UNIVERSIDAD NACIONAL DE INGENIERIA

PROGRAMA ACADEMICO ESCUELA DE GRADUADOS

TECNOLOGIA DE FABRICACION Y CARACTERIZACION de las peliculas de Sno₂ y Cds Obtenidas por el metodo de Spray Pirolisis

TESIS

PARA OPTAR EL GRADO DE

MAGISTER EN CIENCIAS

WALTER FRANCISCO ESTRADA LOPEZ

Lima - Perú 1982

PRESENTACION

El presente trabajo pretende ser una modesta contribución hacia el desarrollo de la tecnología de materiales ,con aplicacion fotovoltaica, en el Perú.Dado nuestros escasos recursos técnicos y económicos hemos iniciado nuestro trabajo de investigación en el campo fotovoltaico con una técnica sencilla y de bajo costo , pero que al mismo tiempo es útil e interesante: EL METODO DE SPRAY PYRO -LISIS.

Mediante la caracterización óptica y eléctrica de las películas semiconductoras de Cd S y SnO_2 hemos dado los primeros pasos hacia una futura tecnología de fabricación de celdas fotovoltaicas de CdS-Cu_xS en nuestro medio.Creemos haber logrado con éxito nuestros objetivos , pero al mismo tiempo estamos concientes que hay mucho que mejorar para acercarnos al desarrollo logrado hasta el momento por otros grupos de investigación latinoamericanos dentro de esta linea de trabajo.

Deseo dejar expreso mi gratitud hacia el Dr. Anibal Valera "(Universidad Nacional de Ingenieria)"por su permanente asesora miento y al mismo tiempo mi reconocimiento como pionero de esta li nea de investigación en el Perú.

Mi reconocimiento al Dr. C.G Ribbing ,(Universidad de Uppsala,Suecia),quien tuvo la molestia de revisar todo el trabajo y al mismo tiempo por su aporte en discuciones provechosas que permi tieron dar el acabado final al trabajo , así como sugerencias para una segunda etapa de investigación dentro de esta linea.

A los Doctores J.A Schweitz y J. Rendón ,(Universidad de Uppsala,Suecia),por sus sugerencias y mediaciones para que este tra bajo sea revisado y completado en Suecia,Universidad de Uppsala.

A la Escuela de Graduados de la UNI, porque a través de el se hace posible que salga a luz este primer trabajo de Tesis en Ciencia de los Materiales en la Universidad Nacional de Ingenieria,Perú.

A la Srt. Gaby Patroni por su valiosísimo aporte en el me canografiado y al Seminario Internacional de Física y Química(Uppsala-Suecia),por su aporte en la publicación de la Tesis.

Finalmente mi inmensa gratitud a mi querida esposa por su constante aliento que en muchas **co**portunidades resultaron aportes desicivos.

INDICE

I) Introducción	2
2):Principio de Funcionamiento de celdas solares	
con Homojuntura p-n	5
3) Heterojuntura y Celdas Solares Tandem	12
4) Diseno Estructural de una Celda Solar Optima	20
5) Diseno Optimo de Celdas Fotovoltaicas de Gap Directo	32
6) Celdas Solares de Películas Delgadas :CdS-Cu _x S	37
7) Método de Spray Pyrolisis	44
B) Resultados Experimentales	
-Caracterización del SnO ₂ obtenido por Spray	48
-Caracterización del CdS obtenido por Spray Pyrolisis	52
-Eficiencia de una Celda Solar de CdS-Cu _x S "por el	
método de Pulverización	58
9) Equipos Usados	63
10) Conclusiones y Recomendaciones	64
11) Referencias	68

TECNOLOGIA DE FABRICACION Y CARACTERIZACION DE PELICULAS DE SnO, Y CdS POR SPRAY PYROLISIS

INTRODUCCION

En la actualidad las celdas solares, técnicamente pueden cubrir muchas de nuestras necesidades energéticas. Por hoy las celdas son en su mayoría de Silicio monocristalino, pero su alto costo y su fabricación sofisticada hace difícil su uso en forma económica y ésto se agudiza aún más en nues tro medio por los escasos recursos económicos y tecnológicos.

En la actualidad se hacen a nivel mundial grandes esfuerzos para desarrollar nuevas celdas de fabricación barata, para lo cual se trata de usar películas policristalinas delgadas de diferentes tipos de semiconductores. Se están obteniendo alentadores resultados, lo cual nos permite decir que estamos cerca de obtener celdas económicamente rentables.

Uno de los tipos de celda ampliamente investigados son las celdas fotovoltaicas de CdS-Cu_xS. En general estas celdas pueden ser obtenidas por dos métodos: por evaporación y por pulverización.

Ambos métodos están siendo ensayados en los Labora torios de Física de la Universidad Nacional de Ingeniería, obteniéndose mejores eficiencias hasta el momento en el pr<u>i</u> mer caso, pero dada las perspectivas económicas y simplicidad tecnológica se abren grandes posibilidades de un mayor desa rrollo usando el método de pulverización.

El presente trabajo tiene por objeto fijar las ba ses, para posteriores trabajos en nuestro Laboratorio, hacia la elaboración de celdas fotovoltaicas de CdS-Cu_xS, caracter<u>i</u> zando las propiedades macroscópicas más relevantes de las ca pas semiconductoras que van a intervenir en la celda y descr<u>i</u> bir la tecnología de fabricación para obtener dichas capas se miconductoras

Es así como se ha determinado características como la conductividad eléctrica, movilidad, concentración de port<u>a</u> dores y absortancia óptica para las capas de CdS y SnO₂.

La determinación de estas caracterísitcas son de su ma importancia así como la reproducibilidad de las mismas. En tre otras cosas, es a partir de ésto que tendremos que disce<u>r</u> nir para ulteriores modificaciones a fín de ir mejorando la <u>e</u> ficiencia de nuestras celdas fotovoltaicas.

Por otro lado, este trabajo resalta **la** inquietud actual, que por ahora está aún en una fase teórica, de desa rrollar sistemas de celdas solares Tandem, con la idea de a Provechar en una forma más eficaz las pérdidas por distribu ción espectral de la luz solar. A través de esta discusión se resaltará el importante papel que pueden jugar las películas de CdS en un futuro sistema Tændem.

I) PRINCIPIO DE FUNCIONAMIENTO DE CELPAS SOLARES CON HOMOJUNTURA P-n(2)

Podemos en general entender por celda fotovoltaica a aquel dispositivo que absorbe fotones del espectro solar formando un exceso de carga eléctrica dentro del material oue luego es acelerado por un campo eléctrico interno, generando de este modo un flujo de corriente eléctrica.

La absorción de fotones y la ulterior creación ..del exceso de pares electrón-hueco sólo se producirá para cierto tipo de semiconductores con apropiadas bandas prohíbidas de energía. Si además formamos una unión p-n, tendremos el cam po eléctrico interno necesario.

La figura 1 muestra la geometría típica de una celda solar hecha con una h<u>o</u> mounión p-n.

En la figura 3 se muestra el modelo eléctrico -

FIG 1

que describe una celda solar. La fuente de corriente I_L co rresponde al flujo de portadores fotoexitados. El diodo representa la unión p-n en sí, y las resistencias R_S y R_p re presentan la resistencia en los contactos y las posibles fugas en paralelo de la rriente en la unión p-n.

FIG 3

Del circuito I =
$$I_L - I_D - \frac{(V + IR_S)}{R_P}$$

Aquí I_D es la corriente que fluye por la unión p-n debido al voltaje positivo V_D que se genera en la unión. La corriente I_D puede ser escrita como:

$$I_{D} = I_{S} \left[exp(\beta V_{D}) - 1 \right]$$

donde I_S es la corriente de saturación inversa del diodo. β es definido como $\beta = \frac{Q}{\eta \kappa T}$ donde k es la constante de Boltz man, T es la temperatura y "n" es conocido como el factor del diodo.

Para una situación ideal, $R_S = 0$ y $R_P = \infty$, la co rriente sería I = $I_L - I_S \left[exp(\beta V_D) - 1 \right]$ La figura 4 muestra la ecuación anterior, donde I_{SC} es la corriente de corto circuito y V_{OC} el voltaje de circuito abierto .

Entonces I = I SC L

 $V_{\text{OC}} = \frac{1}{\beta} \ln\left(\frac{l_{\text{L}}}{l_{\text{S}}} + 1\right)$

FIG 4

La máxima potencia que se dispondrá en los termin<u>a</u> les corresponderá al punto de operación en el cual el área b<u>a</u> jo la curva I-V tenga un valor máximo. Este punto de máxima potencia (I_m, V_m) es determinado por la solución de la ecua ción

$$\beta V_{m} \exp(\beta V_{m}) = \frac{I_{L}}{I_{S}} \left[\exp(\beta V_{m}) - 1 \right]$$

Definiendo el "Factor de Relleno" FF por la rel<u>a</u> ción:

 $FF = \frac{V_m I_m}{V_{0c} I_{0c}}, \text{ la eficiencia de la celda } \eta \text{ quedará defi}$ nida por: $\eta = V_m I_m = FF = V_0 C I_SC, \text{ donde } P_{\text{inc}}$ es la potencia incidente correspondiente a la radiación solar:

Para comprender los parámetros fundamentales que de terminan la eficiencia de una celda solar, se necesita anali zar en detalle el comportamiento de la corriente fotogenerada I_L , la corriente de saturación inversa I_S y el factor del dio do "n".

La corriente fotogenerada I_L puede escribirse en forma general de la siguiente manera:

$$I_{L} = f \left[QA \int_{fiw=E_{G}}^{\infty} \mathcal{T}_{L}(fiw) d(fiw) \right]$$

donde A es el área del dispositivo, $\pi_L(\pi w)$ es el número de f<u>o</u> tones con energía fiw en el intervalo d(fiw) correspondiente al espectro solar, y f es un parámetro que indica la fracción de los pares electrón-hueco fotogenerados que verdaderamente co<u>n</u> tribuyen a la fotocorriente I_L.

Considerando el caso ideal f = 1, se observará que I_L , para un espectro solar dado, depende únicamente del gap de e nergía E_G ; mientras menor sea E_G mayor será el número de fo tones absorbidos y por consiguiente mayor será I_L .

Los cálculos realizados para determinar el valor ó<u>p</u> timo de E_G en homojunturas p-n ideales indican que la mayor <u>e</u> ficiencia de conversión se obtiene para E_G = 1.5 eV. La exi<u>s</u> tencia de este valor óptimo fácilmente se desprende de las re laciones ya obtenidas, ya que V_{OC} , (y por tanto V_m), aumenta al aumentar E_G y I_{SC} , (y consecuentemente I_m), disminuye al aumentar E_G . Por consiguiente el producto V_{OC} I_{SC} , (y por consiguiente V_m I_m), tendrá un valor máximo para algún valor del gap E_G .

Veamos los factores que determinan el parámetro f. Evidentemente los pares electrón-hueco que contribuyen a la foto-corriente, serán solamente aquellos que logren ser separados por el campo eléctrico interno existente en la unión pn. Por consiguiente sería perjudicial la existencia de cua<u>l</u> quier zona, donde exista mecanismos de recombinaciones rápi-dos. En particular se sabe que la recombinación en las supe<u>r</u> ficies, en los bordes de grano, en las dislocaciones y en los estados interfaciales, producen una reducción considerable del factor f.

La corriente de saturación inversa I_S , por un lado depende de la perfección de la unión p-n fabricada, pero tam bién depende de la magnitud del gap E_G del semiconductor usa do. En particular para homojunturas ideales p-n, la relación entre I_S y E_G está dada por: $I_S \sim \exp\left(-\frac{E_G}{K_T}\right)$. De este mo do se observa que I_S disminuye en forma exponencial cuanto ma yor sea el gap de energía y por consiguiente V_{OC} aumentará. Finalmente, el factor del diodo "n" está determinado principalmente por los mecanismos de transporte de los po<u>r</u> tadores y de recombinación de la homojuntura p-n. En general "n" adopata un valor entre 1 y 2. A pesar de haber numerosos detalles específicos que considerar, en general se puede de cir que el factor del diodo "n" contribuirá a mejorar la efi ciencia en la medida en que la homounión p-n se pueda fabri car con un mínimo de impurezas, defectos y estados interfacia les.

De lo dicho, se desprende que una homojuntura ideal óptima tendría que ser fabricada con un material cuyo gap E_G sea aproximadamente 1.5 eV, con un tiempo de vida de los po<u>r</u> tadores minoritarios lo más largo posible, y para reducir los costos de fabricación deberán tener un espesor mínimo posible.

El espesor mínimo va a depender del coeficiente de absorción "<" del material semiconductor. Obviamente un sem<u>i</u> conductor con gap directo puede ser mucho más delgado que un semiconductor con gap indirecto debido al mayor valor de \propto . Por ejemplo, se sabe que el Si cristalino, (gap indirecto), necesita más de 100 μ m de espesor para absorber el 90% de la energía del espectro solar, mientras que es suficiente 2 μ m de GaA_S (gap directo). Pero a pesar de esta consideración es necesario señalar que no es suficiente sólo este proceso de

10

absorción, sino oue también hay que tomar en cuenta la frac ción de los pares electrón-hueco que en realidad contribuyen a la fotocorriente, o sea lo que se denomina el rendimiento cuántico.

En general en una celda solar más o menos se tiende a satisfacer estos dos requisitos, respecto al espesor de la celda:

> a) d~1/∝ y b) d<L

donde d es una medida del espesor de la celda solar y L la longitud de difusión de los portadores.

El argumento (a) es con la idea de generar los pares electrón-hueco cerca de la región de carga o zona de ago tamiento de la unión p-n, y la condición (b) para que los por tadores fotoexcitados viajen con facilidad por difusión hasta la región de carga. Esto por consiguiente quiere decir que si tenemos un material en el cual $(1/\alpha) < L$, podremos fabri car una celda solar eficiente si escogemos la geometría apropiada.

En conclusión podemos decir que en general el pr<u>o</u> blema de fabricar una celda solar económica y eficiente, se reduce a encontrar materiales y tecnologías de fabricación que nos permita cumplir en forma simultánea, los siguientes requisitos:

(a) El gap de energía $E_g \approx 1.5$ eV para estar cerca de la máxima eficiencia teórica

(b) Tener un material económico, abundante, de buena calidad $(1/\alpha \le L)$, y con un alto coeficiente de absorción óptico \propto , para minimizar los costos de material, fabricando una capa delgada.

(3) Tener las tecnologías para fabricar uniones p-n de una calidad mínima, utilizando un proceso econômico.

(4) La celda solar debe ser muy estable, para tener la con fiabilidad de una duración medida en decena de años.

II) HETEROJUNTURA Y CELDAS SOLARES TANDEM

Las eficiencias teóricas máximas de celdas solares con homojuntura p-n son del orden del $25\%^{(2)}$. Hay una serie de factores que intervienen en esta baja eficiencia, (resis-tencia en los contactos, recombinaciones, etc.), pero hay un factor que influye decisivamente: la distribución espectral de la radiación solar. Debido a esta distribución espectral solar se pierde una considerable cantidad de energía solar in cidente sobre la celda. Como se puede observar en la figura (5a), toda la radia ción solar con energía E_A menor que E_G del semiconductor se va a perder porque no será absorbida. Por otro lado, la parte del espectro solar con $E_A > E_G$ no se aprovecha completamente, a <u>pe</u> sar de ser absorbida por el semi conductor. Por consiguiente <u>só</u> lo los pares electrón-hueco sepa rados por E_G en realidad son los

FIG 5(2)

que van a contribuir a la corriente fotogenerada. En la fig. 5b se aprecia este efecto, donde para fotones con $E_{\lambda} > E_{G}$ se pierde una fracción de energía ($E_{\lambda} - E_{G}$) debido a una ránida termalización de los pares electrón-hueco en los extremos de las bandas.

Este aspecto lo ilustraremos con un ejemplo. Para una celda de Silicio y el espectro solar AM1, la energía pe<u>r</u> dida debido a la transmisión de fotones con $E_{\lambda} \leq E_{G}$ corre<u>s</u> ponde aproximadamente al 23% de la energía readiante incidente. Por otro lado, la energía ($E_{\lambda} - E_{G}$) que se pierde en el espectro solar de altas energías, corresponde aproximadamente a un 33% de la energía total. Por consiguiente la energía que queda disponible es sólo el 44% de la energía total. To mando en cuenta pérdidas posteriores debido al funcionamiento de la celda solar en si podemos decir que aproximadamente hay una pérdida del 56% de la energía total incidente, debido úni camente a la distribución espectral de la radiación solar.

Una de las muchas razones por la que se ensaya una heterojuntura p-n es con la idea justamente de reducir las pérdidas por distribución espectral, siendo la última ex presión de estos los denominados sistemas Tandem, aunque aún en una fase teórica, pero con grandes posibilidades de reali zación.

Como es sabido una heterojuntura está formada por dos semiconductores que poseen bandas prohibidas diferentes. El diagrama (6) muestra una típica heterojuntura p-n cuando se está en el equilibrio térmico.

14

energía fiw $< E_{G_1}$ pasará por el primer semiconductor, que a<u>c</u> túa como ventana, pero será absorbido por el segundo semiconductor si fiw $> E_{G_2}$. Este segundo semiconductor se denomina fotovoltaicamente activo, porque los electrones fotogener<u>a</u> dores se van a producir en él.

Los portadores creados en la región de carga y den tro de una longitud de difusión de la juntura se acumularán de una manera análoga a una homojuntura p-n.

Los fotones de luz con mayor energía que E_{G1} serán absorbidos por el primer semiconductor y los portadores gene rados en la región de carga también se acumularán.

Las heterojunturas en general presentan ventajas so bre las homojunturas p-n convencionales. Dentro de éstas te nemos:

(1) Una mejor respuesta espectral para longitudes de onda co<u>r</u> ta. Si E_{G1} es suficientemente grande los fotones de alta e nergía serán absorbidos en la región de carga del segundo se miconductor.

(2) Presentar menor resistencia en serie R_S. Esto se debe a que el primer semiconductor puede ser fuertemente dopado sin que se altere su propiedad de transmisión luminosa.

(3) Mayor tolerancia a altas radiaciones. Haciendo que la primera película semiconductora sea delgada y con un gap sufi cientemente grande.

El gap de energía EG2 determinará la longitud de onda de corte. La respuesta a las altas frecuencias dependerá del gap de energía EG1 y del espesor del primer semicon-ductor. Además se reducirá las recombinaciones de superficie y de interfase si se hace EG1 suficientemente grande.

Es posible deducir la siguiente expresión para la fotocorriente, en la región de carga, para un heterojuntura p-n(6).

$$\Delta I_{L} = qA \Pi (\lambda) (1 - R(\lambda)) \left[e^{-\alpha'_{L} X_{j}} (1 - e^{-\alpha'_{M} W_{j}}) + e^{-\alpha'_{L} (W_{i} + X_{j})} (1 - e^{-\alpha'_{L} W_{z}}) \right] \Delta \lambda$$

donde α'_1 y α'_2 son los coeficien tes de absorción, w_1 y w_2 son las distancias de la región de carga.para los semiconductores 1 y 2 respectivamente, x_i es la

FIG7

distancia a la zona de agotamiento, n (λ) número de fotones in cidentes y R (λ) es la fracción de fotones reflejados por la superficie.

En esta expresión se han hecho una serie de sim-plificaciones importantes, pero a pesar de ello es una buena referencia para interpretación cualitativa. Se asume que:

(1) La discontinuidad en la banda de conducción es desprecia ble, (de igual forma con $\triangle E_V$), de manera que los portadores minoritarios pueden moverse sin obstáculo a través de la juntura.

(2) Las trampas de interfase son despreciables, para lo cual se asume que hay un buen "mismatch" de red cristalina. Estas trampas reducen el tiempo de vida de los portadores dentro y alrededor de la zona de agotamiento.

Hasta el momento se han ensayado una serie de cel das fotovoltaicas de capa delgada con heterojuntura p-n. Por ejemplo tenemos CdS-Cu_xS, CdS-CuInSe₂, Ga_{1-x}Al_xA_s-GaAs, etc.-Dentro de estas celdas en particular nos interesa la de CdS-Cu_xS, pero previamente a su descripción se hará una refere<u>n</u> cia acerca del concepto de sistema de celdas solares en Tan dem, con la idea de inducir el papel que jugaría la película de CdS dentro de esta línea ya que aún este sistema Tandem se encuentra en una fase fundamentalmente teórica.

El concepto de usar varias celdas solares en Tandem para aumentar la eficiencia total de conversión fue propuesto hace años¹. Como se mencionó, debido a la distribución es pectral de la luz solar, casi el 56% de la energía solar inci dente sobre una celda solar simple no es utilizada en forma efectiva. La figura 9 muestra un panorama esquemático de las pérdidas en la celda solar de Silicio. La magnitud de esta pérdida puede ser disminuída, aumentándose por consiguiente la eficiencia, medinate el sistema de celdas solares en Tan dem.

Una celda solar Tandem se ilustra esquemáticamente en la figura 8. Este sistema consiste de un cierto número de

2.5

fig 8

semiconductores fotovoltaicamente activos, que poseen difere<u>n</u> tes gaps de energía, colocados de tal manera que la luz solar va a incidir inicialmente sobre **l**a celda cuyo semiconductor -

18

fotovoltaicamente activo tenga el más alto valor, llamemoslo EG1.

Los fotones solares que tienen energías $\hbar W < E_{G1}$ pasarán hacia la segunda celda, y serán absorbidos aquellos fotones cuyo $\hbar W$ esté entre EG1 y EG2, donde EG2 es el gap del semiconductor fotovoltaicamente activo de la segunda cel da. Los $\hbar W < E_{G2}$ pasarán a la tercera celda solar y continuando así sucesivamente este proceso.

En la figura 8 se mue<u>s</u> tra las celdas como junturas p-n individuales puestas uno al lado de otros. En realidad esto sólo tiene un caracter ilustrativo, ya que las celdas podrían ser parte de alguna estructura mono lítica o el espectro podría sep<u>a</u> rarse mediante filtros selecti-vos de manera que la radiación llegue a cada celda de la cadena apropiadamente de acuerdo a los gaps de energía.

fig g

De esta forma, el sistema de celdas Tandem puede ha cer un acople mucho mejor del espectro solar, obteniéndose u na eficiencia de conversión fotovoltaica del sistema total mu cho mayor de lo que se obtendría con una celda sencilla.

(1) Recientemente Loferski presentó un estudio deta llado de las características del sistema de celdas Tandem. Es en base a ese trabajo que a continuación se discutirá los di ferentes detalles que nos lleven hacia la obtención de celdas idealmente óptimas. Es a partir de esto que fácilmente se vislumbrará la razón por la cual hemos iniciado nuestro proc<u>e</u> so de investigación con celdas fotovoltaicas de CdS-Cu_xS, c<u>a</u> racterizando las diferentes películas semiconductoras que en élla intervienen.

DISERO ESTRUCTURAL DE UNA CELDA SOLAR OPTIMA

(1) Loferski en su trabajo demuestra que para celdas de alta eficiencia se requiere que los semiconductores foto voltaicamente activos tengan los gaps de energía dentro del rango de 1.0 a 2.4 eV.

En la figura 10 se mu estra los gaps de energía de algunos semiconductores bi narios y ternarios fotovoltaicamente activos en celdas solares.Como se puede apreciar los valores de E_G siguen una secu encia suficientemente distan ciados entre si.Por consiguiente no sería práctico proceder agrupando un número de ellos para formar un sistema Tandem. Un mejor procedimiento cosiste en tomar una celda particu -

FIG: 10

lar ,o sea obtener un prototipo δptimo de acuerdo a los criterios que se discutirá , y a partir de el construir el sistema Tandem variendo el Gap de Energía en un ámplio rango .

En primer lugar consideraremos el tipo de estructura que podría satis facer los requerimien tos de una celda óptima :

i)Como ya se había justificado anteriormente ,necesitamos que nuestro semi conductor fotovoltaicamente activo tenga un gap directo de energía.
 ii)Se requiere usar una heterojuntura en lugar de una homo-

juntura. La razón, entre otras, es que en las celdas con ho mojuntura hay muchas pérdidas por recombinación en las superficies, los cuales pueden eliminarse usando semiconductores de gap directo como elemento activo de una heterojuntura, siendo el otro semiconductor uno de gap suficientemente gra<u>n</u> de de manera que no pueda absorber cualquier fracción signif<u>i</u> cativa de fotones del espectro solar.

Veamos ahora algunos factores para obtener un dise ño óptimo:

a) El semiconductor fotovoltaicamente activo debe ser tipo -p. La razón de esto es, oue se requiere que la longitud de difu sión de los portadores minoritarios en el semiconductor foto voltaicamente activo sea lo más grande posible. Como los e lectrones minoritarios generalmente tienen movilidades más al tas que los huecos minoritarios, poseen entonces longitudes de difusión más grandes.

b) Evitar el "mismatch" reticular en la heterojuntura. El mismatch reticular provoca dislocaciones en la interfase,ésto destruye la coherencia de los enlaces dando lugar final mente a la aparición de centros de recombinación. Arienzo y Loferski mostraron que estos estados de interfase no afectan a la corriente de corto circuito I_{SC} , pero si es afectado con siderablemente el voltaje V_{OC} . Por ejemplo para el caso de

22

una celda CdS-InP, donde el mismatch reticular es sólo del or den de 0.3%, éllos muestran el efecto de los estados de inter fase sobre la curva caracterísitca I-V y como limita esto el rendimiento de la celda. Por consiguiente es necesario selec cionar pares de semiconductores en la heterojuntura de manera que se deba reducir el mismtach reticular a cero.

c) La afinidad electrónica χ del material semiconductor foto voltaicamente activo debe ser menor o igual que la del semi conductor ventana.

Los "saltos" en la banda de conducción podrían impedir el transporte de los electrones minoritarios desde el semiconduc tor del gap menor hacia el semiconductor ventana. Estos pi cos energéticos se evitan si la afinidad electrónica del semi conductor de gap menor es más pequeño que el del semiconduc-tor ventana, a lo más igual, pero nunca mayor.

d) La región de carga o zona de agotamiento esté localizado fundamentalmente en el material semiconductor fotovoltaicame<u>n</u> te activo.

La razón principal de esto radica en que el campo interno en la heterojuntura ayudará en la colección de elec-trones minoritarios y a las condiciones de relajamiento de la longitud de difusión de los portadores minoritarios en el ma terial semiconductor.

En la figura 11 se muestra el modelo de una heterojuntura ideal.

fig 11

En el esquema de la figura 11, la luz incide sobre el semiconductor por el lado izquierdo del diagrama. Para es te par de semiconductores tenemos que EG1 > EG2 y EG1> Tiw_{max}, donde hw_{max} es el fotón de mayor energía de la radiación so lar incidente. Para satisfacer esto es suficiente que el se miconductor ventana tenga EG1 > 2.5 eV. El material tipo-p es de banda directa. La relación de afinidades (es $\chi_1 > \chi_2$, para evitar los picos energéticos en la banda de conducción. En la misma figura, $\chi_c > \chi_2 = \Delta \chi = \Delta E_c$ corresponde al desnivel de los filos de la banda de conduc ción en la interfase y $\Delta E_V = E_{G1} - E_{G2} - \Delta E_C$ al desnivel e nérgético en la banda de valencia.

Finalmente, $S_1 = E_{C1} - E_F$ es menor que $S_2 = (E_F - E_{V2})$ de este modo el campo interno se extiende princ<u>i</u> - palmente en la región - p. Esto por ejemplo sucedería dopando más la región-n que la región-p.

SELECCION OPTIMA DE MATERIALES SEMICONDUCTORES (SISTEMA TANDEM)

La fabricación de celdas cuyas eficiencias se acer can al máximo posible, para luego conformar un sistema Tandem, necesitan de un número de semiconductores tipo **n** y p,con buenas. propiedades fotvoltaicas.

Se asumirá, para simplificar problemas de fabric<u>a</u> ción, que los semiconductores ventana de la celda solar ideal permanecen fijos. Los semiconductores que van a intervenir en el sistema Tandem deben tener la misma constante de red pa ra evitar el mismatch reticular, mientras los semiconductores fotovoltaicamente activos deben tener sus gaps de energía va riando en el rango del a 2ey.

Existen varios sem<u>i</u> conductores que podrían ser <u>e</u> legidos satisfactoriamente c<u>o</u> mo el semiconductor ventana, ver fig. 12, siendo uno de los más importantes el CdS,p<u>e</u> ro no existe un grupo de sem<u>i</u> conductores fotovoltaicamente activos que tengan su misma constante de red y cuyos gaps sean variab <u>es en</u> forma ade ESCUEL

UNIVE)

GRAD' ADOS fi

fig 12

Pero a pesar que no ex s e este grupo de semicondu<u>c</u> tores fotovoltaicamente activos, podemos satisfacer estes re querimientos haciendo aleaciones de más de dos semiconducto-res.

Hay una ilustración interesante respecto a este cr<u>i</u> terio de alear semiconductores. Existen dos semiconductores, CuInSe₂ y CuInS₂, los cuales son completamente miscibles. La figura **13** muestra como varía la constante de red y el gap en un sistema aleado tal. La constante de red varía en una forma prácticamente lineal con la composición (Ley de Vigard's), mientras el gap lo hace en una forma no lineal. Cua litativamente se ha supue<u>s</u> to en la figura que el gap cambia de una forma con vexa hacia abajo.

Esta aleación, para alguna composición particular, adoptará la misma constante de red que la del semiconductor vent<u>a</u> na, que podría ser por e jemplo el CdS. Llamemos a_{no} e

fig 13

jemplo el CdS. Llamemos a_{CdS} esta constante de red.

En la figura 13 esta composición correspondería a $MI_nS_2(1-x_0)S_2x_0$ al cual le corresponde un sólo valor de E_G , el cual puede o no ser uno de los valores requeridos para un sistema Tandem óptimo.

(1) Coleman, Holonyak y Antipas y Moon mostraron un sistema por el cual podían variar, dentro de ciertos lími tes, el gap y la constante de red en forma independiente, fo<u>r</u> mando aleaciones cuaternarias del tipo $I_{n(1-x)}^{Ga} x^{P}(1-z)^{As} Z$. Usando criterios análogos, el grupo de la Universidad de Brown⁽¹⁾ trabajó con 5 elementos aleantes: $Cu_{(1-x)}^{Ag}x$ $I_nSe_{2y}S_{2(1-y)}$ donde para x ~ 0.72 y y~0.70 obtuvieron u na constante de red igual a la del CdS y con un gap_alrededor de 1.5 eV.

(1) Moon desarrolló un procedimiento mediante el cual se podría construir mapas de nivel de iso-constante de red, iso-gaps de energía e iso-afinidad electrónica. Supuso que para una aleación ternaria particular, inicialmente se co nocen los valores de la constante de red, el gap de energía y la afinidad electrónica. Esta situación está representada por el punto (x_0, y_0) en la figura 14. Los valores de esos parámetros para aleaciones representadas por un punto (x_*y) en la vecindad de (x_0, y_0) , pueden por consiguiente ser obte nidos por un desarrollo en serie de Taylor alrededor de (x_0, y_0) . Sea

$$F(x,y) = \sum_{i=0}^{n} \sum_{j=0}^{i} a_{(i-j)j}(x-x_0)^{(i-j)} (y-y_0)^{j}$$

Reteniendo los términos lineales de la expansión,e<u>s</u> tarfamos obteniendo la variación de la constante de red, esto es lo que se conoce como la ley de Vegard's:

$$Q(x_1, y_1) = \alpha_{00} + \alpha_{10} X_1 + \alpha_{01} Y_1 + \alpha_{11} X_1 Y_1$$
 (1)

en el cual $X_1 = (X - X_0)$ $Y_1 = (Y - Y_0)$

Para el gap de energía y la afinidad electrónica se necesita los términos cuadráticos de la expansión:

$$E_{G}(x_{1}, y_{1}) = A_{00} + A_{10}x_{1} + A_{01}y_{1} + A_{11}x_{1}y_{1} + A_{12}x_{1}y_{1}^{2} + A_{20}x_{1}^{2} + A_{21}x_{1}^{2}y_{1} + A_{12}x_{1}y_{1}^{2}$$
(2)

en las ecuaciones (1) y (2), \swarrow_{00} y A_{00} representan las constantes de red del material y el gap de energía respectivamente, que tienen la composición (x_0, y_0). Por ejemplo, para el sistema ternario mencionado, $Cu_{(1-x_0)} Ag_{x_0}$ In Se_{2yo} S_{2(1-y_0)}

Si por ejemplo sol**a**mente variamos la relación de composición de S a Se, mantenemos x_0 constante, el gap de e nergía del material correspondiente a la coordenada x_0 , esta ría dado por:

$$E_G(X_0, Y) = E_G(X_0, Y_0) + A_{01}Y_1 + A_{02}Y_1'$$

En general para obtener el mapeo, se necesita da tos experimentales acerca de la variación de los parámetros fundamentales con la composición. Para obtener estos datos - se necesitan obtener aleaciones distribuídas en un rango am plio de x e y. Luego se mide los gaps de energía y parámetros de red en cada caso. Estos resultados experimentales se lle van a las ecuaciones (1) y (2), para de esta forma determinar los parámetros α_{ii} y A_{ii} . La figura 14 muestra el mapa topológico, (E_{G} , a), para el sistema Cu-Ag-In-S-Se.

fig 14

Cuando se tenga construído un mapa, puede seleccionarse los semiconductores de gaps diferentes pero de la misma constante de red que el semiconductor ventana, evitándose así el mismatch reticular para la heterojuntura. Por ejemplo, en la figura 14, se muestra la línea de iso-constante de red p<u>a</u> ra un valor coincidente con el parámetro de red del CdS, (5.82A). Los gaps de semiconductores fotovoltaicamente acti vos que tienen su misma constante de red van desde 1.06 eV a 1.80 eV; este rango hace del sistema aleado Cu-Ag-In-S-Se una posible fuente atractiva de materiales para ser utilizado en sistemas solares Tandem.

DISENO OPTIMO DE CELDAS FOTOVOLTAICAS DE GAP DIRECTO

Cuando ya se tenga elegido un semiconductor fotovol taicamente activo para una celda solar, el siguiente objetivo es tratar de obtener tanta eficiencia como sea posible.

M. Wolf evaluó la eficiencia límite superior de cel das de Silicio con homojuntura en función del espesor de la celda y la posición de la juntura. El consideró el efecto de poner espejos reflectores de portadores minoritarios, (EPM), en las superficies frontal y opuesta de la celda, así como también el efecto de poner espejos ópticos en la superficie o puesta a la superficie de incidencia. Wolf encontró que las celdas de Silicio con EPM y espejos ópticos obtenían eficiencias comparables con aquellas que no poseían esos espejos, pe ro usando espesores sustancialmente menores. Así, con un es pesor alrededor de 75µm, la máxima eficiencia obtenible para AM1 era algo mayor del 25%.

(1) Spitzer , extendió estos criterios para celdas so lares de banda directa. Su trabajo lo enfocó principalmente, sobre el CuInSe, que posee un gap de 1 eV. Esto es debido a que su modelo es estrictamente válido sólo para celdas sola res donde la corriente de saturación inversa, I_S, se produce exclusivamente por difusión de portadores minoritarios genera dos térmicamente en la juntura p-n. La figura 15 muestra el diagrama de bandas que usó para sus cálculos.

Diagrama de banda usado por Spitzer para calcular los paráme-tros fotovoltaicos de homojunturas de GaAs y CuInSe₂. La ju<u>n</u> tura metalúrgica ocurre en x=0. Q y -P son las coordenadas de los bordes de la región de carga espacial.

Sabemos que la ecuación unidimensional que gobierna el transporte de portadores minoritarios térmicamente generados, en las regiones homogeneas, cuasi-neutral de la celda,es:

$$D_{m} \frac{d^{2}(\Delta n)}{dx^{2}} \qquad \frac{\Delta n}{T_{m}} \qquad G(\lambda) = 0 \qquad (3)$$

 $G(\lambda)$, función de generación de portadores.

Para una distancia suficientemente alejada de la juntura, (en la figura 15 los puntos -A y B), suponemos que las velocidades de recombinación son respectivamente S_A Y S_B . Suponemos que la luz incide por el lado A.

Por consiguiente en las condiciones de frontera ten driamos:

$$D_{m} \frac{d(\Delta n)}{dx} \Big|_{x=B} = S_{B} \Delta n(B)$$

En A tendríamos una relación análoga.

La condición de contorno en el filo de la región de carga espacial, está caracterizado por la condición de contor no de Boltzman: $\Delta n = n_o \left[exp(\frac{\otimes \vee}{\kappa T}) - 1 \right]$

> γ_0 = concentración de los portadores minortarios en la condición de equilibrio.

V = voltaje aplicado a través de la juntura.

Vamos a considerar dos situaciones extremas:

$$s_A = s_B = \infty$$
 y $s_A = s_B = 0$
a) $s_A = s_B = \infty$

De la ecuación (3), y aplicando esta condición de controno, se obtiene una expresión para I_S de la forma:

$$W_n$$
, W_p = ancho de las regiones cuasi-neutral
sobre los lados n y p.

- Ismo, Ispo = contribuciones a la corriente de satura ción inversa de las regiones n y p, respec tivamente.
 - L_h,L_e = longitud de difusión de huecos minoritarios en la región n, y electrones iminoritarios en la región p, respectivamente.

Como cothx \rightarrow 1 para x $\rightarrow \infty$ y cothx $\rightarrow \infty$ para x \rightarrow 0, y para un buen diseño es necesario $\mathbf{1}'I_{S}^{(1)}$ tenga el menor va lor posible, entonces para $I_{S}^{(1)}(min)$, $W_{n} \gg L_{h}$ y $W_{P} \gg L_{e}$.

Por tanto
$$I_{S}$$
 (min) = $I_{S=0} + I_{S=0}$

Por consiguiente para este caso, un $I_s(min)$ se conseguirá haciendo las regiones cuasi-neutral suficientemente anchas, (W >> L).

b) $S_A = S_B = 0$

Para este caso la solución de (3) será:

$$I_{S}^{(2)} = I_{sno} \operatorname{tgh}(\frac{Wn}{Ln}) + I_{spo} \operatorname{tgh}(\frac{We}{Le})$$
(4)

como tghx \rightarrow x cuando x \rightarrow 0, I ⁽²⁾ puede tomar valores mucho más pequeños que I_S⁽¹⁾(min).

Como $V_{OC} \sim \ln \left(\frac{I_{SC}}{I_S} \right)$, de lo dicho significa que el voltaje de circuito abierto de un dispositivo delgado, $(W_n \ll L_h, W_p \ll L_e)$, será más alto que un dispositivo de gran espesor, si hacemos prevalecer la condición (b).

Pero cuando la celda es angosta decrece la fracción de fotones solares absorbidos de la luz solar incidente, y por consiguiente decrecería I_{SC}. Es por eso, que para evitar esto, se incorpora un espejo óptico en la parte opuesta de la celda; este espejo reflejará los fotones a través de la celda que podrían haberse perdido. Los pequeños cálculos descritos fueron hechos para una homojuntura p-n. Sin embargo puede ser adaptado a una he terojuntura, ya que en una heterojuntura el semiconductor ven tana de gap grande no contribuye a I_S , entonces en (4) $I_{sno}=0$, lo cual produciría un ligero aumento de la eficiencia respecto a la homojuntura.

Consecuentemente, el espejo de portadores minorita rios, (EPM), tiene un efecto beneficioso sobre el rendimiento de las celdas solares. La pregunta inmediata es, ¿Cómo poder fabricarlas?. Una forma de obtener una brrera que pueda reflejar portadores minoritarios es introducir un cambio abru<u>p</u> to en los niveles de dopaje en los extremos de la región cuasi-neutral, o sea construir un sistema que adopte la configuración n⁺-n/p-p⁺. Otra forma de obtener $S_A = S_B = 0$ es formar u na juntura con un semiconductor que tenga la misma conductiv<u>i</u> dad pero con un gap mayor. Esto se hace comúnmente en celdas solares de p-GaAs/n-GaA_S.

III) CELDAS SOLARES DE PELICULAS DELGADAS: CdS - Cu_S

En una celda solar de película delgada, las capas semiconductoras son películas policristalinas o desordenadas las cuales han sido depositadas o formadas sobre substratos e léctricamente pasivos e activos, tales como vidrio, plástico, cerámica, etc. Una película de CdS, GaAs, InP, CdTl, Si, ... etc., se pude depositar sobre el substrato por varios métodos, tales como evaporación , pulverización, evaporación plasmática.

Si el espesor del semiconductor es mayor que la in versa del coeficiente de absorción, se absorberá mucha luz. Si la longitud de difusión es mayor que el espesor de la pelí cula, se producirán muchos portadores fotogenerados.

La principal ventaja de una celda solar de película delgada es su promisorio bajo costo, debido al bajo costo de procesamiento y al bajo costo realtivo de los materiales. La mayor desventaja es su baja eficiencia y gran inestabilidad. La baja eficiencia en parte es causada por el efecto de 10s contornos de grano y en parte por la baja calidad del mate rial semiconductor que crece sobre substratos extraños. E 1 problema de la estabilidad es causado por la reacción del se miconductor con el ambiente (tal como el 0_2 y vapor de H_2C). Se deben de tomar precauciones para asegurar un dispositivo estable.

A continuación se detallará aspectos generales de la celda solar de CdS-Cu $_x$ S. La razón radica en que hemos ini

38

ciado los trabajos de investigación fotovoltaica en el Departamento Académico de Física de la Universidad Nacional de In geniería precisamente con el estudio de este tipo de celdas fotovoltaicas. Como ya se mencionó, estas celdas están sien do obtenidas en nuestro Laboratorio por dos métodos: evapor<u>a</u> ción y spray pyrolisis.

El presente trabajo sólo se referirá a los resultados obtenidos por el método spray pyrolisis, siendo nuestro obj<u>e</u> tivo principal el caracterizar las películas semiconductoras de CdS y SnO₂ que forman parte de esta celda elaborada por es te método.

En esta celda el semiconductor ventana es el CdS y el semiconductor fotovoltaicamente activo es el Cu_xS. Hay dos tipos de celdas de CdS-Cu_xS: el tipo "backwall" y el otro "frontwall". En el primero la luz llega primero a la capa de CdS, mientras que en el segundo la luz es absorbida directa--mente por la capa de Cu_xS. Dependiendo del tipo de celda los electrodos que sirven de contacto serán de diferente natu raleza. En el presente trabajo el tipo de celda con oue se experimentó fue el "backwall".

En el tipo de celda "backwall", se usa un electrodo transparente como uno de los contactos eléctricos. En nues tro caso se uso una película transparente de SnO₂. Esta p<u>e</u> lícula se deposita sobre el sustrato, (vidrio en nuestro caso), antes de depositar la capa semiconductora de CdS. Tanto el SnO_2 como el CdS son depositados por un proceso de pulverización, usando una solución alcohólica de $SnCl_4$ (SH_2O) en el primer caso, y una solución acuosa de $CdCl_2$ con $SC(NH_2)_2$ para el segundo.

La capa semiconductora tipo-p es el semiconductor Cu_xS. Esta capa se forma introduciendo el sustrato con el CdS, den tro de una solución de CuCl a la temperatura de 90°.

Al hacer este proceso, se produce una reacción que consiste en el desplazamiento de un ión cadmio por dos iones cobre, de acuerdo a la reacción: CdS + 2CuCl → Cu₂S + CdCl₂.

En realidad uno obtiene composiciones cercanas a Cu_2S , y se presume que la mejor composición para las celdas es $Cu_{1.995}S$, el cual requiere métodos electroquímicos para lo grar alcanzar este valor tan preciso.

La figura 16 muestra el diagrama de bandas para una celda de CdS-Cu_xS $^{(6)}$

Por otro lado, podemos sacar algunas consideraciones para este tipo de celda, a partir de las discusiones previas: i) No se producirán los "picos" energéticos en la banda de conducción, que impida la movilidad de los electro - nes a través de la juntura, porque $\chi_{cu,s} < \chi_{ca,s}$

ii) El CdS está en el límite para ser considerado un buen semiconductor ventana, ya que su E $_{\rm G}$ \sim 2.5 eV.

iii) Como se mencionó, el Cu₂S se produce por una reac ción de intercambio, en el cual dos iones de cobre reemplazan a un ión de cadmio, pero dejando prácticamente la sub-red del sulfuro esencialmente intacto. La estructura de la red cam bia ligeramente del exagonal, (CdS), con a = 4.1368A y c = 6.7162A, al ortorrómbico chalcocita, (Cu₂S), con a = 11.976A° b = 27.640Å, c = 13.488Å y β = 116.35°, (sólo la celda ele mental de la red de chalcocita es substancialmente mayor que el CdS).

Por consiguiente en la interfase se producirá el "mis match" reticular, oue como ya anteriormente se discutió, va a provocar la aparición de centros de recombinación. En la ref. 5 se discute detalladamente este aspecto. TABLA 1

PARAMETROS DE RED DEL CdS y Cu_xs con Mismatch Peticulap

	Cons	tante de	Red (Å)	
CdS	(exag.)		Cu ₂ S	(ortorr.)
(1000)	4.1368		(100)	11.976
			(010)	27.640
(0001)	6.7162		(001)	13.488

Mismatch recticular

(100)	0.078Å	3.6	%
(010)	0.128Å	3.7	
(001)	0.013A	0.4	%

iiii) Finalmente mencionaremos que la película de Cu₂S formada tiende a reaccionar con el ambiente formando una película de óxido de Cobre, apareciendo el EPM ya discutido. Pe ro el peligro se presenta en que el Cu sigue difundiéndose y si no se toman precauciones, pueden producir cortos circuitos y las celdas sufrirían serios deterioros.

IV) METODO DE SPRAY PYROLISIS

Describiremos la útil y sencilla técnica del "Spray -Pyrolisis", que ha sido usado en nuestro caso para producir las películas semiconductoras de SnO₂ y CdS.

En principio, el Spray Pyrolisis es un técnica simple en el cual una solución iónica, (preparada con sustancias en adecuadas proporciones estequiométricas), contiene los eleme<u>n</u> tos constituyentes del compuesto y posteriormente es pulverizado sobre un sustrato caliente. Generalmente los metales es tán en soluciones como sus cloruros, nitratos o acetatos. La solcuión iónica produce iones compeljos, por ejemplo: Cloruro del metal + Ureas, que para el caso de CdS seria CdCl₂ (SCN₂H₄) donde los iones sulfuro no se han precipitado aún en la solución.

Cuando se hace el spray sobre un sustrato caliente, los iones complejos entonces se descomponen y el sulfuro ino<u>r</u> gánico se va a depositar en la forma de películas muy adhere<u>n</u> tes. Los productos orgánicos de la reacción química no son estables a la temperatura en la que está el substrato, y con secuentemente se van a evaporar juntamente con otras especies gaseosas.

Como elementos de flujo generalmente se utiliza 👘 ni

trógeno, pero para obtener óxidos se suele usar aire seco. Pa ra asegurar películas uniformes a veces se utiliza un substra to que rota.

La calidad de la película que se deposita depende mu cho de la temperatura del substrato, la velocidad del spray, del grado de atomización, relación del anión al catión y del medio que rodea al substrato.

Para producir películas de óxido, se usa soluciones químicas similares pero se permite a los constituyentes del spray reaccionar con el ambiente, (o sea con oxígeno). Para ayudar a un rápido proceso de oxidación es frecuente hacer un precalentado a la solución.

Un problema frecuente en este método⁽³⁾, es la forma ción de gotas con dimensiones no uniformes en la salida del pulverizador, ya que esto contribuye a disminuir la transpa-rencia de las películas dada las pobres dimensiones de los granos que se van formando.

TABLA 2

(3) MATERIALES INICIALES PARA SPRAY PYROLISIS

FOR	Starting Materials	Substrate Temperature	Spray Rate
Cd	Cadmium Chloride Cadmium Nitrate Cadmium Acetate Cadmium Formate	CdS-350°to 450°C with N ₂ or air as carrier gas	In the range of 2 ml/min. to 30 ml/min. for sulphides and selenides
Zn	Zinc Chloride Zinc Nitrate Zinc Acetate	ZnCdS 400-450°C with N ₂ or air as carrier gas	
Cu	Cuprous Chloride Copper Ac eta te	Te rnaries like CuInSe ₂ ,CuInS ₂	
In	Indium Chloride	300 to 400°C in excess of selenourea and N ₂ as carrier gas,/ excess of Thiourea	
РЪ	Lead Chloride Lead Acetate Lead Nitrate + Alcohol		In the range of 20 ml/min. to 150 ml/min. for oxides
Ga	Gallium Chloride Gallium Nitrate + Alcohol	Oxides like - SnO ₂ ,In ₂ O ₃ :Sn 450-600°C	
Sn	Tin Chlorid e (SnCl ₄ .5H ₂ O) Tetramethylin	1n_0 500-600°C	
S	Thiomrea N,N dimethyl- Thiourea Ammonium Thiocyanate	Ti0, - 400°C	
Se	N.N dimethyl- selenourea	SnO ? - 400-500°C	
Ti	Titanium Isoproxide Tetraisopropyl titaanate + H ₂ 0		

46

$$\begin{bmatrix} 3 < CdC1_{2} SCN_{2}H_{4} > \\ 240°C \\ [< CdS > + 2 < CdC1_{2}SCN_{2}H_{4} > + {CH_{2}N_{2}.2HC1}] \\ [< CdS > + 2 & Cd_{2}C1_{6}CN_{2}H_{4} >] + \frac{1}{4} (N_{2}H_{8} CS_{3}) + \frac{7}{6} (NH_{4}SCN) + \frac{1}{6} (NH_{3}) \frac{[1}{12} < C_{6}H_{9}N_{11}HSCN -] \\ 290°C \\ [< CdS > + 2 < CdC1_{2} > + \frac{1}{2} < NH_{4} C1 >] + \frac{3}{2} (HC1) + [\frac{1}{6} < C_{6}H_{9}N_{11} > + \frac{1}{12} < C_{6}H_{9}N_{11} >] \\ 350°C + \frac{1}{12} (HSCN) \\ [< CdS > + 2 < CdC1_{2} >] + \frac{1}{2} (NH_{4}C1) \\ [\frac{1}{4} < C_{6}H_{6}N_{10} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} < C_{6}H_{3}N_{9} >] + \frac{1}{4} (NH_{3}) \\ [\frac{1}{4} (NH_{3}) \\ [\frac{$$

$$245CN_{2}H_{4} \neq 65CN_{2}H_{4} + 18NH_{4}5CN$$

$$65CN_{2}H_{4} \neq 18NH_{4}SCN \neq 6CH_{5}N_{3}HSCN + 3 (N_{2}H_{8}CS_{3}) + 9 (NH_{4}SCN)$$

$$180-270^{\circ}C$$

$$6CH_{5}N_{3}HSCN \neq C_{6}H_{9}N_{11}HSCN + 2 (NH_{3}) + 5 (NH_{4}SCN)$$

170%

Esquema propuesto para la descomposición del complejo CdCl (3) (SCN2H) FIGURA 17

< > Sólido, { } Líquido, () Gas

V) RESULTADOS EXPERIMENTALES

a) <u>Caracterización del SnO, obtenido por Spray</u>

ANTECEDENTES

El SnO₂ es un semiconductor que es transparente en la (4), (8)región visible del espectro solar Su gap es aproxim<u>a</u> damente 3.7 eV y tiene una conductividad relativamente alta. Gracias a estas cualidades, el SnO₂, constituye un material muy interesante para ser usado como contacto eléctrico muy especial en los dispositivos semiconductores. Por esta razón, es importante la caracterización del mismo y su tecnología de fabricación.

Las propiedades del dióxido de estaño dependen de la técnica de obtención usada y del espesor de la película. De los diferentes métodos que podrían usarse, hemos usado el mé todo ya descrito de Spray Pyrolisis.

En nuestra situación particular el objetivo de obte ner estas películas es para usarlos como contacto eléctrico en las celdas de CdS-Cu_xS, del tipo "backwall".

PROCEDIMIENTO Y RESULTADOS

Se usó una solución acolhólica de cloruro de estaño,
 en la cual el solvente era el etanol y como soluto SnCl₄ pe<u>n</u>
 tahidratado. La reacción química que se produce sería:

SnC14 + 2H20 → SnO2 + 4HC11

- El esquema del dispositivo se muestra en la figura

fig 18

- La distancia del substrato a la salida del pulverizador que de 30 cm., el ^{flu}jo de aire fue de~14 <u>litros</u> mint. y la velocidad de deposición aproximadamente 0.1 μ m/mint.

- Se hicieron pruebas con flujo de aire continuo y con flujo intermitente. Los mejores resultados se obtuvieron con flujo intermitente.

- Se hizo la deposición intermitente de 2cm^3 de sol<u>u</u> ción por vez, con un tiempo de espera de 10 seg entre cada in

tervalo. Se obtuvo buenos resultados con 30 cm³ de solución.

- El rango de temperatura del substrato variaba de 250°C a 350°C. fuera de este rango se obtenían pelíc<u>u</u> las con resistencias excesivamente altas.

- En la Tabla 3 se muestra 5 medidas experimentales - típicas de la conductividad, para distintos espesores Δx .

TABLA	3
-------	---

Es	pes	or	Cond	ucti	vidad
Δ×	(m t	s.)	J (<u>ا</u> م- ر	_{wet})
0.7	x	10 ⁻⁶	3.0	x	10 ⁴
0.7	x	10 ⁻⁶	2.5	x	104
0.8	x	10 ⁻⁶	1.4	x	104
0.6	x	10 ⁻⁶	1.8	x	104
0.4	x	10 ⁻⁶	2.5	x	104

- Δx se determinó por diferencia de peso (ΔW):

$$\Delta X = \frac{\Delta W}{SAL} / S = 6.95 \frac{g_{vs}}{cc}$$

s 2

- Los valores de σ se han deducido, asumiendo que las películas tienen espesor uniforme. Entonces $\sigma = \frac{L}{(\Delta X)(A)R}$

En la figura 19, se ha represe<u>n</u> tado las dimensiones L = 7.60cm y A = 2.54cm del substrato. R es la resistencia entre 1 y 2.

- Entonces podemos de cir que la capa semiconductora de SnO₂ obtenida tiene una conductividad promedio

FIGURA 19

 $\int = (2.2 \pm 0.3) \times 10^4$ (12% de error)

- La resistencia por cuadrado es aproximadamente:

- Los resultados arrojaron un claro carácter de semi conductor tipo -n.

- La figura 20, muestra una curva típica de $V_{\rm H}$ versus B, obtenida usando la sonda Hall, obteniéndose de la pendiente de esta curva la constante de Hall, R_H. Hemos obtenido un R_H promedio de:

 $R_{\rm H} = -(1.7 \pm 0.2) \times 10^{-7}$ V-m (10% de error) Amp × T - Usando $R_{\rm H} = \frac{1}{\pi e}$ obtenemos una concentraci⁻on de portadores promedio de n \cong 4 x 10²⁵ m⁻³.

- La movilidad sería:

$$\mathcal{M} = \frac{\sigma}{ne} = 3 \times 10^{-3} \frac{m^2}{V.5}$$

- Todas las medidas se obtuvieron para T = 23°C y luz normal del Laboratorio

- La figura 21 muestra la curva de transmisión óptica. En élla se puede observar que hay prácticamente más del 60% de transmisión para $\lambda > 0.42 \mu$ m. El $\lambda_{gap} = 3500$ Å, lo que da un $E_{gap} = 3.5 \text{ eV}$ No se pudo medir en el rango del infrarojo, porque sale fuera de escala de nuestro equipo, de manera que no se pudo saber a partir de que λ empieza práct<u>i</u> camente sólo haber reflexión atenuandos ostensiblemente la transmisión hasta finalmente decaer. Ya que el rango útil del espectro solar va desde 0.4 a 1.1 μ m, creemos que nues tra película posee una aceptable transparencia óptica.

b) <u>Caracterización del CdS obtenido por Spray Pyro--</u> lisis

ANTECEDENTES

52

El Sulfuro de Cadmio es un compuesto binario que cristaliza en dos formas alotrópicas :estructura de Blenda y estructura Wurtzita ⁽¹⁰⁾. La estructura de Blenda puede ser considerada como la interpenetración desplazados por de dos redes cúbicas de caras centrad**as** distancia de $a\sqrt{3}/4$, estando los vecinos mas cercanos en las esquinas de un tetrahedro regular, ver la figura 22. La estructura Wurtzita está compuesto por la in terpenetración de dos redes hexagonales compactas, desplazados uno del otro por una distancia de 3C/8 a lo largo del eje C. La distancia entre vecinos más cercanos es 3C/8 y los parámetros de . 2 red son:

FIGURA 22

a=4.1368 A

C=6.716 A

El Sulfuro de Cadmio es un semiconductor de banda directa. Los experimentos sobre transmisión y reflexión óptica dan la siguiente expresión del $qap^{(10)}$ en función de la temperatura

 $E_c = 2.58 - (5.2 \times 10^{-4}) T eV$ para T=300 K esta expresión da un valor de 2.42 e۷ una -

La literatura muestra^{(5),(10)}que la estructura Wurtzita, por sus propiedades eléctricas y ópticas es superior desde un punto de vista fotovoltaico a la estructura de blenda. Se presume que se obtiene buenas propiedades eléctricas y ópti-cas de la estructura Wurtzita cuando la deposición se realiza a una temperatura T ≅ 380°C.

PROCEDIMIENTO Y RESULTADOS

- Se preparó 2 litros de solución mezclando: 11.400 grs. de tiourea, $SC(NH_2)$, disuelto en 1 litro de H_2O y 34.260 grs. de CdCl₂ disuelto en 1 litro de H_2O .

- Resumiendo la figura 17, podemos decir que la reacción química que se produciría para T ≆ 380°C sería:

 $cdc1_2 + sc(NH_2)_2 + 2H_20 \rightarrow cds \downarrow + 2NH_4 c11 + co_21$

- El esquema del dispositivo se muestra en la figura 23.

La distancia del substrato a la salida del pulverizador fue de 30 cm; el flujo de aire fue de 13 $\frac{1t}{mint}$, y la velocidad de deposición fue de 0.02µm/mint. a 0.03µm/minut.

FIGURA 23

- El rango de temperatura del substrato variaba de 350°C a 400°C. Por debajo de este rango la película perdía su brillo característico tornándose excesivamente opaco. Por encima de este rango había muy poca adherencia sobre el substrato.

- Las pruebas se hicieron con flujo continuo.

- Los resultados mostraron un claro carácter tipo-n de este semiconductor.

- En la Tabla 4 se muestra cinco medidas experimentales típicas de las conductividades obtenidas para distintos -

55

valores de $\triangle x$. La figura 24 muestra la dependencia de la (10) conductividad con respecto al espesor

TABLA 4

Espesor		sor	Conductividad	
Δ	x (m	ts)	$J\left(\frac{1}{S_{2}-mts}\right)$	
2.0	x	10 ⁻⁶	0.245	
2.2	x	10 ⁻⁶	0.533	
2.6	x	10 ⁻⁶	0.665	
3.2	x	10 ⁻⁶	0.926	
4.0	x	10 ⁻⁶	1.528	

- El procedimiento para obtener estos datos es simi lar al que se describió para el SnO₂. Se usó un valor de la densidad de $\int = 4.82 \frac{9}{cc}$. Las medidas de la conductividad se hicieron con un error máximo del 10%.

La figura 25 muestra una curva típica, V_Hversus B,

)

obtenida de la sonda Hall. A partir de esta curva se obtiene la constante de Hall, R_H.

Se ha obtenido un R_H promedio para el CdS de:

$$R_{\rm H} = -2.8 \times 10^{-4}$$
 V-mt (8% de error)
A-T

_Obteniendo el carácter fundamentalmente tipo-n la concentración de portadores mayoritarios, n = 0, sería del orden de n = 2x10²² m⁻³.

- La movilidad,
$$\mathcal{M} = \frac{\sigma}{\pi e}$$
, sería: $\mathcal{M} = 0.5 \frac{m^2}{V-5}$.

- Se logró un aumento de hasta 20 veces en la conductividad, haciendo un tratamiento térmico adicional, en vacio (10^{-4} Torr), a una temperatura de 200°C por espacio de 30 minutos aproximadamente. Presumiblemente por la eliminación de residuos de cloro presentes en la muestra. Esto aumentó la movilidad hasta un valor de $\sim 1 \frac{m^2}{v-5}$

- La figura 26 muestra la curva de transmisión óptica típica de una de nuestras películas semiconductoras. Des pués del tratamiento térmico dado no se apreció variación si<u>g</u> nificativa de la transmisión óptica. Se puede observar que λ_{gap} = 5050A, lo que nos arroja un E_{gap} \approx 2.4 eV-los va lores máximos de transmisión se obtienen aproximadamente a partir de 5600 A.

- Todas las medidas fueron hechas para T = 23°C y luz normal del ambiente del Laboratorio

c) <u>Eficiencia de una celda solar de CdS-Cu_xS, por el</u> método de pulverización

ANTECEDENTES

Para aplicaciones terrestres las celdas solares de CdS-Cu_xS tienen una gran posibilidad de convertirse en un se rio competidor de la celda solar de Silicio. Si bien ambas son ofertadas comercialmente, las de Silicio son las únicas que están firmemente establecidas en el mercado.

La eficiencia máxima obtenida para las celdas de CdS-Cu_xS es del 5%, usando el método de pulverización, para una irradiancia 1 $\frac{kw}{m^2}$.

Para el desarrollo de las celdas de CdS-Cu_xS es nece sario investigar la forma de la juntura p-n el cual principa<u>l</u> mente está determinado por la estructura cristalina de la p<u>e</u> lícula de CdS. Las películas de CdS consisten de pequeños cristalitos con el eje-c orientado perpendicularmente al subs (9) trato

Cuando se sumerge en la solución de Cloruro de Cobre, el ión cobre reacciona principalmente a lo largo de los bor des de grano. Entonces se pro cy S ducirá una estructura semejante a la figura 27, vista a tra vés de la sección transversal de la juntura p-n.

Por consiguiente, como ya se ha mencionado, estas cel das son fabricadas generalmente formando una capa absorbente de Cu₂S sobre el CdS por u na reacción de intercambio iónico entre el CuCl y CdS, don

fig 27

de el Cd es reeamplzado por dos iones Cu y el S queda prácti camente intacto. El producto de la reacción CdCl₂ se disuelve en la solución y una capa de Cu₂S se deposita sobre CdS, formándose la heterojuntura p-Cu₂S/nCdS.

A pesar de su bajo costo su utilización práctica se ha visto frustrada debido a dos factores importantes: uno.

las eficiencias de conversión son bajas, y dos, el Cu_2^S es un material muy inestable, existiendo varias fases estequiométr<u>i</u> cas de Cu_x^S . Estas diversas fases estequiométricas de Cu_x^S producen drásticas variaciones en las eficiencias de conver-sión, presumiéndose que la composición óptima es x = 1.995.

La protección de la celda solar de Cu₂S/CdS del am biente externo han dado celdas con altas eficiencias, (8%), y con tiempos de vida mayor de 20 años.

PROCEDIMIENTO Y RESULTADOS

- Una vez obtenido el substrato con las películas de SnO_2 y CdS, se prepara una solucióhn de Cloruro de Cobre del modo siguiente: a unos 20 cm³ de agua se introduce una por ción de alambre de cobre (~30 cm). Después de echar una o dos gotas de HCl se añade unos 30 mgrs. de CuCl.

- Se hierve la solución hasta 90°C, y se sumerge el substrato por 15 seg. Se hace un aislamiento previo en los bordes del substrato para evitar el corto circuito.

Se le hace un tratamiento térmico de unos 15 minutos a un temperatura de 140°C.

- Se hacen los contactos usando una pasta de plata. La figura 28 muestra esquemáticamente una celda.

Esquema que representa una celda cuya capa de CdS fue obtenida por el método de pulverización.

FIGURA 28

- La gráfica que muestra la figura 29 es una curva característica típica de una celda obtenida. La corriente de corto circuito medida fue de $I_{SC} = \frac{10 \frac{MA}{C}}{C_{m2}}$ y el voltaje de cortocircuito $V_{OC} = \frac{18 \frac{mV}{C}}{C_{m2}}$. $M = \frac{I_m V_m}{P_{in}}$ 100 $I_m = 42MA$ $V_m = 100 \text{ mV}$ $P_{inc} = 260$ $M = 8.24 \text{ cm}^2$ M = 0.002 g - Se observa una brusca disminución de I y V_{SC} (por consiguiente de (), a medida que pasa el tiempo. A ve ces llega hasta un 60% de disminución en 24 hs.

VI) EQUIPOS USADOS

- medidor de transmitancia (Bausch & Lomb), rango
 δptico.
- bomba para vácío, (VACUUM GAUGE TYPE RG-31X, VEECO).
- multimetros digitales, (191 KEITHLEY).
- balanza, (METTLER, TYPE H15), décimas de miligr<u>a</u> mo de sensibilidad
- foco simulador de radiación solar (500w).
- hornilla eléctrica para tratamiento térmico (IKA COMBINAG RCH).
- Equipos fabricados en los Laboratorios de la UNI:
 - equipo para spray.
 - * sonda Hall.
 - * probador de tipo de semiconductor.
- magneto 3,000 gauss, VARIAN ASSOCIATES

```
(parte del equipo de RPM)
```

VII) CONCLUSIONES Y RECOMENDACIONES

Es unánimamente aceptado que las celdas econ<u>ó</u> micamente rentables para un futuro cercano tienen que ser he terojunturas de delgadas películas semiconductoras. Para los problemas de bajas eficiencias que actualmente poseen se ha presentado una alternativa que parece va a solucionar enormemente este problema. Esta alternativa constituye los llamados sistemas Tandem. Aunque aún están en una fase fundamen-talmente teórica, ya algunos grupos de investigación están ob (1)teniendo resultados experimentales , que hacen suponer que dentro de poco tiempo ya se tengan celdas Tandem difundidas ampliamente.

- Dentro del esquema de una celda Tandem juega un rol importante el semiconductor ventana. A pesar de que el CdS no tiene el gap de energía que requiere un "semiconduc-tor ventana ideal" para un sistema Tandem, es uno de los que más se acerca y por consiguiente uno de los candidatos firmes a ser empleado en un sistema de celdas Tandem en el futuro. -Por consiguiente es un buen paso inicial lograr su caracterización, si tenemos la perspectiva de hacer investigación en el campo fotovoltaico.

- Dentro de este primer trabajo se ha logrado el objetivo más importante: la reproducibilidad de fabricación,

de las películas semiconductoras. Esto nos permite la carac terización de los mismos y a la vez el punto de partida para una posible futura tecnología de fabricación.

- Los valores obtenidos no están todavía en el rango que indica la literatura existente para que las pelíc<u>u</u> las puedan usarse como elementos constitutivos de una celda solar de CdS-Cu_xS. Es notorio en el SnO₂ haber obtenido re sultados claramente exitosos , teniendo en cuenta no ha ber usado aún elementos dopantes para incrementar sus propiedades eléctricas. (Ver Referencias 4 y 8).

En cuanto al CdS la transmisión óptica es semejante a la que se da en la literatura. (Ver Referencia 7 y 10). Su conductividad y movilidad es ligeramente menor al mínimo reco mendable, pero con el tratamiento térmico realizado ya esta mos dentro del rango. (Ver Referencia 10).

- Aún estamos a eficiencias muy bajas de conversión fotovoltaica. A pesar de que el objetivo no fue obtener bue nas eficiencias sino caracterizar los elementos que constituyen una celda, se ha logrado obtener elementos de juicio para superar estas bajas eficiencias. En ese sentido se darán al gunas sugerencias para que en una etapa posterior se mejoren las eficiencias, superando el 0.002% actual:

Ensayar el precalentamiento de la solución que va a producir el CdS. Un proceso simple consiste en colocar un horno pequeño a la salida del spray. Esto permite cambios menos bruscos de temperatura que constantemente ocurren en el substrato y por consiguiente más estabilizadas.

 * Lograr una temperatura más uniforme del substrato.
 Se están dando los primeros pasos usando estaño funcido sobre el cual se coloca el substrato.

* Se ha verificado un aumento hasta en 20 veces la conductividad del CdS después de un tratamiento térmico. De la literatura se observa que se puede lograr un incremento de la conductividad de 100 a 1000 veces, presumiblemente por la eliminación de residuos de cloro del substrato. Por consi guiente se debe insistir en un adecuado tratamiento térmico del CdS, para lograr incrementar la eficiencia de la celda.

* Se debe ensayar el uso de elementos dopantes para mejorar las características eléctricas del SnO₂. Según la l<u>i</u> (4),(7),(8) teratura
 , el F aumenta la conductividad y movili-- dad, sin afectar significativamente la transmisión óptica.

* Encapsular la celda para evitar la progresiva de gradación de la pila, por la tendencia a reaccionar el Cobre

66

con el oxígeno del ambiente, extendiéndose progresivamente el óxido de cobre, que si no se toman las precauciones, destru-yen la celda.

REFERENCIAS

- Joseph Loferski, pp 167-198.- Photovoltaic and Photoelectrochemical Solar Energy Conversion, Edited by F. Cordon, W.P. Gomes and W. De Keyser, Published by the NATO Scien-tific Affairs Division and Plenum Press (1981).
- M.P. Vecchi, Acta Científica Venezolana 300: pp 337-345, 1979.
- M.S. Tomar and F.J. Garcia, Prog. Crystal Growth Charact.
 1981, Vol 4, pp 221-248.
- 4) Chambouleyron and E. Saucedo, Solar Energy Materials 1 (1979) 299-311.
- 5) K.W. Boer, Phys. Stat. Sol. (a) 49, 455 (1978).
- 6) S.M. Sze, Physics of Semiconductor Devices, John Wiley Sons, 1981, pp 790-839.
- 7) F.J. Garcia and Tomar, Spray Chemical Pyrolisis in Photovol taic Solar Cells for Terrestrial Applications, VSB/81/05.
- 8) F. Simonis, M. Vander Leij and C.J. Hoo Gendoorm, Solar <u>E</u> nergy Materiales 1 (1979) 221-231.
- J.Besson, T.Nguyen Duy A.Gauthiet C.Martin : Photovoltaic Spec.Conf.Rec.
 11 th (IEEE. New York 1975) pp 468-476
- 10) G.Stanley :Cadmium Sulfide Solar Cells . Applied Solid State Science
 5.ed by R.Wolfe (Academic Press New York 1975) pp 251-366