UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERIA DE PETROLEO, GAS NATURAL Y PETROQUIMICA

"PETROLEO BYPASEADO POR INTRUSION DE AGUA EN RESERVORIOS CON EMPUJE HIDRAULICO DE FONDO"

TITULACION POR TESIS PARA OPTAR EL TITULO DE PROFESIONAL DE INGENIERO DE PETROLEO Y GAS NATURAL

ELABORADO POR:

RAFAEL MARTIN OSORIO SIMPE

PROMOCION: 2010-II LIMA – PERU ENERO 2012

DEDICATORIA

Al *Dios de Abraham, Isaac y Jacob*, cuya bendición empieza con el amanecer de cada nuevo día y nos otorga el libre albedrío de transformarlo en oportunidad;

A mis padres *Gloria y Rafael*, por su noble sacrificio y sus valores inculcados buscando hacer de mí un hombre de carácter;

AGRADECIMIENTOS

Agradezco primeramente al Todopoderoso, por haber dado cauce a mi camino universitario que hoy desemboca en el delta de esta obra.

A mis padres, porque sin su esfuerzo, muchas veces más allá de sus posibilidades, hoy quizá no pertenecería a la UNI.

A la Compañía Pluspetrol por haber sido mi primera *casa de entrenamiento profesional* constituyendo una gran experiencia desde un plano tanto técnico como humano.

De manera especial me gustaría agradecer al Ing. Luis Colán por haber sido además mi asesor en la presente Tesis, al Ing. Diego Cáceres, y al Ing. Renzo Macedo por haberme brindado apoyo técnico en el desarrollo del presente tema.

Al Ing. Luis Del Castillo, Ing. Edgard Argumé por haber constituido parte del honorable jurado que evaluó la presente Tesis.

Agradezco asimismo a todos mis profesores que a lo largo de los 5 años en las aulas de la Facultad me transmitieron sus conocimientos para forjarme como profesional de la Industria Petrolera.

SUMARIO

La energía que hace posible el desplazamiento de fluidos desde el reservorio hasta el pozo se denomina mecanismo natural de producción. En un mismo reservorio pueden coexistir diferentes mecanismos de producción e ir variando a lo largo de la vida productiva del reservorio; sin embargo, siempre hay un mecanismo predominante.

El mecanismo por impulsión de agua o empuje hidráulico es uno de los mecanismos primarios que mayor energía provee al reservorio de hidrocarburos en comparación a otros mecanismos como el gravitacional, gas en solución, capa de gas, etc. Sin embargo, el acuífero que provee el empuje, constituye un gran problema cuando empieza a dejar de lado ingentes cantidades de petróleo durante su recorrido hacia el pozo. Se desprende, entonces, el concepto de Petróleo *Bypaseado (*término *castellanizado* en el presente estudio), que es definido como el petróleo móvil que no puede ser drenado por los pozos existentes y permanecerá en el reservorio si no son modificadas las condiciones actuales.

El desplazamiento de petróleo por agua es controlado por fuerzas viscosas, gravitatorias y capilares así como por la heterogeneidad del reservorio definida por la variación de la permeabilidad. Para tasas de producción por debajo de una tasa crítica, el desplazamiento de la interface sucede de forma *estable*. Sin embargo, las tasas de producción económicamente viables deben superar la tasa crítica lo cual causa un desequilibrio entre las fuerzas que gobiernan el desplazamiento con la consiguiente intrusión de agua y *bypaseo* de petróleo.

La intrusión de agua puede ser de fondo o lateral. Los efectos pueden manifestarse mediante conificación y canalización principalmente causando el *bypaseo* de más del 50% de petróleo móvil original; constituyendo, por tanto, un significante problema y/o reto en la industria petrolera.

El presente estudio busca enfocar el problema del petróleo *bypaseado* por intrusión de agua en el sistema de fondo. El enfoque empieza por comprender la dinámica del desplazamiento de fluidos para ambos sistemas; luego, busca cuantificar el petróleo que podría ser *bypaseado* en ambos escenarios conjuntamente con herramientas de predicción para finalmente, proponer estrategias que podrían mejorar la recuperación de petróleo en los sistemas de fondo y lateral.

A fin de predecir el comportamiento de reservorios con empuje de agua, se emplean modelos analíticos existentes con sus respectivas consideraciones teóricas y limitaciones. Se estudian asimismo, los criterios a tener en cuenta para la utilización de los modelos matemáticos, las cuales convenientemente pueden predecir una tasa de producción crítica, tiempo de irrupción (*breakthrough time*), corte de agua así como porcentaje de petróleo móvil que podría ser recuperado. Entre los modelos analíticos en estudio se encuentra el de Kuo y DesBrisay así como sus auxiliares el de Sobocinsky y Bournazel. La validación en Simulación emplea el modelo de acuífero de Fetkovich.

Determinar el volumen de petróleo *bypaseado* es de suma importancia ya que puede abrir paso a proyectos de recuperación posterior.

Finalmente se propone técnicas que podrían contrarrestar y/o reducir el fenómeno del *bypaseo* de petróleo. Para su demostración, el estudio es aplicado en un reservorio de la selva peruana con empuje hidráulico de fondo.

|--|

DEDICATORIAI					
AGRADECIMIENTOSII					
SUMARIOII6					
INDICE		V			
CAPÍTULO	D I	1			
PLANTEA	MIENTO DEL PROBLEMA	1			
1. Pro	blemática	1			
2. For	mulación del Problema				
3. Obj	etivos generales y específicos ótesis General	5			
		0			
MARCOT					
1. Ante 2 Bas	ecedentes de la Investigación	6 Q			
2.1	Permeabilidad y Ley de Darcy	9			
2.2	Permeabilidad absoluta, efectiva y relativa	9			
2.3	Permeabiliadades relativas: Curvas y características	10			
2.4	Drenaie. Imbibición e Histéresis				
2.6	Razón de Mobilidades	17			
2.7	Ecuación de Difusividad	17			
2.8	Estados de Flujo Desplazamiento Inmiscible	22			
2.10	Suposiciones físicas para procesos inmiscibles				
2.11	Geometría del acuífero	24			
2.12	Condiciones de límite exterior	24			
2.13	Intrusión de aqua: Schilthuis Hurst y Fetkovich	25			
2.14	Análisis Dimensional y Grupos Adimensionales				
2.16	Modelamiento de un pozo individual				
2.17	Uso de Modelos Matemáticos para predecir	el			
2 18	Descripción Geológica y Mecanismos en Reservorios (33 de			
Empu	je Hidráulico de Fondo				
2.19	Modelo de Kuo y DesBrisay	36			
2.20	Gráficos de Diagnóstico de Control de Agua	44			
CAPÍTULO	D III	50			
APLICACI	ÓN DEL MODELO ANALITICO AL EMPUJE HIDRAULIC O	ю 50			
1. Res	ervorio y Pozos en Estudio	50			
1.1	Reservorio Vivian	50			
1.2	Pozos en estudio	54			

 Aplicación y Descripción de Casos Resultados de los Cálculos Analíticos 	57 60			
CAPÍTULO IV				
SIMULACION Y VALIDACION DEL MODELO ANALITICO	70			
 Modificación del Simulador IMEX 1.1 Calibración del Modelo de Simulación 	70 70			
 Diseño de la Densidad del Grillado Selección del Modelo de Acuífero 	71 73			
 Información utilizada en la Simulación	77 80			
5.1 Ajuste de la Historia de Producción del pozo RM01	82			
 5.2 Pronostico de Producción – Pozo RM01 5.3 Pronóstico de Producción – Pozo RM02 6. Discusión acerca del Caso 7 7. Insuficiencias del Modelo de Kuo y DesBrisay 	84 89 95 98			
CAPÍTULO V	00			
SOLUCION POTENCIAL A LA PROBLEMÁTICA DE PETROLEO BYPASEADO	00			
 Downhole Water Sink (DWS)1 Aplicación simulada del DWS al Pozo RM0110 Aplicación simulada del DWS al Pozo RM021 	00 08			
CAPÍTULO VI1	13			
CONCLUSIONES Y RECOMENDACIONES	13			
 Conclusiones	13 13 14 15 15 17			
CAPÍTULO VII	18			
BIBLIOGRAFIA1	18			
CAPÍTULO VIII				
APENDICE				

CAPITULO I

PLANTEAMIENTO DEL PROBLEMA

1. Problemática

Se define "**Petróleo Bypaseado**" (término *castellanizado* en el presente estudio), al petróleo móvil que no puede ser drenado por los pozos existentes y permanecerá en el reservorio si no son modificadas las condiciones actuales.

El mecanismo de desplazamiento de fluidos en el reservorio se ve perturbado cuando las tasas de producción superan una tasa crítica que va a provocar un desequilibrio entre las fuerzas que gobiernan el desplazamiento: viscosas, gravitatorias y capilares. Cuando la tasa de producción es inferior a la tasa crítica, preponderan las fuerzas gravitatorias que hace que la interface entre ambos fluidos (petróleo y agua) ascienda con cierto equilibrio. Cuando es superada la tasa crítica, se produce un desequilibrio con la consecuente canalización o conificación de agua que sucederá dependiendo del sistema de empuje hidráulico: lateral o de fondo.

Ambos sistemas provocan elevados cortes de agua (*water cut*) en la vida productiva de un pozo *bypaseando* cantidades de petróleo móvil existentes. No conocer los mecanismos que aceleran el *bypaseo* de petróleo puede conllevarnos a acelerar el proceso en detrimento de la vida económica de un pozo; por ejemplo, desconocer la tasa crítica de producción y el tiempo de *breakthrough* (irrupción) puede conllevarnos a recomendar tasas equivocadas de inicio de producción en pozos nuevos que pueden acelerar la caída de corte de petróleo reduciendo considerablemente las reservas estimadas inicialmente por pozo de petróleo, debido a un barrido prematuro ineficiente. Así, el problema del *bypaseo* de petróleo empieza por desconocer adecuadamente los mecanismos así como los parámetros de reservorio que pueden acelerarlo y/o retardarlo.

El petróleo *bypaseado* supera generalmente el 50% de petróleo móvil no drenado del petróleo *in situ* en distintos reservorios del mundo. Es un problema de alcance mundial donde conocer su volumen ocupado es de vital importancia para la planificación de proyectos de recuperación posteriores como la perforación de pozos infill por mencionar un ejemplo.

Los problemas de *bypaseo* de petróleo pueden verse acelerados por la forma de completación de los pozos, el espaciamiento entre éstos, la inclinación, la penetración en el reservorio entre otros factores. Los distintos parámetros involucrados a nivel de reservorio y pozo varían según el sistema de empuje hidráulico existente (de fondo y lateral).

La simulación de reservorios es una herramienta avanzada para predecir parámetros del comportamiento del petróleo *bypaseado* así como para la identificación de oportunidades; sin embargo, al ser una herramienta compleja, muchas veces involucra costos tanto económicos como de tiempo para llegar a implementarla de manera adecuada y conocer el problema.

Vemos así, que el petróleo bypaseado es un cubo-problema con múltiples aristas que empieza por desconocer sus mecanismos que lo originan y/o aceleran; también, por no cuantificar adecuadamente las oportunidades en volumen que podrían ser recuperadas así como la arista de desconocer herramientas flexibles que nos permitan anticiparnos al problema de forma ágil y analítica.

2. Formulación del Problema

El problema central es el petróleo *bypaseado* en reservorios con empuje hidráulico de fondo, es decir, el petróleo móvil que deja de ser producido por la irrupción de agua mediante distintos sistemas: de fondo y lateral.

El problema central **se acrecenta** cuando se desconocen los mecanismos que gobiernan el desplazamiento de fluidos en el reservorio. Asimismo, **el problema no puede pasar a convertirse en oportunidad** cuando se desconoce el volumen de reservas que han sido bypaseadas.

No contar con agilidad en cuanto a herramientas de análisis y toma de primeras decisiones puede llevarnos a desaprovechar tiempo en desconocer la magnitud y parámetros del problema mientras éste se produce y/o acelera.

3. Objetivos generales y específicos

Objetivo General

Comprender los mecanismos que originan el *bypaseo* de petróleo, cuantificar su volumen, predecir su comportamiento así como proponer técnicas que tiendan a reducir el volumen de petróleo *bypaseado*.

Objetivos Específicos

- Comprender la dinámica que gobierna el desplazamiento de fluidos y la producción de agua en sistemas de empuje de fondo y laterales.
- Presentar modelos analíticos y correlaciones, así como los criterios de su aplicación para la predicción de petróleo *bypaseado* en sistemas de empuje hidráulico de fondo y laterales.
- Comprender las propiedades de reservorio y fluidos que más impacto tienen en el *bypaseo* de petróleo.
- Cuantificar la cantidad de petróleo móvil no drenado asociado al desplazamiento ineficiente del petróleo.
- Proponer técnicas para optimizar la recuperación de petróleo en reservorios con empuje hidráulico.

4. Hipótesis General

Mediante el análisis y empleo de modelos y correlaciones matemáticas podemos comprender los mecanismos que gobiernan la intrusión de agua, cuantificar el volumen de petróleo *bypaseado* y predecir el comportamiento futuro de un reservorio con empuje hidráulico de fondo respecto al petróleo *bypaseado*; asimismo, proponer técnicas para minimizar el problema de *bypaseo* de petróleo; la hipótesis será validada con la simulación numérica de algunos pozos.

CAPITULO II

MARCO TEORICO

1. Antecedentes de la Investigación

Leverett y Lewis en 1940, presentaron un estudio sobre el flujo de tres fases: petróleo, gas y agua.

Schilthuis en 1935, describió un método que incluía las relaciones entre presión, volumen, temperatura, presión de saturación, cantidad de gas disuelto en el petróleo, cantidades de gas liberado bajo diferentes condiciones de presión y temperatura, y la contracción de petróleo como resultado de la liberación de gas disuelto. Estos datos permitieron deducir ecuaciones importantes y también proporcionaron una corrección fundamental en la ecuación volumétrica utilizada para calcular el petróleo *in situ*.

El siguiente adelanto consistió en la medición de la saturación de agua innata o connata. Esta saturación es inherente a la formación y queda formando parte del espacio poroso después de la acumulación de petróleo o gas. Dicho adelante ayudó a esclarecer el problema de las escasas recuperaciones de petróleo y gas en arenas de baja permeabilidad con alta saturación de agua innata. La medición de la saturación de agua introdujo una modificación importante en la ecuación volumétrica.

Millikan, mencionó la importancia de los datos de temperatura en los estudios de yacimientos y pozos. A partir de estos datos básicos, Schilthuis dedujo una ecuación importante, comúnmente denominada la ecuación de balance de materiales de Schilthuis.

Schilthuis, propuso un método para calcular la intrusión de agua empleando la ecuación de balance de materiales; posteriormente, Hurst y, más tarde, Van Everdingen y Hurst desarrollaron métodos para el cálculo de la intrusión de agua independientemente de la ecuación de balance de materiales y aplicables a acuíferos de extensiones limitada o infinita, en estados de flujo continuo o no continuo.

Tarner, Buckley y Leverett, fundaron las bases para calcular la recuperación de petróleo esperada a partir de las características de la roca y fluido. Buckley y Leverett presentaron métodos para calcular el desplazamiento de petróleo por empujes externos: empuje por capa de gas y empuje hidrostático. Estos métodos no sólo proporcionaron medios para calcular recuperaciones en estudios económicos sino también explicaron la causa de las bajas recuperaciones en muchos campos.

Dykstra y Parsons en 1950, realizaron un estudio sobre la variación de la permeabilidad horizontal con respecto a profundidad, conocida como variación vertical de la permeabilidad que permitió establecer un método de estimación de la eficiencia vertical de barrido en yacimientos que presentan variación de las propiedades petrofísicas en función de la relación agua-petróleo, razón movilidad entre el fluido desplazado y el desplazante y la variación de la permeabilidad vertical.

Outmans en 1962, introdujo el concepto de interfaces transientes durante el desplazamiento de petróleo por agua en el medio poroso. Outmans indicó que el concepto de interfaces transientes es justificado porque los cambios en la tasa de producción en un reservorio puede que no sean seguidos por un ajuste instantáneo de la interface a la nueva tasa, pero por un periodo de transición durante el cual la interface evoluciona de una condición de equilibrio a otra.

Richardson y Blackwell en 1971, propusieron uno de los primeros modelos para el desplazamiento de lengüetas de agua. Dake en 1978, propuso una modificación de la teoría de Buckley-Leverett con el fin de estimar recuperación de petróleo en reservorios con buzamiento. Dietz en 1953, propusieron un modelo de doble dimensión para la irrupción de agua en un campo monoclinal. Sheldon y Fayer en 1962, desarrollaron ecuaciones de movimiento para la interface en un desplazamiento agua-petróleo. Kuo y DesBrisay en 1983, proporcionaron uno de los modelos analíticos de mayor uso para la predicción de corte de agua y recuperación de petróleo para reservorios con sistema de empuje de fondo.

Wojtanowicz y **Hernández** recientemente en el año 2005 desarrollaron correlaciones utilizando simulación numérica y un amplio espectro experimental de parámetros de reservorio para analizar la incidencia de distintos factores que son obviados por la mayoría de los modelos analíticos como los efectos del ángulo de buzamiento, permeabilidad vertical-horizontal, radio de permeabilidad, penetración del pozo entre otros.

2. Bases Teóricas

2.1. Permeabilidad y Ley de Darcy

La permeabilidad es la capacidad que tiene el medio poroso para permitir el flujo de fluidos. Para flujo lineal la Ley de Darcy dice que la velocidad de un fluido homogéneo en un medio poroso es proporcional a la fuerza de empuje (gradiente de presión) e inversamente proporcional a la viscosidad.

$$q_{sc} = \frac{7.08 * 10^{-3} kh(p_e - p_w)}{\mu_o \beta_o \ln(r_e/r_w)} ...(2.1)$$

2.2. Permeabilidad absoluta, efectiva y permeabilidad relativa

La permeabilidad de la roca es una propiedad de la misma y no del fluido que pasa a través de ella, si y sólo si el fluido sature el 100% del espacio poroso de la roca. A este tipo de permeabilidad se le denomina *permeabilidad absoluta* de la roca k.

La *permeabilidad efectiva* de una roca es la permeabilidad de la misma a un fluido particular cuando la saturación de este fluido en la roca es menor al 100%: k_w , k_o . La suma de las permeabilidades efectivas es siempre menor que la permeabilidad absoluta.

La **permeabilidad relativa** es la razón de la permeabilidad efectiva a la permeabilidad absoluta.

$$k_{rw} = \frac{k_w}{k}...(2.2); \ k_{ro} = \frac{k_o}{k}...(2.3)$$

2.3. Permeabilidades relativas: Curvas y Características

Las curvas que describen como varían con respecto a las saturaciones de los fluidos muestran factores importantes en el yacimiento de estudio.

Figura 2 – 1. Curvas de Permeabilidad Relativa

Con las curvas de permeabilidades relativas, en el caso del gráfico entre el agua y el petróleo, podemos identificar cuatro puntos importantes:

Swc	:	Saturación de agua connata
Soc	:	Saturación crítica de petróleo
Kro'	:	Permeabilidad relativa del petróleo en el punto de Swc
Krw'	:	Permeabilidad relativa del agua en el punto de Soc

Los puntos anteriores constituyen los *End Points* o puntos finales de las curvas.

Características de las Curvas de Permeabilidad Relativa

- Para que el petróleo sea desplazado por el agua, fluya, se requiere que supere un valor de saturación crítico (0-30% generalmente). Cuando el petróleo en la roca se encuentre en valores de saturación por debajo de la saturación crítica no será desplazado por el agua.
- Para que el agua desplace al petróleo, debe superar también una saturación crítica (0-15% generalmente).
- La permeabilidad relativa del petróleo se caracteriza por una rápida declinación para pequeñas disminuciones en saturaciones a valores altos de saturación de petróleo.
- La permeabilidad relativa del agua aumenta rápidamente para pequeños incrementos de saturación de dicha fase por encima de la saturación de equilibrio.
- 5. La suma de las permeabilidades relativas para dos fases (petróleo y agua) representan la interacción mutua entre las fases, lo cual hace disminuir la suma de las permeabilidades relativas a un valor menor a la unidad, para la mayoría de los valores de saturación.
- 6. En la producción de petróleo, el agua y el petróleo fluirán a saturaciones que estarán entre los dos puntos finales.
- El punto de cruce entre las dos curvas en general no ocurre a Sw iguales a 50% por lo que se tiene que:

Si en Sw=50% → Krw < Kro = Agua es Fase Mojante → Krw > Kro = Petróleo es Fase Mojante El agua connata no se puede producir, es una película de agua adherida en las paredes de los poros que reduce el volumen que ocupa el petróleo. La **Saturación Irreductible** es la fracción del volumen de un fluido que no se puede producir (inmóvil) debido a que queda atrapado por presiones capilares y tensiones superficiales. La **Saturación Crítica de Petróleo** o **Saturación Residual** es la mínima saturación necesaria para que el fluido comience a desplazar.

En la Figura 2-1, la zona sombreada, es la zona en la cual hipotéticamente el petróleo se desplaza para un valor de saturación crítica de agua y un valor de saturación residual de petróleo.

Para una recuperación por intrusión de agua a alta presión en un sistema *perfecto* para la figura, el porcentaje total de recuperación máxima que tendríamos sería:

Re cuperaciónIdeal =
$$\frac{(1 - Swc) - Soc}{(1 - Swc)} = \frac{0.7 - 0.2}{0.7} = 71.4\%$$

En la Figura 2-1, a una saturación de agua del 30%, el agua connata es inmóvil y la permeabilidad relativa al petróleo es bastante alta. En consecuencia, el reservorio producirá petróleo limpio sin agua hasta que la saturación de agua en los poros de la roca (dejados por el petróleo) supere el 30% para yacimientos con empuje hidráulico.

La mayoría de las rocas de reservorio están con preferencia humectadas por agua (agua - fase mojante), es decir, que la fase de agua y no la de petróleo se halla contigua a las paredes de los espacios porosos. Por consiguiente, a la saturación del 30%, el agua ocupa las partes *menos* favorables de los espacios porosos. El petróleo que ocupa el 70% del espacio poroso se encuentra en las partes más favorables de los espacios porosos, indicado por una permeabilidad relativa cercana a 1.

Figura 2 – 2. K_{ro}/K_{rw} vs S_w

En la descripción matemática de flujo bifásico o de dos fases, la razón de permeabilidades relativas constituye un factor importante en las ecuaciones.

La Figura 2-2 presenta un gráfico entre la razón de permeabilidades relativas k_{ro}/k_{rw} y saturación de agua. Debido a las altas variaciones en los valores de k_{ro}/k_{rw} , la razón de permeabilidades relativas generalmente se registra en la escala logarítmica mientras que la saturación en una escala decimal. La parte central o principal de la curva tiene una tendencia lineal, por lo que la razón de permeabilidades relativas por medio de:

$$\frac{k_{ro}}{k_{rw}} = ae^{-bS_w}...(2.4)$$

Las constantes a y b pueden determinarse a partir del gráfico anteriormente indicado o a través de ecuaciones simultáneas. La Figura 2-2 y la Ecuación (2.4) indican que la razón de las permeabilidades relativas de una roca se debe principalmente a las saturaciones de los fluidos presentes. Aunque es cierto que las viscosidades, tensiones superficiales y otros factores afectan parcialmente la razón de permeabilidades, para una roca dada, es más que todo una función de saturaciones de fluidos.

En muchas rocas existe una transición entre las zonas de agua y petróleo. En la zona de petróleo existe generalmente agua connata, esencialmente inmóvil.

Figura 2 – 3. Zona de Transición Agua-Petróleo

En la *zona de transición*, Figura 2-3, se produce petróleo y agua, y la fracción, porcentaje o corte de agua depende inicialmente de las saturaciones de petróleo y agua en el lugar de la completación.

Se puede calcular la fracción de agua a condiciones atmosféricas mediante la siguiente forma:

$$q_{w} = \frac{7.08k_{w}h(p_{e} - p_{w})}{\mu_{w}B_{w}\ln(r_{e}/r_{w})}...(2.5) \ ; \ q_{o} = \frac{7.08k_{o}h(p_{e} - p_{w})}{\mu_{o}B_{o}\ln(r_{e}/r_{w})}...(2.6)$$

Luego, ya que la fracción de producción de agua, f_w , es:

$$f_{w} = \frac{q_{w}}{(q_{w} + q_{o})} \dots (2.7)$$

Se tiene:

$$f_{w} = \frac{k_{w} / (\mu_{w} B_{w})}{k_{w} / (\mu_{w} B_{w}) + k_{o} / (\mu_{o} B_{o})} \dots (2.8)$$

$$f_{w} = \frac{1}{1 + \frac{k_{o}}{k_{w}} * \frac{\mu_{w}}{\mu_{o}} * \frac{B_{w}}{B_{o}}} \dots (2.9)$$

A condiciones de Superficie

Como *kro/krw* es función de la saturación, se puede sustituir la Ecuación 2.4 en la Ecuación 2.9 para obtener a condiciones de superficie:

$$f_{w} = \frac{1}{1 + \frac{\mu_{w}}{\mu_{o}} * \frac{B_{w}}{B_{o}} * ae^{-bS_{w}}} ...(2.10)$$

2.4. Presión Capilar

Es la diferencia de presión entre el fluido de la fase no mojante y la fase mojante. En un sistema poroso, se observa que las fuerzas inducidas por la mojabilidad preferencial del medio con uno de los fluidos se extiende sobre toda la interfase, causando diferencias de presión mesurables entre los dos fluidos a través de la interfase. Cuando los fluidos están en contacto, las moléculas cerca a la interfase se atraen desigualmente por sus vecinas. Si la interfase es curveada la presión sobre un lado (cóncavo con respecto al fluido más denso)excede la del otro lado (convexo con respecto al fluido más denso), luego, esa diferencia es la presión capilar. El concepto de la presión capilar como característica de una roca porosa resultó de la representación de fenómenos capilares en tubos de diámetro pequeño (capilares). La interfase de un sistema petróleo-agua en un tubo de diámetro grande es plana porque las fuerzas en las paredes del tubo se distribuyen sobre un perímetro grande y no penetran en el interior. Por lo tanto, las presiones de los fluidos en las interfaces son iguales. Los poros de las rocas son análogos a los tubos capilares. En diámetros pequeños, las fuerzas inducidas por la preferencia humectable del sólido por uno de los fluidos se extiende sobre toda la interfase, causando diferenciales de presión entre los dos fluidos a través de la interfase.

2.5. Drenaje, Imbibición e Histéresis

Llámese drenaje la disminución de la fase mojante e imbibición el aumento de la fase mojante. En un proceso de saturación y desaturación las presiones capilares medidas no son las mismas en un proceso de imbibición que en un proceso de drenaje, debido a que el camino termodinámico es aleatorio y por tanto diferente, tal diferencia en los valores de presión capilar se conoce como Histéresis.

Figura 2 – 4. Histéresis del ángulo de contacto

El desplazamiento de petróleo por agua es un proceso de imbibición. Las curvas de presión capilar y permeabilidades

relativas deben hacerse bajo condiciones de imbibición debido a futuros procesos de inyección de agua.

2.6. Razón de Movilidades

La movilidad es la razón de permeabilidad a la viscosidad cuyo símbolo será denotado por ${\cal A}$

$$\lambda = k / \mu...(2.12)$$

La movilidad se incluye en todas las ecuaciones que describen el movimiento de fluidos monofásicos en rocas de yacimiento, ya que es parte de la fórmula de Darcy.

Cuando dos fluidos están en movimiento simultáneo, por ejemplo, agua y petróleo en movimiento hacia el pozo, la razón de la movilidad del agua λ_w , a la del petróleo, λ_o , determina las tasas individuales de flujo, y por consiguiente la razón agua-petróleo *M*.

$$M = \frac{q_w}{q_o} = \frac{\frac{k_w A \Delta p}{u_w L}}{\frac{k_o A \Delta p}{u_o L}} = \frac{\frac{k_w}{\mu_w}}{\frac{k_o}{\mu_o}} = \frac{\lambda_w}{\lambda_o} \dots (2.13)$$

Cuando un fluido desplaza a otro, la notación normal de la razón de movilidades, *M*, es la movilidad del fluido desplazante a la del fluido desplazado. Por ejemplo, cuando agua desplaza petróleo, $M = \lambda_w / \lambda_o \dots (2.13)$

2.7. Ecuación de Difusividad

Para la mayoría de los fluidos hidrocarburos, el esfuerzo de corte y la tasa de corte pueden describirse mediante la ley de fricción de Newton la cual combinada con la ecuación de movimiento resulta en la bien conocida ecuación de Navier-Stokes. La solución de dicha ecuación para las condiciones de frontera apropiadas da lugar a la distribución de velocidad del problema dado. Sin embargo, la geometría de los poros, no permite la formulación adecuada de las condiciones de frontera a través del medio poroso. Luego, una aproximación diferente se debe tomar. Darcy descubrió una relación simple entre el gradiente de presión y el vector velocidad para una sola fase.

De acuerdo con la Figura 2.5, el volumen de fluido contenido en el anillo es:

$$V = (2\pi rhdr)\phi$$

Pero,

$$c = -\frac{1}{V}\frac{dV}{dP}$$

Luego;

$$dV = -cVdP$$

De la ecuación de volumen se obtiene:

$$dV = -c(2\pi rhdr)\phi dP$$

Si $dq = \frac{\partial V}{\partial t}$ entonces:
 $dq = -c\phi (2\pi rhdr)\frac{\partial P}{\partial t}$
ó;
 $\frac{\partial q}{\partial t} = -c\phi (2\pi rhdr)\frac{\partial P}{\partial t}$

$$\frac{\partial q}{\partial r} = -c\phi \ (2\pi rh)\frac{\partial r}{\partial t} \qquad \dots (2.14)$$

De la Ley de Darcy, sabemos que:

Figura 2 – 5.

Si derivamos la ecuación (A) con respecto a r, se obtiene:

$$\frac{\partial q}{\partial r} = -(2\pi h)\frac{k}{\mu} \left[\frac{\partial P}{\partial r} + r\frac{\partial^2 P}{\partial r^2}\right] \dots (.2.15)$$

Igualando las ecuaciones (2.14) y (2.15), se tiene:

$$\frac{\partial^2 P}{\partial r^2} + \frac{1}{r} \frac{\partial P}{\partial r} = \frac{c\phi \ \mu}{k} \frac{\partial P}{\partial t}$$
...(2.16) Ecuación de la difusividad.

2.8. Estados de Flujo

De acuerdo con la variación de una propiedad con respecto al tiempo existen principalmente tres estados de flujo a saber: flujo estable, flujo pseudoestable y flujo inestable. El <u>flujo estable</u> se caracteriza porque la presión del yacimiento no cambia <u>con el tiempo</u> en un punto dado e indica que cada unidad de masa retirada está siendo reemplazada por una misma cantidad

que se adiciona al sistema. Este **toma lugar en yacimientos con empuje de agua o capa de gas**. Además, puede aplicarse sin un margen de error significativo en las zonas aledañas al pozo. El flujo inestable presenta variaciones de la presión con el tiempo y el flujo pseudoestable (falso estable o semiestable) es un flujo inestable que se puede considerar temporalmente estable.

Figura 2 – 6. Estado estable e inestable

En el estado inestable, el pozo se somete a producción a condiciones de presión de fondo constantes. Es decir que si se desea mantener este valor, se debe variar la rata de flujo. Inicialmente la presión avanza dentro del yacimiento y drena una cantidad determinada de fluidos. Más allá de ese punto no existe movimiento de fluidos. A medida que la presión avanza, el movimiento de fluidos es más interno, aunque menor, dentro del yacimiento. Una vez que la presión llega a la frontera, no existe un soporte para sostener la presión y esta debe caer a otro punto de modo que se mantenga la presión del pozo constante. Dicha caída de presión en la frontera hace que cada vez el caudal en el pozo se haga menor.

El estado pseudoestable es un caso especial del estado inestable. El estado estable se da cuando se toca la frontera y un barril de petróleo se reemplaza por uno de agua, si los factores volumétricos son iguales a 1.0. El flujo en estado pseudoestable es causado por expansión del fluido. Si *Pwf* es constante:

$$c = -\frac{1}{V}\frac{dV}{dP}$$

Luego,

$$dV = -cVdP$$

Para que haya expansión tiene que haber una caída de presión. Mientras que la presión no afecte la frontera el comportamiento es infinito. Todos los yacimientos tienen ese comportamiento. En el estado pseudoestable el caudal en el fondo del pozo se mantiene constante lo que indica que para que esto ocurra tienen que haber líneas de presión paralelas. El principio es similar al estado inestable, pero cuando la presión afecta las fronteras, en todo punto del yacimiento *dP/dt* es el mismo y se obtienen líneas paralelas. Matemáticamente, *dP/dt* es constante y entonces la rata será constante hasta que la presión de fondo fluyente no se pueda mantener.

Existen otras clasificaciones de los estados de flujo de acuerdo con la geometría que presenten las líneas isobáricas (flujo radial, lineal, esférico, etc.).

El flujo radial es la geometría de flujo más importante en un yacimiento. Este consta de líneas de flujo que se dirigen hacia el centro. Este flujo recibe mejor el nombre de flujo cilíndrico en virtud a su forma. El flujo lineal se presente mediante líneas de corrientes paralelas que fluyen dentro del yacimiento. Este régimen no es muy común a menos que el yacimiento presente forma alargada, en lentes de arena o fracturas hidráulicas. Sin embargo, esta geometría es muy importante en análisis de laboratorio. Cuando el pozo penetra una pequeña porción de la formación productora toma lugar el flujo hemisférico el cual está formado por líneas tridimensionales que se dirigen hacia el pozo en forma de una semiesfera o semiesfera. Este flujo es importante para determinar la capacidad de flujo de la formación en la dirección vertical.

Cuando el pozo se completa en una pequeña parte en el interior del estrato, la geometría de una esfera puede tomar lugar. Este se le llama flujo esférico.

2.9. Desplazamiento Inmiscible

Los reservorios de empuje por agua son los reservorios en la cual **una porción significante de la extracción volumétrica es reemplazada por influjo de agua durante su vida productiva**. Casi siempre no se dispone de los datos de la roca del acuífero pero en el caso de disponer de suficiente historia de producción y presión, las propiedades del acuífero pueden ser inferidas y ser usadas para estimar el efecto futuro del acuífero sobre el comportamiento del reservorio.

2.10. Suposiciones Físicas para Procesos Inmiscibles

a) El agua desplaza al petróleo en un reservorio mojable al agua.

El desplazamiento de petróleo por agua en un reservorio mojable al agua es un proceso de **Imbibición**.

b) El desplazamiento ocurre bajo condiciones de equilibrio vertical.

Significa que durante el desplazamiento, si la saturación de agua en cualquier punto del reservorio incrementa en una

pequeña cantidad, la nueva saturación de agua es redistribuida instantáneamente.

Las condiciones de equilibrio vertical serán mejoradas por:

- Alta permeabilidad vertical (k_v)
- Pequeño espesor del reservorio (h)
- Gran diferencia de densidades entre fluidos ($\Delta \rho$)
- Grandes fuerzas capilares (gran zona de transición)
- Bajas viscosidades de los fluidos
- Bajas tasas de inyección

La única forma de verificar la validez del equilibrio vertical es utilizando técnicas de simulación numérica.

c) El desplazamiento es considerado como incompresible.

Esta suposición implica que existen **condiciones de estado estable** en el reservorio con la presión constante a cualquier punto.

$$q_t = q_o + q_w \dots (2.17)$$

Condición de estado estable. La condición de estado estable aplica, a un pozo con una celda radial cuyo borde externo es completamente abierto. Se asume que para una tasa de producción constante, el fluido que sale de la celda radial es el mismo que entra a través de los bordes abiertos.

$$P = P_e = cons \tan te$$
$$r = r_e$$
$$\frac{\partial P}{\partial r} = 0 \text{ Para todo } t \text{ y } r$$

 ∂t

Esta condición es apropiada cuando la presión está siendo mantenida en el yacimiento debido al influjo

natural de agua o aporte de energía por la inyección de algún fluido desplazante.

d) El desplazamiento es considerado lineal.

Figura 2 - 7. Vista de Plano y Sección Transversal

2.11. Geometría del Acuífero

a) Geometría Radial

Los límites son formados por dos cilindros concéntricos o sectores de cilindros.

b) Geometría Lineal

Los límites están formados por dos planos paralelos.

2.12. Condiciones de Límite Exterior

a) Infinito

La perturbación de la presión no afecta el límite exterior del sistema durante el tiempo de interés.

b) Finito Cerrado

No existe flujo a través del límite exterior. La perturbación de la presión alcanza el límite exterior durante el tiempo de interés.

c) Finito con Alimentación

El acuífero es infinito con presión constante en el límite exterior. Ejemplo: Acuífero alimentado por un lago u otra fuente de agua en superficie).

2.13. Mecanismo de Desplazamiento de Buckley-Leverett

La distribución del agua, petróleo y gas en el espacio poroso para cualquier nivel de saturación en el reservorio está determinada por (1) Características de mojabilidad de la roca y (2) tensión interfacial entre las fases inmiscibles.

El uso de modelos analíticos para predecir el comportamiento de los reservorios está basado en simplificaciones que permiten la aplicación de modelos simples para describir algunas estructuras geológicas complejas.

El modelo de desplazamiento inmiscible, uno de los más simples, conocido como la teoría de Avance Frontal, fue desarrollado inicialmente por Buckley y Leverett y posteriormente reformulado por Welge. Este modelo fue derivado para sistemas continuos y lineales. Cuando se requiere aplicar las ecuaciones de Buckley y Leverett y Welge a sistemas complejos, es necesario reducir estos sistemas a modelos en una dimensión.

Asunciones

- 1. El desplazamiento se da en un reservorio mojado al agua.
- 2. El desplazamiento ocurre bajo condiciones de equilibrio vertical.
- **3.** El desplazamiento es considerado incomprensible.

4. El desplazamiento es considerado lineal.

El desplazamiento de petróleo por agua en una roca es similar al desplazamiento de un fluido en un cilindro por un pistón con escapes. *Buckley y Leverett* desarrollaron una teoría de desplazamiento basada en el concepto de permeabilidad relativa.

Figura 2 - 8. Desplazamiento por Buckley-Leverett

Cálculo del avance frontal por el método de Buckley-Leverett

Considérese una capa lineal con petróleo y agua como lo indica la figura. Sea *q* la tasa total de flujo, la misma en todas las secciones transversales y, para la presente discusión, despréciese la fuerzas capilares y gravitacionales existentes. Sea *Sw* la saturación de agua en cualquier elemento a un tiempo *t* (días). Considerando un desplazamiento de petróleo del elemento, la saturación de agua al tiempo (t + dt) será (*Sw* + dSw). Si ϕ es la porosidad total fraccional, *A* es la sección transversal en pies cuadrados y *dx* el espesor del elemento en pies; la tasa de aumento de agua, en barriles por día, en el elemento al tiempo t es:

$$\frac{dW}{dt} = \frac{\phi A dx}{5.615} \left(\frac{\partial S_w}{\partial t}\right)_x \dots (2.18)$$

El subíndice x en la derivada indica que esta derivada es diferente para cada elemento. Si *fw* es la fracción de agua (corte de agua) en el flujo total de *q* barriles por día, entonces *fw*q* es la tasa de agua que entra a la superficie del lado izquierdo del elemento *dx*. La saturación de petróleo en el lado derecho será ligeramente mayor de manera que la fracción de agua que fluye allí será ligeramente menor, es decir, *fw-dfw*. Por tanto, la tasa del agua que sale del elemento es (*fw-dfw*) q, y la tasa neta de aumento en el elemento a un tiempo cualquiera es:

$$\frac{dW}{dt} = (f_w - df_w)q - f_w * q = -q * df_w ...(2.19)$$

Igualando las Ecuaciones 2.18 y 2.19

$$\left(\frac{\partial S_{w}}{\partial t}\right)_{x} \equiv -\frac{5.615q}{\phi A} \left(\frac{\partial f_{w}}{\partial x}\right)_{t} \dots (2.20)$$

Para una roca dada, la fracción de agua *fw* es sólo función (principalmente) de la saturación de agua Sw como lo indica la Ecuación 2.20 siempre y cuando las viscosidades de agua y petróleo sean constantes. **La saturación de agua, sin embargo, es función tanto del tiempo como de la posición, x**. Esto puede expresarse en la siguiente forma: fw=F(Sw) y Sw=G(t,x). Luego:

$$dS_{w} = \left(\frac{\partial S_{w}}{\partial t}\right)_{x} dt + \left(\frac{\partial S_{w}}{\partial x}\right) dx...(2.21)$$

La tasa de avance de un plano o frente de saturación constante, $(\partial x / \partial t)_{s_w}$, es decir, cuando Sw es constante.

Luego de la Ecuación 2.21

$$\left(\frac{\partial x}{\partial t}\right)_{S_{w}} = -\frac{\left(\partial S_{w}/\partial t\right)_{x}}{\left(\partial S_{w}/\partial x\right)_{t}}...(2.22)$$

Sustituyendo la Ecuación 2.20 en 2.22

$$\left(\frac{\partial x}{\partial t}\right)_{SW} = \frac{5.615q}{\phi A} \frac{\left(\partial f_{W}/\partial x\right)_{t}}{\left(\partial S_{W}/\partial x\right)_{t}} \dots (2.23)$$

Pero

$$\frac{\left(\frac{\partial f_{w}}{\partial x}\right)_{t}}{\left(\frac{\partial S_{w}}{x}\right)_{t}} = \left(\frac{\partial f_{w}}{\partial S_{w}}\right)_{t} \dots (2.24)$$

Luego la Ecuación 2.23 se convierte en

 $\left(\frac{\partial x}{\partial t}\right)_{S_{w}} = \frac{5.615q}{\phi A} \left(\frac{\partial f_{w}}{\partial S_{w}}\right)_{t} \dots (2.25)$

Debido a que la porosidad, área y tasa total de flujo son constantes y ya que para cualquier valor de Sw, la derivada $\frac{\partial f_w}{\partial S_w}$

es una constante, la razón $\frac{dx}{dt}$ es constante. Por tanto, la distancia de avance de un plano de saturación constante Sw es directamente proporcional al tiempo y al valor de la derivada $\frac{\partial f_w}{\partial t}$ e constante proporción

derivada
$$rac{\partial f_w}{\partial S_w}$$
a esa saturación,

$$x = \frac{5.615q_r t}{\phi A} \left(\frac{\partial f_w}{\partial S_w}\right)_{S_w} \dots (2.26)$$

A condiciones de Yacimiento

$$x = \frac{5.615qB_ot}{\phi A} \left(\frac{\partial f_w}{\partial S_w}\right)_{S_w} \dots (2.27)$$

A condiciones de Superficie

2.14. Intrusión de Agua: Schilthuis, Hurst y Fetkovich

Algunas indicaciones de la existencia del empuje o intrusión de agua son:

1) Existe una zona subyacente de agua

2) Existe suficiente permeabilidad para soportar el movimiento de agua, usualmente mayor a 50 md.

 Aumento de la producción de agua a medida que transcurre el tiempo

El Balance de Materiales es el mejor indicador para detectar la intrusión de agua .Entre los métodos básicos para predecir y/o estimar la cantidad de agua al yacimiento se encuentran: El método de Schilthuis, el método de Hurst y Van Everdingen, el método de Fetckovick, el método de Cilindros concéntricos, etc (éstos dos últimos han sido utilizados por el Simulador para el presente estudio como se describirá más adelante).

Modelo de estado estable (Schilthuis)

Es el **método más simple** que se utiliza para fines de estimación de la intrusión de agua. Se prefiere usar al principio. Se asume un acuífero gigante y altamente permeable (Mayor de 50md) para que la presión nunca caiga. Este método integra la ley de Darcy, la cual es estado estable.

Modelo de estado inestable (Hurst and Van Everdingen)

Para el análisis se asume:

1) Existe flujo radial de agua a través del acuífero.

2) La caída de presión es constante a través del acuífero durante todo el tiempo.

3) Las propiedades del acuífero son constantes y uniformes.

Este método se basa en la solución de la ecuación de difusividad. Aplica el principio de superposición que indica que las soluciones son aditivas. El principio de superposición al contacto agua petróleo original es mostrado en la siguiente figura.
Para usar superposición, la curva se aproxima a una serie de pequeños incrementos de presión de modo que los pasos de tiempo sean pequeños para aproximar la curva con una recta. Los cambios depresión de un intervalo al otro se calculan con el valor promedio del comienzo y el fin de los intervalos de presión.

Método de Fetkovich para acuíferos finitos

Los resultados de este modelo se aproximan bastante a los del Método de Hurst y Van Everdingen para acuíferos finitos. Sin embargo, la teoría de Fetkovich es más simple y su aplicación más fácil. Se utiliza un procedimiento de ensayo y error para evaluar las constantes de intrusión de agua con datos de producción. El índice de productividad es adecuado para describir la intrusión de agua desde un acuífero finito a un yacimiento de hidrocarburos; la tasa de intrusión de agua es directamente proporcional a la caída depresión entre la presión promedia del acuífero y la presión en el contacto agua-petróleo.

2.15. Análisis Dimensional y Grupos Adimensionales

El Análisis Dimensional puede ser definido como el proceso de determinar la relación funcional entre cantidades utilizando las dimensiones de cada cantidad. El axioma básico del razonamiento dimensional es que la magnitud relativa de dos cantidades físicas del mismo tipo no puede ser alterada por cambios en la unidad de medida.

Los 3 principales propósitos del Análisis Dimensional son:

 a) Generar parámetros no dimensionales que den soporte en el diseño de experimentos (físicos y/o numéricos) y en el reporte de los resultados experimentales.

- b) Obtener leyes de escala a fin de que el rendimiento prototipo se pueda predecir a partir de los resultados del modelo.
- c) Predecir tendencias en la relación entre parámetros.

Del análisis dimensional se pueden formar grupos adimensionales, los cuales pueden ser interpretados físicamente más fácilmente como el Número de Gravedad (G) reportado por *Dietz* o el Radio de Mobilidad (M).

Grupos Adimensionales

Las simulaciones numéricas según estudios de *Djuro Novakovic* (2002) se vuelven más versátiles mediante el empleo de **grupos adimensionales**.

Los Ingenieros de Reservorios han confiado siempre en los **Modelos Numéricos**, especialmente cuando el gerenciamiento del reservorio tiene que considerar complejas configuraciones geológicas y procesos de recobro. Los **métodos analíticos**, aunque fáciles de utilizar, no pueden tener en cuenta la complejidad del reservorio y las variaciones de frontera con el tiempo. Como alternativa, los **métodos numéricos** proveen modelos que toman en cuenta parámetros de reservorio necesarios para describir la complejidad del mismo.

La contribución de *Djuro Novakovic* (2002) es que 7 grupos adimensionales pueden ser utilizados en lugar de más de 30 variables dimensionales para analizar local y globalmente el flujo de reservorio y los efectos en el grillado durante la Simulación. Aquello mejora el diseño de simulación y los estudios de sensibilidad al reducir el número de *corridas* necesarias para caracterizar un reservorio.

Hay una variedad de números adimensionales publicados en la *literatura petrolera* que pueden ser divididos en dos grandes grupos: Sistemas Monofásicos y Sistemas Bifásicos. Los números adimensionales para Sistemas Monofásicos son utilizados en análisis de pruebas de presión que no es tema de estudio en la presente disertación. Por otro lado, **los números** adimensionales para Sistemas Bifásicos están principalmente enfocados en los efectos de flujo bifásicos tales como el tiempo de irrupción, breakthrough avance de la recuperación, dispersión, etc. El balance de 4 fuerzas controla el flujo bifásico en el medio poroso: fuerzas viscosas, fuerza de gravedad, fuerzas capilares, y dispersión.

TABLA N° 2.1 GRUPOS ADIMENSIONALES PARA SISTEMAS BIFASICOS (Novakovic 2002)

Variable	Formulación
Tiempo Adimensional	$t_D = rac{V_{inyectado}}{V_{poral}}$
Eficiencia de Desplazamiento (factor)	$E_{\scriptscriptstyle D} = rac{V_{\it producido}}{V_{\it referencia}}$
Radio de Mobilidad	$M=rac{\lambda_{fluidodesplazado}}{\lambda_{fluidodesplazante}}$
Número Capilar	$N_C = \frac{F_{capilar}}{F_{vis\cos a}}$
Número de Gravedad	$N_G = rac{F_{gravedad}}{F_{vis\cos a}}$
Buzamiento	$N_{\alpha} = \tan \alpha$
Relación de Aspecto de Reservorio	$N_A = \frac{Longitud}{Altura}$

2.16. Modelamiento de un pozo individual (Single-well modelling)

El Modelamiento de un solo pozo o *single well modelling* es el acto de utilizar ecuaciones de simulación numérica de reservorios para estudiar el desempeño de un solo pozo. Es muy perspicaz para evaluar estrategias de completación, estudiar el comportamiento de conificación, reservas de petróleo, y permeabilidades relativas para pozos en modelos completos de campo, presión transiente compleja entre otros.

La ventaja de éste es que *empareja* las condiciones de reservorio, la distribución de fluido cercana al pozo, la descripción del reservorio en las cercanías del pozo, los mecanismos de producción con una estrategia de completación para predecir el desempeño del pozo.

Single well modelling puede ser utilizada para determinar la operación óptima de un pozo así como el enfoque de producción.

2.17. Uso de Modelos Matemáticos Simples para predecir el comportamiento del reservorio

Pronosticar el comportamiento de un reservorio es una de las más importantes y complicadas tareas de los Ingenieros en la industria petrolera. El conocimiento de las reservas remanentes en el reservorio es vital para planificar una óptima depletación del campo. Desafortunadamente, el Ingeniero asignado a predecir el comportamiento de un reservorio a menudo enfrenta decisiones difíciles. Para respuestas más exactas, el Ingeniero de Reservorios puede usar un programa de computadora tal como un Simulador que toma en cuenta gran cantidad de factores pertinentes que afectan el comportamiento de un reservorio, pero este enfoque es usualmente costoso así como requiere de un adecuado nivel de dominio de software que a su vez demanda recursos de tiempo. Por otro lado, el Ingeniero de Reservorios, puede utilizar cálculos de convencionales de desplazamiento **unidimensional** que son fácilmente aplicables y nos dan una idea de lo que sucede en el reservorio aunque algunas veces no describan adecuadamente el sistema de flujo de reservorio.

2.18. Descripción Geológica y Mecanismos en Reservorios de Empuje Hidráulico de Fondo

Los escenarios geológicos clásicos para los Sistemas de Empuje Hidráulico de Fondo son los anticlinales donde casi el reservorio entero está rodeado por un contacto agua-petróleo (Figura 2-9). Un anticlinal es una estructura plegada, con una forma cóncava hacia abajo con pendientes distintas a ambos Campos importantes de petróleo tienen lugar lados. en reservorios anticlinales en secuencias de rocas sedimentarias. En un anticlinal de relación de espesor agua-petróleo reducida, también puede considerarse un empuje lateral mediante canalización, para dar soporte a ellos nos podemos valer de las gráficas de Chan (Ver Capítulo 2.20- Gráficos de Diagnóstico de Control de Agua).

Bajo condiciones estáticas en los sistemas de empuje de fondo, el petróleo permanece en el tope del agua debido a la diferencia de densidades entre ambos fluidos. Una vez que el pozo es puesto en producción, se crea una gradiente de presión y el petróleo empieza a ingresar al pozo. Esta gradiente de presión puede causar que la interfase agua/petróleo se deforme en forma de un cono como el mostrado en la Figura 2-10. La fuerza de gravedad, la cual es independiente de la diferencia de densidades entre el agua y el petróleo, se opone al movimiento del agua hacia arriba y contrarresta las gradientes de presión en el pozo. Sin embargo, mientras la producción continúa, el cono formado se vuelve inestable debido a la alta caída de presión (alto *drawdown*) alrededor del pozo provocando irrupción de agua en él (Figura 2-11). Después de la irrupción de agua, el corte de agua se incrementa dramáticamente y, eventualmente, el pozo tendrá que ser cerrado a causa de una excesiva producción de agua (el pozo alcanza su límite económico) dejando atrás cantidades de petróleo bypaseado (Figura 2-12).

Mediante los modelos de *Hele-Shaw* y *Pie* (*Siddiqi*, 2001) **se han observado estudios experimentales la presencia de tres etapas en el desarrollo de un cono de agua.** La primera etapa consiste de una curvatura inicial del contacto agua-petróleo. La segunda etapa es el movimiento acelerado del cono al pozo justo antes de la irrupción de agua. La tercera etapa tiene lugar en el crecimiento lateral del cono.

Figura 2 – 9. Típica sección de un Sistema Hidráulico de Fondo

Figura 2 – 10. Deformación de la interfase agua-petróleo en forma de un cono

Figura 2 – 11. Irrupción de agua (*water breakthrough*) causada por la conificación

Figura 2 – 12. Petróleo *bypaseado* como resultado de la Conificación de agua en Sistemas Hidráulicos de Empuje de Fondo

Modelos para Empuje Hidráulico De Fondo

2.19. Modelo de Kuo y DesBrisay (1983)

El modelo de *Kuo y DesBrisay* está basado en la generalización de historias de producción. El método requiere buen conocimiento de propiedades de reservorio, alguna de las cuales pueden ser difíciles de obtener (permeabilidad vertical, por ejemplo). Para desarrollar su modelo, *Kuo y DesBrisay corrieron* una serie de experimentos numéricos. Los resultados de

Los parámetros variados durante los experimentos fueron:

- Relación de permeabilidad vertical a horizontal: de 0.01 a
 1.0,
- **Penetración de la completación:** de 20% a 80% de la columna de petróleo,
- Tasa de producción: de 500 a 2000 rb/d, y
- Radio de mobilidad de agua y petróleo: de 1.0 a 10.

La relación resultante fue desarrollada en una forma adimensional normalizada. Para hacer la normalización, 2 parámetros fueron definidos: **un tiempo adimensional y un corte de agua adimensional** que son definidos de la siguiente manera:

$$t_D = \frac{t}{t_{BT}}...(2.28)$$

$$WC_D = \frac{WC}{WC_{ul}}...(2.29)$$

El tiempo de irrupción de agua (*water breakthrough*) debe ser determinado con el fin de calcular el tiempo adimensional (ver Ecuación 2.31). Para desarrollar su método, **Kuo y DesBrisay** (1983) utilizaron la correlación de Bournazel y Jeanson (1971) para hacer la evaluación del tiempo de irrupción t_{BT} (*breakthrough time*).

Esta correlación está basada en resultados experimentales y puede ser expresada como:

$$t_{BT} = \frac{20325.\mu_o \phi h(t_D)_{BT}}{(\rho_w - \rho_o)k_v (1 + M^{\alpha})} ... (2.30)$$

Donde:

- t_{BT} = Tiempo de irrupción, días
- μ_{a} = Viscosidad de petróleo, cp
- ϕ = Porosidad, fracción
- h = Espesor de la columna de petróleo, ft
- ρ_w = Densidad del agua, gm/cc
- ρ_a = Densidad del petróleo, gm/cc.
- k_{v} = Permeabilidad vertical, md

M = Radio de mobilidad agua-petróleo = $[\mu_o(k_w)_{or}/\mu_w(k_o)_{wc}]$, donde (k_w) es la permeabilidad efectiva al agua a la saturación residual de petróleo y $(k_o)_{wc}$ es la permeabilidad efectiva al petróleo a saturación de agua connata.

$$\alpha$$
 = 0.5 para M<1 y 0.6 para 1

 $(t_D)_{BT}$ = Tiempo de irrupción adimensional.

De acuerdo a *Bournazel y Jeanson* (1971), el tiempo de irrupción adimensional está dado por:

$$(t_D)_{BT} = \frac{z}{3 - 0.7z}...(2.31)$$
...para Z< 4.286

Otra ecuación para la estimación del tiempo de irrupción adimensional fue dada por *Sobocinsky y Cornelius (*1975):

$$(t_D)_{BT} = \frac{z}{4} \left[\frac{16 + 7z - 3z^2}{7 - 2z} \right] \dots (2.32)$$
...para Z<3.5

Z es definido como la altura del cono adimensional, y es expresada como sigue (Kuo y DesBrisay 1983):

$$z = \frac{0.00307(\rho_w - \rho_o)k_h h(h - h_p)}{\mu_o q_o B_o} ...(2.33)$$

Donde:

k_h	= Permeabilidad horizontal, md
h_p	= Intervalo perforado, ft
B_{o}	= Factor de Volumen de Formación de Petróleo, rb/stb
qo	 Tasa de producción de petróleo, stb/día

El **último corte de agua adimensional**, *WC_{ul}*, requerido en la Ecuación (2.38), puede ser calculada por la expresión:

$$WC_{ul} = \frac{M\frac{h_{w}}{h_{o}}}{M\frac{h_{w}}{h_{o}} + 1}...(2.34)$$

Donde *M* es el radio de mobilidad y h_o y h_w son los espesores para las columnas de petróleo y agua respectivamente.

Kuo y DesBrisay (1983) combinaron todos los resultados de sus experimentos numéricos en el gráfico adimensional presentado en la Figura 2-13. Ellos describieron el patrón de desarrollo de corte de agua adimensional utilizando tres ecuaciones válidas dentro de tres intervalos de tiempo adimensional:

$$WC_D = 0$$
 para $t_D < 0.5...(2.35)$
 $WC_D = 0.94 \log t_D + 0.29$ para 0.5< $t_D < 5.7...(2.36)$
 $WC_D = 1$ para $t_D > 5.7...(2.37)$

El siguiente procedimiento por Kuo y DesBrisay (1983) puede ser utilizado para <u>calcular el desarrollo del corte de agua y la</u> <u>recuperación de petróleo con el tiempo para una tasa total de</u> <u>producción de fluido dado en un pozo vertical</u>.

- Calcular el tiempo de irrupción adimensional t_D utilizando la Ecuación (2.38)
- Estimar el corte de agua limitante para el reservorio utilizando la Ecuación (2.34). El espesor de petróleo puede ser calculado por Balance de Materiales como sigue:

 $h_w = H_w + H_o * M_D...(2.38)$

$$h_o = H_o (1 - M_D)...(2.39)$$

Figura 2 – 13. Historia de Producción de Agua en Formulación Adimensional (1983)

Donde:

$$M_{D} = (N_{p} / N)(1 - S_{wc}) / (1 - S_{or} - S_{wc})...(2.40)$$

 H_{w} = Espesor inicial de la zona de agua, ft.

 H_{o} = Espesor inicial de la zona de petróleo, ft.

 S_{or} = Saturación residual de petróleo, fracción.

N =Petróleo *in situ*, ft.

 N_p = Producción acumulativa de petróleo, ft.

Para el primer paso (antes de la irrupción de agua), N_p puede ser estimado como el petróleo multiplicado por el tiempo de producción. Para los subsiguientes pasos, N_p podría ser obtenido utilizando un proceso iterativo como sigue:

$$N_{p(n+1)} = N_{p(n)} + (t_{(n+1)} - t_{(n)}) * \frac{(q_{(n+1)} + q_n)}{2} \dots (2.41)$$

Donde n+1 se refiere al actual tiempo y n denota el tiempo previo.

- Calcular los nuevos cortes de agua adimensionales utilizando las Ecuaciones (2.35), (2.36) o (2.37).
- 4. Obtener el actual corte de agua utilizando la Ecuación (2.32).
- 5. Calcular los caudales de agua y petróleo como

$$q_w = WC \times q_T \dots (2.42)$$

$$q_o = q_T - q_w \dots (2.43)$$

Donde q_T , $q_w y q_o$ representan el caudal total, caudal de agua y caudal de petróleo respectivamente. Obviamente, la recuperación puede ser estimada como:

$$R(\%) = N_p / N...(2.44)$$

Y el porcentaje de petróleo bypaseado (BPO) es definido como:

$$BPO(\%) = 100 - R(\%)...(2.45)$$

Cálculo de la Tasa crítica

a) Método de Meyer y Garder

Se asumió un reservorio homogéneo y un flujo radial.

$$q_{c} = \frac{1.5351(10^{-3})(\rho_{w} - \rho_{o})(h^{2} - D^{2})k}{u_{o}B_{o}\ln(\frac{r_{e}}{r_{w}})}...(2.46)$$

Donde:

q_c	=	Tasa de producción crítica, STB/día
$ ho_w$ -	$-\rho_o =$	Diferencia de densidades entre petróleo y agua,
		g/cc
h	=	Espesor de la columna de petróleo, ft
D	=	Intervalo perforado, ft. (Del tope de la arena)
k	=	permeabilidad
u _o	=	viscosidad de petróleo, cp
B_{o}	=	Factor de Volumen de Formación, RB/STB
r _e	=	radio de drenaje, ft.
r _w	=	radio del pozo, ft.

b) Método de Chaney

$$q_{curve} = 0.1313(h^2 - D^2) - 23.2...(2.47)$$

Asume:

$$k = 1 \text{ md}$$
$$u_o = 1 \text{ cp}$$
$$\rho_w - \rho_o = 0.3 \text{ g/cc}$$

$$q_{c} = \frac{0.00333k(\rho_{w} - \rho_{o})q_{curve}}{u_{o}B_{o}}...(2.48)$$

Donde:

q_{c}	=	Tasa de producción crítica, STB/día
$ ho_w$ -	$-\rho_o =$	Diferencia de densidades entre petróleo y agua,
g/co	;	
h	=	Espesor de la columna de petróleo, ft
D	=	Intervalo perforado, ft. (Del tope de la arena)
k	=	permeabilidad
u _o	=	viscosidad de petróleo, cp
B_o	=	Factor de Volumen de Formación, RB/STB
r _e	=	radio de drenaje, ft.
r _w	=	radio del pozo, ft.

c) Método de Schols

$$q_{c} = \left[\frac{(\rho_{w} - \rho_{o})k(h^{2} - D^{2})}{2049u_{o}B_{o}}\right] \left[0.432 + \frac{\pi}{\ln\left(\frac{r_{e}}{r_{w}}\right)}\right] \left(\frac{h}{r_{e}}\right)^{0.14} \dots (2.49)$$

Donde:

q_c	=	Tasa de producción crítica, STB/día
$ ho_w$ ·	$-\rho_o =$	Diferencia de densidades entre petróleo y agua
g/co	C	
h	=	Espesor de la columna de petróleo, ft
D	=	Intervalo perforado, ft. (Del tope de la arena)
k	=	permeabilidad
u _o	=	viscosidad de petróleo, cp
B_{o}	=	Factor de Volumen de Formación, RB/STB
r _e	=	radio de drenaje, ft.
r_w	=	radio del pozo, ft.

Recalcando que el método de Schols es el más equilibrado, a diferencia de Chaney (muy alto) y Meyer (muy bajo).

2.20. Gráficos de Diagnóstico de Control de Agua

K. S Chan llevó a cabo numerosos estudios de simulación numérica para reservorios donde se presentaban problemas de conificación y canalización. Descubrió que los gráficos log-log de RAP (Relación agua-petróleo) y RAP' (derivada) vs Tiempo muestran diferentes tendencias bien diferenciadas para los mecanismos antes mencionados (conificación y canalización).

El diagnóstico para evaluar los mecanismos de intrusión de agua es sencillo y versátil dado que utiliza principalmente la historia disponible de producción de fluidos (BOPD, BWPD).

Convencionalmente, los gráficos de corte de agua vs tiempo lineal son utilizados para mostrar el progreso y severidad de los problemas de producción de agua. La correlación entre corte de agua o flujo fraccional de agua y saturación promedio de **agua de reservorio** es conocida; sin embargo, para fines prácticos es poco recomendada ya que la distribución de saturación de agua en el reservorio es cambiante con el tiempo. Aunque estos gráficos pueden también mostrar cambios drásticos en la producción de agua o indicar de pronto una falla en la completación del pozo o rápida irrupción, la información provista es limitada. La forma de los gráficos de corte de agua son muy similares y no permiten hacer un claro discernimiento entre qué tipo de mecanismo de intrusión es el que se encuentra afectando al pozo.

En un gráfico log-log RAP vs Tiempo (Figura 2-14), 3 períodos del desarrollo de RAP pueden ser discernidos. Durante el periodo temprano (<u>PRIMER PERIODO</u>), las curvas RAP permanecen planas mostrando una producción inicial esperada. El valor del RAP inicial depende de la saturación inicial de agua y su distribución entre todas las capas así como también de las funciones de permeabilidad relativa. La longitud de este período depende del mecanismo de empuje de agua y su evidencia se hace notable con la desviación del RAP con respecto a su valor constante.

Para conificación, el tiempo de desviación es a menudo corto dependiendo de varios parámetros siendo predominante la distancia entre el WOC (*Contacto agua-petróleo*) y el fondo del más cercano intervalo baleado, relación de permeabilidad verticalhorizontal, tasad e influjo de agua de fondo, presión de producción y funciones de permeabilidad relativa. Físicamente, el tiempo de desviación es el tiempo cuando el cono ha alcanzado la profundidad del intervalo de perforación.

Para canalización, nuevamente el tiempo de desviación depende de varios factores pero principalmente el espaciado de pozos, la tasa de inyección en los inyectores, presión de producción, saturación inicial de agua y distribución entre capas,

y funciones de permeabilidad relativas. Físicamente, el tiempo de desviación para canalización corresponde a la irrupción de agua de una capa en una formación multicapa. Esta capa no necesariamente es la capa conteniendo la más alta permeabilidad. La saturación inicial de agua y su distribución en las capas pueden convertirse en un factor muy dominante, si el contraste de permeabilidades entre las capas no es alto.

El <u>SEGUNDO PERIODO</u> de tiempo muestra el incremento de RAP con el tiempo. La tasa de incremento difiere para cada diferente mecanismo. La Figura 2-14 muestra una llamativa diferencia entre la conificación y la canalización. Para conificación, la tasa de incremento del RAP es relativamente lenta y gradualmente se acerca un valor constante en el final de este período. Durante este período, el cono de agua no sólo crece verticalmente hacia arriba sino que también se expande radialmente. La saturación de petróleo dentro decrece gradualmente hasta la saturación residual de petróleo.

Para canalización, la producción de agua de la capa irrumpida, en este segundo período, se incrementa rápidamente. En consecuencia, el RAP se incrementa con relativa facilidad. La pendiente del RAP en la canalización depende de las funciones de permeabilidad relativa y las condiciones de saturación inicial. Al final de este segundo período, el incremento de RAP podría volverse más lento entrando en un período de transición. Esto corresponde al agotamiento de la producción de la primera capa irrumpida. El final de este período de transición muestra que el incremento de RAP se reanuda cercanamente a la misma tasa. Esto corresponde a la irrupción de agua en la siguiente capa.

El período de transición depende del contraste de permeabilidades entre capas principalmente y afectado por la presión capilar.

En el <u>TERCER PERIODO</u> para una conificación, un cono pseudo-estable es desarrollado. El pozo principalmente produce agua. El cono de agua se convierte en un canal de agua de alta conductividad. El incremento de la RAP se torna más rápido y parecido a un caso de canalización. Para canalización, el incremento de RAP se reanuda a la misma tasa después de pasar por el período de transición de acuerdo a la segunda capa.

Figura 2 – 14. Comparación entre un gráfico típico de conificación de agua y canalización

La RAP' (derivada simple de la RAP) muestra una pendiente positiva para canalización (Figura 2-15) y una pendiente negativa para conificación (Figura 2-16). La derivada de la RAP se convierte en un gráfico muy útil cuando la información de producción de es limitada (Figura 2-18).

Figura 2 – 15. Canalización multicapa, WOR y WOR'

Figura 2 – 16. Conificación de fondo, WOR y WOR'

Figura 2 – 17. Conificación de fondo con la última etapa presentando canalización

Figura 2 – 18. WOR y WOR' para un intervalo de tiempo

CAPITULO III

APLICACIÓN DEL MODELO ANALITICO AL EMPUJE HIDRAULICO DE FONDO

Los cálculos y teorías expuestas en el Capítulo 2 se aplicarán al reservorio Vivian de la selva peruana para un campo cuyo nombre real ha sido modificado para fines prácticos.

En esta sección, los métodos propuestos por *Kuo y DesBrisay*, *Mayer*, *Chaney*, *Schols* entre otros, son utilizados para calcular lo concerniente al *Petróleo Bypaseado* por el mecanismo de **conificación**. El desarrollo de las ecuaciones se adjunta en un archivo Excel de nombre "Cálculos de Conificación".

1. Reservorio y Pozos de estudio

1.1 Reservorio Vivian

El reservorio Vivian está formado por areniscas cuarzosas depositadas en un ambiente predominantemente fluvial. Los cuerpos de arena que forman el reservorio tienen buena continuidad mientras la fina intercalación de arcillas está limitada en área.

Pr (psi)	3800
Tr(°F)	225
B_o (rb/stb)=	1.073
B_{w} (rb/stb)=	1.041
μ_o (cp)=	2.58
$\mu_w(cp)=$	0.277
$\gamma_o =$	0.907
$\gamma_w =$	1.05
k_{abs} (md)=	2000

TABLA N°3.1 PARAMETROS DE RESERVORIO VIVIAN, CAMPO RM

k_h (md)=	2000
k_v (md)=	200
ϕ (fracción)=	0.21
S_{wc} (fracción)=	0.4
S_{or} (fracción)=	0.21
K _{ro} '=	0.8597
K _{rw} '=	0.2763
OOIP (MMSTB)	13.9
P. Acumulada (MMSTB)	4.9

TABLA N°3.2 PERMEABILIDADES RELATIVAS Y PRESIONES CAPILARES PARA EL RESERVORIO VIVIAN – CAMPO *RM*

Sw	Krw	Krow	Pcow (psi)	Height (ft)
0.4	0.0000	0.8597	0.3057	5.095
0.4263	0.0000	0.6629	0.2484	4.140
0.4526	0.0029	0.4774	0.2097	3.495
0.4789	0.0082	0.3564	0.1811	3.018
0.5053	0.0128	0.2564	0.1593	2.655
0.5316	0.0226	0.1919	0.1374	2.290
0.5579	0.0356	0.1451	0.1189	1.982
0.5842	0.0535	0.1161	0.1054	1.757
0.6105	0.0714	0.0944	0.0920	1.533
0.6368	0.0877	0.0774	0.0863	1.439
0.6632	0.1039	0.0624	0.0768	1.280
0.6895	0.1267	0.0474	0.0684	1.140
0.7158	0.1495	0.0349	0.0634	1.056
0.7421	0.1755	0.0229	0.0566	0.944
0.7684	0.2031	0.0129	0.0533	0.888
0.7947	0.2373	0.0586	0.0487	0.812
0.821	0.2763	0.0000	0.0432	0.719
0.8474	0.3203	0.0000	0.0415	0.691
0.8737	0.3951	0.0000	0.0331	0.551
0.9	0.4959	0.0000	0.0300	0.500
1	1.0000	0.0000	0.0000	0.000

Figura 3 - 1. Gráfico de Permeabilidades Relativas elaborada con la data de la Tabla N° 3.2

El reservorio Vivian tiene excelentes valores de porosidad, 21%, y rangos de permeabilidad de 750 a 3500 md. El máximo espesor de la arena de petróleo es 47 pies. El reservorio goza de un fuerte mecanismo de empuje hidráulico (Figura 3-2) lo que lo hace muy especial para el presente estudio, principalmente de fondo. El petróleo de este reservorio es bajosaturado y tiene 24.5 API a 60°F. El **principal mecanismo de invasión** de agua a los pozos es la **conificación de agua** como se demostrará a través de las *Curvas de Chan* para los pozos que formarán parte del presente estudio.

Figura 3 - 2. Vista de la zona de petróleo y el acuífero de Vivian mediante una simulación

La formación Vivian presenta un potente acuífero, producto de ello la presión del reservorio en 30 años de producción ha decaído sólo alrededor de 100 psi (Figura 3 - 3).

Figura 3 - 3. Evolución de la presión en el reservorio Vivian, Campo RM

Figura 3 - 4. Mecanismo de producción en Vivian provisto por un fuerte acuífero activo.

El mecanismo de producción presente en Vivian es uno de los que mayor eficiencia de recobro permiten; sin embargo, aquello conlleva también a la producción de elevados cortes de agua una vez producida la irrupción en el pozo.

1.2 Pozos en estudio

Entre los pozos productores del Reservorio Vivian para el Campo *RM* a través del tiempo se encuentran los Pozos *RM01 y RM02*. La conificación presente como mecanismo del Empuje Hidráulico de Fondo para estos pozos se puede apreciar a través de los *Gráficos de Diagnóstico de Control de Agua (Curvas de Chan),* que presentan patrones de reconocimiento como los expuestos en el Capítulo II, en las Figuras 3-5, 3-6.

Figura 3 – 5. Gráfico de Diagnóstico de Control de Agua para el Pozo RM01

Figura 3 – 6. Gráfico de Diagnóstico de Control de Agua para el Pozo RM02

Los perfiles de los pozos en estudio se pueden observar en el ANEXO 01.

Figura 3 – 7. Historia de Producción del Reservorio Vivian

Los pozos seleccionados fueron aquellos localizados en la parte superior del reservorio Vivian, porque de ellos se esperaría tener más potencial de incremento de recobro que los pozos penetrando las porciones inferiores en un reservorio de empuje hidráulico de fondo. Los distintos pozos seleccionados penetran el reservorio Vivian en los primeros 10 pies superiores a aproximadamente 2535 metros por debajo del nivel del mar.

Los **pozos** *RM01* **y** *RM02* penetran el reservorio Vivian en posiciones estructurales óptimas cerca del tope de la estructura comparados a otros pozos. Ambos tienen casi el mismo espesor de arena neta. Sin embargo, el pozo *RM01* penetra una mejor condición el reservorio Vivian que el *RM02*, sumado a mayor resistividad.

El **pozo** *RM02* tiene 34 pies (10.5m) de arena homogénea limpia por encimad el contacto original agua/petróleo con una resistividad de 4 ohms, no hay intervalos notables de lutita. Tiene un total de 400 pies (120 m) de espesor bruto de arena por debajo del contacto original agua-petróleo (WOC) con intercalaciones de lutita de en total 20 pies las cuales no parecen ser continuas.

El **pozo** *RM01* tiene 39 pies (12m) de arena homogénea limpia por encima del WOC con una resistividad de 1.6 ohms, sin intervalos de lutitas, y un total de 413 pies (126 m) de arena bruta por debajo del contacto original WOC con intercalaciones de lutitas y 12m de arena neta petrolera. Las intercalaciones de lutita suman 28 pies y no parecen ser continuos.

Los pozos considerados se encuentran en las partes más altas de la estructura de *Vivian* con las relaciones de espesor agua-petróleo más altas en relación a otros pozos así como penetrando las zonas de arena más homogéneas del reservorio *Vivian*.

La Figura 3 – 7 asigna la producción de los pozos que produjeron sólo por Vivian a través del tiempo exhibiendo un patrón de alto incremento de corte de agua en períodos cortos de tiempo (observación cualitativa) que se corresponden con los altos valores de *WOR* o *RAP* (relación agua-petróleo) mostrados en las Figuras 3-5, 3-6 (análisis cuantitativo).

2. Aplicación y Descripción de Casos

Las propiedades de roca y fluidos del Reservorio *Vivian* son mostradas en la Tabla N° 3.1. Otros parámetros utilizados son mostrados en la Tabla N° 3.3. Los casos considerados a partir de la información propuesta por la Tabla N°3.1 son mostrados en la Tabla N°3.4.

Los cálculos incluyen relaciones de Mobilidad *M* favorables y desfavorables. La Tabla N°3.3 también incluye **Períodos de Irrupción de Agua** (Ecuación 2.30) calculadas utilizando a su vez las Ecuaciones 2.31 y 2.32 las cuales corresponden a Bournazel-Jeanson (1971) y

Sobocinsky-Cornelius (1975) respectivamente que son métodos para estimar el **Tiempo de Irrupción Adimensional**.

Un resultado de Tiempo de Irrupción negativo no es congruente; debido a que los métodos (Bournazel y Sobocinsky) presentan discontinuidades para valores de altura del cono adimensional z (Ecuación 2.33) de 4.28 y 3.5 para las Ecuaciones 2.31 y 2.32 respectivamente como se muestra en la Figura 3-8. Por lo tanto, los tiempos de irrupción calculados en la vecindad (o encima en el caso de la Ecuación de *Bournazel*) podrían ser erróneos. El método de Bournazel-Jeanson (1971) fue utilizado para las predicciones de petróleo *bypaseado* para los casos excepto para el primero donde el método de Sobocinsky-Cornelius (1975) fue complemento debido al resultado negativo obtenido con Bournazel.

TABLA N°3.3 PROPIEDADES DE POZO Y RESERVORIO VIVIAN PARA LOS CALCULOS

Propiedad	Valor
Espesor de Agua, H _w (ft)	413
Espesor de Petróleo, H _o (ft)	40
Penetración del Pozo, H _p (ft)	10
Radio del pozo, r _w (ft)	0.35
Radio del Drenaje, re (ft)	800
Area, A (acres)	46.15

Los valores empleados en la Tabla N°3.3 corresponden al Pozo RM01

TABLA N°3.4 DESCRIPCIÓN DE LOS CASOS UTILIZADOS EN LOS	S
CALCULOS ANALITICOS	

Caso	М	uo (cp)	q (b/d)	tBT (Bournazel) dias	tBT (Sobocinsky) dias
1	0.3	0.258	110.0	-13.74	3907.17
2	0.3	0.258	1100.0	50.45	392.19
3	2.99	2.58	110.0	504.55	3921.87
4	2.99	2.58	1100.0	10.57	20.88
5	29.93	25.8	110.0	105.75	208.77
6	29.93	25.8	1100.0	9.8	17.08
7	2.99	2.588	11000.0	0.98	1.71

La Mobilidad *M* depende directamente de la viscosidad de petróleo. Los tiempos en días tanto de Bournazel como de Sobocinsky varían con el caudal y la viscosidad de petróleo manteniendo las demás variables constantes. Los cálculos realizados para la correspondiente tabla se encuentran en el archivo Excel adjunto:"Cálculos para Conificación"

Figura 3 – 8. Historia de Producción del Reservorio Vivian

3. Resultados de los Cálculos Analíticos

Las Tablas N°3.5 al 3.11 muestran el corte de agua y el petróleo *bypaseado* versus el tiempo principalmente (definido por la Ecuación 2.28) respectivamente.

La irrupción en todos los casos ocurre a $t_D=1$. Todos los cálculos fueron realizados hasta un corte de agua de 99.5% que aunque posiblemente exceda el corte económico nos permitirá tener un mayor espectro de casos.

TABLA N°3.5 CASO 1: CORTE DE AGUA Y PETROLEO BYPASEADO (BPO) CALCULADO CON EL METODO DE KUO Y DESBRISAY

	Caso 1							
	uo	0.258	ср					
	qo	110	b/d					
	tBT	3907.17	días					
							FR	
		t (días)	tD	WCut	Np (acum)	Np (+)	Movible	BPO
1		10	0.003	0	1100		0	
2		100	0.026	0	11000	9900	0.007	0.993
3		1000	0.256	0	110000	99000	0.065	0.935
4		2000	0.512	0.013	219285	109285	0.130	0.870
5		3000	0.768	0.145	320595	101310	0.191	0.809
6		3907	1.000	0.237	401324	80729	0.239	0.761
7		4000	1.024	0.25	409049	7725	0.243	0.757
8		4200	1.075	0.267	425362	16313	0.253	0.747
9		4400	1.126	0.284	441301	15939	0.262	0.738
10		4700	1.203	0.308	464533	23232	0.276	0.724
11		5500	1.408	0.365	522921	58388	0.311	0.689
12		6500	1.664	0.429	589251	66330	0.350	0.650
13		7500	1.920	0.487	648871	59620	0.386	0.614
14		9000	2.303	0.561	727411	78540	0.432	0.568
15		10000	2.559	0.611	772951	45540	0.460	0.540
16		11500	2.943	0.671	832186	59235	0.495	0.505
17		13000	3.327	0.728	881768	49582.5	0.524	0.476
18		16000	4.095	0.818	956678	74910	0.569	0.431
19		20000	5.119	0.922	1013878	57200	0.603	0.397
20		25000	6.398	0.978	1041378	27500	0.619	0.381
21		27000	6.910	0.986	1045338	3960	0.621	0.379
22		28000	7.166	0.986	1046878	1540	0.622	0.378

23	30000	7.678	0.986	1049958	3080	0.624	0.376
24	50000	12.797	0.986	1080758	30800	0.643	0.357
25	55000	14.077	0.996	1085708	4950	0.645	0.355

TABLA N°3.6 CASO 2: CORTE DE AGUA Y PETROLEO BYPASEADO (BPO) CALCULADO CON EL METODO DE KUO Y DESBRISAY

	Caso 2							
	uo	0.258	ср					
	qo	1100	b/d					
	tBT	50.45	días					
							FR	
		t (días)	tD	WCut	Np (acum)	Np (+)	Movible	BPO
1		10	0.198	0	1100		0	
2		30	0.595	0.059	22451	21351	0.013	0.987
3		50	1.000	0.22	41808	19357	0.025	0.975
4		60	1.189	0.275	49713	7905	0.030	0.970
5		80	1.586	0.366	64662	14949	0.038	0.962
6		110	2.180	0.467	83917	19255.5	0.050	0.950
7		150	2.973	0.567	105169	21252	0.063	0.937
8		200	3.964	0.661	126399	21230	0.075	0.925
9		260	5.154	0.748	145902	19503	0.087	0.913
10		330	6.541	0.783	163959	18056.5	0.097	0.903
11		400	7.929	0.787	180514	16555	0.107	0.893
12		500	9.911	0.79	203779	23265	0.121	0.879
13		700	13.875	0.795	249429	45650	0.148	0.852
14		1000	19.822	0.804	315594	66165	0.188	0.812
15		1400	27.750	0.817	398974	83380	0.237	0.763
16		1900	37.661	0.834	494949	95975	0.294	0.706
17		2500	49.554	0.855	597579	102630	0.355	0.645
18		3200	63.429	0.878	700374	102795	0.416	0.584
19		4000	79.286	0.901	797614	97240	0.474	0.526
20		4900	97.126	0.924	884239	86625	0.526	0.474
21		5900	116.947	0.946	955739	71500	0.568	0.432
22		7000	138.751	0.964	1010189	54450	0.601	0.399
23		9200	182.359	0.978	1080369	70180	0.642	0.358
24		10000	198.216	0.996	1091809	11440	0.649	0.351
25		10500	208.127	0.996	1094009	2200	0.650	0.350

TABLA N°3.7 CASO 3: CORTE DE AGUA Y PETROLEO BYPASEADO (BPO) CALCULADO CON EL METODO DE KUO Y DESBRISAY

Caso 3							
uo	2.58	ср					
qo	110	b/d					
tBT	504.55	días					
						FR	
	t (días)	tD	WCut	Np (acum)	Np (+)	Movible	BPO
1	10	0.02	0	1100		0	
2	400	0.793	0.189	39946	38845.95	0.024	0.976
3	505	1	0.281	48744	8798	0.029	0.971
4	700	1.387	0.411	62805	14061	0.037	0.963
5	1000	1.982	0.552	79915	17111	0.048	0.952
6	1400	2.775	0.686	96679	16764	0.057	0.943
7	1900	3.766	0.808	110594	13915	0.066	0.934
8	2500	4.955	0.917	119669	9075	0.071	0.929
9	3200	6.342	0.97	124020	4350.5	0.074	0.926
10	3300	6.54	0.972	124339	319	0.074	0.926
11	3500	6.937	0.972	124955	616	0.074	0.926
12	3800	7.531	0.972	125879	924	0.075	0.925
13	4200	8.324	0.972	127111	1232	0.076	0.924
14	4700	9.315	0.972	128651	1540	0.076	0.924
15	5300	10.504	0.973	130466	1815	0.078	0.922
16	6500	12.883	0.973	134030	3564	0.08	0.92
17	7500	14.865	0.973	137000	2970	0.081	0.919
18	9000	17.838	0.973	141455	4455	0.084	0.916
19	11000	21.802	0.973	147395	5940	0.088	0.912
20	15000	29.729	0.973	159275	11880	0.095	0.905
21	21000	41.621	0.973	177095	17820	0.105	0.895
22	28000	55.495	0.974	197500	20405	0.117	0.883
23	36000	71.351	0.975	219940	22440	0.131	0.869
24	50000	99.098	0.975	258440	38500	0.154	0.846
25	100000	198.196	0.976	393190	134750	0.234	0.766
26	200000	396.393	0.98	635190	242000	0.378	0.622
27	300000	594.589	0.987	816690	181500	0.486	0.514
28	350000	693.687	0.992	874440	57750	0.520	0.480
29	360000	713.507	0.994	882140	7700	0.524	0.476
30	370000	733.327	0.994	888740	6600	0.528	0.472
31	390000	772.966	0.994	901940	13200	0.536	0.464
32	400000	792.786	0.995	907990	6050	0.540	0.460
33	450000	891.884	0.995	935490	27500	0.556	0.444
34	500000	990.982	0.996	960240	24750	0.571	0.429
35	520000	1030.621	0.996	969040	8800	0.576	0.424
36	550000	1090.080	0.997	980590	11550	0.583	0.417

TABLA N°3.8 CASO 4: CORTE DE AGUA Y PETROLEO BYPASEADO (BPO) CALCULADO CON EL METODO DE KUO Y DESBRISAY

Caso 4							
uo	2.58	ср					
qo	1100	b/d					
tBT	10.57	días					
				Np		FR	
	t (días)	tD	WCut	(acum)	Np (+)	Movible	BPO
1	1	0.095	0	1100		0	
2	3	0.284	0	3300	2200	0.002	0.998
3	11	1.000	0.281	10457	7157	0.006	0.994
4	15	1.419	0.419	13625	3167	0.008	0.992
5	20	1.892	0.533	16507	2882	0.010	0.990
6	25	2.365	0.622	18830	2324	0.011	0.989
7	30	2.838	0.694	20711	1881	0.012	0.988
8	35	3.311	0.755	22227	1515	0.013	0.987
9	40	3.784	0.808	23428	1202	0.014	0.986
10	45	4.257	0.854	24358	930	0.014	0.986
11	51	4.825	0.904	25156	799	0.015	0.985
12	60	5.676	0.968	25790	634	0.015	0.985
13	70	6.623	0.969	26136	347	0.016	0.984
14	90	8.515	0.969	26818	682	0.016	0.984
15	120	11.353	0.969	27841	1023	0.017	0.983
16	160	15.137	0.969	29205	1364	0.017	0.983
17	500	47.304	0.97	40612	11407	0.024	0.976
18	1500	141.911	0.97	73612	33000	0.044	0.956
19	3000	283.822	0.971	122287	48675	0.073	0.927
20	6000	567.644	0.972	216337	94050	0.129	0.871
21	15000	1419.111	0.975	478687	262350	0.285	0.715
22	30000	2838.221	0.983	825187	346500	0.491	0.509
23	40000	3784.295	0.993	957187	132000	0.569	0.431
24	41000	3878.903	0.996	963237	6050	0.573	0.427
25	42000	3973.510	0.996	967637	4400	0.575	0.425

TABLA N°3.9 CASO 5: CORTE DE AGUA Y PETROLEO BYPASEADO (BPO) CALCULADO CON EL METODO DE KUO Y DESBRISAY

	Caso 5							
	uo	25.8	ср					
	qo	110	b/d					
	tBT	105.75	días					
					Np		FR	
		t (días)	tD	WCut	(acum)	Np (+)	Movible	BPO
1		1	0.009	0	1100		0	
2		30	0.284	0	4290	3190	0.003	0.997
3		60	0.567	0.058	7494	3204	0.004	0.996
4		70	0.662	0.121	8496	1002	0.005	0.995
5		80	0.757	0.176	9433	937	0.006	0.994
6		90	0.851	0.223	10313	881	0.006	0.994
7		106	1.000	0.289	11602	1289	0.007	0.993
8		115	1.087	0.323	12308	706	0.007	0.993
9		125	1.182	0.357	13034	726	0.008	0.992
10		135	1.277	0.389	13724	690	0.008	0.992
11		150	1.418	0.431	14697	974	0.009	0.991
12		170	1.608	0.482	15893	1196	0.009	0.991
13		200	1.891	0.548	17494	1601	0.010	0.990
14		230	2.175	0.605	18891	1398	0.011	0.989
15		260	2.459	0.655	20112	1221	0.012	0.988
16		290	2.742	0.7	21176	1064	0.013	0.987
17		320	3.026	0.74	22100	924	0.013	0.987
18		360	3.404	0.788	23139	1038	0.014	0.986
19		410	3.877	0.841	24159	1020	0.014	0.986
20		460	4.350	0.887	24907	748	0.015	0.985
21		520	4.917	0.937	25488	581	0.015	0.985
22		580	5.485	0.982	25755	267	0.015	0.985
23		600	5.674	0.996	25779	24	0.015	0.985
24		1200	11.348	0.997	26010	231	0.015	0.985
25		2400	22.695	0.997	26406	396	0.016	0.984

TABLA N°3.10 CASO 6: CORTE DE AGUA Y PETROLEO BYPASEADO (BPO) CALCULADO CON EL METODO DE KUO Y DESBRISAY

	Caso 6							
	uo	25.8	ср					
	qo	1100	b/d					
	tBT	9.8	días					
					Np		FR	
		t (días)	tD	WCut	(acum)	Np (+)	Movible	BPO
1		1	0.102	0	1100		0	
2		3	0.306	0	3300	2200	0.002	0.998
3		6	0.612	0.089	6453	3153	0.004	0.996
4		10	1.000	0.289	9843	3390	0.006	0.994
5		11	1.122	0.336	10751	907	0.006	0.994
6		12	1.224	0.371	11462	711	0.007	0.993
7		14	1.429	0.434	12776	1315	0.008	0.992
8		16	1.633	0.489	13961	1185	0.008	0.992
9		19	1.939	0.559	15532	1571	0.009	0.991
10		22	2.245	0.618	16890	1358	0.010	0.990
11		23	2.347	0.636	17300	410	0.010	0.990
12		24	2.449	0.654	17691	391	0.011	0.989
13		25	2.551	0.67	18062	372	0.011	0.989
14		26	2.653	0.686	18417	354	0.011	0.989
15		28	2.857	0.716	19074	658	0.011	0.989
16		30	3.061	0.744	19668	594	0.012	0.988
17		32	3.265	0.771	20202	534	0.012	0.988
18		34	3.469	0.795	20679	477	0.012	0.988
19		38	3.878	0.841	21480	801	0.013	0.987
20		42	4.286	0.881	22092	612	0.013	0.987
21		46	4.694	0.918	22534	442	0.013	0.987
22		51	5.204	0.96	22869	336	0.014	0.986
23		57	5.816	0.997	23011	142	0.014	0.986
24		100	10.204	0.997	23153	142	0.014	0.986
25		200	20.408	0.997	23483	330	0.014	0.986
TABLA N°3.11 CASO 7: CORTE DE AGUA Y PETROLEO BYPASEADO (BPO) CALCULADO CON EL METODO DE KUO Y DESBRISAY

Caso 7							
uo	2.58	ср					
qo	11000	b/d					
tBT	0.98	días					
						FR	
	t (días)	tD	Wcut	Np (acum)	Np (+)	Movible	BPO
1	1	1.020	0.289	1100		0	
2	3	3.061	0.723	11968	10868	0.007	0.993
3	4	4.082	0.837	14388	2420	0.009	0.991
4	5	5.102	0.926	15692	1304	0.009	0.991
5	6	6.122	0.969	16269	578	0.010	0.990
6	10	10.204	0.969	17633	1364	0.010	0.990
7	20	20.408	0.969	21043	3410	0.013	0.987
8	40	40.816	0.969	27863	6820	0.017	0.983
9	160	163.265	0.969	68783	40920	0.041	0.959
10	740	755.102	0.971	260183	191400	0.155	0.845
11	1480	1510.204	0.976	475893	215710	0.283	0.717
12	2000	2040.816	0.983	593153	117260	0.353	0.647
13	2500	2551.020	0.986	678403	85250	0.403	0.597
14	4800	4897.959	0.989	994653	316250	0.591	0.409
15	6000	6122.449	0.997	1087053	92400	0.646	0.354

Los resultados muestran que el caudal de producción y la viscosidad (variados a través de los casos) tienen un importante efecto en el *tiempo de irrupción de agua (water breakthrough)*. Por ejemplo,

- A tasas de producción altas y altas viscosidades los *tiempos de irrupción* se reducen considerablemente.
- El caudal de producción multiplicado por un factor de 10 provoca un mayor efecto en el tiempo de irrupción que la viscosidad multiplicada por el mismo factor.

La mobilidad *M* es proporcional a la viscosidad de petróleo y es favorable para casos con M<1 por lo que según se puede corroborar en las Tablas (Tablas N°3.5 al 3.10), los casos con viscosidad= 0.258

(M=0.3) presentan una cantidad de petróleo *bypaseado* a altos cortes de agua muy inferiores a los demás casos con viscosidades mayores.

Por ejemplo, se puede apreciar que el porcentaje de petróleo *bypaseado* al momento de abandono (99.7% WC) en los casos con viscosidad de 25.8 es alrededor del 98% de petróleo movible, siendo el factor de recobro, en consecuencia, mínimo (Tabla N°3.12).

TABLA N°3.12 COMPARACION DE PETROLEO BYPASEADO (BPO%) AL MOMENTO DE ABANDONO. ABANDONO CONSIDERADO A UN CORTE DE 99.6% DE AGUA.

Caso	Μ	uo	q	BPO (%)
1	0.3	0.258	110.0	35.5
2	0.3	0.258	1100.0	34.9
3	2.99	2.58	110.0	70
4	2.99	2.58	1100.0	42.5
5	29.93	25.8	110.0	98.5
6	29.93	25.8	1100.0	98.6
7	2.99	2.58	11000.0	35.4

Los resultados también sugieren que el efecto de cambiar la viscosidad de petróleo (o relación de mobilidad) es mucho más significante en el monto de petróleo *bypaseado* al momento de abandono que el efecto de cambiar el caudal de producción (Tabla N° 3.13). En otras palabras, **analíticamente las fuerzas viscosas parecen tener un efecto más pronunciado que las fuerzas de gravedad.**

Por otro lado, el desarrollo del corte de agua con el tiempo es mucho más rápido en los casos con altas viscosidades y caudales de producción, lo cual incrementa la cantidad de petróleo *bypaseado* al final del límite económico. Se llega a alcanzar un corte de agua casi constante con el tiempo por encima del 98%. Aquellos casos presentan una prematura irrupción de agua con la consiguiente formación de un cono de agua.

A partir del **Tiempo de Irrupción** (cuando el $t_D=1$) los cortes de agua empiezan a subir aceleradamente en función del tiempo de producción hasta alcanzar un corte de agua casi constante por encima del 98%. El cono empieza a formarse una vez que la tasa crítica de producción es superada; sin embargo, mientras el cono del acuífero no llegue a irrumpir en el pozo, la producción de agua corresponderá al reservorio siendo baja en corte.

TABLA N°3.13 CAUDALES CRITICOS POR DISTINTOS METODOS PARA EL POZO *RM01* EN ESTUDIO.

	Caso 7
	q _{critico} (bpd)
Meyer	26.3
Chaney	51
Schols	35.6

Los caudales críticos calculados en base a las Ecuaciones 2.46, 2.48 y 2.49 correspondientes a Meyer, Chaney Schols respectivamente, nos sugieren que para evitar la formación de un cono de agua el pozo debe producir con tazas de 20 a 50 bpd lo cual no necesariamente es económicamente viable para un pozo de un campo que tiene como límite económico la producción de 68 barriles de crudo. La formación del cono de agua es por tanto, un fenómeno *asociado* con la producción en casi todos los casos.

 Los CASOS 4 Y 7 son los casos que por viscosidad y caudal corresponden al pozo en estudio, (primero una tasa de 1100 bpd y luego 11 000 bpd). De la Tabla N°3.13 se puede inferir que a una tasa de 11000 barriles la formación del cono es *instantánea* y de la Tabla N° 3.11, la irrupción se produce el primer día de puesto en producción el pozo. La conificación de agua crece aceleradamente lo que se manifiesta en el corte que en 5 días de producción ya se encuentra por encima del 90% y que se mantendrá a un corte casi constante por encima del 97%; todo aquello calculado analíticamente con el método de *Kuo y DesBrisay* de acuerdo a la historia de producción de los pozos del Campo RM en Vivian (Tabla N°A-1, 2, 3) se aproxima a lo que ocurre; sin embargo, el siguiente capítulo presenta los resultados de un estudio de simulación con el objetivo de dar consistencia a los resultados obtenidos en el presente capítulo por medio del modelo de *Kuo y DesBrisay*.

CAPITULO IV

SIMULACION Y VALIDACION DEL MODELO ANALITICO

Los cálculos llevados a cabo de acuerdo al modelo analítico en el Capítulo II buscan ser validados en los siguientes capítulos mediante un Modelo de Simulación que se llevó a cabo con anterioridad en la empresa *Pluspetrol* acerca del pozo de *RM01* del Campo RM del reservorio Vivian.

1. Modificación del Simulador Numérico IMEX

En esta etapa el Simulador IMEX fue adaptado para estudiar la estructura del reservorio asociada con el comportamiento del pozo. Un modelo simplificado con grilla Cartesiana o modelo de doble-capa coaxial con grilla radial fue utilizado para representar el sistema pozo-reservorio con empuje hidráulico de fondo. El modelo de simulación fue ensayado para hacer coincidir la historia de producción.

Como se mostraba en la Figura 3-2, el reservorio Vivian es un clásico anticlinal con petróleo y soportado por un vasto acuífero con un contacto agua-petróleo definido.

1.1 Calibración del Modelo de Simulación

Una simulación radial-cilíndrica fue utilizada para modelar los pozos del campo *RM* en el reservorio Vivian. La geometría radial es la más comúnmente utilizada para estudiar el comportamiento de pozos en sistemas de empuje hidráulico ya que se considera es una de las más aproximadas a estos sistemas. Sin embargo, los modelos debidamente diseñados deben ser calibrados para optimizar máxima resolución con el menor tiempo de procesamiento posible (número de bloques de grillado) y asegurar una adecuada representación del mecanismo de empuje hidráulico.

Como se muestra en la Figura 4-1, un modelo radialcilíndrico bidimensional (r,z) fue utilizado para representar un área de drenaje de un solo pozo con un empuje hidráulico de fondo. El tamaño de los bloques se incrementó a fin de que las ubicaciones radiales de los bloques de centro estuvieran aproximadamente en progresión aritmética. La intrusión de agua al reservorio ha sido modelada adjuntando un acuífero al fondo de la zona de petróleo. El modelamiento del acuífero también será brevemente discutido más adelante.

Figura 4 – 1. Modelo de calibración radial de un sistema para un solo pozo.

1.2 Diseño de la Densidad del Grillado

El número de bloques de grillado en el modelo de simulación fue optimizado a través de un análisis de sensibilidad utilizando información del reservorio en estudio. La Tabla N°4.1 muestra los casos considerados. Todos los casos fueron procesados con una relación de mobilidad M de 1.8 y un porcentaje de penetración del pozo de 10%.

Tres niveles para el número de bloques de grillado fueron considerados en cada dirección. En la Tabla N°4.1 se muestran las resultados para los siguientes parámetros: *CPU time*, tiempo de irrupción, recuperación de petróleo al momento de la irrupción (expresado como en %del Volumen de Petróleo Movible MOV) y

la recuperación de petróleo al momento de abandono (%MOV). El abandono para la simulación fue considerado al 98% de corte de agua. Es claro que *CPU time* es significativamente afectado por los cambios en el número de bloques de grillado en cada dirección.

TABLA N°4.1 MATRIZ	DE DATOS PARA LA	A OPTIMIZACION DE LA
D	ENSIDAD DE GRILL	ADO

Caso	DR	DZ	Total	CPU Time (días)	BT Time	Rec @ BreakT (%MOV)	Rec @ abandono (%MOV)
1	26	30	780	32.9	4.00	0.2286	89.56
2	26	60	1560	79.8	4.12	0.2352	89.83
3	26	120	3120	220.8	4.21	0.2401	89.96
4	51	30	1530	85.1	4.00	0.2285	89.4
5	51	60	3060	218.6	4.09	0.2334	89.74
6	51	120	6120	679.2	4.19	0.239	89.84
7	101	30	3030	252.6	4.01	0.2294	89.34
8	101	60	6060	776.7	4.09	0.2234	89.69
9	101	120	12120	2826.1	4.17	0.2382	89.81
Máx. diferencia				8487.2	5.2	7.5	0.7

Figura 4 – 1. Efecto de la densidad de grillado en la recuperación de un sistema de pozo individual

Se puede ver que el número de bloques de grillado en la dirección radial es ligeramente más importante para el tiempo de procesamiento (CPU Time) que el número de bloques de grillado en la dirección vertical. Para el tiempo de irrupción de agua y la recuperación al abandono, sin embargo, se puede ver que el efecto del número de bloques de grillado en la dirección vertical es más importante que para la dirección radial. Basado en los resultados, una densidad óptima de grillado para el modelamiento de un sistema pozo individual sería el Caso 5 con 51 grillados radiales y 60 verticales conteniendo en total 3060 bloques de grillado, lo cual forma parte de este estudio de simulación llevado a cabo por la compañía *Pluspetrol*.

2. Selección del Modelo de Acuífero.

Para la simulación fueron ensayados dos modelos: Modelo de Fetkovich y Modelo de Cilindros Concéntricos. El enfoque de Fetkovich está basado en el balance de materiales y el flujo de agua del acuífero en un reservorio es modelado precisamente de la misma manera que el flujo de petróleo del reservorio al pozo.

La Figura 4-2 muestra la interpretación del **acuífero de Fetkovich** en un sistema de empuje de fondo basado en el manual del Simulador *IMEX*. El manual describe el sistema acuífero reservorio como un cuadrado con el lado L igual a la raíz cuadrada del área del reservorio. El manual también indica que un espesor de reservorio H es utilizado en los cálculos y que el acuífero es asumido estar delimitado por los bordes de una cuña que asciende en la parte inferior del reservorio. Entonces, la teoría para acuífero radial es aplicada, con el valor para el ángulo tomado como $2 * a \tan(L/H)/360$, y el radio (Ro) tomado como la raíz cuadrada de (L*H/pi). La relación entre el radio de acuífero externo y el radio externo al reservorio (Raq/Ro), es ingresado como dato de entrada.

Figura 4 - 2. Significado geométrico del acuífero de Fetkovich en un sistema de empuje de fondo.

El segundo enfoque consiste en adherir el acuífero como un cilindro concéntrico por debajo de la zona de petróleo. Una representación esquemática de esta situación es mostrada en la Figura 4-3. Este enfoque de cilindro concéntrico ha sido utilizado por varios investigadores para estudiar la conificación de agua. Los grandes acuíferos son modelados mediante el establecimiento de su tamaño radial significativamente superior que la medida del reservorio. (El efecto del tamaño del acuífero es discutido posteriormente). Este segundo enfoque tiene la desventaja de requerir un número mayor de bloques de grilla, lo cual incrementa el tiempo de procesamiento como la capacidad requerida.

Figura 4 - 3. Modelo coaxial de acuífero de fondo.

Los dos modelos de acuífero fueron comparados para sistemas de empuje de fondo con zonas de agua relativamente delgada subyaciendo la zona de petróleo a fin de observar el proceso de invasión de agua. La Figura 4-4 muestra la historia de corte de corte de agua simulada para la relación de espesor acuífero/reservorio 8.33 y los mismos volúmenes para ambos modelos. Durante la simulación, los gráficos fueron comparados con un tercer método de cálculo analítico "neutral" propuesto por Kuo.

Figura 4 - 4. Verificación de los dos modelos de acuífero

Es claro que el modelo de *Fetkovich* no coincide con la invasión de agua o es la que más desviación presenta respecto del modelo analítico. Esto puede ser explicado por el hecho de que para el enfoque de *Fetkovich* el área de contacto entre el acuífero y el reservorio es una cuña inferior al área que de contacto que ocuparía un cilindro de base plana. También es evidente que los dos modelos dan resultados similares a tiempo mayores. Esto es porque a tiempos mayores el influjo del acuífero es mayormente controlado por el volumen del acuífero, el cual es el mismo en ambos modelos. **A primeros tiempos depende la forma de contacto y a tiempos mayores del volumen del acuífero**. Por lo tanto, **el corte de agua ajusta mejor para el modelo de acuífero Vivian** (Figura 4-5).

3. Información utilizada en la Simulación

Se utilizó un **modelo de pozo individual** (*Single-well modelling*) en base al cual se hicieron dos estimaciones: utilizando volumetría del reservorio, y ajustando la historia del pozo *RMOA* el cual tiene la mayor historia de producción de Vivian individual.

El método volumétrico previó 3 estimados de espaciamiento de pozos (*RMOA*, *RMO1*, *RMO2*): 47, 50, 57 acres basados en diferentes espesores promedio (33 ó 43 pies) y un número de pozos productores de la arena (6 ó 9 pozos). Los estimados produjeron radios de: 807, 832 y 890 pies. En los cálculos de simulación fue utilizado un volumen de reservorio bruto de 9718 acre-ft y dos valores de espesor promedio: 43 ft de un mapa Isópaco y 33 ft de un promedio de los registros de 3 pozos: *RMOA, RM01, RM02*.

El área de drenaje fue también estimado mediante el ajuste de agua de producción de un pozo típico. La premisa fue que el tamaño del área de drenaje controla la producción de agua en la última etapa de la

conificación. La data mostrada en la Tabla Nº4.2 fue utilizada para hacer coincidir la historia de producción del pozo *RMOA*.

TABLA N°4.2 DATOS UTILIZADOS PARA EL AJUSTE DE LA HISTORIA DE PRODUCCION DEL POZO *RM0A*

Dato	Unidades	Valores
Prof. bajo el nivel del mar (<i>Datum</i>)	ft	8357
Espesor de la zona de petróleo Prof. del contacto agua-petróleo (bajo el nivel del	ft	43
mar)	ft	8357
Espesor de la zona de agua	ft	134
Presión del reservorio a la profundidad Datum	ft	3800
Perm. horizontal en la zona de petróleo (absoluta)	md	2000
Perm. vertical en la zona de petróleo (absoluta)	md	500
Perm. Horizontal en la zona de agua (absoluta)	md	3000
Perm. Vertical en la zona de agua (absoluta)	md	750
Porosidad en la zona de petróleo	fracción	0.22
Porosidad en la zona de agua	fracción	0.24
Radio del pozo	ft	0.35
Radio de drenaje	ft	687; 887; 987
Radio del acuífero	ft	5000

Los resultados de simulación para los tres tamaños de drenaje fueron: 687 ft, 887 ft, 987 ft siendo el que mejor se ajustaba a la historia de producción el valor de 887 ft de radio de drenaje (Figura 4-6). Éste valor fue seleccionado para ser el área de drenaje de los pozos en la Simulación.

Figura 4 - 6. Ajuste de Corte de Agua en el pozo RM0A para diferentes áreas de drenaje.

Los datos de permeabilidad relativa y presión capilar utilizados en la simulación son corresponden a los mostrados en la Tabla N°3.2

El gráfico de permeabilidades relativas se puede apreciar en la Figura 3-2 mientras que el de presión capilar en la Figura 4-7.

Figura 4 - 7. Gráfico de Presión Capilar.

4. Evaluación del acuífero soporte en la simulación

Este paso implica la evaluación de la fuerza de presión asociada al acuífero soporte del reservorio. El procedimiento se basa en el ajuste de historia de producción de agua y el análisis de presión a través del tiempo.

En los estudios de simulación realizados por la empresa *Pluspetrol* se puso a prueba el efecto de la fuerza del acuífero cambiando la relación del volumen del acuífero al volumen del reservorio de 10 a 6.2 millones, un débil/pequeño acuífero a uno muy grande y fuerte respectivamente (cambiando solamente el radio del acuífero) y manteniendo en ambos casos el espesor del acuífero constante.

Los resultados mostraron que la fuerza del acuífero controlaría la presión del reservorio pero no variaría mucho la diferencia del corte de agua para diferentes casos. Aquello significa que los pozos en sistemas de empuje hidráulico de fondo con acuífero débil requerirían un sistema de levantamiento artificial más pronto que aquellos en reservorios con un empuje fuerte de fondo. Sin embargo, la producción de agua (corte) sería pocamente afectada por la fuerza del acuífero y la medida. Lo anterior se verifica para el sistema pozo individual aplicado al pozo RM0A al cambiar el radio del acuífero (distancia radial al límite de presión constante) de 1000, 5000 a 15000 ft. Los resultados son graficados en la Figura 4.8 y es evidente que el tamaño del acuífero tiene muy poco efecto en el corte de agua. El incremento de radio de 1000 a 15000 ft resulta en un incremento de aproximadamente del 10% de incremento de un temprano aumento de corte de agua aunque luego el efecto disminuye significativamente.

Con el ajuste se verifica que el acuífero Vivian es un gran acuífero (+1000 ft de radio) y su depletación ha sido leve perdiendo 100 psi en más de 30 años de producción como se puede apreciar en el Figura 3-3.

Lo anterior se puede resumir en lo siguiente:

- El acuífero de fondo es muy grande y pasivo.
- El drenaje de agua estimularía la producción de petróleo sin obstaculizar la productividad del reservorio.

5. Estimación del desempeño de los pozos y reservas de petróleo *bypaseado* mediante simulación

El ajuste de la historia de producción de los pozos (particularmente el *RM01 y el RM02*) y la predicción de recuperación de volúmenes de petróleo a futuro serán utilizados como criterio para la evaluación.

5.1 Ajuste de la Historia de Producción del pozo RM01

Utilizando la información de la Tabla N°4.3, la historia del corte de agua del pozo *RM01* ha sido ajustada como se muestra en la Figura 4-8.

Figura 4 - 8. Historia del corte de agua ajustada a la simulación para el pozo RM01.

TABLA N°4.3 INFORMACION DE RESERVORIO UTILIZADA EN EL ESTUDIO DE SIMULACION DEL POZO *RM01*

Dato	Unidad	Valor
Profundidad Datum	ft	8833
Espesor de la zona de petróleo	ft	40
Profundidad del contacto agua-petróleo (estático)	ft	8833
Presión del reservorio a la profundidad Datum	ft	3900
Profundidad del tope de reservorio	ft	8793
Longitud de la completación superior	ft	7
Permeabilidad horizontal en la zona de petróleo (abs)	md	2000
Permeabilidad vertical en la zona de petróleo (abs)	md	200
Porosidad en la zona de petróleo	fracción	0.22
Radio del pozo	ft	0.35
Radio de drenaje	ft	887
Propiedades del acuífero		
Espesor del acuífero	ft	413
Porosidad del acuífero	fracción	0.24
Permeabilidad horizontal en la zona de agua (abs)	md	3000
Permeabilidad vertical en la zona de agua (abs)	md	300
Radio del acuífero	ft	1000
Propiedades PVT		
Temperatura del Reservorio	F	210
Presión del Reservorio	psi	3860
Punto de Burbuja	psi	350
Densidad del petróleo	lb/ft^3	56.5687
Densidad del agua	lb/ft^3	65.1632
Viscosidad del agua	ср	0.27748
Viscosidad del petróleo	ср	2.5802

El barrido de agua en el área de drenaje del pozo debido a la conificación de agua es representado en la Figura 4-9. Gráficamente se puede apreciar el rápido avance vertical del cono de agua poco después de un mes de producción seguido de un crecimiento de

ancho de la zona de transición que ocupa la mayor parte del área de drenaje del pozo y dificulta el influjo del petróleo al pozo.

Figura 4 - 9. Simulación gráfica del desarrollo de la invasión de agua por conificación.

5.2 Pronóstico de Producción – Pozo RM01

Usando la información de la Tabla N°4.3, la produccion futura del pozo RM01 es simulada con las siguientes asunciones:

- El pozo continúa su producción desde Diciembre 2007 (referencial) por 20 años más; no es relevante la fecha de inicio del pronóstico sino el tiempo (en meses) para establecer comparaciones con los resultados analíticos de *Kuo y DesBrisay*.
- El pozo produce a una presión de fondo constante de 3200 psi.

El pronóstico de la producción simulada es mostrado en la Tabla N°4.4. Los gráficos resultantes en cuanto a producción de petróleo, producción de agua, corte de agua, caudal total, presión de fondo y factor de recobro son representados en las Figuras 4-9 al 4.14 respectivamente. Los resultados muestran que el pozo será bombeado por encima de los 11000 bfpd con un corte por encima del 99% por cerca de 20 años y aún así *bypaseando* el 46% de reservas de petróleo movible o recuperando en todo ese tiempo alrededor del 54% de petróleo movible.

Fecha	Caudal Petróleo	Caudal Agua	Corte de Agua	Petróleo Acumulado	Agua Acumulada	внр	Petróleo Bypaseado (MOV)	Mobile Oil Rec Factor	
	bbl/día	bbl/día	%	bbl	bbl	psi	%	%	
Ajuste de Historia									
09/01/2005	69.71	763.38	0	0	0	0			
12/31/2005	104.71	1146.6	95.37	38234.7	418508	3174.15	95.96	4.04	
12/31/2006	132.85	4745.9	97.95	86723.4	2150760	3346.32	90.84	9.16	
			Pr	edicción					
12/31/2007	113.8	6774.86	98.58	128260	4623580	3200	86.45	13.55	
12/31/2008	101.74	8168.27	98.89	165496	7613170	3200	82.52	17.48	
12/31/2009	88.34	8762.01	99.08	197742	10811300	3200	79.12	20.88	
12/31/2010	78.69	9214.43	99.2	226463	14174600	3200	76.08	23.92	
12/31/2011	71.98	9555.96	99.29	252735	17662500	3200	73.31	26.69	
12/31/2012	66.36	9846.75	99.36	277023	21266400	3200	70.74	29.26	
12/31/2013	61.71	10086.1	99.41	299549	24947800	3200	68.36	31.64	
12/31/2014	57.76	10296.6	99.46	320633	28706100	3200	66.14	33.86	
12/31/2015	54.37	10493.5	99.5	340477	32536200	3200	64.04	35.96	
12/31/2016	51.42	10671.5	99.53	359299	36442000	3200	62.05	37.95	
12/31/2017	48.7	10838.5	99.56	377075	40398100	3200	60.18	39.82	
12/31/2018	46.27	10987.3	99.59	393963	44408500	3200	58.39	41.61	
12/31/2019	44.05	11123.5	99.61	410043	48468500	3200	56.69	43.31	
12/31/2020	42.03	11251.2	99.64	425426	52586500	3200	55.07	44.93	
12/31/2021	40.18	11373.8	99.66	440091	56737900	3200	53.52	46.48	
12/31/2022	38.47	11488.4	99.67	454133	60931200	3200	52.04	47.96	
12/31/2023	36.89	11595.6	99.69	467596	65163600	3200	50.61	49.39	
12/31/2024	35.41	11697	99.7	480556	69444700	3200	49.25	50.75	
12/31/2025	34.02	11794.6	99.72	492974	73749700	3200	47.93	52.07	
12/31/2026	32.74	11886.1	99.73	504925	78088100	3200	46.67	53.33	

Figura 4 - 10. Pronóstico de producción de petróleo RM01.

Figura 4 - 11. Pronóstico de producción de agua RM01.

Figura 4 - 12. Predicción de Corte de Agua RM01.

Figura 4 - 13. Predicción de producción de fluidos RM01.

Figura 4 - 14. Predicción del Factor de Recobro (MOV).

5.3 Pronóstico de Producción – Pozo RM02

La información utilizada para el pozo RM02 es mostrada en la Tabla N° 4.5. El ajuste de historia se realizado buscando coincidir con el caudal total de producción de fluidos y ajustando daño y permeabilidad horizontal al caudal de petróleo, caudal y corte de agua. El ajuste del corte de agua con el tiempo se puede ver en la Figura 4-15.

TABLA N°4.5 INFORMACION DE RESERVORIO UTILIZADA EN EL ESTUDIO DE SIMULACION DEL POZO *RM0*2

Dato	Unidad	Valor
Profundidad Datum	ft	8767
Espesor de la zona de petróleo	ft	33
Profundidad del contacto agua-petróleo (estático)	ft	8800
Presión del reservorio al Datum	ft	3900
Profundidad al tope de Reservorio	ft	8767
Permeabilidad horizontal en la zona de petróleo (absoluta)	md	2000
Permeabilidad vertical en la zona de petróleo (absoluta)	md	73
Porosidad en la zona de petróleo	fracción	0.22
Radio del pozo	ft	0.35
Radio de drenaje	ft	887
OOIP Inicial	Mstb	1685.7
OOIP Movible	Mstb	938.66
Propiedades del acuífero		
Espesor del acuífero	ft	328
Porosidad del acuífero	fracción	0.24
Permeabilidad Horizontal en la zona de agua (absoluta)	md	3000
Permeabilidad Vertical en la zona de agua (abs.)	md	300
Radio	ft	5000
Propiedades PVT		
Temperatura del Reservorio	F	210
Presión del Reservorio	psi	3900
Presión en el punto de burbuja	psi	350
Densidad de petróleo	lb/ft^3	56.5687
Densidad de agua	lb/ft^3	65.1632
Viscosidad de agua	ср	0.277484
Viscosidad de petróleo	ср	2.5802

Figura 4 - 15. Historia del corte de agua ajustada a la simulación para el pozo RM02.

Con la información de la Tabla N°4.5 la producción futura del pozo RM02 es simulada para un período de 20 años similar al del pozo RM01.

En la Tabla N°4.6 se presenta el pronóstico de la producción simulada para el pozo. Los gráficos resultantes como el del pronóstico de petróleo, fluido total, corte de agua y factor de recobro son representados en las figuras 4-16 al 4-19. Los resultados muestran debería ser bombeado por encima de los 5000 bfpd con un corte de agua por encima del 98% por casi también 20 años logrando recuperar sólo el 45% de petróleo movible o *bypaseando* el 55% de reservas de petróleo movible.

Fecha	Caudal Petróleo	Caudal Agua	Corte de Agua	Petróleo Acumulado	Agua Acumulada	внр	Petróleo Bypaseado (MOV)	Mobile Oil Rec Factor		
	bbl/día	bbl/día	%	bbl	bbl	psi	%	%		
Ajuste de Historia										
12/31/2000	167.075	1702.89	94.4528	61153.7	623261	3337.99	93.5	6.5		
12/31/2002	0	0	0	61153.7	623261	3900	93.5	6.5		
			Pr	redicción)					
12/31/2008	159.36	4075.9	97.177	119481	2.12E+06	3000	87.3	12.7		
12/31/2009	110.691	4705.65	98.0251	159883	3.83E+06	3000	83	17		
12/31/2010	84.1717	4823.17	98.4217	190606	5.59E+06	3000	79.7	20.3		
12/31/2011	70.4354	4885.14	98.6658	216314	7.38E+06	3000	77	23		
12/31/2012	61.2227	4929.35	98.8342	238722	9.18E+06	3000	74.6	25.4		
12/31/2013	54.5263	4961.7	98.9591	258624	1.10E+07	3000	72.4	27.6		
12/31/2014	49.3624	4986.92	99.0557	276641	1.28E+07	3000	70.5	29.5		
12/31/2015	45.2741	5007.77	99.1331	293166	1.46E+07	3000	68.8	31.2		
12/31/2016	41.5616	5027.84	99.1969	308378	1.65E+07	3000	67.1	32.9		
12/31/2017	38.7363	5043.42	99.2503	322517	1.83E+07	3000	65.6	34.4		
12/31/2018	36.3904	5056.23	99.2962	335799	2.02E+07	3000	64.2	35.8		
12/31/2019	34.3232	5067.28	99.3367	348327	2.20E+07	3000	62.9	37.1		
12/31/2020	32.5012	5076.96	99.3722	360223	2.39E+07	3000	61.6	38.4		
12/31/2021	30.904	5085.34	99.4034	371503	2.57E+07	3000	60.4	39.6		
12/31/2022	29.4409	5093.04	99.4321	382249	2.76E+07	3000	59.3	40.7		
12/31/2023	28.1125	5100.04	99.4579	392510	2.95E+07	3000	58.2	41.8		
12/31/2024	26.9258	5106.34	99.4809	402364	3.13E+07	3000	57.1	42.9		
12/31/2025	25.842	5112.11	99.5021	411797	3.32E+07	3000	56.1	43.9		
12/31/2026	24.8413	5117.49	99.5216	420864	3.51E+07	3000	55.2	44.8		

Figura 4 - 16. Pronóstico de producción de petróleo para el pozo *RM02*.

Figura 4 - 17. Pronóstico de producción de fluidos para el pozo *RM02*.

Figura 4 - 18. Pronóstico del corte de agua para el pozo *RM02*.

Figura 4 - 19. Pronóstico del Factor de Recobro para el pozo *RM02*.

6. Discusión acerca del Caso 7 (Caso Pozo RM01)

Las Figuras 4-20 y 4-21 muestran gráficamente los resultados obtenidos en el Capítulo anterior mediante el Modelo de *Kuo y DesBrisay* y mediante la Simulación explicada en el presente capítulo.

Las Figuras del 4-22 al 4-24 comparan individualmente el corte de agua, factor de recobro (%MOV) y el petróleo bypaseado (%MOV) respectivamente entre la aplicación de ambos modelos, tanto el analítico de Kuo y DesBrisay como el de Simulación específicamente para el Caso 7 que es el caso con el cual se llevó a cabo la obtención de los resultados por medio de *Kuo y DesBrisay*.

Figura 4 - 20. Resultados del Modelo *Kuo y DesBrisay* con el tiempo para el pozo *RM01*.

Figura 4 - 21. Resultados del modelo de Simulación para el pozo RM01.

Figura 4 - 22. Comparativo Corte de Agua para el pozo RM01.

Figura 4 - 23. Comparativo Factor de Recobro (%MOV) para el pozo *RM01*.

Figura 4 - 24. Comparativo Petróleo Bypaseado (%MOV) para el pozo RM01.

Los resultados muestran que al momento del abandono considerado (99.7%) la diferencia de **Corte de Agua** predicha es casi nula; empieza

habiendo al principio una diferencia contrastable que tiende a igualarse después del año de producción del pozo.

Con respecto al Factor de Recobro y en consecuencia al porcentaje de Petróleo Movible, existe una diferencia de casi 15% al momento del abandono después de casi 7000 días (≈20 años); sin embargo, durante los primeros años que es un período más sensible de evaluar un pozo, la diferencia es de alrededor 8% lo cual le otorga un grado de confiabilidad a las predicciones realizadas previamente a una simulación sólo por el método de Kuo y DesBrisay con datos de reservorio confiables.

7. Insuficiencias del Modelo de Kuo y DesBrisay (1983)

Como se ha visto, el método de *Kuo y DesBrisay*, junto a sus cálculos auxiliares como Sobocinsky-Cornelius y Bournazel-Jeanson, es un método simple de utilizar. Sin embargo, los resultados del método dependen de la determinación del tiempo de irrupción, la cual es en algunas veces muy cambiante de un método a otro (Sobocinsky a Bournazel por ejemplo) aunque la literatura como se mencionaba en el Capítulo II regula intervalos para su aplicación de uno u otro. Otros defectos del método incluyen:

- Asume una producción constante
- Existe una falta de continuidad en el modelo matemático representado por las Ecuaciones 2.35 al 2.37. Estas ecuaciones fueron obtenidas empíricamente de una serie de pruebas efectuadas por *Kuo y DesBrisay* por lo que su justificación es más experimental que teórica.
- Una observación de cerca de las correlaciones de Kuo y DesBrisay muestran que, aunque el tiempo de irrupción es menor a 1, una cantidad de agua es producida. En otras palabras, el modelo provee producción de agua (Tabla N°3.5 al 3.11) incluso antes de la irrupción.

- Asume un estrato homogéneo; el método no puede ser aplicado a reservorios con barreras locales de permeabilidad, alto grado de estratificación.
- La data de ingreso es preferible que se encuentre dentro del rango de los experimentos numéricos realizados por *Kuo y DesBrisay*. Ellos consideraron radios de permeabilidad a horizontal de 0.01 a 1; penetración de completación de 20% a 80% de la columna de petróleo; tasas de producción de 500 a 2000 rb/día y radios de mobilidad de 1 a 10.
- Una última discrepancia podría ser el hecho de que el modelo no considera una zona de transición. En el flujo simulado una zona de transición es desarrollada. La zona de transición es más pronunciada en los casos con mayores viscosidades de petróleo o mayores relaciones de Mobilidad *M*.

CAPITULO V

SOLUCION POTENCIAL A LA PROBLEMATICA DE PETROLEO BYPASEADO

Está demostrado que la conificación de agua en los sistema de empuje hidráulico de fondo son un serio problema que se manifiestan en altos cortes de agua en breves períodos de tiempo y dejando consigo cantidades considerables de reservas de petróleo *bypaseado*.

Diferentes métodos han sido utilizados para atacar el problema de petróleo *bypaseado* a causa de la invasión de agua. Típicamente, se encuentran clasificados como **métodos mecánicos y químicos**. Los métodos mecánicos involucran el uso de packers, tapones, abandonos de pozo, perforación de pozos *infill*, pozos horizontales entre otros. Respecto a los métodos químicos, ellos involucran el uso de cemento, arena, carbonato de calcio, geles, resinas, espumas, emulsiones, precipitados, microorganismos, polímeros entre otros.

1. Downhole Water Sink

Downhole Water Sink (DWS) es una técnica (desarrollada en 1991 por la Universidad de Louisiana) para minimizar el corte de agua en los pozos productores de reservorios con empuje de fondo. La tecnología DWS controla la conificación de agua mediante el empleo de un mecanismo hidrodinámico de drenaje de agua *in-situ* debajo de la completación de los pozos. Este drenaje es generado por una segunda completación –downhole water sink- instalada por encima o por debajo del contacto agua-petróleo.

Un DWS es una completación dual para producción de petróleo y drenaje de agua (*water sink*). Las dos completaciones son aisladas hidráulicamente dentro del pozo mediante un packer. La completación de la parte inferior (water sink) emplea una bomba electrosumergible y perforaciones en la zona. La bomba electrosumergible drena el agua de formación del pozo y por consiguiente reduce el agua de la columna de petróleo que ingresa a través de los perforados productores. La tasa de bombeo de agua puede ser ajustada y controlada. Consecuentemente, la completación superior (productora) producirá petróleo con un inferior corte de agua que aquella que lo haría en una completación normal.

Existen dos variaciones de un sistema DWS: *Water Drainage Injection* y *Water Drainage Production* cuyos esquemas se pueden ver en la Figura 5–1.

Figura 5 - 1. Esquemas básicos de dos sistemas de completación DWS: A. Water drainage Injection y B. Water drainage Production

La Compañía *Pluspetrol* llevó a cabo un estudio de simulación con el fin de evaluar el porcentaje de reservas de petróleo que se podrían recuperar adicionalmente con la implementación de la técnica DWS. En el presente estudio se mostrará los incrementales así como la variación de caudales posibles en cuanto a los pozos *RM01* y *RM02*; sin embargo, el procedimiento para obtener los óptimos caudales que se producirían así como demás cálculos corresponden a un extenso estudio por separado realizado por la compañía consultora que llevó a cabo el experimento para Pluspetrol.
Para ambos pozos el tipo de esquema a implementar sería el de Water Drainage Production, es decir producción tanto de crudo como de agua que luego se dispondría para su reinyección en un pozo Water contemplarían dos completaciones, Disposal. Los pozos una completación superior por donde se produciría crudo con un corte de aqua inferior al que se produciría sin el sistema DWS; y una completación inferior a través de la cual se produciría una gran cantidad de agua con petróleo que de acuerdo a los cálculos no excederían la cantidad de ppm permitidos para su reinvección con lo cual los costos en tratamiento para reinyección se verían reducidos aunque las cantidades de agua producidas serían elevadas.

2. Aplicación simulada del DWS al Pozo RM01

En este pozo se asume que existiría una completación superior de 7 ft de la zona de petróleo y una nueva completación inferior penetrando los 20 ft inferiores de la zona de petróleo. La instalación brinda un amplio contacto de área del pozo con el reservorio que maximizaría la productividad del pozo.

El desempeño de estos pozos es mostrado en las Tablas N°5.1 y 5.2 para la zona de completación tanto superior como inferior respectivamente. Una comparación entre los gráficos con intervención de DWS y sin intervención para el mejoramiento del corte de agua y el incremento de la tasa de petróleo es mostrada en las Figuras 5-2 y 5-3 respectivamente así como un significante incremento de petróleo producido en la Figura 5-4. Sin embargo, la mejora en la producción, requeriría una inyección de hasta 52 000 barriles de agua por día y una contaminación de petróleo en el agua drenada de hasta 500 ppm.

La modificación de saturaciones en el reservorio se puede apreciar gráficamente en la Figura 5-5 mostrando una comparación entre una producción sin un sistema con DWS y otra con tal sistema. Es evidente que el DWS reduce las cantidades de petróleo *bypaseado*.

En términos de incremento del factor de recobro del 53% al 78% de petróleo recuperable movible o en otras palabras, una **reducción de petróleo** *bypaseado* (MOV) de 47 a 22% del petróleo movible asociado al pozo..

TABLA N°5.1 DESEMPEÑO QUE SE ESPERARIA DEL POZO *RM01* CON LA IMPLENTACION DEL SISTEMA *DWS* – COMPLETACION SUPERIOR

Fecha	Caudal Petróleo	Caudal de Agua -	Corte de Agua	Petróleo Acumulado	Agua Acumulada	ВНР	Factor de Recobro (% MOV)	BPO (% MOV)
	bbl/día	bbl/día	%	bbl	bbl	psi	%	%
12/31/2005	104.707	1146.6	95.3693	38234.7	41	3174	4	96
12/31/2006	132.846	4745.9	97.9539	86723.3	2.15E+06	3346	9.2	90.8
12/31/2007	247.022	2541.6	89.0777	176886	3.08E+06	3200	18.7	81.3
12/31/2008	218.819	2640.68	94.0596	256974	4.04E+06	3200	27.1	72.9
12/31/2009	172.149	3501.22	96.076	319809	5.32E+06	3200	33.8	66.2
12/31/2010	142.023	4277	97.1496	371647	6.88E+06	3200	39.3	60.7
12/31/2011	121.79	4920.18	97.8139	416100	8.68E+06	3200	43.9	56.1
12/31/2012	106.208	5491.5	98.2612	454972	1.07E+07	3200	48.1	51.9
12/31/2013	93.8952	6020.08	98.5769	489244	1.29E+07	3200	51.7	48.3
12/31/2014	83.8298	6491.35	98.8095	519842	1.53E+07	3200	54.9	45.1
12/31/2015	75.495	6934.78	98.9889	547398	1.78E+07	3200	57.8	42.2
12/31/2016	68.5377	7336.49	99.1287	572483	2.05E+07	3200	60.5	39.5
12/31/2017	62.3795	7713.62	99.2406	595251	2.33E+07	3200	62.9	37.1
12/31/2018	56.9825	8050.87	99.3315	616050	2.62E+07	3200	65.1	34.9
12/31/2019	52.2765	8359.79	99.4073	635131	2.93E+07	3200	67.1	32.9
12/31/2020	48.0893	8649.05	99.4714	652731	3.24E+07	3200	68.9	31.1
12/31/2021	44.3377	8917.99	99.5261	668915	3.57E+07	3200	70.6	29.4
12/31/2022	40.9616	9163.3	99.5728	683866	3.90E+07	3200	72.2	27.8
12/31/2023	37.9031	9390.87	99.6136	697700	4.25E+07	3200	73.7	26.3
12/31/2024	35.126	9609.19	99.6496	710556	4.60E+07	3200	75	25
12/31/2025	32.5997	9813.84	99.681	722455	4.96E+07	3200	76.3	23.7
12/31/2026	30.2892	10000.3	99.7087	733511	5.32E+07	3200	77.5	22.5

TABLA N°5.2 DESEMPEÑO QUE SE ESPERARIA DEL POZO *RM01* CON LA IMPLENTACION DEL SISTEMA *DWS* – COMPLETACION INFERIOR

Fecha	Caudal de Petróleo	Caudal de Agua	Concentración Petróleo en Agua	Petróleo Acumulado	Agua Acumulada	ВНР
	bbl/día	bbl/día	ppm	bbl	bbl	psi
12/31/2005	0	0	0	0	0	0
12/31/2006	0	0	0	0	0	0
12/31/2007	32.5427	29488.8	1103.56135	11878.1	1.08E+07	3300
12/31/2008	26.3869	40397.8	653.176658	21535.7	2.55E+07	3300
12/31/2009	13.0891	41658.2	314.202246	26313.2	4.08E+07	3300
12/31/2010	7.17414	42333.8	169.466006	28931.8	5.62E+07	3300
12/31/2011	4.42425	42705.7	103.598583	30546.6	7.18E+07	3300
12/31/2012	2.86548	42927.7	66.7513051	31595.4	8.75E+07	3300
12/31/2013	1.9177	43056.4	44.5392555	32295.3	1.03E+08	3300
12/31/2014	1.34252	43135.5	31.1233207	32785.4	1.19E+08	3300
12/31/2015	0.974294	43187	22.5598907	33141	1.35E+08	3300
12/31/2016	0.730362	43222.5	16.8977269	33408.3	1.51E+08	3300
12/31/2017	0.556475	43246.4	12.867545	33611.4	1.66E+08	3300
12/31/2018	0.434247	43262.9	10.0373992	33769.9	1.82E+08	3300
12/31/2019	0.345976	43273.6	7.99508245	33896.2	1.98E+08	3300
12/31/2020	0.279905	43279.8	6.4673358	33998.6	2.14E+08	3300
12/31/2021	0.229698	43282.7	5.30692401	34082.5	2.30E+08	3300
12/31/2022	0.191203	43283.8	4.41742638	34152.3	2.45E+08	3300
12/31/2023	0.161173	43283.3	3.72367634	34211.1	2.61E+08	3300
12/31/2024	0.137156	43280.5	3.16900221	34261.3	2.77E+08	3300
12/31/2025	0.117862	43276.9	2.72343906	34304.3	2.93E+08	3300
12/31/2026	0.10228	43273.1	2.36359309	34341.6	3.09E+08	3300

Figura 5 - 2. Comparación de la predicción de corte de agua en una intervención con y sin DWS, Pozo RM01

Figura 5 - 3. Comparación de la predicción de producción de petróleo en una intervención con y sin DWS, Pozo RM01

Figura 5 - 4. Comparación de la predicción de petróleo acumulado en una intervención con y sin DWS, Pozo RM01

Figura 5 - 5. Comparación de la evolución de las saturaciones en el reservorio con y sin un sistema DWS.

3. Aplicación simulada del DWS Pozo RM02

En el pozo RM02 se asume que existiría una completación superior de 10 ft en la parte superior de la zona de petróleo y una completación inferior de 20 ft de los cuales 5 penetrarían la zona inferior de petróleo y 15 la zona superior de agua. La predicción de cómo sería el desempeño para este pozo para las completaciones superior e inferior es mostrada en las Tablas N°5.3 y 5.4 respectivamente.

El mejoramiento en la producción de petróleo del pozo con el sistema DWS es evidente; sin embargo, el caudal total de agua producido es grande alcanzando los 82 000 barriles de agua por día. El remanente de petróleo producido junto al agua sería inicialmente de 29 barriles lo cual contaminaría el agua a inyección aunque a un nivel de concentración de 353 ppm. La contaminación es un factor importante a tener en cuenta en cuanto a los gastos que implica para la reinyección del agua producida.

La comparación del factor de recuperación de petróleo movible y con sistema DWS muestra un significante incremento porcentual del 45% al 78% o una **disminución en las reservas de petróleo** *bypaseado* (BPO) de 55% a 22% del petróleo movible asociado al pozo. De la misma forma que para el pozo RM01, las Figuras del 5-6 al 5-8 grafican las diferencias en el pozo en la producción con y sin sistema DWS.

TABLA N°5.3 DESEMPEÑO QUE SE ESPERARIA DEL POZO *RM02* CON LA IMPLENTACION DEL SISTEMA *DWS* – COMPLETACION SUPERIOR

	Caudal	Caudal	Corte de	Petróleo	Agua		Factor	BOP
	Petróleo	Agua	Agua	Acumulado	Acumulada		Recobro	(%MOV)
Fecha						BHP	(%MOV)	
	bbl/día	bbl/día	%	bbl	bbl	psi		
12/31/2008	303.58	3189.42	92.804	172264	1.79E+06	3000	18.4	81.6
12/31/2009	233.87	3829.3	95.1579	257627	3.19E+06	3000	27.4	72.6
12/31/2010	172.93	4069.47	96.3258	320748	4.67E+06	3000	34.2	65.8
12/31/2011	139.46	4205.53	97.0454	371652	6.21E+06	3000	39.6	60.4
12/31/2012	116.65	4301.45	97.5372	414347	7.78E+06	3000	44.1	55.9
12/31/2013	100.05	4373.19	97.8933	450866	9.38E+06	3000	48	52
12/31/2014	87.446	4430.23	98.1644	482784	1.10E+07	3000	51.4	48.6
12/31/2015	77.481	4476.99	98.3783	511065	1.26E+07	3000	54.4	45.6
12/31/2016	68.594	4519.78	98.5497	536170	1.43E+07	3000	57.1	42.9
12/31/2017	61.899	4552.85	98.6916	558764	1.59E+07	3000	59.5	40.5
12/31/2018	56.375	4580.39	98.8122	579341	1.76E+07	3000	61.7	38.3
12/31/2019	51.62	4604.78	98.9157	598182	1.93E+07	3000	63.7	36.3
12/31/2020	47.445	4626.49	99.0061	615546	2.10E+07	3000	65.6	34.4
12/31/2021	43.769	4645.14	99.0852	631522	2.27E+07	3000	67.3	32.7
12/31/2022	40.509	4661.59	99.155	646308	2.44E+07	3000	68.9	31.1
12/31/2023	37.589	4676.55	99.2173	660028	2.61E+07	3000	70.3	29.7
12/31/2024	34.969	4690.55	99.2733	672826	2.78E+07	3000	71.7	28.3
12/31/2025	32.585	4703.71	99.3239	684720	2.95E+07	3000	72.9	27.1
12/31/2026	30.438	4715.72	99.3696	695830	3.13E+07	3000	74.1	25.9

TABLA N°5.4 DESEMPEÑO QUE SE ESPERARIA DEL POZO *RM01* CON LA IMPLENTACION DEL SISTEMA *DWS* – COMPLETACION INFERIOR

Fecha	Caudal de Petróleo	Caudal de Agua	Corte de Agua	Petróleo Acumulado	Agua Acumulada	внр
	bbl/día	bbl/día	%	bbl	bbl	psi
12/31/2008	0.9344	37068.8	99.9979	341.982	1.36E+07	3400
12/31/2009	0.5163	40336.7	99.9991	530.437	2.83E+07	3400
12/31/2010	0.2377	40292.7	99.9995	617.191	4.30E+07	3400
12/31/2011	0.1393	40260.9	99.9997	668.049	5.77E+07	3400
12/31/2012	0.0907	40232.8	99.9998	701.256	7.24E+07	3400
12/31/2013	0.0635	40207.7	99.9999	724.451	8.71E+07	3400
12/31/2014	0.0469	40184.9	99.9999	741.552	1.02E+08	3400
12/31/2015	0.0359	40164	99.9999	754.645	1.16E+08	3400
12/31/2016	0.0276	40139.2	99.9999	764.764	1.31E+08	3400
12/31/2017	0.0224	40120.8	99.9999	772.922	1.46E+08	3400
12/31/2018	0.0185	40104.6	100	779.687	1.60E+08	3400
12/31/2019	0.0156	40089.4	100	785.384	1.75E+08	3400
12/31/2020	0.0133	40075.1	100	790.256	1.90E+08	3400
12/31/2021	0.0115	40061.7	100	794.45	2.04E+08	3400
12/31/2022	0.01	40049	100	798.106	2.19E+08	3400
12/31/2023	0.0088	40037	100	801.322	2.34E+08	3400
12/31/2024	0.0078	40025.5	100	804.181	2.48E+08	3400
12/31/2025	0.007	40014.6	100	806.726	2.63E+08	3400
12/31/2026	0.0063	40004.1	100	809.012	2.77E+08	3400

Figura 5 - 6. Comparación de la predicción de caudal de petróleo en una intervención con y sin DWS, Pozo RM02

Figura 5 - 7. Comparación de la predicción de corte de agua en una intervención con y sin DWS, Pozo RM02

Figura 5 - 8. Comparación de la predicción de producción de petróleo acumulado en una intervención con y sin DWS, Pozo RM02

CAPITULO VI CONCLUSIONES Y RECOMENDACIONES

1. Conclusiones

Las principales conclusiones del presente estudio son:

1.1 Mecanismo de Petróleo Bypaseado en Empuje de Fondo

El principal mecanismo que guía el *bypass* de petróleo en un sistema de empuje de fondo es la **conificación**. Aquello es comprobado mediante la utilización de gráficas de diagnóstico de control de agua o Curvas de Chan. A través de las curvas de Chan podemos inferir que tan pronunciado es el fenómeno de conificación al evaluar la relación agua-petróleo a través del tiempo.

La conificación es un fenómeno que empieza una vez superada una tasa de crítica de producción. Teóricamente por debajo de la tasa crítica serían las fuerzas gravitacionales las que controlaran el movimiento de fluidos en un *equilibrio*. Sin embargo, las tasas críticas, como se ha podido corroborar a través de los métodos de *Meyer*, *Chaney* y *Schols*, son tasas que no resultan económicamente atractivas o inviables para poner en producción un pozo; por lo tanto el inicio de la conificación en un pozo que produce de un reservorio con empuje hidráulico de fondo es un fenómeno asociado a éste desde su inicio.

Una vez que se empieza a dar la conificación, el tamaño del cono empezará a aumentar con rapidez una vez que se alcance el tiempo de irrupción, calculado en el presente estudio a través de métodos como el Bournazel y Sobocinsky. El crecimiento del cono se manifiesta en el crecimiento abrupto del corte de agua a través del tiempo, luego del cual se cuasi-estabiliza a cortes de agua altos superiores al 96% para los casos vistos en el presente estudio donde Vivian presente un fuerte acuífero.

Otra conclusión a la que se arribó fue que, diferentes tamaños de acuífero, en relación al reservorio, no hacen una gran diferencia en el corte de agua de un pozo; sin embargo, están ligados directamente al mantenimiento de la presión en el reservorio.

1.2 Cuantificación de Petróleo Bypaseado

Para cuantificar el petróleo bypaseado se utilizó el modelo de *Kuo y DesBrisay* así como los cálculos auxiliares asociados a éste como el cálculo del tiempo de irrupción mediante *Bournazel* y *Sobocinsky*.

El modelo de *Kuo y DesBrisay* fue ensayado para un rango de parámetros que incluyen el radio de mobilidad, relación de los perforados/columna de petróleo, radio de permeabilidad vertical/horizontal, caudal de producción entre otros. El caso escogido, el cual a su vez fue simulado para su contrastación, se encontraba dentro del rango de los parámetros del modelo de *Kuo*.

La cuantificación del petróleo *bypaseado* fue medida en porcentaje del de las reservas de petróleo movible asociadas al pozo, esto es, el petróleo que podría movilizado y extraído idealmente por encontrarse entre la saturación connata de agua y la saturación residual de petróleo.

Los resultados también sugieren que el efecto de cambiar la viscosidad de petróleo, proporcional a la relación de mobilidad, es mucho más significante en el monto de petróleo *bypaseado* al momento de abandono que el efecto de cambiar el caudal de producción. En otras palabras, analíticamente las fuerzas viscosas parecen tener un efecto más pronunciado que las fuerzas de gravedad.

Por otro lado, el desarrollo del corte de agua con el tiempo es mucho más rápido en los casos con altas viscosidades y caudales de producción, lo cual incrementa la cantidad de petróleo bypaseado al final del límite económico.

1.3 Herramientas de predicción de de Petróleo Bypaseado

Para la predicción, el método analítico de *Kuo y DesBrisay* ha demostrado estar en el rango de lo obtenido a través de una simulación según comparaciones de corte de agua, Factor de Recobro movible, Petróleo Bypaseado en los primeros años de comparación con una diferencia de casi 8% para el Factor de Recobro Movible y la cuantificación de Petróleo Bypaseado. Para un estudio más profundo, la simulación es la opción elegida.

1.4 Efectos de las propiedades del reservorio en el bypaseo de petróleo

Para el empuje hidráulico de fondo, el método *de Kuo y DesBrisay* no han considerado los efectos producidos por la zona de transición capilar, siendo si considerada por la simulación y pese a ello la diferencia entre ambos modelos no ha sido radicalmente opuesta.

La conificación de agua se verá alterada con la existencia de capas delgadas impermeables (estratos no homogéneos), aquello resultado en provecho de la producción del pozo ya que interrumpe la formación de un cono de mayor dimensión.

La viscosidad, proporcional a la relación de mobilidad, es un parámetro que juega un papel importante al momento de la producción ya que a tasas de producción moderadas, tiene fuerte influencia en la cantidad de petróleo que será *bypaseado* por el agua durante la producción.

1.5 Soluciones Potenciales

En la industria son conocidos métodos tanto químicos como mecánicos para contrarrestar el problema de la conificación de agua. En el presente estudio se hace referencia puntual al método DWS para pozos verticales (*Downhole Water Sink*) que consiste en una completación dual para extraer fluidos independientemente por diferentes vías de forma tal que el petróleo extraído en el reservorio no sea impedido de ingresar al pozo por el agua y el agua producida contenga la menor cantidad de petróleo en concentración para su hacer menos costoso el tratamiento para su reinyección.

El DWS posee dos completaciones, una superior para el ingreso de crudo y una inferior para el ingreso de agua. Al ingresar el agua por la parte inferior (en el contacto agua-petróleo o debajo de éste) se evita que el cono de agua llegue a irrumpir con mayor fuerza hasta los perforados en la zona de petróleo. El método (DWS – *Downhole Water Sink*) involucra utilizar tasas de producción variables con el tiempo. Las tasas variables son justificadas dando que la dinámica de la conificación de agua y la posición del contacto agua-petróleo varían con el tiempo.

Es una estrategia de completación desarrollada por la Universidad de Louisiana que si bien incrementa la producción de petróleo, también incrementa en mucha mayor medida la producción de agua que eventualmente puede representar un problema para la reinyección por los volúmenes a manejar.

2. Recomendaciones

- Las correlaciones presentadas están basadas en experimentos de simulación para casos generales y como tal es preferible no aplicar a reservorios con casos complejos. Además de ello, para reservorios aplicables, hay que tener presente que la variación de los parámetros se encuentre dentro del rango de lo sugerido por el modelo de Kuo y DesBrisay.
- Dado que la viscosidad es un patrón dominante en la conificación se sugiere el estudio de productos químicos que alteren de manera favorable la relación de mobilidad en el reservorio.
- Implementar hojas de cálculo con el modelo de Kuo y DesBrisay para evaluar la conificación y petróleo bypaseado de manera ágil previo a un estudio de simulación que implica una mayor delegación de tiempo y recursos.
- Un estudio especializado en el sistema DWS es requerido para comprender la influencia de los parámetros involucrados en la performance de influjo para una óptima producción.
- Se requiere conocer casos reales de implementación del sistema DWS con una antigüedad mayor a 5 años para dar mayor consistencia a los resultados teóricos.

CAPITULO VII

BIBLIOGRAFIA

- Ahmed, T. Reservoir Engineering Handbook, USA.
- Armenta, M. (2003). Mechanisms and Control of Water Inflow to Wells in Gas Reservoirs with Bottom-Water Drive, Louisiana State University, Department of Petroleum Engineering, USA.
- Choon, T.T. (2007). Identification of Bypassed Oil For Development In Mature Water-Drive Reservoirs, Society of Petroleum Engineers, SPE 109077
- Craft, B.C., Hawlins M.F Jr. Applied Petroleum Reservoir Engineering, USA.
- Dake, L.P. (1983). Fundamentals of Reservoir Engineering, USA.
- Djuro, N. (2002). Numerical Reservoir Characterization using Dimensionless Scale Numbers with application in Upscaling, Louisiana State University, Department of Petroleum Engineering, USA.
- Dolores, P.M. (1996). Glossary of the Petroleum Industry, PenWell Publishing Company, Tulsa, Oklahoma.
- Kats, R.M., Volgin, E.R. (2010). Evaluation of Remaining Recoverable Reserves in Water-Flooded Areas, Society of Petroleum Engineers, SPE 138081
- Kuo, M.C.T., DesBrisay, C.L. (1983). A Simplified Method for Water Coning Predictions, Society of Petroleum Engineers, SPE 12067
- Knowledge Reservoir, (2010). Development opportunities in Block 8, Compañía Pluspetrol Norte, Perú.
- Richardson, J.G., Blackwell, R.J. (1970). Use of Simple Mathematical Models for Predicting Reservoir Behavior, Society of Petroleum Engineers, SPE 2928
- Ruiz, L. (1999). Historia de la Ciencia y el Método Científico, Altaut, Georgia, USA.

- Wojtanowicz, A.K., Arslan, O., White, C.D. (2004). Early Water Production and Bypassed Oil in Edge Water Drive Reservoirs, Canadian International Petroleum Conference, PETSOC 2004-269
- Wojtanowicz, A.K., Hernández, J.C. (2006). Prediction of Bypassed Oil with Correlations in Side-Water Drive Reservoirs, Journal of Canadian Petroleum Technology, PETSOC 06-07-TN2
- Wojtanowicz, A.K., Hernández, J.C. (2007). Oil Bypassing by water invasion to Wells: mechanism and remediation, Imperial College of Science, Technology and Medicine, UK.
- Wojtanowicz, A.K., (2007). Use of DWS Technology in Corrientes
 Oilfield A feasibility Study, Compañía Pluspetrol Norte, Perú.

CAPITULO VIII

APENDICE

ANEXO 01

Perfiles de los pozos en estudio

Figura A – 1. Perfil Pozo RM01

Figura A – 2. Perfil Pozo RM02

Historia de Producción de los Pozos en Estudio

TABLA N°A-1 PRODUCCIÓN POZO RM01 – RESERVORIO VIVIAN, CAMPO RM

RM01											
DATE	BOPD	BWPD	BLPD	%WC							
sep-05	592	1678	2270	73.92							
oct-05	799	6995	7794	89.75							
nov-05	630	7339	7969	92.09							
dic-05	467	7505	7972	94.14							
ene-06	365	7918	8283	95.59							
feb-06	315	8059	8374	96.24							
mar-06	316	8201	8517	96.29							
abr-06	275	8306	8581	96.80							
may-06	199	8567	8766	97.73							
jun-06	192	8643	8835	97.83							
jul-06	191	8583	8774	97.82							
ago-06	193	8569	8762	97.80							
sep-06	194	8590	8784	97.79							
oct-06	115	5132	5247	97.81							
nov-06	128	5880	6008	97.87							
dic-06	183	8521	8704	97.90							
ene-07	196	8847	9043	97.83							
feb-07	166	7352	7518	97.79							
mar-07	166	7675	7841	97.88							
abr-07	190	8877	9067	97.90							
may-07	197	8904	9101	97.84							
jun-07	185	8584	8769	97.89							
jul-07	192	8371	8563	97.76							
ago-07	182	7816	7998	97.72							
sep-07	163	7386	7549	97.84							
oct-07	174	7881	8055	97.84							
nov-07	167	8240	8407	98.01							
dic-07	36	1775	1811	98.01							

Figura A – 3. Historia de Producción RM01

TABLA N°A-2 PRODUCCIÓN POZO RM02 – RESERVORIO VIVIAN, CAMPO RM

RM02										
DATE	BOPD	BWPD	BLPD	%WC						
jul-00	1401	3336	4737	70.42						
ago-00	1075	6349	7424	85.52						
sep-00	574	6658	7232	92.06						
oct-00	373	5103	5476	93.19						
nov-00	210	2908	3118	93.26						

Figura A – 4. Historia de Producción RM02

TABLA N°A-3 PRODUCCIÓN POZO RM0A – RESERVORIO VIVIAN, CAMPO RM

RM0A				RM0A					
DATE	BOPD	BWPD	BLPD	%WC	DATE	BOPD	BWPD	BLPD	%WC
oct-98	891	298	1189	25.06	jun-02	263	5511	5774	95.45
nov-98	1149	1481	2630	56.31	jul-02	252	5240	5492	95.41
dic-98	716	1874	2590	72.36	ago-02	244	5120	5364	95.45
ene-99	609	1890	2499	75.63	sep-02	236	5187	5423	95.65
feb-99	538	1980	2518	78.63	oct-02	234	5186	5420	95.68
mar-99	490	1906	2396	79.55	nov-02	172	3934	4106	95.81
abr-99	377	2427	2804	86.55	dic-02	286	6402	6688	95.72
may-99	387	2534	2921	86.75	ene-03	283	6332	6615	95.72
jun-99	328	2510	2838	88.44	feb-03	275	6240	6515	95.78
jul-99	332	2475	2807	88.17	mar-03	266	6184	6450	95.88
ago-99	334	2520	2854	88.30	abr-03	269	6266	6535	95.88
sep-99	330	2549	2879	88.54	may-03	271	6244	6515	95.84
oct-99	320	2528	2848	88.76	jun-03	261	6012	6273	95.84
nov-99	306	2482	2788	89.02	jul-03	253	5876	6129	95.87
dic-99	277	2497	2774	90.01	ago-03	249	5751	6000	95.85
ene-00	264	2515	2779	90.50	sep-03	240	5771	6011	96.01
feb-00	287	2784	3071	90.65	oct-03	78	1850	1928	95.95
mar-00	300	2892	3192	90.60	nov-03	119	3017	3136	96.21
abr-00	309	2896	3205	90.36	dic-03	255	6403	6658	96.17
may-00	302	2827	3129	90.35	ene-04	256	6385	6641	96.15
jun-00	290	2838	3128	90.73	feb-04	252	6315	6567	96.16
jul-00	283	2870	3153	91.02	mar-04	244	6300	6544	96.27
ago-00	278	2855	3133	91.13	abr-04	236	6496	6732	96.49
sep-00	264	2893	3157	91.64	may-04	235	6523	6758	96.52

				-					
oct-00	243	2947	3190	92.38	jun-04	232	6509	6741	96.56
nov-00	246	2932	3178	92.26	jul-04	225	6347	6572	96.58
dic-00	247	2924	3171	92.21	ago-04	222	6481	6703	96.69
ene-01	250	3025	3275	92.37	sep-04	223	6419	6642	96.64
feb-01	249	3041	3290	92.43	oct-04	224	6482	6706	96.66
mar-01	214	3030	3244	93.40	nov-04	187	6074	6261	97.01
abr-01	172	3046	3218	94.66	dic-04	172	6218	6390	97.31
may-01	153	2714	2867	94.66	ene-05	172	6255	6427	97.32
jun-01	142	2370	2512	94.35	feb-05	173	6269	6442	97.31
jul-01	259	4207	4466	94.20	mar-05	182	6247	6429	97.17
ago-01	362	5974	6336	94.29	abr-05	194	6223	6417	96.98
sep-01	351	5881	6232	94.37	may-05	204	6100	6304	96.76
oct-01	348	5819	6167	94.36	jun-05	211	6052	6263	96.63
nov-01	317	5622	5939	94.66	jul-05	188	6019	6207	96.97
dic-01	316	5648	5964	94.70	ago-05	185	6208	6393	97.11
ene-02	310	5593	5903	94.75	sep-05	192	6314	6506	97.05
feb-02	301	5553	5854	94.86	oct-05	194	6337	6531	97.03
mar-02	302	5506	5808	94.80	nov-05	192	6277	6469	97.03
abr-02	300	5487	5787	94.82	dic-05	186	6360	6546	97.16
may-02	270	5422	5692	95.26	ene-06	68	2824	2892	97.65

RM0A											
DATE	BOPD	BWPD	BLPD	%WC							
jun-02	263	5511	5774	95.45							
jul-02	252	5240	5492	95.41							
ago-02	244	5120	5364	95.45							
sep-02	236	5187	5423	95.65							
oct-02	234	5186	5420	95.68							
nov-02	172	3934	4106	95.81							
dic-02	286	6402	6688	95.72							
ene-03	283	6332	6615	95.72							
feb-03	275	6240	6515	95.78							
mar-03	266	6184	6450	95.88							
abr-03	269	6266	6535	95.88							
may-03	271	6244	6515	95.84							
jun-03	261	6012	6273	95.84							
jul-03	253	5876	6129	95.87							
ago-03	249	5751	6000	95.85							
sep-03	240	5771	6011	96.01							
oct-03	78	1850	1928	95.95							
nov-03	119	3017	3136	96.21							
dic-03	255	6403	6658	96.17							
ene-04	256	6385	6641	96.15							
feb-04	252	6315	6567	96.16							
mar-04	244	6300	6544	96.27							
abr-04	236	6496	6732	96.49							
may-04	235	6523	6758	96.52							
jun-04	232	6509	6741	96.56							
jul-04	225	6347	6572	96.58							
ago-04	222	6481	6703	96.69							
sep-04	223	6419	6642	96.64							
oct-04	224	6482	6706	96.66							

nov-04	187	6074	6261	97.01
dic-04	172	6218	6390	97.31
ene-05	172	6255	6427	97.32
feb-05	173	6269	6442	97.31
mar-05	182	6247	6429	97.17
abr-05	194	6223	6417	96.98
may-05	204	6100	6304	96.76
jun-05	211	6052	6263	96.63
jul-05	188	6019	6207	96.97
ago-05	185	6208	6393	97.11
sep-05	192	6314	6506	97.05
oct-05	194	6337	6531	97.03
nov-05	192	6277	6469	97.03
dic-05	186	6360	6546	97.16
ene-06	68	2824	2892	97.65

Figura A – 5. Historia de Producción RM0A