```
    TESIS DE GRADO
PRESEN T A D A POR EL EX-A LUMNO
ENRIQUE CHIPOCO O.
PARA OPTAR EL TITULO DE
INGENIERO DE MINAS
```


PERFORACION DE POZOS PETROLIFEROS

SELECCION DEL EQUIPO DE PERFORACION

In petróleo como ol gas natural, constitus on una do las mey ores frentes de energia comercialmente utilizables de los tiempos modernos. Su eristencia on un cempo dado, puede quedar probada únicamente por la perforación de un pozo quo ponga de manifiesto su presencia y extracción comercial a la superficio. On pozo productivo es de consiguiente, una de las más inportantes y definidas inal caciones de petróleo.

La maquinaria de perforación hoy on uso, posee adelantos tbendcos que han permitido alcanzar profundidados jamás antes logradas. La capacidad de realizar estas perforaciones ha permitido ol acceso a zonas productivas cada voz más profundas creando nuevos y mayores problomas que hen sido necesario resolvere como conseouencia de estos adalantos, los costos de las obras de perforación han eumentado considerablemente a pesar de la tendencia general de utilizar equipos unificados de mís fe cil transporte, de disponer do una planta do energía do megor potencia y de terer una mojor distribución de la misma.

I presente estudio ha sido hecho con al objoto de dar una concepcion del trabajo de exploración de un campo que vá a llevarse a cabo por modio de la perforación de varios pozos a una profandidad media de 10,000 pies, en una localidad situada on la Costa dil Porf donde al ace ceso al lugar de emploracion ha sido ya definido por la construccion de un canino y donde existen facilidades de agaa y traneporte de surinistros.

Los estudios geolbgicos de superficie asi como un estudio geoflsico regional han determinado la ubicacison del sitio donde ha de conduoirse la perforación del pozo materia de este tema.

Dichos estudios han dado lugar al desarrollo dal siguiente proo grama de trabajo:

Programa de ontubado y de brocas - Con ol ffin de atravesar un estrato sue perficial de areniscas deleznables, de aproximadamente 500 ples de espesor, será necesario abrir un hojo de 17-l/2 pulgadas de diámetro. Se procederá en eguida a cubrir ol pozo de superficie con un revestimiento de acero de $13 \sim 3 / 8^{n}, J-55$, de 5405 Lbs. por pie que irá cementado hasta la superficie.

Ia perforación se continuark con un hojo de $9-7 / 8$ de pulgada pae ra 10 cual se necesitark instalar un control impideoreventones de 13-3/8 de pulgada para una presión de trabajo de 3000 libras por pulgada cuadrada. H hoyo de 9-7/8 deberk llegar a 1086000 pies de profundidad, punto en ol cual vá a ser necosario cementar nuovamento otro revestimianto de acero con el fin de proteger una arena petrolfera que se espera oncore trar ontre 5400 y 5700 pies y también para ovitar las dificultades que originark la contaminacion dal lodo con una foriacion de anbidrita que se estima atravesar entre 5700 y 5900 pies de profundidad.

In hoyo de 9~7/8 de pulgada deberá onsancharse a uno de 11 pulgao das de diénetro hasta 1086000 pies, se procederfe enseguida a cubrir al pozo con un revestimiento de $8-5 / 8^{n}, N-80$, $\mathrm{XI}_{\text {, }}$ de 36 libras por pie que doberá cementarse a la profundidad aloenzada.

Se continuará la perforación abriendo tu hoyo de 7-7/8 de pulgao da de difactro con el cual se espera alcanzar la profundided Final. On revestimiento de acero do $5-1 / 2^{n}, N m-30, X I$, de $201 i b r a s$ por pie deberá correrse a la profundidad final y cementarse en fora de cubrir dos arenas petrolfforas, la superior entre 7800 y 8400 pies y la inforior entre 9600 y 9880 pies aproximadamente, tal como puede observarse in la

Fig．l，adjunta．
Muestreo de las formaciones．－Se deberán sacar nuicleos de muestra durano te la perforación de las formaciones de arenisca conprendidas entre 5400 y 5700＇，asi como tembín de las formaciones que van de 7800 a 8400° y de 9600 \＆ 9880° ．

Pruoba de las formaciones．Se harên pruebas de formación de todos los horizontes favorables atravesados durante la perforación del pozo． Registros eléctricoso Se tonarán registros aléctricos： 1° antes de cada una de las pruebas de la formacion， 2° antes de correr al revestimiento protector a 6000 pies de proflndidad y 3^{\bullet} a la profomdidad final．

Como servicios especiales，se deborán tomar registros de calibrae cion antes de correr los revestinientos protector y de producción y se too marán registros de temperatura a fin de deterininar al tope del cenento dese pués de la cementación de los revestimientos protector y de producción。 Prograna del flufdo de perforación。e H lodo de perforación doberáacondio cionarse antes de romper al cemento que quedará dentro del revestimiento de superficio．Para ésto，so lo transformará on lodo a base de cal y so usara un peso no nayor de 10 libras por galón hasta los 4500 pies．Luego，se alovar\＆al poso a 12,0 libras por galón para atravesar la arenisca coapreno dida entre $5400 \mathrm{y} 5700^{\circ}$ ．En caso de que las condiciones asf lo requieran， este peso podrá olevarse a un valor major，ol necosario para controlar una presión anomal de la formación。

Para la perforación del pozo por debajo de 1086000 pies deberd eaplearse un lodo a base do cal de menor peso，se calcula que 10.5 libras por galon serán suliciontes para controlar las foriaciones oncontradase Sin embargo，debera mantenerse un regular stock de baritina en caso de

Abstract

-4 hallarse presiones mas altas. Es recomendable tenor un buen stock de carbonato de bario para atravesar la formación de anhidrita.

Durante toda la perforación del pozo deberáa usarse un lodo con las mojores caracterfsticas de filtracion, viscosidad y golatinizaeion a fin de hacer posible la mayor recuperacion de los revestimiontos protector y de produceion, bsto en ol caso de que al pozo tenga que sor abmionado como improductivo.

Equipo ampleado.- Deberé utilizarse un equipo do perforacion acondicl onado para al canzar la profundidad final recomendada do 10,000 pios.

PROGRAMA DE ENTUBADO, MOSTRANDO LAS

EQUIPO DE PERFORACION

Abstract

Fuorza Motrfz.- Para el accionamiento del equipo de perforación se hea escogido 108 motores de combustión interna desde que ofrecen gran economía de opeo ración en lo que se refiere al consano de agua \bar{y} combustible \bar{y} ademés pore que presentan grem portabilidad si se les compara con 108 equipos accionados por fíquinas a rapore Las desventajas que resultan de las caracteriso ticas inherentes a las méquinas de combustión interna, han sido subsanadas en su mayor parte por el enpleo conreniente de mecanismos de transmisión de fuerza a las diferentes partes del eqnipo.

Para la doterminación de la potencia total que tiene que desarroo Llar la planta de fuerza, se deben t ener en cuenta las dos funciones prino cipales que la maquinaria de perforación dobe realizar. La pHmera consisto en perforar y comprondo dos operaciones: rotación de la caf̂erfa vástago y circulación del flufdo. La seganda es la de izar ó bajar la caf̃erfa, so gain el caso.

La circulación del lodo constituye la principal tarea que dobe realizar al equipo de perforación rotaria pues consume dal 70 al 85 por ciento de los caballos de fuerza empleados en la perforación do un pozo promedio. La clare de la oficiencia en la perforación radica principalo mente en la determinacion del volumen por minuto del flufdo circulanto que se neeesita para mantener la velocidad debida de la corriente de lodo. A sa rez, Esto dotermina la pérdida por friceión y la Merza necesaria pao ra la circulación dal lodo.

Debido al inconvenient'e de los motores de combustion interna de descomponerse on momentos de mayor urgencia, se ha subsanado esta dificiltad escogiendo un total de tres motores Diesel, dispuestos en forma de
poder operar on compound durante los momentos de una major carga do poteno cia. Adenás, dos bombas de lodo estarán conectadas al mocaniamo de tranemisifn de fuerza de estos motores de tal modo que puedan ser operadas por uno 6 mas motores según las necesidades.

EL SISTHIA HIDRAULICO

Soleccibn de las bonbaso-

Hildserio y la salecoión correcta dal sistema de bombeo es un de los factores que deterinen la profundidad econónica que puede alcence zar un equipo de perforacion.

IH sistema de bombeo consiste de las catio partes siguientes: 1°) sistema de superficie que comprende las tuberias situadas a la descara ga de la bomba, la manguera y el Kelly, 2°) la sarta ó cañerfa de pecforao cion y las botallas, 3°) la broca $y^{\circ} 4^{\circ}$ el regreso on el espacio emvlar.

Se ostima que el sistema de superficie tomade 50 à 75 HP contfe nuos, para forzar al Iluido hasta al extrono final dal Kalj j que ansto una calda de presión de 100 a 150 libras por palgada aadrada cuando se bombea un volamen normal do lodo a traves del oxtrono abierto dal Kally y se establece circulación en la parte más alta del pozo.

Para la determinacion de la caida de presión dentro de la cafiería de perforacion y botellas se han usado las arvas de la Figura 2 y 3 que indican respectiva:onte la calda de presion dentro de la cañerfa a varies razones de circulación dal lodo j la cafda de presión en la caiferfa equipada con uniones del tipo F.H. (Nul-hole).

Para la seleccion del teanfo de la cafioría de perforación se de be tenor en cuenta que a In do obtener una biena relación entre físe tao mafio y la valocidad enular, es necesario que la razón del difmetro artero

FIG. 2-CAIDA DE PRESION DE LA CAN̄ERIA DE PERFORACION a varias razones de circulacion del lodo.

FIG. 3- caida de pf̂esion de la cañeria de perforacion EQUIPADAS CON UNIONES DEL TIPO F. M.
no de la cañerfa al diámotro del hoyo varie de 0.45 \& 0.65 . Por al ame pleo de esta relación cmprica, llegamos a la soleceión de una caf̃orfa de 4-1/2 $\mathrm{F}_{0} \mathrm{H}_{\mathrm{e}}$ que es la que vamos a adoptar para la perforacion del how уо de $9-7 / 8$ у de 7-7/8 de pulgada.

La deterninación de la caida de presion producida en los orifin cios de la broca, so ha hocho empleando la fórinula sugerida por Nolley, Cannon y Ragland, que se dá a continuación:

$$
P=\frac{Q^{2} \mathrm{~S}}{7606 \mathrm{~A}^{2}}
$$

donde,

$$
\begin{aligned}
& P=\text { Caida de presión an libras por pulgo }{ }^{2} \\
& Q=\text { Rarón de circulación on Galon os por minuto. } \\
& A=\text { Area total de las boquillas, ol pulgo }{ }^{2} \\
& S=\text { Poso del lodo a libras por galón. }
\end{aligned}
$$

Para ol cálculo de la cafda do presión producida on el espacio anular se ha empleado la carra correspondiente on la Fig. 4, que dé los valores de pórdida de presión a distintos valores de circulación y para diferentes relaciones contre al difmetro dol hojo y tamaño de la cafforfa de perforación.

Otro factor que entra an juogo en la doterminación del tamano de la bomba que ha de emplearse para circular al fluido hasta la parte más profurda del pozo, os la ralooldad de regreso en ol espacio anular. Rnpiricanente se cotina que esa valocidad de regreso debe variar entre 180 á 240 pies por minuto; requinfense las más altas valocidades en an quellas freas donde las formaciones son blandas y se necesita tenor un eqpor arrastre dol material cortado. Las majores volocidades anulares pueden causar flujo turbulento del lodo, por lo que tal vez requieran

FIG. 4 - CAIDA DE PRESION EN VARIOS ESPACIOS AMULARES

CAIDA DE PRESION EN FLUJO TURBULENTO, $P=0.0 \frac{0000 \frac{2}{M}}{M}$ FLDV ${ }^{2}$ (PIGGOTT) CAIDA DE PRESION EN FLUJO VISCOSO $P=\frac{0.000432 \mathrm{NLV}}{\mathrm{M}^{2}}$
$P=$ CAIDA EN LBS. POR PULG ${ }^{2}$
$F=F A C T O R$ DE FRICCION (0.023 EN ESTAS CURVAS)
L = LONGITUD DEL CONDUCTOR, PIES
$V=V E L O C I D A D ~ D E L ~ F L U I D O, ~ P I E S ~ P O R ~ S E G U N D O ~$
$D=D E N S I D A D$ DEL LODO LBS POR PIE ${ }^{3}$ (75 LBS. POR PIE ${ }^{3}$ EN ESTAS CURVAS)
$M=$ RADIO HIDRAULICO MEDIO, PIES ($=$ PERIMETRO TOTAL ${ }^{2}$,PIES)
$N=$ VISCOSIDAD APARENTE, UNIDADES EN PIES POR SEGUNDO
(= CENTIPOISES $\times 0.000672$), 0.069 EN ESTOS EJEMPLOS.
NO SE DA TOLERANCIA POR TURBULENCIA ORIGINADA POR LAS UNIONES.
mevor presión hidráulica. Adenás, pueden trponer mayores presiones sobre la fomación, con la consiguiente pérdida de lodo en los estratos duremte la circulación, lo que expone al pozo a un reventon al nomento de cesar la circulación del lodo.

Deatro de la caĩorfa vástago, la voloo1dad dal flufdo se mantione a la rona de turbulencia, por lo cual la escala de velocidad dentro de esa tabería, no debe ser mayor que la de 8 \& 11 pies por segundo, a fin de mentenar al minimo ol descenso de la prosión.

Para la seleccion de la bomba miana es necesario tener on cuene ta que para atravesar una formación determinada ussado una broca nueva, una velocided de la mesa dada y un cierto peso sobre la broca, ordste un Tolumen optimo del fluido que dara al onfriamento conveniente de la broo ca y la limpleza y ramoción de los cortes. Esta cantidad dal flufdo exo presada en galones por minuto estáa directamente relacionada con la mayor duración de la broca y con el mayor numero de ples que puedan perforarse. Por debajo de este rolumen se disminuye la oficiencia de la perforacion, por encimadel nismo se está consumiento un esfuerzo mayor dal requerido,

A fin de obtener una duración oficiente de la broca se estima que son necesarice 40 galones por minuto por pulgada de dif́metro de la broca lo cual on al caso de la perforación del hoyo de $9-7 / 8$ de pulgada determinaría una razón de circulación minima de 400 galones por minto. Sin embargo, esta proporción no es lo suficientemante grande como para producir una volocidad de regreso an el espacio anular que se halle entre los lfintes recomendables de 180 a 240 ples por minuto. Serfa neco sarla por lo menos una razón dé circulación de 550 a 600 GPM. Con esta cireulacion del flufdo se puede seguidamente determinar la caída de
presion on al sistema para alcanzar una profundidad do 6000 pies on la siguiente Porma:

1) Caida de presion en ol sistema de superficie (Valor estimado)
2) Calda de presión en la caforfa de perforación
 sión on los tabos 160 ェ $6=960$
B) A 600 GoP. Mo, ver Fige 3, calda de prow sión on las uniones, (se ha considerado al rango 2 para la caiforfa de $4-1 / 2$ API) $17 \times 6=102$

Caida de presión on la caĩerfa de perforación
3) Gaida do prosion on la broca, considerendo un lodo de dones dad de $10 \mathrm{Lbs} / \mathrm{gal}$ y una broca de p1rias marca Hughes, Modelo OVS para fomacion nos semimdures ád duras no abrasivas con un área total de boquilla de 2.356 de pulgada cuadrada, tendremos:

$$
P=\frac{Q^{2} S}{7006 \pi A^{2}}
$$

conde,

$$
\begin{aligned}
& Q=600 G_{0} P_{0} M_{0} \\
& S=10 \text { Libres por gald } B_{0} \\
& A=2.356 \text { pulge }_{6}{ }^{2} \\
& P=\frac{(600)^{2} \times 10}{7606 \times(2,356)^{2}}=
\end{aligned}
$$

$$
85 \mathrm{Lbs} / \mathrm{pulg} 0^{2}
$$

4) Cafda de prosión en ol espacio anular, de la Fige 4, so obticne 706 x $6=$

Para la perforacion dal pozo on la parte comprendida ontre 6000 ₹ 10,000 ples de profundidad que va a llevarse a cabo con broca de 7-7/8 de pulgada, será necesaria por 10 menos una razón de circulación do 320 G.P.M. Fin esto caso, dobido al monor didmetro del hojo para un migo temafio de la cafioría de perforación como os ol de spl/2 de pulgan da, la velocidad de regreso on ol espacio anular cae dentro de los lfo mites recomendables y por oonsiguiente se puede asumir que esta ramb de ciroulación es la correcta。

Calculando em igual forma que la antorior, la oafda de pree s1on en todo ol sistema, serfa:

1) Calda do presifn en el sistasa de superfie1e (Valor estimado)
2) Caida do presión en la caforia de porforación
A) A 320 GoPoMo, ver Fige 2, calda do proe sión en los tubos $46 \times 10=460$
B) A $320 G_{0} P_{0} M_{\bullet}$, ver Fige 3, calda de pree sion on las uniones $5 \pm 10=50$

Cafda de presión an la cañoría de perforación
$510 \mathrm{Lbs} / \mathrm{pulg}_{8}{ }^{2}$
3) Calda de presión on la broca, considerendo ol mis:o lodo \bar{y} una broca Eughes OWS con área total de boquilla de l.803 de pulgada cuadrada

$$
P=\frac{Q^{2} S}{7606 \times A^{2}}
$$

donde,

$$
\begin{aligned}
& \mathrm{Q}=320 \mathrm{G} \mathrm{P}_{\bullet} \mathrm{M}_{0} \\
& \mathrm{~S}=10 \mathrm{~L} \text { boras por gal8n } \\
& \mathrm{A}=1.803 \text { palgo }
\end{aligned}
$$

$$
P=\frac{(320)^{2} \times 10}{7606 \times(1.803)^{2}}=
$$

41 Lbs/pulg. ${ }^{2}$
4) Caida do prosión on ol ospacio anular, de la

Fig. 4, se obtiene
$16 \times 10=$
$160 \mathrm{Lbs} / \mathrm{pulg}{ }^{2}$

CAIDA dE PRESION TOTAL
811 Lbs/pulgo ${ }^{2}$

Proeederemos ensegaida a doteminar las velooldades de regreso on los espacios anulares con las ramones de circulación que hemos cona sideradb lineas arriba.

Eroleando la formula:

$$
\nabla=\frac{25 \times Q}{D^{2} \times \mathrm{d}^{2}}
$$

V $=$ Volocidad ascondente dol lodo on pies por minuto.
Q = Razón de olroulación on galones por minuto.
D $=$ Ditactio del hoyo on pulgadas.
d = Diámetro actorior do la cañoría on pulgadas.
se obtienen los siguientos resultados:

1) Volocidad on ol hoyo de $9 \times 7 / 8$ de pulgada:

$$
\nabla=\frac{25 \times 600}{(9.875)^{2}-(4.5)^{2}}=194 \text { ples por minuto. }
$$

2) Voloo1dad en ol hoyo de 7a7/8 de pulgada:

$$
\nabla=\frac{25 I 320}{\left(r^{\circ} 875\right)^{2}-(4.5)^{2}}=192 \text { ples por minuto. }
$$

Rata mera doterminación puede hacorse ompleando los Abacos Nos. 1 y 2
de la Fig. 5. Desde que estas velocidades de regreso on ol espacio anular estin dentro de los limites recomondables, se puede considerar que los Follimenes de circulación on las dos condioiones dadas eon los correo tos. Conociondo estos volůnen y las presiones maximas qu vk a encono trar la bomba durante la perforacion se proeede enseguida a seleccionar su temafio.

Si al volumen dol flufo que dobe entregarse a la broca es de 600 G.P.M. a una presión marima de trabajo de 1293 Ibs. por pulgada cuac dradag la bomba 011 Wall de 8 x 20 pulgadas Modelo Noo 220eP Duplex, se ra la ind cada. Como puede verse on la Tabla I de especificaciones ade Jumta, esta bomba se halla capacitada para dosplazar 635 G.PaM. a una presion de trabaja de 1370 Lbs. por pulgada cuadrada arando opera con camisas de $6 \mathrm{ml} / \mathrm{Z}$ pulgadas y a una volocidad de 60 RaP . . La potencia al freno requerida es de 600 HP constantes.

La segunda condición que setione para alcanzar una pronndidad do 10,000 pies os facilmento satisfocha por la bomba 011 Wall No. $220 \times P$ desde que tento la presion cono al volumon requeridos son menores.

Sin ebargo, con ol objoto de tener disponible una seguna bomba que puede ser usada ca casos de descompostura de la primera y tambion con ol fin de podor mezclar ol fluido en ol sistoma de superfio cio, se sugiore al empleo de la bomba 011 Woll de $701 / 4 \times 18$ pulgadas Kodolo No. 218aP Dupler. Ia potencia requerida por esta bomba asi como sus caractorfsticas pucdon verse en la Tabla II de ospeoipicaciones adjunta.

FIG. 5 - ABACOS PARA LA DETERMINACION DE LAS vELOCIDADES ANULARES DEL LODO

TABLA I

Tainañ de la Bamba (Dia. Max. de Camisota I Carrera) Pulgo

Temaños Standard do las oamisotas

Prosión Hidrostática de Prueba a la Cónara de Plufdo: Descarga Succión

Prosión de Trabajo en la Cámara do fluldo: Doscarga Succion

Volocidad de Trabajo con camisotas de major tamaifo

Potencia al freno requerida a la volocidad dol trabajo

Prosión Mádra de Trabajo con camisotas
de mayor tamafio
Dufametio de la tuberfa de succión
Ditmetro de la tuberia de descarga
Peso del equipo Standard
Pulg.
Pulg.
Lbs。
8×20
5, $6,6-1 / 2,6-3 / 4$, 7, $7-1 / 4,7-3 / 8,8$.

Lbs/pulgo ${ }^{2}$	7,000
Lbs/pulgo ${ }^{2}$	4,000
Lbs/puigo ${ }^{2}$	4,000
Lbs/pulg. ${ }^{2}$	3,000

$\mathrm{Ra}_{0} \mathrm{P}_{\mathbf{a}} \mathrm{M}_{9} \quad 60$
B. H. P. 600

Lbs/pulg. ${ }^{2} 880$
10

44,450

CAPACIDAD TEORICA Y POTENCIA REQUERIDA

Tamaĩo del Pistón, Pulgadas	$\begin{gathered} \text { Presión } \\ \text { Mátma } \\ \text { de Trabajo } \\ \text { Ibs/Pulge } \end{gathered}$	DESPLAZAMIENTO					
		Galones Por Ret.	Galones por Minuto a las Valocidades (RRY) de				
			20	30	40	50	60
5	2,450	5.95	120	180	240	300	355
6	1,625	8.93	180	270	355	445	535
$6 \bullet 1 / 2$	1,370	10.62	210	320	425	530	635
6-3/4	1,860	11.55	230	345	460	575	695
7	1,165	12.48	250	375	500	625	750
701/4	1,080	13. 44	870	405	540	670	810
703/4	940	15.45	310	465	615	770	930
8	880	16.58	330	495	665	830	990
Para al Desplazemiento Aotual - Doducir			5\%	E\%	10\%	10\%	10\%
Potencia al Frono Requer da			200	300	400	500	600

TABLA II

ESPECIPICACIONES IE LA BOMBA OII WEL NO, 218®P

Tamafio de la Boma (D1a. Maro de Candeotas x Carrara)

Tamafio Standard do las canisetas

Pulgo
Pulg.

Lbs/Pulg. ${ }^{2}$
6,000
3,000

Lbs/Pulg. 2
38000
2,000
$\mathrm{R}_{6} \mathrm{P}_{6} \mathrm{M}_{\mathrm{e}}$
$B . H_{4} P$ 。

Lbs/Pulgo ${ }^{2}$
895
Pulg.
10

Pulg.
Tos。

CAPAGIDAD TEORICA Y POTENCIA REQUERIDA

Tamaగ์o dal P1ston Pulgadas	Presion Mádina de Trablajo Lbs/Pulgo ${ }^{2}$	DESPLAZAMISNTO					
		Galones Por Rev.	Galones por Minuto a las Volocidades (RPM) de				
			20	30	40	50	60
5	1,980	5.50	110	165	280	275	330
6	1,330	8.19	165	245	830	120	450
6-1/2	1,120	9.73	195	290	390	485	585
$6 \mathrm{~m} / 4$	1,035	10.58	210	315	480	525	630
7	960	11.34	225	340	455	565	680
$701 / 4$	890	12.24	245	365	490	610	735
```Para ol Desplazeni ento Aotual - Doducis```			5\%	5\%	10\%	10\%	10\%
Potencia al Freno Requerida	,		150	225	300	375	450

## IM SISTHMA DP ITATE

Hil equipe de perforación debe realizar adeats de la función misma de perforar, otra operación quizás tan importante como la primere y es la do bajar ó izar dal fondo del pozo la cafiorfa vástago de perfore cibn. Ssta función la lleva a cabo por medio del sistema do izajo que consiste esencialmente del malacate (drawnorks) y dol meconiamo do poteno cia.

Conforme ha sido indicado antes, on al presente estudio al mecan nisso de potencia esté representado por motores de combustion interna, a in de satisfacer las condiciones iniciales dal problena.

## Potenoia requerida.

Al estimar la potencia que so requiere para adocuadas volocidedes de izaje, debe considerarse que las valocidades empleadas por la nae quina deben ser tales que la potencia ojorcida por ol mecenisso do fuerza sea convenientemento utilizada.

La Fig. 6 mestra aproximadamento las potencias en al gancho que se requieren para izar desde ol fondo dal pozo diferentes tipos de coforía a una volocidad de izaje de 100 pies por minuto que es la valow cidad més comunmento emploada. De osta figura se puedo dodrcir que la potencia en el gancho requerida para izar 10,000 pies de caforía de 4-1/R de pulgada os do 517 HP y la poterela dal motor considorsmdo una oficioncia de 0.75 sorá de 690 HP .

Conociendo este valor de la potemcia que al motor requiere, estamos an condiciones de soleccionar ol tamaño dol malacato que tana drá que utilizarso. H Modalo No. 76 "Oil Well", cuyas caracterfsticas


FIG. 6. - PÓtENGIAS EN EL GANGHO APROXIMADAS, QUE SE REQUIEren para alcanzar una velocidad de izaje de 100 pies POR MINUTO.

NOTA: - SE HA DESPRECIADO LA FLOTABILIDAD DE LA CANERIA, asumiendose que esta es igual a la friccion con las pareDES DEL POZO
 E = EFICIENCIA ESTIMADA EN $75 \%$
puoden vorse on la Tabla III adjunta, os ol equipo que mayormente satise face les condiciones del problema, sete malacate está disef̃ado para tra* bajar a una profundidad recomendada mádima de 10,000 pies empleando cañoe rfa de perforación de $4-1 / 2$ API. La valocidad dal cable con transmisión standard es de 3000 ples por minuto empleando al enbrague de baja velocie dad. Esto requerirfa al uso de 3 motores oon un total de 700 HP á 900 RPM y que puede satisfacerse utilizando al grapo moil Woll No. 700. En las Figuras No. 7 y 8 adjuntas, puede verse la disposición del equipo. Consta Sste de las siguientes partes: del malacate "Oil Well" No. 76, de tres motores Hankesha Diesel Mod 6mLRDU acondicionados on forma tal de poder trabajar on compound con una produceibn total de poteno1a de 700 HP a una velocidad de 1100 a 1400 RPM ., de dos bombas "01l Woll", la primora Mod. No. 220-P, dispuesta para ser accionada por un contramejo situado delante del motor No, 3, y la segunda Mod. No. 218 A, accionada por una polea de transmisión situada an ol lado opuesto al oje del motor No. 2 y por illtmo de la mesa rotaria "Oil Well" Mod. 22GT-20 que puede ser accionada independientemente por ol motor General Motors Mod. 6m7 TwIn de 264 HP a 1650 RPM。

Fll grapo "Oil Wall" No. 700 ha sido saleccionado porque posee una gran flexibilidad al intereamblar los motores con ol fin do suminise trar la potencia más oconfinica y oficiente durante ol amplio márgon de trabajo comprendido en la perforación dal pozo ontre los 6000 y 10,000 ples de profmaldad. Por otra parte, tanto ol grupo No. 700 como ol malacato No. 76 estån construfdos en tal forma, que pueden ser transportados on una sola unidad cuando las condiciones asi lo requieran, o blen on form independiente cada uno de los motores y ol malacate mismo. Fn

## TABLA III

## MALACATH OII WFI NO． 76

PROFUNDIDAD RECOMTSNDADA MAXTMA（con 61 fneas） Cafiería vástago de perforación de 4mi／2 de pulgada API．	Ples	10，000
VRLOCIDAD DEL CABLR CON TRANSMISION STANDARD （mácima en Hi～Hi）	Pies／min	3，000
TRACCION EN EL CABLE EN IO IO CON TRANSMISION STD． （3 motores de 700 HP 900 RPM ）	Lbs。	71，500
NOMERO DE VELOCIDADES：		
ERUTPO DE IZATE：Adolante   Marcha atrás		
EQUIPO ROTARIO：Adolante $\begin{aligned} & \text { Marcha atrás }\end{aligned}$		
TAMBOR：Difmotio x Longitud	Pulge	$24 \times 36$
ARO DEL PRTENO：DLámetro $\times$ An abo	Pulge	$46 \times 10$
EJE DEL TAMBOR：DIÁmotio Mfodmo Distancia antre contros de cojinetes	$\begin{aligned} & \text { Pulgo } \\ & \text { Palge } \end{aligned}$	7
CAPACIDAD DEL，CARREETEL ADICIONAL		8，700 de Gable de $8 \times / 8$ pulg．
DIMENSIONES：Longitud total		$13 \cdot 0{ }^{\prime \prime}$
Altura，sin al carrotel adicional		6170
Altura，con el carretel adicional		$8{ }^{\prime} 601 / 2^{\prime \prime}$
Ancho，conpleto con frenos hidraulicos		$15^{\prime \prime}$
YOTORES CON TRANSMISION EN COMPOUND		No， 700
NuMSRO DR MOTORES		3
POTENGIA TOTAL DE LOS MOTORES	HP。	700
PISO：Del malacate completo，ain ol carretel adicional，sin frenos hidréulicos ni mecanicuo de tremsmaibn	Lbs。	39，935


ELL No. 76 CON GRUPO DE POTENCIA No. 700 DE
TRES MOTORES
DIAGRAMA ESQUEMATICO
la Tabla IV adjunta, pueden varse las especificaciones del grupo "O1l Woll' No. 700 de tros motores.

## KI SISTEMA DT IA MRSA ROTARTA

Il moaniamo necesario para rotar la caferla de perforaoión de be satisfacer dos condiciones fundamentales, una de resistencia para poder soportar ol peso de la cafierfa en la major profundidad del pozo y otra de volocidad para satisfacer las condiciones del trabajo.

Al exasinar los factores de velocidad, torque y potencia requee ridas, se cacuentra que para trabajos delicados de pesca es necosaria una relocidad de la mesa de 5 \& 10 R。Pomo, mientras que para ol trabajo normal de perforaci bn se requiere una volocidad hasta de 300 RePeM. Por otro lado, la potencia puede variar desde 5 HP en trabajos lentos de peaca hasta 300 HP on 10 m montos de mavor carga. Asi mismo, ol torque puede ser muy pequefo en deterininados trabajos y alcanzar un valor muy alto y nocesitar gran sensitividad y control on trabajos delie cados de pesca. Darante la perforación misma, os deseable limitar ol torque a una cifra razonable por debajo de la capacidad de ruptura por cizallaniento de la cafierfa vástago de perforación.

Es fácil comprendor que las condiciones arriba citadas son bastente diffciles de satisfacer con sinplicidad por una sola mequina. Fin equipos do perforación accionados por motores a combustién interna es práctica corriente al empleo do mesas rotarias que puedsn funcionar con tres velocidades del mecanismo de potencia. Esto puede obtenerse utilizando la potencia que surihistra un motor separado de aquellos que accionem al sistoma do 1zaje, $\bar{y}$ asl se ovita complicar imecesarian monte diaho sistora.

## tabIA IV

## GRUPO OIL WEN NO， 700 DE TRES MOTORFS

VEIOCIDAD DE LOS MOTORES	R $\mathrm{P}_{\text {¢ }} \mathbf{M}$－	$1100 \cdot 1400$
POTENCIA TOTAL DE LOS MOTORSS WAJKESEA MOD，6－LRDU	$\mathrm{H}_{\text {¢ }} \mathrm{P}$ 。	700
NOMERD DE DIENTIES DEL ENGRANATE DE TRANSMISION DEL mathacate		27
TAMAITO IE IA CADENA DE TRANSMSION DEL，Matacate	Paso	1－1／4＂
NUMERD DE DIENTES DEL ENGRANATE DE IA TRANSMISION COMPOUND		28
tamaño de la cadina de transmision compound	Paso	1－1／4＂
DIAMEITRO DE LA POIEA IE TRANSMTSICN A LA вомва	Pulg．	21
nomero y seccion de las fajas en＂V＂de transmision a CADA BOMBA		18ヵD
DIMNSIONES：		
DE LOS MOTORES CON TRANSMISION COMPOUND（ $\sin$ al mecenismo de traneaisión a la segunda bomba）		
Longitud		19＇－5＂
Ancho		$9 \mathrm{ml}-1 / 2^{\prime \prime}$
Al to		7＇2＂
PESO DKK MECANISLO DE TRANSMSION COMPOUND（SIB motores）		
De exportación	Lbs。	24，400

Para la saleoción de la mesa rotaria on ol presente estudio, so ha tenido en consideración los factores arriba oitados asi como tembién ol mayor diémetro de broca que desca enplearse para la perforación del hoyo de superficie. Una mesa rotaria de 20al/2 de pulgada de abortura satisface anpliamonte las condiciones del problema ja que ol mayor diámetro de broca que se espera usar es solo de 17 ol/ 2 de pule gada. Por otra parte, a fin de llenar otras conaidoraciones relativas al tama\%o dol equipo, se llega a la salecoín de uma mesa rotaria "Oil Well" Mod. 2ZGTm20 que puede ser accionada por un motor General Motors Mod. 6m71 TVin de 264 HP á 1650 R.PAM. Las especificaciones de esta mesa estến dadas en la Tabla $V$ adjunta, otras caractoristicas pueden verse en la Pigura No. 9.

## tabla $V$

## EQUIPO DE IA MGSA ROTARIA

UNIDAD ROTARTA MODELO		22GTP0
ABERTIURA DE LA MESA	Pulg.	20*01/2
CAPACIDAD DE CARGA MOERIA	Tons	250
PROFUNDIDAD DE PERFORACION MAXIMA	Piea	10,000
REVOLUCIONES DE LA MESA:		
ET ALTA VELOCIDAD	$\mathrm{R}_{0} \mathrm{P}_{0} \mathrm{M}_{0}$	337-102
EN BAJA VETOCIDAD		151026
IN MARCFA ATRAS		223-67
MOTOR REQUERIDO:		GENERAL MDTORS
1:ODELO		60071 TW10
POTEENCIA	H. $\mathrm{P}_{\text {\% }}$	264
VEIOCIDAD	R.Pam。	1,650
DIMENSIONES:		
LONGINUD TOTAL (MPSA Y MOTOR)   ANCHO   AITURA		$\begin{gathered} 24^{\circ} 3^{\prime \prime} \\ 5^{\circ} 1^{\prime \prime} \\ 5^{\circ} 11^{n} \end{gathered}$
PRSO TOTAL (MESA Y MOTOR)		
De exportación	Lbs。	28,030



MESA ROTARIA OIL WELL MOD.22GT-20
ACCIONADA POR MOTOR G.M. MOD. 6-7I TWIN

ABERTURA $20 \frac{1}{2}$ PULG.
CAPACIDAD DE CARGA 250 TONS.
PROF. DE PERFORACION MAX. IO,OOO PIES

## EH CASTIIIO DE PERFORACION Y LA SUBのESTROCTURA

EI castillo de perforación ha sido saleccionado teniondo on consia deración unaserie de factores tales como la profundidad total que deberá alcanzarse, al mayor peso y resistencia de los revestimiontos de acero que será necesario correr on al hoyo y la velocidad del fiento en la zona de trabajo。

Desde que ol mayor esfuerzo que deberfa soportar al castillo on un caso dado, sucederia al tratar de desatracar al revestimiento de acero de mor resistoncia que ve a emplearse, al cáculo de la carga estética $\delta$ cace pacidad del castillo tendrá necessarlamente que besarse en esta condición. Asf, al revestimiento de $8-5 / 8$ de pulgada, $\overline{X L}$, de 36 libras por pie, tiene um esfuerro marimo de ruptura a la traceión de 733,000 librase $S 1$ se tione on cuenta que ol malacate "011 Woll" No. 76 no puede halar con mayor tene sión de 71,500 libras y por otro lado, que se están epleando 12 lineas arrolladas en al motón, ol esfuerzo de tensión en el cable que produciría la ruptura dol rovestimiento de acero sería de 733,000/12 ó 61,083 libras. Esto, producirfa en ol puente dal castillo una carga equivalente a 733,000 mes $2 \times 61,083$ ó sea 855,166 libras. Conocionde este valor, se ha seleccion nado al castillo Lee C. Moore API "KAF" de acero al silicio, de 136 pies de altura, por 30 ples de lado cn la base, y por 5 pies 6 pulgadas do lado on ol puente. Eeto castillo está disefudo para soportar una carga estâtica do 800,000 libras. capacidad que puede ser ammentada \& $1,132,70011$ bras con el enple de tubos de refuerzo de 5 pulgadas de 13.9 libras por plo, en las pieras dal castillo.

La gubmestructura es deí tipo "B", de 30 pies do lado en la base
por 9 pies 3 pulgadas de alto, ésto darla una altura al piso dal castillo de 10 pies 4 pulgadas casando se le coloca encima de vigas. La capacidad de la sub~estructura es de $1,000,000$ de librase

## ERUIPOS DIUERSOS

Otras piezas del equipo de perforacion que han sido seleccionadas cono compleaento a las unidades fundementales arriba citadas (ver Figura 10), son las siguientes:

La unifn giratoria "Oil Wall"No. S6m300, con una capacidad de carga de 500 toneladas que puedo trabajar hasta 12,200 pies, con cafierfa Fatago de perforación de 4-1/2 pulgadas a una relooidad de 200 RoP.M. A profundidades menores puede alcanzar una velocidad mitima recomendada de 400 RoPam.

且 motor ó aparejo de poleas viajeras "O1l Well" de 80 pulgadas, con una capacidad de carga de 350 toneladas. Th númoro de poleas dispuese tas es de cinco.

티 aparejo de poleas 11jas "O1l Wall" No. 350, con una capacidad de carga de 350 toneladas. H numero de poleas dispuestas es de seise

四 equipo de control ó impidewreventones do la Cameron Iron Works, Inc. consistente on un arreglo doble del control Mod. QRC de 12 pulgadas, Serie 900 API y la valvala de compuerta Mod. HCR operadas a presión, tal como puede observarse on A, Figura 10. Este equipo est\& acondicionado peo ra trabajar acoplado al revestimiento de $13-3 / 8$ de pulgada, puede operar a 3000 libras por pulgada aradrada de prosibn de trabajo y está probado a 6000 libras por pulgada cuadrada.

El Kaly "Oil Woll" de sección heragonal, de 45 pies de longitud, las botellas de $5 \mathrm{~m} 9 / 16$ y $7-1 / 4$ de pulgada de dímetro, la cañorfa vástago de perforacion de 4-l/2 pujgadas FH , $\mathrm{E}_{\mathrm{o}} \mathrm{O}_{\mathrm{C}}$ de 18.15 libras por pio, la manc guera de 4-1/2 pulgadas de dífmetro y otras piezas suplementarias.

Por último, como equipos de serficio se ha sal occionado un grupo
 corriente trifåsica de 220 voltios, 60 ciclos. Además, une compresora Westinghouse Mod. 3-YCH para 250 libras por pulgada cuadrada de presión, acondicionada con una vélvula de control para arrancar a 155 libras y detenerse cuando la presión alcance 250 libras por pulgada cuadrada.

TABLA VI
COSTO DET RQUIPO DE PERFORACION

SECCION	$I$	MALACATE OIL WELL NO• 76   Completo con los siguientes accesorios: Freno Hidromático, Mecanismo de Alimentam ción Hidréulico Brantly, Carretel Adicional $\bar{J}$ Meoanismo de Medición dal Cable. Peso Aproximado: 70,000 Lbs.	OS	71,400.00
SECCION	II	GRIVP OIL WELL NO, 700 DE THES MOTORES   Comprendi endo ol Mecanisao de Transmision Compound, Pol eas para la Transmisión a las Boabas, Fiphragues Alrilex y Tres Motores Waukesha Diesel Mod. 6-LRDU.   Peso Aproximado: 58,000 Lbs。	US	80,500.00
SECCION	III	BOMBAS OII HETLL DUPLEX   Comprendiondo ol Kod. 220~P y ol Mod.   218~P, completas.   Peso Aproximado: 76,300 Lbs。	US	62,400.00
SECCION	IV	MESA ROTARIA OIL NELLL MOD. 22GT-20   Comprondiondo la Unidad Motriz Goperal   Motors 6m71 Twin.   Peso Aproitmado: 28,030 Lbs.	US \$	22,000.00
SECCION	V	CASTITITO DE PERFORACION Y SUB $\omega$ ESTRUCTURA   Comprendiendo dos Castillos Lee C. Moore API "KAY" de 136" x 30' $x 5^{\prime \prime}-55^{\prime \prime} y$ dos Sube estructuxas del tipo "B" de 30" $x$ 9'~3". completos.   Peso Aproximade: 80,000 Ibs.	US	65,800,00
SECCION	VI	EQUIPOS DIVERSOS   Comprendiendo un Swivel 011 Well No. S6m300, un Moton 011 Well de 80 pulgadas $\begin{aligned} & \text { un Apareo }\end{aligned}$ jo de Poleas fijas 011 Wall No. 350 , un equia po de Control doble Cameron Mod, QRC y válvum la de compuerta Mod. ECR, dos Kellys 011 Well de secoión hexagonal, 12,000 pies de caiferfa de 4-1/2 F. $\mathrm{H}_{0}$, F.J., 6 botellas de 7ml/4 y 15 de 5-9/16 de pulgada. Otros equipos, inal no jendo repuestos para un aîo de servicio.	US	85,100,00
		Totial		37.200 .00

$$
\begin{gathered}
\text { PARTE II } \\
\text { OPERACIONES DE PERFORACION }
\end{gathered}
$$

## OPERACIONES DE PERFPORACION

Una rez seleceicnado el equipo de perforación, se procedió al traslado $y$ erección de la maquinaria al lugar donde iba a llevarse a cam bo la perforación del pozo, desarrollfindose ol trabajo en las operacion nes sigaientes:

## Porforación del hoyo de superificioo

La perforación se inició empleando una broca do pifias Eughes, Mod. OSCa3, de 9 $-7 / 8$ de pulgada atornillada a una sarta compuesta por tres botellas $\delta$ collares de perforación de 7al/\& de pulgada y saflciena te caferia vastago de 4-l/2 pulgadas como para alcanzar la prolundidad deseada.

IH Pluido circulante era una suspenaion de areilla bentonitica on agua, sin trataniento quinico provio, con una densidad de 9.0 a 9.5 libras por garbn y viscosidad Marsh do 40 à 45 segundos.

A la promndidad de 230 pies se hizo una prueba do desviación del hoyo con al instramento Toteo, encontrándose $3 / 4$ de grado de la veren tical.

Las bombas de lodo estaban acondicionadas para funcionar on esta forma, la de 20 pulgadas con cansetas de 8 pugadas do ditmetro y la do 18 con canisotas de $7 \mathrm{ml} / 4$ de pulgada. La presión matama alcana zada 14 de 350 libras por pulgada cuadrada cuando la borba de 18 operee ba a 35 revoluciones del pistón por minato.

Dospués que se alcsmz6 la profundidad de 500 pies, so extrajo la sarta de perforación y so onsazcho al hoyo a 17-1/2 pulgades emploo ando prinero, una broca de piñas"Hughes Mod. OSq-2 y después una broca
de 2 puntas con la que se llegd a la profundidad anterior. Cenemtaion dal revestimiento do superficio.

Se corrió repestimi ento de acero de $13 \times 3 / 8$ de pulgada, Ja55 de 54.5 Libras por ple, al que fué cementado a 500 plos de profundidad con 380 sacos de cemento. Fsta cantidad do cemento estaba calculada para lle nar hasta la anperficio ol espacio anular comprondido entro al rovestimiena to $y$ al hoyo de 17el/2 pulgadas.
E. tlompo de Iraguado fué de 24 horas, duranto ol oual so procoo
 en las cantinas. Para ésto, ol fluido Aé prertratado con tanato de sodio y soda cáustica y posteriormonto acondicionado con cal y Driscose. Las propiedades de filtración del lodo fueron determinadas, se obtuvo 10.0 cc. de perdida de agua para 30 minutos de prueba on al filtro prensa Baroidg al espesor de la costra varlaba do 2/32 a 3/32 de pulgada y ol pH se mane tuvo por oncim do 11,0 .

Porforación dal hopo intermedio.e
Con ol fin de romper el cemento que babla quedado dentro del reo vestimlento de acero de $13 \times 3 / 8$ de pulgada, se utilizf una broca Hughes Mode OSCas do 12 pulgadas, con la que so perforo hasta 502 ples. Luogo, se acondicion $\delta$ ol lodo hasta obtener an flltrado menor de 8 oc con una costra de $3 / 32$ de pulgada, un pH por encima do 1100 y una densidad no mayor do 10 Lbs/gal.

La broca fué canbiada por una de 9ap/8 de pulgada, atorinilada a una sarta compuesta por 9 botallas do $6 \times 5 / 8$ do pulgada $\overline{5}$ suficiento ceantio dad de tubos de 4ol/2, desarrollándose la perforactón de acuerdo a las condiciones mostradas on la Tabla VII adjunta, In ésta, se d\& en forma
tabulada las variables que afectaron la perforación del pozo, tal es como al tamafo del hoyo, caractoristicas de las botellas $y$ de las bombas de lodo, destación del pozo, peso sobre la broca, velocidad do la mesa y cam racterfsticas del flufdo de perforación.

## Prosancia do upe alta prosión de gaso-

A la profundidad de 1500 pies 5 como modida procentoria, se com Fenzó a subir al peso dal lodo do 10.5 \& 12.0 Lbso/gal utilizendo sufia ciente cantidad de baritina. Con esto pesos se pudo continuar porforame do hasta 5450 pies, punto ol sual se noto gran cantidad de gas que sam lifa con ol lodo del retorno a la saperficio. La densidad dal flufo do perforacion bajo considerablemente por 10 que fué nocesario detener las operaciones normel es de perforación y tratar de acondicionar el lodo a un poso suficiante como para controlar la alta prosión del gas. A pesar de la celeridad con que se procedió para olevar el peso del lodo y de las magaficas condiciones iniciales del flufdo, no fue posible ovitar que gran parte dal volumen de lodo contenido en ol hoyo, fuera despedido a la superficio. Se procedid ontonces a cerrar ol control 1mpidemreventones Cameron "QRC" alrododor de la caferfa vistago de porforacion y se detuvo en form temporal ol escape de gas. Locturas tomadas do las presiozes cn la cañorfa de perforacib y on ol ospacio anularg indicaron 1100 J 600 Lbs/palge ${ }^{2}$ respectivanente。

Se proparó suficiente Folman de lodo de densidad de 17.3 Lbs/gal. y viscosidad Marsh de 48 sogundos y se comezb a matar al pozo establecienc do eireulacifn por debajo del control a travís de la víroula lateral do compuerta Cemeron "HCR", como puodo observarse en (A), Fig. 10. Gran parto del flufdo bombeado dentro del pozo fué despedido a travks de esta
val vala pero nag vez que se logrb llenar ol hojo, se obturieron retomos dol flufdo forma cada vez rás satisfactorios. Pbrdida de circulacion del fluido de igroceion.-

Como una consecuencia do la alta densidad del fluldo, la carga hia drostática impuesta a las fornaciones adjacentes a la arenisea petrolffora, fué teablén nus grande.

Bn ol caso que nos ocupa, ol lodo de 17,0 Lbs/gal originó una prem sión de 4770 Lbs/pulg. ${ }^{2}$ â 5400 pies de profundidad. Esta presion hidrostf́a tica tan grande, produjo la separación de las formaciones de lutita en sus plenos de clivage creándose una pérdida de circulación dol fluído.

Para controlar eata pórdida, fuó necesario reducir ol peso dal low do á $15.0 \mathrm{Lbs} / \mathrm{gal}$. a la vez que se agregaba una cantidad suffeiente de mate riales de enlucido tales como la nica, al colofán ola semilla de algodón. Por otro lado, a fin de mentenor en sasponsión dichos matoriales, fún neceo sario desconectar el cedazo Fbratorio y continuar asi la perforación norm mal del pozo.

Trabajo de pesca.-
Los dos problemas de la perforación que acaban de mencionarse, diow ron lugar a que las paredes del hoyo on on principio firnes, se derrumbaran motivando al atascamiento de la caĩería vástago de perforacióno

H trabajo que se hizo con ol fin de desatracar la cafería origiab una tediosa labor de pesca. Primero, fú necesario desenroscar la caifería para 10 cual se enplof una carga de Prim Cord de 36 pies de longtud dise puesta a lo largo do la cafiorla en la parte comprendida ontre 5036 y 5000 pies. Despuéa que hizo explosión esta carga, se procedió a desenroscar la caf̃ería lográndose con érito la recuperación de 5000 pies de ollas Se
traté luego de bajar una sarta de lavado de 8-5/8 de pulgada pero debide a la gran cantidad de derrubes, se le tuvo que extraer nuevamente del hoyo.

Fú́ necesario ensanchar el pozo a uno de 11 pulgadas de diámotro hasta 5000 pies. Darante esta oporación al peso del lodo so manturo entre 15.0 y 15.5 libras por galon, con las mojores caracterfaticas de file tración, viscosidad y golatinización.

Con ol hoyo onsanchado a 11 pulgadas, fué posible bajar la sarta do lavado de $8 \times 5 / 8$ de pulgada hasta cubrir una conveniente altura alrededor de la cainoria. Se bajd luego una herramienta de corte y pesca con la que se recupert la parte de la cañoría de $\{-1 / 2$ que acababa de ser linpian da por la sarta do lavado. So procedió on igual forma hasta la rocuperan cibn total do las herramiontas que habfan quedado en al hojo.

La perforeción contimó hasta 6000 pies abriéndose un hoyo de 9-7/8 de pulgada y mås tarde onsanchándose a 11 pulgadas. Al atravesar al intervalo comprendido ontre 5700 y 5900 ples no fué notoria la contao minación del fluido con anhydrita debido al ampleo durante toda la perfon ración de un lodo a base de cal. Gencatacion dol rovestimiento protectoro-

Ona vez alcanzada la profmididad de 6000 pies, se extrajo la oafioria do perforación, se tomb primero un registio do calibración del pozo y lago un registro oldéctrico do las formaciones ya perforadas. Por al regisa tro eléctrico obtenido se doterninó al tope de la arenisca potrolffora a 5400 pies, y al fondo a 5700 pies, procediéndose luego a corter un revestio miento protector de $8-5 / 8$ de pulgada, $N-80$, de 36 libras por pie hasta 6000 pies.


#### Abstract

A este revestimiento se le hablan soldado 7 centralizadores y 12 raspadores Halliburton deltipo rotatorio, dispuestos el primer contralí zador debajo del collar flotador que dba a 5960 pies y ol resto en la 200 ia correspondiente a la arenisca petrolifora, a una distancia de 80 pies uno de otro. Los raspadores se soldaron tres en cada uno de los cuatro tubos que daban frente a la parte más alta de la arena productiva. La cementación se llovf a cabo con 270 sacos do cerento más $5 \%$ bentonita. La alture del cemento estimada fue de 4600 pies ó sea 800 pies por encio na del tope de la arona.


## Porforación del hoyo finalen

La perforación se inicif con broca de $7 m / 8$ de pulgada siguicno do ol mismo procedimiento empleado despůs de la cenentación del revestio дiento de superficie. $M$ acondicionamiento dol lodo se llov́ a cabo en igual forma, excepto que la densidad dal flufdo fuémentenida an 12,5 lin bras porgalon. Otras variables encontradas durante la perforación puen den verse on la Tabla VII adjuta。

01 llegar a 7400 pies de profundidad fié necesario extraer la can fierfa vestago y cambiar la broca que se habia estado utilizando por ma broca sacanúcleos. Se perforb́ con ala de 7400 a 7414 pies recuperándose solenente 9 pies de núcleo. La perforación se catinú con otras brocas sacanuiole0s hasta 7460 pies y luego so extrajo la caf̃erla vastago para llevar a cabo una prueba de formacion.

Prucba de la formación.-
Antes de la pruoba de formación se tan un registro oléctrico para determinar exactamente el tope de la arens. Del estudio que se lleo vf a cabo dal registro $y$ de $10 s$ núcleos obtenidos, se pudo determinar al
tope de la areas a 7400 ples de profundidad. Se bajo entonces un prober dor "Howco" de $8 \mathbf{m} 1 / 2$ pulgadas $y$ se puso en prueba ol intervalo compreadido eatre 7425 y 7460. La herramienta se mantuvo abierta durante 30 minuco tos y cerrada durante 20 a fin de determinar la presión de la formaciba. Ios resultados obtenidos fueron los sigulentes: primero se recibló un regalar soplo de gas que se mantuvo canstante durante el tiempo que durb la prueba, so rocupors al sacar ol probador 5 barras (una barra os la combinación de tres tubos con un total de 90 ples de largo) con lodo core tado con gas y 8 barras de petróloo y lodo (41.0\% de petroleo). La preo sifn de fondo fué de 3950 Lbs/Pulgo ${ }^{2}$. La prueba fté satisfactoria y el intervalo se consideró productivo.

La perforación se continub on fora normal con broca de 7a/8 de pulgada hasta 9600 pies donde fué necesario nuevamonte oxtraer otros núcleos de muestra y poner an prueba los intervalos favorables, La perforación se consideró completada al localizar por medio al registro oléctrico una gruesa formación de lutita situada debajo de la última arena petrolfera. Comontación dol rovestimionto final.-

Hi hoyo faé cublerto hasta una profundidad de 9980 pies con un revestimiento de acero de $5-1 / 2$ de pulgada, $N-90$, Zl de 20 libras por pie, al que se 10 habian colocado previanente 13 centralizadores y 18 raspadores Halliburton del tipo rotatorio, dispuestos al primer cartralis zador debajo del collar flotador que iba a 9900 ples $y$ ol resto en la zoo na de la areniaca petrolffera a una distancia de 80 pies uno de otro. Ios raspadores se soldaron tres en cada uno de los tres tubos que dabsa fronte a la parte más alta do la arenisca prodactiva. La cementación se
llevo a cabo con 405 sacos do cenento ais $5 \%$ de arcilla bentonitica. La altura del cemento estimgde lué de 7050 pies 6 sea 800 pies por oncira del tope de la arena. F pozo en esta forma quodo listo para la perforan ción salectiva a balas.

Bistribución dol Tiospo de la Porforaciónom
La signiento es la dstribacion del tienpo ompleado an la perfon racion dal pozo exploratorio a 10,000 pies de profundidad.

Operaciofn	Horas	2
Pertorando al fondo	2,149	47.2
Viaje de la caforia vastago	695	15.2
Fasanchando ol hojo	125	2.7
Corriendo revestimiento y eementado	158	3.5
Sacando núcleos	109	2.4
Pescando	520	11.4
Roparando oquipo	329	7.2
Cospletando ol pozo	104	2.3
Control del lodo	160	3.5
Iransporte 8 instalacion dol equipo	52	1.1
Esparando	29	0.6
Varl 08	130	$\underline{29}$
TOTAL DE HORAS	4560	100.0

Costo de la Perforación dal pozo exploratorio \& 10,000 pies.。
Il costo calculado para la perforación del pozo en reforcncia ha sido de 2,675,600 soles, como puede verse en la Tabla IIX adjunta.


## TABINA IDS

COSTO DR IA PERRORACION DE TN POZO FXPLORATORIO A 102000 PIES DE PROFUNDIDAD

## Soles

A. Proparación del sitio: Vía de accoso y locación:
a) Salarios
8,000
b) Material es
c) Equipo Mecánico
6,000
11,000

Bo Maquinaria do Porforacion:

1) Castillo: traslado y montajo en la locación
a) Salarios

11,000
b) Materiales
c) Bquipo mecánico
2) Aparojo do Porforación: traslado y montajo

3,900
$\frac{6,100}{21,000}$
24,000
45,000
C.- Operaciones de Perforación:

1) Salanios

71,400
2) Tran sporte
3) Brocas
4) Suninistros

62,700
337,000
51,500
5) Reparaciones

45,600
568,000
D.a Combustible
F. Agaa
F. ${ }^{\circ}$ Gastos de Lodo

1) Supervision

10,000
2) Transporto

8,500
3) Bentonita

6,800
4) Baritina

230,000
5) Otros aditivos

30,800
6) Gastos gen eral es

18,900
305,000
Gee Camontación: Contrato con la Halliburton 011
Wall Cersenting Co。

1) Cemontación rovestimiento do supericio

7,600
3) $\omega$ pinal

11,800
15,800
35,200
$\mathrm{H}_{\mathrm{A}}=$ Varios

1) Perfilajeß aléctricos 31,500
2) Perforación a balas

19,400
3) Pruebas de formación

12,000
4) Registras de Calibración

8,200
5) Begistros de Temperatura

15,000
I.- Gastos do Supervisión
J.- Roparaciones Prorrateables
K.- Deprociacion do Herraniontas I Equipo

86,100
93,000
$I_{0} \omega_{\text {Otros gastos Prorrateables (mantenimiento de cao }}$
Froteras, geologos, otcs)
144,000
302,000

Mo- Tuberfas de revestimiento $\frac{\tilde{z}}{}$ producoión

85,000
911,000

## PROCEDIMIERTO DE TTERMINACION DEL POZO

A fin de obtener una recuperación máxima del potroileo contenido an ol reservorio, es necesario utilizar métodos de terminación bion estudiados desde ol comienzo de la fida dal yacimiento y modificar dichos mótodos de acuerdo con la experiencia y con los estudios realizados.

Mientras se está perforando ol primer pozo, se propara un programa para la estimación de las perspectivas que ofrece al jacimiento al que prow voorá la información adocuada para ol planeamianto dal acabado del pozo. En esta información se incluyen los lfmites, contenido y caracterfaticas dal reservorio y otros datos ítiles oom son las presiones y temperatures, fndicos de productividad y propiodades de los flufdos dal yacimionto. El estudio de todos estos datos, conjuntamente con el estudio de la geologia de la rea gión, permitiré hacer una ostimación razonable del método de producción dal yacimiento。

En aquallos yacimientos de mpujo hidráulico y con oresta de gas, ol principal control sobre la producción del agua y dol gas so halla an la determinación del procediniento conveniente an el acabado del pozo, tanto on la terminación inicial como on los trabajos de reacondicionamionto motio vados por la oxpansión dol gas ó por la invasion dol agua.

Dos métodos de terminación del pozo pueden seguirse atendiondo a las caractoristioas del yacimionto:

1) Fhpleo de un revestimionto do acero cementado a traves de la arena productora y posterior perforación sel ectiva a balas, tal como se 1lustra en la Figo 11.
2) Fapleo do un revestimiento de ecoro cenentado arriba de la formación productora y postorior antubamionto de la arena potrolffera con

$$
P A R T \cdot E \|
$$

TERMINACION DEL POZO

## Procedimientos de Terminacion del Pozo



Fig. 11
TERMINACION DE UN POZO POR pERFORACION SELECTIVA A BALAS


FIG. 12
TERMINACION•DE UN POZO CON REVESTIMIENTO INTERIOR PREVIAMENTE PERFORADO
un revestimiento perforado previamente, tal covo puede verse on la Fig. 12. TEFRMIIACION DHL POZO PARA PRODOCIR POR PERFORACION SEIECTIVA A BALAS - E. acabado de un pozo por al metodo de perforación selectiva a bam las consiste on la cenentación dal revestimiento de acero a travís de la fora macion petrolifara J la posterior perforación a balas tanto del revestimiento como de ls capa de cemento para que ol petróleo de la fornación flufa on ol pozo. Jsta técnica exige que cada estrato petrolfero sea aislado por al cemento para dejarlo protegido de aquellos Iluidos que pueden estar presere tes arriba $\delta$ abajo de la capa productora. Es por consiguiento descable que el cemonto llene complotamento ol espacio anular ontro al revestimiento de acero y la formación productora y por otro lado que sea do un espesor sufla ciente como para satisfacer las condiciones del pozo.

Es prâctica corriento mantener ontre ol hoyo abierto $y$ el revestimiento de acero un espacio libre que vario entro 1-7/8 \& 3-z/4 de pulgada. Por ojerplo, en un hoyo de $9 \times 5 / 8$ de pulgada deberá cenentarse revestimiento de 6-5/8 y no wno de 5-1/2 pulgadas.

In cuanto a la profundidad a que deberá bajarse ol revestimiento asf como la altura a guo deberá llegar el cenento por dotrâs de la tubería de revestimiento depende esencialmente de las condiciones oncontradase Asf por ojeplo, cuando ol pozo es llevado por debajo de los 3,500 pies o cuane do la presión de la arena petrolffora es aperior a lo normal, es pratica corriente llevar el cemento a 700 pies por encima del tope de la arena. Si se desea proteger a la vez una arena experior que no encuentre distanciada de la zapata del revestimiento an una cantidad major de 2500 ples, puede usarse una cementación simple. Si la distancia fuora mayor de 2500 ples , dobera ugarse un collar para comentación riftiple que irá instalado en al revestio
miento a una distancia aproximada de 100 ples por debajo del fondo de la aren na superior.

Caando ol pozo no es llevado por dobajo do los 3500 pies y la arena petrolffora no tiene una presifin anormal, al comonto debork disponerse hasta 400 ples por oncima del tope de la arena.

II uso de centralizadores y de raspadores que van dispuestos on la parte externa del revestimiento de acero, sirve para mejorar la adhesión antre al comento y la fomación. Fste procedimiento ha reducido considorableo monte el porcentaje de cementaciones dofectuosas y ha aumentado al micmo t1 enpo, las oxfgencias do capacidad de penetración de los perforadores a bala.

IH nưmoro de contralizadores que deberk usarse, varfa natarale mente con las condiciones del pozo. Sin ombargo, puede emplearse con bastante ofito un centralizador on tramos altoraados del revestimicetos comenzando desde al extr 10 inforior de este hasta aprorimadamente 150 ples sobre el tope de la arena productiva。

In cuanto a los raspadores, se construyen de dos tipos, el reciprocente y al tipo rotatorio. I. primero se usa disponiendo cada raspador a intervalos de 15 pies an ol revestimiento de acero, an la parte que da frene to a la arena potrolffera y procediondo a dar un morimiento reciprocanto a la tubería de revestimiento on una distancia que vario do 20 á 30 pies dua rante ol tiemp de acondicionamiento del lodo, antes de la cementación. Derante olla, esa distancia se reducirá a 17 ples áás o meaos. fll raspador del tipo rotatorio se dispone longitudinalmente en ol revestimieato de acero culdando de que no vaya on aquollos puntos donde fa a procederse posteriornonte
a perforar a bala Durante ol tiemp de circulación dal lodo antes de la cementación, la tubería deberá rotarse a una velocidad de 20 a 30 revolue ciones $y$ duranto la cenentación misma la velocidad so reducirá do 10 \& 20 revoluciones por minuto. Fn una sección de arena mav gruesa, diganos de 400 á 500 ples, es peligroso ol empleo de los raspadores del tipo rotatow rio debido al gran mimero que serian requeridos, on esto caso conviene eanco plearlos solamente en la zona de la cresta de gas y on la zona do emulsión 81 la hubiera.

Rs práctica corriente ol ompleo de un tipo de ocnento modificado de baja resistencia que se prepara con ol cemento portland y la adición de 3 á $5 \%$ de arcilla bentonitica. Fsto cenento modificado ofrece una serio de ventajas que lo hacen adaptable tanto a cementaciénes nuevas como a trabajos de recondicionamiento, pudiéndose notar la tendoncia general hacia al exleo de cementos más livianos.

## Porforación a balas-

La terminación de pozoo de petróleo y gas mediante la perforaoión a balas de la tuberfa de revestimiento so halla muy difundida on la indase tria gracias a que proporeiona ol control de los horizontes productivos. Sin enbargo, a memado so presenta el interroganto do cantas do tales pere foraciones alcanmason raalmente la formación productiva Estas dificultades en la ponetración se han tratado de subsanar oon las mejoras introdua cidas en los nuevos cafones perforadores y con ol empleo de cementos modic ficados cuya resistencia menor por rotara a la traceión perinto una porea tración de las balas notablenente mayor que la que so obtiene cuando so usa cernento puro comin.

Para atravesar revestimientos do acero del tipo Jo55 so usan bal as
de 8.5 mm . y 12.0 mm . Do \&stag, se considera que las primeras tionem nae yor ponetración que las segundas y se usen con un espaciamiento de 6 pulgac das。

Para atravesar revestimientos de acero del tipo $N=80$, $\delta$ para aquen 110 ossos que se haya tenidh que correr un revestimiento de 5-1/2 pulgadas an hoyo de 9-5/8 de pulgada, se está usando perforadores a bala mojorados y perforadores a chorro. Estos nuevos porforadores están actualmente on la otapa de ovolución y su uso está recomendado con espaciamiento de 3 pulgae das como mérimo.

Las cargas van en un carion de 6 pies de largo y se disparan todas a la vez. In forna ocasional se usan cargas combinadas de balas del thpocorriene te y perforadores a chorro, sobre todo cuando se trata de completar satisfacm toriamente al pozo muy cerca a la zona de agua ó a la del gas.

## TERIMNACION DEL POZO CON REVESTIMIENTO INTERIOR PRESIAMENTE PERRFORADO.-

El acabado de un pozo enpleando un revestimionto interior previamente perforado se hace an los reservorios donde la produccion se dotiene de forman oiones de arenisca de baja permeabilidad y en las que no existe gran cantidad de agua on al fondo.

Este procedimiento de terminación se lleva a cabo de la siguiente manera, una vez completada la perforación dal pozo hasta a profundidad final, por ejemplo con broca de $905 / 8$ de pulgada, se procede a tomar un registro elfetrim co que indicará las condiciones de la formación de arena que acaba de atravon sarse. Se corre luego un revestimiento de acero que debera ir oenentado al tope de la arena. Fs práctica corriente caplear en este caso un revertimiento de $6 \pi 5 / 8$ de pulgada. Una vez que el comento ha fraguado, se baja una broca
de menor diámotro, digamos de $5 \omega 5 / 8$ de pulgada para perforar al tapón de cemonto y limpiar hasta el fando dol pozo. A continuacion so baja un reo vestimiento interior previamente perforado de 5 pulgadas de diámetio, ol que se dojará asentado on al fondo. fo la Flg. 12 adjunta, puode notara so la condición final do esto método de acabado.

Este procedimianto de terminacion tione la desventaja de no pera mitir un ofectivo control del reservorio, lo que si se lleva a cabo con al procedimiento de acabado con perforacion salectiva a balas. Sin ambargo, el método que nos ocupa os muy convenionte cuando se plene a llevar a cabo la ruptura de la formación petrolifora ampleando cargas de nitroaglicorina. Th oste caso la mojor práctica consiste en porforar la arena productiva con lodo a base de acoite, cemontar ol rovestimionto superior, $\infty$ en rer revestimiato interior previanente perforado y poner al pozo en proo ducción por un tienpo determinado. Más tarde, se deberáa oxtraer el ree vestimiato interior, poner la carga de nitromelicerina y después de que Ssta explote, correr nuevamente ol revestimiento perforado. La extracción de estos revestimientos an pozos que han sido perforados can lodo a base de agua es dificil y costosa, lo que no sucede casendo se ha usado lodos a base de acoito.

PROCEDIMIENTOS PRPLEADOS PARA AUMENTAR LA PRODOCTIVIDAD DE LOS POZOS.-
Cono un complemento a los métodos de terminación del pozo, cone Hi ene mencionar a continuacion algunos do los procedimientos que se amo plean para aumentar su capacidad productiva.

## PROCEDIMTRNHO HYDRAPRAC

Hi procodimionto Hydrafrac que so emplea para aumentar la prodnce tividad de los pozos que producen petróleo de formaciones de areniscas muy compactas, consiste esencialmante de la ingeccion on al ostrato petrolfforo de un fluido altamente fiscoso, a olovadas presiones originadas por bombas situadas en la superfioio del terreno, con el fin de fracturar y mantener ablerta la parte de la formación yacente al hoyo. Una vez aplicada la ace cion de agrietar y sostener las grietas, ol flufdo que ha sido utilizado debe volver al estado que perinita su retorno al pozo y por este a la supera flcio.
[1 flufdo que se utiliza an al procedimiento Hydrafrac, os gasom lina convertida on materia gelatinosa por la acción de un jabón. Otros derivados del potróleo, ontre ollos al kerosene, puoden tambián servir pa@ ra formar galatina y por consiguiente pueden utilizarse oon ol fin propueso to, In la prueba que aqui se describe, so ha ompleado ol Napalm, aditivo eapleado durante la guerra para producir gasolina golatinosa.

Desde que so supone que la fractura oreada por la presión may grano de de la bomba, tendería a cerrarse una vez reducida la presión, es necesac rio agregar arena de un tama fo determinado que deberá quedar on la griota com mo material de sostón. La golatina formada por Napalm - Korosene so presta blen para la tarea de llevar esta arema al lugar requerido.

Dospués de la gelatina, se bombea inaodiatamente un desgolatinizador. Ia establlidad de las golatinas puode ser controlada en grado sum por al uso de compuestos quificos. Al agregar una olerta cantidad de agua a la mezcla de Napalmagasolina, la golatina wolvora al estado liquido on ol ourso de 8 \& 24 horas. Fil agua salada, las soluci ones de gasolina ó de crudo con sulfonam tos de petrifleo y otras sustancias, contribuyen a la regulación del tiempo de

## desgelatinización.

Se vé a describir a continuación, la forma como so aplicó al proceo dimiento Bodrafrac a un pozo de mroducci\& relativanente baja con al objeto de aumentar su productividad.

E1. pozo fué completado originalmente un mes ymodio ent os de aplio carle ol tratamiento. Fl registro aléctrico final mostró un desarrollo faw Forable de la arena principal con una serie de estratos de arenisca interese tratificados con lutita. Se corrió un revestimiento de acero de 5ml/2 pule gadas que lué cementado dentro de un hojo de Bel/2 pulgadas con 235 sacos de comento más $5 \%$ de arcill a bentonitica a través de la zapata situada a 5,020 pies y 340 sacos de cem nto más $5 \%$ de arcilla bentonitica a través del collar cemontador miltiple situado a 3,700 plese Blobjeto de esta segunda cemontación fué proteger una formación que posteriormente serk pere forada on sus estratificaciones más altase

La arenisca productiva fué abierta en los siguientes intervalos:

Intervalo	P1es	Espaolamicato	No. de Balat	Tamanio
4955-4942	13	4 pulc.	40	8.5 mm
4936 - 4910	26	4 -	79	8.5 mm 。
	39		119	

Bn los dos primeros dfas de puesto el pozo en producción se obm tuveron 7 y 8 barriles respectivamente por ol método de "gas lift"。 Los intervalos originalmente abiertos fueron roperforados usando balas de mac yor poder (shaped oharges) para obtener una mevor penetración en la arena, como sigu e:

Intorvalo	Espacianiento	No. de Balas
$4948-4942$	$3^{\prime \prime}$	
$4936-4930$	$3^{\prime \prime}$	
$4930-4924$	$3^{n}$	24
$4924-4918$	$3^{n}$	
$4918-4918$	$3^{n}$	120

El promedio de cuatro dias de pruoba subsiguientes a la perfores olón a balas do mayor potencia, fué de 10 barriles por día por al método de "gas lift" y el promedio do tros dias de prueba con bamba, fé de ll barriles por dia, m pozo tuvo que estar cerrado por un perfodo de cuatro dfas para alcanzar una prosión márima do l, 450 libras por pulgada cuadraa da, poniendo de manifiesto la existencia do una arena nay poco permeable. Dos pozos adjacentes perforados en la miena área habfan producido iniciala mente 200 J 250 barriles por dfa, lo cual indicaba la posibilidad de oba tener érito al aplicarle ol método Hydrafrac al pozo en cuestion.

Se comenzo por matar al pozo con lodo a base de acoite de 10 libras por galón. Se bajó tubería de producción que llevaba dos obturadores distanciados 44 pies, teniendo la seccion de tuberfa oomprendida entro los obturadores, suficiontes perforacionos para dojar pasar los fluidos. El obturador inforior se asentó an ol revestimiento de acoro a 4939 pies, ol superior a 4895 pios. Se verifico luego, la ruptura de la formación aplin cando presión al petróleo crudo que se habla bambeado previamente on al espacio comprendido entre los obturadores y la tubería. So comenzb a bome bear la gelatina preparada a base de Napalm-Korosene, una cierta cantidad de agua y suficiente cantidad de arena, tal camo se indica an A, Figure 13. Después de la gelatina se siguí bomeando la mezcla desgelatinizena te a razón de 3 barriles por minuto, ver B, Figura 13 , por ultimo se bomboó petróleo crudo an centidad suficiente para desplazar al flufdo desgelatinic zante fuera del hoyo. In pozo qued6 cerrado duranto un perfodo de 24 horas. Posteriormonto, se puso ol pozo on producción para oxtraer los flufdos eme pleados durante ol proceso, tal como so ve en C, do la miana figura.

Durante todo el tratamiento se llevo un registro continuo de las presiones de la bomba ol que puede notarse la Pigura 14 adjunta.


CURVA DE PRESION DE LA BOMBA, EN LA QUE SE NOTA EL AUMENTO DE DICHA PRESION HASTA EL FUNTO DE RUPTURA DE LA FORMACION Y SU DESCENSO DESPUES DE AGR! TADO EL ESTRATO

Después de cinco dias de prueba so considerb terminado ol trabajo de recondicionamiento asignándose al pozo una producción inicial de 135 bam rriles diarios, con rolación gasaleite de 800 pies cuibicos por barril a través de una restricción de $1 / 4$ de pulgada.

## PROCEDMIIRNTO DF ACIDIZACION

Sste procedimiento que se aplica a los pozos con al fin de increo mentar su producción de petroleo ó gas, consiste on la adición de un fecido a la formación productiva con al fin de producir la disolución de los carbonatos ó olementos solubles que dicha formación contione y permitir al fácil acceso del petroleo al hoyo y por ende a la eaperficie.
[4 proceso al si es bastante soncillo, ol fécido es bombeado dore tro dol repestimiento de acoro a una altura conveniente y se le sigue con suficiente petróleo crudo para más tarde oxtraerlos juntos del pozo. Hl método ha dado en alganos casos muy bucmos resultados, sobre todo tratándose de pozos antiguos, an los pozos recién perforados al mótodo de acidización cobra un diferente aspecto dosde que su funcion no solo consiste on la disolución do los al ementos solubles do la formacion misa, sinó tambíá la disolución de las arcillas que han quedado en ol hoyo on forma de costra y oono ramenentos del fluido de perforación.
M. ficido que se orplea on este procedimiento os al clorhíarico con una concentración de $15 \%$ al que se lo he agregado un inhibidor con al objeto de reducir la corrosión del revestimiento de acero y de otras piezas dol equipo empleado•

Kl. Foluman de ácido requerido para un trataniento depende de las condiciones dol pozo; es préctica corrlonte ol capleo de un volumen de
ácido equivalente a tres $\delta$ cuatro veces ol volumen contenido en ol revestia miceto de acoro on la zona que desea aplicarse ol tratamiento. Este valor así determinado sertirá de base para la aplicación de tratamientos semejana tes en otros pozos del nismo yacimionto y podrf variarse de acuerdo con los resultados obtenides.

Fh general, puede comenzarse por usar de 500 a 1000 galones de ácido, dopendiendo dol tamaĩo do la formación productiva, si se notan ren sultados apreciables en la productividad del pozo y se desea aumentar la penetración al doble, se deberán usar 2000 ó 4000 galones on un trataniento posterior. 孟 caso de no obtenerse resultados favorables, se puede asumir que la productividad del pozo ha alcanzado su mítimo y no es conveniena te ol empleo de mayores cantidades de icido.

Kl trabajo que se describe a continuacion es un caso tipico dal procedimiento de acidización aplicado a un pozo el que se obturieron rea sultados may aprociables. El pozo habla sido completado originalmento a una profundidad de 2400 pies con un revestimiento de acero de 5 pulgadas de diem metro. Las arenas petrolfforas expuestas a producción habian sido perforadas a bala en los intervalos comprendidos ontre 2180 á 2160 pies y ontro 2150 \& 2030 pies con un total de 142 disparos, tal como puede observarse on la Figua ra 15 adjunta. La producción inicial del pozo habia ad de 230 barriles de pou tróleo por dia, y con una relación gasaaceite de 360 pies cúbicos por barril a través de una restricción de $1 / 4$ de pulgada.

Después de dos años de puesto al pozo on producción se notó una disminución notable de la presión surgente y el pozo dejó de prodacir debido a un influjo do agua salada on ol fondo. Las muestras de agua oxtraídas al ser enal izadas dieron de 18 a 20 gramos por litro de cloruro de sodio en ur rolue men de agaa equivalente al $55 \%$ dol tot al de fluldo. Se procedib entonces a
cementar el fondo del pozo tapándose con conento hasta 2155 ples. Puesto nuevamente al pozo on prueba produjo 140 barriles de petróleo por día a través de una restricción de $1 / 4$ de pulgada.

Después de 8 afios de produccion casi ininterrumpida, so extrajoron los tabos de producción con ol objoto de hacer un trabajo de limpieza y se encontró en ollos una gruesa costra de depóstos calcáreos que podia ser diauelta faellmento, con foido clorhidrico. Solimpib ol revestimiceto de 5 pulgadas con un raspador especial y se puso al pozo a prueba. Ia producm ción antes del servicio de limpleza fué de 6 barriles de petróleo diarios, la producción después, flé de 60 barriles de petróleo y 1 barril de agua por el mótodo de bombeo.

Kl trabajo de acidización se llevo a cabo de la siguiente manera, se comeazó por sacar las varillas del equipo de bombeo y se mató ol pozo con petróleo crudo. Se extrajo la taberfa de produceín y se le bajó nuew vamente con un obturador que fué asentado a la profundidad de 2025 ples tal como puede observarse en la Figura 15.

Hilliofleo fué bombeado dent ro de la formación obteniéndose la ruptura do ella a 1100 libras por pulgada cuadrada, se le siguló luego con 600 galones de ácido a 900 libras por pulgada cuadrada de presión y se conco tinuó bombeando ol potróleo crudo. Por último, se comenzó a limplar al poo zo con al achicador (swab) y se le paso al producción. Después de varios dfas de prueba se 10 pudo asignar una producción inicial do 150 barriles de petrbleo por día con una relación gaseacelte de 520 ples cúbicos por bas rril a través de una restricción de $1 / 4$ de pulgada.

PROCEDIMIENTO DE DISPARO DE LA FORLACION CON EXPLOSIVOS

Otro procedimiento que se emplea con 8xito para incrementar la productifidad de los poenos petrolforos, consiste on la explosion dentro


Fig. I5
de la formación misma de una carga do nitroglicerina que crea nuevas fraco turas aumentendo el área de drenaje dol pozo. Esto método se aplica a los reservorios $\begin{aligned} & \text { n } \\ & \text { compactos } t a l e s ~ c o m o ~ c a l i z a s ~ \\ & \delta\end{aligned}$ en aquellos pozos que han sido 0 serán completados con un revestimiento interior previmente perforado.

Se vá a indicar a continuación el procedmiento que fué erpleado para qumentar la productividad do un pozo con ol ompleo do varias cargas do nitroglicerina. Vor Figura 16 adjunta.

II pozo on reforoncia habia sido complotado hasta una profandio dad final de 1250 pies habiéndose cementado un revestimiento de $6 \times 5 / 8$ de pulgada hasta 604 pies de profundidad. Se comenzó por matar al pozo con petróleo crudo J se extrajo el revestimiento interior perforado. Iuego, se bajó una broca de ensanche subterránco y se agrandó ol hoyo a $9 m 3 / 4$ de pulgada.

Se coloç un taṕón de cemento de 1060 a 1010 pies con 25 sacos. Después que al cenonto hubo fraguade, se bajó la primera carga de nitroglicerina consistente en 640 libras de gelatina con una bonba de tiempo colocada en el interior de un dispositivo especial (combination cave catcher) como se mestra en la Figura 16. Eneima de la carga descrita, se pusieron 10 pies de grava $y$ en ol intervalo comprendido ontre 960 a 925 pies se puso un tapón do "calseal"。 Despu\&s de una hora, que fab al tiempo necesario para el Praguado del Calseal, fué posible bajar la seo gunda carga de 1280 libras de nitroglicerina, seguida en forma igual a la anterior, primoro por la grava y luego por otro tapon de calseal. La illtima carga fab do 480 libras, diepuesta en ol intervalo comprendido entre 790 y 760 pies. Las tres cargas se hicieron disparar casi simulaø
negmento, procediéndose más tarde a la limpleza del hoyo con el empleo de un lodo a base de aceite de alta Fiscosidad. Se corrió luego ol revestimiento perforado extraido originalmente del pozo j se le puso en prueba.

La producción dal pozo antes del disparo era de 15 barriles por dia por el método de bombeo, después del trabajo con la nitrogle cerina se le pudo asignar una producción inicial de 60 barriles por dia por el mismo método.

## PAECTB I

## SKIACCION DHL FQOIPO DE PEFTFORACION

Ptanna
INTRODUCCION ..... 1
EQUIPO DI PERRPORACION ..... 5
Fuorza Kotriz ..... 5
EL SISTEMM HIDRAJLICO ..... 6
Soloce1年n do las bombas ..... 6
CI SISTHEMA DE HZATS ..... 15
Potencia requerida ..... 15
IU SISTHEMA DE IA MRSA ROTATORLA ..... 18
EL CASTIIIO DE PERFORACION Y LA SUB-ESTROCTURA ..... 22
EQUIPOS DIVERSOS
PARTS II
OPERACIONES DR PERPORACION
Porforación del hoyo de superficie ..... 26
Cenentación dol revestimionto de suporficie ..... 27
Porforación del hoyo intermedio ..... 27
Presencia de una alta presión de gas ..... 28
Pbraida de circulación del flufdo de inyocción ..... 29
Trabajo do pesca ..... 29
Cenentación dal revestimiento protector ..... 30
Porforacion del hojo final ..... 31
Pruoba de la formación ..... 31
Cementación de rovestimiento final
Distribución del tiempo de la Perforación ..... 33
Costo de la Perforación del pozo exploratorio a 10,000 plos ..... 33

## PARITS III

## THRMTNACION DEL POZO

Plogina
PROGEDIMIENIO DE FERMINACION IKL POZO ..... 36
TEHRMDNACION DEL POZO PARA PRODUCIR
POR PEKRORACION SEWECTIVA A BATAS ..... 37
TEBITNACION DBL POZO CON REVESTIMIENTO
INTURIOR PREVIAMFNTIB PERPIMORADO
PROCEDD:TENNIOS EMPLEADOS PARA ADMFNPAR
IA PRODUCTIVIDAD DE LOS POZOS ..... 41
PROCEDIMTENTO HYDRAFRAC
PROCEDIMTINTO DE ACIDIZACION
PROGEDMDENTO DE DISPARO DE LA FOFMACION
CON EXPLOSIVOS47

## BIBLIOGRAFIA

```
Joseph Zaba ~ Modern Rotary Drilling.
J. Eo Brently.^ Rotary Drilling Handbook.
W. S. Crake.- Modern Botary Drilling Minchinery anci Practices.
Bovman Thomas,a Application of Petrolour Finglneering to Drilling
 and Production Work.
Zaba and Dobertyo" Practical Potroleum Engineors' Handbook.
Lestor Charles Unen.a Petroloum Production Engineering.
Halliburton O11 Wall Cementing Co^m Hendbook.
The Drilling Fquipmant Directory o- Cenenting Mothodse
```

