UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA GEOLÓGICA MINERA Y METALÚRGICA

"PREVENCION DE CAIDA DE ROCAS COMO MEDIDA DE SEGURIDAD EN MINA SAN CRISTOBAL"

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE

INGENIERO DE MINAS

ELABORADO POR:

LUIS ALEX PARDO FERRER

ASESOR:

MSC. ING. JOSÉ ANTONIO CORIMANYA MAURICIO

LIMA - PERÚ

2014

AGRADECIMIENTO

Agradezco a la Universidad Nacional de Ingeniería por haberme brindado la oportunidad de realizar mis estudios de ingeniería en la especialidad de Minas, a los ingenieros Díaz Artieda y Marco Flores por sus sabias enseñanzas y a todos los docentes de esta gloriosa casa de estudios.

Mi agradecimiento muy especial a mis asesores Msc Ing. José Corimanya y Julio Hidalgo.

Permítanme agradecer a los ingenieros David Gazzolo Durand e Isaac Ramírez del área de Ingeniería de Prevención de la Corporación Mapfre Perú por brindarme la oportunidad de pertenecer a su Staff de investigación e inspectores de mina a nivel Nacional.

A los Ingenieros Carlos García Zapata gerente de Operaciones de mina Andaychahua y al Ing. Orlando Mato actual Superintendente de mina Ticlio; a los ingenieros Humberto Ticona actual Superintendente de mina de la Unidad Andaychahua y al Ing. José Boluarte otrora superintendente de esta mina por sus sabias enseñanzas, asimismo al Ing. Edgar Llerena quien fue jefe de Voladura de la unidad San Cristóbal hasta el año 2013.

DEDICATORIA

A mis padres, mi esposa, a mis hijos Luchito y Milagros, a mi adorada nieta Yadira

RESUMEN

En los últimos años se ha incrementado de manera alarmante el índice de accidentes por caída de rocas representando el 32% del total de accidentes en la minería nacional en los últimos 13 años. Hoy en día con la ayuda de la Ingeniería de la mecánica de rocas se puede predecir el comportamiento del macizo rocoso realizando la caracterización geotécnica del yacimiento, zoneamiento de la mina en dominios geotécnicos de comportamiento singular, la fase analítica para un diseño prudente aplicando los modelos geológicos, geotécnicos y matemáticos que permitan variar estrategias utilizando programas de cómputo.

Sin embargo existen factores tales como la conducta humana como causantes de accidentes, técnicas de perforación y voladura inapropiadas, sistemas de minado inaplicables por las características de la roca, inadecuada e inoportuna aplicación de los elementos de sostenimiento son causas principales del desprendimiento de rocas

Hasta el 19 de diciembre del 2013 se ha logrado alcanzar 2014380 HH sin accidentes incapacitantes en San Cristóbal luego de la aplicación de Prevención de accidentes de por caída de rocas.

ABSTRACT

In recent years has increased at an alarming rate of accidents by falling rocks representing 32 % of total domestic mining accidents in the last 13 years. Today with the help of engineering rock mechanics can predict the behavior of the rock mass geotechnical performing reservoir characterization, zoning of the mine geotechnical domains singular behavior, the analytical phase for applying conservative design models geological, geotechnical and mathematical allow changing strategies using computer programs.

However, there are factors such as human behavior to cause accidents, improper drilling techniques and blasting systems inapplicable mined by the characteristics of the rock, inadequate and untimely application support elements are major causes of Rock fall

Until December 19, 2013 it has achieved 2,014,380 HH without disabling accidents in San Cristobal after preventing accidents by falling rocks.

INDICE

INTRODUCCION	12
CAPITULO I: GENERALIDADES	
1.1 Antecedentes y Justificación	14
1.2 Planteamiento del problema	14
1.3 Objetivos	15
1.4 Hipótesis	16
1.5 Importancia del estudio	17
1.6 Metodología del trabajo	17
CAPITULO II: REGLAS BASICAS DE SEGURIDAD	
2.1 Política de SSOMAC	19
2.2 Herramientas de Gestión	20
2.2.1 Identificación de Peligros y Evaluación de Riesgos	20
2.2.2 Procedimiento Escrito de Trabajo Seguro	23
2.2.3 Inspecciones Planificadas	23
2.2.4 Investigación de Accidentes	23
2.2.5 Observación Planeada de trabajo	24
2.2.6 Reporte de incidentes	24
2.2.7 Registro de acciones correctivas	24
2.2.8 Capacitación del Personal	24
2.2.9 Monitoreo y Control de Agentes físicos y Químicos	25
2.3 Tolerancia Cero	26
2.4 Logros alcanzados	30
2.5 Riesgos de accidentes en interior mina	30
2.5.1 Causa de accidentes	31
2.5.2 Prevención de accidentes por caída de roca	32
2.5.2.1 Procedimiento para desatado de roca	33

CAPITUI	LO III: CASO MINA SAN CRISTOBAL	
3.1 Ubica	ción y acceso	36
3.2 Geolo	gía estructural Regional y Local	38
3.3 Tipos	y formas de Yacimientos mineralización	40
3.3.1	Vetas	40
3.3.2	Mantos	41
3.3.3	Cuerpos	41
3.3.4	Rocas encajonantes	42
3.4 Produc	cción y Sistema de minado	42
3.4.1	Geomecanica	44
3.4.2	Perforación y voladura	45
3.4.3	Sostenimiento	45
3.4.4	Ventilación	46
CAPITUI	LO IV: CAUSAS DE ACCIDENTES POR DESPRE	NDIMIENTO
	DE ROCAS	
4.1 La inf	luencia de la calidad de la masa rocosa	54
4.2 Influer	ncia de las prácticas de perforación y voladura	55
4.3 Influer	ncia de la aplicación del sostenimiento	56
CAPITUI	LO V: FUNDAMENTO TEORICO	
5.1 Evalu	ación Geomecanica San Cristóbal	57
5.1.	l Clasificación RMR de la masa rocosa	58
5.1.2	2 Clasificación Q Barton en la zona Lidia Nv 738	60
	5.1.2.1 Calculo de Q de Barton	60
5.1.3	3 Influencia de los esfuerzos iniciales de roca	65
5.1.4	4 Cálculos de Modulo de Young y la constante K de ratio	de esfuerzos
litos	taticos.	65
5.1.:	5 Estimación de esfuerzos verticales	67
5.1.0	6 Estimaciones esfuerzos horizontales	67
5.1.	7 Calculo de Parámetros <i>m</i> y <i>s</i>	68

5.2 Evaluación de Perforación y voladura	73
5.2.1 Calculo teórico para hallar el número de taladros de un frente	73
5.2.2 Número de taladros de un frente y necesidad de carga explosiva	74
5.2.3 Especificaciones técnicas de un frente convencional y costos de	
perforación y voladura	77
5.2.4 Control de la Perforación	82
5.2.5 Control del carguío en Voladura	83
5.2.6 Aplicación de Voladura Controlada	84
CAPITULO VI: OPTIMIZACION DE MALLAS DE PERFORACION	
VOLADURA	
6.1 Ensayo de mallas para frentes en Zona II	87
6.1.1 Ensayos en Zona II, Nivel 1020	89
6.1.2 Resultado de ensayo 1	93
6.1.3 Resultado d ensayo 2	96
6.1.4 Conclusiones de ensayos de voladura	100
6.2 Evaluación del sostenimiento	101
6.2.1 Selección de pernos	103
6.2.2 Determinación del espesor del Shotcrete	104
CAPITULO VII: SINTESIS Y RESULTADOS DE LA INVESTIGACIO	ON
7.1 Logros alcanzados	106
7.1.1 Geomecánica	106
7.1.2 Perforación y Voladura	107
7.1.3 Sostenimiento	109
7.1.4 Reducción de Costos en sostenimiento	111
7.1.4.1 Evaluación de Costos de sostenimiento	112
7.1.5 Reducción de accidentes	115
CAPITULO VIII: INSTRUMENTACION GEOMECANICA	
8.1 Contexto de la mina San Cristóbal	116
8.2 Objetivos	117

8.3 Instrumentación geomecánica aplicable	118
8.4 Aplicación de equipos para el Control de Calidad de Sostenimiento	120
CONCLUSIONES	122
BIBLIOGRAFIA	126
ANEXO	

INDICE DE FIGURAS

Figura 2.1 Tabla Matriz de Evaluación de riesgos	22
Figura 2.2 Accidentes mortales por Tipo	31
Figura 2.3 Accidentes mortales por empresa	32
Figura 3.1 Ubicación geográfica de mina San Cristóbal	37
Figura 3.2 Sección Longitudinal SW-NE del Domo de Yauli	39
Figura 3.3 Equipo Raice Boring Master Drilling	50
Figura 3.4 Bombeo de agua en niveles de profundización 1020	51
Figura 3.5 Inspección a cuadrilla de desata de rocas, EE Tuneleros del PERÚ	51
Figura 3.6 Perforación de Taladros Largos con equipo Raptor	52
Figura 3.7 Supervisión a personal lanzadores de Shotcrete	52
Figura 3.8 Celebración de Seguridad en Huaripampa	53
Figura 5.5 Cañas visibles después de la voladura	85
Figura 5.6 Explotación de Vetas angostas	86
Figura 5.1 Plano Geomecánico de la Zona Lidia	66
Figura 5.2 Valor de mb y S', Zona 1 con Rock Data	70
Figura 5.3 Valor de mb y S', Zona 2 con Rock Data	71
Figura 5.4 Valor de mb y S', Zona Lidia con Rock Data	72
Figura 6.1 Malla de perforación y voladura	97
Figura 6.2 Resultado de Factor de Energía y Potencia	99
Figura 6.3 Carguío con explosivos Zona 2, Nivel 1020 San Cristóbal	99
Figura 6.4 Tiempo de autosoporte en función a calidad de roca	102
Figura 6.5 Robot empernador, Boltec	102
Figura 7.1 Equipo Robot lanzador de Shotcrete	114
Figura 8.1 Extensómetro para medir convergencias	119

INDICEDE TABLAS

Tabla 2.1	Programa para ejecución de monitoreos	25
Tabla 2.2	Análisis de incidentes por causa	27
Tabla 2.3	Incidentes por desprendimiento de roca	28
Tabla 2.4	Estadística de accidentes a Diciembre del 2003	29
Tabla 3.1	Programa de inversión de chimeneas Raice Boring	47
Tabla 3.2	Programa de inversión de Ventiladores	48
Tabla 3.3	Resultados de Mapeo de aire	48
Tabla 3.4	Requerimiento de aire	49
Tabla 5.1	Clasificación geomecánica RMR	59
Tabla 5.2	Clasificación geomecánica Q de Barton	55
Tabla 5.3	Correlación de clasificación Geomecánicas	62
Tabla 5.4	Tipo de masa rocosa de acuerdo al Índice RMR	63
Tabla 5.5	Resumen de valores de la constante K	66
Tabla 5.6	Resumen de parámetros geomecánicos	72
Tabla 5.7	Valor de K (Voladura) Kg/m3 en base a dureza de roca	74
Tabla 5.8	Características de los principales explosivos	75
Tabla 5.9	Distribución de carga explosiva en un terreno con poca agua	82
Tabla 6.1	Especificaciones técnicas de malla de perforación voladura	90
Tabla 6.2	Nomenclatura de taladros en una malla de perforación	90
Tabla 6.3	Datos del ensayo 1, Zona 2 Nivel 1020, Rampa 650	91
Tabla 6.4	Datos del ensayo 2, Zona 2 Nivel 1020, Rampa 650	94
Tabla 6.5	Resumen de ensayos de Voladura	97
Tabla 7.1	Causa de desviaciones de taladros con Simba	108
Tabla 7.2	Costo sostenimiento con equipo Aliva	112
Tabla 7.3	Costo de sostenimiento con Splitset y malla electrosoldada	112
Tabla 7.4	Costo de sostenimiento con Robot	113
Tabla 7.5	Resumen de alternativas de sostenimiento	113

INTRODUCCIÓN

La presente tesis ha sido elaborada en base a las experiencias vividas en La Unidad de Producción Yauli, mina San Cristóbal (2010 -2013) en el área de seguridad.

El tema caída de rocas, causas y prevención es de gran importancia en el desarrollo de las actividad minera debido al número de accidentes fatales y al gran impacto que genera en la minería pues no es solamente lamentables pérdidas humanas sino significa también pérdidas materiales y en los procesos siendo necesario en muchos casos paralizar las labores temporal o definitivamente hasta cumplir con el levantamiento de las observaciones planteadas por Osinergmin para el caso de operaciones en mina.

Las causas que originan accidentes por desprendimiento de rocas está enfocado a tres puntos importantes: Calidad del terreno, perforación y Voladura el cual se inicia con una correcta evaluación por el área de Geomecanica de San Cristóbal y termina con deficiencias en la elaboración de mallas para perforación en terrenos regulares a malos; otra de las causas es la aplicación de los elementos de soporte como el Shotcrete lanzado por Robots sin adecuar las condiciones para una buena adherencia y espesor solicitado; pernos Split, Hidrabolt y Helicoidales instalados fuera de los límites de Autosoporte o cuando estos se asocian al Shotcrete son instalados antes de las 4 horas mínimas del secado del concreto. Estas y otras deficiencias traen

como consecuencia a generación de daños severos al macizo, como sobre excavaciones en hastiales y corona, desestabilización de la zona, degradación de la calidad de roca, apertura de discontinuidades, activación de fallas, caída de planchones etc.

CAPITULO I:

ASPECTOS GENERALIDADES

1.1 ANTECEDENTES Y JUSTIFICACIÓN

El tema prevención de caída de rocas es de gran importancia en el desarrollo de las actividad minera debido al número de accidentes fatales y al gran impacto que genera en la minería. Los accidentes por desprendimiento de rocas durante décadas mantienen una media de 40% del total de accidentes fatales en minería subterránea y superficial a nivel nacional a pesar de la aplicación de nuevas Normativas del gobierno tales como el DS 055-2010 EM, Reglamento de Seguridad y Salud Ocupacional para la minería (SSO) y la reciente Ley 29783 llamada Ley de Seguridad y Salud en el trabajo y su reglamentación mediante el DS 005-2012–TR de carácter Supra sectorial.

1.2 PLANTEAMIENTO DEL PROBLEMA

El proyecto concibe eventos que pueden desencadenar una sucesión de Accidentes en labores de producción y desarrollo en minería subterránea, como

Si ocurriese modificaciones en el sistema de minado, características del terreno, instalación de soportes y supervisión es posible un cambio en la ocurrencia de eventos por lo tanto es necesario conocer las características condicionantes e intrínsecas en el terreno para explicar la distribución espacial de los desprendimientos y delimitar las zonas de mayor potencial a la ocurrencia de estos eventos.

Al revisar los métodos existentes para la determinación de las causa de caída de rocas, se observa una variedad de métodos desde los más académicos hasta los más empíricos, cada una desarrollada según su área involucrada es decir según las características de la actividad las variables son distintas, por lo tanto es posible y recomendable asociar y utilizar varios métodos realizar una comparación entre ellas y poder elegir el más adecuado al área de estudio.

La falta de adecuada prevención de caída de rocas en el proceso de explotación minera y su control hacen que el índice de accidentes por caída de rocas sea la principal causa de accidentes en mina San Cristóbal.

1.3 OBJETIVOS

El objetivo general es la reducción de accidentes por caída de rocas en la mina San Cristóbal, mediante medidas de prevención.

Los objetivos específicos son:

• Determinar las causas que provocan el desprendimiento de rocas.

- Difundir la ciencia de la mecánica de rocas como complemento importante de la seguridad en las minas subterráneas.
- Control en el planeamiento de minado con respecto al diseño de las dimensiones de las excavaciones de acuerdo a las características y necesidades de la mina.
- Control en la implementación del soporte, instalación, instrumentación, evitar el sub y sobredimensionamiento de los elementos de sostenimiento a fin de reducir costos.
- Optimización de las mallas de perforación y voladura de acuerdo al terreno
- Aplicación de técnicas de voladura controlada para control de cajas y techo de la sección.
- Uso de explosivos adecuados al tipo de taladro y a la calidad del terreno.

1.4 HIPÓTESIS

La hipótesis del presente trabajo de investigación es que a través de análisis continuos e inspecciones In situ los factores que causan la caída de rocas en minería subterránea, y medidas de control adecuadas se puede prevenir los accidentes por caída de rocas y por ende la reducción de este tipo de accidentes.

Con el aporte de la ciencia de la Geomecánica se podido determinar muchas fallas entre las más importantes lo que corresponde a la practicas incorrectas en perforación y voladura, a los efectos de las vibraciones en el terreno, asimismo a la inadecuada e inoportuna instalación de los elementos de sostenimiento son las principales causas de accidente por caída de rocas.

1.5 IMPORTANCIA DEL ESTUDIO

La importancia del estudio radica en la determinación de las causas de inestabilidad a fin de prevenir el control de caida de rocas y la aplicación de medidas correctivas que minimicen los accidentes mortales de este tipo ya que constituyen a nivel de la mineria nacional el 40% de accidentes fatales estos controles deben realizarse constantemente conforme se avanza la explotación de la mina.

1.6 METODOLOGÍA DEL TRABAJO

La metodología consiste en lo siguiente:

- o Recopilación de datos en el campo durante las inspecciones realizadas de manera continua en las principales labores de la mina San Cristóbal principalmente de la Zona Lidia Nivel 630 y niveles de profundización.
- Analizar y evaluar los posibles factores causantes de desprendimiento de rocas material necesario para la presente tesis de investigación
- Se contó con el apoyo de profesionales especialistas en cada área que laboran en la unidad minera que con su aporte valioso se ha podido realizar esta investigación.
- O Se ha realizado la investigación mediante análisis de datos bibliográficos usando como fuente de información textos especializados en mecánica de rocas, perforación y voladura, revistas, folletos de la minas, Web de Internet

Toma de datos representativos de las diferentes zonas y labores de la minas como: características del terreno, mallas de perforación pintadas en frentes, tipos de sostenimiento aplicados en el momento, instalación de servicios de aire comprimido y aguas.

CAPITULO II:

REGLAS BASICAS DE SEGURIDAD

2.1. POLÍTICA SSOMAC

Volcan Compañía Minera S. A. A., empresa dedicada al beneficio de minerales de Zinc, Plata y Plomo, consciente de su misión y responsabilidad social, considera que Seguridad, Salud Ocupacional, Medio Ambiente y Calidad (SSOMAC), son elementos significativos de su existencia empresarial. Por esta razón el compromiso de esta empresa es:

- Prevenir enfermedades, lesiones, contaminación ambiental y fallas en los procesos relacionados a los requisitos de los clientes, realizando mejoramientos continuos en todas nuestras actividades y en los mecanismos del Sistema de Gestión.
- 2. Esforzarnos por conocer y mejorar continuamente la salud, seguridad ocupacional y calidad, así como la situación ambiental generada por nuestras actividades, realizando consultas a todas las partes interesadas.

- 3. Cumplir las leyes, reglamentos locales aplicables, los requisitos de los clientes así como otros requisitos relacionados. Crear un Comité de Gestión SSOMAC que conduzca la fiel aplicación de esta política y proporcione el marco para establecer, revisar y cumplir los objetivos y metas.
- 4. Ejecutar continuamente programas educativos de capacitación y entrenamiento en materia de gestión de seguridad, salud, medio ambiente y calidad, con el fin de elevar el nivel de conciencia y participación de nuestros trabajadores, proveedores y comunidades.
- 5. Sensibilizar con nuestras acciones a todas las partes involucradas sobre la protección de la seguridad, la salud, el medio ambiente y la mejora de la calidad, mediante la permanente difusión de esta política.

2.2 HERRAMIENTAS DE GESTIÓN

2.2.1 Identificación de Peligros, Evaluación de Riesgos y Control (IPERC)

Es una herramienta de gestión que a través de una metodología ordenada permite identificar las fuentes de riesgo (peligros) evaluar la magnitud de los mismos para aplicar las medidas de control más adecuadas .Es necesario recalcar que este formato debe estar alienado al Anexo 19 del DS 055-2010-EM , Reglamento de Seguridad y Salud Ocupacional en minería .

Nos permite controlar, corregir y eliminar los riesgos siguiendo la siguiente Secuencia (Art.:

- 1. Eliminación
- 2. Sustitución

- 3. Controles de ingeniería
- 4. Señalizaciones, alertas y/o controles administrativos
- 5. Usar Equipos de Protección Personal (EPP), adecuado para el tipo de actividad que se desarrolla en dicha áreas.

Asimismo debe actualizar y elaborar anualmente el mapa de riesgos, el cual debe estar incluido en el Programa Anual de Seguridad y Salud Ocupacional.

Respecto al IPERC, la normativa nacional (Artículos 88 al 92) resalta las obligaciones del Titular minero entre las cuales podemos citar:

Art.88 El titular minero deberá identificar permanentemente los peligros, evaluar y controlar los riesgos a través de la información brindada por todos los trabajadores en los aspectos que a continuación se indica, en:

- a) Los problemas potenciales que no se previó durante el diseño o el análisis de tareas.
- b) Las deficiencias de los equipos y materiales.
- c) Las acciones inapropiadas de los trabajadores.
- d) El efecto que producen los cambios en los procesos, materiales o equipos.
- e) Las deficiencias de las acciones correctivas.
- f) El lugar de trabajo, al inicio y durante la ejecución de la tarea que realizarán los trabajadores, la que será ratificada o modificada por el supervisor con conocimiento del trabajador y finalmente, dará visto bueno el ingeniero supervisor previa verificación de los riesgos identificados y otros.
- g) El desarrollo y/o ejecución de Estándares y Procedimientos Escritos de Trabajo Seguro (PETS) de acuerdo ANEXO Nº 15-A y 15-B respectivamente.

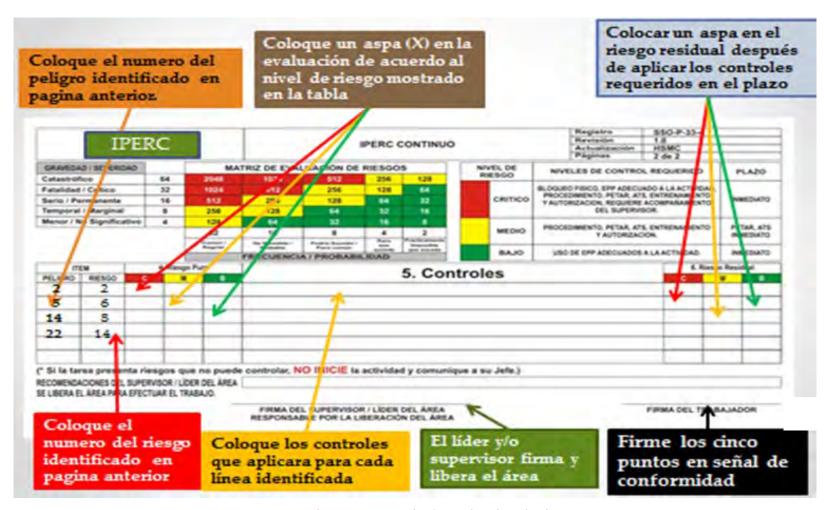


Figura 2.1: Matriz de evaluación de riesgos

Fuente: Geomecánica San Cristóbal

2.2.2 Procedimiento Escrito de Trabajo Seguro

Documento que contiene la descripción específica de la forma cómo llevar a cabo o desarrollar una tarea de manera correcta desde el comienzo hasta el final, dividida en un conjunto de pasos consecutivos o sistemáticos.

Este documento tiene una jerarquía de instrucción y es elaborado por personal competente e involucrado en las tareas a realizar; posee una estructura funcional que permite identificar los riesgos y aplicar los controles par a determinadas actividades sobre todo las consideradas críticas o de alto riesgo.

Resuelve la pregunta: ¿Cómo hacer el trabajo/tarea de manera correcta?

Formato de Pets se muestra en la lista de anexos

2.2.3 Inspecciones Planificadas

Herramienta que consiste en un proceso de observación metódica para identificar y/o examinar situaciones críticas in situ, de prácticas, condiciones Subestandar que pueden causar accidentes y otras pérdidas con el fin de tomar acciones preventivas y/o correctivas (modelo).

2.2.4 Investigación de Accidentes

Herramienta de gestión que consiste en un proceso de recopilación sistemática de Datos como testimonios verbales, elementos materiales, planos, fotos, croquis las cuales conducen a determinar las causa reales de accidentes y evitar en el futuro su recurrencia.

2.2.5 Observación Planeada de trabajo

Herramienta que permite dar a conocer si un trabajador está ejecutando o no todos los aspectos de una tarea específica en la forma correcta, por medio de una observación planificada de sus labores realizadas en el momento preciso de la ejecución y calificada por la supervisión del área.

2.2.6 Reporte de incidentes

Herramienta de fines preventivos que permite a través de un formato que todo el personal advierta y detecte con anticipación prácticas inadecuadas del personal en general a fin de prevenir y corregir actos y condiciones subestándares antes de la ocurrencia de algún suceso no deseado.

2.2.7 Registro de acciones correctivas

Herramienta que permite facilitar la realización de seguimiento a las acciones correctivas generadas en las diferentes de la organización, las cuales pueden ser derivadas de fiscalizaciones del MEM, Auditorias, inspecciones, Investigación de accidentes, reuniones grupales, reporte de desvíos, actos subestándares, Comités de seguridad etc.

2.2.8 Capacitación del Personal

Las capacitaciones están dirigidas al personal cuyas actividades que realizan según la Matriz de actividades son considerados de alto riesgo y en armonía con la Matriz 14B del DS 055-2010-EM se ha priorizado el desarrollo de los cursos: Geomecánica básica y Prevención de caída de rocas.

2.2.9 Monitoreo y Control de Agentes Físicos y Químicos

El monitoreo de agentes físicos y químicos se realiza con equipos Certificados y Calibrados podemos dividirlo en:

- A. Monitoreo de agentes físicos : Ruido, temperatura extremas, presión barométrica, vibraciones, Humedad extrema, iluminación y radiaciones
- B. Monitoreo de Agentes químicos: Polvo inhalable, polvo respirable, Oxigeno (02), Dióxido de carbono (CO2), Monóxido de carbono (CO), Metano (CH4), Hidrógeno Sulfurado (SH2), Gases Nitrosos.

Tabla 2.1: Programa para ejecución de monitoreos

Ítem	Descripción	Ener	Feb	Mar	Abr	May	Jun	Jul	Agos	Sep	Oct	Nov	Dic
	AGENTES FISICOS												
1	Ruido en mina	Х	Х	X	Х	X	Х	Х	X	X	Х	Х	Х
2	Ruido en planta	Х	х	X	Х	X	х	х	X	X	Х	Х	х
3	Iluminación												
4	Temperatura	х	х	X	Х	X	Х	х	Х	X	Х	х	х
	AGENTES QUIMICOS												
1	Polvo en mina	Х	х	X	Х	X	Х	Х	X	X	Х	Х	Х
2	Gases en equipos diésel (CO)	x	х	x	х	x	х	x	x	x	x	x	х
3	Gases en equipos diésel (CO2)	x	х	х	x	x	х	х	x	x	х	x	х
4	Gases Nitroso (N0x)	Х	х	X	х	X	Х	Х	X	X	Х	х	х

Fuente: Seguridad San Cristóbal

2.3 TOLERANCIA CERO

Luego de los Análisis de Incidentes por Causa UP San Cristóbal al 11 de Diciembre del 2011, según su recurrencia son: Caída de rocas, tránsito, operación de maquinarias y los accidentes por gaseo.

Respecto a los accidentes por desprendimiento de rocas, estos representan un promedio de 9.5 incidentes por mes cuyas causas principales fueron: La influencia de la calidad de la masa rocosa, influencia de la perforación y voladura e instalación de sostenimiento.

Se ha tomado medidas correctivas y acciones preventivas a fin de mitigar y/o eliminar los accidentes por caída de rocas entre las cuales podemos citar: Revisión del Pets de desatado de rocas, fomentar el desatado continuo, rediseñar las mallas de perforación y Voladura adecuándolas a las características del terreno en el marco de una supervisión continua y eficaz.

La supervisión debe estimar la magnitud de los riesgos en los sectores de relajación, verificar que los elementos de soporte se asocien al dominio geomecánico del terreno y debe garantizar la correcta instalación de estos elementos.

Tabla 2.2: Análisis de Incidentes por Causa situación año 2011

Descripción	Ener	Feb	Mar	Abril	May	Jun	Jul	Agos	Sept	Oct	Nov	Dic	Prom
Desprendimiento de													
roca-San Cristóbal	6	7	8	7	10	9	8	10	9	9	12	19	9.5
Falta de ventilación	15	15	12	12	12	13	11	9	9	11	11	13	11.9
Tránsito	9	8	9	8	10	7	7	11	6	7	8	17	8.9
Energía Eléctrica	6	5	4	10	5	8	8	7	10	7	7	1	6.5
Falta Orden y Limpieza	7	8	9	8	5	6	7	6	7	5	6	4	6.5
Falta de sostenimiento	7	7	8	4	6	6	4	5	4	3	3	8	5.4
Pisos/caminos/accesos	5	4	3	3	4	5	6	3	4	5	5	5	4.3
Incumplimiento de procedimientos	5	7	6	4	5	4	2	2	3	1	2	3	3.6
Operación de maquinarias	3	3	1	3	3	5	3	4	3	4	6	4	3.5

Fuente: Seguridad San Cristóbal

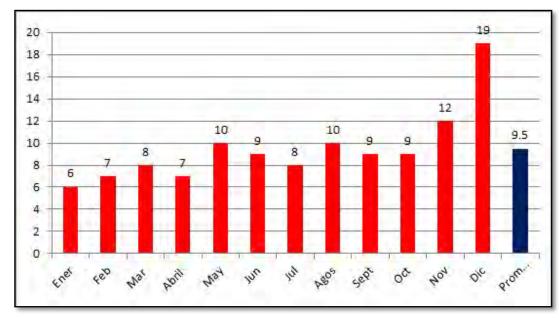


Tabla 2.3: Incidentes por Desprendimiento de rocas

Fuente: Seguridad San Cristóbal

Como se puede apreciar en los cuadros anteriores, las tendencias desfavorables a la fecha son las que se muestran en rojo entre las cuales el desprendimiento de rocas tuvo severos incrementos en los últimos meses, las acciones que se tuvieron que ejecutar mediante el IPERC continuo fueron:

- Desprendimiento de Rocas: Retroalimentaciones sobre el PETS de desate de rocas manual y mecanizado, OPTs (observación planeadas de trabajo) de verificación de desempeño del Pets en mención, inspecciones inopinadas respecto al mejor control del terreno. Evaluación de la malla de perforación y Voladura, evaluación del sostenimiento después de la voladura.
- Tránsito: Intervenciones a operadores de equipos a faltas al RITRA (Reglamento interno de tránsito), check list de equipos diversos, sensibilizaciones sobre conducción preventiva.

- Pisos/Caminos/Accesos: Inspecciones a los pisos, caminos y accesos en
 Planta Concentradora Mahr Tunel, bloqueos de caminos y accesos subestándares, delimitaciones de zonas de trabajo en Proyectos, sensibilizaciones sobre los riesgos de caídas al mismo nivel.
- Operación de maquinarias: Check list de equipos diversos, inspecciones a operaciones de equipos diversos de perforación, limpieza, acarreo, sostenimiento, etc.

Al respecto la Tolerancia es Cero

Tabla 2.4: Estadística de accidentes a Diciembre del 2013

San Cristóbal	20/12/2013	Acumulado Mes de Diciembre	Acumulado Año 2013
Accidente leve	0	2	16
Accidente Incapacitante	0	0	10
Accidente Mortal	0	0	0
Daños a la Propiedad	0	2	29
Fecha del Último accidente Incapacitante	18/08/2013	EE Robocon	
Horas Hombre trabajado por día	16,245	Record conseguido hasta el 18/08/13 días acumulados:11	188,460
Meta programada Horas/Hombre trabajada	2,000,000	Días acumulados	
Horas Hombre Trabajadas acumuladas sin accidente incapacitante	2,014,380	sin accidentes	124

Fuente: Seguridad SC

2.4 LOGROS ALCANZADOS

Hasta el 19 de diciembre del 2013 se ha logrado alcanzar 2'014,380 HH sin accidentes incapacitantes en San Cristóbal

2.5 RIESGO DE ACCIDENTES EN INTERIOR MINA

En minería subterránea a nivel nacional existe siempre gran probabilidad de suceder algún tipo de accidente para los cuales se toma las medidas de prevención necesarias, San Cristóbal no es la excepción dada la magnitud de la mina, la fuerza laboral y las condiciones geomecánicas de sus estructuras rocosas es probable la ocurrencia de algunos tipos de incidentes y/o accidentes en mayor o menor probabilidad pero gracias a la política agresiva de la empresa en Seguridad se ha podido atenuar notablemente la ocurrencia de estos tipos de accidentes, entre las cuales podemos citar :

1.	Caída de rocas	15 %
2.	Gaseamiento	10 %
3.	Tránsito	10 %
4.	Operación maquinarias	10%
5.	Caída de personas	5%
6.	Electrocución	5 %
7.	Manejo de explosivos	5%
8.	Otros /atípicos	35 %

2.5.1 Causas de accidentes

La principal causa de accidentes a nivel nacional y en la empresa hasta el 2010 fue por desprendimiento de rocas, seguido por los accidentes por tránsito y caídas a desnivel y Gaseo. En San Cristóbal A partir de abril del 2011 hasta la fecha los riesgos por caída de rocas han sido atenuados notablemente gracias a un trabajo coordinado entre las áreas operativas de la empresa sin embargo, han sucedido accidentes de otros tipos como intoxicación y asfixia.

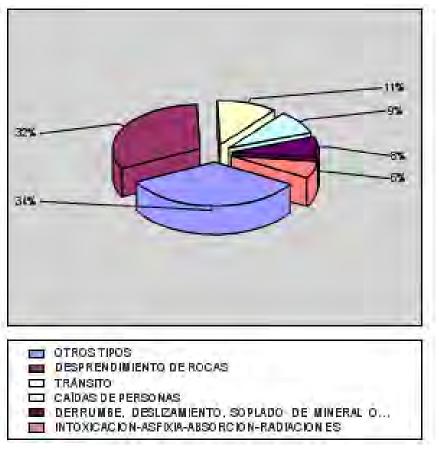


Figura 2.2: Accidentes mortales

Fuente: Estadística del MEM

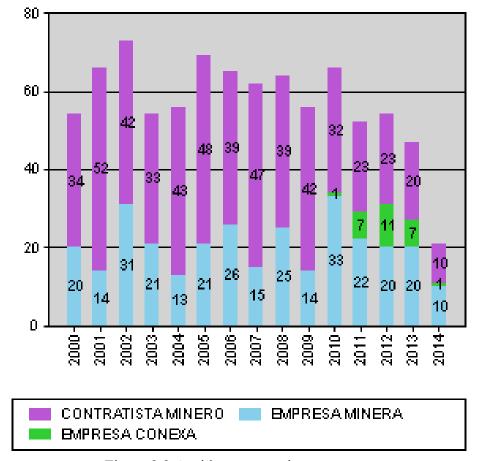


Figura 2.3 Accidentes mortales por empresa

Fuente: Estadística del MEM

2.5.2 Prevención de accidentes por caída de rocas

Conocidas las causas, siempre es posible encontrar los medios de prevención, cuyo éxito dependerá de la activa participación de todos los integrantes del grupo humano de la sección mina, estos son algunos lineamientos para atenuar y/o eliminar accidentes por caída de rocas

 Antes de empezar sus labores cotidianas en un frente o tajeo compruebe la ventilación, regar con agua para facilitar la identificación de tiros cortados y fracturas.

- Seguidamente llenar su formato de IPERC continuo para identificar los posibles riesgos presentes en su área de trabajo a fin de minimizarlas o eliminarlas.
- Los trabajos deben ser planificados con suficiente anticipación y coordinados en todas sus líneas de dirección, el departamento de Geomecanica y Geología deben proporcionar información técnica actualizada para identificar posibles fallas, formación de cuñas o anticipar posibles caídas de planchones y/o derrumbes sorpresivos como suele suceder eventualmente.
- Participación decidida de la supervisión en la práctica diaria del Desatado de Rocas sueltas, dotando de herramientas adecuadas a las secciones y en buen estado.

2.5.2.1 Procedimiento para Desatado de Rocas

Considerando que esta actividad es de vital importancia puesto que es el primer paso para el control natural del terreno es necesario aplicar las medidas preventivas siguientes:

- Al ingresar a su labor verificar la ventilación, si se percibe gases residuales producto de la voladura no ingresar y prender el ventilador, si es insuficiente ayudar con la tercera línea (aire comprimido)
- Realizar su IPERC (Identificación de Peligros y Evaluación de riesgos)
 Llenar el formato identificando los riesgos existentes en su labor y aplicando los controles correspondientes de acuerdo a la magnitud de estos.

- 3. Observar las condiciones del terreno después de la Voladura fijese si el terreno está muy fracturado, si se observa alguna falla o formación de cuña, si está fuera de los límites de la sección (sobre excavado), si hay mucho flujo de agua.
- 4. Si el terreno es de buena calidad geomecánica, un buen regado ayudaría a identificar tiros cortados y visualizar mejor las fracturas
- 5. Observe el estado del sostenimiento después de la voladura, generalmente el Shotcrete, pernos y mallas quedan en mal estado por la que se tiene que evaluar su consistencia a fin de reforzarlos o reemplazarlos
- 6. Observar la clase de roca (Caliza y Filita generalmente) y el tipo de estructura del terreno Fracturado Regular (F/R) a Muy Fracturado Pobre (MF/P)
- 7. Evalúe los factores influyentes: agua, esfuerzos, orientación de estratos
- 8. Observe la altura ancho y perfil de la sección, presencia de pechos y protuberancias, observar grado de fragmentación.
- 9. Recuerde que si existe mucho flujo de agua, presencia de fracturas considerables, presencia de tiros cortados, si es el techo está alzado o si el terreno es muy fracturado se debe suspender el desatado por seguridad
- Si las alturas de la sección pasan de los 5 metros solicitar la presencia del Desatador mecánico (Scaller)

- 11. Si existen pechos o protuberancias regulares estos deben percutarse con el Scaller, no usar el Jumbo , de ser considerable el tamaño de la roca se debe Plastearlo o cachorrearlo (voladura menor)
- 12. Si el terreno en muy fracturado pobre (MF/P) el desatado debe ser con sumo cuidado evitando en lo posible ampliar las sección, en este caso se debe esperar la aplicación de shotcrete preventivo de inmediato.

CAPITULO III

CASO MINA SAN CRISTOBAL

3.1 UBICACIÓN Y ACCESO A LA MINA SAN CRISTÓBAL

La Mina San Cristóbal, políticamente está ubicada en el distrito de Yauli, provincia del mismo nombre, departamento de Junín. Geográficamente se encuentra en el flanco este de la Cordillera Occidental de los Andes centrales del Perú; a 110 Kms. en línea recta, de la ciudad de Lima. La mina San Cristóbal es fácilmente accesible, utilizando la carretera central, de la cual, cerca de la localidad de Pachachaca, parte un ramal de 20 kilómetros que conduce a San Cristóbal; además, el ferrocarril central tiene una estación en Yauli a 12 kilómetros del área.

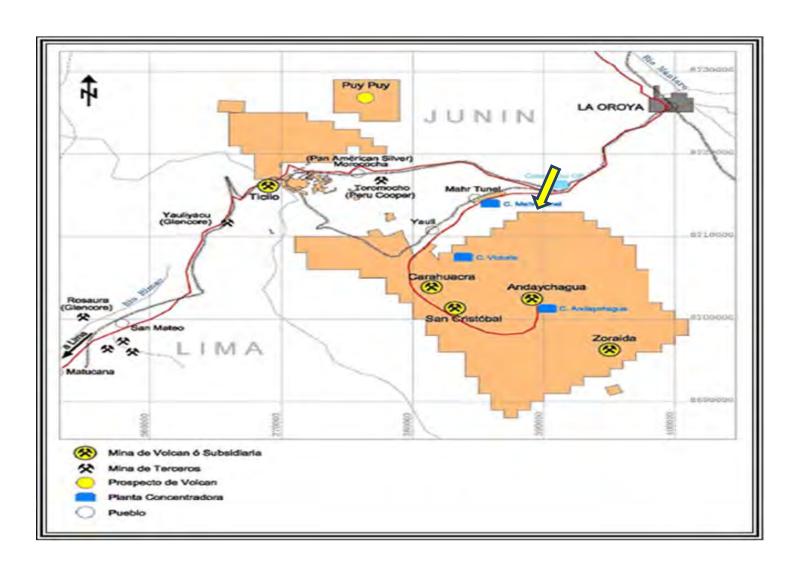


Figura 3.1: Ubicación Geográfica Mina San Cristóbal

Fuente: Geología MSC

3.2 GEOLOGÍA ESTRUCTURAL REGIONAL Y LOCAL

La estructura regional dominante es el Domo de Yauli, está ubicado en segmento central de la Cordillera Occidental de los Andes Peruanos, aparece como una estructura domal tectónica que comprende, por el Norte, desde el Paso de Anticona en la zona de Ticlio; pasando por el Distrito Minero de Morococha, el Distrito Minero Carahuacra-San Cristóbal-Andaychahua, por el sur se extiende hasta la Quebrada de Suitucancha y las proximidades de la Laguna Cuancocha. La longitud de acuerdo al rumbo del eje del domo es de 35 a 60 Km aproximadamente y el ancho es de 10 a 15 Km y su orientación mantiene la dirección andina NNW-SSE. Su flanco Este buza entre 30° y 40° mientras su flanco Oeste buza entre 60° y 80°; en el núcleo del domo se superponen las tectónicas Hercínicas y Andinas que afectan a las rocas desde el Excélsior hasta el Casapalca.

En el sector Oeste, las formaciones del Jurásico y Cretácico se encuentran afectadas por grandes y alargados pliegues muy apretados, fallas inversas y largos sobreescurrimientos productos de los esfuerzos compresivos, con desplazamientos hectometritos (Sector Imbricado, H. Salazar, 1983)

Por los esfuerzos compresivos también se producen fracturamientos antiandinos tensionales bien desarrollados a los que está relacionada la mineralización polimetálica.

Está conformado por varios anticlinales y sinclinales, de los cuales los anticlinales más importantes son el de Chumpe y el de Yauli (Ultimátum). Este

sistema estructural NW-SE dé pliegues, fallas, fracturas y sobreescurrimientos constituyen el flanco Oeste del Domo de Yauli. Fig. Nº 3.2

Figura 3.2: Sección longitudinal SW-NE del Domo de Yauli

Fuente: Geología Mina San Cristóbal

Es un sistema regional mucho más amplio que excede los límites del mismo, abarca las hojas de Matucana y la Oroya entre las que se emplaza parcialmente el Domo de Yauli.

Estas estructuras son producto de la fase compresiva de la Orogenia Andina (Fase Incaica; Salazar 1983).

3.3 TIPOS Y FORMA DE YACIMIENTOS

3.3.1 Vetas

Las vetas o filones presentan un rumbo que varían entre N 45°-75° E con un

promedio N 60° E, fueron formadas por fracturas de tensión, posteriormente

rellenadas por la deposición de los minerales a partir de soluciones hidrotermales

siendo mejor mineralizadas que aquellas que se formaron por fracturas de

cizalla por contener mucho panizo fueron poco mineralizadas. Se encuentran

localizadas en todo el distrito minero, con su mayor desarrollo, en los volcánicos

del grupo Mitú y las filitas del grupo Excélsior.

Las principales vetas del distrito minero San Cristóbal - Carahuacra-

Andaychahua que pertenecen a este sistema son: 722, 658, San Cristóbal, K,

Andaychahua, Mary, ML, etc. De toda la más conocida es la Veta San Cristóbal

ya que presenta un afloramiento de 3Km aproximadamente y de la cual salen

muchos ramales.

Mineralización

Los minerales más comunes que ocurren en el sistema de vetas son:

Sulfuros

: Blenda, esfalerita, galena, argentita, calcopirita, estibina

Sulfosales: Pirargirita (plata roja oscura)

Sulfatos

: Baritina

Carbonatos: Grupo de la calcita

Óxidos: Grupo de la Hematita (Oligisto), especularita.

41

3.3.2 Mantos

Los encontramos en las calizas Pucara, se originaron por la inyección de mineral

transportados por las vetas de E a W al encontrar zona favorable para el

reemplazamiento metasomático en el contacto Mitu-Pucara donde se tiene un

paquete de dolomía permeable que ha permitido la recepción del mineral,

formando los mantos Viejecita, 570, Toldorrumi, etc. Controlados en la caja

techo por tobas o cenizas volcánicas, presentan un rumbo promedio en la misma

dirección de los estratos N45° W, longitudinalmente se extiende 13 Km de los

cuales solo 4 Km están reconocidos.

Mineralización

Los minerales más comunes que ocurren en los mantos son:

Sulfuros: Blenda, esfalerita, galena, argentita, calcopirita, pirita, Marcasita

Sulfatos: Baritina (SO4Ba)

Carbonatos: Grupo de la Calcita, magnesita, Siderita, Rodocrosita, grupo de la

Dolomita, ankerita.

Óxidos: Hematita y especularita.

3.3.3 Cuerpos

Se encuentran localizados aproximadamente entre 50 y 100 m del contacto Mitu-

Pucará, se originaron por la inyección de mineral transportados por las vetas y

vetillas de E a W continuando en las calizas hasta encontrar una nueva zona

favorable para el reemplazamiento metasomático, donde se emplazó en varios

estratos de dolomías controlados por tufos o tobas volcánicas dando lugar a la

formación de cuerpos irregulares que varían de forma y tamaño de nivel a nivel,

42

presenta un rumbo promedio en la misma dirección de los estratos N45° W, los

cuerpos que se conocen son: Principal techo, Huaripampa, Lidia, 423, 658,

Toldorrumi.

Mineralización

Los minerales más comunes que ocurren en los cuerpos son:

Sulfuros: Blenda, esfalerita, galena, argentita, calcopirita, pirita, Marcasita

Sulfatos: Baritina SO4Ba

Carbonatos: Grupo de la Calcita, magnesita, Siderita,

Óxidos: Grupo de la Hematita (Oligisto, especularita, magnetita)

3.3.4 Rocas Encajonantes

En las vetas se tienen volcánicos (dacitas, andesitas) y filita. La alteración es

silicificacion, seritizacion y cloritizacion.

En los mantos y cuerpos dolomías, calizas margosas (arcillosas), tobas (cenizas

volcánicas y polvo volcánico)

3.4 PRODUCCIÓN Y SISTEMA DE MINADO

La Mina San Cristóbal Tiene 3 Zonas definidas de producción: Zona Lidia que

produce un promedio de 920 Ton/día; la Zona Alta: 1150 Ton/día y la Zona

Baja: 2,250 Ton/día produce en promedio 4300 Tcs/día con producción

programada de 133,000 Ton /mes. Las leyes promedio son: 5.5 % de Zn, 1.5%

de Pb, 3.8 Onzas de Ag y 0.30 % de Cu. Para su concentración, los minerales

son transportados a Planta Mahr Tunel ubicado en el pueblo del mismo nombre

y a Planta Victoria ubicado en mina Carahuacra y en menor escala a planta de

Andaychahua.

El método de explotación principal es el de "Corte y Relleno Mecanizado con Relleno Detrítico e Hidráulico". Usualmente las vetas en San Cristóbal tienen una potencia que varía de 3.5m a 4.0m para lo cual se realiza el método de corte y relleno ascendente normal, para ello, en el segundo Corte se hace una perforación en Breasting (cara libre) ya que el primer corte se hace con perforación en avance lineal, con taladros de alivio. Al tener vetas que varían entre 6.0m y 7.0m, el procedimiento es, una vez terminado el tajo siguiendo la caja techo se recupera mineral haciendo desquinche en la caja piso, extraído el mineral, se prosigue con el relleno en retirada a medida que se desquincha.

Para el caso de vetas con potencias mayores a 8.00m, se realizan ventanas y estocadas, espaciadas según la ley del mineral, esto se realiza con perforación de avance. Para vetas entre 16.0m y 20.0m, se procede como Cámaras y Pilares (pilares irregulares de aproximadamente 4.0m x 4.0m).

Un método de aplicación reciente es el Hundimiento sub niveles cortos el cual viene dando mejores beneficios económicos y es más seguro. Se aplica en vetas con buzamiento sobre los 65° y el RMR de roca caja entre 25 y 50.

Labores para aplicación de método:

Desarrollo de dos rampas de nivel a nivel separadas 300 mts.

- II. Accesos horizontales de 30 metros.
- III. Ejecución de chimenea central de nivel a nivel entre rampas.
- IV. Desarrollo de sub niveles en sección de 3.5 x 3.5 mts, hasta llegar al nivel superior.

Proceso ejecución método

- Concluido ejecución de sub niveles se procede perforación con Jumbo Simba.
- 2.- Carguío y disparo de taladros, solo se carga tres filas.
- 3.- Acarreo con Scooptram y el transporte se realiza con Dumper y camiones volvo.
- 4.-Las aberturas dejadas por extracción de mineral se rellenadas con relave.

3.4.1 Geomecánica

Las 3 principales zonas que constituyen la mina San Cristóbal presentan tipo de rocas III (Regular calidad Geomecánica), la Zona Alta que comprende los Niveles 500, 580 y 630 presentan regular flujo de agua soportan cargas litostaticas de 200 metros, la rocas encajonantes son filitas foliadas; La Zona Baja que comprende los niveles 870,920 ,1020 y 1070 presentan cajas más competentes pero más intenso el flujo de agua los cuales son bombeados constantemente hacia niveles superiores y recepcionados en pozas de sedimentación después del cual son bombeados hasta la superficie para su posterior retorno ; la presión Litostaticas en este nivel se incrementa hasta 400 metros por la profundización , aspecto que debe ser considerado para el cálculo de esfuerzos . La Zona Lidia Baja corresponde a los niveles 580, 630, 730 y 780 y Lidia Alta 870,920 ,970 y 1120 respectivamente para el lado Este. Presentan estructuras de menos Rating con inclusiones de Panizados en su estructura, alto grado de fracturamientos y humedad permanente el RMR es de

30-50, y su GSI: MF/R-P, IF/P por lo que la aplicación de los elementos de soporte deben ser inmediato a fin de eliminar los riesgos por caída de rocas.

3.4.2 Perforación y voladura

La perforación para avances lineales se realiza con equipos Jumbos que perforan longitudes de 12 pies en secciones de 3.5 x 3.5 para Subniveles, 3.5 x 4; 4.0 x 4.0; 4.50 x 4.50 mts para labores de desarrollo y producción tales como Rampas Accesos, Cruceros y subniveles.

En la aplicación de taladros Largos se usa el equipo Simba que perfora taladros verticales en positivo, negativo y en abanico con longitudes hasta 12 metros gracias a las características de la roca. Para la voladura se usa diferentes productos de Exsa entre ellas Semexa de 45, 65 y 75 % así como Gelatina especial de 75% usado para los Cebos y los arrastres por su alta potencia; la distribución de taladros debe ser la más adecuada al tipo de terreno y los explosivos distribuidos por tipo de taladros de tal manera atenuar las vibraciones.

3.4.3 Sostenimiento

Los elementos de soporte más usados en esta unidad son el Shotcrete con fibras de polipropileno por su bajo costo y su resistencia a la Flexotracción (se estuvo usando fibra metálica Dramix). En el diseño de mezcla se aplica aditivos retardantes para mantener el Slum por el lento y largo recorrido hacia niveles de profundización, asimismo aditivos plastificantes para mayor reologia (trabajabilidad) y acelerantes (Meyco) en caso de presencia de agua.

El shotcrete para su función como elemento de soporte en terrenos de regular calidad debe ser asociado con pernos Split, Hidrabolt o Helicoidales dependiendo del tipo de labor. En terrenos de buena calidad tipo II por ejemplo el shotcrete es aplicado como refuerzo ante la caída de pequeños bloques sobre todo en Rampas, galerías y cruceros. En terrenos más deleznables o de mayor relajación como Zona Lidia se aplica Shotcrete estructural es decir asociado con mallas electrosoldada y pernos. El shotcrete es aplicado con Robots lanzadores los cuales son alimentados por Mixer (Hurones) de 4m³ de volúmen. El relleno hidráulico es considerado también como elemento estabilizador de las cajas; los pernos son aplicados manualmente o con los equipos Boltec (Robot).

3.4.4 Ventilación

El ingreso de aire fresco es por las 3 principales bocaminas. En cada Nivel de la mina existen ventiladores que insuflan el aire hacia las labores asimismo existen chimeneas Raice Borer de 70 m hasta 450 metros de longitud y desde 2.50 hasta 4.50 mts de diámetro las que inyectan aire fresco y expulsan aire contaminado ayudado por extractores ubicados en la cavidad de los RB. Existen 2 tipos de ventilación en la mina:

a) Ventilación Primaria. Los ventiladores primarios son operados continuamente durante todo el año con excepción de los días de mantenimiento. El consumo anual de energía eléctrica por estos ventiladores es de 1'358,800 kW/hr. b) Ventilación Auxiliar. Este rubro incluye el consumo de energía eléctrica por los ventiladores auxiliares en circuitos secundarios. Los ventiladores auxiliares son operados en los diferentes frentes ciegos según las necesidades.

Son encendidos y apagados por el personal de operación. El consumo anual de energía eléctrica por estos ventiladores es de 636,100 kW/hr.

Tabla 3.1: Programa de Inversión en Chimeneas de Ventilación año 2011.

PROYECTO	UBICACION	DIAMETRO (Pies)	LONGITUD mts	P.U \$	COSTO RB
RB 810	Superficie Nv.820	10	212	1220	258.640
RB 622	Nv.630 - Nv.780	6	180	670	120.600
RB 206B	Nv.630 - Nv.780	8	160	870	139.200
RB 742	Nv.870-Nv.1020	10	192	1220	234.240
RB 999	Nv.780-Nv 920	12	160	1670	267.200
RB 672	Nv.820- Nv1020	10	210	1220	256.200
RB 620	Nv.920-Nv 1070	10	160	1220	195.200
RB 778	Nv.1070-Nv.1120	12	60	1670	100.200
RB 060	Nv.780 - Nv.920	8	165	870	143.550
RB 617	Nv.1020-Nv.1070	10	60	1220	73.200
RB206C	Superficie Nv.340	10	140	1220	170.800

Fuente: Planeamiento

Tabla 3.2: Programa de Inversión de Ventiladores

EQUIPO	CAUDAL (CFM)	POTENC (HP)	PRESION TOTAL W.A 4700 MSNM	P.U US\$	CANT.	INVERSION US\$
Ventilador	150,000	400	12"	150.00	2	300.000
primario				0		
Ventilador primario	110,000	300	10.8"	90.000	2	180.000
Ventilador auxiliar	30,000	50	7.8"	14.000	5	70.000
TOTAL					•	550,000 \$

Fuente: Planeamiento

Mapeo de ventilación:

El mapeo de ventilación es realizado por dos grupos de trabajadores entrenados en levantar mensuras de ventilación usando anemómetros, manómetros y psicrómetros, y mensuras de calidad del aire usando detectores de gases como Passport, Draguer etc.

Tabla 3.3: Resultados de Mapeo de Aire

Descripción	m ³ /s
Ingreso de aire	641.11
Salidas de aire	663.31
Diferencia	22.20

Tabla 3.4 : Requerimiento de Aire

DESCRIPCION DE EQUIPOS	POTENCIA HP C/U	DISPONI- BILIDAD	CAUDAL M3/SEG
8 Scoops 4 yd3	185	0.8	59.2
4 Scoops 3.5 yd3	160	0.8	25.6
2 Scoops 6 yd3	270	0.8	21.6
4 Scoops 6 yd3	270	0.8	43.2
5 Scoops 2.5 yd3	140	0.7	24.5
2 Scoops de 2.5 yd3	120	0.6	7.2
2 Desatadores scaller	120	0.7	8.4
1 Motoniveladora	130	0.7	4.55
1 Bobcat	90	0.6	2.7
5 Camiones	180	0.6	27
5 Camiones	140	0.6	21
17 Volquetes	400	0.75	255
4 Jumbos	80	0.3	4.8
6 Jumbos	80	0.3	7.2
3 Dumper 20 ton	240	0.7	25.2
1 Dumper 12 ton	180	0.7	6.3
10 Equipos Shotcrete	120	0.5	30
6 Equipos de Shotcrete	80	0.4	9.6
8 camionetas	75	0.4	12
6 camionetas	75	0.4	9
TOTAL	3,135		604.05

Fuente: Planeamiento

Figura 3.3: Equipo Raice Borer de Master Drilling (Cabeza instalado en superficie mina San Cristóbal)

Fuente: Propia

Figura 3.4: Bombeo de agua en Niveles de profundización 1020,1070 y 1120

Figura 3.5: Inspección a cuadrilla de desate EE Tuneleros en San Cristóbal

Fuente: Propia

Figura 3.6: Perforación de taladros largos con equipo Raptor (EE Resemin)

Figura 3.7: Supervisión inspeccionando a personal lanzador de Shotcrete.

Fuente: Propia

Foto 3.8: Celebración en Huaripampa San Cristóbal por cumplimiento de 2, 014,380 HH 19 Diciembre del 2013

Fuente: Seguridad San Cristóbal

CAPITULO IV

CAUSAS DE ACCIDENTES POR DESPRENDIMIENTO DE ROCAS MINA SAN CRISTÓBAL

Dentro de las causas localizadas en el presente análisis podemos señalar a 3 principales las mismas que serán analizadas más adelante:

- La influencia de la Calidad de la Masa rocosa
- La Calidad del Perforación y voladura y
- La aplicación del Sostenimiento

4.1 LA INFLUENCIA DE LA CALIDAD DE LA MASA ROCOSA

La zona Alta y Zona Baja, Niveles 820 hasta el 1120 están constituidas por rocas Tipo III Filitas sericiticas y calizas como roca caja, con un RMR entre 40-50 consideradas de regular Calidad geomecánica. La zona de Lidia está constituido por mantos que tienen que tienen buzamiento promedio de 45° y estratos de roca encajonaste paralelos al manto con buzamientos que oscilan entre 28° y 48°. En base a las clasificaciones geomecánicas usadas (Bieniawsky, Barton y GSI) indican que el macizo es de Regular a Mala calidad, RMR: 35-40

estructuras desde F/MP, MF/P y IF/R con una abertura máxima hasta 3 metros y un tiempo de autosoporte de máximo de 3 días, en este tipo de terreno es mejor la instalación inmediata del soporte.

4.2 LA INFLUENCIA DE LAS PRÁCTICAS DE PERFORACIÓN Y VOLADURA DE ROCAS

Voladura

- Fallas en el diseño de la malla, no existen estándares de carguío , existen problemas en la secuencia de salida generando espacios muertos lo que se traduce en una mala efectividad de las cargas explosivas;
- Perdida efectiva de cargas explosivas producto de diferencial de tiempo inadecuado de salida por diseño lo que genera estrangulamiento entre taladros próximos.
- Empleo inadecuado de explosivos, no se logra tener el tipo de explosivo para cada roca y se realizan voladuras sin tener en cuenta una distribución adecuada de ellos por tipo de taladros con el fin de minimizar el daño al macizo rocoso.
- Se aplica voladura controlada sin criterios técnicos y geomecánicos.
- Existen problemas por cambios bruscos del terreno no existen estudios o información de las estructuras a proteger y no se realizan los análisis de vibraciones y frecuentes dominantes para obtener parámetros que permitan diseñar esquemas de voladura que minimicen los daños perimetrales.
- Carguío con explosivos sin limpiar o soplar los taladros.

Perforación

Perforación sin criterios geomecánicos

- Distribución inapropiada de taladros en la malla de perforación
- Taladros no paralelos , asimétricos y de variadas longitudes
- Taladros Rimados y de alivio insuficientes.

4.3 LA INFLUENCIA DE LA APLICACIÓN DEL SOSTENIMIENTO.

Instalación de soportes

- Instalación de soportes sin realizar un buen Desatado de rocas por parte de las EE contratistas
- Las empresas especializadas se apresuran en instalar pernos sin considerar el tiempo mínimo para secado del Shotcrete (4-6) horas lo que se traduce en la interrupción del desarrollo de las resistencias tempranas del concreto.
- Adicionalmente se omite las técnicas para el lanzado del Shotcrete y se realiza con muchas deficiencias en las que involucra desde los servicios hasta la pericia del operador.
- Falta de mantenimiento mecánico a los equipos Scaller (desatador mecánico), Boltec (robot empernador), los Alfa (Robot lanzadores) y
 Hurones (Mixer) buen porcentaje de estos equipos se encuentran inoperativos.
- Otro aspecto a considerar es la instalación del sostenimiento fuera de los Límites del autosoporte del macizo.

CAPITULO V

FUNDAMENTO TEORICO

5.1 EVALUACIÓN GEOMECÁNICA SAN CRISTÓBAL

El levantamiento de información en campo de las características del macizo rocoso está dado por los siguientes valores Geomecánicos:

Resistencia baja a la compresión uni-axial simple de la roca, entre 25-50 Mpa, espaciamiento medio a pequeño entre las discontinuidades, suave rugosidad, en cuanto a la condición de las juntas, línea de persistencia media – alta, aberturas ligeramente abiertas de 0.1-1mm, relleno suave < 5mm, moderada a muy alterada. En cuanto a la orientación de las discontinuidades la familia principal muestra un rumbo paralelo al eje de la excavación muy desfavorable. Usando la clasificación geomecánica GSI, en la Zona Lidia, tenemos las siguientes características: por el grado de fractura, es un macizo rocoso que va de un rango de muy fracturado en algunos tramos, así mismo por la dureza de la roca, tenemos roca pobre con moderada alteración con ligera identación de la picota, se estima una baja resistencia a la compresión uniaxial simple de la roca, y se estima según evaluación con aplicación del Software una familia principal de

discontinuidades definido por la estratificación de las calizas, una secundaria definida por discontinuidades transversales que intersectan a la primera, una baja rugosidad en los planos de las juntas, alteración moderada, presencia de agua de muy bajo caudal como goteo, la labor se encuentra ubicada a aprox. 300 mts de profundidad se observan mayormente problemas estructurales en roca de baja calidad.

5.1.1 Clasificación RMR de la masa rocosa

Para la clasificación Geomecánica RMR hemos dividido la mina en tres zonas representativas:

Zona Alta, Nivel 830

Zona Baja, Nivel 1020 y

Zona Lidia, Nivel 730.

Clasificaremos las zonas según RMR de Bieniawsky y Q de Barton y lo correlacionaremos con la clasificación GSI las mismas que se resumirán en una Tabla.

San Cristóbal tiene implementada La tabla Geomecánica GSI como herramienta para caracterizar al macizo rocoso, nos indica el tipo de soporte a instalar, el tiempo que debe esperar sin soporte y la abertura máxima de la excavación. Sin embargo hay que considerar los factores influyentes: como el flujo de agua, presencia de esfuerzos, orientación de las excavaciones, esfuerzos inducidos, profundidad de la excavación, en tales circunstancias las clasificaciones geomecánicas pueden variar notablemente.

Tabla 5.1: Clasificación Geomecánica RMR

		ZONA ALTA	ZONA BAJA	ZONA LIDIA,	
		Nv 830	Nv 1020	Nv 730	
Sección		4.5 x4.5 m	4.5x4.5	3.5x3.5	
Profundidad en m		250	400	200	
Litología		Caliza	Filitas sericiticas	Caliza	
Densidad		2.7 TN/m3	2.8 TN/m3	2.7 TN/m3	
Resistencia de la roca		50-70 Mpa	50-90 Mpa	50-90 Mpa	
intacta		Valor: 7	Valor :7	Valor :7	
RQD	=100 - 4(°Fract/Distancia m)	52 % Valor: 13	60% Valor :13	48% Valor : 8	
Espaciado de las discontinuidades		5-25 cm Valor : 8	5-30 cm Valor: 8	5-30 cm Valor : 8	
Estado de las discontinuidades : - Longitud - Abertura - Rugosidad - Relleno - Alteración		Valor <1m	Valor 6 1 3 4 Lig alt 5 19	Valor 6 1 3 Rell suave 2 Moder Alte 3 15	
Agua Subterránea		Húmedo Valor : 10	Mojado - Húmedo Valor :7	Húmedo Valor: 10	
Ajuste por Orientación de discontinuidades		Favorable Valor =-2	Favorable Valor= -2	Regular = -5	
RMR		53	52	43	
GSI	GSI =RMR-5 RMR>23	48	47	39	

Fuente: Elaboración Propia

Sugerido por el Dr. Denis Shanon de Norcat Canadá para cuando no se dispone de testigos de sondaje

RQD zona Alta =
$$100 - 4(60/5m) \rightarrow 52\%$$

RQD _{Zona Baja} =
$$100 - 4(50/5 \text{ m}) \rightarrow 60\%$$

RQD zona Lidia =
$$100 - 4(65/5 \text{ m}) \rightarrow 48\%$$

5.1.2 Clasificación Q de Barton, a Zona Lidia, Nv 738

Tabla 5.2 Clasificación Geomecánica Q de Barton

PARÁMETROS	RANGO	VALOR
RQD %	Regular	48
Numero de discontinuidades	Jn, 2 sistemas de fisuras	3
Numero de rugosidad	Jr, Ligeramente rugosas	3
Numero de alteración	Ja, Presencia de arcilla ablandable	2
Numero de agua subterránea	Jw , presiones medianas	1.0
Factor de reducción de esfuerzos	SRF	5
Q=RQD/Jn x Jr/Ja x SRF/Jw	0.48/3x3.0/2x5/1.0	1.2

RMR =
$$9 \text{ LnQ} + 44$$
.

$$RMR_{89} > 23 \rightarrow GSI = RMR_{89} - 5$$

RMR₈₉ < 23 No se puede utilizar el RMR₈₉ para la obtención del GSI

5.1.2.1 Calculo de Q de Barton

$$GSI = RMR -5 \rightarrow 45 \quad ; \quad RMR = 9LnQ + 44 \quad por \ lo \ que \quad Q = e^{1/9(RMR - 44)}$$

ZONA ALTA

$$RMR = 53$$

$$Q_{Zonal} = e^{1/9(55-44)} \rightarrow 3.39$$
, (Roca Tipo III)

Recomendación de sostenimiento:

Empernado sistemático no tensionado cementado, espaciado 1m y shotcrete 2.5 cm de espesor.

Abertura máxima sin sostenimiento:

Claro (m)=
$$2*ESR*Q^{0.4}=2*1.6*(3.39)^{0.4}=5.21$$
 m

ESR: Excavaciones mineras permanente = 1.6

ZONA BAJA

$$RMR = 54$$
 ; $Q = e^{1/9(RMR-44)}$

$$Q_{Zona\ II} = e^{1/9(54-44)} \rightarrow 3.037$$

Recomendación de sostenimiento:

Empernado sistemático no tensionado cementado, espaciado 1m y shotcrete 2.5cm de espesor.

Abertura máxima sin sostenimiento:

Claro (m)=
$$2*ESR*Q^{0.4} = 2*1.6*(3.037)^{0.4} = 4.99 \text{ m}$$

ZONA LIDIA

$$RMR = 48 \quad ; \quad Q = e^{1/9(RMR-44)}$$

Q
$$_{\text{Zona Lidia}} = e^{1/9(48-44)} \rightarrow 1.55$$

Recomendación de sostenimiento:

Empernado sistemático no tensionado cementado, espaciado 1m y shotcrete 2.5cm de espesor.

Abertura máxima sin sostenimiento:

Claro (m)=
$$2*ESR*Q^{0.4}=2*1.6*(1.55)^{0.4}=3.81 \text{ m}$$

En San Cristóbal tenemos la cartilla GSI elaborada en base a las a estudios de las características del terreno en las 3 zonas representativas de la mina, al reverso el ábaco de Bieniawsky de abertura máxima y tiempo de autosoporte.

Tabla 5.3: Correlación de Clasificaciones Geomecánicas

LITOLOGIA	INDICE GSI	RMR	Q	TIEMPO AUTOSOPORTE
Zona mineralizada	F/B (Fracturada /Buena)	65-75	12-40	5 Años
Calizas, Filitas	F/R (Fracturada /Regular)	55-65	5-12	1 Año
	F/P (Fracturada /Pobre)	45-55	1-5	15 Días
	MF/B (Muy fracturada /Buena)	55-65	5-12	1 Año
Zona Alta y Baja	MF/R (Muy fracturada / Regular)	45-55	1-5	15 Días
Zona Lidia	na Lidia MF/P (Muy fracturada / Pobre)		0.4-1	2 Días
MF/MP (Muy fracturada /Muy pobre)		25-35	0.1-0.4	8 horas
	IF/P (Intensamente Fracturada /Pobre)	25.35	0.1-0.4	Menor a 8horas

Fuente: Elaboración Propia

Tabla 5.4: Tipo de Masa Rocosa de acuerdo a sus Índices RMR

MASA ROCOSA DE ACUERDO A SUS INDICES							
INDICE	100-81	80-61	60-41	40-21			
TIPO	I	II	III	IV			
DESCRIPCION	MUY BUENA	BUENA	REGULAR	POBRE			

Fuente: Elaboración Propia

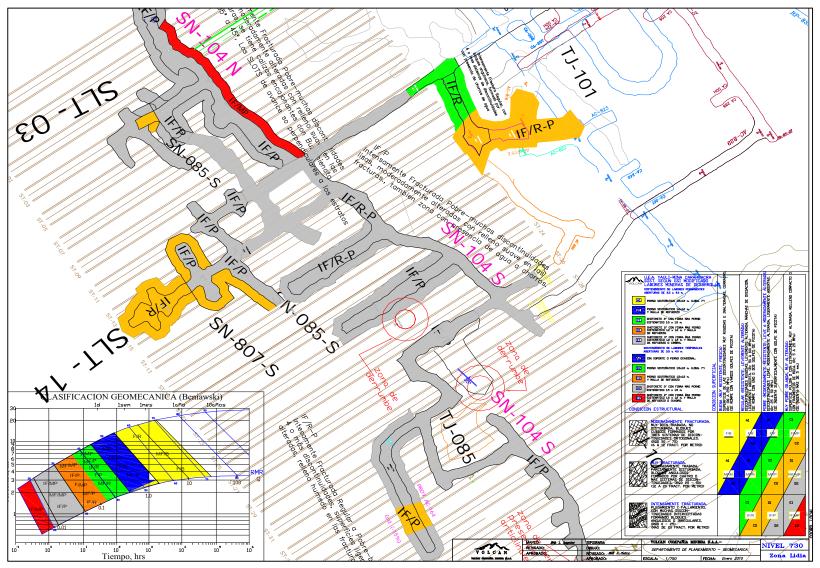


Figura 5.1 Plano Geomecánico de la Zona Lidia

Fuente: Geomecánica San Cristóbal

5.1.3 Influencia de los esfuerzos iniciales en roca

Es frecuentemente posible estimar el orden de magnitud de esfuerzos y sus direcciones. La aplicación de tales mediciones es muy común en la práctica en minería. Por Ejemplo cuando escogemos la orientación de una excavación alguna esperanza a evitar que el alineamiento del eje sea perpendicular al esfuerzo principal mayor. Si los esfuerzos iniciales son muy altos, la forma debe ser seleccionada gran parte para minimizar la concentración de esfuerzos.

Los conocimientos de esfuerzos de roca ayudan también en el trazo de trabajos complejos de excavaciones subterráneas

5.1.4 Calculo del módulo de Young y de la constante K de Ratio de esfuerzos litostáticos

 $K = 0.25 + 7E_h$ (0.001 + 1 /Z), La Constante K se determina utilizando el criterio de Shorey (1994)

Z=Profundidad bajo la superficie en metros

E_h =Módulo de deformación horizontal promedio de la masa rocosa de la superficie (Gpa), el cual calcularemos con la ayuda del Software Rock Data Versión 3.0, para lo cual ingresamos el valor de GSI calculado para cada zona (GSI=RMR₈₉-5)

Eh $_{\text{Zona alta}} = 6.488 \text{ Gpa}$

 $Eh_{Zona\ baja} = 6.067\ Gpa$

Eh $_{Z \text{ Lidia}} = 3.28 \text{ Gpa}$

Profundidad

Calculo de K:

Zona alta, Nivel 820

$$K_1 = 0.25 + 7*6.488 (0.001 + 1/250)$$

$$K_1 = 0.477$$

Zona baja, Nivel 1020 Rampa 650

$$K_2 = 0.25 + 7*6.067 (0.001 + 1/400)$$

$$K_2 = 0.462$$

Zona Lidia, Nivel 730

$$K_{LIDIA} = 0.25 + 7*3.286(00.1 + 1/200)$$

$$K_{LIDIA} = 0.36$$

Tabla 5.5: Resumen de valores de Constante K

K _{ZONA 1}	K _{ZONA 2}	$K_{ m LIDIA}$
0.477	0.462	0.36

5.1.5. Estimación de esfuerzos verticales

Es generalmente seguro asumir que el esfuerzo vertical normal es igual al peso unitario de la roca sobreyacente por la profundidad en roca, es decir:

 $Sv = \delta *Z$

Sv= Esfuerzo vertical promedio en Mpa

 δ = Peso unitario, en Mpa /m3

Z= Profundidad, en m

(Goodman, Richard E. 1980, Pág. 99 y 100)

5.1.6. Estimación de esfuerzos Horizontales

En atención a la magnitud de esfuerzos horizontales es conveniente considerar el Ratio de esfuerzos horizontales a vertical

 $K = S_h/S_v$

 S_h = Esfuerzo Horizontal (Mpa)

 $S_V = Esfuerzo Vertical (Mpa)$

K = Contante de Proporcionalidad de Sh y Sv

 $\delta = 0.027 \; MN/m^3$

Zona alta, Nv 830

$$S_v = S_y = \delta Z \rightarrow 0.027 \text{ MN/m3} \text{ x } 250 \text{ m} = 6.75 \text{ Mpa}$$

$$S_h = S_x = K_1 S_v \rightarrow 0.477 (6.75) = 3.219 Mpa$$

Zona Baja, Nivel 1020

$$S_v = S_v = \delta Z \rightarrow 0.027 \text{ MN/m3 x } 400 \text{ m} = 10.8 \text{ Mpa}$$

$$S_h = S_x = K_2 S_v \rightarrow 0.462 (10.8) = 4.98 \text{ Mpa}$$

Zona Lidia, Nv 730

$$S_v = S_y = \delta Z \rightarrow 0.027 \text{ MN/m3} \times 200 \text{ m} = 5.4 \text{ Mpa}$$

$$S_h = S_x = K_{Lidia} S_v \rightarrow 0.36 (5.4) = 1.94 \text{ Mpa}$$

5.1.7 Calculo de los Parámetros m y s

"m" y "s" son constantes del material, que dependen de las propiedades de la roca y del grado de fracturación de la roca antes de someterla a las tensiones de rotura.

El parámetro s es la medida de disminución de la resistencia a compresión simple de la roca debido a la fracturación. Por su parte, m influye en la resistencia al corte del material. Ambos parámetros se pueden obtener a partir de la clasificación geomecánica Rock Mas Rating (RMR), introducida por Bieniawsky, 1976.

Relación entre la constante del material $m_{b/}m_{i}\;\;y\;$ el índice de Resistencia Geológica GSI:

 $mb / mi = e^{(GSI-100)/28}$

mi = Constante del material del macizo original (Tabla 10 de Hoeck, Brown, ET 1980 Pág. 214 y 215)

mb = Constante del material del macizo rocoso

GSI: Índice de Resistencia Geológica = RMR₈₉ – 5

RMR = Evaluación del macizo rocoso

$$S' = e^{(GSI-100)/9}$$

S': Constante del material (Hoeck, E Bawden, W.F. 1985 .Pág.91)

Zona Alta

$$GSI = RMR - 5 = 53 - 5 = 48$$

$$mb/mi = e^{(48-100)/28} = 0.156$$

$$mb/mi = 0.156$$

mi =12 (Aplicando el software Rock Data Versión 3.0)

mb = 1.873

$$S' = e^{(48-100)/9} = 0.0031$$

$$S' = 0.0031$$

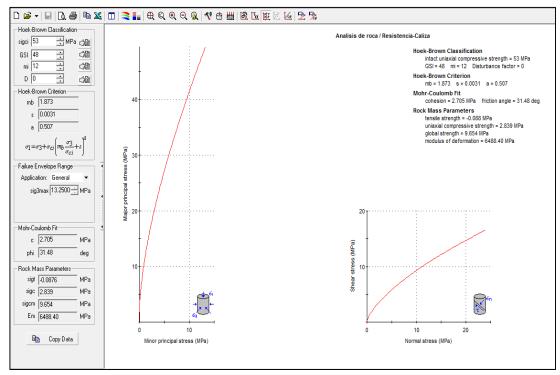


Figura 5.2: Cálculo de m_b y S' Zona alta con ayuda de Rock Data.

Zona baja

$$GSI = 52-5 = 47$$

$$mb/mi = e^{(47-100)/28} = 0.150$$

mb/mi = 0.150

mi =7 (Aplicando el software Rock Data Versión 3.0)

mb = 1.05

$$S' = e^{(47-100)/9} = 0.0028$$

$$S' = 0.0028$$

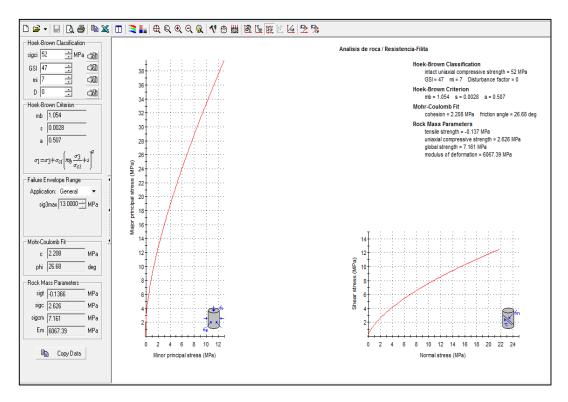


Figura 5.3: Cálculo de mb y S' Zona Baja con ayuda de Rock Data.

Zona Lidia

$$GSI = 43 - 5 = 38$$

$$mb/mi = e^{(38-100)/28} = 0.109$$

mb/mi = 0.109

mi = 10

mb = 1.09

$$S' = e^{(43-100)/9} = 0.001$$
 $\rightarrow S' = 0.001$

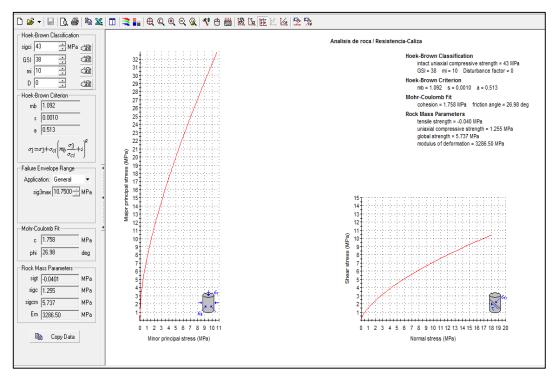


Figura 5.4: Cálculo de m_b y S' Zona Lidia, con ayuda de Rock data

Tabla 5.6: Resumen de Parámetros Geomecánicos

	RMR	GSI	Q	mb	S'	Sv=Sy Esfuerzo Vertical	Sh=Sx Esfuerzo Horizontal	E (Módulo de Young) Gpa
ZONA ALTA	53	48	3.39	1.873	0.003	6.75	3.219	6.488
ZONA BAJA	52	47	3.037	1.05	0.002	10.8	4.98	6.067
ZONA LIDIA	43	38	1.55	1.09	0.001	5.4	1.94	3.286

Fuente: Elaboración Propia

Estos parámetros geomecánicos calculados mediante modelos matemáticos o

con ayuda de Software, nos permite tomar decisiones y/o acciones frente a

manifestaciones adversas de la roca como planchoneos o derrumbes, las

primeras medidas son siempre el dimensionamiento correcto de los tajeos y

pilares y la aplicación correcta y oportuna de los elementos de soporte para la

zona.

5.2 EVALUACIÓN DE PERFORACIÓN Y VOLADURA

5.2.1 Calculo teórico para hallar número de taladros de un frente

(Author Diplomatic Ing. Horst Koscholleck)

1.- La densidad de carga es igual al número de taladros perforados por el área de

la sección, es dependiente de la Resistencia de la roca, sección, del carguío de

avance, clase de explosivo, diámetro del cartucho y del diámetro del taladro de

perforación.

La cantidad de explosivos que se necesita es medida en kg/m^3 y representa la

cantidad necesaria para extraer 1 m^3 de roca. Este es el valor mas importante

para el calculo de la cantidad necesaria de explosivo par un avance

determinado.

Densidad de carga = N_0 Taladros x m^2

Cantidad de carga $Qc = K \times L (A+L^2)$

Dónde:

Qc = Cantidad de carga en Kg/m^3

K = Factor e de voladura (independiente de A y L)

A = Sección del frente

L = Longitud de avance

5.2.2 Numero de taladros de un frente y necesidad de carga explosiva

Para nuestro calculo consideramos una sección de 4.00 x 4.00 metros y un avance de 3.11 metros, taladros perforados con Jumbo electrohidráulico

K es un factor que tiene cada tipo de roca con relación a su dureza y su fracturación. 0.4 < K < 0.6 Kg/m3 en terrenos suaves; 1.0 < K < 1.8 en terrenos semiduros, en este caso consideramos terreno semiduro en Rampa 650 Nv 1020 Zona II, consideramos K = 1,4 por ser terreno regular o semiduro.

Tabla 5.7: Valores de K (kg/m³) en base a la dureza de roca

Área	Roca dura	Roca media	Roca Suave
10-20	1.65 -2.00	1.10-1.80	0.60 - 0.90
20-40	1.20-1.65	0.75-1.10	0.40 - 0.60

Qc = $1.4 \times 3.11 (16.00 + 3.11^2) \text{ Kgs.}$

Qc = 111.78 Kg (cantidad de explosivo por avance) = Aprox 112 kg

- El grado de llenado del taladro vamos a considerar el 75% o las 3/4 partes

- Para una roca mediamente dura, el requerimiento especifico del explosivo es $1.38 \text{ Kg/}m^3$ (g/cc) de densidad, que corresponde a la dinamita gelatina de 75% x11/8"x 8" Ver Tabla 5.8.

Tabla 5.8: Características de los principales explosivos

CARACTERISTICAS DE LOS EXPLOSIVOS											
Explosivo	Dimensión	Longitud (m)	φ explosivo (mm)	cart/caja	Kg/Cart	Densidad VOD densidad			FACTOR DE ENERGIA AWS		
		(,	()			6/00	(, 3)	RBS Kcal/Kg	MJ/Kg		
Semexsa 80	1 1/8" x 8"	0.20	28.58	164	0.152	1.18	4500	0.76	152	985.42	4.13
Semexsa 65	7/8" x 7"	0.18	22.23	308	0.081	1.12	4200	0.43	141	963.08	4.03
Exadit 45	7/8" x 7"	0.18	22.23	328	0.076	1.00	2400	0.39	105	803.25	3.36
Gelatina especial 75	1 1/8" x 8"	0.20	28.58	140	0.179	1.38	5500	0.88	183	1014.46	4.25
Gelatina especial	7/8" x 7"	0.18	22.23	284	0.088	1.38	5500	0.54	183	1014.46	4.25
Semexsa 65	1 1/2" x 12"	0.30	38.10	136	0.184	1.12	4200	1.28	141	963.08	4.03
Exadit 60	1 1/2" x 8"	0.20	28.58	216	0.116	1.05	3600	0.67	127	925.29	3.87
			Peso ne	to de un	a caja d	e explosi	vos = 2	5 Kg.			

Fuente: Manual de Exsa

Luego en un metro de taladro hay la siguiente cantidad de explosivo:

Explosivo en gr/m= $\pi r^2 x 100$ cm x p.e. del explosivo

$$= 3.1416(1.6 \text{ cm})^2 \times 100 \text{ cm} \times 1.38 \text{ gr/cm}^3$$

= 1109.86 gr./m

= 1.11 Kg/m

Se divide el total de explosivos de 112 Kg. Entre la cantidad de explosivo por metro de taladro, para ver la necesidad de metros de explosivo.

Metros de explosivos =
$$\frac{112 \, Kg}{1.11 \, Kg./m}$$
 = 100.90 m de explosivo

Hemos considerado el 75 % de llenado del taladro, por consiguiente se necesitan los siguientes metros de taladro:

Para todo el frente se necesita perforar 135 m

$$N^{\circ}$$
 de taladros $=\frac{135}{3.11}$ m/m/tal = 43 taladros

Densidad de taladros
$$= \frac{43}{16} \operatorname{tal/m^2} = 2.69 \operatorname{tal/m^2}$$

Calculo del No. de Cartuchos / Taladro

No. de Taladros cargados = 40, estamos considerando 3 taladros de alivio

Kg. de explosivos / taladro
$$= \frac{112}{40} \text{ kg/tal} = 2.80 \text{ Kg/tal}$$

No. Cartuchos / taladro =
$$\underline{2.80}$$
 $\underline{\text{kg/tal}}$ = 16.53 = 17 Cartuchos / tal 0.173 $\underline{\text{kg/cart}}$

Números de taladros según el manual de EXSA:

Se puede calcular el número de taladros en forma aproximada mediante la siguiente forma empírica.

N° Tal = $(A \times H) \frac{1}{2} \times 10$ donde:

A = ancho de Excavación, 4 m

H = altura de Excavación, 4 m

No. Tal = $(4x4) \frac{1}{2} \times 10 = 40$ taladros

NOTA: En la práctica perforamos 44 y según nuestra formula y procedimiento lo cual es confiable nos da 43 taladros se puede aplicar esta fórmula como referencia del número de taladros a perforar.

5.2.3 Especificaciones técnicas de un frente convencional y costos de perforación y voladura

Los parámetros que se muestran a continuación son los comúnmente usados para el diseño de las mallas de voladura en Zona Lidia, Yauli.

Sección 4x4 m, RMR 40-50, GSI F/R

PARAMETROS TECNICOS:

Sección : 4.0X4.0 m

Longitud de barra de perforación (14 pies) : 4.2 m

Longitud de taladro (13 pies) : 3.9 m

Nº de taladros cargados : 39

Nº de talados Rimados en el arranque : 04

Nº de taladros de alivio en corona (sin carga) : 0

Total de taladros : 43

Tipo roca (Metamórfica) : Filita silícea

Coeficiente de Absorción (%)	: 0.28
Resistencia a la Flexión (Mpa)	: 12.76
Resistencia a la Compresión	: 50 Mpa
Porosidad Total (%)	: 6.2
Densidad de roca (ton/m3)	: 2.8
Avance / disparo	: 3.8 m
Eficiencia de perforación (%)	: 97.44
Volumen/disparo (m3)	: 60.80
Tonelaje/disparo (ton)	: 164.16
Condición del terreno	: Seco

RATIOS:

• Total m	netros perforados (m)	: 167.70
• Factor of	de perforación (m/m3)	: 2.76
• Total ex	xplosivo/disparo (Kg)	: 156.58
• Factor of	de carga (Kg./m3)	: 2.58
• Factor of	de potencia (Kg./ton)	: 0.95
• Costo d	le perforación (US\$)	: 375.35
• Costo d	le perforación (\$/ton)	: 2.28
• Costo d	le voladura (US\$)	: 151.33
• Costo d	le Voladura (\$/ton)	: 0.91
• Costo d	le perforación y voladura (US\$)	: 526.68
• Costo d	le perforación y Voladura (\$/ton)	: 3.20

RECURSOS

PERSONAL:

•	Operador de jumbo	: 01
•	Ayudante de operador de jumbo	: 01
•	Operador de Scoop	: 01
•	Disparador	: 01
•	Supervisor	: 0.25
•	Total tareas	: 4.25
E	QUIPOS:	
•	Jumbo electro hydraulic Rocket Boomer 282	: 01
•	Scoop diesel ST-1000	: 01
•	Camión Volvo de 15 m3	: 03
•	Reflector de luz halógeno de 500 watts	: 01
M	ATERIALES DE PERFORACION:	
•	Barras de perforación R-32 de 14 pies	: 02
•	Brocas R-32 (45 mm de Ø)	: 04
•	Adaptador piloto	: 01
•	Broca escariadora R-32 (76 mm de Ø)	: 01
•	Aceite de perforación Torcula 150	: 1/4 de galón
•	Pintura sprite (ml / disparo)	: 200
•	Cordel (m)	: 20

HERRAMIENTAS DE PERFORACION:

•	Adaptador de culata (shank)	: 01
•	Adaptador piloto	: 01
•	Manguitos de acoplamiento	: 02
•	Afiladora de brocas	: 01
•	Copas Nº 8,9,10 y 12 de diamante (juego)	: 01
•	Barretillas de aluminio de 4, 6, 8 y 10 pies	: 03 juegos
•	Lampa	: 01
•	Pico	: 01
•	Llave Stillson Nº 14	: 01
•	Llave francesa Nº 12	: 01
•	Comba de 08 libras	: 01
•	Cucharilla de Fe. corrugado 3/8" Ø x 2.5 m.	: 01
•	Cucharilla de Fe. corrugado 3/8" Ø x 1.5 m.	: 01
•	Flexómetro metálico de 5 m.	: 01
•	Guiadores de tubo de fierro negro 1.1/4" Ó x 1.0 m	: 08
•	Campanas de empalme de 3/4" Ó (para agua)	: 02

MATERIALES DE VOLADURA: POCA PRESENCIA DE AGUA

•	Gelatina 75% -1.1/8"x8" (cebo=cart/tal.=1x39)	: 39
•	Gelatina 75% -1.1/8"x8" (arranque=cart/tal=17x3)	: 51
•	Gelatina 75% -1.1/8"x8" (ayudas=cart/tal=17x4)	: 68
•	Gelatina 75% -1.1/8"x8" (1° ayudas=cart/tal=17x4)	: 68
•	Gelatina 75% -1.1/8"x8" (2° ayudas=cart/tal=17x4)	: 68

: 01

•	Semexa 65% -1.1/8"x7" (ayuda cuadradores=cart/tal=16x	(4): 64
•	Semexa 65% -1.1/8"x7" (ayuda alzas=cart/tal=16x3)	: 48
•	Semexa 65% -1.1/8"x7" (cuadradores=cart/tal=16x6)	: 96
•	Semexa 45% -1.1/8"x7" (alzas=cart/tal=10x6)	: 60
•	Gelatina 75% -1.1/8"x8" (arrastre=cart/tal=17x5)	: 85
•	Excel de 4.20 m (piezas)	: 39
•	Cordón detonante 5 G (m)	: 35
•	Detonador ensamblado – Càrmex de 8 pies (pza.)	: 02
•	Mecha rápida (m)	: 0.5
•	Tacos de arcilla (unid.)	: 39
•	Cinta aislante	: 01

• Fósforo

Tabla 5.9: Distribución de carga explosiva para terreno con poca presencia de agua:

Distribución taladros	Explosivo	Peso/Cartucho Kg	Cart/Tal	Nº tal. (Unid)	Total Cartuchos (Unid)	Total expl. (Kg.)
Cebo	Gelatina 75% 1.1/8"x8"	0.174	1	39	39	6.786
Arranque	Gelatina 75% 1.1/8"x8"	0.174	17	3	51	8.874
Ayudas	Gelatina 75% 1.1/8"x8"	0.174	17	4	68	11.832
1º ayudas Gelatina 75% 1.1/8"x8"		0.174	17	4	68	11.832
2º ayudas	Gelatina 75% 1.1/8"x8"	0.174	17	4	68	11.832
Ayuda cuadradores	Semexa 65% 1.1/8"x7"	0.123	16	4	68	7.872
Ayuda alzas	Semexa 65% 1.1/8"x7"	0.123	16	3	48	5.904
Cuadradores	Semexa 65% 1.1/8"x7"	0.123	16	6	76	11.808
Alzas	Semexa 45% 1.1/8"x7"	0.118	10	6	60	7.08
Arrastre Gelatina75% 1.1/8"x8"		0.174	17	5	85	14.79
TOTAL				39 tal. Cargados		98.61g.

Fuente: Elaboración propia.

5.2.4 Control de la perforación

La perforación en mina San Cristóbal es realizada por equipos Jumbos en frentes y tajeos, Raptor Y SIMBA para Taladros largos; se realiza los siguientes controles con el objetivo de evitar errores:

- o Desviación en el paralelismo de los taladros de producción
- o Diámetro de los taladros de cara libre (rimados)
- Espaciamiento irregular de los taladros
- o Irregular longitud de los taladros
- o Intersección entre taladros
- o Falta de control de la dirección y gradiente de la labor.
- o Falta de delimitación del contorno de la labor.

5.2.5 Control del carguío en Voladura

Existen procedimientos para el transporte y manejo de explosivos, antes de proceder a cargar los taladros con explosivos se debe supervisar la condición de cada taladro para lo cual debe ser limpiado con aire comprimido e incluso con agua en terrenos duros, se controla para garantizar una óptima voladura:

- o Control de la Densidad de carga, número de taladros por metro cuadrado
- o El armado y colocación de los Cebos
- O Carguío y confinamiento de la columna explosiva de acuerdo al tipo de taladro
- Colocación correcta del taco
- o Amarre del cordón detonante con ganchos de los faneles o exceles
- o Secuencia de salida (retardos)

- o Amarre de la mecha rápida y lenta (carmex)
- o Coordinación para el chispeo en varias labores ,colocación de vigías

5.2.6 Aplicación de voladura Controlada

En zona Lidia, Nivel 630 y 730 San Cristóbal el terreno es Filita gris con presencia de panizados entre sus estratos cuya estructura es desde fracturado pobre (F/P) hasta muy fracturado regular a pobre (MF/R-P) las filtraciones de agua y las vibraciones inducidas por voladuras adyacentes contribuyen a la degradación de la estructura. Para este tipo de terreno es necesario la aplicación de algún tipo de voladura controlada siendo lo más apropiado la perforación de taladros del mismo diámetro que los de producción tanto en la corona como en los hastiales tal como se observa en la fig estos taladros serán llamados de alivio, no se cargarán con explosivos su función principal es crear una línea de tensión a lo largo del perímetro de la sección a fin de mantener intacta la frontera de la malla predefinida. Como el comportamiento de la roca varia de un dominio a otro si mejora lo calidad de roca en los hastiales no será necesario perforar taladros de alivio solo controlar su longitud de carga con los explosivos nominales tales como el Exadit 65 % ó Exablock de bajo Brisance

Los objetivos de la voladura controlada son evitar la sobrerotura de la roca así como mantener la solidez y capacidad de autosostenimiento de la roca asimismo evitar sobrecostos en la aplicación de sostenimiento y utilización de horas hombre. Para este efecto es recomendable que se realice una buena perforación a fin que todos los taladros del contorneo sean paralelos al eje de la galería y posteriormente aplicar las diversas técnicas de este tipo de voladura.

Consiste en el empleo de carga explosivas lineales de baja energía colocados simultáneamente para a crear y controlar la formación de una grieta continua que delimite la superficie final de un corte, se puede realizar antes (Precorte) con Taladros de alivio del mismo diámetro que los de producción o después de la voladura principal (recorte) ambos con la finalidad de crear secciones uniformes con la fragmentación requerida y el avance proyectado.

Figura 5.5: Cañas visibles después de Voladura.

Fuente: Propia

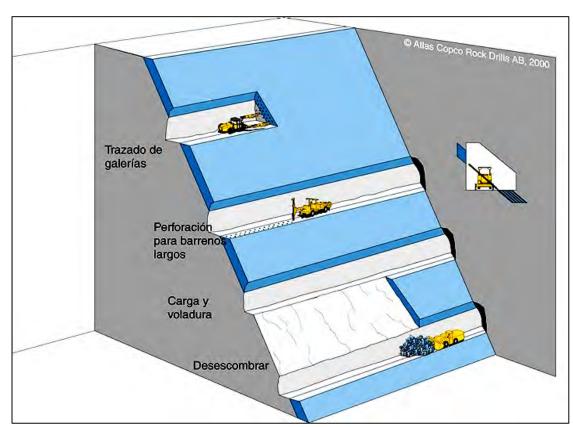


Figura 5.6: Explotación de Vetas angostas.

Fuente: Revista de Atlas Copco

CAPITULO VI

OPTIMIZACIÓN DE MALLAS DE PERFORACIÓN Y VOLADURA

6.1 ENSAYOS EN MALLA DE PERFORACIÓN PARA FRENTES EN ZONA BAJA

Se realizaron 2 disparos en el mismo Nivel, en el desarrollo de la Rampa 650 negativa con el propósito de optimizar la malla reduciendo el Factor de potencia (Kg explos) / Ton y el Factor de Energía (Mj /Ton) consecuentemente, como acción preventiva, se trata de controlar en lo posible la estabilidad de la zona.

El número de taladros y tipo de explosivos e incluso la longitud de carga está en función a la calidad de roca, si en una Roca F/R (fracturada regular) la distancia entre taladros es 0.50 m, no es así en una Roca MF/P (muy fracturada pobre) donde la distancia entre taladros puede ser hasta 0.80 m, la longitud de carga se reduce también de 75 a 50%. Se realizaron 2 pruebas en el Nivel 1020 Rampa 650, Zona baja. El tipo de Roca es MF/R con un RMR 40-55 de Regular calidad Geomecánica, la presión Litostaticas es hasta 400 m genera fuerzas laterales entre 5 y 10 Mpa; el limite Máximo de avance (LMA) para este tipo

solo permite un disparo y por razones de seguridad se debe cumplir la Premisa labor disparada labor sostenida.

El tipo de sostenimiento aplicado a estas condiciones son pernos Helicoidales ó Splitset cada 1.5x1.5 según sea su condición temporal o permanente, en zonas con fracturas reforzarlos con mallas o aplicar Shotcrete en zona específicas.

Como medida de control se ha supervisado cuidadosamente tanto la perforación como el carguío con explosivos en estos frentes.

Se ha variado los siguientes parámetros en función al tipo de roca:

- El número de taladros necesarios
- Distancia entre taladros
- Variación de la longitud de carga por tipo de taladro
- Uso de explosivo ideal para Cebo, Arranque y arrastres
- Aplicación de taladros de alivio en la corona
- Secuencia de retardos

El número de taladros lo aproximamos mediante las formulas empíricas:

$$N^{\circ}$$
 Tal = $(A \times H)^{\frac{1}{2}} \times 10$

La cantidad de carga con explosivos en un frente lo aproximamos mediante la

Fórmula:
$$Qc = K \times L (A+L^2)$$

Consideramos la relación B/E = 0.8 -1.3 (relación Burden/Espaciamiento)

Distancia entre taladros, dependiendo en que cuadrante se encuentren, consideramos las distancias en el diseño de malla en metros:

Taladros Rimados : 0.22 m

Taladros de arranque y Rimados : 0.30

Taladros de Primera ayuda : 0.58

Taladros de segunda ayuda : 0.99

Taladros de Tercera ayuda : 1.98

Entre ayudas de arrastre : 0.90

Taladros de arrastre : 0.72

Cuadradores y alzas : 0.55

Distancia del Perímetro de sección a

Alzas y cuadradores : 0.20

6.1.1 Ensayos en Zona baja, Nivel 1020

Las pruebas se realizaron en el Nivel 1020 Rampa 650, ambos en la Zona baja. El tipo de Roca en Labor es de MF/R, con un RMR 40-55 de Regular calidad Geomecanica, la excavación es sobre estéril de sección de 4x 4 m,

Tabla 6.1: Especificaciones técnicas de malla de voladura

DATOS GENERALES							
	Datos de campo		Datos de perforacion				
LABOR:	Ancho (m)	4	Φ Taladro (mm)	51			
RP 650	Alto (m)	4	Φ Taladro Alivio (mm)	102			
NIVEL:	Factor de Corrección	0.9	Peso Especifico (ton/m³	3.0			
1020	Area del Frente (m²)	14.40	Longitud Taladro (m)	3.2			
	Volumen del frente (m³)	46.08	Tipo de roca	III			
	Tonelaje del frente (TM)	138.24	material	Desmonte			
С	arguio						
Longitud de carga (m) Longitud de taco (m)							
2/3 TALADRO 1/3 TALADRO							
2.13	1.07	TEORICO					

Fuente: Elaboración propia

Tabla 6.2: Nomenclatura de Taladros en una malla de perforación

AQ	ARRANQUE
PA	PRIMERA AYUDA
SA	SEGUNDA AYUDA
TA	TERCERAAYUDA
AC	AYUDA DE CUADRADORES
AZ	AYUDA DE ALZAS
AR	AYUDA DE ARRASTRE
CU	CUADRADORES
AL	ALZAS
AT	ARRASTRES
AV	ALIVIOS

Fuente: Elaboración propia.

Tabla 6.3: Ensayo1: Zona Baja, Nivel 1020 Rampa 650

	FACTOR DE CARGA - POTENCIA											
				CEBO CARGUIO EN EL TALADRO				TOTAL DE CARTUCHOS				
Nomencl atura	TALADROS	Numero Taladros		Numero de Cartuchos	EXPLOSIVO	numero de Cartucho	EXPLOSIVO	СЕВО	CEBO Kg/tal	CARGUI O Cart / Taladros	0	longitud de carga
AQ	Arranque	4	1-2-3-4	1	Semexsa 65 - 1 1/2" x 12"	9	Semexsa 65 - 1 1/2" x 12"	4	0.735	36	6.624	3.05
PA	1er Cuadrante	4	1,1 ,2,2	1	Semexsa 65 - 1 1/2" x 12"	8	Semexsa 65 - 1 1/2" x 12"	4	0.735	32	5.882	2.74
SA	2do Cuadrante	4	3,3 4,4	1	Semexsa 65 - 1 1/2" x 12"	7	Semexsa 65 - 1 1/2" x 12"	4	0.735	28	5.147	2.44
TA	3er Cuadrante	4	5	1	Semexsa 65 - 1 1/2" x 12"	7	Semexsa 65 - 1 1/2" x 12"	4	0.735	28	5.147	2.44
AC	Ayuda de cuadrad	4	6	1	Semexsa 65 - 1 1/2" x 12"	6	Semexsa 65 - 1 1/2" x 12"	4	0.735	18	3.309	2.13
AZ	Ayuda de alzas	3	7	1	Semexsa 65 - 1 1/2" x 12"	6	Semexsa 65 - 1 1/2" x 12"	3	0.552	30	5.515	2.13
AR	Ayuda de arrastre	4	8	1	Semexsa 65 - 1 1/2" x 12"	6	Semexsa 65 - 1 1/2" x 12"	4	0.735	24	4.416	2.13
CU	cuadradores	8	9	1	Semexsa 65 - 1 1/2" x 12"	6	Semexsa 65 - 1 1/2" x 12"	8	1.471	48	8.832	2.13
AL	Alzas	4	10	1	Semexsa 65 - 1 1/2" x 12"	6	Semexsa 65 - 1 1/2" x 12"	4	0.735	18	3.309	2.13
AT	Arrastres	6	11	1	Gelatina especial 75 - 1 1/8	9	Gelatina especial 75 - 1 1/8"	6	1.074	54	10.260	2.03
							TOTAL	45	8.24	316.000	58.44	
	Total cargados	45									8.246	cebo
	Rimados	4									66.687	Total
	Alivio	5										•
	Total Perforados	54										

Tabla 6.3: Ensayo1: Zona Baja, Nivel 1020 Rampa 650

				FACTOR DE ENERGIA					
TALADROS		CAR	GA DE FON	CARGA DE COLUMNA					
	TALADRO	EXPLOSIVO	Kg	MJ/Kg	MJ	EXPLOSIVO	Kg	MJ/Kg	MJ
Arranque	4	Semexsa 65 - 1 1/2" x 12"	0.735	4.033	2.965	Semexsa 65 - 1 1/2" x 12"	6.624	4.033	26.689
1er Cuadrante	4	Semexsa 65 - 1 1/2" x 12"	0.735	4.033	2.965	Semexsa 65 - 1 1/2" x 12"	5.882	4.033	23.724
2do Cuadrante	4	Semexsa 65 - 1 1/2" x 12"	0.735	4.033	2.965	Semexsa 65 - 1 1/2" x 12"	5.147	4.033	20.758
3er Cuadrante	4	Semexsa 65 - 1 1/2" x 12"	0.735	4.033	2.965	Semexsa 65 - 1 1/2" x 12"	5.147	4.033	20.758
Ayuda de cuadrad	4	Semexsa 65 - 1 1/2" x 12"	0.551	4.033	2.224	Semexsa 65 - 1 1/2" x 12"	3.309	4.033	13.344
Ayuda de alzas	3	Semexsa 65 - 1 1/2" x 12"	0.919	4.033	3.707	Semexsa 65 - 1 1/2" x 12"	5.515	4.033	22.241
Ayud arrastre	4	Semexsa 65 - 1 1/2" x 12"	0.735	4.033	2.965	Semexsa 65 - 1 1/2" x 12"	4.416	4.033	17.809
cuadradores	8	Semexsa 65 - 1 1/2" x 12"	1.471	4.033	5.931	Semexsa 65 - 1 1/2" x 12"	8.832	4.033	35.585
Alzas	4	Semexsa 65 - 1 1/2" x 12"	0.551	4.033	2.224	Semexsa 65 - 1 1/2" x 12"	3.309	4.033	13.344
Arrastres	6	Gelatina especial 75 - 1 1/8"	1.071	4.248	4.552	Gelatina especial 75 - 1 1/8"	10.260	4.248	43.584
	45			TOTAL	26.69				237.84
						NUMERO DE TALADROS PER	FORADOS		54
FACTOR DE POTE	ICIA (Kg/1	ſM)	0.48						
						NUMERO DE TALADROS CARGADOS			45
TOTAL DE MEGA JOULE			237.84						
						TOTAL KILOGRAMOS			66.69
FACTOR DE ENERO	FACTOR DE ENERGIA (MJ/TM)								

Fuente: Elaboración propia.

6.1.2 Resultados de ensayo 1

- Se han perforado un total de 54 taladros incluyendo los rimados ,el Costo de perforación es de 2.86 \$/ton
- Se ha logrado 138 toneladas con 45 taladros cargados, no se observan tacos porque tanto la perforación como el carguío fue bien supervisado.
- Con la aplicación de 5 taladros de alivio en la corona se ha logrado controlar las periferias, no hubo sobre excavación.
- Con el uso de explosivo de alto Brisance como la Gelatina especial 75% se ha logrado conseguir la gradiente deseada.
- o Se han usado 66.68 kg de explosivo que generaron 237 Mj (1.65 Mj/ton), gran parte de esta energía se ha transformado en vibraciones que consecuentemente afectaron la estabilidad del macizo por lo que se ha optado por reducir el número de taladros y la Carga operante en las siguientes pruebas.

Tabla 6.4: Ensayo 2: Zona baja, Nivel 1020 Rampa 650

	FACTOR DE CARGA - POTENCIA											
			CEBO		CARGUIO EN E	TOTAL DE CARTUCHOS						
Nomen clatura	TALADROS	Numero Taladros	Fanel	EXPLOSIVO	Numero de Cartuchos /taladro	EXPLOSIVO	Numero de Cartuchos/taladro	СЕВО	CEBO Kg/tal	CARGUI O	CARGUI O Kg/tal	longitud de carga
AQ	Arranque	4	1,2,3,4 PC	Semexsa 80 - 1 1/8" x 8"	1	Semexsa 80 - 1 1/8" x 8"	10	4	0.608	40	6.080	2.24
PA	1er Cuadrante	4	1 LP ,2 LP	Semexsa 65 - 1 1/2" x 12"	1	Semexsa 65 - 1 1/2" x 12"	8	4	0.608	32	5.880	2.74
SA	2do Cuadrante	4	3 LP ,4 LP	Semexsa 65 - 1 1/2" x 12"	1	Semexsa 65 - 1 1/2" x 12"	8	4	0.608	32	5.880	2.74
TA	3er Cuadrante	4	5 LP	Semexsa 65 - 1 1/2" x 12"	1	Semexsa 65 - 1 1/2" x 12"	7	4	0.608	28	5.153	2.44
AC	Ayuda de cuadrad	0										
CU	cuadradores	6	6 LP	Semexsa 65 - 1 1/2" x 12"	1	Semexsa 65 - 1 1/2" x 12"	5	8	1.216	30	5.520	1.83
ΑZ	Ayuda de alzas	3	7 LP	Semexsa 65 - 1 1/2" x 12"	1	Semexsa 65 - 1 1/2" x 12"	6	3	0.552	18	3.312	2.10
AR	Ayud arrastre	5	8 LP	Semexsa 65 - 1 1/2" x 12"	1	Semexsa 65 - 1 1/2" x 12"	5	3	0.456	25	4.600	1.83
AL	Alzas	4	9 LP	Semexsa 65 - 1 1/2" x 12"	1	Exadit 45 - 7/8" x 7"	7	4	0.736	28	2.120	1.50
AT	Arrastres	6	10 LP	Semexsa 80 - 1 1/8" x 8"	1	Semexsa 80 - 1 1/8" x 8"	9	6	0.912	54	8.208	2.00
	Total taladros Carga	40				TOTAL	65	40	6.304	287	46.75	
											6.30	cebo
											53.06	TOTAL

Tabla 6.4: Ensayo 2: Zona baja, Nivel 1020 Rampa 650

									1
FACTOR DE ENERGIA									
			CARGA DE FONDO/CEBO	CARGA DE COLUMNA					
TALADROS	Numero Taladros	EXPLOSIVO	Kg	MJ/Kg	MJ	EXPLOSIVO	Kg	MJ/Kg	MJ
Arranque	4	Semexsa 80 - 1 1/8" x 8"	0.608	4.127	2.500	Semexsa 80 - 1 1/8" x 8"	6.080	4.127	25.092
1er Cuadrante	4	Semexsa 65 - 1 1/2" x 12"	0.608	4.033	2.450	Semexsa 65 - 1 1/2" x 12'	5.880	4.033	23.710
2do Cuadrante	4	Semexsa 65 - 1 1/2" x 12"	0.608	4.033	2.450	Semexsa 65 - 1 1/2" x 12'	5.880	4.033	23.710
3er Cuadrante	4	Semexsa 65 - 1 1/2" x 12"	0.608	4.033	2.450	Semexsa 65 - 1 1/2" x 12'	5.153	4.033	20.760
Ayuda de cuadrad	0								
cuadradores	8	Semexsa 65 - 1 1/2" x 12"	1.216	4.033	4.900	Semexsa 65 - 1 1/2" x 12'	5.520	4.033	20.970
Ayuda de alzas	3	Semexsa 65 - 1 1/2" x 12"	0.552	4.033	2.218	Semexsa 65 - 1 1/2" x 12'	3.312	4.033	13.340
Ayud arrastre	3	Semexsa 65 - 1 1/2" x 12"	0.456	4.033	1.839	Semexsa 65 - 1 1/2" x 12'	4.600	4.033	18.550
Alzas	4	Semexsa 65 - 1 1/2" x 12"	0.736	4.033	2.968	Exadit 45 - 7/8" x 7"	2.120	3.360	7.120
Arrastres	6	Semexsa 80 - 1 1/8" x 8"	0.912	4.127	3.76	Semexsa 80 - 1 1/8" x 8"	8.208	4.127	33.89
		-							
Taladros cargados	40					TOTAL KILOGRAMOS			53.05
Taladros de Alivio	5								
Taladros Rimados	4					FACTOR DE POTENCIA (Kg	g/TM)		0.38
Total taladros Perfo	49								
						TOTAL DE MEGA JOULE			187.14
	FACTOR DE ENERGIA (MJ/TM)						/TM)		0.94

Fuente: Elaboración propia.

6.1.3 Resultado de ensayo 2

- Se han perforado un total de 49 taladros considerando también los rimados,
 el costo de perforación es de 2.59\$/Tn
- o Por lo que se ha reducido el costo de perforación en 0.27\$ por cada tonelada respecto al disparo 1, sin embargo el costo más importante es el ahorro en el sostenimiento en razón que una mala voladura implica reforzar con 4 m3 de Shotcrete lo que se traduce en 1200 dólares adicionales.
- o En este disparo se usó 40 taladros cargados, 5 menos que el primero con una producción de 135 Tn reales, a sección y longitud completa, esto se logró con una buena supervisión de la perforación y Carguío con explosivos.
- O Se logró un mejor control de los hastiales y corona con los 5 taladros de alivio con una adecuada distribución de retardos se ha logrado atenuar las vibraciones controlando el perímetro de la sección y zonas circundantes.

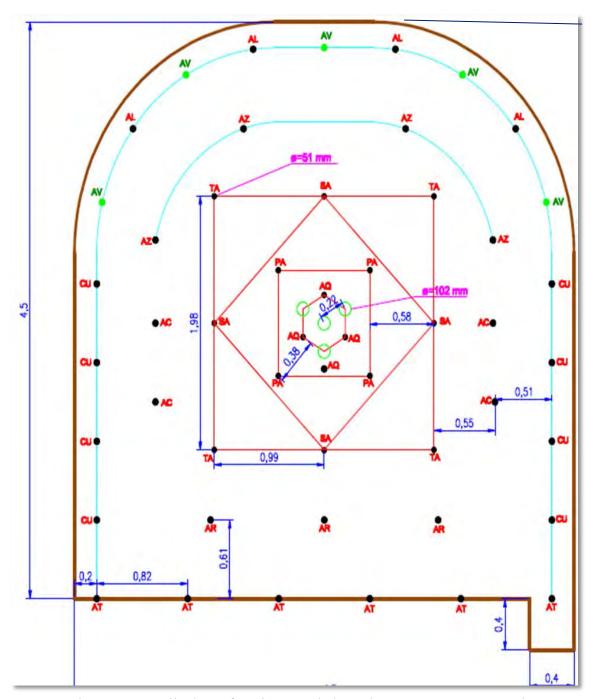


Figura: 6.1 Malla de perforación y Voladura de 4.5x4.5 en Roca regular.

Fuente: Elaboración propia.

Tabla 6.5: Resumen de los Ensayos de Voladura

ENSAYOS	SECCIÓN	VOLUMEN	TONELAJE	TOTAL DE TAL.	TAL. CARGADOS	TOTAL KG EXPLOS.	TOTAL Mj	FACTOR DE POTENCIA KG/TN	FACTOR DE ENERGIA MJ/TN
1	4 X 4	46.08 m3	138.24	54	45	66.68	237.84	0.48	1.72
2	4 X 4	46.08 m3	138.24	49	40	52.06	187.14	0.38	1.35

Finalmente para la misma Sección y Volumen, con las mismas características Geomecánicas de la roca **Observamos en el ensayo 2:**

- -Menos taladros de producción, 40 cargados y 9 de Alivio (49)
- -Menor cantidad de explosivos por mejor distribución en los taladros
- -Menor cantidad de Energía transmitida al macizo
- -Reducción del Factor de potencia, menor cantidad de explosivos
- -Reducción del Factor de Energía, menor disturbación al macizo
- -Reducción del Factor de perforación, menos taladros perforados
- -Control de la estabilidad del terreno
- -Reducción en Costos por menor aplicación de sostenimiento

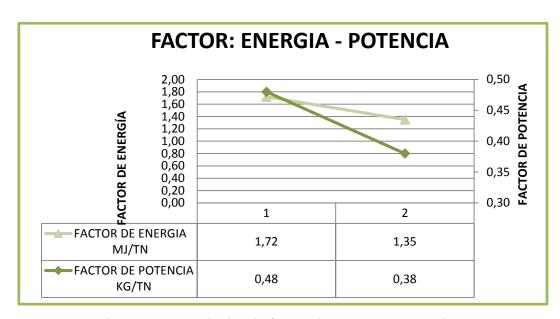


Figura 6.2 Resultados de factor de Energía y Potencia.

Fuente: Elaboración propia.

Figura 6.3: Carguío con explosivos Zona II, Nivel 1020 San Cristóbal

Fuente: Propia

6.1.4 Conclusiones de ensayos de voladura

Que se ha logrado

Para efectuar las diferentes corridas se ha establecido registrar y participar del carguío de los frentes de disparo de la Zona baja Nivel 1020, en la Rampa 650

Es fundamental tener el informe de la evaluación Geomecánica del terreno antes de iniciar cualquier actividad, de estos informes va a depender el diseño de malla para la Perforación y Voladura.

Desde el punto de vista de la seguridad se logró controlar las cajas y corona evitando sobreroturas y los posibles colapsos para tal efecto se ha usado taladros de alivio en la corona y hastiales del mismo diámetro de los taladros de producción evitando la degradación del macizo por efecto de las vibraciones causadas por sobrecargas con explosivos.

Si bien es verdad que se incrementó el Factor de perforación pero se logró reducir en un 20% de los procedimientos habituales en Instalación de soportes incluyendo horas hombre (HH).

Definitivamente se ha constatado que el requisito principal para lograr una buena voladura es realizar una buena perforación en base a un diseño de malla adecuado a las características del terreno.

Es importante recalcar que para lograr un buen resultado en Voladura se debe Supervisar la correcta perforación y el Carguío con explosivos, si alguno de estos aspectos falla no se logrará el propósito.

6.2 EVALUACIÓN DEL SOSTENIMIENTO

En base a las características geológicas, el arreglo estructural, la caracterización Geomecánica, la estimación de los parámetros de resistencia a nivel de roca intacta, discontinuidades y masa rocosa, la evaluación del estado tensional, la condición de agua subterránea que presenta la masa rocosa en San Cristóbal se tiene que los tipos de sostenimiento a aplicarse para el Control del Terreno en mina San Cristóbal serán aquellos que se encuentran precisados en la Cartilla Geomecánica Mina San Cristóbal, es necesario precisar que las dimensiones de las excavaciones sean accesos y/o labores de explotación se precisan en la cartilla, especificando tipos de sostenimiento según sea el carácter temporal o permanente de las excavaciones

El sostenimiento (soporte o refuerzo local) debe aplicarse según el carácter Temporal o permanente de las excavaciones para este propósito resulta fundamental definir el Tiempo de Autosoporte Vs abertura Máxima el cual se fundamente en el ábaco de Bieniawsky, modificada por Romana, que expone la masa rocosa en el área de interés. En la tabla se muestran las Aberturas máximas y los tiempos de autosoporte en función de la Calidad de la Masa Rocosa para Excavaciones Temporales y Permanentes.

En base a las experiencias se puede acotar desde el punto de vista Técnico Económico es favorable instalar sostenimiento en forma oportuna, indistintamente cual sea el Carácter temporal o permanente de la excavación, con la finalidad de buscar equilibrio Tenso Deformacional en la masa rocosa y evitar su Descomprensión (buscar el restablecer el equilibrio inmediato).

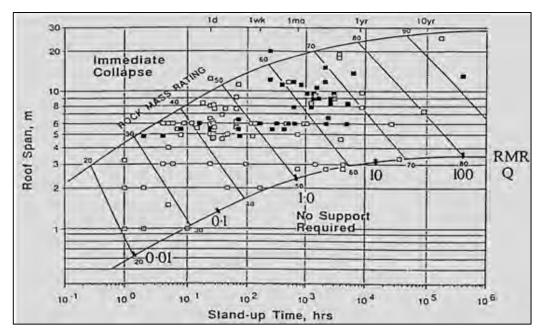


Figura 6.4 Tiempo de auto-soporte en función a la calidad de roca

Fuente: Texto Hoek Brown-Excavaciones subterráneas

Figura 6.5: Robot empernador, Boltec

Fuente: Propia, tomada en mina San Cristóbal

6.2.1 Selección de pernos

Calculo de la malla de pernos de fricción Hidrabolt con las características:

(Apuntes del Ing. Marco Flores -UNI)

Φ Perno Hidrabolt= 26mm

bs = Resistencia del acero = 420MPa

d = Diámetro del tubo inflado = 32mm

h = espesor del tubo = 2mm

Ps = Carga máxima axial que puede soportar el perno (KN)

$$Ps = \pi^*(d) (h) (bs)$$

Ps=3.1416(32mm) (2mm) (420MPa)

Ps = 84KN

Ps = 8.4Ton

Calculo de espaciamiento de pernos de anclaje:

Ps = (Densidad roca) (g) (A) (L-Lmax)

Dónde:

g: Aceleración de la gravedad(m/seg2)

A: Área (m2)

L: Longitud del perno (m) = 2.1m

Lmax = Máxima longitud de perno a ser jalada sin que se produzca rotura Lmax = 0.55m

Calculando:

$$84KN = 2.5Ton/m^3 (9.81m/s^2) (A) (2.1m-0.55m)$$

Despejando:

$$A = 2.37m^2 = E *E$$

E = 1.5m (Espaciamiento)

6.2.2 Determinación del Espesor del Shotcrete

Finalmente una formula práctica para calcular el espesor del hormigón proyectado to en cm, en función del ancho del túnel B en metros y la clasificación RSR (Rock estructure Rating) desarrollada por Wickman ET (10) es como sigue:

$$Tc = 8B (65-RSR)/150$$

En términos de RMR (RSR= 0,77RMR +12,40) es

$$Tc = 8B/150(53 - 3/4RMR)$$

Para un ancho del túnel = 4 m y RMR 53 (Zona I)

$$Tc = 8*4/150(53 - 3/4*53) \rightarrow 2.82 \text{ cm}$$
, aprox 1pulg

Para un ancho de Tunel = 4m y RMR = 43 (Zona Lidia)

$$Tc = 8*4/150 (53 - 3/4*43) \rightarrow 4.42 \text{ cm}, \text{ aprox: } 2Pulg$$

El espesor determinado para Zona Lidia es 5cm o 2", este shotcrete será diseñado con una dosificación que incluye aditivos y acelerantes de fragua por el tema del agua, lo cual hace alcanzar una resistencia aproximada de 210 kg/cm2, o su equivalente de 21 Mpa a los 7 días, alcanzando la resistencia de diseño e incrementando su resistencia en el tiempo hasta alcanzar su límite elástico; así mismo se ha indicado colocarle fibra metálica al diseño de tal forma que el comportamiento sea más estructural y mejor a los esfuerzos de tensión y compresión.

Asimismo como refuerzo adicional se ha indicado la colocación de pernos Hidrabolt de 7 pies en forma sistemática de 1.5 x1.5 m principalmente hacia la caja techo en donde el buzamiento es paralelo a la excavación principal de los sub-niveles y es en contra al eje de los paneles, en la zona de apertura de paneles intersección sistemático a 1.2 x1.2m y en la explotación de paneles a 1.8x1.8m.

CAPITULO VII

SINTESIS Y RESULTADOS DE LA EVALUACION

7.1 LOGROS ALCANZADOS

7.1.1 Geomecánica

Después de un arduo proceso a corto plazo se ha logrado entender que frente a un objetivo común es importante trabajar en interacción con las diferentes áreas de la mina como Planeamiento, Geología, geomecánica y Seguridad.

Asimismo entender que la ciencia de la Geomecánica en la industria minera tradicionalmente ha sido considerada como un asunto ligado primordialmente a la seguridad, sin embargo, además de la seguridad, hay un reconocimiento creciente sobre su impacto en los aspectos económicos de las operaciones mineras.

Dentro de las medidas tomadas en el aspecto Geomecánico materia de esta investigación podemos citar:

- Control de los esquemas y secuencias del avance del minado, en función de la evolución de la estructura de la mina, para un programa de minado operacionalmente aceptable.
- ➤ Control de las dimensiones establecidas de los tajeos y los pilares, tomando en cuenta sus ubicaciones y orientaciones respecto al arreglo estructural de la masa rocosa y a los esfuerzos actuantes.
- Control de la dirección general del avance del minado a través del cuerpo mineralizado.
- Especificar el sostenimiento temporal y permanente en base a las Cartillas geomecánicas establecidas en San Cristóbal
- ➤ Establecer Control de las medidas de estabilidad de los contornos de los tajeos, a través de la vida de trabajo del mismo, evaluando las posibilidades de fallas controladas estructuralmente desde las superficies de los tajeos y de los pilares.
- Anticipar ocurrencias de problemas de inestabilidad en las labores de extracción, debido a la densidad de las aberturas, influencia de los esfuerzos y de la voladura.

7.1.2 Perforación y voladura

Solicitando información e indicaciones del área de Geomecanica se ha logrado que el personal encargado de la Perforación realice su trazado de malla adecuándolo a las características y condiciones del terreno, controlando el paralelismo de los taladros con el uso de guiadores para perforación con Jumbos, en el caso de Simbas para Taladros largos la desviaciones son el enemigo

principal de la operación minera, es controlable pero imposible de eliminar a continuación mencionamos las causa de desviaciones de Taladros.

Tabla N° 7.1: Causa de desviaciones de taladros con simba

Causa generales	Causas principales	Causas secundarias			
Errores en la embocadura	Bushings desgastados	Orientación de los taladros			
Mal alineamiento de la viga	Pernos desgastados	Forma de la broca			
Exceso de rotación	Guías desgastadas	Forma de los insertos			
Exceso de avance	Pericia del perforista	Diámetro del taladro			
Exceso de energía del martillo		Geología			

Fuente: Manual Atlas Copco

Acciones Correctivas para control de desvío de taladros

- o Pensar en toneladas por turno, no en metros por turno (exigencia por la producción.)
- o Mantener las perforadoras en buen estado.
- o Usar brocas que correspondan con la roca.
- o Ajustar la máquina constantemente.
- o Medir y cuantificar las desviaciones.

Asimismo se ha capacitado al personal en el carguío con explosivos, considerando los tipos de taladros y la función específica de cada uno de ellos toda vez que la detonación secuencial del conjunto debe armonizar con los resultados finales. La distancia entre taladros, el tipo de arranque a usar y los taladros de alivio en la periferia y/o hastiales de la sección se diseña en función al tipo de estructura de la Zona y a las condiciones de la misma.

La distribución adecuada de los retardos de largo y Corto periodo atenúa considerablemente las vibraciones generadas por la voladura garantizando en conjunto una buena sección, avance por disparo y mínimo daño a zonas circundantes.

7.1.3 Sostenimiento

El personal mina ha sido instruido sobre principios de la Geomecanica y se ha entendido que para la instalación del sostenimiento debe realizarse en primer lugar la clasificación Geomecanica básica del macizo, para ello es necesario tener como instrumento de apoyo la Cartilla GSI de San Cristóbal elaborada para tal fin.

Asimismo por razones de seguridad quedó estandarizado que el sostenimiento será hasta el tope de la Labor sea con Shotcrete y pernos o malla y pernos; en labores de baja calidad Geomecanica se instalará pernos, malla y shotcrete hasta el tope y en las más críticas se correrá Cimbras de 2 cuerpos, separados cada 1.5 m y con base de concreto hasta una altura de 1.50 m

Se ha establecido que no habrá Límite máximo de avance, es decir labor que se dispara labor que debe ser sostenida, en otras palabras no se considera tiempo de Autosoporte en ninguna labor salvo en las zonas de Desarrollo donde la roca sea más competente, RMR > 50

El espesor del shotcrete para todas las Zona será 5cm o 2", este shotcrete será diseñado con una dosificación que incluye aditivos y acelerantes de fragua por el

tema del agua, lo cual hace alcanzar una resistencia aproximada de 210 kg/cm2, o su equivalente de 21 Mpa a los 7 días, alcanzando la resistencia de diseño e incrementando su resistencia en el tiempo hasta alcanzar su límite elástico; así mismo se ha establecido colocarle fibra de polipropileno al diseño de tal forma que el comportamiento sea más liviano y estructural y mejor a los esfuerzos de Flexión y compresión.

Asimismo como refuerzo adicional se ha estandarizado la colocación de pernos Hidrabolt de 7 pies en forma sistemática de 1.5 x1.5 m principalmente hacia la caja techo en donde el buzamiento es paralelo a la excavación principal de los sub-niveles y es en contra al eje de los paneles, en la zona de apertura de paneles intersección sistemático a 1.2 x1.2m y en la explotación de paneles a 1.8x1.8m.

Gracias a la Política de la empresa y con la contribución de los inspectores de seguridad de cada Zona, el personal de supervisión de operaciones y el personal de Geomecánica han extremado medidas en cuanto a la aplicación correcta y oportuna del Sostenimiento, en merito a ello desde Abril del 2011 hasta diciembre del 2013 no ha habido accidentes incapacitantes ni mortales en San Cristóbal por Caída de rocas.

7.1.4 Reducción de Costos

Con la aplicación de sostenimiento Robotizado en mina San Cristóbal y teniendo en consideración que San Cristóbal es una mina antigua y trabaja en Vetas y Cuerpos se tenía una capacidad ociosa de equipos de producción por la baja productividad en sostenimiento y un alto índice de accidentabilidad durante su

instalación por lo que se optó por la adquisición de equipos Robot tanto para el lanzado de Shotcrete, para el desate mecánico y para la instalación de pernos.

Consecuentemente la producción se elevó en un 25% debido a la dinámica de la explotación por la rápida colocación del soporte con los equipos Robot; los accidentes disminuyeron notablemente debido a la poca exposición de personal y a la eficiencia de estos equipos.

7.1.4.1 Evaluación de Costos de Sostenimiento

Tabla 7.2: Costo sostenimiento con equipo Aliva

COSTO DE SOSTENIMIENTO CON ALIVA								
Seccion(3.5*3.5 <i>m</i> ²)	12.25							
Estandar de lanzamiento	de Shotcrete (n	n³/dia):		6				
Calculo de m^3 de shocrete	e para sostener	una area dete	rminada:					
Formula:	₹r*e							
donde : H =altura de labo	А	= ancho de la	labor L	=longitud o av	ance			
R= rugocidad = 1.4	r=rebote=1.2 e=	espesor=2"=	0.05m					
Area sostenida m^2/m^3	de shotcrete :			12				
Area sostenida /dia:	72							
Avance sost. m/dia:	7							
Dens. Min.(ton/m^3):	3							
produccion /dia (ton):	257.25							
valor min.(\$/ton):	50							
valor total(\$):	12862.5							
Beneficio Bruto:(\$)	12263							
Costos	arena(m^3)	sica(It)	fibra(kg)	cemento(kg)	scoop3.5yd3	(hr)	servicio(hr)	total(\$)
(\$)	100	0.5	1	0.24	60		1	
consumo/m3	1	6	20	42	0.16		1.6	
costo/m3	100	3	20	10.08	9.6		1.6	144.28
costo/6m3	600	18	120	60.48	57.6		9.6	865.68

Fuente: Geomecánica San Cristóbal

Tabla 7.3: Costo de sostenimiento con Split set y Malla

COSTO DE SOSTENER CON SPLIT SET Y MALLA								
Sección(3.5*3.5m2)	12.25							
Estandar de instalacion de	e pernos/dia:			45				
Standart de instalacion de	malla(m2)/dia:			45				
Area sostenida/dia:	45							
Avance sost. m/dia:	5							
Dens. min.(ton/m3):	3							
Produccion/dia(ton):	183.75							
Valor min.(\$/ton):	50							
Valor total(\$):	9187.5							
Beneficio Bruto:(\$)	8534.3							
Costos	instal.split(u)	inst.malla(m2)	servicio(hr)	total(\$)				
consumo/elemento	7	7.4	0.8					
costo/elemento(\$)	45	45	6.5					
costos totales	315	333	5.2	653.2				

Fuente: Geomecanica San Cristóbal

Tabla 7.4: Costo de sostenimiento con Robot Shocreteros

Seccion(5*5m	2):				25
Estandar de la	40				
Calculo de m3	de shotcrete p	ara sostener u	n area determin	ada:	
Formula :		m3= (2H+A) *l	.*R*r*e		
donde : H = alt	tura de labor A	=ancho de la la	abor L=long	gitud o avance	
R= rugocidad :	=1.4	r=rebote=1.2 e	=espesor=2" =0.	05m	
Area sostenida (m2/dia):		800			
Avance sost.(m/dia)		32			
Dens.min.(ton/m3):		3			
Produccion/dia(ton):		2400			
valor min.(\$/t	valor min.(\$/ton):				
valor total(\$):		120000			
Beneficio Bruto:(\$)		107988			
Costos		lanzado(m3)	concreto(m3)	servicios(hr)	total(\$)
costos unitarios(\$)		180	120	1	
consumos/dia		40	40	12	
costos totales(\$)		7200	4800	12	12012

Fuente: Geomecanica San Cristóbal

Tabla 7.5: Resumen de Beneficios de las alternativas de Sostenimiento

ESTANDARES	Shotcrete con Aliva	Split Set Malla	Robot Shotcretero		
Estándar de instalación día	6 m3	45 m2	40 m3		
Área sostenida m2/día	72	45	600		
Avance sostenido m/día	7	5	32		
Densidad del mineral Tn/m3	3	3	3		
Producción ton/día	257.25	183.75	2,400		
Valor de mineral \$/ton	50	50	50		
Valor Total \$/día	12,862.50	9,187.50	120,000		
Costo del elemento \$/día	865.68	653.20	12,012		
Beneficio Bruto \$/día	12,263.00	8,534.30	107,988		
\$/TMS	3.37	3.55	5.01		
Personal	36	216	4		

Fuente: Geomecanica San Cristóbal

Beneficios adicionales con Robot Shotcretero:

- Proporciona Mayor estabilidad al terreno por la aplicación rápida y eficiente.
- Mayor seguridad por el poco personal expuesto y dinamismo aplicado
- Mayor eficiencia por la mejor adherencia del shotcrete con fibras al sustrato

De las alternativas mostradas elegimos el sostenimiento robotizado porque:

- Nos permite producir hasta 2400 TMS/día, solo con Shotcrete.
- Menor cantidad de mano de obra, poca exposición de personal a zonas de peligro.
- Labores seguras y sostenidas en el menor tiempo.
- Costo 5.01 \$/TMS

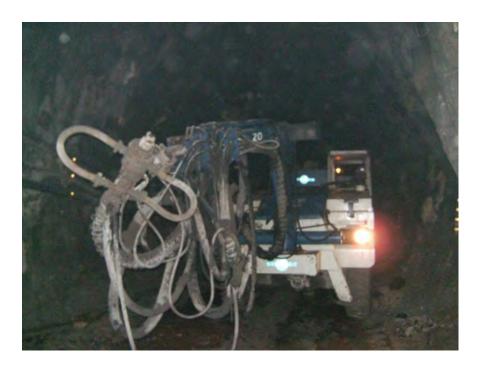


Figura 7.1: Equipo Robot lanzador de Shotcrete

Fuente: Elaboración propia.

7.1.5 Reducción de accidentes

Gracias a la política agresiva de la Empresa en lo que a seguridad se refiere y a la voluntad de invertir en equipos Robots y con el aporte de esta investigación se ha logrado reducir notablemente los accidentes por caída de rocas, prueba de ello es que desde abril del 2011 hasta la fecha no se ha reportado accidentes incapacitantes y/o fatales en la Unidad.

Se ha logrado asimismo hasta el 19 de diciembre del 2013 la cifra de 2'014,380 HH sin accidentes incapacitantes en San Cristóbal.

Cabe recordar que en Febrero del 2010 tuvimos un fatal por caída de rocas con la EE Incimmet y en Abril del 2011 otro fatal por caída de rocas esta vez a personal de Volcan.

La alta mecanización como el uso de Scaller para desatado mecánico de rocas, Los Robots empernadores y lanzadores de Shotcrete no solo han optimizado el ciclo de minado sino que han permitido reducir el número de accidentes por la baja exposición de personal.

CAPITULO VIII

INSTRUMENTACIÓN GEOMECÁNICA

8.1 CONTEXTO DE LA MINA SAN CRISTÓBAL

La profundización de la Explotación subterránea en San Cristóbal , debido a la ocurrencia de mineralización económica en profundidad ,la presencia de espacios abiertos (tajos ,cámaras ,accesos) generados por el minado intenso , la aplicación del desmonte como relleno en los tajos y el diseño de los accesos (rampas) realizado en la caja techo de las estructuras mineralizadas representan condiciones adversas que implican un incremento significativo de los Riesgos asociados a los esfuerzos y deformaciones en la masa rocosa.

En este escenario existe la imperiosa necesidad de incorporar técnicas y herramientas de precisión que permitan una Gestión Geomecánica eficiente a través de permitir Auscultar , medir y monitorear los fenómenos (esfuerzos y deformaciones) que ocurren en la masa rocosa a fin de poder diseñar estrategias adecuadas para minimizar los posibles impactos negativos (control de pérdidas).

Según evaluaciones realizadas a la masa rocosa y considerando las necesidades propias de la Mina, describiremos brevemente los sistemas de Instrumentación Geomecánica aplicables a las condiciones de la mina San Cristóbal. En este contexto en el presente acápite se provee información referente a la forma y distribución adecuada de los sistemas de instrumentación, se precisan algunas especificaciones de los sistemas que se adecuan para Auscultar-medir y monitorear las condiciones de esfuerzos, deformaciones y otros fenómenos naturales e inducidos que se presentan en la masa rocosa y su implicancia en la estabilidad de las excavaciones.

Los beneficios de implementar la Instrumentación Geomecánica Básica en San Cristóbal permitirán entre otros aspectos:

- La implementación de un sistema compatible y con 100% de operatividad que actúe como preventivo de riesgo
- La aplicación de instrumentación adecuada y específica para auscultar ,medir y monitorear los fenómenos que se presentan en la masa rocosa y plantar respuestas numéricas que permitan mitigar, minimizar y/o eliminar los impactos (control de pérdidas)

8.2 OBJETIVOS

La instrumentación Geomecánica es amplia, en el sentido de que cada instrumento posee determinadas características y reacciona de acuerdo a su sensibilidad dando respuestas que deben ser interpretadas adecuadamente. En

este contexto los objetivos, de la instrumentación geomecánica para los alcances del estudio en términos generales buscan:

- Predecir las condiciones de riesgo antes , durante y después de la ejecución de la mina
- ➤ Interpretar las condiciones de riesgo inherentes en la estructura y dar solución a las respuestas negativas
- ➤ Valida los resultados favorables de los elementos de sostenimiento aplicados para el efecto de la estabilidad
- Generar respuestas numéricas a las acciones naturales o inducidas de la estructura
- > Implementar modelos instrumentales para el monitoreo de otras áreas vulnerables a la inestabilidad.

8.3 INSTRUMENTACIÓN GEOMECÁNICA APLICABLE

La instrumentación geomecánica aplicable a las necesidades de la mina San Cristóbal se resume en los siguientes acápites

Monitoreo con extensómetro de cinta digital.- Es una técnica rápida y económica para el monitoreo de las deformaciones externas, debido a su gran sensibilidad es posible determinar la aceleración de la deformación, expresándolo en términos de tiempo-deformación-estabilización.

Figura 8.1: Extensómetro para medir convergencias en túneles

- Aplicación del perno externo Roofex.- Es un sistema de sostenimiento que absorbe los movimientos de la masa rocosa, el cual disipa la concentración de esfuerzos que serán liberados a través de la deformación e la roca.
- Especialmente diseñados para los efectos de deformación y liberación violenta de energía. El objetivo de la aplicación de este tipo de sostenimiento es de captar deformaciones y desplazamientos del macizo rocoso, teniendo siempre una capacidad constante de soporte. La respuesta esperada es la deformación –sostenimiento constante y el control visual, puesto que la medición de la deformación es hecha por indicadores que el perno posee, externa o internamente dependiendo de la accesibilidad.

8.4 APLICACIÓN EQUIPOS PARA EL CONTROL DE CALIDAD DE SOSTENIMIENTO

Es necesario un programa de control de calidad de los sistemas de sostenimiento aplicables en la mina. Por lo tanto será de gran importancia la implementación de equipo Pull-Test (para ensayo de la resistencia a la Tracción en los pernos de roca) y el caso de Shotcrete es necesario el control de espesores aplicados y ensayos de laboratorio de muestras para determinar las resistencias a la Tracción, Compresión y Flexotracción.

Adicionalmente, para los trabajos de mapeos geomecánicos se recomienda la implementación de equipos y accesorios que permitan al personal del departamento de geomecánica realizar trabajos de mayor precisión y estimaciones Insitu de algunos parámetros de la masa rocosa.

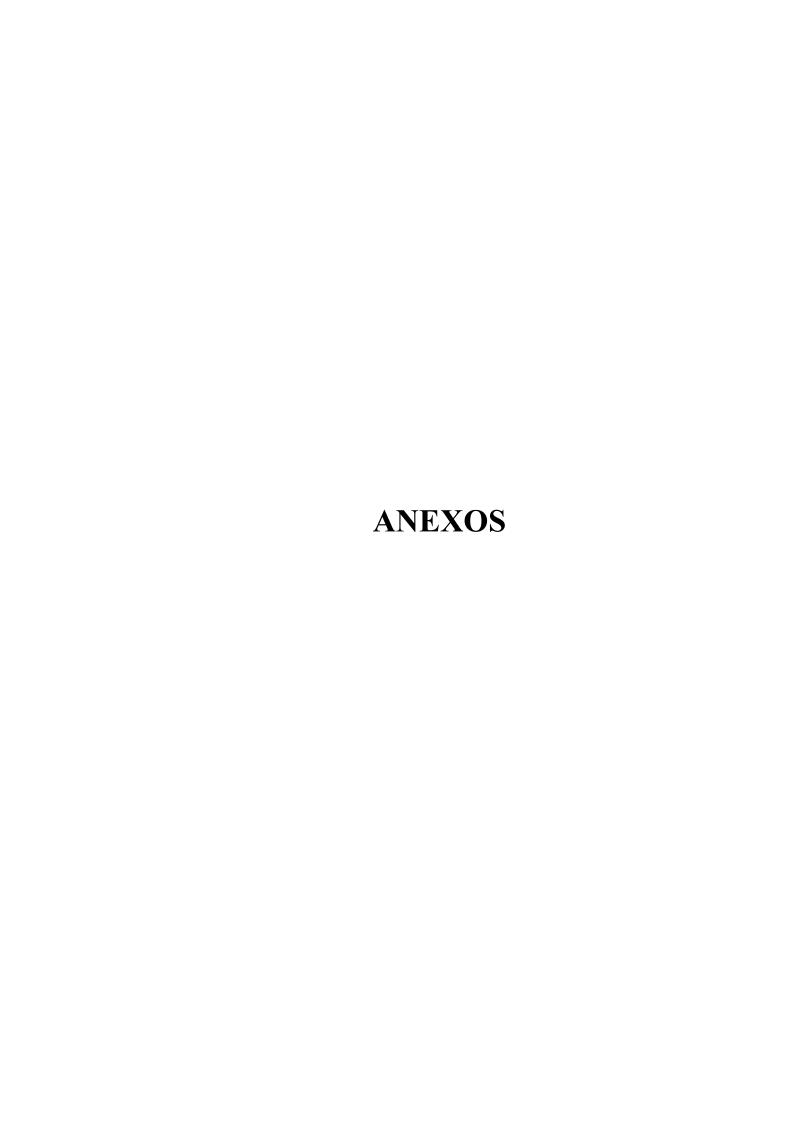
Entre estos equipos y accesorios destacan según prioridad Martillo de Rebote para estimación de la Resistencia a la Compresión de la roca; Perfilómetro-Rugómetro para estimación del Coeficiente de Rugosidad de Juntas (JRC), Distánciometros Láser para definir las progresivas durante el mapeo Geomecánico.

Para el control de la calidad en la aplicación del shotcrete se deberán implementar el uso obligatorio de calibradores (para ver el espesor del revestimiento), técnicas de medición y control de Rebote, dotar los equipos de protección personal adecuados a toda la cuadrilla de lanzadores de shotcrete.

Para la instalación de malla electrosoldada se deben incorporar el uso de gatas neumáticas y/o Hidráulicas que permitan minimizar los riesgos de accidentes durante su instalación.

CONCLUSIONES

- Hasta el 19 de diciembre del 2013 se ha logrado alcanzar 2'014,380 HH sin accidentes incapacitantes en San Cristóbal por la política incisiva de la empresa en reducir accidentes y por la aplicación de la prevención de accidentes por caída de rocas, materia de investigación.
- 2. Las causas de accidentes por caída de rocas eran ocasionadas en su mayoría por la escaza supervisión de las labores más críticas y la poca voluntad de tomar medidas preventivas antes que las correctivas ante eminentes y potenciales riesgos.
- 3. La aplicación correcta y continua de las herramientas de Gestión como el IPERC y las Capacitaciones permanentes han contribuido en gran manera a la reducción de accidentes incapacitantes y fatales.
- 4. Asimismo la alta mecanización de las operaciones ha permitido reducir ostensiblemente el índice de accidentabilidad por la poca exposición de personal a los peligros y riesgos inherentes de las operaciones y han permitido aplicar mayor dinámica al ciclo de minado incrementando la productividad.


- Mediante una supervisión eficaz se ha logrado la aplicación correcta y oportuna del sostenimiento minimizando el riesgo de accidentes por Caída de Rocas
- 6. Para el desatado de rocas en secciones mayores a 4.5x4.5m se está usando el Desatador mecánico Scaller, este equipo debe ser operado por personal capacitado en calidad de roca a fin de aplicarle la percusión adecuada al terreno para no desestabilizarlo, sin embargo aún se adolece de un mantenimiento mecánico.
- 7. Las operaciones unitarias de perforación y voladura constituyen una actividad crucial en el minado subterráneo, de la calidad de la perforación va a depender en gran parte una buena voladura y de este proceso, la poca o gran perturbación del macizo especialmente cuando se aplica voladuras a gran escala como Taladros largos.
- 8. Finalmente no se debe cometer el error de adjudicar la inestabilidad de grandes áreas de la mina, como son los tajeos de explotación, a las vibraciones causadas por las voladuras. El efecto de estos es puntual sobre la roca que se dispara y se aminora a medida que nos alejamos del frente de disparo esto se comprueba en el Campo.
- 9. La eficiencia de un Robot Lanzador de Shotcrete es por lo menos 5 veces más que los equipos manuales; si una Aliva demora 3 horas para lanzar 4m³ de Shotcrete, un Robot lanza el mismo volumen en 40 minutos. Sin embargo las resistencias finales con la Aliva son aceptables por lo que su uso siempre es necesario en zonas puntuales e inaccesibles para el Robot.

- 10. Definitivamente el IPERC (Identificación de Peligros, Evaluación de Riesgos y Control) es una herramienta de gestión que constituye un instrumento inseparable del personal, seria recomendable continuar capacitando al personal de mina en el llenado correcto del formato y su aplicación precisa para que sea efectiva.
- 11. Se ha incluido en el Sistema de Gestión de Seguridad una programación anual de capacitaciones en temas Geomecanica básica y desatado de rocas en forma semanal por personal interno sin descuidar las charlas de seguridad durante el reparto de guardia.
- 12. Otros temas importante que se debe abordar son : Seguridad basada en el Comportamiento y Supervisión Eficaz debido a que las causa de accidentes son generalmente por Factores Humanos ; estos cursos deben ser dictados por profesionales de Instituciones de prestigio tales como: Isem, Uni, Cetemin.
- 13. Asimismo se debe contratar periódicamente a Profesionales o Consultoras especializadas en Geomecánica e Hidrogeología para realizar estudios profundos a nivel Local y Global del macizo rocoso
- 14. Durante el desatado manual de rocas si las excavaciones sobrepasan los límites de la sección 4.5x4.5m se debe recurrir necesariamente a los
- 15. Desatadores mecánicos (Scaller) y si no hay disponibilidad de estos equipos es mejor bloquear la labor con cinta roja hasta nuevo aviso sin arriesgar la seguridad del personal.
- 16. Antes de los disparos se recomienda Supervisar tanto la Perforación como el Carguío con explosivos en todos los frentes de desarrollo y producción, pues

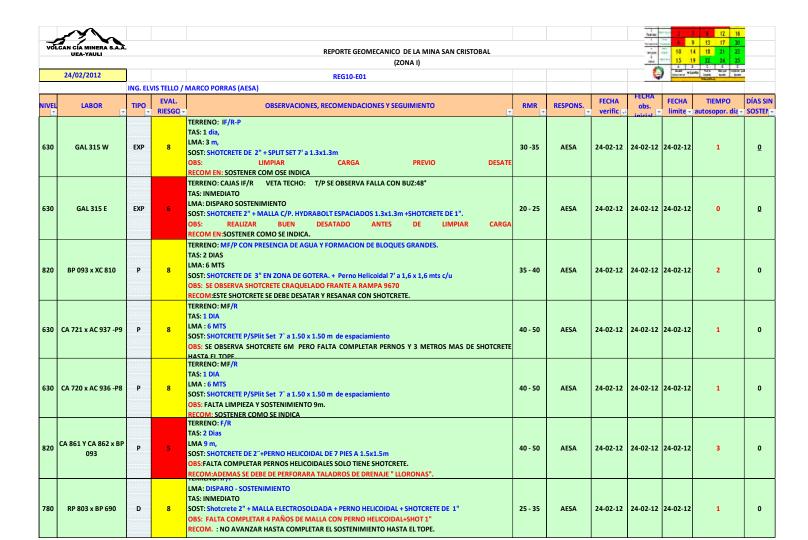
- la calidad de la Voladura va a depender de la eficiencia de estas dos actividades.
- 17. A fin de no elevar los niveles de vibraciones por voladura es imprescindible distribuir bien las cargas en el tiempo de salida y no crear condiciones desfavorables como lo es por ejemplo detonar dos frentes instantáneamente, lo que se traduciría en una sumatoria de tiros por retardo.
- 18. El número de taladros de un frente puede calcularse de acuerdo a Fórmulas empíricas los cuales solo sirven como referencia, en la práctica sobre todo en terrenos difíciles como la Zona Lidia Nv 730, se recomienda perforar los taladros de contorno a 0.30 mt del límite de la sección perimetral e incrementar la distancia entre ellos en un 30% y reducir la longitud de carga hasta en 50%.
- 19. La instalación de Sostenimiento con Robot lanzadores de Shotcrete y empernadores debe ser adecuada y oportuna, sin embargo, cuando parte de los equipos se encuentran en mantenimiento mecánico o esperando repuestos de Lima se recomienda coordinar con las Empresas especializadas a fin de aplicar mayor dinámica a las operaciones priorizando las zonas criticas
- 20. Finalmente, debemos entender que el uso de equipos Robot han dinamizado la producción e incrementado la Seguridad del personal pero la eficiencia y operatividad de estos equipos está directamente relacionada a un buen mantenimiento mecánico predictivo y preventivo. Se deben adecuar más talleres en interior mina para tal fin.

BIBLIOGRAFIA

- 1. EXSA, Manual práctico de Voladura del 1 al 23.
- 2. HOECK Y BROWN, 1985 Excavaciones Subterráneas en Roca.
- ING DAVID CÓRDOVA ROJAS Geomecanica en el Minado Subterráneo,
 Tesis Magister .UNI año 2008.
- ING JOSÉ MAURICIO CORIMANYA Mecánica de rocas aplicada a la Seguridad Minera-Tesis Magister, año 2003.
- INTERNATIONAL SAFETY TRAINING AND TECHNOLOGY COMPANY SUR ÁFRICA, Identificación de Peligro y evaluación de riesgos-IPER, 1era. Edición 1999.
- IPERC, DS 055-2010-EM, Seguridad y salud ocupacional en minería, Titulo III,
 Capitulo 8, Arts. 88-92.
- 7. LÓPEZ JIMENO Y P GARCÍA, Manual de Perforación y Voladura, Octubre 201
- ROBLES ESPINOZA NERIO, Excavación y sostenimiento de túneles en roca,
 Perú 1994.
- SEMMCO, Manual de operación y mantenimiento, Robot Alfa 20 Jesús A.
 Pascual de Blas Vibraciones producidas por voladuras. Medición, control y regulación legal ISSN 0378-3316 N° 343,200 Pág 38-43.

Inspección a Cuadrilla de desatado de Rocas (Tun. Perú)

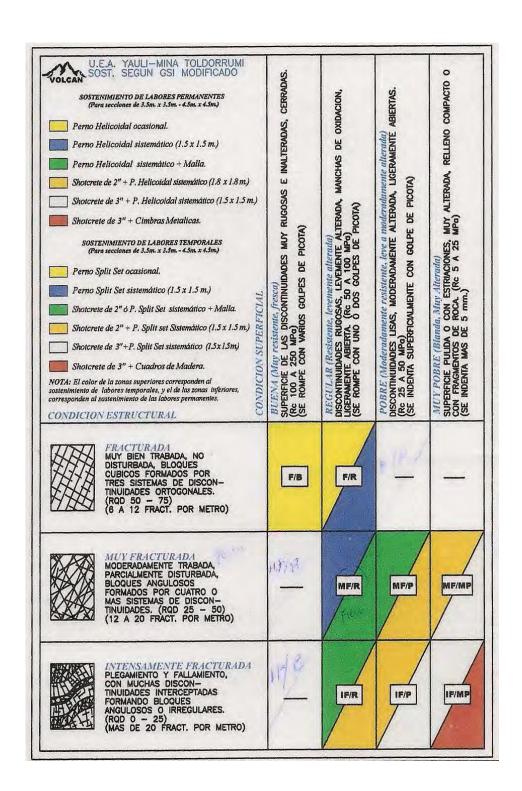
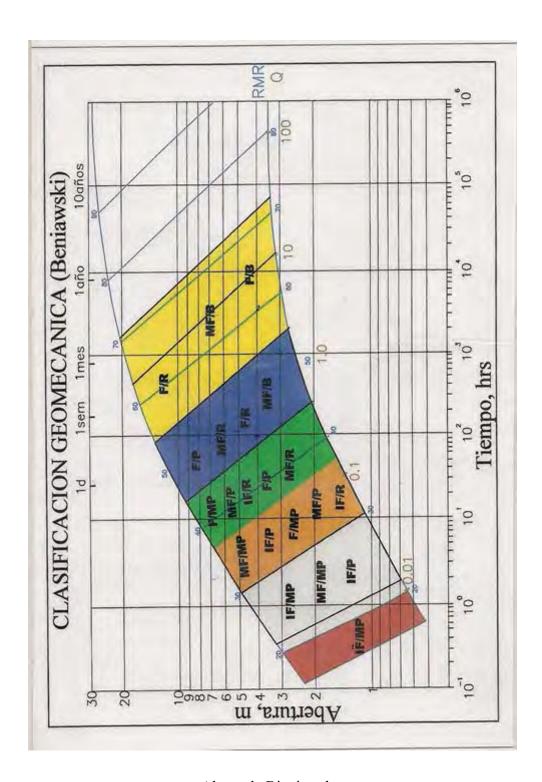
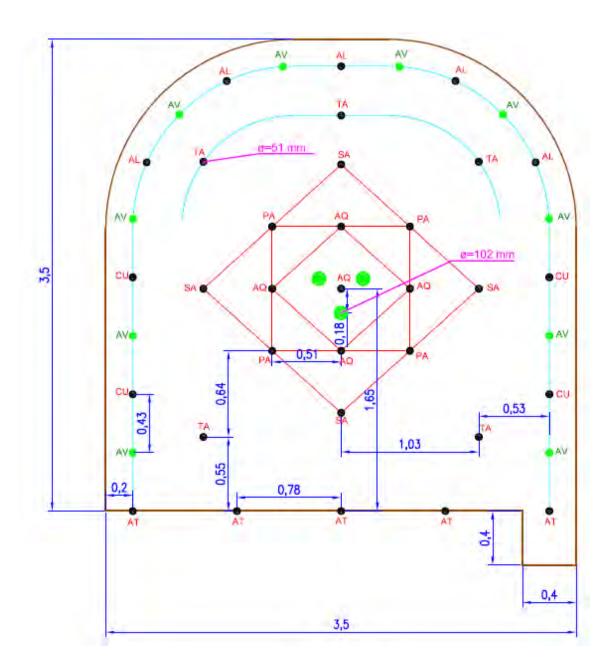
Planta de EE Robocon en Mina San Cristóbal, se aprecia los Mixer Hurones y los Robot Alfa.

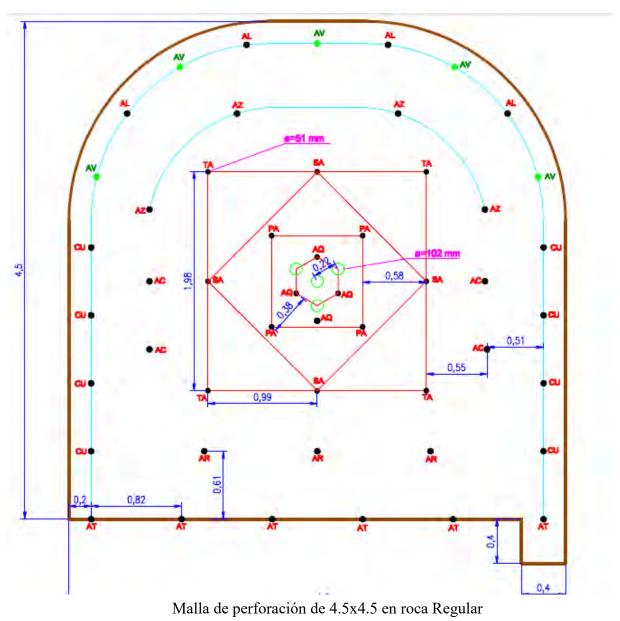

Equipo de empernadores con Boltec (Robot para empernados)

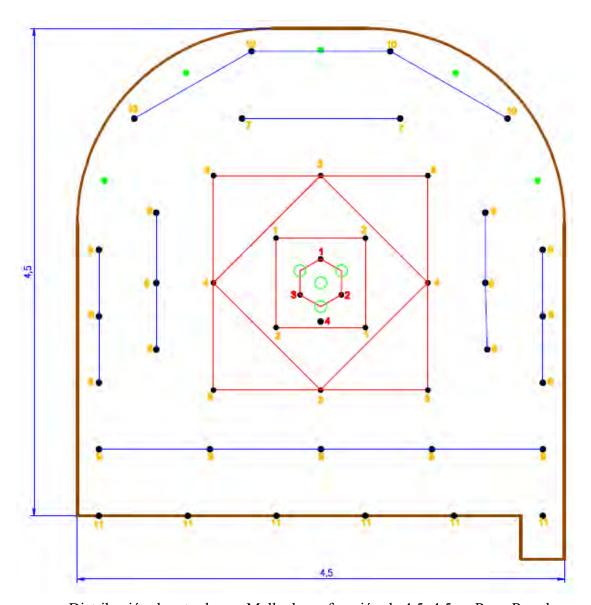
Robot empernador con asistente mecánico de EE Sandvic.

FORMATO DE INSPECCIONES GEOMECANICAS

				REPORTE GEOMECANICO DE LA MINA SAN CRISTOBAL (LIDIA)				1 Dario Catastrárico cutomino 1 Dario mayor Fetalidad 3 Dario Permanente moderado	1 2 4 3 5 8 6 9 13	7 11 12 16 17 20	
	24/02/2012				REG10-E0	1		Temporal monor	0 14 18	21 23	
GEOMECANICOS:		s: ING. ELVIS TELLO / DONNY LAURENTE (INCIMMET)					1				
NIVEL	LABOR	TIPO	EVA L.	OBSERVACIONES, RECOMENDACIONES Y SEGUIMIENTO	RMR	RESPONS	FECHA verific	obs.	FECHA	TIEMPO autosopor.	DIAS SIN
730	SN 225N	EX	6	TERRENO: IF/R LMA: DISPARO - SOSTENIMIENTO TAS: INMEDIATO SOSTENIMIENTO: SHOTCRETE DE 2"+ PERNO SPLIT SET DE 7 PIES OBS: SE A DISPARADO SIN ANTES COMPLETAR SOSTENIMIENTO CON PERNOS SPLIT SET DE 7 PIES.	30 - 40	VOLCAN	24-02-12	24-02-12	24-02-12	Inmediato	0
730	AC 494	PR	6	TERRENO: T/P LMA: DISPARO - SOSTENIMIENTO TAS: INMEDIATO SOSTENIMIENTO: SHOTCRETE DE 2"+ MALLA C/P.HYDRABOLT DE 7 PIES + SHOTCRETE DE 1".	20 - 25	VOLCAN	24-02-12	24-02-12	24-02-12	Inmediato	0
730	SN 485 S	EX	6	TERRENO: IF/R LMA: DISPARO - SOSTENIMIENTO TAS: INMEDIATO SOSTENIMIENTO: SHOTCRETE DE 2" + PERNOS SPLIT SET DE 7 PIES A 1.3x1.3m OBS:SECCION DE LA LABOR 6.0x5.0m, SE OBSERVA ADEMAS QUE LA LABOR TIENE	35 -40	VOLCAN	24-02-12	24-02-12	24-02-12	Inmediato	0
730	SN 485 N	EX	6	TERRENO: IF/R LMA: DISPARO - SOSTENIMIENTO TAS: INMEDIATO SOSTENIMIENTO: SHOTCRETE DE 2" + PERNOS SPLIT SET DE 7 PIES A 1.3x1.3m OBS:SECCION DE LA LABOR 5.6x4.3m, SE OBSERVA ADEMAS QUE LA LABOR TIENE	35 -40	VOLCAN	24-02-12	24-02-12	24-02-12	Inmediato	0
730	AC 010	PR	6	TERRENO: IF/R LMA: DISPARO - SOSTENIMIENTO TAS: INMEDIATO SOSTENIMIENTO: SHOTCRETE DE 2"+ PERNO SPLIT SET DE 7 PIES OBS:TIENE SHOTCRETE PERO FALTA COMPLETAR CON SPLIT SET UN TRAMO DE 15M	30 - 40	VOLCAN	22-02-12	22-02-12	22-02-12	Inmediato	0
730	AC 748	PR	9	TERRENO: IF/R LMA: DISPARO - SOSTENIMIENTO TAS: INMEDIATO SOSTENIMIENTO: SHOTCRETE DE 2"+P SPLIT SET DE 7 PIES A 1.5x1.5m OBS:AL TOPE TIENE SHOTCRETE PERNO LE FALTA COMPLETAR 10 mPERNOS SPLIT	30 - 40	VOLCAN	22-02-12	22-02-12	22-02-12	Inmediato	0


Tabla Geomecánica GSI



Abaco de Bieniawsky

Malla de perforación de 3.5x3.5 en roca mala

Distribución de retardos en Malla de perforación de 4.5x4.5 en Roca Regular