UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA GEOLÓGICA, MINAS Y METALURGIA

"OPTIMIZACIÓN DE MOLIENDA EN OPERACIÓN"

INFORME DE INGENIERÍA

Para optar el Título Profesional de:

INGENIERO METALURGISTA

Navarro Baldeón Tito Enrique

LIMA – PERÚ 2006

DEDICATORIA

La presente Tesis es dedicada a mis Padres Iris y Tito, a mi esposa Maria y mis hijos Iris y Nicolás

RESUMEN

El trabajo de **Optimización de molienda en operación** lo describimos con un circuito cerrado, que esta compuesto por un molino primario y un hidrociclón, dicho molino recibe el alimento fresco, la descarga del clasificador – hidrociclón - y agua, esta ultima la cambiamos disminuyendo el caudal, de tal modo que aumentamos la densidad de descarga del molino y como consecuencia, aumentamos el tiempo de residencia de la partícula del molino, a su vez aumentamos el caudal de agua debajo del trommel, para no variar la densidad de pulpa de alimento al clasificador, una vez estabilizado el sistema se toman muestras, cada hora de la descarga del molino, el alimento, la descarga y el rebose del clasificador, para probar que las densidades de pulpa de estos se mantienen constantes y para su posterior análisis granulométrico cálculos necesarios; para de esta manera concluir que el ensayo efectuado fue positivo.

De acuerdo al análisis granulométrico y cálculos efectuados el producto fino y la eficiencia de separación del clasificador es mejor comparado con otras guardias, a pesar de tener en este caso un alimento mas grueso, debido a la humedad propia de la época.

Si en algún caso se recarga la pulpa en la remolienda y rebalsa el molino, el obtener un producto mas fino en la molienda primaria, sirve para salir de este percance.

La finalidad de este ensayo fue para obtener una mejor recuperación, del concentrado de Cobre- Plata y se logro a cabalidad, aunque se obtuvo también un mayor desplazamiento de plomo, a dicho concentrado justificado por la fácil formación de lamas del plomo.

CONTENIDO

I ÍNDICE	
II INTRODUCCIÓN	08
III UBICACIÓN Y ACCESO	09
III.1 Mapas de ubicación	
III.1.1 Ubicación del departamento de Junin	10
III.1.2 Ubicación del Distrito de Morococha	11
III.2 Flow Sheet Concentradora Santa Rita S.A.	12
III.3 Leyenda de Flow Sheet Concentradora Santa Rita S.A.	13
IV MINERALOGÍA	14
V EXPLICACIÓN Y EVALUACIÓN DE PROCESOS	
V.1. Sección Chancado	
V.1.1 Flow Sheet de la sección chancado	15
V.1.2 Leyenda del Flow Sheet de la sección chancado	16
V.2 Sección Molienda	
V.2.1 Flow Sheet de la sección Molienda	17
V.2.2 Leyenda del Flow Sheet de la sección molienda	18
V.2.3 Flow Sheet de la sección Molienda con adición de reactivos	19
V.2.4 Balance de materia del circuito molienda-clasificación	20
V.2.4.1 Balance de masa – Sección molienda	20
V.2.4.2 Evaluación del análisis granulométrico y corrección	
matemática por el método de Lagrange	25
V.2.4.2.1 Fundamento Teórico	25
V.2.4.2.2 Evaluación de los hidrociclones D15 de la molienda	
Primaria	28
V.2.4.2.3 Curva partición simple E(x) vs. Xprom de los	
hidrociclones D15 de la molienda Primaria	30

	·					
V.2.4.2	2.4 Curva partición corregida E(x) vs. Xprom de los					
	hidrociclones D15 de la molienda Primaria	31				
V.2.4.3 d_{50} y eficiencia de clasificación 32						
V.2.4.	3.1 Fundamento Teórico	32				
V.2.4.	3.2 Gráfico de las curvas de Schumann-Gaudin y Eficiencia					
	Total de los hidrociclones D15 de la molienda Primaria	33				
V.2.4.4	4 Evaluación del análisis granulométrico y corrección					
	matemática por el modelo Lynch-Rao	34				
V.2.4.4	4.1 Curvas de eficiencia real y corregida por el modelo					
	Lynch-Rao	36				
V.3 S	ección Flotación					
V.3.1	Flow Sheet de la sección flotación	37				
V.3.2	Flow Sheet de la sección flotación con adición de reactivos	38				
V.3.3	Balance de masa del circuito remolienda-clasificación	39				
V.3.4	Evaluación de nidos de Hidrociclones D6 sección					
	remolienda	40				
V.3.5	Curva de partición simple del nido de hidrociclones					
	D6 sección remolienda	42				
V.3.6	Curva de partición corregida del nido de hidrociclones					
	D6 sección remolienda	43				
V.3.7	Curva de Schumann-Gaudin del nido de hidrociclones					
	D6 sección remolienda	44				
V.4.1	Balance metalúrgico	45				
V.5 S	ección espesamiento y filtrado					
V.5.1	Flow Sheet de la sección espesamiento y filtrado	49				
V.5.2	Leyenda del Flow Sheet de la sección espesamiento y filtrado	50				
V.5.3	Balance metalúrgico de las muestras tomadas en los filtros	51				

VI. OPTIMIZACIÓN DE MOLIENDA EN OPERACIÓN	52
VI.1 Descripción del proceso	52
VI.2 Flow Sheet del Molino 1 con datos de trabajo	54
VI.3 Evaluación del análisis granulométrico y corrección	
matemática por el método de Lagrange	55
VI.3.1 Curva partición simple E(x) vs. Xprom del hidrociclón D15	
del molino 1	57
VI.3.2 Curva partición corregida E(x) vs. Xprom del hidrociclón D1	5
del molino 1	58
VI.3.3 Curvas de Schumann-Gaudin y Eficiencia	
Total del hidrociclón D15 del molino 1	59
VI.3.4 Evaluación del análisis granulométrico y corrección	
matemática por el modelo Lynch-Rao	60
VI.3.5 Balance metalúrgico del día en que se efectuó la prueba	63
VII. DISCUSIÓN Y ANÁLISIS DE CÁLCULOS Y	
RESULTADOS	65
VIII. CONCLUSIONES	66
IX. CONSUMO DIARIO DE REACTIVOS Y BOLAS	67
X. BIBLIOGRAFÍA	

APÉNDICE

Figura N° 1 Ubicación del departamento de Junin	10
Figura N° 2 Ubicación del Distrito de Morococha	11
Figura N° 3. Flow Sheet Concentradora Santa Rita S.A	12
Figura N° 4. Flow Sheet de la sección Chancado	15
Figura N° 5. Flow Sheet de la sección Molienda	17
Figura. Nº 6. Flow Sheet de la sección molienda con adición	
de reactivos.	19
Figura N° 7. Flow Sheet para calculo de balance de masa	22
Figura N° 8. Balance de masa – Sección molienda	24
Figura N° 9. Curva partición simple E(x) vs. Xprom de los	
hidrociclones D15 de la molienda primaria	30
Fugura N° 10. Curva de partición corregida E(x) vs. Xprom.	
para el hidrociclon D15 del molino 1	31
Figura N° 11. Curvas de Schumann-Gaudin para el	
Hidsrociclon D15 del molino 1	33
Figura N° 12. Curvas de eficiencia real y corregida	36
Figura N° 13. Flow Sheet de la sección flotación	37
Figura N° 14. Flow Sheet de la sección flotación	
con adición de reactivos	38
Figura N° 15. Balance de masa del circuito remolienda	39
Figura N° 16. Curva de partición simple del nido de	
hidrociclones D6 sección remolienda	42
Figura 17. Curva de partición corregida del nido de	
hidrociclones D6 sección remolienda	43
Figura N° 18. Curvas de Schumann - Gaudin del nido de	
hidrociclones D6 sección remolienda	44

Figura N° 19. Flow Sheet de la se espesamiento	
y filtrado	49
Figura N° 20. Flow Sheet del molino 1 con datos	54
Figura N° 21. Curva partición simple E(x) vs. Xprom	
del hidrociclon D15 del molino 1	57
Figura N° 22. Curva partición corregida E(x) vs. Xprom	
del hidrociclon D15 del molino 1	58
Figura N° 23. Curvas de Schumann-Gaudin del	
hidrociclon D15 del molino 1	59
Figura N° 24. Curvas de % de Partición vs. di	62

7

INTRODUCCIÓN

El informe que presento a continuación sobre **optimización de molienda en operación**, es el resultado de las experiencias realizadas en el proceso operativo de la planta concentradora de Compañía Minera Santa Rita S.A. Unidad Sacracancha y en su laboratorio Metalúrgico; desde el 12 de enero al 14 de marzo de 1998.

Este proceso se efectúo con la finalidad de obtener mejores recuperaciones en el proceso de flotación por ello fue necesario buscar un punto crítico, a través del cual se obtenga estos resultados en el proceso de molienda, además de tener parámetros que nos permitan jugar con la densidad de descarga de los molinos primarios, a fin de obtener dichas recuperaciones.

Otra de las causas fue por la excesiva humedad del Alimento (F) propia de la época por las continuas lluvias, haciendo que dicho alimento eleve su granulometría a 100% -m1", siendo una granulometría normal de alimento 100% -m 5/8".

Para este caso fue necesario obtener una molienda más fina – 50-51% -m200, de acuerdo a las prácticas realizadas en el laboratorio metalúrgico, pues con ello se logro una mejor liberación de la mena, cabe resaltar que solamente se tomo datos del molino primario Nº 1, pero se hizo que los demás molinos primarios trabajen con las mismas densidades de pulpa, a fin de concordar con el informe metalúrgico de la guardia.

Durante los dos meses de permanencia en esta unidad, he podido abarcar todas estas operaciones mencionadas, que se realizan en la planta concentradora, aplicando todo lo impartido en el ALMA MATER referente al procesamiento de minerales polimetálicos.

III. UBICACIÓN Y ACCESO UBICACIÓN

La planta concentradora de la compañía se encuentra ubicada en el paraje de Sacracancha, Distrito de Morococha, Provincia de Yauli, Departamento de Junín.

ACCESO

La planta concentradora es accesible partiendo de la ciudad de Lima, por la carretera central a la altura del kilómetro 144 tomando como referencia la mina Manuelita – 3.5 horas- ; se toma un desvío a la derecha, con carretera afirmada recorriendo 5 kilómetros –5 minutos-, la altitud de la planta esta a 4600 m.s.n.m.

Figura N° 1.

III.1.1 Ubicación del departamento de Junin

Figura N° 2 III.1.2 Ubicación del Distrito de Morococha

III 2. Flow Sheet Concentradora Santa Rita S.A.

III.3 Leyenda de Flow Sheet Concentradora Santa Rita S.A.

N°	DESCRIPCIÓN
1	Tolva de gruesos
2	Grizzly 4x8' de rieles abertura 2 ¹ / ₂ "
3	Chancadora de quijadas Allis Challmers 24x36"
4	Faja transportadora Nº 1
5	Tolva intermedia
6	Faja transportadora N° 2
7	Zaranda vibratoria 4x8' abertura 2"
8	Chancadora de quijadas Allis Challmers 10x24"
9	Faja transportadora N° 3
10	Faja transportadora N° 4
11	Electroiman
12	Zaranda vibratoria 6x12' abertura 1" variable
13	Faja transportadora N° 5
14	Chancadora Symons de 3' de cabeza corta
15	Faja transportadora N° 7
16	Faja transportadora N° 6
17	Zaranda vibratoria 6x12' abertura 5/8" variable
18	Faja transportadora N° 8 reversible
19	Faja transportadora N° 9 reversible
20	Faja transportadora N° 10 reversible
21	Tolva de finos para el molino1
22	Tolva de finos para el molino 2
23	Tolva de finos para el molino 3
24	Molino 7x7 COMESA N°1
25	Molino 7x7 COMESA N°2
26	Molino 7x7 COMESA N°3
27	Hidrociclon D15/D10 N°1
28	Hidrociclon D15/D10 N°2
29	Hidrociclon D15/D10 N°3
30	Molino 7x7 COMESA N°4
31	Nido de Hidrociclones D6
32	Celda W.S. 8x10' N°1 BULK
33	Celda W.S. 8x10 [°] N°2 BULK
34	Celda W.S. 8x10' N°3 BULK
35	Banco de celdas CLEANER BULK
36	Banco de celdas ROUGHER BULK
3/	Banco de celdas SCAVENGER BULK
38	Celda W.S. 10×10^{-1} Cinc
39	Celda W.S. 10X10 IN ² Clinc
40	Danco de celuas ULEANER UNC Paneo de coldos DOUCHER Cinc
41	Banco de coldos SCAVENCED Cinc
42	Acondicionador do BULK nara Sonaración Cu. A a do Dh
43	Ranco de caldas CLEANER Separación Cu. A a do Dh
<u> </u>	Banco de celdas ROUGHER Separación Cu-Ag de Pb
-+J //6	Banco de celdas SCAVENGER Separación Cu-Ag de Ph
+0	Danco de veluas SCA y ENOLIX Separación Cu-Ag de 10

IV MINERALOGÍA

Las rocas tienen origen hidrotermal, siendo estos de naturaleza metálica, teniendo como mena sulfuros de Plomo (galena), Cinc (esfalerita), sulfoantimoniuro de Cobre (tetraedrita), calcopirita y sulfuros de Plata asociados a este último. Las gangas están formadas por piritas, rodocrosita, baritina, cuarzo, calizas, pirolusita, andesita, etc.

Los minerales procesados en la planta provienen de las minas Manuelita, Codiciada, Estaca Olvidada y tajo Nelly; siendo estas de dos tipos: Frescos que contienen sulfuros y Alterados donde los sulfuros están asociados a óxidos, en este último caso solo se flota el plomo asociado a la plata. De las diferentes minas se obtienen minerales combinados que en promedio tienen las siguientes leyes de cabeza:

Cobre % : 0.40 – 0.65 Plomo % : 2.00 – 3.30 Cinc % : 3.90 – 5.80 Plata oz/TC : 6.30 – 10.30

Figura N° 4 V.1.1 Flow Sheet de la sección Chancado

V.1.2 Leyenda del Flow Sheet de la sección chancado

N°	DESCRIPCIÓN
1	Tolva de gruesos
2	Grizzly 4x8' de rieles abertura 2 $\frac{1}{2}$ "
3	Chancadora de quijadas Allis Challmers 24x36"
4	Faja transportadora Nº 1
5	Tolva intermedia
6	Faja transportadora N° 2
7	Zaranda vibratoria 4x8' abertura 2"
8	Chancadora de quijadas Allis Challmers 10x24"
9	Faja transportadora N° 3
10	Faja transportadora Nº 4
11	Electroimán
12	Zaranda vibratoria 6x12' abertura 1" variable
13	Faja transportadora N° 5
14	Chancadora Symons de 3' de cabeza corta
15	Faja transportadora N° 7
16	Faja transportadora N° 6
17	Zaranda vibratoria 4x8' abertura 5/8" variable
18	Faja transportadora N° 8 reversible
19	Faja transportadora N° 9 reversible
20	Faja transportadora N° 10 reversible
21	Tolva de finos para el molino 1 Capacidad 205 TM
22	Tolva de finos para el molino 2 Capacidad 285 TM
23	Tolva de finos para el molino 3 Capacidad 295 TM

Figura N° 5 V.2.1 Flow Sheet de la sección Molienda

V.2.2 Leyenda del Flow Sheet de la sección molienda

N°	DESCRIPCIÓN
1	Hidrociclón D15 N°1, ϕ vortex=3 1/16", ϕ ápex= 1 5/8", H= 10 $\frac{3}{4}$ "
2	Hidrociclón D10 N°1, ϕ vortex=3 1/16", ϕ ápex=1 5/8"
3	Hidrociclón D15 N°2, ϕ vortex=3 1/16", ϕ ápex= 1 5/8", H= 10 $\frac{3}{4}$ "
4	Hidrociclón D10 N°2, ϕ vortex=3 1/16", ϕ ápex=1 5/8"
5	Hidrociclón D15 N°3, ϕ vortex=3 1/16", ϕ ápex= 1 5/8", H= 10 $\frac{3}{4}$ "
6	Hidrociclón D10 N°3, ϕ vortex=3 1/16", ϕ ápex=1 5/8"
7	Molino Nº1 7X7' 22 r.p.m.
8	Molino N°2 7X7' 23 r.p.m.
9	Molino N°3 7X7' 23 r.p.m.
10	Bomba Nº1 5x4" 1250 r.p.m
11	Bomba N°2 5x4" 1250 r.p.m
12	Bomba N°3 5x4" 1250 r.p.m
13	Bomba Nº4 5x4" 1250 r.p.m
14	Bomba N°5 5x4" 1250 r.p.m
15	Bomba N°6 5x4" 1250 r.p.m

Figura. N° 6

V.2.3 Flow Sheet de la sección molienda con adición de reactivos.

V.2.4 Balance de materia del circuito molienda-clasificación

La evaluación de molienda-clasificación es muy importante; para saber si la liberación de partículas está en un grado óptimo, si la carga circulante y eficiencia del clasificador están dentro de los parámetros de trabajo de la planta, para ello es necesario tomar puntos de muestreo con los cuales vamos a realizar un análisis granulométrico por mallas, tanto del Alimento (F), rebose (R) y descarga (D).

Con estos datos vamos a desarrollar modelos matemáticos adecuados, capaces de describir el comportamiento de hidrociclones operando en circuitos cerrados molienda-clasificación, miras a una mayor optimización del proceso. El modelo utilizado tiene como tarea cuantificar los efectos de las variables operacionales, para alcanzar un máximo en la optimización.

El trabajo se divide en dos partes:

- Balance de masa.
- Evaluación de clasificación.

V.2.4.1 Balance de masa

Son necesarios los siguientes datos:

Alimento al molino en toneladas métricas por día.

Densidades de pulpa del:

Alimento al hidrociclón (W_F)

OVER del hidrociclón (W₀)

UNDER del hidrociclón (W_U).

Hallamos:

Gravedad específica: sp-gr.

Porcentaje de humedad : %H₂O = $\frac{(\text{Peso Húmedo - Peso Seco}) *100}{\text{Peso Húmedo}}$ Toneladas Métricas secas por día : TMSD= $\frac{\text{TMHD}(100 - \% \text{ H}_2\text{O})}{100}$ Constante de sólidos : K = $\frac{\text{sp-gr} - 1}{\text{sp-gr}}$ Porcentaje de sólidos : P = $\frac{(W - 1000) * 100}{W * \text{K}}$ Dilución : D = $\frac{100 - \text{P}}{\text{P}}$

Balance agua en el clasificador:

 $Do O + Du U = D_F F$

Pero:

O = FF = U + OLuego:

> Do F + Du U = D_FU + D_FF U (Du - D_F) = F (D_F - Do) $\frac{U}{F} = \frac{D_F - D_O}{D_H - D_F}$

Porcentaje de carga circulante: pcc = U / F

U = pcc * F

Luego: $TMH_2OD = D * TMSD$ a $GH_2OP M$

 $TMpulpaD = TMSD + TMH_2OD$

$$m^3 pulpaD = \frac{TMpulpaD}{W/1000}$$
 a GPPM

Calculo de Balance de masa del molino 1

Bomba 5x4

Figura N° 7

DATOS Y CÁLCULOS

$(\mathbf{V}_{\alpha}/\mathbf{f}_{t})$	Densidad de	Densidad de	Densidad de	Densidad de	
(K g/It)	pulpa pulpa		pulpa	pulpa	
F	Descarga del molino	f	U	0	
4.68	1840	1766	2368	1368	

Sp-gr = 2.89 gr/cc

 $H_2O = 5.04~\%$

Tonelaje = 4.68 x 24.5 x 3 = 343.98 TMHD

TMSD = 326.643

F	U	0			
TMSD = 1128.552	TMSD = 801.909	TMSD = 326.643			
P = 69.64 %	P = 92.75 %	P = 43.19 %			
D = 0.436 : 1	D = 0.078 : 1	D = 1.315 : 1			

p.c.c. = 2.455

F	U	О
$TMH_2O = 492.049$	$TMH_2O = 62.549$	$TMH_2O = 429.536$
TMpulpaD = 1620.601	TMpulpaD = 864.458	TMpulpaD = 756.179
$m^{3}pulpaD = 917.668$	$m^{3}pulpaD = 365.058$	$m^{3}pulpaD = 552.762$

Balance de masa – Sección molienda

V.2.4.2 Evaluación del análisis granulométrico y corrección matemática por el método de Lagrange

V.2.4.2.1 Fundamento Teórico

Diagrama del Hidrociclón

Balance de pesos:

F = U + O _____(1)

Balance de mallas:

 $F_{(x)F} F = f_{(x)U} U + f_{(x)O} O$ (2)

(2) en (1):

 $f_{(x)\,F}\left(U+O\right)=f_{(x)U}\,U+f_{(x)O}\,O$

 $(f_{(x)F} - f_{(x)U}) U = (f_{(x)O} - f_{(x)F}) O$

$$\frac{U}{O} = \frac{(f_{(x)O} - f_{(x)F})}{(f_{(x)F} - f_{(x)U})}$$

Se procede al análisis granulométrico de los productos.

Sean los pesos:

$$O = 1$$
$$U = \alpha$$
$$F = \alpha + 1$$

De (2) se tiene:

$$f_{(x) F} (\alpha + 1) = f_{(x)U} + f_{(x)O}$$

$$(f_{(x)F} - f_{(x)U}) \alpha + (f_{(x)F} - f_{(x)O}) = \Delta i \quad (3)$$

$$S = \sum \Delta^{2} i = \sum [(f_{(x)F} - f_{(x)U}) \alpha + (f_{(x)F} - f_{(x)O})]$$

$$\frac{\partial S}{\partial \alpha} = 0$$

$$\sum 2 [\alpha (f_{(x)F} - f_{(x)U}) + (f_{(x)F} - f_{(x)O})] (f_{(x)F} - f_{(x)O}) = 0$$

$$\alpha = \frac{\sum (f_{(x)F} - f_{(x)O})(f_{(x)F} - f_{(x)U})}{\sum (f_{(x)F} - f_{(x)U})^2}$$

Definiendo los coeficientes ajustados:

$$\overline{f}_{(x) F} = f_{(x) F} - \Delta f_{(x) F}$$
$$\overline{f}_{(x)U} = f_{(x)U} - \Delta f_{(x)U}$$
$$\overline{f}_{(x)O} = f_{(x)O} - \Delta f_{(x)O}$$

Reemplazando estos valores ajustados en (2):

 $\overline{f_{(x)}}_{F} (\alpha + 1) = \overline{f_{(x)U}} \alpha + \overline{f_{(x)O}}$ $(f_{(x)}F - \Delta f_{(x)}F) (\alpha + 1) = (f_{(x)U} - \Delta f_{(x)U}) \alpha + (f_{(x)O} - \Delta f_{(x)O})$ $(f_{(x)}F - \Delta f_{(x)}F) \alpha + (f_{(x)}F - \Delta f_{(x)}F) = (f_{(x)U} - \Delta f_{(x)U}) \alpha + (f_{(x)O} - \Delta f_{(x)O})$ $(f_{(x)F} - f_{(x)U}) \alpha + (f_{(x)F} - f_{(x)O}) = (\Delta f_{(x)F} - \Delta f_{(x)U}) \alpha + (\Delta f_{(x)F} - \Delta f_{(x)O})$ De (3):

$$\Delta i = (\Delta f_{(x)F} - \Delta f_{(x)U}) \alpha + (\Delta f_{(x)F} - \Delta f_{(x)O})$$

Aplicando el método de LAGRANGE:

 $Sm=Si~+2\sum\lambda j~(\mbox{condición}~j~)$

Donde:

$$\begin{split} Si &= (f_{(x)F})^2 + (f_{(x)U})^2 + (f_{(x)O})^2 \\ S_T &= (f_{(x)F})^2 + (f_{(x)U})^2 + (f_{(x)O})^2 + 2 \ \lambda i \ \{ \ \Delta i - \alpha \ (\ \Delta f_{(x)F} - \Delta f_{(x)U}) - (\Delta f_{(x)F} - \Delta f_{(x)O}) \ \} \end{split}$$

Donde:

$$\Delta i = \alpha \left(\Delta f_{(x)F} - \Delta f_{(x)U} \right) + \left(\Delta f_{(x)F} - \Delta f_{(x)O} \right)$$

$$\frac{\partial S_{T}}{\partial \Delta f_{(x)F}} = 0 \Longrightarrow \Delta f_{(X)F} = (\alpha + 1)\lambda i \rightarrow (5)$$

$$\frac{\partial S_{T}}{\partial \Delta f_{(x)O}} = 0 \Longrightarrow \Delta f_{(X)O} = \lambda i \rightarrow (6)$$

$$\frac{\partial S_{T}}{\partial \Delta f_{(x)U}} = 0 \Longrightarrow \Delta f_{(X)U} = \alpha \lambda i \rightarrow (7)$$
(4)

Reemplazando: (5), (6) y (7); se obtiene:

$$\lambda i = \frac{\Delta i}{2\alpha^2 + \alpha + 1}$$

V.2.4.2.2 EVALUACIÓN DE LOS HIDROCICLONES D15 DE LA

MOLIENDA PRIMARIA

Alimento (F) = 100% -m 5/8"

Análisis granulométrico de los productos de clasificación

Malla	X(m)	AL	IMENTO	(F)	REBOSE (R)			DESCARGA (D)			
		f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	рсс
35	500	18.60	18.60	81.40	4.38	4.38	95.62	38.82	38.82	61.18	0.7033
48	350	11.07	29.67	70.33	7.64	12.02	87.98	18.06	56.88	43.12	0.6487
65	250	12.38	42.05	57.95	10.05	22.07	77.93	17.99	74.87	25.13	0.6088
100	150	8.97	51.02	48.98	8.14	30.21	69.79	9.89	84.76	15.24	0.6168
150	100	8.70	59.72	40.28	12.04	42.25	57.75	6.77	91.53	8.47	0.5492
200	74	5.36	65.08	34.92	8.03	50.28	49.72	2.83	94.36	5.64	0.5055
-200		34.92	100.00	0.00	49.72	100.00	0.00	5.64	100.00	0.00	
		100			100			100			0.6054

TMSD = 110.9

W	W	WT	CP	CP
R/F	D/F	R/F + D/F	R/F	D/F
4.8574	26.061	30.919	0.1571	0.8429
8.4728	12.124	20.597	0.4114	0.5886
11.145	12.077	23.223	0.4799	0.5201
9.0273	6.6396	15.667	0.5762	0.4238
13.352	4.545	17.897	0.7461	0.2539
8.9053	1.8999	10.805	0.8242	0.1758
55.139	3.7864	58.926	0.9357	0.0643

Corrección matemática por el método de LAGRANGE

malla	f(x)F	f(x)R	f(x)D	f(x)F -f(x)R	f(x)F - f(x)D	Δi	λί	Df(x)F	Df(x)R	Df(x)D
35	18.60	4.38	38.82	14.22	-20.22	2.7225	1.229	1.9278	1.229	-0.699
48	11.07	7.64	18.06	3.43	-6.99	-0.545	-0.246	-0.386	-0.246	0.1398
65	12.38	10.05	17.99	2.33	-5.61	-0.86	-0.388	-0.609	-0.388	0.2207
100	8.97	8.14	9.89	0.83	-0.92	0.3069	0.1385	0.2173	0.1385	-0.079
150	8.70	12.04	6.77	-3.34	1.93	-2.243	-1.012	-1.588	-1.012	0.5756
200	5.36	8.03	2.83	-2.67	2.53	-1.231	-0.556	-0.872	-0.556	0.3161
-200	34.92	49.72	5.64	-14.80	29.28	1.8492	0.8347	1.3094	0.8347	-0.475

 $\alpha = 0.5686$

29

Mallas corregidas

X(m)	ALII	ALIMENTO (F) REBOSE (EBOSE (R)	2) DESCARGA (D)			рсс	
	f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	
500	16.67	16.67	83.33	3.15	3.15	96.85	39.52	39.52	60.48	0.5918
350	11.46	28.13	71.87	7.89	11.04	88.96	17.92	57.44	42.56	0.5831
250	12.99	41.12	58.88	10.44	21.48	78.52	17.77	75.21	24.79	0.5761
150	8.75	49.87	50.13	8.00	29.48	70.52	9.97	85.18	14.82	0.5776
100	10.29	60.16	39.84	13.05	42.53	57.47	6.19	91.37	8.63	0.5648
74	6.23	66.39	33.61	8.59	51.11	48.89	2.51	93.89	6.11	0.5555
	33.61	100.00	0.00	48.89	100.00	0.00	6.11	100.00	0.00	
	100			100			100			0.5748

W	W	WΤ	CP	CP
R/F	D/F	R/F + D/F	R/F	D/F
30.878	220.2	251.08	0.123	0.877
77.276	99.853	177.13	0.4363	0.5637
102.29	99.012	201.3	0.5081	0.4919
78.409	55.547	133.96	0.5853	0.4147
127.9	34.515	162.42	0.7875	0.2125
84.135	14.008	98.143	0.8573	0.1427
479.04	34.071	513.11	0.9336	0.0664

Datos para la curva de partición simple

xprom	E(x)D	E(x)R
500	84.29	15.71
418.33	58.864	41.136
295.8	52.007	47.993
193.65	42.38	57.62
122.47	25.395	74.605
86.023	17.583	82.417
52.326	6.4256	93.574

Datos para la curva de partición corregida

xprom	E(x)D	E(x)R
500	87.702	12.298
418.33	56.373	43.627
295.8	49.186	50.814
193.65	41.467	58.533
122.47	21.251	78.749
86.023	14.273	85.727
52.326	6.6401	93.36

Figura N° 9

Figura N°10

V.2.4.3 D₅₀ y eficiencia de clasificación

V.2.4.3.1 Fundamento Teórico

Del gráfico F(x) vs malla se obtiene el D₅₀

Eficiencia de clasificación para finos (-D₅₀):

$$E_{R} = \frac{\text{fracción peso de finos que va al rebose (-d_{50})}}{\text{peso total de finos en la alimentación (-d_{50})}}$$

$$E_R = \frac{Y_R O}{Y_F F} = \frac{Y_R (Y_F - Y_D)}{Y_F (Y_R - Y_D)}$$

Eficiencia de clasificación para gruesos (+D₅₀):

$$E_D = \frac{\text{fracción peso de gruesos que va al rebose (+d_{50})}}{\text{peso total de gruesos en la alimentación (+d_{50})}}$$
$$E_R = \frac{R(100 - Y_D)}{F(100 - Y_F)} = \frac{(Y_F - Y_R)*(100 - Y_D)}{(Y_D - Y_R)*(100 - Y_F)}$$
$$Y_F = \% \text{ finos en el alimento}$$

 Y_R = % finos en el rebose

 $Y_D = \%$ finos en la descarga.

 $E_{Ftotal} = E_R * E_D$

E_{Total} = 55.76

V.2.4.4 Evaluación del análisis granulométrico y corrección matemática por el modelo Lynch-Rao

HIDROCICLON D15

Q = caudal de pulpa alimentada =916.06 m³pulpa/D

FLUJO	% sólidos	Dp
Alimento	71.69	1.803
Rebalse	44.92	1.387
Descarga	92.97	2.367

Malla	Abortura	% en peso parcial retenido		
Ivialia	Abertura	REBOSE (R)	DESCARGA(D)	
35	500	4.38	38.82	
48	418.33	7.64	18.06	
65	295.8	10.05	17.99	
100	193.65	8.14	9.89	
150	122.47	12.04	6.77	
200	86.02	8.03	2.83	
-200	53.22	49.72	5.64	
		100.00	100.00	

Gs = Gravedad especifica= P = Presión de alimento = VF = Diámetro del Vortex= SPIG=Diámetro del Apex=

2.89 gr/cc 7.00 psig 3 1/16"

1 5/8"

Fs=	49.34
Us=	35.65
Os=	13.69

Malla	ALIMENTACIÓN		REBALSE		DESCARGA	
Ivialia	TPH	% Peso	TPH	% Peso	TPH	% Peso
35	14.44	29.26	0.60	4.38	13.84	38.82
48	7.48	15.17	1.05	7.64	6.44	18.06
65	7.79	15.79	1.38	10.05	6.41	17.99
100	4.64	9.40	1.11	8.14	3.53	9.89
150	4.06	8.23	1.65	12.04	2.41	6.77
200	2.11	4.27	1.10	8.03	1.01	2.83
-200	8.82	17.87	6.81	49.72	2.01	5.64
TOTAL	49.34	100.00	13.69	100.00	35.65	100.00

	TPH DE SÓLIDOS EN LA ALIMENTACIÓN				
Malla	A ser By paseada	A ser clasificada	TOTAL		
35	2.00	12.44	14.44		
48	1.04	6.45	7.48		
65	1.08	6.71	7.79		
100	0.64	4.00	4.64		
150	0.56	3.50	4.06		
200	0.29	1.82	2.11		
-200	1.22	7.60	8.82		
TOTAL	6.83	42.51			

	TPH DE SÓLIDOS EN LA DESCARGA				
Malla	Debido al By pass	Debido a clasificación	TOTAL		
35	2.00	11.84	13.84		
48	1.04	5.40	6.44		
65	1.08	5.34	6.41		
100	0.64	2.88	3.53		
150	0.56	1.85	2.41		
200	0.29	0.72	1.01		
-200	1.22	0.79	2.01		
TOTAL	6.83	28.82	35.65		

Malla	di (um)	Yi=% Partición real	Yci=% Partición corregida
35	500.00	95.85	95.18
48	418.33	86.02	83.78
65	295.80	82.33	79.50
100	193.65	75.98	72.12
150	122.47	59.42	52.90
200	86.02	47.85	39.48
-200	53.22	22.80	10.41

Figura N° 12

V.3.1 Flow Sheet de la sección flotación

V.3.2 Flow Sheet de la sección flotación con adición de reactivos

V.3.3 Balance de masa del circuito remolienda

V.3.4 Evaluación del nido de hidrociclones D6 del circuito remolienda Análisis granulométrico de los productos de clasificación

Malla	X(m)	ALIMENTO (F)		RE	REBOSE (R)		DESCARGA (D)				
		f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	рсс
35	500	1.51	1.51	98.49	0.00	0.00	100.00	2.91	2.91	97.09	1.0786
48	350	5.99	7.50	92.50	1.65	1.65	98.35	10.13	13.04	86.96	1.056
65	250	12.87	20.37	79.63	7.48	9.13	90.87	16.87	29.91	70.09	1.1782
100	150	10.37	30.74	69.26	6.83	15.96	84.04	15.09	45.00	55.00	1.0365
150	100	20.74	51.48	48.52	12.99	28.95	71.05	23.79	68.79	31.21	1.3016
200	74	13.93	65.41	34.59	10.57	39.52	60.48	13.03	81.82	18.18	1.5777
-200		34.59	100.00	0.00	60.48	100.00	0.00	18.18	100.00	0.00	
		100			100			100			1.2047

TMSD =979.93

W	W	WT	CP	CP
R/F	D/F	R/F + D/F	R/F	D/F
0	34.354	34.354	0	1
16.169	119.59	135.76	0.1191	0.8809
73.299	199.16	272.46	0.269	0.731
66.929	178.15	245.08	0.2731	0.7269
127.29	280.86	408.15	0.3119	0.6881
103.58	153.83	257.41	0.4024	0.5976
592.66	214.63	807.29	0.7341	0.2659

Corrección matemática por el método de LAGRANGE

malla	f(x)F	f(x)R	f(x)D	f(x)F -f(x)R	f(x)F -f(x)D	Δi	λί	Df(x)F	Df(x)R	Df(x)D
35	1.51	0.00	2.91	1.51	-1.40	-0.584	-0.084	-0.209	-0.084	0.1254
48	5.99	1.65	10.13	4.34	-4.14	-1.853	-0.266	-0.664	-0.266	0.3977
65	12.87	7.48	16.87	5.39	-4.00	-0.594	-0.085	-0.213	-0.085	0.1275
100	10.37	6.83	15.09	3.54	-4.72	-3.521	-0.505	-1.261	-0.505	0.7555
150	20.74	12.99	23.79	7.75	-3.05	3.1872	0.4571	1.141	0.4571	-0.684
200	13.93	10.57	13.03	3.36	0.90	4.7064	0.675	1.6849	0.675	-1.01
-200	34.59	60.48	18.18	-25.89	16.41	-1.341	-0.192	-0.48	-0.192	0.2877

 $\alpha = 1.496$

Mallas	correg	jidas									
Malla	X(m)	ALI	MENTO ((F)	R	REBOSE (R)			SCARGA	. (D)	рсс
		f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	
35	500	1.72	1.72	98.28	0.08	0.08	99.92	2.78	2.78	97.22	1.535
48	350	6.65	8.37	91.63	1.92	2.00	98.00	9.73	12.52	87.48	1.5378
65	250	13.08	21.46	78.54	7.57	9.56	90.44	16.74	29.26	70.74	1.5236
100	150	11.63	33.09	66.91	7.34	16.90	83.10	14.33	43.59	56.41	1.5404
150	100	19.60	52.68	47.32	12.53	29.43	70.57	24.47	68.07	31.93	1.5116
200	74	12.25	64.93	35.07	9.89	39.33	60.67	14.04	82.11	17.89	1.4904
-200		35.07	100.00	0.00	60.67	100.00	0.00	17.89	100.00	0.00	
		100			100			100			1.5231

W	W	WT	CP	CP
R/F	D/F	R/F + D/F	R/F	D/F
0.8214	40.821	41.643	0.0197	0.9803
18.774	142.67	161.45	0.1163	0.8837
74.134	245.44	319.57	0.232	0.768
71.878	210.14	282.02	0.2549	0.7451
122.81	358.78	481.59	0.255	0.745
96.964	205.82	302.78	0.3202	0.6798
594.55	262.3	856.84	0.6939	0.3061

Datos para la curva de partición simple

xprom	E(x)D	E(x)R
500	100	0
418.33	88.09	11.91
295.8	73.097	26.903
193.65	72.69	27.31
122.47	68.812	31.188
86.023	59.761	40.239
52.326	26.586	73.414

Datos para la curva de partición corregida

xprom	E(x)D	E(x)R
500	98.028	1.9724
418.33	88.371	11.629
295.8	76.802	23.198
193.65	74.513	25.487
122.47	74.499	25.501
86.023	67.976	32.024
52.326	30.612	69.388

Figura N° 16

Figura N° 17

Figura N° 18

F = 30 R = 58 D = 13

Eficiencia de clasificación para finos

V.4.1 Balance metalúrgico

Planta: SACRACANCHA

Ensayes del dia: 03-03-98

Campaña : MY-04-98-06

Mina: MANUELITA

2ª Guardia: Ing. CARRILLO	T.M.H. = 333	H2O = 5.69%	Densidad = 1300

PRODUCTO	PESO	LEYES			
	T.M.S.	Ag (oz./TC)	% Cu	% Pb	% Zn
Cabeza	314.0523	7.84	0.44	2.36	5.02
Cc. Cobre	3.63	278.05	22.57	8.79	7.43
Cc. Plomo	11.27	72.92	0.61	56.62	4.60
Cc. Zinc	26.91	5.95	1.33	0.42	52.21
Relave	272.24	1.11	0.05	0.22	0.34

Denotamos:

A=(%Cu) Cc.Cu – Relave	E=(%Pb)Cc.Cu – Relave	I=(%Zn)Cc.Cu - Relave
B=(%Cu) Cc.Pb – Relave	F=(%Pb)Cc. Pb – Relave	J=(%Zn)Cc. Pb – Relave
C=(%Cu) Cc.Zn– Relave	G=(%Pb)Cc. Zn – Relave	K=(%Zn)Cc. Zn – Relave
D=(%Cu) Cabeza – Relave	H=(%Pb)) Cabeza – Relave	L=(%Zn)Cc.Cu) Cabeza –
Relave		

Se toman determinantes:

$$a = \begin{vmatrix} 1 & 1 & 1 \\ A & E & I \\ B & F & G \\ C & G & K \end{vmatrix} \ b = \begin{vmatrix} 1 & 1 & 1 \\ B & F & J \\ C & G & K \\ D & H & L \end{vmatrix} \ c = \begin{vmatrix} 1 & 1 & 1 \\ A & E & I \\ D & H & L \\ C & G & K \end{vmatrix} \ d = \begin{vmatrix} 1 & 1 & 1 \\ A & E & I \\ B & F & J \\ D & H & L \end{vmatrix}$$

Cc.Cu = 314.0523(a/b)

Cc.Pb = 314.0523(c/a)

Cc.Zn = 314.0523(d/a)

Relave =314.0523-(Cc.Cu-Cc.Pb-Cc.Zn)

Siendo estos tonelajes: en TMS

Cc. Cobre	3.63
Cc. Plomo	11.27
Cc. Zinc	26.91
Relave	272.24

Se hallan los contenidos metálicos:

Contenido de Cobre en TMS

Cabeza	314.0523	0.0044	1.38
Cc. Cobre	3.63	0.2257	0.82
Cc. Plomo	11.27	0.0061	0.07
Cc. Zinc	26.91	0.0133	0.36
Relave	272.24	0.0005	0.14
			1.38

Contenido de plata en (oz/TC)

Cabeza	314.0523	7.84	2462.17
Cc. Cobre	3.63	278.05	1008.98
Cc. Plomo	11.27	72.92	821.76
Cc. Zinc	26.91	5.95	160.14
Relave	272.24	1.11	302.19
			2462.17

Contenido de Plomo en TMS

Cabeza	314.0523	0.0236	7.41
Cc. Cobre	3.63	0.0879	0.32
Cc. Plomo	11.27	0.5662	6.38
Cc. Zinc	26.91	0.0042	0.11
Relave	272.24	0.0022	0.60
	· · · · · ·		7.41

Contenido de Cinc en TMS

Cabeza	314.0523	0.0502	15.77
Cc. Cobre	3.63	0.0743	0.27
Cc. Plomo	11.27	4.60	0.52
Cc. Zinc	26.91	0.5221	14.05
Relave	272.24	0.0034	0.93
			15.77

RECUPERACIONES

COBRE

Cabeza	1.38X100/1.38=	100.00
Cc. Cobre	0.82X100/1.38=	29.64
Cc. Plomo	0.07X100/1.38=	2.49
Cc. Zinc	0.36X100/1.38=	12.95
Relave	0.14X100/1.38=	4.93

PLATA

Cabeza	2462.17X100/2462.17=	100.00
Cc. Cobre	1008.98X100/2462.17=	21.22
Cc. Plomo	821.76 X100/2462.17=	17.28
Cc. Zinc	160.14 X100/2462.17=	3.37
Relave	302.19 X100/2462.17=	6.35

PLOMO

Cabeza	7.41 X100/7.41 =	100.00
Cc. Cobre	0.32 X100/7.41 =	2.15
Cc. Plomo	6.38 X100/7.41 =	43.05
Cc. Zinc	0.11 X100/7.41 =	0.76
Relave	0.60 X100/7.41 =	4.04

CINC

Cabeza	15.77 X100/15.77 =	100.00
Cc. Cobre	0.27 X100/15.77 =	0.86
Cc. Plomo	0.52 X100/15.77 =	1.64
Cc. Zinc	14.05 X100/15.77 =	44.57
Relave	0.93 X100/15.77 =	2.94

Planta : SACRACANCHA Ensayes del dia: 12-01-98 Campaña : MY-02-98-02 Mina: MANUELITA

1º Guardia: Ing. MALLAUPOMA				TMH: 335				%H₂O : 5.00			Densidad: 131	0		
PRODUCTO	PESO	PESO LEYES				Contenido Metalico				Recupera			aciones	
	T.M.S.	Aq (oz./TC)	%Cu	% Pb	%Zn	Aq (oz./TC)	TM Cu	ТМ РЬ	TM Zn	% Ag	%Cu	% Pb	%Zn	
Cabeza	318.25	7.00	0.50	2.08	4.67	2227.75	1.59	6.62	14.86	100.00	100.00	100.00	100.00	
Cc. Cobre	4.47	200.95	21.01	10.63	7.78	897.38	0.94	0.47	0.35	42.22	58.96	7.17	2.34	71.27
Cc. Plomo	9.77	75.64	0.46	53.16	4.63	739.10	0.04	5.19	0.46	34.78	2.82	78.47	3.04	32.57
Cc. Zinc	25.50	7.70	1.62	0.56	50.46	196.35	0.41	0.14	12.86	9.24	25.96	2.16	86.56	12.48
Relave	278.51	1.05	0.07	0.29	0.43	292.44	0.19	0.81	1.20	13.76	12.25	12.20	8.06	

1º Guardia: Ing. CUYUTUPAC				TMH: 334.00	TMH: 334.00 %				%H₂O: 4.09			Densidad: 1,310		
PRODUCTO	PESO		LE	YES	Contenido Metalic			o Metalico	Recupe			raciones		RATIO
	T.M.S.	Aq (oz./TC)	%Cu	% Pb	%Zn	Aq(oz./TC)	TM Cu	TMPb	TM Zn	% Ag	%Cu	% Pb	%Zn	
Cabeza	319.44	6.82	0.46	1.99	4.18	2178.5808	1.47	6.36	13.35	100.00	100.00	100.00	100.00	
Cc. Cobre	4.50	209.70	20.78	9.43	9.63	942.77	0.93	0.42	0.43	46.42	63.58	6.67	3.24	71.05
Cc. Plomo	9.77	72.33	0.59	53.36	4.82	706.34	0.06	5.21	0.47	34.78	3.92	81.97	3.53	32.71
Co. Zinc	23.19	5.89	1.33	0.56	50.65	136.57	0.31	0.13	11.74	6.72	20.99	2.04	87.95	13.78
Relave	281.99	0.87	0.06	0.21	0.25	245.33	0.17	0.59	0.70	12.08	11.51	9.32	5.28	

1º Guardia: Ing. LEON				TMH: 333.00)			%H₂O: 4.07			Densidad: 1,3	05		
PRODUCTO	PESO		LEYES				Contenido Metalico				Recuperaciones			
	T.M.S.	Aq (oz./TC)	%Cu	%Pb	%Zn	Aq (oz./TC)	TM Cu	ТМ РЬ	TM Zn	% Ag	%Cu	% Pb	%Zn	
Cabeza	319.44	6.82	0.46	1.99	4.18	2178.5808	1.47	6.36	13.35	100.00	100.00	100.00	100.00	
Cc. Cobre	4.50	209.70	20.78	9.43	9.63	942.77	0.93	0.42	0.43	46.42	63.58	6.67	3.24	71.05
Cc. Plomo	9.77	72.33	0.59	53.36	4.82	706.34	0.06	5.21	0.47	34.78	3,92	81.97	3.53	32.71
Co. Zino	23.19	5.89	1.33	0.56	50.65	136.57	0.31	0.13	11.74	6.72	20.99	2.04	87.95	13.78
Relave	281.99	0.87	0.06	0.21	0.25	246.33	0.17	0.59	0.70	12.08	11.51	9.32	5.28	

V.5.1 Flow Sheet de la sección espesamiento y filtrado

V.5.2 Leyenda del Flow Sheet de la sección espesamiento y filtrado

ITEM	DESCRIPCIÓN
1	ESPESADOR DE Cu 10 x 10'
2	ESPESADOR DE Pb 12 x 10'
3	ESPESADOR DE Zn 16 x 10'
4	Filtro con 6 discos de 6" para Cu-Ag
5	Filtro con 6 discos de 6" para Pb
6	Filtro con 12 discos de 6" para Zn

V.5.3 Balance metalúrgico de las muestras tomadas en los filtros

CIA MINERA SANTA RITA S.A.

LABORATORIO QUIMICO Informe de tratamiento Planta: SACRACANCHA Dia: 09-02-98 Campaña: MY-03-98-05 Mina: MANUELITA

PRODUCTO	PESO	LEYES			Contenido Metalico			Recuperaciones			RATIO			
	T.M.S.	Ag(oz./TC)	% Cu	% Pb	% Zn	Ag (oz./TC)	TM Cu	TM Pb	TM Zn	% Ag	% Cu	% Pb	% Zn	
Cabeza	966.38	8.49	0.49	2.76	4.81	8204.5882	4.74	26.67	46.48	100.00	100.00	100.00	100.00	
Cc. Cobre	11.91	302.71	23.64	10.63	7.50	3606.21	2.82	1.27	0.89	44.07	59.47	4.75	1.92	81.12
Cc. Plomo	39.03	76.80	0.80	58.04	3.94	2997.16	0.31	22.65	1.54	36.63	6.59	84.92	3.31	24.76
Co. Zinc	80.04	7.72	1.59	0.52	50.34	617.91	1.27	0.42	40.29	7.55	26.88	1.56	86.68	12.07
Relave	835.40	1.15	0.04	0.28	0.46	960.71	0.33	2.34	3.76	11.74	7.06	8.77	8.09	

÷

VI. OPTIMIZACIÓN DE MOLIENDA EN OPERACIÓN

VI.1 Descripción del proceso

A continuación presento un trabajo el cual espero que sirva para las promociones venideras. Para ello vamos a diferenciar lo siguiente:

Variables Mecánicas: Son aquellas que su funcionamiento de penden de una maquina y solamente se pueden cambiar cuando la planta esta parada. Para el proceso son: La velocidad de la bomba (rpm) la cual se puede cambiar con un juego adecuado de poleas, la presión de entrada al hidrociclon –depende de la velocidad de la bomba; el apex del hidrociclon, se puede cambiar cuando el hidrociclon esta parado.

Variables de operación: son aquellas que se pueden cambiar cuando la planta esta en funcionamiento, en este caso son el agua, el tiempo de residencia de la partícula en el molino, la densidad de descarga del molino, estas dos ultimas dependen del la cantidad de ingreso del agua, puesto que el alimento fresco no se puede cambiar.

En nuestro único caso consideramos como variable de operación también al apex puesto que tenemos dos hidrociclones para cada molino, que son un D15 y un D10, normalmente se trabaja con el D15, utilizándose el D10 cuando el primero sufre alguna avería.

Se efectuó el ensayo el día 3 de marzo de 1998, en la segunda guardia de 8 a 16 horas.

En el Flow Sheet del molino 1 podemos observar a la entrada del molino, el alimento fresco (F) con una granulometría 100% -m1", la densidad de pulpa del Under (Du) y agua, esta última la cambiamos disminuyendo el caudal, aumentando la densidad de descarga del molino (Dd), llevándola de un promedio de 1900 a 2100, con ello estamos aumentando el tiempo de residencia en la partícula en el molino, para obtener una mejor molienda, luego de 5 minutos se aumenta el caudal de agua debajo del trommel, para de esta manera no variar la densidad de pulpa de alimento al hidrociclon.

Luego de unos 15 minutos se observa que el sistema ya esta en equilibrio. Se hacen muestreos cada hora de la Do, Df, Du y Dd para ver si las densidades de pulpa se mantienen constantes para su posterior análisis granulométrico, y cálculos necesarios para definir que el sistema es óptimo.

Es necesario saber que estos cambios de caudal de agua se hacen con parámetros ya definidos, puesto que anteriormente se hicieron pruebas para llegar a ellos, colocando marcas en los grifos – grifos de bola - con su respectiva densidad de pulpa, también es necesario destacar que en ningún momento se supo cual es el caudal de agua aumentado y disminuido, ya que los cambios de caudal respectivos fueron mínimos, y aumentando o disminuyendo en forma progresiva, para no afectar con los parámetros con los que trabaja la planta, las únicas variables de operación medidas en estos cambios fueron las densidades de pulpa de la descarga del molino y del alimento al hidrociclón.

	1ra. Gl	JARDIA	2ra. GU	JARDIA	3ra. GUARDIA		
MALLA	MOLIENDA	REMOLIENDA	MOLIENDA	REMOLIENDA	MOLIENDA	REMOLIENDA	
+65	24.29	10.34	21.22	9.16	22.07	8.76	
+100	9.21	8.04	8.57	7.96	8.86	7.18	
+150	11.73	13.55	12.63	13.02	12.18	13.42	
+200	8.25	10.82	8.59	10.10	9.11	11.00	
-200	46.52	57.21	48.99	59.76	47.78	59.64	

REPORTE DE MOLIENDA / CLASIFICACIÓN DEL 03 – 03 - 98

V.1.2 Flow Sheet del molino 1 con datos

Alimento (F) = 100% - m 1

Análisis granulométrico de los productos de clasificación

Malla	X(m)	ALIMENTO (F)			REBOSE (R)			DESCARGA (D)			рсс
		f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	
35	500	18.82	18.82	81.18	2.38	2.38	97.62	28.83	28.83	71.17	1.6424
48	350	13.02	31.84	68.16	7.56	9.94	90.06	16.81	45.64	54.36	1.5870
65	250	15.72	47.56	52.44	10.84	20.78	79.22	20.51	66.15	33.85	1.4406
100	150	9.71	57.27	42.73	8.21	28.99	71.01	12.16	78.31	21.69	1.3441
150	100	10.03	67.30	32.70	11.15	40.14	59.86	9.26	87.57	12.43	1.3399
200	74	5.17	72.47	27.53	9.73	49.87	50.13	3.64	91.21	8.79	1.2060
-200		27.53	100.00	0.00	50.13	100.00	0.00	8.79	100.00	0.00	
		100			100			100			1.4266

TMSD =111.4

W	W	WT	CP	CP
R/F	D/F	R/F + D/F	R/F	D/F
7.95	137.46	145.41	0.05	0.95
25.27	80.15	105.41	0.24	0.76
36.23	97.79	134.02	0.27	0.73
27.44	57.98	85.41	0.32	0.68
37.26	44.15	81.41	0.46	0.54
32.52	17.35	49.87	0.65	0.35
167.53	41.91	209.44	0.80	0.20

Corrección matemática por el método de LAGRANGE

malla	f(x)F	f(x)R	f(x)D	f(x)F -f(x)R	f(x)F -f(x)D	Δi	λί	Df(x)F	Df(x)R	Df(x)D
35	18.82	2.38	28.83	16.44	-10.01	3.492	0.619	1.420	0.619	-0.801
48	13.02	7.56	16.81	5.46	-3.79	0.558	0.099	0.227	0.099	-0.128
							-	-		
65	15.72	10.84	20.51	4.88	-4.79	-1.316	0.233	0.535	-0.233	0.302
							-	-		
100	9.71	8.21	12.16	1.50	-2.45	-1.669	0.296	0.679	-0.296	0.383
							-	-		
150	10.03	11.15	9.26	-1.12	0.77	-0.124	0.022	0.050	-0.022	0.028
							-	-		
200	5.17	9.73	3.64	-4.56	1.53	-2.581	0.458	1.050	-0.458	0.592
-200	27.53	50.13	8.79	-22.60	18.74	1.640	0.291	0.667	0.291	-0.376

 $\alpha = 1.2935$

Mallas o	corregidas									
X(m)	ALIMENTO (F)			REBOSE (R)			DESCARGA (D)			рсс
	f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	f(x)	G(x)	F(x)	
500	17.40	17.40	82.60	1.76	1.76	98.24	29.63	29.63	70.37	1.2786
350	12.79	30.19	69.81	7.46	9.22	90.78	16.94	46.57	53.43	1.2806
250	16.26	46.45	53.55	11.07	20.30	79.70	20.21	66.78	33.22	1.2865
150	10.39	56.84	43.16	8.51	28.80	71.20	11.78	78.55	21.45	1.2909
100	10.08	66.92	33.08	11.17	39.97	60.03	9.23	87.79	12.21	1.2911
74	6.22	73.14	26.86	10.19	50.16	49.84	3.05	90.83	9.17	1.2983
	26.86	100.00	0.00	49.84	100.00	0.00	9.17	100.00	0.00	
	100			100			100			1.2877

W	W	WT	CP	CP
R/F	D/F	R/F + D/F	R/F	D/F
5.88	128.09	133.97	0.04	0.96
24.93	73.22	98.15	0.25	0.75
37.01	87.36	124.36	0.30	0.70
28.43	50.91	79.34	0.36	0.64
37.34	39.91	77.24	0.48	0.52
34.05	13.18	47.22	0.72	0.28
166.56	39.62	206.19	0.81	0.19

Datos para la curva de partición simple

xprom	E(x)D	E(x)R
500.00	94.53	5.47
418.33	76.03	23.97
295.80	72.97	27.03
193.65	67.88	32.12
122.47	54.23	45.77
86.02	34.80	65.20
52.33	20.01	79.99

Datos para la curva de partición corregida

xprom	E(x)D	E(x)R
500.00	95.61	4.39
418.33	74.60	25.40
295.80	70.24	29.76
193.65	64.17	35.83
122.47	51.66	48.34
86.02	27.90	72.10
52.33	19.22	80.78

Figura N° 21

Figura N° 22

Figura N° 23

$$F = 31$$

 $R = 57$
 $D = 11$

VI.3.4 Evaluación del análisis granulométrico y corrección matemática por el modelo Lynch-Rao

HIDROCICLON D15

Q = caudal de pulpa alimentada =917.668 m³pulpa/D

FLUJO	% sólidos	Dp
Alimento	69.64	1.766
Rebalse	43.19	1.368
Descarga	92.75	2.368

Malla	Abertura	% en pe: rete	so parcial nido
		REBOSE (R)	DESCARGA(D)
35	500	2.38	28.83
48	418.33	7.56	16.81
65	295.8	10.84	20.51
100	193.65	8.21	12.16
150	122.47	11.15	9.26
200	86.02	9.73	3.64
-200	53.22	50.13	8.79

Gs = Gravedad especifica	2.89	gr/cc
P = Presión de alimento =	7.00	psig
VF = Diámetro del Vortex=	3 1/16"	
SPIG = Diámetro del Apex=	1 5/8"	

$F_s =$	47.13
Us=	33.50
Os=	13.63

	ALIMENTACIÓN						
Malla				DALOL	DESCARGA		
mana	TPH	% Peso	TPH	% Peso	TPH	% Peso	
35	9.96	21.18	0.32	2.38	9.64	28.83	
48	6.65	14.13	1.03	7.56	5.62	16.81	
65	8.33	17.71	1.47	10.84	6.86	20.51	
100	5.18	11.02	1.12	8.21	4.06	12.16	
150	4.61	9.81	1.52	11.15	3.10	9.26	
200	2.54	5.40	1.32	9.73	1.22	3.64	
-200	9.76	20.75	6.82	50.13	2.94	8.79	
TOTAL	47.02	100.00	13.60	100.00	33.43	100.00	

6	1
n	н
~	-

	TPH DE SÓLIDOS EN LA ALIMENTACIÓN							
Malla	A ser Bypaseada	A ser clasificada	TOTAL					
35	1.27	8.69	9.96					
48	0.85	5.80	6.65					
65	1.06	7.27	8.33					
100	0.66	4.52	5.18					
150	0.59	4.02	4.61					
200	0.32	2.22	2.54					
-200	1.24	8.51	9.76					
TOTAL	5.99	41.03						

	TPH DE SÓLIDOS EN LA DESCARGA							
Malla	Debido al By pass	Debido a clasificación	TOTAL					
35	1.27	8.37	9.64					
48	0.85	4.77	5.62					
65	1.06	5.79	6.86					
100	0.66	3.40	4.06					
150	0.59	2.51	3.10					
200	0.32	0.89	1.22					
-200	1.24	1.69	2.94					
TOTAL	5.99	27.43	33.43					

Malla	di (um)	Yi=%Partición real	Yci=% Partición corregida
35	500.00	96.75	96.28
48	418.33	84.53	82.27
65	295.80	82.30	79.72
100	193.65	78.45	75.30
150	122.47	67.12	62.32
200	86.02	47.90	40.29
-200	53.22	30.12	19.91

Figura N° 24

VI.3.5 Balance metalúrgico del día en que se efectuó la prueba.

Planta: SACRACANCHA Ensayes del dia: 03-03-98 Campaña: MY-04-98-06 Mina: MANUELITA

1ª Guardia: Ing	LEON				TMH: 329				%H₂O : 3.55			Densidad: 132	20	
PRODUCTO	PESO		LE'	YES			Contenid	P Metalico			Recupe	raciones		RATIO
	lт.м.s	Aq (oz./TC)	%Cu	% Pb	%Zn	Aq (oz./TC)	TM Cu	ТМРЬ	TM Zn	% Ag	%Cu	% Pb	%Zn	
Cabeza	317.32	8.98	0.47	2.34	5.35	2849.5336	1.49	7.43	16.98	100.00	100.00	100.00	100.00	l l
Cc. Cobre	4.33	253.45	20.33	7.76	9.13	1096.47	0.88	0.34	0.39	44.04	58.97	4.52	2.33	73.35
Cc. Plomo	5 11.38	76.22	0.48	55.80	4.38	867.21	0.05	6.35	0.50	34.83	3.66	85.50	2.94	27.89
Co. Zino	29.45	6.59	1.43	0.39	51.00	194.11	0.42	0.11	15.02	7.80	28.24	1.55	88.49	10.77
Relave	272.16	1.22	0.05	0.23	0.39	332.04	0.14	0.63	1.06	13.34	9.12	8.43	6.25	

1' Guardia: Ing	. CARRILLO				TMH: 333.00)			%H ₂ O : 5.69			Densidad: 1,3	00	
PRODUCTO	PESO		LE'	YES			Contenid	o Metalico			Recupe	raciones		RATIO
	T.M.S.	Aq(oz./TC)	%Cu	%Pb	%Zn	Aq (oz./TC)	TM Cu	ТМРЫ	TM Zn	% Ag	%Cu	%Pb	%Zn	
Cabeza	312.17	7.84	0.44	2.36	5.02	2447.4128	1.37	7.37	15.67	100.00	100.00	100.00	100.00	
Cc. Cobre	3.61	278.05	22.57	8.79	7.43	1002.93	0.81	0.32	0.27	44.00	59.27	4.30	1.71	86.55
Cc. Plomo	11.20	72.92	0.61	56.62	4.60	816.83	0.07	6.34	0.52	35.84	4.97	86.09	3.29	27.87
Co. Zino	26.75	5.95	1.33	0.42	52.21	159.18	0.36	0.11	13.97	6.98	25.90	1.53	89.13	11.67
Relave	270.61	1.11	0.05	0.22	0.34	300.38	0.14	0.60	0.92	13.18	9.85	8.08	5.87	

1' Guardia: Ing	. VARGAS				TMH: 331.00				%H₂O : 5.32			Densidad: 1,3	00	
PRODUCTO	PESO	LEYES				Contenido Metalico			Recuperaciones			RATIO		
	T.M.S.	Aq(oz./TC)	%Cu	%Pb	%Zn	Aq (oz./TC)	TM Cu	ТМРЫ	TM Zn	% Ag	%Cu	%Pb	%Zn	
Cabeza	313.39	7.99	0.47	2.42	5.12	2503.9861	1.47	7.58	16.05	100.00	100.00	100.00	100.00	
Cc. Cobre	4.05	246.06	22.42	9.40	8.88	996.18	0.91	0.38	0.36	43.52	61.62	5.02	2.24	77.41
Cc. Plomo	10.98	74.28	0.61	58.05	4.32	815.80	0.07	6.38	0.47	35.64	4.55	84.06	2.96	28.53
Co. Zino	27.49	5.83	1.32	0.46	51.40	160.25	0.36	0.12	14.13	7.00	24.63	1.63	88.05	11.40
Relave	270.87	1.17	0.05	0.26	0.40	316.92	0.14	0.70	1.08	13.84	9.19	9.29	6.75	

PROMEDIO DEL DIA 03-03-98

PRODUCTO	PESO		LE)	/ES			Contenido	Metalico			Recupe	aciones		RATIO
	T.M.S.	Ag(oz./TC)	% Cu	% Pb	% Zn	Ag(oz./TC)	TM Cu	ТМ РЬ	TM Zn	% Ag	% Cu	% Pb	% Zn	
Cabeza	944.84	8.27	0.46	2.37	5.16	7813.8268	4.35	22.39	48.75	100.00	100.00	100.00	100.00	
Co. Cobre	11.98	259,19	21.77	8.65	8.48	3105.86	2.61	1.04	1.02	43.94	60.02	4.63	2.08	78.85
Cc. Plomo	33.52	74.47	0.57	56.82	4.43	2496.37	0.19	19.05	1.49	35.31	4.40	85.06	3.05	28.19
Co. Zinc	83.73	6.12	1.36	0.42	51.54	512.41	1.14	0.35	43.15	7.25	26.20	1.57	88.51	11.28
Relaxe	815.61	1.17	0.05	0.24	0.38	954.26	0.41	1.96	3.10	13.50	9.38	8.74	6.36	

OBSERVACIONES

CABEZA	PbOx	CuOx	ZnOx
1º Guardia	0.34	0.01	0.26
2ª Guardia	0.39	0.01	0.23
3ª Guardia	0.35	0.01	0.23

VII. DISCUSIÓN Y ANÁLISIS DE CÁLCULOS Y RESULTADOS

En primer lugar es necesario observar que el alimento fresco tiene 100% -m1", en los anteriores días fue 100% -m5/8", fue cambiada debido a la humedad propia de la época y analizamos la molienda que es mas fina respecto de las otras guardias, en 2 a 3% en la malla -200 de esta manera mejoramos la liberación del mineral y como consecuencia también mejora la eficiencia de clasificación, comparando en una guardia normal del día 9 de febrero se logro 55.76 y en esta 58.40.

En cuanto a la partículas finas arrastradas por el agua hacia la descarga – By pass o corto circuito – también es menor, en este caso obtenemos 12.74, contra 13.83 lograda el 9 de febrero, en una guardia normal.

En la flotación mejoran las leyes en el concentrado de cobre-plata y cinc aun cuando la ley de cabeza de estas es menor, pero disminuyendo la recuperación de plomo respecto de la tercera guardia, también podemos observar que el desplazamiento de plomo al concentrado de cobre-plata es mayor respecto de la primera guardia, es normal que suceda esto con el plomo debido a su fácil formación de lamas, pero se justifica con la recuperación de plata mucho mayor que las demás guardias.

Se aplica no solamente, para obtener mejores leyes, en el caso que la remolienda esta recargada se puede aplicar, sin descuidar las recuperaciones, sobretodo en el desplazamiento de plomo al concentrado de cobre – plata.

VIII. CONCLUSIONES

Podemos deducir que este método de optimización de molienda en operación, es valido por su fácil aplicación y entendimiento; teniendo en cuenta que para buscar este punto critico, se sigue un proceso de trabajo ordenado en la planta concentradora cambiando en forma mínima los parámetros para no afectar el funcionamiento de la planta, para posteriormente trabajar con dichos parámetros ya establecidos.

El ensayo efectuado para el sistema molienda/clasificación, fue efectivo y concuerda con los resultados posteriores obtenidos en la planta concentradora..

El mejorar la eficiencia del clasificador y bajar el efecto de corto circuito, hacen que el sistema sea óptimo en una instalación industrial de molienda/clasificación.

Además de la existencia de una interrelación entre el flujo de rebalse y la granulometría del producto a flotación. Pues con ello mejoran las leyes de concentrado de cobre-plata, sin agregar ningún aditivo que afecte el costo de operación, también es testigo de que se ha logrado la optimización requerida.

También se observa que se podría aumentar el tonelaje de alimento fresco a la sección, manteniendo la granulometría del producto constante, en el momento que se cambie la granulometría del alimento fresco a 100% -m5/8".

IX. CONSUMO DIARIO DE REACTIVOS Y BOLAS Día: 03-03-98

CONSUMO DE BOLAS

BOLAS	Peso (Kg)
Bolas de 1"	77
Bolas de 1 $\frac{1}{2}$ "	115
Bolas de 2"	275
Bolas de 2 $\frac{1}{2}$ "	246
Bolas de 4"	327

CONSUMO DE REACTIVOS

Flotación Bulk		Separación Cu-Ag / Pb		Flotación Zn	
SO ₄ Zn	324	Na ₂ Cr ₂ O ₇	96	SO ₄ Zn	417
CNNa	28	M-300		Z-11	84
Z-11	41			Z-6	
Montanol				M-300	
A-242	20			Cal	2,535
A-31					
Frother 70	21				
Cal					

X. BIBLIOGRAFÍA

- Ing. Iván Quiroz Núñez, Ingeniería metalúrgica, Operaciones Unitarias en Procesamiento de Minerales, Cusco, Setiembre 1986
- Ing. A. Edward Obblad, Los Modelos matemáticos de las operaciones de conminución, G. S. Technologies/Control International Inc. Saft Lake City UTA USA 1994.
- Dr. Jaime Sepúlveda and Ing. Leonel Gutiérrez, Dimensionamiento y Optimización de Plantas Concentradoras mediante técnicas de Modelación Matemática
- A. J. Lynch, Circuitos de Trituración Molienda de Minerales, Editorial Rocas y Minerales, 1980.
- Leonard G. Austin, Diseño y Simulación de circuitos de Molienda Clasificación, The Pennsylvania State University USA, Editado por Taller Multimedia Universidad Técnica Federico Santa Maria, 1994.
- Ing. Luis Fueyo, Equipos de Trituración, Molienda y Clasificación, Diseño y Aplicación, Editorial Rocas y Minerales, 1999.
- B. A. Bills, Tecnología de Procesamiento Tratamiento de Menas y Recuperación de Minerales. Escuela de Minas Camborne, Cornwall, Inglaterra. LIMUSA NORIEGA EDITORES, 1994
- Pierre Blazy, El Beneficio de Minerales, Editado por l Rocas y Minerales.
- Alexander Sutulov, Mineral Processing and Environment, Proceedings of the IV Meeting of the Southern Hemisphere on Mineral Technology; and III Latin-American Congress on Froth Flotation Volume I Concepción, Chile, November 20-23, 1994.
- Reportes y apuntes de la Compañía Minera Santa Rita.