UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

PROYECTO INMOBILIARIO JARDINES DE CHACARILLA DISEÑO DE INSTALACIONES SANITARIAS CON EL SISTEMA HIDRONEUMÁTICO

INFORME DE SUFICIENCIA

Para optar el Titulo Profesional de:

INGENIERO CIVIL

JORGE EDUARDO DURAND MIRANDA

Lima- Perú

2010

INDICE

		Página
RESU	MEN	03
LISTA	DE CUADROS	04
LISTA	DE FIGURAS	06
LISTA	DE ANEXOS	07
LISTA	DE SIGLAS	08
INTRO	DDUCCIÓN	09
CAPÍT	TULO I: RESUMEN EJECUTIVO	11
1.1	IDENTIFICACION DEL PROYECTO	11
1.2	ARQUITECTURA	11
1.3	DISEÑO ESTRUCTURAL	12
1.4	INSTALACIONES ELECTRICAS	12
1.5	INSTALACIONES SANITARIAS	14
CAPÍI	TULO II: MARCO TEÓRICO	15
2.1	SISTEMA DE ABASTECIMIENTO DE AGUA	15
2.1.1	Sistema Directo.	15
2.1.2	Sistema Indirecto	15
2.2	DISEÑO Y CÁLCULO DEL SISTEMA HIDRONEUMÁTICO	17
2.2.1	Componentes del sistema hidroneumático	17
2.2.2	Diseño y cálculo	18
CAPÍ	TULO III: DISEÑO DE LAS INSTALACIONES SANITARIAS	20
3.1	GENERALIDADES	20
3.2	DISTRIBUCIÓN DE APARATOS SANITARIOS Y TRAZO DE REDES DE AGUA	20
3.3	CÁLCULO DE LA DOTACIÓN Y LA CISTERNA	21
3.4	CÁLCULO DE LA RED DE DISTRIBUCIÓN DE AGUA FRÍA	22
3.5	CÁLCULO DEL EQUIPO HIDRONEUMÁTICO	22

CAPÍ	TULO IV: ELABRACIÓN DE LAS PROPUESTAS	25
4.1	METODOLOGÍA	25
4.2	COMPARACIÓN DE SISTEMAS	25
4.2.1	Diseño del sistema analizando los edificios independientemente	25
4.2.1	Diseño del sistema analizando todo el conjunto residencial	28
4.3	CRITERIOS DE SELECCIÓN DEL SISTEMA ÓPTIMO	31
CONC	CLUSIONES	33
RECO	DMENDACIONES	34
BIBLI	OGRAFÍA	35
ANEX	cos	36

RESUMEN

El proyecto desarrollado en el presente curso de Actualización de Conocimientos consiste en la realización de un Proyecto Inmobiliario de 60 departamentos divididos en tres edificios de 5 pisos cada uno. El proyecto abarca desde la localización del terreno hasta la finalización del proyecto.

La zona elegida cuenta con servicios de agua, desagüe, energía eléctrica y telefonía, por lo que no es necesario disponer de medidas especiales para satisfacer estos servicios.

Del proyecto antes mencionado se ha decidido desarrollar el tema referido al abastecimiento de agua de la red interior del edificio, debido a que este es un tema muy importante en la concepción del proyecto y que no ha sido tocado con frecuencia en el desarrollo de informes.

Entre los diversos sistemas de abastecimiento y distribución de agua en edificaciones, se utilizará el sistema hidroneumático debido a su versatilidad y eficiencia frente a otros sistemas.

Este informe busca orientar a los profesionales y estudiantes sobre cuáles deben ser los pasos para realizar el diseño de este sistema. Se realiza un análisis comparativo usando el mismo sistema pero con diferentes variables. Es solo de esta forma en que uno se puede dar cuenta que tanto puede variar una alternativa de la otra.

Las conclusiones tomadas en este proyecto se fundamentan en los resultados generados a partir de los cálculos efectuados para su diseño.

LISTA DE CUADROS

Cuadro No. 3.01 – Número máximo de arranques por hora permitido	23
Cuadro No. 3.02 – Dimensiones normalizadas para la construcción de	
tanques hidroneumáticos y características de los	
compresores adecuados	24
Cuadro No. 4.01 – Dimensiones interiores de cisternas para cada edificio	26
Cuadro No. 4.02 – Potencia de las bombas para cada edificio usando	
una bomba	26
Cuadro No. 4.03 – Tamaño de la instalación para cada edificio usando	
una bomba	27
Cuadro No. 4.04 – Volumen del tanque hidroneumático para cada edificio	
usando una bomba	27
Cuadro No. 4.05 – Potencia de las bombas para cada edificio usando	
dos bombas	28
Cuadro No. 4.06 – Tamaño de la instalación para cada edificio usando	
dos bombas	28
Cuadro No. 4.07 – Volumen del tanque hidroneumático para cada edificio	
usando dos bombas	28
Cuadro No. 4.08 – Dimensiones interiores de la cisterna para el conjunto	
residencial	29
Cuadro No. 4.09 – Potencia de las bombas para conjunto residencial	29
Cuadro No. 4.10 – Tamaño de la instalación para el conjunto residencial	
usando tres bombas	29

Cuadro No. 4.11 – Volumen del tanque hidroneumático para conjunto	
residencial usando tres bombas	30
Cuadro No. 4.12 – Potencia de las bombas para conjunto residencial	
usando cuatro bombas	30
Cuadro No. 4.13 – Tamaño de la instalación para conjunto residencial	
usando cuatro bombas	30
Cuadro No. 4.14 – Volumen del tanque hidroneumático para conjunto	
residencial usando cuatro bombas	31
Cuadro No. 4.15 – Equipos hidroneumáticos para cada edificio usando	
una bomba	31
Cuadro No. 4.16 – Equipos hidroneumáticos para cada edificio usando	
dos bombas	31
Cuadro No. 4.17 – Equipos hidroneumáticos para el conjunto residencial	32

LISTA DE FIGURAS

Figura No. 2.01 – Esquema de una sistema hidroneumático	19
Figura No. 3.01 – Dimensiones mínimas para las instalaciones de	
aparatos sanitarios	21
Figura No 3.02 – Selección del tanque hidroneumático en función del	
número de arranques	23

LISTA DE ANEXOS

Anexo 4.01 – Cálculo de dotación y cisterna para cada edificio	26
Anexo 4.02 – Cálculo de caudal, perdidas de carga y potencia de la	
bomba usando una bomba por cada edificio	26
Anexo 4.03 – Cálculo de caudal, perdidas de carga y potencia de la	
bomba usando dos bombas por cada edificio	28
Anexo 4.04 – Cálculo de dotación y cisterna para conjunto residencial	29
Anexo 4.05 – Cálculo de caudal, perdidas de carga y potencia de la	
bomba para conjunto residencial	30
Anexo 4.06 – IS-01 Plano agua fría – Sótano	33
Anexo 4.07 – IS-02 Plano agua fría – Planta Típica	33
Anexo 4.08 – IS-03 Isométrico Agua Fría	33

LISTA DE SIGLAS

SIGLAS SIGNIFICADO

A Almacenamiento de agua del tanque hidroneumático

gal Galones americanos

H Altura

Hf Pérdida de carga por fricción

HP Caballos de fuerza

m² Metros cuadrados

mca Metros de columna de agua

MDS Máxima demanda simultánea

N Número de arranques por hora de la bomba

Pmax Presión máxima dentro del tanque hidroneumático

Pmin Presión mínima dentro del tanque hidroneumático

Q Caudal

RNE Reglamento Nacional de Edificaciones

S Pendiente

Vol Volumen

Vt Volumen total del tanque hidroneumático

INTRODUCCIÓN

En la última década se viene utilizando con mucha demanda el sistema hidroneumático para la distribución de agua en edificaciones.

Su uso se ha generalizado en edificaciones de los niveles socio-económicos A, B y C.

En esta época es factible para los profesionales encontrar con facilidad todo tipo de información teórica y práctica para el diseño de este sistema para su aplicación en edificios multifamiliares.

Es prudente mencionar que en la época actual, el conocimiento es un bien que todos buscan adquirir, pues dicho conocimiento permite tomar decisiones óptimas. En este caso, la toma de decisión será para la elección del tipo de sistema de abastecimiento de agua a utilizar puede incidir enormemente en el costo del proyecto.

El presente informe tiene como objetivo principal el de establecer una metodología de diseño del sistema hidroneumático para conjuntos residenciales. Así mismo, comparar el uso del sistema hidroneumático independientemente para cada uno de los tres edificios que conforman el conjunto residencial con el diseño del sistema hidroneumático de todo el conjunto residencial como una unidad.

En el capítulo I se tratará el resumen ejecutivo del proyecto, explicando brevemente las características del proyecto inmobiliario desarrollado.

En el capítulo II se tratará el marco teórico, en el que se enuncian los sistemas típicos de abastecimiento de agua, y los componentes del sistema hidroneumático.

En el capítulo III se tratará el diseño de las instalaciones sanitarias utilizando el sistema hidroneumático. Se enunciará la secuencia de diseño y cálculo para dicho sistema.

En el capítulo IV se tratará la elaboración de propuestas, en la cual se hace el diseño y calculo para diversas alternativas de solución para la red interior de abastecimiento de agua de la edificación.

Finalmente en las conclusiones se hará mención de los resultados obtenidos luego del cálculo de las diversas alternativas.

Se han agregado anexos con los cálculos de cada alternativa de manera detallada, para que su lectura y entendimiento sea sencillo para cualquier persona interesada en el tema.

CAPÍTULO I: RESUMEN EJECUTIVO

1.1 IDENTIFICACIÓN DEL PROYECTO.

El Proyecto inmobiliario recibe el nombre de "Jardines de Chacarilla",

Ubicación

Dirección : Av. Primavera Esq. con Av. Alejandro Velasco Astete

Urbanización : Chacarilla del Estanque

Departamento: Lima

Provincia : Lima

Distrito : Santiago de Surco

El acceso al proyecto es mediante las avenidas Primavera y Velasco Astete.

Está ubicado cerca de centros comerciales, recreacionales, servicios de salud y educación.

Área:

El terreno cuenta con un área 3,147.00 m2, y un perímetro de 195.36 m.

Límites y Colindancias

Por el frente: Con la Av. Primavera 40.70 ml. en línea recta.

Por la derecha: Con la Av. Velasco Astete 71.43 ml. en línea recta.

Por la **izquierda**: Con los lotes 3 y 13 de propiedad de terceros una línea quebrada de tres tramos que contados a partir del lindero del frente el primer tramo es de 49.43 ml., el segundo tramo voltea a la izquierda con 10.80 ml, el tercer tramo dobla a la derecha con 22.00 ml.

1.2 ARQUITECTURA

El proyecto se encuentra conformado por 3 edificios de 5 pisos cada uno, los cuales se han clasificados según el área construida por departamento, en tres tipos:

Edificio A: Está compuesto de 4 departamentos por nivel, 3 de 153 m2 y 1 de 126 m2 de área, teniendo un total de 20 departamentos con un área proyectada

total de 681.49 m2. El edificio cuenta con una circulación vertical conformada por un ascensor y una escalera de escape.

Edificio B: Está compuesto de 6 departamentos por nivel, 2 de 115 m2, 2 de 116 m2 y 2 de 131 m2 de área, teniendo un total de 30 departamentos con un área proyectada total de 863.57 m2. El edificio cuenta con una circulación vertical conformada por dos ascensores y una escalera de escape.

Edificio C: Está compuesto de 2 departamentos por nivel de 122 m2 de área, teniendo un total de 10 departamentos en un área proyectada total de 297.58 m2. El edificio cuenta con una circulación vertical conformada por un ascensor y una escalera de escape.

Cuenta adicionalmente con un sótano y un semisótano que alberga los estacionamientos para todo el conjunto residencial

1.3 DISEÑO ESTRUCTURAL.

La solución propuesta ante el requerimiento estructural, se basa en los criterios de seguridad y economía. Considerando que el proyecto se encuentra en una región de alto riesgo sísmico, es necesario que el sistema constructivo sea convencional, es decir una estructura de concreto armado diseñado según la Norma E-030.

La estructura para cada edificio del proyecto inmobiliario está compuesta por un sistema dual constituido por marcos de columnas, muros de corte y vigas de concreto armado. Las columnas y muros de corte tienen empotramientos en la base por cimientos corridos. Para su diseño se considera la interacción columna – muro, así como viga – muro.

1.4 INSTALACIONES ELÉCTRICAS.

La energía para este edificio será suministrada a la tensión de 220 V, Sistema Trifásico, tres conductores, 60 c/s. desde la Subestación proyectada y ubicada en el primer piso con frente a la Av. Primavera, de propiedad de LUZ DEL SUR S.A.

Se instalarán 3 bancos de medidores:

- ✓ Banco De Medidores Nº1: Con acometida por la Av. Primavera, y compuesta de una caja toma del tipo F-2, la cual estará complementada con 21 cajas porta medidores del tipo "L" para la totalización de la energía para cada uno de los Departamentos: 20 (TD-A) y 01 (TSG-A) para el edifico A.
- ✓ Banco De Medidores N°2: Con acometida por la Av. Primavera, y compuesta de una caja toma del tipo F-2, la cual estará complementada con 12 cajas porta medidores del tipo "L" para la totalización de la energía para cada uno de los Departamentos: 10 (TD-C), 01 (TSG-C) para el edifico C, 01 (TSG-G), para el condominio.
- ✓ Banco De Medidores Nº3: Con acometida por la Av. Velasco Astete y compuesta de una caja toma del tipo F-2, la cual estará complementada con 31 cajas porta medidores del tipo "L" para la totalización de la energía para cada uno de los Departamentos: 30 (TD-C), 01 (TSG-C) para el edifico B.

Demanda Máxima

El cálculo de la demanda máxima se ha efectuado de acuerdo al Código Nacional de Electricidad, Tomo V, y teniendo en cuenta la simultaneidad de usos de los diferentes equipos:

Con los cálculos se obtuvo una carga total de 300 KW y se solicitará al concesionario lo siguiente:

- 01 Suministro Trifásico con una máxima demanda de 48.00 KW para el Tablero de Servicios generales general.
- 01 Suministro Trifásico con una máxima demanda de 15.00 KW para el Tablero de Servicios generales del Edificio TIPO A.
- 01 Suministro Trifásico con una máxima demanda de 21.00 KW para el Tablero de Servicios generales del Edificio TIPO B.
- 01 Suministro Trifásico con una máxima demanda de 11.00 KW para el Tablero de Servicios generales del Edificio TIPO C.

 60 Suministro Trifásico con una máxima demanda de 12.00 KW para c/u de los departamentos Típicos (TD)

1.5 INSTALACIONES SANITARIAS

Contará con un abastecimiento de agua el cual por medio de una tubería de diámetro 1" ingresará a la edificación.

Para la impulsión se utilizara un sistema indirecto con bombas hidroneumáticas.

Cada departamento contará con un medidor independiente

El cálculo y diseño de estas instalaciones se detallan en el presente informe.

La disposición del desagüe de cada uno de los aparatos sanitarios, se llevará a cabo mediante tuberías de PVC ISO 4435, las cuales bajarán de los pisos superiores por montantes de diámetro 4", 3" y 2", los cuales a su vez llegarán a una tubería que irá adosada al techo del semisótano y sótano, llegando a una bomba electromecánica que impulsa las aguas servidas a una caja de registro ubicada en la parte exterior de la edificación; en el 1er piso de dimensiones 0.80 m x 0.80 m luego de lo cual finalmente llegará al colector general. Las redes de ventilación, han sido diseñadas de acuerdo a los requerimientos de los aparatos sanitarios.

CAPITULO II – MARCO TEÓRICO

2.1 SISTEMAS DE ABASTECIMIENTO DE AGUA

El diseño del sistema de abastecimiento de agua de un edificio depende básicamente de los siguientes factores:

- Presión de agua en la red pública
- Altura y forma del edificio
- Presiones interiores de agua

Dados estos tres factores básicos es que se escogerá el sistema de abastecimiento de agua más adecuado para el proyecto. Deberá cumplir tanto con los requisitos ingenieriles como con las demandas arquitectónicas.

Entre los sistemas más utilizados se tienen:

2.1.1 Sistema Directo: Cuando la red pública cuenta con la presión suficiente y necesaria para abastecer adecuadamente al punto más desfavorable de la edificación.

Este sistema tiene la ventaja de ofrecer un menor peligro de contaminación en el abastecimiento, son más ecológicos, y se puede medir los caudales con más exactitud.

Las desventajas que tiene son que no hay almacenamiento de agua en caso de paralización del suministro de agua, abastece solo edificaciones poco elevadas (2 a 3 pisos) por lo general, y la necesidad de grandes diámetro de tubería para grandes instalaciones con el fin de reducir las pérdidas de carga por fricción.

2.1.2 Sistema Indirecto: Cuando la presión de la red pública no es suficiente para abastecer a los aparatos sanitarios del punto más desfavorable del sistema. Esto obliga a realizar un almacenamiento y utilizar un sistema de bombeo a fin de conseguir la presión necesaria.

Este sistema tiene la ventaja de tener una reserva de agua para el caso de interrupción de servicios y además de tener una presión constante y razonable en cualquier punto de la red interior.

Las desventajas de este sistema es la posibilidad de contaminación del agua dentro de edificio, requerir de un equipo de bombeo y un mayor costo de construcción y mantenimiento.

Dentro del sistema indirecto debemos considerar asimismo las siguientes alternativas:

a.) Cisterna con equipo de bombeo y tanque elevado: En este sistema el agua ingresa de la red pública a la cisterna de donde, por medio de un equipo de bombeo el agua es impulsada al tanque de almacenamiento en la cota superior del edificio, desde donde por gravedad se alimenta a la red de agua del interior del edificio

El tanque elevado se calculara de acuerdo a la dotación y se ubicara de acuerdo a un cálculo hidráulico de tal forma que el punto más desfavorable tenga la presión de salida mínima requerida.

b.) Cisterna con sistema hidroneumático: Este sistema evita construir tanques elevados, colocando un sistema de tanques parcialmente llenos con aire a presión. Generalmente este sistema se instala en grandes edificaciones de crecimiento vertical.

Los Sistemas Hidroneumáticos se basan en el principio de compresibilidad o elasticidad del aire cuando es sometido a presión, funcionando de la siguiente manera: El agua que es suministrada desde el acueducto público u otra fuente, es retenida en una cisterna; de donde, a través de un sistema de bombas, será impulsada a un recipiente a presión (de dimensiones y características calculadas en función de la red), y que posee volúmenes variables de agua y aire. Cuando el agua entra al recipiente aumenta el nivel de agua, se comprime el aire y aumenta la presión, cuando se llega a un nivel de agua y presión determinados (Pmáx.), se produce la señal de parada de bomba y el tanque queda en la capacidad de abastecer la red; cuando los niveles de presión bajan, a los mínimos preestablecidos (Pmín.) se acciona el mando de encendido de la bomba nuevamente. Como se observa la presión varía entre Pmáx y Pmín, y las bombas prenden y apagan continuamente. El diseño del sistema debe considerar un tiempo mínimo entre los encendidos de las bombas conforme a sus especificaciones, un nivel de presión (Pmín) conforme al requerimiento de

presión de instalación y una Pmáx, que sea tolerable por la instalación y proporcione una buen calidad de servicio.

- c.) Cisterna y sistema de presión constante: son aquellos sistemas de bombeo en donde se suministra agua a una red de consumo mediante unidades de bombeo que trabajan directamente contra una red cerrada. Los sistemas de bombeo a presión constante se clasifican en dos grupos principales:
 - Sistema de bombeo contra red cerrada a velocidad fija.
 - Sistema de bombeo contra red cerrada a velocidad variable.

Los dos grupos necesitan el uso de un pequeño tanque hidroneumático para monitorear la presión y enviarle la señal a un tablero electrónico, y en el segundo caso se encargará de enviarle la señal al motor y controlar el amperaje y el voltaje para variar la velocidad de giro del motor y por lo tanto la velocidad de giro de la bomba.

2.2 DISEÑO Y CÁLCULO DEL SISTEMA HIDRONEUMÁTICO

2.2.1 Componentes del sistema hidroneumático

Un sistema hidroneumático debe estar constituido por los siguientes componentes:

- Uno o más tanques de presión: Consta de un orificio de entrada y uno de salida para el agua (en este se debe mantener un sello de agua para evitar la entrada de aire en la red de distribución), y otro para la inyección de aire en caso de que este falte.
- Un número de bombas acorde con las exigencias de la red.
- Interruptor eléctrico para detener el funcionamiento del sistema, en caso de faltar agua en la cisterna.
- Llaves de purga en las tuberías de drenaje.
- Válvula de retención en cada una de las tuberías de descarga de las bombas al estanque hidroneumático.
- Conexiones flexibles para absorber las vibraciones.

- Llaves de paso entre la bomba y el equipo hidroneumático; entre este y el sistema de distribución.
- Manómetro.
- Válvulas de seguridad.
- Dispositivo para control automático de la relación aire/agua.
- Interruptores de presión para arranque a presión mínima y parada a presión máxima, arranque aditivo de la bomba en turno y control del compresor.
- Indicador exterior de los niveles en el tanque de presión
- Tablero de potencia y control de motores.
- Dispositivo de drenaje del tanque hidroneumático y su correspondiente llave de paso.
- Compresor u otro mecanismo que reponga el aire perdido en el tanque hidroneumático.

Ver Figura No. 2.01.

2.2.2 Diseño y Cálculo

Una vez que se cuenta con los planos de arquitectura en la etapa de anteproyecto, se procede a realizar la distribución de los aparatos sanitarios. Definida esta ubicación se harán los trazos de las redes horizontales y seguidamente las verticales de distribución de agua.

Con este diseño establecido se procede al cálculo hidráulico del punto más desfavorable de la red. Así mismo, se calculará la dotación necesaria para la edificación, las bombas adecuadas para poder satisfacer al aparato sanitario más desfavorable y los tanque hidroneumáticos respectivos.

Un factor muy importante a considerarse es el equipo disponible en el mercado. Los cálculos realizados y las opción de equipo adoptadas deberán ir de la mano con los productos disponibles en el mercado local, de lo contrario la propuesto dejaría de ser viable para el proyecto.

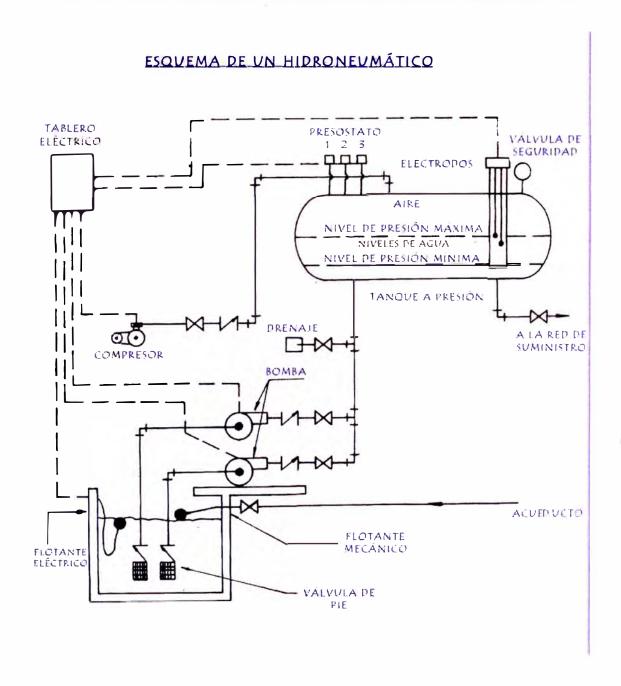


Figura No. 2.01 – Esquema de un Sistema Hidroneumático

CAPITULO III – DISEÑO DE LAS INSTALACIONES SANITARIAS

3.1 GENERALIDADES

En nuestro país, la norma vigente que regula el diseño de las instalaciones sanitarias es el Reglamento Nacional de Edificaciones. Es por ello, que este trabajo ha sido elaborado siguiendo las pautas, cuadros y tablas mostradas en dicho documento.

Como se mencionó en el capítulo anterior, en el ítem 2.2.2, los pasos para realizar un adecuado y sistemático diseño de abastecimiento interior de agua para una edificación son los siguientes:

- Distribución de aparatos sanitarios y trazo de redes de agua.
- Cálculo de la dotación y la cisterna
- Cálculo de la red de distribución de agua fría.
- Cálculo del equipo hidroneumático.

3.2 DISTRIBUCIÓN DE APARATOS SANITARIOS Y TRAZO DE REDES DE AGUA

Los aparatos sanitarios deberán ubicarse teniendo en cuenta dos factores básicos:

- La distribución arquitectónica. Existen mínimas distancias entre aparatos sanitarios que deben respetarse. En la figura 3.01 se muestran algunas consideraciones básicas para la distribución arquitectónica.
- Los requisitos hidráulicos. Los aparatos deberán tener una distribución que considere factible la instalación de las tuberías de agua, desagüe y ventilación.

El trazo de las redes de agua fría y agua caliente deberán realizarse teniendo en cuenta los siguientes criterios:

- Deberá colocarse una válvula de paso que permita interrumpir el flujo de agua de requerirse para alguna futura reparación y remodelación.
- Las tuberías deberán correrse por el piso. En lo posible, su recorrido será por los pasadizos y zonas de servicio.
- Se colocará un medidor para cada uno de los departamentos.

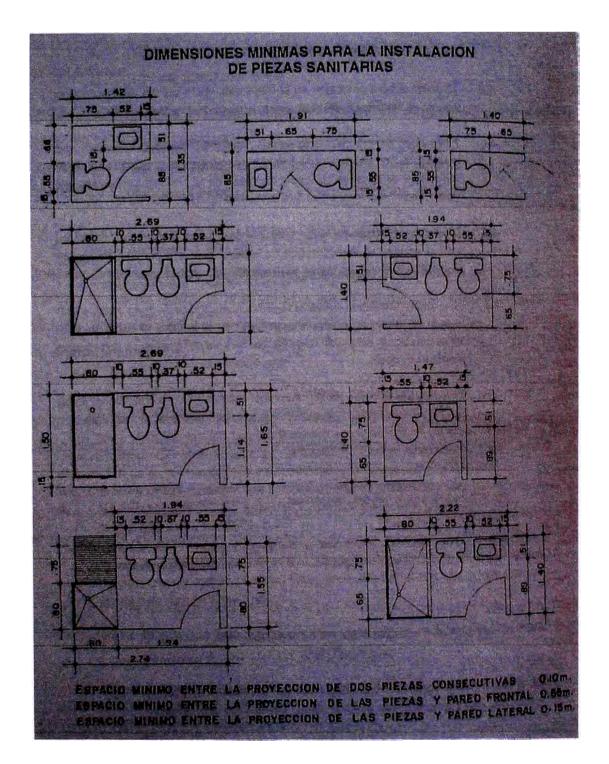


Figura No 3.01 – Dimensiones mínimas para la instalación de aparatos sanitarios

Fuente: Jimeno Blasco, Enrique. Instalaciones Sanitarias en Edificaciones

3.3 CÁLCULO DE LA DOTACIÓN Y LA CISTERNA

Para el cálculo de la dotación se utilizará el RNE, norma IS.010, ítem 2.2.b, la cual fija que la dotación para una edificación está en función al número de dormitorios de cada una de las viviendas que la conforman.

Se calcula la dotación por día de cada una de las viviendas, y luego se suman las cantidades.

Dado que el sistema hidroneumático no posee un almacenamiento continuo como en el caso del tanque elevado, el RNE establece que el volumen de la cisterna sea igual a la suma de la dotación diaria y el volumen de agua contra incendios. El volumen mínimo de agua contra incendios será de 25m³.

3.4 CÁLCULO DE LA RED DE DISTRIBUCIÓN DE AGUA FRÍA

Una vez definidos todos los aparatos sanitarios, se realizará el cálculo de la máxima demanda diaria, la cual viene a ser el caudal que deberá abastecer la cisterna, por medio del equipo hidroneumático, para satisfacer las demandas de los aparatos sanitarios.

El método a utilizar en este caso es el Método de Hunter, el cual, por medio de la asignación de unidades de gasto a cada uno de los aparatos sanitarios, proporciona el caudal requerido para satisfacer las demandas especificadas.

El siguiente paso es la asignación y subsiguiente comprobación de los diámetros de las tuberías de distribución. Para este cálculo de utiliza la línea que abastece al punto más desfavorable de la red. En este cálculo se comprobará que cumplan los siguientes puntos:

- Pérdida de carga real menor a la pérdida de carga disponible.
- Que se tenga una adecuada presión de salida.
- La velocidad del fluido no deberá superar los límites establecidos en el RNE, así como esta velocidad no deberá ser menor a los 0.60 m/seg.

3.5 CÁLCULO DEL EQUIPO HIDRONEUMÁTICO

Para el cálculo del equipo hidroneumático, primero se comenzará por bomba hidroneumática. La potencia de dicha bomba estará en función a la altura dinámica de la edificación y al caudal que por ella corre.

Esta bomba, dependiendo de la potencia obtenida, se clasificará en pequeña, mediana o grande, como se muestra en el Cuadro 3.01. Esta clasificación se utiliza para la designación del número de arranques por hora que realizará esta bomba.

Tamaño de las instalaciones	Potencia	Arranques – Hora	
	(HP)	(N)	
Pequeñas	Menores de 1 HP	12 a 24	
Medianas	De 1 a 5 HP	8 a 10	
Grandes	Mayores de 5 HP	4 a 6	

Cuadro 3.01 – Número máximo de arranques por hora permitido

Fuente: Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente

Con esta información, y con las presiones de arranque y parada, por medio de ábacos se definirá el volumen del tanque hidroneumático y su presostato correspondiente.

En la Figura No. 3.02 se muestra el ábaco para el cálculo de la relación del volumen total del equipo hidroneumático y el volumen de almacenamiento del mismo.

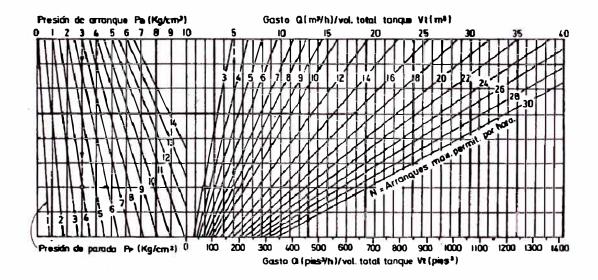


Figura No 3.02 – Selección del tanque hidroneumático en función del número de arranques Fuente: Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente

Este tanque deberá tener dimensiones comerciales. En el Cuadro 3.02 se muestran dimensiones normalizadas para los tanques hidroneumáticos y sus respectivos compresores.

CAPACIDAD	DIMENSIONES	CARACTERISTICAS DEL COMPRESOR			
Vt	Diámetro x Longitud	Tamaño (PCM)	Potencia (HP)		
(galones)	(pulgadas) x (pies)				
12	12" x 2'	225 A			
20	14" x 2.5'	225 A			
30	16" x 3'	225 A	7		
42	16" x 4'	225 A	7		
66	20" x 4'	225 A	. TAMAÑO DEL		
85	20" x 5'	225 A	CARGADOR		
120	24" x 5'	225 B	NECESARIO		
140	24" x 6'	225 B	(modelos jacuzzi o		
180	30" x 5'	225 B	imperial)		
220	30" x 6'	225 B			
300	30" x 8'	225 C			
350	36" x 6'	225 C			
450	36" x 8'	2 x 225 C			
560	36" x 10'	1.5	1/2		
550	42" x 7'	1.5	1/2		
770	42" x 10'	1.5	1/2		
900	42" x 12'	3	3/4		
1050	42" x 14'	3	3/4		
1000	48" x 10'	5	1		
1200	48" x 12'	5	1		
1500	48" x 15'	7.5	1 – 1/2		
1800	48" x 18'	7.5	1 – 1/2		
1900	48" x 20'	7.5	2		
2350	60" x 16'	7.5	2		
2940	60" x 20'	11.0	3		
3525	60" x 24'	11.0	3		

Cuadro 3.02 – Dimensiones normalizadas para la construcción de tanques neumáticos y características de los compresores adecuados.

Fuente: Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente

CAPÍTULO IV - ELABORACIÓN DE LAS PROPUESTAS

4.1 METODOLOGÍA

Para el desarrollo de las propuestas de diseño, se utilizarán los criterios mencionados en el capítulo anterior.

Se realizará el diseño y el cálculo de la red de distribución de agua fría utilizando el sistema hidroneumático teniendo en cuenta dos escenarios:

- Se realizará el cálculo considerando a cada uno de los edificios como proyectos independientes, de modo que cada uno de estos tendrá su propio sistema.
- Se realizará el cálculo consideran a todos los edificio como un conjunto residencia, de modo que existirá un solo sistema para todo el proyecto.

Se hace mención que para cada uno de los escenarios se plantearán dos alternativas de solución para tener puntos de comparación y obtener la alternativa óptima.

Las redes de distribución interior de cada departamento no se alterarán.

4.2 COMPARACIÓN DE SISTEMAS

4.2.1 Diseño del sistema analizando los edificios independientemente

En este caso, como ya se hizo mención, se calculará las características de las bombas y tanques a utilizar en cada uno de los edificios, así como el volumen de la cisterna.

Se calculó la dotación para cada una de las edificaciones, obteniéndose:

- Edificio A Dotación Diaria = 31.65 m³
- Edificio B Dotación Diaria = 44.00 m³
- Edificio C Dotación Diaria = 16.49 m³

Con la dotación establecida, se dimensionan las cisternas. Estas deberán almacenar el agua de consumo diario y el agua contra incendios.

Las dimensiones interiores para este caso están dadas por el Cuadro 4.01

Edificio / Dimensiones	Largo (m)	Ancho (m)	Alto (m)	
Edificio A	8.50	4.00	2.55	
Edificio B	12.00	3.75	2.55	
Edificio C	5.40	4.50	2.55	

Cuadro No 4.01 – Dimensiones interiores de cistemas para cada edificio

Ver Anexo 4.01 para cálculos y referencias.

a.) Sistema hidroneumático utilizando 1 bomba

Con la sumatoria de las unidades de Hunter de cada edificio se obtiene la máxima demanda simultánea:

- Edificio A MDS = 8.09 l/s
- Edificio B MDS = 8.61 l/s
- Edificio C MDS = 5.36 l/s

Con este caudal se elige la tubería de succión e impulsión. A partir de ahí se calculan las pérdidas de carga para el punto más desfavorable de cada edificio:

- Edificio A Hf = 15.539 mca
- Edificio B Hf = 20.732 mca
- Edificio C Hf = 10.610 mca

Para todos los casos, el punto más desfavorable es la salida de los inodoros, los cuales funcionan con un fluxómetro, el cual requiere una presión de salida de 10mca. A partir de este punto se calcula la altura dinámica del edificio.

Utilizando la altura dinámica se obtendrá la potencia del motor de la bomba. En el Cuadro No. 4.02 se muestra la potencia de las bombas para cada edificio.

Ver Anexo 4.02 para cálculos y referencias.

Edificio	H dinámico	H dinámico Caudal (I/s)		Potencia del motor	
	(mca)		Bomba (HP)	(HP)	
Edificio A	44.37	8.09	6.84	8.89	
Edificio B	49.69	8.61	8.15	10.59	
Edificio C	39.59	5.36	4.04	5.25	

Cuadro No 4.02 – Potencia de las bombas para cada edificio usando una bomba

Utilizando las descripciones dadas en el Cuadro No 3.01, se obtiene en el Cuadro No 4.03, lo siguiente:

Edificio	Tamaño de la instalación	Número de arranques	
Edificio A	Grande	6	
Edificio B	Grande	5	
Edificio C	Grande	6	

Cuadro No 4.03 – Tamaño de la instalación para cada edificio usando una bomba

Dada la presión de arranque, presión de parada, numero de arranques y caudal, se puede establecer el volumen del tanque hidroneumático por medio de la Figura No. 3.02. En el Cuadro No. 4.04 se muestran los resultados.

Edificio	Presión	Presión	Número de	Q	Volumen	Volumen de
	arranque	parada	arranques	(l/s)	Tanque (gal)	agua (gal)
Edificio A	44.37	58.37	6	8.09	1672	274
Edificio B	49.69	63.69	5	8.61	2923	445
Edificio C	39.59	53.59	6	5.36	1213	214

Cuadro No 4.04 – Volumen de tanque hidroneumático para cada edificio usando una bomba

b.) Sistema hidroneumático utilizando 2 bombas

La máxima demanda simultánea en este caso será igual a la mitad de la calculada anteriormente debido a que se usarán dos bombas:

- Edificio A MDS = 4.05 l/s
- Edificio B MDS = 4.31 l/s
- Edificio C MDS = 2.68 l/s

Con este caudal se elige la tubería de succión e impulsión. A partir de ahí se calculan las pérdidas de carga para el punto más desfavorable de cada edificio:

- Edificio A Hf = 15.973 mca
- Edificio B Hf = 21.532 mca
- Edificio C Hf = 15.064 mca

Para todos los casos, el punto más desfavorable es la salida de los inodoros, los cuales funcionan con un fluxómetro, el cual requiere una presión de salida de 10mca. A partir de este punto se calcula la altura dinámica del edificio.

Utilizando la altura dinámica se obtendrá la potencia del motor de la bomba. En el Cuadro No. 4.05 se muestra la potencia de las bombas para cada edificio.

Edificio	H dinámico	Caudal (I/s)	Potencia de la	Potencia del motor
	(mca)		Bomba (HP)	(HP)
Edificio A	46.96	4.05	3.62	4.71
Edificio B	47.35	4.31	3.89	5.05
Edificio C	47.15	2.68	2.41	3.13

Cuadro No 4.05 – Potencia de las bombas para cada edificio usando dos bombas

Utilizando las descripciones dadas en el Cuadro No 3.01, se obtiene en el Cuadro No 4.06, lo siguiente:

iana 10
iana 8
iana 10

Cuadro No 4.06 – Tamaño de la instalación para cada edificio usando dos bombas

Dada la presión de arranque, presión de parada, numero de arranques y caudal, se puede establecer el volumen del tanque hidroneumático por medio de la Figura No. 3.02. En el Cuadro No. 4.07 se muestran los resultados.

Edificio	Presión	Presión	Número de	Q	Volumen	Volumen	de
	arranque	parada	arranques	(I/s)	Tanque (gal)	agua (gal)	
Edificio A	46.96	60.96	10	4.05	642	102	
Edificio B	47.35	61.35	8	4.31	621	122	
Edificio C	47.15	61.15	6	2.68	327	64	

Cuadro No 4.07 – Volumen de tanque hidroneumático para cada edificio usando dos bombas

4.2.2 Diseño del sistema analizando todo el conjunto residencial

En este caso, como ya se hizo mención, se calculará las características de las bombas y tanques a utilizar para todo el conjunto residencial como si se tratase de una sola unidad.

Se calculó la dotación para el conjunto residencial, obteniéndose:

Conjunto residencial – Dotación Diaria = 92.14 m³

Con la dotación establecida, se dimensiona la cisterna. Esta deberá almacenar el agua de consumo diario y el agua contra incendios.

Las dimensiones interiores para este caso están dadas por el Cuadro 4.08

Edificio / Dimensiones	Largo (m)	Ancho (m)	Alto (m)
Conjunto residencial	17.50	4.80	2.55

Cuadro No 4.08 - Dimensiones interiores de cistema para conjunto residencial

Ver Anexo 4.04 para cálculos y referencias.

a.) Sistema hidroneumático utilizando 3 bombas

Con la sumatoria de las unidades de Hunter de cada edificio se obtiene la máxima demanda simultánea para el conjunto residencial:

Conjunto Residencial – MDS = 15.31 l/s

Con este caudal se elige la tubería de succión e impulsión. A partir de ahí se calculan las pérdidas de carga para el punto más desfavorable del conjunto residencial:

Conjunto Residencial – Hf = 21.510 mca

Para todos los casos, el punto más desfavorable es la salida de los inodoros, los cuales funcionan con un fluxómetro, el cual requiere una presión de salida de 10mca. A partir de este punto se calcula la altura dinámica del edificio.

Utilizando la altura dinámica se obtendrá la potencia del motor de la bomba. En el Cuadro No. 4.09 se muestran la potencia de las bombas para el conjunto residencial.

Ver Anexo 4.05 para cálculos y referencias.

Edificio	H dinámico	Caudal (I/s)	Potencia de la	Potencia del motor
	(mca)		Bomba (HP)	(HP)
Conjunto	50.39	5.10	4.89	6.36
Residencial	50.39	5.10	4.09	0.30

Cuadro No 4.09 – Potencia de las bombas para conjunto residencial usando tres bombas

Utilizando las descripciones dadas en el Cuadro No 3.01, se obtiene en el Cuadro No 4.10, lo siguiente:

Edificio	Tamaño de la instalación	Número de arranques
Conjunto Residencial	Grande	6

Cuadro No 4.10 – Tamaño de la instalación para conjunto residencial usando tres bombas

Dada la presión de arranque, presión de parada, numero de arranques y caudal, se puede establecer el volumen del tanque hidroneumático por medio de la Figura No. 3.02. En el Cuadro No. 4.11 se muestran los resultados.

Edificio	Presión	Presión	Número de	Q	Volumen	Volumen	de
	arranque	parada	arranques	(l/s)	Tanque (gal)	agua (gal)	
Conjunto	50.39	64.39	6	5.10	1276	193	
Residencial	30.39	04.00		3.10	1270	193	

Cuadro No 4.11 – Volumen de tanque hidroneumático para conjunto residencial

b.) Sistema hidroneumático utilizando 4 bombas

La máxima demanda simultánea en este caso será igual a la cuarta parte de la calculada anteriormente debido a que se usarán cuatro bombas:

Conjunto Residencial – MDS = 3.83 l/s

Con este caudal se elige la tubería de succión e impulsión. A partir de ahí se calculan las pérdidas de carga para el punto más desfavorable de cada edificio:

Conjunto Residencial – Hf = 21.608 mca

Utilizando la altura dinámica se obtendrá la potencia del motor de la bomba. En el Cuadro No. 4.12 se muestra la potencia de las bombas para el conjunto residencial.

Ver Anexo 4.05 para cálculos y referencias.

Edificio	H dinámico	Caudal (I/s)	Potencia de la	Potencia del motor
	(mca)		Bomba (HP)	(HP)
Conjunto	50.85	3.83	3.71	4.82
Residencial				

Cuadro No 4.12 – Potencia de las bombas para conjunto residencial usando cuatro bombas

Utilizando las descripciones dadas en el Cuadro No 3.01, se obtiene en el Cuadro No 4.13, lo siguiente:

Edificio	Tamaño de la instalación	Número de arranques
Conjunto Residencial	Mediana	10

Cuadro No 4.13 – Tamaño de la instalación para conjunto residencial usando cuatro bombas

Dada la presión de arranque, presión de parada, numero de arranques y caudal, se puede establecer el volumen del tanque hidroneumático por medio de la Figura No. 3.02. En el Cuadro No. 4.14 se muestran los resultados.

Edificio	Presión	Presión	Número de	Q	Volumen	Volumen	de
	arranque	parada	arranques	(I/s)	Tanque (gal)	agua (gal)	
Conjunto	50.85	64.85	10	3.83	569	86	
Residencial	00.00	04.00	.0	0.00	559	00	

Cuadro No 4.14 – Volumen de tanque hidroneumático para conjunto residencial usando cuatro bombas

4.3 CRITERIOS DE SELECCIÓN DEL SISTEMA ÓPTIMO

Luego de obtener los valores de la potencia de las bombas y el volumen de los tanques a los que alimentan, el siguiente paso es elegir equipos de dimensiones estándar próximos a los calculados. Para esto se usará como referencia el Cuadro No. 3.02

Con estas dimensiones se pueden elegir los siguientes equipos estándar:

Analizando cada edificio independientemente utilizando una bomba por edificio

Edificio	Potencia de Motor	Volumen	Dimensiones Diámetro
Edilicio	(HP)	(gal)	x longitud
EDIFICIO A	10	1800	48" x 18'
EDIFICIO B	12	2940	60" x 20'
EDIFICIO C	5.7	1200	48" x 12'

Cuadro No. 4.15 – Equipos Hidroneumáticos para cada edificio usando una bomba.

Analizando cada edificio independientemente utilizando dos bombas por edificio

Edificio	Potencia de Motor (HP)	Volumen (gal)	Dimensiones Diámetro x longitud
EDIFICIO A	2 x 5.7	2 x 770	42" x 10'
EDIFICIO B	2 x 5.7	2 x 770	42" x 10'
EDIFICIO C	2 x 4.0	2 x 350	36" x 6'

Cuadro No. 4.16 – Equipos Hidroneumáticos para cada edificio usando dos bombas.

Para el conjunto residencial utilizando tres y cuatro bombas se tiene:

Edificio / bombas	Potencia de Motor (HP)	Volumen (gal)	Dimensiones Diámetro x Iongitud
Conjunto Residencial / 3 bombas	8.6	1500	48" x 15'
Conjunto Residencial / 4 bombas	5.7	560	36" x 10'

Cuadro No. 4.17 – Equipos Hidroneumáticos para conjunto residencial.

De los resultados mostrados se puede inferir, por la cantidad de bombas y las dimensiones de los tanque, que la mejor propuesta es la que se considera para todo el conjunto residencial utilizando 4 bombas.

Adicionalmente cabe mencionar que para tanques de grandes volúmenes, el precio se incrementa fuertemente debido a que tienen que ser fabricados especialmente para dicho proyecto.

CONCLUSIONES

El proyecto analizado utiliza inodoros con fluxómetro y jacuzzis. Estos aparatos sanitarios requieren de grandes presiones de salida. El sistema tradicional de tanque elevado necesitaría estar ubicado a una altura de 13 metros sobre la azotea, lo cual no va de la mano con la arquitectura de la zona. Es por esta razón que se recomienda utilizar el sistema hidroneumático, debido a que utiliza un tanque neumático en la parte baja de la edificación y proporciona la presión requerida en todos los puntos.

Se observa que a mayor caudal, mayor será la potencia de la bomba, y por consiguiente el número de arranques por hora será menor. Este factor afecta directamente al volumen del tanque hidroneumático, pues a menor cantidad de arranques por hora menor será la relación agua almacenada/volumen del tanque. Esto significa que para alcanzar el volumen de agua necesaria se requerirá de un tanque de gran volumen, lo cual aumenta el costo del sistema y su viabilidad.

Luego de comparar las cuatro alternativas enunciadas, se llega a la conclusión que la alternativa más favorable para el proyecto es aquella que considera como uno solo todo el sistema para el conjunto residencial, utilizando 4 bombas de 5.7 HP y 4 tanques hidroneumáticos de 560 galones cada uno. Se escoge esta solución debido a que las otras alternativas usan bombas de gran potencia con tanques demasiado grandes o por otro lado usan bombas pequeñas, pero en gran cantidad, encareciendo el proyecto.

RECOMENDACIONES

Deben darse soluciones de sistemas de bombas y tanques hidroneumáticos que se encuentren disponibles en el mercado local.

Realizar el diseño de las instalaciones sanitarias conjuntamente con las demás especialidades, es decir, arquitectura, estructuras, instalaciones eléctricas e instalaciones electromecánicas, pues existen diversas consideraciones que deben tomarse en cuenta al momento de realizar el diseño de las instalaciones de agua y desagüe, tales como ubicación de placas y columnas, o ductos eléctricos.

BIBLIOGRAFÍA

- ININVI Instituto Nacional de Investigación y Normalización de la Investigación, Especificaciones Técnicas Generales de Instalaciones Sanitarias para Edificaciones, Editorial Nuevo Mundo, Primera Edición, 1991.
- JIMENO Blasco, Enrique, Instalaciones sanitarias en Edificaciones,
 Capítulo de Ingeniería Sanitaria y Ambiental Consejo Departamental de Lima – Colegio de Ingenieros del Perú, Segunda Edición, 1995.
- Reglamento Nacional de Edificaciones, 2009.
- VALENCIA Soto, Frida Heidi, Proyecto inmobiliario conjunto residencial
 Ontario Instalaciones Sanitarias, Informe de suficiencia, 2008.

ANEXOS

Anexo

Anexo 4.01 – Cálculo de dotación y cisterna para cada edificio

DOTACION

EDIFICIO A

Dpto	Dorm	Dotación po Dpto. L/d
X01	4	1350
X02	4	1350
X03	4	1350
X04	3	1200
Total/piso		5250

Piso	Dotación Agua Fria	Dotación pera Garajes	Dotación de Áreas Verdes	Dotación por Piso
Sótano	0	1900	0	1900
Semisòtano	500	1800	1200	3500
Piso 1	5250	0	0	5250
Piso 2	6250	0	0	5250
Piso 3	5250	0	0	5250
Piso 4	5250	0	0	5250
Piso 5	5250	0	0	5250
TOTAL	26750	3700	1200	31650

EDIFICIO B

Opto.	Dorm	Dotación por Opto, L/d
X01	3	1200
X02	3	1200
X03	4	1350
X04	4	1350
X05	4	1350
X06	4	1350
Total/piso		7800

Piso	Dotación Agua Fria	Dotación para Garajes	Dotación de Áreas Verdes	Dotación por Piso
Sótano)	2000	0	2000
Semisótano)	1800	1200	3000
Pisu 1	7800	0	0	7800
Piso 2	7800	0	0	7800
Piso 3	7800	0	0	7800
Piso 4	7800	0	0	7800
Piso 5	7800	0	0	7800
TOTAL	39000	3800	1200	44000

EDIFICIO C

Dpto.	Dorm	Dotación por Opto. L/d
X01	4	1350
X02	4	1350
Total/piso		2700

Piso	Dotación Agua Fria	Dotación para Garajes	Dotación de Áreas Verdes	Dotación por Piso
Sótano	0	990	0	990
Semisotano	0	800	1200	2000
Piso 1	2700	0	0	2700
Piso 2	2700	0	0	2700
Piso 3	2700	0	0	2700
Piso 4	2700	0	0	2700
Piso 5	2700	0	0	2700
TOTAL	13500	1790	1200	16490

Anexos

CISTERNA											_
EDIFICIO A				EDIFICIO B				EDIFICIO C			
Volumenes				Volumenes				Volumenes			
Dotacion diaria =		32 25	m3	Dotacion diaria =		44	m3	Dotacion diaria =		16	m3
Agua contra incend	io =	25	m3	Agua contra incend	io =	25	m3	Agua contra incen		25	m3
V Ismen Util Cists	Hne *	57	mJ	Volumen Util Clste	ema =	69	m3	Volumen Util Cis	terna =	41	m3
Dimensiones inter	riores:			Dimensiones inter	riores:			Dimensiones inte	eriores:		
largo=	8.5			largo=	12			largo=	5.4		
ancho=	4			ancho=	3.75			ancho=	4.5		
alto=	2.55			alto=	2.55			alto=	2.55		
volumen total-	86.7			volumen total=	114.75			volumen total=	61.965		
Alturas:				Alturas:				Alturas:			
H libre=	0.8			H libre=	0.8			H libre=	0.8		
H consumo=	1			H consumo=	1			H consumo=	0.7		
H incendios=	0.75			H incendios=	0.75			H incendios=	1.05		
H total	2.55			H total	2.55			H total	2.55		
Vol. libre=		27.2		Vol. libre=		36		Vol. libre=		19.44	
vol. consumo dom=		34	4	vol. consumo do m=		45	4	vol. consumo dom	- 1	17.01	4
vol. contra incend=		25.5	4	vol. contra incend=		33.75	4	vol. contra incenda		25.515	4
volumen total=		86.7	,	volumen total=		114.75		volumen total=		61.965	1

Anexo 4.02 -

Cálculo de caudal, perdidas de carga y potencia de la bomba

usando una bomba por cada edificio

RED DE DISTRIBUCION AGUA FRIA

EDIFICIO A

PISO TIPICO			
Aparato Sanitario	U.H.	Cantidad	Total
Lavatorio de Cocina	3	8	24
Lavatorio de ropa	3	4	12
Lavadora	4	4	16
Lavadero de manos	1	23	23
Inodoro con tanque	3	4.	12
Ducha	2	4	В
Tina	2	7	14
Inodoro con Fluxómetro	6	15	\$0
Jacuzzi	2	4	3
TOTAL			207

SEMISOTANO			
Aparato Santsario	U.H.	Cantidad	Total
Lavadero de manos	1	2	2
Inodoro con tanque	3	1	3
Ducha	2	1	2
Inodoro con Fluxómetro	6	1	ô
Grifo para garaje	2	1	2
Grifo <u>para</u> riego	2	2	4
TOTAL			19

SOTANO

Aparato Sanitario	U.H.	Cantidad	Total
Crifo para garaje	2	1	2
TOTAL			2

EDIFICIO B

Aparato Sanitario		U.H.	Cantidad	Tota
Lavatorio Cocina	de	3	6	18
Lavatorio ropa	de	3	4	12
Lavadura		4	4	16
Lavadero manos	de	1 u	28	28
inodorc tanque	con	3	6	18
Ducha		2	6	12
Tina		2	10	20
lnodoro Fluxómetro	con	6	18	108
Jacuzzi		2	2	4
TOTAL				236

SEMISOTANO

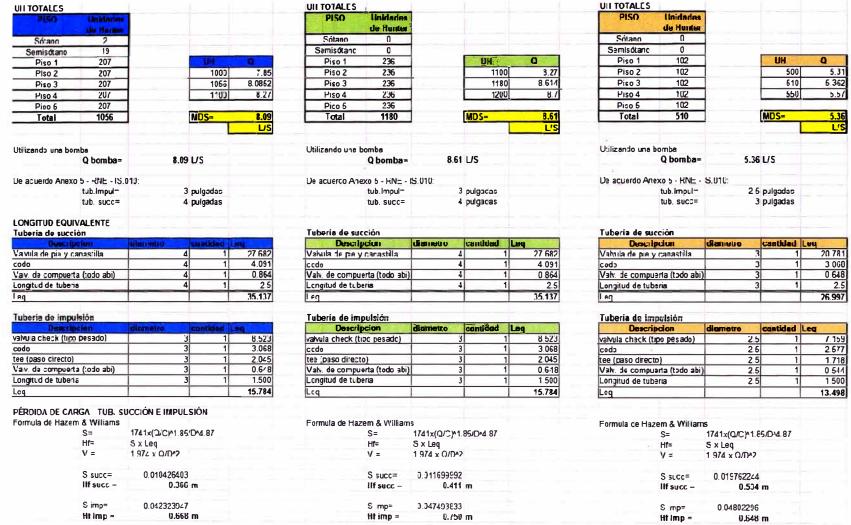
Aparato Sanitario	U.H.	Cantidad	Total
	le 1	0	0
Inodore co tanque	n 3	0	0
Ducha	2	0	0
Inodoro co Fluxómetro	n 6	0	0
Grifo para garaj	e 2	0	0
Grifo para riego	2	0	0
TOTAL			0

SOTANO

JUINIO			
Aparato	U.H.	Cantidad	Total
Aparato Sanitario			
Crifo para garaje	2	0	0
TOTAL			0

EDIFICIO C

Aparato Sanitario		U.H.	Cantidad	Tota
Lavatorio Cocina	de	3	4	12
Lavatorio ropa	de	3	2	5
Lavadora		4	2	3
Lavadero manos	de	1	10	10
Inodoro tanque	con	3	2	5
Cucha		2	2	4
Tina		2	2	4
nodoro Fluxómetro	con	6	8	48
Jacuzzi		2	2	1
TOTAL			T. Comment	102


SEMISOTANO

Aparato Sanitario		U.H.	Cantidad	Total
Lavadero manos	de	1	0	J
Inodoro tanque	con	3	0)
Cucha		2	0)
lnodoro Fluxómetro	COR	6	0)
Grifo garaje	para	2	0)
Grifo para r	iego	2	0)
TOTAL				0

SOTANO

Aparato Sanitario		U.H.	Cantidad	Total
Grifo garaje	para	2	0)
TOTAL				0

2.57	븱	
1.718	3	
0.54	1	
1.500 3.498	_	
0.00		

PÉRDIDA DE CARGA RED DE DISTRIBUCIÓN

EDIFICIO A

Calculo de perdida de carga desde el punto mas desfavorable utilizando una bomba

					longitor								Presiones	
Tramo	UH	caudel	diametro	Real	equiv.	total	velocida	wal limite	cond. vel	5	H	PI	1	PF
A.5.2.08 - A.5.2.07	6	0.94	1.25	1.700	3.927	5.627	1.188	2.85	4	0.05608	0.316	10.000	0.3	10.616
A.5.2.07 - A.5.2.06	7	0.97	1.25	0.650	2.618	3.268	1.225	2.85	1	0.05943	0.194	10.616	0	10.810
A.5.2.06 - A.5.2.05	8	1.00	1.25	2.100	2.618	4.718	1.263	2.85	4	0.06288	0.297	10.810	0	11.106
A.5.2.05 - A.5.2.04	10	1.06	1.25	10.600	12.494	23.094	1.339	2.85	1	0.07004	1.617	11.106	0	12.724
A.5.2.04 - A.5.2.03	19	1.30	1.25	1.400	2.618	4.018	1.642	2.85	4	0.10217	0.411	12.724	0	13.134
A.5.2.03 - A.5.2.02	28	1.51	1.25	4.500	3.927	8.427	1.908	2.85	1	0.13478	1.136	13.134	0	14.270
A.5.2.02 - A.5.2.01	47	1.88	1.50	5.200	4.991	10.191	1.649	3	1	0.08319	0.848	14.270	0	15.118
A.5.2.01 - AM5.2	54	2.03	1.50	12.400	54.041	66.441	1,777	3	1	0.09554	6.348	15.118	2.26	23.726
AM5.2 - A4	207	3.42	2	3.800	16.363	20.163	1.686	. 3	4	0.06187	1.247	23.726	2.8	27.774
A4 - A3	414	4.80	3	2.800	7.5	10.3	1.054	3	1	0.01614	0.166	27.774	2.8	30.740
A3 - A2	621	5.94	3	2.800	7.5	10.3	1.303	3	4	0.02389	0.246	30.740	2.8	33.786
A2 - A1	828	6.99	3	2.800	7.5	10.3	1.533	3	4	0.03231	0.333	33.786	2.8	36.919
A1 - ASS	1035	8.00	3	3.800	7.5	11.3	1.754	3	4	0.04143	0.468	36.919	3.8	41.187
ASS - AU	1056	8.09	3	17.000	18.408	35.408	1.774	3	4	0.04232	1.499	41.187	2.5	45.185
AU - ATanque	1056	8.09	3	3.000	6.784	9.784	1.774	3	1	0.04232	0.414	45.185	0	45.600
											15.539		20.061	

Perdida de carga de medidores interiores

2.026 l/s 31.99 gpm 1.5 pulg 2.5 lb/pulg2 1.76 m Q = Q = Diametro tuberia = Hf medidor = Hf medidor =

EDIFICIO B

Calculo de perdida de carga desde el punto mas desfavorable utilizando una bomba

					longitu	d						THE RESERVE	Presione	
Tramo	UH	caudal	diametro	Real	equiv.	total	velocida	vel limite	cond. vel	S	Hf	PI	h	Pf
B.5.2.08 - B.5.2.07	6	0.94	1.25	1.100	2.618	3.718	1.188	2.85	1	0.05608	0.208	10.000	0.3	10 508
B.5.2.07 - B.5.2.06	8	1.00	1.25	0.550	2.618	3.168	1.263	2.85	4	0.06288	0.199	10.508	0	10 708
B.5.2.06 - B.5.2.05	9	1.03	1.25	1.000	2.618	3.618	1.301	2.85	1	0.06641	0.240	10.708	0	10.948
B.5.2.05 - B.5.2.04	10	1.06	1.25	4.200	13.803	18.003	1.339	2.85	4	0.07004	1.261	10.948	0	12.209
B.5.2.04 - B.5.2.03	14	1.17	1.25	2.700	2.618	5.318	1.478	2.85	4	0.08407	0 447	12.209	0	12.656
B.5.2.03 - B.5.2.02	23	1.40	1.25	0.350	2.618	2.968	1.762	2.85	4	0.11641	0.345	12 656	0	13.001
B.5.2.02 - B.5.2.01	33	1.61	1.25	8.150	3.927	12.077	2.034	2.85	4	0.15175	1.833	13.001	0	14.834
B.5.2.01 - BM5.2	40	1.74	1.25	27.000	49 438	76 438	2 198	2.85	4	0.17520	13.392	14.834	1.91	30.134
BM5.2 - B4	236	3.62	2	3.500	13.397	16.897	1.787	3	1	0.06894	1.165	30.134	2.8	34.099
B4 - B3	472	5.13	3	2.800	7.5	10.3	1.125	3	4	0.01822	0.188	34.099	2.8	37.087
B3 - B2	708	6.39	3	2.800	7.5	10.3	1.402	3	4	0.02736	0 282	37.087	2.8	40.169
B2 - B1	944	7.58	3	2.800	7.5	10.3	1.663	3	4	0.03752	0.386	40.169	2.8	43.355
B1 - BU	1180	8.61	3	6.300	7.5	13.8	1.889	3	4	0.04753	0.656	43 355	6.3	50.311
BU - BTanque		4.31	3	3.000	6.784	9.784	0.945	3	4	0.01319	0.129	50.311	0	50.440
											20.732		19.7085	

Perdida de carga de medidores interiores
Q = 1.74 l/s
Q = 27.47 gpm 1.25 pulg 2 lb/pulg2 1.41 m Diametro tuberia = Hf medidor = Hf medidor =

EDIFICIO C

Calculo de perdida de carga desde el punto mas desfavorable utilizando una bomba

				Tan I	longitu	d						THE REAL PROPERTY.	Presiones	
Tramo	UH	caudal	diametro	Real	equiv.	total	velocida	vel limite	cond. vel	S	Hf	PI	h	Pf
C.5.2.07 - C.5.2.06		6 0.9	4 1.25	1.000	2.618	3.618	1.188	2.85	1	0.05608	0 203	10.000	0.3	10.503
C.5.2.06 - C.5.2.05		7 0.9	7 1.25	8.500	11,185	19.685	1.225	2.85	1	0.05943	1.170	10.503	0	11.673
C.5.2.05 - C.5.2.04		4 1.1	7 1.25	3.000	2.618	5.618	1.478	2.85	1	0.08407	0.472	11.673	0	12.145
C.5.2.04 - C.5.2.03	2	0 1.3	3 1.25	1.150	2.618	3.768	1.680	2.85	1	0.10657	0.402	12,145	0	12.547
C.5.2.03 - C.5.2.02	2	5 1.4	4 1.25	2.000	2.618	4.618	1.813	2.85	1	0.12266	0.566	12.547	0	13.113
C.5.2.02 - C.5.2.01] 3	2 1.5	9 1.25	3.500	2.618	6.118	2.009	2.85	1	0.14828	0.907	13.113	0	14.020
C.5.2.01 - CM5.2	6	1.9	1.50	5.000	46.271	51.271	1.741	3	4	0.09191	4.712	14.020	2.26	20.993
CM5.2 - C4	10	2 2.5	6 2.50	3.800	16.363	20.163	0.809	3	4	0.01224	0.247	20.993	2.8	24.040
C4 - C3	20	4 3.3	9 2.50	2.800	7.5	10.3	1.071	3	1	0.02060	0 212	24.040	2.8	27.052
C3 - C2	30	6 4.1	6 2.50	2.800	7.5	10.3	1.313	3	1	0.02999	0.309	27.052	2.8	30.161
C2 - C1	40	8 4.7	6 2.50	2.800	7.5	10.3	1.502	3	1	0.03849	0.396	30.161	2.8	33 357
C1 - CU	51	0 5.3	2.50	3.800	7.5	11.3	1.694	3	4	0.04806	0.543	33.357	6.3	40.200
CU - CTanque		5.3	6 2.50	3.000	6.784	9.784	1.693	3	1	0.04802	0.470	40.200	0	40.670
				7,5							10.610		20.0606	

Perdida de carga de medidores Interiores
Q = 198 l/s
Q = 31.33 gpm
Diametro tuberia = 1.5 pulg 1.5 pulg 2.5 lb/pulg2 1.76 m Hf medidor = Hf medidor =

EDIFICIO A			
Calculo de la altura dinar	nica de eleva	acion:	
H dinamica =	perdidas de	•	altura estatica de succion + y succion + perdida de carga + presion de salida
H dinamica (1 bomba) =	(2.80 x 5 + 2	.00 + 1) + (0.8) + (0.	.668 + 0.366) + (15.54) + (10)
H dinamica (1 bomba) =	44.37	m	
Calculo del volumen del	tanque hidro	neumático	
Pmin =	44.37	mca	Presion de arranque
Pmax=	Pmin + 14		
Pmax=	58.37	mca	Presion de parada
Potencia de la Bomba =	Q x H dinam	ica / 75xn	
Potencia de la Bomba =	8.10 x 44.37	/ 75 x 0.70	
Potencia de la Bomba =	6.84	HP	Trifásico
Potencia motor =	1.3 x potenci	a de la bomba	
Potencia motor =	8.89	HP	Trifásico
Calculo de arranques po	r hora		
Tamaño de la instalacion =		N=	6
1m3 = 264 galones americ	anos		
Relacion de Almacenami	ento y volum	en total =	
A = 0.8x Vt x (Pp-Pa)/(Pp +	+ 1)	A =	1.04 m3
(· p · =/-(· p		A =	273.80 gal
Q/Vt =	4.6	Q en m3/h	Q = 29.124
Vt =	6.33	m3	
Vt =	1671.46		

EDIFICIO B					
Calculo de la altura dina	mica de eleva	acion:			
H dinamica =	perdidas de	•	altura estatica de succion + y succion + perdida de carga + presion de salida		
H dinamica (1 bomba) =	(2.80 x 5 + 2	.00 + 1) + (0.8) + (0.	.411 + 0.750) + (20.73) + (10		
H dinamica (1 bomba) =	49.69	m			
Calculo del volumen del	tanque hidro	neumático			
Pmin =	49.69		Presion de arranque		
Pmax= Pmax=	Pmin + 14 63.69		Presion de parada		
Potencia de la Bomba =	Q x H dinam				
Potencia de la Bomba =	8.61 x 49.69		Trifásico		
Potencia de la Bomba =	8.15	пР	Tritasico		
Potencia motor =	1.3 x potenci	a de la bomba			
Potencia motor =	10.59		Trifásico		
Calculo de arranques po	or hora				
Tamaño de la instalacion	= GRANDE	N=	5		
1m3 = 264 galones americ	canos				
Relacion de Almacenami	iento y volum	en total =			
A = 0.8x Vt x (Pp-Pa)/(Pp	+ 1)	A =	1.68 m3		
		A =	444.17 gal		
Q/Vt =	= 2.8	Q en m3/h	Q = 30.996		
Vt =	11.07	m3			
Vt =	2922.48				

EDIFICIO C			
Calculo de la altura dinar	nica de eleva	icion:	
H dinamica =	perdidas de o	•	altura estatica de succion + y succion + perdida de carga + presion de salida
H dinamica (1 bomba) = H dinamica (1 bomba) =	(2.80 x 5 + 2.39.59		534 + 0.648) + (10.61) + (10
Calculo del volumen del	tanque hidro	neumático	
Pmin = Pmax=	39.59 Pmin + 14		Presion de arranque
Pmax= Potencia de la Bomba =	53.59 Q x H dinami		Presion de parada
Potencia de la Bomba = Potencia de la Bomba =	5.36 x 39.59 4.04		Trifásico
Potencia motor =	1.3 x potenci 5.25	a de la bomba HP	Trifásico
Calculo de arranques po Tamaño de la instalacion =		N=	6
1m3 = 264 galones americ	anos		
Relacion de Almacenami	ento y volum	en total =	
A = 0.8x Vt x (Pp-Pa)/(Pp +	1)	A = A =	0.81 m3 213.62 gal
Q/Vt =	4.2	Q en m3/h	Q = 19.296
Vt = Vt =	4.59 1212.89		

Anexo 4.03 Cálculo de usando dos bombas por cada edificio caudal, perdidas de carga y potencia de la bomba

5.57

2.5

1.5

8.734

1.5

UH TOTALES UH TOTALES UH TOTALES PISO Unidades PISO Unidades de Hunter de Hunter de Hume Sótano 0 Sótano 0 Sótano 2 Semisótano 0 19 Semisótano 0 Semisótano 236 Q Piso 1 102 Q Piso 1 UH Piso 1 207 500 1000 Piso 2 236 1100 8.27 Piso 2 102 5.31 Piso 2 207 7.85 1160 8.614 102 510 5.362 1056 8.0852 Piso 3 236 Piso 3 Piso 3 207 Piso 4 102 550 1200 1100 8.27 Pise 4 236 8.7 Piso 4 207 102 Piso 5 236 Piso 5 Piso 5 207 5.36 L/S MDS-0.61 Total 510 MDS-Total 1056 MDS-8.09 Total 1180 US L Utilizando dos bombas Utilizando dos bombas Utilizando dos bombas 4.05 L/S 4.31 L/S Q bomba-2.68 L/S Q bomba-Q bomba-De acuerdo Anexo 5 - RNE - IS 010 De acuerdo Anexo 5 - RNE - IS.010 De acuerdo Anexo 5 - RNE - IS.010: 2 pulgadas tub.impul= 1.5 pulgadas tub.impul= tub.impul= 2 pulgadas 2 pulgadas 2.5 pulgadas tub. succ= tub. succ= 2.5 pulgadas tub. succ≠ LONGITUD EQUIVALENTE Tubería de succión Tubería de succión Tuberia de succión diametro cantidad Lea Descripcion cantidad |Leg Descripcion diametro 17.44 Valvula de pie y canastilla 13.841 2.5 17.44 Valvula de pie v canastilla 2.5 Valvula de pie y canastilla codo 2.5 2.577 codo 2.5 2.577 codo 2.045 Valv. de compuerta (todo abi) 2.5 0.544 Valv. de compuerta (todo abi) 2.5 0.544 Valv. de compuerta (todo abi) 0.432 Longitud de tubena 2.5 2.5 Longitud de tubena 2.5 2.5 Longitud de tubena 23.061 23.061 18.818 Leq Leq Tuberla de Impulsión Tuberie de impulsión Tubería de Impulsión cantidad Leg cantidad Leg Descripcion diametro Descripcion diametro valvula check (tipo pesado) 5.682 valvula check (tipo pesado) 5.682 valvula check (tipo pesado) 1.5 4.316 2.045 codo 2.045 1.5 1.554 1.364 tee (paso directo) tee (paso directo) 2 1.364 tee (paso directo) 1.5 1.036 Valv. de compuerta (todo abi) 2 0.432 Valv de compuerta (todo abi) 2 0.432 Valv. de compuerta (todo abi) 1.5 0.328

2

1.5

11.023

Longitud de tubena

Leq

Longitud de tuberia

Leg

2

1.5

11.023

Longitud de tuberia

Leg

Proyecto Inmobiliario Jardines de Jorge Eduardo Durand Miranda

Diseño

PÉRDIDA DE CARGA - TUB. SUCCIÓN E IMPULSIÓN

Formula de Hazem & Williams		Formula de Hazem & \	Villiams	Formula de Hazem & Wi	lliams
S=	1741x(Q/C)*1.85/D*4.87	S=	1741x(Q/C)*1.85/D*4.87	S=	1741x(Q/C)
Hf=	SxLeq	Hf=	S x Leq	Hf≃	SxLea
V =	1.974 x Q/D^2	V =	1.974 x Q/D ²	V =	1.974 x Q/L
S succ=	0.0285947	S succ=	0.032	S succ=	0.0394907
Hf succ	= 0.659 m/bomba	Hf succ =	0.740 m/bomba	Hf succ :	0.743
Hf succ	tot 1.319 m	Hf succ tol	1.480 m	Hf succ	1.486
S imp=	0.0847691	S imp=	0.095	S imp=	0.1603049
Hf imp =	0.934 m/bomba	Hf imp =	1.048 m/bomba	Hf imp =	1.400
Hf imp t	ot 1.869 m	Hf imp tot	2.097 m	Hf Imp to	2.800

PÉRDIDA DE CARGA RED DE DISTRIBUCIÓN

					tongitus	L.,						Pr	estones	
Transo	UH	caudat	diameter	Russ	equiv.	lotal	velocitied	wal list	cond. vei	5	W.	RI	D.	Pf
A.5.2.08 - A.5.2.07	6	0.94	1.25	1.700	3.927	5.627	1.188	2.85	4	0.05608	0.3156	10.0000	0.3	10 615
A.5.2.07 - A.5.2.06	7	0.97	1.25	0.650	2.618	3.268	1.225	2.85	4	0.05943	0.1942	10.6156	0	10.809
A.5.2.06 - A.5.2.05	8	1.00	1.25	2.100	2.618	4.718	1.263	2.85	4	0.06288	0.2967	10.8098	0	11.106
A.5.2.05 - A.5.2.04	10	1.06	1.25	10.600	12.494	23.094	1.339	2.85	4	0.07004	1.6174	11.1065	0	12.723
A.5.2.04 - A.5.2.03	19	1.30	1.25	1.400	2.618	4.018	1.642	2.85	4	0.10217	0.4105	12.7239	0	13.134
A.5.2.03 - A.5.2.02	28	1.51	1.25	4.500	3.927	8.427	1.908	2.85	1	0.13478	1.1358	13.1344	0	14.270
A.5.2.02 - A.5.2.01	47	1.88	1.50	5.200	4.991	10.191	1 649	3	4	0.08319	0.8478	14.2702	0	15 118
A.5.2.01 - AM5.2	54	2.03	1.50	12.400	54.041	66.441	1.777	3	4	0.09554	6.3477	15.1180	2.26	23 726
AM5.2 - A4	207	3.42	2	3.800	16.363	20.163	1.686	3	4	0.06187	1.2474	23.7262	2.8	27 773
A4 - A3	414	4.80	3	2.800	7.5	10.3	1.054	3	4	0.01614	0.1662	27.7737	2.8	30 739
A3 - A2	621	5.94	3	2.800	7.5	10.3	1.303	3	1	0.02389	0.2461	30.7399	2.8	33.786
A2 - A1	828	6.99	3	2.800	7.5	10.3	1.533	3	4	0.03231	0.3328	30.7399	2.8	33.872
A1 - ASS	1035	8.00	3	3.800	7.5	11.3	1.754	3	4	0.04143	0.4681	33.8726	3.8	38.140
ASS - AU	1056	8.09	3	17.000	18.408	35.408	1.774	3	4	0.04232	1.4986	38.1408	2.5	42.139
AU - ATanque		4.10	2	3.000	6.784	9.784	2.023	3	4	0.08672	0.8484	21.0697	0	21.918
											15,97335		20.0606	

Perdida de carga de medidores interiores

Q =

2.026 l/s 31.99 gpm 1.5 pulg 2.5 lb/pulg2 Hf medidor = 1.76 m

EDIFICIO B

Calculo de perdida de carga desde el punto mas desfavorable utilizando dos bombas

					longitu	d				Y		Pr	esiones	
Tramo	ÜH	caudal	diametro	Real	equiv.	total	velocidad	vel lim	cond. vel	S	Hf	Pi	h	Pf
B.5.2.08 - B.5.2.07	6	0.94	1.25	1.100	2.618	3.718	1.188	2.85	4	0.05608	0 2085	10.0000	0.3	10 5085
B.5.2.07 - B.5.2.06	8	1.00	1.25	0.550	2.618	3.168	1.263	2.85	4	0.06288	0 1992	10.5085	0	10.7077
B.5.2.06 - B.5.2.05	9	1.03	1.25	1.000	2.618	3.618	1.301	2.85	4	0.06641	0 2403	10.7077	0	10 9480
B.5.2.05 - B.5.2.04	10	1.06	1.25	4.200	13.803	18.003	1.339	2.85	4	0.07004	1.2609	10.9480	0	12.2089
B.5.2.04 - B.5.2.03	14	1.17	1.25	2.700	2.618	5.318	1.478	2.85	4	0.08407	0.4471	12.2089	0	12.6560
B.5.2.03 - B.5.2.02	23	1.40	1.25	0.350	2.618	2.968	1.762	2.85	4	0.11641	0.3455	12.6560	0	13 0014
B.5.2.02 - B.5.2.01	33	1.61	1.25	8.150	3.927	12.077	2.034	2.85	1	0.15175	1.8327	13.0014	0	14.8342
B.5.2.01 - BM5.2	40	1.74	1.25	27.000	49.438	76.438	2.198	2.85	4	0.17520	13.3917	14.8342	1.91	30.1343
BM5.2 - B4	236	3.62	2	3.500	13.397	16.897	1.787	3	4	0.06894	1.1650	30.1343	28	34.0993
B4 - B3	472	5.13	3	2.800	7.5	10.3	1.125	3	4	0.01822	0.1877	34 0993	2.8	37 0870
B3 - B2	708	6.39	3	2.800	7.5	10.3	1.402	3	1	0.02736	0.2818	37.0870	2.8	40.1687
B2 - B1	944	7.58	3	2.800	7.5	10.3	1.663	3	1	0.03752	0.3865	37.0870	2.8	40 2734
B1 - BU	1180	8.61	3	6.300	7.5	13.8	1.889	3	4	0.04753	0.6560	40.2734	6.3	47.2294
BU - BTanque		4.31	2	3.000	6.784	9.784	2.126	3	4	0.09499	0.9294	23 6147	0	24.5441
- 50			(C)							-	24 53209		19 7085	

edidores interiores 1.74 l/s 27.47 gpm 1.25 pulg 2 lb/pulg2 1.41 m Perdida de carga de m Q = Q = Diametro tuberia = Hf medidor =

EDIFICIO C

Calculo de perdida de carga desde el punto mas desfavorable utilizando dos b

			9		lonaite							Pr	esiones	- 1
Tramo	UH	caudal	diemetr	Real	equiv.	total	velocidad	vel lim	cond. vei	S	lff	Pi	h	Pf
C.5.2.07 - C.5.2.06	6	0.94	1.25	1.000	2.618	3.618	1.188	2.85	4	0.05608	0.2029	10.0000	0.3	10.5029
C.5.2.06 - C.5.2.05	7	0.97	1.25	8.500	11.185	19.685	1.225	2.85	4	0.05943	1.1700	10.5029	0	11 6729
C.5.2.05 - C.5.2.04	1 14	1.17	1.25	3.000	2.618	5.618	1.478	2.85	4	0.08407	0.4723	11.6729	0	12.1452
C.5.2.04 - C.5.2.03	20	1.33	1.25	1.150	2.618	3.768	1.680	2.85	4	0.10657	0.4016	12.1452	0	12.5467
C.5.2.03 - C.5.2.02	25	1.44	1.25	2.000	2.618	4.618	1.813	2.85	4	0.12266	0.5664	12 5467	0	13.1132
C.5.2.02 - C.5.2.01	32	1.59	1.25	3.500	2.618	6.118	2.009	2.85	4	0.14828	0.9072	13.1132	0	14.0204
C.5.2.01 - CM5.2	51	1.98	1.50	5.000	46.271	51.271	1.741	3	4	0.09191	4.7122	14 0204	2.26	20 9931
CM5.2 - C4	102	2.56	2.00	3.800	16.363	20.163	1.263	3	4	0.03628	0.7316	20.9931	2.8	24 5246
C4 - C3	204	3.39	2.00	2.800	7.5	10.3	1.674	3	4	0.06106	0.6290	24.5246	28	27.9536
C3 - C2	306	4.16	2.00	2.800	7.5	10.3	2.051	3	4	0.08892	0.9159	27.9536	2.8	31.6695
C2 - C1	408	4.76	2.00	2.800	7.5	10.3	2.347	3	1	0.11412	1.1754	27.9536	2.8	31.9290
C1 - CU	510	5.36	2.00	3.800	7.5	11.3	2.646	3	1	0.14246	1 6098	31.9290	6.3	39.8388
CU - CTanque	Ī	2.68	1.50	3.000	6.784	9.784	2.352	3	4	0.16042	1.5695	19.9194	0	21.4689
	-10		***								15,06383		20 0606	

Q = Q =

1.98 l/s 31.33 gpm 1.5 pulg 2.5 lb/pulg2 1.76 m Diametro tuberia = Hf medidor = Hf medidor =

EDIFICIO A			
Calculo de la altura dinar	nica de eleva	acion:	
H dinamica =	perdidas de	•	altura estatica de succion + y succion + perdida de carga + presion de salida
H <u>dinamica (2</u> bombas) = H dinamica (2 bombas) =	(2.80 x 5 + 2. 46.96		.319 + 1.869) + (15.97) + (10)
Calculo del volumen del	tanque hidro	oneumático	
Pmin = Pmax=	46.96 Pmin + 14		Presion de arranque
Pmax=	60.96	m	Presion de parada
Potencia de la Bomba = Potencia de la Bomba = Potencia de la Bomba =	Q x H dinam 4.05 x 46.96 3.62	/75 x 0.70	
Potencia motor = Potencia motor =	1.3 x potenci 4.71	a de la bomba HP	Trifásico
Calculo de arranques po	r hora		
Tamaño de la instalacion =		N=	10
1m3 = 264 galones americ	anos		
Relacion de Almacenami	ento y volum	en total =	
A = 0.8x Vt x (Pp-Pa)/(Pp +	+ 1)	A = A =	0.38 m3 101.25 gal
Q/Vt =	- 6	Q en m3/h	
Vt =	2.43	m3	
Vt =	641.52		

EDIFICIO B			
Calculo de la altura dinar	nica de eleva	acion:	
H dinamica =	perdidas de	carga por impulsion	altura estatica de succion + y succion + perdida de carga + presion de salida
H dinamica (2 bombas) = H dinamica (2 bombas) =	(2.80 x 5 + 2 47.35		.48+2.097) + (15.97) + (10)
Calculo del volumen del	tanque hidro	oneumático - 1 bon	nba
Pmin =	47.35	m	Presion de arranque
Pmax=	Pmin + 14		
Pmax=	61.35	m	Presion de parada
Potencia de la Bomba =	Q x H dinam	ica / 75xn	
Potencia de la Bomba =	4.31 x 47.35	/ 75 x 0.70	
Potencia de la Bomba =	3.89	HP	
Potencia motor =	1.3 x potenci	ia de la bomba	
Potencia motor =	5.05		Trifásico
Calculo de aaranques po	or hora		
Tamaño de la instalacion =		N=	8
1m3 = 264 galones americ	anos		
Relacion de Almacenami	ento y volum	en total =	
A = 0.8x Vt x (Pp-Pa)/(Pp +	· 1)	A =	0.46 m3
(. p . 27 (p		A =	121.21 gal
Q/Vt =	6.6	Q en m3/h	Q = 15.516
Vt =	2.35	m3	
Vt =	620.64		

EDIFICIO C			
Calculo de la altura dinar	nica de eleva	icion:	
H dinamica =	perdidas de d	•	altura estatica de succion - y succion + perdida de car + presion de salida
H dinamica (2 bombas) = H dinamica (2 bombas) =	(2.80 x 5 + 2. 47.15		48+2.80) + (15.06) + (10)
Calculo del volumen del	tanque hidro	neumático - 1 bom	ba
Pmin =	47.15	m	Presion de arrangue
Pmax=	Pmin + 14		
Pmax=	61.15	m	Presion de parada
Potencia de la Bomba =	Q x H dinami	ica / 75xn	
Potencia de la Bomba =	2.68 x 47.15	/ 75 x 0.70	
Potencia de la Bomba =	2.41	HP	
Potencia motor =	1.3 x potenci	a de la bomba	
Potencia motor =	3.13		Trifásico
Calculo de aaranques po	or hora		
Tamaño de la instalacion =		N=	10
1m3 = 264 galones americ	anos		
Relacion de Almacenami	ento y volum	en total =	
A = 0.8x Vt x (Pp-Pa)/(Pp =	+ 1)	A =	0.24 m3
		A =	64.00 gal
Q/Vt =	7.8	Q en m3/h	Q = 9.6
Vt =	1.24	m3	
Vt =	326.55		

Anexo 4.04 - Cálculo de dotación y cisterna para conjunto residencial

EDIFICIO A				
Piso	Dotación	Dotación para	Dotación de	Dotación
Sótano	Agua Fría 0	Garajes 1900	Areas Verdes	por Piso 1900
Semisótano	500	1800	1200	3500
Piso 1	5250	0	0	5250
Piso 2	5250	0	0	5250
Piso 3	5250	0	0	5250
Piso 4	5250	0	0	5250
Piso 5	5250	0	0	5250
TOTAL	26750	3700	1200	31650
EDIFICIO B				
Piso	Dotación	Dotación para	Dotación de	Dotación
	Agua Fria	Garajes	Áreas Verdes	por Piso
Sótano	0	2000	0	2000
Semisótano	0	1800	1200	3000
Piso 1	7800	0	0	7800
Piso 2	7800	0	0	7800
Piso 3	7800	0	0	7800
Piso 4	7800	0	0	7800
Piso 5	7800	0	0	7800
TOTAL	39000	3800	1200	44000
EDIFICIO C	Dotación	Dotación para	Dotación de	Dotación
130	Agua Fria	Garajes	Áreas Verdes	por Piso
Sótano	0	990	0	990
Semisótano	0	800	1200	2000
Piso 1	2700	0	0	2700
Piso 2	2700	0	0	2700
Piso 3	2700	0	0	2700
Piso 4	2700	0	0	2700
Die- f				
P150 0	2700	0	0	2700
Piso 5 TOTAL	2700 13500	0 1 790	0 1200	2700 16490
TOTAL CISTERNA	13500	1790		
TOTAL CISTERNA CONJUNTO RI	13500	1790		
TOTAL CISTERNA CONJUNTO RI Volumenes	13500	1790 AL		
TOTAL CISTERNA CONJUNTO RI Volumenes Dotacion diaria =	13500 ESIDENCI	1790		
TOTAL CISTERNA CONJUNTO RI Volumenes Dotacion diaria = Agua contra incend	13500 ESIDENCI/	1790 AL	1200	
TOTAL CISTERNA CONJUNTO RI Volumenes Dotacion diaria = Agua contra incend	13500 ESIDENCI/	1790 AL 92	1200 m3	
TOTAL CISTERNA CONJUNTO RI Volumenes Dotacion diaria = Agua contra incend	13500 ESIDENCIA io = ema =	1790 AL 92 50	1200 m3 m3	
TOTAL CISTERNA CONJUNTO RI Volumenes Dotacion diaria = Agua contra incend Volumen Util Cisto Dimensiones inter	13500 ESIDENCIA io = ema =	1790 AL 92 50 142	m3 m3 m3	16490
TOTAL CISTERNA CONJUNTO RI Volumenes Dotacion diaria = Agua contra incend Volumen Util Cisto Dimensiones inter largo=	13500 ESIDENCIA io = erna = riores:	1790 AL 92 50 142	m3 m3 m3 H libre=	16490
TOTAL CISTERNA CONJUNTO RI Volumenes Dotacion diaria = Agua contra incend Volumen Util Cisto Dimensiones inter largo= ancho=	13500 ESIDENCI/ iio = erna = riores: 17.5 4.8	1790 AL 92 50 142	m3 m3 m3 Alturas: H libre= H consumo=	0.8 1.15
TOTAL CISTERNA CONJUNTO RI Volumenes Dotacion diaria = Agua contra incend Volumen Util Ciste Dimensiones inter largo= ancho= alto=	13500 ESIDENCI/ iio = erna = riores: 17.5 4.8 2.55	1790 AL 92 50 142	m3 m3 m3 Alturas: H libre= H consumo= H incendios=	0.6 1.15 0.6
TOTAL CISTERNA CONJUNTO RI Volumenes Dotacion diaria = Agua contra incend Volumen Util Cisto Dimensiones inter largo= ancho=	13500 ESIDENCI/ iio = erna = riores: 17.5 4.8	1790 AL 92 50 142	m3 m3 m3 Alturas: H libre= H consumo=	0.6 1.15 0.6
TOTAL CISTERNA CONJUNTO RI Volumenes Dotacion diaria = Agua contra incend Volumen Util Ciste Dimensiones inter largo= ancho= alto=	13500 ESIDENCI/ iio = erna = riores: 17.5 4.8 2.55	1790 AL 92 50 142	m3 m3 m3 Alturas: H libre= H consumo= H incendios=	0.6 1.15 0.6
TOTAL CISTERNA CONJUNTO RI Volumenes Dotacion diaria = Agua contra incend Volumen Util Cisto Dimensiones inter largo= ancho= alto= volumen total=	13500 ESIDENCI/ iio = ema = riores: 17.5 4.8 2.55 214.2	1790 AL 92 50 142	m3 m3 m3 Alturas: H libre= H consumo= H incendios=	

Anexo 4.05 – Cálculo de caudal, perdidas de carga y potencia de la bomba para conjunto residencial

EDIFICIO A	+		EDIFICIO B		EDIFICIO C					
EDIFICIO A			EDIFICIO B		EDIFICIOC					
JH TOTALES			UH TOTALES		UH TOTALES					
PISO	Unidades de Hunter		PISO	Unidades de Hunter	PISO	Unidades de Hunter				
Sótano	2		Sótano	0	Sótano	0	-			
Semisótano	19		Semisótano	0	Semisótano	0				
Piso 1	207		Piso 1	236	Piso 1	102				
Piso 2	207		Piso 2	236	Piso 2	102				
Piso 3	207		Piso 3	236	Piso 3	102	!			
Piso 4	207		Piso 4	236	Piso 4	102				
Piso 5	207		Piso 5	236	Piso 5	102				
Total	1056		Total	1180	Total	510				
UH 27	00 15.12		MDS≖	15.31 L/S						
274	46 15.3086	i								
280	00 15.53									
Utilizando tres bo	ombas				Utilizando cuatro	bombas				
	Q bomba=	5.1	L/S			Q bomba=	3.83	L/S	4	
De acuerdo Anex					De acuerdo Ane:					
	tub.lmpul= tub.succ=		pulgadas			tub.lmpul=		pulgadas		
	JIVALENTE		pulgadas		Tubería de suc	tub. succ=		pulgadas		
Tuberia de succ	JIVALENTE ción	diametro	cantided	Leq	Descrip	ción	diametro	cantidad	Leq	0
Tubería de suco Descri Valvula de pie y d	JIVALENTE ción	diametro 3	cantidad	1 20.781	Descrip Valvula de pie y	ción	diametro 2.5	cantidad	1	
Tuberia de suco Dencii Valvula de pie y o codo	JIVALENTE ción I pcion canastilla	diametro 3	bablinas	1 20.781	Valvula de pie y codo	cción ccion canastilla	diametro 2.5 2.5	cantidad	1	2.5
Valvula de pie y o codo Valv. de compue	JIVALENTE ción [pelon canastilla	diametro 3	cantidad	1 20.781 1 3.068 1 0.648	Valvula de pie y codo Valv. de compue	cción ccion canastilla erta (todo abi)	diametro 2.5 2.5 2.5	cantidad	1 1	2.57 0.54
Tubería de suco Descri Valvula de pie y o codo Valv. de compue Longitud de tube	JIVALENTE ción [pelon canastilla	diametro 3	cantidad	1 20.781 1 3.068 1 0.648 1 2.5	Valvula de pie y codo Valv. de compue Longitud de tube	cción ccion canastilla erta (todo abi)	diametro 2.5 2.5	cantidad	1	2.57 0.54 2
Valvula de pie y de codo Valv. de compue Longitud de tube	JIVALENTE ción (perion canastilla erta (todo abi)	diametro 3	cantidad	1 20.781 1 3.068 1 0.648	Valvula de pie y codo Valv. de compue Longitud de tube	cción canastilla erta (todo abi) eria	diametro 2.5 2.5 2.5	cantidad	1 1	2.5 0.5 2
Valvula de pie y de codo Valv. de compue Longitud de tube	JIVALENTE ción (perion canastilla erta (todo abi)	3 -3 3 3	cantided	1 20.781 1 3.068 1 0.648 1 2.5	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp	cción ccion canastilla enta (todo abi) eria	diametro 2.5 2.5 2.5 2.5	cantidad	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.57 0.54 2
Tubería de suco Valvula de pie y o codo Valv. de compue Longitud de tube Leq Tubería de imp	JIVALENTE ción (perion canastilla enta (todo abi) enta	diametro 3 3 3 3 3	centided	1 20.781 1 3.068 1 0.648 1 2.5 26.997	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp	cción ccion canastilla erta (todo abi) eria culsión	diametro 2.5 2.5 2.5 2.5 diametro	cantidad	1 1 1 1 1 1	2.55 0.54 2 23.00
Tuberia de succ Valvula de pie y o codo Valv. de compue Longitud de tube Leq Tuberia de imp	JIVALENTE ción (perion canastilla enta (todo abi) enta	diametro 3 3 3 3 3	centided	1 20.781 1 3.068 1 0.648 1 2.5 26.997	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp	cción ccion canastilla erta (todo abi) eria culsión	diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	cantidad	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.57 0.54 2 23.06
Tuberia de succ Valvula de pie y o codo Valv. de compue Longitud de tube Leq Tuberia de imp	JIVALENTE ción perion canastilla enta (todo abi) enia pulsión po pesado)	diametro 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	centided	1 20.781 1 3.068 1 0.648 1 2.5 26.997	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp	cción canastilla erta (todo abi) eria pulsión ccion po pesado)	diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	centided	Leq	2.57 0.54 2 23.06 5.68 2.04
Valvula de pie y ocodo Valv. de compue Longitud de tube Leq Tuberia de imp	JIVALENTE ción parten canastilla enta (todo abi) enta coulsión parten po pesado)	diametro diametro 2.5 2.5 2.5	cantided	1 20.781 1 3.068 1 0.648 1 2.5 26.997	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp valvula check (tip codo tee (paso directo	cción canastilla enta (todo abi) eria pulsión ccion po pesado)	diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	cantidad	Leq	2.57 0.54 2 23.06 5.68 2.04 1.36
Valvula de pie y o codo Valv. de compue Longitud de tube Leq Tuberia de imp Valvula check (tip codo tee (paso directo Valv. de compue	DIVALENTE ción canastilla enta (todo abi) enta coulsión po pesado) o) enta (todo abi)	diametro 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	centided	1 20.781 1 3.068 1 0.648 1 2.5 26.997 26.997	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tubería de imp valvula check (tij codo tee (paso directo Valv. de compue	cción ccion canastilla erta (todo abi) eria culsión po pesado) erta (todo abi)	diametro 2.5 2.5 2.5 2.5 2.5	cantidad	Leq	2.57 0.54 2 23.06 5.68 2.04 1.36 0.43
Tuberia de suco Denci Valvula de pie y o codo	DIVALENTE ción canastilla enta (todo abi) enta coulsión po pesado) o) enta (todo abi)	diametro diametro 2.5 2.5 2.5 2.5 2.5	centided	1 20.781 1 3.068 1 0.648 1 2.5 26.997 26.997	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp valvula check (tip codo tee (paso directo	cción ccion canastilla erta (todo abi) eria culsión po pesado) erta (todo abi)	diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	cantidad	Leq 1 1 1 1 1 1	2.57 0.54 2 23.06 5.68 2.04 1.36 0.43
Valvula de pie y ocodo Valv. de compue Longitud de tube Leq Tuberia de imp Valvula check (tip codo tee (paso directo Valv. de compue Longitud de tube	JIVALENTE ción perion canastilla enta (todo abi) enta poulsión po pesado) enta (todo abi) enta (todo abi) enta (todo abi) enta (todo abi) enta	diametro diametro 2.5 2.5 2.5 2.5 2.5	centided	1 20.781 1 3 068 1 0.648 1 2.5 26.997 1 7.159 1 7.159 1 2.577 1 1 718 1 0.544 1 1.500	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp valvula check (tij codo tee (paso directo Valv. de compue Longitud de tube	cción ccion canastilla erta (todo abi) eria culsión po pesado) erta (todo abi)	diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	cantidad	Leq 1 1 1 1 1 1	2.55 0.54 2 23.00 5.68 2.04 1.30 0.43
Valvula de pie y o codo Valvula de compue Longitud de tube Leq Tubería de imp valvula check (tig codo tee (paso directo Valv. de compue Longitud de tube	JIVALENTE ción conastilla enta (todo abi) enta conastilla conastilla enta (todo abi) enta conastilla conastil	diametro 255 25 25	centided	1 20.781 1 3 068 1 0.648 1 2.5 26.997 1 7.159 1 7.159 1 2.577 1 1 718 1 0.544 1 1.500	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp Pascrip valvula check (tij codo tee (paso directo Valv. de compue Longitud de tube Leq	cción canastilla erta (todo abi) eria pulsión po pesado) erta (todo abi)	diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	cantidad	Leq 1 1 1 1 1 1	2.57 0.54 2 23.06 5.68 2.04 1.36 0.43
Valvula de pie y o codo Valvula de compue Longitud de tube Leq Tubería de imp valvula check (tig codo tee (paso directo Valv. de compue Longitud de tube	JIVALENTE ción perior canastilla erta (todo abi) eria poulsión po pesado) porta (todo abi) erta (todo abi)	diametro 3 3 3 3 3 4 diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5	cantided cantided	1 20.781 1 3 068 1 0.648 1 2.5 26.997 1 7.159 1 7.159 1 2.577 1 1 718 1 0.544 1 1.500	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp valvula check (tij codo tee (paso directo Valv. de compue Longitud de tube	cción canastilla erta (todo abi) eria pulsión ccion po pesado) puta (todo abi) ena	diametro	cantidad	Leq 1 1 1 1 1 1	2.57 0.54 2 23.06 5.68 2.04 1.36 0.43
Valvula de pie y o codo Valvula de compue Longitud de tube Leq Tubería de imp valvula check (tig codo tee (paso directo Valv. de compue Longitud de tube	JIVALENTE ción perior canastilla enta (todo abi) enta poulsión perior po pesado) enta (todo abi)	diametro 3 3 3 3 3 3 3 3 3	cantided cantided	1 20.781 1 3 068 1 0.648 1 2.5 26.997 1 7.159 1 7.159 1 2.577 1 1 718 1 0.544 1 1.500	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp Pascrip valvula check (tij codo tee (paso directo Valv. de compue Longitud de tube Leq	cción canastilla enta (todo abi) eria culsión coclon po pesado) co) enta (todo abi) enta (todo abi) enta (todo abi) enta (todo abi)	diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	cantidad	Leq 1 1 1 1 1 1	2.57 0.54 2 23.06 5.68 2.04 1.36 0.43
Valvula de pie y o codo Valvula de compue Longitud de tube Leq Tubería de imp valvula check (tig codo tee (paso directo Valv. de compue Longitud de tube	JIVALENTE ción perior canastilla erta (todo abi) eria poulsión po pesado) porta (todo abi) erta (todo abi)	diametro 3 3 3 3 3 4 diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5	cantided cantided	1 20.781 1 3 068 1 0.648 1 2.5 26.997 1 7.159 1 7.159 1 2.577 1 1 718 1 0.544 1 1.500	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp Pascrip valvula check (tij codo tee (paso directo Valv. de compue Longitud de tube Leq	cción canastilla erta (todo abi) eria pulsión ccion po pesado) o) erta (todo abi) ena	diametro	cantidad	Leq 1 1 1 1 1 1	2.57 0.54 2 23.06 5.68 2.04 1.36 0.43
Tuberia de succionado de compue congitud de tube compue congitud de tube compue congitud de tube compue congitud de tube compue congitud check (tip codo lee (paso directo Valv. de compue congitud de tube congit	JIVALENTE ción perior canastilla enta (todo abi) enta coulsión perior po pesado) col enta (todo abi) enta ARGA - TUB. Si em & Williams S= HI= V =	3 3 3 3 3 3 3 3 3 3	cantidad Sión	1 20.781 1 3 068 1 0.648 1 2.5 26.997 1 7.159 1 7.159 1 2.577 1 1 718 1 0.544 1 1.500	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp Pascrip valvula check (tij codo tee (paso directo Valv. de compue Longitud de tube Leq	cción canastilla enta (todo abi) eria pulsión po pesado) o) enta (todo abi)	diametro 2.5	cantidad	Leq 1 1 1 1 1 1	2.57 0.54 2 23.06 5.68 2.04 1.36 0.43
Tubería de successiva de codo Valvula de pie y ecodo Valv. de compue Longitud de tube Leq Tubería de imp valvula check (tig codo tee (paso directo Valv. de compue Longitud de tube Leq PÉRDIDA DE CA	DIVALENTE ción canastilla enta (todo abi) enta coulsión po pesado) enta (todo abi) enta (tod	Glametro 3 3 3 3 3 3 3 3 3	centided SIÓN /D4.87	1 20.781 1 3 068 1 0.648 1 2.5 26.997 1 7.159 1 7.159 1 2.577 1 1 718 1 0.544 1 1.500	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp Pascrip valvula check (tij codo tee (paso directo Valv. de compue Longitud de tube Leq	cción ccion canastilla erta (todo abi) eria culsión po pesado) culta (todo abi) ena em & William: S= Hf=	diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	cantidad	Leq 1 1 1 1 1 1	2.55 0.54 2 23.00 5.68 2.04 1.30 0.43
Valvula de pie y ocodo Valv. de compue Longitud de tube Leq Tuberia de imp Valvula check (tip codo tee (paso directo Valv. de compue Longitud de tube	DIVALENTE ción parten canastilla enta (todo abi) enta consecuente	diametro 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	cantided SIÓN /D4.87	1 20.781 1 3 068 1 0.648 1 2.5 26.997 1 7.159 1 7.159 1 2.577 1 1 718 1 0.544 1 1.500	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp Pascrip valvula check (tij codo tee (paso directo Valv. de compue Longitud de tube Leq	cción canastilla enta (todo abi) eria pulsión po pesado) enta (todo abi) enta	diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	cantidad	Leq 1 1 1 1 1 1	17.4 2.55 0.54 2.2 23.06 5.68 2.04 1.36 0.43 1.11.02
Valvula de pie y ocodo Valvula de compue Longitud de tube Leq Tubería de imp valvula check (tig codo tee (paso directo Valv. de compue Longitud de tube	DIVALENTE ción perior canastilla enta (todo abi) enta coulsión perior po pesado) enta (todo abi) enta ARGA - TUB, Si em & Williams S= Hf= V = S succ=	diametro 3 3 3 3 3 diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	centided Sión /D4.87	1 20.781 1 3 068 1 0.648 1 2.5 26.997 1 7.159 1 7.159 1 2.577 1 1 718 1 0.544 1 1.500	Valvula de pie y codo Valv. de compue Longitud de tube Leq Tuberia de imp Pascrip valvula check (tij codo tee (paso directo Valv. de compue Longitud de tube Leq	em & William: S= Hf= V= S succ=	diametro 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	cantidad 85/D4.87	Leq 1 1 1 1 1 1	2.55 0.54 2 23.00 5.68 2.04 1.30 0.43

EDIFICIO B

Calculo de perdida de carga desde el punto mas desfavorable utilizando tres bombas

						longit	ud , .								Presiones		
Tramo	UH	caudel		diametro	Real	egulv.	total	velocidad	vel limite	cond. vel	S		Hf	PI	h 1	4	
B.5.2.08 - B.5.2.07		6	0.94	1.25	1.100	2.618	3.718	1.188	2.85	4		0.05608	0.2085	10.0000	0.3	10.5085	
B.5.2.07 - B.5.2.06		8	1.00	1.25	0.550	2.618	3.168	1.263	2.85	4		0.06288	0.1992	10.5085	0	10.7077	
B.5.2.06 - B.5.2.05		9	1.03	1.25	1.000	2.618	3.618	1.301	2.85	1		0.06 641	0.2403	10.7077	0	10.9480	
B.5.2.05 - B.5.2.04	1	0	1.06	1.25	4 200	13.803	18.003	1.339	2.85	1		0.07004	1.2609	10.9480	0	12.2089	
B.5.2.04 - B.5.2.03	1	4	1.17	1.25	2.700	2.618	5.318	1.478	2.85			0.08407	0.4471	12.2089	0	12.6560	
B.5.2.03 - B.5.2.02	2	3	1.40	1.25	0.350	2.618	2.968	1.762	I 2.85	i 🗸		0.1164 1	0.3455	12.6560	0	13 0014	
B.5 2.02 - B.5.2.01	3	3	1.61	1.25	8.150	3.927	12.077	2.034	2.85	4		0.15175	1.8327	13.0014	0	14.8342	
B.5.2.01 - BM5.2	4	0	1.74	1.25	27.000	49 438	76.438	2.198	2.85	1		0.17520	13.3917	14.8342	1.91	30.1343	
BM5.2 · B4	23	6	3.62	2	3.500	13.397	16.897	1.787	3	1		0.06894	1.1650	30.1343	2.8	34.0993	
B4 - B3	47.	2	5.13	3	2.800	7.5	10.3	1.125	3	1		0.01822	0.1877	34.0993	2.8	37.0870	
B3 - B2	70	8	6.39	3	2.800	7.5	10.3	1.402	3	1		0.02736	0.2818	37.0870	2.8	40.1687	
B2 - B1	94	4	7.58	3	2.800	7.5	10.3	1.663	3			0.03752	0.3865	40.1687	2.8	43.3552	
B1 - BU	118	0	8.61	3	11.800		11.8	1.889	3	1		0.04753	0.5609	43.3552	3.8	47.7161	
BU-AU	169	0	10.81	4	26.000		26	1.334	3	1		0.01782	0.4634	47.7161	0	48.1795	
AU - OU	274	5	15.31	4	12.000		12	1.889	3	1		0.03393	0.4072	48.1795	0	48.5867	
OU - tanque			5.10	2.5	3.000		3	1.611	3	4		0.04380	0.1314	48.5867	1.5	50.2181	
													21.5097		17.2084507		

Perdida de carga de medidores Interiores

Q =

1.74 Vs 27.47 gpm Diametro tuberia = 1.25 pulg Hf medidor = 2 lb/pulg2 Hf medidor = 1.41 m

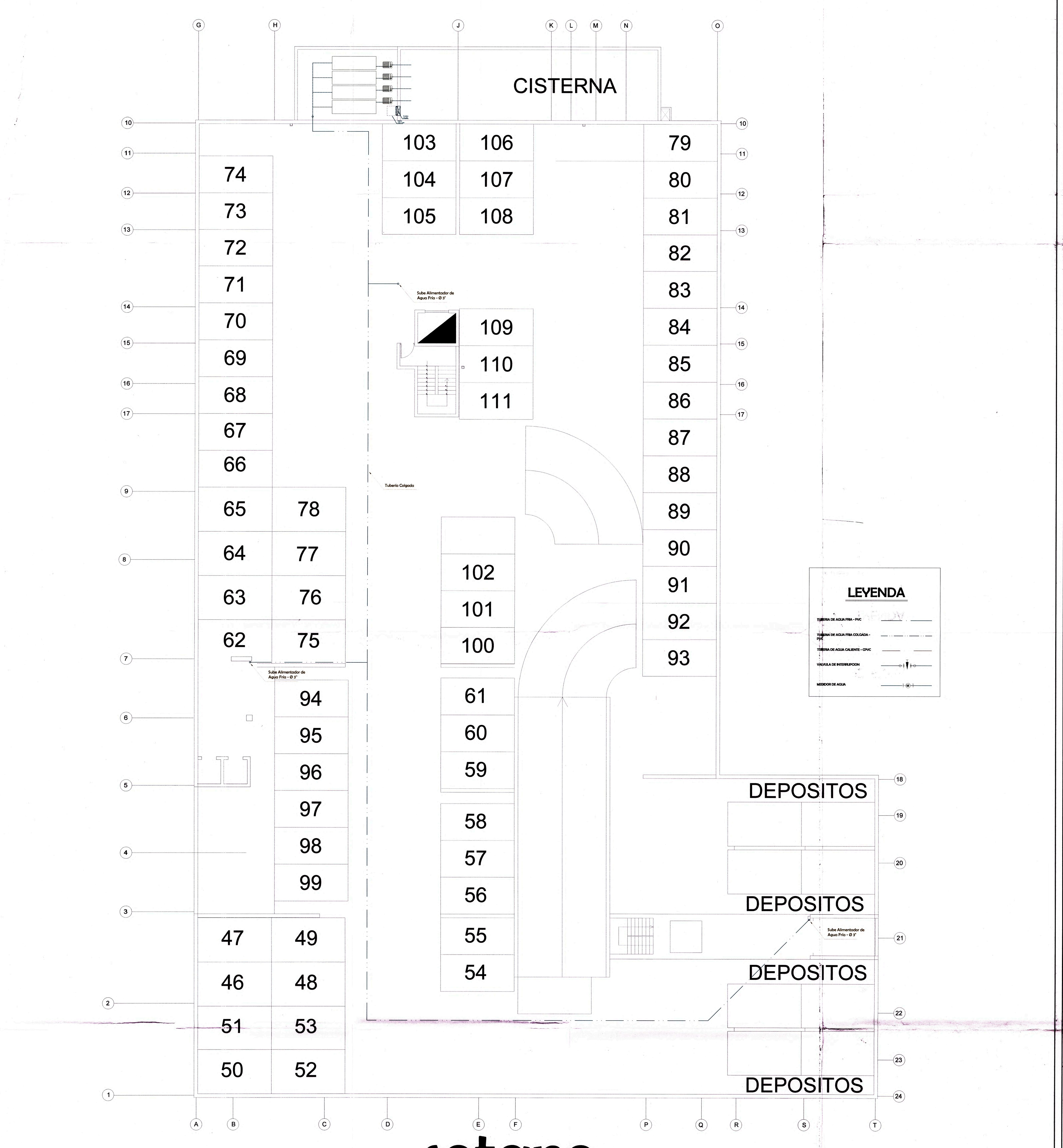
EDIFICIO B

Calculo de perdida de carga desde el punto mas desfavorable utilizando cuatro bombas

					longit	ud							Presiones		
Tramo UH	caudal		diametro	Real	eguiv.	total	velocidad	vel limite	cond. vel	S	Hf	PI	h Pi		
B.5.2.08 - B.5.2.07	6	0.94	1.25	1.100	2.618	3.718	1.188	2.85	4	0.0560	0.2085	10.0000	0.3	10.5085	
B.5.2.07 - B.5.2.06	8	1.00	1.25	0.550	2.618	3.168	1.263	2.85	1	0.0628	0.1992	10.5085	0	10.7077	
B.5.2.06 - B.5.2.05	9	1.03	1.25	1.000	2.618	3.618	1.301	2.85	1	0.0664	0.2403	10.7077	0	10.9480	
B.5.2.05 - B.5.2.04	10	1.06	1.25	4.200	13.803	18.003	1.339	2.85	1	0.0700	1.2609	10.9480	0	12 2089	
B.5.2.04 - B.5.2.03	14	1.17	1.25	2.700	2.618	5.318	1.478	2.85	1	0.0840	7 0.4471	12.2089	0	12.6560	
B 5.2.03 - B 5.2.02	23	1.40	1.25	0.350	2.618	2.968	1.762	2.85	1	0.1164	0.3455	12.6560	0	13.0014	
B.5.2.02 - B.5.2.01	33	1.61	1.25	8.150	3.927	12.077	2.034	2.85	1	0.1517	1.8327	13.0014	0	14.8342	
B.5.2.01 · BM5.2	40	1.74	1.25	27.000	49.438	76.438	2.198	2.85	4	0.17520	13.3917	14.8342	1.91	30.1343	
BM5.2 · B4	236	3.62	2	3.500	13.397	16.897	1.787] 3	1	0.0689	1.1650	30.1343	2.8	34.0993	
B4 · B3	472	5.13	3	2.800	7.5			3	1	0.0182	0.1877	34.0993	2.8	37.0870	
B3 · B2	708	6.39	3	2.800	7.5	10.3	1.402	3	1	0.0273	0.2818	37.0870	2.8	40.1687	
B2 - B1	944	7.58	3	2.800	7.5	10.3	1.663	3	1	0.0375	0.3865	40.1687	2.8	43 3552	
B1 - BU	1180	8.61	3	11.800		11.8	1.889	3	1	0.0475	0.5609	43.3552	3.8	47.7161	
BU-AU	1690	10.81	4	26.000		26	1.334	3	1	0.01782	0 4634	47.7161	0	48, 1795	
AU - OU	2746	15.31	4	12.000		12	1.889	3	4	0.0339	0.4072		0	48.5867	
OU - tangue		3.83	2	3.000		3	1.890	3	1	0.0764			1.5	50.3161	
									-	•	21,6076		17 2084507		

Perdida de carga de medidores interiores

1 74 Vs Q =


Q = 27.47 gpm Diametro tuberia = 1.25 pulg 2 lb/pulg2 Hf medidor = 1.41 m Hf medidor =

CALCULO DEL EQUIPO HIDRONEUMÁTICO UTILIZANDO TRES BOMBAS

Calculo de la altura dinan	nica de eleva	icion:	
H dinamica =	perdidas de d	•	altura estatica de succion + y succion + perdida de carga + presion de salida
H dinamica (1 bomba) =	(2.80 x 5 + 2 50.39		487 + 0.591) + (21.51) + (10
H dinamica (1 bomba) =	50.39	m	
Calculo del volumen del 1	tanque hidro	neumático	
Pmin =	50.39	mca	Presion de arranque
Pmax=	Pmin + 14		
Pmax=	64.39	mca	Presion de parada
Potencia de la Bomba =	Q x H dinam	ica / 75xn	
Potencia de la Bomba =	5.10 x 50.39	/ 75 x 0.70	
Potencia de la Bomba =	4.89	HP	Trifásico
Potencia motor =	1.3 x potenci	a de la bomba	
Potencia motor =	6.36	HP	Trifásico
Calculo de arranques por	r hora		
Tamaño de la instalacion =	GRANDE	N=	6
1m3 = 264 galones americ	anos		
Relacion de Almacenamie	ento y volum	en total =	
A = 0.8x Vt x (Pp-Pa)/(Pp +	1)	A =	0.73 m3
		A =	192.05 gal
Q/Vt =	3.8	Q en m3/h	Q = 18.36
Vt =	4.83	m3	
Vt =	1275.54		

CALCULO DEL EQUIPO HIDRONEUMÁTICO UTILIZANDOS CUATRO BOMBAS

mica de eleva	acion:	
perdidas de d	carga por impulsion	y succion + perdida de carga
		.595 + 0.843) + (21.60) + (10)
l tanque hidro	neumático	
		Presion de arranque
		Presion de parada
		Trifásico
	N=	10
canos		
iento y volum	en total =	
+ 1)	A = A =	0.32 m3 85.11 gal
= 6.4	Q en m3/h	Q = 13.788
	Altura esta perdidas de o pto (2.80 x 5 + 2 50.85) I tanque hidro 50.85 Pmin + 14 64.85 Q x H dinam 3.83 x 50.85 3.71 1.3 x potenci 4.82 or hora = MEDIANO canos hiento y volum + 1) = 6.4 2.15	50.85 m 1 tanque hidroneumático 50.85 m Pmin + 14 64.85 m Q x H dinamica / 75xn 3.83 x 50.85 / 75 x 0.70 3.71 HP 1.3 x potencia de la bomba 4.82 HP or hora = MEDIANO icanos hiento y volumen total = + 1) A = A = A =

sotano

JBICACION:	JEFE DE PROYECTO:	PROYECTO:	BACHILLER	ESPECIALIDAD:
INTERSECCION AV. PRIMAVERA -	ING. CARLOS IRALA	PROYECTO INMOBILIARIO		INST. SANITARIAS
VELASCO ASTETE	ASESOR: ING. LEONARDO FLORES G.	JARDINES DE CHACARRILLA	JORGE DURAND MIRANDA	TÍTULO: RED DE AGUA FRÍA
DIST. SANTIAGO DE SURCO	PROPIETARIO: GRUPO Nº 6	CURSO DE TITULACION 2010	15-01	SÓTANO
				ESCALA = 1/100

SALA COMEDOR SALA COMEDOR DORMITORIO 2 SALA COMEDOR SALA ESTAR SALA COMEDOR SERVICIO _____ HALL DE INGRESO SALA COMEDOR SALA COMEDOR COCINA before start other from family party when heart man description of the start man and the start of the start other man and the start other man and the start other NPT + 4.30, + 710, +9.90, +12.70 SALA COMEDOR Anne come come come come have DOR:MITORIO PRINCIPAL DORMITORIO

> PLANTA TÍPICA 2°,3°,4° y 5° PISO N.P.T. + 4.30, +7.10, +9.90, +12.70

UBICACION:

INTERSECCION AV. PRIMAVERA - VELASCO ASTETE

DIST. SANTIAGO DE SURCO

JEFE DE PROYECTO:

ING. CARLOS IRALA

ASESOR:

ING. LEONARDO FLORES C

GRUPO Nº 6

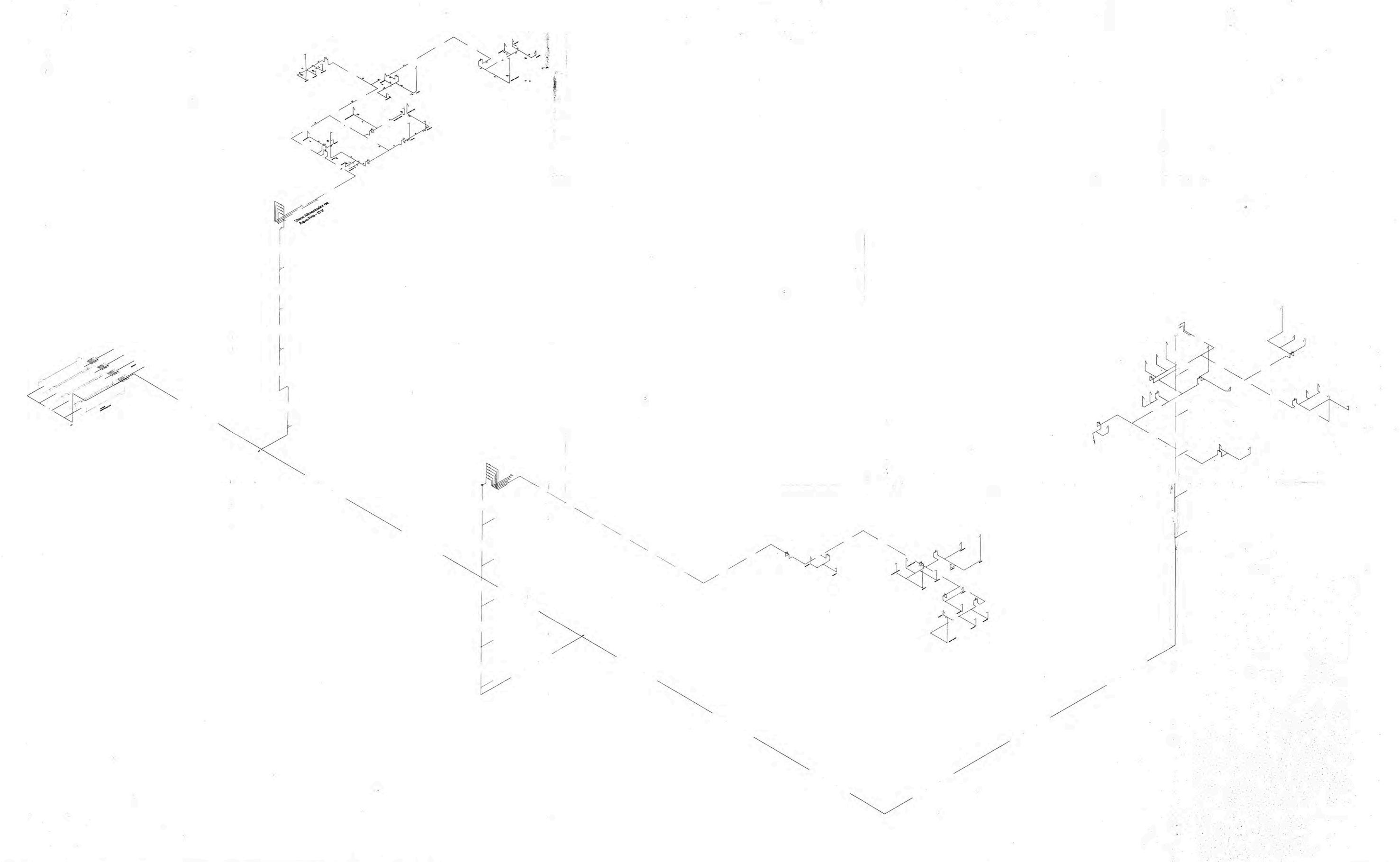
PROPIETARIO:

PROYECTO:

PROYECTO INMOBILIARIO

JARDINES DE CHACARRILLA

CURSO DE TITULACION 2010


BACHILLER

ESPECIALIDAD:

INST. SANITARIAS

JORGE DURAND MIRANDA TÍTULO:
RED

RED DE AGUA FRÍA PLANTA TÍPICA ESCALA = 1/100

JEFE DE PROYECTO: **UBICACION:** BACHILLER PROYECTO: ING. CARLOS IRALA INTERSECCION AV. PRIMAVERA -PROYECTO INMOBILIARIO ASESOR: VELASCO ASTETE JARDINES DE CHACARRILLA ING. LEONARDO FLORES G. IS - 03 PROPIETARIO: DIST. SANTIAGO DE SURCO CURSO DE TITULACION 2010 GRUPO Nº 6

JORGE DURAND MIRANDA

ESPECIALIDAD: INSTALACIONES SANITARIAS TÍTULO: ISOMÉTRICO