UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA DE PETRÓLEO

"PROBLEMAS DE CONIFICACION DE AGUA EN YACIMIENTOS BAJO SATURADOS CON EMPUJE DE AGUA DE FONDO"

TESIS:

PARA OPTAR EL TITULO PROFESIONAL DE:

INGENIERO DE PETRÓLEO

LEANDRO ALBERTO GARRIDO DELGADO

PROMOCIÓN 1992

LIMA - PERÚ - 1997

PROBLEMAS DE CONIFICACIÓN DE AGUA EN YACIMIENTOS BAJO SATURADOS CON EMPUJE DE AGUA DE FONDO

1. SUMARIO

2. Introdu	cción	01
3. Conifica	ación	08
3.1. 3.2.	Definición Régimen Critico De Producción	08 11
4. Correla	ciones Para Determinar El Régimen Critico De Producción	12
4.1 Rese	rvorios Isotrópicos	12
4.1.1. Co	onificación En Reservorios Homogeneos	13
4.1.1.1. 4.1.1.2. 4.1.1.3. 4.1.1.4. 4.1.1.5.	Método De Muskat Y Arthur Método De Chaney Et Al Método De Craft Y Hawkins Método De Meyer Y Garder Método De Schols	13 15 18 19 20
4.2. Res	ervorios Anisotrópicos	22
4.2.1.	Método De Chierici Et Al	22
4.2.2.	Cálculo Del Tiempo De Irrupción	26
4.2.2.1.	Método De Sobocinski Y Cornelius	26
4.2.2.2.	Método De Bournazel Y Jeanson	35
5. Régimen	Critico De La Producción Y Desarrollo Del Campo	38
5.1. 5.2.	Desarrollo Sin Conificación De Agua Desarrollo Con Conificación De Agua	38 38
6. Manejo	Del Reservorio Con Conificación De Agua	39
1. 2. 3. 4. 5. 6.	Disminuición Del Régimen De Producción Mejoramiento De La Productividad Del Pozo Producción Con Cierres Temporales Inyección De Petróleo	39 40 40 41 42 44
6.1 6.2.	Retrabajos : Recompletación Perforación De Pozos De Relleno	46 50

7. Simulació	on Numérica Para El Manejo De La Conificación	51
7.1	Simulador Numérico Propuesto Por Kuo y DesBrisay	58
7.1.1.	Estudios De Sensibilidad	61
1.	Efecto De La Permeabilidad Vertical	62
2.	Efecto Del Intervalo Abierto a Producción	62
З.	Efecto Del Régimen De La Producción	63
4.	Efecto De La Relación De Movilidad	63
7.1.2.	Normalización De Los Resultados De La Simulación	64
7.1.3.	Descripción Del Programa	66
7.1.4.	Cálculo Del Tiempo De Irrupción	67
7.1.5.	Pronósticos Del Comportamiento Del Corte	6 B
716	De Agua	67 70
/.1.0.		,,,
7.2.	Simulador Numérico Para Conificación De Agua En Yacimientos	70
	Bajo Saturados con Emplije De Agua De Fondo	70
7.2.1.	Ajuste De Historia	74
7.2.2.	Estudio De Sensibilidad	74
8. Evaluació	on Económica Para La Perforación De Pozos De Relleno O	
Mayor Cap	pacidad De La Bomba Electrosumergible	75
9. Conclusio	ones	77
		• •
10.Recomenda	aciones	82
		0.5
11.Bibliogra	ofía	85

1. <u>Problemas De Conificación De Agua En Yacimientos Bajo Saturados Con</u> Empuje De Agua De Fondo

2. Introducción.

El agua producida junto con la producción de hidrocarburos desde siempre acarrea problemas que encarecen costos de producción e incluso, si no se controla, reduce la producción del petróleo pudiendo llegar a anularla

Es importante considerar que es inevitablemente producir hidrocarburos con agua de formación , no siendo esta agua el problema principal , mas bien el "agua problema" es su exceso en la producción de petróleo.

Se debe analizar con cuidado las siguientes consideraciones para identificar las posibles causas del problema del exceso o aumento del agua de formación en la producción de petróleo para decidir el programa de producción , antes que se produzca o se acentúe dicho problema :

2.1. Posibles Trayectorias Abiertas Al Flujo:

1. Flujo Cerca De La Pared Del Pozo.

Caso de completaciones cerca del nivel de agua petróleo producido junto con agua de formación , etc.

2. Fisuras en la capa de agua.

Ya sean naturales o inducidas que conectan el intervalo productor con el acuífero.

3. Fisuras comunicadas hacia una inyección.

Ó hacia un pozo inyector

2.2. Lindero Del Aqua:

1. Barrido areal pobre.

Caso digitaciones ó inyección de agua, etc.

2. Capa de alta permeabilidad sin flujo cruzado.

Caso de agua por los flancos o inyección de agua, etc.

3. Capa de alta permeabilidad con flujo cruzado.

Lo que facilita la intrusión del agua del acuífero al intervalo petrolífero.

4. Capa segregada por gravedad.

Separación de agua del petróleo, siendo producidos juntos.

2.3. Conificación Del Agua De Fondo.

Al producir el agua del acuífero esta se levanta en forma de cono e intruye en el intervalo productor desplazando la producción de petróleo

2.4. Problemas En La Completación:

1. Pobre calidad del cemento.

Caso de canalizaciones en el cementado de la tubería de revestimiento.

2. Tubería de revestimiento con fugas.

Caso de tubería no hermética o con fugas por deterioro debido a la corrosión , etc.

En el presente trabajo nos centraremos en los problemas de conificación que es un problema que se presenta en los reservorios petrolíferos con fuerte impulsión de agua de fondo; debido a una relación de movilidades agua-petróleo que favorece la producción de agua de la formación

En el Perú , los campos petrolíferos del Nor-Oriente (Selva) tienden a presentar problemas de conificación del agua , dado que producen mayormente mediante el mecanismo de impulsión por agua de fondo; requiriendo para producir petróleo inversiones adicionales que permitan superar problemas , tales como :

1. Columna hidrostática de agua que genera contra-presión a la formación, con la consiguiente disminución de la caída de presión de fondo del pozo, restándole así energía para producir los fluidos de la formación En muchos casos la formación deja de producir por este problema requiriendo sistemas de levantamiento artificiales.

- 2. El agua satura las cercanías del pozo reduciendo la permeabilidad relativa al petróleo Requiriendo en este caso el uso de surfactantes, a fin restablecer la permeabilidad relativa al petróleo o minimizar esta reducción.
- 3. El agua también afecta a las areniscas y arcillas hidratables o movibles y finos , taponando los espacios interporales en las cercanías del pozo Requiriéndose acidificaciones para limpiar los espacios interporales.
- 4. Al aumentar la producción de agua también aumenta la producción de finos que son abrasivos para cualquier sistema de levantamiento artificial , ya sean bombas electrosumergible o hidráulicas , requiriéndose de equipos diseñados para resistir la abrasión prolongadamente lo que aumenta el costo , y de sistemas de producción con empaques de grava.
- 5. La producción de agua esta asociada a la corrosión ; dado que esta contiene sulfuro de hidrogeno H_2S y dioxido de carbono CO_2 , requiriéndose para neutralizar o retardar su efecto destructivo de inhibidores de corrosión ya sean de oxido reducción o eletroquimicos.
- 6. En la producción o en los trabajos de reacondicionamiento se puede generar emulsiones agua-petróleo, que si intruyen en la formación complican el flujo de fluidos al pozo; en ambos casos se requieren desemulsificantes, para evitar problemas principalmente en la bomba.
- 7. La producción excesiva de agua requiere en superficie de instalaciones apropiadas de almacenaje y tratamiento ya sea:

- a. <u>Para Reinyección</u> : tanques de almacenaje y tratamiento , bombas
 y equipos de reinyección ; ó
- b) <u>Para Eliminarla</u> equipos de tratamiento mecánico , térmico y químico..., etc.
 A fin de reducir el impacto sobre el medio ambiente .

Es de interés económico y técnico minimizar o si fuera posible eliminar la conificación de agua en los pozos productores de petróleo , ya que disminuyen su rentabilidad al producir cada vez mas agua , lo que si no es controlado convenientemente puede generar que estos se vengan en agua, es decir con corte de agua superior al máximo permisible.

Es necesario hacer notar que también existe la conificación de gaspetróleo; solo y también simultáneo con la conificación agua-petróleo ; pero en el presente trabajo dedicado a los "Problemas De Conificación De Agua En Yacimientos Bajo Saturados Con Empuje De Agua de Fondo" no será revisado.

En los problemas de conificación es importante conocer tres cosas

<u>Primero</u> saber el régimen máximo de producción de petróleo al que un pozo puede hacerse producir sin ninguna intrusión del cono de agua. Este régimen de producción de petróleo se llama "Régimen crítico de producción".

Además si económicamente la reserva permite una producción superior a este "Régimen crítico de producción", se requieren saber las otras dos adicionales :

<u>Segundo</u> el tiempo de irrupción de agua , y

<u>Tercero</u> el comportamiento del corte de agua después de la irrupción.

Diversos investigadores han intentado de proveer modelos de conificación para determinar :

1. el régimen crítico de producción,

2. el tiempo de irrupción., y / o

3. el comportamiento del corte de agua después de la irrupción.

El régimen crítico de producción y el tiempo de irrupción están bien estudiados analítica y experimentalmente.

 Para la determinación del régimen crítico de producción publicaron soluciones gráficas :

a. Muskat y Wyckoff ,

b. Muskat y Arthur ,

- c. Channey et al , y
- d. Chierici et al,

Con las siguientes implicaciones practicas

La evaluación de problemas de conificación que usan técnicas gráficas disponibles en la literatura se recomiendan cuando existen las condiciones siguientes

- La formación puede considerarse generalmente isotrópica y homogénea ,
- b. no afecta adversamente la presión capilar,
- c. no hay relaciones adversas de movilidad entre la fase desplazada y la fase desplazante,
- d. la interferencia de presión desde la vecindad del pozo es limitada.

2. Mientras para calcular el régimen crítico de producción proveyeron ecuaciones:

```
a. Meyer y Gardner , yb. Schols.
```

3. Para pronósticar el tiempo de irrupción presentaron correlaciones empíricas :

a. Sobosinsky y Cornelius , y

b. Bournazel y Jeanson.

Los métodos arriba mencionados comúnmente proveen un calculo bastante próximo al régimen crítico de producción y al tiempo de irrupción.

Este trabajo tiene en cuenta los criterios fundamentales y básicos , para la comprensión y análisis de los "Problemas De Conificación De Agua En Yacimientos Bajo Saturados Con Empuje De Agua De Fondo" ; presentando además un programa de simulación , fácilmente utilizable , probado en condiciones selva , el cual consta de un solo disquete HD 1.44 MB ; con este programa, que reporta cálculos mes a mes se puede predecir convenientemente:

- 1. El petróleo original in situ,
- producciones de petróleo y agua , así como el caudal critico de producción ,
- 3. el comportamiento del corte de agua .

El simulador corre en cualquier computadora asi no cuente con el sistema D.O.S. 2.0 ó posterior y si se requiere generar reportes también de impresora ; basta con guiarse del tutor

Este trabajo describe las ecuaciones utilizadas en el simulador su aplicación y sus limitaciones

3. Conificación

3.1. Definición.

La conificación de agua en un pozo de petróleo es el resultado de presiones que se equilibran encima y debajo del intervalo abierto a producción. A fin de alcanzar el equilibrio debajo de dicho intervalo se constituye un cono cuya altura es gobernada por la caída de presión ocasionada por la producción que es contrabalanceada por el diferencial de presión hidrostática.

La caída de presión causada por la producción origina que el contacto interfacial se mueva a través de los planos de estratificación en forma de cono . La figura 1 muestra la forma de un cono de agua.

En el régimen crítico de producción , cualquier incremento en la caída de presión en el pozo , causa que el contacto interfacial estático se mueva , o que el cono llegue al pozo.

También podemos decir , que la conificación de agua dentro del pozo ocurre cuando la gradiente de presión fluyente , establecida alrededor de la pared del pozo , causa que el flujo de agua atraviese perpendicularmente los planos de contacto agua-petróleo, formándose una superficie cónica alrededor del pozo , teniendo esta superficie en su parte superior petróleo y en la inferior e interior agua .

La conificación se da en reservorios isotrópicos y anisotrópicos con fuerte impulsión de agua de fondo .

Los Conos pueden ser estables , críticos ó inestables ; asi:

1. el agua forma un cono estable cuando

- a. Un pozo esta produciendo con un régimen de producción constante un periodo de tiempo largo , pseudoestabilizando el sistema de drenaje . En tanto duren dichas condiciones la altura del cono no cambia ,
- b. las gradientes de presión en el área de drenaje son constantes,
- c. la gradiente de presión fluyente es menor que las fuerzas gravitacionales. Y ,
- 2. el agua forma un cono critico cuando
 - Las gradientes de la presión fluyente son aproximadas e inferiores a las fuerzas gravitacionales Aquí el cono es fragilmente estable ,
- 3. el agua forma un cono inestable cuando
 - a. Las gradientes de presión fluyente , sobrepasan las fuerzas gravitacionales , avanzando el cono hacia el intervalo abierto a producción del pozo.

Todo cono pequeño de altura inferior a la del cono crítico es estable, en cambio, cuando la altura del cono supera la altura del cono crítico se observa que esta crece aceleradamente a medida que el cono se acerca al pozo lo cual evidencia un cono inestable

Al tener en cuenta el delicado balance creado entre las fuerzas gravitacionales y la gradiente de presión , considérese que:

 Las Fuerzas Gravitacionales son causadas por la diferencia de densidades entre el petróleo y el agua ; y

2. La Gradiente de Presión, es producida por el flujo de los fluidos.

Es importante tener en cuenta que la caída de presión necesaria para levantar el cono es muy pequeña Además las caídas de presión ΔP disponibles en la zona de petróleo son suficientes para levantar el agua más la columna hidrostática de petróleo entre el fondo del horizonte petrolífero y los baleos del intervalo abierto a producción, y en caso de zonas de petróleo no abiertas a producción totalmente , estos valores relativamente grandes que levantan el cono se deben enteramente a la gran concentración de las gradientes de presión cerca al pozo cuando estas se concentran tupidamente en la De hecho, las gradientes de presión cerca al pozo varían arena inversamente con el cuadrado de la distancia medida desde el pozo, siendo únicamente una fracción pequeña efectiva para levantar el cono de agua.

Todo lo discutido anteriormente respecto a la altura del cono se ha referido a su medida a lo largo del eje central de la arena es decir, en la región inmediatamente más próxima al pozo.

Obtener los valores de la diferencial de presión crítica requirió atraer el cono hasta el intervalo productor y obtener soluciones analíticas a partir de las cuales se nota el incremento de dichas diferenciales de presión crítica muy rápidamente, especialmente para las arenas de mayor espesor. Además , cae rápidamente a valores infinitesimales cuando el intervalo productor del pozo se acerca al

100% y en el fondo del pozo el conjunto de producción esta cerca el nivel de agua . Finalmente , el diferencial de la presión crítica no solamente disminuye cuanto menor es el espesor de arena, como deber esperarse , su variación con el espesor de arena llega a ser cada vez más pronunciadamente decreciente con la disminución de dicho espesor. Aunque , desde un punto de vista físico , las gradientes y diferenciales de presión sean los controladores que determinan la estabilidad del cono de agua la relación entre el régimen de producción de petróleo y la entrada de agua en el pozo es quizás la de mayor interés desde un punto de vista práctico

La figura 2 muestra la distribución de los potenciales en el grafito , los conductores en el modelo representan sectores radiales de los horizontes de arena petrolífera trazados por el cono de agua desde arriba hacia abajo del pozo. Las curvas equipotenciales se numeran en porcentaje (%) de la caída de potencial total sobre la arena Las curvas continuas en (a) representan la distribución del potencial cuando el cono esta ausente.

3.2. Régimen Crítico De Producción.

Se define al "régimen crítico de producción" como el máximo régimen de producción al que se puede hacer producir un pozo sin ningún problema de irrupción del cono de agua.

El régimen crítico de producción es muy importante en la teoría de conificación , porque encima de él la caída de presión fluyente de fondo del pozo causa que el agua conificada intruya dentro del pozo.

Es importante tener en cuenta que en el régimen crítico de producción el cono es fragilmente "estable" lo que puede cambiar rápidamente generando una irrupción temprana de agua en el pozo.

4. Correlaciones Para Determinar El Régimen Crítico De Producción

Muskat y Wyckoff , Arthur , Channey et al , y Chierici et al publicaron soluciones gráficas para la determinación del régimen crítico de producción .

Mientras Meyer y Gardner y Schols proveyeron ecuaciones para el cálculo del régimen crítico de producción

Las correlaciones están diseñadas considerando sean los reservorios Isotrópicos o Anisotrópicos

4.1. Reservorios Isotrópicos.

Un reservorio es isotrópico si para cada profundidad se cumple que:

- La permeabilidad en la misma dirección es constante en todo el reservorio,
- 2. la porosidad es constante en todo el reservorio ; además
- 3. el reservorio no presenta barreras ni discontinuidades geológicas.

Cabe señalar que si lo anterior se cumple no importando la profundidad ni la dirección estaremos hablando de un reservorio homogéneo.

4.1.1.1. Método de Muskat y Arthur :

Muskat y Artur utilizaron para estudiar la conificación un simulador físico o "simulador potenciométrico de conificación de agua", hallando soluciones gráficas.

Como el agua , tiene densidad mayor que el petróleo bajo condiciones estáticas permanecería en el fondo de la arena petrolífera , su levantamiento a la zona de petróleo y su llegada al intervalo abierto a producción implica un efecto dinámico debido al movimiento del petróleo hacia arriba.

Seguir en forma detallada el proceso de la formación del cono de agua y como este intruye en el intervalo abierto a producción del pozo e irrumpe a través de la zona de petróleo , es un problema tan complejo que hacer un análisis teórico es prácticamente imposible. Sin embargo, puede llevarse a cabo con seguridad mediante aproximaciones, un tratamiento analítico del sistema de flujo antes que el agua irrumpa , después de un tiempo en que estuvo estático debajo de la zona de petróleo , mediante el levantamiento de una superficie cónica.

Considerando las condiciones de conificación de agua presentados en la figura 3 , Muskat relacionó las fuerzas de potencial presentes en el fluido fluyente con el diferencial de las fuerzas gravitacionales entre los dos fluidos involucrados . La ecuación para conificación en un reservorio homogéneo puede ser escrito como :

 $\Delta \Phi \quad \Phi_{W} - \Phi_{z} \qquad g \ \Delta \rho \qquad z$ $\underline{\qquad} = \underline{\qquad} = 1 - \underline{\qquad} h(1 - \underline{\qquad}) \qquad (1)$ $\Delta \Phi_{e} \quad \Phi_{W} - \Phi_{e} \qquad \Delta P \qquad h$

Donde

 $\Phi = \text{Potencial de velocidad ,}$ $\Phi_e = \text{potencial en el radio de drenaje ,}$ $\Phi_w = \text{potencial en la superficie del pozo ,}$ $\Phi_z = \text{potencial en el radio del pozo , a una profundidad z ,}$ g = aceleración de la gravedad , $\Delta p = \text{diferencia de densidades entre los dos fluidos ,}$ z = distancia desde el punto seleccionado como nivel de referencia, en pies ,

h = espesor del reservorio , en pies

 ΔP = caída de presión de fondo del pozo productor , en psi.

Arthur generó soluciones gráficas para la ecuación de Muskat , las que son presentadas en las figuras de la 3 , 4 y 5 . En la figura 3 se gráfico la penetración del pozo b/h , donde b es el intervalo abierto a producción versus el potencial del pozo en la superficie Φ'_w para un valor particular de radio del pozo de $r_{DW} = 0.001$, donde

$$r_{DW} = r/2h \tag{2}$$

En la misma figura 3 se tiene el gráfico de la penetración del pozo versus el potencial Φ_z en el radio del pozo a una profundidad z .

La figura 4 muestra los factores de corrección que pueden ser aplicados para determinar Φ_w para radios de pozo diferentes de aquellos presentados en la figura 3

La figura 5 muestra el potencial de velocidad en el radio de drenaje Φ e versus el parámetro del radio de drenaje :

$$r_{DE} = r_c/2h \tag{3}$$

Esta figura 5 puede ser usada para obtener los potenciales $\Phi_{\rm e}$, para valores razonables del radio de drenaje ,r.

4.1.1.2. Método De Chaney Et Al

Este método es una extensión del método de Muskat . El método se basa sobre los resultados de análisis matemáticos y potenciométricos de la conificación de agua . A partir de dicho análisis Channey et al desarrolló un conjunto de curvas para determinar el régimen crítico de producción para diversas longitudes del intervalo abierto a producción Las curvas de Channey muestran el régimen crítico de producción en barriles reservorios por día versus la longitud desde el tope superior del intervalo abierto a producción en la arena de petróleo . Las figuras mostradas son para espesores de la arena petrolífera

de 12.5, 25 , 50, 75 y 100 pies ; todos con radios de drenaje de 1000 pies. Cada una de esas figuras muestra cinco curvas de conificación de agua ver en las figuras 6,7,8,9 y 10 , las curvas A ,B ,C,D, y E.

La curva A se usa cuando el 10% del espesor de la arena esta abierta a producción . La curva B se usa cuando el 20% del espesor de la arena esta abierta a producción . La curva C se usa cuando el 30% del espesor de la arena esta abierta a producción .

La curva D se usa cuando el 40% del espesor de la arena esta abierta a producción . La curva E se usa cuando el 50% del espesor de la arena esta abierta a producción .

Los datos de Channey fueron adecuados por mínimos cuadrados Los cuales permiten calcular:

- El máximo régimen de producción de producción sin generar conificación,
- 2. donde balear ,
- 3. hacer estimados de la producción del pozo.

Se obtuvo la ecuación siguiente , que puede usarse para hacer pronósticos muy prácticos ;

$$\mathbf{q}_{curva} = 0.1313^* (h^2 - D^2) - 23.2 \tag{4}$$

Donde:

 q_{curva} = régimen crítico de producción de las curvas de Channey , Bl/d

h = espesor de la arena de petróleo , ft

D = intervalo abierto a producción desde el tope superior de la arena de petróleo , ft.

Las curvas de Channey para determinar el régimen crítico de producción se desarrollaron usando las características de la rocafluido siguientes :

1. Permeabilidad (k),

2. viscosidad del petróleo ($\mu_{\rm o})$,

3. diferencia de densidades entre el agua y petróleo ($\rho_w - \rho_n$)

Es necesario corregir el régimen de producción obtenido de las curvas de Channey o de la ecuación 4 , para valores reales de las propiedades de la roca y del fluido mediante la ecuación siguiente:

$$0.00333 k_0 (\rho_w - \rho_0) q_{curva}$$

(5)

Qo max =

μ. * β.

Donde:

q _{curva}	=	régimen inicial de la producción en el reservorio	en	Bl/d;
		el que es determinado de las soluciones gráficas ,		
q _{o max}	=	régimen máximo de producción inicial en STB/d ,		
k _o	=	permeabilidad efectiva al petróleo en md ,		
μ_{o}	=	viscosidad del petróleo en centipoise (cp) , y		
β _o	=	factor de volumen de formación en Bbl/STB.		

Los estimados de la capacidad de producción pueden ser obtenidos usando la figura 11 , que muestra la máxima capacidad de producción requerida al producir a un cierto régimen de producción varios intervalos abiertos a producción , en un pozo revestido de 0.25 pies con una densidad de disparos a un razón de 4 ¼ balas/pie.

Las curvas fueron generadas considerando una permeabilidad de 1 darcy y una viscosidad de 1 cp.

Consecuentemente , la caída de presión leída de la figura 7 en psi, tiene que ser corregida multiplicándola por la viscosidad corregida en cp. y dividiéndola por la permeabilidad corregida en darcies . Como regla general , Chaney sugirió que si la caída de

presión corregida de la figura 11 es mas de la mitad de la caída de presión disponible , o caída de presión de trabajo , deberá abrirse a producción un intervalo mayor.

La caída de presión de trabajo es la presión de cierre en el fondo menos la presión ejercida por el peso del fluido en la tubería.

Como regla general Chaney recomendó que la caída de presión disponible sea dividida entre 2, a fin de calcular una presión de trabajo que tome en cuenta cualquier posibilidad de daño alrededor del pozo que pueda incrementar la caída de presión para un régimen de producción dado.

4.1.1.3. Método De Craft Y Hawkins

Usando el modelo eléctrico derivo la siguiente ecuación:

$$q_{max} = \frac{7.08 \times 10^{-3} \times k^{+} h^{+} (p_{ws} - p_{wt})}{\mu_0 \times \beta_0 \times \ln (r_e / r_w)}$$
(6)

Aquí:

$$RP = f^* [1+7*\sqrt{(r_w/2*f^*h)} *\cos(f^*90^\circ)]$$
(7)

Donde :

- RP = razón de productividad,
- P_{ws} = presión estática del pozo corregida a la mitad del intervalo productivo, psi
- Pwf = presión fluyente del pozo corregida a la mitad del intervalo
 productivo, psi

f = Penetración fraccional ,

h = espesor de la columna de petróleo , pies

 μ_{o} = viscosidad del petróleo , cp.

La máxima caída de presión sin entrada de agua al pozo es :

$$\Delta P_{Max} = 0.433 \star (\rho_w - \rho_o) \star \Delta h_{Max} \tag{8}$$

Donde Δh_{Max} es la distancia vertical , entre el perforado del baleo mas bajo del intervalo abierto a producción y el contacto inicial de agua , que debe considerarse para calcular la caída de presión máxima.

4.1.1.4. Método De Meyer Y Garder

Meyer y Garder determinaron analíticamente el máximo flujo permisible de petróleo en un pozo , para hacerlo producir sin conificación de agua , en la sección de producción del pozo .

A fin de simplificar el tratamiento analítico asumieron:

1. Un reservorio homogéneo ,y

2. flujo radial .

Meyer y Garder derivaron la ecuación siguiente para el cálculo del régimen crítico de producción :

$$q_{c} = \frac{1.5351*10^{-3}*(\rho_{w} - \rho_{o})*(h^{2} - D^{2})*k}{(9)}$$

 $\mu_o * \beta_o * \ln(r_e / r_w)$

```
Donde :
```

q c	= régimen crítico de producción , STB/d
ρ _ν -ρ _ο	= diferencia de densidades entre el agua y petróleo , gr/cc
h	= espesor de la zona de petróleo , pies
D	= intervalo abierto a producción , pie (desde la cima de la
	arena)
k	= permeabilidad , md
μ_{o}	= viscosidad del petróleo ,cp
β _o	= factor de volumen de formación de petróleo, Bbl/STB
r _e	= radio de drenaje , pies
r _w	= radio del pozo perforado , pies

La ecuación anterior puede ser usada muy fácilmente. Sin embargo, debe tenerse cuidado en entender que son fórmulas de flujo radial simplificadas , y que por lo general son menos aproximadas que los métodos mas rigurosos.

4.1.1.5. El Método De Schols

Basados en experimentos corridos en el simulador numérico del modelo Hele-Shaw .

Schols derivó una fórmula empírica para el régimen crítico de producción como sigue :

$$(\rho_{w} - \rho_{o}) * k * (h^{2} - D^{2}) \qquad \pi \qquad h$$

$$q_{c} = \left[\underbrace{\qquad}_{2049 * \mu_{o} * \beta_{o}} \right] * \left[0.432 + \underbrace{\qquad}_{1n} \right] * \left[\underbrace{\qquad}_{n} \right]^{0.14} \qquad (10)$$

```
Donde :
```

\mathbf{q}_{c}	= régimen crítico de producción, STB/d
ρρ.	= diferencia de densidades entre el agua y petróleo, gr/cc
h	= espesor de la zona de petróleo , pies
D	= intervalo abierto a producción , pie (desde la cima de
	la arena)
k	= permeabilidad , md
μ_{o}	= viscosidad del petróleo , cp
β _o	= factor de volumen de formación de petróleo, Bbl/STB
r _e	= radio de drenaje , pies
rw	= radio del pozo perforado , pies.

Hay concordancia entre el régimen crítico de producción calculado a partir de la formula empírica de Schols y los calculados por modelos numéricos mas completos .

Schols también comparó su trabajo con los método de Muskat-Arthur y Meyer-Garder. Demostrando que el método de Muskat-Arthur o incluso el método de Channey dan regímenes críticos de producción demasiado altos y que el método de Meyer-Garder da valores demasiados bajos para el régimen crítico de producción. La formula empírica de Schols ofrece un método rápido y bueno para calcular el régimen crítico de producción.

Un reservorio es anisotrópico si

- La permeabilidad no es constante en todas las direcciones del reservorio,
- 2. la porosidad varia a través del reservorio.
- el reservorio puede presentar barreras ó discontinuidades geológicas

Este tipo de reservorios requieren para su estudio y planificación de simuladores numéricos .

4.2.1. Método De Chierici Et Al.

El método de Chierici et al basado en la teoría de conificación de agua de Muskat, hace uso del modelo potenciométrico , determinando:

1. El máximo régimen crítico de producción, y

2. el intervalo optimo de completación .

Con la finalidad de maximizar la recuperación de petróleo sin conificación de agua .

Este método tiene las siguientes asunciones

1. El reservorio es homogéneo,

- los contactos interfaciales son horizontales en condiciones estáticas,
- 3. los efectos de la presión capilar son omitibles,

4. los fluidos del reservorio son incompresibles,

5. el acuífero es de tamaño limitado y no contribuye a la energía del reservorio.

Las siguientes ecuaciones son básicas para el método de Chierici et al :

$$q_{oc,w} = 3.073*10^{-3} (\underline{\qquad}) \psi(r_{de}, f_b, h_{cw}/h)$$
(11)
$$\beta_0 \mu_0$$

.

Donde :

- $q_{oc,w}$ = régimen crítico de la producción de petróleo para un cono de agua intruyendo en el pozo , STB/d
- h = espesor total de la columna de petróleo , pies

 $\Delta \rho_{wo}$ = diferencia de densidades agua-petróleo , gr/cc

 k_h = permeabilidad horizontal , md .

Además:

$$\mathbf{r}_{de} = \frac{\mathbf{r}_{e}}{\mathbf{h}} \sqrt{\frac{\mathbf{k}_{h}}{\mathbf{k}_{v}}}$$
(12)

Aqui :

$$r_e = radio de drenaje , pies$$

 $k_v = permeabilidad vertical , md$
 $f_b = fracción total de la columna de petróleo abierta a producción,$

 h_{cw} = distancia del contacto inicial agua-petróleo a la parte baja del intervalo abierto a producción , pies

 β_0 = factor de volumen de formación del petróleo, Bbl/STB μ_0 = viscosidad del petróleo en condiciones reservorio , cp .

Si la producción de un pozo excede el régimen crítico de producción, el agua forma un cono inestable que intruye por el intervalo abierto a producción dentro del pozo.

Para una distancia determinada hasta el contacto intefacial, el régimen crítico de producción , para la conificación de agua , es normalmente el régimen de producción limite resultante de la pequeña diferencia de densidades entre el agua y el petróleo

La ecuación 11 indica que el régimen crítico de producción esta en función de :

1. Los parámetros del fluido,

2. los parámetros de la roca, y

3. la distancia disponible para la Conificación.

El régimen crítico de la producción esta relacionado por la función ψ de los parámetros adimensionales :

 r_{de} , f_b y h_{cw}/h ; los cuales son definidos por la geometría del sistema de conificación .

Chierici determino los valores para la función ψ mediante el uso del simulador potenciométrico. Los valores de ψ fueron determinados para los siguientes rangos adimencionales razonables:

$$\mathbf{r}_{de} = \frac{\mathbf{r}_{e}}{\mathbf{h}} \sqrt{\frac{\mathbf{k}_{h}}{-}} \quad de \ 5 \ (e \ 80 \ ;)$$

 f_b de 0.0 @ 0.75; y h_{cw}/h de 0.07 @ 0.90 (13)

Los valores de ψ para los rangos previos son mostrados en las figuras 12 a la 18. Cada figura es valida para valores específicos de r_{de} y contiene dos grupos de curvas. Un grupo es para valores de h_{cw}/h y se usa cuando esta conificado un solo fluido.

Para determinar el valor de ψ , calcular el valor de $r_{\rm de}$ y determinar la figura que se aplica . Si el pozo ha sido completado , se usan $f_{\rm b}$ y $h_{\rm cw}/h$, y el valor de ψ es encontrado en la intersección de los dos valores .

Si el pozo esta siendo evaluado para ser completado , determinar un valor de $f_{\rm b}$, asumiendo que el pozo ha sido completado tan lejos como sea posible del contacto de los fluidos . Se determina un valor de ψ y un régimen crítico de producción .

Puede notarse que mientras mas bajo es $f_{\rm b}$, el régimen crítico de la producción es mas alto .

Los datos de producción del pozo de petróleo pueden ser usados para estimar el potencial en tanto los valores de f_b se establezcan donde haya una buena capacidad , y el pozo este completado convenientemente para lograr conseguir el régimen crítico de producción.

La completación optima puede ser determinada cuando hay una competencia establecida sobre el intervalo abierto a producción entre el régimen crítico de producción y el potencial del pozo.

El tiempo de irrupción es el tiempo estimado aproximadamente para que el cono de agua llegue a los baleos inferiores del intervalo abierto a producción e irrumpa en el pozo.

4.2.2.1. Método De Sobocinski y Cornelius

El método de Sobocinski considera un reservorio homogéneo que se alimenta horizontalmente y asume flujo radial de petróleo y agua desde el limite exterior .

Sobocinski y Cornelius desarrollaron una correlación para predecir el tiempo que demora el cono de agua para irrumpir en el intervalo abierto a producción ; basados en resultados experimentales de laboratorio y datos resultados de programas de computación .

La correlación involucra:

1. grupo de propiedades adimensionales del reservorio:

a. altura adimensionales del cono $\ z$,

b. tiempo adimensional $(t_D)^{BT}$, y

2. características del fluido de producción y del pozo.

Las definiciones de estos dos grupos adimensionales son como se indica a continuación :

 $0.00307*(\rho_w - \rho_o)*k_h*h*(h - D)$

 $\mu_0 * q * \beta_0$

Donde :

z = ...

z = altura adimensional del cono , = caudal de petróleo , Bl/d Ρ = permeabilidad horizontal , md k_h $\rho_w - \rho_o$ = diferencia de densidades entre el agua y petróleo , gr/cc = espesor de la zona de petróleo , pies h = intervalo abierto a producción , pie (desde el tope D superior de la arena) = viscosidad del petróleo , cp μ_{o} = factor de volumen de formación de petróleo , Bbl/STB β = radio de drenaje , pies r_e = radio del pozo perforado , pies . rw

(14)

(15)

У

$$0.00137*(\rho_w - \rho_o)*k_h*F_k*(1 + M^{\alpha})*t_{BT}$$

 $(t_{\rm D})^{\rm BT} =$

$$\mu * \phi * h_o$$

Donde :

 $t_{\mbox{\scriptsize BT}}$ = tiempo de irrupción , días

 F_k = relación de permeabilidad vertical a la permeabilidad horizontal, k_v/k_h Aqui:

Donde:

- $(k_w)_{or}$ = permeabilidad efectiva al agua a la saturación residual de petróleo, y
- $(k_{\rm o})_{\rm wc}$ = permeabilidad efectiva al petróleo a la saturación de agua connata ,

 α = 0.5 para M < 1 ; 6 = 0.6 para 1 < M < 10.

La correlación de Sobocinski y Cornelius para el tiempo de irrupción puede ser aproximado por la ecuación siguiente :

 $(t_{D})^{BT}_{Sobocinski} = \frac{z}{4} + \frac{16 + 7*z - 3*z^{2}}{7 - 2*z}$ (17)

Estos grupos adimensionales pueden ser usados para estimar el comportamiento del cono de agua sin ser considerados directamente en la correlación.

El procedimiento del calculo del tiempo de irrupción que usa el método de Sobocinski y Cornelius es como sigue :

Primero: Calcular la altura adimensionales del cono en la irrupción; usando la ecuación siguiente :

$$\mu_{\bullet}^*q^*\beta_{\circ}$$

<u>Segundo:</u> Encontrar el tiempo adimensional t_n , que corresponde a "z" calculada para la irrupción . Esto puede obtenerse en la ecuación siguiente :

<u>Tercero:</u> Usando la ecuación siguiente , calcular el tiempo de irrupción en días t_{BT} :

Con los conceptos y cálculos previos se determina el tiempo de irrupción pero no el tiempo requerido para desarrollar un cono estable.

Antes que el cono alcance la altura critica ó el agua intruya en el pozo ; se puede hacer producir el pozo encima del régimen crítico de producción .

La correlación disponible estima el tiempo en que se forma el cono levantandose desde el contacto estático agua-petróleo , alcanzando una altura estable Esta correlación se basa en datos de un modelo en dos dimensiones en una arena empaquetada con propiedades del reservorio y de los fluidos.

La correlación tiene las siguientes asunciones y limitaciones

 El reservorio es homogéneo el sistema es incompresible sin capa de gas y produce con régimen de producción constante.

2.a. Se Consideran

- 1. Las fuerzas de gravedad y viscosas, y
- 2. datos geométricos que involucran razones de permeabilidad horizontal-vertical.

b. Se Omiten

- 1. Presión capilar,
- 2. razón de viscosidades petróleo-agua,
- 3. geometría del flujo.
- 3. La altura vertical del sistema puede ser caracterizada por el espesor de la zona de petróleo.

En el radio externo del modelo se mantuvo constante el contacto agua-petróleo.

El eje z es la altura del cono adimensional versus el tiempo adimensional t_p de las curvas . Los datos experimentales de los tiempos de irrupción del cono de agua y datos del cono , fueron correlacionados con los modelos computarizados; contra el tiempo adimensional t_p y la altura adimensional del cono z. Las correlaciones son mostradas en la figura 19. Los datos correlacionados fueron desarrollados para desplazamientos inmiscibles y son descritos por las ecuaciones 21 y 22.

0.00307*Δpwo*kh*h*hg

У

0.00137* Apwo+kh+ (1+Mª) *t

 $t_{\rm D} =$

Ho. on nk

Donde :

31

(22)

t = tiempo , días

 η_k = razón de permeabilidad horizontal-vertical , M = razón de movilidad agua-petróleo = μ_o . $(k_w)_{wt}$ μ_w . $(k_o)_{wt}$

 $\alpha = 0.5$ para M < 1 , 6 = 0.6 para 1 < M < 10 (23)

Las curvas en la figura 19 describen a z como la función de $t_{\rm D}$ usando datos suavizado de los modelos . La curva de irrupción representa las condiciones en que un cono de agua , el cual se forma desde las condiciones estáticas , irrumpirá en el pozo cuando se esta produciendo a un régimen de producción constante e ininterrumpido . El levantamiento de la curva de base describe la cúspide del cono de agua antes que el agua irrumpa, mientras las curvas de partida describen el alza de la cúspide del cono a medida que este se acerca al intervalo abierto a producción. Note que la pendiente de la curva de partida se incrementa cuando esta se acerca a la curva de irrupción. Esto significa que el alza de la cúspide del cono se acelera a medida que se acerca al intervalo abierto a producción . Las cuatro curvas mostradas se obtuvieron a partir de datos de laboratorio ; la curva de partida para las otras irrupciones pueden ser ubicadas por interpolación.

El levantamiento de las curvas base y de partida se aplican solo en casos de conificación para los cuales las condiciones de irrupción caen dentro de los rangos de la figura 19 si para las condiciones especificas la irrupción no ocurre, el agua puede ser producida por conificación solamente si el régimen

de producción ó intervalo abierto a producción se incrementan o si el contacto agua-petróleo se levanta.

Es posible estimar el régimen crítico de producción de la figura 15, note que en esta figura la altura adimensional del cono en la irrupción tiende a tornarse asintótica para tiempos adimensionales con valores de z mayores que 3 y menores que 4. Aunque el valor asintótico exacto para $z_{\rm HT}$ no puede ser obtenido de la figura 19 ó de los datos de los que fueron preparados puede asumirse que $z_{\rm HT}$ se tornara asintótico en 3.5. Si hacemos la ecuación 21 igual a 3.5 e insertamos valores apropiados a la irrupción para todos los factores exceptuando a q_o , podremos calcular q_o para el régimen crítico de producción de petróleo.

a. Aplicación De T_D versus La Correlación z En La Predicción Del Tiempo De Desarrollo Del Cono

El método de t_D versus la correlación z permitirá a uno estimar si ocurre la irrupción dentro de los limites de la figura 19 y por lo tanto , cuanto tomara al pozo producir agua por conificación y cuan rápido la cúspide del cono subirá.

Las curvas de la figura 19 están basados solo en datos limitados y las predicciones hechas a partir de la correlación de esos datos están sujetos a las condiciones ya indicadas previamente.

Para predecir la formación de un cono use el siguiente procedimiento:

 Usar la ecuación 21 para calcular la altura adimensional del cono en la irrupción ; para
determinar si la irrupción ocurrirá dentro de los limites de las figura 19 o si la curva de partida es falsa.

- 2. calcular el tiempo adimensional $t_{\rm p}$ que corresponden al z calculado para la irrupción ,
- 3. usar la ecuación 22 , hallar t , el tiempo actual de irrupción en días .
- 4. determinar la altura del cono antes de la irrupción y asumir la menor altura como la altura de irrupción , para calcular el z con la ecuación 21 ; determinando el correspondiente t_D del levantamiento de las curvas base y de partida apropiadas y finalmente resolver la ecuación 22.

Cuanto demora , para que el cono irrumpa en el pozo , viene dado por el tiempo adimensional $t_{\rm D}$ de la figura 19 .

Despejando la ecuación 22 para obtener el tiempo de irrupción:

 $t_D \mu_o \phi \eta_k$

t=

(24)

 $0.137 * \Delta \rho_{wo} k_h (1+M^{\alpha})$

M es la razón de movilidad agua petróleo y además :

 $\mu_{o}(k_{w})_{or}$

M =

 μ_{w} (k_o)_{wi}

4.2.2.2. Método De Bournazel Y Jeanson

Bournazel y Jeanson desarrollaron un método para estimar tiempo de irrupción basados en datos experimentales . Su modelo asumió :

(25)

- 1. Un reservorio homogéneo que se alimenta horizontalmente, y
- además flujo radial de petróleo y agua desde el límite exterior.

La correlación de Bournazel involucra el mismo grupo de parámetros adimensionales que la correlación de Sobocinski y Cornelius

La correlación de Bournazel y Jeanson se puede representar por la ecuación siguiente :

 $(t_D)^{BT}_{Bournazel} = \frac{z}{3 - 0.7*z}$ (26)

El procedimiento de calculo del tiempo de irrupción que usa el método Bournazel es parecido al método de Sobocinki , excepto en el segundo paso :

<u>Primero:</u> Usando la ecuación siguiente , calcular la altura adimensionales del cono en la irrupción :

$$0.00307*(\rho_w - \rho_o)*k_h*h*(h - D)$$

$$\mu_0 * q * \beta_0$$

<u>Segundo:</u> El tiempo adimensional $t_{\rm D}$, se calcula usando la ecuación:

$$(t_D)^{BT}_{Bournaze1} =$$
 (28)

<u>Tercero:</u> Finalmente , el tiempo de irrupción en días , t_{BT} esta dado por :

 $0.00137*(\rho_w - \rho_o)*k_h *F_k*(1 + M^{\alpha})$

Donde :

z	= altura adimensional del cono ,
qo	= régimen de producción de petróleo , Bl/d
kh	= permeabilidad horizontal , md
p _w -p _o	= diferencia de densidades entre el agua y petróleo ,
	gr/cc
h	= espesor de la zona de petróleo , pies
D	= intervalo abierto a producción , pies (desde el tope
	superior de la arena)

μ_o = viscosidad del petróleo ,cp

 β_o = factor de volumen de formación del petróleo, Bbl/STB (t_D)^{BT}_{Bournazel} = tiempo adimensional para el tiempo de irrupción para la correlación de Bournazel.

 F_k = relación de permeabilidad vertical a la permeabilidad horizontal, k_v/k_h

M = relación de movilidad agua - petróleo.

Aquí:

Donde:

 $(k_w)_{or}$ = permeabilidad efectiva al agua a la saturación residual de petróleo, y

 $(k_o)_{wc}$ = permeabilidad efectiva al petróleo a la saturación de agua connata.

 α = 0.5 para M < 1 ; 6 = 0.6 para 1 < M < 10.

5. Régimen crítico De Producción Y Desarrollo Del Campo

El desarrollo de un campo de acuerdo a su régimen critico de producción depende si el reservorio es finito o infinito.

Un reservorio se considera finito si la división del radio externo del acuifero entre el radio del reservorio de petróleo es menor que 10 ; y es infinito si la relación anterior es mayor que 10 Dicho de otra manera si el volumen de agua del acuífero entre el volumen de petróleo en el reservorio es 100 o mas el reservorio se considera infinito ; y si es menor que 100 el reservorio se considera finito .

5.1. Desarrollo Sin Conificación De Agua

Si el **reservorio es finito**, puede producirse sin conificación de agua, debajo del régimen crítico de producción y en caso de ser económico aumentar la producción encima del régimen crítico de producción.

5.2. Desarrollo Con Conificación De Agua

Si el **reservorio es infinito**, inicialmente se producirá sin el problema de la conificación de agua, pero pasado un tiempo se desarrollara este problema, debiendo producirse encima del régimen crítico de producción con el agua conificada intruyendo en el pozo.

Varias posibilidades pueden considerarse en el esfuerzo para reducir el efecto de la conificación de agua , podemos incluir:

- 1. Disminución del régimen de producción .
- 2. Mejoramiento de la productividad del pozo .
- 3. Producción con cierres temporales (stop cocking)
- 4. Inyección de petróleo.
- 5. Uso de barreras artificiales .
- 6. Completación dual
- 7. Recompletación. (ver acápite 6.1)
- 8. Perforación de pozos de relleno (infill) .(ver acápite 6.2)

1. Disminución Del Régimen De Producción

En teoría bajando el régimen de producción se reduce los efectos de la conificación de agua por disminución de la caída de presión en fondo del pozo , favoreciendo el aumento de la producción acumulada de petróleo y la vida del pozo , reduciendo costo de eliminación del agua .

Esto, a la vez, reduce las fuerzas dinámicas alrededor de la pared del pozo , permitiendo una mejor segregación por gravedad de las fases involucradas.

Sin embargo no siempre hay predisposición a utilizar este procedimiento, más bien es común aumentar la producción del fluido total para mantener la producción de petróleo.

2. Mejoramiento De La Productividad Del Pozo

En algunos casos, es posible aumentar la productividad del pozo mediante acidificación o fracturamiento del reservorio. Una fractura puede aumentar el área efectiva de producción del pozo de radio r_{WP} , como se indica en la ecuación siguiente:

$$\mathbf{r}_{\mathbf{w}\mathbf{e}} = \mathbf{r}_{\mathbf{w}} \cdot \mathbf{e}^{-\mathbf{s}} \tag{30}$$

Donde:

 r_{we} = radio equivalente del área efectiva de producción del pozo,

r_w = radio equivalente del área del pozo,

S = daño de la formación.

El aumento del radio efectivo del área de la pared del pozo reduce el efecto conificación porque disminuye la caída de presión alrededor de la pared del pozo.

La estimulación no cambia el régimen crítico de producción , a menos que esta sea efectiva horizontalmente sobre un área amplia lejos de la pared del pozo Si el aumento de la permeabilidad es dirigida únicamente a la pared del pozo las gradientes de presión del pozo permanecerán igual que antes , aunque se note un aumento en el índice de productividad .

3. Producción Con Cierres Temporales (STOP COCKING)

Después que el cono irrumpe, el pozo se cierra un período de tiempo determinado suficientemente para permitir que el cono retroceda, después de esto se hace producir a un régimen de producción menor

que antes del cierre, para impedir un nuevo levantamiento progresivo del cono ; esperando así mantener el cono estable Se requiere una producción mas baja que las condiciones iniciales porque la permeabilidad efectiva al agua fue aumentada por la primera irrupción del cono .

En la conificación de agua la segregación gravitacional empieza una vez que se cierra el pozo , pero si ya ocurrió la conificación de agua la segregación puede ser lenta debido a la poca diferencia entre las densidades del petróleo y agua Además, la presión capilar puede retener una porción del agua que ha desplazado al petróleo, reduciendo consiguientemente la permeabilidad efectiva al petróleo

4. Inyección De Petróleo

El trabajo iniciado por Smith y Pirson mostró experimental y analíticamente que la tendencia de conificación del agua es posible suprimirla e incrementar las recuperaciones del hidrocarburo si se inyecta petróleo entre el intervalo productor y el cono emergente cerca al contacto agua-petróleo La inyección de petróleo contrabalancea la gradiente de presión atribuida a la producción de petróleo.

Se encontró también que la inyección de petróleo mas viscoso que el petróleo original del reservorio tuvo efecto beneficioso para suprimir el desarrollo del cono Aumentar la viscosidad es equivalente a poner una barrera permeable entre el petróleo y la zona de agua .

La experiencia de campo indica que este enfoque puede reducir drásticamente las relaciones agua-petróleo Un problema asociado con este enfoque es determinar que cantidad de petróleo deben inyectarse para aumentar las recuperaciones de

petróleo , obviamente estas deben ser grandes y se tendrá siempre incertidumbre respecto al resultado .

Por ejemplo , en algunos casos es necesario inyectar 5 Bl de petróleo para recuperar 6 Bl .

Dada la naturaleza de este método propuesto , deben examinarse los márgenes económicos muy cuidadosamente .

5. Barreras Artificiales

Plásticos , bitumenes y lechadas de cemento podrían ayudar para impedir la conificación de agua , si ellos penetran en la formación hasta una distancia considerable, generando así una barrera artificial

Los plásticos ofrecen algunas ventajas técnicas pero son muy costosos.

El método de inyección dual de fluido involucra inyecciones simultáneas de relleno de agua y gel . El gel se pone en la zona de agua y el relleno se inyecta en la zona de petróleo para impedir la migración ascendente del gel. Para mantener en cero la diferencial de presión entre los dos fluidos durante el bombeo se mantiene el balance así el gel queda donde debe estar , ver la figura 20.

Los agentes bloqueadores gelatinosos pueden ayudar a reducir la conificación causadas por fisuras de alta permeabilidad o por fracturas

Un buen ejemplo del uso de geles bloqueadores ha sido presentado por Mazzocchi y Carter .

La figura 21 muestra los resultados de un tratamiento piloto, en el que se usó un agente bloquear , en un reservorio naturalmente fracturado en 1971 Los resultados reales comparados con la

extrapolación de la regresión lineal claramente indican que el tratamiento era altamente exitoso .

La producción de petróleo aumentó considerablemente mientras la producción de agua siguió la misma tendencia proyectada por la extrapolación de la regresión lineal Después de 28 meses de inyección regular de agua , ningún rastro de componentes del gel se encontró en los muestreos del agua obtenida de los pozos productores, indicando la aplicación exitosa del agente gel bloqueador sobre el borde de limonita fracturada del reservorio.

Lo mas importante , sin embargo es ser muy cuidadoso cuando se trabaja con materiales gel a causa de su pobre estabilidad térmica , además , en algunos casos ellos son sensibles a los iones metálicos que se encuentran en los fluidos de formación.

Actualmente se han desarrollado geles selladores que pueden bombearse dentro de la formación y cortar completamente la producción del fluido del intervalo tratado ; varias fórmulas están en el mercado según se requieran, unos son favorables para fisuras de alta conductividad o fracturas , otros se pueden emplear en estratos con porosidad intergranular, siendo estos últimos capaces de sellar la cara de la formación e intruir a unos pocos pies de la pared del pozo o ser transportados profundamente dentro de la formación y formar una lamina impermeable , estos geles deben ser colocados en un tiempo determinado . El material actualmente en uso forma un sello permanente y no se puede recuperar ni reparar , así haya sido mal colocado .

Karp , Lowe , y Marusov discutieron el uso de barreras horizontales para controlar la conificación de agua . En este procedimiento , es generada una fractura horizontal mediante la técnica de intrusión del punto-singular; enseguida , la fractura se abre con un agente apuntalador y se llena con cemento .

La figura 22 muestra el tiempo de irrupción para barreras de diversos radios en el informe Karp Lowe y Marusov En el informaron que si el radio de la pared del pozo es de 0.5 pies aproximadamente a los 10 pies una barrera duplica el tiempo de irrupción.

Para aumentar el tiempo de irrupción de agua es necesario construir barreras muy grandes .

6. Completación Dual

La técnica de Completación dual mejora el régimen de producción de petróleo libre de agua , en un reservorio encima de una zona de agua, disminuyendo drásticamente la contaminación por agua en los hidrocarburos .

Se producen ambas zonas simultáneamente , usando para eso una sarta larga que termina en la zona de agua y una sarta corta que termina en la zona de petróleo .

En la completación dual las zonas de agua y petróleo están separada por un empaque a la profundidad del contacto agua-petróleo (WOC) Más abajo del empaque , en la zona de agua la completación incluye una bomba electrosumergible de capacidad variable y baleos para la producción de agua La bomba electrosumergible crea una caída de presión preferencial para la trayectoria del agua , lo que permite desaguar alrededor del pozo la zona de agua , impidiendo que la conificación de agua intruya arriba en el intervalo abierto a producción en la zona de petróleo , ver la figura 23.

Las pruebas realizadas por la Universidad Estatal de Louisiana y la Hunt Oil Co. probaron el sistema en la formación Wilcox de Nebo-Hemphill , en el campo LaSalle de Parish , Luisiana ; la formación es conocida por :

a. Producción con alto corte de agua,

- b. la mayoría de las arenas son limpias teniendo fuerte impulsión natural por agua, con 1 a 4 darcies de permeabilidad, y
- c. relación alta de permeabilidad vertical a permeabilidad horizontal.

Lo anterior conduce a una rápida conificación del agua subyacente. Un pozo típico de Hemphill desarrolla el problema de conificación de agua de 60 a 90 días después de comenzada la producción de petróleo. El nuevo pozo se perforó atravesando las zonas de petróleo y agua , y se completo dualmente en ambas zonas.

La completación de la zona de agua , con grava empaquetada , se aisló de la completación de petróleo mediante un empaque y tubería de 3½ pulgadas. Prosiguiendo por la cavidad pozo abajo la bomba levantó el agua de la tubería , mientras se conducía el agua de formación libre de petróleo hacia arriba por una sarta que pasa por el espacio anular entre la tubería de producción y la tubería de revestimiento de 7 pulgadas .

Después de 17 meses de producción , el pozo tenia una producción promedio de 57 Bl/d de petróleo libre de agua , con una relación de producción agua-petróleo de 33:1 .

La prueba mostró que este método es capaz de impedir la irrupción , e incluso revertir la conificación de agua después de la irrupción , reduciendo el corte de agua del 7% hasta 0.2% .

También, el petróleo y la concentración de parafinas en la salmuera producida era más baja que el nivel de las pruebas de detección aprobadas por la Environmental Protection Agency of U.S.A.(E.P.A.).

Por lo tanto , el agua de formación podría ser descargada al medio ambiente sin requerir tratamiento .

Recompletar el pozos aumentando la distancia entre el contacto aguapetroleo y los baleos mas bajos del intervalo abierto a producción es una buena práctica para reducir los efectos de la conificación de agua.

Según Méndez para cualquier espesor de la zona de petróleo , un intervalo mínimo abierto a producción permite un régimen máximo de producción de petróleo libre de agua , el intervalo abierto a producción es medido a partir del tope superior de la zona de petróleo hacia abajo, son permisibles las razones del intervalo abierto a producción entre el intervalo productor del 15 al 20% con poco cambio en el régimen crítico de producción.

Así , la longitud exacta del intervalo abierto a producción no es determinante siempre y cuando esta sea razonablemente pequeña . Recompletar y obturar los baleos bajos del intervalo pequeño abierto a producción no es recomendable a menos que pueda ser recompletado en una arena petrolífera no abierta a producción, logrando así suprimir el cono y permitir regímenes de producción mas altos que los pronosticados por las curvas del régimen crítico de producción para reservorios de roca homogénea .

Un ejemplo de

a. Reducción del régimen de producción,

b. mejoramiento de la productividad de pozo por acidificación, y

c. recompletación de los intervalos superiores en un reservorio naturalmente fracturado . Nos provee el campo de Alamein en Egipto.

El pozo , cuyos registros se muestran en la figura 24 , inicialmente se abrió a producción desde los 8235 a los 8255 pies . La distancia al contacto agua-petróleo fue cercano a los 100 pies Seguido de un tratamiento con 500 galones de HCl al 15%, el pozo tuvo un régimen de

producción de 5200 Bl/d con una caída de presión de fondo de solo 90 psi.

Este pozo había producido 3 MM STB alcanzado 5% de corte de agua. Después , a este intervalo productor se le efectúo un remedio (squeeze) y se abrió a producción el intervalo desde 8214 a 8227 pies. Después del trabajo de acidificación , el pozo produjo 3600 Bl/d con una caída de presión de fondo de solo 46 psi .

El pozo tenia acumulado 5.9 MM STB hasta 1974

La figura 24 también muestra el avance del nivel de agua, que se monitoreo con registros TDT Esta información es útil para determinadas recompletaciones y la perforación de adicional de pozos de relleno (infill)

La interpretación del levantamiento convencional era imposible a causa de la estabilización inmediata de la presión obtenida en todas las pruebas , por lo tanto , se efectuó una la prueba multiflujo con anterioridad a poner el pozo en producción continua. Esto permitió estimar algunas características del reservorio

La máxima caída de presión de fondos para evitar la conificación de agua se calculo usando la ecuación de Muskat.

Se evito la conificación de agua considerando que la caída de presión de fondo del pozo es menor que la caída máxima calculada cuando hay fracturas ó intervalos de alta porosidad bajo el intervalo abierto a producción .

La figura 25 muestra la sensibilidad del régimen de producción del reservorio. Cuando el corte de agua aumenta , el pozo se estrangula y sucede una disminución inmediata en el corte de la fracción de agua . Esto minimiza el movimiento de agua hacia arriba. El pozo de la figura 25 produjo cerca de 6 MM Bl con menos del 5% de corte de agua . Esto es notable en un reservorio naturalmente fracturado con influjo de agua .

La figura 26 muestra el gráfico de la presión de fondo del pozo versus la producción acumulada . La máxima caída de presión acumulada fue de 108 psi. Como el régimen de producción de petróleo se redujo , la presión de reservorio aumentó significativamente Ocho años después del descubrimiento del campo, la presión era menor en solo de 32 psi que la presión original de reservorio .

El máximo régimen crítico de producción versus el intervalo abierto a producción del pozo para varios espesores de la zona de petróleo con radio del pozo igual a 4 pie , radio externo 500 pies y densidad del agua de 0.3 gr/c , se puede ver en la figura 27 Quizás el aspecto más interesante de estas curvas es el hecho que las zonas de petróleo parcialmente abiertas a producción permiten que entre en el pozo un mayor régimen de producción sin conificación. De esta manera, el hecho que los baleos del intervalo abierto a producción no lleguen hasta el fondo de la zona de petróleo estando a una distancia mayor del horizonte de agua , que si los baleos estuvieran mas bajo , tiende naturalmente a hacerlo más favorable para la supresión del cono y desde luego la diferencial de presión crítica es mayor cuando la zona de petróleo no esta abierta a producción completamente.

Por otra parte , debido a la resistencia muy alta del sistema del pozo parcialmente abierto a producción se podría esperar un efecto de contrabalanceo dada la gran separación del baleo mas bajo del intervalo abierto a producción y el nivel de agua , para dar origen al intervalo optimo abierto a producción no perdiendo de vista el régimen crítico de producción respecto a la menor y mayor longitud del intervalo de producción .

Las curvas de figura 27 muestran sin embargo que la distancia del fondo del intervalo abierto a producción hasta el nivel de agua es el factor más importante , note que las curvas se tornan planas para los intervalos abiertos a producción de longitudes pequeñas , y como ya se señalo para propósitos prácticos los pozos con longitud abierta a producción del 15 al 20% de la zona de petróleo tendrán prácticamente regímenes de producción sin agua para longitudes del intervalo abierto

producción sumamente pequeños esto desde а luego es una circunstancia afortunada tanto es por lo posible obtener el intervalo óptimo de producción sin intentar balear totalmente la zona de petróleo ; el paralelismo de las curvas de figura 27 en la escala logarítmica muestra que la producción máxima Q puede expresarse muy aproximadamente por

$$0 = f(h^*)h^{2.3}$$
(31)

Donde f(h^{*}) depende de la penetración fraccional h^{*}.

Esta fórmula puede usarse para calcular Q para el espesor de arena h , a excepción de los usados en la figura 27.

La importancia práctica de lo anterior es el análisis que muestra que deben evitarse las longitudes grandes del intervalo abierto a producción en la zona de petróleo si se sabe que la zona inferior contiene agua . Esto muestra que si la longitud abierta a producción es finita para un régimen determinado de producción, tendrá lugar la conificación pudiendo uno intentar corregir esta situación obturando baleos inferiores del intervalo productor reduciendo los así efectivamente la longitud abierta a producción De esto se implica que la conificación una vez comenzada en una arena de petróleo, no es necesariamente un acompañante permanente de la producción , la razón esencial para la persistencia de la conificación es que la caída de presión entre el lindero del reservorio y el fondo del pozo excede a la presión hidrostática de la columna de agua y que los gradientes dinámicos de presión en el sistema exceden al gradiente estático debido a la diferencia entre las densidades del petróleo y el agua .

Por eso, el pozo es abturado en la parte baja del intervalo productor ó el régimen de producción es "bajado" para que la presión total caiga y los gradientes dinámicos lleguen a ser insuficientes para superar la

gradiente hidrostático gravitacional y la columna de agua , el cono de agua puede retroceder únicamente hasta el fondo de la formación petrolífera El tiempo en que tienen lugar estas transiciones es difícil de estimar , pero debe ser medido en horas considerando la zona de petróleo entre dos linderos perfectamente impermeables y horizontales . Así en el proceso de controlar la contra-presión en el pozo , uno debe ser capaz de controlar en grado arbitrario y preciso el régimen de entrada de agua en el pozo ó estabilizar la producción de petróleo manteniendo el agua estática bajo el horizonte de petróleo.

6.2. Perforación De Pozos De Relleno (Infill)

Según estudios de la producción de pozos de petróleo bajo el mecanismo de impulsión por agua de fondo se concluye que la disminución del espaciamiento resulta en una recuperación mas alta de petróleo .

La adición de pozos de relleno (infill) en un reservorio determinado permite la formación de diversos conos pequeños en lugar que simplemente uno mas grande como los mostrados en el esquema de la figura 28 .Permitiendo una mejor recuperación del reservorio ya que mejora el barrido del área productiva.

7. Simulación Numérica Para El Monitoreo De La Conificación

En los cálculos de conificación, el volumen del reservorio drenado por el pozo productor es representado por un sistema de bloques , ver la figura 29 La dimensión horizontal de los bloques aumenta con la distancia radial desde el eje de pozo en progresión geométrica el tamaño del bloque cercano a la pared del pozo es pequeño y grande cerca al radio total de drenaje . Verticalmente , los bloques son limitados por planos horizontales ubicados a profundidades diferentes a través del intervalo productor. Cada bloque consiste de un anillo anular que se asume tiene propiedades radiales de flujo simétrico Los planos comprendidos se hacen generalmente más cercanos a la cima o al fondo para describir adecuadamente la forma de cono de agua El espaciado vertical del grillado también depende del número de capas de permeabilidad representativas .

El influjo del desplazamiento del fluido es simulado a lo largo del lindero del sistema a un régimen especificado Normalmente este régimen de producción es igual al régimen de producción de salida del fluido Por ejemplo , en un pozo que produce por el mecanismo de impulsión por agua de fondo , el influjo de agua se especifica a lo largo del lindero más pequeño .

Para calcular el desarrollo y crecimiento de un cono de agua , primero la historia de producción del pozo es dividida y proyectada por períodos de tiempo La longitud de los periodos de tiempo varía comúnmente en muchos intervalos de tiempo más cortos tomados justo antes y después de la irrupción de la fase desplazante Los cambios en la presión y saturación que tienen lugar durante el intervalo de tiempo son calculados usando diversas técnicas por diferencias finitas para cada bloque en el sistema .

Inicialmente, el agua y el petróleo se distribuyen en el sistema según la curva de imbibición y la curva de presión capilar agua-petróleo de la roca. Esto da origen a una zona de transición entre las zonas de :

Solo agua , y
 solo petróleo .

El problema es resuelto por una solución numérica de la ecuación en diferenciales parciales que gobierna las fases de dos o tres dimensiones de flujo Las métodos iterativos mas comunes que dan solución a este problema son :

- 1. Implícito de dirección alternante, ADIP
- 2. Sobre aflojamiento en línea sucesiva , LSOR
- 3. Procedimiento altamente implícito, SORBER

La saturación y la presión depende que los coeficientes sean tratados implicitamente o explicitamente La mayoría de los programas también incluyen técnicas sofisticadas para evaluar la intrusión vertical Las soluciones por diferencias finitas cuando se compararon con los pronósticos de Muskat para la posición de cono, dan un valor menor para la posición de cono y cuando se comparó con la historia del campo fueron más cercanos a los reales. Esta diferencia se atribuye a las asunciones de Muskat como son ; el flujo de una sola fase y a no tomar en cuenta las fuerzas capilares Las soluciones de Muskat dan respuestas muy razonables para las rocas con propiedades isotrópicas y baja curva de presión capilar .

En principio las ecuaciones básicas para conificación son escritas aplicando la conservación de masa a cada fase , relacionando:

1. Las velocidades de flujo con la presión por la Ley de Darcy, y

 relacionando las presiones a través de las interfaces por medio de las presiones capilares mediante la ecuación de Sobosinsky y Cornelius.

Las ecuaciones en diferenciales parciales resultantes que describen las dos fases incomprensibles del fluido fluyente para el caso de agua y petróleo en una sección cilíndrica, son :

Los potencialidades se definen como 🗄

$$\Phi_{o} = P_{o} - \gamma_{o} \star z \tag{34}$$

$$\Phi_{w} = P_{w} - \gamma_{w} \star z \tag{35}$$

Las presiones en cada fase fluida pueden ser relacionadas por la presión capilar :

$$\mathbf{P}_{c} = \mathbf{P}_{o} - \mathbf{P}_{w} \tag{36}$$

La que puede ser asumida por encontrarse solo en función de la saturación de agua .

 $S_w + S_o = 1.0$

Donde :

r = distancia radial , pies K_{ro} = permeabilidad relativa al petróleo K_{rv} = permeabilidad relativa al agua K_h = permeabilidad horizontal absoluta radial , md K_z = permeabilidad vertical absoluta , md μ_{o} = viscosidad del petróleo , cp μ_w = viscosidad de agua , cp $\Phi_{\rm o}$ = potencial de petróleo , psia Φ, potencial de agua , psia = distancia vertical medida positivamente al descender, z B_{o} = factor de volumen de formación de petróleo , pie³/STB B_w = factor de volumen de formación de agua , pie³/STB q_{vo} = producción de petróleo, pie³/STB reservorio-día q_{vw} producción de agua , pie³/STB reservorio-día S_o = saturación de petróleo, fracción S_w = saturación de agua, fracción P_o = presión de petróleo, psi P_w = presión de agua , psi P_c = presión capilar , psia ¢ = porosidad , fracción = peso específico petróleo a la condición del reservorio , psi/pie Ŷο γ_w = peso específico agua a la condición del reservorio , psi/pie

54

(37)

La ecuación de arriba , puede escribirse en forma de diferencias finitas y las ecuaciones algebraicas resultantes pueden ser resueltas por interacciones alrededor un sistema de grillado seleccionado . El tamaño radial del nódulo se hace variar logaritmicamente para dar una buena definición de la distribución del fluido alrededor la pared del pozo en la sección donde estamos interesados en más detalle .

Van Poollen , Bixel , y Jargon indicaron que el cálculo implícito del régimen de producción puede ser tratado primero especificando el régimen de la producción total q_t que es conocida . Este régimen de producción se distribuye entre el agua y el petróleo de acuerdo con las ecuaciones siguientes :

$$q_{w} = q_{t} - \frac{k_{ro}}{\mu_{o}} + - \frac{k_{rw}}{\mu_{w}}$$
(38)

у:

$$q_{o} = q_{t} \xrightarrow{k_{rv}} \begin{pmatrix} k_{ro} & k_{rw} \\ ---- \end{pmatrix} \begin{bmatrix} ----- & k_{rw} \\ ----- & ---- \end{bmatrix}$$
(39)

El régimen de producción de la fase agua para el tiempo n+1 es 🗄

$$q_{w,n+1} = q_{w,n} + dq_w$$
 (40)

donde dq_w es el cambio en el régimen de la producción de agua durante dicho intervalo de tiempo .

Asumiendo que la movilidad total permanece aproximadamente constante durante un intervalo de tiempo, tenemos :

$$dq_{w} = \left[\begin{array}{c} q_{t} \\ \hline \\ (k_{ro}/\mu_{o}) + (k_{rw}/\mu_{w}) \end{array} \right] \begin{array}{c} 1 \\ \hline \\ \mu_{w} \end{array} + \Delta_{t}S_{w} \end{array}$$
(41)
Donde :

$$\frac{d(k_{rw})}{d(k_{rw})} = \frac{K_{rw,n+1} - k_{rw,n}}{d(k_{rw})}$$
(42)

 dS_w $S_{w,n+1} - S_{w,n}$

y $\Delta_t S_w$ es la derivada de la saturación de agua respecto del tiempo .

Las permeabilidades relativas implícita puede determinarse en la misma manera :

$$d(k_{rw})$$

$$k_{rw,n+1} = k_{rw,n} + - \Delta_t S_w \qquad (43)$$

$$dS_w$$

Se han encontrado modelos numéricos para simular la conificación basados en experimentos muy bien modelados en laboratorio , como ejemplo Mac Donald y Coats han sido capaces de usar un simulador numérico para reproducir los resultados obtenidos por Soengkowo usando un modelo físico.

Los resultados ; numérico y físico se ponen de manifiesto en las figuras 30 y 31.

Se considera buena la comparación entre los resultados de la simulación matemática y los resultados del laboratorio .

En la conificación de agua hay complicaciones serias que no pueden tratarse rigurosamente con soluciones analíticas En este caso es útil recurrir a simuladores numéricos. Estos simuladores pueden manejar problemas tales como:

1. Anisotropía,

- 2. flujo multifásico,
- 3. geometría irregular,
- 4. programas diferentes de producción, y
- 5. condiciones diversas de frontera

Después de ajustar la historia de producción del pozo con el calculado por el simulador , se puede realizar con este estudios de sensibilidad. La sensibilidad de las simulaciones numéricas es usada para determinar el comportamiento de la conificación de agua ante diversos parámetros de reservorio .

Los resultados de los simuladores se usaron también asumiendo ciertas restricciones en el desarrollo de correlaciones simplificadas para pronósticos de la conificación de agua ,tal es el caso de la correlación simplificada de Kuo y DesBrisay . Esta correlación se obtuvo a partir del estudio de sensibilidad cubriendo una gama amplia de parámetros del reservorio , tales como :

- Relaciones de permeabilidad vertical a la permeabilidad horizontal de 0.01 a 1.0 ;
- para intervalos abierto a producción de 20 por ciento a 80 por ciento del espesor de la zona de petróleo ;

3. regimenes de producción de 500 a 2000 Bl/d de fluido en bruto ;

4. relaciones de movilidad de 1.0 a 10

La correlación simplificada de Kuo y DesBrisay es válida para predecir el comportamiento del corte de agua para reservorios con fuerte impulsión de agua de fondo , exceptuando los que presentan barreras

locales , los que tienen un alto grado de estratificación según Dykstra-Parsons con variación de la permeabilidad mayor que 0.8 y los que tienen una zona gruesa de transición petróleo-agua

Con una correlación simplificada en el campo se puede predecir rápida y convenientemente el régimen crítico de producción , tiempo de irrupción y el comportamiento del corte de agua , para reservorios que se hallen dentro del rango de los parámetros asumidos al deducir dicha correlación simplificada

Los reservorios que son demasiados no isotrópicos no homogéneos y tienen la curva de presión capilar y relaciones de movilidad muy adversas son candidatos para modelos de conificación por diferencias finitas requiriendo el uso de simuladores complejos . Sin embargo debe tenerse cuidado en examinar las ventajas económicas de las soluciones iterativas de los simuladores y considerar que si bien el análisis gráficos ó analítico de los problemas de conificación pueden dar resultados pesimistas , si estos análisis nos dan soluciones dentro de las condiciones que tenemos , no serán necesarios análisis sofisticados pues representaran un gasto innecesario .

7.1. Simulador Numérico Propuesto Por Kuo Y DesBrisay

Comparada con modelos numéricos complicados , esta correlación es particularmente útil cuando no están disponibles datos detallados del reservorio , o cuando el tiempo de decisión y el costo del proyecto son limitados .

En el campo se usan correlaciones simplificadas para calcular el comportamiento el corte del agua para diversos regímenes de producción y poder tomar decisiones apropiadas en las operaciones de producción .

El pronóstico de comportamiento del corte de agua comúnmente requiere el uso de modelos numéricos complicados y costosos.

Letkeman et al usó un modelo numérico de conificación[·] para equiparar la historia de conificación y para investigar diversa técnicas de completación y de producción .

Miller y Roger usaron un simulador numérico para estudiar el efecto de diferentes parámetros del reservorio sobre el comportamiento de la conificación .

Blades y Stright usaron el modelo Intercomp para estudiar el comportamiento de la conificación de agua para reservorios de petróleo pesado con impulsión de agua de fondo .

Considerando que los resevorios que son demasiados no - isotrópicos , no - homogéneos, y tienen una curva de presión capilar y relaciones de movilidad muy adversas son candidatos para el uso de simuladores numéricos de conificación que realizan cálculos por diferencias finitas Sin embargo como ya se dijo anteriormente debe tenerse cuidado al examinar las ventajas económicas de las soluciones iterativas porque aunque el análisis gráfico ó analítico de los problemas de conificación pueden dar resultados pesimistas si consideramos sus restricciones estos pueden proveernos de resultados aceptables técnicamente, evitándonos gastos mayores en tiempo y económicamente

El modelo Intercomp Beta II fue usado para investigar la sensibilidad de diversos parámetros de varios reservorios como son :

relaciones de permeabilidad vertical a la permeabilidad horizontal,
 longitud de perforaciones ,

3. régimen de producción , y

4. relación de movilidad ;

sobre el comportamiento de la conificación.

Los resultados de esta simulación dieron la base de datos para desarrollar la correlación simplificada de Kuo y DesBrisay .

En general la correlación entre el comportamiento del corte de agua y los parámetros antes mencionados se desarrollaron con los resultados normalizados de la simulación propuesta por Kuo y DesBrisay aplicada en el Perú en el reservorio Vivían del Campo Huayari sur Vivían es un reservorio con impulsión por agua de fondo además existe una columna de agua de 60 a 100 pies en cada pozo. La arena productora principal es una arena masiva de 100 a 500 pies de espesor.

El espesor de la columna de petróleo es 30 a 45 pies

La arena Vivían es altamente permeable y esencialmente limpia a lo largo de la columna de petróleo.

En la zona de agua , los estudios estratisgráficos identificaron zonas sedimentarias que pueden ser barreras al movimiento vertical de fluido.

Todos los pozos completados en Vivían (11 pozos) producen con altos cortes de agua , teniendo una producción acumulada total de apenas cerca del 3 por ciento del petróleo original in situ .

La impulsión por agua es muy eficiente tal que la presión de reservorio ha declinado únicamente 100 psi desde 1978, inicialmente con una presión original de 4326 psig a 9269 pies bajo el nivel del mar.

No hay duda que existe conificación de agua en todos los pozos completados en Vivían , la figura 32 muestra el registro del pozo ejemplo del campo Huayari sur .

Este pozo produjo con el 50 % de corte de agua el 3% del petróleo original in situ y con el 80% de corte de agua el 10 por ciento del petróleo original in situ . Además el pozo produjo entre 2000 a 6000 barriles de fluido total por día .

Al aplicar la correlación y el programa desarrollado en este estudio se pudieron obtener respuestas apropiadas en un corto tiempo sobre preguntas respecto al régimen de producción óptimo La tabla 5 presenta los datos de entrada requeridos por el simulador de conificación para este pozo ejemplo.

En los estudios de sensibilidad todas las corridas se hicieron para investigar el efecto del régimen de producción

7.1.1. Estudios De Sensibilidad

Al pozo ejemplo del Campo Huayari sur se le realizaron estudios de sensibilidad , siendo cuatro los parámetros del reservorio elegidos e investigados

- 1. La relación de permeabilidad vertical a la permeabilidad horizontal (k_v/k_h) : 0.01, 0.1, 0.5, 1.0
- 2. El intervalo abierto a producción 21.4%, 40.5% 57.1%
 69.0%, 83.3% de espesor de la zona de petróleo.

3. Regimenes de producción de fluido total de 500 a 6000 Bbl/STB.

4. La relación de movilidad 1.0, 4.36, 9.81

Los datos base del reservorio y el grillado seleccionado para el estudio de simulación se dan en la tabla 1 . El modelo presume simetría radial con grillado consistente en 6 incrementos radiales y 8 capas ; datos PVT ,y datos relativos de

permeabilidad se muestran en las tablas 2 y 3, respectivamente.

El efecto de k_v/k_h se investigó con cuatro de corridas , en todos los casos se asumió que los valores del caso base eran como se indica a continuación:

- a. el intervalo abierto a producción igual a 57.1 por ciento del espesor de la zona de petróleo ,
- b. el régimen de producción de producción igual a 1000 Bl/d de fluido total/día ,
- c. relación de movilidad igual a 4.36 , y
- d. se usaron valores de k_v/k_h de 0.01 0.1 0.5 y 1.0 en la investigación.

La figura 33 muestra los resultados del corte de agua versus el tiempo .

2. Efecto Del Intervalo Abierto a Producción

El efecto de la longitud del intervalo abierto a producción se investigó con cinco de corridas .

En todos los casos se asumió que los valores del caso base son:

- a. k_v/k_h iguales a 0.1 ,
- b. el régimen de producción igual a 1000 Bl/d de fluido total,
- c. el valor de la relación de movilidad igual a 4.36, y
- d. los valores del intervalo abierto a producción igual a 21.4 por ciento, 40.5 por ciento , 57.1 por ciento , 69.0 por ciento y 83.3 por ciento del espesor de la zona de petróleo

Todos los intervalos abiertos a producción comienzan desde el tope superior de la arena

La figura 34 presenta los resultados del corte de agua versus el tiempo .

3. Efecto Del Régimen De La Producción

El efecto del régimen de producción se investigó con cuatro de corridas .

En todos los casos se asumió que los valores del caso base eran como se indica a continuación

- a. k_v/k_b igual a 0.1,
- b. intervalo abierto a producción igual a 57.1 por ciento del espesor de zona de petróleo,
- c. la relación de movilidad iguala 4.36, y
- d. regimenes de producción de 500 , 1000 , 1500 , 2000 y 6000 barriles de fluido total por día .

La figura 35 muestra los resultados del corte de agua versus el tiempo .

4. Efecto De La Relación De Movilidad

El efecto de la movilidad se investigó con tres de corridas. En todos los casos se asumió que los valores del caso base eran como se indica a continuación

a. k_v/k_h igual a 0.1 ,

- b. intervalo abierto a producción igual a 57.1 por ciento del espesor de la zona de petróleo ,
- c. regímenes de producción iguales a 1000 Bl/d de fluido total por día, y

 d. valores de la relación de movilidad de 1.0 , 3.27 y 9.81 , fueron investigados.

La figura 36 muestra los resultados del corte de agua versus el tiempo.

Todas las corridas se hicieron para investigar el efecto del régimen de producción usando diversos regímenes de producción para cada caso, es decir; 500, 1000, 2000 y 6000 barriles de fluido total por día. La tabla 6 presenta la copia impresa del cálculo para el caso de un régimen de producción igual a 1000 barriles de fluido total por día.

7.1.2. Normalización De Los Resultados De La Simulación

El comportamiento del corte de agua para los casos anteriores fueron normalizados definiendo dos cantidades adimensionales :

1. el tiempo adimensional es t_D , y 2. el corte de agua adimensional WC_D .

(45)

WC

 $WC_D =$

(WC) limite

Donde :

t = tiempo , días
WC = el corte de agua , fracción

t_{BT} = tiempo de irrupción , días calculado de la correlación de Bournazel , ecuaciones 28 y 29

(WC) _{limite} = valor del corte de agua limite , fracción (definido por la ecuación 45)

Para cada caso , el tiempo de irrupción se calculó primero usando la correlación de Bourznazel . Entonces , el tiempo real se transformó en tiempo adimensionales .

Mientras tanto , el corte de agua se transformó en corte de agua adimensional que usa un valor de corte de agua limite.

Note que el valor limite para el corte de agua se define en la ecuación 51 como una función de la relación de movilidad y del espesor de la zona de agua. Cuando el petróleo se produce, el contacto agua-petróleo sube y los valores del corte de agua limite cambian.

Los resultados normalizados se graficaron en la figura 37 que muestra los cortes de agua adimensional versus el tiempo adimensional.

La correlación de Kuo y DesBrisay se obtuvo aproximadamente adecuando estos datos .

La correlación puede ser representada por la siguiente ecuación simple , es decir :

$$(WC)_{D} = 0$$
 $t_{D} < 0.5$ (46)

$$(WC)_{D} = 0.94*\log t_{D} + 0.29$$
 $0.5 \le t_{D} \le 5.7$ (47)
 $(WC)_{D} = 1.0$ $t_{D} > 5.7$ (48)

La correlación anterior representa la mayoría de los casos con una exactitud de \pm 10 % y en pocos casos \pm 20 % , Con esta

correlación, se puede predecir convenientemente el comportamiento del corte de agua

7.1.3. Descripción Del Programa

El programa consiste de tres partes

- 1. Cálculos del régimen crítico de producción,
- 2. cálculos del tiempo irrupción , y
- 3. pronostico del comportamiento del corte de agua .
- Tres métodos se usan para calcular el régimen crítico de producción, es decir:

a. El Método de Meyer y Garder ,

- b. el Método de Channey et al , y
- c. el Método de Schols .
- Dos de métodos se usan para calcular el tiempo de irrupción, es decir :

a. El Método de Sobocinski y Cornelius , y

b. El Método de Bournazel y Jeanson

3. La correlación simplificada , ecuaciones 46 , 47 , y 48 , se usan para pronósticos de comportamiento del corte de agua

Si un pozo produce cerca al régimen crítico de producción , el cono de agua irrumpirá después de un período determinado de tiempo Es importante que un ingeniero de campo conozca este tiempo de irrupción para poder programar la futura completación y el programa de producción del pozo .

El método de Sobocinski y el método de Bournazel ; ambos consideran un reservorio homogéneo que se alimenta horizontalmente Ambos modelos asumen flujo radial de petróleo y de agua desde el limite exterior

7.1.5. Pronostico Del Comportamiento Del Corte De Agua

Después que el tiempo de irrupción se ha determinado con la correlaciones de Bournazel el comportamiento del corte de agua puede predecirse por ecuaciones simples de balance materiales y la correlación simplificada de Kuo y DesBrisay para la conificación ; esta correlación esta representada en la figura 37 y las ecuaciones 46 a la 48 Cuando se produce petróleo , el contacto de agua petróleo sube y el valor limite del corte de agua aumenta Considerando esto se usaron las ecuaciones simples de balance materiales par predecir el alza del contacto agua - petróleo.

Las ecuaciones de balance de materiales usadas para calcular la ubicación del contacto agua-petróleo son :

$$N_{p} = (1 - S_{wc})$$

$$h = H_{o} \cdot [1 - \frac{*}{(1 - S_{oc} - S_{wc})}]$$
(49)
$$N = (1 - S_{oc} - S_{wc})$$

$$h_{w} = H_{w} + H_{o} \cdot \left[-\frac{1 - S_{wc}}{N} \right]$$
(50)
$$N = \left(1 - S_{or} - S_{wc} \right)$$

Donde:

h	= espesor actual de la zona de petróleo, pies
Ho	= espesor inicial de la zona de petróleo , pies
h _w	= espesor actual de la zona de agua , pies
H	= espesor inicial de la zona de agua , pies
N _P	= producción acumulada de petróleo , STB
N	= petróleo inicial in situ , STB
S _{wc}	= saturación de agua connata , fracción
Sor	= saturación residual de petróleo , fracción

El valor actualizado del corte de agua limite se calcula con la ecuación siguiente :

$$(WC)_{limite} =$$

$$M^*h_w + h$$
(51)

Donde :

 $(WC)_{limite} = valor actualizado del corte de agua limite, fracción$ M = relación de movilidad , adimensional

El programa de simulación es capaz de hacer los cálculos necesarios en base a los datos de la tabla 4 . Dicho programa , incluye ecuaciones presentadas en las secciones anteriores que son suficientes para programar y ser ejecutadas por otros simuladores . El simulador es una asistente útil de campo diseñado para predecir el régimen crítico de producción , tiempo de irrupción , y comportamiento del corte de agua Las instrucciones para la predicción de la conificación se exponen en la tabla 4 .

Los resultados de esta parte se ponen de manifiesto en: El corte de agua versus tiempo y el corte de agua versus la recuperación acumulada se muestran en las figura 38 y 39 respectivamente .

A primera vista, la figura 38 aparece mostrar que el régimen de producción tiene un efecto pronunciado sobre el comportamiento del cono Sin embargo , esto no es cierto, pues los regimenes de producción que varían desde 500 barriles por día hasta 6000 barriles por día sorprendentemente tienen poco efecto en los resultados El corte de agua en todos los casos siguen casi la misma curva ver la figura 39 .

El régimen crítico de producción para la conificación de agua en el Huayari sur fue calculado usando soluciones analíticas siendo estas cercanas a 2 STB/d .

Como la gama de regimenes de producción de 500 a 6000 Bl/d esta muy por encima del régimen crítico de producción no es probable que este tenga un efecto importante sobre el comportamiento del cono .

Para este pozo ejemplo, cambiar regímenes de producción de 500 a 6000 Bl/d de fluido total tuvo poco efecto sobre el factor de recuperación e historia del corte de agua.

Por lo tanto se puede recomendar un alto régimen de producción en el Huayari sur para acelerar el proyecto con un consiguiente mejoramiento en la economía.
Este simulador puede ayudar también para determinar la longitud del intervalo optimo a ser abierto a producción para mejorar la producción de petróleo y minimizar la producción de agua

7.1.6. Limitaciones

La correlación propuesta por Kuo DesBrisay puede usarse para predecir el comportamiento del corte de agua de la mayoría de los reservorios con impulsión de agua de fondo exceptuando los que tienen un alto grado de estratificación , según Dykstra-Parsons para variaciones de la permeabilidad mayores de 0.8 , y aquellos que tienen una gruesa zona de transición agua - petróleo .

La correlación es pesimista y predice un comportamiento elevado del corte de agua para casos con barreras y con alto grado de estratificación La presencia de barreras o zonas de baja permeabilidad demoran significativamente la producción de agua . La correlación desarrollada en este estudio no toma en cuenta las barrera locales ni la presencia de zonas de baja permeabilidad.

La correlación es también optimista y predice un bajo comportamiento del corte de agua para el caso de grandes espesores de transición agua-petróleo

7.2. <u>Simulador Numérico Para Conificación De Agua En Yacimientos Bajo</u> <u>Saturados Con Empuje De Agua De Fondo</u>

Este simulador , toma como base el simulador propuesto por José Florez y es probado en un pozo de la Selva del Perú ver la tabla 7 , además de utilizar las ecuaciones del simulador de Kuo Debrisay, exceptuando las ecuaciones para el calculo del tiempo de irrupción , el cual se calcula indirectamente haciendo uso de los cálculos para el corte de agua ; cuando el corte de agua se hace mayor al 0 % es que el agua esta irrumpiendo en el pozo .

Se calcula el corte de agua f_w mediante la ecuación 🗄

$$a^{*}f_{w}^{2} + b^{*}f_{w} + c = 0$$
 (52)

Donde:

a = 1 - M

Aquí:

 $f_w = \text{corte de agua},$ $q_c = \text{régimen critico},$ $q_t = \text{régimen de flujo total},$ $h_o = \text{espesor promedio radial del horizonte petrolífero},$

 h_{cb} = espesor del intervalo desde la base del intervalo completado , h_{ct} = espesor del intervalo hasta el tope del intervalo completado , M = razón de movilidad ,

 N_{mt} = razón de movilidad a espesor ,

$$k_{rw} * \beta_{o} * \mu_{o}$$

$$N_{mt} = ---- \qquad (54)$$

$$k_{ro} * \beta_{w} * \mu_{w}$$

 k_{rw} = permeabilidad relativa vertical promedio de agua , k_{ro} = permeabilidad relativa vertical promedio de petróleo ,

La ecuación 52 es de la forma :

```
a^{*}(WOR)^{2} + b^{*}(WOR) + c = 0
```

Cuya solución se puede calcular para cualquier tiempo de producción ; aquí :

WOR = 0 , antes de la irrupción del cono , WOR > 0 , luego de la irrupción del cono .

Este simulador calcula :

1. volumen poroso ,

2. volumen de petróleo,

3. saturaciones de agua y de petróleo,

4. razones de movilidad agua petróleo,

5. radio efectivo del pozo , (desde donde el agua y el petróleo no están equilibrados verticalmente hasta el pozo)

6. régimen crítico de la producción,

y , para casos en que el pozo produce encima del régimen crítico de producción, determina :

1. régimen de petróleo y agua,

2. intrusión de agua al reservorio .

Mes a mes recalcula las saturaciones y espesores actualizando los acumulados de petróleo ; todo esto hasta superar el corte máximo permitido o fecha tope de calculo

La correlación propuesta fue probada en un pozo ubicado en la Selva Norte del Perú ; ver la figura 40. Con las siguientes características, ver la tabla 8

- 1. producción de petróleo liviano,
- 2. reservorio profundo,
- acuífero de dimensión prácticamente infinita con soporte natural de presión.

Se Suponen

- 1. simetría radial,
- 2. reservorio homogéneo,
- 3. condición subsaturado ,
- 4. no existen barreras que restrinjan el flujo,
- 5. el agua atraviesa el lindero externo,

Se Omiten

1. limitaciones de capacidad, en la producción del pozo,

Económicamente

- 1. no se considera variación de los parámetros económicos,
- tampoco se consideran aumento o disminución de ingresos o gastos con el tiempo

De manera de no alterar el efecto de variación de los parámetros físicos ni económicos.

7.2.1. Ajuste De Historia

Consiste en "ajustar" conveniente y apropiadamente los cálculos del simulador, con los datos de campo , ver la figura 41. Una vez logrado este ajuste se realizan los estudios de sensibilidad. Obteniéndose los resultados de las tablas 9 , 10 y 11.

7.2.2. Estudios De Sensibilidad

El estudio de sensibilidad consiste en una vez "ajustado" el simulador , a los datos de "ajuste" se le realizan variaciones apropiados con la finalidad de probar que sucedería si se varían algunos parámetros , en este caso se variaron :

Régimen de producción de los fluidos , ver la figura 42,
 espesor del intervalo completado , ver la figura 43,
 relación de permeabilidad vertical-horizontal , ver la figura 44,
 espesor de la columna de agua en el pozo , ver la figura 45 ,
 razón de movilidad , ver la figura 46 ,
 radio de drenaje , ver la figura 47 ,

18. <u>Evaluación Económica Para La Perforación De Perforar Pozos De Relleno</u> (Infill) Ó Mayor Ca<u>pa</u>cidad De La Bomba Electrosumergible.(ESP)

Los problemas con el agua en general ó de conificación en particular deben prevenirse oportunamente a fin de no afectar el régimen de producción de petróleo en el campo , ni su rentabilidad económica .

Toda labor a ejecutarse en el pozo debe ser contrapesada con la parte económica . Una vez tomada la decisión es necesario evaluar el potencial para poder mejorar la producción del hidrocarburo , así como la presencia de reservas remanentes suficientes , para justificar económicamente las acciones a tomar.

Antes de la completación inicial se requiere los resultados de registros eléctricos del pozo y/o de pruebas de presión de fondo para ser usados en un modelo económico para prever la producción de agua y evaluar su impacto económico.

En el caso de pozos en producción que ya han experimentado producción de agua son mas fáciles de analizar porque pueden usarse sus datos de producción, complementando el diagnostico con registros adicionales, todo lo anterior esta sujeto a análisis económico lo que determina finalmente que acciones tomar.

En todo costo de la acción que ha de tomarse para evitar o producir con conificación , debe contrapesarse el valor actual neto de efecto acumulativo con la ganancia por la producción del hidrocarburo aumentando la vida del pozo y si es posible reduciendo costos de eliminación de agua .

1. Perforar Pozos De Relleno

Estará basada en determinar primeramente cuanto se ha levantado el cono y que cantidades de petróleo no recuperado se encuentran entre los pozos productores y si estas cantidades son suficientes para justificar la perforación de pozos de relleno.

2. Aumento En La Capacidad De La Bomba

Se justifica considerando el avance del cono siempre y cuando el corte de agua no supere el máximo permitido para que la producción de dicho pozo sea rentable

El corte máximo permitido depende del reservorio en explotación.

1. Un pozo en el que se establecerá la conificación de agua tiene inicialmente un periodo de producción de petróleo sin agua de formación, después se presentara un aumento rápido en el corte de agua luego de la irrupción La relación agua-petróleo debe ser estabilizada a un régimen de producción razonablemente bajo de menos del 50 por ciento ; el WOR exacto será mayormente controlado por la caída de presión de fondo y la relación de movilidad aguapetróleo .Como el agua esta entrando desde un área limite hacia la base del intervalo completado , y en el volumen del reservorio adyacente al intervalo completado se encuentra petróleo limpio, la producción continua incluyendo un alto corte de petróleo Si el reservorio tiene impulsión por agua de fondo , el corte de agua aumenta lentamente con el tiempo debido al levantamiento del contacto agua-petróleo a lo largo del reservorio .

Contrariamente , en un pozo que se encuentra en la trayectoria del avance del movimiento del frente de agua proveniente de los flancos generalmente comienza con cortes pequeños de agua que son las primeras digitaciones en alcanzar la zona de completación que continua en aumento debido al movimiento del banco de agua , finalmente acaba con un corte de agua muy alto sobre el 90 por ciento , después del paso del frente principal de agua Lo anterior se complica donde el reservorio esta fracturado

verticalmente o donde los pozos tienen una completación primaria con pobre calidad de cemento ocasionando la irrupción prematura del agua, la cual primero se coneará hacia arriba a lo largo de uno o más canales de alta permeabilidad al flujo, en la práctica el corte de agua puede seguir algún modelo de comportamiento

2. Toma algún periodo de tiempo, que pueden ser semanas, meses o años, para que se forme un cono y alcance una irrupción incipiente Un estimado de este tiempo puede hacerse con la ecuación derivada por

Sobosinski y Cornelius, que sus autores indican es muy aproximada. Durante este período de formación del cono, el petróleo puede producirse sin agua a un régimen que exceda el régimen crítico de producción Considerando esto, si un pozo no conea agua durante una prueba corta de producción, es erróneo concluir que no ha sido excedido el régimen crítico de producción.

Un pozo con acuífero infinito produce inicialmente petróleo libre de agua de formación por un corto tiempo , tan pronto como la producción supera el régimen crítico de producción se empieza a conear el agua incrementándose esto gradualmente hasta el momento en que ocurre la irrupción del contacto agua-petróleo (WOC) en el intervalo abierto a producción en este momento disminuye drásticamente el corte de petróleo hasta hacerse cero

- 3. Durante la fase de evaluación , después que la irrupción ha ocurrido es importante no aumentar el régimen de fluido total , es decir la caída de presión en el fondo debe mantenerse constante para poder obtener una historia significativa del corte de agua La práctica usual cuando aparece el corte de agua en un pozo es aumentar la producción total del fluido para mantener el régimen de producción del petróleo Esto introduce un nuevo conjunto de gradientes de presión que nubla la interpretación de los datos.
- 4. La producción acumulada de petróleo en un pozo no varia si los regímenes de producción son altos . Cuanto mayor sea el régimen de producción , menor será el tiempo de recuperación de petróleo nada indica con certeza que una vez ocurrida la conificación , se recuperen menos reservas de petróleo .

 A mayor viscosidad del petróleo se tiene un menor régimen crítico de producción.

Tambien debido a la mayor movilidad del petróleo menos viscoso un reservorio de petróleo con una viscosidad de 1 cp puede triplicar el régimen de producción de un reservorio con 3cp.

Mientras mayor es la razón de movilidad agua-petróleo se tendrá menor recuperación de petróleo , la resistencia al flujo del petróleo genera su baja recuperación .

Las bajas razones de movilidad agua-petróleo , al inicio dan altos cortes de petróleo y mayor recuperación final.

Por ejemplo las arenas limpias , sin intercalaciones lutaceas con agua de fondo y con razones de movilidad altas , desfavorables por ser propicias para una rápida conificación de agua , la irrupción ocurre mucho mas rápido cuanto mayor sea el intervalo abierto a producción .

Además mientras mayor sea la razón de movilidad agua-petróleo en un reservorio , menor será el régimen crítico de producción correspondiente .

6. Pueden obtenerse producciones altas en la mayoría de los reservorios con pozos completados en zonas donde la permeabilidad horizontal es mayor que la vertical ; exceptuando aquellas arenas homogéneas muy limpias y reservorios con pozos de desarrollo que presentan fracturas verticales en ellos los cálculos del régimen crítico para la conificación son muy conservadores . La relación k_v / k_h es el factor más crítico en la formación del cono en el reservorio .

Si desde el inicio de la vida productiva la relación de la permeabilidad vertical-permeabilidad horizontal es alta esto solo favorece para tener inicialmente cortes de agua altos .

Si la relación de la permeabilidad vertical-permeabilidad horizontal varia , esta afecta muy poco la recuperación de petróleo .

Las barreras estratisgraficas horizontales restringen el flujo vertical de agua no favoreciendo el levantamiento del cono de agua.

- 7. Parámetros, tales como: el factor de compresibilidad del petróleo y el radio de drenaje del pozo productor tienen relativamente poco efecto sobre el régimen crítico de producción Por ejemplo un pozo con un radio de drenaje de 500 pies tendrá un régimen crítico de producción calculado de 10 a 15 por ciento más alto que un pozo con un radio de drenaje de 10000 pies.
- 8. Considerando una completación satisfactoria con daño mínimo el cual origina poca caída de presión de fondo tendremos que :
 - a. Cuanto mayor sea el intervalo abierto a producción , medido desde el tope superior de la zona petrolífera , será menor el corte de petróleo antes de la irrupción.
 - b. Después de la irrupción cualquiera sea la longitud del intervalo de petróleo abierto a producción este se comportara como si se hubiera abierto a producción toda la zona de petróleo

Considérese que un daño alto favorece la conificación del agua Y la caída de presión por daño en la vecindad del pozo no cambia el régimen crítico de producción.

Téngase en cuenta que en la practica la completación no siempre es satisfactoria.

- 9. Un pozo que está produciendo por swabbing ó bombeo intermitente puede jalar un cono durante los períodos de caída de la presión de fondo. En general , para un determinado régimen promedio de producción diario, un pozo con flujo estable induce una altura del cono más pequeña que uno con flujo intermitente.
- 10. La disminución del espaciamiento entre los pozos resulta en una mayor recuperación de las reservas .

A mayor radio de drenaje se obtienen mayores acumulados de producción de petróleo

- 11. Aceptar el aumento del corte de agua sin haber subido el régimen de producción de petróleo nos da la alternativa de aceptar la producción excedente de agua dependiendo de las condiciones particulares del campo y del comportamiento del corte de agua en el pozo después de la irrupción , esta puede resultar la manera más económica para operar el reservorio
- 12. Una elevada producción de agua en un pozo petrolífero no indica necesariamente que exista conificación de agua de fondo

- Antes de la completación inicial , deben ser usados los resultados de la toma de registros eléctricos y/o pruebas de presión de fondo en un modelo económico para prever la producción de agua y evaluar su impacto económico .
- 2. Considérese que siempre una cantidad de agua es inherente a la producción de petróleo y tratar de reducirla indefinidamente conllevaría a reducir la producción de petróleo El agua es un acompañante en la producción de todo reservorio petrolífero , pero esta "agua" muchas veces aumenta y es entones cuando se convierte en un problema para la producción de petróleo ; este excedente es necesario identificar para conocer su fuente potencial de producción del agua .
- 3. Es muy importante detectar la fuente potencial de producción del agua que traerá o trae problemas a la producción de petróleo, para elegir una solución apropiada, en el caso de pozos que ya han experimentado la producción de agua se pueden usar los datos de producción, complementando el diagnostico con pruebas adicionales.
- 4. Es conveniente tener en claro que anticipar este problema de producción de agua es lo aconsejable y que todo problema de agua no es una conificación.

Los siguientes pasos de análisis son muy útiles para identificar que es lo que origina el problema de agua y de donde proviene :

- a. Posibles Trayectorias Abiertas Al Flujo:
 - 1. Flujo Cerca De La Pared Del Pozo.
 - 2. Fisuras en la capa de agua. Ya sean naturales o inducidas .

3. Fisuras comunicadas hacia una inyección.

b. Lindero Del Agua:

- 1. Barrido areal pobre.
- 2. Capa de alta permeabilidad sin flujo cruzado.
- 3. Capa de alta permeabilidad con flujo cruzado .
- Capa segregada por gravedad Separando el agua del petróleo, siendo producidos juntos.

c. Conificación Del Agua De Fondo.

Al producir el agua del acuífero , esta se levanta en forma de cono e intruye en el intervalo productor desplazando la producción de petróleo .

d. Problemas En La Completación:

- 1. Pobre calidad del cemento .
- 2. Tubería de revestimiento con fugas.
- 5. Una vez identificado en nuestro caso el problema de la conificación de agua de fondo se estudian diversas alternativas presentadas en este trabajo, teniendo en consideración si el reservorio es :

a. Isotrópico ó anisotrópico , yb. finito ó infinito ;

para diseñar los programas de producción a fin de evaluarlos económicamente para ver su factibilidad y rentabilidad ; para lo cual se cuenta con métodos gráficos y analíticos , con sus respectivas restricciones aplicativas y de ser necesario de

simuladores numéricos que aportan la posibilidad de probar diversas soluciones , para luego llevarlas a cabo en campo .

Es necesario conocerlas limitaciones de los simuladores para poder utilizar aquel que satisfaga las condiciones del campo y sea mas económico Por ejemplo las simuladores de Kuo DesBrisay José Florez y el presentado en este trabajo tienen limitaciones y no puede aplicarse a los reservorios que presentan barreras locales , ó los que tienen un alto grado de estratificación , ó los que presentan una gruesa zona de transición agua-petróleo

- 6- Recordar que no existe tratamiento de la conificación que sea 100% efectivo y en caso probable de conificación en el reservorio con impulsión de agua de fondo es recomendable :
 - a. Operar el pozo con el mínimo daño posible,
 - b. determinar la profundidad optima del intervalo abierto a producción y el régimen crítico de la producción ,
 - c. retardar la formación del cono
- 7. Si es inevitable producir encima del régimen crítico de producción, es necesario evaluar el aumento de la razón agua petróleo en el tiempo versus la producción de petróleo para poder evaluar su rentabilidad y optar por alguna solución ya vista en este trabajo u otra más conveniente.

11. Bibliografía

- * Muskat M. " The Flow Of Homogeneous Fluid Through Porous Media" Boston , Massachusetts :International Human Resources Development Corporation , 1982.
- * Muskat M. "Flow Of Homogeneous Fluid" Mc Graw Hill 1946 .
- * Pirson , S.J. , "Oil Reservoir Engineering" , Mc Graw Hill 1958.
- * Muskat M., " Physical Principles Of Oil Productions"
- * Sobosinsky D.P. & Cornelius A.J. "A Correlation For Predicting Water Coning Evaluation Method", S.P.E., Articulo 3628, 1971.
- * Kuo M.C.T. & DesBrisay C.L. "A Simplified Method For Water Coning Predictions". S.P.E., Articulo 12067 ,1983.
- * Chaney P.E., Noble M.D., Henson W.L. And Rice T.D. "How To Perforate Your Well To Prevent Water And Gas Coning", Oil And Gas Journal 7 De Mayo De 1956.
- * Schols R.S. "Water Coning .An Empirical Formula For The Critical Oil-Production Rate", Erdoel Erdgas , Enero 1972.
- * Kuo M.C.T. "Correlation's Rapidly Analyze Water Coning" Oil And Gas Journal, 2 De Octubre De 1989.
- * R.N. Reed And M.J. Wheatley, "Oil And Water Productions In A Reservoir With Significant Capillary Transition Zone" J.P.T. September 1984.

- * B.C. Craft Y M.F. Hawkins ,"Ingenieria Aplicada De Yacimientos Petroliferos", Ed.Tecnos 1977.
- * Staff Report , "Water Control Look Before You Leap" Hart'S Petroleum Engineer International , July 1996.
- * Roberto Aguilera Y Luis Acevedo , "Coning And Fingering Of Water And Gas" , Brown Chapter 7.

Esquem del fenómeno de conificación de agua en un pozo produc or de petróleo.

Modelo de sector radial de la distribución de presiones en la formación.

)i pución del potencial de velocidad para un radio del pozo.

ctor de corrección para convertir el potencial de velocidad del pozo de la figura 2.

Potencial de velocidad para un determinado radio de drenaje.

Curva del régimen critico de producción para arenas de 12.5 pies de espesor, radio del pozo de 3 pulgadas y radio de drenaje de 1000 pies curvas de conificación de agua.

A 1.25 pies de intervalo abierto a producción
B 2.50 pies de intervalo abierto a producción
C 3.75 pies de intervalo abierto a producción
D 5.00 pies de intervalo abierto a producción
E 6.25 pies de intervalo abierto a producción

Figura 7

Curva del régimen critico de producción para arenas de 25.0 pies de espesor radio del pozo de 3 pulgadas y radio de drenaje de 1000 pies curvas de conificación de agua.

A 2.50 pies de intervalo abierto a producción .
B 5.00 pies de intervalo abierto a producción .
C 7.50 pies de intervalo abierto a producción .
D 10.0 pies de intervalo abierto a producción .
E 12.5 pies de intervalo abierto a producción .

Curva del régimen critico de producción para arenas de 50.0 pies de espesor radio del pozo de 3 pulgadas y radio de drenaje de 1000 pies curvas de conificación de agua.

A 5.00 pies de intervalo abierto a producción
B 10.0 pies de intervalo abierto a producción
C 15.0 pies de intervalo abierto a producción
D 20.0 pies de intervalo abierto a producción
E 25.0 pies de intervalo abierto a producción

rva del régimen critico de producción para arenas de 75.0 pies e espesor radio del pozo de 3 pulgadas y radio de drenaje de 1000 pies curvas de conificación de agua.

A 7.50 pies de intervalo abierto a producción
B 15.0 pies de intervalo abierto a producción
C 22.5 pies de intervalo abierto a producción
D 30.0 pies de intervalo abierto a producción
E 37.5 pies de intervalo abierto a producción

Curva del régimen critico de producción para arenas de 100 pies de espesor radio del pozo de 3 pulgadas y radio de drenaje de 1000 pies curvas de conificación de agua.

A 10.0 pies de intervalo abierto a producción .
B 20.0 pies de intervalo abierto a producción .
C 30.0 pies de intervalo abierto a producción .
D 40.0 pies de intervalo abierto a producción .
E 50.0 pies de intervalo abierto a producción .

Régimen de producción versus caída de presión requerida por el radio efectivo causado por una densidad de baleo de 4 ½ de pulgada por pie , radio de drenaje de 1000 pies , radio del pozo de 0.25 pies , radio efectivo del pozo de 0.000932 pies . Curvas del intervalo abierto a producción :

A 70 pies ; b 60 pies ; c 50 pies ; d 30 pies ; f 20 pies; g 10 pies ; h 5 pies ; i 2.5 pies ; j 1.25 pies .

Colocación del sello mediante inyección dual de fluido

Figura 21

Comportamiento del tratamiento para todos los pozos del área piloto .

Figura 22

Periodo de producción de petróleo libre de agua para barreras de diferentes radios.

Técnica de completación dual aplicada a la prevención de la conificación

Ejemplo del pozo completado , baleado desde el tope superior de la zona productora . El pozo esta encima del contacto agua petróleo.

INTERVAL	PROD. RATE
1-2	2955
2-3	4368
3-4	4024
4-5	3352
-5-6	7805
6-7	2313
- 7-8	RECOMPLETE
8-9	3830
9-10	3029 ·
ି ୀ- 11./	2430
11-12	2102
12-13	1672
13-16	1485

Sensibilidad del régimen de producción de los pozos de Alamein.

resión de fondo del pozo versus comportamiento de la producción para todo el campo de Alamein.

Máximo régimen de producción de petróleo sin conificación de agua en función del porcentaje de intervalo abierto a producción para diversos espesores de la zona de petróleo h , radio del Pozo igual a 0.25 pies , radio del limite de la formación igual a 500 pies , densidad de agua contrastada igual a 0.3 gr/cc.

いた

Figura 28

El esquema muestra como un gran numero de pozos reduce la conificación.

E SPACE

Representación del reservorio en coordenadas cilíndricas para la simulación numérica de la conificación de agua.

Figura.30

Comparación de los resultados del modelo físico y el modelo numérico de Soenkowo.

Figura 31

Comparación de los resultados del modelo físico y el modelo numérico de Soenkowo.

Efecto de kv/kh en el comportamiento del corte de agua .

Efecto de la longitud del intervalo abierto a producción sobre el comportamiento del corte de agua

Figura 35

Efecto del régimen de producción sobre el comportamiento del corte de agua.

.

Figura 36

Efecto de la razón de movilidad sobre el comportamiento en el corte de agua.

Figura 37

Correlación simplificada sobre el comportamiento del corte de agua.

Figura 38

Efecto del régimen de producción sobre el corte de agua versus el tiempo , para el pozo ejemplo.

Figura 39

Efecto del régimen de producción sobre el corte de agua versus la recuperación para el pozo ejemplo.

Figura 40

Perfil eléctrico del pozo ejemplo a evaluar mediante el uso del simulador numérico.

Representación gráfica del ajuste de historia.

Variación de la recuperación de petróleo con el régimen de producción de fluidos.

GRAFICO CORTE DE PETROLEO VERSUS ACUMULADO DE PRODUCCION

Figura 43

Variación de la recuperación de petróleo con el espesor del intervalo baleado.

Figura 44

Variación de la recuperación de petróleo versus la razón kv/kh

Efecto de la variación del espesor del acuifero sobre la recuperación de petróleo .

GRAFICO CORTE DE PETROLEO VERSUS ACUMULADO DE PRODUCCION

Figura 46

Efecto de la variación de la razón de movilidad sobre la recuperación de petróleo .

GRAFICO CORTE DE PETROLEO VERSUS ACUMULADO DE PRODUCCION

Figura 47

Efecto de la variación del radio de drenaje sobre la *.* recuperación de petróleo .

BASIC RESERVOIR DATA AND GRID

Top of formation Original oil-water contact	-9265 ft. subsea -9307 ft. Subsea
Connate water saturation Residual oil saturation	28.8% 33.7%
Original reservoir pressure (at -9269 Ss) Reservoir temperature	4340 psia. 250 ⁰ F
Hydrocarbon properties Bubble point pressure Oil formation volume factor (at BP) Initial solution gas-oil ratio Stock tank oil density Oil viscosity (at BP) Produced gas gravity (air = 1.0)	545 psia. 1.139 RB/STB 67 MCF/STB 0.861 gr/cm ³ 1.12 cp 0.884
Water properties : Initial formation volume factor Compressibility Density (Stock tank conditions) Viscosity [*]	1.0 RB/STB 0.000003 vol/vol/psi 1.095 gr/cm ³
Rock properties Rock compressibility Averange permeability Porosity	0.000004 vol/vol/psi 37 md. 0.164
<pre>Geometry and grid Radial extend , ft. Wellbore radius , ft Number of radial blocks Radial block boundaries , ft.: 0.25;2.0;8.0;32.0;128.0;512.0;1,053.0</pre>	1,053 0.29 6
Number of vertical layers Thickness of vertical layers , ft.: 9.0;8.0;7.0;5.0;6.0;7.0;6.0;6.0	8

*For mobility ratio = 3.27

Tabla	2
-------	---

PVT I	DATA
-------	------

Pressure (psia)	viscosity cp	formation volume factor (RB/STB)	
545	1.12	1.1387	
1014	1.16	1.1337	
2014	1.24	1.1231	
3014	1.33	1.1136	
4014	1.41	1.1051	
5014	1.50	1.0975	

.

RELATIVE PERMEABILITY DATA

	S _w	k _{rw}	krow	P _{cow (psi)}
	0.288	0.000	1.000	0.000
2	0.400	0.220	0.710	
	0.500	0.420	0.440	
	0.600	0.620	0.175	
	0.633	0.746	0.000	
	0.790	1.000	0.000	
	1.000	1.000	0.000	0.000

USER INSTRUCTION FOR THE CONING-PREDICTION PROGRAM

Step	Instructions	<u>Input</u> data/units	Keys	<u>Output</u> data/units
1	Load program (17 sides)(size 032)			
2	XEQ BOB			
:3	Input reservoir and fluid data for critical valor calculations	H _o , ft D, ft ρ _w , gr/cc ρ _o , gr/cc B _o , RB/STB μ _o , cp k, md r _w , ft r _e , ft M F _k φ	R/S R/S R/S R/S R/S R/S R/S R/S R/S R/S	
4	Critical rate production The Channey method The Meyer method The Schol method			qcurve,STB/D qc , STB/D qc , STB/D
5	Input fluow rate data	q,STB/D	R/S	
6	Breakthrough time production The Sobocinski metho The Bournazel method	od I		tBT,days tBT,days
7	Input reservoir and fluid data for watercut prediction	Hw,ft OOIP,STB Sor	R/S R/S R/S	Hw,ft OOIP,STB Sor
8	Watercut performance predictions (time,watercut,recovery)	Swc	R/S	Swc (t,WC,RF)

*t, time in days ; WC,watercut in fraction;RF,recovery as fraction of initial oil in place.

INPUT FOR THE CONING PREDICTION PROGRAM (EXAMPLE CASE)

Initial oil zone thickness , H _o	= 42 ft.
Water density $\mathbf{\rho}$.	= 1.095 gr/cc
Oil density, ρ_{a}	= 0.861 gr/cc
Oil viscosity , μ_{o}	= 1.44 cp.
Permeability , k	= 37 md
Wellbore radius , r	= 0.29 ft
Drainage radius , r.	= 1053 ft
Mobility ratio , M	= 3.27
Vertical to Horizontal permeability ratio , F_k	= 0.1
Porosity , ϕ	= 0.164
Flow rate , q	= 500 B/D gross fluid
	= 1000
	= 2000
	= 6000
Initial water zone thickness	= 12 ft
Original oil in place	= 2759000 STB
Residual oil saturation	= 0.337
Connate water saturation	= 0.288

PRINTOUT FROM THE CONING PREDICTION PROGRAM (EXAMPLE CASE)

INPUT DATA H = 42.000 FT.D = 24.000 FT.rw = 1.095 G/C.C.ro = 0.861 G/C.C.Bo = 1.182 RB/STBuo = 1.448 CP.K = 37.000 MD.Rw = 0.298 FT.Re = 1,053.000 FT.M = 0.270Fk = 0.100 $\phi = 0.164$ CALCULATED DATA Q CURVE = 132.784 STB/D**Q** CRITICAL RATE CHANEY = 2.412STB/D MEYER = 1.214 SCHOL = 1.643 STB/D STB/D BREAKTHROUGH TIME INPUT Q RATE = 1,000.000 STB/D SOBOCINSKI = 28.114 STB/D BOURNAZEL = 18.754 STB/D WC PREDICTIONS H(W) = 13.000 FT. OOIP = 2.759,000.000 STB

(DAY, WC, REC)

(5.4, 0.000, 0.002)(5.9, 0.020, 0.002)(6.5, 0.039, 0.002)(7.5, 0.068, 0.003)(8.6, 0.096, 0.003)(9.7, 0.123, 0.003)(10.8, 0.142, 0.004)(12.9,0.177,0.004) (15.1, 0.287, 0.005)(18.3, 0.249, 0.006) (21.5,0.284,0.007) (26.9, 0.338, 0.008)(32.3, 0.367, 0.010) (37.6, 0.404, 0.011)(43.0, 0.432, 0.012)(48.4, 0.459, 0.013)(53.8, 0.482, 0.014)(59.1, 0.504, 0.015)(61.3, 0.515, 0.016)(100.,0.531,0.024) (161.,0.548,0.033) (215.,0.564,0.042) (269.,0.579,0.050) (323.,0.593,0.058) (376.,0.606,0.066) (438.,0.618,0.074) (484.,0.638,0.081) (538., 0.641, 0.089)(591.,0.651,0.096) (645., 0.661, 0.103)(699., 0.678, 0.109)(753., 0.679, 0.115)(807., 0.687, 0.122)(868.,0.695,0.128) (914.,0.783,0.134) (968., 0.718, 0.139) (1,022.,0.717,0.145) (1,075.,0.724,0.151) (1, 129., 0.730, 0.156)

SOR = 0.337SWC = 0.288

WREM SEMULADOR NUMERICO PARA CONIFICACION DE AGUA EN YACIMIENTOS 2008 REM® BAJO SATURADOS - GARRIDO DELGADO LEANDRO ALBERTO 30 REM DERECHOS DE COPIA FACULTAD DE INGENIERIA DE PETROLEO 40 REM UNIVERSIDAD NACIONAL DE INGENIERIA 50 REM VERSION RAPIDA 60 REM JULIO 1996 70 REM 80 REM 90 REM PROGRAMA PRINCIPAL 100 REM -----110 REM DEFINICION DE VARIABLES 115 CLS 120 CLEAR 130 DEFDBL A-Z 140 KEY OFF 150 REM INGRESO DE DATOS 160 GOSUB 1000 **170 REM CALCULOS Y RESULTADOS** 180 GOSUB 2000 190 CLOSE 200 END 1000 REM 1010 REM SUBPROGRAMA DE ENTRADA DE DATOS 1020 REM -----1030 CLS : GOSUB 10000 **1130 PRINT** 1140 INPUT " TITULO DEL CASO A ESTUDIAR :", TITULO\$ 1150 PRINT 1160 INPUT "REGIMEN DE PRODUCCION DE FLUIDOS (STB/D):", Q **1170 PRINT** 1180 INPUT "MES DE INICIO DE LA SIMULACION (numerico):", MES 1190 INPUT "AÑO DE INICIO DE LA SIMULACION :", ANO 1200 INPUT "MES FIN DE LA SIMULACION (numerico):", MESFIN :", ANOFIN 1210 INPUT "AÑO FIN DE LA SIMULACION 1220 INPUT "CORTE DE AGUA MAXIMO PERMISIBLE (%):", WC.MAX 1230 CLS : GOSUB 10000 1240 INPUT "ESPESOR TOTAL DEL ESTRATO PRODUCTOR (FT):", HT 1250 INPUT "ESPESOR INICIAL DE LA COLUMNA DE PETROLEO (FT):", HOI 1260 CLS : GOSUB 10000: INPUT "DISTANCIA DEL TOPE AL BALEO SUPERIOR (FT):", HCT TABLA 7

TOPE AL BALEO DEL FONDO (FT):", HCB 1280 REM 1290 CLS : GOSUB 10000 1400 INPUT "RADIO DEL POZO rw (PIES):", RW 1410 INPUT "RADIO EXTERNO DEL RESERVORIO (o de drenaje) re (PIES):", RE 1420 CLS : GOSUB 10000 1430 INPUT "POROSIDAD (FRACCION):", PHI 1440 CLS : GOSUB 10000: INPUT "PERMEABILIDAD ABSOLUTA K (md):", K 1460 INPUT "PERMEABILIDAD HORIZONTAL Kh (md):", KH 1470 INPUT "PERMEABILIDAD VERTICAL Kv (md):", KV 1480 CLS : GOSUB 10000: INPUT "PERMEABILIDAD RELATIVA AL PETROLEO A Swc (FRACCION):", KRO 1490 INPUT "PERMEABILIDAD RELATIVA AL AGUA A Sor (FRACCION):", KRW 1500 CLS : GOSUB 10000 1510 INPUT "SATURACION INICIAL DE AGUA Swi (FRACCION):", SWI 1520 INPUT "SATURACION RESIDUAL DE PETROLEO Sor (FRACCION):", SOR 1530 REM 1540 CLS : GOSUB 10000 1650 INPUT "FACT. DE VOL. DE FORMACION DE PETROLEO BO (BBL/STB):", BO 1660 INPUT "FACT. DE VOL. DE FORMACION DE AGUA Bw (BBL/STB):", BW **1670 PRINT** 1680 CLS : GOSUB 10000: INPUT "VISCOSIDAD DEL PETROLEO uo (cp):", UO 1690 INPUT "VISCOSIDAD DEL AGUA uw (cp):", UW **1700 PRINT** 1710 CLS : GOSUB 10000: INPUT "DENSIDAD DEL PETROLEO do (lb/Cuft):", DENSIDAD.OIL 1720 INPUT "DENSIDAD DEL AGUA dw (LB/CUFT):", DENSIDAD.WATER 1730 REM 1750 RETURN 2000 REM 2010 REM SUBPROGRAMA DE CALCULOS 2020 REM -----2030 CLS : GOSUB 10000 2040 PRINT 2050 PRINT "INICIO DEL ALGORITMO DE CALCULOS" 2060 PRINT "PARA EL CASO : "; TITULOS 2062 PRINT 2065 PRINT " DIA:"; DATES; " HORA:"; TIMES 2070 PRINT 2080 REM CONDICIONES INICIALES 2090 DIA = 1!

```
2110 \text{ NW} = 0!
2120 PI = 3.141592654#
2130 \text{ PERM} \cdot \text{ABS} = K
2140 DENS.OIL = DENSIDAD.OIL
2150 DENS.WATER = DENSIDAD.WATER
2160 \text{ K} = \text{K} / 1000!
2170 DENSIDAD.OIL = DENSIDAD.OIL / 62.4 \times .433
2180 DENSIDAD.WATER = DENSIDAD.WATER / 62.4 * .433
2190 DELTA.DENSIDAD = DENSIDAD.WATER - DENSIDAD.OIL
2200 \text{ HO} \cdot \text{AVG} = \text{HOI}
2210 REM
2220 REM DETERMINACION DEL VOLUMEN POROSO INICIAL
2230 VP = PI * RE ^ 2 * HT * PHI / (5.615 * 1000000#)
2240 VOI = VP * HOI * (1! - SWI) / (HT * BO)
2250 \text{ SOI} \cdot \text{AVG} = (1! - SWI) * HO \cdot AVG / HT
2260 REM
2270 REM CALCULO DE LA RAZON DE MOVILIDAD
2280 M = (KRW * UO * BO) / (KRO * UW * BW)
2290 SOR.AVG = HO.AVG \times SOR / HT
2300 REM
2310 REM INICIACION DE ARCHIVOS DE OUTPUT
2320 OPEN "3DATOS.BAS" FOR OUTPUT AS #1 LEN = 200
2332 OPEN "4RESP1.BAS" FOR OUTPUT AS #3 LEN = 200
2333 OPEN "5RESP2.BAS" FOR OUTPUT AS #4 LEN = 200
2338 OPEN "6RESP3.BAS" FOR OUTPUT AS #5 LEN = 200
2339 GOSUB 10100
2340 GOSUB 20000
2350 GOSUB 4000
2380 REM CALCULO DE PERMEABILIDADES RELATIVAS PROMEDIO
2390 KRO.AVG = HO.AVG \times KRO / HT
2400 \text{ KRW} \cdot \text{AVG} = (\text{HT} - \text{HO} \cdot \text{AVG}) * \text{KRW} / \text{HT}
2410 REM
2420 REM CALCULO DE LA RAZON MOVILIDAD A ESPESOR
2430 NMT = (KRW.AVG * UO * BO) / (KRO.AVG * UW * BW)
2440 REM
2450 REM CALCULO DEL RADIO EFECTIVO DEL POZO
2460 IF HO.AVG > HCB THEN 2470 ELSE 2490
2470 \text{ TERMINO.1} = \text{ABS}((\text{HO.AVG} - \text{HCB}) / (\text{HO.AVG} - \text{HCT}))
```

```
TERMINO.2 = (HO AVG + HCT) / (HO.AVG + HCB)
  2490 IF HO.AVG > HCT AND HO.AVG < HCB THEN 2500 ELSE 2510
  2500 \text{ RADIO} \cdot \text{EFECTIVO} = 0
 2510 IF HO.AVG < HCT THEN 2520 ELSE 2540
 2520 TERMINO.1 = ABS((HO.AVG - HCT) / (HO.AVG - HCB))
 2530 \text{ TERMINO.2} = (2 * \text{HT} - (\text{HO.AVG} + \text{HCB})) / (2 * \text{HT} - (\text{HO.AVG} + \text{HCT}))
 2540 IF HO.AVG < HCT OR HO.AVG > HCB THEN 2550 ELSE 2580
 2550 \text{ EXPONENTE} = \text{HT} / (\text{HCB} - \text{HCT})
 2560 RADIO.EFECTIVO = 4! * HT * SOR(KH / KV) * (TERMINO.1 * TERMINO.2) ^ EXPONENTE
 2570 REM
  2580 REM CALCULO DEL REGIMEN CRITICO DE PRODUCCION
  2590 DENOMINADOR = 1! - ((RW + RADIO \cdot EFECTIVO) ^ 2 / RE ^ 2)
  2600 LN.RADIO.EFECTIVO = (LOG(RE / (RW + RADIO.EFECTIVO)) / DENOMINADOR) - .5
  2610 Q.CRITICO = 2! * PI * HT * KH * KRO.AVG * DELTA.DENSIDAD * (HO.AVG - HCB)
  2620 Q.CRITICO = Q.CRITICO / (887.2 * UO * BO * LN.RADIO.EFECTIVO)
  2630 IF 0.CRITICO < 0 THEN 0.CRITICO = 0 ELSE 0.CRITICO = 0.CRITICO
  2640 REM
  2650 REM DETERMINACION DEL CORTE DE AGUA PARA CASOS DONDE Q > Q.CRITICO
  2660 REM (A CONDICIONES DE SUPERFICIE)
  2670 IF Q > Q.CRITICO THEN 2710 ELSE 2680
  2680 \text{ FW} = 0!: GOTO 2860
  2690 REM
  2700 REM DETERMINACION DE LAS CONSTANTES PARA LA ECUACION CUADRATICA EN FW
  2710 A = 1 - M
  2720 \text{ TERMINO.1} = \text{NMT} / (1! + \text{NMT})
  2730 TERMINO.2 = A * (1! - Q.CRITICO * HO.AVG / (Q * (HO.AVG - HCB)))
  2740 TERMINO.3 = 0.CRITICO * (HCT - M * HCB) / (0 * (H0.AVG - HCB))
  2750 B = M - (TERMINO.1 * (TERMINO.2 + TERMINO.3))
  2760 \text{ C} = -M * \text{TERMINO.1} * (1! - Q.CRITICO / Q)
  2770 REM
  2780 REM SOLUCIONES A LA ECUACION CUADRATICA
  2790 FW = (-B + SQR(B * B - 4! * A * C)) / (2! * A)
  2800 IF FW >= -.1 AND FW < 1.1 THEN 2860 ELSE 2810
  2810 \text{ FW} = (-B - SQR(B * B - 4! * A * C)) / (2! * A)
  2820 IF FW \geq -.1 AND FW < 1.1 THEN 2860 ELSE 2830
  2830 GOSUB 50000: REM FW NO RESULTA FRACCIONAL
  2840 END
  2850 REM
  2860 REM DETERMINACION DE LOS REGIMENES DE FLUJO DE PETROLEO Y AGUA
```

```
2870 \text{ od} = (1! - FW) * Q
 2880 QW = FW * Q
  2890 REM
  2900 REM CALCULO DE LA PRODUCCION ACUMULADA DE PETROLEO Y AGUA
  2910 REM AJUSTADA A MESES DE 30.42 DIAS (EN MILLONES DE STB)
 2920 \text{ NP} = \text{NP} + \text{QO} \times 30.4167 / (30 \times 1000000\#)
 2930 WP = WP + QW * 30.4167 / (30 * 1000000#)
 2940 REM
  2950 REM CALCULO DE LA INTRUSION DE AGUA
  2960 WE = NP + WP
  2970 REM
  2980 REM COMPARACION CON EL LIMITE PERMISIBLE
  2990 \text{ WC} = 100! * \text{FW}
  3000 IF WC > WC.MAX THEN 3010 ELSE 3030
  3010 REM EL CORTE DE AGUA MAXIMO HA SIDO EXEDIDO
  3015 GOSUB 30000
  3020 END
  3030 REM
  3040 REM CALCULO DE LOS NUEVOS ESPESORES Y SATURACIONES
  3050 \text{ SO.AVG} = \text{SOI.AVG} - (\text{NP * BO / VP})
  3060 \text{ SW.AVG} = 1! - \text{SO.AVG}
  3070 HO.AVG = HOI * (SO.AVG - SOR.AVG) / (SOI.AVG - SOR.AVG)
  3080 REM
  3090 REM ACTUALIZACION DEL CALENDRIO
  3100 IF DIA \geq 30 THEN GOSUB 15000 ELSE 3110
  3110 \text{ DIA} = \text{DIA} + 1
  3120 IF DIA >= 31 THEN GOSUB 3130 ELSE 3170
  3130 \text{ DIA} = 1
  3152 PRINT TAB(81); "FIN DE CALCULO PARA MES "; MES; "AÑO"; ANO; ""
  3160 \text{ MES} = \text{MES} + 1
  3170 REM
  3180 REM COMPROBACION DEL FIN DE LA SIMULACION
  3190 IF MES > MESFIN AND ANO >= ANOFIN THEN 3195 ELSE 3220
  3195 REM FIN DE LA SIMULACION
  3200 GOSUB 40000
  3210 END
  3220 IF MES > 12 THEN 3230 ELSE 2380
  3230 \text{ ANO} = \text{ANO} + 1
  3240 \text{ MES} = 1: GOTO 3220
```

3250 RETURN 4000 REM • 4010 REM SUBPROGRAMA DATOS BASE 4020 REM -----4030 PRINT #1, CHR\$(14); " SIMULADOR NUMERICO PARA CONIFICACION " 4060 PRINT #1, CHR\$(14); " DE AGUA EN YACIMIENTOS BAJO SATURADOS " 4065 PRINT #1, " GARRIDO DELGADO LEANDRO ALBERTO" 4070 PRINT #1, " VERSION RAPIDA" 4080 PRINT #1, " JULIO 1996" 4085 PRINT #1, " DIA:"; DATE\$; " HORA:"; TIME\$ 4090 PRINT #1, "" 4120 PRINT #1, CHR\$(14); " DATOS INICIALES PARA" 4130 PRINT #1, CHR\$(14); " EL CASO: "; TITULO\$ 4140 PRINT #1, " " 4150 PRINT #1, USING " REGIMENES DE PRODUCCION DE FLUIDOS (STB/D):######.##"; Q 4160 PRINT #1, USING " MES DE INICIO DE LA SIMULACION : ##"; MES 4170 PRINT #1, USING " ANO DE INICIO DE LA SIMULACION :#####"; ANO MES FIN DE LA SIMULACION: ##"; MESFINAÑO FIN DE LA SIMULACION:####"; ANOFIN 4180 PRINT #1, USING " 4190 PRINT #1, USING " 4191 PRINT #1, "" 4191 PRINT #1, ""4200 PRINT #1, USING " CORTE DE AGUA MAXIMO PERMISIBLE4210 PRINT #1, USING " ESPESOR TOTAL DEL ESTRATO PRODUCTOR(%): ##•## "; WC•MAX(%): ###•## "; HT ESPESOR INICIAL DE LA LA COLUMNA DE PETROLEO (PIES):####.## "; HOI 4220 PRINT #1, USING " DISTANCIA DEL TOPE AL BALEO SUPERIOR (PIES): ###.## "; HCT DISTANCIA DEL TOPE AL BALEO DEL FONDO (PIES): ###.## "; HCB RADIO DEL POZO (PIES): #.####"; RW 4230 PRINT #1, USING " 4240 PRINT #1, USING " 4250 PRINT #1, USING " 4260 PRINT #1, USING " RADIO EXTERNO DEL RESERVORIO (o de drenaje) (PIES):####.## "; RE 4261 PRINT #1, ""4270 PRINT #1, USING " POROSIDAD(FRACCION): #.####"; PHI4280 PRINT #1, USING " PERMEABILIDAD ABSOLUTA(md):####.## "; PERM.ABS4290 PRINT #1, USING " PERMEABILIDAD HORIZONTAL(md):####.## "; KH4300 PRINT #1, USING " PERMEABILIDAD VERTICAL(md):####.## "; KV4310 CLS : PRINT #1, USING " PERMEBILIDAD RELATIVA AL PETROLEO A Swc#.####"; KRO4320 PRINT #1, USING " PERMEBILIDAD RELATIVA AL AGUA A Sor#.####"; KRW SATURACION INICIAL DE AGUA #•####"; SWI SATURACION RESIDUAL DE PETROLEO #•####"; SOR 4330 PRINT #1, USING " 4340 PRINT #1, USING " 4341 PRINT #1, "" 4350 PRINT #1, USING " FACTOR DE VOLUMEN DE FORMACION DE PETROLEO (Bbl/STB): #.#######; BO

4360 PRINT #1, USING " FACTOR DE VOLUMEN DE FORMACION DE AGUA (Bbl/STB): #.###### ; BR 4370 PRINT #1, USING " VISCOSIDAD DEL PETROLEO (cp): ###.####"; UO (cp): ###.####"; UW 4380 PRINT #1, USING " VISCOSIDAD DEL AGUA 4381 PRINT #1, "" 4390 PRINT #1, USING " DENSIDAD DEL PETROLEO 4400 PRINT #1, USING " DENSIDAD DEL AGUA (lb/Cuft): ##.######; DENS.OIL (lb/Cuft): ##.######; DENS.WATER 4410 PRINT #1, "" 4430 PRINT #1, "" 4440 PRINT #1, CHR\$(14); " DATOS BASE " 4450 PRINT #1, " " 4480 PRINT #1, USING " VOLUMEN POROSO (MMBbl):########## "; VP 4500 PRINT #1, USING "PETROLEO ORIGINAL IN SITU(MMSTB):####.#######; VOI4520 PRINT #1, USING "SATURACION INICIAL PROMEDIO DE PETROLEO : #.#####; SOI.AVG4540 PRINT #1, USING "RAZON DE MOVILIDAD: ###.######; M 4560 PRINT #1, USING " SATURACION RESIDUAL PROMEDIO DE PETROLEO: #.###"; SOR.AVG 4600 RETURN 10000 PRINT "SIMULADOR NUMERICO PARA CONIFICACION DE AGUA EN YACIMIENTOS" 10010 PRINT "BAJO SATURADOS. GARRIDO DELGADO LEANDRO ALBERTO" 10020 PRINT "VERSION RAPIDA" 10030 PRINT "JULIO DE 1996" 10034 PRINT "INGRESE LOS PARAMETROS QUE SE INDICAN" 10035 PRINT "EN LAS UNIDADES ESPECIFICADAS" 10036 PRINT "DIA:"; DATE\$; " HORA:"; TIME\$ 10038 PRINT "" 10040 RETURN 10100 PRINT #3, "SIMULADOR NUMERICO PARA CONIFICACION DE AGUA EN YACIMIENTOS" 10110 PRINT #3, "BAJO SATURADOS. GARRIDO DELGADO LEANDRO ALBERTO" 10120 PRINT #3, "VERSION RAPIDA" 10125 PRINT #3, "JULIO DE 1996" HORA:"; TIME\$; "" 10130 PRINT #3, "DIA:"; DATE\$; " 10140 PRINT #3, "" 10200 PRINT #4, "SIMULADOR NUMERICO PARA CONIFICACION DE AGUA EN YACIMIENTOS" 10210 PRINT #4, "BAJO SATURADOS GARRIDO DELGADO LEANDRO ALBERTO" 10220 PRINT #4, "VERSION RAPIDA" 10225 PRINT #4, "JULIO DE 1996" HORA:"; TIME\$ 10230 PRINT #4, "DIA:"; DATE\$; " 10235 PRINT #4, ""
²² 4360 PRINT #1, USING " FACTOR DE VOLUMEN DE FORMACION DE AGUA (Bbl/STB): #.#######; BW (cp): ###.####"; UO 4370 PRINT #1, USING " VISCOSIDAD DEL PETROLEO 4380 PRINT #1, USING " (cp): ###.####"; UW VISCOSIDAD DEL AGUA 4381 PRINT #1, "" DENSIDAD DEL PETROLEO (lb/Cuft): ##.#####"; DENS.OIL DENSIDAD DEL AGUA (lb/Cuft): ##.#####"; DENS.WATE 4390 PRINT #1, USING " (lb/cuft): ##.#####"; DENS.WATER 4400 PRINT #1. USING " DENSIDAD DEL AGUA 4410 PRINT #1, "" 4430 PRINT #1, "" 4440 PRINT #1, CHR\$(14); " DATOS BASE " 4450 PRINT #1, " " 4480 PRINT #1, USING "VOLUMEN POROSO(MMBbl):####.######; VP4500 PRINT #1, USING "PETROLEO ORIGINAL IN SITU(MMSTB):####.######; VOI4520 PRINT #1, USING "SATURACION INICIAL PROMEDIO DE PETROLEO : #.####"; SOI.AVG 4540 PRINT #1, USING " RAZON DE MOVILIDAD : ###.###### : M 4560 PRINT #1, USING " SATURACION RESIDUAL PROMEDIO DE PETROLEO: #.###"; SOR.AVG 4600 RETURN 10000 PRINT "SIMULADOR NUMERICO PARA CONIFICACION DE AGUA EN YACIMIENTOS" 10010 PRINT "BAJO SATURADOS. GARRIDO DELGADO LEANDRO ALBERTO" 10020 PRINT "VERSION RAPIDA" 10030 PRINT "JULIO DE 1996" 10034 PRINT "INGRESE LOS PARAMETROS QUE SE INDICAN" 10035 PRINT "EN LAS UNIDADES ESPECIFICADAS" 10036 PRINT "DIA:"; DATES; " HORA:"; TIMES 10038 PRINT "" 10040 RETURN 10100 PRINT #3, "SIMULADOR NUMERICO PARA CONIFICACION DE AGUA EN YACIMIENTOS" 10110 PRINT #3, "BAJO SATURADOS. GARRIDO DELGADO LEANDRO ALBERTO" 10120 PRINT #3, "VERSION RAPIDA" 10125 PRINT #3, "JULIO DE 1996" 10130 PRINT #3, "DIA:"; DATE\$; " HORA:"; TIME\$; "" 10140 PRINT #3, "" 10200 PRINT #4, "SIMULADOR NUMERICO PARA CONIFICACION DE AGUA EN YACIMIENTOS" 10210 PRINT #4, "BAJO SATURADOSGARRIDO DELGADO LEANDRO ALBERTO"10220 PRINT #4, "VERSION RAPIDA" 10225 PRINT #4, "JULIO DE 1996" 10230 PRINT #4, "DIA:"; DATES; " HORA:"; TIMES 10235 PRINT #4. ""

10300 PRINT #5, "SIMULADOR NUMERICO PARA CONIFICACION DE AGUA EN YACIMIENTOS" 10310 PRINT #5, "BAJO SATURADOS GARRIDO DELGADO LEANDRO ALBERTO" 10320 PRINT #5, "VERSION RAPIDA" 10325 PRINT #5, "JULIO DE 1996" 10330 PRINT #5, "DIA:"; DATE\$; " HORA:"; TIME\$ 10340 PRINT #5, "" **10400 RETURN** 15000 REM 15010 REM SUBPROGRAMA GRABACION DE RESULTADOS EN DISCO 15020 REM------##### . # # # # " 15030 PLANTILLA1\$ = "1\ \ #### ## ###。#### #。###### 15060 PRINT #3, USING PLANTILLA1\$; TITULO\$; ANO; MES; NP; FW; Q.CRITICO 16000 PLANTILLA2\$ = "2 \ \ #### ## ######.# ######.# #####.## #####.## #####.## 16030 PRINT #4, USING PLANTILLA2\$; TITULO\$; ANO; MES; QO; QW; WC; HO.AVG 17000 PLANTILLA3\$ = "3\ \ #### ## ###.### ##.#### ##.### # . # # # # # # # # # # # # # # " 17030 PRINT #5, USING PLANTILLA3S; TITULOS; ANO; MES; WP; SW.AVG; WE; SO.AVG; RADIO.EFECTIVO **17040 RETURN** 18000 REM ENCABEZAMIENTOS DE LOS ARCHIVOS 20000 PRINT #3, " Np : ACUMULADO DE PETROLEO \ Fw : FLUJO FRACCIONAL DE AGUA" 20010 PRINT #3, " Q.Critico : REGIMEN CRITICO DE PRODUCCION" 20020 PRINT #3, USING " REGIMEN DE PRODUCCION DE FLUIDOS (STB/d) :######.## "; Q 20030 PRINT #3, "" 20070 PRINT #3, " CASO AÑO MES " Np Fw Q.Critico ______ 20090 PRINT #3. " ... MM STB FRACCION STB/d 20100 PRINT #4, " Oo : RATE DE PETROLEO \ Qw : RATE DE AGUA \ Wc : CORTE DE AGUA" 20120 PRINT #4, " Ho.avg : ESPESOR ACTUAL DE LA COLUMNA DE PETROLEO" 20130 PRINT #4. "" 20140 PRINT #4, "" 20170 PRINT #4, " CASO Año MES 00 Ow ŴĊ Ho.avg " =========== 20190 PRINT #4, " Bbl/d Bbl/d 8 Pies " 20200 PRINT #5, "Wp : ACUMULADO DE AGUA \ Sw.avg : SATURACION DE AGUA PROMEDIO" 20210 PRINT #5, "We : INTRUSION DE AGUA \ So.avg : SATURACION PROMEDIO ACTUAL DE PETROLEO" 20220 PRINT #5, "Rad.Efect : RADIO EFECTIVO DEL POZO" 20230 PRINT #5, "" 20240 PRINT #5, "" 20260 PRINT #5, " CASO AñO MES Sw.avg So.avg Rad.Efect" Wp We

-----=== 222 20280 PRINT #5, " MM STB FRACC. MM STB FRACC. PIES" 20290 RETURN 30000 PRINT #3, "EL CORTE DE AGUA HA SIDO EXCEDIDO" 30010 PRINT #4, "EL CORTE DE AGUA HA SIDO EXCEDIDO" 30020 PRINT #5, "EL CORTE DE AGUA HA SIDO EXCEDIDO" 30030 REM 35000 PRINT "EL CORTE DE AGUA HA SIDO EXCEDIDO" 35030 RETURN 40000 PRINT #3, " FIN DE LA SIMULACION" 40010 PRINT #4, " FIN DE LA SIMULACION" 40020 PRINT #5, " FIN DE LA SIMULACION" 40030 REM 45000 PRINT " FIN DE LA SIMULACION" 45030 RETURN 50000 PRINT #3, " FW NO ES FRACCIONAL" 50010 PRINT #4, " FW NO ES FRACCIONAL" 50020 PRINT #5, " FW NO ES FRACCIONAL" 50040 REM 55000 PRINT " FW NO ES FRACCIONAL" **55030 RETURN**

SIMULADOR NUMERICO PARA CONIFICACIO DE AGUA EN YACIMIENTOS BAJO SATURADO GARRIDO DELGADO LEANDRO ALBERTO VERSION RAPIDA JULIO 1996 DIA:01-11-1997 HORA: 03:24:10 DATOS INICIALES PARA EL CASO: CASO BASE **REGIMENES DE PRODUCCION DE FLUIDOS (STB/D): 3000.00** MES DE INICIO DE LA SIMULACION : 1 AÑO DE INICIO DE LA SIMULACION :1978 MES FIN DE LA SIMULACION : 12 ANO FIN DE LA SIMULACION :1997 CORTE DE AGUA MAXIMO PERMISIBLE (%): 98.00 **ESPESOR TOTAL DEL ESTRATO PRODUCTOR** (PIES): 132.00 **ESPESOR INICIAL DE LA LA COLUMNA DE PETROLEO (PIES):** 52.00 **DISTANCIA DEL TOPE AL BALEO SUPERIOR** (PIES): 0.00 DISTANCIA DEL TOPE AL BALEO DEL FONDO (PIES): 18.00 RADIO DEL POZO (PIES): 0.3542 **RADIO EXTERNO DEL RESERVORIO (o de drenaje)** (PIES):1200.00 POROSIDAD (FRACCION): 0.1700 PERMEABILIDAD ABSOLUTA (md): 800.00PERMEABILIDAD HORIZONTAL (md): 800.00 **PERMEABILIDAD VERTICAL** (md): 8.00 **PERMEBILIDAD RELATIVA AL PETROLEO A Swc** : 1.0000 **PE**RMEABILIDAD RELATIVA AL AGUA A Sor : 0.7460 SATURACION INICIAL DE AGUA : 0.2880 SATURACION RESIDUAL DE PETROLEO 1 0.3370 ACTOR DE VOLUMEN DE FORMACION DE PETROLEO (Bbl/STB): 1.105000 FACTOR DE VOLUMEN DE FORMACION DE AGUA (Bbl/STB): 1.045000 **VISCOSIDAD DEL PETROLEO** (cp): 1.4100 VISCOSIDAD DEL AGUA (cp): 0.3300 DENSIDAD DEL PETROLEO (lb/Cuft): 50.35680 DENSIDAD DEL AGUA (lb/Cuft): 66.45600 34 J ' DATOS BASE The second second (MMBbl): 18.079461 VOLUMEN POROSO PETROLEO ORIGINAL IN SITU (MMSTB): 4.589154 SATURACION INICIAL PROMEDIO DE PETROLEO : 0.2805 3.370466 RAZON DE MOVILIDAD : SATURACION RESIDUAL PROMEDIO DE PETROLEO: 0.133

IMULADOR NUMERICO PARA CONIFICACION DE AGUA EN YACIMIENTOS TABLA 9 AJO SATURADOS. GARRIDO DELGADO LEANDRO ALBERTO ERSION RAPIDA UULIO DE 1996 IA:01-11-1997 HORA:03:24:10

Np : ACUMULADO DE PETROLEO \ Fw : FLUJO FRACCIONAL DE AGUA Q.Critico : REGIMEN CRITICO DE PRODUCCION REGIMEN DE PRODUCCION DE FLUIDOS (STB/d) : 3000.00

	CASO	AÑO	MES	Np	Fw	Q.Critico
=====				=======	=======	===========
				MM STB	FRACCION	STB/d
1CASO E	BASE	1978	1	0.0215	0.766018	209.6193
1CASO E	BASE	1978	2	0.0427	0.770152	201.8670
1CASO E	BASE	1978	3	0.0635	0.774155	194.4658
1CASO E	BASE	1978	4	0.0839	0.778032	187.3957
1CASO E	BASE	1978	5	0.1040	0.781790	180.6382
1CASO E	BASE	1978	6	0.1237	0.785433	174.1763
1CASO E	BASE	1978	7	0.1431	0.788967	167.9938
1CASO E	BASE	1978	8	0.1622	0.792396	162.0757
1CASO H	BASE	1978	9	0.1810	0.795725	156.4080
1CASO B	BASE	1978	10	0.1995	0.798959	150.9777
1CASO H	BASE	1978	11	0.2177	0.802101	145.7725
1CASO B	BASE	1978	12	0.2356	0.805155	140.7810
1CASO I	BASE	1979	1	0.2532	0.808124	135.9923
1CASO H	BASE	1979	2	0.2706	0.811013	131.3963
1CASO I	BASE	1979	3	0.2877	0.813824	126.9837
1CASO I	BASE	1979	4	0.3046	0.816560	122.7454
1CASO I	BASE	1979	5	0.3212	0.819224	118.6732
1CASO I	BASE	1979	6	0.3376	0.821819	114.7590
1CASO I	BASE	1979	7	0.3537	0.824348	110.9955
1CASO I	BASE	1979	8	0.3696	0.826813	107.3757
1CASO I	BASE	1979	9	0.3853	0.829216	103.8930
1CASO	BASE	1979	10	0.4008	0.831560	100.5411
1CASO	BASE	1979	11	0.4160	0.833847	97.3142
1CASO	BASE	1979	12	0.4311	0.836078	94.2066
1CASO	BASE	1980	1	0.4460	0.838256	91.2132
1CASO	BASE	1980	2	0.4606	0.840383	88.3290
1CASO	BASE	1980	3	0.4751	0.842460	85.5492
	BASE	1980	4	0.4894	0.844489	82.8693
1CASO	BASE	1980	5	0.5035	0.846471	80.2852
1CASO	BASE	1980	6	0.5174	0.848409	77.7929
1CASO	BASE	1980	7	0.5311	0.850303	75.3885
1CASO	BASE	1980	8	0.5447	0.852156	73.0684
1CASO	BASE	1980	9	0.5581	0.853967	70.8292
1CASO	BASE	1980	10	0.5713	0.855740	68.6676
1CASO	BASE	1980	11	0.5844	0.857474	66.5806
1CASO	BASE	1980	12	0.59/3	0.8591/1	64.5652
1CASO	BASE	1981	1	0.6101	0.860832	62.6185
1CASO	BASE	1981	2	0.6227	0.862458	60./380
1CASO	BASE	1981	3	0.6352	0.864051	58.9210
1CASO	BASE	1981	4	0.64/0		5/.1052
	BASE	1981	5	0.6719	0.00/139	22.4083
	BASE	1981	07	0.6927	0.000030	53.020U
	DASE	1901 1001	/ 0	0.003/	0.070103	52 · 2422
	DASE	1901 1001	0	0.0900	0 872050	10 2063
10ABO	DAGE	1001	9 10	0.7187	0.874330	49.2203 17 7025
10200	DAGE	1001	11	0 7201	0 875687	4/0/92J 16 1056
10260	DAGE	1981	10	0.7414	0.877016	45.0642
TCH20	DHOL	TAAT	14	• • • • • • • •	0.000 UTO	73.0072

1CASO	BASE	1982	1	0 7525	0 979310	13 7665
10450	BASE	1982	2	0.7525	0.070519	43.7003
10200		1002	2	0./030	0.8/9598	42.5110
ICASO	DASE	1902	3	0.//45	0.880852	41.2963
ICASO	BASE	1982	4	0.7853	0.882083	40.1209
1CASO	BASE	1982	5	0.7960	0.883291	38.9836
1CASO	BASE	1982	6	0.8066	0.884477	37.8829
1CASO	BASE	1982	7	0.8171	0.885640	36.8176
1CASO	BASE	1982	8	0 8275	0 996793	35 7866
10280	BASE	1092	0	0.0275	0.000703	33.7000
10280		1002	9	0.0370	0.88/904	34./88/
10100	DASE	1902	10	0.84/9	0.889006	33.8227
ICASU	BASE	1982	11	0.8580	0.890087	32.8877
1CASO	BASE	1982	12	0.8680	0.891150	31.9825
1CASO	BASE	1983	1	0.8779	0.892193	31.1062
1CASO	BASE	1983	2	0.8877	0.893218	30.2578
1CASO	BASE	1983	3	0.8974	0.894225	29.4363
1CASO	BASE	1983	4	0 9070	0 895215	29.4303
10280	BASE	1083	5	0.0165	0.0051215	20.0409
10280		1002	ر. د	0.9105	0.090107	27.0700
10200	BASE	1983	6	0.9259	0.89/143	27.1247
ICASO	BASE	1983	7	0.9352	0.898082	26.4023
1CASO	BASE	1983	8	0.9445	0.899005	25.7025
1CASO	BASE	1983	9	0.9537	0.899913	25.0246
1CASO	BASE	1983	10	0.9628	0.900806	24.3679
1CASO	BASE	1983	11	0.9718	0.901684	23,7315
10450	BASE	1983	12	0 9807	0 002547	$23 \cdot 7313$
10280		1001	1	0.0007	0.002347	
10100	DASE	1904	1	0.9090	0.903396	22.5169
ICASU	BASE	1984	2	0.9983	0.904232	21.9373
1CASO	BASE	1984	3	1.0070	0.905054	21.3752
1CASO	BASE	1984	4	1.0157	0.905863	20.8301
1CASO	BASE	1984	5	1.0242	0.906659	20.3012
1CASO	BASE	1984	6	1.0327	0.907443	19,7879
1CASO	BASE	1984	7	1.0411	0.908215	19,2896
10450	BASE	1984	Ŕ	1.0494	0.908975	19 9057
10280	BASE	108/	ğ	1.0577	0 909723	10.0000
10280	DAGE	1004	10	1 0650	0 010461	17 0700
10280	DAGE	1004	11	1 0740	0.011107	17.0709
10200	DASE	1004	10	1 0001		17.4340
1CASU	BASE	1904	12	1.0021	0.911903	1/.0029
LCASO	BASE	1982	l	1.0901	0.912609	16.5827
1CASO	BASE	1985	2	1.0981	0.913305	16.1737
1CASO	BASE	1985	3	1.1059	0.913991	15.7754
1CASO	BASE	1985	4	1.1138	0.914668	15.3873
1CASO	BASE	1985	5	1.1215	0.915336	15.0091
1CASO	BASE	1985	6	1.1292	0.915995	14.6403
10450	BASE	1985	7	1.1368	0.916645	14 2805
10280	BAGE	1085	Ŕ	1.1444	0.917287	12 0202
10200	DAGE	1005	0	1 1510	0 017021	13.9293
	BASE	1905	1.0	1 1504		13.5864
ICASO	BASE	1985	10	1.1594	0.91854/	13.2514
1CASO	BASE	1985	11	1.1668	0.919165	12.9240
1CASO	BASE	1985	1.2	1.1/41	0.919775	12.6039
1CASO	BASE	1986	1	1.1814	0.920378	12.2908
1CASO	BASE	1986	2	1.1887	0.920975	11.9844
1CASO	BASE	1986	3	1.1959	0.921564	11.6845
1CASO	BASE	1986	4	1.2030	0.922146	11.3908
10250	BASE	1986	5	1.2101	0.922722	11 1031
10200		1986	6 ·	1,2171	0.923292	10 0011
	DAGE	1006	7	1 22/1	0 023955	
	BASE	1000	, 0	1 9210	0 00//10	10.544/
LCASO	BASE	T 200	0	1 2270 1 2270		10.2736
LUASO	BASE	T 7 8 6	9	1.23/9	0.924903	10.0078
1CASO	BASE	1986	10	1.244/	0.925508	9.7470
1CASO	BASE	1986	11	1.2515	0.926048	9.4910
1CASO	BASE	1986	12	1.2582	0.926582	9.2397
1CASO	BASE	1987	1	1.2648	0.927110	8.9930
1						

Î

1CASO	BASE	1987	2	1 2715	0 027622	0 7507
10280	BASE	1087	2	1 2713	0.927033	8./50/
10200	DAGE	1007	3	1.2/81	0.928151	8.5128
LCASU	DAGE	1987	4	1.2846	0.928663	8.2790
ICASO	BASE	1987	5	1.2911	0.929171	8.0494
1CASO	BASE	1987	6	1.2975	0.929673	7.8237
1CASO	BASE	1987	7	1.3039	0.930171	7 6019
1CASO	BASE	1987	8	1.3103	0 930664	7 2920
10450	BASE	1987	õ	1 2166	0.021152	7.3039
10280	DAGE	1007	10	1 2220	0.931152	/.1696
10200	DAGE	1907	10	1.3228	0.931635	6.9589
ICASU	BASE	1987	11	1.3290	0.932114	6.7517
ICASO	BASE	1987	12	1.3352	0.932588	6.5480
1 CASO	BASE	1988	1	1.3413	0.933058	6.3477
1CASO	BASE	1988	2	1.3474	0.933524	6.1508
1CASO	BASE	1988	3	1.3535	0.933985	5.9570
1CASO	BASE	1988	4	1.3595	0 934442	5 7665
10450	BASE	1988	5	1 3654	0 02/90/	5 5700
10260	DAGE	1000	J	1 2712	0.934094	5.5/92
10300	DASE	1900	0	1.3/13	0.935343	5.3948
ICASU	BASE	1988	/	1.3//2	0.935787	5.2136
1CASO	BASE	1988	8	1.3831	0.936228	5.0353
1CASO	BASE	1988	9	1.3889	0.936664	4.8599
1CASO	BASE	1988	10	1.3946	0.937097	4.6873
1CASO	BASE	1988	11	1.4003	0.937526	4.5176
1CASO	BASE	1988	12	1.4060	0 937951	4 3507
10250	BASE	1080	1	1 1117	0 029272	4.5507
10280	DAGE	1000	2		0.020700	4.1005
10300	DASE	1909	2	1.41/3	0.938789	4.0249
1CASU	BASE	1989	3	1.4228	0.939203	3.8660
ICASO	BASE	1989	4	1.4284	0.939613	3.7097
1CASO	BASE	1989	5	1.4339	0.940019	3.5560
1CASO	BASE	1989	6	1.4393	0.940422	3.4047
1CASO	BASE	1989	7	1.4447	0.940822	3.2559
1CASO	BASE	1989	8	1.4501	0.941218	3.1096
1CASO	BASE	1989	9	1.4555	0.941610	2.9656
1CASO	BASE	1989	10	1.4608	0.941999	2.8240
1CASO	BASE	1989	11	1.4660	0.942385	2.6848
10280	DAGE	1000	10	1 1712	0 042769	2 5 4 7 8
10200	DAGE	1000	1	1 4765	0.042147	2.5470
10200	DAGE	1990	1		0.042522	2.4131
10100	BASE	1990	2	1.481/	0.943523	2.2003
ICASO	BASE	1990	3	1.4868	0.943896	2.1502
ICASO	BASE	1990	4	1.4919	0.944265	2.0220
1CASO	BASE	1990	5	1.4970	0.944632	1.8959
1CASO	BASE	1990	6	1.5020	0.944995	1.7719
1CASO	BASE	1990	7	1.5070	0.945356	1.6500
1CASO	BASE	1990	8	1.5120	0.945713	1.5301
1CASO	BASE	1990	9	1.5169	0.946067	1.4122
1CASO	BASE	1990	10	1.5218	0.946419	1.2962
10280	BASE	1000	11	1.5267	0.946767	1.1821
10AGO	DAGE	1000	10	1 5215	0 947113	1.0700
10200	DAGE	1990	12	1 5262	0 047455	0 9597
1CASU	BASE	1991	1	1 5411	0.94/455	0 9512
ICASO	BASE	1991	2	1.5411	0.94//95	0.0313
1CASO	BASE	1991	3	1.5459	0.948132	0./44/
1.CASO	BASE	1991	4	1.5506	0.948467	0.6399
1CASO	BASE	1991	5	1.5553	0.948798	0.5368
1.CASO	BASE	1991	6	1.5599	0.949127	0.4355
1CASO	BASE	1991	7	1.5645	0.949453	0.3359
1CASO	BASE	1991	8	1.5691	0.949776	0.2380
1CASO	BASE	1991	9	1.5737	0.950097	0.1417
1CASO	BASE	1991	10	1.5782	0.950416	0.0470
10280	BASE	1991	11	1.5825	0.955370	0.0000
10200	BACE	1991	12	1.5866	0.955610	0.0000
10200	DAGE	1002	1	1,5906	0.955849	0.0000
	DAGE	1000	- 2	1.5017	0.956086	0.0000
LASU	DAGE	エフフム	4	1 • J J ¶ /		

1CASO BASE	1992	3	1.5987	0.956321	0.0000
1CASO BASE	1992	4	1.6026	0.956555	0.0000
1CASO BASE	1992	5	1.6066	0.956788	0.0000
1CASO BASE	1992	6	1.6105	0.957019	0.0000
1CASO BASE	1992	7	1.6144	0.957248	0.0000
1CASO BASE	1992	8	1.6183	0.957477	0.0000
1CASO BASE	1992	9	1.6222	0.957703	0.0000
1CASO BASE	1992	10	1.6260	0.957928	0.0000
1CASO BASE	1992	11	1.6299	0.958152	0.0000
1CASO BASE	1992	12	1.6337	0.958375	0.0000
1CASO BASE	1993	1	1.6375	0.958596	0.0000
1CASO BASE	1993	2	1.6412	0.958815	0.0000
1CASO BASE	1993	3	1.6450	0.959034	0.0000
1CASO BASE	1993	4	1.6487	0.959251	0.0000
1CASO BASE	1993	5	1.6524	0.959466	0.0000
1CASO BASE	1993	6	1.6561	0.959680	0.0000
1CASO BASE	1993	7.4	1.6598	0.959893	0.0000
1CASO BASE	1993	8	1.6634	0.960105	0.0000
1CASO BASE	1993	9	1.6671	0.960315	0.0000
1CASO BASE	1993	10	1.6707	0.960524	0.0000
1CASO BASE	1993	11	1.6743	0.960732	0.0000
1CASO BASE	1993	12	1.6778	0.960938	0.0000
1CASO BASE	1994	1	1.6814	0.961143	0.0000
1CASO BASE	1994	2	1.6849	0.961347	0.0000
1CASO BASE	1994	3	1.6884	0.961550	0.0000
1CASO BASE	1994	4	1.6919	0.961751	0.0000
1CASO BASE	1994	5	1.6954	0.961952	0.0000
1CASO BASE	1994	6	1.6989	0.962150	0.0000
1CASO BASE	1994	7	1.7023	0.962348	0.0000
1CASO BASE	1994	8	1.7058	0.962545	0.0000
1CASO BASE	1994	9	1.7092	0.962740	0.0000
1CASO BASE	1994	10	1.7126	0.962934	0.0000
ICASO BASE	1994	11	1.7159	0.96312/	0.0000
ICASO BASE	1994	12	1./193	0.963319	0.0000
ICASO BASE	1995	1	1.7226	0.963510	0.0000
ICASO BASE	1995	2	1.7259	0.903099	0.0000
ICASO BASE	1995	3	1.7292	0.903888	0.0000
ICASO BASE	1995	4	1.7325	0.904075	0.0000
ICASO BASE	1995	5	1.7308	0.904201	0.0000
ICASU BASE	1995	0	1.7422	0.904440	0.0000
10ASO BASE	1995	/	1.7423	0.904030	0.0000
1CASO BASE	1995	0	1 7/97	0.904013	0.0000
1CASO BASE	1995	10	1.7519	0.965175	0.0000
1CASO BASE	1995	11	1.7551	0.965355	0.0000
1CASO BASE	1995	12	1.7582	0,965533	0.0000
1CASO BASE	1995	1	1.7614	0,965711	0.0000
1CASO BASE	1996	2	1.7645	0.965887	0.0000
1CASO BASE	1996	3	1.7676	0.966062	0.0000
1CASO BASE	1996	4	1.7707	0.966237	0.0000
1CASO BASE	1996	5	1.7737	0.966410	0.0000
1CASO BASE	1996	6	1.7768	0.966582	0.0000
1CASO BASE	1996	7	1.7798	0.966753	0.0000
1CASO BASE	1996	8	1.7829	0.966924	0.0000
1CASO BASE	1996	9	1.7859	0.967093	0.0000
1CASO BASE	1996	10	1.7889	0.967261	0.0000
1CASO BASE	1996	11	1.7918	0.967428	0.0000
1CASO BASE	1996	12	1.7948	0.967595	0.0000
1CASO BASE	1997	1	1.7978	0.967760	0.0000
1CASO BASE	1997	2	1.8007	0.967924	0.0000
1CASO BASE	1997	3	1.8036	0.968088	0.0000

1CASO	BASE	19	997	4	1.8065	0.968250	0.0000
1CASO	BASE	19	997	5	1.8094	0.968412	0.0000
1CASO	BASE	19	997	6	1.8123	0.968572	0.0000
1CASO	BASE	19	997	7	1.8151	0.968732	0.0000
1CASO	BASE	19	997	8	1.8180	0.968891	0.0000
1CASO	BASE	19	997	9	1.8208	0.969049	0.0000
1CASO	BASE	19	997	10	1.8236	0.969206	0.0000
1CASO	BASE	19	997	11	1.8264	0.969362	0.0000
1CASO	BASE	19	997	12	1.8292	0.969517	0.0000
		FIN DE	LA	SIMULACION			

SIMULADOR NUMERICO PARA CONIFICACION DE AGUA EN YACIMIENTOS
BAJO SATURADOS
VERSION RAPIDA
JULIO DE 1996
IDIA:01-11-1997TABLA 10
GARRIDO DELGADO LEANDRO ALBERTO

Qo : RATE DE PETROLEO \ Qw : RATE DE AGUA \ Wc : CORTE DE AGUA Ho.avg : ESPESOR ACTUAL DE LA COLUMNA DE PETROLEO

	C	ASO	AÑO	MES	Qo	Qw	WC	Ho.avg
=:	=====	=======				======	======	========
					Bbl/d	Bbl/d	8	Pies
2	CASO	BASE	1978	1	701.9	2298.1	76.60	51.54
2	CASO	BASE	1978	2	689.5	2310.5	77.02	51.08
2	CASO	BASE	1978	3	677.5	2322.5	77.42	50.63
2	CASO	BASE	1978	4	665.9	2334.1	77.80	50.19
2	CASO	BASE	1978	5	654.6	2345.4	78.18	49.76
2	CASO	BASE	1978	6	643.7	2356.3	78.54	49.70
2	CASO	BASE	1978	7	633.1	2366.9	78.90	48.92
2	CASO	BASE	1978	8	622.8	2377.2	79.24	40.52
2	CASO	BASE	1978	9	612.8	2387.2	79.57	40.51
2	CASO	BASE	1978	10	603.1	2396.9	79.90	40.11
2	CASO	BASE	1978	11	593.7	2406.3	80.21	47 32
2	CASO	BASE	1978	12	584.5	2400.5	80 52	47.52
$\overline{2}$	CASO	BASE	1979	1	575.6	2413.3	80 81	46 55
2	CASO	BASE	1979	2	567.0	2423.0	81,10	46 18
2	CASO	BASE	1979	3	558.5	2433.0	81 38	40.10
2	CASO	BASE	1979	4	550.3	2441.3	81 66	45.01
2	CASO	BASE	1979	5	542 3	2449.7	81 Q2	45.45
2	CASO	BASE	1979	5	534 5	24J/ • / 2465 5	82 18	45.09
5	CASO	BASE	1979	7	507 O	2403.5	92.13	44.74
2	CASO	BASE	1070	γ Ω	510 6	2473.0	92.43	44.39
2	CASO	BASE	1070	0	519.0	2400.4	92.00 92.00	44.0J 12 71
2	CABO	DAGE	1070	10	505 2	2407.0	02.92	43.71
2	CASO	BASE	1070	11	JUJ.J	2494.7	03.10	43.30
5	CABO	DAGE	1070	10	490.5	2501.5	03.30	43.03
2	CABO	DAGE	1000	1	491.0	2500.2	03.01	42.73
2	CABO	BASE	1000	1 2	403.2	2514.0	03.03	42.41
<u></u>	CABO	DAGE	1000	2	470.5	2521.1	04.04	42.09
2	CABO	DAGE	1000	3 4	4/2.0	2527.4	04.20	41.70
2	CABO	DAGE	1000	4 5	400.5	2535.5	04.45	41.47
ິ <u>ໂ</u>	CABO	DAGE	1000	5	400.0	2009.4	94.0J 91.91	41.17
ະ ລາ	CABO	DAGE	1000	07	434.0	2545.2	95 02	40.07
2	CABO	DAGE	1000	0	449.1 112 5	2550.9	85 22	40.37
2 :2	CABO	DAGE	1000	0	443.5	2550.5	85 10	30.20
2	CABO	DAGE	1000	10	430.1	2501.9	85 57	39 71
	CABO	DAGE	1000	11	432.0	2507.2 2572 A	85 75	39.43
2	CABO	BASE	1000	12	427.0	2572.5	85.92	39.15
<u>з</u>	CABO	DAGE	1001	1	422.5	2582 5	86.08	38.87
2	CABO	DAGE	1001	2	417.5	2587.4	86.25	38.60
2	CABO	BASE	1091	2	412.0	2592.2	86.41	38.33
2	CABO	BAGE	1981	З Д	403.2	2596.8	86.56	38.07
2	CASO	BASE	1981	5	398.6	2601.4	86.71	37.81
5	CASO	BASE	1981	6	394.1	2605.9	86.86	37.55
2	C7720	BASE	1981	7	389.7	2610.3	87.01	37.29
2	CASO	BASE	1981	Ŕ	385.4	2614.6	87.15	37.04
2	CASO	BASE	1981	9	381.1	2618.9	87.30	36.79
2	CASO	BASE	1981	10	377.0	2623.0	87.43	36.54
2	CASO	BASE	1981	11	372.9	2627.1	87.57	36.29
2	CASO	BASE	1981	12	369.0	2631.0	87.70	36.05

2 CASO BASE	E 1982	1	365.0	2635.0	87.83	35 81
2 CASO BASE	E 1982	2	361.2	2638.8	87.96	35.57
2 CASO BASE	E 1982	3	357.4	2642.6	88.09	35.34
2 CASO BASE	E 1982	4	353.8	2646.2	88.21	35.10
2 CASO BASE	E 1982	5	350.1	2649.9	88.33	34.87
2 CASO BASE	E 1982	6	346.6	2653.4	88.45	34.65
2 CASO BASE	E 1982	7	343.1	2656.9	88.56	34.42
2 CASO BASE	E 1982	8	339.7	2660.3	88.68	34.20
CASO BASE	E 1982	9	336.3	2663.7	88.79	33.98
2 CASO BASE	E 1982	10	333.0	2667.0	88.90	33.76
2 CASO BASE	E 1982	11	329.7	2670.3	89.01	33.54
2 CASO BASE	E 1982	12	326.6	2673.4	89.11	33.33
2 CASO BASE	E 1983	1	323.4	2676.6	89.22	33.11
2 CASO BASE	E 1983	2	320.3	2679.7	89.32	32.90
2 CASO BASE	E 1983	3	317.3	2682.7	89.42	32.69
2 CASO BASE	E 1983	4	314.4	2685.6	89.52	32.49
2 CASO BASE	E 1983	5	311.4	2688:6	89.62	32.28
2 CASO BASE	E 1983	6	308.6	2691.4	89.71	32.08
2 CASO BASE	E 1983	7	305.8	2694.2	89.81	31.88
2 CASO BASE	E 1983	8	303.0	2697.0	89.90	31.68
2 CASO BASE	E 1983	9	300.3	2699.7	89.99	31.48
2 CASO BASE	E 1983	10	297.6	2702.4	90.08	31.29
2 CASO BASE	E 1983	11	294.9	2705.1	90.17	31.09
2 CASO BASE	E 1983	12	292.4	2707.6	90.25	30.90
2 CASO BASE	E 1984	1	289.8	2710.2	90.34	30.71
2 CASO BASE	E 1984	2	287.3	2712.7	90.42	30.52
2 CASO BASE	E 1984	3	284.8	2715.2	90.51	30.33
2 CASO BASE	E 1984	4	282.4	2717.6	90.59	30.15
2 CASO BASE	E 1984	5	280.0	2720.0	90.67	29.97
2 CASO BASE	E 1984	6	277.7	2722.3	90.74	29.78
2 CASO BASE	E 1984	7	275.4	2724.6	90.82	29.60
2 CASO BASE	E 1984	8	273.1	2726.9	90.90	29.42
2 CASO BASE	E 1984	9	270.8	2729.2	90.97	29.24
2 CASO BASE	E 1984	10	268.6	2731.4	91.05	29.07
2 CASO BASE	E 1984	11	266.4	2733.6	91.12	28.89
2 CASO BASE	E 1984	12	264.3	2735.7	91.19	28.72
2 CASO BASE	E 1985	1	262.2	2737.8	91.26	28.55
2 CASO BASE	E 1985	2	260.1	2739.9	91.33	28.38
🌮 CASO BASE	E 1985	3	258.0	2742.0	91.40	28.21
2 CASO BASE	E 1985	4	256.0	2744.0	91.47	28.04
2 CASO BASE	E 1985	5	254.0	2746.0	91.53	27.87
2 CASO BASE	E 1985	6	252.0	2748.0	91.60	27.71
CASO BASE	E 1985	7	250.1	2749.9	91.00	27.04
2 CASO BASE	E 1985	8	248.1	2/31.9	91.73	27.30
Z CASO BASE	E 1985	9	240.2	2755.6	91.79	27.22
2 CASO BASE	E 1985	10		2755.0	91.0J 91.92	26.90
CASO BASE	E 1985	11		2757.5	01 08	26.74
Z CASO BASE	E 1985	12	240.7	2759.5	92.04	26.58
CASO BASE	E 1986	1	230.9	2762.9	92.10	26.43
CASO BASI	S 1986	2	237.1	2764.7	92.16	26.27
	S 1986	3 A	233•2	2766.4	92.21	26.12
A CASU BASE	5 1986	4 E	233.0 221 A	2768.2	92.27	25.97
CASU BASE	5 1986 1096	5 2	231.0	2769.9	92.33	25.82
CASU BASE	5 TAOP	0 7	228.4	2771.6	92.39	25.67
CABU BASI	5 1900 7 1002	, / Ω	226.8	2773.2	92.44	25.52
CASU DASI (12) CO. DAGI	100 c د	Q	225.1	2774.9	92.50	25.37
(2,00 DASI	E 1096	10	223.5	2776.5	92.55	25.22
CASO RACI	E 1986	11	221.9	2778.1	92.60	25.08
CASO BASI	E 1986	12	220.3	2779.7	92.66	24.93
CASO BASI	E 1987		218.7	2781.3	92.71	24.79

)	CASO	BASE	1987	2	217.1	2782 0	02 76	24 CE
,)	CASO	BASE	1987	3			92.70	24.00
2	0.150	BASE	1007	3	213.5	2/04.0	92.82	24.50
3		DASE	1007	4	214.0	2786.0	92.87	24.36
4	CASU	BASE	1987	5	212.5	2787.5	92.92	24.22
2	CASO	BASE	1987	6	211.0	2789.0	92.97	24.09
.2	CASO	BASE	1987	7	209.5	2790.5	93.02	23.95
2	CASO	BASE	1987	8	208.0	2792.0	93.07	23 81
2	CASO	BASE	1987	9	206 5	2702 5	02 12	23.01
2	CASO	BASE	1987	10	200.5	2793.5	93.12	23.00
2	0760	BAGE	1007	11	203.1	2/94.9	93.10	23.54
2		DASE	1907	11	203.7	2/96.3	93.21	23.41
<u> </u>	CASU	BASE	1987	12	202.2	2797.8	93.26	23.27
2	CASO	BASE	1988	1	200.8	2799.2	93.31	23.14
.2	CASO	BASE	1988	2	199.4	2800.6	93.35	23.01
12	CASO	BASE	1988	3	198.0	2802.0	93.40	22.88
1.2	CASO	BASE	1988	4	196.7	2803.3	93.44	22 75
2	CASO	BASE	1988	5	195.3	2804 7	03 10	22.73
2	0260	BASE	1099	6	104 0	2004.7		22.02
.0	CABO	DAGE	1000	7	194.0	2000.0	93.53	22.50
.2	CASU	DASE	1900	/	192.6	2807.4	93.58	22.37
.2	CASO	BASE	1988	8	191.3	2808.7	93.62	22.24
* 12	CASO	BASE	1988	9	190.0	2810.0	93.67	22.12
:2	CASO	BASE	1988	10	188.7	2811.3	93.71	22.00
:2	CASO	BASE	1988	11	187.4	2812.6	93.75	21.87
:2	CASO	BASE	1988	12	186.1	2813.9	93.80	21.75
2	CASO	BASE	1989		184.9	2815 1	03 81	21.73
2	CASO	BASE	1989	2	183 6	2015.1	02 00	21.03
2	0760	DAGE	1000	2		2010.4	93.00	21.51
2		DAGE	1909	3		2017.0	93.92	21.39
2	CASU	BASE	1989	4	181.2	2818.8	93.96	21.27
2	CASO	BASE	1989	5	1/9.9	2820.1	94.00	21.15
2	CASO	BASE	1989	6	178.7	2821.3	94.04	21.03
2	CASO	BASE	1989	7	177.5	2822.5	94.08	20.92
2	CASO	BASE	1989	8	176.3	2823.7	94.12	20.80
2	CASO	BASE	1989	9	175.2	2824.8	94.16	20.69
2	CASO	BASE	1989	10	174.0	2826.0	94.20	20.57
2	CASO	BASE	1989	11	172.8	2827.2	94.24	20.46
2	CASO	BASE	1989	12	171.7	2828.3	94.28	20.35
2	0280	BYCE	1000	1	170.6	2829.4	94 31	20.23
2	CABO	DAGE	1000	2	169 4	2830 6	01 35	20.24
2		DASE	1990	2	169 2	2030.0	04 20	20.12
2	CASU	BASE	1990	3		2031.7	94.39	20.01
2	CASO	BASE	1990	4	167.2	2832.8	94.43	19.90
2	CASO	BASE	1990	5	166.1	2833.9	94.46	19.79
2	CASO	BASE	1990	6	165.0	2835.0	94.50	19.69
2	CASO	BASE	1990	7	163.9	2836.1	94.54	19.58
2	CASO	BASE	1990	8	162.9	2837.1	94.57	19.47
2	CASO	BASE	1990	9	161.8	2838.2	94.61	19.37
2	CASO	BASE	1990	10	160.7	2839.3	94.64	19.26
2	CASO	BASE	1990	11	159.7	2840.3	94.68	19.16
2	CASO	BASE	1990	12	158.7	2841.3	94.71	19.05
2	CABO	DAGE	1001	1	157.6	2842.4	94.75	18.95
2		DASE	1001	1 2	156 6	2842 4	94 78	18 84
2	CASU	BASE	1991	2	155 6		0/ 01	10.04
2	CASO	BASE	1991	3		2044.4	01 95	10.74
2	CASO	BASE	1991	4	154.0		94.00	
2	CASO	BASE	1991	5	153.6	2040.4	94.00	
2	CASO	BASE	1991	6	152.6	284/.4	94.91	18.44
2	CASO	BASE	1991	7	151.6	2848.4	94.95	18.34
2	CASO	BASE	1991	8	150.7	2849.3	94.98	18.24
2	CASO	BASE	1991	9	149.7	2850.3	95.01	18.14
2	CASO	BASE	1991	10	148.8	2851.2	95.04	18.05
2	CASO	BASE	1991	11	133.9	2866.1	95.54	17.95
2	CASO	BASE	1991	12	133.2	2866.8	95.56	17.87
2	CASO	RASE	1992		132.5	2867.5	95.58	17.78
2	0280	RACE	1992	2	131.7	2868.3	95.61	17.69
	CADU	unuu		-				

2	CASO	BASE	1992	3	131.0	2869.0	95.63	17.61
2	CASO	BASE	1992	4	130.3	2869 7	95.66	17.50
2	CASO	BASE	1992	5	120 6	2009.7	95.00	17.52
2	0260	DACE	1002	5 6	129.0	2070.4	95.68	1/.44
2	CASU	DASE	1992	0	128.9	2871.1	95.70	17.35
2	CASO	BASE	1992	/	128.3	2871.7	95.72	17.27
2	CASO	BASE	1992	8	127.6	2872.4	95.75	17.18
2	CASO	BASE	1992	9	126.9	2873.1	95 77	17 10
2	CASO	BASE	1992	10	126 2	2073 9	05 70	17.10
2	0100	DACE	1002	11	120.2	2073.0	95.79	1/.02
2	CASO	DASE	1992	11	125.5	28/4.5	95.82	16.94
2	CASO	BASE	1992	12	124.9	2875.1	95.84	16.85
2	CASO	BASE	1993	1	124.2	2875.8	95.86	16.77
2	CASO	BASE	1993	2	123.6	2876.4	95.88	16.69
2	CASO	BASE	1993	3	122.9	2877 1	05 00	16 61
2	CASO	BASE	1003	4	100 0	2077.1	95.90	10.01
2	0200	DAGE	1993		122.2	20//.0	95.93	16.53
2	CASU	BASE	1993	Э	121.6	28/8.4	95.95	16.45
2	CASO	BASE	1993	6	121.0	2879.0	95.97	16.37
2	CASO	BASE	1993	7	120.3	2879.7	95.99	16.29
2	CASO	BASE	1993	8	119.7	2880.3	96.01	16 21
2	CASO	BASE	1993	à	110 1	2000.0		10.21
2	CADO	DAGE	1002	10	119.1	2000.9	90.03	10.14
2	CASU	DASE	1993	10	118.4	2881.6	96.05	16.06
2	CASO	BASE	1993	11	117.8	2882.2	96.07	15.98
2	CASO	BASE	1993	12	117.2	2882.8	96.09	15.90
2	CASO	BASE	1994	1	116.6	2883.4	96.11	15.83
2	CASO	BASE	1994	2	116 0	2884 0	06 13	15 75
2	01100	DACE	1004	2		2004.0	90.15	15.75
2		DAGE	1994	3	115.4	2884.0	96.15	12.08
2	CASO	BASE	1994	4	114.7	2885.3	96.18	15.60
2	CASO	BASE	1994	5	114.1	2885.9	96.20	15.52
2	CASO	BASE	1994	6	113.5	2886.5	96.22	15.45
2	CASO	BASE	1994	7	113.0	2887.0	96.23	15.38
2	CASO	BASE	1994	, B		2007.0	06 25	15.30
2	CABO		1004	0		2007.0	90.25	15.30
2	CASU	DASE	1994	9	111.8	2888.2	96.27	15.23
2	CASO	BASE	1994	10	111.2	2888.8	96.29	15.16
2	CASO	BASE	1994	11	110.6	2889.4	96.31	15.08
2	CASO	BASE	1994	12	110.0	2890.0	96.33	15.01
2	CASO	BASE	1995	1	109.5	2890.5	96.35	14.94
2	CASO	BASE	1995	2	108 9	200010	06 37	1/ 97
2	0260	DACE	1005	2	108.3	2091.1	90.37	14.07
2	CASU	DASE	1995	3	108.3	2891./	96.39	14.80
2	CASO	BASE	1995	4	107.8	2892.2	96.41	14.73
2	CASO	BASE	1995	5	107.2	2892.8	96.43	14.66
2	CASO	BASE	1995	6	106.7	2893.3	96.44	14.59
2	CASO	BASE	1995	7	106.1	2893.9	96.46	14.52
2	CASO	BASE	1995	8	105 6	2891 1	96 18	14 45
2	0.100	BYCE	1005	0	105.0		06 50	1/ 20
2	0200	DAGE	1995	9	105.0	2095.0	96.50	14.30
2	CASU	BASE	1995	10	104.5	2895.5	96.52	14.31
2	CASO	BASE	1995	11	103.9	2896.1	96.54	14.24
2	CASO	BASE	1995	12	103.4	2896.6	96.55	14.17
2	CASO	BASE	1996	1	102.9	2897.1	96.57	14.11
2	CASO	BASE	1996	2	102 3	2897.7	96.59	14.04
2	01.00	DACE	1006	2		2007.7	06 61	12 07
2		DAGE	1990	3	101.8	2090.2	90.01	13.9/
2	CASU	BASE	1996	4	101.3	2898.7	96.62	13.91
2	CASO	BASE	1996	5	100.8	2899.2	96.64	13.84
2	CASO	BASE	1996	6	100.3	2899.7	96.66	13.77
2	CASO	BASE	1996	7	99.7	2900.3	96.68	13.71
2	CASO	BASE	1996	Ŕ	99.2	2900.8	96.69	13.64
2	0.100	BYGE	1006	0	00 7	2001 2	96 71	12 50
2	CH20	DAGE	T 2 2 0	7	90./ 00.0	2301.3	90./I 00 70	10 F1
2	CASU	BASE	T 9 9 6	10	98.2	2901.8	90./3	13.51
2	CASO	BASE	1996	11	97.7	2902.3	96.74	13.45
2	CASO	BASE	1996	12	97.2	2902.8	96.76	13.39
2	CASO	BASE	1997	1	96.7	2903.3	96.78	13.32
2	CASO	BASE	1997	2	96.2	2903.8	96.79	13.26
2	CASO	BASE	1997		95.7	2904 3	96.81	13.20
-	2.100			5	2011			

2	CASO	BASE	1997	4	95.2	2904.8	96.83	13.13
2	CASO	BASE	1997	5	94.8	2905.2	96.84	13.07
2	CASO	BASE	1997	6	94.3	2905.7	96.86	13.01
2	CASO	BASE	1997	7	93.8	2906.2	96.87	12.95
2	CASO	BASE	1997	8	93.3	2906.7	96.89	12.89
2	CASO	BASE	1997	9	92.9	2907.1	96.90	12.83
2	CASO	BASE	1997	10	92.4	2907.6	96.92	12.77
$\overline{2}$	CASO	BASE	1997	11	91.9	2908.1	96.94	12.71
$\overline{2}$	CASO	BASE	1997	12	91.4	2908.6	96.95	12.65
-			FIN DE LA	SIMUL	ACION			

SIMULADOR NUMERICO PARA CONIFICACION DE AGUA EN YACIMIENTOS BAJO SATURADOS GARRIDO DELGADO LEANDRO ALBERTO VERSION RAPIDA JULIO DE 1996 DIA:01-11-1997 HORA:03:24:10

Wp : ACUMULADO DE ÀGUA \ Sw.avg : SATURACION DE AGUA PROMEDIO We : INTRUSION DE AGUA \ So.avg : SATURACION PROMEDIO ACTUAL DE PETROLEO Rad.Efect : RADIO EFECTIVO DEL POZO

		CASO	AÑO	MES	Wp	Sw.avg	We	So.avg	Rad.Efect
	======	=======			========	======	======	=====	
					MM STB	FRACC.	MM STB	FRACC.	PIES
	3CASO	BASE	1978	1	0.070	0.7208	0.091	0.2792	25.1746
	3CASO	BASE	1978	2	0.140	0.7221	0.183	0.2779	23.8979
۴.	3CASO	BASE	1978	3	0.210	0.7234	0.274	0.2766	22.6831
	3CASO	BASE	1978	4	0.281	0.7246	0.365	0.2754	21.5271
	3CASO	BASE	1978	5	0.352	0.7259	0.456	0.2741	20.4271
	3CASO	BASE	1978	6	0.424	0.7271	0.548	0.2729	19.3804
	3CASO	BASE	1978	7	0.496	0.7283	0.639	0.2717	18.3845
	3CASO	BASE	1978	8	0.568	0.7294	0.730	0.2706	17.4369
	3CASO	BASE	1978	9	0.640	0.7306	0.821	0.2694	16.5353
	3CASO	BASE	1978	10	0.713	0.7317	0.913	0.2683	15.6776
	3CASO	BASE	1978	11	0.786	0.7328	1.004	0.2672	14.8617
	3CASO	BASE	1978	12	0.859	0.7339	1.095	0.2661	14.0855
	3CASO	BASE	1979	1	0.933	0.7350	1.186	0.2650	13.3473
	3CASO	BASE	1979	2	1.007	0.7361	1.278	0.2639	12.6452
	3CASO	BASE	1979	3	1.081	0.7371	1.369	0.2629	11.9775
	3CASO	BASE	1979	4	1.155	0.7381	1.460	0.2619	11.3426
	3CASO	BASE	1979	5	1.230	0.7391	1.551	0.2609	10.7390
	3CASO	BASE	1979	6	1.305	0.7401	1.643	0.2599	10.1651
	3CASO	BASE	1979	7	1.380	0.7411	1.734	0.2589	9.6197
	3CASO	BASE	1979	8	1.455	0.7421	1.825	0.2579	9.1014
	3CASO	BASE	1979	9	1.531	0.7431	1.916	0.2569	8.6088
	3CASO	BASE	1979	10	1.607	0.7440	2.008	0.2560	8.1408
	3CASO	BASE	1979	11	1.683	0.7449	2.099	0.2551	7.6963
	3CASO	BASE	1979	12	1.759	0.7459	2.190	0.2541	7.2740
	3CASO	BASE	1980	1	1.835	0.7468	2.281	0.2532	6.8731
	3CASO	BASE	1980	2	1.912	0.7477	2.373	0.2523	6.4924
	3CASO	BASE	1980	3	1.989	0.7486	2.464	0.2514	6.1310
	3CASO	BASE	1980	4	2.066	0.7494	2.555	0.2506	5.7880
	3CASO	BASE	1980	5	2.143	0.7503	2.646	0.2497	5.4626
	3CASO	BASE	1980	6	2.220	0.7511	2.738	0.2489	5.1539
	3CASO	BASE	1980	7	2.298	0.7520	2.829	0.2480	4.8610
	3CASO	BASE	1980	8	2.375	0.7528	2.920	0.2472	4.5834
	3CASO	BASE	1980	9	2.453	0.7536	3.011	0.2464	4.3201
	3CASO	BASE	1980	10	2.531	0.7544	3.103	0.2456	4.0706
	3CASO	BASE	1980	11	2.609	0.7552	3.194	0.2448	3.8342
	3CASO	BASE	1980	12	2.688	0.7560	3.285	0.2440	3.6103
	3CASO	BASE	1981	1	2.766	0.7568	3.376	0.2432	3.3982
	3CASO	BASE	1981	2	2.845	0.7576	3.468	0.2424	3.1973
	3CASO	BASE	1981	3	2.924	0.7583	3.559	0.2417	3.0073
	3CASO	BASE	1981	4	3.002	0.7591	3.650	0.2409	2.8274
	3CASO	BASE	1981	5	3.082	0.7598	3.741	0.2402	2.6572
	3CASO	BASE	1981	6	3.161	0.7606	3.833	0.2394	2.4963
	3CASO	BASE	1981	7	3.240	0.7613	3.924	0.2387	2.3441
	3CASO	BASE	1981	8	3.320	0.7620	4.015	0.2380	2.2003
	3CASO	BASE	1981	9	3.399	0.7627	4.106	0.2373	2.0645
	3CASO	BASE	1981	10	3.479	0.7634	4.198	0.2366	1.9362
	3CASO	BASE	1981	11	3.559	0.7641	4.289	0.2359	1.8150

3CASO	BASE	1981	12	3.639	0.7648	4.380	0.2352	1 7007
3CASO	BASE	1982	1	3.719	0 7655	A A 71	0.22352	1 5020
30250	BASE	1982	2	3 700	0.7653	4.4/1	0.2345	1.5920
30360	DAGE	1092	2	3.733	0.7002	4.003	0.2338	1.4910
JCASU	DAGE	1902	3	3.879	0.7669	4.654	0.2331	1.3951
3CASO	BASE	1982	4	3.960	0.7675	4.745	0.2325	1.3047
3CASO	BASE	1982	5	4.040	0.7682	4.836	0.2318	1.2195
3CASO	BASE	1982	6	4.121	0.7688	4.928	0.2312	1.1393
3CASO	BASE	1982	7	4.202	0.7695	5.019	0.2305	1.0638
3CASO	BASE	1982	8	4.283	0.7701	5.110	0 2299	0 0028
30250	BASE	1982	9	A 36A	0 7707	5 201	0.2299	0.9920
30260	DAGE	1092	10	4.304	0.7707	5.201	0.2293	0.9200
30300	DAGE	1002	10	4.441	0.7713	5.293	0.2287	0.8632
JCASU	BASE	1962	11	4.526	0.//20	5.384	0.2280	0.8042
3CASO	BASE	1982	12	4.607	0.7726	5.475	0.2274	0.7488
3CASO	BASE	1983	1	4.688	0.7732	5.566	0.2268	0.6968
3CASO	BASE	1983	2	4.770	0.7738	5.658	0.2262	0.6480
3CASO	BASE	1983	3	4.851	0.7744	5.749	0.2256	0.6023
3CASO	BASE	1983	4	4.933	0.7749	5 840	0 2251	0 5594
30360	DACE	1002	5	5 015	0 7755	5.040	0.2231	0.5394
JCASU	DAGE	1903	5	5.015	0.7755	5.931	0.2245	0.5192
JCASU	BASE	1983	0	5.097	0.7761	6.023	0.2239	0.4816
3CASO	BASE	1983	7	5.179	0.7767	6.114	0.2233	0.4464
3CASO	BASE	1983	8	5.261	0.7772	6.205	0.2228	0.4134
3CASO	BASE	1983	9	5.343	0.7778	6.296	0.2222	0.3827
3CASO	BASE	1983	10	5.425	0.7784	6.388	0.2216	0.3539
30250	BASE	1983	11	5 507	0 7789	6 179	0 2211	0 3 2 7 1
30280	DAGE	1002	10	5 500	0.7705	6 570	0.2211	0.3271
JCASO	DAGE	1903	12	5.569	0.7795	0.570	0.2205	0.3021
3CASO	BASE	1984	1	5.6/2	0.7800	6.661	0.2200	0.2/8/
3CASO	BASE	1984	2	5.754	0.7805	6.753	0.2195	0.2570
3CASO	BASE	1984	3	5.837	0.7811	6.844	0.2189	0.2367
3CASO	BASE	1984	4	5.919	0.7816	6.935	0.2184	0.2179
3CASO	BASE	1984	5	6.002	0.7821	7.026	0.2179	0.2004
3CASO	BASE	1984	6	6.085	0.7826	7.118	0.2174	0.1841
30250	BASE	1984	7	6 168	0 7831	7 209	0.2169	0.1690
30360	DAGE	1004	0	6 251	0.7031	7.200	0 2162	0 1550
JCASO	DAGE	1904	0	0.251	0.7037	7.300	0.2103	0.1330
JCASU	BASE	1984	9	6.334	0.7842	7.391	0.2158	0.1420
3CASO	BASE	1984	10	6.417	0.7847	7.483	0.2153	0.1300
3CASO	BASE	1984	11	6.500	0.7852	7.574	0.2148	0.1188
3CASO	BASE	1984	12	6.583	0.7857	7.665	0.2143	0.1085
3caso	BASE	1985	1	6.666	0.7861	7.756	0.2139	0.0990
3CASO	BASE	1985	2	6.749	0.7866	7.848	0.2134	0.0903
3CASO	BASE	1985	3	6.833	0.7871	7.939	0.2129	0.0822
30250	BASE	1985	4	6 916	0 7876	8,030	0.2124	0.0747
30260	DAGE	1005	5	7 000	0.7001	Q 121	0 2110	0.0679
JCABO	DAGE	1905	5	7.000	0.7001	0.121	0.2119	0.0616
3CASU	BASE	1985	0	7.083	0.7005	0.213	0.2115	0.0010
3CASO	BASE	1982	1	/.16/	0.7890	8.304	0.2110	0.0556
3CASO	BASE	1985	8	7.251	0.7895	8.395	0.2105	0.0505
3caso	BASE	1985	9	7.334	0.7899	8.486	0.2101	0.0456
3CASO	BASE	1985	10	7.418	0.7904	8.578	0.2096	0.0412
3CASO	BASE	1985	11	7.502	0.7908	8.669	0.2092	0.0371
3CASO	BASE	1985	12	7.586	0.7913	8.760	0.2087	0.0334
30280	DACE	1096	1	7 670	0.7917	8.851	0.2083	0.0300
JCASO	DAGE	1900	1	7.070	0 7022	8 0/3	0 2078	0.0269
SCASU	BASE	1980	2	7.754	0.7922	0.943	0.2070	0 0205
3CASO	BASE	1986	3	7.838	0.7926	9.034	0.2074	0.0241
3CASO	BASE	1986	4	7.922	0.7930	9.125	0.2070	0.0215
3CASO	BASE	1986	5	8.006	0.7935	9.216	0.2065	0.0192
3CASO	BASE	1986	6	8.090	0.7939	9.308	0.2061	0.0171
3CASO	BASE	1986	7	8.175	0.7943	9.399	0.2057	0.0153
3CASO	BASE	1986	8	8.259	0.7948	9.490	0.2052	0.0135
30260	BASE	1986	9	8.343	0.7952	9.581	0.2048	0.0120
30200	DAGE	1004	10	8.128	0.7956	9.673	0.2044	0.0106
30300	DAGE	1004	11	0 610	0 7060	9.764	0.2040	0.0094
JCASU	DADE	T 200	12	0.012	0 704	0 0 5 5	0.2036	0.0083
PCASO	BASE	T 38P	12	0.39/	0./904	5.0JJ		

	3CASO	BASE	1987	1	8.681	0.7968	9,946	0.2032	0.0073
	30360	DACE	1087	2	8 766	0 7070	10 020	0.2032	0.0075
	JCASO	DAGE	1007	2	0.700	0.7972	10.030	0.2028	0.0064
	3CASO	BASE	1987	3	8.821	0./9/6	10.129	0.2024	0.0056
	3CASO	BASE	1987	4	8.935	0.7980	10.220	0.2020	0.0049
	3CASO	BASE	1987	5	9.020	0.7984	10.311	0.2016	0.0042
37. 	30280	BACE	1987	6	9 1 0 5	0 7099	10 402	0 2012	0.0042
j.	JCASO	DAGE	1007	7	9.105	0.7900	10.403	0.2012	0.0037
2	JCASU	BASE	1907	/	9.190	0./992	10.494	0.2008	0.0032
ł	3CASO	BASE	1987	8	9.275	0.7996	10.585	0.2004	0.0028
	3CASO	BASE	1987	9	9.360	0.8000	10.676	0.2000	0.0024
1	3CASO	BASE	1987	10	9.445	0.8004	10.768	0 1996	0 0020
6	20200	DACE	1007	11	0 5 2 0	0 0007	10.050	0.1002	0.0020
	JCASU	DASE	1907	11	9.550	0.0007	10.059	0.1993	0.001/
5	3CASO	BASE	1987	12	9.615	0.8011	10.950	0.1989	0.0015
8.: 2	3CASO	BASE	1988	1	9.700	0.8015	11.041	0.1985	0.0013
E.	3CASO	BASE	1988	2	9.785	0.8019	11.133	0.1981	0.0011
	30280	BACE	1088	2	9 870	0 8022	11 224	0 1079	0 0000
lő.	JCASO	DAGE	1000	3	9.070	0.0022	11 215	0.1970	0.0009
	3CASU	BASE	1988	4	9.950	0.8020	11.315	0.19/4	0.0008
	3CASO	BASE	1988	5	10.041	0.8030	11.406	0.1970	0.0006
5	3CASO	BASE	1988	6	10.126	0.8033	11.498	0.1967	0.0005
	3CASO	BASE	1988	7	10.212	0.8037	11.589	0.1963	0.0004
1	30360	DACE	1000	, 0	10 207	0 9040	11 690	0 1060	0 0004
	JCASU	DASE	1900	0	10.297	0.0040	11.000	0.1900	0.0004
, · ·	3CASO	BASE	1988	9	10.382	0.8044	11.//1	0.1956	0.0003
	3CASO	BASE	1988	10	10.468	0.8048	11.863	0.1952	0.0002
	3CASO	BASE	1988	11	10.553	0.8051	11.954	0.1949	0.0002
	30450	BASE	1988	12	10.639	0 8055	12 045	0.1945	0.0002
	3CABO	DAGE	1000	1	10 725	0.0055	12.045	0 1040	0.0002
	JCASU	BASE	1909	I	10.725	0.0000	12.130	0.1942	0.0001
	3CASO	BASE	1989	2	10.810	0.8061	12.228	0.1939	0.0001
	3CASO	BASE	1989	3	10.896	0.8065	12.319	0.1935	0.0001
	3CASO	BASE	1989	4	10.982	0.8068	12.410	0.1932	0.0001
	30250	BASE	1989	5	11 067	0 8072	12 501	0 1928	0.0001
	30300		1000	S C	11 152	0.0072	12.501	0 1025	0.0001
1	3CASU	BASE	1989	0	11.153	0.8075	12.593	0.1925	0.0000
122	3CASO	BASE	1989	7	11.239	0.8078	12.684	0.1922	0.0000
	3CASO	BASE	1989	8	11.325	0.8081	12.775	0.1919	0.0000
	3CASO	BASE	1989	9	11.411	0.8085	12.866	0.1915	0.0000
	3CASO	BASE	1989	10	11.497	0.8088	12,958	0.1912	0.0000
	30360	DICE	1090	11	11 502	0 9001	12 040	0 1000	0 0000
	JCASO	DAGE	1909	11	11.505	0.0091		0.1909	0.0000
	3CASO	BASE	1989	12	11.009	0.8094	13.140	0.1906	0.0000
	3CASO	BASE	1990	1	11.755	0.8098	13.231	0.1902	0.0000
	3CASO	BASE	1990	2	11.841	0.8101	13.323	0.1899	0.0000
	3CASO	BASE	1990	3	11,927	0.8104	13.414	0.1896	0.0000
	30250	BASE	1990	Λ	12 013	0 8107	13 505	0.1893	0.0000
	JCABO	DAGE	1000		12.015	0.0110	12 506	0 1000	0 0000
	JCASU	BASE	1990	5	12.099	0.8110	13.590	0.1090	0.0000
	3CASO	BASE	1990	6	12.186	0.8113	13.688	0.188/	0.0000
	3CASO	BASE	1990	7	12.272	0.8116	13.779	0.1884	0.0000
	3CASO	BASE	1990	8	12.358	0.8119	13.870	0.1881	0.0000
	3CASO	BASE	1990	9	12.444	0.8122	13,961	0.1878	0.0000
	30260	DACE	1000	10	10 521	0 9125	14 053	0.1875	0.0000
	JCASU	DAGE	1990	10	12.551	0.0125		0.1073	0.0000
	3CASO	BASE	1990	11	12.61/	0.8128	14.144	0.10/2	0.0000
	3CASO	BASE	1990	12	12.703	0.8131	14.235	0.1869	0.0000
	3CASO	BASE	1991	1	12.790	0.8134	14.326	0.1866	0.0000
	3CASO	BASE	1991	2	12.876	0.8137	14.418	0.1863	0.0000
	30280	BASE	1001	2	12 963	0 8140	14.509	0.1860	0.0000
	20200		1001	ر ۲	12 040	0 0140	11 600	0 1957	0 0000
	JCASU	DADE	1991	4	13.049	0.0143		0.105/	0.0000
	3CASO	BASE	1991	5	13.136	0.8146	14.691	0.1854	0.0000
	3CASO	BASE '	1991	6	13.223	0.8149	14.783	0.1851	0.0000
	3CASO	BASE	1991	7	13.309	0.8151	14.874	0.1849	0.0000
	30260	BASE	1991	Â	13.396	0.8154	14.965	0.1846	0.0000
	20200	DACE	1001	0	12 /02	0 9157	15 056	0.18/3	0.0000
	JCASU	DADE	T 2 2 T	ש ג ג	10 ECO			0.1040	0 0000
	3CASO	BASE	1991	10	T3.20A	0.8100	13.140	0.1040	
	3CASO	BASE	1991	11	13.656	0.8162	15.239	0.1838	0.0000
	3CASO	BASE	1991	12	13.743	0.8165	15.330	0.1835	0.0000
	3CASO	BASE	1992	1	13.831	0.8167	15.421	0.1833	0.0000
				_				-	

3CASO	BASE	1992	2	13.918	0.8170	15.513	0.1830	0.0000
3CASO	BASE	1992	3	14.005	0.8172	15.604	0.1828	0.0000
3CASO	BASE	1992	4	14.092	0.8175	15.695	0.1825	0.0000
3CASO	BASE	1992	5	14.180	0.8177	15.786	0.1823	0.0000
3CASO	BASE	1992	6	14.267	0.8179	15.878	0.1821	0 0000
3CASO	BASE	1992	7	14.354	0.8182	15.969	0 1818	0.0000
1-3CASO	BASE	1992	8	14.442	0 8184	16 060	0.1916	0.0000
30350	BASE	1992	à	11 520	0 9197	16 151	0.1010	0.0000
30280	DAGE	1002	10	14.529	0.0107	16 242	0.1013	0.0000
.3CA30	DAGE	1002	11		0.0109	16 243	0.1011	0.0000
3.3CASU	DAGE	1992	11	14.704	0.0191	10.334	0.1809	0.0000
JCASU	BASE	1992	12	14./91	0.8194	16.425	0.1806	0.0000
3CASO	BASE	1993	Ţ	14.8/9	0.8196	16.516	0.1804	0.0000
3CASO	BASE	1993	2	14.966	0.8198	16.608	0.1802	0.0000
3CASO	BASE	1993	3	15.054	0.8201	16.699	0.1799	0.0000
3CASO	BASE	1993	4	15.141	0.8203	16.790	0.1797	0.0000
3CASO	BASE	1993	5	15.229	0.8205	16.881	0.1795	0.0000
3CASO	BASE	1993	6	15.316	0.8207	16.973	0.1793	0.0000
3CASO	BASE	1993	7	15.404	0.8210	17.064	0.1790	0.0000
3CASO	BASE	1993	8	15.492	0.8212	17.155	0.1788	0.0000
3CASO	BASE	1993	9	15.579	0.8214	17.246	0.1786	0.0000
3CASO	BASE	1993	10	15.667	0.8216	17.338	0.1784	0.0000
3CASO	BASE	1993	11	15.755	0.8218	17.429	0.1782	0.0000
3CASO	BASE	1993	12	15.842	0.8221	17.520	0.1779	0.0000
3CASO	BASE	1994	1	15,930	0.8223	17.611	0.1777	0.0000
3CASO	BASE	1994	2	16.018	0.8225	17.703	0.1775	0,0000
30250	BASE	1994	3	16,105	0.8227	17.794	0.1773	0.0000
30280	BASE	1994	4	16 103	0 8229	17 885	0 1771	0.0000
30350	BAGE	1001	5	16 291	0 8231	17 076	0 1769	0.0000
30350	DAGE	1004	5	16 260	0.0231	19 069	0 1767	0.0000
3CA30	DAGE	1004	7	16.309	0.0233	10.000	0.1764	0.0000
3CASU	DASE	1994			0.0230	10.159	0.1762	0.0000
3CA50	BASE	1994	8	10.544	0.8238	18.250	0.1762	0.0000
3CASU	BASE	1994	9	16.632	0.8240	18.341	0.1750	0.0000
3CASO	BASE	1994	10	16./20	0.8242	18.433	0.1758	0.0000
3CASO	BASE	1994	11	16.808	0.8244	18.524	0.1/56	0.0000
3CASO	BASE	1994	12	16.896	0.8246	18.615	0.1754	0.0000
3CASO	BASE	1995	1	16.984	0.8248	18.706	0.1752	0.0000
3CASO	BASE	1995	2	17.072	0.8250	18.798	0.1750	0.0000
3CASO	BASE	1995	3	17.160	0.8252	18.889	0.1748	0.0000
3CASO	BASE	1995	4	17.247	0.8254	18.980	0.1746	0.0000
3CASO	BASE	1995	5	17.335	0.8256	19.071	0.1744	0.0000
3CASO	BASE	1995	6	17.423	0.8258	19.163	0.1742	0.0000
3CASO	BASE	1995	7	17.511	0.8260	19.254	0.1740	0.0000
3CASO	BASE	1995	8	17.600	0.8262	19.345	0.1738	0.0000
3CASO	BASE	1995	9	17.688	0.8264	19.436	0.1736	0.0000
3CASO	BASE	1995	10	17.776	0.8266	19.528	0.1734	0.0000
3CASO	BASE	1995	11	17.864	0.8268	19.619	0.1732	0.0000
3CASO	BASE	1995	12	17.952	0.8270	19.710	0.1730	0.0000
3CASO	BASE	1996	1	18.040	0.8272	19.801	0.1728	0.0000
3CASO	BASE	1996	2	18.128	0.8274	19.893	0.1726	0.0000
3CASO	BASE	1996	3	18.216	0.8275	19.984	0.1725	0.0000
3CASO	BASE	1996	4	18.304	0.8277	20.075	0.1723	0.0000
3CASO	BASE	1996	5	18.393	0.8279	20.166	0.1721	0.0000
30250	BASE	1996	6	18.481	0.8281	20.258	0.1719	0.0000
30250	BASE	1996	7	18.569	0.8283	20.349	0.1717	0.0000
36220	BASE	1006	י פ	18.657	0.8285	20.440	0.1715	0.0000
30260	BAGE	1006	٥ ۵	18.745	0.8287	20.531	0.1713	0.0000
30780	BASE	1006	10	18.834	0.8288	20.623	0.1712	0.0000
20200 20200	DAGE Dage	1004	11	18 077	0.8290	20.714	0.1710	0.0000
30380	DAGE	1006	12	10 010	0.8290	20.805	0.1708	0.0000
3CA50	DAGE	1007	1	10 000	0.8201	20.896	0.1706	0.0000
JCASU	DAGE	1007	л Т	10 107	0 0 2 3 4	20.090	0.1704	0.0000
- JCASO	BASE	T A A \	2	TA•TQ\	0.0290	2 0.700	0 • I / 0 •	0.0000

3CASO	BASE	1997	3	19.275	0.8298	21.079	0.1702	0.0000
3CASO	BASE	1997	4	19.364	0.8299	21.170	0.1701	0.0000
3CASO	BASE	1997	5	19.452	0.8301	21.261	0.1699	0.0000
3CASO	BASE	1997	6	19.540	0.8303	21.353	0.1697	0.0000
3CASO	BASE	1997	7	19.629	0.8305	21.444	0.1695	0.0000
3CASO	BASE	1997	8	19.717	0.8306	21.535	0.1694	0.0000
3CASO	BASE	1997	9	19.805	0.8308	21.626	0.1692	0.0000
3CASO	BASE	1997	10	19.894	0.8310	21.718	0.1690	0.0000
3CASO	BASE	1997	11	19.982	0.8311	21.809	0.1689	0.0000
3CASO	BASE	1997	12	20.071	0.8313	21.900	0.1687	0.0000
		FIN DE L	A SI	MULACION				