UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERIA DE PETROLEO, GAS NATURAL Y PETROQUIMICA

"PRUEBAS DE FORMACION EN YACIMIENTOS DE GAS CONDENSADO"

TITULACION POR EXPERIENCIA PROFESIONAL PARA OPTAR EL TITULO DE INGENIERO DE PETROLEO

ELABORADO POR: JUAN ERNESTO INGALUQUE ARAPA

PROMOCION: 1999-0

LIMA-PERU

2009

CONTENIDO

C	ONT	ENIDO.		2			
1	INT	RODU	CCION	4			
2	MA	RCO G	EOGRAFICO Y DESCRIPCION GEOLOGICA	6			
	2.1	UBICA	CIÓN GEOGRAFICA	6			
	2.2	DESCF	RIPCION GEOLOGICA	6			
3	CA	RACTE	RIZACION TERMODINAMICA DE YACIMIENTOS DE GAS CONDENSADO				
	3.1	PROPI	EDADES DE FLUIDOS DE GAS Y CONDENSADO				
	3.2	COMP	ORTAMIENTO DE FASES				
	3.3 CONDENSACION RETROGRADA						
4	CO	NCEPT	OS TEORICOS ACERCA DE PRIJEBAS DE FORMACION EN VACIMIENTOS DE	EGAS			
•	CO	NDENS	ADO				
	4.1	SOLUC	ION DE LA ECUACION DE DIFUSIVIDAD PARA GAS	13			
	4.2	EL CO	NCEPTO DE PSEUDO PRESIÓN Y PSEUDO TIEMPO	16			
5	DIS	EÑO DI	E PRUEBAS DE FORMACIÓN EN YACIMIENTOS DE GAS Y CONDENSADO	20			
-	5 1			21			
	5.1						
	5.2	DURA					
	5.5	531	Método de Jones	25			
		532	Método de Forchheimer	23			
		5.3.3	Método de Contra Presión				
		5.3.4	Método de C y n	24			
		5.3.5	Método de "Petroleum Experts"	24			
	5.4	ESTIM	ACIÓN DE LA CURVA VLP	25			
	5.5	CONSI	DERACIONES DE LOS EQUIPOS A UTILIZARSE	25			
6	INT	TERPRE	TACION DE PRUEBAS DE FORMACIÓN DE GAS Y CONDENSADO	27			
	6.1	Princif	PIO DE SUPERPOSICIÓN	27			
	6.2	SUPERP	OSICIÓN EN TIEMPO				
	6.3	INTERP	retación de la Prueba de Formación PAG-1004D				
		6.3.1	Primera prueba de formación: Reservorio Ene	29			
		6.3.1.1	Interpretación clásica	30			
		6.3.1.2	Interpretación Moderna asistida por computadora	33			
		6.3.2	Segunda prueba de formación : Reservorios Noi+Ene en conjunto	35			

	6.3.3 Tercera prueba de formación: Reservorios Nia+Noi+Ene en conjunto	
7	PROBLEMAS ASOCIADOS A LA EXPLOTACION DE YACIMIENTOS DE GAS Y CON	DENSADO Y
	SOLUCIONES	
	7.1 ACUMULACION DE LÍQUIDOS EN LOS POZOS	
	7.2 ACUMULACIÓN DE LÍQUIDOS EN LA FORMACIÓN	45
	7.3 DISPERSIÓN DE GAS CONDENSADO EN ZONAS INVADIDAS POR AGUA	
	7.4 IRRUPCION PREMATURA DEL GAS SECO EN LOS POZOS DE PRODUCCION	
8	ANALISIS ECONOMICO	
9	CONCLUSIONES	49
10	RECOMENDACIONES	50
11	BIBLIOGRAFIA	51
12	APENDICES	53
	12.1 APENDICE I: MAPA ESTRUCTURAL DEL CAMPO PAGORENI.	
	12.2 APENDICE II: EVALUACIÓN PETROFÍSICA DE LOS RESERVORIOS PROBADOS	55
	12.3 APENDICE III: DISEÑO DE PRUEBA DE POZO PAG-1004D	
	12.4 APENDICE IV: CURVAS IPR Y VLP ESTIMADOS DURANTE EL DISEÑO	60
	12.5 APENDICE V: Presiones registradas durante las pruebas de formación	
	12.6 APENDICE VI: CÁLCULO DE PSEUDO PRESIONES.	65
	12.7 APENDICE VII: EQUIPO DE SUPERFICIE USADO EN LA PRUEBA DEL POZO PAG-1004D	67
	12.8 APENDICE VIII: DIAGRAMA MECÁNICO DEL POZO PAG-1004D.	68

1 INTRODUCCION

Interpretar pruebas de formación en yacimientos de gas condensado no es lo mismo que interpretar pruebas de formación en yacimientos de petróleo, aunque la metodología de análisis sigue los mismos lineamientos, hay ciertos aspectos que deben considerarse como la dependencia de la compresibilidad con la presión, al igual que la viscosidad; no podemos considerar al gas como fluido poco compresible. Otro factor importante, es el daño total, en yacimientos de gas hay un componente de daño denominado "turbulencia" ó "flujo tipo no-darcy" y que además es dependiente del caudal.

Los reservorios de gas condensado son diferentes a los reservorios de gas seco. Es esencial entender bien la relación del comportamiento de fases y el comportamiento de flujo si queremos hacer cálculos de ingeniería con exactitud en sistemas de gas condensado (por ejemplo: pruebas de formación, cálculo de reservas, balance de materiales, pronósticos de producción y simulación numérica). La Formación de condensado ocurre en el reservorio cuando la presión cae por debajo de la presión de rocío, como resultado de esto, la producción cae significativamente y se forma líquido retrógrado que no es recuperable, por lo tanto, la saturación de condensado y la formación de líquido es muy impactante en este tipo de reservorios.

Los yacimientos de gas condensado pueden obstruirse con sus componentes más valiosos. La saturación del líquido condensado puede incrementarse en la región vecina al pozo como consecuencia de la caída de presión por debajo del punto de rocío, restringiendo en última instancia el flujo de gas. La restricción en la zona vecina al pozo puede reducir la productividad de un pozo en un factor de dos o más.

Este fenómeno, conocido como formación de bloque o banco de condensado, es el resultado de una combinación de factores, incluyendo las propiedades de las fases de fluidos, las características del flujo de la formación y las presiones existentes en la formación y en el pozo. Si estos factores no se estudian con atención durante las etapas iniciales del desarrollo de un campo, tarde o temprano el rendimiento de la producción se verá afectado.

4

El desarrollo del presente trabajo, se centra en los yacimientos de gas de Camisea, estos se encuentran ubicados en el departamento de Cusco dentro de los linderos del Bloque 56 y Bloque 88. Geológicamente se ubica en la parte sur de la cuenca Ucayali, en la faja plegada subandina. Las estructuras son anticlinales formados por fallas de corrimiento, y está formada por los yacimientos de San Martin, Cashiriari, Pagoreni y Mipaya.

Los objetivos del presente trabajo están orientados al estudio de las pruebas de formación que se efectuaron en el yacimiento Pagoreni, en particular del pozo PAG-1004D, se presta especial atención en los siguientes puntos:

- Definición del comportamiento termodinámico de los yacimientos de gas condensado.
- Elección del tipo de prueba a realizar.
- Cálculo del tiempo de duración de la prueba de formación.
- Elección del equipo necesario para efectuar la prueba.
- Diseño de la prueba de formación.
- Análisis e Interpretación de la prueba de formación
- Cálculo de parámetros de reservorio (presión Inicial, permeabilidad, daño, etc.)
- Validación de los resultados.

2 MARCO GEOGRAFICO Y DESCRIPCION GEOLOGICA

2.1 UBICACIÓN GEOGRAFICA

El área del estudio se encuentra en la parte Sur de la cuenca Ucayali aproximadamente a 400 Km de distancia de la ciudad de Lima. Las rocas reservorio están presentes principalmente en cuatro yacimientos denominados San Martín, Cashiriari, Pagoreni y Mipaya. Son anticlinales de forma alongada formados en la parte externa del frente andino. Su geometría está controlada por las fallas fuera de secuencia y retrocorrimientos que liberan gran parte del acortamiento producido.

Fig. 2.1 Ubicación geográfica de los yacimientos de Camisea

2.2 DESCRIPCION GEOLOGICA

Las estructuras de Camisea son anticlinales alongados y sigue una dirección Noroeste-Sureste. Comparten el mismo sistema de fallas de corrimiento. El yacimiento Pagoreni se origina por flexión de una falla de bajo ángulo que despega en las lutitas Devónicas de la formación Cabanillas y culmina con un retro-corrimiento en un nivel de despegue superior que involucra sedimentos sintectónicos del Terciario. Las fallas menores fuera de secuencia ("Shortcuts"), imbricaciones y retro-corrimientos determinan la geometría final de los anticlinales y constituyen los puntos críticos del cierre estructural que condicionan el llenado de la estructura con Hidrocarburos.

	COLUMNA GEOLOGICA CUENCA UCAYALI SUR - LOTES 88 & 56										
FM				REGISTRO TIPO LITOLOGIA		САМРО				FACIES	
Tc	CHAROPHYTES		m	My Analysis			CR	SM	PAG	MIP	DEPOSITOS CONTINENT.
		UPP	30	Ę	7		₩	0	•	•	
	VIVIAN	MID	15	 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4		★	0	0	0	TIDAL FLAT
	VIVIAN	LOW	32		Z		¥	•	•	•	
retáceo	CHONTA	UPP	133	WHALALAN ANNA	(alter-t-alden						MARINO
C	CHONIA	LOW	115	「「ない」	المهارين ال ليد اريما		*	•	• •	•	MARINO SOMERO (SHORE FACE)
		BAS	18		<u> </u>				+ 😓		FEDGEDO
	UPPER NIA	MID	25 39				1	X		0	FLUVIAL
$Pre_K?$	MIDDLE NIA MUDSTONE	~~~~	0-85								MARINO RESTRINGIDO
Pre_K?	LOWER NIA	LOW	0-133	and a second			*	*	*	•	DUNAS EOLICAS
)))	SHINAI	~~~~	70		} } }						MARINO RESTRINGIDO
mić		UPP	22-45	É	4 may		₩	₩	₩	₩	FLU- EFIM. DESERTICO
Pén	NOI	LOW	17-67			******	*	*	*	¥	SABKHA DUNAS EOLICAS
	ENE		33	Ę	J.	THE THE STATE	₩	₩	₩	¥	FLU-EFIM
h~~~	COPACABANA	p	+/- 870	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		╧╬	Ì¥	†*		MARINO

**MIDDLE NIA MUDSTONE ESTA AUSENTE POR EROSION EN EL LOTE 88.

Fig. 2.1 Columna estratigráfica y registro eléctrico tipo del lote 88 y 56

3 CARACTERIZACION TERMODINAMICA DE YACIMIENTOS DE GAS CONDENSADO

3.1 PROPIEDADES DE FLUIDOS DE GAS Y CONDENSADO

Un fluido de reservorio se clasifica como:

- Gas seco, cuando la temperatura de reservorio es mayor a la cricondentérmica y cuando las condiciones de superficie y transporte están fuera de la envolvente de 2 fases.
- Gas húmedo, cuando la temperatura de reservorio es menor a la temperatura cricondentérmica y mayor a la temperatura crítica.
- Petróleo volátil, cuando la temperatura de reservorio es mayor a la temperatura crítica de la mezcla.

3.2 COMPORTAMIENTO DE FASES

El comportamiento de fase en yacimientos de gas y condensado y en general en hidrocarburos, depende de la presión, del volumen ocupado y de la temperatura. Este comportamiento de fase se describe mediante mediciones de laboratorio conocidas como "Análisis PVT".

DIAGRAMA PRESIÓN-TEMPERATURA DE MEZCLAS DE HIDROCARBUROS

La mejor forma de observar los cambios de fase de las mezclas de hidrocarburos que se presentan naturalmente en yacimientos de petróleo y gas (o condensado) es a través de un diagrama Presión-Temperatura (P-T) como el que se muestra en la Fig. 3.1. Este es un diagrama de fases de una mezcla de gas natural – gasolina natural obtenido por Katz¹ en una celda PVT con ventana de vidrio.

En la Fig. 3.1 se observa la envolvente de fases que resulta de unir las curvas de puntos de burbujeo (curva AC) y puntos de rocío (curva CB).

¹ Katz, D.L.: "Overview of Phase Behavior in Oil and Gas Production", Journal Petroleum Technology, Junio de 1983.

En los puntos de burbujeo el sistema (mezcla de hidrocarburos) se encuentra en fase líquida en equilibrio con una cantidad infinitesimal (burbuja) de gas.

En los puntos de Rocío el sistema se encuentra en fase gaseosa en equilibrio con una cantidad infinitesimal (gota) de líquido.

Las curvas de burbujeo y rocío se unen en el punto crítico, C. A las condiciones críticas las propiedades intensivas (aquellas que no dependen de la masa) del gas y líquido son idénticas.

Fig. 3.1 Diagrama de fases para gas retrógrado²

Cada mezcla de hidrocarburos encontrada en un yacimiento tiene un diagrama de fases característico, el cual permanece constante, mientras se mantenga constante la proporción de componentes en la mezcla; sufriendo modificaciones cuando se altera esta proporción debido a la extracción preferencial del fluidos o a la inyección de alguno o algunos de ellos.

² McCain, W. "The Properties of the Petroleum Fluids". Gulf Publishing Co. 1988.

3.3 CONDENSACION RETROGRADA

Algunas mezclas de hidrocarburos existen naturalmente a una temperatura entre la crítica y la cricondentérmica como se observa en la Fig. 3.2 (isoterma ABD). A la presión del punto A, la mezcla se encuentra en fase gaseosa y al disminuir la presión isotérmicamente se alcanza el punto de rocío. Dentro del área rayada la disminución de presión produce condensación de parte de la mezcla. A este fenómeno se llama Condensación retrógrada isotérmica normal que ocurre por aumento de presión. La zona de condensación retrógrada está delimitada por los puntos de máxima temperatura de las líneas de isocalidad. Por debajo de la zona retrógrada, la disminución de presión produce vaporización del condensado retrógrado hasta que se alcanza nuevamente la curva de rocío. A temperaturas entre la crítica y la cricondentérmica se observan (Fig. 3.2) dos presiones de rocío: Retrógrada y Normal. Siguiendo la línea de agotamiento ABD, a la Presión de Rocío Retrógrada (B) la cantidad infinitesimal de líquidos se forma un cambio de fases de gas a líquido y a la Presión de Rocío Normal (D), por un cambio de fases de líquido a gas. Para un gas condensado, la presión de rocío normal es menor que 0 psia (vacío).

TEMPERATURA (°F)

Fig. 3.2 Diagrama de fases generalizado de un Gas Condensado³

³ Cole, F.W.: "Reservoir Engineering Manual", Gulf Publishing, Co., 1961

La condensación retrógrada es causada por las fuerzas que actúan sobre las moléculas de diferente tamaño y depende del balance de esas fuerzas⁴. Cuando la presión disminuye por debajo de la presión de rocío, las fuerzas de atracción entre las moléculas livianas y pesadas disminuyen debido a que las moléculas livianas se apartan mucho de las pesadas. Cuando esto ocurre, la atracción entre las moléculas de los componentes pesados se hace más efectiva produciendo su condensación. Mayor reducción de presión permite a las moléculas de componentes pesados su normal vaporización hasta alcanzar nuevamente el punto de rocío (completa vaporización del condensado retrógrado) a presiones de vacío.

⁴ Clark, N.J.: "Elements of Petroleum Reservoirs", Gulf Publishing Co., 1969

4 CONCEPTOS TEORICOS ACERCA DE PRUEBAS DE FORMACION EN YACIMIENTOS DE GAS CONDENSADO

Aunque la metodología de análisis de pruebas de presión transiente en pozos de gas sigue los mismos lineamientos que un yacimiento de petróleo, es necesario enfocar el análisis por separado, a fin de enfatizar el proceso de linearización de la ecuación de difusividad, ya que a diferencia del caso de petróleo no podemos considerar el gas como fluido poco compresible sino dependiente de la presión, al igual que la viscosidad. Otra diferencia importante en el caso de pruebas en pozos de gas es el factor de daño, ya que el daño total contiene una componente que es dependiente del caudal, este efecto se denomina "turbulencia" o "flujo tipo no-darcy"⁵

En el caso de petróleo, al calcular el valor del daño por lo general se asume que es constante durante el período de prueba e independiente del valor del caudal. En el caso de gas, en adición a este daño, de tipo mecánico o geométrico, debemos considerar una componente de daño adicional, ocasionando por efecto de turbulencia y su determinación es fundamental para distinguirlo del daño mecánico.

La Fig. 4.1 presenta un ejemplo de la dependencia del daño con el caudal en una prueba de presión efectuada en un pozo de gas del campo Cashiriari.

⁵ Da Prat, G.: "Introducción al Análisis y Diseño de Pruebas de Presión", Da Prat & Asociados, 2005

La fig. 4.2 muestra la dependencia del daño (se incrementa su valor) con el valor del caudal para la prueba que se muestra en la Fig. 4.1.

Fig. 4.2 Dependencia del factor de daño con el caudal.

4.1 SOLUCION DE LA ECUACION DE DIFUSIVIDAD PARA GAS

La ecuación de difusividad, es el resultado de aplicar la condición de balance de materiales (ecuación de continuidad: Fluido entrante – fluido saliente = acumulado), la ley de Darcy y la ecuación que describe la densidad del fluido en el medio poroso. La conjunción de estas premisas resulta en la siguiente ecuación:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(\frac{r\rho kr}{\mu}\frac{\partial p}{\partial r}\right) = \frac{\partial}{\partial t}(\phi\rho) = \phi\frac{\partial\rho}{\partial t} + \rho\frac{\partial\phi}{\partial t}$$
(1)

La ecuación diferencial final dependerá de incorporar la ecuación de estado del fluido cuya densidad es p en la Ec. 1. En el caso de petróleo, la linearización de la ecuación (1) se hace considerando:

- μ es independiente de la presión
- $\partial p/\partial r$ es pequeña, por lo tanto $(\partial p/\partial r)^2$ es despreciable.
- ct es pequeña y constante.

En el caso de que el fluido sea gas, la densidad se calcula mediante la ecuación:

$$\rho = \left(\frac{M}{RT}\right)\frac{p}{z} \tag{2}$$

En la ec. (2), M es el peso molecular del gas, R la constante universal de los gases, T es la temperatura absoluta, y *z* es el factor de desviación del gas.

Substituyendo la densidad en la Ec. 1, se obtiene:

(3)

Esta es la ecuación de difusividad que aplica para el caso de gas real.

La Ec. 3 es la ecuación básica que rige el comportamiento de flujo de gas en el yacimiento y a partir de la cual se efectuaron numerosos estudios, tanto teóricos como con datos de campo, a fin de lograr una solución tipo analítica y simple para la presión o el caudal, considerando la naturaleza no lineal de la ecuación.

La consideración inicial de un gas ideal sirvió de punto de partida. Por ejemplo de ser el gas ideal, tenemos que el factor de desviación Z es igual a 1; si asumimos que la viscosidad es constante y que la compresibilidad del gas es también constante y que se calcula usando el valor inicial de la presión $C_g= 1/p_i$, la Ec. 3 se puede expresar como:

$$\frac{\partial^2 p^2}{\partial r^2} + \frac{1}{r} \frac{\partial p^2}{\partial r} = \frac{\phi \mu c_t}{k} \frac{\partial p^2}{\partial t}$$
(4)

La ecuación 4 es muy similar a la ecuación válida para el caso de petróleo, si consideramos p² en lugar de p. Es por ello que podríamos usar la solución adimensional para líquidos para el análisis de gases ideales.

Sin embargo, en el caso de gases reales tanto la viscosidad como el factor de desviación (Z) y compresibilidad (Cg) son dependientes de la presión. Las Figs. 4.3 a 4.5. muestran la variación del factor de desviación Z, la viscosidad, y la compresibilidad para un gas real típico del yacimiento Pagoreni de Camisea.

Fig. 4.3 Dependencia del factor de desviación Z en función de la presión.

Fig. 4.4. Dependencia de la viscosidad con la presión.

Fig. 4.5. Dependencia de la compresibilidad con la presión.

4.2 EL CONCEPTO DE PSEUDO PRESIÓN Y PSEUDO TIEMPO

En el año 1966, se introduce el concepto de pseudo-presión⁶ o potencial real de gas "m(p)" que permite linearizar la Ec. 3, y así realizar el análisis de pruebas en pozos de gas, usando metodología similar a la utilizada para pozos de petróleo.

m(p) viene definido como :

$$m(p) = 2 \int_{p_r}^{p} \frac{p}{\mu(p)Z(p)} dp$$
 (5)

Siendo p_r una presión arbitraria, aunque en general se toma el menor valor del intervalo de variación de presiones durante la prueba de pozo, ya que solo interesa la diferencia de pseudo-presiones. Las unidades de pseudo presión son psi²/cp.

La solución en forma adimensional, para la ecuación de difusividad en términos de la pseudo presión m_D, es la misma que para el caso de petróleo p_D, aunque se presentan ligeras diferencias para tiempos en donde el régimen de flujo es característico de efectos de límites (estado pseudo-estacionario).

⁶ Application f real gas flow theory to well testing and deliverability forecasting. Al-Hussainy and H.J. Ramey. SPE reprint series N° 9. Pressure Analysis methods (1967).

Para realizar la integración de la Ec. 5, el factor de compresibilidad y la viscosidad deben conocerse en función de la presión. Estos datos se obtienen del informe de laboratorio (PVT) o de correlaciones apropiadas.

Si se conoce la composición del gas en función de los moles de los distintos componentes (o por lo menos se conoce la gravedad del gas), y no se dispone del análisis PVT, Z puede calcularse usando alguna de las ecuaciones de estado.

La ecuación (5), se puede resolver numéricamente mediante la regla de Simpson o la regla trapezoidal. En el apéndice VI, se ilustra el procedimiento de cálculo para un gas proveniente de las pruebas de formación del pozo PAG-1004D.

En términos de la función pseudo-presión, la Ec. 3 se puede expresar como:

$$\frac{\partial^2 m(p)}{\partial^2 r} + \frac{1}{r} \frac{\partial m(p)}{\partial r} = \frac{\emptyset \mu(p) c_g(p)}{k} \frac{\partial m(p)}{\partial t}$$
(6)

Comparando la Ec. 6 con la ecuación de difusividad para el caso de petróleo:

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} = \frac{\phi \mu c_t}{k} \frac{\partial p}{\partial t}$$
(7)

Podemos decir que son similares; sin embargo, la Ec. 6 aún es no lineal, por lo cual tanto la viscosidad como la compresibilidad dependen de la presión.

En los casos en que la variación de c_g con la presión sea significativa, la ecuación puede linearizarse introduciendo el concepto de pseudo tiempo de Agarwal⁷, que se define como:

$$I_p = \int_0^t \frac{1}{\mu c_t} dt \tag{8}$$

Para el cálculo de (7) se necesita conocer la variación de presión durante todo el tiempo que el pozo ha estado fluyendo.

⁷ Agarwal, R.G.: "*Real Gas Pseudotime – A New Function for Pressure Builup Analysis of Gas Wells*", paper SPE 8279 presented at the 1979 SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada, September 23-26, 1979

Comparando las Ecs. 5, 6 y 7, podemos decir que desde el punto de vista de ingeniería, las soluciones de la ecuación de difusividad obtenidas para el caso de líquidos como compresibles pueden usarse también para el análisis de datos de presión registrados en pozos de gas; basta con convertir los valores de presión a pseudo presiones.

Las expresiones adimensionales para la solución de la pseudo presión y el tiempo se definen como:

$$m_{D} = p_{D} = \frac{kh[m(p_{i}) - m(p_{wf})]}{1424qT} \qquad v \acute{a}lido \ para \ t_{D} < (t_{D})_{pss}$$
(9)

$$t_D = \frac{0.000264kt}{\phi(\mu c_t) r_w^2}$$
(10)

Las unidades de la EC. 9 son k [md], h [ft], q [MscfD], T [°R], y m(p) en psi²/cp. Se asumen las siguientes condiciones como estándar: Tsc=520°R, psc=14.7 psia.

En la EC. 9, por analogía con el caso petróleo, tenemos:

$$\Delta m(p) = m(p_i) - m(p_{wf}) = \int_{p_{wf}}^{p_i} \frac{p}{\mu Z} dp = \int_0^{p_i} \frac{p}{\mu Z} dp - \int_0^{p_{wf}} \frac{p}{\mu Z} dp$$
(11)

Basados en la EC. 9, la expresión de la pseudo presión válida durante el periodo de fluencia a un caudal constante de gas (MscfD) y en régimen de flujo tipo radial infinito, viene dada por:

$$m(p_{wf}) = m(p^*) - \frac{1637qT}{kh} [\log t_D + 0.3513 + 0.87s + 0.87Dq]$$
(12)

En la EC. 12, D se denomina el factor de turbulencia y su unidad es [1/MscfD]. Basados en esta ecuación, se puede definir un daño efectivo S' de la siguiente manera:

$$S' = S_{mecánico} + Dq$$
(13)

Para identificar correctamente la condición de daño del pozo, es necesario separar estos dos componentes del efecto skin, y esto constituye formalmente la diferencia en las interpretaciones de pozos de petróleo y gas. Para estimar D y $S_{mecánico}$, mediante análisis de las pruebas, se requiere que el pozo de gas sea probado por lo menos con dos fluencias diferentes (q₁, y q₂). Del análisis de los datos se obtienen los daños efectivos S₁ y S₂ y se resuelve el sistema de ecuaciones:

$$S_1 = S_{mecánico} + Dq_1$$

 $S_2 = S_{mecánico} + Dq_2$

Cuya solución permite obtener los factores Smecánico y D.

El método anterior asume que D permanece constante en el intervalo de tasas de prueba, aunque estrictamente eso no ocurre.

A continuación se presenta la fórmula usada para el cálculo del factor de turbulencia D, en caso de conocer los parámetros de fluido y terminación del pozo (en principio el valor obtenido para D, mediante fórmula debería ser igual o en el orden del obtenido mediante análisis de pruebas):

$$D = \frac{2.222^{-15}\gamma kh\beta}{\mu r_w h_{perf}^2} \tag{14}$$

 β es el coeficiente de velocidad, y puede evaluarse por: $\beta = 2.73 x 10^{-15} k^{-1.1045}$

En donde k [md] es la permeabilidad en la zona vecina al pozo, γ la gravedad específica del gas, h [ft] y h_{perf} [ft] el espesor y espesor perforado respectivamente, μ [cp] la viscosidad del gas evaluada a la presión de fondo fluyente, y r_w [ft] es el radio del pozo; las unidades del factor D en la ecuación (14) están en [MscfD].

5 DISEÑO DE PRUEBAS DE FORMACIÓN EN YACIMIENTOS DE GAS Y CONDENSADO

El diseño de pruebas de formación se efectúa en función a los objetivos que se buscan, deben plantearse en forma clara que objetivos específicos se espera alcanzar con la prueba; para lograr estos objetivos, la prueba de formación debe diseñarse de manera adecuada, si no se planifica, podría convierte no solo en un costo infructuoso, sino que podría no llegarse a encontrar los parámetros deseados del reservorio. Existen casos en que ningún objetivo planteado se alcanza, en otros casos puede darse en que sea necesario equipamiento especial y esta debe moverse anticipadamente a la locación, sobre todo en zonas remotas donde el transporte y en general la logística es complicada. Por todas estas razones, está claro que debe considerarse cuidadosamente cual es el objetivo de la prueba y como debe desarrollarse la prueba de formación para que sea exitoso y se alcancen los objetivos.

Para hacer un buen diseño de prueba de formación se requiere considerar que variables operacionales afectan al reservorio. En general, las variables operacionales bajo control del ingeniero son el flujo y la duración de la prueba. Se debe decidir también que tipo de prueba se realizará, cuánto tiempo durará y que equipos se utilizarán.

Un mal diseño conlleva a un mal monitoreo de reservorio, por ejemplo, la productividad de los pozos del Campo Arun, situado en Sumatra del Norte, Indonesia, declinó significativamente unos 10 años después de que comenzara la producción. Se trataba de un problema serio, ya que la productividad de los pozos resultaba crítica para satisfacer las obligaciones contractuales de entrega de gas. Los estudios de pozos, incluyendo las pruebas de presiones transitorias, indicaron que la pérdida era causada por la acumulación de condensado cerca del pozo⁸

⁸ Afidick D, Kaczorowski NJ y Bette S: "*Production Performance of a Retrograde Gas Reservoir: A Case Study of the Arun Field,*" artículo de la SPE 28749, presentado en la Conferencia de Petróleo y Gas del Pacífico Asiático de la SPE, Melbourne, 7 al 10 de noviembre de 1984.

5.1 TIPO DE PRUEBA A UTILIZARSE

Cada técnica de análisis requiere datos específicos de una prueba, datos adecuados y bien medidos son esenciales para que los resultados sean satisfactorios; por lo tanto, una importante parte es la preparación de la prueba de formación, decidir que data se necesita y como serán obtenidos.

Tres tipos de prueba son por lo común utilizadas en la industria y cada uno tiene ventajas y desventajas sobre las demás:

- Prueba flujo-tras-flujo
- Prueba isocronal
- Prueba isocronal modificada

5.2 DURACION DE LA PRUEBA

Para establecer el tiempo de duración de nuestra prueba debemos entender primero, que variables dependen de qué variables. Entendiendo este concepto se podrá planificar una prueba. Durante el diseño de pruebas, hay 2 consideraciones importantes: a) Pueden los parámetros de reservorio a ser estimados en la prueba afectar la presión del pozo de una manera suficiente que su efecto pueda ser detectado con las herramientas disponibles para medirlo, y las herramientas y equipos disponibles para analizar esta respuesta, y b) es la prueba lo suficientemente larga para que considere estas respuestas.

Las principales respuestas de la prueba comienzan y terminan en partes particulares, a continuación se revisan estos:

Fin del efecto de almacenamiento

$$t_{\rm D} = C_{\rm D}(0.041 + 0.02 \text{ S}) \tag{5.1}$$

Comienza la línea recta en el gráfico semilogarítmico, cualquiera sea el caso: de porosidad simple o la parte secundaria de un reservorio de doble porosidad:

$$t_D = C_D(60 + 3.5 \text{ S})$$
 (5.2)

21

Fin de la línea recta de la porosidad secundaria en el gráfico semilogarítmico de un reservorio de doble porosidad.

$$t_D = \frac{\omega(1-\omega)}{6.6\lambda} \tag{5.3}$$

Fin de la transición a la segunda porosidad

$$t_D = \frac{1.2(1-\omega)}{\lambda} \tag{5.4}$$

Fin del comportamiento de reservorio infinito (línea recta en grafico de semilog), depende de la forma del reservorio y de la configuración de las fronteras, para reservorios con morfología circular:

$$t_{DA} = 0.1$$

Inicio del estado pseudoestable, también depende de la forma del reservorio y la configuración de las fronteras, para reservorios de morfología circular:

$$t_{DA} = 0.1$$

Es importante conocer donde comienza y donde termina estos periodos, lo interesante que estas expresiones están en tiempo adimensional t_D o t_{DA} . Esto significa que ellos pueden ser afectados por la movilidad k/u, almacenabilidad $\phi c_t h$ y capacidad de flujo kh, pero no por el caudal. Así, para cualquier reservorio, los tiempos de transición ocurren en un momento específico sin importar a que caudal el pozo está produciendo.

La respuesta de presión puede ser estimada analizando cada modelo específico, en caso de una respuesta de presión en un reservorio infinito (infinite acting) es:

$$p_{wf} = p_i - 162.6 \frac{qB\mu}{kh} \left[\log t + \log \frac{k}{\phi \mu c_t r_w^2} + 0.8686s - 3.2274 \right]$$
(5.5)

De esta ecuación, puede verse que la magnitud de la caída de presión depende del grupo de variables $qB\mu/kh$, así la caída de presión es directamente proporcional al caudal. Controlar el caudal para inducir la caída de presión no es totalmente fácil, lo que usualmente se hace es producir tanto para lograr una gran respuesta, para estar seguro de obtener el set de respuestas

características reconocibles. Sin embargo, es necesario determinar por adelantado que cambios de presión se lograrán con los caudales planteados y si estos cambios serán suficientes para que la prueba pueda interpretarse adecuadamente.

Por otro lado de la ecuación 5.5, puede verse que la cantidad de cambio en presión está solo indirectamente dependiente de la almacenabilidad del reservorio $\phi_{c_1}h$. Esto significa que reservorios con buen almacenamiento experimentarán la misma caída de presión que reservorios con bajo almacenamiento, aunque los tiempos para alcanzar dicha caída de presión serán muy diferentes.

5.3 ESTIMACIÓN DE LA CURVA IPR

Existen muchas opciones disponibles para el cálculo de la curva IPR para yacimientos de gas condensado, incluyendo modelos multilaterales. El escoger uno u otro método depende la información disponible y del tipo de sensibilidades que se requiera efectuar.

El pronóstico del IPR puede usarse para estimar una productividad para diferentes opciones de completación del pozo

5.3.1 Método de Jones

El método de Jones para reservorios de gas es una modificación de la ecuación de Darcy, la misma que nos permite obtener las caídas de presión por efecto laminar y flujo No-Darcy. La ecuación de Jones puede expresarse como:

 $Pr^2 - Pwf^2 = aQ^2 + bQ$

Donde "a" y "b" son calculadas a partir de las propiedades de reservorio.

5.3.2 Método de Forchheimer

La ecuación de Forchheimer expresa la curva IPR en términos de los coeficientes de caída de presión laminar y no-Dárcico expresada como:

 $Pr^2 - Pwf^2 = aQ^2 + bQ$

Donde "a" y "b" son parámetros que se ingresan para el modelo de IPR de Forchheimer.

5.3.3 Método de Contra Presión

La ecuación de contrapresión es la siguiente:

 $Q = C (Pr^2 - Pwf^2)^n$

C es determinado a partir de la presión de reservorio y propiedades de reservorio, la información necesaria para este modelo es: Permeabilidad, espesor de reservorio, área de drenaje, radio del pozo, factor de forma y exponente n.

5.3.4 Método de C y n

Este es la forma común de la ecuación de contrapresión:

 $Q = C (Pr^2 - Pwf^2)^n$

C y n pueden determinarse de un ploteo de Q versus (Pr²-Pwf²), sin embargo en la etapa de diseño esta información no está disponible por lo tanto pueden utilizarse valores de C y n de pruebas análogas de otros pozos.

5.3.5 Método de "Petroleum Experts"

El método de Petroleum Experts para el cálculo de la IPR fue desarrollado por el grupo "Petroleum Experts", y usan pseudopresiones multifásicas para modelar la reducción de la productividad del pozo que resulta de incrementar la saturación de líquido en pozos de gas condensado. El método asume que no se forma banco de condensado y que todo el líquido se produce.

Los datos necesarios para este modelo son: permeabilidad, espesor del reservorio, área de drenaje, factor de forma, radio del pozo, intervalo baleado, porosidad, saturación de agua connata, coeficiente no-darcy.

5.4 ESTIMACIÓN DE LA CURVA VLP

Se debe considerar todos los factores que afecten la curva "Outflow" para lograr una buena predicción del comportamiento, se debe disponer de al menos de la siguiente información:

- Survey de desviación del pozo.
- Equipos de superficie utilizados en la prueba.
- Equipo de fondo de pozo.
- Perfil de temperatura del pozo.

Existen muchos modelos para correlacionar la caída de presión a lo largo de la tubería, entre ellos:

- Fancher Brown
- Duns y Ros modificado
- Duns y Ros original
- Petroleum Experts 1, 2, 3 y 4
- Orkiszewski
- Beggs and Brill
- Gray
- Hydro 3P

En el apéndice IV puede verse las curvas VLP de diseño de la prueba.

5.5 CONSIDERACIONES DE LOS EQUIPOS A UTILIZARSE

Muchas son las consideraciones que debe tenerse al momento de seleccionar el equipamiento necesario para que la prueba de pozos alcance todos los objetivos planteados, en algunos casos se requerirá inclusive de herramientas de fondo (down hole tools), en otras serán necesario calentadores, o inyectores de aditivos para inhibir la formación de hidratos, etc. Sin embargo, en un pozo típico de gas y condensado, el siguiente equipamiento es por lo general necesario:

- Boca de pozo (Árbol de producción, lubricador, etc.)
- Válvula de seguridad de superficie (SSV)
- Choke manifold
- Calentador
- Separador
- Tanques calibradores (Gauge tanks)
- Quemador de Gas (Gas Flare)
- Quemador de Condensado (Oil Burner)
- Kid para toma de Muestras de gas y condensado
- Detector de H2S, Detector de arena, Medidor de gravedad del gas (Ranarex)

En el apéndice VII se ve un diagrama típico del equipamiento de superficie utilizado en las pruebas de pozos realizadas en Camisea.

En el apéndice VIII se muestra el diagrama del estado mecánico del pozo estudiado.

6 INTERPRETACION DE PRUEBAS DE FORMACIÓN DE GAS Y CONDENSADO

El flujo multifásico y el cambio en composición de la mezcla en el reservorio hacen de la interpretación de pruebas de formación de reservorios de gas condensado un verdadero reto. Roussennac⁹ analizó diferentes técnicas para la interpretación usando pseudopresiones de fase simple y pseudopresiones de dos fases. El estado estacionario y el más reciente: método de tres zonas. Los cálculos de pseudopresiones de dos fases requiere el conocimiento *a priori* de la relación presión-saturación durante la prueba. El método de estado estacionario asume la misma relación presión-saturación durante la prueba. Como durante el flujo de estado estacionario hipotético, el cual ignora cualquier cambio de composición en el reservorio. El método de tres zonas considera el cambio de composición en el reservorio y se basa sobre un modelo de depletación en tres principales regiones de flujo:

- Región 1: Cercana al pozo donde la saturación de condensado es importante permitiendo a ambas fases, vapor y líquido ser móviles.

- Región 2: donde condensado y gas están presentes pero solamente el gas es móvil, en la región 2, el condensado crece y la composición de la mezcla que fluye cambia.

- Región 3: región externa existe cuando la presión de reservorio es mayor a la presión inicial del punto de rocío y contiene solamente gas.

Los análisis de drawdown y build-up nos proporcionan información de la presión del reservorio, permeabilidad, daño, etc. a través de una prueba de pozo (datos de presión y temperatura de fondo del pozo, así como caudales de gas y líquidos en superficie).

Cualquier prueba que involucre un cambio en el caudal se analiza basado en el principio de superposición.

6.1 Principio de Superposición

El principio de superposición establece que si se crea una perturbación de la presión, la perturbación continua viajando a través del reservorio siempre y cuando la

⁹ Roussennac B., "Gas Condensate Well Test Analysis", Master of Science Thesis, Stanford University, June 2001

fuente de perturbación no cambie o termine. Esto quiere decir que para determinar la presión en una ubicación específica en función del tiempo, se debe agregar todas las perturbaciones de presión.

6.2 Superposición en tiempo

Cuando el caudal de flujo se cambia en un pozo, la perturbación de presión causada por el caudal anterior continuara afectando al reservorio. Por ejemplo, si un pozo está produciendo a un caudal q_1 en un tiempo t_1 . El caudal se cambia a un caudal q_2 y se continúa el flujo. Si se quiere calcular la presión a un tiempo t_2 , se deberá considerar los efectos de ambos caudales.

Los efectos del caudal y la presión son mostrados en la siguiente figura:

6.3 Interpretación de la Prueba de Formación PAG-1004D

Hace 20 años, la base de la interpretación de pruebas estaba basado en ploteos especializados (semilog, Horner, MDH, MBH, etc.) y ajuste de la data existente a curvas tipo.

La interpretación moderna asistida por computadora no significa que la anterior interpretación clásica sea errónea; sin embargo, es más confiable, tiene mejor resolución,

y pueden verse parámetros que no pueden verse con una interpretación clásica. En 1883 Dominic Bourdet publicó la primera formulación de la derivada de presión como la pendiente del gráfico generado en un ploteo semilog. La derivada de Bourdet es ciertamente el más importante quiebre en la historia del análisis de presión transiente, esto sumado a la disponibilidad de computadoras cada vez más sofisticados y a los sensores de presión electrónicos con mejores resoluciones hacen de la interpretación moderna una herramienta esencial para la evaluación de formaciones.

6.3.1 Primera prueba de formación: Reservorio Ene

La prueba fue efectuada en el mes de Noviembre de 2008, consistió de 4 flujos y un cierre, la información adquirida durante la prueba se resume en la siguiente tabla:

Periodo	CHOKE	Qgas	Qcond	Duración periodo	WHP	BHP	Qagua
	inches	(MMscf/d)	(bpd)	(Hrs)	(psia)	(psia)	(Bbpd)
	46/64	26.2	974.9	6.0	2296	2943	3
Flow After	52/64	32.0	1054.4	4.2	2174	2800	14
Flow	58/64	37.0	1161.9	4.0	2054	2672	16
	64/64	41.5	1234.7	4.6	1932	2546	17
Build Up	-	-	-	27.3	2547	3430	-

Los datos de presión y caudal se muestran en la siguiente gráfica:

History plot (Pressure [psia], Gas Rate [MMscf/D] vs Time [hr])

Los datos necesarios para la interpretación de la prueba se muestran a continuación:

Porosidad	=	10.8	%	
Tr	=	183	٥F	
Sw	=	18.9	%	
h	=	22.4	mMD	(arena neta) (TVD: 16.2 m)
h _{perf}	=	14.0	mMD	(interval baleado) (TVD: 10.2 m)
GOR	=	29100	SCF/b	ls
Gg	=	0.687		
Ad	=	380	acres	(area de drenaje)
ID	=	6.184	pulgad	das (tubing 7")
r _w	=	0.3541	1 pies (radio de wellbore)

6.3.1.1 Interpretación clásica

a) PLOTEO HORNER

Para el periodo de build-up, el ploteo de Horner muestra a continuación:

Los resultados de este análisis son:

Pendiente	:	-81.075	psi
Intercepto	:	3434.42	psia
P@1hr	:	3336.34	psia
k.h	:	1600	md.ft
k	:	28.9	md
Skin	:	5.03	

b) PLOTEO MDH

Para el periodo de build-up, el ploteo de MDH (Miller-Dyes-Hutchinson) es:

Los resultados de este análisis son:

Pendiente	:	73.9361	psi
Intercepto	:	3336.45	psia
P@1hr	:	3336.45	psia
k.h	:	1760	md.ft
k	:	31.7	md
Skin	:	6.04	

c) IPR - AOF

Por ser el más usado y aceptado, utilizaremos el método de Rawlins y Shellhardt¹⁰ (C&n), los cálculos se muestran en la siguiente tabla:

0 =	$C(P_s^2)$	$(-P_{wf}^2)^n$
Q =	$C(P_s^2)$	$-P_{wf}^{2})^{\prime\prime}$

Q	Pwf	(Ps²-Pwf²)
(MMscfD)	(psia)	(psi²)
42,41	2548,0	5533606
37,93	2671,8	4887191
32,82	2799,5	4188562
26,91	2943,4	3362220

Ploteando Ps²-Pwf² vs Qgas, en ejes logarítmicos, se obtiene:

¹⁰ Rawlins. E. L. and Schellhardt, M. A.: "Backpressure Data on Natural Gas Wells and Their Application to Production Practices", U. S. Bureau of Mines, Monograph, (1936).

El valor de "n" es la inversa de la pendiente: n=1/1.092558 = 0.915

El valor de "C" es el antilogaritmo de la intersección con el eje de ordenadas:

C=10^{-4.5441} = 2.857E-05 [MMscf/D]/psia**2N

Con estos valores puede construirse fácilmente la curva IPR:

Con estos valores puede construirse fácilmente la curva IPR:

AOF = 2.857E-05 (3467.81²-0²)^{0.915} = 86.34 MMscfD

6.3.1.2 Interpretación Moderna asistida por computadora

El análisis fue efectuado usando el Software Saphir 4.10 (desarrollado y comercializado por Kappa). Para lograr un ajuste con la data existente se ha utilizado un modelo de reservorio homogéneo, con entrada limitada, almacenamiento variable y fronteras 2 fronteras de no flujo que se intersectan, los principales parámetros obtenidos son:

Principales parámetros obtenidos:

С	0.134	bbl/psi	
Skin Total	6.96		
k.h, total	1990	md.ft	
k, promedio	35.9	md	
Pi	3467.81psia		

Parámetros de las fronteras encontradas:

L1 – No flujo	198	ft
L2 - No flujo	717	ft
Ν	2	

Las distancias L1 y L2, son distancias perpendiculares desde el pozo a las fronteras, y el parámetro N, resulta de dividir π/θ , θ es el ángulo en radianes que forman las fronteras (fallas) intersectantes, el siguiente esquema muestra el significado de estos parámetros:

El ploteo log-log es el siguiente:

Log-Log plot: m(p)-m(p@dt=0) and derivative [psi2/cp] vs dt [hr]

Como se observa, se ha logrado un buen "match" entre el modelo seleccionado y la data existente

El siguiente gráfico muestra el ploteo semilogarítmico, en ella puede observarse claramente el flujo radial.

Semi-Log plot: m(p) [psi2/cp] vs Superposition Time

6.3.2 Segunda prueba de formación : Reservorios Noi+Ene en conjunto

La prueba fue efectuada en el mes de Noviembre de 2008, inmediatamente después de terminar de probar la formación Ene, fue una prueba flow-after-flow y consistió de 3 flujos y un cierre de 12 horas, la información adquirida durante la prueba se resume en la siguiente tabla:

Pariodo		Duración	CHOKE	Qgas	Qcond	WHP	BHP	Qagua
Fenodo		(Hrs)	Pulg.	(MMscf/d)	(bpd)	(psia)	(psia)	(bpd)
	1	6.4	46/64"	29.0	1044	2590	3225	11
Flow After Flow	2	4.5	54/64"	38.3	1327	2555	3187	7
	3	5.0	62/64"	49.6	1617	2492	3134	12
Build Up	4	12.3	-	-	-	2680	3311	-

Los datos de presión y caudal se muestran en la siguiente gráfica:

History plot (Pressure [psia], Gas Rate [MMscf/D] vs Time [hr])

Los datos necesarios para la interpretación de la prueba se muestran a continuación:

Porosidad	=	14.0	%	
Tr	=	179	٥F	
Sw	=	30.6	%	
h	=	106.6	mMD	(arena neta) (TVD: 73.1 m)
h _{perf}	=	61.84	mMD	(interval baleado) (TVD: 10.2 m)
GOR	=	29100	SCF/b	ls

Gg	=	0.68	
Ad	=	400	acres (area de drenaje)
ID	=	6.184	pulgadas (tubing 7")
r _w	=	0.3541	pies (radio de wellbore)

El ploteo log log es el siguiente:

Log-Log plot: m(p)-m(p@dt=0) and derivative [psi2/cp] vs dt [hr]

Como se ve en el gráfico hay un buen ajuste con un modelo de reservorio radial compuesto, se puede apreciar un empobrecimiento de la capacidad de flujo a ~100 mts del pozo. El siguiente gráfico muestra el ploteo semilogarítmico:

Los principales parámetros obtenidos de esta interpretación son:

Radial compuesto				
Infinite				
0.0723	bbl/psi			
3.62				
8400	md.ft			
35	md			
3316.58	psia			
1.3				
0.0456	[MMscf/D]-1			
316	ft			
0.71				
	Radial compu Infinite 0.0723 3.62 8400 35 3316.58 1.3 0.0456 316 0.71			

Como puede verse, el efecto de turbulencia aparece, pero no es significativo, Ri es la distancia a la cual cambia capacidad de flujo y M es la razón de movilidades entre ambas regiones.

Finalmente de los datos obtenidos, la curva IPR es la siguiente:

C and N - Producer - Bottom Hole Pressures - Flow after flow - IPR Plot - BHP 5 seconds: Pf [psia] vs |Q| [MMscf/D]

AOF = 8.9462E-04 (3316.58²-0²)^{0.783178} = 292.61 MMscfD

6.3.3 Tercera prueba de formación: Reservorios Nia+Noi+Ene en conjunto

La última prueba en este pozo fue efectuada en el mes de Enero de 2008, fue una prueba flow-after-flow y consistió de 3 flujos y un cierre de 12 horas, la información adquirida durante la prueba se resume en la siguiente tabla:

CHOKE	Qgas	Qcond	WHP	BHP	Qagua
Pulg.	(MMscf/d)	(bpd)	(psia)	psia	(bpd)
48/64"	32.7	1143	2612	3186.9	5.8
56/64"	40.0	1394	2596	3175.1	12.4
62/64"	50.7	1749	2563	3156.8	13.4

Los datos de presión y caudal se muestran en la siguiente gráfica:

History plot (Pressure [psia], Gas Rate [MMscf/D] vs Time [hr])

Los datos necesarios para la interpretación de la prueba se muestran a continuación:

Porosidad	=	15.3 %
Tr	=	173.8 °F
Sw	=	31.2 %
h	=	306.1 mMD (arena neta) (TVD: 213.7 m)
h _{perf}	=	194 mMD (interval baleado)
GOR	=	28767 SCF/bls
Gg	=	0.682
Ad	=	600 acres (area de drenaje)
ID	=	6.184 pulgadas (tubing 7")
r _w	=	0.3541 pies (radio de wellbore)

El ploteo log-log es el siguiente:

Log-Log plot: m(p)-m(p@dt=0) and derivative [psi2/cp] vs dt [hr]

Se puede ver que a 1 hora de iniciado el cierre la derivada muestra una cresta atípica, por lo tanto es necesario hacer un control de calidad de la data para descartar que este efecto sea de reservorio o ajeno a este, calculando la derivada dp/dt, esta debería ser descendente durante todo el build-up :

Se observa claramente que dp/dt crece en ese intervalo, por lo tanto, esta cresta no es respuesta del reservorio. El efecto es debido a factores externos como la segregación de fluidos dentro del pozo, considerando que los cierres y aperturas se hacen con válvula en superficie. Se logra un buen match, considerando un modelo de reservorio homogéneo e infinito, los resultados son:

Pr	:	3231.74 psia @ 2049.3 mTVD
Kh	:	29900 md-ft
K	:	42.6 md
S	:	8.32

Radio de inv. : 214 mts.

CALCULO DEL EFECTO DE TURBULENCIA:

La fórmula usada para el cálculo del factor de turbulencia D, es:

$$D = \frac{2.222^{-15} \gamma k h \beta}{\mu r_w h_{perf}^2}$$

En donde k [md] es la permeabilidad en la zona vecina al pozo, γ la gravedad específica del gas, h [ft] y h_{perf} [ft] el espesor y espesor perforado respectivamente, μ [cp] la viscosidad del gas evaluada a la presión de fondo fluyente, y r_w [ft] es el radio del pozo, reemplazando datos, tenemos:

$$\beta = 2.73 \times 10^{10} (42.6)^{-1.1045} = 0.433 \times 10^{9}$$

$$D = \frac{2.222^{-15}(0.673)(42.6)(701.12)0.433x10^9}{(0.02074)(0.3541)(435.4)^2}$$

 $D = 1.356 \times 10^{-5} (MscfD)^{-1} = 0.014 (MMscfD)^{-1}$

Coincide bien con el factor *D* obtenido a partir del modelo generado en Saphir (*D*=0.03 MMscfD⁻¹), esto significa, que para el máximo caudal de ensayo, es decir a 52 MMscfD, tendremos 1.6 como componente de daño asociado al efecto no-darcy.

Finalmente de los datos obtenidos, la curva IPR es la siguiente:

AOF = 6.06354E-04 (3231²-0²)^{0.869788} = 771.75 MMscfD

A manera de comparación, se presenta en el siguiente gráfico las derivadas de los 3 ensayos efectuados en este pozo, se ve claramente que a medida que se incorporan reservorios mejora la capacidad de flujo:

Compare files: dm(p) and dm(p)' normalized [psi2/cp] vs dt

Como complemento a las interpretaciones de las pruebas de formación y a manera de validar algunos resultados, ilustramos el perfil de producción (PLT) tomado en el pozo, en ella se puede observar los siguientes aportes:

Upper I	Nia	16%
Middle	Nia	22%
Lower I	Nia	14%
Upper I	Noi	22%
Lower I	Noi	2%
Ene		24%
Upper Nia		
Middle Nia		22%
<u>1</u> 0		
Lowe Nia		
		senter spinner Velocity
Upper Noi		Pressure 22%
Lower Noi	Transferrance Contraction	2%
Ene		24%

Los aportes individuales de cada capa guardan relación con las capacidades de flujo (kh) encontradas en la prueba, en el reservorio Ene se tiene un aporte relativamente alto debido a la presión de reservorio mayor a los otros, es decir el draw down de Ene es mayor.

7 PROBLEMAS ASOCIADOS A LA EXPLOTACION DE YACIMIENTOS DE GAS Y CONDENSADO Y SOLUCIONES

El mayor problema lo presenta la condensación retrógrada la cual se evita con el ciclaje de gas.

El proceso de ciclaje de gas en yacimientos de gas condensado consiste en reinyectar el gas seco al yacimiento una vez que ha sido separado del condensado. El gas de inyección también puede provenir de una fuente externa al yacimiento en estudio. El objetivo de la inyección de gas seco en yacimientos de gas condensado es mantener la presión del yacimiento lo suficientemente alta (usualmente mayor o cerca a la del punto de rocío) para minimizar las pérdidas de líquido por condensación retrógrada. El gas seco es miscible con el gas condensado al primer contacto¹¹. De esta manera el ciclaje de gas o el mantenimiento de presión por inyección de gas seco en yacimientos de gas condensado es un caso especial de desplazamiento miscible. También se usan otros métodos como la inyección de nitrógeno y agua.

7.1 ACUMULACION DE LÍQUIDOS EN LOS POZOS

La presencia de líquidos en pozos de gas afecta negativamente las características de flujo de estos pozos. Los líquidos pueden provenir de la condensación de hidrocarburos (condensado) o de agua producida conjuntamente con el gas. En ambos casos, la fase líquida de alta densidad debe ser transportada a superficie por el gas. Si el gas no suministra suficiente energía de transporte para levantar los líquidos, estos se acumulan en el fondo del pozo produciendo una contrapresión adicional sobre la formación que afecta negativamente a la capacidad productiva de los mismos. Ej. pozos con baja presión de fondo, el líquido puede matarlo.

Inicialmente los pozos tienen presión y caudales elevados que impiden la acumulación de líquido en el fondo, pero a medida que la presión de fondo disminuye y aumenta la producción

¹¹ Moses, P.L. y Donohoe, Ch. W.: "Gas – Condensate Reservoirs", Cap. 39 del libro "Petroleum Engineering Handbook", SPE-AIME. 1987.

de líquidos (agua o condensado) se hace necesario ayudar artificialmente al gas a levantar el líquido.

De acuerdo a Hutlas y Granberry¹² existen varios métodos que ayudan a levantar el líquido:

- a) Levantamiento artificial con gas (gas lift). El gas inyectado por el anular pasa por válvulas especiales hacia la tubería incrementando la energía del gas producido, lo cual permite a éste levantar la columna de líquido.
- b) Cuando la presión de fondo fluyente lo permita se puede instalar un equipo de bombeo mecánico. La bomba de subsuelo se instala dentro de la columna de líquido, por debajo de las perforaciones. La bomba se encarga de levantar el líquido. El gas fluye a superficie por el anular.
- c) Hacer fluir el pozo a la atmósfera para alcanzar altas tasas de flujo que levanten el líquido desde el fondo.

Este último método tiene grandes desventajas como es el riesgo de producir incendios y contaminación ambiental. También se pierde una gran cantidad de gas al arrojarlo a la atmósfera.

La mínima velocidad del gas para impedir la acumulación de líquido en el fondo del pozo se puede calcular en base a la siguiente ecuación semiempírica de Turner y Cols¹³ para calcular la velocidad de caída libre de gotas de líquido dentro de la corriente de gas,

$$vl = 20.4\sigma^{1/4} \frac{(\rho l - \rho g)^{1/4}}{\rho g^{1/4}}$$

Donde,

vl = velocidad de caída libre de gotas de líquido, pie/seg.

 σ = tensión interfacial gas-líquido, dinas/cm.

¹² Hutlas, E.J. y Granberry, W.R.: "A Practical Approach to Removing Gas Well Liquids" SPE Reprint Series No 13, Vol. III, Gas Technology. 1977 Edition.

¹³ Turner, R.G., Hubbard, M.G. y Dukler, A.E.; "Analysis and Prediction of Minimum Flow Rate for the Continuos Removal of Liquids from Gas Wells"; SPE Reprint Series No 13. Vol. II, Gas Technology, 1977 Edition.

 $\rho l \ y \ \rho g$ = densidades del líquido y gas a presión y temperatura promedia del pozo, Ibm/pie³.

La velocidad del gas debe ser mayor que la velocidad de asentamiento de las gotas de líquido, vg \geq vl

El caudal de gas mínimo requerido para producir esta velocidad es,

7.2 ACUMULACIÓN DE LÍQUIDOS EN LA FORMACIÓN

Una de las características básicas de los yacimientos de gas condensado es la formación de condensado retrógrado cuando la presión de la mezcla de hidrocarburos cae por debajo de su presión de rocío durante el agotamiento isotérmico de la presión del yacimiento.

La acumulación de condensado retrógrado puede ocurrir:

a) En la zona cercana al pozo de producción, cuando la presión de fondo fluyente es menor que la presión de rocío (Pwf<Proc) y la presión promedia del yacimiento es mayor o igual a la presión de rocío (P>Proc).

b) En todo el yacimiento, cuando P<Proc. En el primer caso puede ocurrir desde el comienzo de la explotación del yacimiento si se tiene una alta caída de presión en los alrededores del pozo debido al daño de la formación por los fluidos de perforación y el 2do caso se presentan cuando el yacimiento de gas condensado es producido por agotamiento de presión y la presión del yacimiento ha caído por debajo de la presión de rocío.

7.3 DISPERSIÓN DE GAS CONDENSADO EN ZONAS INVADIDAS POR AGUA

La explotación convencional de yacimientos de gas condensado con empuje hidráulico activo termina cuando los pozos son invadidos por agua dejando gran cantidad de gas a alta presión dispersa en la zona de agua. En algunos casos el recobro de yacimientos de gas condensado con empuje hidráulico es mucho menor que el obtenido de yacimientos similares volumétricos producidor por agotamiento de presión. Esto se debe a la alta saturación residual de gas durante el desplazamiento de gas por agua (imbibición de agua en la zona de gas). Se han reportado valores de Sgr altos, entre 18% y 50%¹⁴. El fenómeno de histéresis entre las curvas de drenaje e imbibición el cual se debe a la alta saturación de gas atrapada por agua durante el proceso de imbibición. La saturación residual de gas aumenta con la disminución de la porosidad. En un yacimiento de gas con empuje hidráulico la presión del yacimiento es mantenimiento de presión. Debido a que la Sgr no depende de la presión¹⁵, mayor cantidad de gas residual es atrapado a medida que el nivel de presión del yacimiento permanece alto por la actividad del acuífero.

¹⁴ Fischlock, E.P., Smith, R.A., Soper, B.M. y Wood, R.W.: *"Experimental Studies on the Waterflood Residual Gas Saturation and its Production by Blowdown"*, SPE Res. Eng., Mayo de 1988.

¹⁵ Craft, B.C. y Hawkins, M.F.: "Applied Petroleum Reservoir Engineering", Prentice-Hall, Inc. Second Edition, 1991.

7.4 IRRUPCION PREMATURA DEL GAS SECO EN LOS POZOS DE PRODUCCION

Uno de los mayores problemas que se presenta en el mantenimiento de presión de yacimientos de gas condensado por inyección de gas seco es la rápida irrupción del fluido inyectado a través de zonas y/o estratos de alta permeabilidad.

La irrupción prematura del gas seco en los pozos de producción trae como consecuencia una reducción progresiva del contenido de líquido en el gas producido y un abandono rápido del proyecto por problemas de circulación de gas seco.

La caracterización de un yacimiento estratificado se puede realizar por medio del Coeficiente de Variación de Permeabilidad, propuesto por Dykstra y Parson.

8 ANALISIS ECONOMICO

El diseño planificado de la prueba ha permitido optimizar los recursos y minimizar en gran medida los costos asociados a las pruebas de formación.

Un factor que impacta directamente y en gran medida los costos de los ensayos es el equipo de perforación, una prueba DST requiere de un equipo de perforación o workover que en el caso de Camisea está en el orden de US\$ 250,000 /día, estas 3 pruebas tienen una duración aproximada de 20 días; de manera que el costo solamente del equipo de perforación estaría en el orden de los 5 MM US\$. La geometría de la completación y las características del reservorio hacen que el tiempo de duración del almacenamiento con válvula en superficie sea inferior a 1 hora, por lo tanto, no es necesario un equipo para bajar herramientas de fondo de pozo, además las presiones porales de los reservorios son presiones normales y conocidas en todos los campos que están en etapa de desarrollo; por lo tanto, no es necesario un equipo de tanto, no es necesario un equipo para bajar herramienta de fondo de pozo, además las presiones porales de los reservorios son presiones normales y conocidas en todos los campos que están en etapa de desarrollo; por lo tanto, no es necesario un equipo de perforación para lograr mayor control sobre el pozo.

Otro factor importante es el no uso del calentador en las instalaciones de superficie, el análisis hecho en la etapa de diseño muestra que las presiones y temperaturas de operación están a la derecha de la curva de hidrato, por lo tanto con sólo la inyección de glicol, se inhibe taponamientos por hidratos.

9 CONCLUSIONES

- El procedimiento de prueba de pozos y la metodología usada fueron apropiadas en todas las pruebas efectuadas en el pozo PAG-1004D y en general en todos los pozos de Camisea.
- Todos los objetivos planteados en la etapa de diseño fueron alcanzadas.
- El efecto de turbulencia es mínimo en los 2 primeros ensayos; sin embargo en la prueba final (Ene+Noi+Nia en conjunto) se incrementa el componente de daño por turbulencia, por lo tanto debe considerarse este parámetro.
- Los resultados obtenidos en las pruebas de formación permitieron establecer la manera de desarrollar el Yacimiento de la forma más óptima.
- No es necesario herramientas de fondo para realizar el ensayo, haciendo cierres en cabeza se logra tiempos de almacenamiento menores a 1 hora.
- La saturación de condensado alrededor del pozo debe considerarse en futuras pruebas debido a que el impacto será mayor debido al alejamiento de la presión de rocío.

10 RECOMENDACIONES

- Continuar el monitoreo de los yacimientos con mediciones de presiones de fondo, es necesario realizar pruebas de formación anuales ó al menos una vez cada dos años.
- Por la naturaleza de las completaciones en el campo Pagoreni (producción de todas los reservorios en conjunto 'in-commingled'), efectuar periódicamente perfiles de producción (PLT), con la finalidad de determinar los aportes individuales de cada reservorio.
- Realizar estudios especiales en cores (SCAL por sus siglas en inglés), curvas de drenaje,
 imbibición y el fenómeno de histéresis deben ser claramente entendidos con el objetivo de
 minimizar el efecto de bloqueo por condensado y pérdida de productividad.
- Se sugiere utilizar sensores permanentes de fondo en futuros pozos, o en los ya existentes cuando se intervengan.

11 BIBLIOGRAFIA

- Afidick D, Kaczorowski NJ y Bette S: "Production Performance of a Retrograde Gas Reservoir: A Case Study of the Arun Field," artículo de la SPE 28749, presentado en la Conferencia de Petróleo y Gas del Pacífico Asiático de la SPE, Melbourne, 7 al 10 de noviembre de 1984.
- Agarwal, R.G.: "Real Gas Pseudotime A New Function for Pressure Builup Analysis of Gas Wells", paper SPE 8279 presented at the 1979 SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada, September 23-26, 1979.
- Al-Hussainy, Ramey H.J.: "Application freal gas flow theory to well testing and deliverability forecasting", SPE reprint series N° 9. Pressure Analysis methods (1967).
- Bourdet, D.: "Well Test Analysis: The Use of Advanced Interpretation Models", Elsevier 2002.
- Clark, N.J.: "Elements of Petroleum Reservoirs", Gulf Publishing Co., 1969.
- Cole, F.W.: "Reservoir Engineering Manual", Gulf Publishing, Co., 1961.
- Craft, B.C. y Hawkins, M.F.: "Applied Petroleum Reservoir Engineering", Prentice-Hall, Inc. Second Edition, 1991.
- Da Prat, G.: "Introducción al Análisis y Diseño de Pruebas de Presión", Da Prat & Asociados, 2005.
- Fischlock, E.P., Smith, R.A., Soper, B.M. y Wood, R.W.: "Experimental Studies on the Waterflood Residual Gas Saturation and its Production by Blowdown", SPE Res. Eng., Mayo de 1988.
- Horne, R.: "Modern Well Test Analysis, A Computer-Aided Approach", Petroway Inc., 1995.

- Houzé O, Viturat D, Fjaere O.S.: "Dynamic Flow Analysis" The Theory and Practice of Pressure Transient and Production Analysis & The Use of data from Permanent Downhole Gauges, KAPPA, October 2008.
- Hutlas, E.J. y Granberry, W.R.: "A Practical Approach to Removing Gas Well Liquids" SPE Reprint Series No 13, Vol. III, Gas Technology. 1977 Edition.
- Katz, D.L.: "Overview of Phase Behavior in Oil and Gas Production", Journal Petroleum Technology, Junio de 1983.
- McCain, W. "The Properties of the Petroleum Fluids". Gulf Publishing Co. 1988.
- Moses, P.L. y Donohoe, Ch. W.: "Gas Condensate Reservoirs", Cap. 39 del libro "Petroleum Engineering Handbook", SPE-AIME. 1987.
- Rajeev R.L., "Well Testing in Gas-Condensate Reservoirs", Master of Science Thesis, Stanford University, June 2003.
- Rawlins. E. L. and Schellhardt, M. A.: "Backpressure Data on Natural Gas Wells and Their Application to Production Practices", U. S. Bureau of Mines, Monograph 7, (1936).
- Rojas G.: "Ingeniería de Yacimientos de Gas Condensado", 2da Edición, Puerto La Cruz, Mayo de 2005.
- Roussennac B., "Gas Condensate Well Test Analysis", Master of Science Thesis, Stanford University, June 2001.
- Turner, R.G., Hubbard, M.G. y Dukler, A.E.; "Analysis and Prediction of Minimum Flow Rate for the Continuos Removal of Liquids from Gas Wells"; SPE Reprint Series No 13. Vol. II, Gas Technology, 1977 Edition.

12 APENDICES

12.1 APENDICE I: Mapa estructural del campo Pagoreni.

12.2 APENDICE II: Evaluación Petrofísica de los reservorios probados.

Reservorio Ene

Reservorio Noi, Miembro Upper Noi.

GRC 0 GAPI 200	DEPTH M	RESD 0.2 OHMM 200	RHOC 1.9 G/C3 2.9	BVWC 0.3 DEC 0	SWC 1 DEC 0	VCL 0 dec 1	TVDSS m
DSGRCOR1 130 API 160	CORE1C 5 0	RESS 0.2 OHMM 200	NPHISC 0.45 V/V -0.15	PHIEC 0.3 DEC 0	0.6 SWC	VSAND 0 DEC 1	
	2010		S ₹				
	2915		er Noi 著		\$		-1885
	2920		&	Ę	 }		-1890
	2925		↓				-1895
	2930		<u> </u>				1000
3	2935						-1900
	2940		A A A A A A A A A A A A A A A A A A A				-1905
	2950						-1910
┣╋╋	2955						-1015
	2960						-1313
	2965						-1920
	2970		1				-1925
	2975						-1930
	2985		}				
	2990		ier Noi 🛃				-1935

Reservorio Noi, Miembro Lower Noi.

Reservorio Nia, Miembro Upper Nia.

Reservorio Nia, Miembro Middle Nia.

0	GRC GAPI	200	DEPTH M	0.2	RESD OHMM	200	RHOC 1.9 G/C3 2.9	0.3	BVWC DEC	0	S\ 1 D	NC EC 0	0	VCL dec 1
130	DSGRCOR1 API	160	CORE1C 5 0	0.2	RESS OHMM	200	NPHISC 0.45 V/V -0.15	0.3	PHIEC	0	0.6	swc	0	VSAND DEC 1
		N	2625	•	J.M.								-	
			2630		+	- Mieto								
			2635											
	Z		2640		8			-						
			2645										Z	A A A
			2655	_										W AND
			2660		-									
			2665										AN	
	>	_	2670											
			2675											
			2680			Stow	er Nia		7			S.		7

Reservorio Nia, Miembro Lower Nia.

GRC	DEPTH		RESD			RHOC		BVWC			SWC		VCL
0 GAPI 20	ō M	0.2	OHMM	200	1.9	G/C3 2.9	0.	.3 DEC	0	1	DEC 0	0	dec 1
DSGRCOR1	CORE1C		RESS		N	IPHISC		PHIEC					VSAND
130 API 16	0 5 0	0.2	ОНММ	200	0.45	V/V -0.15	5 0.	.3 DEC	0	0.6	SWC	0	DEC 1
	26.00			•		3			2				
	2000			Low	er Nia	*			ŧ			F	35
	2005					3							
1	2690					E							₹
	2695					3							
	2700												₹ _ ₹
	2705											╘╧	
	2710								Ł		↓		
	2715												
	2720										╪╪╪╧╏┦		
	- 2725			-		3			Į.				
	2730					7	+		F			P ₄	
	- 2735												
	- 2740												
	2745												
	2750			-			H						
	2755						+						
	- 2760						+			+++		-	
	2765							┼┼╪┰		+++	┤╞╋		
	2770						+			+++			
	2775						╉						
	2780						+		4		┥┝╋┋┥	ь	
	2785					╡╋┥┥	+					E_	
	2790					+₽+	+	┼┼┼┟╉┫			╈╡┼┼	R I	
	2795					+2++	+					ÞÍ.	
	2800				\square		┝┼	┼┼┪═┓			┥╸		
<u> ╄_{>} } </u>						-	H		F	+++	╈╪╢		
	2810					┼╬┼┼┤						Ľ=	× 22
	2815						+	┼┼┼╪╉┥		+++		F.	
	2820			Spin	ai	3							

12.3 APENDICE III: Diseño de prueba de pozo PAG-1004D.

The Pagoreni 1004D well was drilled as a gas well producer. A well testing will be carry on during november 2007, in order to determine its productivity, the main reservoir parameters such as initial reservoir pressures, permeability, skin and production profile. Gas and condensate samples will be taken on first two tests in order to perform PVT studies.

The tests will be performed with 2 memory gauges on the bottom of the well, hung up with slickline and the testing surface equipment will be composed by a SSSV, choke manifold, high three-phase separator, low biphasic separator, gauge tanks, multiphase flowmeter, gas flare and oil burner.

This is a summary of the jobs to be done in PAG-1004D well:

Test Nº 1: Ene reservoir

Objectives: Confirm gas reserves; obtain its productivity curve, initial reservoir pressure, gas and condensate samples for PVT studies, flow capacity (kh), formation damage (S), etc.

Test design: Since Ene will be tested isolated of the other formations, it is necessary to flow the well with 4 rates and 24 hours for build up period in order to reach deeper investigated radius and improve the reservoir evaluation of Ene. Flow-after-flow test :

> 46/64" choke, 25 MMscfd, 4 hr 52/64" choke, 30 MMscfd, 4 hr 58/64" choke, 35 MMscfd, 4 hr 64/64" choke, 40 MMscfd, 4 hr

Sampling for PVT analysis.

Shut-in for final PBU: 24 hr.

Test Nº 2: Noi & Ene reservoirs in commingled

Objectives: Obtain the productivity curve, the initial reservoir pressure, gas and condensate samples for PVT studies, flow capacity (kh), formation damage (S), etc.

Test design: Only 3 rates and 12 hours of build up period are necessary for this test, the pressure response of one formation could mask the pressure response of the other formation; then, 12 hours of build up period is enough to assure the radial flow. Flow-after-flow test:

> 46/64" choke, 30 MMscfd, 4 hr 54/64" choke, 40 MMscfd, 4 hr 62/64" choke, 50 MMscfd, 4 hr

Sampling for PVT analysis.

Shut-in for final PBU: 12 hr.

Test Nº 3: Nia, Noi & Ene reservoirs in commingled

Objectives: Obtain the Productivity curve, the Initial reservoir pressure, the flow capacity (kh), formation damage (S), the Production profile (PLT) per each reservoir, etc.

Test design: Only 3 rates and 12 hours of build up period are necessary for this test.

Flow-after-flow test:

48/64" choke, 30 MMscfd, 4 hr 56/64" choke, 40 MMscfd, 4 hr 62/64" choke, 50 MMscfd, 4 hr Shut-in for final PBU: 12 hr.

These designs are based on Prosper and Saphir simulators; however, according to the early evaluations in the clean up periods, the Pluspetrol engineer may adjust the choke sizes.

This is a summary of perforation intervals in PAG 1004D well:

FORMATION	MENDED	TOP	BOTTOM	LENGHT		
FORMATION	MEMBER	(m MD)	(m MD)	(meters)	RUNN	OBSERV.
		2589.5	2595.5 m	6 m	39	
	LIDDER NIA MEMBER	2598.0	2604.0 m	6 m	38	24 m MD
	OTTERMAMEMBER	2604.0	2610.0 m	6 m	37	4 runs
		2612.0	2618.0 m	6 m	36	
		2630.0	2636.0 m	6 m	35	
		2640.5	2644.5 m	4 m	34	
	MIDDLE NIA MEMBER	2649.5	2652.5 m	3 m	33	19 m MD
		2657.5	2660.5 m	3 m	32	5 runs
		2671.0	2674.0 m	3 m	31	
		2679.0	2682.0 m	3 m	30	
NIA FORMATION		2682.0	2688.0 m	6 m	29	
		2689.5	2694.5 m	5 m	28	
		2708.5	2711.5 m	3 m	27	
		2715.0	2721.0 m	6 m	26	61 m MD
	LOWER NIA MEMBER	2722.0	2725.0 m	3 m	25	12 runs
		2725.0	2731.0 m	6 m	24	
		2753.5	2758.5 m	5 m	23	
		2758.5	2764.5 m	6 m	22	
		2764.5	2770.5 m	6 m	21	
		2781.5	2787.5 m	6 m	20	
		2799.0	2805.0 m	6 m	19	
		2910.5	2913.5 m	3 m	18	
		2913.5	2919.5 m	6 m	17	
		2919.5	2925.5 m	6 m	16	
		2927.0	2930.0 m	3 m	15	45 m MD
	UPPER NOI MEMBER	2949.0	2955.0 m	6 m	14	9 runs
		2955.0	2961.0 m	6 m	13	
		2968.0	2974.0 m	6 m	12	
NOI FORMATION		2975.5	2978.5 m	3 m	11	
		2978.5	2984.5 m	6 m	10	
		2996.5	3001.5 m	5 m	9	
		3001.5	3007.5 m	6 m	8	
	LOWER NOLMEMBER	3009.0	3014.0 m	5 m	7	31 m MD
		3029.5	3035.5 m	6 m	6	6 runs
		3044.0	3047.0 m	3 m	5	
		3047.0	3053.0 m	6 m	4	
		3087.0	3091.0 m	4 m	3	14 m MD
ENE FORMATION	ENE RESERVOIR	3092.5	3098.5 m	6 m	2	3 runs
		3101.0	3105.0 m	4 m	1	

PERFORATION INTERVALS

GRAN TOTAL = 194 m

12.4 APENDICE IV: Curvas IPR y VLP estimados durante el diseño.

Antes del ensayo se estiman las curvas IPR y VLP y en base a esto se diseña la prueba

- **DISEÑO DE PRUEBA DE FORMACION IPR y VLP ESPERADOS** PAGORENÍ 1004 - RESERVORIO ENE 4000 3500 Choke: 52/64" Choke: 58/64" Choke: 1" Choke: 46/ 3000 2500 (bsid) 2000 BHP **JPR Curve** 1500 1000 26 MMscfd 31 MMscfd 36 MMscfd 500 41 MMscfd 0 0 10 20 30 40 50 60 70 80 Gas Rate (MMscfd) - PRODUCTIVITY CURVE - GAS RATE 25 MMscfd -GASRATE 30 MMscfd – - GAS RATE 40 MMscfd -GAS RATE 50 MMscfd
- a) Reservorio Ene:

b) Reservorios Ene & Noi en conjunto:

c) Reservorios Ene, Noi & Nia en conjunto:

12.5 APENDICE V: Presiones registradas durante las pruebas de formación..

a) Primera	orueba: Reservo	orio Ene			
Elapsed Time	BHP	Elapsed Time	BHP	Elapsed Time	BHP
(horas)	(psia)	(horas)	(psia)	(horas)	(psia)
0.0000	3408.731	18.0547	2799.295	35.8325	3403.963
0.5553	3412.003	18.3325	2799.606	36.1103	3404.875
0.8331	3413.466	18.6103	2799.982	36.3881	3405.768
1.1108	3414.838	18.8881	2800.298	36.6658	3406.623
1.3886	3416.133	19.1658	2680.446	36.9436	3407.449
1.6664	3417.341	19.4436	2673.491	37.2214	3408.254
1.9442	3418.484	19.7214	2672.051	37.4992	3409.014
2.2219	3419.546	19.9992	2671.472	37.7769	3409.758
2.4997	3420.545	20.2769	2671.370	38.0547	3410.470
2.7775	3421.524	20.5547	2671.170	38.3325	3411.158
3.0553	3422.393	20.8325	2671.076	38.6103	3411.794
3.3331	3423.244	21.1103	2671.083	38.8881	3412.431
3.6108	3424.097	21.3881	2671.011	39.1658	3413.028
3.8886	3424.892	21.6658	2671.102	39.4436	3413.608
4.1664	3425.635	21.9436	2671.053	39.7214	3414.177
4.4442	3426.362	22.2214	2671.228	39.9992	3414.715
4.7219	3427.033	22.4992	2671.391	40.2769	3415.251
4.9997	3427.694	22.7769	2671.624	40.5547	3415.767
5.2775	3428.324	23.0547	2568.415	40.8325	3416.261
5.5553	3428.977	23.3325	2549.501	41.1103	3416.759
5.8331	3429.553	23.6103	2547.473	41.3881	3417.221
6.1108	3430.119	23.8881	2546.780	41.6658	3417.673
6.3886	3430.680	24.1658	2546.129	41.9436	3418.137
6.6664	3431.215	24.4436	2546.149	42.2214	3418.580
6.9442	3431.720	24.7214	2545.936	42.4992	3419.027
7.2219	3432.248	24.9992	2545.618	42.7769	3419.433
7.4997	3432.728	25.2769	2528.992	43.0547	3419.846
7.7775	3433.211	25.5547	2545.747	43.3325	3420.253
8.0553	3433.666	25.8325	2546.255	43.6103	3420.649
8.3331	3434.132	26.1103	2546.317	43.8881	3421.031
8.6108	3380.598	26.3881	2546.123	44.1658	3421.415
8.8881	2975.189	26.6658	2546.113	44.4436	3421.780
9.1658	2946.217	26.9436	2545.916	44.7214	3422.176
9.4436	2950.928	27.2214	2545.922	44.9992	3422.516
9.7214	2944.030	27.4992	2733.631	45.2769	3422.857
9.9992	2939.718	27.7769	3291.924	45.5547	3423.220
10.2769	2939.493	28.0547	3318.318	45.8325	3423.546
10.5547	2938.798	28.3325	3331.252	46.1103	3423.870
10.8325	2938.786	28.6103	3340.164	46.3881	3424.213
11.1103	2938.778	28.8881	3347.192	46.6658	3424.523
11.3881	2938.874	29.1658	3353.155	46.9436	3424.833
11.6658	2939.396	29.4436	3358.223	47.2214	3425.144
11.9436	2939.234	29.7214	3362.634	47.4992	3425.445
12.2214	2940.335	29.9992	3366.520	47.7769	3425.747
12.4992	2939.729	30.2769	3369.959	48.0547	3426.050
12.7769	2940.422	30.5547	3373.075	48.3325	3426.335
13.0547	2940.691	30.8325	3375.925	48.6103	3426.616
13.3325	2941.273	31.1103	3378.474	48.8881	3426.926
13.6103	2941.781	31.3881	3380.861	49.1658	3427.170
13.8881	2942.491	31.6658	3383.043	49.4436	3427.441
14.1658	2943.026	31.9436	3385.074	49.7214	3427.712
14.4436	2943.105	32.2214	3386.955	49.9992	3427.974
14.7214	2943.811	32.4992	3388.732	50.2769	3428.227
14.9992	2808.704	32.7769	3390.414	50.5547	3428.473
15.2769	2802.728	33.0547	3391.972	50.8325	3428.720
15.5547	2800.295	33.3325	3393.465	51.1103	3428.946
15.8325	2799.033	33.6103	3394.879	51.3881	3429.196
16.1103	2797.956	33.8881	3396.223	51.6658	3429.436
16.3881	2797.700	34.1658	3397.507		
16.6658	2797.500	34.4436	3398.709		
16.9436	2797.979	34.7214	3399.866		
17.2214	2798.280	34.9992	3400.960		
17.4992	2798.609	35.2769	3401.995		
17.7769	2798.885	35.5547	3403.002		

b) Segunda prueba: Reservorios Ene y Noi en conjunto

Flansod Timo	RHD	Elansed Time	RHD	Elansed Time	RHD
			DITF (v. ele)		
(horas)	(psia)	(horas)	(psia)	(horas)	(psia)
0.0000	3315.900	9.5819	3187.620	19.0233	3302.530
0.2764	3305.580	9.7208	3187.530	19.1622	3302.870
0.4153	3235,580	9.8597	3187,430	19.3011	3303,190
0 5542	3231 990	9 9986	3187 350	19 4400	3303 490
0.0042	0000.000	5.5500	0407.040	10.5700	0000.400
0.6931	3229.860	10.1375	3187.240	19.5789	3303.780
0.8319	3227.380	10.2764	3187.190	19.7178	3304.060
0.9708	3228.800	10.4150	3187.130	19.8567	3304.320
1.1097	3227.070	10.5539	3187.050	19.9956	3304.570
1 2486	3226 540	10 6928	3186 970	20 1344	3304 810
1 2075	2226.010	10.0020	2106 720	20.0722	2205.050
1.3073	3220.170	10.8317	3100.720	20.2733	3305.050
1.5264	3225.860	10.9706	3186.820	20.4122	3305.260
1.6653	3225.690	11.1094	3186.710	20.5511	3305.480
1.8042	3225.520	11.2483	3142.440	20.6900	3305.680
1.9431	3225.390	11.3872	3140.200	20.8289	3305.880
2 0819	3225 190	11 5261	3139 190	20 9678	3306 070
2.0010	2225.100	11.0201	2120 720	20.3070	2206.250
2.2206	3225.160	0000	3130.720	21.1067	3306.250
2.3597	3225.060	11.8039	3138.180	21.2456	3306.430
2.4986	3225.030	11.9428	3137.800	21.3844	3306.590
2.6375	3225.000	12.0817	3137.510	21.5233	3306.750
2,7764	3224,940	12.2206	3137,280	21.6622	3306.920
2 0153	3224 960	12 359/	3136 950	21 8011	3307 070
2.9100	0004.000	12.0004	0400.350	21.0011	0007.070
3.0542	3224.980	12.4983	3136.750	21.9400	3307.220
3.1931	3224.970	12.6372	3136.500	22.0789	3307.370
3.3319	3224.940	12.7761	3136.300	22.2178	3307.500
3.4708	3224.950	12.9150	3136.150	22.3567	3307.640
3 6097	3224 910	13 0539	3135 850	22 4956	3307 770
3 7486	3224 080	13 1028	3135 830	22 6344	3307 010
3.7400	3224.900	13.1920	3133.030	22.0344	3307.910
3.8875	3224.960	13.3317	3135.600	22.7733	3308.030
4.0264	3224.990	13.4706	3135.540	22.9122	3308.150
4.1653	3224.990	13.6094	3135.300	23.0511	3308.260
4.3042	3224,980	13.7483	3135,160	23.1900	3308.380
4 4431	3224 970	13 8872	3135 130	23 3289	3308 490
4.5940	2224.000	14.0261	2125.020	20.0200	2208.600
4.5619	3224.900	14.0261	3135.020	23.4078	3306.600
4.7208	3224.980	14.1650	3134.880	23.6067	3308.710
4.8597	3224.910	14.3039	3134.580	23.7456	3308.810
4.9986	3224.960	14.4428	3134.640	23.8844	3308.920
5.1375	3224.930	14.5817	3134.360	24.0233	3309.020
5 2764	3224 890	14 7206	3134 460	24 1622	3309 110
5.2704	2224.030	14 9504	2124 260	24.1022	2200.210
5.4155	3224.920	14.0094	3134.200	24.3011	3309.210
5.5542	3224.890	14.9983	3134.260	24.4400	3309.300
5.6931	3224.860	15.1372	3134.160	24.5789	3309.390
5.8319	3224.820	15.2761	3134.070	24.7178	3309.490
5.9708	3224,890	15,4150	3133.950	24,8567	3309.570
6 1097	3224 020	15 5530	3134 070	2/ 9956	3300 650
6.0496	2224.320	15.5555	2124.010	24.3330	2200 740
0.2400	3225.010	15.0920	3134.010	25.1344	3309.740
6.3875	3225.090	15.8317	3133.970	25.2733	3309.820
6.5264	3225.200	15.9706	3134.140	25.4122	3309.900
6.6653	3200.440	16.1094	3133.850	25.5511	3309.970
6.8042	3191.650	16.2456	3275,900	25.6900	3310.050
6 9/31	3100 630	16 3844	3283 700	25 8280	3310 130
7.0010	2100.470	16.5022	2203.730	25.0203	2210.210
7.0819	3190.470	16.5233	3287.310	25.9678	3310.210
7.2208	3189.790	16.6622	3289.840	26.1067	3310.280
7.3597	3189.520	16.8011	3291.690	26.2456	3310.360
7.4986	3189.380	16.9400	3293.120	26.3844	3310.430
7 6375	3189 230	17 0789	3294 320	26 5233	3310 490
7 7764	3180.070	17 2178	3205 310	26.6220	3310 570
7.7704	3109.070	17.2178	3293.310	20.0022	3310.370
7.9153	3188.940	17.3567	3296.230	26.8011	3310.630
8.0542	3188.820	17.4956	3296.990	26.9400	3310.700
8.1931	3188.670	17.6344	3297.680	27.0789	3310.760
8.3319	3188.460	17.7733	3298.320	27.2178	3310.820
8 4708	3188 420	17 9122	3298 910	27 3567	3310 880
8 6007	3189 290	10 0511	3200 170	27.0007	3310 050
0.0097	0100.200	1160.01	JZJJ.4/U		0011.900
8.7486	3188.210	18.1900	3299.990	27.6344	3311.010
8.8875	3188.090	18.3289	3300.520	27.7733	3311.060
9.0264	3187.990	18.4678	3300.970	27.9122	3311.130
9.1653	3187,870	18.6067	3301.400	28.0511	3311.180
9 3042	3187 800	18 7/56	3301 700	28 1000	3311 240
0.4424	2107 740	40.0044	2202 470	20.1300	2244 202
3.4431	3101.110	10.0044	JJUZ. 170	20.3289	3311.300

c) Terera prueba: Reservorios Ene, Noi y Nia en conjunto

Flansod Timo	BHD	Flansed Time	BHD	Flansed Time	BHD
(horac)	(ncia)	(boras)	(ncia)	(horac)	(ncia)
(IIUIAS)	(psia)	(IIOIAS)	(psia)	(IIOTAS)	(psia)
0.0000	3229.909	17.4997	3175.136	34.7219	3229.957
0.5553	3230.057	17.7775	3175.164	34.9997	3229.974
0.8331	3230.174	18.0553	3175.213	35.2775	3230.054
1.1108	3230.297	18.3331	3175.186	35.5553	3230.065
1.3886	3230.384	18.6108	3175.178	35.8331	3230.087
1.6664	3230.472	18.8886	3175.217	36.1108	3230.100
1 9442	3230 558	19 1664	3175 187		
2 2219	3230 626	19 4442	3175 210		
2.2213	2220.602	10.7210	2175 225		
2.4997	3230.093	19.7219	3175.235		
2.7775	3230.744	19.9997	3157.327		
3.0553	3230.777	20.2775	3157.388		
3.3331	3230.836	20.5553	3157.162		
3.6108	3230.874	20.8331	3157.266		
3.8886	3230.912	21.1108	3157.200		
4.1664	3230.954	21.3886	3157.273		
4.4442	3230.964	21.6664	3157.252		
4.7219	3230.990	21,9442	3157,198		
4 9997	3231 004	22 2219	3157 184		
5 2775	3231.057	22 /007	3157 163		
5.2115	2221.007	22.4337	2157.100		
5.5555	3231.130	22.1115	3157.100		
5.8331	3231.142	23.0553	3157.069		
6.1108	3231.159	23.3331	3157.050		
6.3886	3231.173	23.6108	3157.007		
6.6664	3231.201	23.8886	3156.930		
6.9442	3231.218	24.1664	3156.917		
7.2219	3231.202	24.4442	3221.259		
7.4997	3231.231	24.7219	3223.808		
7.7775	3231.251	24,9997	3224.871		
8 0553	3231 268	25 2775	3225 593		
8 3331	3231 231	25 5553	3226 258		
0.0001	2221.221	25.5555	2220.230		
0.0100	3231.279	25.6551	3220.792		
0.0000	3231.252	20.1100	3227.151		
9.1664	3231.276	26.3886	3227.491		
9.4442	3231.313	26.6664	3227.731		
9.7219	3231.288	26.9442	3227.955		
9.9997	3185.398	27.2219	3228.142		
10.2775	3186.381	27.4997	3228.317		
10.5553	3186.995	27.7775	3228.466		
10.8331	3186.276	28.0553	3228.590		
11.1108	3186.293	28.3331	3228,742		
11.3886	3186 319	28 6108	3228 848		
11 6664	3186 398	28 8886	3228 950		
11 0//2	3186 457	20.0000	3220.000		
10.0010	2196 511	29.1004	2223.000		
12.2219	3100.511	29.4442	3229.121		
12.4997	3186.572	29.7219	3229.202		
12.7775	3186.611	29.9997	3229.253		
13.0553	3186.641	30.2775	3229.299		
13.3331	3186.719	30.5553	3229.379		
13.6108	3186.750	30.8331	3229.410		
13.8886	3186.792	31.1108	3229.480		
14.1664	3186.838	31.3886	3229.536		
14.4442	3186.896	31.6664	3229.555		
14,7219	3186.906	31,9442	3229.620		
14 9997	3186 954	32 2219	3229 633		
15 2775	3186 981	32 4997	3229 649		
15.2775	317/ 190	32.7331 20 7775	3220 600		
10.0000	0174.109	32.1113	3223.033		
15.8331	31/4.280	33.0553	3229.740		
16.1108	3174.298	33.3331	3229.748		
16.3886	3174.487	33.6108	3229.815		
16.6664	3174.749	33.8886	3229.813		
16.9442	3174.963	34.1664	3229.877		
17.2219	3175.089	34,4442	3229,913		

12.6 APENDICE VI: Cálculo de pseudo presiones.

Puede calcularse manualmente mediante la regla trapezoidal.

 $m(p) = 2\sum_{i=2}^{n} \frac{1}{2} \left[\left(\frac{p}{\mu z} \right)_{i-1} + \left(\frac{p}{\mu z} \right)_{i} \right] (p_i - p_{i-1})$

Utilizaremos el rango de presiones registradas en la prueba, el cálculo se resume en la

siguiente tabla:

Р	μg	Z	dp	(p/µZ)	(p/µZ)	2.dp.PROM	m(P)
(psia)	(cp)			psi/cp	PROM	psi²/cp	psi²/cp
14.7	0.01229	0.99808		1.19854E+03			
64.7	0.01232	0.99158	50.0	5.29607E+03	3.24731E+03	3.24731E+05	3.24731E+05
114.7	0.01236	0.98511	50.0	9.41641E+03	7.35624E+03	7.35624E+05	1.06035E+06
164.7	0.01242	0.97867	50.0	1.35530E+04	1.14847E+04	1.14847E+06	2.20883E+06
214.7	0.01248	0.97226	50.0	1.77008E+04	1.56269E+04	1.56269E+06	3.77151E+06
264.7	0.01254	0.96589	50.0	2.18552E+04	1.97780E+04	1.97780E+06	5.74932E+06
314.7	0.01261	0.95957	50.0	2.60123E+04	2.39337E+04	2.39337E+06	8.14269E+06
364.7	0.01268	0.95329	50.0	3.01679E+04	2.80901E+04	2.80901E+06	1.09517E+07
414.7	0.01276	0.94706	50.0	3.43183E+04	3.22431E+04	3.22431E+06	1.41760E+07
464.7	0.01284	0.94090	50.0	3.84597E+04	3.63890E+04	3.63890E+06	1.78149E+07
514.7	0.01293	0.93479	50.0	4.25884E+04	4.05241E+04	4.05241E+06	2.18673E+07
564.7	0.01302	0.92875	50.0	4.67005E+04	4.46444E+04	4.46444E+06	2.63318E+07
614.7	0.01311	0.92279	50.0	5.07922E+04	4.87464E+04	4.87464E+06	3.12064E+07
664.7	0.01321	0.91690	50.0	5.48597E+04	5.28260E+04	5.28260E+06	3.64890E+07
714.7	0.01332	0.91110	50.0	5.88991E+04	5.68794E+04	5.68794E+06	4.21769E+07
764.7	0.01343	0.90539	50.0	6.29065E+04	6.09028E+04	6.09028E+06	4.82672E+07
814.7	0.01354	0.89979	50.0	6.68778E+04	6.48922E+04	6.48922E+06	5.47564E+07
864.7	0.01366	0.89428	50.0	7.08091E+04	6.88435E+04	6.88435E+06	6.16408E+07
914.7	0.01378	0.88889	50.0	7.46962E+04	7.27527E+04	7.27527E+06	6.89161E+07
964.7	0.01390	0.88362	50.0	7.85352E+04	7.66157E+04	7.66157E+06	7.65776E+07
1014.7	0.01403	0.87848	50.0	8.23218E+04	8.04285E+04	8.04285E+06	8.46205E+07
1064.7	0.01416	0.87348	50.0	8.60521E+04	8.41870E+04	8.41870E+06	9.30392E+07
1114.7	0.01430	0.86862	50.0	8.97219E+04	8.78870E+04	8.78870E+06	1.01828E+08
1164.7	0.01445	0.86390	50.0	9.33274E+04	9.15247E+04	9.15247E+06	1.10980E+08
1214.7	0.01459	0.85935	50.0	9.68645E+04	9.50959E+04	9.50959E+06	1.20490E+08
1264.7	0.01474	0.85497	50.0	1.00329E+05	9.85969E+04	9.85969E+06	1.30350E+08
1314.7	0.01490	0.85075	50.0	1.03719E+05	1.02024E+05	1.02024E+07	1.40552E+08
1364.7	0.01506	0.84672	50.0	1.07028E+05	1.05373E+05	1.05373E+07	1.51089E+08
1414.7	0.01522	0.84287	50.0	1.10255E+05	1.08642E+05	1.08642E+07	1.61954E+08
1464.7	0.01539	0.83922	50.0	1.13397E+05	1.11826E+05	1.11826E+07	1.73136E+08
1514.7	0.01556	0.83576	50.0	1.16449E+05	1.14923E+05	1.14923E+07	1.84628E+08
1564.7	0.01574	0.83251	50.0	1.19411E+05	1.17930E+05	1.17930E+07	1.96421E+08
1614.7	0.01592	0.82946	50.0	1.22278E+05	1.20844E+05	1.20844E+07	2.08506E+08
1664.7	0.01610	0.82663	50.0	1.25051E+05	1.23665E+05	1.23665E+07	2.20872E+08
1714.7	0.01629	0.82401	50.0	1.27726E+05	1.26388E+05	1.26388E+07	2.33511E+08
1764.7	0.01648	0.82161	50.0	1.30303E+05	1.29014E+05	1.29014E+07	2.46413E+08
1814.7	0.01668	0.81943	50.0	1.32780E+05	1.31542E+05	1.31542E+07	2.59567E+08
1864.7	0.01688	0.81747	50.0	1.35158E+05	1.33969E+05	1.33969E+07	2.72964E+08

Р	μg	Z	dp	(p/µZ)	(p/µZ)	2.dp.PROM	m(P)
(psia)	(cp)			psi/cp	PROM	psi²/cp	psi²/cp
1914.7	0.01708	0.81572	50.0	1.37436E+05	1.36297E+05	1.36297E+07	2.86593E+08
1964.7	0.01728	0.81420	50.0	1.39614E+05	1.38525E+05	1.38525E+07	3.00446E+08
2014.7	0.01749	0.81290	50.0	1.41692E+05	1.40653E+05	1.40653E+07	3.14511E+08
2064.7	0.01770	0.81182	50.0	1.43671E+05	1.42682E+05	1.42682E+07	3.28779E+08
2114.7	0.01792	0.81095	50.0	1.45553E+05	1.44612E+05	1.44612E+07	3.43241E+08
2164.7	0.01813	0.81029	50.0	1.47339E+05	1.46446E+05	1.46446E+07	3.57885E+08
2214.7	0.01835	0.80984	50.0	1.49030E+05	1.48185E+05	1.48185E+07	3.72704E+08
2264.7	0.01857	0.80959	50.0	1.50629E+05	1.49829E+05	1.49829E+07	3.87687E+08
2314.7	0.01879	0.80955	50.0	1.52136E+05	1.51382E+05	1.51382E+07	4.02825E+08
2364.7	0.01902	0.80970	50.0	1.53555E+05	1.52846E+05	1.52846E+07	4.18109E+08
2414.7	0.01925	0.81005	50.0	1.54889E+05	1.54222E+05	1.54222E+07	4.33532E+08
2464.7	0.01947	0.81058	50.0	1.56138E+05	1.55513E+05	1.55513E+07	4.49083E+08
2514.7	0.01970	0.81129	50.0	1.57306E+05	1.56722E+05	1.56722E+07	4.64755E+08
2564.7	0.01994	0.81218	50.0	1.58396E+05	1.57851E+05	1.57851E+07	4.80540E+08
2614.7	0.02017	0.81323	50.0	1.59410E+05	1.58903E+05	1.58903E+07	4.96431E+08
2664.7	0.02040	0.81446	50.0	1.60351E+05	1.59881E+05	1.59881E+07	5.12419E+08
2714.7	0.02064	0.81584	50.0	1.61222E+05	1.60787E+05	1.60787E+07	5.28497E+08
2764.7	0.02088	0.81738	50.0	1.62025E+05	1.61623E+05	1.61623E+07	5.44660E+08
2814.7	0.02111	0.81907	50.0	1.62763E+05	1.62394E+05	1.62394E+07	5.60899E+08
2864.7	0.02135	0.82090	50.0	1.63439E+05	1.63101E+05	1.63101E+07	5.77209E+08
2914.7	0.02159	0.82287	50.0	1.64055E+05	1.63747E+05	1.63747E+07	5.93584E+08
2964.7	0.02183	0.82497	50.0	1.64615E+05	1.64335E+05	1.64335E+07	6.10017E+08
3014.7	0.02207	0.82720	50.0	1.65119E+05	1.64867E+05	1.64867E+07	6.26504E+08
3064.7	0.02231	0.82956	50.0	1.65572E+05	1.65346E+05	1.65346E+07	6.43039E+08
3114.7	0.02255	0.83203	50.0	1.65975E+05	1.65773E+05	1.65773E+07	6.59616E+08
3164.7	0.02280	0.83462	50.0	1.66330E+05	1.66152E+05	1.66152E+07	6.76231E+08
3214.7	0.02304	0.83732	50.0	1.66640E+05	1.66485E+05	1.66485E+07	6.92880E+08
3264.7	0.02328	0.84013	50.0	1.66907E+05	1.66774E+05	1.66774E+07	7.09557E+08
3314.7	0.02353	0.84303	50.0	1.67133E+05	1.67020E+05	1.67020E+07	7.26259E+08
3364.7	0.02377	0.84604	50.0	1.67320E+05	1.67226E+05	1.67226E+07	7.42982E+08
3414.7	0.02401	0.84914	50.0	1.67469E+05	1.67395E+05	1.67395E+07	7.59721E+08
3414.7	0.84914	0.02401	0.0	1.67469E+05	1.67469E+05	0.00000E+00	7.59721E+08

Puede notarse la no linearidad de las pseudopresiones con la presión real:

12.7 APENDICE VII: Equipo de superficie usado en la prueba del pozo PAG-1004D.

12.8 APENDICE VIII: Diagrama mecánico del pozo PAG-1004D.