UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA

PROCESO DE ENSAMBLE DE TUBERIA DE HIERRO DUCTIL PARA UNA PLANTA DE TRATAMIENTO DE AGUA POTABLE

INFORME DE SUFICIENCIA

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO MECÁNICO

CARLOS ALBERTO SAMANIEGO MINAYA

PROMOCIÓN 2007-II

LIMA-PERU 2011

TABLA DE CONTENIDOS

Pro	ólogo	1
1.	Introducción	4
	1.1. Antecedentes	4
	1.2. Objetivos	6
	1.3. Alcance	7
	1.4. Limitaciones	7
	1.5. Justificaciones	7
2.	Generalidades	8
	2.1. Antecedentes Generales	8
	2.1.1. La empresa contratista	8
	2.1.2. El propietario del proyecto	9
	2.1.3. El proyecto	9
	2.1.4. Planta de Tratamiento de Agua Potable	11
	2.2. Marco Teórico	15
	2.2.1. Tubería de Fierro Fundido Dúctil	15
	2.2.1.1. Características	17
	2.2.1.2. Normativa	19

	2.2.2. Conce	eptos Generales de Soldadura	19
	2.2.2.1.	Soldadura como unión metálica	19
	2.2.2.2.	Naturaleza de las superficies metálicas	20
	2.2.2.3.	Características de los procesos de soldadura	21
	2.2.3. El Fie	erro Fundido Dúctil y su soldabilidad	24
	2.2.3.1.	Método de soldadura del Fierro Fundido Dúctil	24
	2.2.3.2.	Características de la Soldadura	25
3.	Planteamiento de	e la necesidad del proyecto	27
	3.1. Antecentes		27
	3.1.1. Alcar	ce del área electromecánica en el proyecto	28
	3.1.1.1.	Actividades del taller de ensamblaje de bridas para la	
		Planta de Tratamiento de Agua Potable	30
	3.1.1.2.	Estado de suministro para el proyecto y oportunidades	32
	3.1.1.3.	Ventajas del ensamble de tubería bridada	33
4.	Proceso de ensar	mble	35
4.1. Etapas del proceso de ensamble			35
	4.1.1. Corte	e de tubería	38
	4.1.2. Arma	ado Tubería - Bridas	38
	4.1.3. Solda	adura de bridas	39
	4.1.4. Acab	oado de la unión soldada	40
	4.1.5. Cont	rol de Calidad	41

4.2. Planificación de Recu	irsos para el proceso de ensamble	44
4.2.1. Recursos Huma	anos	44
4.2.1.1. Persona	ıl del taller de ensamble	44
4.2.2. Implementació	n del taller de ensamble	47
4.2.3. Materiales		48
4.2.3.1. Materia	lles del proceso de Corte	49
4.2.3.2. Materia	les del proceso de soldadura	50
4.2.3.3. Materia	ales del proceso de acabados	51
4.2.3.4. Materia	ales Control de Calidad	52
5. Estructura de Costos		54
5.1. Costos de implement	ación	54
5.1.1. Implementació	on del equipo de trabajo	54
5.1.2. Implementació	on del equipo de trabajo	56
5.1.3. Costos para pr	oceso de corte	57
5.1.4. Costos para pr	oceso de soldadura	58
5.1.5. Costos para pr	oceso de acabado	59
5.1.6. Costos para Co	ontrol de Calidad	60
5.1.7. Resumen de co	ostos totales de producción	61
Conclusiones		63
Recomendaciones		65
Bibliografía		66

PROLOGO

El proyecto de ampliación y mejoramiento del sistema de agua potable de la ciudad de Iquitos, tenía proyectado dentro de su alcance, la construcción de una planta de tratamiento de agua potable ubicada en el sector conocido como Pampa Chica en la Provincia de Maynas, Departamento de Loreto a una altitud de 106 msnm. La mencionada planta tiene una capacidad de tratamiento de 700 l/s, y entre las instalaciones hidráulicas de los diferentes procesos cuenta con tuberías de fierro fundido dúctil.

El objetivo del presente informe describir los procesos de implementación y ejecución del procedimiento de ensamble de tubería bridada de fierro fundido dúctil para las instalaciones hidráulicas requeridas en los procesos de la planta de tratamiento de agua potable y se desarrollara en 5 capítulos.

En el **capitulo uno**, se presenta la introducción del informe, los antecedentes, objetivos y alcances.

En el **capitulo dos**, se brinda la información sobre la Entidad Prestadora de Servicios de agua potable y alcantarillado de Loreto – E.P.S.SEDALORETO y la empresa contratista Odebrecht Perú Ingeniería y Construcción, se realiza una breve descripción de los procesos de la planta de tratamiento de agua potable en la cual serán utilizados las tuberías a ser ensambladas, así como también el marco teórico con definiciones importantes sobre los procesos tratados en el informe.

En el **capitulo tres**, se describe la situación en la que se encontraba el proyecto, el alcance de la obra y la magnitud del trabajo que se realizara con el taller de ensamblaje, además de las oportunidades que brinda el proyecto y las ventajas de realizar el trabajo conforme lo planteado.

En el capitulo cuatro, se describen e indican los procesos que intervienen en el proceso de ensamble propuesto, además se realiza la planificación de personal necesaria de acuerdo a los procesos del ensamble, la implementación en equipos y materiales del taller de ensamble, se hace una estimación de los materiales necesarios, según la necesidad inicialmente indicada, se han estimado los materiales individualmente por cada proceso del ensamble.

En el **capitulo cinco**, se presenta los costos para la realización del ensamble de la tubería de la Planta de Tratamiento de Agua Potable, se ha realizado la estimación de los costos por cada proceso y al final se presenta un cuadro resumen de los costos totales por brida.

Finalmente se plantea las conclusiones y recomendaciones para el proceso de ensamble desarrollado, además en la parte final se presenta el material bibliográfico de consulta y los anexos finales referidos a las normas mencionadas en el presente informe.

CAPITULO 1 INTRODUCCIÓN

1.1 Antecedentes

En el Proyecto: "Ampliación y Mejoramiento del Sistema de Agua Potable de la ciudad de lquitos", las Instalaciones Hidráulicas de la Planta de Tratamiento de Agua Potable, habían sido concebidas para ser ejecutadas con tuberías de acero soldadas, lo que hacía que se requiera, tubos y accesorios de acero para poder formar los sistemas de tuberías de distribución hidráulica de la instalación.

El suministro de estos materiales, tomaba tiempos mayores a consecuencia de ser importados; así mismo, la variedad de longitudes de niples bridados y tipos de accesorios, hacía más difícil contar con un suministro oportuno.

En tales circunstancias, luego de una evaluación del Planeamiento Estratégico por Objetivos, aplicando el método de la matriz FORD (Fortalezas, Oportunidades, Riesgos y Debilidades) Fortalezas y Debilidades de la empresa en obra versus Oportunidades y Riesgos del Entorno, se determino como primera medida, que una

solución de proyecto de ingeniería resultaría en una mejora de productividad, además de tener el control sobre los plazos de suministro y cumplimiento del contrato.

Es así como se planteo la ejecución de todos los trabajos de Instalaciones Hidráulicas de la Planta de Tratamiento de Agua Potable, no sea en Tubos y Accesorios de Acero si no en Tubos y Accesorios de Fierro Fundido Dúctil, logrando mejores plazos de suministro y mayor productividad en el montaje por tratarse de una Instalación Bridada y con fabricación nacional.

Para garantizar, la fabricación de los niples bridados, se contrato esta actividad a empresas nacionales de suministro de niples bridados de Fierro Fundido Dúctil, pero por razones propias del mercado surgió un costo de oportunidad aprovechado por los fabricantes con representación nacional, encareciendo el costo de la fabricación de los niples y nuevamente llevándonos a un terreno en donde perdía el control del tiempo de suministro y ponía en riesgo el costo de estas actividades. Ante tales circunstancias, de sucesos dinámicos normales en la ejecución de una obra, se organizo un taller en obra, que se encargue del ensamble de la tubería requerida por las instalaciones hidráulicas de la Planta de Tratamiento de Agua Potable, implementando un programa de seguimiento y control en el área de la calidad. En consecuencia, desarrollando la aplicación de suplemento para el equipo de Instalación y Montaje, normalmente no utilizado en la empresa (por su preferencia por la tercerización de empresas especializadas), se superaron los niveles de productividad de fabricación de los niples requeridos, recuperando

nuevamente el control de costo y tiempo de suministro, que fueran afectados por las variaciones dinámicas del mercado y de la obra.

Cabe destacar, que inicialmente estas actividades se sub contrataron con una empresa especializada, que por diferentes razones, no cumplió, poniendo en riesgo el cumplimiento de los objetivos de la empresa en esta obra.

Finalmente las Instalaciones Hidráulicas y la obra en general, fueron realizadas, dentro del Plazo Contractual, con costos menores a los costos previstos y con la calidad esperada.

1.2 Objetivo

1.2.1 Objetivo General

Utilizar en la Planta de Tratamiento de Agua Potable tubería bridada de Fierro Fundido Dúctil en lugar de tubería de acero, por sus ventajas operativas y de productividad para su montaje.

1.2.2 Objetivo Especifico

Describir los procesos necesarios para la implementación y ejecución de un proceso de ensamble para tuberías de Fierro Fundido Dúctil bajo los requerimientos de las instalaciones hidráulicas de la Planta de Tratamiento de Agua Potable proyectada.

1.3 Alcances

El presente informe está orientado a describir y comprender los diferentes procesos que intervienen en la implementación y ejecución del proceso de ensamble de tuberías de Fierro Fundido Dúctil.

1.3 Limitaciones

El presente informe se limita al trabajo de ensamble, que se limita a los procesos de implementación y ejecución del ensamble de la tubería bridada de Fierro Fundido Dúctil de las instalaciones hidráulicas de la Planta de Tratamiento de Agua Potable.

1.4. Justificaciones

Los distintos escenarios que se pueden presentar en los proyectos y sobre todo la situación del entorno en el momento de la ejecución, podria originar que las consideraciones tomadas en cuenta en el presente informe tengan que ser analizadas en el entorno en el que se pretendan aplicar nuevamente.

El escenario en el cual se desarrollo la obra, era adverso en cuanto a la logística del proyecto, no solo por lo poco accesible del lugar del proyecto, sino también por las circunstancias del panorama mundial que se presento en esa oportunidad.

CAPITULO 2 GENERALIDADES

2.1. Antecedentes Generales

2.1.1. La empresa contratista

departamento de Arequipa.

Odebrecht es una organización de origen brasileño integrada por negocios diversificados, con actuación y patrones de calidad globales. Se instituyo como compañía en 1944, el grupo está presente en Sudamérica, América Central y el Caribe, Norteamérica, África, Europa y el Medio Oriente Constructora Norberto Odebrecht inició su actuación internacional en Perú en 1979 con la construcción de la Central Hidroeléctrica Charcani V en el

En sus 31 años en Perú, Odebrecht viene participando en costa, sierra y selva en las principales obras que se ejecutan en el país: Carreteras, plantas de tratamiento de agua y desagüe, alcantarillado sanitario, centrales hidroeléctricas, obras de irrigación, túneles, presas, silos para almacenamiento y montaje electromecánico.

La Sucursal de Perú, con miras a su total identificación con el país, fue transformada en abril de 2003 en Odebrecht Perú Ingeniería y Construcción

S.A.C., constituyéndose en empresa nacional conforme con la legislación peruana habilitada para participar en licitaciones nacionales e internacionales con una capacidad de contratación de US\$ 732 millones.

En su trayectoria, Odebrecht Perú ha contado con la participación de 21 000 integrantes y ha ejecutado obras con montos de inversión por más de 1600 millones de dólares, logrando el financiamiento por más del 30 % de esta cifra.

2.1.2. El propietario del Proyecto

La Entidad Prestadora de Servicios de Saneamiento de agua potable y alcantarillado de Loreto S.A. – E.P.S. SEDALORETO S.A., es la empresa prestadora de los servicios básicos de Agua Potable y Alcantarillado a la población de la Región Loreto.

E.P.S. SEDALORETO S.A tiene como fin supremo, asegurar la salud y el nivel socio económico de las poblaciones: captación, producción, y distribución de agua potable; recolección y disposición del alcantarillado; y disposición sanitaria de excretas.

2.1.3. El proyecto

Hasta el año 1991, el Sector de Saneamiento Básico en nuestro país, no contaba con un marco orientador regulador para dicho sector. Sobre la base

del diagnóstico realizado por el Gobierno Peruano con apoyo del Banco Interamericano de Desarrollo en el primer trimestre del año 1992 se formuló el Programa de Apoyo a la Reforma del Sector Saneamiento (PARSSA), culminándose con la suscripción del Préstamo Nº 847/OC-PE

En el marco del programa de apoyo a la reforma del sector saneamiento – PARSSA del Ministerio de Vivienda, Construcción y Saneamiento, se concibe la realización del proyecto que tiene los siguientes antecedentes.

Durante los años 1996 y 1997, la firma consultora CES – AQUA PLAN Asociados elaboro el estudio de factibilidad del plan de expansión de Mínimo Costo de los sistemas de agua potable y alcantarillado de la ciudad de Iquitos. Entre los años 1998 y 2000, la firma consultora BCEOM-OIST Asociados desarrollo el Estudio Definitivo del Plan de Expansión de Mínimo Costo (Proyecto Integral) de los Sistemas de Agua Potable y Alcantarillado de la ciudad de Iquitos.

En septiembre del año 2001, el Gobierno de Perú y el Banco de Japón para la Cooperación Internacional (JBIC), suscribieron el Contrato de Préstamo PE-P29 para la ejecución del proyecto de Mejoramiento y Expansión de los Sistemas de Abastecimiento de Agua Potable y Alcantarillado de las ciudades de Iquitos, Cusco y Sicuani, que implementa los estudios definitivos de dichas ciudades.

El proyecto en la ciudad de Iquitos comprenden la rehabilitación y ampliación de las redes de agua potable, así como también la construcción de reservorios

elevados y la construcción de una nueva planta de tratamiento de agua potable.

La planta de tratamiento de agua proyectada para la ciudad de Iquitos, tendrá una capacidad de tratamiento para un caudal de 700 l/s (nominal), y se ubicara sobre la cota 106 m.s.n.m. en los terrenos de EPS SEDALORETO S.A. en la que actualmente se encuentra su planta de tratamiento existente.

2.1.4. Planta de Tratamiento de Agua Potable

El diseño está basado en un funcionamiento hidráulico de sus unidades, complementado por sistemas eléctricos de mando para el control del accionamiento de válvulas, bombas de agua, supresores de aire (lavado de agua/aire de los filtros), compresoras y sistema de cloración requeridos para la operación y mantenimiento de la planta.

Las principales instalaciones de la planta se muestran en el plano de Distribución General de la planta el cual se encuentra en los anexos del presente informe.

Las principales instalaciones hidráulicas de la planta son las siguientes:

Cámara de Válvulas

Ubicada al ingreso de la planta en la que se instalara la válvula para el control del caudal del tratamiento.

Lugar donde se encuentra ubicado el vertedero regulable que proporciona la energía requerida para la mezcla de la solución coagulante y el agua cruda. El

Estanque de ingreso, Aforador de Caudales y Mezcla Productos Químicos

lugar de la aplicación de coagulantes se realiza antes del resalto hidráulico

originado por el vertedero. Además se encuentra en esta zona el medidor de

nivel ultrasónico y cuenta con un sistema de medición manual.

Unidad de Dosificación

La unidad de dosificación cuenta con seis (06) estanques para mezcla de Sulfato de Aluminio, suspensión de Cal y solución de polímeros que se mezclan de manera mecánica mediante mixturadores.

En esta instalación se tienen instalaciones hidráulicas de Fierro Fundido Dúctil, para el sistema de drenaje de los tanques.

Floculadores

El proceso de floculación permite el crecimiento y conservación de los flocs formados mediante una agitación lenta hasta el ingreso a la siguiente unidad de tratamiento.

El floculador es de flujo vertical y funcionamiento hidráulico, consiste en una estructura de concreto armado de forma rectangular en las cuales se instalaran pantallas de madera recubierta. Cada unidad tratara un caudal de 350 l/s.

Decantadores Laminares

Los decantadores serán cuatro (04) sedimentadores de funcionamiento hidráulico, están diseñados para un flujo del tipo laminar, con sedimentación sobre placas inclinadas, y su estructura será de forma rectangular y de concreto armado.

El sistema de drenaje de los decantadores laminares está compuesto también por tubería de fierro fundido dúctil para la evacuación de las tolvas de lodo de esta instalación.

Filtros

El diseño de los filtros, contempla un funcionamiento con una tasa constante de filtración, con lecho de arena y lavado con aire y agua. La estructura será de forma rectangular y de concreto armado.

Lavado de filtros

Para el lavado de filtros se recurrirá a un sistema combinado de agua y aire para realizar este procedimiento.

Galería de Filtros y Sala de Control y Operación

Aquí se encuentran las tuberías para el lavado de filtros (agua y aire), un canal de agua filtrada desde el cual se tomara el caudal necesario para el lavado de filtros, cloración y limpieza.

Edificio de Equipos de Bombas y Cloración

Se ubican en este lugar los equipos de bombeo, de agua, aire y cloración, el cual cuenta con tres (03) ambientes:

Sala de Bombeo de agua

Se ubican las bombas de lavado de filtros, cloración y servicios.

Sala de Inyección de aire

Se ubica el equipo de inyección de aire (supresor) y también la compresora de accionamiento de válvulas.

Sala de Dosificación de Cloro

En esta sala se instalaran los equipos de Dosificación de Cloro y de Distribución para la planta proyectada y para la Pre Cloración (si es necesaria).

Edificio de Almacén de Cloro

El almacén para los cilindros con cloro, contigua a la sala de cloración, está equipado con un sistema de dosificación y pesaje de los cilindros. Además está equipado con un sistema de detección de fugas con alarma acústica y visual.

Reservorios de almacenamiento de Agua Tratada

Dos reservorios gemelos de concreto armado y de 2500 m³ de capacidad cada uno, para el almacenamiento del agua tratada en la nueva planta potabilizadora proyectada.

Estación de Bombeo Nueva

La caseta de bombeo es la estructura de superficie para albergar los equipos de bombeo y las instalaciones electromecánicas de superficie que sirven para la impulsión del agua potabilizada hacia los reservorios que forman parte del proyecto.

2.2. Marco Teórico

2.2.1 <u>Tubería de Fierro Fundido Dúctil</u>

La historia de la tubería es la historia de la civilización. Ningún otro producto ha contribuido tanto para la salud y el confort de las personas de las grandes ciudades del mundo. Comenzando con la tubería de arcilla cruda de los tempranos días de Babilonia, 4000 años A.C., ha habido un esfuerzo constante para llegar a lo ideal – una tubería que pudiera fabricarse en forma económica y la cual perdurase bajo tierra.

La primera tubería auténtica de hierro fundido fue instalada en Alemania en 1455 y conducía agua al Castillo Dillenberg. En algún tiempo entre 1664 y 1688 los franceses instalaron una tubería con un diámetro aproximado de 400mm y un largo de 8,000m. que iba a la ciudad de Versalles. La primera tubería de hierro fundido que se instaló en Londres fue instalada alrededor del año 1746. Parece ser que en los Estados Unidos fue en la Ciudad de Filadelfia en la que se usó la primera tubería de hierro fundido en el año de 1804. Las tuberías anteriores se manufacturaban de madera. La tubería de hierro fundido

que se usó en Filadelfia vino de Inglaterra, la cual tenía juntas espiga - campana y venía en tramos de 3mts.

Desde los orígenes de la tubería de fierro fundido, su desarrollo para dar servicio bajo tierra ha mostrado un crecimiento constante. Hoy en día se encuentra en todas partes del mundo. En los países de Europa y en América, las ciudades más grandes tienen miles de kilómetros de tubería de hierro fundido.

El evento más importante en la historia de la tubería fue el desarrollo de Fierro Fundido Dúctil en 1948. En un período relativamente corto la tubería de hierro fundido ha ganado una amplia aceptación. Las especificaciones para el uso de Fierro Fundido Dúctil han aumentado al grado de que toda la tubería de hierro que se ha instalado en los últimos años, ha sido de Fierro Fundido Dúctil, y la tubería de hierro gris ya no se fabrica. Las mejoras en los métodos de vaciado, el procesado y la tecnología metalúrgica están, en forma continua, produciendo tubería de calidad superior, que es capaz de satisfacer las necesidades específicas del siglo 21 y más allá.

La introducción comercial de tubería de Fierro Fundido Dúctil en 1955, proporcionó a la industria de servicios una tubería que tiene esas mismas características, más una mayor resistencia y flexibilidad.

Reconocido como uno de los desarrollos metalúrgicos más importantes en este siglo, el Fierro Fundido Dúctil ha tenido un impacto que va en aumento en muchas industrias. El Fierro Fundido Dúctil tiene ductilidad – como su

nombre lo implica – y además de esto, tiene una resistencia a la tensión y al impacto que es mucho mayor que la del hierro gris; sin embargo, retiene la probada resistencia a la corrosión del hierro gris, lo que lo hace el material ideal para tubería.

2.2.1.1 Propiedades y Características

Gran resistencia a la flexión.

El Fierro Fundido Dúctil se comporta con una gran flexibilidad antes de fallar. La habilidad del Fierro Fundido Dúctil para deformarse bajo carga, aumenta grandemente su capacidad de momento de flexión.

Soporta cargas de aplastamiento severas.

Las cargas de tráfico extremas, relleno pesado, o movimientos de la tierra causados por sismos, congelamiento y deshielo y las presiones por expansión de la tierra, transmiten tremendas cargas a las tuberías bajo tierra. Las pruebas de flexión, las pruebas de flexión libre, y lo más duro de todo, las pruebas de anillo, las cuales determinan la habilidad que tiene la tubería para resistir cargas concentradas, muestran la superioridad de la tubería de Fierro Fundido Dúctil.

Resistente a la corrosión.

Numerosas pruebas de laboratorio y de campo han probado que la resistencia de la tubería de Fierro Fundido Dúctil contra la corrosión es igual o mayor a la del hierro fundido gris, que ha servido a un buen

número de organismos de servicio de agua de los EUA por más de 150 años, sin que la tubería lleve protección externa. En la mayoría de los suelos, el Fierro Fundido Dúctil no la necesita. En áreas de suelos altamente corrosivos, un recubrimiento sencillo, económico de manga de polietileno ha proporcionado a la tubería una protección excelente contra de la corrosión.

Resistencia al impacto.

En prueba tras prueba, el Fierro Fundido Dúctil ha mostrado una gran resistencia al impacto. La rudeza de la tubería de Fierro Fundido Dúctil hace que esta sea mucho menos vulnerable a sufrir daños debidos a un manejo inadecuado o condiciones anormales de servicio. Y trabaja bajo condiciones de tráfico pesado, en ambientes de suelos no estables, en donde otros materiales pudiesen fallar debido a las tensiones causadas por cargas excesivas.

Resistencia a la presión

La gran resistencia que la tubería de Fierro Fundido Dúctil tiene antes de reventarse, la hace ideal para aplicaciones de altas presiones. Esto proporciona un factor adicional de seguridad en contra del golpe de ariete.

19

2.2.1.2 Normativa

Para la denominación de la tubería de Hierro Dúctil y las bridas

utilizadas en los procesos de ensamble de tuberia requerida por el

proyecto. La norma utilizada para estos materiales ha sido la siguiente:

CODIGO: NTP ISO 2531:2001

CODIGO: NTP-ISO 7005-2

Ambas normas se encuentran integras en los anexos 01 y 02

respectivamente del presente informe.

2.2.2 Conceptos Generales de Soldadura

2.2.2.1 La soldadura como unión metálica

El primer paso hacia la comprensión de los procesos de soldadura lo

constituye el análisis de los fenómenos, que intervienen cuando se

produce el contacto de dos superficies sólidas.

Para ello recordemos, que los metales están constituidos por granos.

Cada uno de éstos es a su vez un arreglo periódico especial de átomos,

que da origen a lo que conocemos como retícula cristalina.

Si consideramos ahora un átomo cualquiera en el interior de un grano,

el mismo se halla ligado a sus vecinos por fuerzas de enlace, que

caracterizan a estos sólidos. Sin embargo, resulta evidente que los

átomos metálicos, que se encuentran en la superficie libre, no podrían

completar sus enlaces. Si en estas condiciones ponemos en adecuado

contacto dos superficies de este tipo, se establecerán dichos enlaces,

constituyendo la superficie así formada algo equivalente a un límite de grano. Es la posibilidad de reproducir este fenómeno en forma controlada, lo que da origen a los procesos de soldadura.

2.2.2.2 Naturaleza de las superficies metálicas

En la explicación anterior hemos considerado dos superficies metálicas planas, ideales como para que se establezca un empalme perfecto entre ellos. Sin embargo, las superficies metálicas raramente se encuentran en ese estado, lo que impide en la práctica la reproducción del proceso ya descrito.

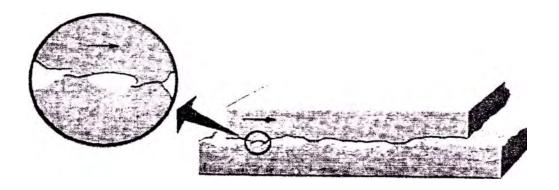


Imagen 2.1 – Superficies en contacto

Para comprender los procesos reales, es necesario analizar las características de las superficies reales, tal como ocurren en la naturaleza. Cualquier superficie real examinada en la escala atómica es extremadamente irregular. Está constituida por picos y valles variables entre unos doscientos diámetros atómicos correspondientes a las

superficies más perfectas que el hombre puede preparar, hasta cien mil diámetros atómicos para superficies desbastadas.

Dado que estas irregularidades se encuentran distribuidas al azar, es sumamente improbable que poco más que algunos átomos se pongan en contacto necesario para que experimenten fuerzas de atracción sensibles.

Otro impedimento, que se presenta para lograr la soldadura ideal, lo constituye la presencia inevitable de capas de óxido y humedad adheridas a las superficies metálicas.

De este análisis surgen las dificultades, que se presentan para lograr una unión metálica adecuada al poner dos cuerpos en contacto. Sin embargo, la ciencia de la Soldadura se ocupa de estudiar los medios prácticos, para producir uniones átomo a átomo a través de superficies metálicas preexistentes y en un número suficiente para otorgar resistencia mecánica satisfactoria.

Los recursos empleados para lograr este objetivo nos permitirán hacer una clasificación de los procesos de soldadura.

2.2.2.3 Procesos de soldadura

Soldadura por presión

Este método agrupa todos los procesos de soldadura en los que se aplica presión sin aportación de metales para realizar la unión. Algunos procedimientos coinciden con los de fusión, como la

soldadura con gases por presión, donde se calientan las piezas con una llama, pero difieren en que la unión se hace por presión y sin añadir ningún metal. El proceso más utilizado es el de soldadura por resistencia; otros son la soldadura por fragua, la soldadura por fricción y otros métodos más recientes como la soldadura por ultrasonidos. La selección del proceso más favorable, adecuado y económico de soldadura presupone el conocimiento de la manera de ejecutarla y sus peculiaridades.

Soldadura por fusión

Este tipo agrupa muchos procedimientos de soldadura en los que tiene lugar una fusión entre los metales a unir, con o sin la aportación de un metal, por lo general sin aplicar presión y a temperaturas superiores a las que se trabaja en las soldaduras ordinarias. Hay muchos procedimientos, entre los que destacan la soldadura por gas, la soldadura por arco y la aluminotérmica. Otras más específicas son la soldadura por haz de partículas, que se realiza en el vacío mediante un haz de electrones o de iones, y la soldadura por haz luminoso, que suele emplear un rayo láser como fuente de energía.

Soldadura por gas

La soldadura por gas o con soplete utiliza el calor de la combustión de un gas o una mezcla gaseosa, que se aplica a las superficies de las piezas y a la varilla de metal de aportación. Este sistema tiene la ventaja de ser portátil ya que no necesita conectarse a la corriente eléctrica. Según la mezcla gaseosa utilizada se distingue entre soldadura oxiacetilénica (oxígeno/acetileno) y oxihídrica (oxígeno/hidrógeno), entre otras.

Soldadura por arco

Los procedimientos de soldadura por arco son los más utilizados, sobre todo para soldar acero, y requieren el uso de corriente eléctrica. Esta corriente se utiliza para crear un arco eléctrico entre uno o varios electrodos aplicados a la pieza, lo que genera el calor suficiente para fundir el metal y crear la unión.

La soldadura por arco tiene ciertas ventajas con respecto a otros métodos. Es más rápida debido a la alta concentración de calor que se genera y por lo tanto produce menos distorsión en la unión. En algunos casos se utilizan electrodos fusibles, que son los metales de aportación, en forma de varillas recubiertas de fundente o desnudas; en otros casos se utiliza un electrodo refractario de volframio y el metal de aportación se añade aparte. Los procedimientos más importantes de soldadura por arco son con electrodo recubierto, con protección gaseosa y con fundente en polvo.

2.2.3 El Fierro Fundido Dúctil y su Soldabilidad

Los hierros fundidos son aleaciones de hierro, carbono y silicio, en las que generalmente también están presentes elementos como fósforo, azufre, manganeso, etc. Su contenido de carbono normalmente es mayor al 2%, estando comprendido entre 2,5 a 4,5%. Se caracterizan por adquirir su forma definitiva directamente por colada, no pudiéndose someter estas aleaciones a procesos de deformación plástica en frío ni caliente.

2.2.3.1 Método de soldadura del Fierro Fundido Ductil

Para aplicar este método de soldeo, debe precalentarse la pieza a 250°C, temperatura que se debe mantener durante todo el proceso para evitar posibles fisuras, tanto en el metal base como en el metal depositado.

El precalentamiento debe ser aplicado de acuerdo a las dimensiones de la pieza. Si ésta es de pequeñas dimensiones, debe aplicarse a toda la pieza; y si es grande, sólo localmente, precalentando una área de 400 mm alrededor de la costura.

Deben depositarse cordones cortos en piezas rígidas. Igualmente es conveniente realizar el trabajo en posición semi-vertical ascendente con un ángulo equivalente a 15 grados de inclinación.

En este método se emplean los mismos electrodos del método en frío, como el AWS A5.15-90, electrodos de Ni, los que nos dejan un recubrimiento homogéneo muy fino y perfectamente maquinable.

2.2.3.2 Características de la Soldadura

Normas:

AWS A5.15-90

DIN 8573

E Ni-Cl

E Ni BG 23

Análisis Químico del Metal Depositado (%):

C: 0.30

Mn: 0.10

Si: 0.15

Ni: 0.45

Características:

- Electrodo cuyo depósito es de alto contenido de níquel.
- Los depósitos de soldadura son maquinables.
- Las soldaduras realizadas con este electrodo están libres de porosidades y fisuras.
- Material de alta ductibilidad, mayor a la de los fierros fundidos.

- Para obtener soldaduras de óptima calidad es necesario limpiar, la superficie a soldar, para que esté exenta de pintura, grasa, aceite, etc.
- Electrodo que utiliza bajos amperejes para su fusión.

Propiedades Mecánicas:

Resistencia a la Tracción 297 N/mm²

Dureza HV 160

Aplicaciones:

- Para unir o rellenar piezas de fierro fundido gris, nodular o maleable.
- Para soldar carcazas, impelentes de bombas, compresoras, válvulas, cajas de reductores.
- Para recuperar bases de maquinaria y soportes.
- Para reparación de elementos de máquina, cárters, bancadas, culatas, etc.
- Recomendable para unir aceros estructurales o aceros fundidos con piezas de fierro fundido.
- Para recuperar engranajes y ruedas dentadas.
- Para matrices de fundición.
- Para reparar defectos y rajaduras en piezas de fundición.

CAPITULO 3 PLANTEAMIENTO DE LA NECESIDAD DEL PROYECTO

3.1. Antecedentes

El estado de evolución en que el tema se hallaba antes de las medidas adoptadas era el siguiente:

- a. El sub contratista especializado contratado para estos trabajos, desde
 Agosto a Diciembre del 2007, no había comprometido prácticamente
 ningún suministro.
- b. El suministro de tubos y accesorios de acero, tomaría 3 meses FOB y luego se requería transporte desde Fábrica (Chile, Venezuela) al Puerto del Callao y de allí a Iquitos.
- c. Los niples y accesorios en acero, requerían de un proceso de arenado y pintado en forma interna y externa, de acuerdo a los estándares

internacionales. Proceso que no estaba contemplado en el suministro de fábrica.

- d. El soldado de algunos elementos en obra, requería que la Obra Civil este inconclusa, dejando pendientes trabajos de concretos de segunda fase en el montaje para efectuar la soldadura en obra.
- e. La soldadura sobre cabeza (parte exterior inferior de los tubos) requería de soldadores calificados y con este tipo de soldadura el rendimiento es menor.
- f. En conclusión los retrasos en los suministros requerían de tiempo no controlado por el contratista, el transporte desde el exterior se complicaba y el montaje se hacía más difícil, con menores rendimientos y mayor costo.

3.1.1. Alcance del Área Electromecánica en el proyecto

Forman parte del alcance de las obras electromecánicas dentro de la Planta de Tratamiento de Agua Potable proyectada, los siguientes aspectos:

Equipamiento en Ingreso Mezcla y Floculadores

Instalaciones Hidráulicas en Caja de Ingreso a Planta de Tratamiento.

Sistema de Drenaje para Floculadores.

Instalaciones Hidráulicas en Decantador.

Filtros.

Equipamiento para Bombas de Lavado de Filtros.

Instalaciones Hidráulicas para Sistema de Bombeo de Agua Filtrada.

Instalaciones Hidráulicas en Galería del Sistema Hidráulico de

Equipamiento para Bombeo de Aire en el Lavado de Filtros.

Instalaciones Hidráulicas para Bombeo de Aire en el Lavado de Filtros.

Instalaciones neumáticas para el sistema de Aire Comprimido.

Equipamiento en Sala de Bombeo para Agua de Servicios.

Instalaciones Hidráulicas en Sala de Bombeo para Agua de Servicios.

Equipamiento en Sala de Bombas para Sistema de Cloración.

Instalaciones Hidráulicas en Sala de Bombas para Sistema de Cloración.

Suministro e Instalación de Equipos y Accesorios para Dosificación de Cloro.

Instalaciones hidráulicas en Sala de Dosificación de Cloro.

Suministro e Instalación de Tuberías y Accesorios para el Sistema de Agua de Servicio.

Suministro e Instalación de Equipos de Edificio de Reactivos.

Instalaciones Hidráulicas en Edificio de Reactivos.

Suministro e Instalación de Equipo para el Sistema de Medición en la Salida de Agua Tratada.

Conexión entre la Salida de Agua Tratada de la Planta y Reservorio, para Cloración y Almacenamiento.

Suministro e Instalación de Grupos Electrógenos en Casa de Fuerza, Sistema de tuberías y Equipos para combustible.

3.1.1.1 <u>Actividades del taller de ensamblaje de bridas para la Planta de</u> <u>Tratamiento de Agua Potable</u>

La actividad principal del taller de ensamble es la preparación de las tuberías y niples con sus bridas para el montaje dentro de las instalaciones hidráulicas de la planta.

DECANTADORES

ITEM	DESCRIPCION	CANTIDAD
1	BRIDA DE ACERO, PN16, DN 300 mm	32
2	BRIDA DE ACERO, PN16, DN 150 mm	96

Tabla 3.1 – Bridas zona de decantadores

FILTROS

ITEM	DESCRIPCION	CANTIDAD
1	BRIDA DE ACERO, ROMPE-AGUA, DN 600 mm	6
2	BRIDA DE ACERO, ROMPE-AGUA, DN 400 mm	12
3	BRIDA DE ACERO, ROMPE-AGUA, DN 250 mm	6
4	BRIDA DE ACERO, PARA SOLDAR, DN 600 mm	6
5	BRIDA DE ACERO, PARA SOLDAR, DN 400 mm	56
6	BRIDA DE ACERO, PARA SOLDAR, DN 250 mm	50

Tabla 3.2 – Bridas zona de filtros

EDIFICIO DE DOSIFICACION DE REACTIVOS

ITEM	DESCRIPCION	CANTIDAD
1	BRIDA DE ACERO, ROMPE-AGUA, DN 100 mm	36
2	BRIDA DE ACERO, PARA SOLDAR, DN 100 mm	12

Tabla 3.3 – Bridas zona de dosificación de reactivos

EDIFICIO TECNICO LINEA IMPULSION LAVADO DE FILTRO

ITEM	DESCRIPCION	CANTIDAD
1	BRIDA DE ACERO, PARA SOLDAR, DN 400 mm	16

Tabla 3.4 – Bridas zona de lavado de filtros

REMODELACION ESTACION DE BOMBEO EXISTENTE

ITEM	DESCRIPCION	CANTIDAD
1	BRIDA DE ACERO, PARA SOLDAR, DN 400 mm	20
2	BRIDA DE ACERO, PARA SOLDAR, DN 500 mm	4
3	BRIDA DE ACERO, PARA SOLDAR, DN 60 mm	4

Tabla 3.5 – Bridas zona de estación de bombeo existente

ESTACION DE BOMBEO

ITEM	DESCRIPCION	CANTIDAD
1	BRIDA DE ACERO, PARA SOLDAR, DN 60 mm	8
2	BRIDA DE ACERO, PARA SOLDAR, DN 600 mm	10
3	BRIDA DE ACERO, PARA SOLDAR, DN 800 mm	4
4	BRIDA DE ACERO, PARA SOLDAR, DN 400 mm	40
5	BRIDA DE ACERO, PARA SOLDAR, DN 500 mm	18

Tabla 3.6 – Bridas zona de estación de bombeo

3.1.1.2 Estado del suministro para el proyecto y oportunidades

a. El suministro de tubos y accesorios en Fierro Fundido, se reducía a dos semanas, a partir del cual se recibía en forma continua, de acuerdo a un cronograma de prioridades, establecido en concordancia con el avance de la obra civil.

- b. Los niples, bridas y accesorios, venían con su protección anticorrosiva, interna y externa, siendo necesario solo retoques.
- c. Su montaje no interfería con la obra civil, ya que el empernado de bridas se podía hacer en cualquier posición.
- d. El rendimiento de montaje era mayor.

3.1.1.3 Ventajas del ensamble de tubería bridada

Los tópicos que hacen la diferencia entre la situación de que los niples sean adquiridos de fábrica y de preparar los niples y accesorios en obra, son:

- a. El suministro de tubos y accesorios en Fierro Fundido dúctil, se reducía a dos días, (lo que se fabricaba en los dos primeros días se colocaba en el tercer día y así sucesivamente) a partir del cual se recibía en forma continua, de acuerdo a un cronograma de prioridades, establecido en concordancia con el avance de la obra civil.
- b. El rendimiento de fabricación puede ser "modificado" y controlado por los responsables del taller día a día, gestionando los recursos de mano de obra y el tiempo asignado por labor.

- c. El control de calidad y las pruebas realizadas a los niples fabricados en el taller nos permitía tener una mayor confianza del producto.
- d. El retraso del sub contratista especializado en obras electromecánicas en el suministro de materiales, lo que hacía peligrar el cumplimiento de los plazos contractuales

PROCESO DE ENSAMBLE

4.1 Etapas del proceso de ensamble

Las etapas de ejecución en ensamble de niples bridados, han sido clasificadas y ordenadas de manera de tener dos líneas de ensamblaje centralizando el trabajo en los soldadores calificados.

El diagrama de flujo presentado a continuación nos muestra la interacción de los diferentes procesos llevados a cabo en el taller de fabricación, los cuales serán descritos individualmente.

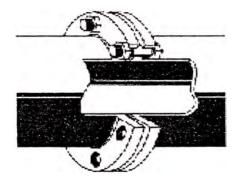


Figura 4.1 – Uniones bridadas a ensamblar

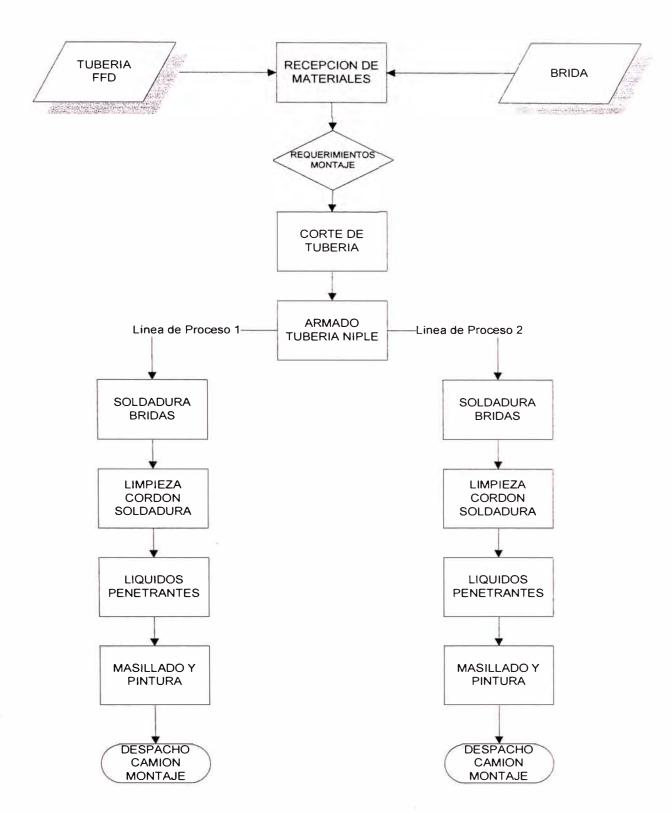


Figura 4.2 – Diagrama de flujo del proceso.

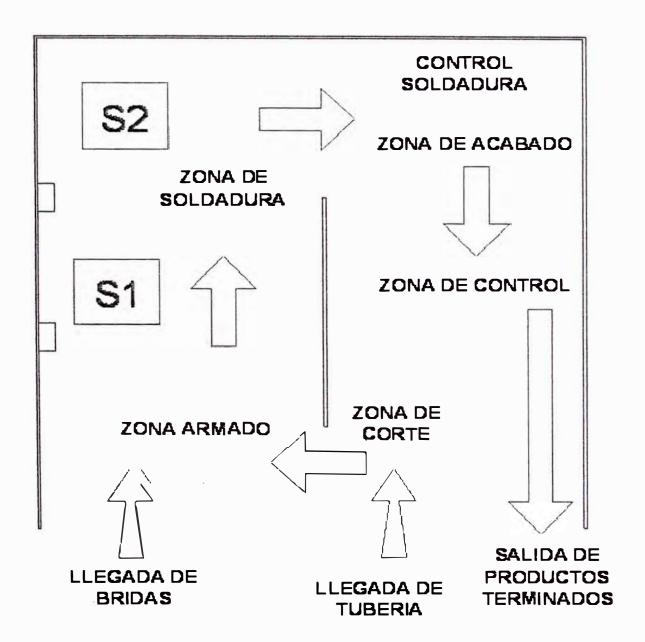


Figura 4.3 – Distribución general del proceso de ensamblaje en taller.

4.1.1 Corte de tubería

El proceso de corte está comprendido por las siguientes actividades:

- Medida de las longitudes a cortar según el requerimiento del equipo de montaje. Ver plano de Anexo final para las longitudes y diámetros de producción del taller de ensamblaje.
- Marcado y corte de la tubería con la motocortadora en la distancia requerida para el armado.
- 3. Corrección de los defectos de corte.

4.1.2 Armado Tubería - Bridas

El proceso de armado tiene como actividades principales las siguientes:

- Alineamiento de la tubería cortada en caballetes que permitían tener horizontalidad, además de una regulación precisa mediante tuercas de nivelación (para lo que fue necesario preparar equipos especiales de trabajo, "machinas")
- 2. Alineamiento de los agujeros con nivel y escuadras.
- 3. Comprobación de la alineación de tubo y brida, en los cuatro ejes para comprobar su perfecta perpendicularidad.
- 4. Apuntalado de la brida en el tubo.

4.1.3 Soldadura de brida

El proceso de soldadura contemplo la calificación del personal que realizaría la soldadura, bajo normas de ASME SEC IX. Según las cuales se consideró, los soldadores que obtuvieron la calificación 6G. Se ubica en el Anexo 03 los formatos de calificación para los soldadores.

Para la soldadura de bridas en tubería de hiero dúctil, se tuvo que desarrollar un procedimiento de soldadura mediante el proceso SMAW, según normas AWS 5.15 norma para la soldadura de Fierro Fundido. Para los procesos de soldadura se han utilizado electrodos de 1/8" para los diámetros menores de 400 mm y el electrodo de 5/32" para los diámetros de tubería mayores de 400 mm. En el Anexo 04 se ubica la hoja técnica de la soldadura utilizada.

Según el procedimiento para la soldadura del Fierro Fundido dado por AWS el depósito de material para obtener mejor calidad de soldadura se conseguía en la posición semi-horizontal angular, para lo cual se tuvo que construir polines de rotación para la tubería los cuales permitían al soldador tener siempre la posición semi-horizontal angular solo rotando el tubo sobre los polines, además de darle comodidad y facilitar la maniobra de grandes piezas.

El proceso de soldadura además de la posición ya indicada requería de un precalentamiento y de soldadura intermitente y por partes, rotando el tubo

cada cierto tramo, para lo cual también fue de gran uso los polines de rotación construidos.

El proceso de soldadura tiene como actividades principales las siguientes:

- 1. Aplicación de soldadura de raíz interior.
- 2. Aplicación de soldadura de raíz exterior.
- 3. Aplicación de soldadura de acabado exterior.

4.1.4 Acabado de la unión soldada

El proceso de acabado es el proceso final del ensamble, en el cual son importantes de mencionar las siguientes actividades:

- Limpieza de "cordones" de soldadura depositada para el ensamble, así
 como también limpieza de salpicaduras existentes en la brida.
- 2. Aplicación de masilla plástica para el emparejamiento del recubrimiento interior de la tubería.
- 3. Emparejamiento de superficie interior de la tubería.
- 4. Aplicación de pintura exterior a las superficies frontal de la brida y unión soldada entre tubo y brida.

4.1.5 Control de calidad

El control de calidad está considerado como un proceso transversal a los demás procesos dado que este se realiza continuamente y esta presente en todos los procesos antes mencionados, garantizando la trazabilidad del producto, en las diferentes fases, desde el suministro de los materiales, así como durante todo el proceso de ensamble de niples, desde la verificación visual, verificación dimensional, pruebas no destructivas (Líquidos Penetrantes) realizados a la soldadura, hasta tener el producto terminado.

Todos estos procesos de verificación y para cada producto terminado, quedaron registrados en el "Documento de Registro de Calidad de Fabricación" el cual nos permitía tener la trazabilidad de los productos fabricados en taller.

El documento de registro de calidad de fabricación tenía como función, hacer el seguimiento respectivo además de poder codificar los elementos ensamblados en el taller, para poder llevar un control y además tener una codificación para posterior codificación respectiva.

Imagen 4.1 – Ensayo de Líquidos Penetrantes al cordón de soldadura.



Imagen 4.2 – Producto Terminado verificación de medidas.

TUBERIA FFD BRIDA -ESPIGA

TUBERIA FFD BRIDA -BRIDA

DESCRIPCION	LONGITUD MINIMA [mm]	LONGITUD MAXIMA [mm]
NIPLE DN 60 mm	160	5800
NIPLE DN 100 mm	160	5800
NIPLE DN 150 mm	180	5800
NIPLE DN 250 mm	200	5800
NIPLE DN 300 mm	260	5800
NIPLE DN 400 mm	290	5800
NIPLE DN 500 mm	320	5800
NIPLE DN 600 mm	340	5800
NIPLE DN 800 mm	360	5800

Imagen 4.3 – Productos del taller de ensamble

4.2 Planificación de Recursos para el proceso de ensamble

4.2.1 Recursos Humanos

Para la planificación del personal necesario para la realización del proceso de ensamble no solamente está referido al personal que realizo los trabajos de ensamble en el taller de fabricación. Sino también un equipo de apoyo que formaba parte complementaria del equipo de fabricación del proyecto el cual apoyo con la parte de la ingeniería para poder obtener los objetivos trazados.

4.2.1.1 Personal del Taller de Ensamble

El personal necesario para poder realizar el ensamble de las tuberías de la PTAP, ha sido conceptualizado teniendo en cuenta que se contar con dos líneas de ensamblaje, por lo cual el personal considerado ha sido el siguiente.

Gerente de producción Electromecánica

Cargo ocupado por un ingeniero el cual tiene como funciones principales las siguientes:

- Verificación de trabajos
- Aprobación de procedimientos.
- Aprobación de cronogramas de fabricación.

Responsable de Servicios

Cargo ocupado por el bachiller en ingeniería que desarrolla el presente informe, cuyas funciones principales son las siguientes:

- Planificación del proceso.
- Coordinación con almacenes para materiales.
- Dirección del taller de ensamblaje.
- Control de calidad.
- Planificación de ensamble.

Soldador Armador

El cargo de Soldador armador está ocupado por un soldador de amplia experiencia en el trabajo a realizar. El cual tenía las siguientes funciones principales:

- Coordinación con el responsable de servicios.
- Informe diario de avance de producción.
- Solicitud de materiales para el ensamble.
- Corte y pre-armado de tubos y bridas para ensamble.
- Elaboración de materiales y herramientas de soporte.

Soldadores Calificados

Cargo ocupado por personal técnico con capacitación y soldadura, además de la certificación 6G para realizar este tipo de trabajos, para el caso del taller de ensamble que requiere de dos líneas de ensamblaje. Fueron necesarios dos soldadores. Su principal función es la de realizar los cordones de soldadura entre brida-tubería de los niples prearmados.

Operarios

Cargo ocupado por personal de apoyo que complementa el trabajo del soldador con el acabado final. Las principales funciones de los operarios en el proceso de ensamble son las siguientes:

- Limpieza de cordones de soldadura.
- Masillado para emparejamiento.
- Pintado.
- Despacho de productos terminados.

4.2.2 <u>Implementación taller de ensamblaje</u>

La implementación del taller de ensamble ha sido realizada teniendo en cuenta la planificación inicial de poder tener dos líneas de ensamble paralelas y según el diagrama de flujo del proceso mostrado anteriormente. El espacio brindado dentro del almacén de obra fue acondicionado con los materiales y equipos necesarios para poder implementar un taller de ensamble de bridas en tuberías. Para el equipamiento del taller han sido considerados los materiales y equipos para poder suplir las necesidades de las dos líneas de producción y de acuerdo a los siguientes suministros, las hojas técnicas detalladas se encuentran en el Anexo 05.

Item	Equipos y materiales	Cantidad
1	Maquinas de Soldar	2
2	Moto cortadora	1
3	Esmeriles	2
4	Tornillo de Banco	2
5	Tableros eléctricos	2
6	Niveles	2
7	Escuadras	2
8	Flexometro	2

Tabla 4.1 – Maquinas y materiales taller de ensamblaje

4.2.3 Materiales

Para la estimación de los materiales es necesario tener cuantificado el trabajo a realizar, conforme se menciono en el capitulo anterior, se muestra a continuación un cuadro resumen y consolidado de la cantidad total de ensambles tubería – brida por realizara para la Planta de Tratamiento de Agua Potable.

DESCRIPCION	CANTIDAD DE BRIDAS
BRIDA DE ACERO, PARA SOLDAR, DN 60 mm	12
BRIDA DE ACERO, PARA SOLDAR, DN 100 mm	48
BRIDA DE ACERO, PARA SOLDAR, DN 150 mm	96
BRIDA DE ACERO, PARA SOLDAR, DN 250 mm	56
BRIDA DE ACERO, PARA SOLDAR, DN 300 mm	32
BRIDA DE ACERO, PARA SOLDAR, DN 400 mm	144
BRIDA DE ACERO, PARA SOLDAR, DN 500 mm	22
BRIDA DE ACERO, PARA SOLDAR, DN 600 mm	22
BRIDA DE ACERO, PARA SOLDAR , DN 800 mm	4

Tabla 4.2 – Consolidado de bridas para ensamble

Según la cantidad y características de las bridas por soldar indicadas en el cuadro anterior, se mostrara la estimación de materiales, clasificando esta estimación por lo procesos que intervienen en el proceso de ensamble.

4.2.3.1 Materiales proceso de corte

El proceso de corte de la tubería de acuerdo a las necesidades de longitud, tiene como principal consumible la utilización de discos de corte.

ITEM	BRIDAS	CANTIDAD DE BRIDAS	DISCOS DE CORTE POR BRIDA	TOTAL DISCOS DE CORTE
1	DN60	12	0.20	2.40
2	DN100	48	0.40	19.20
3	DN150	96	0.60	57.60
4	DN250	56	1.00	56.00
5	DN300	32	1.20	38.40
6	DN400	144	1.40	201.60
7	DN500	22	1.60	35.20
8	DN600	22	1.80	39.60
9	DN800	4	2.00	8.00

TOTAL DISCOS DE CORTE

458.00

Tabla 4.3 – Estimación de materiales para proceso de corte

4.2.3.2 Materiales proceso de soldadura

El proceso de soldadura conforme lo indicado en la descripción de los principales procesos. Tiene como material principal la soldadura de aporte. La cual ha sido estimada unitariamente para cada brida.

ITEM	BRIDAS	Longitud de circunferencia del tubo [m]	Cantidad soldadura 1/8" [Kg]	Cantidad soldadura 5/32'' [Kg]	
1	DN60	0.31	0.21	-	
2	DN100	0.37	0.26	-	
3	DN150	0.53	0.37	-	
4	DN250	0.86	0.60	-	
5	DN300	1.02	1.07	-	
6	DN400	1.19	-	1.39	
7	DN500	1.67	-	1.96	
8	DN600	1.99	-	2.34	
9	DN800	2.65	-	3.10	

Tabla 4.4 – Estimación de materiales para proceso de soldadura

4.2.3.3 Materiales proceso de acabados

El proceso final de acabados según lo indicado en la descripción de los procesos que intervienen, tiene como materiales los indicados en el siguiente cuadro.

ITEM	BRIDAS	Consumibles [Glb]	Masilla Plástica [Kg]
1	DN60	0.05	0.13
2	DN100	0.07	0.15
3	DN150	0.10	0.18
4	DN250	0.14	0.23
5	DN300	0.17	0.25
6	DN400	0.20	0.35
7	DN500	0.25	0.38
8	DN600	0.33	0.44
9	DN800	0.50	0.53

Tabla 4.5 – Estimación de materiales para acabados de soldadura

52

Entre los consumibles que son considerados como globales y han sido estimados de uso diario. Los consumibles considerados en ese global

para el caso del proceso de acabados son los siguientes:

Espátulas

Abrasivos

Materiales de limpieza

Pintura

4.2.3.4 Materiales Control de Calidad

El proceso de control de calidad tiene como materiales principales y más representativos, el control de calidad realizado a la soldadura, el cual ha sido realizado conforme se indica en la descripción del proceso mediante la utilización del ensayo de líquidos penetrantes, el cual tiene un kit para la realización del proceso.

ITEM	BRIDAS	CANTIDAD DEL KIT POR BRIDA
1	DN60	0.05
2	DN100	0.06
3	DN150	0.08
4	DN250	0.12
5	DN300	0.14
6	DN400	0.18
7	DN500	0.22
8	DN600	0.26
9	DN800	0.30

Tabla 4.6 – Estimación de materiales para control de calidad

5 ESTRUCTURA DE COSTOS

5.1 Costos de Implementación

5.1.1 Implementación del equipo de trabajo

Están consideradas dentro de la implementación del equipo de trabajo las remuneraciones al personal necesario para el ensamble de la tubería bridada. Conforme se observa en el siguiente cuadro y considerando los beneficios por ley y demás aspectos a considerar se dan como resultado final el costo horario por cada uno de los integrantes del equipo.

ITEM	RUBRO	UNID.	Ayudante	Soldador Armador	Soldador 6G	Supervisor
1	JORNAL BASICO	JORNAD.	800.00	2,500.00	4,500.00	3,500.00
2	ENCARGOS SOCIALES		48.01%	48.01%	48.01%	48.01%
			1,184.08	3,700.25	6,660.45	5,180.35
	BASICO	HH(S/.)	4.93	15.42	27.75	21.58
	OTROS CONCEPTOS					
1	ALIMENTACION	JORNAD.	0.00	0.00	0.00	0.00
2	CUARTELERIA	JORNAD.	0.00	0.00	0.00	0.00
3	ЕРР	JORNAD.	2.43	2.43	3.50	2.43
		TOTAL HH (S/.)	5.24	15.72	28.19	21.89

Tabla 5.1 – Costos equipo de trabajo

5.1.2 Implementación del equipo de trabajo

Equipos y materiales	Cantidad	Costo Unitario [S/.]	Costo Total [S/.]
Maquinas de Soldar	2	4,300.00	8,600.00
Motocortadora	1	4,100.00	4,100.00
Esmeriles	2	439.90	879.80
Tornillo de Banco	2	550.00	1,100.00
Tableros eléctricos	2	580.00	1,160.00
Niveles	2	31.90	63.80
Escuadras	2	39.90	79.80
Flexometro	2	59.90	119.80

TOTAL S/. 16,103.20

Tabla 5.2 – Costos implementación del taller

5.1.3 <u>Costo para proceso de corte</u>

BRIDAS	CANTIDAD DE BRIDAS	TOTAL DISCOS DE CORTE	MONTO TOTAL CORTE [S/.]
DN60	12	2.40	28.80
DN100	48	19.20	921.60
DN150	96	57.60	5,529.60
DN250	56	56.00	3,136.00
DN300	32	38.40	1,228.80
DN400	144	201.60	29,030.40
DN500	22	35.20	774.40
DN600	22	39.60	871.20
DN800	4	8.00	32.00

TOTAL S/.

41,552.80

Tabla 5.3 – Costos proceso de corte

5.1.4 Costo para proceso de soldadura

Bridas	Cantidad de bridas	Cantidad soldadura 1/8" [Kg]	Cantidad soldadura 5/32" [Kg]	Costo Total por soldadura [S/.]
DN60	12	0.21	-	68.58
DN100	48	0.26	-	82.57
DN150	96	0.37	-	118.96
DN250	56	0.60	-	191.73
DN300	32	1.07	-	342.18
DN400	144	-	1.39	446.35
DN500	22	-	1.96	628.20
DN600	22	-	2.34	749.82
DN800	4	-	3.10	994.25

TOTAL 3,622.63

Tabla 5.4 – Costos proceso de soldadura

5.1.5 Costo para proceso de acabado

Bridas	Cantidad de bridas	Monto por brida [S/.]	Monto Total Acabados [S/.]
DN60	12	6.73	80.73
DN100	48	8.95	429.49
DN150	96	12.00	1,152.00
DN250	56	16.44	920.80
DN300	32	18.83	602.67
DN400	144	24.00	3,456.00
DN500	22	28.25	621.50
DN600	22	35.92	790.17
DN800	4	50.20	200.80

TOTAL S/.

8,254.15

Tabla 5.5 – Costos proceso de acabados

5.1.6 Costo para control de calidad

Bridas	Cantidad de bridas	Monto por brida [S/.]	Total QQ [S/.]
DN60	12	4.35	52.20
DN100	48	8.70	417.60
DN150	96	17.40	1,670.40
DN250	56	21.75	1,218.00
DN300	32	26.10	835.20
DN400	144	30.45	4,384.80
DN500	22	43.50	957.00
DN600	22	47.85	1,052.70
DN800	4	65.25	261.00

TOTAL S/. 10,848.90

Tabla 5.5 – Costos proceso de control de calidad

Bridas	Soldadura [S/.]	Acabados [S/.]	Corte [S/.]	Control de Calidad [S/.]	Mano de Obra [S/.]	Costo Total [S/.]
DN60	68.58	6.73	17.00	4.35	37.99	134.64
DN100	82.57	8.95	34.00	8.70	55.71	189.93
DN150	118.96	12.00	51.00	17.40	83.57	282.93
DN250	191.73	16.44	85.00	21.75	119.39	434.31
DN300	342.18	18.83	102.00	26.10	139.29	628.40
DN400	446.35	24.00	119.00	30.45	167.14	786.94
DN500	628.20	28.25	136.00	43.50	208.93	1,044.88
DN600	749.82	35.92	153.00	47.85	278.57	1,265.16
DN800	994.25	50.20	170.00	65.25	417.86	1,697.56

Tabla 5.6 – Costos de ensamblaje por brida proyectado

5.1.7 Resumen de costos totales de producción

Bridas	Cantidad de bridas	Costo del Proyecto
DN60	12	1,615.68
DN100	48	9,116.75
DN150	96	27,161.16
DN250	56	24,321.46
DN300	32	20,108.66
DN400	144	113,320.00
DN500	22	22,987.29
DN600	22	27,833.55
DN800	4	6,790.25

TOTAL S/. 253,254.81

CONCLUSIONES

- El proceso de ensamblaje de tubería bridada de Fierro Fundido Dúctil, implementado en obra, tuvo como resultado la entrega de las instalaciones Hidráulicas de la Planta de Tratamiento de Agua Potable, dentro de los plazos estimado.
- 2. La implementación del taller de ensamblaje donde se realizaba la obra, permite tener un mayor contacto con las actividades de montaje, lo cual contribuyo a realizar un planeamiento de mayor precisión con el afán de no tener "tiempos muertos" en el taller de ensamblaje.
- 3. El proceso de control de la calidad realizado durante todo el proceso de ensamble, permite tener un seguimiento de la trazabilidad del proceso en todas sus etapas, con lo cual se obtuvieron mejores resultados en la calidad de las tuberías bridadas ensambladas.

- 4. La utilización de las diferentes herramientas acondicionadas para las labores de ensamblaje permitió poder obtener una mejor productividad para el caso de los polines de giro de tubería.
- 5. La utilización de materiales reciclados permitió reducir los costos y mejorar la seguridad para las labores de trabajo con la fabricación de caballetes de armado y biombos construidos de cilindros vacios para separar zonas de trabajo.

RECOMENDACIONES

- Para la ubicación del taller de ensamblaje es necesario tener un lugar techado, en el cual no hay corrientes de aire para así evitar los gradientes de temperatura que son perjudiciales para el proceso de soldadura.
- 2. Es de suma importancia tener una buena planificación con el montaje de obra, para el inicio de las actividades donde aun las medidas de muchas de las tuberías no están totalmente definidas, es posible avanzar ensamblando bridas en tuberías enteras a manera de no tener el equipo de trabajo sin actividad algunas esperando medidas finales.
- 3. Para la optimización de todos los procesos en general, es necesario hacer un levantamiento de datos iníciales durante los primeros días de operación del taller de ensamblaje, la toma de lecturas de temperatura, medidas y tiempos. Es una buena manera de incrementar la productividad.

MATERIAL DE REFERENCIA

Bibliografía

• INTERNATIONAL ORGANIZATION FOR STANDARIZATION

ISO 2531:2001

Ductile iron pipes, fittings, accessories and their joints for water applications.

2001

• AMERICAN SOCIETY OF MECHANICAL ENGINEERS

Asme boiler and pressure vessel code - section ix: welding and brazing qualifications

2008

AMERICAN WELDING SOCIETY

ANSI/AWS A5.15-90 (R2006)

Specification for welding electrodes and rods for cast iron

1990

• JHON S. PAGE

Estimators piping man-hour manual

Fifth Edition

SAINT GOBAIN

Línea conducción Agua

Version 2003

EXSA-OERLIKON

Manual de Soldadura

Edicion 2001

NORMA TÉCNICA PERUANA

NTP-ISO 2531 2001

Comisión de Reglamentos Técnicos y Comerciales-INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145

Lima, Perú

TUBOS, CONEXIONES Y PIEZAS ACCESORIAS DE FUNDICIÓN DÚCTIL Y SUS JUNTAS, PARA CONDUCCIONES DE AGUA O GAS

DUCTIL IRON PIPES, FITTINGS, ACCESSORIES AND THEIR JOINTS FOR WATER OR GAS APPLICATIONS

(EQV. ISO 2531:1998 DUCTIL IRON PIPES, FITTINGS, ACCESSORIES AND THEIR JOINTS FOR WATER OR GAS APPLICATIONS)

2001-05-16 2ª Edición

R.0056-2001/INDECOPI-CRT.Públicada el 2001-05-28

Precio basado en 71 páginas

I.C.S: 23.040.10; 23.040.40

ESTA NORMA ES RECOMENDABLE

Descriptores: Tubos, fundición dúctil, hierro dúctil, requisitos, ensayos, designación, rotulado.

ÍNDICE

		página
	ÍNDICE	î
	PREFACIO	if
1.	OBJETO	1
2.	REFERENCIAS NORMATIVAS	1
3.	DEFINICIONES	3
4.	REQUISITOS TÉCNICOS	6
5.	REQUISITOS DE ESTANQUEIDAD	18
6.	MÉTODOS DE ENSAYO	20
7.	ENSAYOS DE TIPO	27
8.	TABLAS DE DIMENSIONES	30
9.	ANTECEDENTES	30
	ANEXO A	58
	ANEXO B	59
	ANEYOC	60

PREFACIO

A. RESEÑA HISTÓRICA

- A.1 La presente Norma Técnica Peruana fue elaborada por el Comité Técnico de Normalización de Saneamiento, mediante el Sistema 1 o de Adopción,, durante el mes de mayo del 2000, utilizó como antecedente la Norma ISO 2531:1998.
- A.2 El Comité Técnico de Normalización de Saneamiento, presentó a la Comisión de Reglamentos Técnicos y Comerciales CRT, con fecha 2000-12-21, el PNTP-ISO 2531:2000, para su revisión y aprobación; siendo sometido a la etapa de Discusión Pública el 2001-02-14. No habiéndose presentado ninguna observación, fue oficializado como Norma Técnica Peruana NTP-ISO 2531:2000 TUBOS, CONEXIONES Y PIEZAS ACCESORIAS DE FUNDICIÓN DÚCTIL Y SUS JUNTAS, PARA CONDUCCIONES DE AGUA O GAS, 2ª Edición, el 28 de mayo del 2001.
- A.3 Esta Norma Técnica Peruana reemplaza a la NTP-ISO 2531:1997 y utilizó como antecedente la Norma ISO 2531:1998. Esta Norma Técnica Peruana presenta cambios editoriales referidos principalmente a terminología empleada propia del idioma español y ha sido estructurada de acuerdo a las Guías Peruanas GP 001:1995 y GP 002:1995.

B. INSTITUCIONES QUE PARTICIPARON EN LA ELABORACIÓN DE LA NORMA TÉCNICA PERUANA

Secretaría Superintendencia Nacional de Servicios

de Saneamiento

Secretario Jorge Olivarez

Secretario Subcómite Juan Avalo

ENTIDAD REPRESENTANTE

FUMOSA Otto Moreno

Guillermo Moreno

FUNDICION CARDENAS Nemesio Sotelo

FUNDICION QUINTEROS Javier Quinteros

FUNDICION URBANO/AIF Julio Urbano

CASIRESA Carlos Castro

CONCYSSA Elmer Esparsa

TRANSPLAME Luis Alva

Fremincos Prospero Aguilar

C y C Cruz Soto Ruiz

EMICSA Juan Alca

FUMASA Emilio Espinoza

Pont-A-MOUSSON Frederic Minguet

CAPECO Justo Kahatt

SEDAPAL Polo Agüero

SUNASS Juan Avalo

ANESAPA Balcort Campos

CIP CAP. Ing.Sanitaria y Ambiental Raquel Barrionuevo

APIS Luis Salinas Hurtado

CIP CAP. Ing. Química Víctor Ramírez

PUC Laboratorio de Mecánica Franco Calderón A.

--oooOooo---

TUBOS, CONEXIONES Y PIEZAS ACCESORIAS DE FUNDICIÓN DÚCTIL Y SUS JUNTAS, PARA CONDUCCIONES DE AGUA O GAS

1. OBJETO

La presente Norma Técnica Peruana establece los requisitos y los métodos de ensayo aplicables a los tubos, conexiones y piezas accesorias de fundición dúctil, así como a sus juntas, destinados a la construcción de instalaciones:

para transportar agua (por ejemplo, agua para consumo humano) o gas; que funcionan con o sin presión; subterráneas o aéreas.

NOTA: En la presente NTP todas las presiones son presiones relativas, y se expresan en bar 1.

La presente Norma Técnica Peruana establece los requisitos para los materiales, las dimensiones y tolerancias, las propiedades mecánicas y los revestimientos de los tubos, conexiones y accesorios. La norma indica asimismo requisitos de rendimiento para todos los componentes, incluidas las juntas.

La presente Norma Técnica Peruana se aplica a tubos, conexiones y accesorios fabricados por cualquier procedimiento de fundición o a partir de componentes fundidos, así como a las juntas correspondientes, para la gama de DN 40 A DN 2 600, ambos inclusive.

Esta NTP se aplica a los tubos, conexiones y accesorios que:

se fabrican con extremos de campana, brida o espiga, para unión por medio de distintos tipos de anillos de sello, que no son objeto de la presente NTP:

 $^{^{1}}$ 100 kPa = 1 bar

se entregan normalmente con revestimiento exterior e interior,

2. REFERENCIAS NORMATIVAS

Las siguientes normas contienen disposiciones que al ser citadas en este texto constituyen requisitos de esta Norma Técnica Peruana. Las ediciones indicadas estaban en vigencia en el momento de esta publicación. Como toda norma está sujeta a revisión, se recomienda a aquellos que realicen acuerdos en base a ellas, que analicen la conveniencia de usar las ediciones recientes de las normas citadas seguidamente. El Organismo Peruano de Normalización posee la información de las Normas Técnicas Peruanas en vigencia en todo momento.

2.1 Normas Técnicas Nacionales

2.1.1	NTP-ISO 4179: 1999	Tubos de fundición dúctil para instalaciones con y sin presión Revestimiento interno con mortero de cemento centrifugado - Prescripciones generales.
2.1.2	NTP-ISO 4633:1999	Juntas estancas de caucho - Anillos de juntas de instalaciones de aducción y evacuación de agua (incluidas alcantarillas) - Especificaciones de materiales.
2.1.3	NTP-ISO 6708:1995	Componentes de red de tubería - Definición y selección de los DN (diámetro nominal).
2.1.4	NTP-ISO 7005-2:1988	Bridas metálicas - Parte 2; Bridas de fundición.

• •		.	
2.2	Normas	Tecnicas	Internacionales

2.2.1	ISO 6447:1983	Caucho. Anillos de estanqueidad para juntas de canalización de gas. Especificación de materiales.
2.2.2	ISO 6506-1: ²	Materiales metálicos. Ensayos de dureza Brinell. Parte 1: Método de ensayo.
2.2.3	ISO 7268: 1983	Sistema de tuberías. Definición de la presión nominal.
2.2.4	ISO 7268/Modif. 1: 1984	Modificación 1 de la ISO 7268: 1983.
2.2.5	ISO 7483: 1991	Dimensiones de las juntas a utilizar con las bridas de la ISO 7005.
2.2.6	ISO 8179-1: 1995	Tubos de fundición dúctil - Revestimiento exterior de zinc - Parte 1: zinc metálico y capa de acabado.
2.2.7	ISO 8179-2: 1995	Tubos de fundición dúctil - Revestimiento exterior de zinc - Parte 2: Pintura rica en zinc y capa de acabado.
2.2.8	ISO 8180: 1985	Instalaciones de fundición dúctil. Manguera de polietileno.
2.2.9	ISO 10804-1: 1986	Juntas bloqueados para instalaciones de fundición dúctil - Partel: Reglas de diseño y ensayo de tipo.

² Pendiente de publicación. (Revisión de la ISO 6506: 1981 y de la ISO 410: 1982)

2.2.10 ISO 1092-2:1997

Bridas circulares para tubos, aparatos de grifería, conexiones y accesorios, designados como PN - Parte2: Bridas de fundición.

3. **DEFINICIONES**

Para los propósitos de esta Norma Técnica Peruana se aplican las siguientes definiciones:

- 3.1 **hierro dúctil:** Tipo de fundición utilizada para los tubos, conexiones y accesorios, en el que el grafito está presente, esencialmente en forma esferoidal.
- 3.2 **tubo:** Pieza fundida de sección uniforme y de eje rectilíneo, que tiene extremos de unión tipo campana, espiga o de brida, excepto las bridas con campana, bridas con espiga y los manguitos que se clasifican dentro de las conexiones.
- 3.3 **conexion:** Pieza fundida distinta del tubo, que permite una derivación, un cambio de dirección o de sección. Además, las bridas con campana, bridas con espiga y los manguitos, también se clasifican dentro de las conexiones.
- 3.4 **accesorio:** Cualquier pieza fundida, distinta de un tubo o de una conexión, que se utiliza en una canalización, como por ejemplo:

Contrabrida y tornillos para junta mecánica flexible (Véase 3.13)

Contrabrida, tornillos y arandelas de seguridad para juntas bloqueados (Véase 3.14)

NOTA: Los grifos de cualquier tipo que sean no están cubiertos por el término accesorio.

3.5 **brida:** Extremo plano y circular de un tubo o de una conexión, perpendicular al eje, con agujeros para pernos, ubicados a distancia fija entre sí y dispuestos en círculo.

NOTA: Una brida puede ser fija (por ejemplo fundida con la pieza, atornillada o unida por soldadura), u orientable; una brida orientable tiene un anillo, en una o varias partes empalmadas, que se apoya sobre un borde de extremidad y que puede girar libremente en torno al eje del tubo antes de la junta.

- 3.6 **manguito**, **pieza de union**: Pieza de enlace utilizada para empalmar los extremos unidos de tubos o conexiones.
- 3.7 **extremo unido:** Extremo macho de un tubo o de un conexión.
- 3.8 **campana:** Extremo abocardado (hembra) de un tubo o un conexión que permite la unión con el extremo unido del componente adyacente.
- 3.9 **anillo de junta:** Elemento de estanqueidad en un junta.
- 3.10 **junta (unión):** Ensamble de los extremos de dos tubos y/o conexiones en la que se utiliza un anillo de sello para asegurar la estanqueidad.
- 3.11 **junta flexible:** Junta que permite una desviación angular importante y un desplazamiento paralelo y/o perpendicular al eje del tubo.
- 3.12 **junta flexible automática:** Junta flexible que se monta empujando el extremo unido de un componente en la anillo de junta situada en el campana o extremo abocardado del componente adyacente.
- 3.13 **junta flexible mecánica:** Junta flexible en la que se consigue la estanqueidad aplicando un mayor grado de presión sobre el anillo de junta por medios mecánicos, por ejemplo, una contrabrida.
- 3.14 **junta bloqueada:** Junta en el que se incluye un medio para evitar que la junta ensamblada se separe.
- 3.15 **junta de bridas:** Junta de dos extremos con bridas.

- 3.16 **diámetro nominal (DN):** Designación dimensional numerica común a todos los elementos de una canalización. Es un número entero utilizado con fines de referencia y que sólo tiene una relación aproximada con las dimensiones de fabricación (véase ISO 6708).
- 3.17 **presion nominal (PN):** Designación numerica expresada por un número redondeado utilizado con fines de referencia. Todos los equipos de igual DN designados por el mismo número de PN tienen dimensiones de unión compatibles (véase ISO 7268 y su Modificación 1).
- 3.18 **presión de funcionamiento admisible (PFA):** Presión interna, sin contar el golpe de ariete, que puede soportar un componente de forma segura en servicio.
- 3.19 **presion de funcionamiento maxima (PMA):** Presión interna maxima incluido el golpe de ariete, que puede soportar un componente de forma segura en servicio.
- 3.20 **presion de prueba admisible (PEA):** Presión hidrostática máxima la que un componente recién instalado es capaz de resistir durante un lapso de tiempo relativamente corto, con el fin de garantizar la integridad y la estanqueidad de la conducción, ya sea está de superficie o enterrada.

NOTA: Esta presión de prueba es diferente de la presión de prueba en red (STP), que está relacionada con la presión de cálculo de la tubería y que está destinada a asegurarse de su resistencia y estanqueidad.

- 3.21 **rigidez diametral de un tubo:** Característica de un tubo, que le permite resistir a una ovalización o excentricidad bajo carga.
- 3.22 **lote:** Cantidad de piezas de las que se toma una muestra con fines de ensayos durante la fabricación
- 3.23 **ensayo de tipo:** Ensayo de comprobación del diseño que se realiza una vez y que se repite solamente después de un cambio de diseño.

3.24 **longitud:** Longitud útil de un tubo o conexión, tal como se indica en las figuras del capitulo 8.

NOTA: Para tubos y conexiones de bridas, la longitud útil L (l para la parte de la derivación de las conexiones) es igual a la longitud máxima. Por lo que respecta a los tubos y conexiones de campana, la longitud útil L_u (I_u para la parte de la derivación de las conexiones) es igual a la longitud máxima menos la profundidad de la campana, tal como se indica en los catálogos del fabricante.

3.25 **desviación:** Diferencia de longitud permitida en el diseño con respecto a la longitud normalizada de un tubo o una conexión.

NOTA: Los tubos y las conexiones se diseñan con una longitud seleccionada dentro de la longitud normalizada, más o menos la desviación (Véase tabla 5).

3.26 excentricidad: Defecto de redondez de la sección de un tubo; equivale a

donde

$$100 \quad \left(\begin{array}{ccc} A_1 - A_2 \\ \hline A_1 + A_2 \end{array}\right)$$

A₁ es el eje máximo de la sección en milímetros A₂ es el eje mínimo de la sección en milímetros.

4. REQUISITOS TÉCNICOS

4.1 Aspectos generales

4.1.1 Tubos y conexiones

Los diámetros nominales, las clases de espesor, las longitudes y los revestimientos se especifican, respectivamente, en 4.2.1, 4.2.2, 4.2.3, y 4.4. Si, por acuerdo entre el fabricante y el cliente, se suministran tubos y conexiones de espesores, longitudes y/o revestimientos diferentes, así como otros tipos de conexiones de los que aparecen en 8.3 y 8.4 de la presente Norma Técnica Peruana, deberán cumplir con todos los demás requisitos de la presente NTP.

Los diámetros nominales (DN) normalizados de los tubos y conexiones son los siguientes:

40; 50; 60; 65; 80; 100; 125; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 900;1000; 1100; 1200; 1400; 1500; 1600; 1800; 2000; 2200; 2400; 2600.

Las propiedades funcionales de los tubos de fundición dúctil son las que se indican en el anexo C.

Las presiones PFA, PMA y PEA (Véase 3.18, 3.19 y 3.20) son las que se indican en las normas o reglamentos nacionales.

NOTA: Cuando se instalan y utilizan en las condiciones para las que han sido diseñados (véanse anexos A y B), los tubos, conexiones y accesorios de fundición dúctil, así como sus juntas, conservan todas sus características funcionales durante toda su vida de servicio, gracias a la constancia de las propiedades del material, a la estabilidad de su sección y su diseño con elevados coeficientes de seguridad.

4.1.2 Aspecto superficial y reparaciones

Los tubos, conexiones y accesorios deben estar exentos de defectos e imperfecciones en su superficie, que pudieran impedir cumplir con los artículos 4 y 5.

En caso necesario, los tubos y los conexiones pueden repararse, por ejemplo mediante soldadura, con el fin de corregir las imperfecciones de su superficie y los defectos localizados que no afecten a la totalidad del espesor de la pared con tal que los tubos y conexiones reparados cumplan con todos los requisitos de los artículos 4 y 5.

4.1.3 Tipos de juntas e interconexiones

4.1.3.1 Aspectos generales

El diseño de las juntas y la forma de los anillos de sello no están contemplados en el ámbito de la presente NTP.

Los materiales de caucho para los anillos de sello deben cumplir con los requisitos de la norma ISO 4633 para las conducciones destinadas a transportar agua, y a la norma ISO 6447 para las conducciones destinadas a transportar gas. Cuando sean necesarios materiales distintos al caucho (por ejemplo, para las juntas de bridas), aquellos deben cumplir con las normas ISO correspondientes.

4.1.3.2 Juntas de bridas

Las dimensiones y tolerancias de las bridas de los tubos y conexiones deben cumplir con la ISO 7005-2 o la EN 1092-2, y los anillos de sello para las juntas de bridas, a la ISO 7483. Esto garantiza la interconexión entre todos los componentes de bridas (tubos, conexiones, grifos, etc.) de igual PN y del mismo DN, así como el adecuado comportamiento de las juntas.

Aunque esto no afecte a la interconexión, el fabricante debe indicar en sus catálogos si sus productos se suelen entregar con bridas fijas o con bridas orientables.

4.1.3.3 Juntas flexibles

Los tubos y las conexiones de juntas flexibles deben cumplir con la 4.2.11 en cuanto a los diámetros exteriores (DE) de sus extremos unidos y a sus tolerancias. Esto ofrece la posibilidad de interconexión entre componentes equipados de distintos tipos de juntas flexibles. Además, cada tipo de junta flexible debe ser diseñada para que cumpla con los requisitos de comportamiento y rendimiento de 5.2

NOTAS:

- 1. Para la interconexión de ciertos tipos de juntas que funcionan dentro de una gama de tolerancias más estrictas en DE, es conveniente seguir los consejos del fabricante por lo que respecta a la forma de obtener un rendimiento adecuado de la junta a presiones elevadas (por ejemplo, medición y selección sobre el diámetro exterior).
- 2. Para la interconexión con instalaciones existentes que pueden tener diámetros exteriores no conformes a 4.2.1.1, es conveniente seguir los consejos del fabricante por lo que respecta a los medios de interconexión apropiados (por ejemplo, adaptadores).

4.1.3.4 Juntas bloqueadas

Los juntas bloqueadas para las instalaciones de fundición dúctil deben diseñarse conforme a la ISO 10804-1. Los diámetros exteriores (DE) y tolerancias de las espigas deben cumplir con 4.2.1.1.

4.1.4 Materiales en contacto con el agua potable

Cuando se utilizan en las condiciones para las que han sido diseñadas, en contacto permanente o temporal con agua destinada a consumo humano, los tubos y las conexiones de fundición dúctil y sus juntas no deben tener influencia nociva en la calidad de dicha agua para el uso al que está destinada.

NOTA: Remitirse, si procede, a las normas y reglamentos nacionales sobre los efectos de los materiales sobre la calidad del agua.

4.2 Requisitos dimensionales

4.2.1 Diámetro

4.2.1.1 Diámetro exterior

La tabla 11, en el numeral 8.1 especifica los valores del diámetro exterior (DE) de la espiga y de las conexiones cuando dicho diámetro se mide con ayuda de un calibrador circular conforme a lo establecido en el numeral 6.1.1. La tolerancia positiva es de +1 mm; ésta se aplica a la espiga de los tubos de todas las clases de espesor y también a las conexiones con extremos espiga-brida.

La tolerancia negativa depende del diseño de cada tipo de junta y debe ser tal como se especifica en los catálogos de los fabricantes, cuando no existan normas nacionales o por acuerdo de las partes, para el tipo de junta y el diámetro nominal respectivo.

Adicionalmente, la excentricidad (Véase 3.26) del extremo unido de los tubos y las conexiones debe:

mantenerse en el rango de las tolerancias de DE para DN 40 a DN 200; no sobrepasar 1 % de DE, para DN 250 a DN 600, o 2 % para DN > DN 600

NOTA: Se recomienda seguir los consejos del fabricante por lo que respecta a la necesidad y a los medios de corregir la excentricidad; ciertos tipos de juntas flexibles pueden aceptar la excentricidad máxima sin que sea necesario volver a redondear el extremo.

4.2.1.2. Diámetro interior

Los valores nominales de los diámetros interiores de los tubos centrifugados, expresados en milímetros, son aproximadamente iguales a los números que indican sus diámetros nominales (DN).

4.2.2 Espesor de la pared

El espesor nominal de pared de fundición de los tubos y conexiones debe calcularse en función del diámetro nominal (DN) por medio de la fórmula siguiente, con un mínimo de 6 mm para los tubos centrifugados y de 7 mm para los no centrifugados y para las conexiones:

$$e = K (0.5 + 0.001 DN)$$

donde

e es el espesor nominal de pared, en milímetros;

DN es el diámetro nominal;

K es un coeficiente utilizado para designar la clase de espesor. Se elige dentro de la serie de números enteros: 7, 8, 9, 10, 11, 12 ...

Las clases de espesor normalizadas de los tubos se indican en los numerales 8.1 y 8.2; son posibles otros espesores para los tubos por acuerdo entre el fabricante y el cliente.

Para las conexiones, el espesor e indicado en las tablas y en las figuras de los numerales 8.3 y 8.4 corresponde al espesor nominal de la parte principal del cuerpo. El espesor real en cualquier punto de la conexión debe aumentarse donde sea necesario para resistir los

altos esfuerzos de tensión localizados que dependen del tamaño y la forma de la conexión (por ejemplo, en el radio interior de los codos, en la unión cuerpo-derivación de las T, etc).

Las tolerancias en el espesor nominal de pared de los tubos y conexiones deben ser las indicadas en la tabla 1. La medición del espesor de pared debe ser conforme a lo establecido en el numeral 6.1.2.

TABLA 1

Dimensiones en milímetros

E	Tolerancia 1)
6	-1,3
> 6	-(1,3 + 0,001 DN)
7	-2,3
>7	-(2,3+0,001 DN)
	<i>E</i> 6 > 6 7 > 7

^{&#}x27;' Sólo se da una tolerancia negativa, con el fin de asegurar suficiente resistencia a la presión interna

4.2.3 Longitud

4.2.3.1 Longitudes de tubos tipo espiga-campana

Los tubos deben suministrarse en las longitudes indicadas en la tabla 2

Tabla 2

Dimensiones en metros

Difficultiones en metros			
DN	Longitudes normalizadas, L _u ¹⁾		
40 y 50	3		
60 a 600	4 ó 5 ó 5,5 ó 6 ó 9		
700 y 800	4 ó 5,5 ó 6 ó 7 ó 9		
900 a 2 600	4 ó 5 ó 5,5 ó 6 ó 7 ó 8,15 ó 9		
NOTA – Todas las longitudes normalizadas no	están disponibles.		
1) 1// 2.24			
1) Véase 3.24.			

Las longitudes de diseño L_u (Véase 3.24) de los fabricantes deben situarse dentro de un intervalo de desviación de \pm 250 mm (Véase 3.25) con respecto a las longitudes indicadas en el tabla 2 y deben ofrecerse en los catálogos de los fabricantes. La longitud real L_u debe medirse conforme a lo establecido en el numeral 6.1.3, y no debe diferir de la longitud de diseño del fabricante en más de la tolerancia indicada en el tabla 5. Del total de tubos tipo espiga-campana que se deben suministrar en cada diámetro, el porcentaje de tubos de longitud inferior no debe sobrepasar un 10 %.

NOTAS:

- 1. Los tubos cortados con fines de ensayos pueden ser excluidos del límite del 10 % y ser tratados como tubos enteros.
- 2. Cuando se hace un pedido de tubos para un metraje determinado, el fabricante tiene la posibilidad de determinar el número de tubos a suministrar haciendo la suma de las longitudes reales medidas de cada tubo.

4.2.3.2 Longitudes de los tubos bridados

Los tubos bridados deben suministrarse en las longitudes indicadas en la tabla 3. Se pueden suministrar otras longitudes por acuerdo entre el fabricante y el cliente.

TABLA 3

Dimensiones en metros

Tipo de tubos	DN	Longitudes normalizadas, L_u^{IJ}
Tubos de bridas fundidas	40 a 2 600	0,5 ó 1 ó 2 ó 3
	40 a 600	2 ó 3 ó 4 ó 5
Tubos de bridas soldadas o	700 a 1 000	2 ó 3 ó 4 ó 5 ó 6
roscadas	1 100 a 2 600	4 ó 5 ó 6 ó 7
1) Véase 3. 24.		

4.2.3.3 Longitudes de las conexiones

Las conexiones deben suministrarse en las longitudes indicadas en 8.3 y 8.4

NOTA: Se indican dos series de dimensiones: la serie A y la nueva serie B, generalmente limitada al DN 450 en la etapa actual.

Las desviaciones admisibles (Véase 3.25) sobre las longitudes de los conexiones de la serie A deben ser las indicadas en la tabla 4.

TABLA 4

Dimensiones en milímetros

Tipo de conexiones	DN	Desviación		
Bridas-campana	40 a 1 200	± 25		
Bridas-espiga		^^		
Manguitos, reducciones	1 400 a 2 600	<u>+</u> 35		
Tees	40 a 1 200	+ 50		
		- 25		
	1 400 a 2 600	+ 75		
		- 35		
Codos de 90° (1/4)	40 a 2 600	$\pm (15 + 0.03 DN)$		
Codos de 45° (1/8)	40 a 2 600	$\pm (10 + 0.025 DN)$		
Codos de 22º 30' (1/16)	40 a 1 200	$\pm (10 + 0.02 \mathrm{DN})$		
y de 11°15' (1/32)				
	1 400 a 2 600	$\pm (10 + 0.025 DN)$		

4.2.3.4 Tolerancias sobre las longitudes

Las tolerancias sobre las longitudes deben ser las indicadas en el tabla 5.

TABLA 5

Dimensiones en milímetros

Tipos de piezas	Tolerancia		
Tubos de espiga y campana (de longitudes normales o recortadas)	<u>+</u> 30		
Conexiones para juntas con campana Tubos y conexiones para juntas de bridas	$\frac{\pm 20}{\pm 10^{11}}$		

¹⁾ Por acuerdo entre el fabricante y el cliente, pueden darse tolerancias más pequeñas con un mínimo de + 3 mm para DN \leq 600 y \pm 4 mm para DN \geq 600.

4.2.4 Rectitud de los tubos

Los tubos deben ser rectos, quedando limitado el defecto de rectitud a un 0,125% de su longitud.

La comprobación de este requisito se hace habitualmente por inspección visual, en caso de duda o litigio, el defecto de rectitud debe medirse conforme a lo establecido en el numeral 6.2.

4.3 Característica del material

4.3.1 Propiedades en tracción

Los tubos, conexiones y accesorios de fundición dúctil deben tener las propiedades en tracción que se indican en la tabla 6.

TABLA 6

Tipo de piezas	Resistencia mínima en tracción, R _m MPa	Alargamiento mínimo por ciento después de ruptura,A		
	DN 40 a DN 2 600	DN 40 a DN 1 000	DN 1 100 a DN 2 600	
Tubos centrifugados	420	10	7	
Tubos no centrifugados, conexiones y accesorios	420	5	5	

NOTAS:

- 1. Por acuerdo entre el fabricante y el cliente, el límite convencional de elasticidad al 0,2 % $(R_{p0.2})$ puede medirse. Dicho límite no puede ser inferior a:
 - 270 MPa cuando A \geq 12 % para DN 40 a 1 000 o A \geq 10% para DN > 1 000;
 - 300 MPa en todos los demás casos.
- 2. Para los tubos centrifugados de DN 40 a DN 1 000, el alargamiento mínimo después de ruptura debe ser del 7 % para las clases de espesor superiores a K12.

Durante el proceso de fabricación, el fabricante debe efectuar los ensayos apropiados para comprobar estas propiedades de tracción; dichos ensayos pueden consistir:

- a) o bien en un sistema de muestreo por lotes en el que se toman muestras en los extremos de las espigas de los tubos o, en el caso de las conexiones, en unos bloques de muestras contiguos a las piezas o fundidos por separado. Las probetas de ensayo deben ser mecanizadas de estas muestras y sometidas al ensayo de tracción conforme a lo establecido en el numeral 6.3;
- b) o bien en un sistema de control del proceso (por ejemplo, por control no destructivo) por el que pueda demostrarse una correlación positiva con las propiedades en tracción especificadas en la tabla 6. Los procedimientos de ensayo de verificación deben basarse en la utilización de muestras de referencia cuyas propiedades sean conocidas y verificables. Este sistema debe basarse en ensayos de tracción conforme a lo establecido en el numeral 6.3.

4.3.2 Dureza Brinell

La dureza de los diferentes componentes debe ser tal que puedan ser cortados, agujereados, aterrajados, y/o mecanizados con la ayuda de las herramientas usuales. En caso de Litigio, la dureza debe medirse por medio del ensayo de dureza Brinell conforme a lo establecido en el numeral 6.4.

La dureza Brinell no debe sobrepasar 230 HB en el caso de los tubos centrifugados y 250 HB en el de los tubos no centrifugados, conexiones y accesorios. Por lo que respecta a los componentes fabricados por soldadura, es aceptable una dureza Brinell más elevada en la zona afectada térmicamente por la soldadura.

4.4 Revestimientos de los tubos

Los tubos deben entregarse normalmente revestidos interior y exteriormente.

4.4.1 Revestimientos exteriores

Según las condiciones exteriores de utilización (Véase Anexo A) y teniendo en cuenta de las normas nacionales existentes, pueden suministrarse los siguientes revestimientos:

zinc metálico con capa de acabado, conforme a lo establecido en al ISO 8179-1;

pintura de alto contenido en zinc con capa de acabado, conforme a lo establecido en la ISO 8179-2;

zinc metálico reforzado con capa de acabado;

manga de polietileno conforme a lo establecido en la ISO 8180;

poliuretano;

polietileno;

mortero de cemento - fibras;

cintas adhesivas;

pintura bituminosa;

epoxy.

Si no existen normas ISO, estos revestimientos deben cumplir con las normas nacionales o con un pliego de especificaciones técnicas acordado.

4.4.2 Revestimientos interiores

Dependiendo de las características del agua que conduzcan (Véase Anexo B) y teniendo en cuenta las normas nacionales existentes, pueden suministrarse los siguientes revestimientos:

Mortero de cemento Portland (con o sin aditivos), conforme a lo establecido en la ISO 4179;

- mortero de cemento aluminoso (aluminato de calcio), conforme a lo establecido en la ISO 4179;
- mortero de cemento de alto homo, conforme a lo establecido en la ISO 4179;
- mortero de cemento con capa de sellado;
- poliuretano;
- polietileno;
- epoxy;
- pintura bituminosa.

Si no existen normas nacionales éstos revestimientos interiores deben cumplir con un pliego de especificaciones técnicas acordado entre las partes.

4.5 Revestimientos de las conexiones y accesorios

Normalmente las conexiones y accesorios deben suministrarse con revestimientos interior y exterior.

4.5.1 Revestimientos exteriores

Dependiendo de las características del medio externo de utilización (véase Anexo A) y teniendo en cuenta las normas nacionales existentes, pueden suministrarse los siguientes revestimientos:

- pintura bituminosa o de resina sintética;
- epóxica
- revestimiento de zinc con capa de acabado;

- recubrimiento con forro de polietileno, conforme a lo establecido en la ISO 8180;
 - poliuretano;
 - cintas adhesivas.

Si no existen normas ISO, estos revestimientos deben cumplir con las normas nacionales o con un pliego de especificaciones técnicas acordado.

4.5.2 Revestimientos interiores

Dependiendo de las características del agua que conduzcan (Véase Anexo B) y teniendo en cuenta las normas nacionales existentes, pueden suministrarse los siguientes revestimientos:

- Pintura a base de betún o de resina sintética;
- mortero de cemento Portland (con o sin aditivos);
- mortero de cemento aluminoso (aluminato de calcio)
- mortero de cemento de alto homo;
- mortero de cemento con capa de sellado;
- poliuretano;
- polietileno;
- epoxy;

Si no existen normas ISO, estos revestimientos interiores deben cumplir con las normas nacionales existentes o con un pliego de especificaciones técnicas acordado entre las partes.

4.6 Rotulado

Todos los tubos y conexiones deben rotularse en forma legible y resistente en el tiempo, y llevar como mínimo, las indicaciones siguientes:

- La identificación del fabricante;
- la identificación del año de fabricación;
- la identificación de que la fundición es dúctil;
- el DN;
- el PN de las bridas, si procede;
- la referencia a la presente Norma;
- la identificación de los tubos que han sido ensayados, en el caso de conducciones para gas.

Las cinco primeras indicaciones deben ser parte de la fundición. Las otras dos indicaciones pueden darse por cualquier método, por ejemplo, pueden pintarse en las piezas.

5. Requisitos de estanqueidad

5.1 Tubos y conexiones

Los tubos y conexiones deben diseñarse para que sean estancos al agua bajo la primera presión de prueba admisibles (PEA). Deben probarse en las condiciones indicadas en los numerals 6.5 ó 6.6, según el caso, y no deben aparecer ninguna fuga visibles.

5.2 Juntas flexibles

5.2.1 Aspectos generales

Todas las juntas flexibles deben diseñarse conforme a los requisitos establecidos en 5.2. Si el diseño ha sido sometido a prueba y demostrado con documentados por el fabricante, y utilizado con éxito durante al menos diez años, sólo se requiere realizar un ensayo del tipo que se establece en el numeral 5.2.2 para la presión interna y del tipo que se establece en el numeral 5.2.3 para la presión externa, en el caso de que se hayan introducido cambios importantes de diseño, susceptibles de afectar negativamente al buen funcionamiento del junta.

Los diseños de juntas deben someterse a un ensayo de tipo para demostrar su estanqueidad a la presión interna y externa, en las condiciones más desfavorables de tolerancias de las piezas y de los movimientos de la junta.

Debe existir un ensayo de tipo para, al menos, un DN de cada uno de los grupos indicados en la tabla 7. Un DN es representativo de un grupo cuando los rendimientos de funcionamiento se basan en los mismos parámetros de diseño para toda la gama de los DN.

TABLA 7

Rangos de DN	40 a 250	300 a 600	700 a 1 000	1 100 a 2 000	2 200 a 2 600
DN preferido en cada grupo	200	400	800	1 600	2 400

Si un grupo comprende productos de diseño diferente y/o fabricados por procesos diferentes, dicho grupo debe formar parte de una subdivisión.

NOTA: Sí, para un fabricante, un grupo no comprende más que un DN, dicho DN puede considerarse como perteneciente al grupo adyacente, a condición de que sea de diseño idéntico y que esté fabricado por el mismo proceso.

Los ensayos de tipo deben conducirse en la configuración de juego radial máximo entre los componentes a empalmar (espiga más pequeña con la campana más grande).

En el ensayo de tipo, el juego anular máximo debe ser igual al juego radial máximo de diseño con una tolerancia de más 0 % y menos 5 %. Para ello, el diámetro interior de la campana puede mecanizarse, incluso si el diámetro resultante está ligeramente fuera de la tolerancia normal de fabricación.

Las juntas flexibles bloqueados deben diseñarse y probarse de acuerdo a lo establecido en la ISO 10804-1.

5.2.2 Presión interna

La estanqueidad de las juntas a la presión interna debe ser objeto de un ensayo de tipo, conforme a lo establecido en el numeral 7.1, a una presión de ensayo que no debe ser menor a la presión de prueba admisible (PEA); las juntas no deben presentar ninguna fuga visible en las dos posiciones siguientes:

- a) Junta alineada y sometida a una fuerza cortante: la fuerza cortante perpendicular a la junta, expresado en newtones no debe ser menor a 30 veces el DN;
- b) junta inclinada: la inclinación angular en el momento del ensayo debe ser la inclinación máxima admisible indicada en el catálogo del fabricante, pero no menor a 3° para DN 40 a DN 300, 2° para DN 350 a DN 600 y 1° para DN 700 a DN 2 600.

5.2.3 Presión externa

La estanqueidad de las juntas a la presión externa debe ser objeto de un ensayo de tipo conforme a lo establecido en el numeral 7.2; los juntas no deben presentar ninguna fuga visible cuando son sometidos a un esfuerzo cortante expresado en newtones que no sea inferior a 30 veces el DN.

La presión de ensayo no debe ser inferior a 1 bar.

- 6. Métodos de ensayo
- 6.1 Dimensiones

6.1.1 Diámetro exterior

Los tubos con extremos de campana y espiga deben medirse en su extremo espiga con ayuda de una cinta métrica para verificar el cumplimiento con la tolerancia del diámetro exterior. Puede asimismo controlarse por medio de plantillas pasa no pasa.

Además, los tubos deben someterse a una inspección visual para determinar la conformidad del diámetro con la tolerancia de la ovalidad y, en caso de duda, deben verificarse midiendo el eje máximo y el eje mínimo. Este control puede realizarse también con ayuda de plantillas pasa no pasa.

La frecuencia de ensayo depende del sistema de producción y control de calidad utilizado por el fabricante.

6.1.2 Espesor de pared

El fabricante debe demostrar el cumplimiento del espesor de pared; para ello puede utilizar una combinación de distintos medios, como:

- Control de la masa (peso) de los tubos;
- medida directa del espesor de pared, o por plantillas, con ayuda de aparatos adecuados, mecánicos o ultrasónicos.

La frecuencia de ensayo depende del sistema de producción y control de calidad utilizado por el fabricante.

6.1.3 Longitud

La longitud de los tubos centrifugados con extremo en espiga y campana, debe medirse por medio de un equipo apropiado. al primer tubo fundido en un nuevo molde, en el caso de los tubos fundidos en bruto;

al primer tubo, en el caso de los tubos sistemáticamente cortados a una longitud predeterminada.

6.2 Rectitud de los tubos

Es preciso hacer rodar el tubo sobre dos rieles o bien hacerlo girar en torno a su propio eje sobre dos rodillos que, en cada caso, están separados por una distancia que es, al menos, dos tercios de la longitud normalizada del tubo.

Debe determinarse el punto de flecha máximo con respecto al eje teórico, y la flecha medida en este punto no debe sobrepasar el límite establecido en el numeral 4.2.4.

6.3 Ensayo de tracción

6.3.1 Muestras

El espesor de la muestra y el diámetro de la probeta de ensayo deben ser los que se indican en la tabla 8.

6.3.1.1 Tubos centrifugados

Debe cortarse una muestra en el extremo espiga del tubo. Esta muestra puede cortarse paralela o perpendicularmente al eje del tubo, pero, en caso de litigio, debe utilizarse la muestra cortada paralelamente al eje.

6.3.1.2 Tubos no centrifugados, conexiones y accesorios

Las muestras deben tomarse, a elección del fabricante, bien como parte integrante de las piezas fundidas, bien como muestras adyacentes a las piezas o de una muestra fundida separadamente. En este último caso, deben fundirse con el mismo metal que el de las piezas. Si las piezas sufren un tratamiento térmico, las muestras deben sufrir idéntico tratamiento térmico.

6.3.2 Probeta

De cada muestra debe mecanizarse una probeta para que sea representativa del metal a medio espesor de la muestra, con una parte cilíndrica que tenga el diámetro que se indica en la tabla 8.

La probeta debe tener una longitud entre marcas igual, al menos, a cinco veces el diámetro nominal de la probeta. Los extremos deben ser de tal forma que se ajusten a la máquina de ensayo.

La rugosidad de superficie de la parte cilíndrica de la probeta debe ser tal que R₂≤6,3 μm.

Pueden utilizarse dos tipos de probetas de ensayo para la medición de la tracción a elección del fabricante.

Probeta Tipo A

Mecanizar la probeta de ensayo a un diámetro nominal de \pm 10 %, medir el diámetro real antes del ensayo con una precisión de \pm 0,01 mm y utilizar este diámetro medido para calcular el área de la sección recta y la resistencia en tracción.

Probeta Tipo B

Mecanizar la probeta de ensayo para tener un área nominal S_o con una tolerancia específica sobre el diámetro (Véase tabla 8) y utilizar el área nominal para calcular la resistencia en tracción.

TABLA 8

Tipo de piezas	Probeta Tipo A	Pro	obeta Tipo	В
	Diámetro nominal mm	Area nominal S _o mm²	Diámetro nominal mm	Tolerancia de diámetro mm
Tubos centrifugados con espesor de				
pared:				
De menos de 6 mm	2,5	5	2,52	± 0,01
6mm hasta pero sin incluir 8 mm	3,5	10	3,57	± 0,02
8 mm hasta pero sin incluir 12 mm	5	20	5,05	<u>+</u> 0,02
12 mm y más	6	30	6,18	± 0,03
Tubos no centrifugados, conexiones y Accesorios:				
muestras fundidas adyacentes a piezas muestras fundidas separadamente	5	20	5,05	<u>+</u> ,0,02
espesor de muestra 12,5 mm para piezas de espesor inferior a 12 mm	6	30	6,18	± 0,03
espesor de muestra 25 mm para piezas	12	#	-	=
de espesor superior o igual a 12 mm	o 14			

6.3.3 Equipo y método de ensayo

La máquina de ensayo debe tener mandíbulas o mordazas apropiadas para recibir los extremos de las probetas de manera que se aplique la carga de ensayo axialmente. La máquina de ensayo debe poder desarrollar una fuerza suficiente para romper las probetas al tiempo que indica la carga aplicada.

La velocidad de aplicación de la carga debe ser lo más constante como sea posible dentro de los límites de 6N/mm² por segundo a 30 N/mm² por segundo.

La resistencia en tracción debe calcularse dividiendo la carga máxima soportada por la probeta por el área de la sección recta de la probeta antes del ensayo. La longitud entre marcas después del ensayo debe medirse acercando las dos partes de la probeta después de la ruptura. El alargamiento debe calcularse a partir de la relación de la longitud entre marcas después del ensayo con la longitud entre marcas inicial. Opcionalmente, el alargamiento puede medirse directamente por medio de un extensómetro.

6.3.4 Resultados de ensayos

Los resultados del ensayo deben cumplir con lo establecido en la tabla 6. Si no lo son, el fabricante debe:

- a) En caso de que el metal no alcance las propiedades mecánicas requeridas, investigar las causas de ello y asegurarse de que las piezas del lote o bien son refundidas o bien son desechadas; las piezas refundidas deben volver a probarse en un ensayo conforme a lo establecido en el numeral 6.3;
- b) En el caso de que la probeta presente un defecto, realizar un ensayo suplementario. Si éste es satisfactorio, el lote es aceptado; de lo contrario, el fabricante puede elegir, si así lo desea, proceder de acuerdo con lo establecido en el punto a) anterior.

NOTA: El fabricante puede limitar la cantidad de piezas desechadas efectuando ensayos suplementarios, por orden de fabricación, hasta que el lote de piezas desechadas sea aislado por un ensayo positivo sobre cada pieza que delimite el intervalo en cuestión.

6.3.5 Frecuencia de ensayos

La frecuencia de ensayos depende del sistema de producción y de control de calidad utilizado por el fabricante (Véase 4.3.1). Los tamaños máximos de lote deben ser los indicados en la tabla 9.

TABLA 9

Tipo de piezas	DN	Tamaño máximo del lote		
		Sistema de muestreo	Sistema de ensayo	
		de lotes	en control de	
		de lotes	proceso	
	40 a 300	200 tubos	1 200 tubos	
	350 a 600	100 tubos	600 tubos	
Tubos centrifugados	700 a 1 000	50 tubos	300 tubos	
	1 100 a 2 600	25 tubos	150 tubos	
Tubos no				
centrifugados,			,	
conexiones y	Todos los DN	4t*	48t*	
accesorios				
* Masa de piezas brutas desmazarotadas, en toneladas				

6.4 Dureza Brinell

Cuando se efectúan ensayos de dureza Brinell (Véase 4.3.2), éstos deben hacerse bien sobre la pieza en discrepancia o bien sobre una muestra obtenida de la pieza. La superficie a probar debe prepararse de forma adecuada por un ligero esmerilado local, y el ensayo debe cumplir con lo establecido en la ISO 6506-1 utilizando una bola de acero de diámetro 2,5 mm o 5 mm o 10 mm.

Ensayo de estanqueidad en fábrica de los tubos y conexiones para conducción de agua para consumo humano

6.5.1 Aspectos generales

Los tubos y las conexiones deben ser probados conforme a lo establecido en los numerales 6.5.2 y 6.5.3 respectivamente. El ensayo debe efectuarse en todos los tubos y conexiones antes de la aplicación de sus revestimientos exteriores e interiores, a excepción del revestimiento de zinc metálico de los tubos, que puede ser aplicado antes del ensayo.

El equipo de ensayo debe permitir aplicar a los tubos y/o a las conexiones las presiones de ensayo prescritas. Debe estar provisto de un manómetro que tenga una precisión de \pm 3 %.

6.5.2 Tubos centrifugados

Los tubos centrifugados deben ser sometidos a un ensayo hidrostático de trabajo de una duración mínima de 10 s, a presiones internas por lo menos iguales a las indicadas en el tabla 10.

6.5.3 Tubos no centrifugados y conexiones

A elección del fabricante, deben ser sometidos a un ensayo de presión hidrostática o a un ensayo neumático, o a cualquier otro ensayo de estanqueidad que sea equivalente.

Si se efectúa el ensayo de presión hidrostática, éste debe realizarse de la misma forma que para los tubos centrifugados (Véase 6.5.2), a excepción de las presiones de ensayos, deben ser las que se indican en la tabla 10.

TABLA 10

DN	Presión mínima de ensayo en fábrica bar		
	Tubos centrifugados		Tubos no centrifugados conexiones ¹⁾
	K < 9	K ≥ 9	Toda clase de
			espesores
40 a 300	$0.5 (K + 1)^{2}$ $0.5 K^{2}$ $0.5 (K - 1)^{2}$ $0.5 (K - 2)^{2}$ $0.5 (K - 3)^{2}$	50	25 ²⁾
350 a 600	0,5 K ²	40	16
700 a 1 000	$0.5 (K-1)^2$	32	10
1 100 a 2 000	$0.5 (K-2)^2$	25	10
2 200 a 2 600	$0, 5 (K-3)^{2}$	18	10

¹⁾ La presión hidrostática de ensayo en fábrica es menos elevada para los conexiones que para los tubos, pues la forma de los conexiones hace difícil asegurar suficiente de los esfuerzos debidos a presiones elevadas en el momento del ensayo.

2) 16 bar para los tubos y conexiones con bridas PN 10.

Cuando se efectúa el ensayo neumático, éste debe hacerse con una presión interna de al menos 1 bar y con una duración de inspección visual no inferior a 10 s; para la detección

de fugas, las piezas deben ser o bien uniformemente recubiertas en sus superficies extermas con un producto espumante apropiado o bien estar sumergidas en agua.

Ensayos de estanqueidad en fábrica de los tubos y conexiones para el gas

Los tubos y conexiones deben someterse a un ensayo neumático con una presión interna de al menos 1 bar y con una duración de inspección visual no inferior a 10 s para los conexiones y de 30 s para los tubos. Para la detección de fugas, los tubos y conexiones deben ser o bien uniformemente recubiertos en sus superficies externas con un producto espumante apropiado o bien estar sumergidas en agua.

NOTA: Los reglamentos nacionales pueden especificar la observancia de medidas de seguridad especiales durante el ensayo de aire.

7. ENSAYOS DE TIPO

7.1 Estanqueidad de los componentes para canalizaciones por gravedad

Los tubos, conexiones, cajas de derivación y registros, provistos de topes extremo apropiados, deben ser llenados de agua y purgados convenientemente del aire. La presión hidrostática interna debe entonces incrementarse hasta 2 bares y mantenerse constante como mínimo 2h durante las cuales deben efectuarse una inspección visual para detectar las eventuales fugas.

El ensayo debe efectuarse a temperatura ambiente sobre los productos revestidos.

Cuando sea práctico, estos ensayos de tipo pueden efectuarse al mismo tiempo que los descritos en 7.2 para las conexiones.

7.2 Estanqueidad de las uniones a la presión interna

El ensayo debe realizarse sobre un ensamble que comprenda dos elementos de tubo, cada uno de una longitud mínima de 1 m (Véase figura 1).

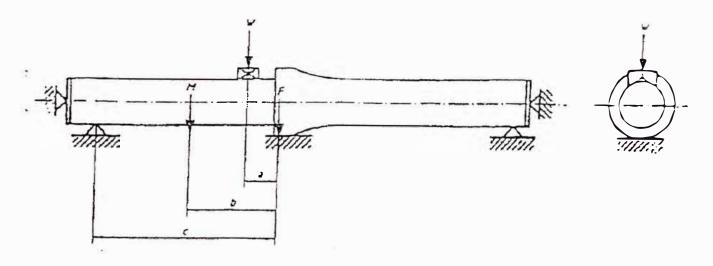


FIGURA 1

El aparato de ensayo debe contar con los topes de extremo apropiados, para mantener el ensamble en posición alineada, en posición desviada o sometido a un esfuerzo constante. Debe estar provisto de un manómetro con una precisión de ± 3 %.

La fuerza vertical W debe ser aplicada a la espiga mediante un bloque en forma de "V" de 120°, situada aproximadamente a 0,5 veces el DN, en milímetros o a 200 mm de la cara de la junta (el mayor de los dos valores); la junta debe estar apoyada en un soporte plano. La fuerza vertical W debe ser tal que, el esfuerzo cortante F resultante frente al ensamble sea igual al valor prescrito en 5.2.2, considerando el peso M del tubo y de su contenido, y la geometría del dispositivo de ensayo:

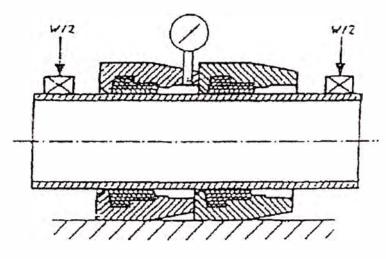
$$W = \frac{Fxc - M(c - b)}{c - a}$$

donde

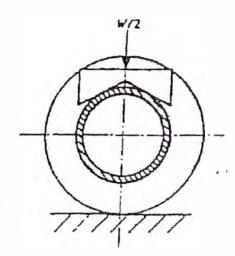
W es la carga vertical en newtons;

F es el esfuerzo cortante en newtons;

M es el peso del tubo en newtons;

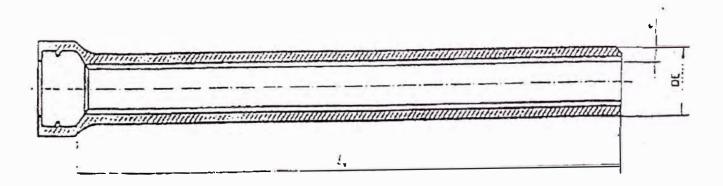

- a punto de aplicación de la carga (véase figura 1), en mm;
- b punto medio de la distancia entre apoyos (véase figura 1), en mm;
- c distancia entre apoyos del montaje sometido a carga (Véase figura 1), en mm;

El dispositivo de ensayo debe ser llenado de agua y purgado convenientemente del aire. La presión es aumentada regularmente hasta alcanzar la presión de ensayo indicada en 5.2.2; la velocidad de puesta bajo presión no debe sobrepasar 100 bar/min. La presión de ensayo debe ser mantenida constante a ±0,1 bar al menos 2h, durante las cuales el ensamble debe ser cuidadosamente examinado cada 10 min.


7.3 Estanqueidad de las juntas a la presión externa

El dispositivo de ensayo debe comprender dos uniones realizadas por dos campanas de tubos soldados una a otra, y una porción de tubo con extremos de corte lisos (véase figura 2); esto delimita una cámara anular que permite someter una unión a la presión interna y otra a presión externa.

El dispositivo de ensayo debe ser sometido a un esfuerzo cortante, como se ha definido en el numeral 5.2.2; la mitad de este esfuerzo debe aplicarse al extremo liso de cada lado del dispositivo de ensayo, por intermedio de un bloque en forma de V de 120° situado a una distancia P (véase figura 2); las campanas deben estar apoyadas en un soporte plano.



El dispositivo de ensayo debe llenarse de agua y purgarse de aire. La presión debe aumentarse regularmente hasta alcanzar la presión de ensayo y mantenida constante a ± 0 , l bar durante 2 h como mínimo, durante las cuales el interior del ensamble solicitado bajo presión externa debe ser cuidadosamente examinado cada 10 min.

8. Tablas de dimensiones

8.1 Tubos de espiga y campana

Las dimensiones de los tubos de espiga y campana se presentan en la tabla 11 y figura 3.

Los valores de L_u se indican en la tabla 2. Para los revestimientos internos y externos, véase el numeral 4.4.

FIGURA 3

TABLA 11

Dimensiones en milímetros

DN	Diámetro exterior DE ¹⁾	Espesor de fundición, e, K9
40	56	6
50	66	6
60	77	6
65	82	6
80	98	6
100	118	6
125	144	6
150	170	6
200	222	6,3
250	274	6,8
300	326	7,2
350	378	7,7
400	429	8,1
450	480	8,6
500	532	9
600	635	9,9
700	738	10,8
800	842	11,7
900	945	12,6
1 000	1 048	13,5
1 100	1 152	14,4
1 200	1 255	15,3
1 400	1 462	17,1
1 500	1 565	18
1 600	1 668	18,9
1 800	1 875	20,7
2 000	2 082	22,5
2 200	2 288	24,3
2 400	2 495	26,1
2 600	2 702	27,9

8.2 Tubos bridados

Las clases de espesor, los DN y PN normalizados de los tubos bridados se especifican en los numerales 8.2.1 a 8.2.3. Los valores de L se indican en la tabla 3. Para los revestimientos exteriores e interiores, véase 4.4

NOTA: Las dimensiones de las bridas son conformes a la ISO 7005-2.

8.2.1 Tubos centrifugados con bridas soldadas

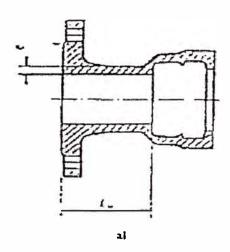
DN 40	a	DN 450:	K9 para PN 10, PN 16, PN 25 y PN 40
DN 500	У	DN 600:	K9 para PN 10, PN 16, PN 25, K10 para PN 40
DN 700	a	DN 1600:	K9 para PN 10, PN 16 y PN 25
DN 1 800	a	DN 2600:	K9 para PN 10 y PN 16

8.2.2 Tubos centrifugados con bridas roscadas

DN 40	a	DN 450:	K9 o K10 para PN 10, PN 16, PN 25 y PN 40
DN 500	У	DN 600:	K9 o K10 para PN10, PN16 y PN 25; K10 para PN 40
DN 700	a	DN 1 200:	K10 para PN 10, PN 16 y PN 25
DN 1 400	a	DN 2 600:	K10 para PN 10 y PN 16

8.2.3 Tubos con bridas fundidas integralmente

DN 40	a	DN 600:	K12 para PN 10, PN 16, PN 25 y PN 40
DN 700	a	DN 1 600:	K12 para PN 10, PN 16 y PN 25
DN 1800	a	DN 2 600:	K12 para PN 10 y PN 16


8.3 Conexiones con campana

En las tablas 12 a 20, todas las dimensiones son valores nominales y se dan en milímetros. Los valores de L_u y l_u se han redondeado al múltiplo más próximo de cinco.

Para los revestimientos exteriores e interiores, véase 4.5.

8.3.1 Bridas con campana

Véase la figura 4 y la tabla 12.

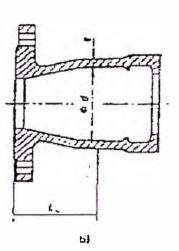
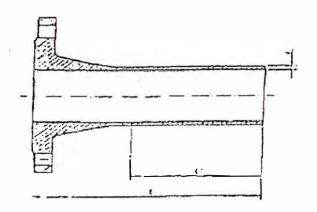


FIGURA 4

TABLA 12


			L_u		
DN	E	Serie A	Serie B	d	
40	7	125	75	67	
50	7	125	85	78	
60	7	125	100	88	
65	7	125	105	93	
80	7	130	105	109	
100	7,2	130	110	130	
125	7,5	135	115	156	
150	7,8	135	120	183	
200	8,4	140	120	235	
250	9	145	125	288	
300	9,6	150	130	340	
350	10,2	155	135	393	
400	10,8	160	140	445	
450	11,4	165	145	498	
500	12	170	÷.	550	
600	13,2	180		655	
700	14,4	190	æs	760	
800	15,6	200	₩0	865	
900	16,8	210	##A	970	
1 000	18	220	*##	1075	
1 100	19,2	230	•	1180	
1 200	20,4	240		1285	
1 400	22,8	310	-	1477	
1 500	24	330	-	1580	
1 600	25,2	330	9 = 1	1683	
1 800	27,6	350	-	1889	
2 000	30	370	9=	2095	
2 200	32,4	390	10 =	2301	
2 400	34,8	410	·	2507	
2 600	37,2	480	<u> </u>	2713	

8.3.2 Bridas con extremo espiga

Véase la figura 5 y la tabla 13

8.3.3 Collar

Véase la figura 6 y la tabla 13

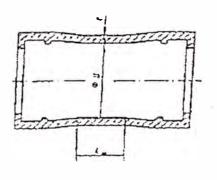
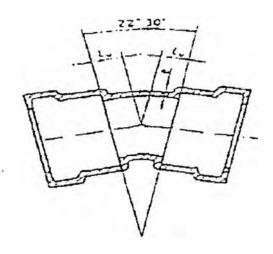


FIGURA 5

FIGURA 6

TABLA 13

		Bridas	s-estremos e	espiga				
		Ι		Γ_1		L_u	d	
DN	e	Serie A	Serie B		Serie A	Serie B		
40	7	335	335	200	155	155	67	
50	7	340	340	200	155	155	78	
60	7	345	335	200	155	155	88	
65	7	345	345	200	155	155	93	
80	7	350	350	215	160	160	109	
100	7,2	360	360	215	160	160	130	
125	7,5	370	370	220	165	165	156	
150	7,8	380	380	225	165	165	183	
200	8,4	400	400	230	170	170	235	
250	9	420	420	240	175	175	288	
300	9,6	440	440	250	180	180	340	
350	10,2	460	460	260	185	185	393	
400	10,8	480	480	270	190	190	445	
450	11,4	500	500	280	195	195	498	
500	12	520	-	290	200	-	550	
600	13,2	560	_	310	210	_	655	
700	14,4	600	-	330	220	-	760	
800	15,6	600	-	330	230	-	865	
900	16,8	600	-	330	240	-	970	
1 000	18	600	-	330	250	_	1 075	
1 100	19,2	600	-	330	260	-	1 180	
1 200	20,4	600	-	330	270	V	1 285	
1 400	22,8	710	-	390	340	-	1 477	
1 500	24	750	-	410	350	_	1 580	
1 600	25,2	780	-	430	360	-	1 683	
1 800	27,6	850		470	380	-	1 889	
2 000	30	920	-	500	400	-	2 095	
2 200	32,4	990	_	540	420	-	2 301	
2 400	34,8	1 060	-	570	440	-	2 507	
2 600	37,2	1 130	-	610	460	v su tolerancia	2 713	


NOTA - L^T da la longitud de la espiga sobre la que se aplican el valor de DE y su tolerancia indicadas en el tabla 11

8.3.4 Codo de 90° (1/4) doble campana

Véase la figura 7 y la tabla 14.

8.3.5 Codos de 45° (1/8) doble campana

Véase la figura 8 y la tabla 14

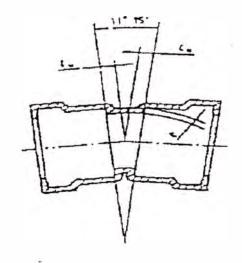
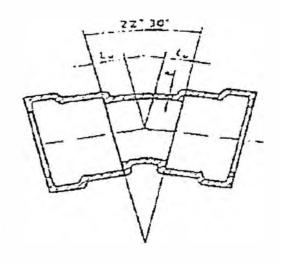


FIGURA 7

FIGURA 8

TABLA 14


DN	e	Codos de		Codo	s de 45°(1/8)	
Ĭ			Lu	Lu		
		Serie A	Serie B	Serie A	Serie B	
40	7	60	85	40	85	
50	7	70	85	40	85	
60	7	80	90	45	90	
65	7	85	90	50	90	
80	7	100	85	55	50	
100	7,2	120	100	65	60	
125	7,5	145	115	75	65	
150	7,8	170	130	85	70	
200	8,4	220	160	110	80	
250	9	270	240	130	135	
300	9,6	320	280	150	155	
350	10,2	_	-	175	170	
400	10,8	_	-	195	185	
450	11,4	-	-	220	200	
500	12	-	-	240	-	
600	13,2	-	-	285	-	
700	14,4	_	_	330	-	
800	15,6	_	-	370	-	
900	16,8	_	-	415	-	
1000	18	- "	-	460	-	
1100	19,2	_	-	505	- '	
1200	20,4	-	-	550	-	
1400	22,8	-	-	515	-	
1500	24	-	-	540	-	
1600	25,2	-	-	565	-	
1800	27,6	-	-	610	-	
2000	30	-	-	660	-	
2200	32,4	-	-	710	-	
2400	34,8	-	-	755	-	
2600	37,2	-	-	805		

8.3.6 Codos de 22° 30'(1/16) doble campana

Véase la figura 9 y la tabla 15.

8.3.7 Codo de 11° 15'(1/32) doble campana

Véase la figura 10 y la tabla 15

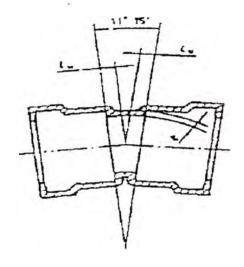


FIGURA 9

FIGURA 10

8.3.8 Tee con tres campanas

Véase la figura 11 y la tabla 16.

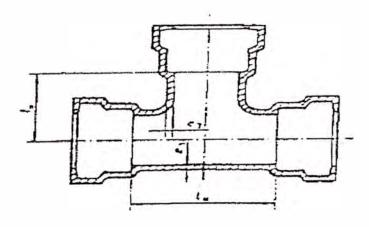


FIGURA 11

TABLA 15

DN	e	Codos de 2	22° 30' (1/16)	Codos	de 11° 15' (1/32)
			Lu		L_{u}
		Serie A	Serie B	Serie A	Serie B
40	7	30	30	25	25
50	7	30	30	25	25
60	7	35	35	25	25
65	7	35	35	25	25
80	7	40	40	30	30
100	7,2	40	50	30	30
125	7,5	50	55	35	35
150	7,8	55	60	35	40
200	8,4	65	70	40	45
250	9	75	80	50	55
300	9,6	85	90	55	55
350	10,2	95	100	60	60
400	10,8	110	110	65	65
450	11,4	120	120	70	70
500	12	130	-	75	-
600	13,2	150	-	85	-
700	14,4	175	-	95	-
800	15,6	195	-	110	_
900	16,8	220	-	120	-
1000	18	240	-	130	-
1100	19,2	260	-	140	-
1200	20,4	285	-	150	-
1400	22,8	260	-	130	-
1500	24	270	-	140	-
1600	25,2	280	-	140	-
1800	27,6	305	_	155	-
2000	30	330	-	165	-
2200	32,4	355	-	190	-
2400	34,8	380	-	205	-
2600	37,2	400	_	215	_

TABLA 16

DN x dn	Cuerpo				Derivación	
	e_1	L	u	e_2	L_{u}	
		SerieA	Serie B		SerieA	Serie B
40 x 40	7	120	155	7	60	75
50 x 50	7	130	155	7	65	75
60 x 60	7	145	155	7	70	80
65 x 65	7	150	155	7	75	80
80 x 40	7	120	155	7	80	80
80 x 80	7	170	175	7	85	85
100 x 40	7,2	120	155	7	90	90
100 x 60	7,2	145	155	7	90	90
100 x 80	7,2	170	165	7	95	90
100 x 100	7,2	190	195	7,2	95	100
125 x 40	7,5	125	155	7	100	105
125 x 80	7,5	170	175	7	105	105
125 x 100	7,5	195	195	7,2	110	115
125 x 125	7,5	225	225	7,5	110	115
150 x 40	7,8	125	160	7	115	115
150 x 80	7,8	170	180	7	120	120
150 x 100	7,8	195	200	7,2	120	125
150 x 150	7,8	255	260	7,8	125	130
200 x 40	8,4	130	165	7	140	140
200 x 80	8,4	175	180	7	145	145
200 x 100	8,4	200	200	7,2	145	150
200 x 150	8,4	255	260	7,8	150	155
200 x 200	8,4	315	320	8,4	155	160
250 x 80	9	180	185	7	170	185
250 x 100	9	200	205	7,2	170	190
200 x 150	9	260	265	7,8	175	190
250 x 200	9	315	320	8,4	180	190
250 x 250	9	375	380	9	190	190
300 x 100	9,6	205	210	7,2	195	220
300 x 150	9,6	260	265	7,8	200	220
300 x 200	9,6	320	325	8,4	205	220
300 x 250	9,6	375	380	9	210	220
300 x 300	9,6	435	440	9,6	220	220

8.3.9 Tee con dos campanas y derivación con brida, DN 40 a DN 250

Véase la figura 12 y la tabla 17.

8.3.10 Tee con dos campanas y derivación con brida DN 300 a DN 700

Véase la figura 12 y la tabla 18

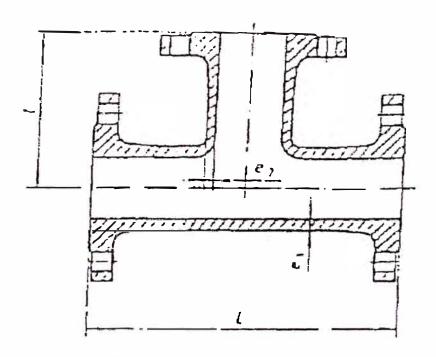


FIGURA 12

TABLA 17

		Cuerpo		Derivación		
DN x dn	e_1	L_{i}	u	e_2	l	
		SerieA	Serie B		SerieA	Serie B
40 x 40	7	120	155	7	130	130
50 x 50	7	130	155	7	140	140
60 x 40	7	-	155	7	- [130
60 x 60	7	145	155	7	150	150
65 x 40	7	-	155	7	-	130
65 x 65	7	150	155	7	150	155
80 x 40	7	-	155	7	-	135
80 x 60	7	-	155	7	-	155
80 x 80	7	170	175	7	165	165
100 x 40	7,2	_	155	7	-	145
100 x 60	7,2	-	155	7	-	165
100 x 80	7,2	170	165	7	175	170
100 x 100	7,2	190	195	7,2	180	180
125 x 40	7,5	-	155	7	-	160
125 x 60	7,5	- 1	155	7	- 1	180
125 x 80	7,5	170	175	7	190	185
125 x 100	7,5	195	195	7,2	195	195
125 x 125	7,5	225	225	7,5	200	200
150 x 40	7,8	-	160	7	- 1	170
150 x 60	7,8	-	160	7	-	190
150 x 80	7,8	170	180	7	205	200
150 x 100	7,8	195	200	7,2	210	205
150 x 125	7,8	_	230	7,5	- 1	215
150 x 150	7,8	255	260	7,8	220	220
200 x 40	8,4	_	165	7	_	195
200 x 60	8,4	-	165	7	-	215
200 x 80	8,4	175	180	7	235	225
200 x 100	8,4	200	200	7,2	240	230
200 x 125	8,4	_	235	7,5	-	240
200 x 150	8,4	255	260	7,8	250	245
200 x 200	8,4	315	320	8,4	260	260
250 x 60	9.0		165			260
250 x 80	9.0	180	185	7 7	265	265
250 x 100	9.0	200	205	7,2	270	270
250 x 150	9.0	260	265	7,8	280	280
250 x 200	9.0	315	320	8,4	290	290
250 x 250	9,0	375	380	9	300	300
	the state of the s					

TABLA 18

		Cuerpo			Derivación		
DN x dn	e ₁	L	·u	e ₂	l		
		SerieA	Serie B	1	SerieA	Serie B	
300 x 60	9,6	-	165	7	-	290	
300 x 80	9,6	180	185	7	295	295	
300 x 100	9,6	205	210	7,2	300	300	
300 x 150	9,6	260	265	7,8	310	310	
300 x 200	9,6	320	325	8,4	320	320	
300 x 250	9,6	-	380	9	-	330	
300 x 300	9,6	435	440	9,6	340	340	
350 x 60	10,2	-	170	7	-	320	
350 x 80	10,2	-	185	7	-	325	
350 x 100	10,2	205	210	7,2	330	330	
350 x 150	10,2	-	270	7,8	-	340	
350 x 200	10,2	325	325	8,4	350	350	
350 x 250	10,2	-	385	9	-	360	
350 x 350	10,2	495	500	10,2	380	380	
400 x 80	10,8	185	190	7	355	355	
400 x 100	10,8	210	210	7,2	360	360	
400 x 150	10,8	270	270	7,8	370	370	
400 x 200	10,8	325	330	8,4	380	380	
400 x 250	10,8	_	385	9	-	390	
400 x 300	10,8	440	445	9,6	400	400	
400 x 400	10,8	560	560	10,8	420	420	
450 x 100	11,4	215	215	7,2	390	390	
450 x 150	11,4	270	270	7,8	400	400	
450 x 200	11,4	330	330	8,4	410	410	
450 x 250	11,4	390	390	9	420	420	
450 x 300	11,4	445	445	9,6	430	430	
450 x 400	11,4	560	560	10,8	450	450	
450 x 450	11,4	620	620	11,4	460	460	
500 x 100	12	215	-	7,2	420	-	
500 x 200	12	330	-	8,4	440	-	
500 x 400	12	565	-	10,8	480	-	
500 x 500	12	680	-	12	500	-	
600 x 200	13,2	340	-	8,4	500	-	
600 x 400	13,2	570	-	10,8	540	-	
600 x 600	13,2	800	-	13,2	580	-	
700 x 200	14,4	345	-	8,4	525	-	
700 x 400	14,4	575	-	10,8	555	-	
700 x 700	14,4	925	-	14,4	600	<u> </u>	

8.3.11 Tee con dos campanas y derivación con brida DN 800 a DN 2 600 Véase la figura 12 y el tabla 19.

TABLA 19

	Cue	erpo	Deriv	Derivación		
DN x dn	e_1 L_u		e_2	L		
		Serie A		Serie A		
800 x 200	15,6	350	8,4	585		
800 x 400	15,6	580	10,8	615		
800 x 600	15,6	1045	13,2	645		
800 x 800	15,6	1045	15,6	675		
900 x 200	16,8	355	8,4	645		
900 x 400	16,8	590	10,8	675		
900 x 600	16,8	1170	13,2	705		
900 x 900	16,8	1170	16,8	750		
1000 x 200	18	360	8,4	705		
1000 x 400	18	595	10,8	735		
1000 x 600	18	1290	13,2	765		
1000 x 1000	18	1290	18	825		
1100 x 400	19,2	600	10,8	795		
1100 x 600	19,2	830	13,2	825		
1200 x 600	20,4	840	13,2	885		
1200 x 800	20,4	1070	15,6	915		
1200 x 1000	20,4	1300	18	945		
1400 x 600	22,8	1030	13,2	980		
1400 x 800	22,8	1260	15,6	1010		
1400 x 1000	22,8	1495	18	1040		
1500 x 600	24	1035	13,2	1035		
1500 x 1000	24	1500	18	1595		
1600 x 600	25,2	1040	20,4	1090		
1600 x 800	25,2	1275	15,6	1120		
1600 x 1000	25,2	1505	18	1150		
1600 x 1200	25,2	1740	20,4	1180		
1800 x 600	27,6	1055	13,2	1200		
1800 x 800	27,6	1285	15,6	1230		
1800 x 1000	27,6	1520	18	1260		
1800 x 1200	27,6	1750	20,4	1290		
2000 x 600	30	1065	13,2	1310		
2000 x 1000	30	1530	18	1370		
2000 x 1400	30	1995	22,8	1430		
2200 x 600	32,4	1080	13,2	1420		
2200 x 1200	32,4	1775	20,4	1510		
2200 x 1800	32,4	2470	27,6	1600		
2400 x 600	34,8	1090	13,2	1530		
2400 x 1200	34,8	1785	20,4	1620		
2400 x 1800	34,8	2480	27,6	1710		
2600 x 600	37,2	1100	13,2	1640		
2600 x 1400	37,2	2030	22,8	1750		
2600 x 2000	37,2	2725 principal se inc	30	1850		

8.3.12 Cono con dos campanas

Véase la figura 13 y la tabla 20.

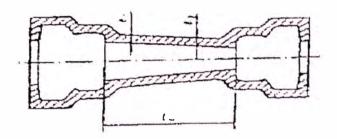


FIGURA 13

TABLA 20

DN x dn	ei	e_2	L_u	
			Serie A	Serie B
50 x 40	7	7	70	75
60 x 50	7	7	70	75
65 x 50	7	7	80	75
80 x 40	7	7	-	80
80 x 60	7	7	90	80
80 x 65	7	7	80	80
100 x 60	7,2	7	-	120
100 x 80	7,2	7	90	85
125 x 60	7,5	7	-	190
125 x 80	7,5	7	140	135
125 x 100	7,5	7,2	100	120
150 x 80	7,8	7	190	190
150 x 100	7,8	7,2	150	150
150 x 125	7,8	7,5	100	115
200 x 100	8,4	7,2	250	250
200 x 125	8,4	7,5	200	230
200 x 150	8,4	7,8	150	145
250 x 125	9	7,5	300	335
250 x 150	9	7,8	250	250
250 x 200	9	8,4	150	150
300×150	9,6	7,8	350	370
300 x 200	9,6	8,4	250	250
300 x 250	9,6	9	150	150
350×200	10,2	8,4	360	370
350 x 250	10,2	9	260	260
350×300	10,2	9,6	160	160
400 x 250	10,8	9	360	380
400 x 300	10,8	9,6	260	260
400 x 350	1	10,2	160	155
$ 450 \times 350 $	11,4	10,2	260	270
450 x 400	11,4	10,8	160	160
500×350	12	10,2	360	-
500 x 400	12	10,8	260	-

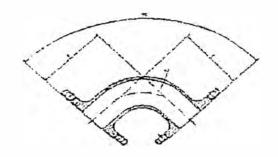
TABLA 20 (final)

DN x dn	e ₁	e 2	L	u
			SerieA	Serie B
600 x 400	13,2	10,8	460	-
600 x 500	13,2	12	260	-
700 x 500	14,4	12	480	-
700 x 600	14,4	13,2	280	-
800 x 600	15,6	13,2	480	~
800 x 700	15,6	14,4	280	-
900 x 700	16,8	14,4	480	-
900 x 800	16,8	15,6	280	-
1000 x 800	18	158,6	480	-
1000 x 900	18	16,8	280	-
1100 x 1000	19,2	18	480	-
1200 x 1000	20,4	18	280	-
1400 x 1200	22,8	20,4	360	-
1500 x 1400	24	22,8	260	-
1600 x 1400	25,2	22,8	360	-
1800 x 1600	27,6	25,2	360	-
2000 x 1800	30	27,6	360	-
2200 x 2000	32,4	30	360	-
2400 x 2200	34,8	32,4	360	-
2600 x 2400	37,2	34,8	360	-

NOTA - El diámetro nominal más grande se indica con Dn y el diámetro nominal más pequeño se indica con dn.

8.4 Conexiones para juntas de bridas

Los PN normalizados son los que se indican en el numeral 8.2.3.


En las tablas 21 a 30, todas las dimensiones corresponden a valores nominales y se dan en milímetros. Para los revestimientos exteriores e interiores, véase el numeral 4.5.

8.4.1 Codos de 90° (1/4) con bridas

Véase la figura 14 y la tabla 21.

8.4.2 Codos de 45° (1/8) con bridas y patín

Véase la figura 15 y la tabla 21.

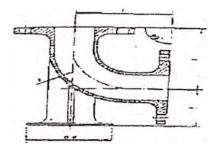


FIGURA 14

FIGURA

8.4.3 Codo a 45° (1/8) con bridas

Véase la figura 16 y la tabla 22.

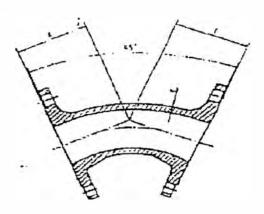


FIGURA 16

TABLA 21

DN		S	eries A y B		
	e	Codos a 90°	Codos	a 90 ° (1/4) de	e patín
1		(1/4)			
		L	L	С	d
40	7	140	-	-	-
50	7	150	150	95	150
60	7	160	160	100	160
65	7	165	165	100	165
80	7	165	165	110	180
100	7,2	180	180	125	200
125	7,5	200	200	140	225
150	7,8	220	220	160	250
200	8,4	260	260	190	300
250	9	350	350	225	350
300	9,6	400	400	255	400
350	10,2	450	450	290	450
400	10,8	500	500	320	500
450	11,4	550	550	355	550
500	12	600	600	385	600
600	13,2	700	700	450	700
700	14,4	800	-	-	-
800	15,6	900	-	-	-
900	16,8	1000		-	-
1000	18	1100	-	-	-

TABLA 22

DN	e		
		SerieA	Serie B
40	7	140	140
50	7	150	150
60	7	160	160
65	7	165	165
80	7	130	130
100	7,2	140	140
125	7,5	150	150
150	7,8	160	160
200	8,4	180	180
250	9	350	245
300	9,6	400	275
350	10,2	300 1)	300
400	10,8	325 1)	325
450	11,4	350	350
500	12	375	-
600	13,2	425 1)	-
700	14,4	480 1)	-
800	15,6	530 ¹)	-
900	16,8	580 ¹)	-
1000	18	630 ¹)	-
1100	19,2	695	-
1200	20,4	750	-
1400	22,8	775	-
1500	24	810	-
1600	25,2	845	-
1800	27,6	910	-
2000	30	980	-
2200	32,4	880	-
2400	34,8	945	-
2600	37,2	1005	-

2600 | 37,2 | 1005 |
1) Estos valores son ligeramente distintos de los de la cuarta edición de la ISO
2531 ya que han sido redondeados al valor de 5 mm más cercano como todos los demás.

8.4.4 Tee de tres bridas, DN 40 a DN 250

Véase la figura 17 y la tabla 23

8.4.5 Tee de tres bridas, DN 300 a DN 700

Véase la figura 17 y la tabla 24

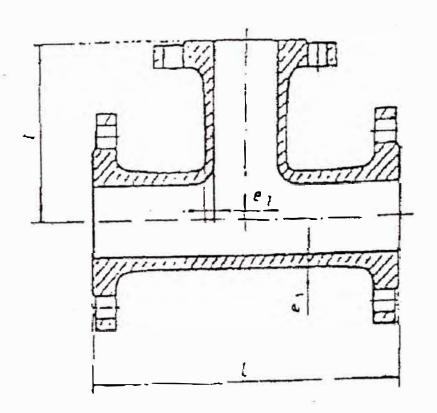


FIGURA 17

TABLA 23

DN x dn		Cuerpo		17.	Derivación	
	e_1			e_2	1	
		SerieA	Serie B		SerieA	Serie B
40 x 40	7	280	255	7	140	130
50 x 50	7	300	280	7	150	140
60 x 40	7	300	-	7	130	-150
60 x 60	7	320	300	7	160	150
65 x 65	7	330	305	7	165	-
80 x 40	7	-	310	7 7	-	135
80 x 60	7	-	310		-	155
80 x 80	7	330	310	7	165	165
100 x 40	7,2	_	320	7	-	145
100 x 60	7,2	-	320	7	- 1	165
100 x 80	7,2	360	330	7	175	170
100 x 100	7,2	360	360	7,2	180	180
125 x 40	7,5	-	330	7	-	160
125 x 60	7,5	-	330	7	-	180
125 x 80	7,5	400	350	7	190	185
125 x 100	7,5	400	370	7,2	195	195
125 x 125	7,5	400	400	7,5	200	200
150 x 40	7,8	-	340	7		170
150 x 60	7,8	_	340	7	-	190
150 x 80	7,8	440	360	7	205	200
150 x 100	7,8	440	380	7,2	210	205
150 x 125	7,8	440	410	7,5	-	215
150 x 150	7,8	440	440	7,8	220	220
200 x 40	8,4	-	365	7	-	195
200 x 60	8,4	-	365	7	-	215
200 x 80	8,4	520	380	7	235	225
200 x 100	8,4	520	400	7,2	240	230
200 x 125	8,4	-	435	7,5	-	240
200 x 150	8,4	520	460	7,8	250	245
200 x 200	8,4	520	520	8,4	260	260
250 x 60	9	-	385	7	-	260
250 x 80	9	-	405	7	-	265
250 x 100	9	700	425	7,2	275	270
250 x 150	9	-	485	7,8	-	280
250 x 200	9	700	540	8,4	325	290
250 x 250	9	700	600	9	350	300

TABLA 24

DN x dn		Cuerpo			Derivación	
	e _i	L		e ₂	L	
		SerieA	Serie B		SerieA	Serie B
300 x 60	9,6	-	405	7	-	290
300 x 80	9,6	-	425	7	-	295
300 x 100	9,6	800	450	7,2	300	300
300 x 150	9,6	-	505	7,8	_	310
300 x 200	9,6	800	565	8,4	350	320
300 x 250	9,6	-	620	9	-	330
300 x 300	9,6	800	680	9,6	400	340
350 x 60	10,2	-	430	7	-	320
350 x 80	10,2	-	445	7	-	325
350 x 100	10,2	850	470	7,2	325	330
350 x 150	10,2	-	530	7,8	-	340
350 x 200	10,2	850	585	8,4	325	350
350 x 250	10,2	-	645	9	_	360
350 x 300	10,2	850	760	10,2	425	380
400 x 80	10,8	-	470	7	-	355
400 x 100	10,8	900	490	7,2	350	360
400 x 150	10,8	-	550	7,8	-	370
400 x 200	10,8	900	610	8,4	350	380
400 x 250	10,8	-	665	9	-	390
400 x 300	10,8	-	725	9,6	_	400
400 x 400	10,8	900	840	10,8	450	420
450 x 100	11,4	950	515	7,2	375	390
450 x 150	11,4	-	570	7,8	-	400
450 x 200	11,4	950	630	8,4	375	410
450 x 250	11,4	- 1	690	9	-	420
450 x 300	11,4	-	745	9,6	-	430
450 x 400	11,4	-	860	10,8	-	450
450 x 450	11,4	950	920	11,4	475	460
500 x 100	12	1000	535	7,2	400	420
500 x 200	12	1000	650	8,4	400	440
500 x 400	12	1000	885	10,8	500	480
500 x 500	12	1000	1000	12	500	500
600 x 200	13,2	1100	700	8,4	450	500
600 x 400	13,2	1100	930	10,8	550	540
600 x 600	13,2	1100	1165	13,2	550	580
700 x 200	14,4	650	-	8,4	525	-
700 x 400	14,4	870	-	10,8	555	-
700 x 700	14,4	1200	-	14,4	600	-

8.4.6 Tee de tres bridas, DN 800 a DN 2 600

Véase la figura 17 y la tabla 25

8.4.7 Conos con bridas

Véase la figura 18 y la tabla 26

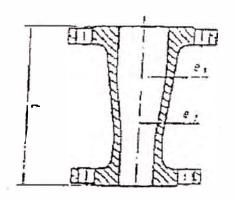
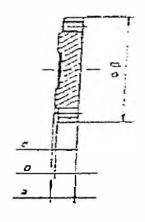


FIGURA 18

TABLA 25

	Cue	гро	Deri	vación
DN x dn	e ₁	L	e ₂	l
		SerieA		SerieA
800 x 200	15,6	690	8,4	585
800 x 400	15,6	910	10,8	615
800 x 600	15,6	1350	13,2	645
800 x 800	15,6	1350	15,6	675
900 x 200	16,8	730	8,4	645
900 x 400	16,8	950	10,8	675
900 x 600	16,8	1500	13,2	705
900 x 900	16,8	1500	16,8	750
1000 x 200	18	770	8,4	705
1000 x 400	18	990	10,8	735
1000 x 600	18	1650	13,2	765
1000 x 1000	18	1650	18	825
1100 x 400	19,2	980	8,4	795
1100 x 600	19,2	1210	13,2	825
1200 x 600	20,4	1240	13,2	885
1200 x 800	20,4	1470	15,6	915
1200 x 1000	20,4	1700	18	945
1400 x 600	22,8	1550	13,2	980
1400 x 800	22,8	1760	15,6	1010
1400 x 1000	22,8	2015	18	1040
1500 x 600	24	1575	13,2	1035
1500 x 1000	24	2040	18	1595
1600 x 600	25,2	1600	13,2	1090
1600 x 800	25,2	1835	15,6	1120
1600 x 1000	25,2	2065	18	1150
1600 x 1200	25,2	2300	20,4	1180
1800 x 600	27,6	1655	13,2	1200
1800 x 800	27,6	1885	15,6	1230
1800 x 1000	27,6	2120	18	1260
1800 x 1200	27,6	2350	20,4	1290
2000 x 600	30	1705	13,2	1310
2000 x 1000	30	2170	18	1370
2000 x 1400	30	2635	22,8	1430
2200 x 600	32,4	1560	13,2	1420
2200 x 1200	32,4	2220	20,4	1510
2200 x 1800	32,4	2880	27,6	1600
2400 x 600	34,8	1620	13,2	1530
2400 x 1200	34,8	2280	20,4	1620
2400 x 1800	34,8	2940	27,6	1710
2600 x 600	37,2	1680	13,2	1640
2600 x 1400	37,2	2560	22,8	1750
2600 x 2000	37,2	3220	30 indica can DN a	1850

Tabla 26


DN x dn	e_1	e ₂		$L_{\rm u}$
			Serie A	Serie B
50 x 40	7	7	150	165
60 x 50	7	7	160	160
65 x 50	7	7	200	190
80 x 60	7	7	200	185
80 x 65	7	7	200	190
100 x 80	7,2	7	200	195
125 x 100	7,5	7,2	200	195
150 x 125	7,8	7,5	200	190
200 x 150	8,4	7,8	300	235
250 x 200	9	8,4	300	250
300 x 250	9,6	9	300	265
350 x 300	10,2	9,6	300	290
400 x 350	10,8	10,2	300	305
450 x 400	11,4	10,8	300	320
500 x 400	12	10,8	600	-
600 x 500	13,2	12	600	-
700 x 600	14,4	13,2	600	-
800 x 700	15,6	14,4	600	-
900 x 800	16,8	15,6	600	-
1000 x 900	18	16,8	600	-
1100 x 1000	19,2	18	600	-
1200 x 1000	20,4	18	790	-
1400 x 1200	22,8	20,4	850	-
1500 x 1400	24	22,8	695	-
1600 x 1400	25,2	22,8	910	-
1800 x 1600	27,6	25,2	970	_
2000 x 1800	30	27,6	1030	-
2200 x 2000	32,4	30	1090	-
2400 x 2200	34,8	32,4	1150	
2600 x 2400	37,2	34,8	1210	-

8.4.8 Brida ciega PN 10

Véase la figura 20 y la tabla 27

8.4.9 Brida ciega PN 16

Véase la figura 19 y la tabla 27



FIGURA 19

FIGURA 20

TABLA 27

DN		P	N 10			PN	16	
	D	A	b	С	D	a	b	С
40	150	19	16	3	150	19	16	3
50	165	19	16	3	165	19	16	3
60	175	19	16	3	175	19	16	3 3 3 3 3 3 3
65	185	19	16	3	185	19	16	3
80	200	19	16	3	200	19	16	3
100	220	19	16	3	220	19	16	3
125	250	19	16	3	250	19	16	3
150	285	19	16	3	285	19	16	3
200	340	20	17	3	340	20	17	3
250	400	22	19	3	400	22	19	
300	455	24,5	20,5	4	455	24,5	20,5	4
350	505	24,5	20,5	4	520	26,5	22,5	4
400	565	24,5	20,5	4	580	28	24	4
450	615	25,5	21,5	4	640	30	26	4
500	670	26,5	22,5	4	715	31,5	27,5	4
600	780	30	25	5	840	36	31	5 5
700	895	32,5	27,5	5	910	39,5	34,5	5
800	1015	35	30	5	1025	43	38	5 5
900	1115	37,5	32,5	5	1125	46,5	41,5	5
1000	1230	40	35	5	1255	50	45	5
1100	1340	42,5	37,5	5	1355	53,5	48,5	5
1200	1455	45	40	5	1485	57	52	5
1400	1675	46	41	5	1685	60	55	5 5 5 5 5 5 5
1500	1785	47,5	42,5	5	1820	62,5	57,5	5
1600	1915	49	44		1930	65	60	5
1800	2115	52	47	5	2130	70	65	5
2000	2325	55	50	5	2345	75	70	5

NOTA - Para los diámetros nominales de las bridas ciegas mayores o iguales a DN 300, el

fondo de las bridas ciegas puede ser abombado.

8.4.10 Bridas ciegas PN 25

Véase la figura 21 y la tabla 28

8.4.11 Bridas ciegas PN 40

Véase la figura 22 y la tabla 28

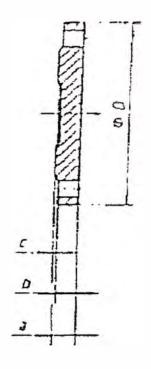


FIGURA 21

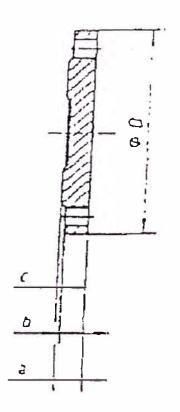


FIGURA 22

TABLA 28

DN		PN	N 25			PN	40	
	D	Α	b	С	D	a	b	С
40	150	19	16	3	150	19	16	3
50	165	19	16	3	165	19	16	3
60	175	19	16	3	175	19	16	3
65	185	19	16	3	185	19	16	3
80	200	19	16	3	200	19	16	3
100	235	19	16	3	235	19	16	3
125	270	19	16	3	270	23,5	20,5	3
150	300	20	17	3	300	26	23	3
200	360	22	19	3	375	30	17	3
250	425	24,5	21,5	3	450	34,5	19	3
300	485	27,5	23,5	4	515	39,5	20,5	4
350	555	30	26	4	-	- /	22,5	4
400	620	32	28	4	-	-	_	-
450	670	34,5	30,5	4	-	_	-	-
500	730	36,5	32,5	4	-	-	-	-
600	845	42	37	5	-	-	-	-

NOTA - Para los diámetros nominales de las bridas ciegas mayores o iguales a DN 300, el fondo de las bridas ciegas puede ser abombado.

8.4.12 Bridas de reducción PN 10.

Véase la figura 24 y la tabla 29.

8.4.13 Bridas de reducción PN 16

Véase la figura 23 y la tabla 29

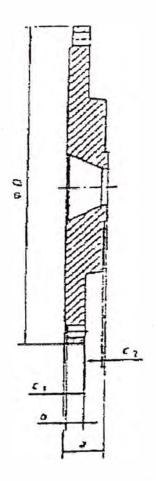


FIGURA 23

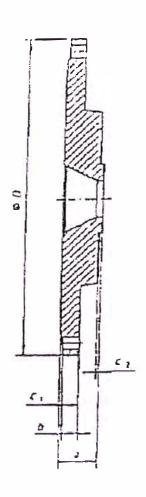


FIGURA 24

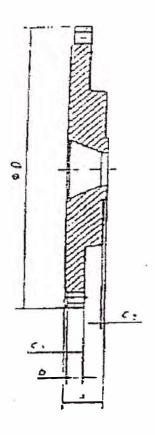
TABLA 29

DN			PN 10			PN 16				
	D	a	b	c_1	c ₂	D	a	b	c_1	c ₂
200 x 80	340	40	17	3	3	340	40	17	3	3
200 x 100	340	40	17	3	3	340	40	17	3	3
200 x 125	340	40	17	3	3	340	40	17	3	3
350 x 250	505	48	20,5	4	3	520	54	22,5	4	3
400 x 250	565	48	20,5	4	2	580	.54	24	4	3
400 x 300	565	49	20,5	4	4	580	55	24	4	4
700 x 500	895	56	27,5	5	4	910	67	34,5	5	4
900 x 700	1115	63	32,5	5	5	1125	73	41,5	5	5
1000 x 700	1230	63	35	5	5	1255	73	45	5	5
1000 x 800	1230	68	35	5	5	1255	77	45	5	5

NOTA - El diámetro nominal pricipal más grande se indica con DN y el diámetro nominal más pequeño se indica con dn

TABLA 30

DNxdn	PN 25							PN 4	10	
	D	a	b	cl	c2	D	a	b	cl	c2
200 x 80	360	40	19	3	3	375	40	27	3	3
200 x 100	360	47	19	3	3	375	47	27	3	3
200 x 125	360	53	19	3	3	375	53	27	3	3
350 x 250	555	60	26	4	3	-	-	-	-	-
400 x 250	620	60	28	4	3	-	-	-	-	-
400 x 300	620	61	28	4	4	-	_	-	-	-


NOTA - El diámetro nominal pricipal más grande se indica con DN y el diámetro nominal más pequeño se indica con dn.

8.4.14 Brida de reducción PN 25

Véase la figura 25 y la tabla 30.

8.4.15 Brida de reducción PN 40

Véase la figura 26 y la tabla 30

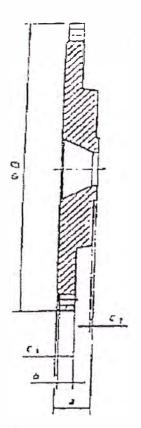


FIGURA 25

FIGURA 26

ANEXO A

(Informativo)

AMBITO DE UTILIZACIÓN, CARACTERÍSTICAS DE LOS SUELOS

Las instalaciones en fundición dúctil provistas de revestimientos exteriores apropiados, conformes a los establecidos en los numerales 4.4.1 y 4.4.5, pueden ser enterradas en contacto con la mayoría de los suelos. La elección del revestimiento apropiado depende sobre todo:

de la resistividad del suelo;

del pH del suelo;

de la presencia de la capa freática a nivel del tubo; -

de la eventualidad de corrientes errantes;

de la presencia de macropilas debidas a estructuras metálicas externas;

de la posible contaminación del suelo por determinados desechos o efluentes industriales.

ANEXO B (informativo)

ÁMBITO DE EMPLEO, CARACTERÍSTICAS DE LAS AGUAS

Las instalaciones en fundición dúctil provistas de revestimientos apropiados, conformes a lo establecido en los numerales 4.4.2 y 4.5.2, pueden utilizarse para conducir todo tipo de aguas residuales y aguas potables.

Por lo que respecta a los revestimientos de mortero de cemento sin capa de sellado, los límites de empleo dependen del tipo de cemento utilizado para el revestimiento, así como de las características de las aguas (valor mínimo de pH, contenido máximo de CO₂ agresivo, sulfatos, magnesio y amonio).

Para otros tipos de revestimientos interiores, los límites de utilización se dan en la documentación del fabricante.

ANEXO C (informativo)

RIGIDEZ DIAMETRAL Y EXCENTRICIDAD ADMISIBLE DE LOS TUBOS

Los tubos de fundición dúctil pueden soportar excentricidades importantes en servicio sin dejar de conservar sus características funcionales. Las excentricidades admisibles de los tubos, cuando la instalación está en servicio, están indicadas en el tabla C.1, así como las rigideces diametrales mínimas en una amplia gama de condiciones de instalación.

La excentricidad, porcentualmente, es igual a cien veces la flecha diametral del tubo, en milímetros, dividida por el diámetro exterior inicial (DE) del tubo, en milímetros. Los valores de la excentricidad admisible indicados en el tabla C.1 se aplican a los tubos de clase K9 revestidos interiormente de mortero de cemento; dichos valores ofrecen la integridad de la junta así como la seguridad adecuada respecto a una tensión en la pared del tubo y a una fisurización excesiva del revestimiento interior. Las normas nacionales y los catálogos de los fabricantes pueden introducir límites más estrictos, por ejemplo, del 3%.

La rigidez diametral S de un tubo es expresa por la fórmula:

$$S = 1000 \frac{E.I}{D^3} = 1000 \frac{E}{12} \left[\frac{e}{D} \right]^3$$

Donde:

S es la rigidez diametral, en kilonewton por metro cuadrado;

E es el módulo de elasticidad del material, en megapascales (170.000 Mpa);

I es el momento de inercia de la pared del tubo por unidad de lonfitud, en milímetros al cubo;

e es el espesor de la pared del tubo, en milímetros;

D es el diámetro medio del tubo (DE - e), en milímetros;

DE es el diámetro exterior nominal del tubo, en milímetros.

TABLA C.1

DN	Rigidez diametral, S, tubos K9 kN/m2	Excentricidad admisible de los tubos K9 %
40	14000	0,45
50	8000	0,55
60	5000	0,65
65	4000	0,7
80	2400	0,85
100	1350	1,05
125	800	1,3
150	480	1,55
200	230	1,9
250	155	2,2
300	110	2,5
350	88	2,7
400	72	2,9
450	61	3,05
500	52	3,25
600	41	3,55
700	34	3,75
800	30	4
900	26	4
1000	24	4
1100	22	4
1200	20	4
1400	18	4
1500	17	4
1600	17	4
1800	16	4
2000	16	4
2200	15	4
2400	14	4
2600	13	4

NOTA - Los valores de S se calculan con un espesor de pared igual al espesor mínimo al que se le suma la mitad de la tolerancia, a fin de tener en cuenta el hecho de que no hay más que un pequeño número de puntos de espesor igual o o cercano al espesor mínimo.

NORMA TÉCNICA PERUANA

NTP-ISO 7005-2 1998

Comisión de Reglamentos Técnicos y Comerciales - INDECOPI Calle De La Prosa 138, San Borja (Lima 41) Apartado 145

Lima, Perú

BRIDAS METÁLICAS. Parte 2: Bridas de fundición

Metallic flanges Part 2: Cast iron flanges

(EQV. ISO 7005-2:1988 Metallic flanges Part 2: Cast iron flanges)

1998-11-26 1^{ra} Edición

I.C.S: 23.040.60

Precio basado en 46 páginas

ÍNDICE

		Página
	ÍNDICE	i
	PREFACIO	111
	INTRODUCCIÓN	
SEC	CCIÓN 1: GENERALIDADES	
1.1	CAMPO DE APLICACIÓN	1
1.2	REFERENCIAS NORMATIVAS	2
1.3	DEFINICIONES Y DESIGNACIONES	3
SEC	CCIÓN 2 : CARACTERÍSTICAS GENERALES	
2.1	RELACIONES PRESIÓN TEMPERATURA (p/T)	4
2.2	MATERIALES	5
2.3	DIMENSIONES	6
2.4	ASIENTOS DE JUNTA	7
2.5	AVELLANADO DE LOS ASIENTOS DE BRIDA O RECTIFICADO DE LA SUPERFICIE POSTERIOR DE LA BRIDA	9
2.6	MARCADO	9
2.7	CONTROL Y ENSAYOS	10
2.8	REPARACIONES	10
2.9	INFORMACIONES QUE DEBERÁ FACILITAR EL COMPRADOR	11
SE	CCIÓN 3 : DIMENSIONES	14

SEC	CION 4:	PRESIÓN/TEMPERATURA (p/T)	
4.1	MATER	RIALES	41
4.2	RELACI	IONES PRESIÓN/TEMPERATURA	42
ANE	xos		
A	INDICACION DIMENSIONA	JES RELATIVAS A LAS TOLERANCIAS ALES	44
В	BIBLIOGRAF	FIA	46

-ooOoo-

PREFACIO

A. RESEÑA HISTÓRICA

- A.1 La presente Norma Técnica Peruana fue elaborada por el Comité Técnico Permanente de Saneamiento en reuniones realizadas durante el mes de setiembre de 1997, mediante el Sistema 1 de Adopción, utilizando como documento inicial la norma ISO 7005-2:1988 Metallic flanges Part 2: Cast iron flanges.
- A.2 El Comité Técnico Permanente de Saneamiento, presentó a la Comisión de Reglamentos Técnicos y Comerciales CRT, con fecha 98-09-22, el PNTP-ISO 7005-2:1996 para su revisión y aprobación; oficializándose como Norma Técnica Peruana NTP-ISO 7005-2:1998 BRIDAS METÁLICAS. Parte 2: Bridas de fundición, 1ª Edición el 12 de diciembre de 1998.
- A.3 La NTP-ISO 7005-2:1998 es equivalente a la norma ISO 7005-2:1988. Presenta cambios editoriales referidos principalmente a terminología empleada propia del idioma español y ha sido estructurada de acuerdo a las Guías Peruanas GP 001:1995 y GP 002:1995. y GP 002:1995.
- B. INSTITUCIONES QUE PARTICIPARON EN LA ELABORACIÓN DE LA DE NORMA TÉCNICA PERUANA

Secretaría Superintendencia Nacional de Servicios

de Saneamiento. SUNASS

Subsecretario del

Sub comité

Juan Avalo Castillo - SUNASS

ENTIDAD REPRESENTANTE

FUNDICIÓN MORENO S.A. Otto Moreno

FUNDICIÓN CARDENAS S.A.

Luis Prado

Jubino Rivas

FUNDICIÓN QUINTEROS Justo Quinteros

FUNDICIÓN INDUSTRIAL Enrique Torres

FUNDICIÓN URBANO Julio Urbano

CONCYSSA Guido Ramírez

TRANSPLAME Luis Alva

FUNMETAL Carlos Arias

SEDAPAL Polo Agüero

CAPECO Justo Kahatt

PUC-FAC. CIENCIAS E INGENIERÍA Jesús Ruiz

CEPIS Sergio Caporali

ANESAPA Balcort Campos

CIP. CAP. DE INGENIERÍA AMBIENTAL Raquel Barrionuevo

CIP. CAP. DE INGENIERÍA QUÍMICA Víctor Ramirez

-00O00-

INTRODUCCIÓN

Desde hace varios años, viene coexistiendo en el mundo diversos sistemas de bridas basados en distintos criterios. Habida cuenta de las dificultades cada vez mayores que se derivan de esta situación, se ha elaborado la presente Norma Técnica Peruana que es equivalente a la Norma Internacional ISO 7005-2, basada en un sistema único de bridas. Esta Norma Técnica Peruana se publicará en cuatro partes, a saber:

Parte 1 Bridas de acero.
Parte 2 : Bridas de fundición

Parte 3 Bridas de aleaciones de cobre y bridas de material compuesto.

Parte 4: Bridas de aluminio y de aleaciones de cobre.

La presente parte de la NTP ISO 7005-2, se sustenta en los sistemas norteamericano y europeo de bridas de fundición, combinadas en un sistema único con algunas modificaciones que guardan relación con las dimensiones especificadas en ambos sistemas.

Se han adoptado los materiales especificados en las normas norteamericanas (ANSI) y las Normas Internacionales. Dado que las Normas Internacionales relativas a las fundiciones no indican actualmente las relaciones presión/temperatura, las relaciones correspondientes se derivan, por consiguiente, de las normas nacionales comparables.

En el sistema norteamericano, las bridas se designan por clases, mientras que en esta parte de la NTP ISO se designan por su presión nominal.

Las equivalencias son las siguientes:

Clases 125 y 150: ISO PN 20 Clases 250 y 300: ISO PN 50

Las designaciones utilizadas en el sistema europeo siguen siendo las siguientes: ISO PN 2,5; ISO PN 6; ISO PN 10; ISO PN 16; ISO PN 25 e ISO PN 40.

Las bridas de fundición gris y las bridas de fundición dúctil ISO PN20 e ISO PN50 están proyectadas por ser intercambiables con las bridas que guardan conformidad con las normas norteamericanas ANSI B16.1 (fundición gris) y ANSI B16.42 (fundición dúctil). Las primeras no son idénticas a las segundas, pero se consideran que cumplen con las prescripciones dimensionales de la ANSI B16.1 y de la ANSI B16.42 según corresponda (véase 2.7).

Las características de las bridas mencionadas en las cuatro partes que componen la NTP ISO 7005 son tales que permite a las bridas que tienen los mismos valores de PN y de DN y superficies de asiento compatibles, poder ensamblarse entre si utilizando la tornilleria métrica. Las tolerancias relativas a las dimensiones figuran a titulo informativo en el anexo A.

Para evitar una posible confusión en la terminología descriptiva de las bridas, éstas se designan por números de tipos y los asientos de las juntas por letras.

Se aconseja que los usuarios de la presente parte de la NTP ISO 7005-2 verifiquen por su parte, si ésta respeta las posibles reglamentaciones existentes.

-00O00-

BRIDAS METÁLICAS. Parte 2: Bridas de fundición

Sección 1: Generalidades

1.1 Campo de aplicación

La presente parte de la Norma Técnica Peruana ISO 7005-2, por la cual se define un sistema único de bridas, tiene por objeto establecer las características de las bridas circulares de fundición gris, maleable y dúctil para las presiones nominales siguientes

Serie 1 [*]	Serie 2*
ISO PN10	ISO PN2,5
ISO PN16	ISO PN6
ISO PN20	ISO PN25
ISO PN50	ISO PN40

La presente parte de la Norma Técnica Peruana ISO 7005 especifica los tipos de bridas y sus asientos de juntas, las dimensiones de tornillería, los estados de la superficie de los asientos de junta, el rotulado, los ensayos, los controles y los materiales. También se indican las relaciones presión/temperatura referentes a estas bridas.

NOTAS:

- 1. Cabe llamar la atención respecto a la necesidad de hacer referencias a las tablas de relaciones presión/temperatura para las presiones máximas admisibles, y fundamentalmente, al tratarse de las bridas ISO PN20 e ISO PN50.
- 2. Las dimensiones de las juntas de estanqueidad serán ulteriormente objeto de una norma específica.

^{*} Las presiones nominales de la serie 1 corresponden a las presiones nominales básicas, mientras que aquellas de la serie 2 tienen un campo de aplicación limitado.

1.2 REFERENCIAS NORMATIVAS

Las siguientes normas contienen disposiciones que al ser citadas en este texto constituyen requisitos de esta Norma Técnica Peruana. Las ediciones indicadas estaban en vigencia en el momento de esta publicación. Como toda norma está sujeta a revisión, se recomienda a aquellos que realicen acuerdos en base a ellas, que analicen la conveniencia de usar las ediciones recientes de las normas citadas seguidamente. El Organismo Peruano de Normalización posee la información de las Normas Técnicas Peruanas en vigencia en todo momento.

1.2.1	Normas Técnicas Per	uanas
1.2.1.1	NTP-ISO 2531:1997	TUBOS, ACCESORIOS Y PIEZAS ESPECIALES DE FIERRO DÚCTIL PARA CONDUCCIÓN A PRESIÓN
1.2.1.2	NTP-ISO 6708:1998	COMPONENTES DE TUBERIA. Definición y selección de DN (tamaño nominal)
1.2.2	Normas Técnicas Inte	ernacionales
1.2.2.1	ISO 185:1988	Fundición gris de moldeo - Clasificación
1.2.2.2	ISO 887:1983	Arandelas planas para tornilleria métrica - Plano general
1.2.2.3	ISO 1083:1987	Fundición de grafito esferoidal - Clasificación
1.2.2.4	ISO 5922:1981	Fundición maleable
1.2.2.5 nominal	ISO 7268:1983	Elementos de tubería - Definición de la presión
1.2.2.6 Fittings.	ASTM A 126:1984	Gray iron castings for valves, flanges, and pipe

1.2.2.7 ASTM A 395:1980 Ferrite ductile iron pressure-retaining casting for use at elevate temperature.

1.3 DEFINICIONES Y DESIGNACIONES

1.3.1 Definiciones

Para todo cuanto se refiere a la presente parte de la NTP ISO 7005, las definiciones del diámetro nominal (DN) y de la presión nominal (PN) tienen aplicación tal como figuran en las Normas NTP-ISO 6708 e ISO 7268, respectivamente.

NOTA: En esta parte de la NTP ISO 7005, la presión nominal recibe la designación de "ISO PN", seguida del número de referencia correspondiente.

1.3.2 Designación de los tipos de bridas y asientos de junta

La figura 1 ilustra las bridas, identificándolas según su tipo:

- 05 Brida ciega
- 11 Brida de collarín para soldar en su extremo
- 12 Brida de enmangar para soldar, con collarín
- 13 Brida de collarín roscado
- 14 Brida de encaje y para soldar, con collarín
- 15 Brida giratoria
- 21 Brida incorporada a un aparato o a un elemento de tubería.

La figura 2 ilustra los asientos de la junta (tipo A y tipo B) que se utilizan conjuntamente con las bridas representadas en la figura 1.

Sección 2: Características generales

2.1 Relaciones presión/temperatura (p/T)

2.1.1 Generalidades

Las relaciones presión/temperatura de las bridas fabricadas mediante los materiales que figuran en la tabla 14 corresponden a las presiones máximas admisibles sin golpe de ariete, y según las temperaturas indicadas en las tablas 15 (fundición gris), 16, 17 (fundición dúctil) y 18 (fundición maleable).

Para las temperaturas intermedias se permite una interpolación lineal.

NOTA: La relación presión/temperatura de una brida no obedece obligatoriamente a la presión p/T del sistema de tuberías a que pertenece.

2.1.2 Relación p/T de empalmes por bridas

En el caso en que las dos bridas de un empalme no guarden la misma relación p/T, la presión máxima admisible del empalme no debe sobrepasar, sea cual fuere la temperatura, la menor de las dos presiones máximas admisibles que corresponden a esta temperatura.

NOTAS:

- 1. La temperatura indicada para una presión máxima admisible se considera equivalente de aquella del fluido transportado. La utilización de una presión máxima que corresponde a una temperatura distinta de aquella del fluido transportado incumbe a la responsabilidad del utilizador, y ello teniendo siempre en cuenta los requerimientos de los códigos ó reglamentos aplicables, llegado el caso.
- 2. Es conveniente que, para la aplicación de las relaciones p/T que figuran en la presente parte de la NTP ISO 7005, para los empalmes por bridas, se tengan debidamente en cuenta los riesgos de pérdidas generados por las fuerzas y momentos que se ejercen en la tuberías de enlace.
- 3. Debido a la naturaleza de ciertas juntas de estanqueidad utilizadas en las partes roscadas, se pueden imponer restricciones de empleo en el caso de las bridas roscadas.
- 4. Estas notas relativas a las condiciones de servicio no tienen la pretensión de ser exhaustivas.

NORMA TÉCNICA
PERUANA

NTP-ISO 7005-2
5 de 46

2.2 Materiales

2.2.1 Gama de materiales

Las bridas se deben fabricar mediante los materiales especificados en la tabla 14.

NOTAS:

- 1. En tanto se establecen y/o actualizan las normas técnicas peruanas y los materiales que se especifican en la presente parte de la NTP ISO 7005, regirán las normas que se indican en la tabla 14.
- 2. Cuando existe una norma para una aplicación particular, corresponde al comprador, comprobar debidamente la conformidad con la especificación de esta norma.

2.2.2 Juntas de estanqueidad

Los distintos tipos, dimensiones y materiales de juntas de estanqueidad no son materia de la presente parte de la NTP ISO 7005.

2.2.3 Tornillería

NOTAS:

- 1. Los materiales utilizados para la tornillería no son objeto de la presente parte de la NTP ISO 7005 y deben ser determinados por parte del usuario según la presión, el material de la brida y de la junta de estanqueidad correspondiente, de tal modo que el empalme por bridas conserve su hermeticidad en las condiciones de servicio consideradas.
- 2. En los empalmes por bridas de fundición gris, con asientos de junta realzados o bien, cuando una brida de fundición gris queda empalmada con una brida de otro material y si una ú otra ó ambas tienen un asiento de junta realzado, se recomienda utilizar una tomillería cuyo límite de elasticidad no sea superior a 240 N/mm². De utilizar una tomillería de límite elástico superior, se recomienda optar por superficies planas y juntas planas que recubren la totalidad de la superficie cuyo diámetro exterior corresponda al propio diámetro exterior de las bridas.

2.3 Dimensiones

2.3.1 Gama de diámetros nominales

La gama de diámetros nominales aplicables para cada tipo de brida y para cada presión nominal deben corresponder a aquella especificada en las tablas 2 a 4.

2.3.2 Características dimensionales

Las dimensiones de las bridas deben guardar conformidad con aquellas que figuren en las tablas siguientes

Tabla 6 Para las bridas ISO PN2,5

Tabla 7 Para las bridas ISO PN6

Tabla 8 Para las bridas ISO PN10

Tabla 9 Para las bridas ISO PN 16

Tabla 10 Para las bridas ISO PN 20

Tabla 11 Para las bridas ISO PN 25

Tabla 12 Para las bridas ISO PN 40

Tabla 13 Para las bridas ISO PN50

NOTA: Las tolerancias relacionadas con las dimensiones no son objeto de la presente parte de la NTP ISO 7005. No obstante, en el Anexo A figuran diversas indicaciones respecto a las dimensiones que deberían atenerse a tolerancias determinadas, así como las tolerancias sugeridas a este respecto.

2.3.3 Empalme de las bridas para soldar y de las bridas roscadas

NOTA: Las características de emplame de las bridas para soldar y las bridas roscadas no son objeto de la presente parte de la NTP ISO 7005.

2.4 Asientos de junta

2.4.1 Tipos de asiento

Los asientos de junta especificados (superficie de junta plana, tipo A y superficie de junta realzada, tipo B) se han ilustrado en la figura 2 y las dimensiones de las superficies realzadas figuran en la tabla 5.

NOTA: El paso del diámetro exterior de la superficie realzada a la superficie de la junta se deja a la iniciativa del fabricante (puede consistir en un redondeado o un chaflán).

2.4.2 Aplicación

- 2.4.2.1 Para las bridas ISO PN2,5; ISO PN 6; ISO PN10; ISO PN16; ISO PN25 e ISO PN40, de fundición gris o de fundición dúctil, los asientos deben estar realzados.
- 2.4.2.2 Las bridas ISO PN20 de fundición gris deben tener superficies planas. Las bridas ISO PN50 de fundición gris deben tener sus asientos de junta realzados y ello salvo especificación contraria.

Salvo especificación contraria, las bridas de fundición dúctil ISO PN20 e ISO PN50 tienen sus superficies realzadas.

2.4.2.3 Las bridas de fundición maleable deben tener

- a) superficies planas, o
- b) superficies realzadas.

2.4.3 Estado de superficie de los asientos de junta

Todos los asientos de junta de las bridas deben encontrarse en el estado que corresponde a los valores indicados en la tabla 1. Los asientos se deben comparar usando métodos visuales o

táctiles de rugosidad con las muestras de referencia cuyos valores de R_a y de R_z se encuentren en conformidad con aquellos de la tabla 1.

NOTAS:

- 1. No es intención de la presente parte de la Norma NTP ISO 7005 imponer medidas instrumentales de las superficies y los valores de R_e y de R_z tal como se definen en la ISO 468 : 1982, "Rugosidad de superficies Parámetros, valores correspondientes y reglas generales aplicables para la determinación de las especificaciones", guardan relación con las muestras de referencia.
- 2. Se pueden aceptar otros acabados, previo acuerdo entre el fabricante y el comprador.

TABLA 1 - VALORES NUMÉRICOS DE LOS PARÁMETROS DE RUGOSIDAD DE SUPERFICIE, R_a Y R_z , DE LOS ASIENTOS DE JUNTA

valores en micrómetros

Procedimientos de fabricación	Ra	R _z
Torneado (1)	3,2 a 12,5	12,5 a 50
Otro procedimiento (2)	3,2 a 6,3	12,5 a 25

- (1) Cabe entender, por el término "torneado" cualquier método de mecanización que permita obtener estrías concéntricas o en espiral.
- (2) Están permitidos otros procedimientos distintos del torneado, siempre y cuando se obtenga un estado de superficie que guarde conformidad con los valores de R_a R_z especificados.

2.5 Avellanado de los asientos de tuerca o rectificado de la superficie posterior de la brida

De cualquier modo que fuere, el avellanado o la rectificación no deben nunca reducir el espesor de la brida por debajo del espesor especificado. En caso de avellanado de los asientos de tuerca, el diámetro debe ser lo suficientemente grande para permitir la adaptación de una arandela de la serie normalizada equivalente de arandelas ISO 887, según corresponda a las dimensiones del obturador utilizado. Si se rectifica la superficie trasera de la brida, queda permitido reducir el radio de la parte redondeada pero sin eliminarla totalmente. Los asientos de tuerca deben encontrarse paralelos a la superficie de la brida dentro de un límite de 2º.

2.6 Rotulado

2.6.1 Identificación

Las bridas distintas de aquellas que van incorporadas en un aparato, deben llevar claramente inscritas las marcas siguientes

- a) el diámetro nominal (DN) y la presión nominal (ISO PN);
- b) la designación del material;
- c) el nombre del fabricante o la marca de fábrica.

EJEMPLO

DN 300 NTP ISO PN16 400-5 XXXX

NOTAS:

- 1. Se pueden indicar, como complemento, las designaciones de las superficies de las bridas.
- 2. En los casos en que una brida está destinada a formar parte, ulteriomente, de un elemento determinado y si este elemento desarrolla una presión nominal inferior de aquella de la brida, es conveniente que la presión inferior se encuentre claramente marcada en el elemento debiéndose aplicar la relación p/T más reducida.

2.6.2 Punzonado

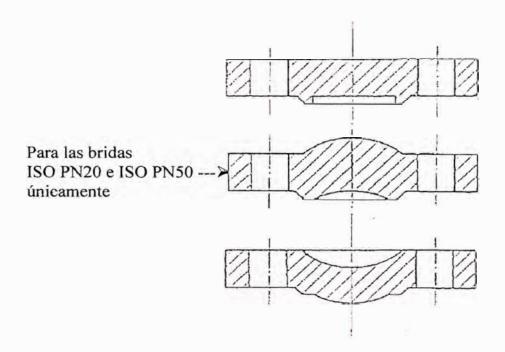
Cuando se utilizan punzones de acero para el rotulado, éste se debe aplicar en el canto de la brida.

2.7 Control y ensayos

Las bridas ISO PN20 e ISO PN50 que aquí se especifican están proyectadas para ser intercambiables, pero sin por ello ser idénticas a las bridas de fundición gris de las clases 125 y 250 de la ANSI B16.1, así como de las bridas de fundición dúctil de las clases 150 y 300 de la ANSI B16.42 respectivamente.

NOTAS:

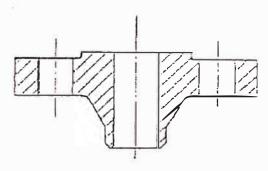
- 1. Se recomienda que las bridas ISO PN20 e ISO PN50 sean aceptadas por un inspector, que debe garantizar su conformidad con las dimensiones prescritas en la ANSI B16.1 ó en la ANSI B.16.42, según convenga.
- 2. La presente parte de la NTP ISO 7005 no tienen en cuenta el control de rutina o el ensayo de la presión de las bridas independientes. No obstante, se puede solicitar un ensayo de presión una vez que la brida se encuentre montada en la tubería o en otro elemento, o bien, cuando ésta forma parte integrante del elemento. El valor de la presión de ensayo depende entonces de las especificaciones de la norma o al código de buenas prácticas que se hayan aplicado al proceder a la fabricación del elemento correspondiente.


2.8 Reparaciones

Salvo especificación contraria en la norma del producto correspondiente o en los códigos y reglamentos, quedan autorizadas las reparaciones por soldadura para la fundición ductil, siempre y cuando su ejecución tenga lugar mediante un procedimiento que haya dado pruebas de valía. Cualquier reparación mediante soldadura se debe efectuar según procedimiento escrito.

2.9 Informaciones que debe facilitar el comprador

Es preciso que el comprador proporcione las informaciones especificadas a continuación, que se deben mencionar, ya sea en sus licitaciones y/o en sus pedidos :


- a) número de la NTP ISO 7005, ó sea: NTP ISO 7005-2.
- b) diámetro nominal DN, seguido del número correspondiente (véase 2.3.1);
- c) presión nominal ISO PN seguido del número correspondiente (véase 1.1);
- d) número del tipo de brida (véase 1.3.2 y figura 1);
- e) letra del tipo de asiento de junta (véase 1.3.2 y figura 2);
- f) designación del material (véase 2.2.1);
- g) para las bridas correspondientes a los tipos 11, 12, 14 y 15, el diámetro exterior y el espesor de pared de la tubería en que va montada la brida (véase nota 3 de las tablas 6 a 13), cuando la brida se suministra libre, o sea, en los casos en que no forma parte integrante de otro elemento;
- h) tipo de rosca de las bridas roscadas (tipo 13) cuando se entregan libres, o sea, en los casos en que no forma parte integrante de otro elemento.

Tipo 05 Brida ciega

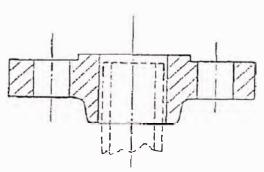
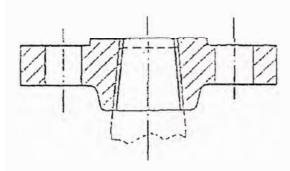
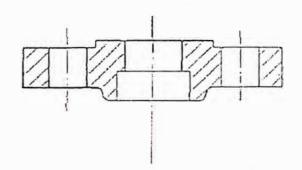

NOTA - Véase la nota en 2.4.1 relativa a la transición al nivel del diámetro exterior de la superficie realzada.

FIGURA 1 - TIPOS DE BRIDAS

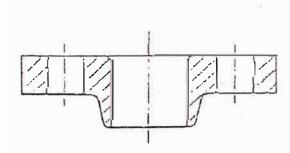

Tipo 11

Brida de collarín para soldar en su extremo collarín

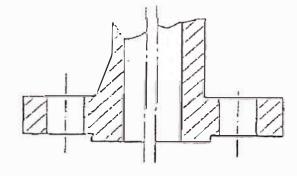
Tipo 12


Brida de enmangar para soldar, con

Tipo 13


Brida de collarín roscado

collarín


Tipo 14

Brida de encaje y para soldar, con

Tipo 15

Brida giratoria

Tipo 21

Brida incorporada a un aparato o a un elemento de tubería

NOTA - Véase la nota en 2.4.1 relativa a la transición al nivel del diámetro exterior de la superficie realzada.

FIGURA 1- TIPOS DE BRIDAS (FIN)

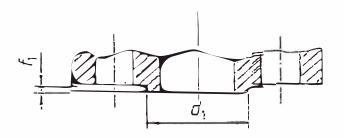
Sección 3 : Dimensiones Tabla 2 - Tabla sinóptica de las bridas de fundición gris

Tito Ma	Tabb	ISO PIN		15	8 8	32	40	S	55	සි	150	:25	35	200	ស្ល	33)	350	3,	450	523	800	200	RÚ	800	10:00	1200	1400	1530	1800	2000	2200	2400	3800	0.0ez	3000	3200	3400	0000	3000	400
. 🔯	નુ	2,5	-			+	-	-			_		_				Ξ			=									=				_				\dashv	4	1	
	_ 7	6			4	-		1-	_			-	_	_	_						-		_		_	_	1,00			-	-			_		=	-	7	-	-
	0	10			7			-		-					\Box		_			_			_				\exists	\exists	_	\dashv			_		_	-	-	-	-	-
-	9	15			1	7	1	1	-	-	_		_			_										_	_					_		_		_	-	-	+	-
	10	20	Ц		_	#	-	二				_	_			_					-				_	_	_	-	_	4	~	_	_		_	-	_	- -	4	4
	11	25	口			1	-	1=				_		_		=		_				-	_			-						-	_	_	-	_	-	-	4	-
	12	40				1		-	<u> </u>	1_			_					_			_										_					_	-1	_	_ .	
05	13	50	Ц		_	- -	t	1	-	口	_									\equiv							_	_	_	_	_			_			4	_	_	_
(5.5)		2,5			_	_	1.	_		<u> </u>						_				_		_						_	_		_		_	_	_		_	_	_ .	_
		6			_[.	_	ļ.,	_				_		_				_									_		_	_					_	_	_	4	_	_
	8	10			_	_	1.	1_									_									\perp			_								_			
alera de la companya della companya	9	16	Ц			_ _			_	<u> -</u>																		_].	_									_		
-	10	20	Ц		ŀ	- -				-					_			_									_													
		25				_																														1763				
		40			1			_									_																							
13	13	50				+	-	-	<u> </u>	-			=		;						_												i i							
	5	2,5	3		\exists	_{-		- u	Liliz	ar I	<u>SO</u>	PN	6					~-											_								1	\pm	\pm	1
	7	6		1	1		Ė			1													-	_	_			_	-			_			_	-	1	\exists		
	а	10				-	1	-		-					-		_			ij				_	-					_										
	9	16				Ŧ		-		-				-			_		-	-		_										Ä					Ţ			
brillia	10	20				-	-	-			-		-	=				\equiv																						
	11	25			-	-	1	E								_																								
R8	13	40	-				-	-								-																								
21	13	50			-			-		-				-																										

Un trazo horizontal indica la gama de diámetros nominales (DN) en que se puede encargar cada tipo de hrida, para una presión determinada (ISO PN), de conformidad con la presente parte de la NTP ISO 7005

² Para las bridas ISO PN20 e ISO PN 50, se utiliza el diámetro nominal DN 750 en lugar de DN 700 (véanse tablas 10 y 13)

Tabla 3 - Cuadro sinóptico de las bridas de fundición dúctil


000	~ :f	_								1	1	1	ŧ	1	1				_	_	1	1			_
00%	-	-	4									1	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	- 1	- 6						-		-	1	_	-	_	_	-	-	_	_	-		_	_	_
0078	- 1	-	_						1	_	_				_										
0000	_	_	-	- 1					- !				_	_	_			_	_		_				
000	-	-	_	- 1	. 9				-																
003		-											_								_				
0019		- {	- {									{													
0022		1							-																
0000	-			i			1		- }												1				
0091	1		-	Ÿ	1			,	- [1				
0.03					1		1													1	Ţ				
005			Ì																	1					
0621	1	1	j	j			İ														I		Ħ		
000	Ī	i		1	i		H		İ					1								i	Ħ		
CCE		i	T	i			ji														İ				
(09	-	1	- 1	Ħ					-											Hi	1			-	
301	-	-	i	\dagger	+		1	i													1			1	
009	-	1	ij	H	i	1	H	1	T															1	
009		1	<u> </u>	+	1		+	1 1	T	i –							- 1						1	1	
(GF	_	+	<u> </u>	+					+				1				- i				. r = 9			11	
לכנו	-	+	-	1 1		1	1	1 1	+			1 : i	1				.		1					1	Н
030	-	+	! i	1 1	1		+	+	+						i 		=			7 1	1		+	1 1	_
		1	i	1 1	1.1	i	11	+	+				-		i	1				_			1	11	
300	_	- 1	1	1 1			17		1				+										1	+ 1	
350	-	- !	- 1		1	1 1	1 1	1	1				-		1						1		1	11	H
OT.	- 1	<u>i</u>	-	1		1 1	1	1				-	1	- 1			_						1	11	
031			_			2 1	-	-	1				1		Н	Н	_			Н			+	11	
झ्रा	+	_	_			1	1	4	1							Ш	_	Ш		Ш	1		\perp	41	_
(3)	1		-				- {		1					_						i	4	į	1 1		
Ct5	1	!	_!	-!		Ш	1		1		<u></u>									Ш	i		<u> </u>	+1	
Ç(j	1	- 1		1	1	Ш	11	4	_						1	11	_			ш			11	11	
OS.		1	_!	- 1				4									_			1	Ĺ		1	Ц	
क्ष	1	}	_	Ш		Щ		1	1				1_		1 1		_				Į.		11	11	
32	1		_			Ш			1				-	_					_		_		_	_	
晃	-	i				Ш			-														1	_ i	
30	1		1														_						_	_]	
Ĉ!		- 1							-							_ !							_	_ [
01	_	-	1												Щ		_						_	_	
	2	اري			10	٥	, س	ري ا	ı,	رس ا		اے ا	113	ر	ري	اري ا	ري	دمی			ر ا	ا,_,	<u>ا</u> ا	_,	,-,
	NG OSI	2.5	വ	므	15	7	Ç.	40	ij	Ci	ı,C	읃	=	R	55	긐	ίľ	62 64	9	=	÷	욹	뙴	QP	Û
/	쁴	_	į													\vdash	\vdash						- }		
क्षक	1			G	₽.	Ξ	=	12	二			ယ	J .		Ξ	12				င	57,		=}	그	
-	+				- "				25		-	1				Ш	-		!	!	;		1	- i	Ç 7
					-																į	. 13			*
												/				1				_		- !]	3	4	
Tro Nº	1	171	1	177	11	-77	77	+	77	12	1	1	9 1			-{-		7	1				ंत	1	71
ا ا	-	3		1/2	1	1/1	1/1		3		+		1	1	1			3	+	7			11	<u> </u>	3
			'					1								1			'					1	
1																									i
<u></u>		-		-											_						7.5		-		تـــــ

	-		1	1	1		1	1	7	7	-	7		7	-		7	7	7	7	T	T	T	7	7	T	T	1	1				1	1	T	T
ا الأند	-	2,5		+	-	-	-	-	-+	-	-	-	-	-		-	-	-	-	-	+	-	+	+	+	-	+	-	+	-			-	+	+	+
		6	-							-		-	-	-	-		-	-	-	-	-	-	-	+	+		-	-	-	-	-		+	+	+	-
	8	10		_					-		-		_		-			-	-		_	_	-	-	7-	-	-	-	-	-	-	-	-	+	+	+
	9	16				_															=	_	-	-	-		-	-	-	-	_		-	+	-	-
7777	10	20			-			二							-	_		_			_		_ -			-	_	_	-	-	_	_		-	- -	4-4
	11_	25					_									_						1			1	1		1					-	1	1	
	12	40					-				-								- 4																1	
13	13	50			-	-	-	-	-			\dashv	-		_	-																			1	
					1			i																			1									
-		2.5 5			1																															
	8	10						=	-			-		_									- -				1									
	9	16								=										_						-										
		20				7																	1	1				1				- (1			1	
	11	25						-		-							-[-1	-[_ -		-	-		-						10	
	12	40		-	-							-			-		-					31				1										
14		50																																	1	
図																																	ľ			
		2,5 6	11	-†											7			-	1									T	T	1					1	
		10	11	T		1			7						-1				7		1		7	-	1	1	1	1	1	1			7	1	1	1
		16	1		1	-			-	-			-			-						-	1				1		-	1						1-1
	1:3		-	-																		1	1		+	1	1	1						1	1	1
	-	20		+												1							-	1	-			1		1				1	- -	1
- - -	-		+-+		-	1-	-	-	-	-		-	-		-+	-	-	-	7	-	-+	-	-	-	-	-	1-	-	-	1	-	-	+	-	+	1-1
15	13	40 50			- -	=			-			-						一	=				+	- -	-	+	+-	+-	+-	1	-			+	+	+1
	13			-		-	H		-	-	-	-	-	-		-	-	-	-		\dashv	+	+	-	-	+		1-	+	1-	-	-	-			
-		2,5					-													-			-	- -			-	-	1-		-		-1			
-		6	-		-		_		_		_		_											_		- -				-						
William -	8	10		- -	-					-						_			=												-		-	+	+	+-1
	9	16	+-+		-	-		-													_		- -	_		-	-		-	-	-				-	+
	11)	20			-	-							-				-	-			-			- -	- -	-		_	-	-	-		- -	_	- -	-
	11	25	-	-		-			=	=						\equiv							= -			-	F	=	-			-	-4			-
	12	40		+	-	-										_		-	_		_	_ -	- -	_ -	_	-	-	-	-	_		_		-	-	-
	13	50															}	1		-		1	,	1		1										

Tabla 4 - Tabla sinóptica de las bridas de fundición maleable

Tipo Mº	Telbis	ISO PM		15	20	25	32	40	R	જ	G _S	<u>হ</u>	133	13 13	202	250	300	350	ÚJ r	45	83	910	700	83	936	1000	1200	1400	1600	1630	2000	2200	2400	2500	2800	3000	3200	3400
(27)		2,5						_		_							_	_		_		_	_			_	ļ		٠			_		_			_	_
77	7_	6						_			_					_		_				_	ļ.,	<u> </u>	<u> </u>	ļ				_	_					_	4	\dashv
	В	10							 				=							ļ	ļ	_		_			_		_	_	_	_	_		1		_	_
	9_	16	_							-	_	=				_	_		_		<u> </u>			_	_				_	_	_					-	_	_
		20	Ц				_			_			_	_	_			_	_	ļ.—	<u> </u>			_	_					_	-	_	_	_	_	-	-	4
222	11											_						۷		-	_		_	<u> </u> _	_	_	-	<u> </u> _	_		-		_	_			4	4
	12	40								_	_		<u> _ </u>		_		_		_	_	_	_				_			-		_						_ .	
ا 25		50						_		_		_		_			_				_					_	_			_	_						_	_
. 627		2,5														_	L			_								_		_	_	_					_[
_ - -		6			-			1							L_	_																						
1775	3	10											_																									3777
333.30 -7	9	16						-												_		_																
المرسوسية المراسية		20						,																														
	11	25	-		0.000.00	/257 A.37			-				-	=						erover.							11=-											
	12	40											_	-						1.2													-				T	
13		50								_																												
		2,5																							,												T	
	7	6	=					=	_				-				=	Į.					-														7	
177	9	10	\equiv				_			=	=	-		-			=									_		-				-	-				寸	٦
1111116	9	16		Ξ	=		=				=				 -	-		1=	#=		1							-	_				-				\top	Ħ
		20		_		-								- -	-	 	 I	⇈	 -	╟	 -	<u> </u>	-	-	_		_	-					-			-	_	ᅦ
Minnin	11_	25	_							_				<u> </u>				4	=		 - -	-	+-	+-			٠			_	_				;			7
	12	40		=				_		_			-	-		-				-	-															-	7	\dashv
21		50						4.X		-				-		2.5									_					_							1	

Superficie plana **Tipo A**

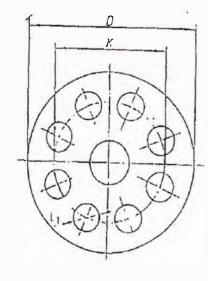
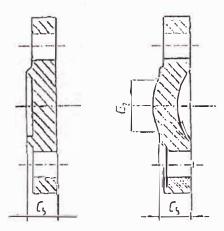

Superficie realzada **Tipo B**

FIGURA 2- ASIENTOS DE JUNTA, TIPO A Y TIPO B°

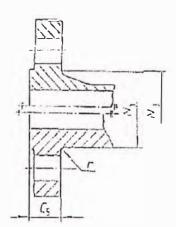
1)

	TA	BLA	5- DIN	ÆN	SIONE	S DE	E LOS A	ASII	ENTO	S DE	E JUNT	ГΑТ	TPO I	B^{1}				
Diámetro nominal DN	ISO PN		ISO PN		ISO PN		ISO PN		ISO P		ISO PN		ISO P			ISO P	N50	
	d_{i}	fı	d,	ſı	d ₁	ſı	d ₁	ſı	d ₁	ſı	d ₁	ſı	d ₁	ſı	Brida de fu	ind gris	Brida de l dúcti	
															d_1	ſı	d_1	fı
10			33	2	41	2	41	2			41	2	41	2			-	
15	,		38	2	46	2	46	2			46	2	46	2				
20			48	2	56	2	56	2			56	3	56	2				
25			58	3	65	3	65	3	51	2	65	3	65	3	68	2	51	2
32			69	3	76	3	76	3	64	2	76	3	76	3	78	2	64	2
40			78	3	84	3	84	3	73	2	84	3	84	3	90	2	73	2
50			88	3	99	3	99	3	92	2	99	3	99	3	106	2	92	2
65			108	3	118	3	118	3	105	2	118	3	118	3	125	2	105	2
80			124	3	132	3	132	3	127	2	132	3	132	3	144	2	127	2
100			144	3	156	3	156	3	157	2	156	3	156	3	176	2	157	2
125	Use dimens	iones	174	3	184	3	184	3	186	2	184	3	184	3	211	2	186	2
150	ISO PN 6		199	3	211	3	211	3	216	2	211	3	211	3	246	2	216	2
200			254	3	266	3	266	3	270	2	274	3	284	3	303	2	270	2
250	}		309	3	319	3	319	3	324	2	330	4	345	4	357	2	324	2
300			363	4	370	4	370	4	381	2	389	4	409	4	418	2	381	2
350		3	413	4	429	4	429	4	413	2	448	4	465	4	481	2	413	2
400			463	4	480	4	480	4	470	2	503	4	535	4	535	2	470	2
450			518	4	530	4	548	4	533	2	548	4	560	4	592	2	533	2
500			568	4	582	4	609	4	584	2	609	4	615	5	649	2	584	2
600			667	5	682	5	720	5	692	2	720	5	735		770	2	692	2
700			772	5	794	5	794	5			820	5			945 ²)	2		
800			878	5	901	5	901	5			928	5						
900			978	5	1 001	5	1 001	5			1 028	5						Ιľ
1 000			1 078	5	1 112	5	1 112	5			1 140	5						
1 200	1 280	5	1 295	5	1 328	5	1 328	5			1 350	5						
1 400	1 480	5	1 510 1 710	5	1 530 1 750	5	1 530 1 750	5			1 560	5						
1 800	1 690 1 890	5	1 710	5	1 950	5	1 950	5			1 780 1 985	5	ĺ					
2 000	2 090	5	2 125	5	2 150	5	2 150	5			2 210	5	ĺ					
2 200	2 295	6	2 335	6	2 130		2 150	1			2 210	,						
2 400	2 495	6	2 545	6														
2 600	2 695	6	2 750	6														
2 800	2 910	6	2 960	6			1											
3 000	3 110	6	3 160	6														
3 200	3 310	6	3 370	6														
3 400	3 510	6	3 580	6														
3 600	3 720	6	3 790	6														1
3 800	3 920	6																
4 000	4 120	6					1											
		1		1		1		1										

¹⁾ Véase 2.4.2 2) Para las bridas ISO PN50, se utiliza el diámetro nominal DN 750, en lugar del DN 700



Esta vista representa cierto número de agujeros de pernos que pueden no coincidir, obligatoriamente con el número exacto.


Para obtener el número real de agujeros, sirvanse consultar la tabla 6 en la columna "número de pernos".

NOTA- Para las dimensiones de los asientos de junta, véase la tabla 5.

Tipo 05

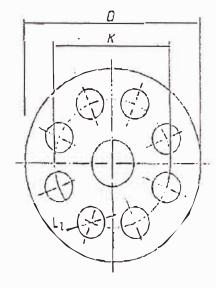
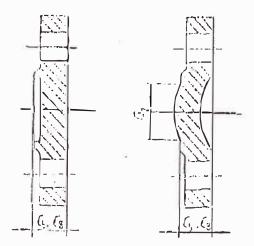

Tipo 21

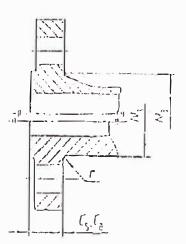
TABLA 6 – DIMENSIONES DE LAS BRIDAS ISO PN 2,5 (Véase las notas al final de esta sección)

D :				
I)ım	ensione	c en i	mılin	netros

Diámetro nominal DN				Espesor de la brida FG ⁽⁾	Diámetro máximo del reborde	Diámetro del collarín	Radio de redondeo		
						C ₅	G_2	N ₃	r
	Diámetro exterior de la brida D	Diámetro del circulo de los agujeros de perno K	Diámetro de los agujeros de perno l.2		Pernos				
				Cantidad	Dimensión nominal				
				Ti	pos de bridas			;	
			05, 21			05, 21	05	21	21
10 a 1 000				Tomar las dimen	siones de las bridas ISO	PN6			
1 200	1 375	1 320	30	32	M27	30	1 185	1 250	8
1 400	1 575	1 520	30	36	M27	30	1 385	1 452	8
1 600	1 790	1 730	30	40	M27	32	1 585	1 654	10
1 800	1 990	1 930	30	44	M27	34	1 785	1 856	10
2 000	2 190	2 130	30	48	M27	34	1 985	2 056	10
2 200	2 405	2 340	33	52	M30	36	2 185	2 260	10
2 400	2 605	2 540	33	56	M30	38	2 385	2 464	10
2 600	2 805	2 740	33	60	M30	40	2 585	2 668	10
2 800	3 030	2 960	36	64	M33	42	2 785	2 868	12
3 000	3 230	3 160	36	68	M33	42	2 985	3 068	12
3 200	3 430	3 360	36	72	M33	44	3 185	3 268	12
3 400	3 630	3 560	36	76	M33	46	3 385	3 472	12
3 600	3 840	3 770	36	80	M33	48	3 585	3 676	12
3 800	4 045	3 970	39	80	M36	48	3 785	3 876	12
4 000	4 245	4 170	39	84	M36	50	3 985	4 076	12



Esta vista representa cierto número de agujeros de pernos que pueden no coincidir, obligatoriamente con el número exacto.


Para obtener el número real de agujeros, sirvanse consultar la tabla 7 en la columna "número de pernos".

NOTA- Para las dimensiones de los asientos de junta, véase la tabla 5.

Tipo 05

Tipo 21

Dimensiones en milímetros

TABLA 7 - DIMENSIONES DE LAS BRIDAS ISO PN6 (Véase las notas al final de esta sección)

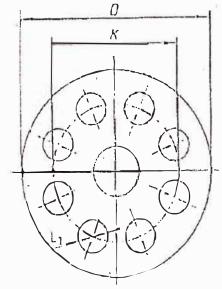
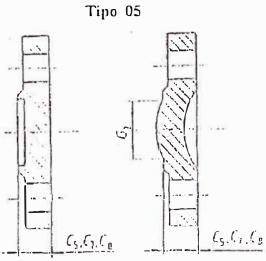
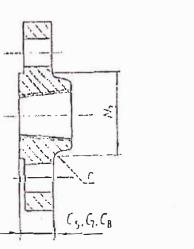

Diámetro nominal DN	Diámetro exterior de la brida D	Empalm Diámetro del circulo de los agujeros de perno K	Diámetro de los agujeros de pernos L2 Cantidad Dimensión			Espeso brida	or de la	Diámetro máximo del reborde G2	Diámetro del collarín N3	Radio de redondeo r
					nominal	C ₅	C'8			
				Tipo	s de bridas			L	<u></u>	
			05, 21			0	5, 21	05	21	21
10	75	50	11	4	M10	12	12		20	3
15	80	55	11	4	M10	12	12		26	3
20	90	65	11	4	M10	14	14		34	4
25	100	75	11	4	M10	14	14		44	4
32	120	90	14	4	M12	16	16		54	5
40	130	100	14	4	M12	16	16	-	64	5
50	140	110	14	4	M12	16	16		74	5
65	160	130	14	4	M12	16	16		94	6
80	190	150	19	4	M16	18	18		110	6
100	210	170	19	4	M16	18	18		130	6
125	240	200	19	8	M16	20	20		160	6
150	265	225	19	8	M16	20	20		182	8
200	320	280	19	8	M16	22	22		238	8
250	375	335	19	12	M16	24	24		284	10
300	440	395	23	12	M20	24	24		342	10
350	490	445	23	12	M20	26		325	392	10
400	540	495	23	16	M20	28		375	442	10
450	595	550	23	16	M20	28		425	494	12

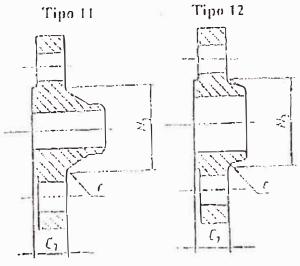
TABLA 7 - DIMENSIONES DE LAS BRIDAS ISO PN6 (Véase las notas al final de esta sección)

Dimensiones en milímetros

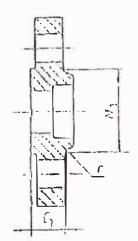
Diámetro nominal DN				Espesor de la brida		Diámetro máximo del reborde G2	Diámetro del collarín N3	Radio de redondeo r		
	Diámetro exterior de la brida D	Diámetro del circulo de los agujeros de perno K	Diámetro de los agujeros de pernos L2	Pernos						
		,		Cantidad	Dimensión nominal	FG ¹⁾	FM ¹⁾ C ₈			1. 2. 2. 3.
		L		Tipos	de bridas	1				
			05, 21			05	5, 21	05	21	21
500	645	600	23	20	M20	30		475	544	12
600	755	705	26	20	M24	30		575	642	12
700	860	810	26	24	M24	32		675	746	12
800	975	920	31	24	M27	34		775	850	12
900	1 075	1 020	31	24	M27	36		875	950	12
1 000	1 175	1 120	31	28	M27	36		975	1 050	12
1 200	1 405	1 340	34	32	M30	40		1 175	1 264	12
1 400	1 630	1 560	37	36	M33	44		1 375	1 480	12
1 600	1 830	1 760	37	40	M33	48		1 575	1 680	12
1 800	2 045	1 970	40	44	M36	50		1 775	1 878	15
2 000	2 265	2 180	43	48	M39	54		1 975	2 082	15
2 200	2 475	2 390	43	52	M39	60				15
2 400	2 685	2 600	43	56	M39	62			Según	15
2 600	2 905	2 810	49	60	M45	64			opcion del	15
2 800	3 115	3 020	49	64	M45	68			fabricante .	15
3 000	3 315	3 220	49	68	M45	70			ŀ	15
3 200	3 525	3 430	49	72	M45	76				15
3 400	3 735	3 640	49	76	M45	80				15
3 600	3970	3860	56	80	M52	84				15


¹⁾ Para la explicación de esta designación abreviada de fundición véase la tabla 14.

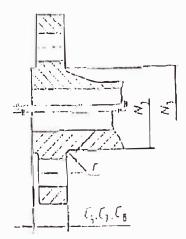

Esta vista representa cierto número de agujeros de pernos que pueden no coincidir, obligatoriamente con el número exacto.


Para obtener el número real de agujeros, sirvanse consultar la tabla

NOTA- Para las dimensiones de los asientos de junta, véase la tabla 5.



Tipo 13



Tipo 14

Tipo 21

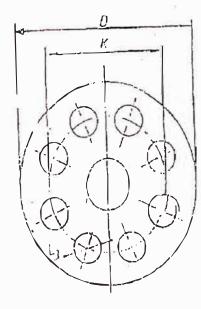
TABLA 8 - DIMENSIONES DE LAS BRIDAS ISO PN10 (Véase las notas al final de esta sección)

Dimensiones en milímetros

Diámetro nominal DN			Espesor de la brida			Diámetro máximo del reborde G2	Diámetro del collarín <i>N</i> 3	Radio de redondeo r			
3	Diámetro exterior de la brida D	Diámetro del circulo de los agujeros de pernos K	Diámetro de los agujeros de pernos L2	Pe	rnos					SE	
				Cantidad	Dimensión nominal	FG ¹⁾ C ₅	FD ¹⁾ C ₇	FM ¹⁾ C8			
					Tipos de brid	las					72
		05,	11, 12, 13, 14, 21			05 ,13, 21	05, 11, 12, 13, 14, 21	05, 13, 21	05	11, 12, 13, 14, 21	11, 12, 13, 14, 21
10						14		14		28	3
15	7					14		14		32	3
20						16		16		40	4
25			¥)			16		16		50	4
32		Ton	nas las dimensiones			18		18		60	5
40						18	19	18		70	5
50		de la	s bridas ISO PN 16			20	19	20		84	5
65						20	19	20		104	6
80	V.					22	19	20		120	6
100						24	19	22		140	6
125						26	19	22		170	6
150						26	19	24		190	8
200	340	295	23	8	M20	26	20	24		246	8
250	3952)	350	23	12	M20	28	22	26		298	10
300	4452)	400	23	12	M20	28	24,5	26		348	10

Dimensiones en milimetros

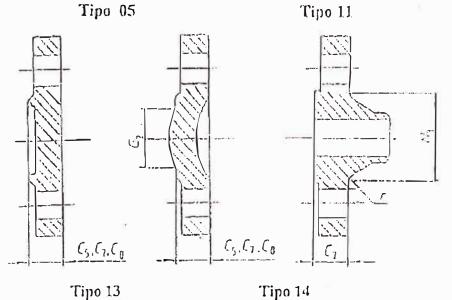
TABLA 8 - DIMENSIONES DE LAS BRIDAS ISO PN10

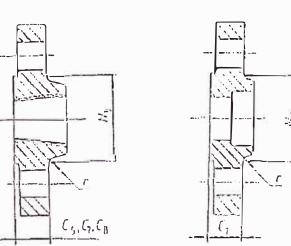

(Véase las notas al final de esta sección)

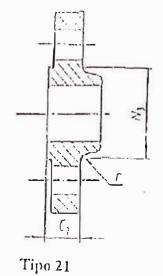
						a			imensiones en		
Diámetro nominal DN			Empalme			Espesor de la b	rida	Diámetro máximo del reborde G2	Diámetro del collarín N3	Radio de redondeo r	
	Diámetro exterior de la brida D	Diámetro del circulo de los agujeros de perno K	circulo de los	Diámetro de los agujeros de pernos L2	Per	rnos					
	T			Cantidad	Dimensión	FG ¹⁾	FD ¹⁾	FM ¹⁾			
					nominal	C ₅	C ₇	C.8			
					Tipos	de bridas					
		(05, 11, 12, 13, 14, 21			05, 13, 21	05, 11, 12, 13, 14, 21	05, 13, 21	05	11, 12, 13, 14, 21	11, 12, 13, 14, 21
350	505	460	23	16	M20	30	24,5		325	408	10
400	565	515	28	16	M24	32	24,5		375	456	10
450	615	565	28	20	M24	32	25,5		425	502	12
500	670	620	28	20	M24	34	26,5		475	559	12
600	780	725	31	20	M27	36	30		575	658	12
700	895	840	31	24	M27	40	32,5		675	772	12
800	1 015	950	34	24	M30	44	35		775	876	12
900	1 115	1 050	34	28	M30	46	37,5		875	976	12
1 000	1 230	1 160	37	28	M33	50	40		975	1 080	12
1 200	1 455	1 380	40	32	M36	56	45		1 175	1 292	12
1 400	1 675	1 590	43	36	M39	62	46		1 375	1 496	12
1 600	1 915	1 820	49	40	M45	68	49		1 575	1 712	12
1 800	2 115	2 020	49	44	M45	70	52		1 775	1 910	15
2 000	2 325	2 230	49	48	M45	74	55		1 975	2 120	15

¹⁾ Para la explicación de esta designación abreviada, véase la tabla 14.

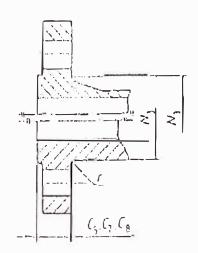
²⁾ Para los tubos y racores de fundición dúctil, de conformidad con la ISO 2531, el diámetro exterior de las bridas, D, deberá ser el siguiente :


⁻ para DN 250, D = 400 mm, - para DN 300, D = 455 mm.




Esta vista representa cierto número de agujeros de pernos que pueden no coincidir, obligatoriamente con el número exacto.

Para obtener el número real de agujeros, sirvanse consultar la tabla 8.


NOTA- Para las dimensiones de los asientos de junta, véase la tabla 5.

Tipo 12

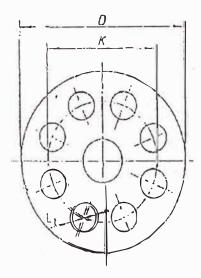
NTP-ISO 7005-2 27 de 46

Dimensiones en milímetros

TABLA 9 - DIMENSIONES DE LAS BRIDAS ISO PN16 (Véase las notas al final de esta sección)

Diámetro nominal DN	1		Empalme			Espesor de la brida			Diámetro máximo del reborde G ₂	Diámetro del collarín N3	Radio de redondeo '
	Diámetro exterior de la brida D	Diámetro del circulo de los agujeros de pernos K	Diámetro de los agujeros de pernos		Pernos						
			-2	Cantidad	Dimensión nominal	FG ¹⁾ C ₅	FD ¹⁾ C ₇	FM ¹⁾ C ₈			
			•		•	Tipos de br	idas				
		05	5, 11, 12, 13, 14, 21			05, 13, 21	05, 11, 12, 13, 14, 21	05, 13, 21	05	11, 12, 13, 14, 21	11, 12, 13 14, 21
10						14		14		28	3
15						14		14		32	3
20		То	mar las dimensiones			16		16		40	4
25		de	las bridas ISO PN40			16		16		50	4
32						18		18		60	5
40						18	19	18		70	5
50						20	19	20		84	5
65	185	145	19	4	M16	20	19	20		104	6
80	200	160	19	8	M16	22	19	20		120	6
100	220	180	19	8	M16	24	19	22		140	6
125	250	210	19	8	M16	26	19	22		170	6
150	285	240	23	8	M20	26	19	24		190	8
200	340	295	23	12	M20	30	20	24		246	8
250	405 ²⁾	355	28	12	M24	32	22	26		296	10
300	460 ²⁾	410	28	12	M24	32	24,5	28		350	10

TABLA 9 - DIMENSIONES DE LAS BRIDAS ISO PN16

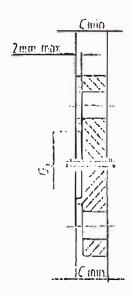

(Véase las notas al final de esta sección) Dimensiones en millmetros

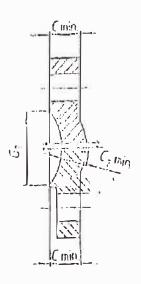
Diámetro nominal DN			Empalm	e	ē		Espesor de la	brida	Diámetro máximo del reborde G ₂	Diámetro del collarín N3	Radio de redondeo r
	Diámetro exterior de la brida D	Diámetro del circulo de los agujeros de pernos K	Diámetro de los agujeros de pernos <i>L</i> 2		Pernos						
				Cantidad	Dimensión nominal	FG ¹⁾ C ₅	FD ¹⁾ C ₇	FM ¹⁾ Cg			
				•		Tipos de	bridas				
		05,	11, 12, 13, 14, 21			05, 13, 21	05, 11, 12, 13, 14, 21	05, 13, 21	05	11, 12, 13, 14, 21	11, 12, 13, 14, 21
350	520	470	28	16	M24	36	26,5		325	410	10
400	580	525	31	16	M27	38	28		375	458	10
450	640	585	31	20	M27	40	30		425	516	12
500	715	650	34	20	M30	42	31,5		475	576	12
600	840	770	37	20	M33	48	36		575	690	12
700	910	840	37	24	M33	54	39,5		675	760	12
800	1 025	950	40	24	M36	58	43		775	862	12
900	1 125	1 050	40	28	M36	62	46,5		875	962	12
1 000	1 255	1 170	43	28	M39	66	50		975	1 076	12
1 200	1 485	1 390	49	32	M45		57		1 175	1 282	12
1 400	1 685	1 590	49	36	M45		60		1 375	1 482	12
1 600	1 930	1 820	56	40	M52		65		1 575	1 696	12
1 800	2 130	2 020	56	44	M52		70		1 775	1 896	15
2 000	2 345	2 230	62	48	M56		75		1 975	2 100	15

Para la explicación de esta designación abreviada, véase la tabla 14.
 Para los tubos y racores de fundición, dúctil de conformidad con la NTP-ISO 2531 el diámetro exterior de las bridas, D, deberá ser el siguiente :

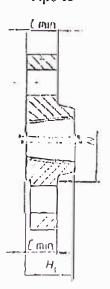
 para DN 250, D = 400 mm,

⁻ para DN 300, D = 455 mm.

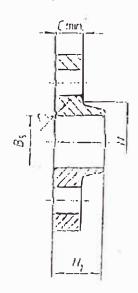



Esta vista representa cierto número de agujeros de pernos que pueden coincidir, obligatoriamente con el número exacto.

Para obtener el número real de agujeros, sirvanse consultar la tabla 10, columna "número de pernos"


NOTA- Para las dimensiones de los asientos de junta, véase la tabla 5.

Tipo 05

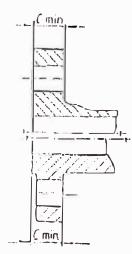


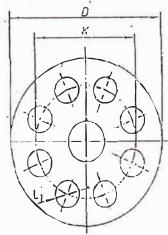
Tipo 13

Tipo 15

Las bridas ciegas de fundición gris se entregan planas hasta un DN 250 y abultados o bombeadas para DN 300 y superiores. Las bridas ciegas de fundición dúctil se entregan planas hasta un DN 250 y opcionalmente, planas, abultadas o bombeadas para DN 300 y superiores. La superficie realzada puede estar situada por la parte cóncava o por la parte convexa de las bridas ciegas abultadas.

Tipo 21




TABLA 10 - DIMENSIONES DE LAS BRIDAS ISO PN20

(Véase las notas al final de esta seco	al de esta sección)
--	---------------------

							(Véase	las no	otas al fina	de esta	secció	n)		Dimension	nes en milíi	netros
Diámetr o nominal DN			Empalme			Espes	or minimo brida	de la	Diámetro n colla		Altura de la	mínima brida	Diámetro mínimo de mandrilado FG B ₅	Diámetro máximo del reborde FD ¹⁾ r ₁	Diámetro del collarín G2	Radio de redonde
	Diámetro exterior de la brida D	Diámetro del circulo de los agujeros de pernos K	Diámetro de los agujeros de pernos L_2	P	ernos	FG ¹⁾	FD		FG, FD ¹⁾	FD 11	FG '' FD 1' H1	FD 1) H2				
				Cantidad	Dimensión nominal		С		۸	,1						
					•			Tipos de	bridas							
			05, 13, 15, 21			05, 13,	05, 13,	21	13	15	13	15	15	15	05	05
25	110	79,5 89	16	1 4	M14	II	14	111	50	50	18	18	35	4	25	
32 40	120	89	16	1 4	M14	13	15,5	1 13	60	60	21	21	44 50	5	32	
50	130	98.5 120,5	16	1 4	M14 M16	14,5	17,5	1 14.5	65 80	80	22 25	22	63	8	38 51	
65	180	139,5	18	1 4	MIG	17,5	22,5	17,5	90	90	28	28	76	8	64	
80	190	152,5	18	4	M16	19	74	19	110	110	30	30	92	10	76	
100	230	190,5	18	8	M16	24	24	24	135	135	33	33	117	11	102	
125	255	216	22	8	M20	24	24	24	165	165	37	37	145	TI	127	
150	280	241,5	22	8	M20	25,5	25,5	25,5	190	190	40	40	172	13	152	
200	345	298,5	22	8	M20	28,5	28,5	28,5	245	245	44	44	223	13	203	
250	405	362	26	1 12	M24	30	30	30	305	305	49	1 49	278	13	254	
300	485	432	26	1 12	M24	32	32	32	355	355	56	56	329	13	305	20,5
350	535	476	29,5	12	M27	35	35	35	390	390	57	79	360	13	356	22,3
400	600	540	29,5	16	M27	36,5	36,5	36,5	445	445	64	87	412	13	406	25,4
450	635	578	32,5	16	M30	39,5	39,5	39,5	500	500	68	97	463	13	457	26,9
500	700	635	32,5	20	M30	43	43	43	555	555	73	103	515	13	508	28,4
600	815	749,5	35,5	20	M33	48	48	48	660	660	83	111	616	13	610	31,7
750	985	914,5	35,5	28	M33	54 ²⁾					Ì				762	36,5
900	1 170	1 086	42	32	M39	60 5 2)				1					914	411

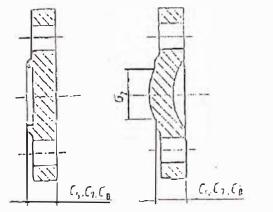
¹⁾ Para la explicación de esta designación abreviada de fundición, véase la tabla 14.

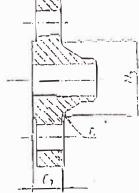
²⁾ Unicamente se explica a los tipos de bridas 05 y 21.

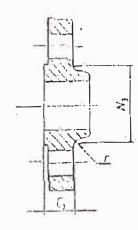
Esta vista representa cierto número de agujeros de pernos que pueden no coincidir, obligatoriamente con el número exacto.

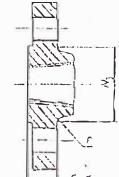
Para obtener el número real de agujeros de pernos, sirvanse consultar la tabla 11, columna "número de bulones"

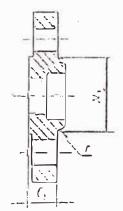
NOTA- Para las dimensiones de los asientos de junta, véase la tabla 5.

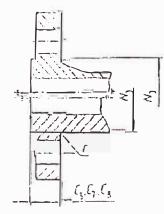








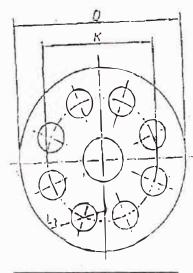



Tipo 13

Tipo 14

Tipo 21

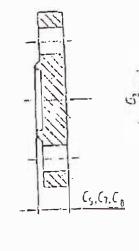
TABLA 11 - DIMENSIONES DE LAS BRIDAS ISO PN25

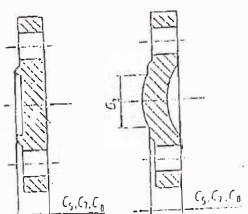

(Véase las notas al	final de esta sección)	Dimensione	s en milímetros
	Di/matus	Diametre del	

Diámetro nominal DN			Empalme				r mínimo de la		Diámetro máximo del reborde G ₂	Diámetro del collarín N ₃	Radio de redondeo r
	Diámetro exterior de la brida D	Diámetro del circulo de los agujeros de pernos K	Diámetro de los agujeros de pernos L ₂	P	ernos	FG ¹⁾	FD '' C ₇	FM ¹⁾			
				Cantidad	Dimensión nominal						
							Tipos de brida	S			
			05, 11, 12, 13, 14, 2	21		05,, 21	05, 11, 12, 13, 14, 21	05, 13, 21	05	11, 12, 13, 14, 21	11, 12, 13, 14, 21
10											
15											
20											
25						las dimension					
32					las b	ridas ISO PN	40				
40											
50											
65 80	o.										
100	235	190	23	8	M20	28	19	24	1	142	6
125	270	220	28	8	M24	30	19	26		162	6
150	300	250	28	8	M24	34	20	28		192	8
200	360	310	28	12	M24	34	22	30		252	8
250	425	370	31	12	M27	36	24,5	32		304	10
300	485	430	31	16	M27	40	27,5	34		364	10
350	555	490	34	16	M30	44	30		325	418	10

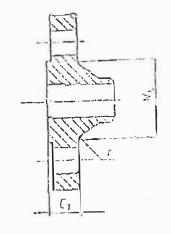
TABLA 11 - DIMENSIONES DE LAS BRIDAS ISO PN25 (Véase las notas al final de esta sección)

Dimensiones en milímetros

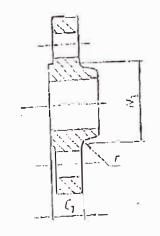

Diámetro nominal DN		***************************************	Empalme			Espe	sor mínimo d	e la brida	Diámetro máximo del reborde G ₂	Diámetro del collarín N3	Radio de redondeo
	Diámetro exterior de la	Diámetro del circulo de los agujeros de	Diámetro de los agujeros de pernos L2	Pe	ernos	FG ¹⁾	FD ¹⁾	FM ¹⁾			
	brida D	pernos K	,			C:5	C ₇	C ₈	1		
				Cantidad	Dimensión nominal						
		U.			Tipos de Bridas						
			05, 11, 12, 13, 14, 21			05, 21	05, 11, 12, 13, 14, 21	05, 13, 21	05	11, 12, 13, 14, 21	11, 12, 1 14, 21
400	620	550	37	16	M33	48	32		375	472	10
450	670	600	37	20	M33	50	34,5		425	520	12
500	730	660	37	20	M33	52	36,5		475	580	12
600	845	770	40	20	M36	56	42		575	684	12
700	960	875	43	24	M39		46,5		675	780	12
800	1 085	990	49	24	M45		51		775	882	12
900	1 185	1 090	49	28	M45		55,5		875	982	12
1 000	1 320	1 210	56	28	M52		60		975	1 086	12
1 200	1 530	1 420	. 56	32	M52		69		1 175	1 296	12
1 400	1 755	1 640	62	36	M56		74		1 375	1 508	12
1 600	1 975	1 860	62	40	M56		81		I 575	1 726	12
1 800	2 195	2 070	70	44	M64		88		1 775	1 920	15
2 000	2 425	2 300	70	48	M64		95		1 975	2 150	15

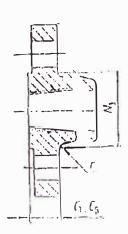


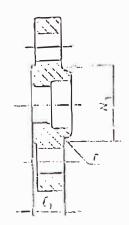
Esta vista representa cierto número de agujeros de pernos que pueden no coincidir, obligatoriamente con el número exacto.


Para obtener el número real de agujeros de pernos, sirvanse consultar la tabla 12, columna "número de bulones"

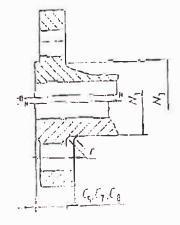
NOTA- Para las dimensiones de los asientos de junta, véase la tabla 5.




Tipo 05


Tipo 11

Tipo 13

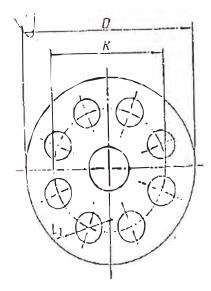


Tipo 21

Tipo 12



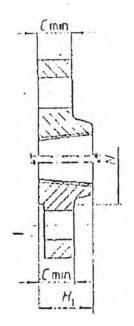
TABLA 12- DIMENSIONES DE LAS BRIDAS ISO PN40 (Véase las n otas al final de esta seccion)


Diámetro nominal DN			Empalme	cast las	n otas ar i	T	esta seccio		Diámetro máximo del reborde G ₂	Diámetro del collarín N3	nes en milim Radio de redondeo r
	Diámetro exterior de la brida D	Diámetro del circulo de los agujeros de pernos K	Diámetro de los agujeros de pernos L ₂		Plannita	FG ¹⁾ C ₅	FD ¹⁾ C ₇	FM ¹⁾ C ₈			
		05, 1	 	Cantidad	Dimensión nominal	05, 21	05, 11, 12, 13, 14, 21	05, 13, 21	05	11, 12, 13, 14, 21	11, 12, 13, 14, 21
10	90	60	14	4	M12	16		14		28	3
15	95	65	14	-4	M12	16		14		32	3
20	105	75	14	4	M12	18		16		40	4
25	115	85	14	4	M12	18		16		50	4
32		100	19	4	M16	20		18		60	5
	140		_				19	18			
40	150	110	19	4	M16	20				70	5
50	165	125	19	4	M16	22	19	20		84	5
65	185	145	19	8	M16	24	19	22		104	6
80	200	160	19	8	M16	26	19	24		120	6
100	235	190	23	8	M20	28	19	24		142	6
125	270	220	28	8	M24	30	23,5	. 26		162	6
150	300	250	28	8	M24	34	26	28		192	8
200	375	320	31	12	M27	40	30	34		254	8
250	450	385	34	12	M30	46	34,5	38		312	10
300	515	450	34	16	M30	50	39,5	42		378	10
350	580	510	37	16	M33	54	44		325	432	10
400 450	660 685	585 610	40 40	16 20	M36	62	48		375 425	498 522	10
500	755	670	43	20	M39		52		475	576	12
600	890	795	49	20	M45		58		575	686	12

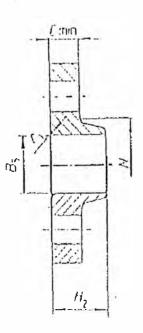
¹⁾ Para la explicación de esta designación abreviada de fundación, véase tabla 14.

Tipo 05

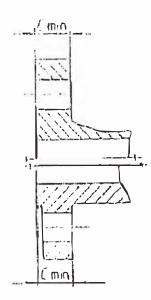
Las bridas ciegas de fundición gris se entregan planas hasta un DN 200 y abultadas o bombeadas para un DN 250 y superiores. Las bridas ciegas de fundición dúctil se entregan planas hasta un DN 200 y, opcionalmente, planas, abultadas o bombeadas para un DN 250 y superiores. La superficie realzada puede estar situada por la parte conocava o por la parte convexa de las bridas ciegas abultadas.



Esta vista representa cierto numero de agujeros de pernos que pueden no coincidir, obligatoriamente con número exacto.


Para obtener el número real de agujeros de pernos, sirvanse consultar la tabla 13, columna "número bulones"

NOTA- Para las dimensiones de los asientos de junta, véase la tabla 5.


Tipo 13

Tipo 15

Tipo 21

TABLA 13- DIMENSIONES DE LAS BRIDAS ISO PN50 (Véase las notas al final de esta sección)

Dimensiones en milimetros

Diámetro nominal DN			Emplame			Espesor mínimo de la brida	Diámetro n del colla	rin	brida	mínima		Diámetro mínimo FG ¹¹ B ₅	Diámetro máximo del reborde r _i	Diámetro del hueco radio de concavidad G2	Espesor mínimo del abultamiento C ₂
	Diámetro Exterior de la brida D	Diámetro del circulo de los agujeros de pernos K	Diámetro de los agujeros de pernos L ₂	Pe. Cantidad	Dimensio	FG, FD ¹⁾	FG, FD ^D	FD I)	FG 19	FD 1)	FD 1)				
							Т	ipos de	bridas	255	27		41	a -	,
		0.	5, 13, 15, 21			05, 13, 15, 21	13	13,	13	13	15	15	15	05	05
25	125	89	18	4	M16	17,5	55	55	22	27	27	35	5	25	
32	135	98,5	18	4	M16	19	65	65	25	27	27	44	5	32	
40	155	114,5	22	4	M20	20,5	70	70	28	30	30	50	6	38	
50	165	127	18	8	M16	22,5	85	85	32	33	33	63	8	51	
65	190	149,5	22	8	M20	25,5	100	100	36	38	38	76	8	64	
80	210	168	22	8	M20	28,5	120	120	40	43	43	92	10	76	
100	255	200	22	8	M20	32	145	145	44	48	48	117	11	102	-
125	280	235	22	8	M20	35	180	180	48	51	51	145	- 11	127	
150	320	270	22	12	M20	36,5	205	205	49	52	52	172	13	152	
200	380	330	26	12	M24	41	260	260	56	62	62	223	13	203	
250	445	387,5	29,5	16	M27	48	320	320	60	67	95	278	13	254	23,8
300	520	451	32,5	16	M30	51	375	375	65	73	102	329	13	305	25,4
350	585	514,5	32,5	20	M30	54	415	425	68	76	111	360	13	337	28,4
400	650	571,5	35,5	20	M33	57	470	485	73	83	121	412	13	387	31,8
450	710	628,5	35,5	24	M33	60,5		535		89	130	463	13	432	35,1
500	775	686	35.5	24	M33	63,5		590		95	140	515	13	483	38,1
600	915	813	42	24	M39	70		705		106	152	616	13	584	41,1
750	1 095	997	48	28	M45	76 ²⁾								737	50,8

¹⁾ Para la explicación de esta designación abreviada de fundición, véase la tabla 14.

Unicamente se explica a los tips de bridas 05 y 21.

Notas: relativas a las tablas 6 a 13

- 1 Aplicable a todas las ISO PN: Para las cotas d1 y f1, véase tabla 5.
- 2 Para las ISO PN 2, 5, 6, 10, 16, 25 e ISO PN 40: Los espesores especificados para las bridas de fundición dúctil de fundición gris y de fundición maleable, son los siguientes
- C5, fundición gris, espesores según DIN 2530, DIN 2531, DIN 2532, DIN 2533, DIN 2534 y DIN 2535:
- C7, fundición dúctil, espesor según ISO 2531.
- C8, fundición maleable, espesores equivalentes a la dimension C3 de las bridas de acero de tipo 21, que figuran en la Norma ISO 7005-1.
- 3 Las dimensiones de la tubería deben coincidir con el diámetro interior de la brida. De ser preciso, se deberán precisar el diámetro exterior, y el espesor del tubo ensamblado con la brida. Las dimensiones del diámetro interior de las bridas (de tipo 21) que van incorporadas a válvulas y accesorios de los cuales forman parte integrante pueden ser precisados en la norma del producto correrspondiente.
- 4 Tornillería (bulones) de conformidad con la Norma ISO 261, utilizada en combinado con las bridas ISO PN20 e ISO PN50:
- para las dimensiones hasta inclusive M45, utilizar la serie métrica de paso grueso.
- para dimensiones equivalentes o superiores a M48, utilizar un paso constante de 4mm.

SECCIÓN 4: MATERIALES Y RELACIÓN DE PRESIÓN/TEMPERATURA (P/T)

4.1 Materiales

TABLA 14- MATERIAL UTILIZADO SEGÚN LA ISO PN

	Material			Características meca	nicas				ISC	PN_			
Tipo	Norma de referencia	Grado de calidad	Resitencia mínima de traccion R _m min N/mm ²	Alargamiento en porcentaje tras ruptura A min %	Limite convencional de elasticidad 0,2% minma R _p 0,2 min N/mm ²	2,5	6	10	16	20	25	40	50
Fundición gris FG	ISO 185 ISO 185	200 250	200 250			X X	X X	X	X X	X	х	х	X X
	ASTM A 126 ASTM A 126	A ⁱ⁾ B	145 214							X X			X X
Fundición ductil FD	ISO 1083 ISO 2531 ISO 1083 ISO 1083 ISO 1083	350-22 400-5 400-15 500-7 600-3	350 400 400 500 600	22 5 15 7 3	220 300 250 320 370			X X X X	X X X X	X X X X X	X X X X	X X X X	X X X X X
Fundición maleable FM	ISO 5922 ISO 5922	B 32-23 B 35-10	320 350	12 10	190 200		X X	X X	X X		X X	X X	

El grado de calidad de fundición gris ASTM A 126 queda limitado para las bridas de diámetro nominal inferior o equivalente a DN 300.

4.2 Relaciones presión/Temperatura

TABLA 15- RELACIONES PRESIÓN/TEMPERATURA PARA LAS BRIDAS DE FUNDICIÓN GRIS

Presión nominal ISO PN		Material			Т	emperati	ıras °C			
			-10 a 65	120	150	180	200	230	250	300
	ISO	ASTM		Presión	maxima a	admisible	(presión	relativa)	bar ¹⁾	
2,5	185 185	-	2,5 6	2,5	2,3 5,4	2,1	2 4,8	1,9 4,4	1,8 4,2	1,5 3,6
10	185	-	10	10	9	8,4	8	7,4	7	6
16 (≤ DN 300)	185	A 126 calid. A.	16 12,1	16 10.3	14,4 9,6	13,4 8,6	12,8	11,8	11,2	9,6
20 (≤DN 300)	185	A 126 calid. B.	13,8	12,1	11,4	10,3	9,8	8,6		
(300 <dn ≤600)<br="">(600<dn td="" ≤900)<=""><td>185 185</td><td>A 126 calid. B. A 126 calid B.</td><td>10,3 10,3</td><td>8,6 5,9</td><td>7,6 3,4</td><td>6,9</td><td></td><td></td><td></td><td></td></dn></dn>	185 185	A 126 calid. B. A 126 calid B.	10,3 10,3	8,6 5,9	7,6 3,4	6,9				
25 40	185 ²⁾ 185 ²⁾	-	25 40	25 40	22,5 36	21 33,6	20 32	18,5 29,6	17,5 28	15 24
(≤DN 300)	-	A 126 calid. A.	27,6	23,4	21,4	18,3	17,7			
50 (≤DN 300) (300< DN ≤600) (600 < DN ≤750)	185 185 185	A 126 calid. B. A 126 calid B. A calid. B.	34,5 20,7 20,7	28,6 17,9 13,8	25,9 16,6 10,3	23,1 15,2 6,9	20,8 14,1	17,2		

¹⁾ 1 bar = 0.1 Mpa

TABLA 16 - RELACIONES PRESIÓN/TEMPERATURA PARA LAS BRIDAS DE FUNDICIÓN DÚCTIL DE GRADO DE CALIDAD 400-5, SEGÚN ISO 2531 Y GRADOS DE CALIDAD 500-7 Y 600-3¹⁾ SEGÚN ISO 1083

Presión nominal ISO PN	20	Temperaturas °C												
	-10 a 120	150	200	250	300	350								
	Pre	sión máxima a	dmisible (presiór	relativa), bar ¹⁾										
10 16 20 25 40 50	10 16 15,5 25 40 40,2	9,5 15,2 14,8 23,8 38 39	9 14,4 13,9 22,5 36 36	8 12,8 12,1 20 32 35	7 11,2 10,2 17,5 28 33	5,5 8,8 8,6 13,8 22 31								

Las bridas de fundición dúctil de grado de calidad 600-3 únicamente se han de utilizar hasta temperaturas de $120\,^{\circ}\mathrm{C}$

²⁾ Las bridas ISO PN25 e ISO PN40 de fundición gris se limitan al grado de calidad 250 de la ISO 185.

²⁾ 1 bar = 0.1 Mpa

TABLA 17- RELACIONES PRESIÓN/TEMPERATURA PARA LAS BRIDAS DE FUNDICIÓN DÚCTIL DE GRADOS DE CALIDAD 350-22 Y 400-15 SEGÚN ISO 1083 Y DE GRADO DE CALIDAD 414-18 SEGÚN LA ASTM A 395

Presión nominal ISO PN		Т	emperatu	ras ⁰ C			
	-10 a 40	120	150	200	250	300	350
		Presión	máxima a	dmisible (presión relati	va), bar ¹⁾	
10	10	10	9,7	9,2	8,7	8	7
16	16	16	15,5	14,7	13.9	12,8	11.2
20	17,5	15,5	14,8	13,9	12,1	10,2	8,6
25	25	25	24,3	23	21,8	20	17,5
40	40	40	38,8	36,8	34,8	32	28
50	44	40,2	39	36	35	33	31

^{1) 1} bar = 0,1 MPa

TABLA 18- RELACIONES PRESIÓN/TEMPERATURA PARA LAS BRIDAS DE FUNDICIÓN MALEABLE SEGÚN LA ISO 5922

Presión nominal ISO PN		Tempe	raturas [©] C			
	-10 a 120	150	200	250	300	350
		Presión máx	ima admisible	presión rela	itiva), bar ¹⁾	
6	6	5,8	5,5	5,2	4,8	4,2
10	10	9,7	9,2	8,7	8	7
16	16	15,5	14,7	13,9	12,8	11,2
25	25	24,3	23	21,8	20	17,5
40	40	38,8	36,8	34,8	32	28

^{1) 1} bar = 0,1 MPa

Anexo A (informativo)

Tolerancias sobre dimensiones

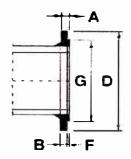
Este anexo lista las dimensiones que se recomiendan tengan una tolerancia y establece el valor sugerido.

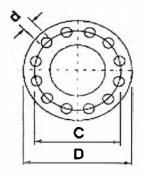
NOTA: El grupo de trabajo 6 del ISO/TC 5/SC 10 prepara una tabla de tolerancias que se incluiran en la próxima revisión o como una adeuda de esta parte de la NTP-ISO 7005.

Tabla A.1 - Talerancias sabre dimensiones

Simple Demonstrate Processing Particular Particul		The state of the s	NO
Diámetro des la fata de la cara la car	mensiones	sodi solos tand	3900 3400 3400 3200 3200 3200 3200 3200 32
Diámetro de la cara de la cara de pemos de pemos de pemos de pemos de pemos de pemos de pemos de pemos de pemos de pemos de pemos de pemos de pemos de pemos de pemos advacames de pemas de pemas de pemas de pemas de pemas de pemas de pemas de pemas de pemas de pemas de pemas de pemas con la superficies de la junta	Simbolo	Designación	Тыстигр мурстий
Diámetro de 1.4.5 Altura de la brida Espesor de pernos de pernos de pernos del perno Diámetro del circulo del perno Centro a centro de la pernos de pernos con la auperficies de pernos con la auperficie de la punta	Q	Dibmeter exleting	1
Atturn de te cara de train de	7,1	Diametro de lo cata	~:
Figure of the care Figure			АНИЯ
Express to the period of the		Altura de	3 4 5
Express to the period Expr	1,5	la cara	Tolerancia
Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Expresor re- Foldmenter de particos para para para para para para para par		6	- 1.5 2
Espesor de la brida la brida la brida la brida la brida de pernos de pernos de pernos de pernos de pernos de pernos de pernos de pernos de pernos de pernos de pernos de pernos de pernos de pernos con la bridação de la prota de pernos con la punda de pe			
Expressor de Expr		d	Espesor
Drimetro de buscos Drimetro de buscos de pernos de pernos Drimetro de fueros de pernus Carlo a centro del circulo Centro a centro del gernos tamado Carlo a centro para pernos tamado Carlo a centro de centro de centro de centro para pernos tamado Carlo a centro de centro d	-c	Espesor de	25 26 n 40 41 n 55 56 a 70 2
Diametro de huecos de pernos de pernos Diámetro de la junta Di		la brida	Tokranch
Diámetro de buscos de perpos Centro a centro de la junta Diámetro de la junta			
Diametro de buscos de pernos de pernos de pernos del pernos del pernos del perno Centro a centro del superficies de pernos advacentes de pernos con la superficies de pernos con la superficies de pernos con la superficie de la junta			Diametro de Imecas de permes
Diámetro de buscos de pemos Diámetro de circulo Diámetro de perios pura largados de la como de circulo Centro a centro de luncarea alemente de perios funciones contro de superfícies de pemos con la superfície de la junta Diámetro de perios pura largados de la contro de centro de perios famento Centro a centro de luncarea alemente de perios famento Centro a centro para perios famento ALIO (M12 a M2 a M45 a M52 1			
Difference de circulo Difference de circulo Difference de circulo Contro a contro de superfícios Differences de persos para harandas M52 1.1 1.1.5 1.2 1.2 1.3 1.2 1.3 1.2 1.3		Diametro de huecos	- OPPENIE
Diámetro del circulo Diámetro del circulo del perno del perno Centro a centro de la fuera la constante de pernos fuera la constante de pernos fuera la constante de pernos fuera la centro de pernos fuera la centro de pernos famario Centro a centro de pernos famario Centro a centro para pernos famario Alto Alto a Maza Maza Maza Maza Maza Maza Maza M	, , , , , , , , , , , , , , , , , , ,	de pemos	
Diámetro del circulo del perno Centro a centro de la centro de la centro de superfícies Paralelismo de superfícies de pernos con la superfícies de la junta Tolerandas			With contrast the contrast transfer is
def perno Centro a centro de lineares advacembres Incerna advacembres de pernos Paralelismo de superfícies de pernos con la superfícies de la junta Tolerancia To		Diámetro del circulo	Miz a M2 M27 a M45 M52
Centro a centro de linocas advacentes de perios tamaño de perios con la superficies de perios con la superficie de la junta augustície de	`~:	del pemo	Toleranclas
Centro a centro de linears advacentes de perios anticomerca de perios anticomerca de perios con la contro de superficies de perios con la superficie de la junta augerficie e la junta augerficie de la junta augerfica de la junta augerfica de la junta augerfica de la junta augerfica de la junta auge			11.5 1.7 1.
Control a centrol de lineares advacentes de permes con la superfícies de la junta augerfície de la junta			Centro a ventro para petnos tamaño
Paralelismo de superficies de pennos con la superficie de la junta		Centino a centro de	MS?
Paralelismo de superficies de pemos con la superficie de la junta	2	lineans adynecation de penass	Toleramias 1 0.75 1 1 1 1.1.5
Paralelismo de superficies de pentos con la superficie de la puta			
de pentos con la superficie de la putta		Paralelismo de saperficies	
		de pentos con la	Z MINNX

Anexo B (informativo)


Bibliografia


B.1	ISO 261:1973	ISO general purpose metric screw threads - General plan
B.2	ISO 7005-1: ⁻¹⁾	Metallic flanges - Part 1: Steel flanges.
B.3	DIN 2530:1976	Cast iron flanges; nominal pressure 2,5.
B.4	DIN 2531:1976	Cast iron flanges; nominal pressure 6.
B.5	DIN 2532:1976	Cast iron flanges; nominal pressure 10.
B.6	DIN 2533:1976	Cast iron flanges; nominal pressure 16.
B.7	DIN 2534:1976	Cast iron flanges; nominal pressure 25.
B.8	DIN 2535:1976	Cast iron flanges; nominal pressure 40.

--00000--

DIMENSIONES JUNTA CON BRIDA PN 16

			Dimer	siones				Dime	ensiones	
DN	F	Ď	Ğ	4	В	DN	D	С	Aguje	
									Cantidad	
	mm	mm	mm	mm	mm			נגו נגו		mm
50	3	165	98	19,0	16,0	50	165	125	4	19
80	3	200	132	19,0	16,0	80	200	160	8	19
100	3	220	153	19,0	16,0	100	220	180	8	19
150	3	285	209	19,0	16,0	150	285	240	8	23
200	3	340	264	20,0	17,0	200	340	295	12	23
250	3	400	319	22,0	19,0	250	400	355	12	28
300	4	455	367	24,5	20,5	300	455	410	12	28
350	4	520	432	26,5	22,5	350	520	470	16	28
400	4	580	484	28,0	24,0	400	580	525	16	31
450	4	640	544	30,0	26,0	450	640	585	20	31
500	4	715	606	31,5	27,5	500	715	650	20	34
600	5	840	721	36,0	31,0	600	840	770	20	37
700	5	910	791	39,5	34,5	700	910	840	24	37
800	5	1025	898	43,0	38,0	800	1025	950	24	40
900	5	1125	998	46,5	41,5	900	1125	1050	28	40
1000	5	1255	1115	50,0	45,0	1000	1255	1170	28	43
1200	5	1485	1330	57,0	52,0	1200	1485	1390	32	49
1400	5	1685	1530	60,0	55,0	1400	1685	1590	36	49
1500	5	1820	1640	62,5	57,5	1500	1820	1710	36	56
1600	* 5	1930	1750	65,0	60,0	1600	1930	1820	40	56
1800	5	2130	1950	70,0	65,0	1800	2130	2020	44	56
2000	5	2345	2150	75.0	70 0	2000	2345	2230	48	62

Brida: normas NBR 7675 y ISO 2531.

QW-482 SUGGESTED FORMAT FOR WELDING PROCEDURE SPECIFICATIONS (WPS) (See QW-200.1, Section IX, ASME Boiler and Pressure Vessel Code)

	By	
Nelding Procedure Specification No Date		Supporting PQR No.(s)
Revision No Date		
Nelding Process(es)	Type(s)	(Automatic, Manual, Machine, or Semi-Automatic)
JOINTS (QW-402)		Details
Joint Design		
Root Spacing		
Backing: Yes No		
Backing Material (Type)(Refer to both backing and retainers)		
☐ Metal ☐ Nonfusing Metal		
□ Nonmetallic □ Other		
Sketches, Production Drawings, Weld Symbols, or Written Description should show the general arrangement of the parts to be welded. Where applicable, the details of weld groove may be specified.		
[At the option of the manufacturer, sketches may be attached to illustrate joint design, weld layers, and bead sequence (e.g., for notch toughness procedures, for multiple process procedures, etc.)]		
P-No Group No OR Specification and type/grade or UNS Number to Specification and type/grade or UNS Number OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness ≤ 1/2 in. (13 mm) (Yes) Other	Fillet -	
		1.
*FILLER METALS (QW-404)		2
Spec. No. (SFA)		2
Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals		2
Spec. No. (SFA)		2
Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal		2
Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal		2
Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal Thickness Range:		2
Spec. No. (SFA) AWS No. (Cless) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal Thickness Range: Groove		2
Spec. No. (SFA) AWS No. (Cless) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal Thickness Range: Groove Fillet		2
Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class)		2
Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Type		2
Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Type Flux Trade Name		2
Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Type		2

^{*}Each base metal-filler metal combination should be recorded individually.

QW-482 (Back)

Percent Composition REHEAT (QW-406) Proheat Temperature, Minimum Interpass Temperature, Minimum Continuous or special heating, where applicable, should be recorded of their Continuous or special heating, where applicable, should be recorded of Training Backing Continuous or special heating, where applicable, should be recorded of Training Backing Cother Cother Filler Metal Current Filler Metal Current Filler Metal Current Traval Amps Volts Speed Addition, Tachnique Addition, Tachnique Addition, Tachnique Addition, Tachnique Folarity Amps and volts range should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Tungstan Electrode Size and Type (Fuer Tungstan, 3% Thorised, etc.) (Spray Acc. Sheet Circuiting Arc. etc.) Method of Metal Transfer for GMAW (FCAW) (Spray Acc. Sheet Circuiting Arc. etc.) Method of Dack Gouging Oscillation	Temperature Range Velding Progression: Up Costion(s) of Fillet Uther Stell-EAT (QW-406) Temperature, Minimum Traviling Backing Cother Traviling Backing Cother Travil Travel Speed Travil Range) Travel Speed (Range) Travel Speed (Range) Travel Travel Speed (Range) Travel Travel Speed (Range) Travel Travel Speed (Range) Travel Travel Speed (Range) Travel Speed Travel Travel Speed Travel							***************************************		nev.
Wolding Progression: Up	Velding Progression: Up Down Time Range Other Other Sociation(s) of Fillet Up Down Sociation(s) of Fillet Up Down Sociation(s) of Fillet Up Down Sociation(s) of Fillet Up Down Sociation(s) of Fillet Up Down Sociation(s) of Fillet Up Down Sociation(s) of Fillet Up Down Sociation Sociation Sociation Down Sociation Down Description Sociation Down Down Down Down Down Down Down Do									
Percent Composition The Continuous or special heating, where applicable, should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Amps and volts range should be recorded for each electrode size, position, and thickness, etc. Pulsing Current	Other Other				Davis	-				
Other Gas (QW-408) REHEAT (QW-406) Percent Composition Gas(es) (Mixture) Flow Rate Interpass Temperature, Maximim Gas(es) (Mixture) Flow Rate Interpass Temperature, Mixture) Flow Rate Interpass Temperature, Mixture, M	SEMEAT (QW-406) Percent Composition Prove Continuous or special heating, where applicable, should be recorded Percent Composition Percent Compos						_			
REHEAT (QW-406) Percent Composition Percent Temperature, Minimum Interpass Temperature, Minimum Gas(es) Reheat Maintenance Other Continuous or special heating, where applicable, should be recorded for the recorded for the recorded for the recorded for each electrode size, position, and thickness, etc. Pulsing Current Trayel (Range) Amps and volts range should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Heat Input (max.) Tungsten Electrode Size and Type (Pure Tungsten, 2% Thoristed, etc.) Mode of Metal Transfer for GMAW (FCAW) (Sprav Arc. Short Circuiting Arc. etc.) String or Weave Bead Other Contect Tube to Work Distance Multiple or Single Flast (For Side) Multiple or Single Flast (For Side) Multiple or Single Flast (For Side) Multiple or Single Flast (For Side) Multiple or Single Flast (For Side) Multiple or Single Flast (For Side) Multiple or Single Flast (For Side) Multiple or Single Flast (For Side) Multiple or Single Flast (For Side) Multiple or Single Flast (For Side) Multiple or Single Flast (For Side) Multiple or Single Flast (For Side) Multiple or Single Flactrodes Electrode Spacing Percent Composition (Miniture) Flow Rate Radian Contect Travel (Range) Cher Travel Range Racking Cher Racking Cher Racking Cher Rac	Case Case						Other			
Percent Composition Percent Composition Gas(es) (Mixture) Flow Rate Interpass Temperature, Maximim Percent Maintenance Other (Continuous or special heating, where applicable, should be recorded) Process Filler Metal Current Classification Diameter Polarity (Range) Classification Diameter Polarity (Range) Amps and volts range should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Heat Input (max.) Tungsten Electrode Size and Type Mode of Metal Transfer for GMAW (FCAW) Electrode Wire Feed Speed Range Other TECHNIQUE (GW-410) String or Weave Bead Other Contract Tube to Work Distance Multiple or Single Plass (Per Side) Multiple or Single Plass (Per Side) Multiple or Single Plass (Per Side) Multiple or Single Electrodes Electrode Specing Contract Tube to Work Distance Multiple or Single Plass (Per Side) Multiple or Single Electrodes Electrode Specing Percent Composition Gas(es) (Mixture) Flow Rate Flow Rate Input (Gas(es) (Mixture) Flow Rate Flow Rate Input (Gas(es) (Range) (Range) Other French (Gas(es) (Mixture) Flow Rate Current Travel (Gag, Remarks, Comments, Hot Wire (Gag, Remarks, Comments, Hot	Percent Composition Percent Composition Percent Composition Percent Composition Percent Composition Percent Composition Percent Composition Percent Composition Percent Composition Percent Composition Percent Percent Percen	Other					GAS (QW-408)			
Preheat Temperature, Maximim Interpass Temperature, Maximim Continuous or special heating, where applicable, should be recorded Continuous or special heating, where applicable, should be recorded Continuous or special heating, where applicable, should be recorded Continuous or special heating, where applicable, should be recorded Continuous or special heating, where applicable, should be recorded Content Cont	Preheat Pemperature, Minimum Ges(es) (Mixture) Flow Rate merpass Temperature, Miximim Training Shielding Training Backing Continuous or special heating, where applicable, should be recorded Continuous or special heating, where applicable, should be recorded Continuous or special heating, where applicable, should be recorded Continuous or special heating, where applicable, should be recorded Conter Continuous or special heating, where applicable, should be recorded Conter Content Co	REHEAT (OW	-406)						Percent Com	position
Interpass Temperature, Maximim Preheat Maintenance Other (Continuous or special heating, where applicable, should be recorded) Control (Continuous or special heating, where applicable, should be recorded) Classification Process Filler Metal Current Weld Passles) Process Classification Classif	Trailing Backing Cher Shelding Trailing Backing Cher Shelding Trailing Backing Cher Shelding Trailing Backing Cher Shelding Cher			mum				Gas(es)	(Mixtu	re) Flow Rate
Preheat Maintenance Other (Continuous or special heating, where applicable, should be recorded) Continuous or special heating, where applicable, should be recorded) Continuous or special heating, where applicable, should be recorded) Cother Filler Metal Filler Metal Current Filler Metal Current Travel Speed (Range) Classification Diameter Polarity Amps (Range) Classification Diameter Polarity Amps (Range) Classification Diameter Polarity Amps (Range) Classification Diameter Polarity Classification Diameter Polarity Cange (Range) Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Diameter Polarity Classification Classification Classification Diameter Polarity Classification Classification Classification Diameter Polarity Classification Class	Treheat Maintenance Shielding Trailing Backing Other Continuous or special heating, where applicable, should be recorded Trailing Backing Other ECTRICAL CHARACTERISTICS (QW-409) Filler Metal Current Travel Queen Amps Volts Speed (Range) (Range									
Continuous or special heating, where applicable, should be recorded Other	Continuous or special heating, where applicable, should be recorded) CECTRICAL CHARACTERISTICS (QW-409) Filler Metal						Shielding			
LECTRICAL CHARACTERISTICS (QW-409) Filler Metal	ECTRICAL CHARACTERISTICS (QW-409) Filler Metal	Other					Trailing .		_	
LECTRICAL CHARACTERISTICS (QW-409) Filler Metal Current Travel Quantity Travel Travel Travel Quantity Quantity Travel Travel Travel Quantity Travel Trav	Filler Metal Current Travel (e.g., Remarks, Commence, Hot Wire Polarity (Range) (Range	(Continuous o	or special heat	ing, where applica	able, should be	e recorded)	Backing .			
Filler Metal Current Weld Pass(es) Process Classification Diameter Type and Amps Volts Speed (Range) (Range) (Range) (Range) Travel (e.g., Remarks, Comments, Hot Wire Addition, Technique Torch Angle, etc.) Amps and volts range should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Heat Input (max.) Tungstan Electrode Size and Type (Pure Tungsten, 2% Thoristed, etc.) Mode of Metal Transfer for GMAW (FCAW) (Spray Arc, Short Circuiting Arc. etc.) Electrode Wire Feed Speed Range Other TECHNIQUE (QW-410) String or Weave Bead Orifice, Nozie, or Gas Cup Size Initial and interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Context Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Specing Peening	Filler Metal Current Weld Pass(es) Process Classification Diameter Polarity (Range) Volts (Range) (Range) (Range) Travel (Range) Addition, Technique Torch Angle, etc.) Amps and volts range should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Heat Input (max.) Tungsten Electrode Size and Type (Pure Tungsten, 2% Thoristed, etc.) (Sprey Arc, Short Circuiting Arc, etc.) Electrode Wire Feed Speed Range Other ECHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Specing Peening						Other .			
Weld Pass(es) Process Classification Diameter Type and Amps (Range) (Range) (Range) Travel Speed Addition, Technique Torch Angle, etc.) Amps and volts range should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Heat Input (max.) Tungsten Electrode Size and Type (Pure Tungsten. 2% Thoristod, etc.) Mode of Metal Transfer for GMAW (FCAW) (Sprey Are, Short Circuiting Arc. etc.) Electrode Wire Feed Speed Range Other Other TECHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrodes Specing Peening Weld Pass(es) Process Classification Diameter Type and Amps (Range) (Range) (Range) Travel (Range) Addition, Technique Torch Angle, etc.) Amps and volts range should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Heat Input (max.) Tungsten Electrode Size and Type (Pure Tungsten, 2% Thoristed, etc.) (Spray Arc, Short Circuitting Arc, etc.) (Spray Arc, Short Circuitting Arc, etc.) String or Weave Bead Orifice, Norzie, or Gas Cup Size Initial and interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contect Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrodes Speeing Peening	ELECTRICAL C	CHARACTERIS	TICS (QW-409)							
Weld Pass(es) Process Classification Diameter Type and Amps (Range) Volts Speed (Range) Addition, Technique Torch Angle, etc.) Amps and volts range should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Heat Input (max.) Tungsten Electrode Size and Type (Pure Tungsten, 2% Thorieted, etc.) Mode of Metal Transfer for GMAW (FCAW) (Spray Arc, Short Circutiling Arc, etc.) Electrode Wire Feed Speed Range Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Pass (Per Side) Multiple or Single Pass (Per Side) Electrodes Speeing Peening	Weld Pass(es) Process Classification Diameter Type and Polarity (Range) Volts Speed (Range) Addition, Technique (Range) Torch Angle, etc.) Amps and volts range should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Heat Input (max.) Tungstan Electrode Size and Type (Pure Tungsten, 2% Thoristed, etc.) Mode of Metal Transfer for GMAW (FCAW) (Spray Arc, &hort Circuiting Arc, etc.) Electrode Wire Feed Speed Range Office, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Pass (Per Side) Multiple or Single Electrodes Speeing Peening			Filler N	1etal	C	current			Other
Pulsing Current Heat Input (max.) Tungsten Electrode Size and Type (Pure Tungsten, 2% Thoristed, etc.) Mode of Metal Transfer for GMAW (FCAW) (Spray Arc, Short Circuiting Arc, etc.) Electrode Wire Feed Speed Range Other TECHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushling, Grindling, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrodes Spacing Peening	Pulsing Current Heat Input (max.) Tungsten Electrode Size and Type (Pure Tungsten, 2% Thoristed, etc.) Mode of Metal Transfer for GMAW (FCAW) (Spray Arc, Short Circuiting Arc, etc.) Electrode Wire Feed Speed Range Other ECHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening		Process	Classification	Diameter				Speed	Addition, Technique,
Tungsten Electrode Size and Type (Pure Tungsten, 2% Thoristed, etc.) Mode of Metal Transfer for GMAW (FCAW) (Spray Arc, Short Circuiting Arc, etc.) Electrode Wire Feed Speed Range Other TECHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening	Tungsten Electrode Size and Type (Pure Tungsten, 2% Thoristed, etc.) Mode of Metal Transfer for GMAW (FCAW) (Spray Arc, Short Circuiting Arc, etc.) Electrode Wire Feed Speed Range Other ECHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening									
Mode of Metal Transfer for GMAW (FCAW) [Spray Arc, Short Circuiting Arc, etc.] Electrode Wire Feed Speed Range Other [FCHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening	(Pure Tungsten, 2% Thoristed, etc.) Mode of Metal Transfer for GMAW (FCAW) (Spray Arc, Short Circuiting Arc, etc.) Electrode Wire Feed Speed Range Other ECHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening									
[Spray Arc, Short Circulting Arc. etc.] Electrode Wire Feed Speed Range Other TECHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening	Spray Arc, Short Circuiting Arc. etc.)						(Pure Tungsten, 2			
Other TECHNIQUE (QW-410) String or Weave Bead	Other ECHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening						(Spray Arc, Short C	Proutting Arc. etc.)		
TECHNIQUE (QW-410) String or Weave Bead	ECHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening	Electrode Wi	ire Feed Spee	d Range ———						
TECHNIQUE (QW-410) String or Weave Bead	ECHNIQUE (QW-410) String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening	Other								
String or Weave Bead	String or Weave Bead Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening	Other								
Orifice, Nozzle, or Gas Cup Size Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening	Orifice, Nozzle, or Gas Cup Size									
Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening	Initial and Interpass Cleaning (Brushing, Grinding, etc.) Method of Back Gouging Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening			0:						
Method of Back Gouging	Method of Back Gouging									
Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening	Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening	muai anu in	reihass Ciagu	ing torusining, Gri	nung, 86.) —					
Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Muttiple or Single Electrodes Electrode Spacing Peening	Oscillation Contact Tube to Work Distance Multiple or Single Pass (Per Side) Multiple or Single Electrodes Electrode Spacing Peening	Method of B	ack Gouging							
Multiple or Single Pass (Per Side)	Multiple or Single Pass (Per Side)									
Multiple or Single Electrodes Electrode Spacing Peening	Multiple or Single Electrodes	Contact Tube	e to Work Dist	ance				_		
Electrode Spacing Peening	Electrode Spacing Peening	· ·	_							
Peening	Peening									
	Other	_								

QW-483 SUGGESTED FORMAT FOR PROCEDURE QUALIFICATION RECORDS (PQR) (See QW-200.2, Section IX, ASME Boiler and Pressure Vessel Code) Record Actual Conditions Used to Weld Test Coupon

80A

				-	
Procedure Qualification Record No			te		
WPS No					
Velding Process(es) —					
ypes (Manual, Automatic, Semi-Automatic) —					
OINTS (QW-402)					
(Consentination qualifications the d	Groove De	esign of Test Coupon		Allen makel and are	
(For combination qualifications, the d	eposited weld meta				cess used.)
ASE METALS (QW-403)	a	POSTWELD HEAT			
laterial Spec ype/Grade, or UNS Number					
-No Group No to P-No hickness of Test Coupon					
iameter of Test Coupon					
nameter of lest coupon					
Andrew Deer Thisleres					
		_			
		GAS (QW-408)		Percent Composition	1
		_	Gas(es)	Percent Composition (Mixture)	n Flow Rate
Maximum Pass Thickness		_		•	
Other	2	GAS (QW-408)		(Mixture)	
FILLER METALS (QW-404)		GAS (QW-408) Shielding		(Mixture)	
SILLER METALS (QW-404) 1 SFA Specification		GAS (QW-408) Shielding Trailing		(Mixture)	
FILLER METALS (QW-404) 1 SFA Specification		GAS (QW-408) Shielding Trailing Backing		(Mixture)	
SILLER METALS (QW-404) 1 SFA Specification WS Classification iller Metal F-No.		GAS (QW-408) Shielding Trailing Backing Other		(Mixture)	
ILLER METALS (QW-404) 1 FA Specification WS Classification iller Metal F-No		GAS (QW-408) Shielding Trailing Backing Other ELECTRICAL CHA	ARACTERISTIC	(Mixture)	Flow Rate
ILLER METALS (QW-404) 1 FA Specification WS Classification iller Metal F-No. Veld Metal Analysis A-No.		GAS (QW-408) Shielding Trailing Backing Other ELECTRICAL CHA	ARACTERISTIC	(Mixture)	Flow Rate
ILLER METALS (QW-404) 1 FA Specification		GAS (QW-408) Shielding Trailing Backing Other ELECTRICAL CHA	ARACTERISTIC	(Mixture)	Flow Rate
ILLER METALS (QW-404) 1 IFA Specification	2	GAS (QW-408) Shielding Trailing Backing Other ELECTRICAL CHA	ARACTERISTIC	(Mixture) CS (QW-409) Volts	Flow Rate
CILLER METALS (QW-404) 1 SFA Specification AWS Classification Filler Metal F-No. Weld Metal Analysis A-No. Size of Filler Metal Filler Metal Product Form Supplemental Filler Metal Electrode Flux Classification	2	GAS (QW-408) Shielding Trailing Backing Other ELECTRICAL CHACUTE Current Polarity Amps. Tungsten Electrode	ARACTERISTIC	(Mixture) CS (QW-409) Volts	Flow Rate
EILLER METALS (QW-404) 1 SFA Specification AWS Classification Filler Metal F-No. Weld Metal Analysis A-No. Size of Filler Metal Filler Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type	2	GAS (QW-408) Shielding Trailing Backing Other ELECTRICAL CHACUTE Current Polarity Amps. Tungsten Electrode	ARACTERISTIC Size	(Mixture) CS (QW-409) Volts	Flow Rate
	2	GAS (QW-408) Shielding Trailing Backing Other ELECTRICAL CHACUTE Current Polarity Amps. Tungsten Electrode Mode of Metal Trai	ARACTERISTIC Size	(Mixture) CS (QW-409) Volts	Flow Rate

02/08

Other-

POSITION (QW-405)

PREHEAT (QW-406)
Preheat Temperature —
Interpess Temperature —

Weld Progression (Uphill, Downhill)

Position of Groove -

TECHNIQUE (QW-410)
Travel Speed

String or Weave Bead ___

Multipass or Single Pass (Per Side) — Single or Multiple Electrodes — — —

Oscillation_

Other _

QW-483 (Back)

T	-		
Tensile	iest	IUW-	ເສບາ

PQR	No.						_
-----	-----	--	--	--	--	--	---

Specimen No.	Width	Thickness	Area	Ultimate Total Load	Ultimate Unit Stress, (psl or MPa)	Type of Failure and Location
		Guide	d-Bend Tests	(QW-160)		
	Type and Fig	ire No			Result	

Toughness Tests (QW-170)

Specimen	Notch	Specimen	Test		Impact Values		
No.	Location	Size	Temperature	ft-lb or J	% Shear	Mils (in.) or mm	Drop Weight Break (Y/N)
) .				
					*		

	Fillet M	Inid Took (OM 190)	
	rillet-vi	Veld Test (QW-180)	
Result — Satisfactory: Yes ————	No	Penetration into Parent Metal: Yes	No
Macro — Results —————			
		Other Tests	
Type of Test			
Deposit Analysis			
Other			
Welder's Name		Clock No	Stamp No
Tests Conducted by		Laboratory Test No.	
We certify that the statements in this requirements of Section IX of the AS		he test welds were prepared, welded, and tested el Code.	in accordance with the
	Manufac	turer or Contractor —	
Date		Certified by	

03/08

QW-484A SUGGESTED FORMAT A FOR WELDER PERFORMANCE QUALIFICATIONS (WPQ) (See QW-301, Section IX, ASME Boiler and Pressure Vessel Code)

~	U	О	

					
Velder's name		Identificatio	n no		
		Test Des	cription		
dentification of WPS fol	lowed			Test coupon	☐ Production weld
Identification on Test Description Test coupon Production Test Description Test coupon Production Test Description Test Description Test Description Test Description Test Description Thickness Testing Conditions and Qualification Limits Welding Variables (QW-350) Actual Values Range Qualified Range					
		Testino Conditions an	d Qualification Limits		
W	eiding Veriables (OW-950)	-		ae D	ango Quelified
	ording variables (200 ebe)		Actour Valor		ange dealmed
	mi-automatic) used				
☐ Plate ☐ Pipe (ent	er diameter If plpe or tube	n)			
Base metal P- or S-Na	umber to P- or S-Number				
Filler metal or electro	de specification(s) (SFA) (i	info. only)			
Filler metal or electro	de classification(s) (info. o	nly)			
Filler metal F-Numbe	r(s)				
Consumable insert (C	STAW or PAW)				
Filler Metal Product F	orm (solid/metal or flux co	ored/powder) (GTAW or	PAW)		
Deposit thickness for	each process				
Process 1	3 layers minimum	☐ Yes ☐ No			
Process 2	3 layers mlnimum	☐ Yes ☐ No			
Position qualified (2G	i, 6G, 3F, etc.)				
	•				
•					
	•	(clrcuit-GMAW)	+		
G IAVV current type/p	olarity (AC, DCEP, DCEN)				
		RESU	ULTS		
/isual examination of α	ompleted weld (QW-302.4))			
Transverse face and	root bends (QW-462.3(a))	☐ Longitud	inal bends [QW-462.3(b)]	☐ Side bends	(QW-462.2)
	Pipe bend specia				
	Plate bend speci	men, corrosion-resistar	nt weld metal overlay [QW	/-462.5(d)]	
☐ Pipe	specimen, macro test for t	usion [QW-462.5(b)]	Piete specimen, macr	ro test for fusion [QW-462	2.5(e)]
Type	Result	Type	Result	Type	Result
Altornativo rodiographi	a avamination socults (O)A	(404)			
			h and nement of defects		
		_			
	•		•		
	V-184)	_ Fillet size (in.) ×	Concavity/conv	exity (in.)	
			Laboratory test r	10	_
•				Veided, and tested in acco	ordance with the
		Manufacturer or Co	ntractor		
Data		Cartified by			
Date		Certified by			

QW-484B SUGGESTED FORMAT B FOR WELDING OPERATOR PERFORMANCE QUALIFICATIONS (WOPQ) (See QW-301, Section IX, ASME Boiler and Pressure Vessel Code)

Welding operator's name	е		Identification no.		1935
			(Information Only)		
identification of WPS fol	lowed			Test cou	pon Production weld
Specification and type/g	rade or UNS Number of b	ase metal(s)		Thickness	
			Position (2G, 6G, 3)		
☐ Plate ☐ Pipe (enter	diameter, if pipe or tube)				
Filler metal (SFA) specifi	cation ——— Filler m	etal or electrode classif	fication ——————		
	Testing Conditions a	nd Qualification Limits	When Using Automatic W	elding Equipment	
	Welding Variables (Q)	N-361.1)	Act	tual Values	Range Qualified "
Type of welding (auto	omatic)				
Welding process					
Filler metal used (Yes	/No) (EBW or LBW)				
Type of laser for LBW	(CO ₂ to YAG, etc.)				
Continuous drive or i	nertia welding (FW)				
Vacuum or out of vac	uum (EBW)				
	Testing Conditions	and Qualification Limit	s When Using Machine We	elding Equipment	
	Welding Variables (Q)	N-361.2)	Act	tual Values	Range Qualified
Type of welding (Mac	:hine)				
Welding process			· ·		
Direct or remote visu	al control				
Automatic arc voltage	e control (GTAW)				
Automatic joint tracki	ng				
Position qualified (2G	i, 6G, 3F, etc.)		·		
Consumable Inserts (GTAW or PAW)				
Backing (with/withou	t)				
Single or multiple pa	sses per side				
			ULTS		
	ompleted weld (QW-302.4)		 ;		
☐ Transverse face and	root bends (QW-462.3(a))	☐ Longitud	linal bends [QW-462.3(b)]	☐ Side bends	s (QW-462.2)
	☐ Płpe ben	d specimen, corrosion-	resistant weld metal overla	y [QW-462.6(c)]	
	☐ Plate ber	d specimen, corrosion-	resistant weld metal overla	y [QW-462.5(d)]	
☐ Pipe :	specimen, macro test for t	usion [QW-462.5(b)]	☐ Plate specimen, macr	o test for fusion [QW-46	52.5(e)]
Туре	Result	Туре	Result	Туре	Result
A1	1 1 1014	404)			
	examinetion results (QW				
Fillet weld — tracture te			ength and percent of defec		
	Fillet welds in pla	ate [QW-462.4(b)]	☐ Fillet welds in pipe [QV	V-462.4(c)}	
Macro examination (QV	V-184) Filler	size (in.) × _	Concavity/convex	lty (in.)	
Other tests				•	
				Company	
Mechanical tests condu	cted by			Laboratory test no	
			est coupons were prepare	ed, welded, and tested	in accordance with the
requirements of Section	n IX of the ASME Boiler ar	d Pressure Vessel Code).		
		Manufact	urer or Contractor		
Data		Camifical	by		
Date		Certified	Jy ——————		

QW-485 SUGGESTED FORMAT FOR DEMONSTRATION OF STANDARD WELDING PROCEDURE SPECIFICATIONS (SWPS) (See Article V)

80A

Identification of Standard W	elding Procedure Spe	cification Demonstrated			
		Demonstration W	elding Conditions		
Specification and type/grade	e or UNS Number of B	ase Metal(s)			
to Specification and type/	grade or UNS Number	of Base Metal(s)			
Base Metal P- or S-Number					
Welding Process(es) used					
☐ Plate ☐ Pipe (Enter Dia					
Groove Design (Single V, Do					
nitial Cleaning Method	-				
Backing (with/without)					
Filler Metal Specification _					
Filler Metal or Electrode Cla					
Filler Metal or Electrode Cra					
Size of Consumable Electro					
Tungsten Electrode Classific					
Consumable Insert Class an					
Shielding Gas Composition					
Preheat Temperature					
Position (1G, 2G, etc.) of We					
Progression (Uphill or Dow					
nterpass Cleaning Method					
Measured Maximum Interp					
Approximate Deposit Thick					
Current Type/Polarity (AC, [
Postweld Heat Treatment To					
ostword float floatinoit fi	mic and remperature				
Visual Examination of Com	pleted Weld (QW-302.4	4)		Date of Test	
Bend Test (QW-302.1)	☐ Transverse	e Face and Root [QW-46	52.3(a)]	☐ Side (QW-462.:	2)
Туре	Result	Туре	Result	Туре	Result
Alas and a Budhan and to E		14 000 T			
Alternative Radiographic E Specimens Evaluated By	xamination Results (Q	VV-3U2.2)	H	Company	
Specimens Evaluated By		IIII		Company	
Welding Supervised By Welder's Name				Company	
We certify that the stateme				•	
the requirements of Section				orepared, welded, and te	sted in accordance wi
Manufacturer or Contracto	•				
Manufacturer of Contracto	,,				
Signature		Date	Demonstratio	n Number	

QB-482 SUGGESTED FORMAT FOR A BRAZING PROCEDURE SPECIFICATION (BPS) (See QB-200.1, Section IX, ASME Boiler and Pressure Vessel Code)

Company Name					
BPS Number	Revision	Date Issued			
Supporting PQRs					
Brazing Process(es)		Type(s)(Automatic, Manual, Machine, or			
		(Automatic, Manual, Machine, or Semi-Automatic)			
	Joint Design (QB-408)				
Joint Design: Type	Joint Clearance				
Overlap: Minimum	Maximum	UK:			
Base Metal (QB-402)	Brazing Filler	Metal (QB-403)			
P/S-Number	Specification Number				
to P/S-Number	AWS Classification				
Other	F-Number				
	Filler Metal Product Form				
Base Metal Thickness					
Minimum		return IOP 404)			
Maximum	-	rature (QB-404)			
	Brazing Temperature Range				
Postbraze Heat Treatment (QB-409)		or Atmosphere (QB-406)			
Temperature Range					
Time Range	Fuel Gas				
	Furnace Temperature				
Flow Position (QB-407)	Atmosphere Type				
Positions Permitted	Other				
Flow Direction	- 1				
	Technique (QB-410) and Other Information				
Initial Cleaning					
•					
Flux Application					
Nature of Flame (Oxidizing, Neutral, Reducing)					
Torch Tip Sizes					
Postbraze Cleaning					
Inspection					
17.					

(02/07)

eliosonia

Electrodos para Fierro Fundido

Color de Revestimiento:	Eledrodo de Nique	Extremo
Marrón Oscuro	para solidadura de fierro tundido	Punto N
		Gruso

Nomas:

AWS A5. 15-90	DIN 8573	
EN-C	EN EG23	

Análiss Químico de Metal Depositado (%):

C	Ma	Si -	Ni
0.30	0, 10	0,45	Resto

Caracriacas

- Electrodo cuyo depósto es de ato contenido de nique :
- Los depósitos de soldadura son magunaries;
- Las soldaduras realizadas con este electrodo están libres de porosidades y fauras
- Material de alta ducubilidad, mayor a la de los fierros fundidos.
- Para obtener soldaduras de óptima calidad es necesario limpiar, la superficie a soldar, para que esté exenta de pintura, grasa, acere, etc.
- Electrodo que utiliza bajos emparejes para su fusión,

Propiedades Meránicas:

Résistence a la	Durera	
Tracción	HV	
297 N/mm.	160	
43 000 b/o∪ g		

Posiciones de Soldar:

P.H., Va., Sc

Resecto:

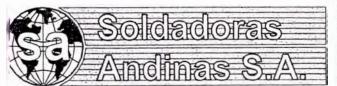
- Es importante el uso de electrodos secos.
- En caso de que los ejectrodos hayan estado expuestos excesivamente a la intempene, resecar a 200 ºC/2 horas.

Corriente y Polandadi

fara comercia continua - Electrodo al poro positivo							
Ø	3/3 2*	i/E#	5/32	37.5"			
	2,5 mm	3,25 mm	4,0 mm	5,0 mm			
Amp. min.	5 0	CB	110	5.0			
Amp, máx.	80	110	5.0	CBI			

Apiracones:

- Para unir o rellerar piezas de ferro lundido granivoduar o maleable.
- Para soldar carcazas, impelentes de pombas, compresoras, válvulas, calas de reductores,
- Para recuberar bases de maquinaria y poportes
- Fara reparación de elementos de máclina, cárters, pandagas, culatas, etc.
- Recomendable para un riaceros estructurales la sienos fundoss con plezas de ferma fundido.
- Para recuberar engranales y ruedas dentadas
- · Para matrices de fundición.
- Para reparar defection y paratural en greata de fat alunt


SOLANDINAS

TR-350 AC/DC

Máquina de Soldar Industrial para Trabajo Semi-Pesado

Fabricado por:

Av. F. Bolognesi 510, Santa Anita, Lima – Perú Telef. 362-3857 - Fax: 362-4052 e-mail: soldadoras@soldadorasandinas.com

Nuestras máquinas están fabricadas bajo la Norma Técnica Peruana NTP 370.021 2004. (NEMA EW1:1999)

Soldadoras Andinas S.A. está constantemente mejorando sus productos, por ello, se reserva el derecho de modificar sus diseños y/o específicaciones técnicas sin previo aviso.

Accesorios incluidos:

- Carro de remolque provisto de 4 ruedas
- Portaelectrodo y grampa de tierra con sus cables extra flexibles.
- Máscara de soldar y Manual de Instrucciones.

GARANTIA DE 1 AÑO

Descripción:

La máquina de soldar SOLANDINAS TR-350 AC/DC permite seleccionar una salida de corriente alterna AC o de corriente continua DC, lo cual amplia las opciones para el uso de electrodos ferrosos y no ferrosos hasta 5/32" de diámetro en E-6011, E-6013. E-7018, aluminio etc. Una corriente DC brinda mayor estabilidad en el arco, menor salpicadura, menor tendencia del electrodo a pegarse a la pieza de trabajo, mejor control del amperaje en la soldadura de piezas delgadas y mayor facilidad en soldaduras fuera de posición. Una corriente AC produce menor efecto de soplo magnético del arco. Su regulación por medio de una manivela, permite una fina selección del amperaje.

Adicionalmente está provisto de un Conmutador de Polaridad que permite seleccionar fácilmente el tipo de corriente:

- DC Electrodo al Negativo o Polaridad Directa.
- DC + Electrodo al Positivo o Polaridad Inversa.
- AC Corriente Alterna.

Alto ciclo de trabajo.

- 250 A 30 V 80% C.T
- 350 A 34 V 40% C.T

Aplicaciones:

- Trabajos semipesados
- Talleres de montaje
- Mantenimiento en general
- Construcción de estructuras
- Maestranzas.

Cuadro de aplicación:

		Diámetro del electrodo	Ø3/32"	Ø1/8"	Ø5/32"
	-	E-6011 (Penetración)	50-80	80-110	115-150
	4	E-6013 (Acabado)	50-80	100-140	115-180
	-	E-7018 (Bajo Hidrogeno)	70-130	100-160	115-230
1		E-4043 (Alcord 5 SI)	60-90	80-110	110-150
		Espesor de material	1/16" a 1/8"	1/8"a1/4"	5/32"a½"

Principales características:

- La construcción del transformador se hace a partir de materiales de alta calidad, siendo las bobinas y los demás conductores empleados de Cobre electrolítico, con aislamiento clase 155° C (clase F), lo que ofrece una elevada conductividad térmica; mientras que las láminas del núcleo son troqueladas con matrices de alta precisión. Finalmente el transformador se protege con barniz epóxico y es curado en horno a temperaturas adecuadas.
- Esta provisto de un Rectificador Integrado seleccionado de acuerdo a la capacidad nominal de amperaje de la maquina
- Incluye un ventilador de enfriamiento que trabaja permanentemente y evita el calentamiento interno del equipo.
- Facilidad de transporte ya que viene provisto de ruedas resistentes para su desplazamiento.

Especificaciones Técnicas:

Modelo		Capacidad Nominal de salida	Rango de Amperaje	Máximo voltaje de vacío	Corriente nominal de entrada para 220/440 V	Potencia Nominal de entrada	Dimensiones	Peso Neto
	AC	350 A @ 34 V Ciclo de trabajo de 40%	50 – 440	79	122 / 61	26.84 / 16.1	Largo: 840 Ancho: 470	138
TR-350	DC	350 A @ 34 V Ciclo de trabajo de 40%	40 – 350	75	103 / 51.5	22.66 / 13.6	Altura: 790	136
Unidad			A	V	Α	KVA/KW	mm	Kg

Bajo pedido fabricamos las maquinas a voltajes diferentes del estándar como por ejemplo 500, 575 voltios. Adaptamos
como opcional cables de soldadura y/o energía de mayor longitud de acuerdo al requerimiento del cliente.

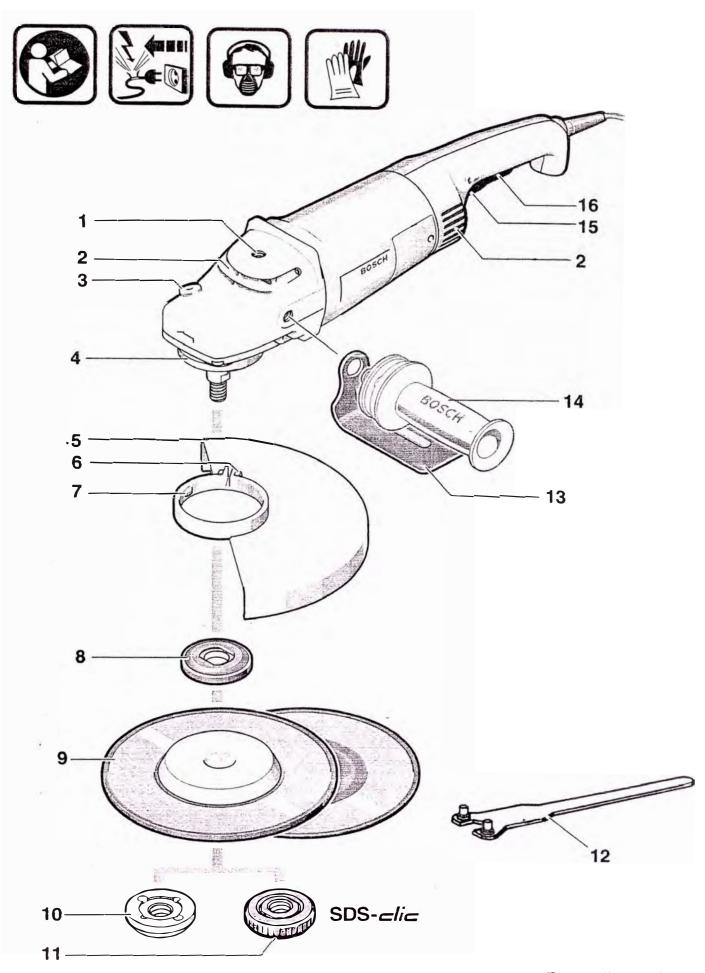


Figura ilustrativa

Instrucciones generales de seguridad para herramientas eléctrica

¡Atención! Lea íntegramente estas advertencias de peligro e instrucciones. En caso de no atenerse a las advertencias de peligro e instrucciones siguientes, ello puede ocasionar una descarga eléctrica, un incendio y/o lesión grave.

Guardar todas las advertencias de peligro e instrucciones para futuras consultas.

El término "herramienta eléctrica" empleado en las siguientes advertencias de peligro se refiere a herramientas eléctricas de conexión a la red (con cable de red) y a herramientas eléctricas accionadas por acumulador (o sea, sin cable de red).

- 1) Seguridad del puesto de trabajo
- a) Mantenga el área de trabajo limpia e iluminada. Las áreas desorganizadas y oscuras son una invitación a los accidentes.
- b) No opere herramientas en atmósferas explosivas, como en la presencia de líquidos inflamables, gases o polvo. Las herramientas generan chispas que pueden inflamar el polvo o los vapores.
- c) Mantenga a los niños y visitantes alejados al operar una herramienta. Las distracciones pueden hacerlo perder el control.

2. Seguridad eléctrica

- a) Los clavijas de la herramienta deben ser compatibles con los enchufes. Nunca modifique la clavija. No use ninguna clavija adaptadora con las herramientas con conexión a tierra. Los clavijas sin modificaciones aunadas a la utilización de enchufes compatibles reducen el riesgo de choque eléctrico.
- b) Evite que su cuerpo toque superficies en contacto con la tierra o con conexión a tierra, tales como tuberías, radiadores, homillos y refrigeradores. Hay un aumento del riesgo de choque eléctrico si su cuerpo está en contacto con la tierra o con una conexión a tierra
- c) No exponga la herramienta a la lluvia o a condiciones húmedas. Al entrar agua en la herramienta aumenta el riesgo de choque eléctrico.
- d) No fuerce el cable eléctrico. Nunca use el cable eléctrico para cargar, jalar o para desconectar la herramienta del enchufe. Mantenga el cable eléctrico lejos del calor, óleo, bordes afilados o de partes en movimiento. Los cables dañados o enredados aumentan el riesgo de choque eléctrico.
- e) Al operar una herramienta al aire libre, use un cable de extensión apropiado para ese caso. El uso de un cable apropiado al aire libre reduce el riesgo de choque eléctrico.
- f) Si fuese imprescindible utilizar la herramienta eléctrica en un entorno húmedo, es necesario conectaria a través de un fusible diferencial. La aplicación de un fusible diferencial reduce el riesgo a exponerse a una descarga eléctrica.
- g) En caso de que eso que tiene la necesidad de la substitución de la manija eléctrica debe dirigir la herramienta para un taller de servicio autorizado técnico de herramientas eléctricas. Los cables dañados o enredados aumentan el nesgo de choque eléctrico.

3. Seguridad personal

- a) Esté atento, observe lo que está haciendo y use el sentido común al operar una herramienta. No use la herramienta cuando esté cansado o bajo la influencia de drogas, alcohol o de medicamentos. Un momento de distracción mientras opera una herramienta puede causar graves heridas.
- b) Use equipos de seguridad. Siempre use gafas de seguridad. Equipos de seguridad como máscara contra polvo, zapatos de seguridad antideslizantes, casco de seguridad o protector auncular usados en condiciones apropiadas reducirán lesiones.
- c) Evite accidentes al comenzar. Asegúrese que el interruptor esté en la posición de apagado antes de conectar la clavija en

- el enchufe. Cargar la herramientas con el de-do en el interruptor o conectar la herramienta con el interruptor en la posición "encendido" son una invitación a los accidentes.
- d) Retire cualquier llave de ajuste antes de encender la herramienta. Una llave de boca o de ajuste unida a una parte rotativa de la herramienta puede causar heridas.
- e) No fuerce más que el límite. Mantenga el apoyo y el equilibrio adecuado todas las veces que utilice la herramienta. Esto permite un mejor control de la herramienta en situaciones inesperadas.
- f) Vístase apropiadamente. No use ropas demasiado sueltas o joyas. Mantenga su cabello, ropas y guantes lejos de las partes móviles. La ropa holgada, joyas o cabello largo pueden ser aprisionadas por las partes en movimiento.
- g) Si los dispositivos poseen conexión para la extracción y colección de polvo, asegúrese que los mismos están conectados y se utilicen correctamente. El uso de estos dispositivos puede reducir riesgos relacionados con el polvo.
- h) Utilice protectores auditivos. La exposición a ruido puede provocar pierda auditiva.
- i) Use los puños auxiliares suministrados con la herramienta. La pérdida del control puede causar daños.

4. Uso y cuidados con la herramienta

- a) No fuerce la herramienta. Use la herramienta correcta para su aplicación. La herramienta correcta hará el trabajo mejor y con más seguridad si se utiliza para aquello para lo que se proyectó.
- b) No use la herramienta si el interruptor no enciende o no se apaga. Cualquier herramienta que no puede controlarse con el interruptor es peligrosa y debe repararse.
- c) Desconecte la clavija del enchufe antes de hacer cualquier tipo de ajuste, cambio de accesorios o al guardar la herramienta. Tales medidas preventivas de seguridad reducen el riesgo de conectar la herramienta accidentalmente.
- d) Guarde las herramientas fuera del alcance de los niños y no permita que personas no familiarizadas con ellas o con estas instrucciones operen la mismas. Las herramientas son peligrosas en las manos de usuarios no entrenados.
- e) Mantenimiento de las herramientas. Cheque la desalineación y ligaduras de las partes móviles, cuarteaduras y cualquier otra situación que pueda afectar la operación de la herramienta. Si está dañada, la herramienta debe repararse antes de su uso. Muchos accidentes son causados por mantenimiento insuficiente de las herramientas.
- f) Mantenga las herramientas de corte afiladas y limpias. El mantenimiento apropiado de las herramientas de corte con hojas afiladas reduce la posibilidad de trabarse y facilita su control.
- g) Use la herramienta, accesorios, sus partes etc., de acuerdo con las instrucciones y de la manera designada para el tipo particular de la herramienta, considerando las condiciones y el trabajo a ejecutarse. El uso de la herramienta en operaciones diferentes de las designadas puede resultar en situaciones de riesgo.

5. Reparaciones

- a) Las reparaciones de su herramienta deben efectuarse por un agente calificado y que solamente use partes originales. Esto irá a garantizar que la seguridad de la herramienta se mantenga.
- b) En caso de necesidad de substitución de los carbones debe dirigir la herramienta para un taller de servicio autorizado técnico de herramientas eléctricas. Carbones fuera de especificación danifica el motor de la herramienta.

Technical data

Angle Grinders		GWS 21-180	GWS 21-230	GWS 24-180	GWS 24-230	GWS 26-180	GWS 26-230					
Type nr		060 1751 4	060 1752 4	060 1753 4	060 1754 4	060 1755 4	060 1756 4					
Frequency		[Hz]	50 / 60	50 / 60	50 / 60	50 / 60	50 / 60	50 / 60				
Amperage	127V	[A]	17,4	17,4	19,9	19,9	20	20				
	220V	[A] [min ⁻¹]	10	10	11,5	11,5	11,9	11,9				
No-load spe	No-load speed		8500	6500	8500	6500	8500	6500				
Capacity	Grinding/cutting	[mm]	180 (7")	230 (9")	180 (7")	230 (9")	180 (7")	230 (9")				
disc Ø	Sanding disc	[mm]		180 (7")		180 (7°)		180 (7")				
	Wire cup brush	[mm]		125 (5")		125 (5")		125 (5")				
Spindle thre	ad *		M 14 x 2	Approx. weight		[kg]	4,2	4,2	4,2	4,2	4,2	4,2
Protection Class			□ / !!	□ / II	□ / II	/ II	□ / II	[] / II				

^{*} For Central America countries spindle thread Ø 5/8"

Operating Controls

- 1. Threads (for auxiliary handle) 3x
- 2. Ventilation slots
- 3. Spindle locking button
- 4. Coded groove
- 5. Guard
- Screw
- 7. Coded protection
- 8. Mounting flange with O-ring
- 9. Grinding / cutting disc **
- 10. Clamping nut
- 11. Quick damping nut SDS-clic **
- 12. Pin wrench
- 13. Hand protector **
- 14. Auxiliary handle
- 15. Together button
- 16. Switch
- ** Not all of the accessories illustrated or described are included as standard delivery.

General Instructions

The Angle Grinders from BOSCH have been developed to perform grinding and cutting metals, stones and masonry using dry working methods. To wet job it must be never used. With suitable brush or sanding wheels the machine can also be used for brushing and sanding.

The machine can be used only for dry cutting.

Noise/vibration information

Measured values determined according to EN 50 144. Typically the A-weighted noise levels of the tool are: Sound pressure level: 90 dB (A). Sound power level: 103 dB (A).

Wear ear protection!

The typical weighted acceleration is 5,5 m/s².

Information recording static

Slots in structural walls are subject to DIN 1053 part 1 or to provisions specific to a particular country.

These provisions must always be complied with. Before starting work, consult the structural engineer or architect responsible, or the relevant supervision of works.

For you safety

Read all Instructions. Failure to follow all instructions listed below may result in electric shock, fire and/or serious injury. Additionally, the general safety instructions on page 14 must be followed.

SAVE THESE INSTRUCTIONS.

- Wear safety goggles.
- Wear hearing protection.
- When working with the machine, always hold it firmly with both hands and provide for a secure stance. The power tool is guided more secure with both hands.
- Secure the workpiece. A workpiece clamped with clamping devices or in a vice is held more securely than by hand.
- Take protective measures when dust can develop during working that is harmful to one's health, combustible or explosive. Example: Some dusts are regarded as carcinogenic. Work with dust/chip extraction and wear a dust mask.
- · Keep your workplace clean. Material mixtures are particularly

dangerous. Dust of light metal can be inflammable or explode.

- Do not work materials containing asbestos. Asbestos is considered carcinogenic.
- Do not use a machine with a damaged mains cable. Do not touch the damaged cable and pull the mains plug when the cable is damaged while working. Damaged cables increase the risk of an electric shock.
- Connect machines that are used in the open via a residual current device (RCD).

Safety warnings that are common for grinding, sanding, wire brushing, polishing and abrasive cutting off operations:

- This power tool is intended to function as a grinder, sander, wire brush, polisher or cut-off tool. Read all safety warnings, instructions, illustrations and specifications provided with this power tool. Failure to follow all instructions listed below may result in electric shock, fire and/or serious injury.
- Do not use accessories which are not specifically designed and recommended by the tool manufacturer. Just because the accessory can be attached to your power tool, it does not assure safe operation.
- The rated speed of the accessory must be at least equal to the maximum speed marked on the power tool. Accessories running faster than their rated speed can fly apart.
- The outside diameter and the thickness of your accessory must be within the capacity rating of your power tool.
 Incorrectly sized accessories cannot be adequately guarded or controlled.
- The arbour size of wheels, flanges, backing pads or any other accessory must properly fit the spindle of the power tool.
 Accessories with arbour holes that do not match the mounting hardware of the power tool will run out of balance, vibrate excessively and may cause loss of control.
- Do not use a damaged accessory. Before each use inspect the accessory such as abrasive wheels for chips and cracks, backing pads for cracks, tear or excess wear, wire brushes for loose or cracked wires. If the power tool or accessory is dropped, inspect for damage or install an undamaged accessory. After inspecting and installing an accessory, position yourself and bystanders away from the plane of the rotating accessory and run the power tool at maximum no load speed for one minute. Damaged accessories will normally break apart during this test time.
- Wear personal protective equipment. Depending on application, use face shield, safety goggles or safety glasses. As appropriate, wear dust mask, hearing protectors, gloves and shop apron capable of stopping small abrasive or workpiece fragments. The eye protection must be capable of stopping flying debris generated by various operations. The dust mask or respirator must be capable of filtrating particles generated by your operation. Prolonged exposure to high intensity noise may cause hearing loss.
- Keep bystanders a safe distance away from work area. Anyone
 entering the work area must wear personal protective
 equipment. Fragments of the workpiece or of a broken accessory
 may fly away and cause injury beyond the immediate area of
 operation.
- Hold the power tool only by the insulated gripping surfaces when performing an operation where the cutting tool may contact hidden wiring or its own power cord. Contact with a "live" wire will also make exposed metal parts of the power tool "live" and shock the operator.
- Position the cord clear of the spinning accessory. If you lose control, the cord may be cut or snagged and your hand or arm may

be pulled into the spinning accessory.

- Never lay the power tool down until the accessory has come to a complete stop. The spinning accessory may grab the surface and pull the power tool out of your control.
- Do not run the power tool while carrying it at your side.
 Accidental contact with the spinning accessory could snag your clothing, pulling the accessory into your body.
- Regularly clean the power tool's air vents. The motor's fan will
 draw the dust inside the housing and excessive accumulation of
 powdered metal may cause electrical hazards.
- Do not operate the power tool near flammable materials.
 Sparks could ignite these materials.
- Do not use accessories that require liquid coolants. Using water or other liquid coolants may result in electrocution or shock.

Kickback and related warnings:

Kickback is a sudden reaction to a pinched or snagged rotating wheel, backing pad, brush or any other accessory. Pinching or snagging causes rapid stalling of the rotating accessory which in turn causes the uncontrolled power tool to be forced in the direction opposite of the accessory's rotation at the point of the binding. For example, if an abrasive wheel is snagged or pinched by the workpiece, the edge of the wheel that is entering into the pinch point can dig into the surface of the material causing the wheel to climb out or kick out. The wheel may either jump toward or away from the operator, depending on the direction of the wheel's movement at the point of pinching. Abrasive wheels may also break under these conditions. Kickback is the result of power tool misuse and/or incorrect operating procedures or conditions and can be avoided by taking proper precautions as given below.

- Maintain a firm grip on the power tool and position your body and arm to allow you to resist kickback forces. Always use auxiliary handle, if provided, for maximum control over kickback or torque reaction during start-up. The operator can control torque reactions or kickback forces, if proper precautions are taken.
- Never place your hand near the rotating accessory. The accessory may kickback over your hand.
- Do not position your body in the area where power tool will move if kickback occurs. Kickback will propel the tool in the direction opposite to the wheel's movement at the point of snagging.
- Use special care when working corners, sharp edges etc.
 Avoid bouncing and snagging the accessory. Corners, sharp edges or bouncing have a tendency to snag the rotating accessory and cause loss of control or kickback.
- Do not attach a saw chain woodcarving blade or toothed saw blade. Such blades create frequent kickback and loss of control.

Safety warnings specific for grinding and abrasive cutting off operations:

- Always use the guard designed for the type of wheel you are using. The guard must be securely attached to the power tool and positioned for maximum safety, so the least amount of wheel is exposed towards the operator. The guard helps to protect the operator from broken wheel fragments and accidental contact with the wheel.
- Use only wheel types that are recommended for your power tool and the specific guard designed for the selected wheel.
 Wheels for which the power tool was not designed cannot be adequately guarded and are unsafe.
- Wheels must be used only for recommended applications. For example: Do not Grind with the side of a cut-off wheel. Abrasive cut-off wheels are intended for peripheral grinding; side forces applied to these wheels may cause them to shatter.
- Always use undamaged wheel flanges that are of correct size and shape for your selected wheel. Proper wheel flanges support the wheel thus reducing the possibility of wheel breakage. Flanges for cut-off wheels may be different from grinding wheel flanges.
- Do not use worn down wheels from larger power tools. A wheel intended for a larger power tool is not suitable for the higher speed of a smaller tool and may burst.

Additional safety warnings specific for abrasive cutting off

- Do not "jam" the cut-off wheel or apply excessive pressure. Do not attempt to make An excessive depth of cut. Overstressing the wheel increases the loading and susceptibility to twisting or binding of the wheel in the cut and the possibility of kickback or wheel breakage.
- Do not position your body in line with and behind the rotating wheel. When the wheel, at the point of operation, is moving away

- from your body, the possible kickback may propel the spinning wheel and the power tool directly at you.
- When the wheel is binding or when interrupting a cut for any reason, switch off the power tool and hold the power tool motionless until the wheel comes to a complete stop. Never attempt to remove the cut-off wheel from the cut while the wheel is in motion, otherwise kickback may occur. Investigate and take corrective action to eliminate the cause of wheel binding.
- Do not restart the cutting operation in the workpiece. Let the wheel reach full speed and carefully re-enter the cut. The wheel may bind, walk up or kickback if the power tool is restarted in the workpiece.
- Support panels or any oversized workpiece to minimize the risk of wheel pinching and kickback. Large workpieces tend to sag under their own weight. Supports must be placed under the workpiece near the line of cut and near the edge of the workpiece on both sides of the wheel.
- Use extra caution when making a "pocket cut" into existing walls or other blind areas. The protruding wheel may cut gas or water pipes, electrical wiring or objects that can cause kickback.

Safety warnings specific for sanding operations:

 When sanding, do not use excessively oversized sanding disc paper. Follow the manufacturers' recommendations when selecting sanding paper. Larger sanding paper extending beyond the sanding pad presents a laceration hazard and may cause snagging, tearing of the disc, or kickback.

Safety warnings specific for polishing operations:

 Do not allow any loose portion of the polishing bonnet or its attachment strings to Spin freely. Tuck away or trim any loose attachment strings. Loose and spinning attachment strings can entangle your fingers or snag on the workpiece.

Safety warnings specific for wire brushing operations:

- Be aware that wire bristles are thrown by the brush even during ordinary operation. Do not overstress the wires by applying excessive load to the brush. The wire bristles can easily penetrate light clothing and/or skin.
- If the use of a guard is recommended for wire brushing, do not allow any interference of the wire wheel or brush with the guard. Wire wheel or brush may expand in diameter due to work load and centrifugal forces.

Additional safety instructions:

- Use suitable detectors to determine if utility lines are hidden in the work area or call the local utility company for assistance.
 Contact with electric lines can lead to fire and electric shock.
 Damaging a gas line can lead to explosion. Penetrating a water line causes property damage or may cause an electric shock.
- If the power supply should be disconnected, e. g. due to a power outage or pulling the mains plug, release the On/Off switch and set it to the Off position. This prevents uncontrolled restarting.
- When working stone, use dust extraction. The vacuum cleaner must be approved for the extraction of stone dust. Using this equipment reduces dust-related hazards.
- Use a cutting gulde when cutting stone. Without sideward guidance, the cutting disc can jam and cause kickback.

Other safety instructions:

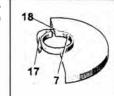
- Do not damp the machine in a vice.
- Always direct the cable to the rear away from the machine.
- Insert plug in power supply socket only when machine is switched off.
- Apply the machine to the workpiece only when switched on.
- Be careful when cutting grooves, e.g., in load-carrying walls: See notes on statics.
- When grinding metal, flying sparks are produced. Take care that no persons are endangered. Because of the danger of fire, no combustible materials should be located in the vicinity (spark flight zone).
- Pay attention to the direction of rotation. Always hold the ma-chine so that sparks and grinding dust fly away from the body.
- Caution! The grinding tool runs on after the machine is switched off
- BOSCH can assure flawless functioning of the machine only when original accessories are used.

Assembling of protection devices

- · Before any work on the machine itself, pull the mains plug.
- When working with grinding and cutting discs, the guard 4 must be assembled.

PROTECTION GUARD WITH CLAMPING SCREW

The coded projection 7 on the protection guard 5 ensures that only a guard that fits the machine type can be mounted.


Loosen the damping screw 6 if necessary. Place the guard 5 with the coded protection 7 in the coded groove on the spindle collar and rotate to the required working position. Tighten the damping screw 6.

The closed side of the guard 5 must always point toward the operator.

PROTECTION GUARD WITH QUICK CLAMP Only to GWS 26-180/GWS 26-230.

The coded projection 8 on the guard 5 ensures that only a guard that fits the machine type can be mounted.

The protection guard is preadjusted to the diameter of the spindle collar. If required, the tightening tension of the clamping bracket can be changed by tightening or loosening the adjustment screw 18. Always ensure that the protection guard 5 is seated tightly on the spindle collar.

Open the clamping lever 17.

Place the protection guard 5 on the spindle collar of the machine head and turn to the required position (working position).

To fasten the protection guard 5, close the clamping lever 17. The closed side of the guard 5 must always point toward the operator.

AUXILIARY HANDLE

• Use auxiliary handles supplied with the tool. Loss of control can cause personal injury.

For safety reasons, is mandatory the use of the side handle 14 supplied with this product, and which insures.

- · a more stable haft
- · an easer handing

HAND PROTECTOR (OPTIONAL EXTRA)

When working with the rubber backing plate or with the cup brush disc brush, the hand protector 13 (optional extra) should be mounted. The hand protector 13 is attached with the auxiliary handle 14.

Accessories assembling

Before any work on the machine itself, pull the mains plug.
 Use only grinds tools whose allowable speed is at least as

third parties in order to attend the client's specifics needs.

high as the no-load speed of the machine.

Roughing and cutting discs become very hot while working; do not touch before they have cooled. BOSCH will not liable for problems arising from inadequate use or from the assembly of accessories / devices or similar out of specification, developed by

Assembly the accessories according picture.

 Before switching on, check if the accessory is properly mounted and can turn freely.

Clean the parts to be mounted.

• Lock the spindle by pressing the lock button 3.

Never press the button with the motor running, for this will damage the transmission system.

Make sure the accessory is in perfect conditions. Damaged or worn out accessories do not produce well and damage the workpiece.

GRINDING / CUTTING DISC

Pay attention to the dimensions of the grinding disc. The mounting hole diameter must fit the mounting flange 8 without play. Do not use reducer pieces or adapters.

When using a cutting disc, take care that the direction of rotation arrow on the cutting disc and direction of rotation of the machine (direction of rotation arrow on the machine head) point in the same direction.

Screw on the clamping flange 10 and tighten with the two hole spanner (Also see Section "Quick Clamping Nut").

Initial operation

Before connecting the plug into the any electric socket, be sure that the voltage is the same as indicated on the toll's name plate. The voltage in excess will increase the accessory peripheral speed; reduced voltage reduces speed too. In both cases the motor set will be damaged and the end user will be explosed at hazards.

Tools with a rating of 230V can also be connected to a 220V supply.

Switching On/Off

ON/OFF

Switching on: Slide the on-off switch 16 forward without pressing.

Switching off: Release the on-off switch 16.

SWITCH LOCKING

Locking: Sliding and pressing the on-off switch 16 together button 15 farther forward.

Switching off: pressing and release the on-off switch 15.

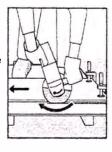
Test run! Check grinding tools before use. The grinding tool must be properly mounted and turn freely. Perform a test run for at least 30 seconds with-out load. Do not use damaged, out of round or vibrating grinding tools.

Operating instructions

- Clamp the workpiece in case it does not remain stationary by its own weight.
- Do not overload equipment so that it comes to a standstill.
- Roughing and cutting discs become very hot while working; do not touch before they have cooled.

GRINDING

The best results are achieved with an angle of 30° to 40° for grinding. Move the machine back and forth with light pressure. In this manner, the workpiece does not become too hot, no discoloration occurs and no ridges are produced.


 Under no circumstances should a cutting disk be used for roughing work.

CUTTING

When cutting, do not press, tilt or oscillate. Work with a moderate feed rate that is suited to the material to be worked.

The direction in which one cuts is important. The machine must always rotate opposite to the direction of motion; therefore never move the machine in the other direction! Otherwise, the danger exists that it will be forced uncontrolled out of the cut. When cutting profiles or square pipes, it is best to start with the smallest cross section.

Do not subject cutting discs to side pressure

For your safety, in the cutting off operations must be use the adequate **protection guard** (optional accessory), which only the under side of the cutting-off wheel could be expose during the cutting-off operation. As showed in the picture below:

- Do not tilt the tool while cutting
- Always move the tool in same direction as arrow on tool head, in order to prevent the tool from being pushed out of the cut in an uncontrolled manner.
- Do not aplly pressure on the tool, left the speed of the cutting disc do the work
- The working speed of the cutting disc depends on the material be cut.
- Do not brake cutting discs with side pressure.

CUTTING OF MASONRY

The machine can be used only for dry cutting. It is best to use a diamond cutting disk.

To protect against tilting, a **guide sled** with a special

extraction protector guard must be used. Work only with dust vacuuming and wear a dust protection mask.

The vacuum cleaner must be suitable for vacuuming masonry dust.

Suitable vacuum cleaners are available from Bosch. Switch on the machine and apply the front part of the cutting guide to the workpiece.

Slide the machine with a moderate feed rate that is suited to the material to be worked.

For the cutting of especially hard material, e.g., concrete with high gravel content, the diamond cutting disc can overheat and be damaged as a result. A ring of sparks that rotates with the diamond cutting disc is a distinct indication of such a condition.

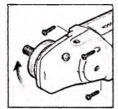
In this case, stop the cutting process and allow the diamond cutting

disc to cool by running at no-load speed for a short time. A noticeable decrease in the working performance and a rotating ring of sparks are indications that the diamond cutting dis has become dull. With a brief cut in an abrasive material (e.g. chalky sandstone), it can be sharpened again.

MOUNTING FLANGE

An O-ring (plastic part) is located around the centering shoulder of the mounting flange 9. If this O-ring is missing or damaged, it is imperative that it be replaced immediately.

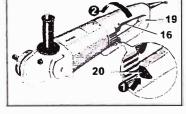
QUICK CLAMPING NUT SDS-CLIC


The SDS-clic rapid clamping nut 11 eliminates the use of auxiliary wrenches for abrasive discs replacements.

SDS-clic rapid clamping nut and all accessories range for our power tools can be found in a **BOSCH Authorized Distributor.**

Adjustment of the transmission housing

Only to GWS 21-180 / 21-230 / 24-180 / 24-230.


In order to make the handling still easer, the Grinders allows the regulation of the transmission housing in a 90° scale. Unplug the tool, clean it, remove the accessory (if there is any attached), remove the screws and turn the housing 90° (don't pull it forwards). Reinstall and retighten screws carefully.

Turning the machine handle

Only to GWS 26-180/GWS 26-230.

The handle 19 can be turned with respect to the motor housing by 90° to the left or the right. In this manner, the on/off switch can be brought into an advantageous handling position for special working situation, e.g., for cutting work with the guide sled or the cutting stand (accessory) and for left handed persons.

Pull the unlocking button 20 firmly in the direction of the arrow and turn the handle 19 at the same time to the desired position latches. The figure shows the handle 19 turned by 90°

The handle unlocking button 20 and the on/off switch 16 have a safety interfact. a safety interlock.

The machine cannot be switched on as long as the handle 19 is not latched in one of the three possible positions.

The handle 19 cannot be unlocked when the on/off switch 16 is locked.

Applications advice

Warning! Use only grinding/cutting disc correct to the worked material, e.q.:

Ferrous material - aluminum oxide.

Non-ferrous materials (aluminum, brass, copper, etc.) - silicon carbide.

Cast iron - silicon carbide.

Stones (marble, granite, concrete, etc.) - silicon carbide. Attention! For further details about grinding / cutting disc, consult specialized stores or manufactures.

Maintenance and cleaning

Before any work on the machine itself, pull the mains plug.

For safe and proper working, always keep the machine and the ventilation slots dean.

If the machine should fail despite the rigorous manufacturing and testing procedures, repair should be carried out by an authorized customer services center for BOSCH power tools.

Guarantee

We guarantee BOSCH appliances in accordance with statutory/country-specific regulations (proof of purchase by invoice or delivery note).

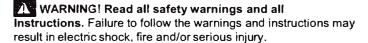
Damage attributable to normal wear and tear, overload or improper handling will be excluded from the guarantee.

In case of complaint please send the machine, undismantled, to your dealer or the BOSCH Service Center for Electric Power Tools.

Freight and insurance costs are charged to the client, even for warranty claims.

Environmental protection

Recycle raw materials instead of disposing as waste.



The machine, accessories and packaging should be sorted for environmental-friendly recycling.

The plastic components are labeled for categorized recycling.

Subject to change without notice

General power tool safety instructions

Save all warnings and instructions for future reference.

The term "power tool" in the warnings refers to your mainsoperated (corded) power tool or battery-operated (cordless) power tool.

SAVE THESE INSTRUCTIONS

1. Work area safety

- a) Keep work area clean and well lit. Cluttered and poorly lit areas can result in accidents.
- b) Do not operate power tools in the presence of flammable liquids, gases or dust. Power tools create sparks which may ignite the dust or fumes.
- c) Keep children and bystanders away while operating a power tool. Distractions can cause you to lose control

2) Electrical safety

- a) Power tool plugs must match the outlet. Never modify the plug in any way. Do not use any adapter plugs with earthed (grounded) power tools. Unmodified plugs and matching outlets will reduce risk of electric shock
- b) Avoid body contact with earthed or grounded surfaces such as pipes, radiators and refrigerators. There is an increased risk of electric shock if your body is earthed or grounded.
- c) Do not expose power tools to rain or wet conditions. Water entering a power tool will increase the risk of electric shock.
- d) Do not misuse the cord. Never use the cord for carrying, pulling or unplugging the power tool. Keep cord away from heat, oil, sharp edges or moving parts. Damaged or entangled cords increase the risk of electric shock.
- e) When operating a power tool outdoors, use an extension cord suitable for outdoor use. Use of a cord suitable for outdoor use reduces the risk of electric shock.
- f) If it is not possible to avoid the use of the power tool in humid or wet areas, use a residual current device (RCD) protected supply. Use of an RCD reduces the risk of electric shock.
- g) In case of change need or substitution of the electric cable, it should be made by an authorized and qualified technical service. A damaged cable increases the risk of electric shock.

3) Personal safety

- a) Stay alert, watch what you are doing and use common sense when operating a power tool. Do not use a power tool while if you are tired or under the influence of drugs, alcohol or medication. A moment of inattention while operating power tools may result in serious personal injury.
- b) Use safety equipment. Always wear eye protection. Safety equipment such as dust mask, non-skid safety shoes, hard hat, or hearing protection used for appropriate conditions will reduce personal injuries.
- c) Avoid accidental starting. Ensure the switch is in the offposition before plugging in. Carrying power tools with your finger on the switch or plugging in power tools that are switches on invite accidents.

- d) Remove any adjusting key or wrench before switching on the power tool. A wrench or a key left attached to a rotating part of the power tool may result in personal injury.
- e) Do not overreach. Keep proper footing and balance at all times. This enables better control of the power tool in unexpected situations.
- f) Dress properly. Do not wear loose clothing or jewellery. Keep your hair, clothing and gloves away from moving parts. Loose clothes, jewellery or long hair can be caught in moving parts.
- g) If devices are provided for the connection of dust extraction and collection facilities, ensure these are connected and properly used. Use of these devices can reduce dust related hazards.
- h) Use ear protectors. Exposure to noise can cause hearing loss.
- i) Use auxiliary handles supplied with the tool. Loss of control can cause personal injury.

4) Power tool use and care

- a) Do not force the power tool. Use the correct power tool for your application. The correct power tool will do the job better and safer.
- b) Do not use the power tool if the switch does not turn it on and off. Any power tool that cannot be controlled with the switch is dangerous and must be repaired.
- c) Disconnect the plug from the power source and/or the battery pack from the power tool before making any adjustments, changing accessories, or storing power tools. Such preventive safety measures reduce the risk of starting the power tool accidentally.
- d) Store idle power tools out of the reach of children and do not allow persons unfamiliar with the power tool or these instructions to operate the power tool. Power tools can cause injuries in the hands of untrained users.
- e) Maintain power tools. Check for misalignment or binding of moving parts, breakage of parts and any other condition that may affect the power tools operation. If damaged, have the power tool repaired before use. Accidents are caused by poorly maintained power tools.
- f) Keep cutting tools sharp and clean. Properly maintained cutting tools with sharp cutting edges are less likely to bind and are easier to control.
- g) Use the power tool, accessorles and tool bits etc. In accordance with these instructions and in the manner intended for the particular type of power tool, taking into account the working conditions and the work to be performed. Use of the power tool for operations different from those intended could result in injuries.

5) Service

- a) Have your power tool serviced by a qualified repair person using only identical replacement parts. This will ensure that the safety of the power tool is maintained.
- b) The substitution of the brushes of the power tool should be accomplished by an authorized and qualified technical service. Brushes out of specification can cause damages to the motor of the power tool

Certificado de Garantia*

GWS 21-180 / GWS 21-230 / GWS 24-180 / GWS 24-230 / GWS 26-180 / GWS 26-230

10,	
Nome do comprador	Série n°
Endereço	Tipo n°
Data da venda	Nota fiscal
Nome do vendedor	Carimbo da firma

Prescrições de garantia

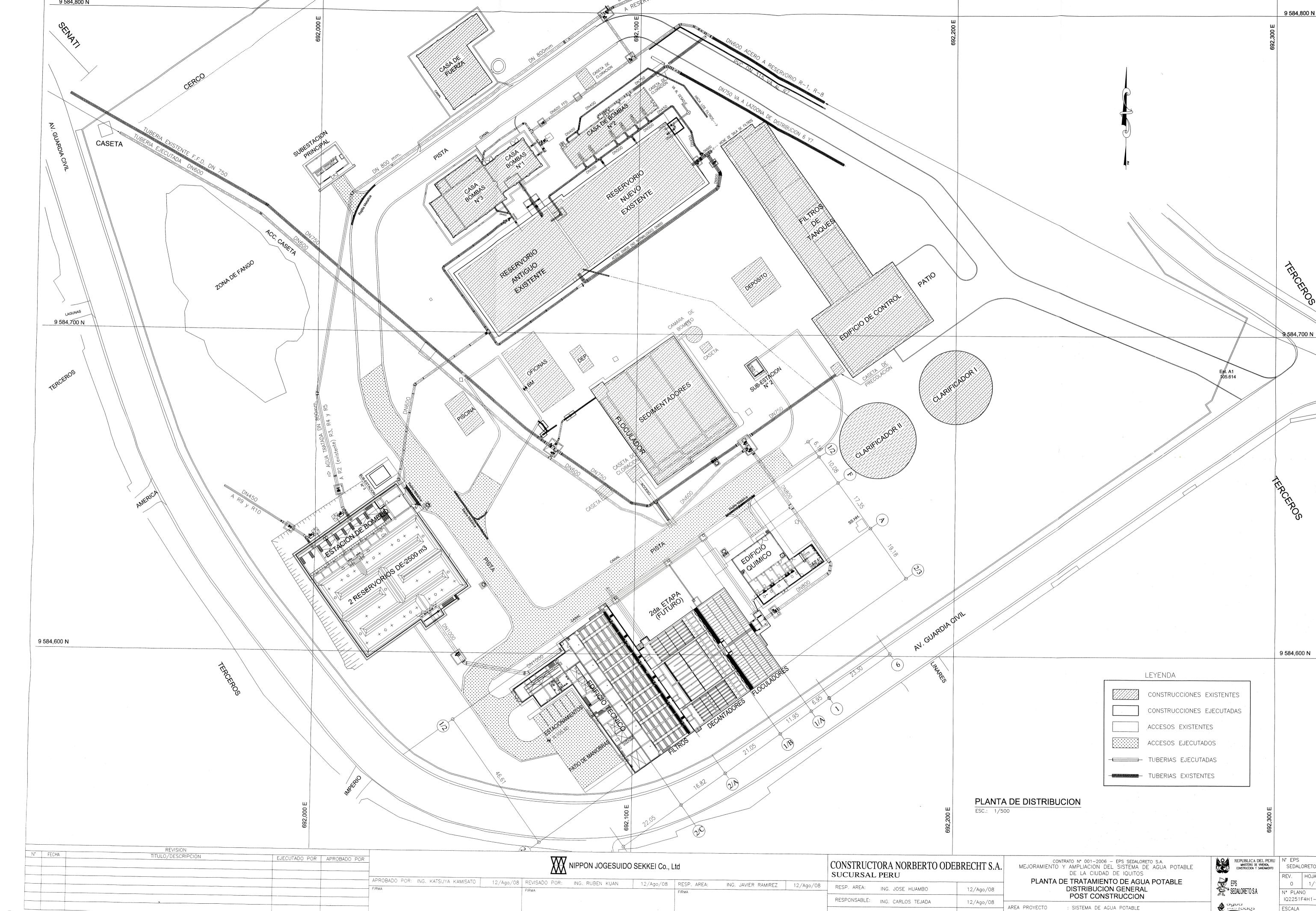
- As ferramentas elétricas são garantidas contra eventuais defeitos de montagem ou de fabricação devidamente comprovados.
- 2. Esta garantia é válida por 12 meses, contados a partir da data de fornecimento ao usuário, sendo 3 meses o prazo de garantia legal (C.D.C) e mais 9 meses concedidos pelo fabricante.
- 3. Dentro do período de garantia, as peças ou componentes que comprovadamente apresentarem defeitos de fabricação serão consertados ou, conforme o caso, substituídos gratuitamente por qualquer Oficina Autorizada Bosch, contra a apresentação do "Certificado de Garantia" preenchido e da fatura respectiva.

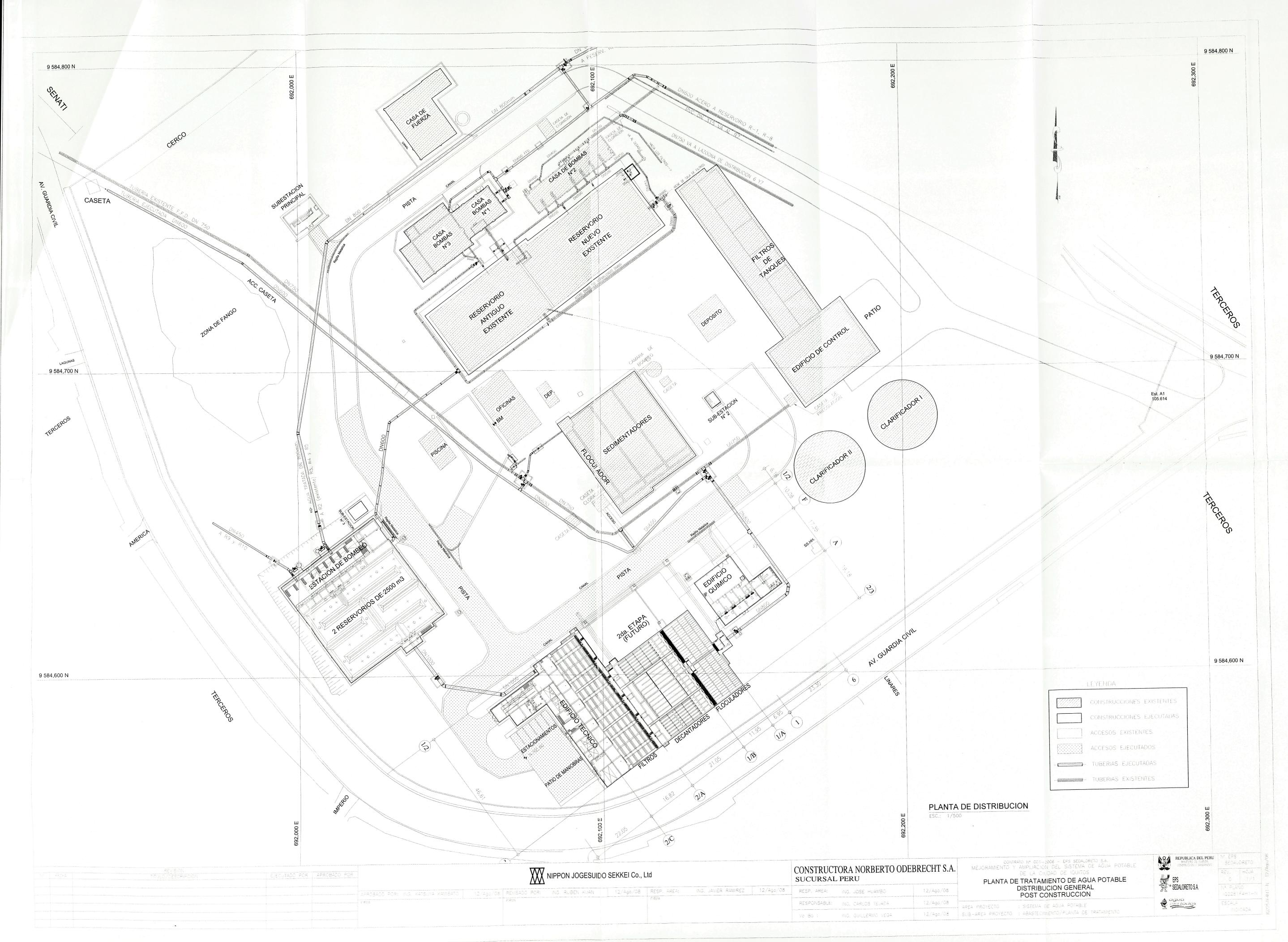
Não estão incuídos na garantia

- 4. Os defeitos originados de:
 - 4.1 uso inadequado da ferramenta;
 - 4.2 instalações elétricas deficientes;
 - 4.3 ligação da ferramenta elétrica em rede elétrica inadequada;
 - 4.4 desgaste natural;
 - 4.5 desgaste oriundo de intervalos muito longos entre as revisões;
 - 4.6 estocagem incorreta, influência do clima, etc.

Cessa a garantia

- **5.** Se o produto for modificado ou aberto por terceiros; se tiverem sido montadas peças fabricadas por terceiros; ou ainda, se o produto tiver sido consertado por pessoas não autorizadas.
- 6. Se a máquina for aberta enquanto ainda se encontrar em período de garantia.
- * Este certificado de garantia é válido somente para o Brasil.




Divisão de Ferramentas Elétricas Via Anhangüera, km 98 CEP 13065-900 Campinas/SP

Impresso no Brasil (02/07)

F 000 622 236

