
UNIVERSIDAD NACIONAL DE
INGENIERIA

Facultad de Ciencias

TESIS

“MODELING AND CONTROL THEORY
APPLIED TO THE WINE

FERMENTATION PROCESS”

Para optar el grado académico de Maestro en Ciencias
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Abstract

The thesis has two purposes: The first one is to build a mathematical model that better
approximates (with respect to the mathematical model in [2]) to the behaviour of the wine
fermentation process with the addition of certain amount of nitrogen at some instant of
time, based in [2]. This mathematical model is described by mean ordinary differential
equations including some parameters which will be identified solving some optimization
problems.

The second purpose of the thesis is to study the improved model but introducing some
control variables in order to stabilize in an appropriated sense the corresponding dynamical
system of the new model. This is a kind of MIMO nonlinear system control problems and
will be solved using the tools in [6].

7



8



Introduction

One of the most important steps in the wine production is the fermentation process.
The fermentation process consists in the bioconversion of glucose into ethanol and other
metabolites which give to the wine a part of its organoleptic characteristics (glycerol,
organic acid, aromatic compounds, etc). The yeasts are the ones who perform this con-
version. The metabolism of yeast is very complex and it a reason that is continuously
studied. Aforetime, the wine fermentation was done manually and empirically. Currently,
it is automated in big tanks to do wines to big scales, minimizing the time and the energy
consumption, this is the major challenges for oenologists. To do that, first we must study
the behaviour of the wine fermentation, this behaviour is represented through a mathe-
matical model, in this case are ordinary differential equations. Then, we must control the
dynamical system such that the output of the system stabilizes at a desired value (called
setpoint), to do that we are going to use the tools of control theory.

The nitrogen addition during the wine fermentation is a oenological condition, that
is to say, the oenologists use that in the wine production to accelerate the fermentation.
Before 2004, researchers try to do mathematical models with this oenological condition but
unfortunately they are poorly adapted. In 2004, Malherbe made a mathematical model
with this oenological condition [2] where that works well in some experiments but others
do not. So, one of the two main purpose of this thesis is to improve this mathematical
model. The experiments for the creation of the mathematical model are realized in a batch
reactor [1], it is a closed tank where there are chemical concentrations (yeast, nitrogen,
glucose transporter, glucose, ethanol).

Then, this model is transformed in a mathematical model with control (state-space
representation) in a tank like the batch reactor but the difference is that it is added
concentrations of nitrogen, glucose transporter, glucose and ethanol with certain velocities
Q1, Q2 and it is removed concentrations of nitrogen, yeast, glucose transporter, sugar and
ethanol with certain velocity Q = Q1 + Q2. The velocities Q1 and Q2 are the controls
or input. This kind of tank is called continuous stirred tank bioreactor. The other main
purpose of this thesis is to control or manipulate the wine fermentation, that is to say,
we are going to add and remove concentration in the continuous bioreactor with certain
velocities Q1 and Q2 such that the sugar S and the rate production V CO2 stabilizes at
the desired values S∗ and V CO∗2 respectively. To do that, we are going to use the tools of
control theory for MIMO non linear system [6].

We now describe the content of the thesis which consists of seven chapters: In the
first chapter we present the mathematical model given in [2] wich represents the chemical
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and biological behaviour of the wine fermentation process with the addition of nitrogen
at certain instant of time. Also, we will do the simulation of the mathematical model and
then compare it with the experimental data of certain chemical concentrations of the wine
fermentation.

The main purpose of Chapter 2 is to build a mathematical model to obtain a better
approximation (with respect to the mathematical model in Chapter 1) to the behaviour
of the wine fermentation process. This construction is constituted by certain parameters
that will be identified solving numerically step by step some optimization problems in
python language.

The main purpose of Chapter 3 is to study the mathematical model of Chapter 2 but
adding control variables. It is made in a tank like the batch reactor but the difference
is that it is added concentrations of N,S,E with certain velocity Q1, Q2 and is removed
concentrations of N,X, Tr, S, E with certain velocity Q. We are going to assume that the
input rate is equal to the output rate (Q1 +Q2 = Q), that is to say the volume is constant
because dV

dt
= Q − (Q1 + Q2). A tank with this assumption is called continuous stirred

tank bioreactor.
Assuming that a MIMO linear system control problem without constraint is solved,

that is to say, it is finded a input uwc such that the output ywc stabilizes in a some sense at
a known desirable constant value y∗. So, the main purpose of Chapter 4 is to find a input
ũ of the same linear system control problem with constraint (the input ũ is restricted)
such that the output y is close to ywc as much as possible at each instant of time. This
was done in the article [4] and we are going to do that with more details and give the
implicit solution of an example.

The main purpose of Chapter 5 is to find the input ũ of a single-input single output
(SISO) nonlinear system control problem with constraints such that the output y stabilizes
at a known desirable constant value y∗ and is to close to ywc as possible at each instant of
time. This will be solved by linearizing the SISO system in a linear system and finally we
will apply the anti-windup technique to this linear system studied in the previous chapter.
This was done in the article [5] and we are going to do that with more details and give
the implicit solution of an example.

The main purpose of Chapter 6 is to find the input ũ of a multi-input multi-output
(MIMO) nonlinear system control problem with constraints such that the output y is to
close to ywc at each instant of time. The solution of this control problem is a generalization
of the case SISO nonlinear system control problem with constraints. It was done in the
article [6] and we are going to do that with more details and give the implicit solution of
an example.

The main purpose of Chapter 7 is to control the wine fermentation with oenological
condition represented for the mathematical model presented in Chapter 3, that is to say,
we are going to add and remove the chemical concentrations of the continuous bioreactor
with certain velocities Q1 and Q2 such that the sugar S and the rate production V CO2

stabilizes at the desired values S∗ and V CO∗2 respectively.
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Chapter 1

Simulation of Malherbe model

1.1 Description of the Malherbe model

One of the most important steps of the wine production is the fermentation. The fermen-
tation process has a difficult behaviour because of that is continuously studied to obtain a
better mathematical model such that is approximated to the behaviour of the wine fermen-
tation. The consequences of that are the minimization of the wine fermentation duration
and the energy used in a cold tank or several tanks, it is realized by identification and
automatic control tools by means of on-line monitoring of the fermentation process.

Yeast metabolism is very complex because of that the researchers try to make a math-
ematical model with specific conditions necessary for the fermentation control but unfor-
tunately, most of the models are poorly adapted to enological conditions.

Generally, the Assimilable Nitrogen is not taken into account at all and the temperature
effects are generally unsatisfactory, but these two variables are very important because
their manipulations in experiments enable to control the reactions.

1.1.1 Problem

The aim is to make a mathematical model using the recent advances in physiological
knowledge (principally the effect of nitrogen) where the rate production CO2 is related
to the effects of the main factors in wine-making conditions: nitrogen additions (which
must not exceed the maximal authorized level) and temperature (which can vary within
a predefined range).

1.1.2 Modeling

The main component to be measured in quantity is the CO2 concentration or the rate
production dCO2/dt. In this model is measured the temperature in the tank and the
addition of ammoniacal nitrogen during the fermentation. The addition has a dramatic
impact on fermentation kinetics by increasing the fermentation rate, lowering the duration
of the fermentation.

11



We present the dynamical model of the wine fermentation, with temperature and
added ammoniacal nitrogen as the input variables and rate of CO2 production as the
output variable.

dS

dt
= −2.17X(t)νST [S(t), E(t), T ]NST [Nmax(t)−N(t), X(t), T ]

dN

dt
= −X(t)νN [N(t), E(t), T ]

dX

dt
= k1(T )X(t)

[
1− X(t)

Xmax(Ninit)

]
S(0) = Sinit
N(0) = Ninit

X(0) = Xinit

(1.1)

where t ≥ 0; X(t) yeast concentration is the cell population in the tank (cell/l);
the maximum yeast concentration in a process with initial nitrogen concentration Nini is
denoted by Xmax(Ninit) (function depending of Ninit); S(t) is the glucose concentration in
the tank (g/l); E(t) is the ethanol concentration in the tank (g/l); Nmax(t) = Ninit+Nadd(t)
where Nadd is the amount of nitrogen added in the tank; T (t) temperature in the tank
(◦C) and k1(T ) is the growth rate of the population in the exponential growth phase.

The functions νST , NST and νN are described in what follows. The concentrations of
glucose and ethanol are deduced directly from the amount of CO2 released. Assuming
Gay-Lussac’s law, we obtain the following equations:{

S(t) = S(0)− 2.17CO2(t) CO2(0) = 0
E(t) = 0.464[S(0)− S(t)]

(1.2)

The yield coefficients (2.17 and 0.464) in the equation (1.2) are obtained by the work
done in the paper [3].

1.1.3 Yeast activity

Yeast activity is implicitly described by four subsystems: glucose transport, glycolysis,
nitrogen transport and synthesis of glucose transporters.

Glucose Transport

The function νST describes the activity of a glucose transporter with ethanol inhibition,
where the glucose enters in the membrane then by means of the glycolysis it is transformed
in ethanol and CO2 release.

νST (S,E, T ) =
k2(T )S

S +KS +KSISEαS
(1.3)

where KS, KSI and αS are constants, and k2 is the rate fermentation depending of
temperature.
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Glycolysis

Glycolytic enzymes have a high level of activity and are not inhibited by ethanol, it goes
out of the membrane to obtain ethanol and CO2 release.

Process of Nitrogen Assimilation

The function νN is related to the nitrogen absorption by the yeast which is strongly
inhibited by ethanol.

νN(N,E, T ) =
k3(T )N

N +KN +KNINEαN
(1.4)

where KN , KNI and αN are constants, and k3 is the rate fermentation depending of
temperature.

Synthesis of Glucose Transporters

The functions NST [Nmax(t), N(t), X(t), Tucd] represents the mean number of transporters
in a yeast. In this process, the cell transforms a fraction of the absorbed nitrogen into
proteins that will permit the glucose transport. This relationship implies thatNST depends
on the nitrogen assimilated by a single cell and environmental conditions.

1.2 Simulation of the Malherbe model

In this section, we will present the simulation of the dynamical system (1.1) using the
following parameters identified by Malherbe and the initial conditions.

1.2.1 Parameters with temperature constant

k1(T ) = 0.0287T − 0.3762

Xmax(Ninit) = 109(−649N2
init + 698Ninit + 7)

k2(T ) = exp
( −K2

T+273.15

)
where K2 = 7000

KS = 15 KSI = 0.012 αS = 1.25

k3 = 10−12 KN = 0.03 KNI = 0.035 αN = 1.5

NST [Nmax(t) −N(t), X(t), T ]× k2(T ) = λa
Ni(t)
X(t)

+ λbT + λc
Ni(t)
X(t)

T + λd

where Ni = Ninit + λ0(Nadd)[Nadd(t)−N(t)]

λ0 = 3.2 when the nitrogen addition is 0.063 g/l and λ0 = 0 without nitrogen addition.

λa = 335× 109 λb = 0.061 λc = 3× 109 λd = −1.

1.2.2 Initial conditions

Sinit = 200.0 g/l
Xinit = 9× 107 cell/l.
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1.2.3 Simulation to 24 ◦C

We present the simulation of Malherbe model using the parameters and initial conditions
in the previous subsections.

Figure 1.1: Simulation of a fermentation with Ninit = 0.17 g/l.

Yeasts reproduce themselves because they have a logistic behaviour and as they grow
fast, the nitrogen is consumed quickly. The sugar is consumed to produce ethanol and car-
bon dioxide. The rate production increases until 25h approximately and then it decreases
because the sugar is concave from 0 to 25h and then it is convex.

1.3 Comparison of the Malherbe model and the ex-

perimental data

In this section, we will compare the approach of the simulation of Malherbe model with
the experimental data for the rate production and the yeast.

1.3.1 Data of the rate production

The wine fermentation data are obtained through an experiment realized in a bath reactor,
for more details read Chapter one of [1]. In this part, we present the rate production data of
fourteen experiments to know its behaviour. There are several experiments where nitrogen
is added at an instant of time and the rate production increases very fast.

14



Figure 1.2: Data of the rate production (dCO2/dt).

We present the approach of the simulation of Malherbe model with the experimental
data for fifteen experiments:

Figure 1.3: Rate production and yeast simulation of the first experiment with Ninit = 0.17
g/l without nitrogen addition.

Figure 1.4: Rate production and yeast simulation of the second experiment with Ninit =
0.17 g/l and Nadd = 0.063 g/l at the instant t = 91.47 h.
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Figure 1.5: Rate production and yeast simulation of the third experiment with Ninit = 0.07
g/l without nitrogen addition.

Figure 1.6: Rate production and yeast simulation of the fourth experiment with Ninit =
0.17 g/l and Nadd = 0.063 g/l at the instant t = 89.53 h.

Figure 1.7: Rate production and yeast simulation of the fifth experiment with Ninit = 0.17
g/l and Nadd = 0.063 g/l at the instant t = 39.4 h.
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Figure 1.8: Rate production and yeast simulation of the sixth experiment with Ninit = 0.17
g/l and Nadd = 0.063 g/l at the instant t = 63.11 h.

Figure 1.9: Rate production and yeast simulation of the seventh experiment with Ninit =
0.17 g/l and Nadd = 0.063 g/l at the instant t = 26.3 h.

Figure 1.10: Rate production and yeast simulation of the eighth experiment with Ninit =
0.17 g/l and Nadd = 0.063 g/l at the instant t = 257 h.
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Figure 1.11: Rate production and yeast simulation of the nineth experiment with Ninit =
0.17 g/l and Nadd = 0.063 g/l at the instant t = 212.63 h.

Figure 1.12: Rate production and yeast simulation of the tenth experiment with Ninit =
0.17 g/l and Nadd = 0.063 g/l at the instant t = 141.51 h.

Figure 1.13: Rate production and yeast simulation of the eleventh experiment with Ninit =
0.17 g/l and Nadd = 0.063 g/l at the instant t = 182.38 h.
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Figure 1.14: Rate production and yeast simulation of the twelfth experiment with Ninit =
0.17 g/l and Nadd = 0.063 g/l at the instant t = 50.31 h.

Figure 1.15: Rate production and yeast simulation of the thirteenth experiment with
Ninit = 0.17 g/l and Nadd = 0.063 g/l at the instant t = 22.81 h.

Figure 1.16: Rate production and yeast simulation of the fourteenth experiment with
Ninit = 0.17 g/l and Nadd = 0.063 g/l at the instant t = 39.9 h.
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Figure 1.17: Rate production and yeast simulation of the fifteenth experiment with Ninit =
0.17 g/l and Nadd = 0.063 g/l at the instant t = 0 h.

In the experiments 1 and 2, the simulation of the rate production and yeast approximate
very well to the experimental datas, but in the followings experiments they do not work
well. The rate production does not work well in its maximum value and in the final part
of time, and yeast does not work well when there is nitrogen addition.

1.4 Comments about the quality of the model

� There are some experiments where the model does not fit very well.

� The dynamic equation (1.1) of the yeast only depends on the yeast and has a logistic
behaviour, because of that, yeast does not reproduce. We prove that mathematically,
analyzing the equilibrium points:

−XνSTNST = 0 (1.5)

−XνN = 0 (1.6)

k1[T ]X[1− X

Xmax(Ninit)
] = 0 (1.7)

Biologically, we are interesed when X 6= 0. Then from equations (1.6) and (1.7),
we have respectively νN = 0 and X = Xmax(Ninit). Therefore the equilibrium
points are [S,N,X]eq = [S, 0, Xmax(Ninit)]. Analyzing the stability, ẋ = f(x) where

20



x = [S,N,X]T , f = [f1, f2, f3],

f1 = −XνSTNST

f2 = −XνN
f3 = k1[T ]X[1− X

Xmax(Ninit)
]

∂f1
∂S

= − XK2(T )KSNST

(S +KS +KSISEαS)2
< 0

∂f2
∂S

= 0

∂f2
∂N

= − Xk3[T ]KN

(N +KN +KNINEalphaN )2
< 0

∂f3
∂S

= 0

∂f3
∂N

= 0

∂f3
∂X

= k1[T ][Xmax(Ninit)−
1

Xmax(Ninit)
]

∂f

∂x
(xeq) =


∂f1
∂S

∂f1
∂N

∂f1
∂X

0 ∂f2
∂N

∂f2
∂X

0 0 −k1[T ]


The eigenvalues in the equilibrium point xeq are ∂f1

∂S
, ∂f2
∂N

and −k1[T ] negatives.
Therefore, the equilibrium point is stable. So that when there is not nitrogen ad-
dition, the Yeast will be constant igual to Xeq = Xmax(Ninit) and when we add
nitrogen, the yeast will continue being igual Xmax(Ninit) because only depends of
the Ninit. Therefore when we add nitrogen, the yeast does not increase and does not
represent a well fit.
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Chapter 2

Improvement of Malherbe model

The purpose of this chapter is to improve the Malherbe model studied in Chapter 1. This
improvement leads us to consider a new model which is made step by step where there are
parameters that will be identified. The parameter identifications are obtained by solving
an optimization problem that will be solved numerically using python language.

2.1 Description of the new model

In this section we present the mathematical model and the biological and chemical be-
haviour of the new model. In fact, the mentioned new model can be set as:

dX

dt
= µ(N)Xf(S)

dN

dt
= −µ(N)X

dS

dt
= −2.17X(t)νSTTr

dTr

dt
= c1µ(N)X[c2 − f(S)] + g(E)Tr

[X(0), N(0), S(0), T r(0)] = [Xinit, Ninit, Sinit, T rinit]

where X(t) (yeast concentration) is the cell population in the tank (cell/l); N(t) and S(t)
are respectively the nitrogen and sugar concentration (g/l); and Tr(t) (glucose transporter)
is the number of sugar transporters in a cell. On the other hand, µ(N), f(S) and g(E)
are defined as:

µ(N) : =
µmaxN

kn +N
f(S) : = aS2 + bS + c

g(E) : = lE2 +mE + n.

(2.1)

where µmax, kn, a, b, c, l, m, and n are positive real numbers.
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It is well know that the most important chemical reactions produced in the wine
fermentation process are:

N
X−→ X + Tr Growth of X (2.2)

S
X,Tr−−−→ E + CO2 Degradation of S in ethanol (2.3)

So, by taking into account the Gay-Lussac’s law of the chemical reaction (2.3), we get
the following equations:{

S(t) = S(0)− 2.17CO2(t) CO2(0) = 0

E(t) = 0.464[S(0)− S(t)]

where the yield coefficients (2.17 and 0.464) in the system are obtained by mean of exper-
iment results as studied in [3].

In (2.2), the nitrogen is consumed to produce yeast and glucose transporter in a yeast.
The proportion 1

2
f(S) of nitrogen rate is used by the yeast for its growth and the comple-

ment proportion (1− 1
2
f(S)) of nitrogen rate is used by the yeast for the synthesis of glucose

transporter. The sugar is respectively absorbed and inhibited by the yeast and ethanol,
this activity is described by νST studied in Subsection 1.1.3, then the glucose transporter
permits that the sugar enters with greater velocity in the yeast. When g(E) < 0, there is
inhibition or degradation and when g(E) > 0, there is regeneration of transporter by the
yeast to adapt to the environment.

2.2 Parameter identifications of the model

In this section, we describe a method to identify the parameters involving in the mathe-
matical model proposed in Section 2.1. This method consists in minimizing a quadratic
error of estimation.

2.2.1 Parameter identifications of µ(N) and f(S)

In this part, we are going to identify the parameters kn, µmax, xinit, a, b and c of the
following dynamical system using two experimental data: the nitrogen data and the yeast
data.

dN

dt
= −µ(N)X

dX

dt
= µ(N)Xf(S)

N(0) = Ninit

X(0) = Xinit

where

µ(N) : =
µmaxN

kn +N
f(S) : = aS2 + bS + c

(2.4)
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Method to identify the parameters

We use the traditional weighted least squares method to identify the parameters kn, µmax,
xinit, a, b and c. The idea is to minimize the following quadratic error of estimation:

min
(kn,µmax,Xinit,a,b,c)

w1||Ndata−Nsim||22 + w2||Xdata−Xsim||22

s.t.

dN

dt
= −µ(N)X

dX

dt
= µ(N)Xf(S)

N(0) = Ninit

X(0) = Xinit


(2.5)

where w1 and w2 are the weights (fixed positive numbers), and

Ndata := [(Ndata)1, · · · , (Ndata)n]

Nsim := [N(t1), · · · , N(tn)]

Xdata := [(Xdata)1, · · · , (Xdata)m]

Xsim := [X(t1), · · · , X(tm)]

where (Ndata)i and (Xdata)i are respectively the data of nitrogen and yeast at time ti.

So for instance, using Ndata and Xdata vectors borrowed from [2], w1 = 0.01, w2 = 10,
n = 9 and m = 12, the numerical result (using Python language) of problem (2.5) is:


Xinit

kn
µmax
a
b
c

 =


3

0.35620067289411805
0.00074179295965841698
0.015807664957978633

9.3168038110079628e− 07
212.34153088786363

 . (2.6)

Simulation results for yeast and nitrogen experiments

Each one of the next two graphic describes the relationship between the data collections
and the simulation approach. One of the graphics corresponds to the yeast and the other
one to the nitrogen.
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Figure 2.1: Identification of µ(N) and f(S).

2.2.2 Paremeter identifications of f(S)

Similar to the previous analysis we use the following quadratic optimization problem in
order to identify the parameters a, b and c from f(S) using the yeast data.

min
(a,b,c)

r∑
k=1

||Xdatak −Xsimk||22

s.t.

dXk

dt
= µ(Nk)Xkf(Sk)

dNk

dt
= −µ(Nk)Xk

Xk(0) = Xkinit

Nk(0) = Nkinit


(2.7)

where for k = 1, · · · , r, the functions µ(Nk) and f(Sk) are defined in (2.1), and

Xdatak := [(Xdatak)1, · · · , (Xdatak)mk
];

Xsimk := [Xk(t1), · · · , Xk(tmk
)].

Here (Xdatak)i is the data of yeast at time ti of the kth experiment.
So for instance, by considering r = 9, m1 = m3 = m7 = m9 = 12; m2 = m4 = 10;

m5 = 8 and m6 = m8 = 12, as studied in [2] and also by taking Xdatak from this reference,
the numerical solution of (2.7) is: a

b
c

 =

 2.01142324e− 02
7.53592364e− 07
5.10588530e+ 01

 .

Here, the parameters µmax and kn in µ(Nk) are the same of (2.6).
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Simulation results for the yeast experiments

The following graphic describes the approach of the yeast simulation with yeast data of
nine experiments each identified with different color.

Figure 2.2: Identification of f(S) using yeast data of all the experiments.

2.2.3 Parameter identifications of Glucose Transporter

Similar to the previous subsection, we will identify the paremeters c1, c2, l, m, and n of
the following dynamical system using the glucose transporter data.

dTr

dt
= c1µ(N)X[c2 − f(S)] + g(E)Tr

dX

dt
= µ(N)Xf(S)

dN

dt
= −µ(N)X

Tr(0) = Trinit

X(0) = Xinit

N(0) = Ninit

where

g(E) := lE2 +mE + n.

Method to identify the parameters

Similar to the previous subsection, we identify the parameters c1, c2, l, m, and n using
the glucose transporter data solving the following quadratic optimization problem.
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min
(c1,c2l,m,n)

r∑
k=1

||Trdatak − Trsimk||22

s.t.

dTrk
dt

= c1µ(Nk)Xk[c2 − f(Sk)] + g(Ek)Trk

dXk

dt
= µ(Nk)Xkf(Sk)

dNk

dt
= −µ(Nk)Xk

Trk(0) = Trkinit

Xk(0) = Xkinit

Nk(0) = Nkinit



(2.8)

where
Trdatak := [(Trdatak)1, · · · , (Trdatak)mk

]

Trsimk := [Trk(t1), · · · , T rk(tmk
)]

where (Trdata)ki is the data of glucose transporter at time ti of the kth experiment.
So for instance, using Trdata borrowed from [2], and considering, r = 9 and mk = 1422,

the numerical solution of problem (2.8) is:
c1
c2
l
m
n

 =


2.99621981e− 02
1.44460425e+ 03
−1.31367315e− 06
1.50119898e− 04
−3.06341075e− 03

 .

Simulation results of glucose transporter experiments

The following graphic describes the approach of the glucose transporter with the glucose
tranporter data of nine experiments.

Figure 2.3: Identification of Glucose Transporter using yeast data of nine experiments.
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2.3 Simulation of the new mathematical model

In this section, we present the simulation of the mathematical model presented in the
Section 2.1 to compare with the experimental data.

Figure 2.4: Comparison between the rate production simulation and the rate production
data.

Figure 2.5: Comparison between the yeast simulation and the yeast data.
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2.3.1 Comparing the two mathematical models together the ex-
perimental data

We present here the simulation results obtained from the mathematical model presented
in the Section 2.1 and the malherbe model described in equation (1.1), and we compare
they together with the experimental data.

Figure 2.6: Comparison between the rate production simulation of the new model, rate
production simulation of the Malherbe model and the rate production data.

Figure 2.7: Comparison between the yeast simulation of the new model, yeast simulation
of the Malherbe model and the yeast data.
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Chapter 3

Continuous stirred tank bioreactor
for the new mathematical model

In Chapter 2 we made a mathematical model to study the wine fermentation process with
oenological conditions (nitrogen addition), the experiments are made in a batch reactor
where there are concentrations in the tank. The main purpose of this chapter is to study
this mathematical model but adding control variables. It is made in a tank like the batch
reactor but the difference is that it is added concentrations of N,S,E with certain velocity
Q1, Q2 and is removed concentrations of N,X, Tr, S, E with certain velocity Q. We are
going to assume that the input rate is equal to the output rate (Q1 +Q2 = Q), that is to
say the volume is constant because dV

dt
= Q− (Q1 +Q2). A tank with this assumption is

called continuous stirred tank bioreactor.

3.1 Mass balance

In this section, we use the mass balance law to the chemical concentrations involving in the
dynamical system of the Section 2.1. Therefore, the dynamical behaviour of the nitrogen is
equal to −µ(N)XV which is the rate of nitrogen comsuption in the tank; NinQ1 +NaddQ2

is the nitrogen rate that come into the tank with different dilution rate Q1 and Q2; and
finally −NQ is the nitrogen rate leaving the tank. The dynamical behaviour of the other
concentrations have the same structure.

d(NV )

dt
= −µ(N)XV +NinQ1 +NaddQ2 −NQ

d(XV )

dt
= µ(N)f(S)XV −XQ

d(TrV )

dt
= [c1µ(N)X(c2 − f(S)) + g(E)Tr]V − TrQ

d(SV )

dt
= −ν(E,S)TrV + SinQ1 − SQ

d(EV )

dt
= 0.464ν(E,S)TrV + EinQ1 − EQ



(3.1)

31



Using the dynamical system of (3.1) and the assumption of constant volumen of the
tank, we obtain the mathematical model with control variables as follows:

dN

dt
= −µ(N)X + (Nin −N)

Q1

V
+ (Nadd −N)

Q2

V
dX

dt
= µ(N)f(S)X −XQ1

V
−XQ2

V
dTr

dt
= c1µ(N)X(c2 − f(S)) + g(E)Tr − TrQ1

V
− TrQ2

V
dS

dt
= −ν(E,S)Tr + (Sin − S)

Q1

V
− SQ2

V
dE

dt
= 0.464ν(E,S)Tr + (Ein − E)

Q1

V
− EQ2

V



(3.2)

3.2 State - space representation of the wine fermen-

tation with enological condition

The mathematical model described in (3.2) can be represented by a state - space repre-
sentation as follows:

dξ

dt
= f(ξ) + g(ξ)u

y = h(ξ)

Qmin
1 ≤ u1 ≤ Qmax

1

Qmin
2 ≤ u2 ≤ Qmax

2


(3.3)

where
ξ := [N,X, Tr, S, E]t

f(ξ) :=


−µ(N)X
µ(N)f(S)X

c1µ(N)X(c2 − f(S)) + g(E)Tr
0.464ν(E, S)Tr



g(ξ) :=
1

V


Nin −N Nadd −N
−X −X
−Tr −Tr
Sin − S −S
Ein − E −E


u := [u1, u2]

t = [Q1, Q2]
t

V CO2 := 1
2.17

ν(E, S)Tr

h(ξ) := [S, V CO2]
t
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Chapter 4

Anti-windup for Internal Model
Control

Assuming that a MIMO linear system control problem without constraint is solved, that
is to say, it is finded a input uwc such that the output ywc reaches and stabilizes at a
known desirable constant value y∗. The main purpose of this chapter is to find a input ũ
of the same linear system control problem with constraint (the input ũ is restricted) such
that the output y is close to ywc as possible at each instant of time. This was done in the
article [4] and we are going to do that with more details and give the implicit solution of
an example.

4.1 Introduction

Definición 4.1. Let f be a real-valued, locally integrable function defined on the positive
real numbers. Then

F (s) = [L(f)](s) :=

∫ ∞
0

f(t)e−st dt, f = L−1[F ]

denote, as usual, the direct and inverse Laplace transforms.

The scheme in Figure 4.1 is called open loop where u enters to the system P obtaining
a response y, u(t) := [u1(t), ..., un(t)]T ∈ Rn and y(t) := [y1(t), ..., yn(t)]T ∈ Rn are the
input and the output respectively.

P
Linear plant

yu

Figure 4.1: Linear system with input u and output y.

The elements of P (s) ∈ Rn×n are quotient of polynomials and mathematically, the
scheme of Figure 4.1 is the following

Y (s) = P (s)U(s) (4.1)
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where

Y (s) = L{y(t)} := [Y1(s), ..., Yn(s)]T ∈ Rn Yi(s) = L{yi(t)}

and

U(s) = L{u(t)} := [U1(s), ..., Un(s)]T ∈ Rn Ui(s) = L{ui(t)}

are respectively the Laplace transforms of the output y and the input u. P (s) = [Pij(s)]
is called transfer function.

Remark. The equation (4.1) or the scheme of Figure 4.1 is equivalent to a system of
linear ordinary differential equations.

Definición 4.2. A strictly proper transfer function is a transfer function where the degree
of the numerator is less than the degree of the denominator. A proper transfer function is
a transfer function where the degree of the numerator is less or equal to the degree of the
denominator. A biproper transfer function is a transfer function where the degree of the
numerator is equal to the degree of the denominator.

We define the matrix p(t) := [pij(t)] ∈ Rn×n whose ij−element pij(t) = L−1[Pij(s)] is
the inverse Laplace transform of Pij.

Definición 4.3 (The convolution transform). The convolution transform of p and u,
denoted by p ∗ u, is defined on all R as

(p ∗ u)(t) :=

∫ t

0

p(t− τ)u(τ)dτ (4.2)

We are going to prove that the inverse Laplace transform of the product of two Laplace
transforms in (4.1) is equal to the convolution transform of the two inverse Laplace trans-
forms.

From equation (4.1), we have the following:

Yi(s) =
n∑
j=1

Pij(s)Uj(s)

yi(t) =
n∑
j=1

(pij ∗ uj)(t) =
n∑
j=1

∫ t

0

pij(t− τ)uj(τ)dτ

yi(t) =

∫ t

0

n∑
j=1

pij(t− τ)uj(τ)dτ

y(t) =

∫ t

0

vt(τ)dτ
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where

vt(τ) :=



n∑
j=1

p1j(t− τ)uj(τ)

...
n∑
j=1

pnj(t− τ)uj(τ)


From equation (4.2), we have that

y(t) =

∫ t

0

p(t− τ)u(τ)dτ

y(t) = (p ∗ u)(t)

4.2 Problem formulation

For u ∈ Rn, sat(u) := [sat(u1), ..., u(n)]T where

sat(ui) =


umaxi ui > umaxi

ui umini ≤ ui ≤ umaxi

umini ui < umini

We assume that the MIMO linear system without constraint,

ẋ = Ax(t) +Bu(t)
y(t) = Cx(t)

}
(4.3)

where A, B and C are given n× n real matrices with B and C invertible,
is solved. Therefore, the close loop scheme

P
Linear plant

K

Controller

ywcy∗ uwc

-

+

Figure 4.2: Closed loop of a linear system without constraints.

is the solution of the linear system (4.3). Where uwc and ywc are respectively the input
and output.

From Figure 4.2, we have the following equations:

Y wc = PUwc

Uwc = K(Y ∗ − Y wc)
(4.4)
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where Y wc, Uwc and Y wc are respectively the Laplace transforms of ywc, uwc and y∗.
From equation (4.4),

Y wc = P (I +KP )−1KY ∗

Let F ∈ Rn×n be the Laplace transform of a function f . Therefore, using the previous
equation

(f ∗ ywc)(t) = L−1[FP (I +KP )−1Ky∗](t)

The main purpose of this Chapter is to solve the MIMO linear system with constraint

ẋ = Ax(t) +Bu(t)
y(t) = Cx(t)
umin ≤ u(t) ≤ umax

 (4.5)

or equivalent to

ẋ = Ax(t) +Bũ(t)
y(t) = Cx(t)
ũ(t) := sat(u(t))

 (4.6)

P
Linear plant

yũ

Figure 4.3: Linear system with constraint.

such that y is close to ywc as possible at each time t, that is to say, mathematically we
want to solve the following optimization problem at each time t,

min
ũ
||(f ∗ ywc)(t)− (f ∗ y)(t)||1 = min

ũ
||L−1[FP (I +KP )−1Ky∗](t)− (L−1[FP ] ∗ ũ)(t)||1, (4.7)

where f is a diagonal filter such that FP is biproper.
In general the IMC scheme in Figure 4.4 solves (4.6) but does not solve the optimization

problem (4.7), because of that we are going to present in the next section a close loop
scheme satisfying certain conditions to resolve the problems (4.6) and (4.7).

P
Linear plant

sat()

Constraint

K

Controller

yy∗ ũu
-

+

Figure 4.4: Conventional linear IMC scheme.
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4.3 Anti-windup design

In this section we are going to present a close loop scheme satisfying certain conditions to
solve the problems (4.6) and (4.7).

Definición 4.4 (Stability and minimum-phase). A linear system is stable when all
poles (roots of the denominator) of the elements of its transfer function have their negative
real part. A linear system is minimum-phase when all zeros (roots of the numerator) of
the elements of its transfer function have their negative real part.

The following Lemma is proved in the article [4].

Lemma. The following close loop

systemsat()K1

Controller

yy∗

K2

Controller

ũu+

-

+

-

Figure 4.5: Anti-windup linear IMC scheme.

with:
K1 := FP (I +KP )−1K and K2 := FP − I −K1P ,
and the following assumptions:

1) (I +KP )−1K is biproprer, stable and minimum-phase,

2) FP|s=∞ is a diagonal nonsingular matrix with finite elements,

3) K1 is stable and minimum-phase,

4) K1P +K2 is strictly proper,

solve (4.6) and the optimization problem (4.7).

4.4 Example

In this section, we are going to present a example and will show the perfomance of the
Anti-windp method. We consider the following linear system,

ẏ = −0.01y + 0.02u
y(0) = 0
−1 ≤ u ≤ 1

In this example, the setpoint y∗ is equal to 1.
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Then, the linear plant is the following:

P (s) =
2

100s+ 1
.

The IMC controller designed is

K =
100s+ 1

40s
.

Case 1. Chossing f(s) = 2.5(20s+ 1) gives

K1 = 2.5

K2 =
−1

100s+ 1

Case 2. Chossing f(s) = 50(s+ 1) gives

K1 =
50(s+ 1)

20s+ 1

K2 =
18802− 1

(100s+ 1)(20s+ 1)

4.4.1 Close loop

a) Unconstrain system is obtained by the scheme in Figure 4.2:

Y = PU
U = K(Y ∗ − Y )

The mathematical equations are the following:

ẏ = −0.01y + 0.02u
u = 2.5(y∗ − y) + z

where
ż = 0.025(y∗ − y)

[y(0), z(0)] = [0, 0]

b) IMC system is obtained by the scheme in Figure 4.4:

Y = PŨ
ũ = sat(u)
U = K(Y ∗ − Y )

The mathematical equations are the following:

ẏ = −0.01y + 0.02ũ
ũ = sat(u)
u = 2.5(y∗ − y) + z

where
ż = 0.025(y∗ − y)

[y(0), z(0)] = [0, 0]
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c) Anti-windup IMC case 1 is obtained by the scheme in Figure 4.5:

Y = PŨ
ũ = sat(u)

U = K1(Y
∗ − Y )−K2Ũ

The mathematical equations are the following:

ẏ = −0.01y + 0.02ũ
ũ = sat(u)
u = 2.5(y∗ − y) + z

where
ż = 0.01(−z + ũ)

[y(0), z(0)] = [0, 0]

d) Anti-windup IMC case 2 is obtained by the scheme in Figure 4.5 :

The mathematical equations are the following:

ẏ = −0.01y + 0.02ũ
ũ = sat(u)
u = 2.5(y∗ − y) + 47.5z1 + 24.75z2 − 23.75z3

where
ż1 = 0.05(−z1 + y∗ − y)
ż2 = 0.01(−z2 + ũ)
ż3 = 0.05(−z3 + ũ)

[y(0), z1(0), z2(0), z3(0)] = [0, 0, 0, 0]

4.4.2 Simulation results

We present the plots, imput and output versus time, for three cases: system without and
with constraint solved by the IMC scheme, and finally the Anti-windup IMC scheme.

Figure 4.6: Plot output and input versus time where the desired value or setpoint is equal
to 1.
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Chapter 5

Anti-windup input-output
linearization scheme for SISO
systems

The main purpose of this chapter is to find the input ũ of a single-input single output
(SISO) nonlinear system control problem with constraints such that the output y reaches
and stabilizes at a known desirable constant value y∗ and is to close to ywc as possible at
each instant of time. This will be solved by linearizing the SISO system in a linear system
and finally we will apply the anti-windup technique to this linear system studied in the
previous chapter. This was done in the article [5] and we are going to do that with more
details and give the implicit solution of an example.

5.1 Notations

The Lie derivative or directional derivative is defined as follows:

Lfh : Rn −→ R

x 7→ 〈∂h
∂x

(x), f(x)〉 =
n∑
i=1

∂h

∂xi
(x)fi(x)

where f(x) = [f1(x), . . . , fn(x)] ∈ Rn and h : Rn → R is differentiable. The state-
dependent saturation operator for a signal u is defined as:

sat(u, x(t)) :=


umax(x(t)) if u > umax(x(t))

umin(x(t)) if u < umin(x(t))

u(t) otherwise
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5.2 Anti-windup feedback linearizing design

Our nonlinear state-space equation is described as follows:

ẋ = f(x(t)) + g(x(t))u(t)
y(t) = h(x(t))
umin ≤ u(t) ≤ umax

 (5.1)

where the functions f, g, h : Rn → Rn. The equation (5.1) is called SISO systems.
We define the relative degree r at the point x0 as the integer r which satisfies:

LgL
i−1
f h(x) = 0 1 ≤ i ≤ r − 1, for all x near to x0

LgL
r−1
f h(x) 6= 0 for all x near to x0.

When r = 1, we have Lgh(x) 6= 0 for all x near to x0. Using equation (5.1), we have
the following:

ẏ =
∂h

∂x
(x)(f(x) + g(x)u)

ẏ = Lfh(x) + Lgh(x)u

When r = 2, we have Lgh(x) = 0 and LgLfh(x) 6= 0 for all x near to x0. Using
equation (5.1), we have the following:

ẏ = Lfh(x)

ÿ = L2
fh(x) + LgLfh(x)u.

In general case, when the relative degree is r, we have

y(i) = Lifh(x) 0 ≤ i ≤ r − 1

y(r) = Lrfh(x) + LgL
r−1
f h(x)u.

(5.2)

The main purpose of this section is to transform the nonlinear system (5.1) in a linear
system with control v.

Let P be a linear plant with input v and output y,

P (s) =
1

n∑
i=0

λis
i

, λn = 1. (5.3)

The equation (5.3) is equivalent to,

y(r) = v −
r−1∑
i=0

λiy
(i) (5.4)

Using the equation (5.2) and (5.4), we have the following:

v = Lrfh(x) + LgL
r−1
f h(x)u+

r−1∑
i=0

λiy
(i)

u = −
Lrfh(x)

LgL
r−1
f h(x)

+ (v −
r−1∑
i=0

λiy
(i))

1

LgL
r−1
f h(x)
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u = α(x) + (v −
r−1∑
i=0

λiy
(i))β(x) (5.5)

where

α(x) := −
Lrfh(x)

LgL
r−1
f h(x)

β(x) :=
1

LgL
r−1
f h(x)

.

The new control v is satured,

umin ≤ α(x) + (v −
r−1∑
i=0

λiy
(i))β(x) ≤ umax

umin − α(x)

β(x)
+

r−1∑
i=0

λiy
(i) ≤ v ≤ umax − α(x)

β(x)
+

r−1∑
i=0

λiy
(i)

vmin(x(t)) ≤ v ≤ vmax(x(t)) (5.6)

where

vmin(x(t)) :=
umin − α(x)

β(x)
+

r−1∑
i=0

λiy
(i)

vmax(x(t)) :=
umax − α(x)

β(x)
+

r−1∑
i=0

λiy
(i).

The equation (5.4) and the inequality (5.6) is equivalent to a linear system with con-
straints being v the new input and y the output where v is limited, so an anti-windup
scheme for linear systems who was studied in the previous chapter will be applied to
obtained v and y. Using the equation (5.5), the input u is obtained.

Ψ
Transformation

sat()K1

Controller

sat()

Constraint

system yy∗

K2

Controller

ṽv+ u ũ

-
+

-

Figure 5.1: Scheme of anti-windup input-output feedback linearizing controller.

5.3 Example

We consider the following nonlinear SISO system:
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ẋ = 0.01ex(−x+ 2u)
y = x

subject to the constraint −1 ≤ u ≤ 1 and the setpoint y∗ is equal to 1.
The linear system is taken from the studies of Zheng [4]:

P (s) =
2

100s+ 1
.

The IMC controller designed,

K =
100s+ 1

40s

The filter is F (s) = 50(s+ 1), then the anti-windup controllers are:

K1 =
50(s+ 1)

20s+ 1
and K2 =

1880s− 1

(100s+ 1)(20s+ 1)
.

5.3.1 Close loop

a) Unconstrain system is obtained by the the scheme in Figure 5.2:

Y = PV
V = K(Y ∗ − Y )

The mathematical equations are the following:

ẏ = −0.01y + 0.02u
u = 2.5(y∗ − y) + z

where
ż = 0.025(y∗ − y)

[y(0), z(0)] = [0, 0].

P

Linear plant

K

Controller

yy∗
v

-

+

Figure 5.2: Unconstrain linear system scheme.

b) Conventional linear IMC system is obtained by the scheme in Figure 5.3:

Y = syst(ũ)
ũ = sat(u)
U = K(Y ∗ − Y )
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The mathematical equations are the following:

ẏ = −0.01ey(−y + 2ũ)
ũ = sat(u)
u = 2.5(y∗ − y) + z

where
ż = 0.025(y∗ − y)

[y(0), z(0)] = [0, 0]

systemsat()

Constraint

K

Controller

yy∗
ũu

-

+

Figure 5.3: Conventional linear IMC scheme.

c) Linearization systems is obtained by the scheme in Figure 5.4:

y = syst(ũ)
ũ = sat(u)
u = Ψ(ṽ)
V = K(Y ∗ − Y )
ṽ = sat(v, x)

The mathematical equations are the following:

ẏ = −0.01ey(−y + 2ũ)
ũ = sat(u)

u =
2ṽ − y + yey

2ey
ṽ = sat(v, x)
v = 2.5(y∗ − y) + z
vmin = uminey + 1

2
y(1− ey)

vmax = umaxey + 1
2
y(1− ey)

where
ż = 0.025(y∗ − y)

[y(0), z(0)] = [0, 0].

Ψ

Transformation

sat()

Constraint

K

Controller

sat()

Constraint

system yy∗
v ṽ u ũ

-

+

Figure 5.4: Linearizing scheme.

45



d) Anti-windup IMC system is obtained by the scheme in Figure 5.5:

Y = syst(ũ)
ũ = sat(u)

U = K1(Y
∗ − Y )−K2Ũ

The mathematical equations are the following:

ẏ = −0.01ey(−y + 2ũ)
ũ = sat(u)
u = 2.5(y∗ − y) + 95

2
z1 + 99

4
z2 − 95

4
z3

where
ż1 = 0.05(y∗ − y − z1)
ż2 = 0.01(ũ− z2)
ż3 = 0.05(ũ− z3)

[y(0), z1(0), z2(0), z3(0)] = [0, 0, 0, 0].

systemsat()K1

Controller

yy∗

K2

Controller

ũu+

-
+

-

Figure 5.5: Anti-windup linear IMC scheme.

e) Anti-windup linearizing system is obtained by the scheme in Figure 5.1:

y = syst(ũ)
ũ = sat(u)
u = Ψ(ṽ)

V = K1(Y
∗ − Y )−K2Ṽ

ṽ = sat(v, x)

The mathematical equations are the following:

ẏ = −0.01ey(−y + 2ũ)
ũ = sat(u)

u =
2ṽ − y + yey

2ey
ṽ = sat(v, x)
v = 2.5(y∗ − y) + 95

2
z1 + 99

4
z2 − 95

4
z3

vmin = uminey + 1
2
y(1− ey)

vmax = umaxey + 1
2
y(1− ey)
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where
ż1 = 0.05(y∗ − y − z1)
ż2 = 0.01(ṽ − z2)
ż3 = 0.05(ṽ − z3)

[y(0), z1, z2, z3] = [0, 0, 0, 0].

5.3.2 Simulation results

We present the simulation results of the input and output of the Example 5.3 without
using the anti-windup technique.

Figure 5.6: a) Unconstrain solution. b) IMC. c) Input-output linearization. The desired
value or setpoint is equal to 1.

We present the simulation results of the input and output of the Example 5.3 using
the anti-windup technique.

Figure 5.7: a) Unconstrain solution. d) Anti-windup IMC. e) Anti-windup input-output
Linearization. The desired value or setpoint is equal to 1.
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Chapter 6

An anti-windup scheme for
multivariable nonlinear systems

The main purpose of this chapter is to find the input ũ of a multi-input multi-output
(MIMO) nonlinear system control problem with constraints such that the output y is to
close to ywc at each instant of time. The solution of this control problem is a generalization
of the case SISO nonlinear system control problem with constraints. It was done in the
article [6] and we are going to do that with more details and give the implicit solution of
an example.

6.1 Problem formulation

In this chapter, the state-space system is a multivariable nonlinear systems,

ẋ = f(x(t)) + g(x(t))u(t)
y(t) = h(x(t))
umini ≤ ui(t) ≤ umaxi ∀i = 1, ...,m

 (6.1)

where f : Rn → Rn, g : Rn → Rn×m, h : Rn → Rm, u := [u1, . . . , um].
The main purpose is to keep the output of the constrained system as close to the

output of the unconstrained system as possible in each instant of time.

6.2 Nonlinear anti-windup design

6.2.1 Relative degree

Many reasoning used to define the concepts for multivariable systems are an extension of
the SISO case. In the multivariable case, the notion of relative degree is extended by

� The vector of relative degrees [r1, ..., rm] defined in a neighbourhood of x◦ by

[Lg1L
k
fhi(x), ..., LgmL

k
fhi(x)] = 0 1 ≤ k < ri − 1 i = 1, ...,m (6.2)
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[Lg1L
ri−1
f hi(x), ..., LgmL

ri−1
f hi(x)] 6= 0 i = 1, ...,m (6.3)

where gi : Rn → Rn for all i = 1, . . . ,m and g = [g1, . . . , gm].

� The matrix β(x) defined by

β(x) :=

 Lg1L
r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

...
...

Lg1L
rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)

 ,
where hi : Rn → R for all i = 1, . . . ,m and h = [h1, . . . , hm].

Using the equations (6.1), (6.2) and (6.3), we have the following:

y
(k)
i = Lkfhi(x) k = 0, ..., ri − 1 i = 1, ...,m (6.4)

y
(ri)
i = Lrif hi(x) + [Lg1L

ri−1
f hi(x), ..., LgmL

ri−1
f hi(x)]u i = 1, ...,m (6.5)

6.2.2 Input-output linearization design

The main purpose of multivariable input-output linearization is the design of a transfor-
mation u = Ψ(x, v) such that the relationship between the output y and the transformed
input v is a linear system. So that, we present the following linear system:

airiy
(ri)
i = vi −

ri−1∑
k=0

aiky
(k)
i i = 1, . . . ,m (6.6)

or equivalent to

Yi =
Vi

ri∑
k=0

aiks
k

i = 1, . . . ,m

where vi is the ith component of v, Yi and Vi are respectively the Laplace transforms of
yi and vi.

Using (6.4) and (6.5), the equation (6.6) is equivalent as follows,

airiL
ri
f hi(x) + airi [Lg1L

ri−1
f hi(x), ..., LgmL

ri−1
f hi(x)]u = vi −

ri−1∑
k=0

aikL
k
fhi(x) i = 1, ...,m

Then,

airi [Lg1L
ri−1
f hi(x), ..., LgmL

ri−1
f hi(x)]u = vi −

ri∑
k=0

aikL
k
fhi(x) i = 1, ...,m

The previous equation can be expressed as follows,

Aβ(x)u = v − b (6.7)
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where

A :=


a1r1 0 . . . 0
0 a2r2 0
...

. . .
...

0 0 . . . amrm


v := [v1, ..., vm]T

b(x) :=



r1∑
k=0

a1kL
k
fh1(x)

...
rm∑
k=0

amkL
k
fhm(x)


Therefore, the equation (6.7) is equivalent to the next equation searched,

u = Ψ(x, v)

where

Ψ(x, v) := β−1(x)A−1(v − b) (6.8)

6.3 Example

Consider the following MIMO nonlinear system control problem:

ẋ1 = −0.1(1− ex1) + 0.4u1 − 0.5u2
ẋ2 = −0.2x2 − 0.1x2

1+x2
− 0.3u1 + 0.4u2

y1 = x1
y2 = x2
−15 < ui < 15 i = 1, 2

The setpoints y∗1 and y∗2 are respectively 0.61 and 0.79.

The previous MIMO nonlinear system is equivalent to a state-space system like (6.1),
where

f(x) =

[
−0.1(1− ex1),−0.2x2 − 0.1

x2
1 + x2

]T
g(x) =

[
0.4 −0.5
−0.3 0.4

]
h(x) = x
umin = [−15,−15]T

umax = [15, 15]T
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The relative degree defined in the Subsection 6.2.1 of this system is [1, 1], because

[Lg1h1(x), Lg2h1(x)] = [0.4,−0.5]

[Lg1h2(x), Lg2h2(x)] = [−0.3, 0.4].

Then the matrix β(x) defined in the Subsection 6.2.1 is

β(x) =

[
0.4 −0.5
−0.3 0.4

]
.

We propose the following linear system:

Y1 =
1

1 + 10s
(4V1 − 5V2)

Y2 =
1

1 + 10s
(−3V1 + 4V2).

The previous equations are equivalent to,

Y = PLV

where

PL :=
1

1 + 10s

[
4 −5
−3 4

]
Y = [Y1, Y2]

T

V = [V1, V2]
T .

Then the matrices A and b(x) defined in the Subsection 6.2.2 are

A = 10I2

and

b(x) =

[
x1 − (1− ex1)
−x2 −

x2
1 + x2

]
because

[L0
fh1(x), L1

fh1(x)] = [x1,−0.1(1− ex1)][
L0
fh2(x), L1

fh2(x)
]

= [x2,−0.2x2 − 0.1
x2

1 + x2
]

[a10, a11] = [1, 10]

[a20, a21] = [1, 10].

Using the equation (6.8), we have the transformation searched and new control con-
strains defined in the Subsection 6.2.2,

u = Ψ(x, v)
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where

Ψ(x, v) =


v1 + 4(1− ex1 − x1) + 5x2

2 + x2
1 + x2

v2 + 3(1− ex1 − x1) + 4x2
2 + x2
1 + x2


vmin = [−15− 4(1− ex1 − x1)− 5x2

(2 + x2)

1 + x2
,−15− 3(1− ex1 − x1)− 4x2

(2 + x2)

1 + x2
]T

vmax = [15− 4(1− ex1 − x1)− 5x2
(2 + x2)

1 + x2
, 15− 3(1− ex1 − x1)− 4x2

(2 + x2)

1 + x2
]T .

We propose the following IMC controller K for the previous linear system:

K = (10 +
1

s
)

4
3

5
3

1 4
3


Using the filter f = 2.5(s + 1)I2 and the anti-windup technique in Section 4.3, the

anti-windup controllers K1 and K2 are:

K1 = 5
2
s+1
3s+1

I2 = 5
6
I2 + 5

3
1

3s+1
I2

K2 = 1
2

1
10s+1

1
3s+1

[
34s− 2 −25(s+ 1)(3s+ 2)

−15(s+ 1)(3s+ 2) 34s− 2

]

= −

0 5
4

3
4

0

− 1
10s+1

 27
7

765
28

459
28

27
7

+ 1
3s+1

20
7

25
7

15
7

20
7


6.3.1 Close loop

We present the implicit mathematical solution using the anti-windup linearizing scheme.
Before to do that, it is neccesary to follow a sequence of steps: linear scheme without
constraints, nonlinear scheme without constraints, anti-windup linearizing scheme without
constraints and finally, the anti-windup linearizing scheme with constraints.

a) Linear system without constraints:

Y = PLV

V = K(Y ∗ − Y ) (6.9)

the equation (6.9) is equivalent to:

V1 = 40
3

(Y ∗1 − Y1) + 50
3

(Y ∗2 − Y2) + 4
3
W1 + 5

3
W2

V2 = 10(Y ∗1 − Y1) + 40
3

(Y ∗2 − Y2) +W1 + 4
3
W2
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where
W1 = 1

s
(Y ∗1 − Y1)

W2 = 1
s
(Y ∗2 − Y2).

The implicit solution of the control problem of this item is:

ẏ1 = −0.1y1 + 0.4v1 − 0.5v2

ẏ2 = −0.1y2 − 0.3v1 + 0.4v2

v1 = 40
3

(y∗1 − y1) + 50
3

(y∗2 − y2) + 4
3
w1 + 5

3
w2

v2 = 10(y∗1 − y1) + 40
3

(y∗2 − y2) + w1 + 4
3
w2

where
ẇ1 = y∗1 − y1
ẇ2 = y∗2 − y2

[y1(0), y2(0), w1(0), w2(0)] = [0, 0, 0, 0].

 (6.10)

b) Nonlinear system without constraints:

y = system(u)
u = Ψ(x, v)
V = K(Y ∗ − Y )

The implicit solution of the control problem of this item is:

ẏ1 = −0.1(1− ey1) + 0.4u1 − 0.5u2

ẏ2 = −0.2y2 − 0.1 y2
1+y2
− 0.3u1 + 0.4u2

u1 = v1 + 4(1− ex1 − x1) + 5x2
x2+2
x2+1

u2 = v2 + 3(1− ex1 − x1) + 4x2
x2+2
x2+1

v1 = 40
3

(y∗1 − y1) + 50
3

(y∗2 − y2) + 4
3
w1 + 5

3
w2

v2 = 10(y∗1 − y1) + 40
3

(y∗2 − y2) + w1 + 4
3
w2

where w1 and w2 satisfy the ordinary differential equations in (6.10).

c) Anti-windup linearizing system without constraints:

y = system(u)

u = Ψ(x, v)

V = K1(Y
∗ − Y )−K2Ṽ (6.11)

V = Ṽ

The equation (6.11) is equivalent to:

V1 = 5
6
(Y ∗1 − Y1) + 5

3
1

3s+1
(Y ∗1 − Y1) + 5

4
Ṽ2 + 27

7
1

10s+1
Ṽ1 + 765

28
1

10s+1
Ṽ2 − 20

7
1

3s+1
Ṽ1

−25
7

1
3s+1

Ṽ2

V2 = 5
6
(Y ∗2 − Y2) + 5

3
1

3s+1
(Y ∗2 − Y2) + 3

4
Ṽ1 + 459

28
1

10s+1
Ṽ1 + 27

7
1

10s+1
Ṽ2 − 15

7
1

3s+1
Ṽ1

−20
7

1
3s+1

Ṽ2
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The previous equations are equivalent to:

V1 = 5
6
(Y ∗1 − Y1) + 5

3
W1 + 5

4
Ṽ2 + 27

7
X1 + 765

28
X2 − 20

7
Z1 − 25

7
Z2

V2 = 5
6
(Y ∗2 − Y2) + 5

3
W2 + 3

4
Ṽ1 + 459

28
X1 + 27

7
X2 − 15

7
Z1 − 20

7
Z2

where

W1 = 1
3s+1

(Y ∗1 − Y1)
W2 = 1

3s+1
(Y ∗2 − Y2)

X1 = 1
10s+1

Ṽ1

X2 = 1
10s+1

Ṽ2

Z1 = 1
3s+1

Ṽ1

Z2 = 1
3s+1

Ṽ2

The implicit solution of the control problem of this item is:

ẏ1 = −0.1(1− ey1) + 0.4u1 − 0.5u2

ẏ2 = −0.2y2 − 0.1 y2
1+y2
− 0.3u1 + 0.4u2

u1 = v1 + 4(1− ex1 − x1) + 5x2
x2+2
x2+1

u2 = v2 + 3(1− ex1 − x1) + 4x2
x2+2
x2+1

v1 − 5
4
v2 = 5

6
(y∗1 − y1) + 5

3
w1 + 27

7
x1 + 765

28
x2 − 20

7
x1 − 25

7
z2

−3
4
v1 + v2 = 5

6
(y∗2 − y2)− 5

3
w2 + 459

28
x1 + 27

7
x2 − 15

7
z1 − 20

7
z2

where

ẇ1 = 1
3
(y∗1 − y1 − w1)

ẇ2 = 1
3
(y∗2 − y2 − w2)

ẋ1 = 1
10

(v1 − x1)
ẋ2 = 1

10
(v2 − x2)

ż1 = 1
3
(v1 − z − 1)

ż2 = 1
3
(v2 − z2)

[y1, y2, w1, w2, x1, x2, z1, z2] (0) = [0, 0, 0, 0, 0, 0].


(6.12)

d) Anti-windup linearizing system with constraints:

y = system(ũ)

ũ = sat(u)

u = Ψ(ṽ)

V = K1(Y
∗ − Y )−K2Ṽ (6.13)

ṽ = sat(v, x)
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The implicit solution of the control pronlem of this item is:

ẏ1 = −0.1(1− ey1) + 0.4ũ1 − 0.5ũ2

ẏ2 = −0.2y2 − 0.1 y2
1+y2
− 0.3ũ1 + 0.4ũ2

u1 = v1 + 4(1− ex1 − x1) + 5x2
x2+2
x2+1

u2 = v2 + 3(1− ex1 − x1) + 4x2
x2+2
x2+1

ũ1 = sat(u1, u
min
1 , umax1 )

ũ2 = sat(u2, u
min
2 , umax2 )

v1 = 5
6
(y∗1 − y1) + 5

3
w1 + 5

4
ṽ2 + 27

7
x1 + 765

28
x2 − 20

7
x1 − 25

7
z2

v2 = 5
6
(y∗2 − y2)− 5

3
w2 + 3

4
ṽ1 + 459

28
x1 + 27

7
x2 − 15

7
z1 − 20

7
z2

ṽ1 = sat(v1, v
min
1 , vmax1 )

ṽ2 = sat(v2, v
min
2 , vmax2 )

where umini , umaxi , vmini and vmaxi were defined at the beginning of this section.

6.3.2 Simulation results

The following graphics describe the input and output of the control problems of the pre-
vious subsection.

a) Linear system without constraints:

Figure 6.1: Linear system solution without constraints.

b) Nonlinear system without constraints:
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Figure 6.2: Nonlinear system solution without constraints.

c) Anti-windup linearizing nonlinear system without constraints:

Figure 6.3: Anti-windup linearizing nonlinear system solution without constraints.

d) Anti-windup linearizing nonlinear system with constraints:

Figure 6.4: Anti-windup linearizing nonlinear system solution with constraints.
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Chapter 7

Control theory applied to the wine
fermentation process with
oenological condition

The main purpose of this chapter is to control the wine fermentation with oenological
condition represented for the mathematical model (3.3), that is to say, we are going to
add and remove the chemical concentrations of the continuous bioreactor with certain
velocities Q1 and Q2 such that the sugar S and the rate production V CO2 reaches and
stabilizes at the desired values S∗ and V CO∗2 respectively.

7.1 Relative degree

The relative degree defined in the Subsection 6.2.1 of the dynamical system (3.3) is [1, 1],
because

[Lg1h1(ξ), Lg2h1(ξ)] = [β11(ξ), β12(ξ)]

[Lg1h2(ξ), Lg2h2(ξ)] = [β21(ξ), β22(ξ)],

where ξ = [X,N, Tr, S, E]t, the functions hi and gi for i = 1, 2 are respectively the columns
of the matrix functions h and g defined in (3.3),

β11(ξ) :=
Sin − S
V

β12(ξ) := −S
V

β21(ξ) :=
1

2.17

Tr

V

[
KS(Sin − S) +KSIαSS

2EαS

(S +KS +KSISEαS)2
− ν(E, S)

]
β22(ξ) :=

1

2.17

Tr

V

[
KSIαSS

2EαS −KSS

(S +KS +KSISEαS)2
− ν(E, S)

]
.

Then the matrix β(x) defined in the Subsection 6.2.1 is

β(x) =

[
β11(ξ) β12(ξ)
β21(ξ) β22(ξ)

]
.
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7.2 Linearizing control law

We propose the following linear system:

ẏ1 = v1
ẏ2 = v2

equivalent to
Y = PV

P (s) =
1

s
I2

where y1 = S and y2 = V CO2 are the components of y defined in (3.3), Y = [Y1, Y2]
T and

V = [V1, V2]
T where Yi and Vi are respectively the Laplace transforms of yi and vi.

Then the matrices A and b(ξ) defined in the Subsection 6.2.2 are

A = I2

and

b(ξ) =

[
L1(ξ)
L2(ξ)

]
where

L1(ξ) := −ν(E, S)Tr

L2(ξ) := −Tr
2ν(E, S)(KS + 0.464KSIαSS

2EαS−1)

2.17(S +KS +KSISEαS)2

+
ν(E, S)

2.17
[c1ν(N)X(c2 − f(S)) + g(E)Tr]

because
[L0

fh1(ξ), L
1
fh1(ξ)] = [S, L1(ξ)][

L0
fh2(ξ), L

1
fh2(ξ)

]
= [V CO2, L2(ξ)]

[a10, a11] = [0, 1]

[a20, a21] = [0, 1].

Using the equation (6.8), we have the transformation searched and new control con-
strains defined in the Subsection 6.2.2,

u = Ψ(ξ, v)

vmin1 = L1(ξ) + β11(ξ)Q
min
1 + β12(ξ)Q

max
2

vmax1 = L1(ξ) + β11(ξ)Q
max
1 + β12(ξ)Q

min
2

vmin2 = L2(ξ) + β21(ξ)Q
max
1 + β22(ξ)Q

max
2

vmax2 = L2(ξ) + β21(ξ)Q
min
1 + β22(ξ)Q

min
2

where
Ψ(ξ, v) = β−1(ξ)(v − b(ξ)).

It is because β11 is positive and β12, β21, β22 are negative.
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7.3 Anti-windup for linear system

We propose the following IMC controller K for the previous linear system:

K = λ0I2 λ0 > 0.

Using the filter F (s) = (λ0+s)
λ0

I2 and the anti-windup technique in Section 4.3, the anti-
windup controllers K1 and K2 are:

K1 = I2

K2 = ( 1
λ0
− 1)I2

7.4 Close loop

We present the implicit mathematical solution using the anti-windup linearizing scheme.
Before to do that, it is neccesary to follow a sequence of steps: linear scheme without
constraints, nonlinear scheme without constraints, and finally, the anti-windup linearizing
scheme with constraints.

a) Linear system without constraints:

Y = PV
V = K(Y ∗ − Y )

The implicit solution of the control problem of this item is:

Ṡ = v1
˙V CO2 = v2
v1 = λ0(S

∗ − S)
v2 = λ0(V CO

∗
2 − V CO2)

b) Nonlinear system without constraints:

y = system(u)
u = Ψ(x, v)
V = K(Y ∗ − Y )

The implicit solution of the control problem of this item is:

dN

dt
= −µ(N)X + (Nin −N)

Q1

V
+ (Nadd −N)

Q2

V
dX

dt
= µ(N)f(S)X −XQ1

V
−XQ2

V
dTr

dt
= c1µ(N)X(c2 − f(S)) + g(E)Tr − TrQ1

V
− TrQ2

V
dS

dt
= −ν(E, S)Tr + (Sin − S)

Q1

V
− SQ2

V
dE

dt
= 0.464ν(E, S)Tr + (Ein − E)

Q1

V
− EQ2

V
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V CO2 = 1
2.17

ν(E, S)Tr

[Q1, Q2] = Ψ(v, ξ)

v1 = λ0(S
∗ − S)

v2 = λ0(V CO
∗
2 − V CO2)

c) Anti-windup linearizing system with constraints:

y = system(ũ)
ũ = sat(u)
u = Ψ(ṽ)

V = K1(Y
∗ − Y )−K2Ṽ

ṽ = sat(v, x)

The implicit solution of the control pronlem of this item is:

dN

dt
= −µ(N)X + (Nin −N)

Q̃1

V
+ (Nadd −N)

Q̃2

V

dX

dt
= µ(N)f(S)X −XQ̃1

V
−XQ̃2

V

dTr

dt
= c1µ(N)X(c2 − f(S)) + g(E)Tr − TrQ̃1

V
− TrQ̃2

V

dS

dt
= −ν(E, S)Tr + (Sin − S)

Q̃1

V
− S Q̃2

V

dE

dt
= 0.464ν(E, S)Tr + (Ein − E)

Q̃1

V
− EQ̃2

V
V CO2 = 1

2.17
ν(E, S)Tr

Q̃1 = sat(Q1, Q
min
1 , Qmax

1 )

Q̃2 = sat(Q2, Q
min
2 , Qmax

2 )

[Q1, Q2] = Ψ(v, ξ)

v1 = S∗ − S − ( 1
λ0
− 1)ṽ1

v2 = V CO∗2 − V CO2 − (
1

λ0
− 1)ṽ2

ṽ1 = sat(v1, v
min
1 , vmax1 )

ṽ2 = sat(v2, v
min
2 , vmax2 )

7.5 Simulation results

The following graphics describe the input and output of the control problems of the pre-
vious subsection solved in python language using the following values: the initial conditions
of the system are ξ(0) = [3, 0.7, 0.01, 200]T , the input concentrations are [Nin, Sin, Ein, Nadd] =
[0.7, 200, 0, 0.063], the volume of the tank is V = 1, the control constraints are [Qmin

1 , Qmax
1 ] =

[0, 0.1] and [Qmin
2 , Qmax

2 ] = [0, 0.07], the constant λ0 is equal to 0.05 and finally the set-
points are [S∗, V CO∗2] = [90, 1].
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a) Linear system without constraints:

Figure 7.1: Linear solution without constraints.

b) Linearizing nonlinear system without constraints:

Figure 7.2: Linearizing nonlinear system without constraints.
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c) Anti-windup linearizing nonlinear system with constraints:

Figure 7.3: Anti-windup linearizing nonlinear system with constraints.

64



Conclusions

In Subsection 1.1.2 we have presented and described the mathematical model of the wine
fermentation process with an oenological condition (addition of nitrogen) made by Mal-
herbe in [2]. Simulation results of this model using python language and presented in
Section 1.3 show us that the model is not good enough because the yeasts have a lo-
gistic behaviour. Because this limitation, we present a new mathematical model based
in the Malherbe’s model representing the behaviour of the wine fermentation with the
same oenological condition. The simulation results of this new model presented in Section
2.3 show us that the model has a better approximation of behaviour regarding the wine
fermentation.

In Chapter 7 we have achieved to apply the control theory to the wine fermentation
process with an oenological condition, linearizing and using the anti-windup thecnique for
linear systems presented in [6] and [4].
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List of Symbols

Symbol Description Page

CO2(t) carbon dioxide released (g/l) 11
S(t) glucose concentration (g/l) 12
Sinit initial glucose concentration (g/l) 12
N(t) nitrogen concentration (g/l) 12
Ninit initial nitrogen concentration (g/l) 12
Nadd(t) concentration of added nitrogen (g/l) 12
X(t) cell population in the tank or yeast

concentration (cell/l) 12
Xinit initial yeast concentration (cell/l) 12
Xmax(init) maximum population size during the

stationary phase (cell/l) 12
E(t) ethanol concentration (g/l) 12
Einit initial ethanol concentration (g/l) 12
νST function describing the active transport

of sugar per a glucose transporter (g/h) 12
NST number of glucose transporters in a cell 12
KS affinity constant of glucose transporters (g/l) 12
KSI constant for the inhibition of glucose

transporters by ethanol (l/g) 12
νN function describing the active transport of

nitrogen per a cell (g/h) 13
KN affinity constant of yeast cells for nitrogen

transport (g/l) 13
KNI constant for the inhibition by ethanol of

nitrogen transport in yeast cells (l/g) 13
T temperature (C) 12
k1, k2, k3 functions depending on temperature 12,13
αS, αN constants 12,13
Tr(t) number of glucose transporters in a cell 21
Trinit initial number of glucose transporters in a cell 21
µmax, kn, a, b, c, l,m, n new model parameters 21
|| ||2 Euclidean norm 23
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Q1(t), Q2(t) influent flow rates 29
Qmin

1 , Qmin
2 minimum influent flow rates 29

Qmax
1 , Qmax

2 maximum influent flow rates 29
Q(t) efluent flow rate 29
Ninit, Sinit, Einit chemical concentrations in the influent 29
V volume 29
VCO2(t) rate production or carbon dioxide rate 30
ξ(t) state variable 30
u(t) input or control 30
y(t) output 30
y∗ known desirable constant value or setpoint 31
MIMO multi-input multi-output 31
uwc(t) control for linear control systems without constraints 31
ywc(t) output for linear control systems without constraints 31
[L(f)](s) Laplace transforms of the real function f 31
L−1[F ](t) inverse Laplace transforms of the function F 31
P (s) linear plant 32
(p ∗ u)(t) convolution transform of the functions p and u 32
sat(u) saturation operator of u 33
ũ(t) saturation of the control u 34
K(s) controller without anti-windup 33
K1(s), K2(s) controllers with anti-windup 35
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