UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA

DISEÑO DE UN CONTROLADOR INTELIGENTE PARA EL SISTEMA BALL AND BEAM

INFORME DE SUFICIENCIA

PARA OPTAR EL TITULO PROFESIONAL DE:

INGENIERO MECATRÓNICO

RICARDO JOHN PALOMARES ORIHUELA

PROMOCION 2001-II

LIMA – PERU

2008

DEDICATORIA

A mis padres y hermanos por el apoyo que me dieron en todo momento y a quienes tantas horas de mi vida he dejado de dedicar por este y otros objetivos.

A Patricia, por ser mi fuente de motivación para superarme cada día más y así poder luchar para que la vida nos depare un futuro mejor.

AGRADECIMIENTO

A mis padres Alfredo y Alberta por la confianza incondicional, apoyándome en todas las decisiones que he tomado en la vida.

Asimismo, agradezco de manera especial al MSc. Ricardo Rodríguez Bustinza, por su asesoría y amistad, por los conocimientos que compartió conmigo y por el valioso tiempo dedicado para que este Informe de Suficiencia llegara a buen término.

ÍNDICE GENERAL

Índice de Figuras	VII
Índice de Tablas	IX
CAPÍTULO 1.	
INTRODUCCIÓN	
1.1. Antecedentes	3
1.2. Formulación del Problema	5
1.3. Justificación	5
1.4. Objetivos del Informe	6
1.5. Alcances	6
CAPÍTULO 2.	
MODELAMIENTO DE LA PLANTA	7
2.1. Descripción del Sistema	8
2.2. Modelo Matemático del Motor DC	9
2.3. Modelo Matemático del Subsistema Ball and Beam	11
2.3.1. Cálculo de los Momentos de Inercia	11
2.3.2. Energía Cinética de la Esfera	15
2.3.3. Energía Cinética de la Barra	21
2.3.4. Energía Potencial del Sistema	21
2.3.5. Modelo Lagraniano del Sistema	22
2.4. Modelo Linealizado del Sistema	24
2.5. Respuesta del Sistema Ball and Beam en Lazo Abierto	26

CAPÍTULO 3.

	DISEÑO DEL CONTROLADOR INTELIGENTE	27
	3.1. Introducción a la Lógica Difusa	27
	3.2. Conjuntos Difusos	28
	3.2.1. Operaciones Básicas de Conjuntos Difusos	28
	3.2.2. Variables Lingüísticas	35
	3.3. Sistemas Difusos	37
	3.3.1. Diseño de Sistemas Difusos	38
	3.3.2. Diseño de un Sistema Difuso utilizando el Método de	
	Conocimiento del Experto	42
	3.4. Control PD para el Sistema Ball and Beam	44
	3.4.1. Control PD	45
	3.4.2. Control PD en Configuración Cascada	47
	3.4.3. Control PD en Configuración Paralela	52
	3.5. Control PD-Difuso para el Sistema Ball and Beam	57
	3.5.1. Diseño de un Control Difuso Vía Conocimiento del Experto.	60
	3.5.2. Construcción del Sistema Difuso	62
	3.5.3. Prueba de la Inferencia Difusa	63
	3.5.4. Método Gráfico de Diseño de un Controlador Difuso	68
САРІ́Т	TULO 4.	
	RESULTADOS DE LA SIMULACIÓN	73
	4.1. Controlador Difuso Puro	74
	4.2. Controlador PD-Difuso	75

4.2.1. Controlador PD	75
4.2.2. Controlador PD con Compensador	78
4.2.3. Controlador PD con Compensador Difuso	81
4.3. Filtros	87
4.3.1. Filtros Discretos	87
4.3.2. Diseño de un Filtro PasaBajo	88
4.3.3. Aplicación del Filtro a la Señal del Sistema	89
CONCLUSIONES Y RECOMENDACIONES	90
BIBLIOGRAFÍA	92

Anéndice A Especificaciones Técnicas del Sistema Ball and Beam	94
Apenalee Al Especificaciones Techneus del Sistema Ban ana Beannainn	

ÍNDICE DE FIGURAS

2.1. Sistema Ball and Beam	8
2.2. Modelo eléctrico-mecánico del motor DC	9
2.3. Esfera sólida	12
2.4. Barra	12
2.5. Sistemas de coordenadas fijo y relativo	16
2.6. Velocidad del centro de masa	18
2.7. Velocidad de rodadura	19
2.8. Diagrama Simulink del sistema en lazo abierto	26
2.9. Respuesta del sistema en lazo abierto	26
3.1. Funciones de pertenencia gaussiano y triangular	30
3.2. Configuración básica de un sistema difuso puro	38
3.3. Sistema difuso con fuzzificador y defuzzificador	39
3.4. Relación entre el ángulo de la barra y el ángulo del motor	47
3.5. Control PD en configuración cascada	47
3.6. Raíces del denominador	51
3.7. Control PD en configuración paralela	52
3.8. Raíces del polinomio	56
3.9. Sistema de inferencia difusa	57
3.10. Función de pertenencia triangular	59
3.11. Función de pertenencia gaussiana	60
3.12. Fuzzificacion de las entradas	64

3.13. Operador mín en la primera regla difusa	67
3.14. Agregación y defuzzificacion	67
3.15. Interfaz para la introducción de las variables	69
3.16. Definición de rango de los espacios, el número y tipo de clusters	70
3.17. Definición de las reglas de control	71
3.18. Los resultados de la defuzzificacion	72
4.1. Sistema Ball and Beam	73
4.2. Señal de salida del control difuso puro	74
4.3. Sistema con control PD en configuración cascada	75
4.4. Controladores PD para el motor y la esfera	76
4.5. Salida del sistema y señal de control	77
4.6. Sistema con control PD en configuración cascada con compensador	79
4.7. Esquema del compensador	79
4.8. Salida del sistema y señal de control	80
4.9. Sistema con control PD-Difuso en configuración cascada	82
4.10. Controlador PD-Difuso para el motor	83
4.11. Sistema con control PD-Difuso en configuración paralela	84
4.12. Controlador PD-Difuso en configuración paralela	85
4.13. Salida del sistema y señal de control	86
A.1. Sistema Ball and Beam	94
A.2. Motor DC con encoder óptico	95
A.3.Sensor de Posición Infrarrojo	96
A.4. Tarjeta Interfaz con convertidores A/D y D/A	97

ÍNDICE DE TABLAS

A.1. Constantes para funciones de pertenencia gaussiana	66
A.2. Constantes para funciones de pertenencia triangular	66

PRÓLOGO

El presente Informe de Suficiencia desarrolla el diseño de un controlador inteligente mediante la técnica de lógica difusa aplicado a un sistema no lineal Ball and Beam, el cual será llamado a lo largo de este informe como el sistema B&B. Este tipo de sistema es muy utilizado en aplicaciones académicas, la planta es linealizada sobre un punto de operación y se presenta la respuesta del sistema en lazo abierto. Se realiza el análisis de estabilidad, se diseña el control PD en lazo cerrado y un control difuso para el sistema linealizado, donde el control difuso hace la función de compensador para eliminar los efectos gravitacionales y otras dinámicas no modeladas. El control PD-Difuso para el sistema B&B, presenta un mínimo error en el estado estacionario, si comparamos con el control PD clásico, este presenta mayores errores en estado estacionario, con lo cual podemos concluir el buen desempeño de la técnica de control PD difuso, los resultados se reflejan en las simulaciones para la posición final de la esfera. Con la finalidad de cumplir con el propósito mencionado se ha dividido el informe en cinco capítulos que serán expuestos de la siguiente forma:

En el **Capítulo 1**, denominado Introducción, indicamos los antecedentes, la justificación que nos llevo a realizar este trabajo y formulamos el problema de control. Así mismo, definimos los objetivos y alcances del informe.

En el **Capítulo 2,** denominado Modelamiento de la Planta, se describe el modelamiento matemático del sistema B&B indicando las ecuaciones dinámicas mediante el desarrollo de las Ecuaciones de Lagrange, se presenta el sistema linealizado y además la respuesta del sistema en lazo abierto.

En el **Capítulo 3,** denominado Diseño del Controlador Inteligente, se introducen los conceptos básicos de la lógica difusa, conjuntos difusos, sistemas difusos y el diseño del controlador PD y PD – Difuso que estabilizan al sistema en lazo cerrado.

En el **Capítulo 4**, denominado Resultados de la Simulación, exponemos los resultados obtenidos al aplicar los algoritmos de control clásico y por lógica difusa en el sistema B&B para lo cual utilizamos el Toolbox Simulink del software Matlab.

Se presentan las Conclusiones y Recomendaciones para investigaciones futuras. El apéndice A contiene las especificaciones técnicas para implementar en sistema B&B.

Por último, queremos agregar que el desarrollo de este informe es una contribución al Laboratorio de la especialidad para que los estudiantes de pre-grado puedan seguir profundizando sus conocimientos e implementen el control inteligente en tiempo real.

CAPÍTULO 1 INTRODUCCIÓN

Los sistemas físicos son intrínsecamente no lineales, por lo cual, todos los sistemas son no lineales hasta cierto punto. Las no linealidades pueden ser clasificadas en términos de sus propiedades matemáticas, como *continuas y discontinuas*. Las no linealidades discontinuas como la histéresis, backlash y la fricción no pueden ser localmente aproximadas por funciones lineales pero son comúnmente encontradas en sistemas de control, tanto en pequeños como en grandes rangos de operación. Si el rango de operación de un sistema de control y las no linealidades involucradas son suaves, entonces el sistema de control puede ser razonablemente aproximado por un sistema lineal. El sistema B&B es un punto de referencia para métodos complejos de control no lineal. El problema es que los sistemas reales inestables son usualmente peligrosos y no pueden ser llevados dentro de un laboratorio. El sistema B&B fue desarrollado para resolver esta paradoja. Este sistema es simple, seguro y tiene la importante característica dinámica de un sistema inestable. Es una de las razones por la cual su análisis es muy interesante.

1.1. ANTECEDENTES

Una de las áreas de la ingeniería que ha experimentado un crecimiento importante a partir de la década de los 70's hasta la actualidad, ha sido sin duda el

diseño de sistemas difusos. Esta herramienta matemática no es nueva pues sus orígenes se remontan a la década de los 60's, con la creación de un nuevo concepto llamado lógica difusa. La lógica difusa nace en 1965 a partir de la publicación del artículo "Fuzzy sets" escrito por Lotfi Zadeh en la Universidad de California en Berkeley para la revista "Information and control".

Sin embargo, los conjuntos difusos no fueron utilizados hasta los mediados de los 70's, cuando Ebrahim H, Mandani de la Universidad Queen Mary de London diseño un controlador difuso para un motor a vapor. Desde entonces el término "lógica difusa" ha significado que cualquier sistema matemático o computacional puede razonar utilizando los conjuntos difusos. Aún así, su implementación radica principalmente en el diseño de sistemas de control difusos que a partir de la década de los ochentas y de los noventa ha demostrado su gran versatilidad en la resolución de una gran cantidad de problemas prácticos, extendiéndose al control de sistemas, procesamiento de señales, ingeniería de telecomunicaciones, fabricación de circuitos integrados, sistemas expertos, sistemas financieros, medicina y psicología.

A continuación enunciamos trabajos en control realizados en el sistema B&B:

- Teoría clásica de control para el Sistema B&B por el Ing.William Wanjohi del Swarthmore College.
- 2.- Análisis de estabilidad de un controlador PD para el Sistema B&B por el Ing. Wen Yu y Ing. Floriberto Ortiz del Departamento de Control Automático CINVESTAV-IPN, México.

3.- Control No Lineal para el Sistema B&B por Ing. Yi Guo, David J. Hill y Zhong-Ping Jiang del Departamento de Ingeniería Eléctrica de la Universidad de Sydney, Australia.

1.2. FORMULACIÓN DEL PROBLEMA

El enunciado formal del problema de control para el sistema B&B es el siguiente: "Dado el sistema B&B conformado por una esfera y una barra montada en el eje de un motor DC controlado por voltaje de armadura, se desea diseñar un servo controlador, el cual debe mantener el control de la posición de la esfera, considerando sólo el problema en dos dimensiones. La entrada del sistema es el voltaje de armadura del motor DC y la salida es la posición de la esfera. El método a emplear es el control inteligente utilizando lógica difusa".

1.3. JUSTIFICACIÓN

En este informe de suficiencia, se escoge la técnica del control por lógica difusa, por ser una candidata natural para resolver este tipo de problema del control. El control por lógica difusa es un método de toma de decisiones basado en reglas, usado para sistemas expertos y control de procesos que emulan el modo de comprensión de los sistemas usados por el ser humano. Un controlador difuso se basa en el conocimiento de un experto humano acerca del funcionamiento del sistema y lo representa con reglas de la forma *IF - THEN* resultando muy apropiado para problemas de control donde el modelo matemático es difícil de construir.

Los sistemas difusos presentan la particularidad de poder utilizarse como controladores difusos para sistemas dinámicos lineales y no lineales, y pueden estar operando simultáneamente con algún otro controlador, esto debido a que el diseño de los sistemas difusos se basa en una teoría precisa que pone el conocimiento del experto en forma sistemática y ordenada para el análisis. Este tipo de controlador presenta ciertas características como son: control más suave, una reducción importante en la complejidad matemática utilizada y poco conocimiento matemático del modelo con el cuál se desea trabajar. Para aplicaciones donde el margen de error es crítico, añadir un controlador difuso a los controladores PD clásicos es importante.

1.4. OBJETIVOS DEL INFORME

El objetivo de este informe es diseñar un controlador inteligente basado en lógica difusa capaz de resolver el problema de control de posición de una esfera que se desliza a lo largo de una barra mediante el control del ángulo de la barra respecto a la horizontal. El sistema de control debe ser capaz de hacer que las variables controladas sigan las referencias con un mínimo sobre impulso, mínimo tiempo de establecimiento y error en estado estable nulo.

1.5. ALCANCES

En este informe realizaremos el modelamiento matemático del sistema B&B, diseñaremos un algoritmo de control PD-Difuso y simularemos el sistema controlado. Con los resultados de la simulación demostraremos que la señal de control diseñada puede hacer que la salida siga eficientemente las referencias impuestas.

CAPÍTULO 2 MODELAMIENTO DE LA PLANTA

El modelamiento es el primer paso en el diseño de un lazo de control. Cuanto mayor es el conocimiento del proceso, mejores son los resultados que obtendremos, ya que el diseño del control será basado en el modelo. Para conocer la dinámica del sistema, podemos deducir su comportamiento a partir de las leyes físicas que lo rigen, tales como eléctricas, mecánicas y térmicas o podemos utilizar técnicas de identificación de sistemas, que tienen que ver con el problema de construir el modelo matemático de sistemas dinámicos a partir de la observación de entradas y salidas del sistema.

En este capítulo detallaremos la obtención del modelo matemático del B&B a partir de las leyes físicas que lo gobiernan. Para obtener el modelo matemático utilizamos las ecuaciones de Euler-Lagrange, que proporcionan dos ecuaciones diferenciales ordinarias de segundo orden no lineales, las que escribimos como cuatro funciones diferenciales de primer orden no lineales (ecuaciones de estado). Dado que el modelo matemático obtenido es no lineal, linealizaremos el sistema alrededor de un punto de operación (equilibrio del sistema).

2.1. DESCRIPCIÓN DEL SISTEMA

Se seleccionó el sistema B&B por presentarse en un número importante de aplicaciones prácticas, de igual manera que en aplicaciones académicas y de investigación en donde se pueden probar diferentes algoritmos de control. Este tipo de sistemas presentan ciertas características que lo hacen aún más interesante, es un sistema mecánico subactuado, es decir, presenta un número menor de actuadores que grados de libertad ya sea por la ausencia o falla de alguno de ellos. Además manifiesta algunas características no deseables tales como un alto grado relativo y comportamiento de fase no mínima, lo que hace más difícil su control.

El sistema B&B que se muestra en la Figura 2.1, se encarga de ubicar una esfera que se desplaza sobre una barra en una nueva posición r, la posición de la esfera es controlada al variar el ángulo α de la barra, que está relacionada de manera directa con el ángulo θ del engrane del motor, de esta manera la esfera puede ser posicionada en algún lugar deseado de la barra balanceándola de manera adecuada.

Figura 2.1. Sistema Ball and Beam.

2.2. MODELO MATEMÁTICO DEL MOTOR DC

Se analizará la dinámica de los motores DC de magneto permanente (ver Figura 2.2), que son los más utilizados como actuadores, los motores de DC pueden ser clasificados de acuerdo a la forma en la que el campo magnético es producido y por el diseño de la armadura.

Figura 2.2. Modelo eléctrico-mecánico del motor DC.

La ecuación diferencial para la corriente de armadura está dada por:

$$L_a \dot{I}_a + R_a I_a = V_{in} - V_{fce}$$
^(2.1)

La ecuación de la parte mecánica del motor es:

$$J_m \ddot{\theta}_m + B_m \dot{\theta}_m = T - T_L \tag{2.2}$$

El par desarrollado por el motor es:

$$T_m = k_m I_a \tag{2.3}$$

Donde la relación de engranes está dado por:

$$T = k_g T_m \tag{2.4}$$

La fuerza contraelectromotriz está dada por:

$$V_{fce} = k_b w_m = k_b \dot{\theta}_m \tag{2.5}$$

Sustituyendo (2.5) en (2.1):

$$L_a \dot{I}_a + R_a I_a = V_{in} - k_b \dot{\theta}_m \tag{2.6}$$

Ahora sustituimos (2.4) en (2.2) y considerando $T_L = 0$, es decir, no se considera el par de carga y la relación de engranes (2.4), se obtiene:

$$J_m \ddot{\theta}_m + B_m \dot{\theta}_m = k_g k_m I_a \tag{2.7}$$

Despejando I_a de (2.6) y haciendo $L_a = 0$, debido que la constante de tiempo eléctrica L_a/R_a es mucho más pequeña que la constante de tiempo mecánica J_m/B_m lo cuál permite reducir el orden del modelo en la dinámica del actuador,

$$I_a = \frac{\left(V_{in} - k_b \dot{\theta}_m\right)}{R_a} \tag{2.8}$$

Sustituyendo (2.8), en (2.7):

$$J_{m}\ddot{\theta}_{m} + B_{m}\dot{\theta}_{m} = \frac{k_{g}k_{m}}{R_{a}}\left(V_{in} - k_{b}\dot{\theta}_{m}\right)$$

El modelo matemático para el motor DC es presentado por:

$$\left(\frac{R_a J_m}{k_g k_m}\right)\ddot{\theta}_m + \left(\frac{R_a B_m}{k_g k_m} + k_b\right)\dot{\theta}_m = V_{in}$$
^(2.9)

Para la simulación usaremos:

$$\left(\frac{R_a J_m}{k_g k_m}\right) = 0.01176, \left(\frac{R_a B_m}{k_g k_m} + k_b\right) = 0.58823$$

2.3. MODELO MATEMÁTICO DEL SUBSISTEMA BALL AND BEAM

Para aplicar la técnica de control por lógica difusa, es necesario presentar la dinámica del modelo B&B, para ello usaremos la ecuación dinámica de Lagrange, que nos va a proporcionar la exactitud del modelo, la misma que debe de responder a la exigencia del desarrollo del control que se le aplique al sistema en mención. Por otro lado, es necesario también realizar los cálculos de los momentos de inercia del sistema, los mismos que serán tratados en la siguiente sección.

2.3.1. Cálculo de los Momentos de Inercia

Cuando un cuerpo tiene un tamaño y cuerpo definido (cuerpo rígido), un sistema de fuerzas aplicadas a él puede originar que se mueva y que gire al mismo tiempo, los aspectos de traslación del movimiento están gobernados por la ecuación F = ma y los aspectos de rotación, originados por el momento M están gobernados por la ecuación $M = Ia_{\alpha}$, en donde I es el momento de inercia. Por comparación, el momento de inercia es una medida de la resistencia de un cuerpo a la aceleración angular, del mismo modo que la masa es una medida de la resistencia del cuerpo a la aceleración. Se define el momento de inercia como la integral del segundo momento con respecto a un eje, de todos los elementos de masa dm que componen al cuerpo, donde d es la distancia perpendicular que hay del eje al elemento arbitrario dm(ver Figura 2.3).

$$I = \int_{m} d^2 dm \tag{2.10}$$

Figura 2.3. Esfera sólida.

Momento de Inercia de la Barra

Se calcula el momento de inercia I_{bar} , de una barra de masa M y longitud L (ver Figura 2.4) respecto de un eje perpendicular a la varilla que pasa por su centro.

El momento de inercia para una barra sin grosor está dado por:

Figura 2.4. Barra.

Donde: dm es la masa del elemento diferencial, ds es la longitud diferencial y por la condición de masa distribuida uniformemente entonces dm = (M / L)ds, por lo tanto:

$$I_{bar} = \int_{-L/2}^{L/2} s^2 \frac{M}{L} ds = \frac{M}{L} \int_{-L/2}^{L/2} s^2 ds = \frac{ML^3}{12L}$$
(2.12)

Por lo tanto, el momento de inercia para una barra sin grosor es:

$$I_{bar} = \frac{ML^2}{12} \tag{2.13}$$

Momento de Inercia de la Esfera

De la ecuación (2.10), para el caso de una diferencial de masa de una esfera $dm(r, \varphi, \theta)$, en donde: $dv = r^2 \sin(\varphi) dr d\varphi d\theta$ es el volumen del elemento diferencial, $d = r \sin(\varphi)$ es la distancia entre la masa del elemento diferencial y el eje Z, en donde: $v = (4/3)\pi R^3$ es la formula del volumen de una esfera.

Sustituyendo los valores de la distancia y la diferencial de masa correspondientes a la esfera:

$$I_{esf} = \int_{m} r^{2} \sin^{2}(\varphi) dm(r, \varphi, \theta)$$
(2.14)

Donde la diferencia de masa dm esta dado por:

$$dm = \frac{m}{v} dv$$

m es la masa de distribución uniforme, *v* es el volumen de la esfera, el cual toma la diferencial, substituyendo *v* y dv:

$$dm = \frac{m}{\frac{4}{3}\pi R^3} r^2 \sin(\varphi) dr d\varphi d\theta$$
(2.15)

Sustituyendo (2.15) en (2.14) se obtiene:

$$I_{esf} = \int_{m} \left(r^{2} \sin(\varphi) \right) \left(\frac{m}{\frac{4}{3} \pi R^{3}} r^{2} \sin^{2}(\varphi) dr d\varphi d\theta \right)$$

$$I_{esf} = \int_{=0}^{R} \int_{\varphi=0}^{\pi} \int_{\theta=0}^{2\pi} r^{2} \sin^{2}(\varphi) \frac{m}{\frac{4}{3}\pi R^{3}} r^{2} \sin(\varphi) dr d\varphi d\theta$$
(2.16)

Sacando las constantes fuera de la integral:

$$I_{esf} = \frac{m}{\frac{4}{3}\pi R^3} \int_{=0}^{R} \int_{\varphi=0}^{\pi} \int_{\theta=0}^{2\pi} r^4 \sin^3(\varphi) dr d\varphi d\theta$$

$$\frac{m2\pi}{\frac{4}{3}\pi R^3} \int_{=0}^{R} \int_{\varphi=0}^{\pi} r^4 \sin^3(\varphi) dr d\varphi = \frac{m2\pi}{\frac{4}{3}\pi R^3} \frac{R^5}{5} \int_{\varphi=0}^{\pi} \sin^3(\varphi) d\varphi = \dots$$

$$=\frac{3}{10}mR^{2}\int_{\varphi=0}^{\pi}\sin^{3}(\varphi)d\varphi$$

Por lo tanto la inercia de la esfera es:

$$I_{esf} = \frac{2}{5}mR^2 \tag{2.17}$$

Donde m es la masa de la esfera y R es el radio de la esfera.

2.3.2. Energía Cinética de la Esfera

Se determinará la energía cinética de un cuerpo, en este caso, el de una esfera en rodadura pura, sin considerar el efecto de la fricción, la energía cinética de una partícula P esta dada por:

$$T_2 = \frac{1}{2}\rho v_P^2 dV$$

Donde: ρ es la densidad del cuerpo, por lo que la energía cinética total del cuerpo se define como la suma de las energías cinéticas de las distintas partículas del sistema, esto es:

$$T_2 = \frac{1}{2} \int \rho v_P^2 dV$$
 (2.18)

Cuando se calcula la energía cinética de un sistema que consiste en un gran número de partículas (como es el caso del cuerpo rígido), a menudo es conveniente considerar por separado el movimiento del centro de masa G del sistema y el movimiento del sistema relativo a un sistema de referencia en movimiento fijo en G, como se observa en el sistema coordenado de la Figura 2.5.

Donde el movimiento de una partícula esta dada por:

$$v_p = v_G + \vec{\omega} \times r_{GP} \tag{2.19}$$

En donde: *P* es una partícula del sistema, v_P es la velocidad relativa de la partícula al sistema de referencia O_{xyz} , v_G es la velocidad del centro de gravedad y $\vec{\omega} \times r_{GP}$ es la velocidad relativa al sistema móvil $G_{x'y'z'}$.

Figura 2.5. Sistemas de coordenadas fijo y relativo.

Sustituyendo (2.19) en (2.18) se obtiene:

$$T_2 = \frac{1}{2} \int (v_G + \vec{\omega} \times r_{GP}) (v_G + \vec{\omega} \times r_{GP}) dV$$

Desarrollando el producto:

$$T_{2} = \frac{1}{2} \rho \int v_{G}^{2} + 2v_{G} \left(\vec{\omega} \times r_{GP}\right) + \left(\vec{\omega} \times r_{GP}\right) \left(\vec{\omega} \times r_{GP}\right) dV$$

$$\frac{1}{2} mv^{2} + \frac{1}{2} \rho \int 2v_{G} \left(\vec{\omega} \times r_{GP}\right) dV + \frac{1}{2} \rho \int \left(\vec{\omega} \times r_{GP}\right) \left(\vec{\omega} \times r_{GP}\right) dV \qquad (2.20)$$

Considerando un ángulo β entre $\vec{\omega}$ y r_{GP} para la partícula P, y haciendo el producto punto:

$$(\vec{\omega} \times r)(\vec{\omega} \times r) = \omega^2 r^2 \sin^2(\beta) = \omega^2 r^2 (1 - \cos^2(\beta))$$
$$= \omega^2 r^2 - \omega^2 r^2 \cos^2(\beta) = (\vec{\omega} \cdot \vec{\omega})(r \cdot r) - (\vec{\omega} \cdot r)(\vec{\omega} \cdot r)$$

De acuerdo con estas relaciones, las integrales de la ecuación (2.20) se pueden expresar:

$$\rho \int ((\vec{\omega} \times r)(\vec{\omega} \times r)dV = \rho \int ((\vec{\omega} \cdot \vec{\omega})(r \cdot r) - (\vec{\omega} \cdot r)(\vec{\omega} \cdot r)dV$$
$$= \rho \int ((\vec{\omega} \cdot (r \cdot r)\vec{\omega}) - (\vec{\omega} \cdot (\vec{\omega} \cdot r)r)dV$$
$$= \rho \int (\vec{\omega} [(r \cdot r)\vec{\omega} - (\vec{\omega} \cdot r)r]dV$$
$$= \rho \vec{\omega} \int [(r \cdot r)\vec{\omega} - (\vec{\omega} \cdot r)r]dV$$

Utilizando las propiedades de inercia del producto cruz, se obtiene:

$$\rho \vec{\omega} \cdot \iint [(r \cdot r) \vec{\omega} - (\vec{\omega} \cdot r) r] dV = \vec{\omega} \cdot \int \rho (r \times (\vec{\omega} \times r)) dV$$

Sea I_{esf} el momento de inercia de la esfera igual a la integral:

$$\vec{\omega} \cdot \int \rho(r \times (\vec{\omega} \times r)) dV = \vec{\omega} \cdot (I_{esf} \cdot \vec{\omega})$$
(2.21)

De la relación:

$$\frac{1}{2}\rho\int 2v_G(\vec{\omega}\times r_{GP})dV=0$$

Por la definición del producto punto:

$$v_G | \vec{\omega} \times r_{GP} | \cos(v_G, \vec{\omega} \times r_{GP}) = 0$$

Se obtiene la velocidad V_G del gráfico de la Figura 2.6.

 $v_G = \vec{v}_r + \vec{v}_t = \vec{v}_r + \vec{\omega} \times r_{OP}$

Figura 2.6. Velocidad del centro de masa.

Substituyendo (2.21) en (2.20) se obtiene:

$$T_{2} = \frac{1}{2}mv^{2} + \frac{1}{2}\vec{\omega} \cdot (I_{esf} \cdot \vec{\omega})$$
$$= \frac{1}{2}mv^{2} + \frac{1}{2}I_{esf}\omega^{2}$$
(2.22)

Donde la ecuación (2.22) es la energía de la esfera.

Substituyendo el momento de inercia de la esfera I_{esf} , (2.17) en la ecuación (2.22):

$$T_2 = \frac{1}{2}mv^2 + \frac{1}{2}(\frac{2}{5}mR^2)\omega^2$$

Finalmente, se obtiene la energía cinética de la esfera:

$$T_2 = \frac{1}{2}mv^2 + \frac{1}{5}mR^2\omega^2$$
 (2.23)

Rodamiento de un Disco

Se describe el movimiento de una esfera rodando sobre una superficie plana (ver Figura 2.7) si se restringe el disco a que ruede sin resbalar, la aceleración \overline{a} de su centro de masa G y su aceleración angular a_{α} no son independientes, suponiendo que el disco este equilibrado, de manera que coincidan su centro de masa y su centro geométrico, se escribe la distancia rrecorrida por G durante una rotación Ψ del disco:

Figura 2.7. Velocidad de rodadura.

$$\boldsymbol{r} = \boldsymbol{R}\boldsymbol{\Psi} \tag{2.24}$$

Despejando Ψ :

$$\Psi = \frac{r}{R}$$

Donde, R es el radio del disco (esfera), Ψ es la rotación de la esfera, r es la distancia recorrida. La distancia angular recorrida por la esfera con respecto a la vertical esta dada por la siguiente formula:

$$d_{\alpha} = \Psi + \alpha \tag{2.25}$$

- - - -

Reescribiendo la ecuación (2.25) en términos de α :

$$d_{\alpha} = \frac{r}{R} + \alpha \tag{2.26}$$

Derivando la ecuación (2.26) se obtiene la velocidad angular:

$$\omega = \dot{d}_{\alpha} = \frac{\dot{r}}{R} + \dot{\alpha}$$
(2.27)

También la velocidad (v) de la esfera puede ser obtenida al hacer el diagrama de velocidad de la barra y la esfera, esta fórmula está dada por:

$$v^{2} = \dot{r}^{2} + (r\dot{\alpha})^{2}$$
(2.28)

Sustituyendo (2.28) en (2.23) se obtiene la energía cinética de la esfera:

$$T_{2} = \frac{1}{2} m \left(\dot{r}^{2} + (r \dot{\alpha})^{2} \right) + \frac{1}{2} I_{esf} \omega^{2}$$

Luego la energía cinética de la esfera:

$$T_{2} = \frac{1}{2}m\dot{r}^{2} + \frac{1}{2}mr^{2}\dot{\alpha}^{2} + \frac{1}{2}I_{esf}\omega^{2}$$
(2.29)

2.3.3. Energía Cinética de la Barra

Donde la energía cinética de la barra está dada por:

$$T_1 = \frac{1}{2} I_{bar} \dot{\alpha}^2 \tag{2.30}$$

Donde: I_{bar} es el momento de inercia de la barra, $\dot{\alpha}$ es la velocidad angular. Una vez que se obtuvieron las energías cinéticas de la barra y de la esfera, se tiene la energía cinética total del sistema, que está dado por:

$$T = T_1 + T_2 (2.31)$$

Estas energías cinéticas incluyen movimiento radial y circular de la barra y de la esfera respectivamente. Dado que $I_{esf} = (2/5)mR^2$ y $\dot{r} = R\omega$ entonces la energía cinética rotacional de la esfera es $(1/2)I_{esf}$, por lo que de (2.31) queda:

$$T = \frac{1}{2}I_{bar}\dot{\alpha}^{2} + \frac{1}{2}m\dot{r}^{2} + \frac{1}{2}mr^{2}\dot{\alpha}^{2} + \frac{1}{5}m\dot{r}$$

Donde la energía cinética total del sistema queda:

$$T = \frac{1}{2} \left(I_{bar} + mr^2 \right) \dot{\alpha}^2 + \frac{7}{10} m\dot{r}^2$$
(2.32)

2.3.4. Energía Potencial del Sistema

La energía potencial del sistema cuando la esfera rueda está dada por:

$$P = mgr\sin\alpha + Mg\frac{L}{2}\sin\alpha$$
(2.33)

Donde M es la masa de la barra, L es la longitud de la barra, r es la posición de la esfera.

2.3.5. Modelo Lagraniano del Sistema

La ecuación de Lagrange generalizada es.

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = F_q \tag{2.34}$$

Donde, L es el conjunto de energías del sistema (L = T - U), q es la coordenada de variable independiente del sistema, \dot{q} es la derivada de variable independiente del sistema y F_q es la fuerza externa que actúa en la dirección de q.

La ecuación del Lagrangiano es:

$$L = T - P \tag{2.35}$$

$$=\frac{1}{2}\left[\left(I_{bar}+mr^{2}\right)\dot{\alpha}^{2}+\frac{7}{10}m\dot{r}^{2}\right]-\left(mgr+\frac{L}{2}Mg\right)\sin\alpha$$

No hay fuerzas externas que actúen sobre la esfera en dirección radial, la ecuación Lagrangiana del movimiento está dado por:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\alpha}}\right) - \frac{\partial L}{\partial \alpha} = \tau$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{r}}\right) - \frac{\partial L}{\partial r} = 0$$
(2.36)

Donde:

$$\frac{\partial L}{\partial \alpha} = -(mgr + \frac{L}{2}Mg)\cos\alpha$$

$$\frac{\partial L}{\partial \dot{\alpha}} = (J_1 + mr^2)\dot{\alpha}$$
$$\frac{\partial L}{\partial r} = mr\dot{\alpha}^2 - mg\sin\alpha$$
$$\frac{\partial L}{\partial \dot{r}} = \frac{7}{5}m\dot{r}$$

De aquí que obtenemos la ecuación dinámica del sistema B&B:

$$(I_{bar} + mr^{2})\ddot{\alpha} + 2mr\dot{r}\dot{\alpha} + (mgr + \frac{L}{2}Mg)\cos\alpha = \tau$$

$$\frac{7}{5}\ddot{r} - \dot{r}\dot{\alpha}^{2} + g\sin\alpha = 0$$
(2.37)

Se hace un pequeño comentario entre las ecuaciones diferenciales obtenidas. Cada una de ellas representa el modelo matemático del sistema, cuando se utiliza el método de Euler-Lagrange se trata únicamente de resolver el problema de manera poco compleja, la principal ventaja práctica que tiene esta formulación es que, el número de variables es el mínimo posible para determinar la configuración del sistema y además que no es necesario conocer el detalle de las fuerzas de vínculos para su formulación, resultando en un método menos laborioso, que la formulación clásica newtoniana donde es necesario conocer a detalle las fuerzas que actúan sobre el sistema, sin embargo, cualquiera de éstos métodos debe de resolver el problema planteado, únicamente varía el número de variables en la ecuación final del modelo, que aumenta o disminuye su complejidad de resolución y el nivel de error presentado.

2.4. MODELO LINEALIZADO DEL SISTEMA

La ecuación diferencial del sistema mecánico esta dada por:

$$b\ddot{\theta} + c\dot{\theta} = u \tag{2.38}$$

Siendo las constantes, $b = \frac{R_m J}{K_m K_g} = 0.01176 \text{ y} \quad c = \left(\frac{R_m B}{K_m K_g} + K_m\right) = 0.58823.$

Aplicando la transformada de Laplace a (2.38) se obtiene:

$$\frac{\theta(s)}{u(s)} = \frac{1}{0.58823 \, s + 0.01176 \, s^2} \tag{2.39}$$

Del modelamiento matemático realizado, la aceleración de la esfera está dada por la siguiente ecuación:

$$\ddot{r} = mg\sin\alpha \tag{2.40}$$

Donde α es el ángulo de inclinación de la barra y g es la aceleración gravitacional, esta ecuación se linealiza cerca de valores pequeños de α , por lo cual se considera que la siguiente aproximación es valida:

$$\sin \alpha \approx \alpha$$

Quedando la ecuación (2.40) como sigue:

$$\ddot{r} = mg\alpha$$

Aplicando la transformada de Laplace, donde las condiciones iniciales son iguales a cero r(0) = 0, r'(0) = 0. Quedando como:

$$\frac{r(s)}{\alpha(s)} = \frac{mg}{s^2}$$
(2.41)

Donde *m* es la masa y *g* la gravedad, los valores de m = 5/7 y $g = 9.8m/s^2$.

Reemplazando los valores indicados el modelo linealizado del sistema B&B es:

$$\frac{r(s)}{\alpha(s)} = \frac{7}{s^2} \tag{2.42}$$

2.5. RESPUESTA DEL SISTEMA BALL AND BEAM EN LAZO ABIERTO

A continuación se muestra la respuesta del sistema B&B en lazo abierto. En la Figura 2.8 se muestra el diagrama de bloques Simulink en lazo abierto del sistema B&B.

Figura 2.8. Diagrama Simulink del sistema en lazo abierto.

En la Figura 2.9 se muestra la respuesta de la posición de la esfera respecto a una entrada escalón.

Figura 2.9. Respuesta del sistema en lazo abierto.

CAPÍTULO 3

DISEÑO DEL CONTROLADOR INTELIGENTE

3.1. INTRODUCCIÓN A LA LÓGICA DIFUSA

Cuando la complejidad de un problema crece, la posibilidad de analizarlo en términos precisos disminuye. En contraste con la lógica convencional que utiliza conceptos absolutos para referirse a la realidad, la lógica difusa define los conceptos en grados variables de pertenencia, siguiendo patrones de razonamiento similares a los del pensamiento humano. La lógica difusa ha cobrado una fama grande por la variedad de sus aplicaciones, las cuáles van desde el control de complejos procesos industriales, hasta el diseño de dispositivos de control de artefactos electrónicos de uso doméstico y entretenimiento, así como también en sistemas de diagnóstico. La lógica difusa es esencialmente una lógica multivaluada que es una extensión a la lógica clásica. Esta última impone a sus enunciados únicamente valores de falso o verdadero, sin embargo, gran parte del razonamiento humano no es tan "determinista". Lo difuso puede entenderse como la posibilidad de asignar más valores de verdad a los enunciados clásicos de "falso" y "verdadero". El objetivo de todo sistema manejador de una lógica difusa es describir los grados de los enunciados de salida en términos de los de entrada, algunos sistemas son capaces de refinar los grados de veracidad de los enunciados de salida, conforme se refinan los de la entrada. Por estas propiedades es que ciertos sistemas de lógica difusa
aparentan una labor de aprendizaje, y son excelentes mecanismos de control de procesos, es decir, los controladores difusos son capaces de estabilizar sistemas no lineales.

En este informe se presenta un método para desarrollar un controlador difuso que permita estabilizar un sistema linealizado en lazo cerrado y que tenga una aplicación en el mundo real, a partir del conocimiento y la experiencia de un experto representado en una regla de la forma IF-THEN. Se debe hacer notar que el modelo matemático es una aproximación de un sistema físico y que no puede representar todas las variables dinámicas del sistema pues resultan en la mayoría de los casos muy difíciles de modelar.

3.2. CONJUNTOS DIFUSOS

3.2.1. Operaciones Básicas de Conjuntos Difusos

Un conjunto clásico se define como una colección de elementos que existen dentro de un universo, donde cada uno de los elementos del universo pertenece o no a un determinado conjunto. Por lo tanto, cada conjunto puede definirse completamente por una función de pertenencia, que opera sobre los elementos del universo, y que le asigna un valor de 1 si el elemento pertenece al conjunto, y de 0 si no pertenece. Ahora bien, un conjunto difuso se define de forma similar, con una diferencia conceptual importante: un elemento puede pertenecer parcialmente a más de un conjunto. Las primeras diferencias que se hacen evidentes entre los conjuntos clásicos y los conjuntos difusos son las siguientes:

- La función de pertenencia asociada a los conjuntos clásicos sólo pueden tener dos valores: 0 ó 1, mientras que en los conjuntos difusos pueden tener cualquier valor entre el intervalo 0 y 1.
- Un elemento puede pertenecer (parcialmente) a un conjunto difuso y simultáneamente pertenecer (parcialmente) al complemento de dicho conjunto, lo anterior no es posible en los conjuntos clásicos.
- 3. Las fronteras de un conjunto clásico son exactas, es decir, un elemento pertenece o no pertenece a dicho conjunto, en tanto que las de un conjunto difuso son, precisamente difusas, ya que existen elementos en las fronteras mismas, y estos elementos pueden pertenecer al mismo tiempo a más de un conjunto difuso con diferente grado de pertenencia.

La lógica difusa actualmente esta relacionada y fundamentada en la teoría de los conjuntos difusos. Según esta teoría, el grado de pertenencia de un elemento a un conjunto va a venir determinado por una función de pertenencia, que puede tomar todos los valores reales, comprendidos en el intervalo [0, 1], como lo muestra la Figura 3.1.

Figura 3.1. Funciones de pertenencia gaussiano y triangular.

La palabra difuso puede ser definida como: borroso, impreciso, confuso o vago. Los sistemas difusos son sistemas basados en conocimientos representados en forma de reglas. El corazón de los sistemas difusos consiste en bases de conocimientos de las llamadas reglas difusas IF-THEN.

Definición 3.1 Un conjunto difuso en un universo de discurso o conjunto universal U es caracterizado por una función de pertenencia $\mu_A(x)$ que puede tomar todos los valores reales, comprendidos en el intervalo [0, 1]. De aquí que, un conjunto difuso es la generalización de un conjunto clásico al permitir una función de pertenencia que puede tomar cualquier valor real dentro del intervalo [0, 1], y la función de pertenencia de un conjunto clásico solo puede tomar dos valores cero (0) o uno (1). Un conjunto difuso A en U puede ser representado como un conjunto de pares ordenados de elementos x y su valor de pertenencia está dado por:

$$A = \left\{ x, \mu_A(x) \mid x \in U \right\}$$
^(3.1)

Donde U es el universo del discurso continuo (por ejemplo, todos los números reales: U = R), A se escribe comúnmente como:

$$A = \int_{U} \mu_A(x) / x \tag{3.2}$$

Donde la integral no denota integración, denota la colección de todos los puntos $x \in U$, los cuáles tienen asociada una función de pertenencia $\mu_A(x)$.

Cuando U es discreto, A se escribe comúnmente como:

$$A = \sum \mu_A(x) / x \tag{3.3}$$

Donde la sumatoria no representa una suma aritmética, sino denota la colección de todos los puntos $x \in U$, los cuáles tienen asociada una función de pertenencia $\mu_A(x)$.

Hasta ahora se han introducido algunos conceptos básicos concernientes solamente a los conjuntos difusos sencillos (simples), definiremos las operaciones básicas sobre estos conjuntos, asumiendo que A y B son conjuntos difusos definidos en el mismo universo del discurso U. La igualdad, la pertenencia, el complemento, la unión e intersección de dos conjuntos difusos A y B son definidos a continuación:

Definición 3.2 Se dice que $A ext{ y } B$ son iguales si $ext{ y solamente si}$ $\mu_A(x) = \mu_B(x)$ para todo $x \in U$. Se dice que B está contenido o pertenece a $A ext{ y lo denotamos como } A \subset B$, si $ext{ y solamente si } \mu_A(x) \le \mu_B(x)$ para todo $x \in U$. El complemento de A es un conjunto difuso \overline{A} en U, cuya función de pertenencia esta definido como:

$$\mu_A(x) = 1 - \mu_A(x) \tag{3.4}$$

La unión de A y B es un conjunto difuso en U, denotado por $A \cup B$ cuya función de pertenencia μ está dada por:

$$\mu_{A\cup B}(x) = m \dot{a} x \left[\mu_A(x), \mu_B(x) \right]$$
(3.5)

La intersección de A y B es un conjunto difuso en $A \cap B$ en U con función de pertenencia μ está dada por:

$$\mu_{A \cap B}(x) = \min[\mu_A(x), \mu_B(x)]$$
(3.6)

Para justificar el porque se utiliza el término "máx" para la unión y el término "mín" para la intersección, se dará una explicación intuitiva: La unión de *A* y *B* es el conjunto difuso más pequeño que contiene a ambos, *A* y *B*, más concretamente, si *C* es un conjunto difuso que contiene a ambos *A* y *B*, entonces también contiene a la unión de *A* y *B*. Notemos que $A \cup B$ está definido por (3.5) que contiene a ambos *A* y *B*, porque $máx[\mu_A, \mu_B] \ge \mu_A$ y $máx[\mu_A, \mu_B] \ge \mu_B$, además si *C* es un conjunto difuso que contiene a ambos *A* y *B*, entonces $\mu_C \ge \mu_A$ y $\mu_C \ge \mu_B$, de aquí que $\mu_C \ge máx[\mu_A, \mu_B] = \mu_{A \cup B}$, de

manera que $A \bigcup B$ es el conjunto difuso más pequeño que contiene a ambos A y B.

Estas ecuaciones (3.4), (3.5) y (3.6), representan operaciones básicas sobre conjuntos difusos, sin embargo resulta interesante explorar otro tipo de operaciones que sean factibles dentro de los conjuntos difusos.

Unión Difusa, la Norma S

Sea $s:[0,1]\times[0,1]\rightarrow[0,1]$ un mapeo que transforma las funciones de pertenencia de conjuntos difusos $A \ y \ B$ en funciones de pertenencia de la unión de $A \ y \ B$, esto es:

$$s[\mu_A(x),\mu_B(x)] = \mu_{A\cup B}(x)$$
(3.7)

Para el caso de (3.5) $s[\mu_A(x), \mu_B(x)] = m dx [\mu_A(x), \mu_B(x)]$, la función s es vista como una unión, esta ecuación debe satisfacer al menos las siguientes cuatro condiciones:

Axioma 3.1 (s1). s(1,1) = 1, s(0,a) = s(a,0) = a (Condición de frontera) Axioma 3.2 (s2). s(a,b) = s(b,a) (Condición de conmutatividad) Axioma 3.3 (s3). Si $a \le a'$ y $b \le b'$, entonces $s(a,b) \le s(a',b')$ (Condición de no decremento) Axioma 3.4 (s4). s(s(a,b),c) = s(a,s(b,c)) (Condición de asociatividad) **Definición 3.3** La función $s:[0,1] \times [0,1] \rightarrow [0,1]$ que satisface los axiomas s1 al s4 es llamada una s-norma.

Intersección Difusa, la Norma T

Sea $t:[0,1]\times[0,1]\rightarrow[0,1]$ una función que transforma las funciones de pertenencia de los conjuntos difusos *A* y *B* a una función de pertenencia de la intersección de *A* y *B*, esto es:

$$t[\mu_A(x),\mu_B(x)] = \mu_{A \cap B}(x)$$
(3.8)

Para el caso (3.6), $t[\mu_A(x), \mu_B(x)] = min[\mu_A(x), \mu_B(x)]$ la función t es calificada como una intersección, si satisface las siguientes cuatro condiciones:

Axioma 3.5 (t1). t(0,0) = 0, t(a,1) = t(1,a) = a (Condición de frontera) Axioma 3.6 (t2). t(a,b) = t(b,a) (Condición de conmutatividad) Axioma 3.7 (t3). Si $a \le a'$ y $b \le b'$, entonces $t(a,b) \le t(a',b')$ (Condición de no decremento) Axioma 3.8 (t4). t(t(a,b),c) = t(a,t(b,c)) (Condición de asociatividad)

Definición 3.4 Una función $t:[0,1] \times [0,1] \rightarrow [0,1]$ que satisface los axiomas t1 al t4 es llamada una t-norma.

3.2.2. Variables Lingüísticas

En la vida cotidiana se utilizan palabras para describir variables, por ejemplo, cuando se dice hoy hace calor es equivalente a decir la temperatura actual es alta, se utiliza la palabra alta, para describir la temperatura actual, esto es, la variable temperatura actual toma la palabra alta como su valor, que también puede tomar algún número por ejemplo 28°C. Cuando una variable toma números como sus valores, se tiene un marco de trabajo bien formulado matemáticamente, pero cuando una variable toma palabras como sus valores no se tiene un marco de trabajo formal matemáticamente, de aquí que el concepto de variable lingüística se introduce, si una variable puede tomar palabras en lenguaje natural como sus valores, esta es llamada variable lingüística.

Definición 3.5 Si una variable puede tomar palabras del lenguaje natural como sus valores, esta es llamada "variable lingüística", donde las palabras están caracterizadas por conjuntos difusos definidos en el universo del discurso en la cuál la variable está definida.

Una definición más formal de variable lingüística esta dada por (Zadeh [1973] y [1975]), la cuál se menciona a continuación:

Definición 3.6 Una variable lingüística está caracterizada por (*X*, *T*, *U*, *M*), donde:

X es el nombre de la variable lingüística, que puede ser la temperatura del ambiente. T es el conjunto de valores lingüísticos que X puede tomar, por ejemplo, para la temperatura del ambiente $T = \{\text{baja, media, alta}\}$. U es el dominio físico actual en la cuál la variable lingüística X toma valores numéricos, para el ejemplo de la temperatura $U = [0, T_{max}]$. M es una regla semántica que relaciona cada valor lingüístico en T con un conjunto difuso en U.

El concepto de variable lingüística es importante porque son los elementos fundamentales de la representación del conocimiento humano. Cuando se utilizan sensores para medir una variable, estos entregan un valor numérico como salida, cuando se le pregunta a un experto humano para que evalúe una variable, ellos entregan palabras como salidas, de aquí que a partir del concepto de variables lingüísticas se pueden formular descripciones vagas en lenguaje natural a términos matemáticos precisos.

3.3. SISTEMAS DIFUSOS

Los sistemas difusos son sistemas basados en conocimiento de un experto humano, donde la parte esencial de un sistema difuso es la base de conocimientos que consiste de reglas difusas que tienen la forma:

IF antecedente THEN consecuente

La primera parte de la regla *IF* se denomina premisa o antecedente y contiene una o varias condiciones referidas a las entradas del sistema, la segunda parte de la regla *THEN* denominada consecuente es la acción a ejecutarse.

A continuación se muestra un ejemplo de una regla difusa de la forma *IF*-*THEN*:

IF la velocidad del auto es alta, THEN aplicar menos fuerza al acelerador.

Este tipo de reglas componen lo que se denomina base de reglas del sistema, donde las palabras "alta" y "menos" tienen asociadas funciones de pertenencia. Un sistema difuso está construido de un conjunto de reglas difusas. En resumen, el punto de inicio para la construcción de un sistema difuso es obtener una colección de reglas difusas de la forma *IF-THEN* de expertos humanos en base a su conocimiento y experiencia.

3.3.1. Diseño de Sistemas Difusos

Existen diferentes tipos de sistemas difusos, entre ellos tenemos:

- 1. Sistema Difuso Puro (ver Figura 3.2).
- 2. Sistema Difuso con fuzzificador y defuzzificador, (ver Figura

3.3).

- a) Mandami.
- b) Takagi-Sugeno-Kang (TSK).

Figura 3.2. Configuración básica de un sistema difuso puro.

La configuración básica de un sistema difuso puro se muestra en la Figura 3.2, el problema principal con los sistemas difusos puros es que sus entradas y sus salidas son palabras en lenguaje natural, por lo que no tiene un marco de trabajo formal matemáticamente y en la resolución de problemas de sistemas en ingeniería, las entradas y salidas son variables representadas con valores reales.

Para resolver este problema Takagi-Sugeno propusieron otro sistema difuso donde las entradas y salidas son variables con valores reales. Si se considera una regla difusa de la forma *IF-THEN*, el sistema TSK usa reglas de la siguiente forma:

IF la velocidad x de un auto es alta, *THEN* la fuerza del acelerador es y = cx.

Se puede observar que la parte *THEN* de la regla cambia de una descripción con lenguaje natural a una simple fórmula matemática, estos cambios hacen más fácil combinar las reglas, de hecho, el sistema difuso TSK es un promedio de pesos de los valores de la parte *THEN* de la regla, sin embargo este tipo de sistema presenta algunos problemas: La parte *THEN* es una fórmula matemática, por lo tanto no puede proporcionar un marco de trabajo en lenguaje natural que representa el conocimiento humano y no hay mucha libertad para aplicar diferentes principios de lógica difusa, así que la versatilidad de los sistemas difusos no esta muy bien representada con esta forma. Para resolver estos problemas se usará el sistema difuso llamado, sistema difuso con fuzzificador y defuzzificador, mostrado en la Figura 3.3.

Figura 3.3. Sistema difuso con fuzzificador y defuzzificador.

Este tipo de sistema difuso es el más utilizado y sobre el cuál se trabaja en este informe, de ahora en adelante cuando se haga mención de un controlador difuso se estará refiriendo a un sistema con las características previamente mencionadas.

Algunas características que distinguen a los sistemas difusos es que permiten múltiples entradas y una salida simple, mapeando de un vector de valores reales a un valor escalar real (un mapeo de múltiples salidas puede ser descompuesto en una colección de mapeos de salidas simples), donde las fórmulas matemáticas de estos mapeos pueden ser obtenidas. El control difuso provee una metodología formal para representar, manipular e implementar conocimiento humano acerca de como controlar un sistema, el controlador difuso que se desarrolla en el informe es del tipo Mandami, el cuál consta de cuatro componentes:

- La base de reglas, donde se almacena el conocimiento del experto humano que permite controlar un sistema, en forma de reglas.
- El mecanismo de inferencia, evalúa que reglas son relevantes en determinado tiempo y decide las posibles entradas a la planta.
- 3. La interfase de fuzzificacion, simplemente modifica las entradas para que puedan ser interpretadas y comparadas con el conjunto de reglas.

4. La interfase de defuzzificacion convierte las conclusiones del mecanismo de inferencia en entradas a la planta.

Básicamente se puede ver al controlador difuso como un tomador de decisiones artificial que opera en un sistema de lazo cerrado, compara la salida de la planta y(t) con la entrada de referencia r(t) y entonces decide que entrada a la planta u(t) asegura la realización de los objetivos.

Cuando se utilizan controladores difusos en lazo cerrado miden la salida de la planta y toman acciones de control sobre el proceso continuamente, para tratar que la salida de la planta y la entrada de referencia presenten el mínimo error. El objetivo al utilizar sistemas difusos es poner el conocimiento humano dentro de los sistemas de ingeniería de manera sistemática, eficiente y de manera organizada. Los sistemas difusos han sido empleados en una gran variedad de campos, tales como: control de sistemas, procesamiento de señales, reconocimiento de patrones, comunicaciones y sistemas de información, manufactura de circuitos integrados, sistemas expertos, medicina. Sin embargo las aplicaciones más significativas han sido concentradas en los problemas de control, con el diseño e implementación de controladores difusos.

3.3.2. Diseño de un Sistema Difuso utilizando el Método del Conocimiento del Experto

Los sistemas difusos utilizan el conocimiento humano para resolver problemas de ingeniería, este conocimiento puede ser clasificado en dos categorías: conocimiento consciente y conocimiento subconsciente. Por conocimiento consciente se entiende el conocimiento que puede ser descrito, es decir, que puede ser expresado por palabras y por conocimiento subconsciente se refiere a las situaciones donde el experto humano conoce que hacer bajo ciertas situaciones sin embargo no sabe como expresarlo en palabras.

Para el conocimiento consciente, podemos preguntar simplemente al experto humano que exprese en términos de reglas difusas de la forma *IF-THEN* su conocimiento y experiencia sobre determinado problema y obtener reglas difusas y ponerlas en la base de reglas del sistema difuso. Para el conocimiento subconsciente se puede preguntar al experto humano que lo demuestre, esto es, que demuestre como reaccionan ante algunas situaciones específicas, de esta manera el conocimiento subconsciente es transformado a un conjunto de reglas.

El método de diseño de un controlador difuso mediante el conocimiento del experto (también llamado prueba y error), puede resumirse en los siguientes tres pasos:

Analizar el sistema real, elegir las variables de estado y las variables de control.

Las variables de estado representan las características del sistema. Las variables de estado son las entradas al controlador difuso y la variable de control es la salida del controlador difuso.

 Derivar reglas difusas de la forma IF-THEN que relacionan las variables de estado con las variables de control.

La formulación de estas reglas se fundamenta en el conocimiento y experiencia del experto humano acerca del funcionamiento del sistema y las transforma en un conjunto de reglas de la forma *IF-THEN*.

 Combinar estas reglas en un sistema difuso y probarlo con el sistema en lazo cerrado.

Se ejecuta el sistema en lazo cerrado con el controlador difuso y se verifica el funcionamiento del sistema, si la respuesta no es satisfactoria se modifica el controlador difuso hasta obtener una respuesta adecuada.

3.4. CONTROL PD PARA EL SISTEMA BALL AND BEAM

El sistema B&B modelado en el capítulo anterior es muy utilizado por que es sencillo de entender y por sus técnicas de control utilizadas, tanto clásicas PD (Proporcional, Derivativo), como métodos de diseño más modernos. Este sistema es inestable en lazo abierto al no conocer continuamente la nueva posición de la esfera y decidir si ha alcanzado la posición deseada, sin embargo en lazo cerrado este dato se puede conocer retroalimentando al sistema colocando a la esfera en su nueva posición. Su dinámica está dada por la ecuación:

$$(I_{1} + mr^{2})\ddot{\alpha} + 2mr\dot{r}\dot{\alpha} + \left(mgr + \frac{L}{2}Mg\right)\cos\alpha = u$$

$$\frac{7}{5}\ddot{r} - r\dot{\alpha}^{2} + g\sin\alpha = 0$$
(3.9)
(3.10)

Para una posición fija $\dot{\alpha} = 0$, la aceleración de la esfera está dada por:

$$\ddot{r} = -\frac{5}{7}g\sin\alpha \tag{3.11}$$

Si se considera que la barra mide 40 cm. para fines prácticos se ubica en el centro de la misma en 20 cm. quedando 20 cm. hacia la derecha vista de frente, como la parte positiva de la barra y 20 cm. hacia la izquierda como la parte negativa. Si además se define que el ángulo θ (posición angular del motor) es positivo al girar hacia arriba del eje imaginario horizontal y negativo al desplazarse hacia abajo de dicho eje, para ambos casos, la velocidad de la esfera al desplazarse a través de la barra y la velocidad rotacional del motor para ubicar el nuevo ángulo serán mínimas (cercanas a cero), de aquí se define el vector de estado del sistema, $x = (r, \dot{r}, \theta, \dot{\theta})$, donde la salida del sistema y = r será la nueva posición de la esfera en la barra, y el

control *u* será la aceleración de θ . Como se mencionó anteriormente el propósito del control es determinar u(x) tal que el sistema de salida en lazo cerrado pueda converger a cero de una condición inicial arbitraria a una nueva posición. El universo del discurso para el vector de estado esta dado por: $U = [-2,2] \times [-2,2] \times [-\pi/30, \pi/30] \times [-\pi/16, \pi/16].$

3.4.1. Control PD

Un controlador que funciona típicamente como un amplificador con una ganancia constante k se conoce formalmente como control proporcional, ya que la señal de control a la salida del controlador está relacionada con la entrada del controlador mediante una constante proporcional.

El controlador de tipo proporcional derivativo (PD) presenta la siguiente función de transferencia,

$$G(s) = K_p + K_d s \tag{3.12}$$

Donde K_p , K_d es la constante proporcional y derivativa.

El control PD propuesto para controlar la posición angular θ del motor y para la posición de la esfera r es el siguiente:

$$u = K_{pm}(\theta^* - \theta) + K_{dm}(\dot{\theta}^* - \dot{\theta})$$
^(3.13)

$$\alpha^* = K_{pe}(r^* - r) + K_{de}(\dot{r}^* - \dot{r})$$
(3.14)

La relación entre α y θ está dada por:

$$\theta = 16\alpha \tag{3.15}$$
$$\theta^* = 16\alpha^*$$

Sustituyendo (3.15) en (3.13):

$$u = K_{pm} (16\alpha^* - 16\alpha) + K_{dm} (16\dot{\alpha}^* - 16\dot{\alpha})$$
$$u = 16(K_{pm} (\alpha^* - \alpha) + K_{dm} (\dot{\alpha}^* - \dot{\alpha}))$$
(3.16)

De (3.14) se tiene que: $\tilde{r} = r^* - r$, y para el problema de regulación $\dot{r}^* = 0$, por lo tanto (3.14) se reescribe como:

$$\alpha^* = K_{pe}\tilde{r} - K_{de}\dot{r} \tag{3.17}$$

$$\dot{\alpha}^* = -K_{de}\dot{r} \tag{3.18}$$

Sustituyendo (3.17) y (3.18) en (3.16):

$$u = 16 \left(K_{pm} \left((K_{pe} \tilde{r} - K_{de} \dot{r}) - \alpha \right) + K_{dm} \left((-K_{de} \tilde{r}) - \dot{\alpha} \right) \right)$$

$$u = 16K_{pm}K_{pe}\tilde{r} - 16K_{pm}K_{de}\dot{r} - 16K_{dm}K_{de}\ddot{r} - 16K_{pm}\alpha - 16K_{dm}c$$
$$u = 16K_{pm}K_{pe}\tilde{r} - 16K_{pm}K_{de}\dot{r} - 16K_{dm}K_{de}\ddot{r} - K_{pm}\frac{L}{d}\alpha - K_{dm}\frac{L}{d}\dot{\alpha} \qquad (3.19)$$

La ecuación (3.19) es el control PD para el sistema B&B sin compensador de gravedad,

Además L y d determinan la relación entre el ángulo de la barra α y el ángulo del motor θ , como se muestra en la Figura 3.4.

Figura 3.4. Relación entre el ángulo de la barra y el ángulo del motor.

3.4.2. Control PD en Configuración Cascada

La configuración del sistema más comúnmente utilizada es mostrada en la Figura 3.5, con el controlador colocado en cascada con el proceso controlado.

Figura 3.5. Control PD en configuración cascada.

Sea el control PD para el motor y la esfera:

$$u = K_{pm}(\theta^* - \theta) + K_{dm}(\dot{\theta}^* - \dot{\theta})$$
(3.20)

$$\theta^* = K_{pe}(r^* - r) + K_{de}(\dot{r}^* - \dot{r})$$
(3.21)

Se repiten las ecuaciones por simplicidad, donde $\tilde{\theta} = \theta^* - \theta$, y $\dot{\tilde{\theta}} = \dot{\theta}^* - \dot{\theta}$, reescribiendo el control para el motor en (3.20):

$$u = K_{pm}\tilde{\theta} + K_{dm}\dot{\tilde{\theta}}$$
(3.22)

Para la ecuación (3.21) de control de posición de la esfera:

$$\theta = K_{pe}\tilde{r} + K_{de}\dot{\tilde{r}}$$
(3.23)

Donde $\widetilde{r} = r^* - r$, y $\dot{\widetilde{r}} = \dot{r}^* - \dot{r}$

Aplicando la transformada de Laplace a (3.22) para obtener la función de transferencia del controlador PD del motor.

$$U(s) = (K_{pm} + K_{dm}s)\widetilde{\theta}(s)$$

$$\frac{U(s)}{\widetilde{\theta}(s)} = K_{pm} + K_{dm}s$$
(3.24)

Aplicando la transformada de Laplace a (3.23) para obtener la función de transferencia del controlador PD de la esfera.

$$\theta(s) = (K_{pe} + K_{de}s)\tilde{r}(s)$$

$$\frac{\theta(s)}{\tilde{r}(s)} = K_{pe} + K_{de}s$$
(3.25)

La función de transferencia para el motor, utilizando el modelo simplificado es:

$$\frac{\theta(s)}{U(s)} = \frac{1}{0.01176s^2 + 0.58823s}$$
(3.26)

Por lo que el control para el motor queda de la siguiente manera:

$$G_{o1} = \frac{U(s)}{\tilde{\theta}(s)} \frac{\theta(s)}{U(s)} = \frac{K_{pm} + K_{dm}s}{0.01176s^2 + 0.58823s}$$
(3.27)

El sistema en lazo cerrado:

$$G_m = \frac{G_{o1}}{1 + G_{o1}}$$
(3.28)

Sustituyendo y agrupando términos en s obtenemos:

$$G_m = \frac{K_{pm} + K_{dm}s}{0.01176s^2 + (0.58823 + K_{dm})s + K_{pm}}$$
(3.29)

Sustituyendo los valores del controlador PD del motor $K_{pm} = 5.79$, $K_{dm} = 0$:

$$G_m = \frac{5.79}{0.01176s^2 + 0.58823s + 5.79}$$
(3.30)

La función de transferencia para el modelo de la esfera, en su forma simplificada es:

$$\frac{r(s)}{\theta(s)} = \frac{7}{s^2} \tag{3.31}$$

Por lo que el control para la esfera queda de la siguiente manera:

$$G_{o2} = \frac{\theta(s) r(s)}{\tilde{r}(s) \theta(s)} G_m = \frac{7(K_{pe} + K_{de}s)}{s^2} \frac{5.79}{0.01176 s^2 + 0.5882 s + 5.79}$$
(3.32)

Desarrollando:

$$G_{o2} = \frac{40.53(K_{pe} + K_{de}s)}{0.01176 \ s^4 + 0.58823 \ s^3 + 5.79 \ s^2}$$
(3.33)

El sistema en lazo cerrado:

$$G_s = \frac{G_{o2}}{1 + G_{o2}}$$
(3.34)

Sustituyendo y agrupando términos en *s* obtenemos:

$$G_{s}(s) = \frac{40.53(K_{pe} + K_{de}s)}{0.01176 s^{4} + 0.58823 s^{3} + 5.79 s^{2} + 40.53(K_{pe} + K_{de}s)}$$
(3.35)

Sustituyendo los valores del controlador PD para la esfera $K_{pe} = 2.2$, $K_{de} = 0.8$:

$$G_s(s) = \frac{32.424s + 89.166}{0.01176s^4 + 0.58823s^3 + 5.79s^2 + 32.424s + 89.166}$$
(3.36)

Utilizando el Matlab para obtener las raíces del polinomio del denominador: $x_1 = -39.1055$, $x_{2,3} = -2.7468 \pm 5.3127i$, $x_4 = -5.4206$, estas raíces se encuentran en el lugar geométrico de las raíces de la Figura 3.6.

Se observa que la parte real de las raíces del polinomio son negativas, esto es, se encuentran en la parte negativa del semiplano complejo. Por lo que se concluye que el sistema es estable.

3.4.3. Control PD en Configuración Paralela

Un controlador PD en configuración paralela está dado por la siguiente ecuación:

$$G_{p}(s) = u + \theta = \left(K_{pm}\widetilde{\theta} + K_{dm}\dot{\widetilde{\theta}}\right) + \left(K_{pe}\widetilde{r} + K_{de}\dot{\widetilde{r}}\right)$$
(3.37)

El diagrama de bloques de la configuración del controlador PD en paralelo es mostrado en la Figura 3.7.

Figura 3.7. Control PD en configuración paralela.

Por simplicidad se reescribe los controladores PD para el motor y para la esfera en términos de la función de transferencia:

$$G_{PD1} = \frac{U(s)}{\widetilde{\theta}(s)} = K_{pm} + K_{dm}s$$
^(3.38)

$$G_{PD2} = \frac{\theta(s)}{\widetilde{r}(s)} = K_{pe} + K_{de}s$$
(3.39)

El primer subsistema es:

$$G_{p1} = \frac{G_{o3}}{1 + G_{o3}} G_b \tag{3.40}$$

Donde:

$$G_b = \frac{7}{s^2} \tag{3.41}$$

$$G_{o3} = \frac{K_{pm} + K_{dm}s}{0.01176s^2 + 0.58823s}$$
(3.42)

Los valores del controlador PD del motor $K_{pm} = 5.79$, $K_{dm} = 0$, sustituyendo G_{o3} y G_b en (3.40):

$$G_{p1} = \frac{\frac{K_{pm}}{0.01176s^2 + 0.58823s}}{1 + \frac{K_{pm}}{0.01176s^2 + 0.58823s}} \frac{7}{s^2}$$
(3.43)

Multiplicando el numerador y el denominador por $0,01176s^2 + 0,58823s$:

$$G_{p1} = \frac{5.79}{0.01176s^2 + 0.58823s + 5.79} \frac{7}{s^2}$$
(3.44)

La función de transferencia del primer subsistema es:

$$G_{p1} = \frac{40.53}{0.01176\,s^4 + 0.58823\,s^3 + 5.79s^2} \tag{3.45}$$

El segundo subsistema es:

$$G_{p2} = \frac{G_{o4}}{1 + G_{o4}}$$
(3.46)

Donde:

$$G_{o4} = G_{PD2}G_mG_b = \frac{K_{pe} + K_{de}s}{0.01176s^2 + 0.58823s} \frac{7}{s^2}$$
$$= \frac{7(K_{pe} + K_{de}s)}{0.01176s^4 + 0.58823s^3}$$
(3.47)

Sustituyendo los valores del controlador PD para la esfera $K_{pe} = 2.2$,

$$K_{de} = 0.8$$
:

$$G_{o4} = \frac{7(2.2 + 0.8s)}{0.01176 \, s^4 + 0.58823 \, s^3} = \frac{15.4 + 5.6s}{0.01176 \, s^4 + 0.58823 \, s^3}$$
(3.48)

Sustituyendo:

$$G_{p2} = \frac{G_{o4}}{1 + G_{o4}}$$
(3.49)

$$G_{p2} = \frac{15.4 + 5.6s}{1 + \frac{15.4 + 5.6s}{0.01176^4 + 0.58823^3}} = \frac{15.4 + 5.6s}{0.01176^4 + 0.58823^3 + 5.6s + 15.4}$$
(3.50)

Donde el control PD en paralelo está dado por:

$$G_P(s) = G_{P1} + G_{P2} \tag{3.51}$$

「「「「」」」をいっていていていています。」

Sustituyendo y agrupando términos en s obtenemos:

$$G_{P}(s) = \frac{40.53}{0.01176 s^{4} + 0.58823 s^{3} + 5.79 s^{2}} + \frac{15.4 + 5.6}{0.01176 s^{4} + 0.58823 s^{3} + 5.6s + 15.4}$$
(3.52)

Por lo tanto la función de transferencia del sistema en configuración paralela está dado por:

$$G_{p}(s) = \frac{0.06585 \, s^{5} + 3.9517 \, s^{4} + 65.3237 \, s^{3} + 89.1660 \, s^{2} + 226.9680 \, s + 624.1620}{0.0001 \, s^{8} + 0.0138 \, s^{7} + 0.4141 \, s^{6} + 3.4717 \, s^{5} + 3.4752 \, s^{4} + 41.4827 \, s^{3} + 89.1660 \, s}$$
(3.53)

Utilizando el Matlab para obtener las raíces del polinomio del denominador: $x_{1,2} = 0$, $x_3 = -1.0005$, $x_4 = -0.2373$, $x_5 = -0.1441$, $x_{6,7} = 0.0108 \pm 0.0347i$, $x_8 = -0.0197$. El lugar geométrico de las raíces se muestra en la Figura 3.8.

Figura 3.8. Raíces del polinomio.

La parte real de las raíces del polinomio se encuentran en la parte negativa y positiva del semiplano complejo. Para que un sistema sea estable todas las raíces deben estar en la parte negativa del semiplano complejo, por lo que el sistema no es estable, al presentar polos en la parte positiva.

3.5. CONTROL PD-DIFUSO PARA EL SISTEMA BALL AND BEAM

El control difuso se agrega a los controladores PD convencionales como un término compensador para disminuir el error de posición de la esfera en estado estacionario debido a la gravedad, se escribe el control PD más el control difuso de la siguiente manera:

$$u = K_{pm}(\theta^* - \theta) + K_{dm}(\dot{\theta}^* - \dot{\theta}) + \pi$$
^(3.54)

$$\theta^* = K_{pe}(r^* - r) + K_{de}(\dot{r}^* - \dot{r})$$
(3.55)

Donde π es el control difuso que cumple la función de un compensador.

Dentro del funcionamiento de los sistemas de control difuso, se pueden distinguir tres partes fundamentales: una primera etapa de fuzzificacion de los valores de entrada, otra de evaluación de reglas de control difusas y una última de defuzzificacion, para obtener valores reales de salida (ver Figura 3.9).

Figura 3.9. Sistema de inferencia difusa.

La fuzzificacion de la entrada es el proceso por el cual se calcula el grado de pertenencia de uno o varios de los conjuntos difusos en que se divide el rango de los posibles valores de dicha entrada. Para el sistema B&B el estado r tendrá dos funciones de pertenencia: positivo y negativo al igual que el ángulo del motor θ , para sus respectivas velocidades \dot{r} y $\dot{\theta}$ tendrán solo uno: "cercano a cero".

Cuando se trabaja con conjuntos difusos es necesario establecer funciones de pertenencia de los elementos a los diferentes conjuntos, lo cual permite determinar, a partir del valor de un elemento su grado de pertenencia al conjunto, siendo este un valor real normalizado entre 0 (no pertenece en absoluto) y 1 (pertenece al 100%), esta función se denota como $\mu(x)$, siendo x el valor del elemento. Las funciones deben definirse a partir de la experiencia o la intuición simplemente utilizando el sentido común del diseñador, suelen tener forma triangular, trapezoidal o gaussiana.

La función de pertenencia triangular está definida por tres parámetros [a,b,c] como sigue.

$$triangulo(x:a,b,c) = \begin{cases} 0 & x < a \\ (x-a)/(b-a) & a \le x \le b \\ (c-x)/(c-b) & b \le x \le c \\ 0 & x > c \end{cases}$$
(3.56)

Puede ser expresada como: triángulo $(x:a,b,c) = max\left\{min\left(\frac{x-a}{b-a},\frac{c-x}{c-b}\right),0\right\}$.

En la Figura 3.10 se ilustra un ejemplo de una función de pertenencia definida por el triangulo (x:3,5,7).

Figura 3.10. Función de pertenencia triangular.

La función de pertenencia Gaussiana esta especificada por dos parámetros $[m, \sigma]$ como sigue.

$$gaussiana(x:m,\sigma) = e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2}$$
(3.57)

Donde *m* y σ denotan el centro y el ancho de la función respectivamente.

Nosotros podemos controlar la forma de la función ajustando el parámetro σ . Para valores pequeños de σ generamos funciones de pertenencia "delgadas", mientras que para valores mas grandes de *m* generamos funciones de pertenencia "sobre el piso". En la Figura 3.11 se muestra una función de pertenencia definida por gaussiana (x:1,5).

Figura 3.11. Función de pertenencia gaussiana.

3.5.1. Diseño de un Control Difuso Vía Conocimiento del Experto

El control difuso puede ser clasificado en control difuso adaptivo y control difuso no adaptivo. En el control difuso no adaptivo, la estructura y los parámetros del controlador difuso son fijos y no cambian durante la operación en tiempo real. En el control difuso adaptivo, la estructura y/o los parámetros del controlador difuso cambian durante la operación en tiempo real. El control difuso no adaptivo es más simple que el control difuso adaptivo, pero requiere más conocimiento del modelo o del proceso, así como de las reglas heurísticas. El control difuso adaptivo es más caro de implementar, pero requiere menos información y mejora muchas características. En el presente informe se diseña un controlador difuso no adaptivo. Para poder controlar el funcionamiento del sistema B&B se debe establecer una serie de reglas de la forma IF-THEN para indicar la acción a realizar, estas reglas de control están basadas en la intuición, sentido común y experiencia del experto acerca del funcionamiento del sistema.

- IF x₁ es positivo AND x₂ esta cerca de cero AND x₃ es positivo
 AND x₄ esta cerca de cero, THEN u es negativo
- IF x₁ es positivo AND x₂ esta cerca de cero AND x₃ es negativo
 AND x₄ esta cerca de cero, THEN u es positivo grande
- IF x₁ es negativo AND x₂ esta cerca de cero AND x₃ es positivo
 AND x₄ esta cerca de cero, THEN u es negativo grande
- IF x₁ es negativo AND x₂ esta cerca de cero AND x₃ es negativo
 AND x₄ esta cerca de cero, THEN u es positivo

Las entradas al sistema son, la posición de la esfera en la viga r, su velocidad \dot{r} , la posición angular θ del motor, y su velocidad angular $\dot{\theta}$. La salida del sistema será la nueva posición de la esfera y, donde $r = x_1$, $\dot{r} = x_2$, $\theta = x_3$, $\dot{\theta} = x_4$.

Se definen las funciones de pertenencia sobre el espacio de entradas y salidas, donde las entradas x_1 y x_3 presentan dos funciones de pertenencia: *positivo* y *negativo*; x_2 y x_4 presentan únicamente una: *cerca de cero* y la salida *u* presenta cuatro funciones de pertenencia: *negativo*, *negativo grande*, *positivo y positivo grande*. Las funciones de pertenencia de entrada y salida son gaussianas.

3.5.2. Construcción del Sistema Difuso

Se elije la estructura del sistema difuso con fuzzificador tipo gaussiano, motor de inferencia producto y defuzzificador con centro promedio.

La base de reglas comprende el siguiente tipo de regla difusa IF-THEN:

IF x1 esta en A'_1 AND,..., AND A'_n THEN y esta en B'

Con motor de inferencia producto:

$$\mu_{B'}(y) = \min_{l=1}^{m} \left[\sup_{x \in U} \mu_{A'}(x) \prod_{i=1}^{n} \mu_{A'_{i}}(x_{i}) \mu_{B'}(y) \right]$$
(3.58)

El fuzzificador tipo gaussiano:

$$\mu_{A'}(x_i) = \exp\left[-\left(\frac{x_i - m_i}{\sigma_i}\right)^2\right]$$
(3.59)

El defuzzificador centro promedio:

$$y = \frac{\sum_{l=1}^{M} \bar{y}' w_{l}}{\sum_{l=1}^{M} w_{l}}$$
(3.60)

Por lo que el sistema difuso presenta la siguiente estructura:

$$f(x) = \frac{\sum_{l=1}^{M} \bar{y}^{l} \left(\prod_{i=1}^{n} \mu_{A_{i}^{l}} x(i)\right)}{\sum_{l=1}^{M} \left(\prod_{i=1}^{n} \mu_{A_{i}^{l}} x(i)\right)}$$
(3.61)

En el Toolbox de lógica difusa, existen 5 partes en el proceso de inferencia difusa:

- Fuzzificacion de las variables de entrada
- Aplicación del operador difuso AND o OR en el antecedente
- Implicación del antecedente al consecuente
- Agregación del consecuente con todas las reglas
- Defuzzificacion

3.5.3. Prueba de la Inferencia Difusa

Consideremos la siguiente regla difusa:

IF x_1 es positivo AND x_2 esta cerca de cero AND x_3 es positivo AND x_4 esta cerca de cero, **THEN** u es negativo.

Las entradas al sistema son: $x_1 = 1.2$, $x_2 = -0.6$, $x_3 = 0.03$, $x_4 = -0.025$. Donde el universo del discurso es $U = [-2,2] \times [-2,2] \times [-0.1,0.1] \times [-0.2,0.2]$. Hay que hacer notar que \times no denota un producto cruz, simplemente es el dominio de entrada de las variables.

La fuzzificacion de las variables de entrada consiste en tomar las entradas, que se encuentran dentro del intervalo del universo del discurso y asignarle a cada entrada un valor entre 0 y 1 de acuerdo a la función de pertenencia del conjunto difuso correspondiente, ver Figura 3.12.

Figura 3.12. Fuzzificacion de las entradas.

Se define a continuación las funciones de pertenencia para el sistema: Donde los positivos para x_1 es un conjunto difuso P_1 con función de pertenencia:

$$\mu_{P_1}(x_1) = \exp\left[-\frac{1}{2}\left(\frac{x_1 - m}{\sigma}\right)^2\right]$$
(3.62)

El negativo para x_1 es un conjunto difuso N_1 con función de pertenencia:

$$\mu_{N_1}(x_1) = \exp\left[-\frac{1}{2}\left(\frac{x_1 + m}{\sigma}\right)^2\right]$$
(3.63)

Cerca de cero para ambos x_2 y x_4 es un conjunto difuso CZ con función de pertenencia:

$$\mu_{CZ}(x_2) = \exp\left[-\frac{1}{2}\left(\frac{x_2+m}{\sigma}\right)^2\right],$$

$$\mu_{CZ}(x_4) = \exp\left[-\frac{1}{2}\left(\frac{x_4 + m}{\sigma}\right)^2\right]$$
(3.64)

El positivo para x_3 es un conjunto difuso P_3 con función de pertenencia:

$$\mu_{P_3}(x_3) = \exp\left[-\frac{1}{2}\left(\frac{x_3 - m}{\sigma}\right)^2\right]$$
(3.65)

El negativo para x_3 es un conjunto difuso N_3 con función de pertenencia:

$$\mu_{N_3}(x_3) = \exp\left[-\frac{1}{2}\left(\frac{x_3 + m}{\sigma}\right)^2\right]$$
(3.66)

El positivo para μ es un conjunto difuso P_{μ} con función de pertenencia:

$$\mu_{P_{\mu}}(\mu) = \exp\left[-\frac{1}{2}\left(\frac{\mu-m}{\sigma}\right)^{2}\right]$$
(3.67)

El negativo para μ es un conjunto difuso N_{μ} con función de pertenencia:

$$\mu_{N_{\mu}}(\mu) = \exp\left[-\frac{1}{2}\left(\frac{\mu+m}{\sigma}\right)^{2}\right]$$
(3.68)

El mayormente positivo para μ es un conjunto difuso PB_{μ} con función de pertenencia:

$$\mu_{PB_{\mu}}(\mu) = \exp\left[-\frac{1}{2}\left(\frac{B\mu - m}{\sigma}\right)^{2}\right]$$
(3.69)

El mayormente negativo para μ es un conjunto difuso NB_{μ} con función de pertenencia:

$$\mu_{NB_{\mu}}(\mu) = \exp\left[-\frac{1}{2}\left(\frac{N\mu + m}{\sigma}\right)^{2}\right]$$
(3.70)

Se muestra la siguiente tabla con los valores respectivos de las constantes, para cada una de las funciones de pertenencia gaussiana, de los pares de entrada en la simulación, donde m, σ son equivalentes a $\hat{x}_i' y \sigma_i'$.

	m	σ
$\mu_{P1}(x_1)$	2	1.8
$\mu_{N1}(x_1)$	-2	1.8
$\mu_{CZ}(x_2)$	0	0.9
$\mu_{P3}(x_3)$	0.09	0.09
$\mu_{N3}(x_3)$	-0.09	0.09
$\mu_{CZ}(x_4)$	0	0.06

Cuadro A.1: Constantes para funciones de pertenencia gaussiana.

Se muestra la siguiente tabla con los valores respectivos de las constantes, para cada una de las funciones de pertenencia triangular de la salida utilizadas en la simulación.

	a	b	С
$\mu_{Pu}(u)$	-0.3	-0.3	-0.1
$\mu_{\scriptscriptstyle Nu}(u)$	-0.3	-0.1	0.1
$\mu_{PBu}(u)$	-0.1	0.1	0.3
$\mu_{\scriptscriptstyle NBu}(u)$	0.1	0.3	0.3

Cuadro A.2: Constantes para funciones de pertenencia triangular.

Se aplica el operador difuso AND al antecedente de las reglas difusas: mín(0.9,0.8,0.8,0.9)=0.8, se obtiene el valor mínimo, este valor se le asigna a la función de pertenencia correspondiente al consecuente de la regla difusa, ver la Figura 3.13.

Figura 3.13. Operador mín en la primera regla difusa.

La agregación consiste en mostrar los valores correspondientes a la parte THEN de todas las reglas. Por último se realiza la defuzzificacion, esto es, se obtiene el centro promedio del área bajo la curva, ver Figura 3.14.

Figura 3.14. Agregación y defuzzificacion.

3.5.4. Método Gráfico de Diseño de un Controlador Difuso

En esta parte del informe llevamos a cabo la simulación del comportamiento del controlador difuso realizado. Esto con el fin de conocer si realiza las acciones que de él se esperan: es decir tiene el comportamiento deseado. Existen varios programas que llevan a cabo la simulación de control difuso; en este caso utilizamos el Matlab. Este programa posee varias cajas de herramientas que abarcan diversas áreas de la computación técnica, lo que lo convierte en un auxiliar importante en este tipo de tareas. Una de estas herramientas es el "*Fuzzy Logic Toolbox*", que permite simulaciones del funcionamiento del controlador difuso.

La programación de esta herramienta es muy amigable, cuenta con una interfaz totalmente grafica, que permite introducir las variables del controlador en una forma sencilla. A continuación presentamos una explicación de cómo se introducen los datos en el simulador acompañado de imágenes que muestran el procedimiento:

Para ingresar al Toolbox de lógica difusa se emplea el comando *fuzzy*, el cual permite trabajar en la ventana *FIS Editor*. El primer paso es definir el método del controlador entre el de Sugeno y Mandani, se eligió el de Mandani. En la Figura 3.15 se muestra la interfaz en la que se introducen las variables.

Figura 3.15. Interfaz para la introducción de las variables.

En esta misma interfaz se hace la definición de las variables tanto de entrada como de salida; y aunque se puede definir más de una salida se simulará de acuerdo al modelo matemático obtenido. Adicionalmente se define el tipo de disyunción, conjunción, implicación, agregación y defuzzificacion.

El segundo paso es definir tanto los espacios de entrada como los de salida. Esto se realiza en una nueva interfaz (ver Figura 3.16) en la que se define el rango de los espacios, el número y tipo de clusters en los que éstos se dividen. Para acceder a esta interfaz se emplea el comando *mfedit*, o simplemente se ingresa a la ventana *Membership function editor* del *FIS Editor*. Se definen también las etiquetas de cada cluster, así como los parámetros de cada uno (puntos numéricos que marcan los límites de los clusters).

Figura 3.16. Definición de rango de los espacios, el número y tipo de clusters.

El siguiente paso es editar las reglas que dan forma al controlador; una vez más en una nueva interfaz (ver Figura 3.17) llamada *Rule Editor*. En ella se presentan las variables definidas en la etapa anterior, así que basta con seleccionar junto a las condiciones que las relacionan, apegadas a la base de conocimiento del ambiente gráfico y una vez hecho esto las reglas se van agregando de manera sencilla.

Los pasos anteriores son los únicos necesarios para configurar la simulación. Lo único que se necesita ahora es pedirle al programa que muestre las reglas, lo cual se hace en una nueva ventana llamada *Rule Viewer*. En ella se aprecia la naturaleza gráfica del comportamiento del controlador en el simulador.

Figura 3.17. Definición de las reglas de control.

El programa despliega el conjunto de reglas. Existen dos formas de ingresar los valores de entrada; una en el cuadro de dialogo correspondiente o simplemente dando clic con el ratón sobre las representaciones graficas de las entradas en un punto deseado. Las salidas se muestran en la columna de la extrema derecha, donde se aprecian claramente las reglas cumplidas y en la inferior de esta columna el polígono resultante de la inferencia. En la Figura 3.18 se muestra el resultado de la defuzzificacion tanto en forma grafica con una línea roja como numérica en la parte superior de la columna.

Figura 3.18. Los resultados de la defuzzificacion.

Como resultado al procedimiento descrito, previa recopilación del conocimiento experto, se tiene conformado el controlador difuso. Realizada su simulación, podemos tener la seguridad de que funciona de acuerdo a lo esperado.

CAPÍTULO 4 RESULTADOS DE LA SIMULACIÓN

Se muestra el sistema B&B con el que se pretende realizar la simulación, esperando lograr estabilizar la esfera en una posición deseada, (ver Figura 4.1).

Figura 4.1. Sistema Ball and Beam.

La planta del sistema esta dado por las siguientes ecuaciones diferenciales:

• Motor DC

$$\frac{R_m J_m}{K_m K_g} \ddot{\theta} + \left(\frac{R_m B_m}{K_m K_g} + K_m\right) \dot{\theta} = u$$
(4.1)

• Barra-Esfera

$$\frac{7}{5}\ddot{r} - r\dot{\alpha}^2 = -g\sin\alpha \tag{4.2}$$

 Aproximación lineal de la relación de ángulos de la barra y el engrane del motor:

$$\theta = 16\alpha \tag{4.3}$$

4.1. CONTROLADOR DIFUSO PURO

El control difuso con cuatro reglas lingüísticas no logra estabilizar el sistema B&B en lazo cerrado, presenta oscilaciones en la posición de la esfera y después de determinado tiempo se disparan (ver Figura 4.2). La señal de entrada al sistema es una señal cuadrada con una amplitud de ± 2 V y una frecuencia de 0.015 Hertz.

Figura 4.2. Señal de salida del control difuso puro.

El control difuso para el sistema esta dado por:

$$\pi = u_{DIFmotor}(x) + u_{DIFesfera}(x) \tag{4.4}$$

4.2. CONTROLADOR PD-DIFUSO

4.2.1. Controlador PD

El control PD en configuración cascada logra estabilizar al sistema B&B en lazo cerrado, la esfera logra estabilizarse en la posición deseada presentando cierto margen de error en estado estacionario, se muestra el controlador PD en configuración cascada:

$$u = K_{pm}(\theta^* - \theta) + K_{dm}(\dot{\theta}^* - \dot{\theta})$$
^(4.5)

$$\theta^* = K_{pe}(r^* - r) + K_{de}(\dot{r}^* - \dot{r})$$
(4.6)

Se muestra el diagrama en Simulink que presenta un controlador PD tanto para el control de posición del motor como de la esfera, estos dos tipos de controladores no presentan una compensación (ganancia) para cancelar el efecto de la gravedad, (ver Figura 4.3).

Figura 4.3. Sistema con control PD en configuración cascada.

Figura 4.3. Sistema con control PD en configuración cascada.

Los datos del control PD del motor son: $K_{pm} = 5.79$, $K_{dm} = 0$. Los datos del control PD de la esfera son: $K_{pe} = 2.2$, $K_{de} = 1.5$, a este control se le puede agrega una señal de ruido como perturbación. Ambos controladores se encuentran en configuración cascada, (ver Figura 4.4).

Figura 4.4. Controladores PD para el motor y la esfera.

A la salida del controlador PD de la esfera se presenta un limitador de ± 1 , el cual limita la posición de la esfera. La señal de entrada es cuadrada de amplitud de ± 2 V, y una frecuencia de 0.015Hz

La respuesta que presenta el sistema sin compensador y los niveles de error que puede alcanzar con respecto a la señal de referencia se muestran en utilizar un compensador, esto afecta la posición final de la esfera, aunque si se estabiliza en cierta región, no podría llegar exactamente a la posición deseada pues presentará un nivel de error considerable.

Figura 4.5. Salida del sistema y señal de control.

El control PD en configuración cascada logra estabilizar al sistema B&B en lazo cerrado, la esfera logra estabilizarse en la posición deseada presentando cierto margen de error en estado estacionario.

4.2.2. Controlador PD con Compensador

El controlador PD en configuración cascada con compensador es:

$$u = K_{pm}(\theta^* - \theta) + K_{dm}(\dot{\theta}^* - \dot{\theta}) + \gamma$$
^(4.7)

$$\theta^* = K_{pe}(r^* - r) + K_{de}(\dot{r}^* - \dot{r})$$
(4.8)

Donde γ es el término compensador de la gravedad $\left(mgr + \frac{L}{2}Mg\right)\sin\alpha$, que se obtiene al calcular la energía potencial del

sistema, por lo cual es representado por:

$$\gamma = -3(0.01(6+r)+0.3) \times \cos\left(\frac{\theta}{16}\right)$$
^(4.9)

El siguiente diagrama muestra el modelo del sistema Simulink con el compensador para tratar de disminuir el error de posición de la esfera, a causa de la gravedad, como se muestra en la Figura 4.6.

Figura 4.6. Sistema con control PD en configuración cascada con compensador.

Los datos del control PD del motor y del control PD de la esfera son idénticos a los utilizados anteriormente. En la Figura 4.7 se muestra el compensador utilizado al detalle:

Figura 4.7. Esquema del compensador.

Se muestra las graficas obtenidas y se observan los niveles de error para una señal de entrada cuadrada y una amplitud de $\pm 2V$ con una frecuencia de 0.015 Hz, (ver Figura 4.8). Se puede observar que el compensador disminuye el nivel de error que presenta el sistema, el error es de aproximadamente de 2.5 unidades.

Figura 4.8. Salida del sistema y señal de control.

El compensador se escogió de tal forma que cancela el efecto de la gravedad de la esfera, se toma en cuenta la relación de los ángulos α y θ ($\alpha = \theta/16$), esta relación guarda el ángulo de la barra con el ángulo del engrane del motor, las velocidades traslacionales de la esfera así como las velocidades rotacionales del motor se consideraron muy pequeñas y se aproximaron a cero, pudiendo ser canceladas. El hecho de escoger este compensador tiene su justificación en el análisis de estabilidad del sistema B&B linealizado que efectivamente demuestra ser estable.

4.2.3. Controlador PD con Compensador Difuso

El compensador analítico construido previamente cancela o minimiza únicamente el efecto de gravedad, sin embargo el controlador difuso que es un término compensador, minimiza efectivamente el efecto de gravedad y otras dinámicas no modeladas, por lo que reduce el error en estado estacionario. Se utiliza un control PD Difuso de la forma:

$$u = K_{pm}(\theta^* - \theta) + K_{dm}(\dot{\theta}^* - \dot{\theta}) + \pi$$
(4.10)

$$\theta^* = K_{pe}(r^* - r) + K_{de}(\dot{r}^* - \dot{r})$$
(4.11)

Donde el compensador está dado por:

$$\pi = \frac{\sum_{j=1}^{m} \overline{y}^{j} \left(\prod_{i}^{n} \mu_{A_{i}^{j}} x(i)\right)}{\sum_{j=1}^{m} \left(\prod_{i}^{n} \mu_{A_{i}^{j}} x(i)\right)}$$
(4.12)

El controlador difuso a utilizar presenta la siguiente estructura: fuzzificador gaussiano, motor de inferencia producto y defuzzificador centro promedio. El diseño del controlador sigue los pasos del método diseño de un controlador difuso, mediante el esquema de tabla de búsqueda, el cual será añadido a los controladores PD ya existentes en el modelo. El control PD estabiliza al sistema, por lo que el controlador difuso únicamente disminuiría los efectos de la gravedad sobre el sistema, reduciendo el error de posición de la esfera pudiéndolo colocar en una posición más precisa que los anteriores controladores sin el término de compensación, así mismo encontraremos un respuesta mas suave y un menor sobreimpulso. Presentaremos el diseño del controlador difuso en configuración cascada y paralela.

Configuración Cascada

Se analizará el controlador difuso para el sistema B&B en configuración cascada, tal como se muestra en la Figura 4.9.

Figura 4.9. Sistema con control PD-Difuso en configuración cascada.

El controlador PD que controla la posición de la esfera presenta una ganancia proporcional de 0.3 y derivativa de 0.4, con un limitador a la salida $de \pm 1$. Dentro del bloque del controlador PD para la posición del motor (el cual consta de un control difuso y un control PD clásico en configuración

paralela), el controlador difuso presenta una ganancia de 5.5, y el controlador PD clásico tiene una ganancia proporcional de 2.18 y una ganancia derivativa de 0.3, tal como se muestra en la Figura 4.10.

Figura 4.10. Controlador PD-Difuso para el motor.

Configuración Paralela

Se analizará el controlador difuso para el sistema B&B en configuración paralela, es decir, los controladores PD de posicionamiento de la esfera y del motor se encuentran en paralelo con el controlador difuso, este control PD-Difuso se muestra en la Figura 4.11.

Figura 4.11. Sistema con control PD-Difuso en configuración paralela.

El controlador PD que controla la posición de la esfera presenta una ganancia proporcional de 0.1 y derivativa de 0.3. Dentro del bloque del controlador PD para la posición del motor (el cual consta de un control difuso y un control PD clásico en configuración paralela), el controlador difuso presenta una ganancia de 0.5 y el controlador PD clásico tiene una ganancia proporcional de 5.0 y una ganancia derivativa de 0.3, tal como se muestra en la Figura 4.10.

Figura 4.12. Controlador PD-Difuso en configuración paralela.

La respuesta del sistema mediante esta configuración presenta errores mínimos, sin dejar de estabilizar al sistema. Observamos en la Figura 4.13 un sobreimpulso menor al 2% lo que nos dice que se aproxima bastante bien a nuestra consideración de diseño planteada.

El error en estado estable con respecto a la configuración PD-Difuso en configuración cascada aumenta mínimamente, manteniendo al sistema estable. Si se utiliza únicamente el control difuso para controlar al sistema en dicha configuración, el sistema es inestable, ya que el control difuso no logra estabilizar al sistema con únicamente cuatro reglas lingüísticas, de igual manera, si se hace el control de la planta con únicamente los controladores PD en configuración paralela, no es posible controlar el sistema.

Figura 4.13. Salida del sistema y señal de control.

Debemos mencionar que los resultados obtenidos en nuestras simulaciones en ambas configuraciones paralela y en cascada del controlador PD-Difuso, se logra estabilizar la posición final de la esfera. Es importante señalar el buen desempeño que se obtiene al usar el controlador PD-Difuso en comparación con el control clásico PD ya que podemos compensar el efecto de la gravedad con mayor rapidez.

4.3. FILTROS

4.3.1 Filtros Discretos

Como su nombre lo indica, un filtro intenta separar componentes de una señal de acuerdo con algún criterio, por ejemplo eliminar el ruido de una señal, existen dos tipos de filtros discretos, los filtros FIR (respuesta al impulso finita) y los IIR (respuesta al impulso infinita). Para ambos tipos hay dos partes distintas en el diseño, por un lado, el problema de la aproximación, donde el objetivo consiste en aproximarse a las características del filtro deseado en la medida de lo posible, y por otro, el problema de la realización, donde se realiza la función del sistema empleando hardware o software. En el problema de diseño del filtro la etapa de aproximación se puede dividir en cuatro partes relacionadas:

- Elegir una respuesta ideal deseada, normalmente en el domino de la frecuencia.
- Elegir un tipo de filtro permitido (una longitud L para un FIR).
- Elegir la medida o el criterio de aproximación.
- Desarrollar un método para encontrar el mejor filtro de un grupo de acuerdo con el criterio de aproximación.

Debido al desarrollo de la teoría de filtros analógicos en el momento en el que los filtros discretos comenzaron a ser de interés, los primeros filtros discretos IIR se basaban en transformaciones a partir de filtros analógicos IIR. En cambio, el diseño de filtros FIR siempre fue realizado en el dominio discreto. Puede ser importante utilizar filtros FIR si la fase ha de ser necesariamente lineal. En otro caso, la elección no está tan clara. Los filtros IIR, cuya respuesta al impulso tiene duración infinita, ofrecen una mayor versatilidad debido a la realimentación existente, de la que carecen los filtros FIR. Dicha realimentación es también la causante de problemas presentes en este tipo de filtros y que no tienen los filtros FIR, como puede ser la estabilidad. Así, el diseño de un filtro IIR pasa por diseñar los coeficientes de la ecuación en diferencias.

4.3.2. Diseño de un Filtro PasaBajo

Los filtros pasabajos de primer orden, cuya función de transferencia es de la forma:

$$G(s) = \frac{\alpha}{s + \alpha} \tag{4.13}$$

Donde la frecuencia de corte f_c esta dada por, $f_c = \alpha/2\pi$.

En el dominio del tiempo están dados por la siguiente expresión:

$$\dot{y}_t + \alpha y_t = \alpha u_t \tag{4.14}$$

Y pueden ser aproximados por:

$$\frac{y_t - y_{t-\delta}}{\delta} + \alpha y_t = \alpha u_t \tag{4.15}$$

Donde δ es el periodo de muestreo

4.3.3. Aplicación del Filtro a la Señal del Sistema

Para una aplicación se consideran las siguientes constantes: $\alpha = 7$, $\delta = 0.01$. Al implementar este filtro, se reduce el nivel de ruido cuya frecuencia es mucho mayor que la frecuencia de la señal deseada, la señal se ve libre de ruido. Como se ha mencionado, el uso de filtros digitales es empleado para disminuir los niveles de ruido presente en las señales de posición angular y posición lineal del motor y de la esfera. Dichos filtros tienen asociados una función de transferencia, las cuales dan la frecuencia de corte del mismo. Con una señal constante de entrada de 1.4 y con la esfera incluida en la barra, se propone la siguiente función de transferencia para el filtro del motor:

$$H_{motor}(s) = \frac{1}{s+1} \tag{4.16}$$

El filtro pasa altos para la posición de la esfera esta dada por la función de transferencia:

$$H_{esfera}(s) = \frac{15}{s+15} \tag{4.17}$$

Las pequeñas vibraciones de la señal sin filtrar se deben a las vibraciones mecánicas producidas por el sistema y son más notorias cuando se trata de puntos fijos que pueden verse en el valor pico de la señal senoidal debido a la constante de ajuste del motor para mantener la posición de la esfera.

CONCLUSIONES Y RECOMENDACIONES

Finalizamos este Informe de Suficiencia con un corto resumen de las contribuciones y recomendaciones para investigaciones futuras.

CONCLUSIONES

- El problema de control propuesto fue solucionado mediante el método de control por Lógica Difusa obteniendo un desempeño satisfactorio en todas las simulaciones realizadas, con un mínimo sobre impulso, tiempo de establecimiento pequeño y error en estado estable cercano a cero. Las graficas mostradas en el Capítulo 4 han demostrado que el sistema de control por Lógica Difusa diseñado para el sistema B&B es exitoso.
- Desarrollamos el modelo matemático del sistema no lineal B&B en su forma Lagraniana. Con el modelo linealizado obtuvimos la respuesta de sistema en lazo abierto y realizamos la simulación del sistema en lazo cerrado, en dos configuraciones del controlador, en cascada y paralelo.
- Demostramos que un controlador clásico Proporcional-Derivativo (PD) satisface el objetivo de estabilizar el sistema, presentando cierto margen de error en la posición final de la esfera. Por lo cual, en aplicaciones

donde el margen de error es crítico la contribución de adicionar un controlador difuso a los controladores clásicos PD es importante.

 Dadas las condiciones de la planta y los requerimientos propuestos se puede percibir la relativa complejidad que se puede tener al intentar plantear una estrategia de control usando mecanismos convencionales. El hecho de cumplir con los requerimientos planteados ratifica la importancia que tiene la lógica difusa en el desarrollo de controladores para plantas con características no lineales y exigentes condiciones de operación.

RECOMENDACIONES

- Para futuras investigaciones recomendamos implementar el sistema B&B con un control PD-Difuso en tiempo real, buscando satisfacer determinados requerimientos de estabilidad, margen de error, compensar efectos de la gravedad y de otras dinámicas no modeladas. Finalmente, comparar la respuesta de la salida del prototipo a implementar con la entregada en este Informe de Suficiencia.
- Para la implementación del sistema de control será necesario prestar la atención necesaria al diseño y perfeccionamiento de las tarjetas electrónicas para el buen desempeño de los sensores y actuadores. De no ser así, es posible que el desempeño del sistema de control no sea confiable a pesar de haber diseñado correctamente el controlador.

BIBLIOGRAFÍA

TEXTOS Y MANUALES:

- Sistemas de Control Automático.
 Benjamín C. Kuo.
 Séptima Edición, 1996, Prentice Hall Hispanoamericana, México.
- Ingeniería de Control Moderna.
 Katsuhiko Ogata.
 Segunda Edición, 1996, Prentice Hall Hispanoamericana, México.
- "A Course in Fuzzy Systems and Control".
 Li-Xin Wang
 Primera Edición, 1996, Prentice Hall, USA.
- Redes Neuronales y Sistemas Borrosos
 Lic. Bonifacio Martín del Brio, Ing. Alfredo Sanz Molina
 Primera Edición, 1996, Universidad de Zaragoza Rama
- Control Avanzado (Diseño y Aplicaciones en Tiempo Real).
 Ph.D. Arturo Rojas Moreno.
 Primera Edición, 2001, Universidad Nacional de Ingeniería.

PAPERS:

- "Stability Analysis of PD Regulation for Ball and Beam System" Ing. Wen Yu, Ing. Floriberto Ortiz, Departamento de Control Automático CINVESTAV-IPN, México
- Diseño de un Controlador Proporcional Derivativo
 M.Sc. Ricardo Rodríguez Bustinza.
 Escuela de Ingeniería Mecatrónica, Universidad Nacional de Ingeniería.
- "Analysis Design of a Proportional Plus Derivative Fuzzy Logic Controller".
 Ing. Gurpreet S. Sandhu, Ing. Kuldip S. Rattan Department of Electrical Engineering, Wright State University, Ohio.
- "Fuzzy Logic Toolbox User's Guide".
 J.S. Roger Jang, Ned Gulley.
 Primera Versión, 1997, The MathWorks, USA.

PÁGINAS WEB:

- <u>http://www.mathworks.com</u>
- <u>http://fuzzy.iau.dtu.dk</u>
- <u>http://www.fuzzytech.com</u>
- <u>http://eya.swin.net/elec/fuzzy/fuzzy.htm</u>

APÉNDICE A

ESPECIFICACIONES TÉCNICAS DEL SISTEMA BALL AND BEAM

En este apéndice se tratará sobre las especificaciones técnicas para una futura implementación del sistema del B&B en tiempo real, el cual estará conformado por el hardware que son los componentes físicos a usarse en el sistema de control y el software que es el lenguaje de programación a usarse para el algoritmo de control del sistema.

Figura A.1. Sistema Ball and Beam.

Este sistema consta de cuatro partes principales: un dispositivo físico, una etapa de potencia, una computadora y la interfaz correspondiente.

Dispositivo Físico

Recomendamos el uso de un Motor DC con las siguientes características:

 Pittman Geared Motor with Optical Encoder Rated Input Voltage: 30 VDC @ 100 mA. No Load Speed: 800 RPM, Ball Bearing Gearhead, Ratio 5.9:1 Encoder: 5VDC input, 512 counts/rev, 2 channels in quadrature

Figura A.2. Motor DC con encoder óptico.

Para la detección de posición de la esfera debemos contar con un sensor de posición con las siguientes características:

• Sharp GP2D12 Infrared Ranging Sensor

El sensor Sharp GP2D12 es un dispositivo capaz de detectar objetos que se encuentran a una distancia de 10 a 80 cm., presenta una simple interfase con los microcontroladores. Además, el Sharp GP2D12 no es afectado por la luz natural o por el color de los objetos detectados.

Figura A.3. Sensor de Posición Infrarrojo.

Etapa de Potencia

Consiste de un amplificador de corriente para la señal proveniente de la tarjeta interfaz que será descrita posteriormente. Los niveles de ruido inherentes al sistema afectan la medición de ciertas variables, sin embargo, estos niveles de ruido son atenuados al diseñar filtros pasivos. Para el caso particular del sistema B&B se utilizaron filtros digitales pasa altas para atenuar el ruido presente en altas frecuencias.

Así mismo, utilizaremos una fuente de potencia externa para las conexiones eléctricas del motor y del amplificador de potencia.

Tarjeta Interfaz

La tarjeta interfaz deberá ser una de control y adquisición de datos I/O, equipada con convertidores A/D y D/A, de alguna marca comercial tal como National Instrument. Para obtener información sobre su uso, el interesado deberá consultar el manual de usuario de la misma.

Figura A.4. Tarjeta Interfaz con convertidores A/D y D/A.

Computadora y Software

Dentro de los requerimientos se puede utilizar una computadora personal compatible bajo un entorno de Windows XP, también se puede utilizar una laptop o notebook con procesadores Pentium o AMD y con puertos digitales de I/O.

Para poder desarrollar el control y ejecutar programas en tiempo real es necesario el siguiente software instalado en una computadora personal, con las características previas mencionadas:

- MATLAB versión 2003 con Simulink para desarrollar proyectos y monitorear procesos de la librería RTW DLL.
- El Real Time Windows Target (RTWT) y Real Time Workshop (RTW) para crear sistemas de control en tiempo real y generar código que pueda comunicar la computadora con el prototipo.
- Dispositivos controladores que permitan la comunicación con la tarjeta de adquisición de datos elegida.
- MS Visual C++ puede ser utilizado para compilar código generado.