UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA GEOLOGICA, MINERA Y METALURGICA

"EVALUACION DE UNA MINA A TAJO ABIERTO EN EL CARIBE"

INFORME DE COMPETENCIA PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO DE MINAS

PRESENTADO POR:

FERNANDO ELI VALDEZ NOLASCO

Lima - Perú 2011

DEDICATORIA

Este trabajo es dedicado a mi madre, mis hermanas, esposa e hijos, quienes supieron apoyarme, comprenderme durante el desarrollo de mi vida profesional y el desarrollo del presente trabajo.

AGRADECIMIENTO

Quiero expresar mi agradecimiento al Lic. Thomas Savage quien me dio la oportunidad de desarrollar este trabajo en la República de Cuba y quien confió en diseño y selección de equipo para que dicha operación minera en un país caribeño.

RESUMEN

La evaluación del yacimiento El Pinar tuvo como objetivo la evaluación, diseño y operación de una operación minera a tajo abierto en la provincia de Pinar del Rio en la República de Cuba.

Metodología.

La Metodología consistió en una evaluación de recursos y de reservas, luego la elaboración de la pre factibilidad del diseño de la mina a tajo abierto, para luego completar con el estudio de factibilidad y operación del yacimiento llamado "El Pinar". Al oeste de la cuidad de la Habana en la República de Cuba.

Introducción.

La presente documentación tiene como finalidad describir y detallar, textual y gráficamente, de todas las soluciones técnicas de las distintas especialidades de ingenieras necesarias para poner en operación la mina el Pinar, como productora de concentrados de Zinc y Plomo con alto contenido de Plata.

El yacimiento El Pinar ha sido objeto de varios estudios y proyectos de explotación siendo el de mayor alcance el realizado por la Unión Soviética, cancelado después de la Perestroika, cuando ya se encontraba en fase de operación y del que existen infraestructura que son utilizados para la puesta en operación de la Mina el Pinar, hasta el momento se cuenta con la siguiente infraestructura:

- Presa de agua "Nombre de Dios".
- Movimiento de tierra en el área de la planta de procesamiento.
- Explotación del área oxidada
- Edificación administrativos
- Vías de acceso en general Mina Planta y campamentos.

INDICE

indice	
Indice de tablas	iii
Indice de figuras	vi
Capitulo I: Generalidades	1
1.1 Ubicación y acceso	1
1.2 Geologia regional	1
1.3 Mineralogia	3
1.4 Sistema de minado	4
1.5 Situacion Socio Economica Cubana	5
Capitulo II Modelamiento y Calculo de Reservas	8
2.1 Construccion del modelo de bloques	16
2.2 Metodologia de Estimacion	16
2.3 Categorizacion de Recursos	17
Capitulo IIIParametros considerados	18
3.1 Introduccion	19
3.2 Parametros considerados	21
3.3 Requerimiento de producción	21
3.4 Parámetros de Minado	21
Capitulo IV: Plan de minado a corto plazo	23
4.1 Plan de minado	23
4.2 Preparación	23
4.3 Plan de minado a corto plazo	23
4.4 Plan de distancias	26
4.5 Precios de insumos	26
4.6 Selección de Equipos	27
4.7 Perforación	28
4.8 Voladura	29
4.9 Carguio	30
4.10 Transporte	31
4.11 Servicios	32
Capitulo V: Costos de operación de minado	36
Capitulo VI: Planeamiento a largo plazo	21
6.1 Valores unitarios	36
6.2 Bombeo de agua.	27

	ii
6.3 Geomecánica	37
6.4 Elaboración del flujo de caja.	37
Capitulo VII: Inversiones	38
Capitulo VIII: Presa de relaves	39
8.1 Criterios para el diseño de la presa de relaves	39
Conclusiones	44
Recomendaciones	45
ANEXO A	46
ANEXO B	49
ANEXO C	50
ANEXO D	51
ANEXO E	52
ANEXO F	54
ANEXO G	56
ANEXO H	57

INDICE DE TABLAS

Tabla 1 Resumen de variogramas	15
Tabla 2 Corridas de Krigging	17
Tabla 3 Reservas de Mineral	18
Tabla 4 Requerimientos de producción	21
Tabla 3 Días de operación por mes	21
Tabla 4 Parámetros de diseño	21
Tabla 5 Plan de preparación	23
Tabla 6 Plan de minado a corto plazo	25
Tabla 7 Distancias y capacidad de botaderos	26
Tabla 8 Tipo de cambio y precios considerados	26
Tabla 9 Diseño de malla de perforación	28
Tabla 10 Agente y accesorios de voladura por taladro	29
Tabla 11 Costos de minado	34
Tabla 12 Precio de los metales	36
Tabla 13 Valores unitarios	36
Tabla 14 Inversiones en equipo	38
Tabla 15 Volumen de la presa	39
Tabla 16 Volumen de dique y almacenamiento	40
Tabla 17 Producción de relaves	41
Tabla 18 Producción y almacenamiento de relaves	42
Tabla 19 Costos de movimiento	43
Tabla 20 Inversión de equipos para la presa	43

INDICE DE FIGURAS

Figura 1 Perforadora rotativa	28
Figura 2 Diseño de perforación y voladura	29
Figura 3 PC 600	30
Figura 4 PC 400	30
Figura 5 Modelo de volquete Mercedes Benz	31
Figura 6 Tipos de botaderos según secuencia de construcción	32
Figura 7 Pantalla de iluminación para tajo abierto	33
Figura 8 Distribución de costos de desmonte	35
Figura 9 Distribución de costos de mineral	35
Figura 10 Altura vs almacenamiento de relaves	40
Figura 11 Altura vs volumen de presa	41
Figura 12 Capacidad m3 año de operación	42

CAPITULO I: GENERALIDADES

- 1.1 <u>Ubicación y acceso</u>.- El yacimiento El Pinar se localiza en las cercanías del poblado Santa Lucía, municipio Minas de Matahambre, provincia Pinar del Río, en la República de Cuba, a 250 km al este de la ciudad de La Habana.
- 1.2 Geología regional.- La parte Norte de la provincia de Pinar del Río, donde está situado el yacimiento Castellanos, consiste de una serie de cortes tectónicos de la era Laramida, buzando al Noroeste. Ellos forman unas series de cuñas de sedimentos del Jurásico y el Cretácico, los cuales han sido tectónicamente emplazados unos encima de otros, así las secuencias sedimentarias se repiten continuamente. El buzamiento general de los cortes tectónicos es de 40° a 60° hacia el NE. El eje principal del anticlinal, del cual El Pinar forma parte, está situada a 20 km al SE del área El Pinar y cercano al pueblo de Viñales.

Las rocas mas viejas dentro del área consisten de una serie de sedimentos terrígenos del Jurásico Medio al Superior. Los sedimentos reflejan un origen deltaico, el cual debido al asentamiento dentro de la cuenca, cambió para condiciones euxinicas mas profundas las cuales fueron eventualmente remplazadas por sedimentos ricos en carbonatos marinos de aguas profundas.

Todas esas áreas están cercanamente asociadas unas con otras. probablemente representando originalmente un cuerpo estratiforme (Cu, Pb, Zn, y Ba) emplazado en una secuencia de pizarras carbonáceas, con zonas de alimentación (stockwork) de pirita, calcopirita emplazada dentro de la subyacente arenisca del yacente de la formación Cayetano. San Subsecuentes sobrecorrimientos У fallamientos transversales han fracturado el depósito en series de bloques individuales. De la información geológica regional disponible la dimensión original del depósito probablemente fue de 8 km x 8 km.

Geología General.- El depósito estratiforme polimetálico de Pb y Zn tiene una longitud aproximada de 800 m y cerca de 250 a 350 m de ancho. El rumbo es variable, con un azimut promedio de 65° o con un buzamiento hacia el Noroeste promediando 50°. El espesor del depósito varía desde 0

hasta 70 m, con un promedio de 18 m. El cuerpo mineral consiste de una unidad simple o estar dividido en tres unidades estratigráficamente controladas, una encima de la otra, separada por las rocas de caja que consiste de pizarras carbonáceas negras, caliza y dolomita que forman el Miembro de la Formación Castellanos.

La principal clasificación litológica está basada en la posición del cuerpo mineral y las unidades estratigráficas que rodean el área mineralizada que consiste de:

- Arenisca del yacente que ocurre bajo el área mineralizada y consiste de una serie de areniscas silicificadas con menores intercalaciones de aleurolitas y pizarras. La arenisca forma cerca del 70 % del grupo que ha sido alterada por la silicificación, piritisización, cloritización y sericitización. Cuando la mineralización está presente, consiste de pirita y calcopirita relacionada con el área de stockwork bajo la mineralización polimetálica.
- Pizarras del yacente que ocurren concordantemente en la cima de las areniscas del yacente y están también interdigitadas con la mineralización polimetálica. Ellas son carbonáceas y algunas veces calcáreas con pirita diseminada. Son comunes las intercalaciones de aleurolitas, dolomitas y calizas, las dos últimas a menudo hospedan la mineralización. Las pizarras forman alrededor del 80 al 90 % de la unidad. El contacto entre las rocas de caja y la mineralización es siempre angulosa.
- Pizarras del pendiente que son similares a las pizarras del yacente, con la excepción que la cantidad de pirita dentro de las pizarras es menor. El contacto con la mineralización polimetálica es también angulosa. Las pizarras negras y la caliza y dolomita asociada ocurren como rocas de caja y están interdigitadas como lentes con la zona principal de mineralización. Aunque no está probado, probablemente se puedan encontrar bolsones de pizarras dentro de la mineralización.
- Areniscas del pendiente son muy similares a las encontradas en la pared del yacente y se considera sean la misma unidad litológica en diferente nivel estructural. Ellas están separadas de las pizarras del pendiente por una zona de corte de sobrecorrimiento discordante, la

Falla Norte, la cual ha repetido la sucesión estratigráfica. La brecha de falla de corrimiento consiste principalmente de bloques de serpentinitas y forma un buen horizonte marcador dentro de los pozos. La zona de falla definida por la brecha puede tener hasta 60 m de espesor.

1.3 Mineralogía.- Los minerales dominantes son la pirita y en menor ocurrencia la esfalerita; la galena es inferior, como minerales acompañantes se encuentran la pirrotita, marcasita, melnicovita-pirita y calcopirita.

Se reportan como trazas la arsenopirita, magnetita y bornita, pero no se detecta durante el desarrollo de los trabajos. No existe una gran diferencia en la intensidad de la mineralización entre los dos tipos de mena, polimetálico diseminado y polimetálico masivo.

La esfalerita ocurre como pequeños agregados (primario) y en los cristales más grandes (reflejando la removilización). La pirrotita ocurre principalmente como exclusiones granuladas finas dentro de la esfalerita.

La marcasita es común en pequeñas cantidades y la melnicovita-pirita ocurre en pequeñas cantidades dentro del depósito.

Los minerales ganga consisten de barita, siderita y cuarzo que ocurren con menor cantidad de calcita y dolomita.

La mayoría de las vetas de Ag están relacionadas con la galena. Esto se sustenta por la correlación entre los ensayos de Pb y Ag. La fuente primaria del Au no fue detectada, pero se piensa este podría presentarse como un elemento libre sub- microscópico o dentro del retículo del cristal de pirita. El Au de los ensayos no se correlaciona con ningún otro elemento.

Dentro de la zona del gozzan, los principales minerales son óxido de hierro del grupo de la limonita, la barita y la plumbojarosita con menor cantidad de anglesita. Solo se encuentran trazas del cobre nativo, Au, Ag, y Cu.

1.4 Sistema de Minado.- Después de los estudios realizados en el yacimiento, se demostró la factibilidad económica de la extracción de la mena polimetálica por el método a cielo abierto, al resultar sustancialmente inferior económicamente, comparado con el método subterráneo, no obstante tener mejor selectividad y menos impacto ambiental.

Dentro de los límites de extracción diseñados se calcularon reservas probadas + probables por encima de la cota -126, establecida como piso de explotación. En dichas canteras se desarrollarán los niveles de extracción en el estéril cada 12 metros y en el mineral cada 6 metros.

La secuencia de actividades básicas en la explotación será: desbroce, minado, carguío y transporte. Asimismo se contara con una presa de relaves que será construido con material estéril procedente del desbroce. Los parámetros para el diseño de los tajos están basados en los estudios

de las propiedades geotécnicas.

De acuerdo a las características físico mecánicas de los materiales presentes en el sitio, el desbroce del cuerpo mineral se realizará utilizando perforación y voladura, en el caso del estéril donde prevalecen dos tipos de litologías con diferentes grados de resistencia, se propone para el caso de las areniscas, dolomitas, calizas, etc. (de resistencia media) se empleara voladura controlada para evitar la dilución con las pizarras.

Para la carga del mineral extraído se utilizará una retroexcavadora; este tipo de equipos tiene una alta maniobrabilidad y un alto grado de confiabilidad en el minado selectivo.

El transporte del material se efectuará con uso de camiones de volteo que lo trasladarán hasta la planta de proceso que dista aproximadamente 2.3 km de la mina y hasta la presa de relaves durante la conformación de la misma que se localiza a 0.7 km y a la escombrera y depósito de capa vegetal ubicada a 0.5 km.

Se prevé utilizar el material estéril en la conformación del muro de la presa de relaves, en la base y subbase del camino y el que no pueda ser utilizado para estos efectos se almacenará en el botadero. Por estar precedida de la operación del oro, el área del yacimiento no requiere del desbroce y extracción de capa vegetal prácticamente, en toda su

extensión. Las áreas destinadas a los depósitos y escombreras serán preparadas antes de ser utilizadas.

El desagüe de la mina se garantiza de forma natural es decir, por método gravitacional, aprovechando las condiciones morfológicas del relieve, hasta la cota +30 a través de cunetas al pie del talud que evacúan las aguas fuera del área del tajo; a partir de esta cota y en la profundización del tajo, el desagüe se realizará por medio de bombas, que se instalarán en un pozo colector en cada cuenca. Los pisos de explotación de los distintos niveles, tendrán una pendiente de al menos 0.2 % para que el drenaje hacia el pozo colector se realice sin dificultad.

1.5 Situación Socio Económica Cubana.

La economía cubana está sustentada en los recursos naturales variados del país, que van desde los minerales como el Níquel, Plomo Zinc y el Cobalto, hasta los paisajes tropicales que atraen a millones de turistas todos los años. El capital humano es el otro pilar fundamental del sector económico de la nación, que cuenta con la mayor tasa de alfabetización, esperanza de vida y cobertura sanitaria de toda la región de América Latina y el Caribe.

El gobierno cubano mantiene su adhesión a los principios socialistas a la hora de organizar su economía, lo que ha llevado a que la economía sea controlada con opciones distintas a las dictadas por el mercado, es decir mediante la planificación, aunque después del derrumbe de la URSS (Perestroika) y el campo socialista europeo, la iniciativa privada y el papel del mercado aumentaron, aunque no al nivel de lo sucedido en Europa del Este.

La mayoría de los medios de producción pertenecen y son administrados por el gobierno cubano y según las estadísticas del mismo, el estado emplea alrededor de un 75% de la mano de obra. La verdadera cifra se puede aproximar al 90%, puesto que el empleo en el sector privado consiste mayormente en unos 200.000 agricultores privados con pequeñas parcelas y unos 100.000 trabajadores independientes.

Sectores Económicos.

Los sectores económicos de cuba son:

Turismo

Industria Azucarera

Agricultura

Con las reformas de Raúl Castro, introdujo cambios en el sector económico orientando a las importaciones y la inversión del sector privado en las industrias extractivas como:

Pesquería

Minería y Construcción

Industria Alimentaria

Industria textil y poligráfica

Inversión Extranjera.

Para mantener la economía a flote, La Habana busca activamente la inversión extranjera, lo cual a menudo resulta en la formación de empresas conjuntas en las que el gobierno cubano posee la mitad del capital, así como contratos de administración de instalaciones turísticas o el financiamiento de la zafra. Un nuevo marco legal, dispuesto en 1995, les permite a los propietarios extranjeros tener mayoría en las empresas colectivas con el gobierno cubano. En la práctica, la mayoría propietaria extranjera en las empresas colectivas es casi inexistente. Hacia finales del 2000, operaban en Cuba casi 400 empresas conjuntas, lo cual representa inversiones, por parte de 46 países, de entre 42 y 45 mil millones de dólares, aunque prácticamente el 70% de las mismas no podrían considerarse inversiones extranjeras de acuerdo con el estándar internacional, ya que operan fuera del país. Gran parte de estas inversiones son préstamos o contratos de administración, suministros o servicios que en las economías occidentales, normalmente no se consideran inversiones de capital.

Minería

Cuba, además, aunque no tan desarrollada como otras industrias posee importantes minas, principalmente las de níquel, cobalto y cobre, entre otras.

Los principales yacimientos de níquel se encuentran en el municipio de Moa, provincia de Holguín y en la provincia de Guantánamo (aunque en menor escala). Este producto de hecho se ha convertido en una importante base económica cubana.

El gobierno afirma que aumentará la producción de níquel a 80.000 toneladas al año, lo que lo hará una fuente poderosa. Durante la década de 2000 se están llevando a cabo programas para modernizar este procedimiento de extracción y constituye una importante reserva mundial. Incluso se afirma que con la construcción de una cuarta empresa niquelífera la producción ascenderá a 100.000 toneladas. Igualmente, China intenta firmar acuerdos de cooperación para la extracción de este mineral.

El cobalto es otro mineral extraído en el oriente cubano, aunque también es extraído en provincias como Villa Clara. Cuba cuenta con el 26% de las reservas mundiales (segunda mayor) produce aproximadamente el 10% de este mineral a nivel mundial y la mayor parte la exporta a China Respecto a este asunto, Cuba firmó acuerdos con Canadá. Al igual que con el níquel, se encuentra cooperando con China y explorando nuevas reservas de este mineral en el norte del oriente cubano Cuba también produce 400.000 toneladas anuales de acero en las industrias de La Habana y Las Tunas. Por su situación geográfica, Cuba extrae sales marinas del mar Caribe. Ha hecho de ellas un nuevo producto, que es exportado al mercado internacional y empleado en el consumo. La producción es aproximadamente de 250.000 toneladas en total. Las más importantes salineras están enclavadas en Puerto Padre y Guantánamo, ambas en la zona oriental del país.

En la costa oeste de cuba se encuentra la provincia de Pinar del Rio, con una mina de plata llamada Matambre, ubicada en la zona polimetálica de Cuba encontrándose los Yacimientos de Castellanos y de Santa Lucia.

CAPITULO II : MODELAMIENTO Y CALCULO DE RESERVAS

Para la construcción del modelo geológico se realizó vía geo estadística, para el cual se construyeron varios variogramas.

El modelamiento se inició con la elaboración de la envolvente de la mineralización empleando secciones transversales espaciadas a 50 m., considerando las condiciones estructurales y fallas que se presentaban en la zona.

Con esta información se construyó el sólido, que representa el cuerpo mineral contorneado, considerando el cut off.

Análisis de variogramas.

Los gráficos a continuación muestran las curvas y el ajuste practicado a cada uno de los variogramas.

Figura 1 Semi-variograma vertical de Pb.

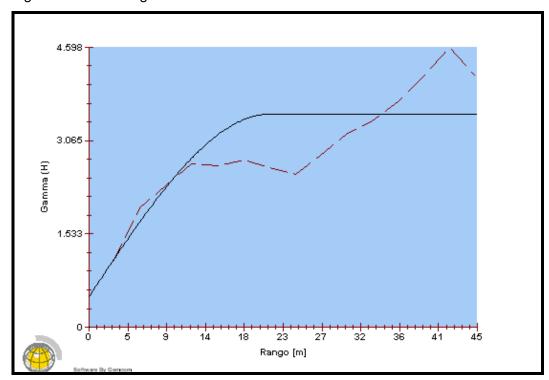


Figura 2 Semi-variograma por buzamiento de Pb.

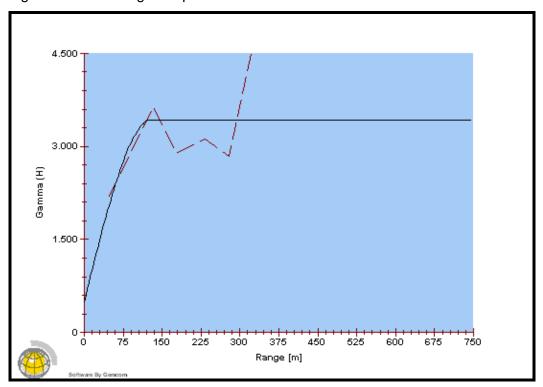


Figura 3 Semi-variograma por rumbo en el Pb.

Figura 4 Semi-variograma vertical de Zn.

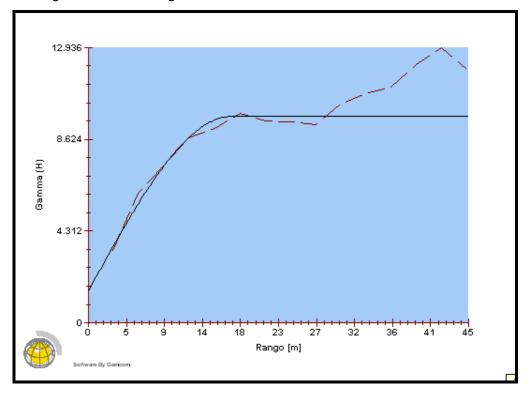


Figura 5 Semi-variograma por buzamiento de Zn.

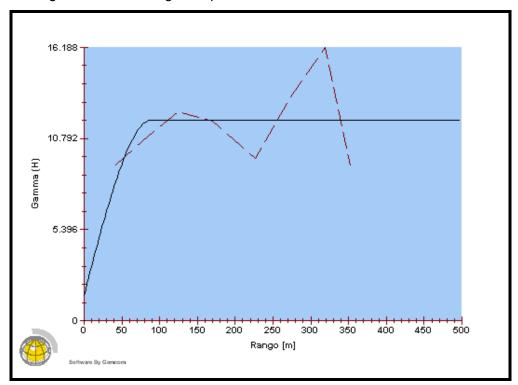


Figura 6 Semi-variograma por rumbo de Zn.

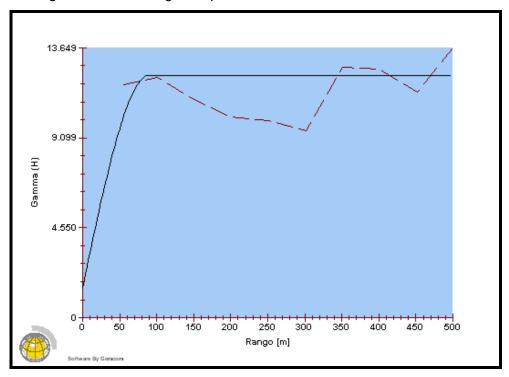


Figura 7 Semi-variograma vertical de S.

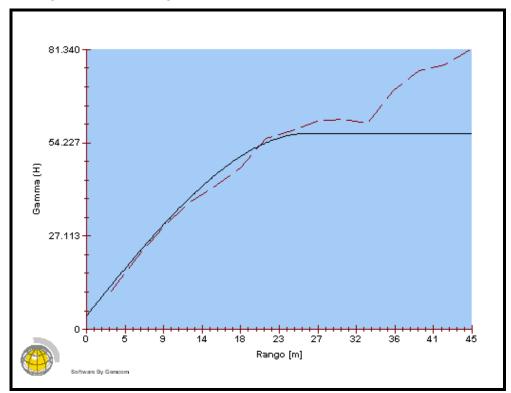


Figura 8 Semi-variograma por rumbo de S.

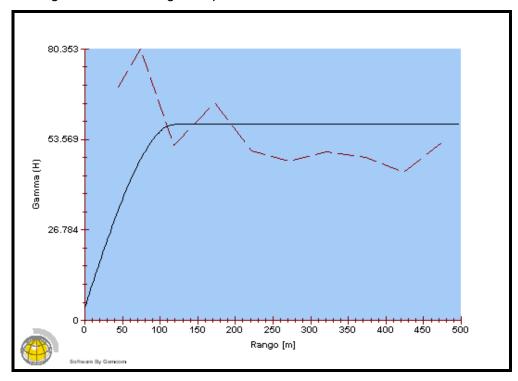


Figura 9 Semi-variograma por buzamiento de S.

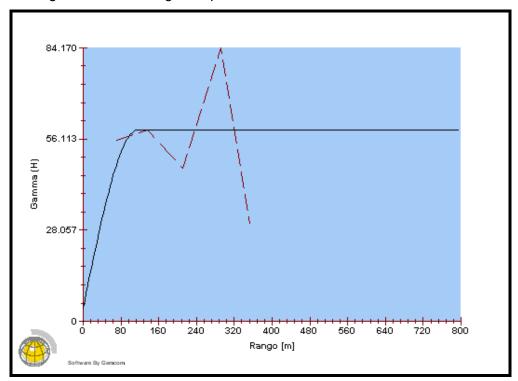


Figura 10 Semi-variograma vertical de BaSO4.

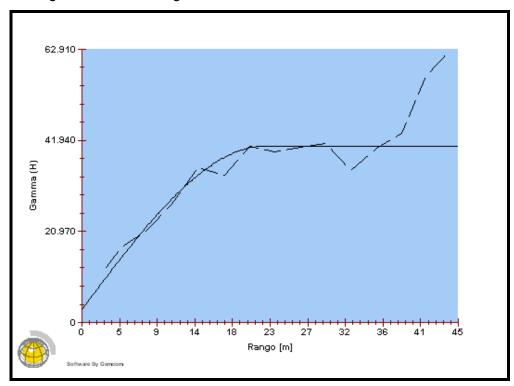


Figura 11 Semi-variograma por rumbo BaSO4.

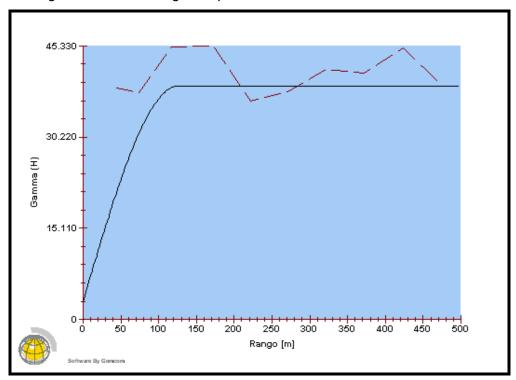
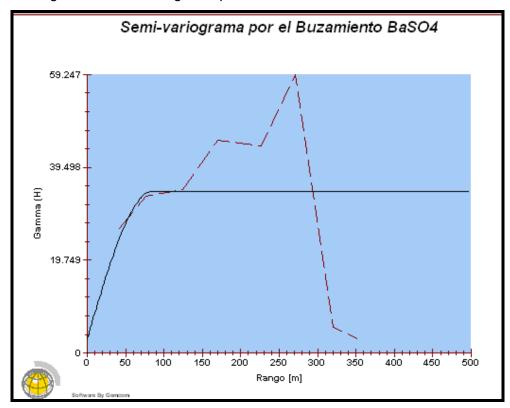



Figura 12 Semi-variograma por buzamiento de BaSO4.

Los variogramas fueron calculados sobre la base de los compósitos. Todos ajustan razonablemente bien al modelo esférico. La mayor continuidad de la mineralización se observa a lo largo del rumbo del cuerpo con 152 m para Pb. La menor continuidad es en la dirección vertical cuyo rango es de 17 m para el Zn.

Tabla 1 Resumen de los resultados del estudio de variogramas.

Elemento	Dirección	longitud	Desplaza miento	Angulo de búsqueda	Azimut.	Inclinaci ón.	Efecto Pepita	Sill	Rango	Varianza
		(m)	(m)	(°)	(°)	(°)	C ₀	С	Α	S²
Pb	Vertical	3.0	1.5	22.5	180	-70	0.50	3.00	21.00	3.467
	Rumbo	50.0	0.0	45.0	90	0	0.50	3.00	152.00	3.467
	Buzamiento	50.0	10.0	22.5	0	-55	0.50	2.93	130.00	3.467
Zn	Vertical	3.0	1.5	22.5	180	-70	1.50	8.20	17.00	11.836
	Rumbo	50.0	25.0	90.0	90	0	1.50	10.76	90.00	11.836
	Buzamiento	50.0	0.0	22.5	0	-55	1.50	10.40	90.00	11.836
S	Vertical	3.0	1.5	22.5	180	-70	4.00	53.00	26.00	57.08
	Rumbo	50.0	0.0	22.5	90	0	4.00	54.00	120.00	57.08
	Buzamiento	80.0	20.0	22.5	0	-55	4.00	54.79	115.00	57.08
BaSO ₄	Vertical	3.0	0.0	22.5	180	-70	3.00	37.64	22.00	41.705
	Rumbo	50.0	0.0	22.5	90	0	3.00	35.69	126.00	41.705
	Buzamiento	50.0	0.0	22.5	0	-55	3.00	31.42	85.00	41.705

2.1 Construcción del modelo de bloques.

A partir de la información del cuerpo mineral modelado con anterioridad en forma de un cuerpo sólido que responde a una envolvente mineralizada de 1 % de Zn equivalente.

En función de los resultado de los varigramas tanto para el Pb, Zn y S se determinaron que el bloque unidad del modelamiento tendría las siguientes dimensiones:

Eje X = 12 m.

Eje Y = 06 m.

Eje Z = 03 m.

Determinándose 160 filas en el eje Y, 120 columnas en el eje X y 142 niveles en el eje Z, siendo las coordenadas de inicio 5687.5 N, 7912.5 E y 198 msnm.

En cada bloque se modeló la siguiente información:

Tipo de mena, densidades, leyes de todos los elementos químicos, varianzas, por ciento del bloque ocupado por el sólido, entre otros.

Primeramente se actualizó el modelo litológico con el solido, utilizando un porciento de actualización muy bajo (0.0001 %), de forma tal que cada bloque que fuera tocado por el sólido, aunque fuera en un por ciento muy bajo, se clasifica como mineral; posteriormente se estimaron los modelos de leyes de Pb, Zn, S, BaSO4. A partir de estos últimos se calcularon los modelo de leyes de Fe, el de densidad y el de tipo de MENA.

2.2 Metodología de estimación.-

Para la estimación de los contenidos de los bloques fue usado el kriging ordinario.

Kriging.

Para la interpolación en la primera corrida fueron utilizados los parámetros de los variogramas, definiendo 4 componentes: el efecto pepita, el componente de la dirección vertical y de las dos componentes horizontales (rumbo y perpendicular al rumbo), se realizaron varias corridas adicionales con el doble de los parámetros del análisis estructural para completar la estimación total de todos los bloques del

modelo de bloques involucrados, a continuación se muestra la tabla de las diferentes corridas.

Tabla 2 Corridas de Kriging.

Elemento	Corrida	Bloc	Bloques				
		Total	Real	(%)			
Pb	1	25033	24632	3.12			
1.5	2	401	401	3.47			
	1	25033	23511	6.03			
Zn	2	1522	1473	5.11			
	3	49	49	4.55			
S	1	25033	24824	17.00			
3	2	209	209	16.70			
PoSO.	1	25033	24384	7.50			
BaSO ₄	2	649	649	8.87			

2.3 Categorización de los recursos.-

Teniendo como premisas que contamos con un depósito explorado en una red de 50x50 m en la parte central y muy raramente y hacia los flancos con una red de 100x100 m y considerando que las prácticas de muestreos e investigaciones llevadas a cabo en las diferentes etapas responden a las normas o estándares mundiales, lo cual se ha comprobado en reiteradas oportunidades, unido al hecho de que disponemos de una interpretación geológica del depósito que no ha variado, así como muestras tecnológicas a escala de laboratorio y semi industriales; podemos afirmar que se cuenta con el suficiente grado de confianza como para proceder a la clasificación de recursos en el depósito.

A partir de lo anterior se estimaron solo recursos medidos e indicados siguiendo los siguientes criterios:

MEDIDOS: Se calcularon en la parte central del depósito en la cual los perfiles de exploración están dispuestos aproximadamente a 50 m entre sí, con taladros cada 50 m. y sin extrapolación ni interpolación. Los valores de rango de influencia obtenidos en el análisis estructural, que mostraron rangos mínimos de influencia por el rumbo y por el buzamiento del cuerpo de 85 y 90 m respectivamente, nos permiten considerar bastante apropiadas las distancias entre pozos y perfiles.

INDICADOS: Se estimaron en las porciones extremas del yacimiento, definidas por secciones espaciadas hasta 100 m, y en las partes donde el cuerpo mineral fue interpolado o extrapolado.

Resultado de la estimación de recursos.-

Una vez que se dispuso del modelo 3D del cuerpo mineral, y de los modelos de leyes y densidades, se calcularon los recursos geológicos por bancos, con un cut off de **US \$28.85/t** (ver anexo H)

Tabla 3 Reservas de mineral

Mineral			Mineral de ba	ja Ley		Des monte	
t	% Pb dil	%Zn dil	t	% Pb dil	%Zn dil	t	S/R
1,513	1.77	4.16	2,004	1.01	1.95	3,590,375	2374
2,167,965	2.91	6.07	314,942	1.04	2.03	12,832,162	6.06
900,000	4.00	8.05	5,810	1.19	2.14	4,496,772	5.00
892,419	3.41	7.04	82,786	1.06	2.05	4,900,472	5.58
900,000	3.78	6.33	118,641	1.12	2.01	3,794,576	4.35
900,000	2.61	5.36	212,290	1.08	2.16	4,826,477	5.60
900,000	2.62	5.40	250,443	1.14	2.09	4,805,295	5.62
894,400	2.31	5.40	180,862	1.03	2.23	4,818,316	5.59
892,855	2.30	5.47	203,397	0.92	2.15	1,770,817	2.21
890,000	3.06	6.26	163,046	0.99	2.16	590,312	0.85
9,339,152	2.99	6.14	1,534,221	1.05	2.11	46,425,573	5.14

CAPITULO III : DISEÑO DE TAJO ABIERTO

3.1Introducción.- Para el diseño del Tajo Abierto se ha considerado el modelamiento geológico y el algoritmo de Lerch y Grossman para construir las fases de minado.

Condiciones de para el diseño de Tajo Abierto en Cuba

EL gobierno Cubano impuso estas condiciones para el diseño del Tajo Abierto como:

- Tipo de cambio 1.00 Cuc equivalente a 1.08 dólares americanos.
- Precio del petróleo en Cuba
- No considerar depreciación de equipos (Depreciación = 0).
 (Condición del Gobierno Cubano).
- Considerar el costo de mano de obra internacional mas no el costo en cuba (debido a que la mano de obra en Cuba es muy barata US \$ 15 / mes).
- No considerar incentivos para el personal o en todo caso el incentivo se pagara al gobierno Cubano más no a los trabajadores.

Bajo estas condiciones se diseñó el Tajo Abierto de la mina El Pinar en Cuba.

Asimismo se ha dividido en tres fases de minado, de las cuales, la etapa de preparación y la primera fase corresponden al plan de minado a corto plazo y el plan de minado a largo plazo abarca las fases dos y tres hasta el final de la explotación.

El planeamiento incluye:

- Evaluación sistemática de alternativas, corridas y resultados.
- Selección de la alternativa optima que permitirá escoger la estrategia
- Revisión y aceptación de todas las partes involucradas.

Para el planeamiento y la explotación a corto plazo, se ha considerado llegar hasta la cota 0, por no tener información de la hidrogeología del yacimiento. Para el largo plazo se ha considerado la explotación hasta la cota -126.

Durante la explotación de la mina se producirán 9,339,152 t de mineral y se removerán 46,425,573 t de desmonte, asimismo se extraerán 1,534,221 t de mineral de baja ley.

Tabla 4 Producción de mineral

		Nov Dic 2008	Año 2009	Año 2010	Año 2011	Año 2012	Año 2013	Año 2014	Año 2015	Año 2016	Año 2017	Año 2018	Año 2019
Mineral													
Produccion	t	1	377,839	899,910	891,729	900,000	892,419	900,000	900,000	900,000	894,400	892,855	890,000
Zn	%	0.00	5.18	5.70	6.81	8.05	7.04	6.33	5.36	5.40	5.40	5.47	6.26
Pb	%	0.00	2.54	2.82	3.16	4.00	3.41	3.78	2.61	2.62	2.31	2.30	3.06
Disponible		1	377,839	1,027,749	1,019,478	1,019,478	1,011,897	1,011,897	1,011,897	1,011,897	1,006,297	999,152	989,152
Zn		0	5.18	5.64	6.66	7.89	7.14	6.42	5.48	5.41	5.40	5.46	6.18
Pb		0	2.54	2.79	3.11	3.90	3.47	3.75	2.74	2.63	2.35	2.30	2.98
Tratado		0	250,000	900,000	900,000	900,000	900,000	900,000	900,000	900,000	900,000	900,000	900,000
Zn		0	5.18	5.64	6.66	7.89	7.14	6.42	5.48	5.41	5.40	5.46	6.18
Pb		0	2.54	2.79	3.11	3.90	3.47	3.75	2.74	2.63	2.35	2.30	2.98
Baja ley													
Produccion	t	1	102,348	116,994	97,604	5,810	82,786	118,641	212,290	250,443	180,862	203,397	163,046
Zn	%	0.00	2.05	2.00	2.05	2.14	2.05	2.01	2.16	2.09	2.23	2.15	2.16
Pb	%	0.00	1.08	1.06	0.99	1.19	1.06	1.12	1.08	1.14	1.03	0.92	0.99

3.2 Parámetros considerados.- Para la elaboración del planeamiento se ha considerado los siguientes parámetros: (ver tabla 2,3 y 4)

3.3 Requerimiento de producción

Tabla 2 Requerimientos de producción

	t	dia/año	dia/mes
Tpd	2,727	330	28
Tpm	74,993		
tpa	899,910		
S/R	5.00		

Tabla 3 Días por mes de operación

Moo	Dias	Año 1	Año 2
Mes	Dias	tpm	tpm
1	27	73,629	73,629
2	25	68,175	68,175
3	29	79,083	79,083
4	28	76,356	76,356
5	29	79,083	79,083
6	28	76,356	76,356
7	29	79,083	79,083
8	29	79,083	79,083
9	25	68,175	68,175
10	26	70,902	70,902
11	27	73,629	73,629
12	28	76,356	76,356
TOTAL	330	899,910	899,910

3.4 Parámetros de Minado

Tabla 4 Parámetros de diseño

Altura de banco	m	6
Ancho de berma	m	13.5
Relación de desbroce	-	5.1
Gradiente de la rampa	%	10
Altura de botadero	m	12

- a) Altura de banco.- Se diseño con 6 m, respondiendo al estudio de estabilidad de taludes, a las características operativas y de control de la dilución.
- b) Ancho de berma.- El ancho considero el tamaño de los equipos, cunetas de drenaje y berma de seguridad.

- c) Relación de desbroce.- La relación de desbroce obtenida de es de 5.1 y se ha considerado como promedio para toda la vida de la mina, aunque habrán relaciones menores o mayores en algunas fases de minado.
- d) Gradiente de la rampa.- Todo el diseño en las rampas del pit y de los accesos hacia los botaderos se han realizado con el 10% (6°), para lograr una buena eficiencia en los equipos de transporte y mantenimiento de vías.
- e) Altura de banco (botadero).- La altura de banco de los botaderos se diseñaron con una altura de 12m y un ángulo de talud de 37°, conformándose 4 capas de 12 metros cada uno en las cotas +30, +42, +54 y +66, quedando espacio para crecer el botadero. El ángulo del talud se calculó en función a los parámetros geotécnicos y del ángulo de reposo del material a disponer.

CAPITULO IV: PLAN DE MINADO A CORTO PLAZO

4.1 Plan de minado.

Para el plan de minado a corto plazo se han considerado dos etapas, una la de preparación y la del plan de producción.

4.2 Preparación.-

La preparación ha considerado el desbroce desde el banco 108 hasta el banco 66, para proporcionar condiciones de explotación y de seguridad a los bancos inferiores; se realizara un movimiento de 3,590,375 t de desmonte y 1,513 t de mineral en 7 meses de operación.

Tabla 8

Plan de preparación

	Mineral				Mineral de baja ley				Desmonte		TOTAL	
Banco	BCM	t	%Pb	%Zn	BCM	t	%Pb	%Zn	BCM	t	BCM	t
108	0	0	0	0			0	0	9,126	24,183	9,126	24,183
102	0	0	0	0			0	0	35,863	95,036	35,863	95,036
96	0	0	0	0			0	0	47,752	126,544	47,752	126,544
96	0	0	0	0			0	0	2,288	6,062	2,288	6,062
90	0	0	0	0			0	0	61,819	163,820	61,819	163,820
90	0	0	0	0			0	0	7,412	19,642	7,412	19,642
90	0	0	0	0			0	0	67	178	67	178
90	0	0	0	0			0	0	1,415	3,751	1,415	3,751
84	0	0	0	0			0	0	97,563	258,543	97,563	258,543
84	0	0	0	0			0	0	32,135	85,159	32,135	85,159
84	0	0	0.00	0.00			0.00	0.00	47,670	126,326	47,670	126,326
78	0	0	0.00	0.00			0.00	0.00	94,282	249,848	94,282	249,848
78	0	0	0.00	0.00			0.00	0.00	79,811	211,498	79,811	211,498
78	0	0	0.00	0.00			0.00	0.00	94,533	250,512	94,533	250,512
78	0	0	0.00	0.00			0.00	0.00	193	511	193	511
72	0	0	0.00	0.00			0.00	0.00	111,595	295,726	111,595	295,726
72	0	0	0.00	0.00			0.00	0.00	144,836	383,816	144,836	383,816
72	0	0	0.00	0.00			0.00	0.00	64	170	64	170
72	0	0	0.00	0.00			0.00	0.00	131,985	349,761	131,985	349,761
66	457	1,513	1.77	4.16	605.44	2004	1.01	1.95	150,449	398,689	151,511	400,202
66	0								204,000	540,600	204,000	540,600
Total	457	1,513	1.77	4.16	605.44	2004	0.00	0.00	1,354,858	3,590,375	1,355,921	3,591,888

4.3 Plan de minado a corto plazo.-

El plan de minado a corto plazo fue elaborado para los 29 meses de operación, en base a los parámetros y requerimientos descritos en el punto N° 02 (Ver tabla N° 09).

Se ha considerado una distancia promedio de 1,980 m para el transporte de desmonte hacia los botaderos ubicado al NW del tajo abierto y de 1,335 m para el transporte de mineral, en ambos casos con gradiente negativa.

Con relación a los días de trabajo se han considerado 28 días x mes incluyendo el mes de febrero, de esta manera el plan considera los 35 días de parada por las lluvias¹, asimismo se considera dos turnos de 12 hrs cada uno con 10 hrs efectivas de trabajo.

En los dos primeros años se explotaran 2,169,478 t de mineral con 6.69 %Zn, 3.26% de Pb, 316,946t de mineral de baja ley y 12,832,162 t de desmonte con una relación de desbroce de 6:06. (Ver tabla 9).

PLAN DE MINADO A CORTO PLAZO

Tabla 9

		Mineral			Mineal de baja ley			Desmonte TOTAL				S/R		
Mes	Banco	BCM	t	%Pb	%Zn	BCM	t	%Pb	%Zn	BCM	t	BCM	t	
Ago-09	60	22,244	73,629	2.49	4.76	6,428	21,276	1.18	1.84	192,453	510,000	214,697	604,905	7.22
Set-09	60- 54	20,597	68,175	2.66	5.35	10,977	36,334	1.12	2.12	207,547	550,000	228,144	654,509	8.60
Oct-09	54	23,892	79,083	2.68	5.44	0				196,226	520,000	220,119	599,083	6.58
Nov-09	54	23,068	76,356	2.68	5.44	0				196,226	520,000	219,295	596,356	6.81
Dic 09	48	23,892	79,083	2.22	4.94	12,911	42,734	0.99	2.09	188,679	500,000	212,571	621,817	6.86
Ene-10	48	23,068	76,356	2.78	5.27	0				200,000	530,000	223,068	606,356	6.94
Feb-10	48	23,892	79,083	2.69	5.77	8,757	28,985	0.88	2.02	173,585	460,000	197,477	568,068	6.18
Mar-10	48-42	23,892	79,083	2.65	5.97	0				186,792	495,000	210,685	574,083	6.26
Apr-10	42	20,597	68,175	2.85	6.05	3,765	12,463	1.03	1.99	184,906	490,000	205,502	570,638	7.37
May-10	42	21,421	70,902	2.65	5.97	0				169,811	450,000	191,232	520,902	6.35
Jun-10	42-36	22,244	73,629	2.65	5.97	0				166,038	440,000	188,282	513,629	5.98
Jul-10	36	23,068	76,356	3.13	6.17	3,765	12,463	1.03	1.99	173,585	460,000	196,653	548,819	6.19
Aug-10	42	22,244	73,629	3.23	6.21	0				184,906	490,000	207,150	563,629	6.65
Sep-10	42	20,597	68,175	2.66	4.78	6,762	22,381	1.19	1.95	184,906	490,000	205,502	580,556	7.52
Oct-10	36	23,892	79,083	2.94	5.55	2,742	9,076	1.08	2.14	169,811	450,000	193,703	538,159	5.80
Nov-10	36	23,068	76,356	2.94	5.55	0				169,811	450,000	192,880	526,356	5.89
Dec-10	36-30	23,892	79,083	2.65	5.10	9,555	31,626	1.14	2.00	173,585	460,000	197,477	570,709	6.22
Jan-11	30	23,068	76,356	3.47	6.28	4,985	16,502	1.09	1.97	169,811	450,000	192,880	542,858	6.11
Feb-11	30	23,892	79,083	3.52	6.31	0				184,906	490,000	208,798	569,083	6.20
Mar-11	30	23,892	79,083	2.72	4.85	4,473	14,804	1.12	1.93	181,132	480,000	205,024	573,887	6.26
Apr-11	24 -30	20,597	68,175	3.08	6.51	3,999	13,236	0.95	1.98	169,811	450,000	190,408	531,411	6.79
May-11	24	21,421	70,902	3.53	7.95	0				166,038	440,000	187,458	510,902	6.21
Jun-11	24	22,244	73,629	3.51	7.89	1,247	4,129	1.05	1.90	169,811	450,000	192,056	527,758	6.17
Jul-11	18	23,068	76,356	2.96	6.52	7,637	25,278	0.92	2.08	169,811	450,000	192,880	551,634	6.22
Aug-11	18	23,892	79,083	3.12	7.20	0				75,472	200,000	99,364	279,083	2.53
Sep-11	18	20,597	68,175	3.12	7.20	0				94,340	250,000	114,936	318,175	3.67
Oct-11	12	21,421	70,902	2.90	6.84	4,752	15,728	0.92	2.27	168,839	447,424	190,260	534,054	6.53
Nov-11	12	22,244	73,629	2.92	7.12					56,604	150,000	78,848	223,629	2.04
Dec-11	B 12 -6	23,068	76,356	3.08	7.31		7,927	0.99	2.12		309,738	23,068	394,021	4.16
		654,974	2,167,965	2.91	6.07	92,754	314,942	1.04	2.03	4,725,443	12,832,162	5,380,417	15,315,069	6.06

4.4 Plan de distancias.-

El planeamiento de distancias juega un papel importante en el plan de minado y en el plan de producción, y sobre todo esta en función del crecimiento del botadero. (ver tabla 7).

Tabla 7 Distancias y capacidad de botaderos

Material	Capaciadad d	e almacenaje	Distancia	Observacion	
	BCM	t	m		
Desmonte	1,426,572	3,851,744	2,036	Preparacion	
Desmonte	3,271,095	8,831,958	1,930	Fase 1	
Desmonte	2,879,819	7,775,512	926	Fase 2 y 3	
Desmonte	2,349,624	6,343,985	820	Fase 3	
Mineral	5,156,864	1,696,895	1,335	Fase 1	
Mineral	830,264	2,678,581	1,913	Fase 2	
Mineral	2,919,203	9,399,835	2,400	Fase 3	
Desmonte			2,263	Dep. Colas	
Total	18,833,442	40,578,510	1,657		

4.5 Precios de insumos.-

Para el cálculo de los costos unitarios y costos de equipos se ha empleado el tipo de cambio vigente en Cuba.

1.0 CUC = 1.08 US \$, así como el precio de combustible D2 y el precio del ANFO.

Tabla 8 Tipo de cambio y precios considerados

Combustibles

		C.U.C	US\$	US \$/Hr	US \$/I
Diesel 2	gl	1.93	2.08		0.550

Explosivos

t	780.00	842.40
Uni	3.30	3.56
Uni	2.04	2.20
m	0.20	0.21
m	0.18	0.19
	Uni m	Uni 3.30 Uni 2.04 m 0.20

Fuente: Precios vigentes en Cuba

4.6 Selección de equipos.-

La selección de equipos en Cuba, es bastante limitada debido al bloqueo económico de que implanto los Estados Unidos en contra del Pais Caribeño.

Por tal motivo la elección de proveedores no es posible, muy por el contrario se tiene que buscar que países están en condiciones de comercializar con Cuba.

Esto fue una restricción que limito la elección de proveedores entre los que podemos destacar:

Sandvick; para las perforadoras rotativas:

Mercedes Benz; para los camiones y cisternas

Doosan; para las excavadoras , cargadores frontales, motoniveladoras, compactadoras.

Lada; para transporte de personal.

Por lo tanto la selección de equipo estuvo muy limitada a ciertos proveedores.

Selección de perforadora.

Se eligió una perforadora rotativa por ser más segura al momento de perforar asegurar el las paredes del taladro, el diámetro más comercial se determinó que era de 6 ¾ de pulgada, asimismo desde un punto de vista logístico el consumo de repuestos es menor que una perforadora Top Hammer y una Down the Hole.

Selección de camiones.

Para la elección de camiones se consideró a dos empresas fabricantes de camiones que si podían comercializar con Cuba, Mercedes Benz (Fabricación Alemana) y Volvo (Fabricación Sueca).

Selección de Excavadoras.

Para equipos de carguío se consideró la compra de excavadoras, por las siguientes razones:

Factor de carga entre 100-110%.

Versatilidad para cargar por ambos lados entre 45° a 180°.

Capacidad para perfilar taludes

Mejor soporte logístico que los cargadores frontales.

4.7 Perforación.-

Para la perforación se ha considerado una perforadora rotativa de 6¾ (171.45 mm) de diámetro con barras de 7 m de longitud para perforar bancos de 6 m en mineral y desmonte.

Se eligió una perforadora rotativa por tipo de perforación que tiene el cual permite trabajar en cualquier tipo de terreno, ya sea suave o duro. Asimismo los accesorios de perforación son menos consumibles que los de una down the hole, que tiene una velocidad de penetración mayor, pero un alto consumo de repuestos del martillo.

Figura 1 Perforadora rotativa

Fuente: Sandvick Perú
3.6.1Malla de Perforación

Tabla 12 Diseño de malla de perforación

Diámetro de taladro	6¾ " (171.45 mm)
Burden	5.25m mineral, 6.00m desmonte
Espaciamiento	6.25m mineral, 6.50m desmonte
Sobre perforación	1.00m mineral/desmonte
Velocidad de penetración	20 a 30 m / hr
Pulldown	40,000 lb

Costo por tonelada perforada = US \$ 0.275/ t en desmonte Costo por tonelada perforada = US \$ 0.341 / t en mineral (Detalles ver Anexo A)

4.8 Voladura.-

Para la realización de la voladura se ha considerado el ANFO como agente de voladura y accesorios no eléctricos tipo nonel - fanel con cordón detonante, mecha de seguridad y fulminante con retardos incluidos.

Los cálculos de consumo de explosivos para un taladro se pueden apreciar en el anexo B.

Tabla 13 Agente y accesorios de voladura por taladro

Accesorios de Voladura		Desmonte	Mineral
Booster de 1 Lb	uni	1	1
Fanel/Nonel/	m	7	7
Cordon detonante	m	7	7
Mecha de seguridad	m	0.12	0.12
Calculo de explosivo x Taladro			
Kilogramos de Anfo	Kar	84.92	94.68

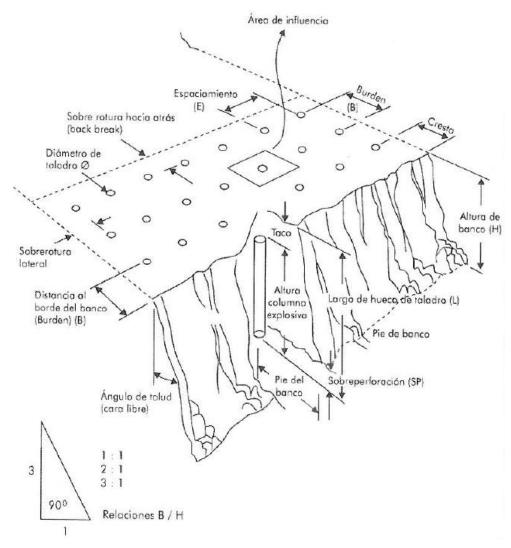


Figura 2 Diseño de perforación y voladura.

El costo de voladura por tonelada de mineral y de desmonte tiene variación debido al consumo de explosivos por taladro, en ambos casos se incluye al operador.

Costo por tonelada de mineral US \$ 0.151

Costo por tonelada de desmonte US \$ 0.148

4.9 Carguio.-

El carguio del mineral y de desmonte se realizara con retroexcavadora de 4.00 y 2.2 m³ de capacidad de cuchara, la de 4 m³ destinada al desbroce y la de 2.2 m³ destinada al mineral.

Figura 3 Excavadora 2.2 m³

Figura 4 Excavadora 4 m³

El rendimiento de la retroexcavadora de 4 m3 es de 560 t/hr y la del 2.2 m3 es de 260 t/hr. (Detalles ver anexo C)

El costo por tonelada producida incluido el operador es:

Costo por tonelada de mineral US \$ 0.109 /t

Costo por tonelada de desmonte US \$ 0.056 /t

4.10 Transporte.-

Para el transporte de mineral y desmonte se han considerado volquetes de 39 t de capacidad tipo (Volvo, Astra, Mercedes Benz, Iveco) que es lo que se puede importar a Cuba, este tipo de volquetes son muy versátiles para el tipo de operación que desarrollaremos y a la flexibilidad de nuestra operación.

El rendimiento de los estos volquetes están por encima de los 100 t/h, que está en función de la distancia de acarreo. (ver detalles en el anexo D)

Figura 5 Modelo del volquete MB

Costo por tonelada de mineral US \$ 0.120 /t

Costo por tonelada de desmonte US \$ 0.124 /t

4.11 Servicios.-

Los equipos de servicios estarán abocados al mantenimiento de las vías, botaderos e iluminación.

- a) Mantenimiento de vías.- Para el mantenimiento de los accesos de alto transito, se han considerado motoniveladoras y cisternas, las motoniveladoras estarán constantemente haciendo el mantenimiento de todas las rutas hacia el botadero, planta concentradora y las rampas en mina, asimismo serán las encargadas de la construcción de las cunetas de drenaje de ser el caso. Las cisternas estarán constantemente regando las vías para evitar su deterioro. Un buen mantenimiento de vías nos permitirá incrementar nuestra productividad de los camiones, camionetas y otros equipos.
- b) Botaderos.- Para los botaderos se han considerado bulldozer, para la disposición del desmonte, la modalidad de trabajo y las normas de seguridad hacen que el desmonte no sea volteado directamente, estos tienen que ser empujados para evitar accidentes y escurrimientos.

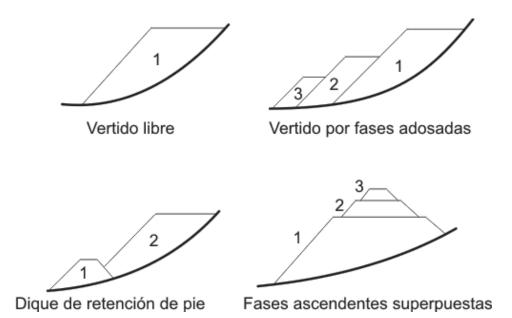


Figura 6 Tipos de botaderos según secuencia de construcción

El tipo de construcción por fases ascendentes superpuestas aporta mayor estabilidad, por cuanto se disminuyen los taludes finales y se consigue una mayor compactación de los materiales.

c) Iluminación, se ha considerado pantallas para la iluminación de la operación por las noches en los botaderos y en las áreas de extracción de mineral que a la vez tienes una función de brindar seguridad en las operaciones nocturnas.

Figura 7 Pantalla de iluminación para tajo abierto

El costo de los servicios han sido prorrateado entre el movimiento de mineral y desmonte (detalle ver anexo E).

	US \$/t
Costo del tractor	0.002
Costo de la motoniveladora	0.002
Costo del cisterna	0.002
Pantallas de iluminación	0.001
Camionetas	0.001

CAPITULO V: COSTOS DE OPERACIÓN DE MINADO

Costos de operación de minado en base al análisis de las operaciones unitarias requeridas para el movimiento de 900,000 tpa con una relación de desbroce de 5.1, transporte a los botaderos de la cota 30 y transporte de mineral a la planta concentradora se han calculado los siguientes costos operativos y de servicios: (ver tabla 13)

Tabla 14	Costos de minado					
	Desmonte US \$/t	Mineral US \$/t	Desmonte US \$/BCM	Mineral US \$/BCM		
Perforacion	0.275	0.309	0.687	0.928		
Voladura	0.148	0.151	0.371	0.454		
Carguio	0.056	0.109	0.140	0.327		
Transporte	0.124	0.120	0.310	0.360		
Subtotal	0.603	0.690	1.508	2.070		
Servicios						
Tractores	0.002	0.002	0.005	0.004		
Motoniveladora	0.002	0.001	0.004	0.002		
Cisterna	0.001	0.000	0.002	0.000		
Camionetas	0.000	0.001	0.000	0.002		
Iluminacion	0.001	0.000	0.002	0.000		
Subtotal	0.006	0.003	0.014	0.008		
TOTAL	0.61	0.69	1.52	2.08		

Los costos consideran el tipo de cambio cubano 1.0cuc=1.08\$ por dólar americano, el precio del combustible, agentes de voladura y accesorios de voladura a cotizaciones cubanas.

En relación a la mano de obra, los sueldos y salarios son los vigentes en Cuba y precio internacionales de las llantas para los equipos.

En el cálculo de los costos de propiedad de los equipos no se considero la depreciación.

La incidencia del costo de voladura representa el 24% de los costos de minado de desmonte y el 22% en mineral, debido alto precio del nitrato de amonio en Cuba. (Ver figura 7 y 8)

El costo de los servicios auxiliares se mínimo y casi no afecta en el sistema de costeo, pero no por eso deja de ser importante para la operación.

En el caso del equipo de riego no se ha considerado los 35 días de paradas por las lluvias, muy por el contrario se considero trabajar incluyendo en las noches por el tipo de clima que se tiene en el Caribe.

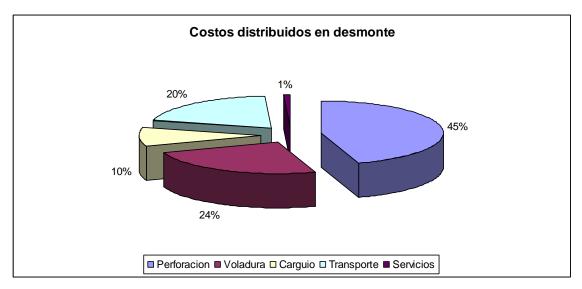


Figura 8 Distribución de costos en desmonte

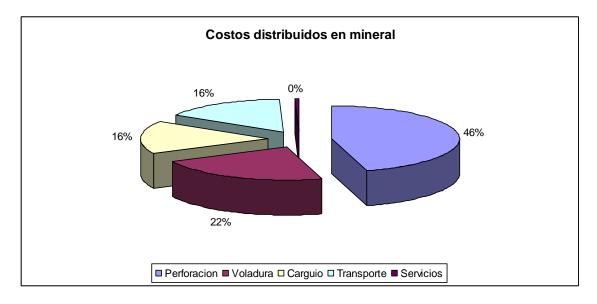


Figura 9 Distribución de costos en mineral

CAPITULO VI: PLANEAMIENTO A LARGO PLAZO

Planeamiento a largo plazo.-Para la elaboración del planeamiento de largo plazo se ha considerado desde el tercer año hasta el doceavo año 12, con las siguientes consideraciones:

6.1 Valores unitarios

Para el cálculo de los valores unitarios se han considerado los siguientes precios de los metales:

Tabla 15 Precio de los metales

Plomo (Pb)	1,403	
Zinc (Zn)	US \$/t	1,662
Plata (Ag)	US \$/Oz	10.00

Fuente: JLC 12/12/2007

Los valores puntos:

Tabla 16 Valores unitarios

1 % de Pb	6,267
1% de Zn	6.389
1 Oz Ag	1.64

Fuente: Trafigura

Para el cálculo de cut off se han considerado los costos de minado obtenidos del plan a corto plazo y el costo de tratamiento y gastos administrativos considerados en el estudio del cálculo de reservas, obteniendo como cut off = **US \$ 28.85** /t.

Esto significa que se tiene que extraer mineral cuyo valor sea mayor o igual a este valor.

Para el programa de producción hasta el cierre de mina se han considerado los costos unitarios del plan a corto plazo, sin embargo estos costos pueden variar en base a la mejora de la operación, así como el incremento en el costo de bombeo a partir del 4to año que estará en función del caudal que pudiéramos encontrar.

6.2 Bombeo de agua.

Al momento de realizar este reporte no se tiene ningún estudio respecto al nivel freático ni los caudales que podríamos encontrar de aguas subterráneas, por esta razón se asumió un caudal de 500l/seg, con un costos de 0.23\$-Kw-Hr,(Ver tabla 16 del flujo de caja).

A partir del cuarto año de operación estaríamos ubicándonos en los bancos por debajo de la cota "0" donde se incluye la operación de bombeo.

6.3 Geomecánica

Para el diseño del pit, se han considerado la información proporcionada por la autoridad cubana de minería, respecto a los ángulos de taludes, sin embargo para la explotación masiva es necesario complementar la información para no tener problemas de estabilidad cuando entremos a la explotación de los bancos por debajo del nivel "0", para el cual es necesario hacer un nuevo estudio geotécnico.

6.4 Elaboración del flujo de caja.

Para la elaboración del flujo de caja se ha considerado el costos de la mano obra fijo que no variara en el tiempo de explotación, sin embargo esto estará sujeto a las variaciones de los términos contractuales entre ambas partes.

(Ver Programa de producción y flujo de caja en el anexo A)

CAPITULO VII: INVERSIONES

Las inversiones consideradas para iniciar la operación minera, esta concentrada en equipo minero principalmente, el dimensionamiento, tipo de equipo y abastecimiento logístico han sido consideradas.

Tabla 17 Inversiones en Equipos

Equipos		P.U US \$	Total US \$
Perforadora rotativa 6 3/4"	1	700,000	700,000
Track drill 4"- 5"	1	420,000	420,000
Excavadoras 4.0 m3	2	678,300	1,356,600
Excavadoras 2.2 m3	1	470,050	470,050
Camiones	11	230,518	2,535,698
Tractores	2	550,000	1,100,000
Motoniveladora	1	318,325	318,325
Camionetas 4 x 4	4	30,000	120,000
Cisterna	1	230,000	230,000
Camion de servicio	1	40,000	40,000
Camion combustible	1	150,000	150,000
TOTAL			7,440,673

CAPITULO VIII: PRESA DE RELAVES

En relación a la presa de relaves no se tiene diseño alguno de compactación y modo de construirlos aun se esta realizando el estudio, sin embargo en base a los cálculos geométricos podemos dimensionar los equipos que se emplearan en el crecimiento por etapas.

Los volúmenes a mover para el crecimiento de la presa se pueden apreciar en la tabla 18.

Tabla 18

Volumen de la presa

Fase	Volumen Total de escombro (m³)	Capacidad total de colas (m³)	Nivel inferior de la escombrera	Nivel superior de la escombrera	Nivel inferior de la colera	Nivel superior de la colera	Movimiento t	tpm	tpd
Año 1	3,657,261	554,107	6	24	6	18	9,508,879	792,407	2,401
Fase 1	3,816,102	3,936,158	24	42	18	36	9,921,865	826,822	2,506
Fase 2	1,680,247	4,276,678	24	54	or de la colera	48	4,368,642	364,054	1,103
Final	392,826	3,834,067	42	65	36	60	1,021,348	85,112	258
Total	9,153,610	8,766,943					23,799,386	1,983,282	6,010

8.1 Criterios para el diseño de la presa de relaves

- Consideraciones para el diseño del depósito de relaves
 Se contempla principalmente las siguientes consideraciones:
 Ubicación del área para el depósito de relaves.
- 2. Capacidad de almacenamiento del deposito

La capacidad de almacenamiento de la presa de relaves se ha estimado en función de la producción de la mina y de las condiciones topográficas del vaso de la presa.

En base a la configuración geométrica el depósito de relaves tendrá una capacidad para almacenar 12, 944,538 m³

3. Volumen total de almacenamiento en la presa de relaves.

Se ha determinado el volumen de almacenamiento total de la presa de relaves (fracción fina y gruesa), hasta la cota 60 msnm, (cresta de la presa), el volumen de la presa es de 3,811,696 m3 con un ángulo de talud 2:1. (Ver cuadro 16).

Tabla 19 Volúmenes de dique y almacenamiento

Nivel	Capacidad m3	Cap Acum m3	Dique m3	Dique Acum m3
24	584,647.20	584,647	518,792.05	518,792
30	1,195,799.15	1,780,446	485,053.43	1,003,845
36	1,729,917.01	3,510,363	591,176.11	1,595,022
42	2,040,917.76	5,551,281	600,295.48	2,195,317
48	2,267,918.34	7,819,199	579,701.10	2,775,018
54	2,477,182.79	10,296,382	551,278.25	3,326,296
60	2,648,156.29	12,944,539	485,399.87	3,811,696
	12,944,538.54		3,811,696.29	

Curva Altura - Volumen Vaso de almacenamiento 66 60 54 Altura msnm 48 42 36 30 24 2,584,647 4,584,647 6,584,647 584,647 8,584,647 10,584,647 12,584,647 14,584,647 Volumen acumulado m3

Figura 10 Altura vs almacenamiento de relaves

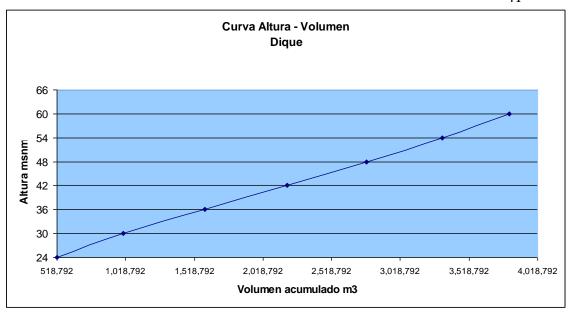


Figura 11

Altura vs Volumen de presa

 La producción de relaves en los 10 años de producción es de 5,476,171 m^{3 2}(Ver tabla 17).

Tabla 20 Producción de Relaves

Año	Tonelaje de Relaves x año	Volumen de relave m3
2009	796,534	497,834
2010	796,534	497,834
2011	796,534	497,834
2012	796,534	497,834
2013	796,534	497,834
2014	796,534	497,834
2015	796,534	497,834
2016	796,534	497,834
2017	796,534	497,834
2018	796,534	497,834
2019	796,534	497,834
Total	8,761,874	5,476,171

5. En la tabla 17 se puede apreciar la producción anual acumulada de relaves, la capacidad acumulada del vaso y el volumen de crecimiento

2,195,317

del dique. La capacidad del vaso hasta la cota 42 es de 6,106,408 m3 con un volumen de dique de 2,195,317 m3 de material de préstamo. (Ver figura 15)

Tabla 21	Producción y almacenamiento de relaves							
	Produccion anual m3	Produccion Acumulada m3	Capacidad Vaso m3	Capacidad Acumulada m3	Volumen dique m3	Volumen dique acumulado m3		
2009	497,834	497,834	555,128	555,128	518,792	518,792		
2010	497,834	995,668	555,128	1,110,256	242,527	761,319		
2011	497,834	1,493,501	555,128	1,665,384	242,527	1,003,845		
2012	497,834	1,991,335	555,128	2,220,512	197,059	1,200,904		
2013	497,834	2,489,169	555,128	2,775,640	197,059	1,397,963		
2014	497,834	2,987,003	555,128	3,330,768	197,059	1,595,022		
2015	497,834	3,484,836	555,128	3,885,896	120,059	1,715,081		
2016	497,834	3,982,670	555,128	4,441,024	120,059	1,835,140		
2017	497,834	4,480,504	555,128	4,996,152	120,059	1,955,199		
2018	497,834	4,978,338	555,128	5,551,280	120,059	2,075,258		
2019	497,834	5,476,171	555,128	6,106,408	120,059	2,195,317		

6,106,408

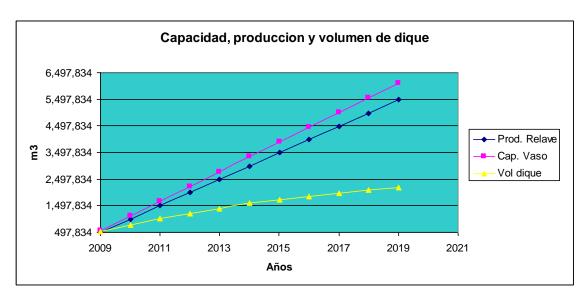


Figura 12 Capacidad m3 – año de operación

Total

5,476,171

- 6. El diseño de la presa hasta la cota 60 tiene una capacidad de 12,944,538 m³ y hasta la cota 42, 5,551,281 m³.
- 7. Los costos estimados para la construcción de la presa de relaves asciende a **US \$ 1.175/t** y US **\$3.113/m**³ (Ver tabla 19).

 Tabla 22
 Costos de movimiento

	Desmonte US \$/t	Desmonte US \$/BCM
Carguio	0.093	0.247
Transporte	0.135	0.357
Servicios	0.947	2.509
Subtotal	1.175	3.113

8. En base al crecimiento, producción y capacidad de la presa se ha elaborado un programa de inversiones en la que se puede apreciar la inversión anual que se requiere para la construcción de la presa. (Ver Inversión anual en el crecimiento de la presa en el anexo B)

Tabla 23 Inversión de equipos para la presa

		P.U US \$	Total US \$
Cargador frontal 3.5yd3	1	250,000	250,000
Camiones 35 t	3	230,518	691,554
Tractores	1	300,000	300,000
Motoniveladora	1	350,000	350,000
Camionetas 4 x 4	1	30,000	30,000
Cisterna	2	230,000	460,000
Compactador	2	140,000	280,000
TOTAL			2,361,554

CONCLUSIONES

- Es necesario complementar el estudio geomecánico para validar la información que se considero en el diseño inicial. Las recomendaciones son: perforar 6 taladros equidistantes a lo largo del eje transversal del tajo abierto y a la vez utilizar estos taladros como piezometros.
- El diseño del pit final es sensible a la variación del precio de los metales para el cual es necesario hacer calculo periódicos de los valores puntos para no afectar el flujo de caja.
- La mano de obra representa aproximadamente el 2.27% de costo total, sin embargo juega un papel importante en la operación en base a la experiencia que vaya adquiriendo durante el proceso.
- El costo de profundización será función de la distancia y el sistema de bombeo, por esa razón es estratégico la ubicación de los botaderos y de la presa de colas.
- El costo considerado en el diseño del estudio conceptual fue de US \$=0.77/t, tanto para mineral como para desmonte, sin embargo los cálculos realizados en base a un nuevo dimensionamiento es de US \$0.61/t para desmonte y US \$0.69.
- El resultado de la operación de los 24 meses no incluyen el bombeo que se presentaría debajo de la cota 0.
- La operación de preparación, se iniciara en Noviembre del 2008 y continuara hasta el mes de agosto del 2009 fecha en que se da inicio a la producción.
- En los dos primeros años de operación se acumularan 314,942 t de mineral de baja ley que serán almacenados en un stock pile para su posterior tratamiento.
- Los precios empleados en los cálculos han sido actualizado en base al tipo de cambio que se tiene en Cuba y algunos precios que fueron proporcionados por la entidad cubana de minería.
- La perforación será rotativa por tener mejor comportamiento para cualquier tipo de terreno y menor costo de mantenimiento en comparación a una perforadora tipo down the hole.

- Para el cargu
 ío se eligi
 ó retroexcavadoras, por ser mas vers
 átiles que los cargadores frontales y para el control, de la diluci
 ón y perfilado de taludes.
- En base a la producción de relaves y la capacidad de almacenamiento, la presa en los 10 años de operación tendría que crecer hasta la cota 42 msnm. Con una capacidad de almacenamiento de 5,551,281 m³.
- El volumen que material que se tendría que emplear en la construcción de la presa es de 2,195,317 m³, con 600,295 t de material de préstamo, hasta la cota 42.
- El crecimiento de la presa hasta la cota 60 proporciona 12,944,538 m3 con el cual se cuenta con capacidad y área suficiente para almacenar relaves procedentes de otro proyecto.
- Los costos de equipos considerados son los mismos que se consideraron en el plan de minado para la mina El Pinar.

RECOMENDACIONES

- Es necesario realizar estudios de:
 - Caracterización geológica del área.
 - o Taladros de descarte en el vaso y en el eje del cuerpo de la presa
 - Condiciones climáticas e hidrológicas del área de emplazamiento del depósito de relaves.
 - Condiciones sísmicas del área del proyecto.
 - Determinación de las condiciones geotécnicas.
 - Características granulométricas del relave general.

ANEXO A

Programa de producción hasta agotar reservas

	Mineral			Mineral de ba	ja Ley		Desmonte		
Tiempo	t	% Pb dil	%Zn dil	t	% Pb dil	%Zn dil	t	S/R	Observacion
7 MESES	1,513	1.77	4.16	2,004	1.01	1.95	3,590,375	2374	Preparacion
2 AÑOS	2,167,965	2.91	6.07	314,942	1.04	2.03	12,832,162	6.06	Plan a corto plazo
2012	900,000	4.00	8.05	5,810	1.19	2.14	4,496,772	5.00	Fase 1 B 6,0,-6-12 y del B66 al 12
2013	892,419	3.41	7.04	82,786	1.06	2.05	4,900,472	5.58	Fase 2 y fase 3 bancos -6 al -102
2014	900,000	3.78	6.33	118,641	1.12	2.01	3,794,576	4.35	Fase 2 y fase 3 bancos -6 al -102
2015	900,000	2.61	5.36	212,290	1.08	2.16	4,826,477	5.60	Fase 3 bancos 36 al 18
2016	900,000	2.62	5.40	250,443	1.14	2.09	4,805,295	5.62	Fase3 bancos 6 al -18
2017	894,400	2.31	5.40	180,862	1.03	2.23	4,818,316	5.59	Fase 3 bancos -24, -42
2018	892,855	2.30	5.47	203,397	0.92	2.15	1,770,817	2.21	Fase 3 banco -48,-72
2019	890,000	3.06	6.26	163,046	0.99	2.16	590,312	0.85	Fase 3 bancos -78 -126
				,					
TOTAL	9,339,152	2.99	6.14	1,534,221	1.05	2.11	46,425,573	5.14	

ANEXO A

FLUJO DE CAJA OPERACIONES

Leyes													
	Uni	Nov Dic 2008	Año 2009	Año 2010	Año 2011	Año 2012	Año 2013	Año 2014	Año 2015	Año 2016	Año 2017	Año 2018	Año 2019
Zn	%		5.18	6.10	7.92	7.42	6.45	5.33	5.05	5.79	4.82	6.29	6.26
Pb	%		2.54	3.09	3.73	3.66	3.56	2.63	2.71	2.71	1.88	2.85	3.06
Valor de mineral	US \$/t		50.66	59.98	75.61	71.98	65.16	52.18	50.88	55.67	44.22	59.73	60.81
Produccion													
	Uni	Nov Dic 2008	Año 2009	Año 2010	Año 2011	Año 2012	Año 2013	Año 2014	Año 2015	Año 2016	Año 2017	Año 2018	Año 2019
Mineral	t	0	377,839	899,910	891,729	900,000	892,419	900,000	900,000	900,000	894,400	892,855	890,000
Desmonte con perforacion y voladura	t	784,224	5,508,003	5,781,994	4,664,766	4,502,582	4,983,258	3,913,217	5,038,767	5,055,738	4,999,178	1,974,214	753,358
Relacion de desbroce S/R			15	6.43	5.23	5.00	5.58	4.35	5.60	5.62	5.59	2.21	0.85
Total material	t	784,224	5,885,842	6,681,904	5,556,495	5,402,582	5,875,677	4,813,217	5,938,767	5,955,738	5,893,578	2,867,069	1,643,358
Costos de operación													
Mineral													
Perforacion	US\$	0	116,931	278,497	275,965	278,525	276,179	278,525	278,525	278,525	276,792	276,314	275,430
Voladura	US\$	0	57.240	136,331	135,092	136,345	135,196	136,345	136,345	136,345	135,496	135,262	134,830
Carguio	US\$	0	41,136	97,974	97,084	97,984	97,159	97,984	97,984	97,984	97,374	97,206	96,895
Transporte	US\$	0	45,374	108.068	107,086	108,079	107,169	108,079	108,079	108.079	107,407	107,221	106,878
Subtotal	US\$	0	260,681	620,871	615,227	620,933	615,703	620,933	620,933	620,933	617,069	616,003	614,034
Desmonte													
Perforacion	US\$	215,590	1,514,195	1,589,518	1,282,383	1,237,797	1,369,939	1,075,776	1,385,199	1,389,864	1,374,315	542,728	207,104
Voladura	US\$	116,372	817,338	857,996	692,210	668,143	739,471	580,686	747,708	750,226	741,833	292,956	111,792
Carguio	US\$	43,845	307,947	323,266	260,803	251,735	278,609	218,784	281,713	282,662	279,500	110,377	42,120
Transporte	US\$	97,320	683,527	717,529	578,884	558,758	618,408	485,619	625,297	627,403	620,384	244,994	93,490
Subtotal	US\$	473,127	3,323,009	3,488,309	2,814,279	2,716,433	3,006,427	2,360,866	3,039,916	3,050,154	3,016,032	1,191,054	454,505
Servicios													
Tractores	US\$	1,725	12,944	14,695	12,220	11,881	12,922	10,585	13,061	13,098	12,961	6,305	3,614
Motoniveladora	US\$	1,192	8,950	10,160	8,449	8,215	8,934	7,319	9,030	9,056	8,961	4,359	2,499
Cisterna	US\$	603	4,523	5,134	4,270	4,151	4,515	3,698	4,563	4,576	4,529	2,203	1,263
Camionetas	US\$	116	869	987	821	798	868	711	877	879	870	423	243
Iluminacion	US\$	694	5,207	5,911	4,915	4,779	5,198	4,258	5,253	5,268	5,213	2,536	1,454
Costo de bombeo Q= 500 l/s	US\$	0	0	611,511	611,511	611,511	611,511	611,511	611,511	611,511	611,511	611,511	
Subtotal	US\$	4,329	32,492	648,398	642,185	641,335	643,947	638,082	644,295	644,389	644,046	627,338	9,072

ANEXO A

FLUJO DE CAJA OPERACIONES

Costos Fijos Mano de obra	Cant	Nov Dic 2008	Año 2009	Año 2010	Año 2011	Año 2012	Año 2013	Año 2014	Año 2015	Año 2016	Año 2017	Año 2018	Año 2019
Gerente de Mina (Superintendente de Minas)	0	734	0	12.072	0	12.072	0	0	0	0	0	0	42.072
Jefe de Ingeniería de Minas	1	679	8,151	13,973	13,973	13,973	13,973	13,973	13,973	13,973	13,973	13,973	13,973
Ingeniero Mina	1	477	5,721	9,807	9,807	9,807	9,807	9,807	9,807	9,807	9,807	9,807	9,807
Jefe de Turno mina (supervisor)	3.7	609	27,057	46,383	46,383	46,383	46,383	46,383	46,383	46,383	46,383	46,383	46,383
Capataz	3.7	609	27,057	46,383	46,383	46,383	46,383	46,383	46,383	46,383	46,383	46,383	46,383 0
Operadores	7.05	000	00.004	0	0	0	0	0	0	0	0	0	ū
Operador de Retroexcavadora	7.95	339	32,334	55,431	55,431	55,431	55,431	55,431	55,431	55,431	55,431	55,431	55,431
Operador de Perforadora	1.86	316	7,024	12,041	12,041	12,041	12,041	12,041	12,041	12,041	12,041	12,041	12,041
Ayudante de perforadora	1.86	306	6,814	11,681	11,681	11,681	11,681	11,681	11,681	11,681	11,681	11,681	11,681
Operador de camion Volquetes	37.65	339	153,187	262,606	262,606	262,606	262,606	262,606	262,606	262,606	262,606	262,606	262,606
Operador de Bulldózer	7.40	339	30,109	51,616	51,616	51,616	51,616	51,616	51,616	51,616	51,616	51,616	51,616
Operador de camion cisterna	7.40	385	34,227	58,674	58,674	58,674	58,674	58,674	58,674	58,674	58,674	58,674	58,674
Operador de motoniveladora	7.40	339	30,109	51,616	51,616	51,616	51,616	51,616	51,616	51,616	51,616	51,616	51,616
Chofer de camión taller móvil	7.40	358	31,821	54,550	54,550	54,550	54,550	54,550	54,550	54,550	54,550	54,550	54,550
Auxiliar de servicios (ayudantes)	7.40	379	33,670	57,720	57,720	57,720	57,720	57,720	57,720	57,720	57,720	57,720	57,720
Operador de bomba	3.70			28,860	28,860	28,860	28,860	28,860	28,860	28,860	28,860	28,860	28,860
Geología				0	0	0	0	0	0	0	0	0	0
Superintendente de Geología	0	634	0	0	0	0	0	0	0	0	0	0	0
Geólogo de producción	2	477	11,441	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614
Geólogo de exploración	2	477	11,441	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614
Modelador	1	477	5,721	9,807	9,807	9,807	9,807	9,807	9,807	9,807	9,807	9,807	9,807
Muestreros	7.4	306	27,182	46,597	46,597	46,597	46,597	46,597	46,597	46,597	46,597	46,597	46,597
Dibujante	3.7	330	14,636	25,091	25,091	25,091	25,091	25,091	25,091	25,091	25,091	25,091	25,091
Procesador de datos	3.7	427	18,937	32,464	32,464	32,464	32,464	32,464	32,464	32,464	32,464	32,464	32,464
Ingeniería de Minas				0	0	0	0	0	0	0	0	0	0
Superintendente de Ingeniería	1	634	7,607	13,041	13,041	13,041	13,041	13,041	13,041	13,041	13,041	13,041	13,041
Jefe de planeacion	2	477	11,441	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614
Jefe de proyectos	1	477	5,721	9,807	9,807	9,807	9,807	9,807	9,807	9,807	9,807	9,807	9,807
Topografos	7.4	427	37,875	64.928	64,928	64,928	64.928	64,928	64,928	64.928	64,928	64,928	64.928
Dibujante	2	330	7,912	13,563	13,563	13,563	13,563	13,563	13,563	13,563	13,563	13,563	13,563
Supervisor de obra	2	477	11,441	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614	19,614
5 dp 5.11.551 d5 52.14	_		,		.0,0	,	.0,0	,	.0,0	.0,0	,	.0,0	.0,0
Subtotal personal	135	12,156	598,635	1,055,091	1,055,091	1,055,091	1,055,091	1,055,091	1,055,091	1,055,091	1,055,091	1,055,091	761,340
TOTAL	US\$	489,612	4,214,816	5,812,669	5,126,782	5,033,792	5,321,168	4,674,971	5,360,235	5,370,568	5,332,238	3,489,487	1,838,950
Costo de minado	US \$/t		11.16	6.46	5.75	5.59	5.96	5.19	5.96	5.97	5.96	3.91	2.07
Costo de tratamiento US \$ 10.12 /t		0	3,823,731	9,107,089	9,024,297	9,108,000	9,031,280	9,108,000	9,108,000	9,108,000	9,051,328	9,035,693	9,006,800
Gastos Administrativos US \$ 4.60 /t		2,425,000	4,850,000	4,850,000	4,850,000	4,850,000	4,850,000	4,850,000	4,850,000	4,850,000	4,850,000	4,850,000	4,850,000
Total C.minado + C.Trat + G.Admi	US \$	2,914,612	12,888,547	19,769,758	19,001,079	18,991,792	19,202,448	18,632,971	19,318,235	19,328,568	19,233,566	17,375,180	15,695,750
Costo total de produccion	US \$/t	-2,914,612	34.11	21.97	21.31	21.10	21.52	20.70	21.46	21.48	21.50	19.46	17.64
INVERSIONES		-9,802,227											
Margen bruto		-12,716,839	6,251,546	34,202,450	48,425,389	45,790,383	38,944,494	28,331,008	26,476,341	30,772,983	20,318,804	35,955,871	38,424,519
maryen sittle		-12,7 10,039	0,231,346	34,202,430	40,423,309	45,790,363	30,344,494	20,331,006	20,470,341	30,112,963	20,310,604	30,900,671	30,424,319
	NPV US \$	174.506.625											

ANEXO B

Inversión anual en el crecimiento de la presa

	Uni	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Desmonte compatado	m3	518,792	242,527	242,527	197,059	197,059	197,059	120,059	120,059	120,059	120,059	120,059
Total material	m3	518,792	242,527	242,527	197,059	197,059	197,059	120,059	120,059	120,059	120,059	120,059
Costos de operación												
Mineral												
Carguio	US\$	128,272	59,965	59,965	48,723	48,723	48,723	29,685	29,685	29,685	29,685	29,685
Transporte	US\$	185,045	86,505	86,505	70,288	70,288	70,288	42,823	42,823	42,823	42,823	42,823
Servicios	US\$	1,301,513	608,436	608,436	494,369	494,369	494,369	301,197	301,197	301,197	301,197	301,197
	US\$											
Subtotal	US\$	1,614,830	754,906	754,906	613,379	613,379	613,379	373,705	373,705	373,705	373,705	373,705
Costos Fijos												
Mano de obra	Cant	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	0	0	0	0	0	0	0	0	0	0	0	0
Superintendente de Ingeniería	1	14,846	14,846	14,846	14,846	14,846	14,846	14,846	14,846	14,846	14,846	14,846
Jefe de proyectos	1	11,612	11,612	11,612	11,612	11,612	11,612	11,612	11,612	11,612	11,612	11,612
Topografos	2	21,158	21,158	21,158	21,158	21,158	21,158	21,158	21,158	21,158	21,158	21,158
Dibujante	1	8,586	8,586	8,586	8,586	8,586	8,586	8,586	8,586	8,586	8,586	8,586
Supervisor de obra	1	11,612	11,612	11,612	11,612	11,612	11,612	11,612	11,612	11,612	11,612	11,612
Operadores												
Operador de Cargador Frontal	1.00	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780
Operador de camion Volquetes	4.00	35,119	35,119	35,119	35,119	35,119	35,119	35,119	35,119	35,119	35,119	35,119
Operador de Bulldózer	1.00	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780
Operador de camion cisterna	1.00	9,734	9,734	9,734	9,734	9,734	9,734	9,734	9,734	9,734	9,734	9,734
Operador de motoniveladora	1.00	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780	8,780
Chofer de camión taller móvil												
Subtotal personal	14	139,005	139,005	139,005	139,005	139,005	139,005	139,005	139,005	139,005	139,005	139,005
TOTAL	US\$	1,753,835	893,912	893,912	752,385	752,385	752,385	512,710	512,710	512,710	512,710	512,710
Costo de presa	US \$/m3	3.38	3.69	3.69	3.82	3.82	3.82	4.27	4.27	4.27	4.27	4.27

NPV 5,588,843

ANEXO C Cálculos de perforación

CARACTERISTICAS DEL TERRENO	Unidad	PU US \$	V.Util	Desmonte	Mineral
Tipo de roca					Galena - Pizarra
Factor de esponjamiento	%			30%	309
Densidad	t/m3			2.5	
Producción anual requerida	t			3,312,000	900,00
Producción anual requerida	m3			1324800	30000
Altura de banco	m			6	00000
Horas por relevo	hr			8.00	8.00
				0.50	0.50
Horas muertas por relevo	hr				
Relevos por día	uni			2.00	2.00
Dias por año	dias			330.00	330.00
EQUIPO					
Consumo de combustible	gln/hr			8	
Mantenimiento	%			40%	40%
Oruga					
Impacto	uni			0.20	0.20
Abrasividad	uni			0.10	0.10
Z factor	uni			0.50	0.50
Factor Base	\$/hr			5.60	5.60
Ciclo de carga	Ψ/111			0.00	0.00
		110.0		US \$/m	US \$/m
Accesorios de Perforacion	:	US \$	m		
BROCA TRICONICA 6.3/4	uni	1,554.97	1,000.00	1.55	2.22
BARRAS BIMETALICAS TRITEN 64"X11/4"X3/4"	uni	36.40	400.00	0.09	0.09
BARRA ANTIDESGASTE TRITEN T200X DE 1" X 17"	uni	17.00	400.00		
BARRA ANTIDESGASTE TRITEN T200X DE 1" X 23"	uni	23.00	400.00		
BARRA BIMETALICA TRITEN 3/4" X 1 1/4" X 23"	uni	30.01	400.00		
BARRA PERF DRAWING 0766-39 DRILLTECH STYLE DRILL ROD 5"	uni	2,044.11	600.00	3.41	4.09
BARRA PERF 5" X 30" PIN BECO 3 1/2" BOX	uni	2,803.44	600.00	4.67	5.61
ESTABILIZADOR DW0513-18 6 1/2" 24"S-S 3 1/2" BECO PIN	uni	1,304.50	600.00	2.17	2.61
ESTABILIZADOR DE 4 ALETAS 6 3/4" X 24" PIN BECO	uni	1,347.72	600.00	2.25	2.70
DECK BUSHING ROTATIVO CENTEROLL 5"	uni	1,985.60	600.00	3.31	3.97
B4625-5 BARBER ROTARY DECK BUSHING FOR 5" DRILL ROOD	uni	2,293.16	600.00	3.82	4.59
SERVICIO DE ROSCAR CONEXIONES 3 1/2" API TO BECO BOX,SEGUN PRES: 9277	uni	375.00	200.00	1.88	1.88
SERVICIO DE RELLENADO Y MAQUINADO DE TAPA DE BUJE DE PERFORADORA S/COTIZACION	uni	76.00	200.00	0.38	0.38
ROTARY DECK BUJE CENTRALIZADOR D245S	uni	490.22	200.00	2.45	2.45
Precio del Petroleo	\$/gln			2.08	2.08
Periodo de amortización	año			5.00	5.00
Periodo en horas	hrs			20,000	20,000
RENDIMIENTOS					
Velocidad de perforacion	m/hr			25	2
Burden	m			6.00	5.2
Espaciamiento	m			6.50	6.2
Sobreperforacion	m			1	
Toneladas rotas x taladro	lt			585	59
Costo Posecion					
Precio del equipo	US\$			800,000	800,00
/ida util	año			5.00	5.0
Precio de llantas	hrs			0	
/alor Residual	US \$			800,000	800,00
Depreciacion	US \$/hr			0	
nteres	%		I	12%	12
Seguros	%		I	3.0%	3.0
nteres \$/Hr	US \$/hr		I	14.40	14.4
Seguros \$/Hr	US \$/hr			3.6	3
	US \$/Hr	I I	<u> </u>	18.00	18.0
Costo de posecion \$/Hr	UO φ/ΠΓ	<u> </u>	<u> </u>	10.00	18.0
Costo de Operación	1				
Combustible (D2) Gln/Hr	gln/hr		I	8.00	
Mantenimiento (Aceite, filtros, grasa)	US \$/hr			16.00	16.0
Reemplazo de llantas	US \$/hr		I		
Oruga (Z=5.6), I,A,Z (0.2;0.2;0.5) \$/Hr	US \$/hr		I	4.48	4.4
Costo de Reparacion	US \$/hr		I	20.00	20.0
Mano de Obra (Operador) \$/Hr)	US \$/hr			0.00	0.0
Costo de Operación	US \$/Hr	Ì		57.12	57.1
•					
Costo Posecion + Operación	US \$/Hr			75.12	75.1
Costo de accesorios de perforacion US \$/m	US \$/m			25.98	30.5
	US \$/m			28.99	34.3
Costo x m perforado US \$/m	U3 φ/111			20.33	04.0
Costo x m perforado US \$/m	103 \$/III			20.33	04.0

ANEXO D Calculo de voladura

PARAMETROS DE VOLDURA

		Mineral	Desmonte
Diametro de taladro	m	0.171	0.171
Burden	m	5.25	6.00
Espaciamiento	m	6.25	6.50
Sobreperforacion	m	1.00	1.00
Taco		1.50	2.00
Altura de banco	m	6.00	6.00
Longitud de barreno	m	7.35	7.35
Volumen roto x taladro	m3	197	234
Densidad de mineral	t/m3	3.31	
Densidad de desmonte	t/m3		2.65
Tonelaje x taladro	t	652	620
Taco	m		
Accesorios de Voladura		Mineral	Desmonte
Booster de 1 Lb	uni	1	1
Fanel/Nonel/	m	7	7
Cordon detonante	m	7	7
Mecha de seguridad	m	0.12	0.12
Calculo de explosivo x Taladro			
Kilogramos de Anfo	Kgr	378.71	339.66
Costos de voladura			
ANFO	US\$	319.02	286.13
Booster de 1 Lb	US\$	3.30	3.56
Fanel/Nonel/	US\$	14.28	15.42
Cordon detonante	US\$	1.37	1.47
Mecha de seguridad	US\$	0.02	0.02
Total agente + accesorios	US\$	337.99	306.62

Costo unitario	US \$/t	0.52	0.49
Mana da Obra			
Mano de Obra	LIC C	0.407	
Supervisor	US\$	0.137	
Capataz	US \$	0.082	
Ayudantes	US\$	0.055	
		0.273	
TOTAL COSTO X TONELADA	US \$/t	0.79	0.77

ANEXO E

Cálculos de Carguio

CARACTERISTICAS DEL TERRENO	Unidad	Desmonte	Mineral
Tipo de roca		Galena - Pizarra	Galena - Pizarra
Factor de esponjamiento	%	30%	30%
Densidad	t/m3	2.5	3
Producción anual requerida	t	3,312,000	900,000
Producción anual requerida	m3	1324800	300000
Altura de banco	m		
Horas por relevo	hr	8.00	8.00
Horas muertas por relevo	hr	0.50	0.50
Relevos por día	uni	2.00	2.00
Dias por año	dias	264.00	264.00
EQUIPO		PC 600	PC 400
Capacidad de Cuchara	m3	4.00	2.20
Factor de llenado	%		
Consumo de combustible	gln/hr	8.8	8.5
Mantenimiento	%	20%	20%
Oruga			
Impacto	uni	0.20	0.20
Abrasividad	uni	0.10	0.10
Z factor	uni	0.50	0.50
Factor Base	\$/hr	5.60	5.60
Ciclo de carga			
Tiempo de carguio	seg	10.00	25.00
Tiempo de traslado	seg	10.00	10.00
Tiempo de descarga	seg	5.00	5.00
Tiempo de retorno	seg	10.00	10.00
Total ciclo x pase	seg	35.00	50.00
Ciclo en minutos	min	0.58	0.83
Pases x hr	#/hr	102.86	72.00
Eficiencia del operador	%	0.90	0.90
Disponibilidad mecanica	%	0.95	0.95
Eficiencia operacional (min/hr) (50min/hr)	%	0.83	0.83
Pases efectivos x hr	%	72.99	51.09
Dias x mes	dias	25.00	25.00
Hrs x dia efectivo	hrs	20	20
Precio del Petroleo	\$/gln	2.08	2.08
Periodo de amortización	año	5.00	5.00
Periodo en horas	hrs	35,000	30,000

ANEXO E

RENDIMIENTOS

Produccion Requirida t/hr	t/hr	552	150
Produccion del equipo	t/hr	561.48	259.40
N° de equipos	uni	1.00	1.00
Costo Posecion			
Precio del equipo	US\$	680,000	500,000
Vida util	año	5	5
Precio de llantas	hrs	0	0
Valor Residual	US\$	680,000	500,000
Depreciacion	US \$/hr	0	0
Interes	%	12%	12%
Seguros	%	3.0%	3.0%
Interes \$/Hr	US \$/hr	6.99	6.00
Seguros \$/Hr	US \$/hr	1.7	1.5
Costo de posecion \$/Hr	US \$/Hr	8.74	7.50
Costo de Operación			
Combustible (D2) Gln/Hr	gln/hr	8.80	8.50
Mantenimiento (Aceite, filtros, grasa)	US \$/hr	3.89	3.33
Reemplazo de llantas	US \$/hr	2.00	1.00
Oruga (Z=5.6), I,A,Z (0.2;0.2;0.5) \$/Hr	US \$/hr	4.48	4.48
Costo de Reparacion	US \$/hr	4.86	4.17
Mano de Obra (Operador) \$/Hr)	US \$/hr	7.50	6.50
Costo de Operación	US \$/Hr	39.03	36.16
Costo Posecion + Operación	US \$/Hr	47.77	43.66
	-		
Costo x ton producida US \$/t	US \$/t	0.085	0.168

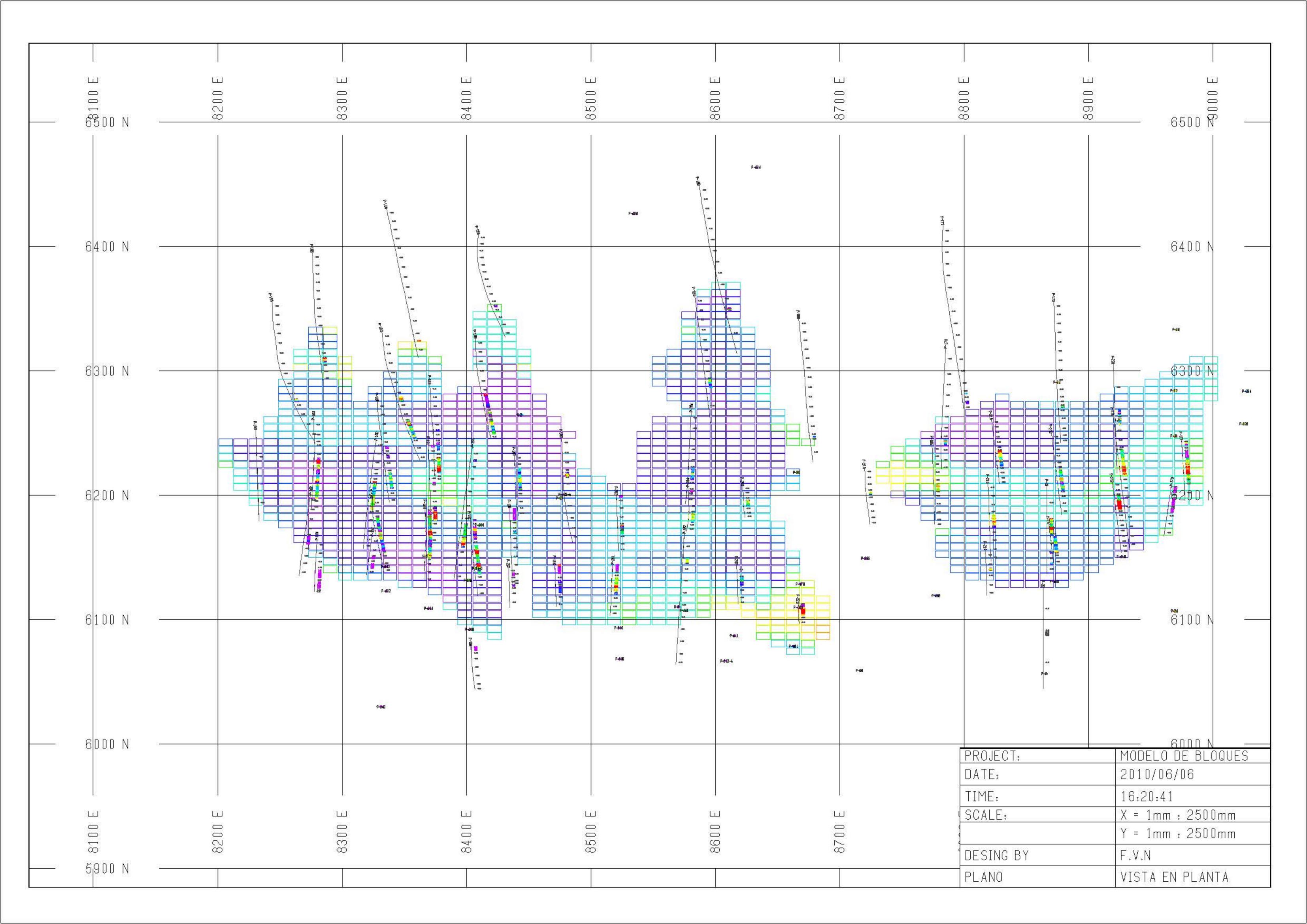
 $\mathsf{ANEXO}\:\mathsf{F}$

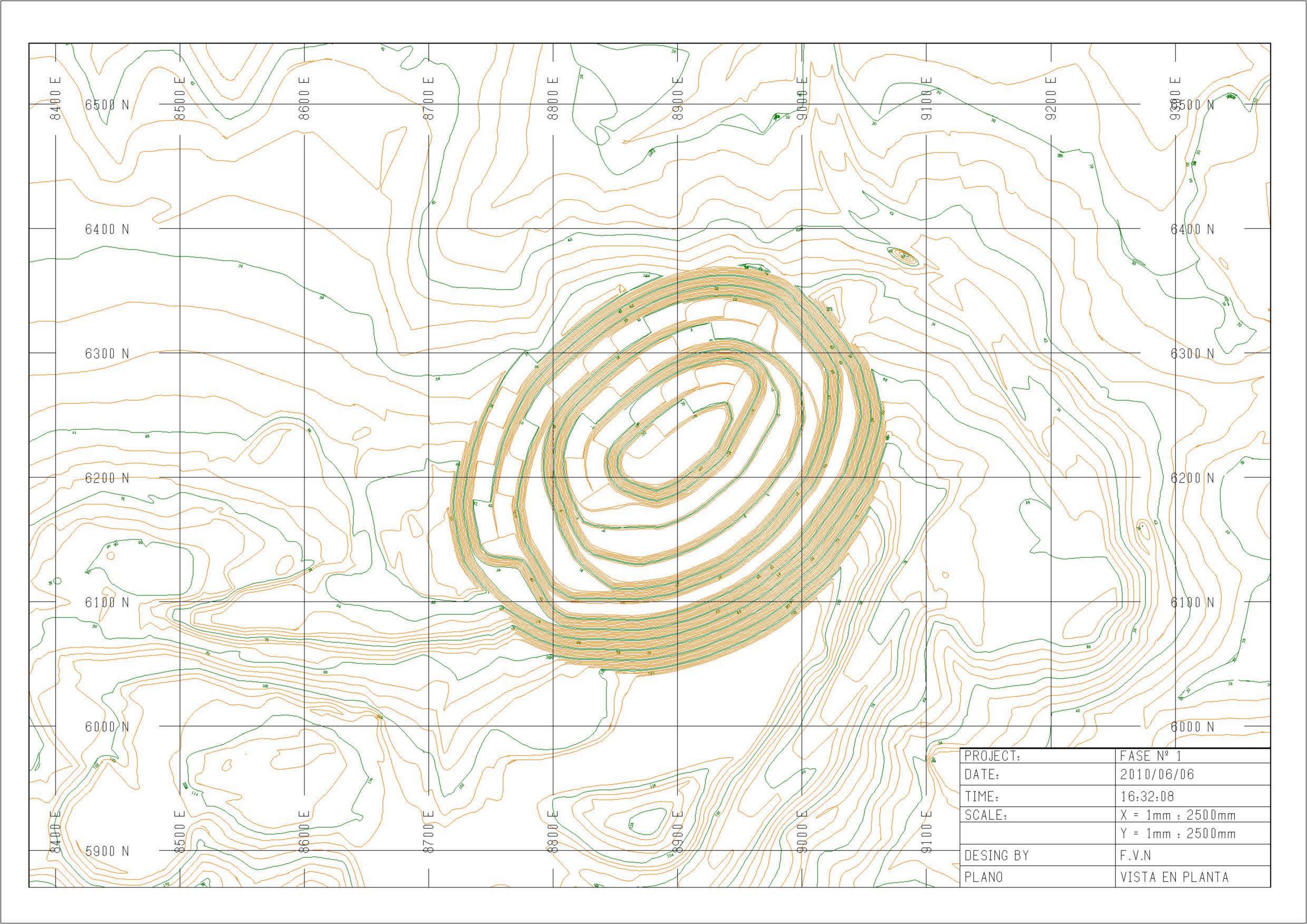
Cálculos de transporte

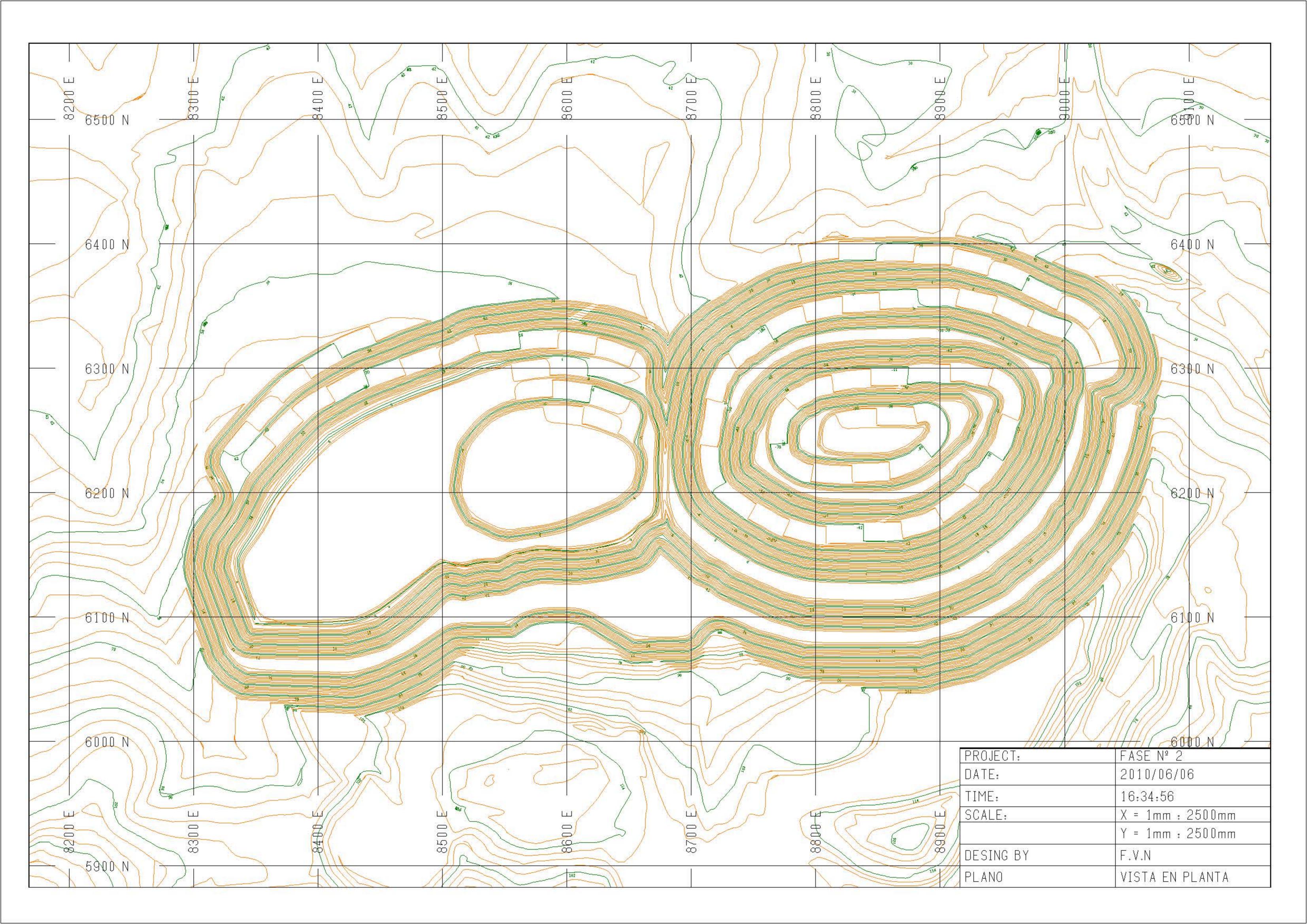
CARACTERISTICAS DEL TERRENO	Unidad	Desmonte	Mineral
Tipo de roca		Galena - Pizarra	Galena - Pizarra
Factor de esponjamiento	%	30%	30%
Densidad	t/m3	2.5	3
Producción anual requerida	t	3,312,000	900,000
Producción anual requerida	m3	1,324,800	300,000
Altura de banco	m		
Horas por relevo	hr	8.00	8.00
Horas muertas por relevo	hr	0.50	0.50
Relevos por día	uni	2.00	2.00
Dias por año	dias	330.00	330.00
EQUIPO		Desmonte	Mineral
Capacidad de Tolva	t	35.00	35.00
Factor de llenado	%	0.90	0.90
Consumo de combustible	gln/hr	6.00	6.00
Mantenimiento	%	20%	20%
Ciclo de carga			
Tiempo de carguio	seg	100.00	100.00
Tiempo de traslado	seg	240.00	259.00
Tiempo de descarga	seg	110.00	110.00
Tiempo de retorno	seg	200.00	160.00
Total ciclo	seg	650.00	629
Ciclo en minutos	min	10.83	10.48
Viajes x hr	viaj/hr	5.54	5.72
Eficiencia del operador	%	0.90	0.90
Disponibilidad mecanica	%	0.95	0.95
Eficiencia operacional (min/hr) (50min/hr)	%	0.83	0.83
Pases efectivos x hr	#/hr	3.93	4.06
Dias x mes	dias	25.00	25.00
Hrs x dia efectivo	hrs	18.00	20
Precio del Petroleo	\$/gln	2.08	2.08

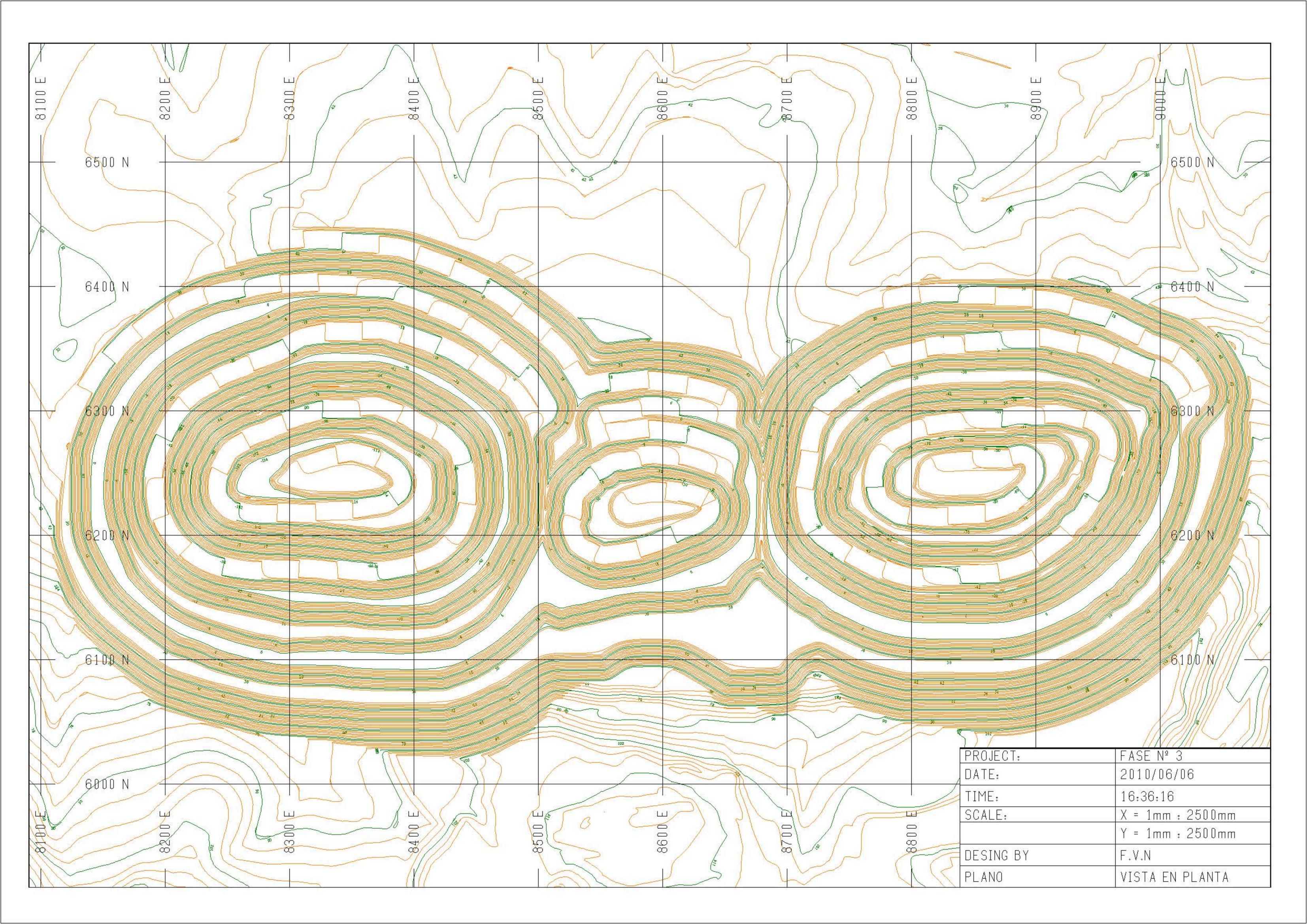
ANEXO F

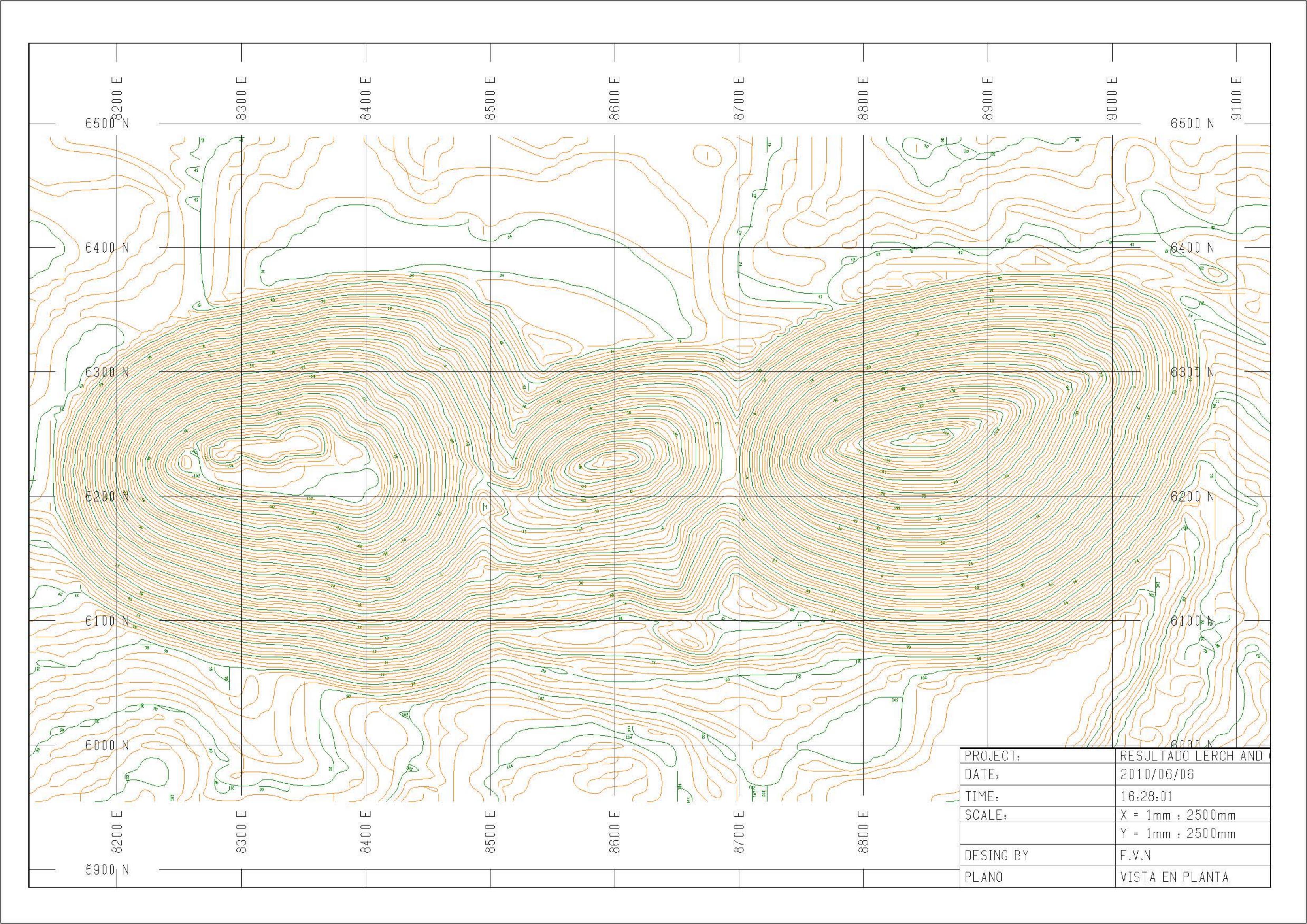
Periodo de amortización	año	3.00	3.00
Periodo en horas	hrs	180,000	180,000
RENDIMIENTOS			
Produccion Requirida t/hr	t/hr	613	150
Produccion del equipo	t/hr	105.82	109.35
N° de equipos	uni	6.00	1.00
Costo Posecion			
Precio del equipo	US\$	168,000	168,000
Vida util	año	4	4
Precio de llantas	hrs	9000	9000
Valor Residual	US \$	159,000	159,000
Depreciacion	US \$/hr	0	0
Interes	%	12%	12%
Seguros	%	3.0%	3.0%
Interes \$/Hr	US \$/hr	0.22	0.22
Seguros \$/Hr	US \$/hr	0.1	0.1
Costo de posecion \$/Hr	US \$/Hr	0.28	0.28
Costo de Operación			
Combustible (D2) Gln/Hr	gln/hr	6.00	6.00
Mantenimiento (Aceite, filtros, grasa)	US \$/hr	0.19	0.19
Reemplazo de llantas	US \$/hr	4.50	4.50
Oruga (Z=5.6), I,A,Z (0.2;0.2;0.5) \$/Hr	US \$/hr	0.00	0.00
Costo de Reparacion	US \$/hr	0.23	0.23
Mano de Obra (Operador) \$/Hr)	US \$/hr	5.50	5.50
Costo de Operación	US \$/Hr	18.40	18.40
Costo Posecion + Operación	US \$/Hr	18.68	18.68
	LIC ¢4	0 477	0.474
Costo x ton producida US \$/t	US \$/t	0.177	0.171


ANEXO G


Cálculos de equipos de servicios


CARACTERISTICAS DEL TERRENO	Unidad	Desmonte	Min / desmonte	Min / desmonte	Min / desmonte	Min / desmonte
Tipo de roca		Galena - Pizarra				
Factor de esponjamiento	%	30%	30%	30%	30%	30%
Densidad	t/m3	2.5				
Producción anual requerida	t	3,312,000	4,212,000	5832000	5832000	5832000
Producción anual requerida	m3	1324800	1,624,800	1,624,800	1,624,800	1,624,800
Altura de banco	m					
Horas por relevo	hr	8.00	8.00	8.00	8.00	8.00
Horas muertas por relevo	hr	0.50	0.50	0.50	0.50	0.50
Relevos por día	uni	2.00	2.00	2.00	2.00	2.00
Dias por año	dias	264.00	264.00	264.00	264.00	264.00
EQUIPO		Bulldozer	Motoniveladora	Cisterna	Camionetas	Pantallas
Capacidad de Cuchara	m3	5.12	4.30	0.00		2.20
Factor de llenado	%		0.00	0.00		
Consumo de combustible	gln/hr	8.00	6	4	2	3
Mantenimiento	%	20%	20%	20%		20%
Oruga						
Impacto	uni	0.20				0.20
Abrasividad	uni	0.10				0.10
Z factor	uni	0.50				0.50
Factor Base	\$/hr	5.60				5.60
Ciclo de carga						
Tiempo de carguio	seg	0.00	0.00			15.00
Tiempo de traslado	seg	0.00	0.00			10.00
Tiempo de descarga	seg	0.00	0.00			5.00
Tiempo de retorno	seg	0.00	0.00			10.00
Total ciclo x pase	seg	0.00	0.00			40.00
Ciclo en minutos	min	0.00	0.00	0.00		0.67
Eficiencia del operador	%	0.90	0.90	0.90		0.90
Disponibilidad mecanica	%	0.95	0.95	0.95		0.95
Eficiencia operacional (min/hr) (50min/hr)	%	0.83	0.83	0.83		0.83
Dias x mes	dias	25.00	25.00	25.00		25.00
Hrs x dia efectivo	hrs	20	20	20		20
Precio del Petroleo	\$/gln	2.08	2.08	2.08		3.34
Periodo de amortización	año	7.00	5.00	5.00	5.00	5.00
Periodo en horas	hrs	20,000	25,000	20,000	30,000	18,000
Costo Posecion						
	US\$	550,000	600,000	168,000	219,000	10,000
Precio del equipo Vida util		7.00				
	año	7.00		5.00		
Precio de llantas Valor Residual	hrs US \$	550,000		9000 159,000		200 9,800
Depreciacion	US \$/hr	030,000		159,000		
Interes	%	12%		12%		12%
Seguros	%	3.0%		3.0%		3.0%
Interes \$/Hr	US \$/hr	13.20		3.02		
Seguros \$/Hr	US \$/hr	3.3				0.20
Costo de posecion \$/Hr	US \$/Hr	16.50		3.78		0.25
Costo de Operación	οο ψ/ι ιι	10.00	10.00	0.10	0.21	0.20
Combustible (D2) Gln/Hr	gln/hr	8.00	6.00	4.00	2.00	3.00
Mantenimiento (Aceite, filtros, grasa)	US \$/hr	5.50				
Reemplazo de llantas	US \$/hr	0.00				
Oruga (Z=5.6), I,A,Z (0.2;0.2;0.5) \$/Hr	US \$/hr	4.48				
Costo de Reparacion	US \$/hr	6.88		2.10		
Mano de Obra (Operador) \$/Hr)	US \$/hr	0.00		0.00		
Costo de Operación	US \$/Hr	33.495		12.1	1.82	
Costo Posecion + Operación	US \$/Hr	50.00		15.88		
	110 47					
Costo x ton producida US \$/t	US \$/t	0.003	0.002	0.001	0.000	0.001


ANEXO H Cálculo de Cut Off


	Cut off Life of mine	
Costos de Mina		
	Sin M.O.	US\$/ton Movida
	Mineral	0.69
	Desmonte	0.61
	Bombeo	0.51
	Tot mina/ton tratada	4.340
	M.O. Mina	1.449
	Ausenteismo	
	energia	0.289
	SubTotal	6.077
		F 40
Plant (To be confirmed)	energy	5.10
	Reactivos	3.5
	Aceros Mantenimiento	1.2
	M.O.	3.0 1.42
	M.O.	1.42
	SubTotal	14.06
Administracion	Managament for	2.70
Auministración	Management fee M.O.	2.78 0.51
	energy	0.51
	Other costs	1.56
	Other costs	1.30
	SubTotal	5.39
Total General ex works		25.526
	Exploration	3.33
	LAPIOIALIOII	ა.აა
Cut off		28.86

