillas. PM: 80 cm.
1020	205649	8927899	4444	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe (Lim 10%), py granular diseminada (3%), PM: 60 cm.

Tabla Nº 2: Ubicación y descripción de las muestras.

1021	205698	8927899	4447	Calicata- Roca	Brecha polimíctica de matriz piritizada, clastos subangulosos, py diseminada (10- 15%), PM: 70 cm.
1022	205749	8927900	4450	Calicata- Roca	Brecha piroclástica de matriz moderadamente argilizada, py fina y granular diseminada (10%), clastos de lutita negra piritizada (hasta 2 cm), PM: 40 cm.
1023	205799	8927900	4460	Calicata- Roca	Brecha piroclástica de matriz moderadamente argilizada, OxFe (10%), venillas de OxFe, py diseminada (5-10%), fragmentos de lutitas en fracturas, PM: 50 cm.
1024	205850	8927900	4461	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe (25%) en fracturas y venillas, fragmentos milimétricos de lutitas negras, PM: 60 cm.
1025	205900	8927899	4450	Calicata- Roca	Andesita porfirítica moderadamente argilizada, oquerosa, OxFe en fracturas (30%) y venillas, PM:60 cm.
1028	205350	8927951	4440	Calicata- Roca	Brecha piroclástica de matriz arcillosa, py diseminada (30%), clastos de lutita piritizada milimétrica, puntos de galena, PM: 40 cm.
1029	205404	8927952	4424	Calicata- Roca	Brecha piroclástica de matriz arcillosa, py granular diseminada (25%) clastos de lutita piritizada milimétrica, PM:50 cm.
1030	205449	8927947	4443	Calicata- Roca	Brecha piroclástica de matriz arcillosa con OxFe (15%), py diseminada (5-10%) clastos de líticos (lutita, pizarras), PM:10 cm.
1031	205500	8927950	4451	Calicata- Roca	Brecha piroclástica de matriz arcillosa con OxFe (Lim 35%), clastos de líticos (lutita, pizarras), PM:50 cm.
1032	205549	8927950	4453	Calicata- Roca	Brecha piroclástica de matriz arcillosa, pirita granular diseminada, OxFe (Lim 10%), esporádicos líticos, PM: 20 cm.
1033	205600	8927950	4454	Calicata- Roca	Lutita negra fracturada, py granular diseminada (15%), PM: 70 cm.
1034	205649	8927949	4455	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe (15%), esporádicos fragmentos de lutita, PM: 70 cm.
1035	205701	8927950	4463	Calicata- Roca	Brecha piroclástica de matriz arcillosa deleznable, OxFe (15%), fragmentos milimétricos a centimetricos de lutitas negras y pizarras blanquecinas, PM: 20 cm.
1036	205749	8927950	4466	Calicata- Roca	Brecha piroclástica de matriz arcillosa deleznable, OxFe (15%), fragmentos milimétricos a centimetricos de lutitas negras, PM: 45 cm.
1037	205800	8927948	4471	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe en venillas y fracturas (20%), abundantes fragmentos milimétricos de lutita negra, PM: 10 cm.
1038	205851	8927949	4465	Calicata- Roca	Brecha piroclástica de matriz moderadamente argilizada, OxFe en venillas y fracturas (20%), abundantes fragmentos milimétricos de lutitas negras, PM: 50 cm.

1039	205899	8927950	4454	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe en venillas y fracturas (25%), fragmentos milimétricos de lutitas negras, PM: 65 cm.
1042	205901	8928000	4452	Calicata- Roca	Brecha piroclástica de matriz intensamente argilizada y fracturada, con limoarcillas pardas y fragmentos de roca silicificada, PM: 80 cm.
1043	205849	8927998	4463	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe (5%) en fracturas y venillas, esporádicos fragmentos milimétricos de lutita negra, PM: 10 cm.
1044	205799	8928000	4475	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe (5%) en fracturas y venillas, PM: 10 cm.
1045	205749	8927999	4480	Calicata- Roca	Brecha piroclástica de matriz arcillosa deleznable, OxFe (10%), fragmentos mm de lutita negra, PM: 60 cm.
1048	205598	8927999	4467	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe (10%), esporádicos fragmentos de lutita negra.
1049	205549	8927999	4466	Calicata- Roca	Brecha piroclástica de matriz moderadamente argilizada, intensamente fracturada, OxFe (15%), PM: 15 cm.
1051	205500	8927999	4461	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe (30%) en fracturas, PM: 40 cm.
1053	205405	8927996	4455	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe en fracturas (15%), fragmentos milimétricos de lutitas negras, PM: 50 cm.
1054	205349	8928000	4463	Calicata- Roca	Brecha piroclástica de matriz arcillosa, oquerosa, fragmentos milimétricos de lutitas negras y pizarras, PM: 10 cm.
1055	205302	8927998	4471	Roca	Brecha piroclástica de matriz arcillosa, OxFe en fracturas (10%), fragmentos milimétricos a centimetricos de andesita argilizada y lutitas negras.
1056	205299	8928050	4492	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe (10%) en fracturas, esporádicos fragmentos milimétricos de lutita negra, PM: 80 cm.
1058	205398	8928050	4477	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe (15%) en fracturas, esporádicos fragmentos milimétricos de lutita negra.
1060	205452	8928047	4475	Calicata- Roca	Brecha piroclástica de matriz arcillosa, py granular diseminada (20%), venillas de pirita, esporádicos fragmentos de lutita negra, PM:50 cm.
1061	205499	8928050	4480	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe en fracturas (25%), esporádicos fragmentos milimétricos de pizarras, PM: 100 cm.
1063	205548	8928051	4486	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe en fracturas (20%), esporádicos fragmentos milimétricos de lutitas negras, PM: 50 cm.
1065	205651	8928050	4503	Calicata- Roca	Brecha piroclástica de matriz arcillosa, oquerosa, OxFe en fracturas (15%), fragmentos milimétricos y centimetricos de lutitas negras, PM: 35 cm.
------	--------	---------	------	-------------------	--
1066	205698	8928049	4505	Roca	Andesita porfirítica moderadamente argilizada, OxFe en fracturas (5%).
1067	205749	8928050	4490	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe en fracturas (10%), esporádicos fragmentos milimétricos de lutitas negras, PM: 40 cm.
1074	205749	8928104	4492	Roca	Andesita porfirítica de matriz oxidada, OxFe (5%).
1076	205701	8928101	4507	Calicata- Roca	Andesita porfirítica verdosa argilizada y oxidada en fracturas.
1077	205651	8928098	4517	Calicata- Roca	Brecha piroclástica de matriz fuertemente argilizada, fragmentos esporádicos de Lutitas negras y pizarras, PM: 35 cm.
1079	205599	8928098	4513	Roca	Andesita brechada y argilizada.
1080	205549	8928094	4499	Roca	Andesita brechada y ligeramente argilizada, OxFe en fracturas, py oxidada y diseminada (3%).
1081	205499	8928100	4493	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe en fracturas (5%), esporádicos granos de py oxidada, fragmentos milimétricos de lutita negra, PM: 10 cm.
1082	205451	8928101	4488	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe (Lim) en fracturas, oquerosa, fragmentos milimétricos de lutitas y pizarras, PM: 50 cm.
1084	205399	8928099	4491	Roca	Brecha piroclástica de matriz arcillosa, fragmentos milimétricos y centimetricos de lutitas y andesitas, esporádicos granos de galena.
1085	205349	8928099	4498	Roca	Brecha piroclástica de matriz arcillosa, fragmentos de lutitas y pizarras piritizadas, py diseminada granular (3%).
1086	205298	8928102	4505	Calicata- Roca	Andesita porfirítica verdosa moderadamente argilizada.
1087	205298	8927799	4404	Calicata- Roca	Brecha piroclástica de matriz arcillosa, OxFe en fracturas (5%), py granular diseminada (5%), PM: 10 cm.
1088	205349	8927798	4402	Calicata- Roca	Roca intensamente argilizada, deleznable, con OxFe (Lim) en fracturas, PM: 80 cm.
1089	205897	8927699	4427	Roca	Andesita porfirítica verdosa, de matriz moderadamente argilizada.

1090	205900	8927751	4444	Calicata- Roca	Andesita porfirítica violácea, moderada a fuertemente argilizada, OxFe en fracturas, PM: 50 cm.			
1091	205852	8927754	4451	Calicata- Roca	Roca argilizada, posiblemente andesítica, OxFe en fracturas (5%), PM: 10 cm.			
1092	205901	8927799	4455	Roca	Roca intensamente argilizada, oquerosa, OxFe (15%) en fracturas y venillas.			
1093	205847	8927800	4459	Calicata- Roca	Andesita porfirítica violácea intensamente argilizada deleznable, OxFe (20%) er fracturas, PM: 50 cm.			
1095	205799	8927801	4444	Calicata- Roca	Andesita porfirítica grisácea, py granular diseminada (8-10%), OxFe en fracturas (5%), PM: 10 cm.			
1096	205703	8927801	4417	Roca	Pizarra blanquecina finamente piritizada (3%).			
1097	205649	8927800	4417	Calicata- Roca	 Andesita intensamente argilizada, deleznable, OxFe en fracturas (15%), PM:4 cm. 			
1098	205599	8927800	4427	Calicata- Roca	A- Andesita intensamente argilizada, deleznable, OxFe en fracturas (15%), PM:7 cm.			
1099	205550	8927801	4418	Calicata- Roca	Andesita intensamente argilizada, deleznable, OxFe en fracturas (10%), PM:35 cm.			
1100	205501	8927800	4405	Calicata- Roca	Andesita intensamente argilizada, deleznable, OxFe en fracturas (15%), PM:20 cm.			
1101	205455	8927746	4380	Roca	Andesita fuertemente argilizada, OxFe en fracturas (25%).			
1102	205494	8927755	4397	Calicata- Roca	Andesita fuertemente argilizada, OxFe en fracturas (20%), PM: 10 cm.			
1103	205550	8927748	4410	Calicata- Roca	Andesita fuertemente argilizada, OxFe en fracturas (10%), py granular diseminada y en fracturas (10%), PM: 65 cm.			
1104	205597	8927750	4418	Calicata- Roca	Andesita fuertemente argilizada, OxFe en fracturas (10%), py granular diseminada y en fracturas (5%), PM: 30 cm.			
1105	205651	8927752	4406	Calicata- Roca	Andesita débilmente silicificada, py diseminada (5%), PM: 50 cm.			

6.2 Control de Calidad del Análisis Químico

Los análisis de control de calidad (QA-QC) de las muestras se hacen mediante procesos estadísticos, generalmente se acepta un máximo de 10% de error en cualquiera de los controles, sin embargo por la reducida cantidad de muestras, se dará una tolerancia de máximo 1 error por control.

6.2.1 Duplicados

Los duplicados se utilizan para determinar la precisión del laboratorio, en esta caso se han realizados muestras gemelas, separando una muestra en dos, por medio de cuarteo, de esta manera se manda una muestra original (Vo) y una muestra duplicada (Vd).

El máximo de error aceptado es 30%, es decir la máxima diferencia entre el análisis del original y el duplicado, en los siguientes cuadros se puede ver los controles realizados para Au, Ag, Zn, Pb y Cu, elementos principales de explotación, la columna de evaluación indicara con el valor "1" si hay algún error.

En la gráfica, los puntos deben caer entre la línea de 45⁰ y el límite de error representado por la línea hiperbólica roja.

	1	1	1	1						1
Тіро	Codigo	Au (ppb)	Vo-Vd	Vo+Vd	Prom(Vo+Vd)	ER (%)	Min	Max	Limite	Evaluacion
Vo	1008	2080								
Vd	1009	2012	68	4092	2046	3.32	2012	2080	2717.10	
Vo	1049	27								
Vd	1050	12	15	39	19.5	76.92	12	27	71.85	
Vo	1074	12								
Vd	1075	16	-4	28	14	28.57	12	16	71.85	
Vo	1093	152								
Vd	1094	167	-15	319	159.5	9.40	152	167	216.81	

Tabla Nº 3: Diferencia entre los resultados de los análisis de la muestra original y la muestra gemela (Au).

Figura Nº 9: Gráfico valor original vs valor de la muestra gemela (Au).

Codigo	Ag (ppm)	Vo-Vd	Vo+Vd	Prom(Vo+Vd)	ER (%)	Min	Max	Limite	Evaluacion
1008	65.5								
1009	68.9	-3.4	134.4	67.2	5.06	65.5	68.9	93.38	
1049	2.1								
1050	2.1	0	4.2	2.1	0.00	2.1	2.1	30.13	
1074	19.9								
1075	1	18.9	20.9	10.45	180.86	1	19.9	30.03	
1093	4.5								
1094	8.4	-3.9	12.9	6.45	60.47	4.5	8.4	30.61	

Tabla Nº 4: Diferencia entre los resultados de los análisis de la muestra original y la muestra gemela (Ag).

Figura Nº 10: Gráfico valor original vs valor de la muestra gemela (Ag).

Codigo	70 (000)	Vo Vd	VoiVd	Dram(May)(d)	ED (9/)	Min	Max	Limite	Fuelwasian
Coalgo	Zn (ppm)	νο-να	νο+να	Prom(vo+va)	ER (%)	IVIIN	Iviax	Limite	Evaluation
1008	110								
1009	93	17	203	101.5	16.75	93	110	135.14	
1049	92								
1050	85	7	177	88.5	7.91	85	92	125.17	
1074	440								
1075	466	-26	906	453	5.74	440	466	596.10	
1093	17								
1094	14	3	31	15.5	19.35	14	17	53.45	

Tabla Nº 5: Diferencia entre los resultados de los análisis de la muestra original y la muestra gemela (Zn).

Figura Nº 11: Gráfico valor original vs valor de la muestra gemela (Zn).

Codigo	Pb (ppm)	Vo-Vd	Vo+Vd	Prom(Vo+Vd)	ER (%)	Min	Max	Limite	Evaluacion
1008	1327								
1009	2525	-1198	3852	1926	62.20	1327	2525	1792.15	1
1049	113								
1050	116	-3	229	114.5	2.62	113	116	160.54	
1074	211								
1075	77	134	288	144	93.06	77	211	115.35	1
1093	346								
1094	358	-12	704	352	3.41	346	358	469.77	

Tabla Nº 6: Diferencia entre los resultados de los análisis de la muestra original y la muestra gemela (Pb).

Figura Nº 12: Gráfico valor original vs valor de la muestra gemela (Pb).

Codigo	Cu (ppm)	Vo-Vd	Vo+Vd	Prom(Vo+Vd)	ER (%)	Min	Max	Limite	Evaluacion
1008	193								
1009	184	9	377	188.5	4.77	184	193	249.20	
1049	8								
1050	8	0	16	8	0.00	8	8	22.73	
1074	12								
1075	11	1	23	11.5	8.70	11	12	24.91	
1093	17								
1094	26	-9	43	21.5	41.86	17	26	30.44	

Tabla Nº 7: Diferencia entre los resultados de los análisis de la muestra original y la muestra gemela (Cu).

Figura Nº 13: Gráfico valor original vs valor de la muestra gemela (Cu).

Como podemos observar, en el análisis del plomo se han determinados 2 errores, es decir la diferencia entre el análisis de la muestra original y duplicada excede lo permitido, por lo cual este laboratorio no es preciso en sus análisis de plomo.

6.2.2 Estándar

En los controles del estándar, se prepara una muestra de ley conocida (STD) y se compara con los resultados del laboratorio al analizar el estándar, esto se hace para determinar la exactitud del laboratorio, es decir que tan cerca del valor real son sus resultados.

El preparar un estándar adecuado, implica muestras con una certificación, muchas veces de laboratorios internacionales, en la cual a través de análisis en varios laboratorios se verifica que las muestras tengan un valor conocido exacto, además de realizar test para verificar la homogeneidad del estándar, siendo lo ideal que sea preparado con el mismo material del yacimiento a estudiar.

En el caso del presente estudio, por limitaciones de tiempo, se optó por un estudio comparativo, <u>el cual no cumple el mismo</u> propósito del estándar, sin embargo sirve como referencia.

Para lo cual se realizó en el laboratorio de la planta de Minera Huinac, el análisis de una cantidad de material extraído de la brecha piroclástica (roca caja de la mineralización), el cual se pulverizo y homogenizó para su estudio.

Se realizaron 10 análisis del material por Ag, obteniéndose un promedio para la muestra de 90.43 ppm.

Este material se introdujo entre las muestras enviadas al laboratorio externo, obteniéndose una diferencia entre los valores del laboratorio interno y el externo de 15.16%, la cual es muy elevada.

Se recomendó realizar un estándar para los elementos económicos principales (Ag, Pb, Zn y Cu), para que luego sean analizados por el laboratorio interno y el externo, con la finalidad de determinar el sesgo en los procesos de cada laboratorio.

Código de muestra de control	Ag (ppm)
1040	77.6
1059	81.3
1069	75.5
1083	72.5
Promedio Lab. Externo	76.73
Promedio Lab. Interno	90.43
Diferencia (%)	15.16

Tabla Nº 8: Resultado del análisis de las muestra de control (Ag).

6.2.3 Blancos

Los blancos son muestras de poca o ninguna ley de los minerales que se trabajan, en el presente estudio utilizamos una lutita negra inalterada.

El blanco se utiliza para determinar la limpieza del laboratorio, ya que las muestras se analizan en orden, se controla el blanco ploteandolo con la muestra anterior, si la muestra anterior es de alta ley y el blanco da como ley un valor fuera del promedio, esto significa que el laboratorio no ha limpiado bien sus equipos entre muestra y muestra, dando por resultado la contaminación del blanco.

En los siguientes cuadros se puede apreciar este análisis, lo cual nos da como resultado 2 muestras contaminadas en los análisis de Au y Ag.

	Blancos	Muestras
		Precendetes
	57	919
	17	73
Au (ppb)	20	50
	22	12
	8	89
	0.1	37.1
	0.6	77.6
Ag (ppm)	0	22.7
	0.3	3.3
	0.2	16.1
	89	122
	92	10000
Zn(ppm)	82	473
	100	84
	86	261
	3	319
	16	10000
Pb (ppm)	7	4378
	33	2072
	10	4744
	27	5
	32	137
Cu (ppm)	36	152
	47	16
	27	67

Tabla Nº 9: Resultados de los análisis de la muestra de control (blancos) y de la respectiva muestra precedente.

Figura N° 14: Gráfico del valor de la muestra de control (blanco) vs el valor de la muestra precedente.

6.3 Correlación de Pearson

El coeficiente de correlación de Pearson es un índice estadístico que mide la relación lineal entre dos variables cuantitativas. A diferencia de la covarianza, la correlación de Pearson es independiente de la escala de medida de las variables.

El cálculo del coeficiente sagas g de correlación lineal se realiza dividiendo la covariancia por el producto de las desviaciones estándar de ambas variables:

$$r = \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y}$$

Siendo:

 σ_{XY} la covarianza de (X,Y)

 σ_X y σ_Y las desviaciones típicas de las distribuciones marginales.

El valor del índice de correlación varía en el intervalo [-1, +1]:

- Si r = 0, no existe ninguna correlación. El índice indica, por tanto, una independencia total entre las dos variables, es decir, que la variación de una de ellas no influye en absoluto en el valor que pueda tomar la otra.
- Si r = 1, existe una correlación positiva perfecta. El índice indica una dependencia total entre las dos variables denominada relación directa: cuando una de ellas aumenta, la otra también lo hace en idéntica proporción.
- Si 0 < r < 1, existe una correlación positiva.
- Si r = -1, existe una correlación negativa perfecta. El índice indica una dependencia total entre las dos variables llamada relación inversa: cuando una de ellas aumenta, la otra disminuye en idéntica proporción.

• Si -1 < r < 0, existe una correlación negativa.

Se dice que una correlación es significativa si la misma se encuentra entre [-1 ; -0,7] o [1 ; 0,7]

Se ha realizado una matriz de correlación de los principales elementos y de elementos traza (As, Bi y Sb).

	Au	Ag	Zn	Pb	Cu	As	Ві	Sb	
Au			·	ji j	···		1 ,		
Ag	0.48								
Zn	0.08	0.26							
Pb	0.40	0.67	0.31			*		P . S	
Cu	0.56	0.53	0.56	0.54		*		Ř	
As	0.51	0.41	0.36	0.31	0.43		- 1 22	for "	
Bi	0.49	0.46	0.09	0.14	0.49	0.41		· · ·	Correlacion Nula 0.00 - 0.05 Correlacion Muy Debil
Sb	0.50	0.57	-0.07	0.29	0.47	0.32	0.73		0.05 - 0.20 Correlacion Debil 0.20 - 0.5 Correlacion Moderada 0.5 - 0.6 Correlacion Fuerte > 0.6

Figura Nº 15: Gráficas de correlación de Pearson.

Como se puede observar, existe una correlación fuerte entre la Ag y el Pb, lo cual nos indicaría que en efecto estamos ante una galena argentífera.

Hay una correlación entre el Cu con el Au, Ag, Zn y Pb, sin embargo muestra una débil correlación entre Zn y Pb, es común que la galena y la esfalerita estén asociadas, sin embargo en las muestras de superficie al parecer no es así, la alteración superficial puede haber facilitado la migración de uno de estos elementos, alterando la correlación, podremos verificar estos resultados en los análisis de las muestras frescas de los taladros.

Para finalizar observamos una correlación significativa entre el Au y el As, además del Au y Sb, por lo tanto podremos utilizar el As y Sb como elemento guía para encontrar zonas de Au de mayor ley.

Con los resultados de las muestras, se realizó los histogramas de frecuencias, para los principales elementos económicos. Luego se halló el background y el threshold.

Oro	(Au))
-----	------	---

Tabla Nº 10: Tabla de frecuencias para el Au.

			-		
	Ν	Mínimo	Máximo	Media	Desv. típ.
Au_ppb	73	9.00	565.00	100.6712	105.47670
Log_Au	73	.95	2.75	1.8021	.42531
N válido (según lista)	73				

Estadísticos descriptivos

	Log Au	ppb
BG	1.85	70.79
TH (2S)	2.70	281.75

Plata (Ag)

		I	Log_Ag		
		Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
Válidos	.00	3	4.1	4.1	100.00
	.30	7	9.5	9.5	95.95
	.48	8	10.8	10.8	86.49
	.60	6	8.1	8.1	75.68
	.70	2	2.7	2.7	67.57
	.78	7	9.5	9.5	64.86
	.85	2	2.7	2.7	55.41
	.90	4	5.4	5.4	52.70
	.95	3	4.1	4.1	47.30
	1.00	2	2.7	2.7	43.24
	1.04	2	2.7	2.7	40.54
	1.08	2	2.7	2.7	37.84
	1.11	2	2.7	2.7	35.14
	1.20	1	1.4	1.4	32.43
	1.26	3	4.1	4.1	31.08
	1.30	1	1.4	1.4	27.03
	1.36	3	4.1	4.1	25.68
	1.38	3	4.1	4.1	21.62
	1.48	2	2.7	2.7	17.57
	1.52	1	1.4	1.4	14.86
	1.53	1	1.4	1.4	13.51
	1.60	1	1.4	1.4	12.16
	1.62	2	2.7	2.7	10.81
	1.65	1	1.4	1.4	8.11
	1.66	1	1.4	1.4	6.76
	1.69	1	1.4	1.4	5.41
	1.75	1	1.4	1.4	4.05
	1.76	1	1.4	1.4	2.70
	1.82	1	1.4	1.4	1.35
	Total	74	100.0	100.0	

Figura Nº 17: Gráfico de histograma y

frecuencia acumulada para el Ag. Tabla Nº 11: Tabla de frecuencias para el Ag.

48

	Estadísticos descriptivos							
	N	Mínimo	Máximo	Media	Desv. típ.			
Log Ag	74	.00	1.82	.9282	.47204			
Ag ppm	74	1.00	66.00	14.6351	15.57797			
N válido (según lista)	74							

 Log Ag
 ppm

 BG
 0.93
 8.51

 TH (2S)
 1.85
 39.67

Zinc (Zn)

Log_Zn								
		Fraguancia	Dercentoia	Porcentaje	Porcentaje			
Válidoo	05	Frecuencia	Porcentaje	valido	acumulado 100.0			
validos	.95	1	1.4	1.4	100.0			
	1.18	1	1.4	1.4	98.0			
	1.23	1	1.4	1.4	97.3			
	1.28	1	1.4	1.4	95.9			
	1.30	1	1.4	1.4	94.6			
	1.45	1	1.4	1.4	93.2			
	1.52	1	1.4	1.4	91.9			
	1.70	1	1.4	1.4	90.5			
	1.77	1	1.4	1.4	89.2			
	1.78	2	2.7	2.7	87.8			
	1.80	1	1.4	1.4	85.1			
	1.81	3	4.1	4.1	83.8			
	1.82	1	1.4	1.4	79.7			
	1.85	1	1.4	1.4	78.4			
	1.87	1	1.4	1.4	77.0			
	1.88	1	1.4	1.4	75.7			
	1.92	1	1.4	1.4	74.3			
	1.94	2	2.7	2.7	73.0			
	1.96	2	2.7	2.7	70.3			
	2.00	2	2.7	2.7	67.6			
	2.03	1	1.4	1.4	64.9			
	2.04	1	1.4	1.4	63.5			
	2.07	1	1.4	1.4	62.2			
	2.09	2	2.7	2.7	60.8			
	2.11	1	1.4	1.4	58.1			
	2.14	1	1.4	1.4	56.8			
	2.15	1	1.4	1.4	55.4			
	2.18	1	1.4	1.4	54.1			
	2.20	2	2.7	2.7	52.7			
	2.21	3	4.1	4.1	50.0			
	2.22	1	1.4	1.4	45.9			
	2.26	1	1.4	1.4	44.6			
	2.29	3	4.1	4.1	43.2			
	2.30	2	2.7	2.7	39.2			
	2.31	1	1.4	1.4	36.5			
	2.35	1	1.4	1.4	35.1			
	2.38	2	2.7	2.7	33.8			

Figura Nº 18: Gráfico de histograma y frecuencia acumulada para el Zn.

2.40	1	1.4	1.4	31.1
2.42	1	1.4	1.4	29.7
2.44	1	1.4	1.4	28.4
2.46	1	1.4	1.4	27.0
2.54	2	2.7	2.7	25.7
2.55	1	1.4	1.4	23.0
2.60	1	1.4	1.4	21.6
2.64	1	1.4	1.4	20.3
2.66	1	1.4	1.4	18.9
2.67	2	2.7	2.7	17.6
2.69	1	1.4	1.4	14.9
2.72	1	1.4	1.4	13.5
2.81	1	1.4	1.4	12.2
2.86	1	1.4	1.4	10.8
2.98	1	1.4	1.4	9.5
3.12	1	1.4	1.4	8.1
3.17	1	1.4	1.4	6.8
3.27	1	1.4	1.4	5.4
3.92	1	1.4	1.4	4.1
4.00	2	2.7	2.7	2.7
Total	74	100.0	100.0	

Tabla Nº 11: Tabla de frecuencias para el Zn.

Estadísticos descriptivos

	N	Mínimo	Máximo	Media	Desv. típ.
Zn_ppm	74	9.00	10,000.00	626.4730	1,856.06932
Log_Zn	74	.95	4.00	2.2397	.57967
N válido (según lista)	74				

	Log Zn	ppm
BG	2.25	177.83
TH (1 S)	2.83	2033.90

Plomo (Pb)

Log Pb							
		Frecuencia	– Porcentaje	Porcentaje válido	Porcentaje acumulado		
Válidos	1.75	1	1.4	1.4	100.0		
	1.85	2	2.7	2.7	98.6		
	1.88	1	1.4	1.4	95.9		
	1.93	1	1.4	1.4	94.6		
	2.03	1	1.4	1.4	93.2		
	2.05	3	4.1	4.1	91.9	ncia	
	2.06	1	1.4	1.4	87.8	cue	
	2.08	1	1.4	1.4	86.5	E e	
	2.20	1	1.4	1.4	85.1		
	2.22	1	1.4	1.4	83.8		
	2.25	1	1.4	1.4	82.4		
	2.27	1	1.4	1.4	81.1		
	2.31	1	1.4	1.4	79.7		
	2.32	1	1.4	1.4	78.4		
	2.34	2	2.7	2.7	77.0		
	2.35	1	1.4	1.4	74.3		
	2.41	1	1.4	1.4	73.0		
	2.45	1	1.4	1.4	71.6		
	2.48	1	1.4	1.4	70.3		
	2.49	1	1.4	1.4	68.9		
	2.54	1	1.4	1.4	67.6		
	2.59	1	1.4	1.4	66.2		
	2.70	1	1.4	1.4	64.9		
	2.78	1	1.4	1.4	63.5		
	2.81	1	1.4	1.4	62.2		
	2.84	1	1.4	1.4	60.8	٩.	
	2.85	1	1.4	1.4	59.5	Fre	
	2.86	1	1.4	1.4	58.1		
	2.89	1	1.4	1.4	56.8		
	2.94	1	1.4	1.4	55.4		
	2.98	2	2.7	2.7	54.1		
	2.99	2	2.7	2.7	51.4		
	3.02	1	1.4	1.4	48.6		
	3.03	1	1.4	1.4	47.3		
	3.05	1	1.4	1.4	45.9		
	3.06	1	1.4	1.4	44.6		
	3.12	1	1.4	1.4	43.2		
	3.15	1	1.4	1.4	41.9		
	3.19	1	1.4	1.4	40.5		
	3.23	2	2.7	2.7	39.2		
	3.26	1	1.4	1.4	36.5		
	3.31	1	1.4	1.4	35.1		
	3.32	1	1.4	1.4	33.8		
	3.34	1	1.4	1.4	32.4		
	3.37	1	1.4	1.4	31.1		
	3.42	1	1.4	1.4	29.7		
	3.46	1	1.4	1.4	28.4		
	3.54	2	2.1	2.1	27.0		
	3.60	1	1.4	1.4	24.3		
	3.03	1	1.4	1.4	23.0		
	3.04	4	2.1	2.1	21.0		
	3.00	1	1.4	1.4	10.9		
	3.07	1	1.4	1.4	16.0		
	3.06	4	1.4	1.4	10.2		
	2.04	4	1.4	1.4	14.9		
	3.01	1	1.4	1.4	13.5		
	2.63	1	1.4	1.4	12.2		
	3.80	1	1.4	1.4	10.δ 0.5		
	3.93	6	1.4 Q 1	0.4	9.0 Q 1		
	Total	74	100.0	100.0	0.1		
	rotar	74	100.0	100.0			

Figura Nº 19: Gráfico de histograma y frecuencia acumulada para el Pb.

51

Tabla Nº 12: Tabla de frecuencias para el Pb.

	Ν	Mínimo	Máximo	Media	Desv. típ.
Pb_ppm	74	56.00	10,000.00	2,352.8919	2,989.31131
Log_Pb	74	1.75	4.00	2.9601	.66534
N válido (según lista)	74				

Estadísticos descriptivos

	Log Pb	Ppm
BG	3.05	1122.02
TH (1S)	3.72	4111.33

Cobre (Cu)

	Log_Cu					Histograma		
		- ·		Porcentaje	Porcentaje			
Maria		Frecuencia	Porcentaje	valido	acumulado	20 Media = 1,52 Desviación típica = 0,454		
Validos	.30	1	1.4	1.4	100.0	n - / 4		
	.00	1	1.4	1.4	98.0			
	./8	2	2.1	2.1	97.3	15-		
	C8.	1	1.4	1.4	94.0			
	.90	1	1.4	1.4	93.2			
	1.00	2	2.1	2.7	91.9			
	1.04	2	2.1	2.1	09.2			
	1.08	4	0.4	0.4	01.0	μ		
	1.15	1	1.4	1.4	81.1			
	1.18	2	2.1	2.1	79.7			
	1.20	3	4.1	4.1	72.0			
	1.23	3	4.1	4.1	73.0			
	1.20	4	2.1	2.1	66.0			
	1.32	-	1.4	1.4	64.0			
	1.34	1	1.1	1/	62.2	0,00 0,50 1,00 1,50 2,00 2,50 3,00		
	1.30	1	1.4	1.4	60.8			
	1.40	1	1.4	1.4	59.5	100.00		
	1.43	2	27	27	58.1	95.00- R ² Cúbico =0,99		
	1.45	2	27	27	55.4	90.00-		
	1.46	1	14	14	52.7	85.00-		
	1 49	1	14	14	51.4	80.00-		
	1.54	1	14	14	50.0	75.00		
	1.57	3	41	41	48.6	65.00-		
	1.58	2	2.7	2.7	44.6	60.00-		
	1.59	1	1.4	1.4	41.9	¥ 55.00−		
	1.60	1	1.4	1.4	40.5	50.00 45.00		
	1.63	2	2.7	2.7	39.2	40.00-		
	1.66	1	1.4	1.4	36.5	35.00-		
	1.73	1	1.4	1.4	35.1	30.00-		
	1.74	1	1.4	1.4	33.8	25.00-		
	1.77	3	4.1	4.1	32.4	15.00		
	1.79	2	2.7	2.7	28.4	10.00-		
	1.83	1	1.4	1.4	25.7	5.00-		
	1.84	1	1.4	1.4	24.3	.00 <mark>-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </mark>		
	1.85	1	1.4	1.4	23.0	Intervalos		
	1.86	1	1.4	1.4	21.6			
	1.89	1	1.4	1.4	20.3			
	1.94	1	1.4	1.4	18.9	Figura Nº 20: Gráfico de histograma y		
	1.96	1	1.4	1.4	17.6	frecuencia acumulada para el Cu.		
	2.02	1	1.4	1.4	16.2	'		
	2.06	2	2.7	2.7	14.9			
	2.13	1	1.4	1.4	12.2			
	2.14	1	1.4	1.4	10.8			

2.18	1	1.4	1.4	9.5
2.19	1	1.4	1.4	8.1
2.28	1	1.4	1.4	6.8
2.29	1	1.4	1.4	5.4
2.35	1	1.4	1.4	4.1
2.48	1	1.4	1.4	2.7
2.57	1	1.4	1.4	1.4
Total	74	100.0	100.0	

Tabla Nº 13: Tabla de frecuencias para el Cu.

Estadísticos descriptivos

	Ν	Mínimo	Máximo	Media	Desv. típ.
Cu_ppm	74	2.00	371.00	56.6351	67.69868
Log_Cu	74	.30	2.57	1.5223	.45409
N válido (según lista)	74				

	Log Cu	Ppm
BG	1.50	31.62
TH (2S)	2.41	167.02

Con los resultados de los análisis químicos, se realizó planos geoquímicos de isovalores metálicos para los principales elementos, además de un plano para el As, el cual tiene una correlación con el Au.

Los isovalores muestran las variaciones en las concentraciones de cada elemento, y la muestran en una escala de colores desde azul (menor concentración), hasta blanco (mayor concentración).

Para mayor comprensión, los puntos de muestreo han sido indicados, rotulándolos con su concentración en el elemento analizado, los resultados están en ppm (partes por millón) y ppb (partes por billón), para lo cual se deberá tener en cuenta las siguientes equivalencias:

> 1 ppm = 1000 ppb 1 ppm = 1 gr/t (gramos por tonelada) 10000 ppm = 1 % 28.35 ppm = 1 Oz 31.10 ppm = 1 Oz Troy

El nivel de prioridad de anomalías, fue establecido bajo 2 criterios, mayor concentración del elemento anómalo y mayor distancia de los 3 taladros perforados, dando prioridad a las anomalías al este del área, donde se tiene menor información.

Se han encontrado anomalías en Ag y Au, las cuales son casi coincidentes, mostrando leyes superficiales de Ag de hasta 2 Oz/Tn y de Au de hasta 0.56 gr/Tn (Planos N° 3 y N° 5).

En el plano de anomalías de Zn (Plano N° 6), se observan 2 anomalías muy fuertes de Zn, al este y oeste del área, con leyes en el este que superan el límite de detección (1%).

En el plano de anomalías de Pb (Plano N° 7), se encuentran anomalías distribuidas por todo el área, con leyes que superan el límite de detección (> 1%).

En el plano de anomalías de Cu (Plano N° 8), se encuentran anomalías al este y al oeste del área, con leyes menores de hasta 0.371 %.

VII. RELOGUEO DE LOS TALADROS PERFORADOS

7.1 Información Obtenida

- Se halló el porcentaje de recuperación, el cual es un valor que indica el tamaño del testigo recuperado, en función a los metros perforados, lo cual debe de estar, en promedio mayor al 80%, para que el testigo sea una muestra representativa del subsuelo.
- Se determinó el RQD, el cual representa la calidad de la roca, tomando en cuenta las fracturas naturales de la misma. Menos fracturas, roca de mayor calidad y RQD, mas fracturas, menor calidad y RQD.
- La determinación del porcentaje de recuperación y el RQD se le conoce como logueo geotécnico.
- Se realizó un registro fotográfico de las cajas de cada taladro, de tal manera que se tendrá un respaldo de fácil disponibilidad de los testigos, siendo posible revisar en las fotos, tramos de buena ley mineral.
- Se marcó en las cajas los tramos de muestreo, con la finalidad de poder ubicar en la misma caja de testigos, el tramo de donde se extrajo la muestra.
- Se extrajo las muestras de los tramos obviados en los trabajos del 2008, siendo un yacimiento diseminado, es necesario la información de todo el taladro, ya que toda la zona esta mineralizada, en mayor o menor proporción, información que es necesaria con fines exploratorios.

Cabe indicar que es procedimiento estándar tomar muestras de todo el taladro en yacimientos diseminados y cuerpos mineralizados, solo se realiza la toma de muestras selectiva en yacimientos vetiformes.

- Se introdujo muestras de control para realizar el control de calidad (QA-QC), con lo cual se verificara la precisión y exactitud de los resultados de laboratorio.
- Se realizó el Quick Log de los tres taladros, el mismo que es un logueo resumido, además se volvió a realizar los logueos detallados, llenando los vacíos en la información existente.

- Se corrigió la información referente a la matriz de las brechas piroclásticas, la cual es una matriz arcillosa, <u>no formada por</u> <u>carbonatos</u>, se demostró con el uso de HCI (ácido clorhídrico), la ausencia de carbonatos en la matriz de las brechas.
- Se corrigieron errores en la profundidad final de los taladros y en la ubicación de los tacos de avance de perforación.

	Mine	a Huinac SA	21		OII Dis	CK LOG H-001 eminado							
Easting	20535	06	Northing	8927828	4371	Depth:	100.35	Azimut:	335		Dip: 40°		
Date St	tart:	09-feb-08	Date End:	23-feb-08	LON YE	AR 38		Driller	ESO	ē	Geologist: M.V.M		
From	2		Litholo)gy		Alten	ation	Fro	L L		Minerals	Leyes Promedio	Mejores Tramos
		Code		Comments	Code		Comments			Code	Comments		
	11 16	VBY	Brecha	Piroclástica, con e Intite norre nizerre	۵۸	Argilizacion c	lébil a muy débil aderada	de la 0.	.00 15.1	DS DS	Pirita, esfalerita y galena, disemin en la matriz.	ada [0.00 - 15.00 m @ 0.208 Au g/t; 38 Ag g/t; 0.04 Cu % 0.02 Pb%; 46 Zn %1 116.00 - 41.46 m @	[0.00 - 9.00 m @ 60.35 Ag g/t; 5.6 Zn %] 16 00 - 14 00 m @ 3.3 7n %1 - 14 00
2	,		blanquecina y	r andesita porfirítica.	ź	primeros 9 m	ietros.	15.	00 41.	15 DS	Pirita diseminada y en venillas, tra de esfalerita y galena.	zas 0.187 Au g/t; 25 Ag g/t; 0.13 Cu % 0.01 Pb%; 0.4 Zn %]	30.00 m @38.8 Ag g/t]
41.45	70.55	SHLE	Pizarra beige oquedades.	con esporádicas				41.	45 70.	25 DS	Pirita diseminada y en venillas, p granular con tetrahedrita y cue drusico rellenando esporádi oquedades. Presencia de vetas cuarzo con pinta y tetrahedrita.	nita rzo [@ 0.224 Au g/t; 15 Ag g/t; 0.16 zas Cu %; 0.01 Pb%; 0.03 Zn %] de	[59.65 - 64.40 m @ 38.1 Ag g/t]
70.55	82.45	VBX	Brecha Pirocl de pizarra bei	lástica, con fragmento ige.	AR	Argilizacion matriz.	moderada er	i la 70.	.55 82.4	SQ 51	Pirita diseminada y en venil tetrahedrita granular en fracturas.	as, [@ 0.217 g/t, 21 Ag g/t, 0.18 Cu % 0.008 Pb%; 0.03 Zn %]	[70.55 - 82.45 m @ 21 Ag g/t]
82.45	100.35	SHLE	Pizarra Beige	brechada en tramos.				82	45 100.	35 DS	Pirita diseminada y en venillas, tra de tetrahedrita en fracturas	zas [@ 0.104 Au g/t; 5 Ag g/t; 0.03 Cu % 0.023 Pb%; 0.1 Zn %j	

Tabla No 14: Logueo rapido (quick log) del taladro DDH-001

DDH-002
taladro
del
(Bol
(quick
rapido
Logueo
5
Ŷ
Tabla

	Miner	a Huinac SA.	<u>y</u> ,	QUI Hole IC Locatic	CK LOG DDH-002 DDH-002 DB-1002					
Easting	20540	9	Northing 8927958 t	Elevation:	4411 Depth: 110.47	Azin	nut: 355°	Dip: 50°		
Date St	art	24-feb-08	Date End: 28-feb-08	Machine:	LON YEAR 38	Drill	er ESOND	Geologist: M.V.M		
From	To.	Code	Lithology Comments	Code	Alteration	Tom	Code	Minerals Comments	Leyes Promedio	Mejores Tramos
0.00	20.30	VBX	Brecha prioclástica, clastos de lutita negra y pizarra beige.	AR	Arglitzacion moderada de la matriz.	0.00 20.	DS 30	Pirita y esfalerita diseminada, trazas de galena.	[@ 0.118 Au g/r. 20 Ag g/r. [0.02 Cu % 0.47 Pb%; 1.76 Zn %]	1.00 - 18.00 m @ 27.5 Ag g/t; .67 Pb%; 2.28 Zn %]
20.30	24.60	SHLE	Lutita pizarrosa beige y negra.	AR	Moderadamente argilizada. 2	0.30 24.	DS	Pirita diseminada y en venillas	[@ 0.031 Au 9/t, 0.2 Ag 9/t, 0.003 Cu %; 0.002 Pb%; 0.04 Zn %]	
24.60	32.30	MDST	Lutita negra deleznable en tramos		7	4.60 32.	DS 30	Pirita diseminada y en venillas, granular rellenando oquedades.	[@ 0.084 g/t. 0.5 Ag g/t. 0.005 Cu % 0.006 Pb%; 0.014 Zn %]	
32.30	37.10	ANT	Andesita ponfritica gris blanquecina.		m	2.30 37.	10 DS	Pirita fina diseminada y en venillas.	[@ 0.083 Au g/t; 3.1 Ag g/t; 0.33 Cu % 0.017 Pb%; 0.015 Zn %]	
37.10	53.90	VBX	Brecha piroclástica, clastos de lutita negra y pizarra beige.	AR	Arglitzacion moderada de la ₃ matriz.	7.10 53.	SQ 06	Pirita diseminada y en venillas, granular rellenando oquedades. Trazas de tetrahedrita, diseminada y en esporádicas venillas.	[@ 0.391 Au g/t: 22 Ag g/t. [/ 0.27 Cu % 0.01 Pb%; 0.026 g Zn %]	40.30 - 49.30 m @ 33.18 Ag
53.90	62.30	ANT	Andesita porfiritica brechada		υĵ	3.90 62.	30 DS	Pirita diseminada y en venillas, granular rellenando oquedades.	[@ 0.257 Au g/t: 9.9 Ag g/t: 0.09 Cu % 0.008 Pb%; 0.012 Zn %]	
62.30	65.40	VBX	Brecha piroclástica, clastos de Iutita negra piritizada y pizarra beige.	AR	Argilizacion moderada de la 6 matriz.	2.30 65.	40 DS	Pirita diseminada y en venillas.	[@.0.048 Au g/t, 2.6 Ag g/t, 0.033 Cu % 0.006 Pb%; 0.009 Zn %]	
65.40	82.25	SHLE	Pizarra beige brechada en tramos.		Ø	5.40 82	25 DS	Pirita diseminada y en venillas.	[@ 0.108 Au g/t; 11 Ag g/t; 0.103 Cu % 0.01 Pb%; 0.024 Zn %]	
82.25	110.47	VBX	Brecha piroclástica, clastos de lutita negra y pizarra beige.	AR	Argilizacion moderada de la ₈ matriz.	2.25 110.	TF. DS	Pirita diseminada y en venillas, trazas de tetrahedrita diseminada y granular en fracturas.	[@ 0.110 Au g/t; 9.5 Ag g/t; 0.18 Cu % 0.008 Pb%; 0.014 Zn %]	

DDH-003
taladro
del
(Bo
(quick
rapido
Logueo
ÿ
Ŷ
Tabla

100	11	11. 61	5			ono	K LO	U							
	WINCE	VC James	31			Hole ID:	HOO	-003							
						Location	n: Dise	minado							
Easting	20560	21	Northing	8927860	Elevatio	Ë	4407	Depth:	142	Azimut:	27		Dip: 30°		
ate Star	ų	06-mar-08	Date End: 1	14-mar-08	Machin	i i i i i i i i i i i i i i i i i i i	LON YEA	\R 38		Driller	ESC	IQN	Geologist: M.V.M		
From	To	Code	Lithology	ments	From	10	Code	Alter	ration Comments	L.	T ₀	Code	Minerals Comments	Leyes Promedio	Mejores Tramos
0.00	19.00	VBX	Brecha piroclá Iutita negra y p clastos andesiti	istica, clastos de pizarra, esporádicos cos.			AR	Matriz fuerte	mente argilizada	ō	00 19.(SO	Pirita y estalenta diseminada, trazas de galena.	[@ 0.124 Au g/t; 26 Ag g/t; 0.02 Cu % 1.1 Pb%; 2.6 Zn %]	(3.00 - 18.00 m @ 32 Ag gh; 1.37 Pb%; 3.21 Zn %]
19.00	28.50	ANT	Andesita porfiriti	ica brechada			AR	Débilmente a	argilizada	19	00 28.5	DS	Pirita diseminada y en venillas, esfalerita y galena diseminada.	[@ 0.762 Au g/t; 37 Ag] g/t; 0.11 Cu %; 0.24 Pb%; /	[19.00 - 28.50 m @ 0.762 Au g/t; 37 Ag g/t; 0.11 Cu %; 0.24 Pb%; 1.7 Zn %]
28.50	30.40	SHLE	Pizarra beige							58	50 30.4	10 DS	Pirita diseminada y en venillas.	[@ 0.039 g/t; 7 Ag g/t; 0.013 Cu % 0.03 Pb%; 1.5 Zn %]	
30.40	40.10	VBX	Brecha piroclási lutita negra, pizi porfiritica, en los pasa a ser una l monomictica de	tica, clastos de arra y andesita s últimos 2 metros brecha			AR	Matriz mode	radamente argiliza	ida. 30.	40 38.5	30 08	Pirita diseminada y en venillas, trazas de galena diseminada hacia el piso.	[@ 0.456 Au ght; 30 Ag] ght; 0.04 Cu % 0.62 Pb%; / 2.72 Zn %]	[30.68 - 38.30 m @ 0.560 Au g/t; 36 Ag g/t; 0.05 Cu %; 0.7 Pb%; 3.3 Zn %]
40.10	44.75	ANT	Andesita porfiriti	ica brechada.						40.	.10 44.7	75 DS	Pirita diseminada y en venillas, diseminación de esfalerita y galena en tramos.	[@ 0.146 Au g/t; 2.7 Ag g/t; 0.08 Cu % 0.04 Pb%; 1.4 Zn %]	
44.75	60.85	VBX	Brecha piroclási lutita negra, piz: piritizados. (46.6 lutita negra.	tica, clastos de arra y andesita 60 - 47.20) Capa de			AR	Matriz débilr	nente argilizada.	44	.75 60.8	35 DS	Pirita diseminada y en venillas.	[@ 0.692 Au g/t; 22 Ag g/t; 0.14 Cu % 0.02 Pb%; 1.1 Zn %]	165.20 - 60.85 m @ 1.422 Au g/t]
60.85	127.10	ANT	Andesita porfiriti presencia de vei cuarzo y tetrahe	ica brechada, tillas de pirita, edrita.						.09	.85 127.	10 DS	Pirita diserninada y en venillas, trazas de tetrahedrita.	[@ 0.551 Au g/t; 7.1 Ag g/t; 0.11 Cu % 0.013 Pb%; 0.02 Zn %]	(60.85 - 79.50 m @ 1.227 Au g/t; 19 Ag g/t]
127.10	142.00	VBX	Brecha piroclási lutita negra y pir tramos de abun andesiticos.	tica, clastos de zarra beigue, dantes fragmentos						127	7.10 142.	SC 00	Pirita diserninada y en venillas, tramos con tetrahedrita diserninada.	[@ 0.247 Au g/t; 2 Ag g/t; 0.2 Cu % 0.01 Pb%; 0.01 Zn %]	

Se extrajeron 158 muestras, de las cuales 16 muestras son muestras de control de calidad (QA-QC), representando el 10.13 % del total de muestras.

Las muestras pertenecen a la mitad del testigo, fueron posteriormente trituradas para reducir su granulometría, introducidas en bolsas codificadas y almacenadas para su transporte en sacos rotulados.

7.3 Interpretación de Resultados

Para poder observar mejor las capas mineralizadas, cortadas por los taladros, se ha separado las leyes en rangos de colores, siendo las más bajas las de color verde y las mas altas las de color rojo.

Au (g/TM)	0.2 - 0.4	0.4 - 0.6	0.6 - 1.0	> 1.0
Ag (Oz/TC)	0.5 - 1.0	1.0 - 2.0	2.0 - 3.0	> 3.0
Cu (%)	0.2 - 0.4	0.4 - 0.6	0.6 - 1.0	> 1.0
Pb (%)	0.5 - 1.0	1.0 - 2.0	2.0 - 3.0	> 3.0
Zn (%)	0.5 - 1.0	1.0 - 2.0	2.0 - 3.0	> 3.0

Tabla Nº 17: Asignación de colores por rangos de leyes.

DESDE	HASTA	MUESTRA	Avance	Au	Ag	Cu	Pb	Zn
m.	m.		m	g/T	Oz/TC	%	%	%
0.00	1.00	493	1.00	0.161	1.22	0.045	0.026	4.680
2.00	2.00	494	1.00	0.262	0.53	0.038	0.027	3.150
3.00	4.00	495	1.00	0.147	2.00	0.035	0.013	4.390
4.00	5.00	497	1.00	0.456	2.92	0.056	0.051	7.890
5.00	6.00	498	1.00	0.363	3.96	0.105	0.056	10.000
6.00	7.00	499	1.00	0.23	2.11	0.082	0.034	10.000
7.00	8.00	500	1.00	0.093	0.30	0.041	0.017	5.160
8.00	9.00	501	1.00	0.08	0.81	0.121	0.016	1.250
9.00	10.00	502	1.00	0.18	0.09	0.013	0.011	3.130
10.00	12.00	503	1.00	0.228	0.10	0.013	0.012	5.700
12.00	13.00	505	1.00	0.16	0.09	0.010	0.010	2.700
13.00	14.00	506	1.00	0.132	0.06	0.007	0.008	1.800
14.00	15.00	507	1.00	0.096	0.11	0.015	0.009	0.058
15.00	16.00	508	1.00	0.116	0.23	0.048	0.010	0.020
16.00	17.00	509	1.00	0.429	0.46	0.081	0.016	0.035
17.00	18.00	510	1.00	0.334	0.15	0.027	0.014	0.028
19.00	20.00	512	1.00	0.209	0.59	0.110	0.024	0.035
20.00	21.00	513	1.00	0.174	0.31	0.054	0.001	0.019
21.00	22.00	514	1.00	0.35	0.67	0.144	0.008	0.042
22.00	23.00	515	1.00	0.12	0.88	0.158	0.008	0.030
23.00	24.00	516	1.00	0.167	0.80	0.156	0.010	0.032
24.00	25.00	517	1.00	0.175	2.96	0.393	0.005	0.061
25.00	26.00	518	1.00	0.282	0.49	0.078	0.012	0.025
20.00	27.00	520	1.00	0.219	2.62	0.233	0.016	0.042
28.00	29.00	520	1.00	0.159	1.45	0.252	0.007	0.041
29.00	30.00	522	1.00	0.214	0.78	0.135	0.007	0.026
30.00	31.00	523	1.00	0.144	0.22	0.036	0.012	0.027
31.00	32.00	524	1.00	0.18	0.44	0.063	0.027	0.158
32.00	33.00	525	1.00	0.119	0.16	0.030	0.008	0.016
33.00	34.00	526	1.00	0.096	0.25	0.047	0.015	0.025
34.00	35.00	527	1.00	0.091	0.21	0.055	0.011	0.019
36.00	37.00	529	1.00	0.088	2.41	0.744	0.011	0.110
37.00	38.00	530	1.00	0.113	0.23	0.047	0.005	0.015
38.00	39.00	531	1.00	0.095	0.10	0.024	0.003	0.013
39.00	40.00	532	1.00	0.157	0.01	0.003	0.001	0.002
40.00	41.45	533	1.45	0.073	0.41	0.074	0.012	0.027
41.45	43.45	2000	2.00	0.333	0.14	0.024	0.009	0.007
43.45	45.54	2001	2.09	0.223	0.13	0.030	0.012	0.027
43.50	47.50	2002	2.00	0.111	0.36	0.095	0.008	0.014
49.50	50.60	2004	1.10	0.085	0.01	0.008	0.004	0.005
50.60	51.85	2006	1.25	0.089	0.03	0.011	0.004	0.005
51.85	52.83	534	0.98	0.32	0.33	0.081	0.007	0.019
52.83	55.00	2007	2.17	0.24	0.09	0.021	0.011	0.013
55.00	56.50	2008	1.50	0.276	0.34	0.093	0.009	0.028
57.05	57.05	2009	0.55	0.37	0.19	0.041	0.009	0.010
58.50	59.65	2010	1.15	0.199	1.75	1.030	0.012	0.151
59.65	62.40	536	2.75	0.415	1.01	0.432	0.016	0.037
62.40	64.40	2011	2.00	0.213	0.89	0.453	0.007	0.057
64.40	66.40	2012	2.00	0.1	0.08	0.033	0.005	0.008
66.40	68.40	2013	2.00	0.095	0.13	0.046	0.004	0.011
68.40 70.46	72.00	2014	2.06	0.167	0.48	0.157	0.004	0.025
72.00	73.00	538	1.00	0.198	0.22	0.060	0.010	0.075
73.00	74.00	539	1.00	0.469	1.00	0.319	0.011	0.052
74.00	75.00	540	1.00	0.249	0.31	0.040	0.009	0.022
75.00	76.00	541	1.00	0.193	0.27	0.082	0.006	0.015
76.00	77.00	542	1.00	0.253	0.24	0.069	0.011	0.019
77.00	78.00	543	1.00	0.391	1.79	0.572	0.011	0.079
78.00	/9.00	544	1.00	0.09	0.13	0.031	0.006	0.002
80.00	81.00	546	1.00	0.077	0.50	0.161	0.008	0,020
81.00	82.65	547	1.65	0.194	0.25	0.047	0.006	0.008
82.65	84.00	2016	1.35	0.137	0.06	0.019	0.004	0.008
84.00	85.30	548	1.30	0.149	0.45	0.087	0.012	0.046
85.30	86.20	2017	0.90	0.047	0.23	0.043	0.004	0.013
86.20	87.65	2018	1.45	0.055	0.17	0.033	0.004	0.017
87.65	88.25	549	0.60	0.059	0.24	0.060	0.007	0.025
88.25 89.75	69.75 91.00	2019	1.50	0.181	0.28	0.051	0.013	0.05/
91.00	92.50	2020	1.23	0.047	0.05	0.009	0.019	0.021
92.50	94.00	2022	1.50	0.157	0.04	0.006	0.031	0.103
94.00	95.50	2023	1.50	0.091	0.13	0.014	0.052	0.568
95.50	97.00	2024	1.50	0.096	0.08	0.007	0.034	0.091
97.00	98.60	2025	1.60	0.098	0.18	0.019	0.056	0.112
98.60	100.35	2026-2027	1.75	0.093	U.08	0.011	0.037	0.124

DDH - 001

Tabla Nº 18: Leyes del taladro DDH-001

DDH-002

		STRA	e					
DESDE	HASTA	MUE	Avaı	Au	Ag	Cu	Pb	Zn
m.	m.	550	m 1.00	g/T	Oz/TC	%	%	%
1.00	2.00	550	1.00	0.08	0.32	0.038	0.010	0.27
2.00	4.00	560	2.00	0.12	0.07	0.005	0.016	0.06
4.00	5.10	561	1.10	0.09	0.38	0.044	0.010	1.18
5.10	6.00	562	0.90	0.06	0.13	0.024	0.014	3.10
6.00	7.50	563	1.50	0.28	0.25	0.023	0.016	2.50
7.90	9.00	564	1.10	0.24	0.26	0.017	0.022	0.96
9.00	10.00	565	1.00	0.13	0.51	0.035	0.038	3.40
11.00	12.00	567	1.00	0.08	2.27	0.020	2.680	3.20
12.00	13.00	568	1.00	0.09	1.86	0.017	1.940	2.13
13.00	14.00	569	1.00	0.11	1.48	0.012	1.410	2.07
14.00	15.00	570	1.00	0.17	1.48	0.022	1.760	2.60
15.00	16.00	571	1.00	0.14	0.63	0.014	0.753	1.82
16.00	17.00	5/2	1.00	0.04	0.15	0.014	0.029	2.90
18.20	19.00	574	0.80	0.02	0.05	0.003	0.007	0.01
19.00	20.30	2028	1.30	0.06	0.04	0.015	0.010	1.12
20.30	21.80	2029	1.50	0.03	0.01	0.005	0.004	0.11
21.80	23.30	2030	1.50	0.02	0.01	0.001	0.002	0.00
23.30	24.60	2031	1.30	0.04	0.01	0.001	0.002	0.00
24.60	26.20	2032	1.60	0.01	0.01	0.001	0.007	0.03
20.20	27.80	2033	1.60	0.04	0.01	0.001	0.004	0.00
29.40	31.00	2036	1.60	0.06	0.01	0.006	0.007	0.01
31.00	32.30	2037	1.30	0.13	0.04	0.009	0.011	0.02
32.30	33.90	2038	1.60	0.06	0.03	0.027	0.010	0.01
33.90	35.50	2039	1.60	0.11	0.13	0.357	0.017	0.02
34.90	34.95	575	0.05	0.36	2.39	18.400	0.057	0.11
35.50	37.10	2040	1.60	0.07	0.04	0.046	0.024	0.01
38.70	40.30	2041	1.60	1.41	0.34	0.702	0.020	0.02
40.30	41.90	2043	1.60	0.17	0.45	0.132	0.008	0.01
41.90	43.50	2044	1.60	0.39	1.90	0.518	0.017	0.09
43.50	45.10	2045	1.60	0.07	0.18	0.095	0.003	0.01
45.10	46.70	2046	1.60	0.26	0.41	0.206	0.003	0.02
46.70	48.30	2047	1.60	0.14	0.75	0.245	0.006	0.02
49.50	50.80	2050	1.30	1.62	0.01	0.010	0.000	0.00
50.80	52.40	2051	1.60	0.13	0.21	0.087	0.006	0.01
52.40	53.90	2052	1.50	0.11	0.21	0.079	0.006	0.01
53.90	55.50	2053	1.60	0.22	0.01	0.008	0.007	0.01
55.50	57.10	2054	1.60	0.18	0.12	0.046	0.007	0.01
58.00	59.00	2055	1.40	0.37	0.18	0.038	0.018	0.01
59.40	61.00	2058 - 2059	1.60	0.42	0.32	0.110	0.007	0.01
61.00	62.30	2060	1.30	0.05	1.11	0.336	0.009	0.03
62.30	63.90	2061	1.60	0.05	0.06	0.029	0.005	0.01
63.90	65.40	2062	1.50	0.05	0.09	0.037	0.007	0.01
67.00	68.60	2063	1.60	0.06	0.34	0.012	0.010	0.01
68.60	70.20	2065	1.60	0.00	0.01	0.015	0.010	0.00
70.20	71.80	2066	1.60	0.10	0.08	0.034	0.005	0.01
71.80	73.20	2067	1.40	0.07	0.48	0.162	0.005	0.01
73.20	74.20	2068	1.00	0.04	0.47	0.157	0.004	0.01
74.20	75.80	2069	1.60	0.06	1.20	0.368	0.007	0.05
75.80	77.40	2071	1.60	0.07	0.09	0.047	0.005	0.02
78.75	80.05	576	1.30	0.32	0.81	0.206	0.045	0.12
80.05	81.60	2073	1.55	0.30	0.05	0.035	0.005	0.02
81.60	82.25	2074	0.65	0.12	0.11	0.048	0.005	0.01
82.25	83.85	2075	1.60	0.12	1.29	0.381	0.008	0.04
83.85	85.00	2077	1.15	0.06	0.35	0.121	0.003	0.02
86.60	88.20	2079	1.60	0.12	0.19	0.007	0.009	0.01
88.20	89.80	2080	1.60	0.10	0.31	0.117	0.008	0.02
89.80	91.40	2081	1.60	0.14	0.68	0.253	0.006	0.03
91.40	93.00	2082	1.60	0.08	0.24	0.097	0.005	0.01
93.00	94.60	2083	1.60	0.19	0.25	0.093	0.006	0.01
94.60	96.20	2084	1.60	0.16	0.33	0.131	0.005	0.02
97.80	99.40	2086	1.60	0.12	0.31	0.125	0.008	0.015
99.40	101.00	2087	1.60	0.13	0.09	0.033	0.009	0.007
101.00	102.60	2089	1.60	0.20	0.06	0.023	0.036	0.010
102.60	104.20	2090	1.60	0.06	0.13	0.193	0.005	0.011
104.20	105.00	2001	1.60	0.06	0.10	0.836	0.004	0.007
104.20	105.80	2091	1.00	0.09	0.06	0 122	0.000	0.000
104.20 105.80 107.40	105.80 107.40 109.00	2091 2092 2093	1.60	0.08	0.06	0.123	0.006	0.009

Tabla Nº 19: Leyes del taladro DDH-002
DDH-003

DESDE	HASTA	NUESTRA	Avance	Au	Aq	Cu	Pb	Zn
m.	m.		m	g/T	Oz/TC	%	%	%
0.00	1.00	577	1.00	0.05	0.05	0.002	0.056	0.18
1.00	2.00	578	1.00	0.07	0.04	0.002	0.125	0.03
2.00	3.00	579	1.00	0.06	0.01	0.002	0.005	0.33
3.00	4.00	580	1.00	0.09	0.06	0.005	0.181	0.94
4.00	5.00	581	1.00	0.09	0.26	0.010	0.724	0.94
5.00	6.00 7.00	582	1.00	0.04	0.81	0.008	0.794	1.20
7.00	8.00	584	1.00	0.21	0.85	0.019	2.200	3.30
8.00	9.00	585	1.00	0.19	1.85	0.023	2.780	4.10
9.00	10.00	586	1.00	0.14	1.92	0.028	3.210	4.30
10.00	11.00	587	1.00	0.15	1.75	0.021	3.290	4.50
11.00	12.00	588	1.00	0.11	2.43	0.023	3.590	4.30
12.00	13.00	589	1.00	0.07	1.55	0.022	1.820	4.10
14.00	14.00	591	1.00	0.25	0.33	0.038	0.033	4.10
15.00	16.00	592	1.00	0.06	0.10	0.005	0.134	0.55
16.00	17.00	593	1.00	0.10	0.39	0.035	0.026	4.80
17.00	18.00	594	1.00	0.21	0.31	0.029	0.025	3.40
18.00	19.00	595	1.00	0.31	0.12	0.009	0.016	0.29
19.00	20.00	596	1.00	0.76	0.84	0.037	0.024	1.04
21.00	22.00	598	1.00	0.62	0.46	0.009	0.032	0.42
22.00	23.00	599	1.00	1.57	3.30	0.655	0.020	0.28
23.00	24.00	600	1.00	1.19	0.51	0.060	0.018	0.67
24.00	25.37	601	1.37	1.17	0.47	0.040	0.018	0.05
25.37	27.00	602	1.63	0.15	0.85	0.061	0.035	4.90
27.00	28.70	603	1.70	0.14	1.12	0.035	1.280	3.70
30.68	32.00	619	1.90	0.04	1.13	0.013	0.027	3.80
32.00	33.00	620	1.02	1.08	0.66	0.065	0.176	7.90
33.00	34.00	621	1.00	1.14	0.90	0.036	0.158	2.80
34.00	35.92	622	1.92	0.10	2.04	0.032	1.580	3.00
35.92	37.00	2095	1.08	0.48	0.58	0.038	1.000	1.00
37.00	38.30	2096	1.30	0.18	0.38	0.023	0.652	1.87
40.10	40.10	2097	1.60	0.02	0.08	0.004	0.276	0.37
41.70	43.30	2100	1.60	0.18	0.06	0.007	0.030	1.22
43.30	44.75	2101	1.45	0.18	0.15	0.012	0.052	2.21
44.75	46.60	2102	1.85	0.17	0.20	0.041	0.036	6.00
46.60	47.20	2104	0.60	0.17	0.01	0.003	0.011	0.01
47.20	48.80	2105	1.60	0.37	1.89	0.450	0.049	0.43
48.80 50.40	52.00	2100 - 2107	1.60	0.40	0.23	0.073	0.047	2.19
52.00	53.60	2109	1.60	0.25	0.10	0.025	0.010	0.01
53.60	55.20	2110	1.60	0.27	0.06	0.016	0.013	0.01
55.20	56.80	2111	1.60	0.55	0.23	0.082	0.019	0.01
56.80	58.40	2112	1.60	1.51	0.28	0.092	0.017	0.02
58.40	60.85	2113	1.60	0.82	0.26	0.082	0.016	0.01
60.85	62.45	2116	1.60	1.54	0.43	0.033	0.013	0.01
62.45	64.00	2117	1.55	0.94	2.39	0.740	0.020	0.08
64.00	64.90	2118	0.90	1.21	1.80	0.542	0.024	0.05
64.90	66.90	2119	2.00	2.13	0.36	0.097	0.022	0.02
66.90	68.90	2120	2.00	1.50	0.42	0.116	0.019	0.01
70.90	70.90	2121	2.00	0.90	0.50	0.180	0.020	0.02
73.00	75.00	2123	2.00	1.08	0.28	0.079	0.019	0.01
75.00	77.00	2124	2.00	0.83	0.18	0.027	0.016	0.01
77.00	79.50	2126	2.50	1.17	0.20	0.033	0.019	0.01
79.50	82.00	2127	2.50	0.68	0.40	0.051	0.016	0.02
82.00	84.50	2128	2.50	0.48	0.12	0.038	0.016	0.01
64.50 87.00	89.50	2129	2.50	0.39	0.03	0.056	0.039	0.05
89.50	92.00	2130	2.50	0.13	0.09	0.179	0.009	0.02
92.00	94.20	2132	2.20	0.14	0.01	0.030	0.006	0.01
94.20	96.70	2134	2.50	0.13	0.03	0.078	0.008	0.02
96.70	99.20	2135	2.50	0.50	0.023	0.094	0.013	0.014
99.20	101.70	2136	2.50	0.30	0.038	0.125	0.009	0.014
101.70	104.20	2137	2.50	0.19	0.006	0.017	0.009	0.006
106.70	109.20	2139	2.50	0.18	0.070	0.152	0.009	0.021
109.20	110.70	2140	1.50	0.35	0.134	0.220	0.012	0.025

Tabla Nº 20: Leyes del taladro DDH-003

7.4 Correlación de Pearson de los Taladros Perforados

Figura Nº 21: Gráfica de correlación de Pearson para los taladros.

Podemos observar una correlación fuerte entre el Zn y el Pb, confirmando la correlación usual de galena y esfalerita, por lo tanto la correlación débil encontrada en las muestras superficiales, fue causada por la meteorización del terreno.

Sin embargo la correlación entre la Ag y el Pb, paso a ser débil en los taladros, manteniéndose la correlación de Ag y el Cu.

Esto se puede explicar con la presencia en los taladros de cristales de tetraedrita, especialmente a mayor profundidad, la cual contendría Ag.

Por lo cual tendríamos galena argentífera cerca a la superficie y tetraedrita (fleibergita) a profundidad.

Otra evidencia de la presencia de tetraedrita seria la fuerte correlación ahora existente entre el Cu y As.

VIII. PERFILES LITOGEOQUÍMICOS

Con las leyes completas y con la geología, se realizaron 3 perfiles, en las cuales se indicó las zonas mineralizadas.

Se ha determinado, en el cartografiado geológico del área, que los seudo estratos de las brechas piroclásticas, tienen un rumbo azimutal de 160º-165º y un buzamiento de 30º, hacia el SW.

Al realizar los perfiles, se tomó este rumbo y buzamiento como referencia, encontrando que los niveles están concordantes al rumbo y buzamiento de los seudo estratos.

Según las secciones, se interpretó que tendríamos dos niveles de mineralización de Ag y más al este, en el taladro DDH-003, se encontraría una tercer nivel con mineralización de Au.

Esta interpretación está limitada por la poca cantidad de taladros perforados, respecto a un área muy grande.

DDH-001

Se incluyó en los perfiles grandes bloques de lutita negra, los cuales se encuentran dentro de las brechas piroclásticas y fueron cortadas en dos oportunidades por este taladro.

Se observan 3 niveles mineralizados, el superior, con valores anómalos de Au, Ag y Zn, además de 2 inferiores, con mineralizaciones anómalas de Au, Ag y Cu, los cuales están muy cercanos y pueden considerarse como un solo nivel mineralizado (Plano Nº 9).

DDH-002

Al igual que en el taladro DDH-001, podemos observar bloques de lutitas negras que fueron cortados en dos oportunidades.

Se observan 2 niveles mineralizados, el superior, con valores anómalos de Au, Ag y Zn, y el inferior, con mineralizaciones anómalas de Au, Ag y Cu (Plano Nº 10).

DDH-001 y DDH-002

En esta sección, que atraviesa los 2 taladros mencionados, se puede observar como las zonas mineralizadas se correlacionan, formando 2 niveles, que presentan un buzamiento aparente concordante al de los seudo estratos de la brecha piroclástica.

Se desconoce la existencia de un tercer nivel en esta zona, ya que los taladros perforados no llegaron a las pizarras de la Formación Carhuaz, por lo que se desconoce la potencia de los piroclásticos (Plano Nº 11).

DDH-003

En el taladro DDH-003, se cortó tramos de intrusivo subvolcánico andesítico, el cual estaría interdigitado de manera irregular, presenta el mismo comportamiento en todo el área de explotación de vetas de Minera Huinac, ubicada al SE del diseminado Huinac.

Se encontró una tercera zona mineralizada, ubicada más cerca a la superficie y con mineralización anómala de Ag, Pb y Zn.

Además se encontraron los dos niveles cortados por los taladros anteriores, sin embargo este taladro presenta una mineralización más importante de Au, con aproximadamente 30 m de una mineralización promedio de 1.22 gr/TM (Plano Nº 12).

% 0

0577

0077

4320.00000

En base a los resultados de los mapeos, muestreos geoquímicos, mapas de isovalores y secciones geológicas, se ha obtenido la siguiente información:

- Las capas mineralizadas, se encuentran concordantes a los flancos del anticlinal erosionado, con rumbo NW-SE, que atraviesa toda el área en operación.
- Las capas mineralizadas, en la zona donde se realizaron las primeras 3 perforaciones diamantinas tiene un rumbo entre 160°-165° y un buzamiento de 30° hacia el SW.
- Los isovalores muestran anomalías de Au, Ag, Pb y Zn, en la parte oeste del diseminado, zona actualmente en explotación.
- Sin embargo, en la parte este del diseminado, se encuentran zonas con fuerte anomalía de Au, Ag, Pb y Zn, las cuales se encuentran al E y al NE del último taladro perforado (DDH-003).

En base a esta información, se propone en el presente trabajo, una segunda etapa de perforación, la cual comprende 5 taladros, con rumbo perpendicular a las capas mineralizadas cortadas en las anteriores perforaciones.

Nombre		Coordenada	S	Rumbo	Inclinación	Profundidad	Objetivo	Nivel de
	Este	Norte	Cota (m)	grados	grados	м	(Anomalías)	Prioridad
DDH-004	205700	8927850	4420	N 70	-75	150	Au - Ag	4
DDH-005	205765	8927863	4425	N 70	-75	150	Ag - Pb - Zn	3
DDH-006	205940	8927800	4430	N 250	-75	200	Au	5
DDH-007	205670	8927990	4460	N 70	-75	200	Ag - Pb	2
DDH-008	205820	8928025	4455	N 250	-75	200	Au - Ag	1

Los taladros propuestos son los siguientes:

Tabla Nº 19: Ubicación y características de los taladros propuestos.

La inclinación de los taladros propuestos es de 75º grados, con la finalidad de que corten lo más perpendicular posible a las capas antes encontradas y poder obtener mayor información vertical que horizontal del diseminado, no se recomienda una mayor inclinación, por riesgo a generar derrumbes y entrampamiento de la tubería.

En relación a la ubicación de los mismos, está en función a cortar las anomalías encontradas en la zona E del diseminado, cada uno de los taladros se ubicó cerca y en dirección de una o varias anomalías, como se podrá apreciar en los planos Nº 14 al Nº 17.

La profundidad de los taladros es relativa, ya que se desconoce exactamente a que profundidad se encontraría las pizarras pertenecientes a la formación Carhuaz, ya que en los anteriores sondajes se cortaron bloques de pizarra, más no el contacto entre las brechas piroclásticas y pizarras.

Los taladros DDH-006 y DDH-008, están programados con un rumbo opuesto a los demás taladros, la razón es que estaríamos en el otro flanco del anticlinal, por lo cual sería probable que las capas mineralizadas estén buzando en sentido contrario. Sin embargo al ser la inclinación del taladro mucho mayor al buzamiento de las capas mineralizadas, hace más probable cortar las mismas, aún no cambien de buzamiento.

8928000 00000

^{8927800.00000}

X. INTERPRETACIÓN Y DISCUSIÓN DE RESULTADOS

El mapa de isovalores de Au (Plano N° 5) muestra zonas anómalas al este y al oeste, sin embargo, al ver las anomalías del As (plano 4), esta muestra una gran anomalía al oeste, y una pequeña al este, esto sería corroborado con la presencia de una capa de brecha intensamente oxidada, que dio valores promedio de Au superiores a 1 gr/Tm.

Observando el mapa de isovalores de Ag (Plano Nº 3), se puede apreciar que ningún taladro perforado fue orientado hacia la zona de mayor anomalía superficial de Ag, además podemos observar que hacia el norte del tajo de explotación, cerca de la línea de cumbre, los valores se están abriendo, especialmente en la muestra que dio 42 ppm (42 gramos por tonelada de Ag), la cual en la descripción de la muestra indica la presencia de trazas de galena.

El mapa de isovalores de Pb (Plano N° 7), también muestra la tendencia hacia el norte, además de acentuar el aumento de la anomalía hacia el sur del tajo de explotación, cosa que también se puede ver en el plano de Ag (Plano N° 3). Como se demostró en la correlación de Pearson, hay una fuerte relación entre el Ag-Pb, por lo cual con las anomalías combinadas de estos dos elementos podemos vectorizar mejor las muestras para una posterior campaña.

En el mapa de isovalores de Zn (Plano Nº 6), se puede observar que dos taladros fueron ubicados cerca de las zonas anómalas, sin embargo ambos con dirección hacia las periferias de las anomalías, esto se ve reflejado en las mayores leyes de Zn en los taladros DDH-002 y DDH-003, en comparación con el taladro DDH-001.

Las anomalías de Cu (Plano Nº 8) son coincidentes con las de los otros elementos, sin embargo los valores son muy bajos para ser considerados.

Transponiendo los isovalores de Au, Ag, Pb y Zn, se pudo ubicar con mayor facilidad los próximos targets para perforación.

CONCLUSIONES

- A la roca caja de la mineralización se considera como una brecha piroclástica, originada por un flujo piroclástico de bloques y cenizas, tomando en cuenta las características observadas en campo.
- La alteración hidrotermal predominante es la argílica, la cual sería el resultado de la alteración de las cenizas de la matriz de la brecha piroclástica.
- La mineralización es polimetálica, que se encuentra diseminada en la brecha piroclástica, con valores económicos de Au, Ag, Pb y Zn, los cuales se encuentran en sulfuros y cobres grises.
- Cerca de la superficie predomina la galena argentífera como mena de Ag, sin embargo a mayor profundidad la tetraedrita (fleibergita), se convierte también en una mena importante de Ag.
- En los taladros perforados, los niveles mineralizados tienen un buzamiento concordante con los flancos del anticlinal que atraviesa todo el depósito.
- Los taladros perforados no fueron ubicados sobre las anomalías, además el rumbo y buzamiento de los mismos, no son los que proporcionarían más información del yacimiento.
- Las anomalías al oeste del depósito, se encuentran sobre las vetas y alineadas con la proyección de las vetas que se explotan al SE del depósito, se plantea una asociación genética entre la mineralización de las vetas y las mineralización de las brechas piroclásticas, para lo cual se necesitan realizar más estudios.
- Se han determinados zonas con anomalías de Au, Au-Ag y Ag-Pb-Zn, las cuales son los objetivos para las perforaciones programadas para una siguiente campaña de prospección.

- Las anomalías se centran principalmente en las zonas de brechas piroclásticas, siendo menores en los afloramientos andesíticos y de pizarras, por lo cual no es necesario sacar más muestras en estas zonas.
- Finalmente todos estos indicadores, sugieren que el yacimiento tiene buen potencial para su explotación económica, por lo tanto justifica realizar más estudios de prospección para determinar cuantitativamente los recursos presentes.

- Perforar los taladros propuestos en el presente trabajo, para confirmar las anomalías geoquímicas encontradas en superficie.
- Realizar más líneas de muestreo superficial hacia el norte y al este, para confirmar la continuidad de las anomalías encontradas.
- Hacer estudios microscópicos de la roca caja, para obtener una clasificación más detallada de su origen.

BIBLIOGRAFIA

Cobbing, J. Martinez, W. Sánchez, A. Zárate, H., (1996): Geología de los cuadrángulos de Huaraz, Recuay, La Unión, Chiquián y Yanahuanca. Bol. 76, Serie A, INGEMMET.

Geología del Perú, (1995): Bol. 55, Serie A, INGEMMET.

McPhie, J., Doyle, M., Allen, R., (1993): Volcanic Textures, a guide to the interpretation of textures in volcanic rocks. Centre for the Ore Deposits and Exploration Studies, Universidad de Tasmania, Australia.

Pflucker, L., (1906): Informe Ministerio de Fomento. Bol. 36, Cuerpo de Ingeniero de Minas.

Sorrel, C., Sandstrom, G., (1973): Rocks and Minerals of the World.

Guerra, K., Rivera, R., Chira, J., Vargas, E., Acosta, J., Valencia, M., Chero, R., (2006): Dispersión secundaria y determinación de asociaciones geoquímicas en yacimientos polimetálicos emplazados en los grupos Goyllarisquizga y Calipuy, Región Ancash. INGEMMET, XIII Congreso Peruano de Geología.

Tumialán, H, (2002): Controles y guias de mineralización de yacimientos cordilleranos del Perú. Vol. 8, nº 22, Revista Minas.

Tumialán, H, (2003): Compendio de Yacimientos Minerales del Perú. Bol. 10, Serie B, INGEMMET.