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Abstract

This work investigates the Feasible Direction Algorithm using interior points applied

to the Mixed Nonlinear Complementarity Problem and some applications. This al-

gorithm is based in Feasible Directions Algorithm for Nonlinear Complementarity

Problem, which is described briefly. The proposed algorithm is important because

many mathematical models can be written as mixed nonlinear complementarity pro-

blem. The principal idea of this algorithm is to generate, at each iteration, a se-

quence of feasible directions with respect to the region, defined by the inequality

conditions, which are also monotonic descent directions for one potential function.

Then, an approximate line search along this direction is performed in order to define

the next iteration. Global and asymptotic convergence properties for the algorithm

are proved. In order to validade the robustness the algorithm is tested on several

benchmark problems, that were found in the literature, considering the same para-

meters. In this work one dimensional models describing Oxygen Diffusion inside one

cell and In Situ Combustion are also presented together with bidimensional model of

the Elastic–Plastic Torsion Problem. These models are re-written as nonlinear com-

plementarity problem and mixed nonlinear complementarity problem. These new

formulations are discretized by Finite Diference Scheme or Finite Element Method

and, for its discrete forms, the algorithm will be applied. The numerical results are

compared with direct numerical simulation using Newton’s method (in the case of

Oxygen Diffusion and In Situ Combustion) or exact solution (in the case of Elastic–

Plastic Torsion Problem). It is shown that the obtained results are in good agreement

with the asymptotic analysis. For the In situ combustion model the corresponding

Riemann’s problem is studied in order to validate numerical solutions.

ix



Resumen

Este trabajo investiga el Algoritmo de Direcciones Factibles para Problemas de Com-

plementaridad no Lineal Mixta y algunas aplicaciones. Este algoritmo está basado

en el Algoritmo de Direcciones Factibles para Problemas de Complementaridad no

Lineal, el cual es descrito brevemente. El algoritmo propuesto es importante porque

muchos modelos matemáticos pueden ser escritos como problemas de complementari-

dad no lineal mixta. La idea principal de este algoritmo es generar, en cada iteración,

una sucesión de direcciones factibles con respecto a la región, definida por las condi-

ciones de desigualdades, los cuales son direcciones descendentes monótonas para una

función potencial. Posteriormente, una búsqueda lineal a lo largo de esta dirección

es realizada con el fin de obtener el nuevo punto e iniciar la siguiente iteración.

Propiedades de convergencia global y asintótica son probados. Con el fin de validar

la robustez del algoritmo, éste es testeado sobre varios problemas testes encontrados

en la literatura, considerando los mismos parámetros. Se presentan modelos unidi-

mensionales describiendo la Difusión de Ox́ıgeno dentro de una célula y el proceso

de Combustión In Situ junto con un modelo bidimensional del Problema de Torsión

Elasto-Plástico. Estos modelos son reescritos como problemas de complementaridad

no lineal y no lineal mixta. Estas nuevas formulaciones son discretizadas usando el

Esquema de Diferencias Finitas o el Método de Elementos Finitos y, para sus formas

discretas, el algoritmo será aplicado. Los resultados numéricos son comparados con

simulación numérica directa usando el Método de Newton (en el caso de Difusión

de Ox́ıgeno y Combustión In Situ) o la solución exacta (en el caso del problema de

Torsión Elasto-Plástico). Es mostrado que los resultados obtenidos concuerdan con

el análisis asintótico. Para los modelos de Combustión In Situ el respectivo problema

de Riemann es estudiado con el objetivo de validar nuestras soluciones numéricas.
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INTRODUCTION

There are many problems in Engineering, Economics and other fields of science that

can be formulated as mixed nonlinear complementarity problems (MNCP), [1, 2].

This kind of problems is very interesting from the point of view of optimization and

modeling, even more, it is very difficult find the exact solution. Between the several

problems, in this work it is briefly presented in situ combustion (ISC) process, which

is a very important technique to heavy oil extraction and there is a renewed interest

in heavy oil recovery techniques. In particular, in north weast of Peru there exists

heavy oil in Cuenca del Marañón, as it is showed in Figure 1.

Figure 1: Projection of heavy oil reserves. Source: INGEPET–2008, [3].

This technique basically consists in the injection of air, pure oxygen or air enriched

with oxygen to enable the combustion within of reservoir. It allows the release of

heat, which is conducted ahead of the combustion front, thus reducing the high oil
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viscosity. A limitation of ISC is that the combustion front is hard to control and

there are few mathematical models for that. The models normally are systems of

nonlinear partial differential equations and their solutions are very difficult to be

calculated. This difficulty supports the research interest in this subject in different

areas such as Engineering, Physics, Computer Science and Mathematics, [4].

Another interesting problem is the Elastic–Plastic Torsion Problem. There exists

many publications about this problem as in [5] it is studied as nonlinear boundary

value problem, in [6] is proposed as variational inequalities and it is solved by a

computational procedure based on the subgradient method. On the other hand, the

application of mathematical programming theory and methods, including comple-

mentarity to analyze elastic-plastic structures dates back to the late 1960s and early

1970s. Obstacle problems leading to MNCP are less studied in the form of the com-

plementarity problems [7]. Torsion of a long, hollow bar made of an elastic-plastic

material is a mathematically well-defined problem [8] and thus it can be used to test

the proposed algorithm.

All the models described in this work are of the kind of free boundary problem and

for approximating the analytical solutions have been developed many algorithms of

interior points and feasible directions (FDA). In this direction is presented a algo-

rithm of feasible directions for mixed nonlinear complementarity problems (FDA–

MNCP). An advantage of this formulation is that no free boundaries are present.

For example, Elastic-Plastic Torsion Problems [9, 10] can be modeled as free bound-

ary problems and can be written as mixed complementarity problem [11]. Another

example involves an in-situ combustion described by a system of two nonlinear dif-

ferential equations, this has been modeled as a Complementarity Problem [12] or

Mixed Complementarity Problem [13]. Other examples can be found in [2].

A lot of papers aim at providing a numerical solution of MNCP. These include works

using the interior point methods [14], non monotone stabilization scheme [15], a class

of active set Newton’s methods [16, 17], fictitious time integration methods [18], hy-

2



brid smoothing method [19], among others [20]. In this work Feasible Directions

Algorithm (FDA) is employed to solve MNCP. This method consists of an inte-

rior point algorithm based on a modification of Newton’s method characterized by

fast convergence, easy computational implementation and robustness. The present

method deals with inequality constraints and complementarity conditions in a way

inspired by an algorithm for constrained optimization presented in [21, 22, 23]. This

approach, as in primal dual algorithms, solves optimality conditions with Newton-like

iterations. However, the iterations are perturbed in such a way to have feasible de-

scent directions. At each iteration one feasible descent search direction is computed

by following the ideas of FDA–NCP [24]. The presented algorithm is appropriate

for practical applications since it brings together the classical numerical techniques

for PDEs combined with a robust and efficient interior point algorithm for MNCP,

which has a complete theoretical foundation and shows good numerical results. The

first steps in this direction were given by Mazorche in [25].

This work is organized as follows. In Chapter 1 is briefly presented a description of

a model about the diffusion of oxygen into absorbing tissue, which considers a linear

model and that was first studied in [26]. In order to consider more general models

for diffusion of oxygen, two models about in situ combustion process are considered.

They consist of systems of nonlinear partial differential equations and these models

have a strong nonlinearity because it considers the Arrhenius’s law in the source

term. In the end, it is briefly described the Elastic-Plastic Torsion Problem and its

formulation as free boundary problem, where we want to found the boundary that

separates the elastic and the plastic parts.

In Chapter 2 is presented briefly the Feasible Direction Algorithm for Nonlinear

Complementarity Problem (FDA–NCP), which is completely developed in [24]. The

model of Diffusion of Oxygen and In Situ Combustion are rewritten as NCP.

In Chapter 3, we present several forms to define Mixed Nonlinear Complementarity

Problem (MNCP) and the Feasible Directions Algorithm for MNCP, which is called

3



(FDA–MNCP). This algorithm is an adaptation of FDA–NCP for MNCP and its

theoretical properties are proved including the properties on global and asymptotic

convergence. FDA–MNCP is applied to solve benchmark problems found in the

literature showing the convergence and robustness. In this section the models about

In Situ Combustion and Elastic–Plastic Torsion Problem are formulated as MNCP.

In Chapter 4, we consider the discrete formulation of models described in Chapter 2

and Chapter 3. To obtain the discrete formulation it is used the Crank–Nicolson’s

Finite Difference Scheme, see [27] or Finite Element Method, see [28]. After, we

describe an scheme such that FDA–NCP, FDA–MNCP can be used to solve the

discrete problem at each time step for evolutive problems.

Finally, in Chapter 5 we present some conclusions and also some proposals for a

future work.

4



Chapter 1

THEORICAL FRAMEWORK

In this section, four math models are briefly described, for each one are showed

the governing equations. The first model corresponds to Diffusion of Oxygen, the

next two models corresponds to in situ combustion model and the fourth model is

related to Elastic–Plastic Torsion Problem. These models are interesting since they

correspond to free boundary problems, thus is very difficult to find the analytical

solution. These models are formulated as NCP in Chapter 2 and as MNCP in

Chapter 3. The discrete formulations using finite difference esqueme for In Situ

Combustion are done in Appendix A and for Elastic–Plastic Torsion Problem is

done in Section 3.6 using finite element method.

1.1 The oxygen diffusion problem

Here is studied the particular case of one dimensional oxygen diffusion that involves

a moving boundary. For simplicity, the oxygen is allowed to diffuse into a medium

that consumes oxygen at constant rate. The concentration of oxygen at the surface

of the medium is kept constant. A moving boundary marks the limit of oxygen

penetration.

The major challenge is that of tracking the movement of the boundary during this

stage of the process as well as determining the distribution of oxygen throughout the

medium at any instant. This type of problem is known as an implicit moving bound-

5



ary problem; see [29]. Several analytical and numerical methods were employed to

solve this problem. We mention [26, 30, 31, 32, 33, 34, 35] and references therein.

The process takes place in two phases. The first one evolves until a steady state

without oxygen transfer into the medium is attained. At the second phase the

surface of the medium is sealed so that no more oxygen passes in or out. The medium

continues to consume the oxygen in it already diffusing in it and, as a consequence,

the boundary marking the depth of penetration in the steady state recedes towards

the sealed surface.

Following [29, 36], the system of partial differential equations describing this problem

can be written in non-dimensional form:

∂c

∂t
=
∂2c

∂x2
− 1, 0 ≤ x ≤ s(t), (1.1)

∂c

∂x
= 0, x = 0, 0 < t, (1.2)

c =
∂c

∂x
= 0, x = s(t), 0 < t, (1.3)

c =
1

2
(1− x)2, 0 ≤ x ≤ 1, t = 0, (1.4)

where c(x, t) ≥ 0 is the concentration of oxygen free to diffuse and s(t) is the value

of x separating regions where c = 0 and c > 0. Eq. (1.1) represents the PDE at

the left side of the moving boundary, Eqs. (1.2) and (1.3) represent the boundary

conditions and Eq. (1.4) is the initial condition.

Figure 1.1: Schematic representation of the oxygen diffusion into the media sample.

The first stage is represented on the left. Here the oxygen enters the sample until

equilibrium is reached. During the second phase, on the right, the sample is sealed

and the oxygen inside diffuses and is absorbed by the medium generating the moving

boundary, [37, 36].
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1.2 In situ combustion models

The process of In Situ Combustion are applied in heavy oil reserves. It consists

in the injection of compressed air inside of reservoir to permite the combustion of

oil components. The heat and transport of the energy allows that obtain carbon,

combustion gas, light oil and others components. This technique allows decrease the

oil viscosity, it is very important in the oil recuperation. Besides, one caracteristic

this technique is its fast kinetics, removing the costs and disadvantages of generate

energy on the surface, has the advantage that the oil resulting can be improved

partially and the combustion gas remain inside of reservoir, [38, 39, 40]. Figure 1.2

shows the different zone in the process of in situ combustion.

Figure 1.2: Process of in situ combustion, [4].

One difficult in this process is to obtain information about combustion front, which

is present in travelling wave form. The models describe in this section can help in

give information about combustion front. Majors details on models describe in this

section can see in [4, 41].

1.2.1 Model 1

This is the simplest model and it consists of a system of two nonlinear differential

equations, derived from [42, 43], which solution possesses multiple scales and it was

studied theoretically in [12].
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In this model, see [36], is considered that only a small part of the available space is

occupied by the fuel, so that changes of porosity in the reaction are negligible. We

assume that pressure variations are small compared to prevailing pressure yielding

constant gas speed and local thermal equilibrium i.e., the temperatures of solid and

gas are the same. Heat losses are neglected, which is reasonable for in-situ combustion

in field conditions. We consider unlimited supply of oxygen. In dimensionless form

the simplified model is written

∂θ

∂t
+ u

∂(ρ θ)

∂x
=

1

PeT

∂2θ

∂x2
+ Φ, (1.5)

∂η

∂t
= Φ, (1.6)

ρ =
θ0

θ + θ0

, (1.7)

Φ(θ, η) = β(1− η)exp

(
− E
θ + θ0

)
, (1.8)

where θ is the scaled temperature, η represents immobile fuel depth as commonly

used in oil engineering (η = 1 means no fuel and η = 0 means maximum fuel). Here

PeT is the Peclet number for thermal diffusion, u is the dimensionless gas speed, E is

the scaled activation energy and θ0 is the scaled reservoir temperature. The system

must be solved with the initial reservoir conditions

t = 0, x ≥ 0 : θ = 0, η = 0,

and the left boundary conditions corresponding to the injection conditions

t ≥ 0, x = 0 : θ = 0, η = 1.

1.2.2 Model 2

This is a simple model and it consists of a system of three nonlinear differential equa-

tions, analogous to model presented in [41, 44, 45]. The model consists of the heat

balance equation given by Equation (1.9), which represents transport and diffusion

of heat and production of heat in the chemical reaction; the oxygen balance equation

given by Equation (1.10), which represents transport and consumption of oxygen;

8



the immobile fuel balance equation given by Equation (1.11), which represents con-

sumption of the solid fuel:

∂θ

∂t
+ VT

∂θ

∂x
=

1

Pe

∂2θ

∂x2
+ µTΦ(θ, Y, η), (1.9)

∂Y

∂t
+ VY

∂Y

∂x
= λY

∂2Y

∂x2
− µY Φ(θ, Y, η), (1.10)

∂η

∂t
= −µηΦ(θ, Y, η), (1.11)

where

Φ(θ, Y, η) = Y η exp

(
− E
θ + θ0

)
. (1.12)

Here VT and VY are thermal and oxygen transport speeds and is assumed that oxygen

is transported faster than temperature, i.e. VY > VT > 0, which is physically

realistic in rock porous media since the thermal capacity of the gas is smaller than

the thermal capacity of the porous medium. The term Φ represents the reaction

rate and, differently from [41, 44], here is considered the complete Arrhenius law

given by Equation (1.12). The constant λY is the oxygen diffusion, E is the scaled

activation energy, θ0 is the scaled reservoir temperature, µT , µY and µη represent

the dimensionless quantities of temperature, oxygen consumed and fuel during the

reaction. Constant Pe represents the Peclet’s number.

The System (1.9)–(1.11) is solved using the following constant boundary conditions

θ(0, t) = θL, Y (0, t) = YL, η(0, t) = ηL, ∀ t ≥ 0,

θ(∞, t) = θR, Y (∞, t) = YR, η(∞, t) = ηR, ∀ t ≥ 0,

1.3 Elastic–plastic torsion problem

Following [46, 47] a prismatic bar whose longitudinal axis is the Z-axis and whose

cross sections Ω lie in the XY -plane is considered, see Figure 1.3.

9



Figure 1.3: Torsion of a prismatic bar with circular cross section.

The Saint-Venant theory assume that the displacements in the x, y, and z directions,

respectively, are given by

u = −yzθ, v = xzθ, w = w(x, y, θ),

where θ is the angle of twist per unit length and w(x, y, θ) denotes the warping

function, which is directly proportional to the angle of twist per unit length θ in the

elastic case. For the plasticity problem this is, in general, no longer true, see [47].

Except for the circular cross section case, there are no analytical solutions available,

[8].

That is why, in the present paper the circular cross sections is considered corre-

sponding to w = 0, see [46, 48]. Following [10], it is assumed Ω ⊂ R2 as a simply

connected, bounded open domain and a cylindrical bar with cross-section Ω made of

an elastic plastic material. This elastic-plastic torsion problem is described by the

system of equations in terms of a stress function φ, see [10, 49],

φ = 0 on ∂Ω;

−∇φ = θ in Ωe = {x / x ∈ Ω, |∇φ| < 1};

|∇φ| = 1 in Ωp = Ω− Ωe,

(1.13)

where Ωe is the elastic region, Ωp is the plastic region and θ is the twist angle per

unit length.
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Chapter 2

NONLINEAR

COMPLEMENTARITY

PROBLEM

In this chapter is presented the Feasible Directions Algorithm for Nonlinear Comple-

mentarity Problem (FDA–NCP), which is a perturbation of Newton’s method. The

basic idea is generating a feasible direction for a domain Ω and that direction is a de-

scent direction for some potential function. This algorithm is studied in detail in [24].

It is important because parabolic problems can be written as a variational problem

involving a complementarity condition and moving boundaries, and these appear in

several applications; see [29]. In [1] several examples in Engineering and Economics

are described. In [24, 36] is proposed a general technique for moving boundary prob-

lems, that can be written as the complementarity problem, and implement it for the

one dimensional case.

The numerical method is based on a combination of the Crank-Nicolson finite dif-

ference scheme, [27], and a globally convergent nonlinear complementarity algorithm

(FDA-NCP), [50]. As a result the moving boundary is obtained naturally, without

need of regularizations unlike from other methods. The robustness of the algorithm

allows longer time steps as shown in our preliminary results; see [36]. Other methods

dealing with complementarity problems can be found in [50, 51, 52, 53]. The present
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technique is appropriate for practical applications since it brings together classical

numerical techniques for PDEs with a robust and efficient interior point algorithm

for nonlinear complementarity problems, having a complete a theoretical fundamen-

tation and good numerical results. Finally, the models described in Chapter 1 are

written as NCP and then are solved by FDA–NCP in Chapter 4.

2.1 The numerical method

In this section, we describe our approach to solve the system of parabolic partial

differential equations numerically The problem consists in finding u(x, t) : I×R+ →

Rn and the moving boundary s(t) : R+ → R such that

F (u) = 0, for x < s(t); and u = 0, for x ≥ s(t), (2.1)

where F (u) : Rn → Rn and the interval I can be R, R+ or a compact interval. We

study the case when Eq. (2.1) can be written as the complementarity problem using

Hadamard product “•”,

F (u) ≥ 0, u ≥ 0 and u • F (u) = 0. (2.2)

Several examples where (2.1) and (2.2) are equivalent can be found in [54].

We use FDS and FEM for space discretization and a Nonlinear Complementarity

Algorithm to solve the discrete problem at each time step. In this way the imple-

mentation is flexible, since we can change the space discretization and the algorithm

independently. Next we present a brief description of the algorithm FDA-NCP.

2.1.1 The nonlinear complementarity algorithm

Let F : D ⊂ Rn → Rn be a nonlinear vector function and continuously differentiable.

The nonlinear complementarity problem (NCP) consists in finding x ∈ Rn satisfying

(2.2), where x ≥ 0 means that each component of the vector x is nonnegative. The

set Υ = (x ∈ Rn : x ≥ 0, F (x) ≥ 0) is called the feasible set and int(Υ) its interior.
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FDA-NCP is an iterative algorithm to solve problem (2.2). It starts from an initial

point in int(Υ) and generates a sequence of points also in int(Υ) that converges to the

required solution. At each point it defines a feasible direction, that is also a descent

direction for the potential function Φ(x) =
∑n

i=1 xi Fi(x). On that direction a new

interior point with a lower potential is obtained. This point is defined to be the next

point of the sequence and the algorithm returns to the first step till a convergence

criterion is satisfied. The search direction is based on Newton’s direction for the

nonlinear system of equations x•F (x) = 0. To obtain feasibility, Newton’s direction

is modified by a restoration direction, as done in [21]. The geometric interpretation

can be observed in Figure 2.1.

feasible region

Solution

Figure 2.1: Direction dk is generated by FDA–NCP. It is based in Newton’s direction

dk1 and a restoration direction dk2.

2.2 Description of the algorithm FDA–NCP

The following notation will be employed to describe the algorithm FDA-NCP:

F k = F (xk),

Φk = Φ(xk),

Mk = ∇(xk • F (xk)), and

∇Φk = ∇Φ(xk)
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Algorithm 1: FDA–NCP

Parameters: E = [1, ..., 1]T ∈ Rn, ν, ν1 ∈ ]0, 1[, α ∈ ]0, 1/2[, ρ0 c
β−1(xk) < 1.

Data: x0 ∈ int(Υ) , k = 0. Tolerancia

Result: xk as a solution aproximate of NCP.

1 initialization;

2 k ← 0;

3 while |Φ(xk)| > Tolerancia do

4 Calcule the search direction dk resolving the system

Mk dk = −xk • F k + α ρk E.

where ρk = ρ0
φβ(xk)
n

.

5 Armijo line search. Set tk as the first number in the sequence 1, ν, ν2, ν3, ...

that satisfies:

xk + tk dk ≥ 0, (2.3)

F (xk + tk dk) ≥ 0, (2.4)

Φ(xk + tk dk) ≥ Φk + tk ν1 (∇Φk.dk). (2.5)

6 Update. Set xk+1 = xk + tk dk.

7 k ← k + 1

8 end while

Output: xk is a aproximate solution of NCP.

In [24, 21] it has been shown that the search direction dk is well defined in Υ and the

global convergence of FDA-NCP scheme is guaranteed under the following assump-

tions:

Assumption 2.2.1. The set Υc = {x ∈ Υ : Φ(x) < c}, c > 0 is a compact set and

has an interior Υ0
c. Each x ∈ Υ0

c satisfies x > 0 and F (x) > 0.

Assumption 2.2.2. The function F is continuously differentiable and ∇F (x) sat-

isfies the Lipschitz condition ||∇F (w) −∇F (u)|| < γ0||w − u||, for any u, w ∈ Υc,

where γ0 is a positive real number.
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Assumption 2.2.3. The matrix diag(F (x)) + diag(x)∇F (x) has an inverse in Υ0
c.

The FDA–NCP is supported by strong theoretical results and with Assumptions 2.2.1–

2.2.3 are proved the next theorems in [24].

Theorem 2.2.1. Given an initial feasible point x0 ∈ Υc, the sequence {xk} generated

by FDA–NCP converges to x∗, a solution of nonlinear complementarity problem.

Theorem 2.2.2. Consider the sequence {xk} generated by the FDA–NCP, that con-

verges a solution x∗ of nonlinear complementarity problem. Then:

i) Taking β ∈]1, 2[ and tk = 1 for k large enough, then the rate of convergence of

FDA–NCP is at least superlinear.

ii) If tk = 1 for k large enough and β = 2, then the rate of convergence of FDA–

NCP is quadratic.

2.3 Oxygen diffusion formulated as NCP

Following [26], System (1.1)-(1.4) can be rewritten into a variational formulation in

the form of Eq. 2.2.

c ≥ 0,

∂c

∂t
− ∂2c

∂x2
+ 1 ≥ 0,(

∂c

∂t
− ∂2c

∂x2
+ 1

)
c = 0,

(2.6)

where the boundary and the initial conditions are defined by (1.2) and (1.4) respec-

tively. The first inequality in (2.6) is satisfied as equality by (1.1) inside the region

0 < x < s(t). When s(t) ≤ x ≤ 1 by (1.3) we get c = 0 and thus (2.6) is valid. The

inequality c ≥ 0 follows from (1.4). The equality in (2.6) is valid because for any

x ∈ [0, 1] one of the factors vanishes.

The equivalence between the solution of the system of equations in the variational

approach (2.6) and the weak solution of the Stefan problem described by the system

(1.1)-(1.4) was locally studied in [55] and [56].
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2.4 In situ combustion models formulated as NCP

2.4.1 Model 1

In order to represent the System (1.9)-(1.11) in a nonlinear complementarity problem

we make a transformation similar to Section 2.3 (see also [51]), obtaining:

θ ≥ 0; η ≥ 0;

∂θ

∂t
+ u

∂(ρθ)

∂x
− 1

PeT

∂2θ

∂x2
+ Φ ≥ 0;

∂η

∂t
− Φ ≥ 0;

(2.7)

(
∂θ

∂t
+ u

∂(ρθ)

∂x
− 1

PeT

∂2θ

∂x2
+ Φ

)
θ = 0;(

∂η

∂t
− Φ

)
η = 0.

(2.8)

We need Eq. (2.8) to be satisfied at the right end of the interval, where Eq. (1.9)

may not be satisfied. This explains the choice of dimensionless variable η describing

fuel depth inside the reservoir.

2.4.2 Model 2

A similar transformation done in Section 2.3 and Section 2.4.1 and following [12, 13,

51] in order of written System (1.9)-(1.11) as a nonlinear complementarity problem,

is written

θ, Y, η ≥ 0 :
∂θ

∂t
+ VT

∂θ

∂x
− 1

Pe

∂2θ

∂x2
− µTΦ(θ, Y, η) ≥ 0, (2.9)

∂Y

∂t
+ VY

∂Y

∂x
− λY

∂2Y

∂x2
+ µY Φ(θ, Y, η) ≥ 0, (2.10)

∂η

∂t
+ µηΦ(θ, Y, η) ≥ 0, (2.11)

The System (2.9)–(2.11) has the complementarity condition(
∂θ

∂t
+ VT

∂θ

∂x
− λT

∂2θ

∂x2
− µTΦ(θ, Y, η)

)
θ = 0, (2.12)
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(
∂Y

∂t
+ VY

∂Y

∂x
− λY

∂2Y

∂x2
+ µY Φ(θ, Y, η)

)
Y = 0, (2.13)

(
∂η

∂t
+ µηΦ(θ, Y, η)

)
η = 0. (2.14)
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Chapter 3

MIXED NONLINEAR

COMPLEMENTARITY

PROBLEM

In [24] is studied the Nonlinear Complementarity Problem (NCP) and is presented

a Feasible Directions Algorithm (FDA) to this type of problems, its applications

to several test problems and a contact’s problem. FDA–NCP was briefly presented

in Chapter 2 and for more details see [24]. In [12] this algorithm is applied to In

Situ Combustion Model and it present some adventages on Newton’s method. There

exists in literature some problems as Elastic–Plastic Torsion Problem, [11], that can

not written as NCP but that can be written in a more general form. This form is

called Mixed Nonlinear Complementarity Problem (MNCP) that is a more general

formulation than NCP. Based in FDA–NCP presented in [24, 12], in this section is

developed a adaptation of FDA–NCP to MNCP. This new algorithm for MNCP will

be denoted by FDA–MNCP. In this section is applied FDA–MNCP to benchmark

problems that were obtained of literature. In the end of section are formulated as

MNCP the In Situ Combustion Model and Elastic–Plastic Torsion Problem and in

Section 4 its numerical solution are obtained by FDA–MNCP. The first steps in this

directions were given in [25] and follows the same ideas the direction dk in Figure 2.1.

Similar to FDA–NCP described in [24], we are going to search parameters such that

direction dk become a composition of two directions: a feasible direction to some
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set Ω and a descent direction to some potential function f . This results and some

applications were published in [57].

3.1 Preliminary definitions

Three different variations of presenting MNCP can be found in the literature.

Definition 3.1.1 ([2, 14, 15]). Find x ∈ Rn; w, v ∈ Rn
+ satisfying

f(x) = w − v, wT (x− l) = 0, vT (u− x) = 0, l ≤ x ≤ u,

where l, u ∈ R̄n = (R ∪ {−∞,∞})n with li 6= ui for all i and f : Rn → Rn is a

continuously differentiable mapping.

Definition 3.1.2 ([11, 19, 20, 58]). Let f : Rn → Rn, f is a continuously differen-

tiable mapping and li, ui ∈ R ∪ {−∞,∞}, with li < ui for all i = 1, ..., n. Find a

vector x ∈ Rn such that

if xi = ui ⇒ fi(x) ≤ 0,

if li < xi < ui ⇒ fi(x) = 0 and

if xi = li ⇒ fi(x) ≥ 0.

Definition 3.1.3 ([25]). Find (x, y) ∈ Rn × Rm such that

x ≥ 0,

F (x, y) ≥ 0,

Q(x, y) = 0 and

x • F (x, y) = 0,

(3.1)

where F : Rn × Rm → Rn and Q : Rn × Rm → Rm are continuously differentiable,

H(x, y) = x • F (x, y) represents the Hadamard product

H(x, y) = (x1F1(x, y), . . . , xnFn(x, y))T .

Defs. 3.1.1 and 3.1.2 can be re-written to match Def. 3.1.3 if one considers
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F (w, v, x) =



x1 − l1
...

xn − ln
u1 − x1

...

un − xn


,

Q(w, v, x) = f(x) + v − w, w

v

 • F (w, v, x) = 0,

(3.2)

where (w, v) ∈ Rn
+ × Rn

+ are auxiliary variables and x ∈ Rn.

Many mathematical programming problems can be formulated as an MNCP. In

particular, one can formulate algebraic systems of nonlinear equations by setting

ui = +∞ and li = −∞ [20, 58], nonlinear programming can be treated by applying

KKT conditions [16, 59], nonlinear complementarity problems by setting ui = +∞

and li = 0 [2], Variational Inequalities can be similarly formulated [2, 19].

Considerable research effort was devoted by mathematicians and engineers to solve

MNCP, looking for strong and efficient techniques for real engineering applications.

Our approach to solve MNCP in the form given by Def. 3.1.3 is based on the iterative

solution using Newton’s method for the nonlinear system of equations:

S(x, y) =

 x • F (x, y)

Q(x, y)

 = 0. (3.3)

where one starting point x0 is took in the set of feasible points of MNCP, following

Def. 3.1.3, this set is defined by

Ω := {(x, y) ∈ Rn × Rm : x ≥ 0, F (x, y) ≥ 0}.

and the interior of Ω is denoted as Ω0.

Given an initial point inside the domain Ω, (x0, y0) ∈ Ω, and then is applied the
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Newton’s method to (3.3), results in the iteration ” k ”

∇S(xk, yk)dkN = −S(xk, yk). (3.4)

where

∇S(xk, yk) =

 diag(F (xk, yk)) + diag(xk)∇xF (xk, yk) diag(xk)∇yF (xk, yk)

∇xQ(xk, yk) ∇yQ(xk, yk)

 ,

(3.5)

for all (xk, yk) ∈ Ω, and diag(xk) ∈ Rn×n is a diagonal matrix such that (diag(xk))ii ≡

(xk)i.

Notice that for System 3.4 has solution must be to exists the inverse matrix of

∇S(x, y) and we want to obtain that (xk, yk) ∈ Ω for all iteration ” k ”. On the

other hand, all row i = 1, . . . , n of (3.5) verify that

[∇S(xk, yk)]i = Fi(x
k, yk)ei + xki∇Fi(xk, yk) (3.6)

where ei is the ”i” row vector of canonical base of Rn, and ∇Fi(xk, yk) is a row

vector.

Notice that (xk+1, yk+1) corresponds to a search direction dkN of System 3.4, that

is, (xk+1, yk+1) = (xk, yk) + dkN . Suppose that (xk, yk) is not solution of 3.1, then

there exists j ∈ {1, . . . , n} such that xkjFj(x
k, yk) 6= 0, then the System 3.4 has not

null solution and the solution is unique. Now, for each i ∈ {1, . . . , n} such that

xkiFi(x
k, yk) = 0, from (3.4) and (3.6) obtain

(Fi(x
k, yk)ei + xki∇Fi(xk, yk))dkN = −xkiFi(xk, yk), (3.7)

Since that demand that ∇S(x, y) is not singular, we have two cases

a. If xki > 0 and Fi(x
k, yk) = 0 imply ∇Fi(xk, yk)dkN = 0. Thus dkN is tangent to

restriction Fi(x, y) ≥ 0.

b. If xki = 0 and Fi(x
k, yk) > 0 imply dkN,i = 0. Thus dkN is tangent to restriction

xki ≥ 0.
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Both of cases is saw that the direction dkN is not feasible. One geometric interpre-

tation is similar to FDA–NCP, which the direction dkN is not necessarily feasible in

general, see Figure 2.1.

The next result guarantees when a vector d ∈ Rn+m is a feasible direction to Ω.

Proposition 3.1.1. Let d ∈ Rn+m and (x, y) ∈ Ω. If d satisfies the conditions

a. di > 0 for all i ∈ {1, . . . , n} such that xi = 0, and

b. dT∇Fi(x, y) > 0 for all i ∈ {1, . . . , n} such that Fi(x, y) = 0,

then d is a feasible direction of the MNCP at (x, y).

Proof. Since (x, y) ∈ Ω then x ≥ 0 and F (x, y) ≥ 0. We want to prove that there

exists α̂ > 0 such that (x, y) + αd ∈ Ω for all α ∈ (0, α̂].

By Taylor’s theorem for each Fi (i = 1, . . . , n) obtain

Fi((x, y)+αd) = Fi(x, y)+αdT∇Fi(x, y)+o(α) = Fi(x, y)+α

(
dT∇Fi(x, y) +

|o(α)|
α

)
,

(3.8)

such that

lim
α→0

|o(α)|
α

= 0. (3.9)

From (3.9) obtain that there exists α̂i > 0 such that

0 < dT∇Fi(x, y) +
|o(α)|
α

< 2dT∇Fi(x, y) for all α ∈ (0, α̂i]. (3.10)

Considering (3.8), α̂ = min{α̂i} and (b) is guaranted that F ((x, y) + αd) ≥ 0. Since

xi + αd→ xi when α→ 0 and (a), without loss generality , we can consider α̂ such

that xi + αdi ≥ 0 and Fi((x, y) + αd) ≥ 0 for all α ∈ (0, α̂] and i = 1, . . . , n.

Proposition 3.1.1 gives a condition such that a direction d can be a feasible direction

in Ω. In order to obtain this direction, we consider the direction dkR ∈ Rn+m as

solution of next system

∇S(xk, yk)dkR = ρkE, (3.11)
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where ρk is a positive parameter and E ∈ Rn+m is going to be a adequate non null

vector such that E guarantees that dkR satisfies Proposition 3.1.1. The direction dkR

is called restoration direction.

Again, if (xk, yk) ∈ Ω is not solution of 3.1, then there exists j ∈ {1, . . . , n} such

that xkjFj(x
k, yk) 6= 0 and since E 6= 0 then the System 3.11 has dkR as non null

and unique solution. From (3.11) and (3.6), for each row i ∈ {1, . . . , n} such that

xkiFi(x
k, yk) = 0 holds

(Fi(x
k, yk)ei + xki∇Fi(xk, yk))dkR = ρkEi, (3.12)

Since that ∇S(x, y) is not singular, we analyze from (3.12) the unique two cases

a. If xki > 0 and Fi(x
k, yk) = 0 imply ∇Fi(xk, yk)dkR = ρk

Ei
xki

.

b. If xki = 0 and Fi(x
k, yk) > 0 imply dkR,i =

ρkEi
Fi(xk, yk)

.

In order to guarantee dRk be a feasible direction, it has to satisfies (a) − (b). If we

choose vector E as an positive vector, then we get that.

In the end, we define the next vector:

dk = dkN + dkR (3.13)

Thus, the problem found by Newton’s method, which does not generate feasible

direction is circumvented by dk defined by (3.13). We can observe that dk is solution

of the perturbed Newton’s iteration as follows

∇S(xk, yk)dk =

−xk • F (xk, yk)

−Q(xk, yk)

 + ρkE, (3.14)

On the other hand, following a similar idea to FDA–NCP is defined one potential

function as follows

f(x, y) ≡ φ(x, y) + ‖Q(x, y)‖2, (3.15)
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and we want to generate with FDA–MNCP a sequence of points such that the poten-

tial function in (3.15) decreases at each iteration in the direction dk defined by (3.13),

where φ(x, y) = xTF (x, y). For that, we use the next result for that a direction d be

a descent direction.

Proposition 3.1.2. If f : Rn → R is a differentiable function at x and d ∈ Rn such

that ∇f(x) dT < 0, then d is a descent direction of function f .

Proof. By Taylor’s theorem, we have

f(x+ αd) = f(x) + α∇f(x) dT + o(α),

where o(α) satisfies (3.9). From (3.9), there exists α̂ > 0 such that

|o(α)|
α

< |dT∇f(x)|.

This, together with our assumption that dT∇f(x) < 0, implies that for all α ∈ (0, α̂]

we must have

f(x+ αd)− f(x) < 0.

Hence, d is a descent direction.

So, from (3.15) yields

∇f(xk, yk) = (RT
1 2Q(xk, yk))T∇S(xk, yk).

where R1 = [1, ..., 1]T ∈ Rn. Multiplying the last equation by dk and using (3.14)

yields:

∇f(xk, yk) dk = (RT
1 2QT (xk, yk))

ρk
 E1

E0

−
 xk • F (xk, yk)

Q(xk, yk)

 , (3.16)

where E =

 E1

E0

 such that E1 ∈ Rn
+ and E0 ∈ Rm. After some algebraic

manipulations (3.16) results in

∇f(xk, yk) dk = −2f(xk, yk) +φ(xk, yk) +ρk
n∑
i=1

Ei+ 2ρk
m∑
j=1

Qj(x
k, yk)En+j. (3.17)
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In order to obtain dk as an descent direction, we choose

E0 = (En+j)
m
j=1 = [0, ..., 0]T ∈ Rm. (3.18)

Thus we obtain

∇f(xk, yk) dk = −2f(xk, yk) + φ(xk, yk) + ρk
n∑
i=1

Ei. (3.19)

Now, we suppose that

ρk
n∑
i=1

Ei = ρ0φβ(xk, yk), (ρ0 > 0). (3.20)

Substituing in (3.19)

∇f(xk, yk) dk = −2

[
f(xk, yk)− 1 + ρ0φ

β−1(xk, yk)

2
φ(xk, yk)

]
. (3.21)

In order to apply Proposition 3.1.2 to function f , we have to do

f(xk, yk)− 1 + ρ0φ
β−1(xk, yk)

2
> 0. (3.22)

The definition of f and (3.22) imply

ρ0φ
β−1(xk, yk) < 1. (3.23)

Under this last condition, we can conclude from (3.21) that dk is a descent direction

to function f . For simplicity, in (3.20) we choose

E1 = (Ei)
n
i=1 = [1, ..., 1]T ∈ Rn. (3.24)

This election gives a simple form to calculate ρk as follows

ρk =
ρ0φ

β(xk, yk)

n
∈]0, 1[. (3.25)

This work seeks the solution of MNCP in the following set

Ωc := {(x, y) ∈ Ω◦ : f(x, y) ≤ c}. (3.26)

for some fixed real number c > 0. From (3.23) and (3.26), we can consider the

parameters

α ∈ ]0, 1[, β ∈]1, 2]; (3.27)

ρ0 = αmin{1, 1/(cβ−1)}, (3.28)
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On the other hand, one common difficulty concerning the interior point methods is

checking if the chosen initial point is feasible. FDA-MNCP circumvents this difficulty

by working inside the set Ωc given in (3.26), whose definition is simple to verify.

Then, a new iteration is obtained by performing an inexact line search procedure that

looks for a new feasible point with a sufficient reduction of the potential function

f(x, y). We employ an extension of Armijo’s line search that deals with inequality

constraints proposed in [22]. Line search procedures based on Wolfe’s or Goldstein’s

inexact line search criteria can also be employed [60, 21].

In Section 3.3.2 are given some assumptions about F , Q, Ωc such that the sequence

generated by FDA–MNCP converges to a solution of MNCP.

3.2 Description of the algorithm FDA–MNCP

The parameters described in (3.23)–(3.28) are used in the Algorithm 2.

This algorithm is a perturbation to Newton’s iterations. Below we prove that under

standard assumptions the rate of convergence of the presented method is superlinear.

Thus, a smaller ρk will result in faster convergence. That is why, when near a

solution, the algorithm considers ρk = O(φβ(xk, yk)). The presented algorithm is

easy to implement and requires computational resources similar to that of Newton’s

method for a system of nonlinear equations.

As far as we know, there is no other feasible direction methods addressing MNCP.

However, in the literature there are methods addressing MNCP using variations of

Newton’s method [11, 19, 61] and for Linear Complementarity Problems by interior

point techniques [11]. There are important advantages in using feasible point tech-

niques. From mathematical point of view, in some problems [25] the function F is

not defined outside the feasible region, turning tricky application of other techniques.

26



Algorithm 2: FDA–MNCP

Parameters: c > 0, α, η, ν ∈ (0, 1), β ∈]1, 2] y ρ0 < αmin{1, 1/(cβ−1)}.

ε > 0 , E0 = [0, ..., 0]T ∈ Rm, E1 = [1, ..., 1]T ∈ Rn.

Data: (x0, y0) ∈ int(Ω) tal que f(x0, y0) < c. Tolerancia

Result: (xk, yk) as a solution aproximate of MNCP.

1 initialization;

2 k ← 0;

3 while |f(xk, yk)| > Tolerancia do

4 Calcule the search direction dk = (dkx, d
k
y)
T resolving the system

∇S(xk, yk)dk =

 −xk • F (xk, yk) + ρk E1

−Q(xk, yk)

 ,

where ρk = ρ0
φβ(xk,yk)

n
.

5 Armijo’s linear search. Choose tk as the first number of sequence

1, ν, ν2, ν3, ... such that

xk + tkdkx ≥ 0, (3.29)

F (xk + tkdkx, y
k + tkdky) ≥ 0, (3.30)

f(xk + tkdkx, y
k + tkdky) ≤ f(xk, yk) + tkη∇f(xk, yk)tdk. (3.31)

6 Update: (xk+1, yk+1) := (xk + tkdkx, y
k + tkdky).

7 k ← k + 1

8 end while

Output: (xk, yk) is a aproximate solution of MNCP.

From the perspective of applications, the intermediate steps in the algorithm are in

agreement with the physics of the problem. Moreover, the stop criteria are always

approximated. When the iterates approximate the solution from the outside the

feasible region, there is a possibility to stop at an unfeasible point. In this case it

may be possible to recover the feasibility at the price of increasing an error of the

complementarity value.
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3.3 Theoretical results

This section provides theoretical background for the choice of the direction dk of

System (3.14) as well as global and asymptotic convergence of FDA-MNCP. First

steps in this direction were made by Mazorche [25].

3.3.1 The search direction

Proposition 3.3.1 (Feasible direction). Consider a point (xk, yk) ∈ Ωc and the

direction dk obtained as a solution of System (3.14). Then dk is a feasible direction

in Ω whenever

xk • F (xk, yk) 6= 0.

Proof. Since (xk, yk) ∈ Ωc and xk • F (xk, yk) 6= 0 it follows that ρ0 and ρk given in

(3.25) are well defined. From (3.14), for each row i = 1, 2, . . . , n, follows

[Fi(x
k, yk)ei + xki∇Fi(xk, yk)]dk = −xkiFi(xk, yk) + ρk,

where ei is the vector of the canonical base of Rn. The two following cases are

important: If xki = 0 and Fi(x
k, yk) > 0, then dki = ρk/Fi(x

k, yk) > 0; If xi > 0 and

Fi(x
k, yk) = 0, then ∇Fi(xk, yk)dk = ρk/xi > 0. From Proposition 3.1.1 follows that

dk is a feasible direction at (xk, yk) ∈ Ω

Proposition 3.3.2 (Descent direction). The search direction dk obtained as a so-

lution of System (3.14) is a descent direction for f(xk, yk) at any (xk, yk) ∈ Ωc

whenever xk • F (xk, yk) 6= 0 is true and the conditions established in (3.23)–(3.28)

are valid.

Proof. Since xk • F (xk, yk) 6= 0 and (xk, yk) ∈ Ωc then c 6= 0. From (3.15) it follows

∇f(xk, yk) = (ET
1 2Q(xk, yk))T∇S(xk, yk).

Multiplying the last equation by dk and using (3.14) and (3.25) after some algebraic

manipulations results in

∇f(xk, yk) dk = −2

[
f(xk, yk)− 1 + ρ0φ

β−1(xk, yk)

2
φ(xk, yk)

]
< 0. (3.32)

We conclude that dk is a descent direction.
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3.3.2 Global convergence of FDA-MNCP

In order to prove global convergence the following assumptions are necessary:

Assumption 3.3.1. The set Ωc given by (3.26) is a compact set and it has an

nonempty interior Ω0
c. Each (x, y) ∈ Ω0

c satisfies x > 0 and F (x, y) > 0.

Assumption 3.3.2. Functions F (x, y), Q(x, y) are continuously differentiable, ∇F (x, y)

and ∇Q(x, y) satisfy Lipschitz conditions

‖∇F (x2, y2)−∇F (x1, y1)‖ ≤ γ‖(x2, y2)− (x1, y1)‖, and,

‖∇Q(x2, y2)−∇Q(x1, y1)‖ ≤ L‖(x2, y2)− (x1, y1)‖,

for any (x1, y1), (x2, y2) ∈ Ωc, where γ and L are real positive numbers.

Assumption 3.3.3. The matrix ∇S(x, y) given in (3.5) is invertible in Ωc.

Assumption 3.3.4. There is a real constant σ > 0, such that the subset

Ω∗ := {(x, y) ∈ Ωc : σ‖Q(x, y)‖ ≤ φ(x, y)}

is nonempty.

Assumptions 3.3.1–3.3.4 imply that x and F (x, y) are nonzero simultaneously for

(x, y) ∈ Ωc, which means that the linear system (3.14) always possesses a solution.

Since ∇F (xk, yk) and ∇Q(xk, yk) are continuous, the matrix in Assumption 3.3.3

possesses a continuous inverse in Ωc. Thus, there exists a scalar κ > 0, such that

‖∇S(xk, yk)−1‖ ≤ κ for any (xk, yk) ∈ Ωc. The following results prove that the

sequence of search direction {dk} of the present algorithm is bounded and constitutes

a uniformly feasible directions field for β ∈ (1, 2] in Ωc, i.e., there exists ξ̄ > 0 such

that for any (xk, yk) ∈ Ωc it follows that (xk, yk) + tdk ∈ Ωc for all t ∈ [0, ξ̄].

Lemma 3.3.1. Under Assumptions 3.3.3–3.3.4, for any (xk, yk) ∈ Ω∗, there is a

constant κ̄ such that the search direction dk satisfies ‖dk‖ ≤ κ̄φ(xk, yk) ≤ κ̄c.

Proof. Let E = (E1 E0)T ∈ Rn × Rm, where E1, E0 are given in (3.18) and (3.24).

It follows that:

‖ρkE−S(xk, yk)‖2 = ‖xk•F (xk, yk)‖2−2ρkφ(xk, yk)+n(ρk)2+‖Q(xk, yk)‖2. (3.33)
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Similarly to what was done by Herskovits and Mazorche in [24], it is possible to find

a bound to the left side of Eq. (3.33). Define

T := ‖xk • F (xk, yk)‖2 − 2ρkφ(xk, yk) + n(ρk)2

and observe that from the definition of φ in (3.15) it follows that ‖xk •F (xk, yk)‖2 ≤

φ2(xk, yk). Using it results in

T ≤ (φ(xk, yk)− ρk)2 + (n− 1)(ρk)2.

Substituting ρk from (3.25) we obtain:

T ≤
[

(n− ρ0φ
β−1(xk, yk))2 + (n− 1)(ρ0φ

β−1(xk, yk))2

n2

]
φ2(xk, yk). (3.34)

The third condition in (3.25) results in n− 1 < n− ρ0φ
β−1(xk, yk) < n. Substituting

it in (3.34) yields

T ≤
(
n− ρ0φ

β−1(xk, yk)
)
φ2(xk, yk)/n < φ2(xk, yk).

Using (3.33) and Assumption 3.3.4 yields

‖ρkE − S(xk, yk)‖2 ≤ φ2(xk, yk) + ‖Q(xk, yk)‖ ≤ (1 + 1/σ2)φ(xk, yk)2.

Considering (3.14) we obtain

‖dk‖ ≤ κ̄‖ρkE − S(xk, yk)‖,

where κ̄ = κ
√

1 + 1/σ2. As consequence ‖dk‖ ≤ κ̄c.

Lemma 3.3.2. Consider the sequence of search directions {dk} given by FDA–

MNCP. Under Assumptions 3.3.2–3.3.3 there exists Θ > 0, such that for all (xk, yk) ∈

Ωc holds (xk+1, yk+1) = (xk, yk) + τdk ∈ Ω for all τ ∈ [0,Θ].

Proof. By Assumption 3.3.2, ∇S(x, y) is Lipschitz with some constant γ.

Let (xk, yk) ∈ Ωc, Proposition 3.3.1 implies that there exists θ > 0, such that

[(xk, yk), (xk, yk) + τdk] ⊂ Ω for τ ∈ [0, θ]. From the Mean Value Theorem, after

some calculations it follows that for all τ ∈ [0, θ], τ ≤ min{1, ρk/γ‖dk‖2}:

Si((x
k, yk) + τdk) ≥ 0 for all i = 1, 2, ..., n. (3.35)

30



Notice that

Si((x
k, yk) + τdk) = xk+1Fi(x

k+1, yk+1)

yielding xk+1 ≥ 0 and Fi(x
k+1, yk+1) ≥ 0 (see Lemma 4.1.6 in [25] for details). It

follows that (xk, yk) + τdk ∈ Ω. Considering Lemma 3.3.1 and ρk defined in (3.25),

Eq. (3.35) holds for τ ≤ min
{

1, ρ0φ(xk, yk)β−2/(γnκ̄2)
}

. Since β ∈ ]1, 2], the present

lemma is valid for Θ = min
{

1, ρ0c
β−2/γnκ̄2

}
.

Lemma 3.3.3. Under Assumptions 3.3.3–3.3.4, there exists ζ > 0 such that, for

(xk, yk) ∈ Ωc, the Armijo’s line search given by (3.31) is satisfied for any tk ∈ [0, ζ].

Proof. Let tk ∈ ]0,Θ], where Θ was obtained in the previous lemma. Applying the

Mean Value Theorem for i = 1, 2, ..., n results in

Si(x
k+1, yk+1) ≤ Si(x

k, yk) + tk∇Si(xk, yk) dk + (tk)2γ‖dk‖2.

Adding the previous n inequalities and substituting the value of ∇Si(xk, yk) dk yields

φ(xk+1, yk+1) ≤ (1− tk)φ(xk, yk) + tknρk + ntk
2

γ‖dk‖2. (3.36)

Similarly, applying the Mean Value Theorem for Q2
i yields

‖Q(xk+1, yk+1)‖2 ≤ (1− tk)‖Q(xk, yk)‖2 +m(tk)2γ‖dk‖2. (3.37)

Adding (3.36) and (3.37) the limitation for f is obtained

f(xk+1, yk+1) ≤ (1− tk)f(xk, yk) + tk[nρk + (n+m)tkγ‖dk‖2 ].

Definition of ρk in (3.25) and Assumption 3.3.1 imply 1/f(xk, yk) ≤ 1/φ(xk, yk),

yielding

f(xk+1, yk+1) ≤
[
1−

(
1− ρ0φ

β−1(xk, yk)− (n+m)γ‖dk‖2tk

φ(xk, yk)

)
tk
]
f(xk, yk).

In order for Armijo’s line search (3.31) to be satisfied, it is sufficient that

(1− ρ0φ
β−1(xk, yk))− (n+m)γ‖dk‖2tk/φ(xk, yk) ≥ η(1− ρ0φ

β−1(xk, yk)).

As in the previous lemma, it follows

tk ≤ (1− η)(1− ρ0φ
β−1(xk, yk))φ(xk, yk)/((n+m)γ‖dk‖2).
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Considering Θ from Lemma 3.3.2, from Lemma 3.3.1 the result follows for

ζ = min

{
(1− η)(1− ρ0c

β−1)

(n+m)γκ̄2c3
,Θ

}
.

Lemma 3.3.4. Under Assumptions 3.3.3 and 3.3.4 there exists ξ̄ > 0 such that,

for (xk, yk) ∈ Ω∗, the point (xk+1, yk+1) = (xk, yk) + tkdk belongs to set Ω∗ for any

tk ∈ [0, ξ̄].

Proof. By Lemmas 3.3.2 and 3.3.3 there exists ζ > 0, such that (xk+1, yk+1) =

(xk, yk) + tkdk ∈ Ωc for all (xk, yk) ∈ Ω∗, dk is generated by FDA–MNCP and

tk ∈ [0, ζ]. We are going to prove that (xk+1, yk+1) ∈ Ω∗. Similarly to Lemma 3.3.3

applying the Mean Value Theorem to Si (i = 1, 2, ..., n) results in

φ(xk+1, yk+1) ≥ (1− tk)φ(xk, yk) + ntkρk − n(tk)2γ‖dk‖2. (3.38)

Using the Second Fundamental Theorem of Calculus for each Qi (i = 1, ...,m):

Q(xk+1, yk+1) = Q(xk, yk) + tk
[∫ 1

0

∇Q((xk, yk) + θtkdk) dk dθ

]
. (3.39)

Substituting ∇Q(xk, yk)dk = −Q(xk, yk) from (3.14) into (3.39), calculating l2 norm,

multiplying by −σ and adding it to (3.38) yields

φ(xk+1, yk+1)− σ‖Q(xk+1, yk+1)‖ ≥

(1− tk)[φ(xk, yk)− σ ‖Q(xk, yk)‖] + tk[nρk − (nγ + σL)‖dk‖2tk].

In order to guarantee that the right side is positive it is sufficient that

nρk − (nγ + σL)‖dk‖2tk > 0.

Using the definition of ρk we obtain that

tk ≤ δ
(
ρk/(γ ‖dk‖2)

)
,

where δ = nγ/(nγ + σL) ∈ ]0, 1].

It follows that (xk+1, yk+1) ∈ Ω∗, for all tk ∈ ]0, ξ̄) and ξ̄ = min
{
δρ0c

β−2/(γ κ̄2n), ζ
}

.
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As a consequence of the three previous lemmas, the sequence {dk} generated by

FDA–MNCP is a uniformly feasible directions field in Ωc. Moreover, the number of

steps required by Armijo’s line search described in Step 2 of the algorithm is finite

and bounded from above. The following theorem addresses the global convergence

of the presented algorithm.

Theorem 3.3.1. Under Assumptions 3.3.1–3.3.4, given the initial point (x0, y0) ∈

Ω∗, there exists a subsequence of {(xk, yk)} generated by FDA–MNCP converging to

(x∗, y∗), a solution of MNCP given by Def. 3.1.3.

Proof. From Lemmas 3.3.1–3.3.3 it follows that (xk, yk) ∈ Ωc. This, jointly with

Assumption 3.3.1, implies that there exists a subsequence {(xkn , ykn)} ∈ Ωc con-

verging to (x∗, y∗) ∈ Ωc. Using that f is a continuous function, Proposition 3.3.2

implies that f(xk, yk) is a decreasing sequence converging to its infimum f(x∗, y∗). If

f(x∗, y∗) 6= 0, from the definition of f results that φ(x∗, y∗) 6= 0 and the set of indexes

J := {j ∈ [1, n] : xjFj(x
∗, y∗) 6= 0} is nonempty. On the other hand, ‖dk‖ ↓ 0 as tk

is bounded from below. From System (3.14) it follows that

dk = ∇−1S(xk, yk)[−S(xk, yk) + ρkE].

Thus, −x∗iFi(x∗, y∗) + ρ0φβ(x∗, y∗)/n = 0, for each row i = 1, . . . , n. Adding these

equations it follows that ρ0φβ−1(x∗, y∗) = 1, contradicting the third condition in

(3.25). Thus, (x∗, y∗) is the solution of MNCP.

3.3.3 Asymptotic convergence

The present algorithm is a perturbation of Newton’s iteration and it is natural to

expect a rate of convergence close to quadratic for smaller values of ρk. Unfortunately,

a unitary step-length can not be always ensured. The present approach possesses

asymptotic convergence as formulated next result.

Theorem 3.3.2. Consider the sequence {(xk, yk)} generated by FDA-MNCP that

converges to a solution (x∗, y∗) of MNCP given by Def. 3.1.3. Then: (i) Taking

β ∈ ]1, 2[ and tk = 1 for k large enough, the rate of convergence of the present

algorithm is at least super-linear; (ii) If tk = 1 for large k and β = 2, then the rate

of convergence is quadratic.
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Proof. Considering Θ from Lemma 3.3.2, ξ̄ from Lemma 3.3.4 and

tk ∈ ]0,min{Θ, ξ̄}], it follows that

‖(xk+1, yk+1)− (x∗, y∗)‖ ≤ (1− tk)‖(xk, yk)− (x∗, y∗)‖+

κρ0φ
β(xk, yk)/

√
n + O(‖(xk, yk)− (x∗, y∗)‖2). (3.40)

From the Mean Value Theorem and the Lipschitz condition it follows that

φβ(x1, y1) ≤ φβ(x2, y2) + βφβ−1(x̄, ȳ)
√
nO(‖(x1, y1)− (x2, y2)‖),

where (x̄, ȳ) = (x2, y2) + ε((x1, y1) − (x2, y2)) for some ε ∈ ]0, 1[. Taking (x2, y2) =

(x∗, y∗), for all (x1, y1) = (xk, yk) sufficiently near (x∗, y∗) it is equivalent to

φβ(xk, yk) ≤ φβ−1(x̄, ȳ)β
√
nO(‖(xk, yk)− (x∗, y∗)‖). (3.41)

(i) Hypothesis β ∈ ]1, 2[ and tk = 1 for large k in (3.41) imply

φβ(xk, yk) = O(‖(xk, yk)− (x∗, y∗)‖).

By substitution in (3.40) we obtain that limk→∞
‖(xk+1,yk+1)−(x∗,y∗)‖
‖(xk,yk)−(x∗,y∗)‖ = 0. Thus, the

rate of convergence is super-linear.

(ii) The result for β = 2 is obtained in a similar way.

3.4 Benchmark problems

To test the numerical behavior of the present algorithm, a number of problems

presented in the literature are solved. The numerical implementation considers

ρ0 = αmin{1, φβ−1(xk, yk)} in order to avoid extremely large deflections far from

the solution and ρ0 is constant when φ(xk, yk) is small. All the simulations were

performed for two cases: β = 1.1 and β = 2. All problems were solved with the same

parameters: α = 0.25, η = 0.4, ν = 0.8 and the stop criteria f(xk, yk) < 10−8. For

each test problem, 10 different starting points were considered. The complementarity

condition used is (w, v)T • F (w, v, x) = 0, where w, v have different dimensions for

each test problem. The results are summarized in Table ?? for the values β = 1.1

and β = 2, where Min and Max represent the minimun and maximun numbers of
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iterations. As shown in Table 3.1 and Table 3.2 for different initial points the number

of iterations does not change significantly for both analyzed values of parameter β.

The exception is β = 1.1 for the problem 4.10, which presented bad convergence due

to strong nonlinearity presented in this example. The present algorithm converged

in all tested benchmark problems showing the robustness of FDA–MNCP.

Table 3.1: Number of iterations for the benchmark problems to converge.

β \ Problem 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5

1.1
Min 24 23 16 15 15

Max 25 25 22 16 20

2
Min 22 20 14 12 13

Max 23 23 19 13 20

Table 3.2: Number of iterations for the benchmark problems to converge.

β \ Problem 3.4.6 3.4.7 3.4.8 3.4.9a 3.4.9b 3.4.10

1.1
Min 16 13 13 11 11 104542

Max 18 17 14 13 14 471302

2
Min 14 13 10 13 13 21

Max 21 18 17 16 17 40

Problem 3.4.1 (Example 3.5 [16]). This problem is proposed as NCP and solved

as MNCP using (3.2) with li = 0, ui = M = 105, i = 1, 2. This problem consists in

searching for (w, v) ∈ R2
+ × R2+ and x ∈ R2 such that

F (w, v, x) =


x1

x2

M − x1

M − x2

 , Q(w, v, x) =

 (x1 − 1)2

x1 + x2 − 1

+ v − w.

The exact solution of this problem is (1, 0).

Problem 3.4.2 (Example 6.1 [16]). This problem is proposed as NCP. In order to

solve this problem as MNCP we use (3.2) with li = 0, ui = M = 105, i = 1, 2. This
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problem consists in searching for (w, v) ∈ R2
+ × R2

+ and x ∈ R2, such that

F (w, v, x) =


x1

x2

M − x1

M − x2

 , Q(w, v, x) =

 (x1 − 1)2

x1 + x2 + x2
2 − 1

+ v − w = 0.

The exact solution for this problem is (1, 0).

Problem 3.4.3 (Example 6.2 [16]). This is a minimization problem. Applying KKT

conditions [59], this problem can be written as MNCP in the form of Def. 3.1.3. This

problem consists in searching for w ∈ R2
+, x ∈ R2, such that

F (w, x) =

 x1

x2

 , Q(w, z) =

 2x1 + 2x2 − w1

2x1 + 2x2 − w2

 ,

where w = (w1, w2) are KKT multipliers, x = (x1, x2) are the primal variables.

Problem 3.4.4 (Example 6.3 [16]). This is a minimization problem. It can be

written as MNCP in the form of Def. 3.1.3 using KKT conditions from [59]. This

problem consists in searching for w ∈ R+, x ∈ R, such that

F (w, x) = x, Q(w, x) = x3 − w.

The exact solution for this problem is x = 0.

Problem 3.4.5 (Example 6.5 [16]). This is a minimization problem. Applying

KKT conditions given in [59], this problem can be written as MNCP in the form

of Def. 3.1.3. This problem consists in searching for w ∈ R2
+, x ∈ R2 such that

F (w, x) =

 x1 −
x2

2

2

x1 +
x2

2

2

 , Q(w, x) =

 x1 − w1 − w2

x2
2 + w1x2 − w2x2

 .

This problem has the exact solution x = (0, 0)T .

Problem 3.4.6 (Example 3.4 [17]). This is a minimization problem. Applying

KKT conditions given in [59] this problem can be written as MNCP in the form
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of Def. 3.1.3. This problem consists in searching for w ∈ R3
+, x ∈ R2, such that

F (w, x) =


x1

x2

x1 + x2

 , Q(w, x) =

 1 + x1 − w1 − w3,

x2 − w2 − w3

 .

The exact solution for this problem is x = (0, 0)T .

Problem 3.4.7 (Powell’s badly scaled problem [62]). This problem

consists of a system of nonlinear equations that can be written as MNCP [20, 58]. It

can also be written as MNCP given by Def. 3.1.3 by using li = −ui = −M = −105,

i = 1, 2. It is symmetric under the transformation x1 ↔ x2 and it possesses two

solutions x∗ = (9.106, 1.098 × 10−5)T ; x̂ = (1.098 × 10−5, 9.106)T . This problem

consists in searching for (w, v) ∈ R2
+ × R2

+ ∈ R2, such that

F (w, v, x) =


x1 +M

x2 +M

M − x1

M − x2

 , Q(w, v, x) =

 104 x1x2 − 1

e−x1 + e−x2 − 1.0001

+ v − w.

Problem 3.4.8 (Powell’s singular function [62]). This problem consists of a system

of nonlinear equations and it possesses a singular Jacobian on the hyperplane x1 −

x4 = 0, thus, the Newton’s method is not applicable. The only solution of this problem

is x = (0, 0, 0, 0)T [62]. It can also be written as MNCP given by Def. 3.1.3 by using

li = −ui = −M = −105, i = 1, 2, 3, 4. This problem consists in searching for

(w, v) ∈ R4
+ × R4

+, x ∈ R4, such that

F (w, v, x) =



x1 +M

x2 +M

x3 +M

x4 +M

M − x1

M − x2

M − x3

M − x4



, Q(w, v, x) =


x1 + 10x2

√
5(x3 − x4)

(x2 − 2x3)2

√
10(x1 − x4)2

+ v − w.
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Problem 3.4.9 (Walsarian equilibrium model [14]). The Walsarian equilibrium

model, presented in as MNCP in the form Def. 3.1.1 [14], was rewritten as a min-

imization problem and solved applying the infeasible interior point algorithm. De-

pending on the values of the constants b2, b3 > 0 and α ∈ (0, 1), this problem pos-

sesses different solutions. For numerical results is used (α, b2, b3) = (0.75, 1, 0.5)

(4.9b in Table 3.2) and (0.75, 1, 2) (4.9a in Table 3.2) as in [14]. Considering

li = 0, ui = M = 105, i = 1, 2, 3, 4; this problem can be written as Def. 3.1.3.

This problem consists in searching for (w, v) ∈ R4
+ × R4

+, x̄ = (z, x1, x2, x3)T ∈ R4,

such that

F (w, v, x̄) =



z

x̄1

x̄2

x̄3

M − z

M − x̄1

M − x̄2

M − x̄3



, Q(w, v, x̄) =



−x1 + x2 + x3

z − α(b2x2 + b3x3)

x1

b2 − z − (1− α)
(b2x2 + b3x3)

x2

b3 − z


+v−w.

Problem 3.4.10 (Kojima–Shindo’s Problem [14, 63, 64]). This problem was pro-

posed as NCP and solved by using Algorithms EN and EQN [64], by using quasi

Newton’s methods [63] and by using NLCP algorithm [14]. The exact solutions are

x̄ = (
√

6/2, 0, 0, 0.5) and x̄ = (1, 0, 3, 0). It is possible to write it in the form of

Def. 3.1.3 using li = 0, ui = M = 105, i = 1, 2, 3, 4. This problem consists in

searching for (w, v) ∈ R4
+ × R4

+, x ∈ R4, such that

F (w, v, x) =



x1

x2

x3

x4

M − x1

M − x2

M − x3

M − x4



, Q(w, v, x) =


3x2

1 + 2x1x2 + 2x2
2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

+v−w
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3.5 In situ combustion models formulated as MNCP

3.5.1 Model 1

In order to write the simplest model given by System (1.5)–(1.6) as mixed nonlinear

complementarity problem, is done a similar transformation to [12, 51] obtaining

θ ≥ 0, η ∈ R :
∂θ

∂t
+ u

∂(ρ θ)

∂x
− 1

PeT

∂2θ

∂x2
− Φ ≥ 0, (3.42)

∂η

∂t
− Φ = 0, (3.43)(

∂θ

∂t
+ u

∂(ρ θ)

∂x
− 1

PeT

∂2θ

∂x2
− Φ

)
θ = 0, (3.44)

We need Eq. (3.44) to be satisfied at the right end of the interval, where Eq. (1.9)

may not be satisfied. This explains the choice of dimensionless variable η describing

fuel depth inside the reservoir.

3.5.2 Model 2

A similar transformation done in Section 3.5.1 and following [12, 13, 51] in order to

write System (1.9)-(1.11) as mixed nonlinear complementarity problem, we obtain

θ ≥ 0, Y, η ∈ R :
∂θ

∂t
+ VT

∂θ

∂x
− 1

Pe

∂2θ

∂x2
− µTΦ(θ, Y, η) ≥ 0, (3.45)

∂Y

∂t
+ VY

∂Y

∂x
− λY

∂2Y

∂x2
+ µY Φ(θ, Y, η) = 0, (3.46)

∂η

∂t
+ µηΦ(θ, Y, η) = 0, (3.47)(

∂θ

∂t
+ VT

∂θ

∂x
− λT

∂2θ

∂x2
− Φ

)
θ = 0, (3.48)

3.6 Elastic–plastic torsion problem formulated as

MNCP

In order to write the System 1.13 as MNCP in the form of Definition 3.1.3 is used

the weak formulation, for that the following Sobolev space is considered

H1
0 (Σ) := {v ∈ H1(Σ) : v = 0 on ∂Σ},
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which is a closed vector subspace of H1(Σ). We seek the solution in the closed

and convex subset K̂ of H1
0 (Σ) given by K̂ := {v ∈ H1

0 (Σ) : |v(x)| ≤ 1}. The

System (1.13) can be rewritten as a variational inequality [10],∫ ∫
Σ

∇u .∇(v − u) ≥
∫ ∫

Σ

(v − u) ∀ v ∈ K̂, u ∈ K̂, (3.49)

which possesses a unique solution [65].

The Elastic–Plastic Torsion Problem in the variational formulation (3.49) is espe-

cially appropriate for a numerical solution by using the Finite Element Method

(FEM) by writing it as a mixed complementarity problem, which is solved by using

FDA–MNCP. The equivalence between the Elastic–Plastic Torsion Problem given

by variational inequality (3.49) and same inequality substituting the set K̂ by

K := {v ∈ H1
0 (Σ) : |v(x1, x2)| ≤ d(x1, x2)}

was proven in [66] using d(x1, x2) = distance((x1, x2), ∂Σ), ∀(x1, x2) ∈ Σ̄.

FEM formulation used here follows [11] with a standard triangulation Th on Σ̄ =

Σ ∪ ∂Σ. The space H1(Σ) is substituted by a finite dimensional discrete space Vh

of piecewise polynomials vh of degree one. Inequality (3.49) is written in a discrete

form, i.e., search uh ∈ Kh such that∫ ∫
Σ

∇uh .∇(vh − uh) ≥
∫ ∫

Σ

(vh − uh) ∀ vh ∈ Kh. (3.50)

Let {ϕ1, ..., ϕn} a base of Vh, where n is the number of nodes, then

vh(x1, x2) =
n∑
j=1

vjϕj(x1, x2), zh(x1, x2) =
n∑
j=1

zjϕj(x1, x2),

for each (x1, x2) ∈ Σ ∪ ∂Σ. Replacing these expressions into (3.50), yields

(v − z)T (q +Mz) ≥ 0 for all v ∈ Kh, (3.51)

where Kh, the matrix M = (mij) ∈ Rn×n and the vector q = (qi) ∈ Rn are given by
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Kh := {v ∈ Rn : ai ≤ vi ≤ bi, i = 1, ..., n; vi = gi in ∂Σ ∪ Th},

mij =

∫∫
Σ

[
∂ϕi
∂x1

∂ϕj
∂x1

+
∂ϕi
∂x2

∂ϕj
∂x2

]
dx1dx2,

qi = −
∫∫

Σ

θϕ(x1, x2)dx1dx2.

In [11] was established that (3.51) can be written as MNCP in the form of Def. 3.1.2

setting J as the set of interior nodes and N as the number of elements of J . The

problem consists in searching w, v ∈ RN
+ and z ∈ RN such that

F (w, v, z) ≥ 0,

Q(w, v, z) = q +Mz + v − w = 0,
(3.52)

where

F (w, v, z) =



z1 − a1

...

zN − aN
b1 − z1

...

bN − zN


, (3.53)

The complementarity condition is given by w

v

 • F (w, v, z) = 0. (3.54)

The System (3.52) join to (3.54) is a MNCP, which is solved applying FDA–MNCP

with FEM in Section 4.3.
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Chapter 4

ANALYSIS OF NUMERICAL

RESULTS

In this section are presented numerical results using FDS+FDA–NCP, FDS + FDA–

MNCP and validate the solution obtained with FDS + Newton’s method for in situ

combustion models describes in Section 1.2.1 and Section 1.2.2. The FDS is based

in Crank–Nicolson scheme described in Appendix A. The model of diffusion of

oxygen and the in situ combustion models are evolutive problems, then, for numerical

simultations the time is denoted by t with the time index denoted by n and the time

step is k = ∆t and it is considered an homogeneous grid for the variable x with M+1

points, where x0 and xM are the boundary points of the interval of the calculation.

The grid spacing is h = xm+1 − xm = 1/M and the grid position m corresponds to

x = m∆x.

In order to solve our problems is employed the following scheme

Step 0: Start with the initial variable u0
m, m = 0, 1, . . . ,M and the first time step

∆t0.

Step 1: Obtain the discrete form as nonlinear system of equations, NCP or MNCP

using FDS or FEM.

Step 2: Use Newton’s method, FDA-NCP or FDA–MNCP algorithms to solve the

nonlinear system of equations, NCP or MNCP respectively from step # 1.

Step 3: Use the solution from step 2 as the variable u value at the next time step.
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Repeat the algorithm from the step 1 until reaching the final time.

The global properties do the Crank-Nicolson scheme are well known, e.g. [67]. In

general, the convergence of FDS and FEM is rigorously proved only for simple equa-

tions or linear systems; see [27], however they are widely used for solving numerically

reaction-diffusion equations similar to the examples addressed here [36, 42, 68, 26, 30].

In case of Elastic–Plastic Torsion problem described in Section 1.3 is presented the

comparison between the exact solution and the numerical results by FDA–MNCP

using FEM.

4.1 Oxygen diffusion

For numerical results starts with the equilibrium solution as initial conditions and use

Neumann boundary conditions at the left and right sides of the interval ∂c/∂x(x0) =

0, and ∂c/∂x(xN) = 0. The results plotted on Figure 4.1 are very similar to those

shown on the Figure 3 of [26], where semi-analytical techniques were employed.
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Figure 4.1: The solution obtained by using FDS + FDA-NCP (lines) is compared

to one obtained with FDS+Newton’s method (circles). Solutions are shown in (a)

and (b) corresponding to grids with M = 51 and M = 201 points respectively. This

model is solved in [37] by FEM+FDA–NCP and it shows good agreement with the

literature and our results.
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4.2 In situ combustion models

To compare the FDA–NCP and FDA–MNCP algorithms with the classical Newton’s

method, four different simulations were performed inside the interval [0, 0.05] using

constant time step k and space grids with 51 (k = 10−5), 101 (k = 5 · 10−6), 201

(k = 2.5 · 10−6) and 401 (k = 1.25 · 10−6) points.

4.2.1 Model 1

For this model is considered the following dimensionless parameters values, see [36,

12]:

PeT = 1406, β = 7.44 · 1010, E = 93.8, θ0 = 3.67, and u = 3.76.

For more details of this model and its discrete formulation as NCP is showed in

[38], as MNCP is showed in Appendix A.1.1 and as a nonlinear system of equations

is showed in Appendix A.1.2.

Validate the numerical solutions is not possible because we have not experimen-

tal data. In these case, analytical estimative are viable, for that, is analyzed the

Riemann’s problem respective. This will be done in Section 4.2.1.3.

4.2.1.1 Comparison of numerical results using FDA–NCP

Its numerical solution by FDS + FDA–NCP and FDS+Newton’s method were pub-

lished in [12, 38]. Using FEM+FDA–NCP and FEM+Newton’s method were pub-

lished in [12] and all numerical solutions can be see in Figure 4.2–4.3.

4.2.1.2 Comparison of numerical results using FDA–MNCP

The comparison of numerical results obtained by FDS+FDA–MNCP and FDS +

Newton’s method are showed in Figure 4.4 (a), (b), (c) and (d). Over there can

observed that the numerical results are almost equals. In Figure 4.5 are compared

the numerical results obtained by FDS+FDA–NCP and FDS+FDA–MNCP for the

same model.
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Figure 4.2: Solution obtained with FDS + FDA-NCP (lines) and FDS+Newton’s

method (circles). Initial conditions are plotted in (a). Solutions at time t = 0.008

are shown in (b), (c) and (d) corresponding to grids with 51, 101 and 201 points.

(a)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.01  0.02  0.03  0.04  0.05
x

dt = 1e-5
Simulation time = 0

Θ
 η

(b)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.01  0.02  0.03  0.04  0.05
x

dt = 1e-5
Simulation time = 0.008

Θ
 η

(c)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.01  0.02  0.03  0.04  0.05
x

dt = 1e-5
Simulation time = 0.008

Θ
 η

(d)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.01  0.02  0.03  0.04  0.05
x

dt = 1e-5
Simulation time = 0.008

Θ
 η

Figure 4.3: The solution obtained with FEM + FDA-NCP (lines) is compared to

one obtained with FEM+Newton’s method (circles). Initial conditions are plotted

in (a). Solution at time t = 0.008 are shown in (b), (c) and (d) corresponding to

grids with 51, 101 and 201 points.
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Figure 4.4: The solution obtained with FDS + Newton (lines) is compared to one

obtained with FDS + FDA–MNCP (circles). Solutions at time t = 0.008 are shown

in (a), (b), (c) and (d) corresponding to grids with 51, 101, 201 and 401 points.
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Figure 4.5: The solution obtained with FDS + FDA–NCP (lines) is compared to one

obtained with FDS + FDA–MNCP (circles). Solutions at time t = 0.008 are shown

in (a), (b), (c) and (d) corresponding to grids with 51, 101, 201 and 401 points.
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4.2.1.3 Analysis of Riemann’s problem

Apart of the combustion wave, the solution of System (1.5)-(1.6) possesses non-

combustion waves, which can be studied analytically and used to validate numerical

simulations. We consider a hyperbolic part of System (1.5)-(1.6) obtained by ne-

glecting the reaction terms and second derivatives, see [42] and references therein.

With this considerations we obtain the System (4.1).

∂θ

∂t
+ u

∂

∂x

(
θ0θ

θ + θ0

)
= 0,

∂η

∂t
= 0.

(4.1)

The equations above form a system of conservation laws and can be solved for the

corresponding Riemann problem, i.e., considering the initial data given by the dis-

continuous step function. Typically, the solution of a Riemann problem is a train of

waves, which can be shocks, rarefaction or contact discontinuities. This solution is

physically admissible if it satisfies the entropy conditions, see [69] for details.

Theorem 4.2.1. The solution of System (4.1) with initial data given by

(θ(x, 0), η(x, 0)) =

 (θl, ηl), x ≤ 0

(θr, ηr), x > 0
(4.2)

where θl, ηl, θr and ηr are constants satisfying θl 6 θr can contain:

(1) a Lax entropic contact wave satisfying θl = θr and ηr ≥ 0 with velocity equal to

zero;

(2) a Lax entropic shock wave satisfying ηl = ηr and θr ≥ 0 with velocity

s =
uθ2

0

(θr + θ0)(θl + θ0)
. (4.3)

This theorem was proved in [12].

4.2.2 Model 2

For the model described in Section 1.2.2, following [12], the dimensionless parameter

values are E = 93.8, θ0 = 3.67, VT = 3.76, P e = 1406, λY = 0.001, VY = 5, and

µT = µY = µη = 7.44× 1010.
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4.2.2.1 Comparison of numerical results using FDA–MNCP

The numerical results obtained by FDS+FDA–MNCP and its validation with FDS

+ Newton’s method are showed in Figure 4.6 (a), (b), (c) and (d). Over there

can observed that the numerical results are very similar. Similar to Model 1, to

validate our numerical solutions is used analytical estimative because we have not

experimental data. In order is analyzed the Riemann’s problem respective. This will

be done in Section 4.2.2.2.

(a) (b)

(c) (d)

Figure 4.6: The solution obtained with FDS + Newton’s method (lines) is com-

pared to one obtained with FDS + FDA–MNCP (circles). Solutions at time

t = 0.008 are shown in (a), (b), (c) and (d) corresponding to grids with

(∆x,∆t) = (10−3, 10−5), (0.5 × 10−3, 0.5 × 10−5), (0.25 × 10−3, 0.25 × 10−5) and

(0.125× 10−3, 0.125× 10−5).

4.2.2.2 Analysis of Riemann’s problem

The numerical simulations are validated through comparison with analytical solution

of the hyperbolic part of System (1.9)-(1.11). In order to study the non combustion

waves it is assumed that Φ = 0 and the diffusion coefficients are neglected in (1.9)-

(1.11) corresponding to large time and large distances, see [41, 45] for more details.
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Under these considerations the following system of equations is obtained

∂θ

∂t
+ VT

∂θ

∂x
= 0, (4.4)

∂Y

∂t
+ VY

∂Y

∂x
= 0, (4.5)

∂η

∂t
= 0. (4.6)

Considering the initial data in the form of discontinuous step function for (4.4)–(4.6)

is obtained a Riemann problem, which typically possesses a solution as a wave fans,

that can be shocks, rarefaction or contact discontinuities. This solution is physically

admissible if it satisfies the entropy conditions, see [69] for details.

In [12, 41, 45] the behavior the non combustion waves is studied as part of the

solution of the Rieman’s problem of the System (4.4)–(4.6). In the cited works it

can verified that the Riemann problem possesses three non-combustion waves: The

slowest one is an immobile fuel wave Vη = 0, the intermediate one is a thermal wave

with speed VT and the fastest one is the oxygen composition wave with speed VY ,

all these waves correspond to contact discontinuities.

Notice that the model given by System (1.9)–(1.12) is more general than those studied

in [41, 70, 45, 44]. For the models presented in these papers it was proved that they

possess a combustion wave in a form of a traveling wave solution. The proofs will not

be presented here. Generally it was established the existence of combustion traveling

waves classified as fast combustion waves, intermediate combustion waves and slow

combustion waves. In the intermediate combustion wave and in the fast combustion

wave the heat produced by combustion stays behind the combustion front. In the

slow combustion wave the thermal wave goes in front of the combustion wave, which

is the case of the simulation presented in Figure 4.6.

4.3 Elastic–plastic torsion problem

The exact solution of the Elastic–Plastic Torsion Problem of the cylindrical bar with

cross-section Σ ⊂ R2 is known [10]:
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If θ ≤ 2R φ(x1, x2) = θ(R2 − r2)/4,

if θ ≥ 2R φ(x1, x2) =

 R− r, if R′ ≤ r ≤ R,

−θ r2/4 + (R− 1/θ), if 0 ≤ r ≤ R′,

(4.7)

where Σ = {(x1, x2) ∈ R2 / x2
1 + x2

2 ≤ R2}, r =
√
x2

1 + x2
2 and R′ = 2/θ.

4.3.1 Comparison of numerical results

The results are presented in Table 4.2. They are similar to the results presented

in [11] summarized in Table 4.1, where the same problem is solved in the form of

Def. 3.1.2. Notice that the number of mesh nodes is different.

Table 4.1: Number of iterations solving the Elastic–Plastic Torsion Problem pre-

sented in [11]. The total numbers of nodes is n.

n 143 537 2081 8193

Interior point 27 23 20 19

Table 4.2 shows the l2 error of FDA–MNCP when compared to the exact solution

(4.7). It can be observed that it is decreasing according to theoretical predictions

until the numerical precision is reached in the last four columns. Notice that in

the last three columns the total number of iterations stabilize for both values of the

parameter β.

Table 4.2: Number of iterations solving the Elastic–Plastic Torsion Problem by FDA–

MNCP. Numbers of total nodes is n.

β \ n 11 16 56 208 776 2798 3767 5358

1.1
FDA 17 17 17 20 25 31 30 32

l2 error 0.6885 0.3143 0.0791 0.0136 0.0049 0.0059 0.0022 0.0019

2.0
FDA 15 17 17 20 20 25 26 26

l2 error 0.6885 0.3143 0.0791 0.0136 0.0049 0.0059 0.0022 0.0019
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In Figure 4.7 we show the comparison between the exact solution (4.7) and the

numerical solution obtained by using FDA–MNCP with FEM. In agreement with

the results presented in Table 4.2, the graphics are indistinguishable for big mesh

numbers.

(a) n = 11 (b) n = 11

(c) n = 776 (d) n = 776

(e) n = 5358 (f) n = 5358

Figure 4.7: Exact (a, c and e) and numerical (b, d and f) solutions obtained for

different mesh sizes n. The numerical simulations using FDA–MNCP for θ = 5 and

R = 1, [57].
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Chapter 5

CONCLUSIONS

The Feasible Directions Algorithm for Mixed Nonlinear Complementarity Problems

was investigated. It generalizes the ideas of FDA-NCP [24, 12]. Global and asymp-

totic convergence was rigorously proven. For the parameter β ∈ ]1, 2[ the superlinear

convergence was proved. On the other hand if β = 2 quadratic convergence was

obtained.

The choice of the starting point should not be a problem for the algorithm as we

proved the global convergence, i.e., for all starting points in the interior of the domain.

This theoretical results were endorsed by numerical simulations with, at least, 10

different initial values for each benchmark problem. The Maratos effect was rarely

observed in the test problems.

The FDA-MNCP is a simple, efficient and robust algorithm for mixed nonlinear

complementarity problems and it converged for all test problems. As can be observed

from the number of iterations required to solve the benchmark problems, it is robust

in the sense that it does not need parameters tuning. In our case all the examples

were solved using the same parameters µ, ν and β showing good results.

The main advantage in using the FDA–MNCP is the fact that the moving boundary is

obtained directly as a solution of the mixed complementarity problem. This approach

has a potential advantage over the Newton’s method where the moving boundary
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is difficult to obtain due to discontinuities of the solution. Another advantage of

FDA–MNCP is that solution can be obtained with less points than the Newton’s

method.

We apply FDA–NCP and FDA–MNCP to different examples. The Oxygen Diffusion

Problem is addressed in many works. Our results plotted on Figure 4.1 show good

agreement with the literature.

The first In-Situ Combustion Model was formulated using mixed nonlinear comple-

mentarity problem with moving boundary, which can be an interesting approach for

general flow in porous medium. Our numerical results show good agreement with di-

rect numerical simulations using Newton’s method as shown in Figure 4.4. They are

almost identical to FDA–NCP as shown in Figure 4.5, Figure 4.2 and Figure 4.3. The

numerical solutions for non–combustion waves that were obtained by FDA–MNCP

are in agreement with the analytical results showed in Section 4.2.1.3 and Theorem

4.2.1.

The algorithm was tested using a second In Situ Combustion Model consisting of a

system of three nonlinear partial differential equations. This model can be written as

a nonlinear complementarity or as a mixed nonlinear complementarity problem. The

numerical solutions for non–combustion waves that were obtained by FDA–MNCP

are in agreement with the analytical results showed in Section 4.2.2.2. When solving

it as NCP, the algorithm does no converge because of strong nonlinearities present in

the model. Although, when written as MNCP, Feasible Direction Algorithm shows

good results evidencing the advantages of FDA-MNCP. It converged for all time

steps when applied for In Situ Combustion Model presented here.

The algorithm was applied to Elastic–Plastic Torsion Problem with a circular cross

section. The obtained results agree with the analytical solution and with the ones

found in the literature. Proving the Hypothesis 3.3.1–3.3.4 is not easy and they not

are proved explicitly. It is assumed that the studied models satisfy all conditions.
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These results can also be extended to other problems, such as, Mathematical Program

with Equilibrium Constraints (MPEC).

One possibility for the future work is to investigate the algorithm for the case when

the matrix ∇S(x, y) is singular.
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[4] Chapiro, G.: Gas-solid combustion in insulated porous media. Ph.D. thesis,

IMPA (2009)

[5] Rubinstein, R.: On the elastic-plastic torsion problem. Journal of Engineering

Mathematics 11(4), 319–323 (1977)

[6] Idone, G., Maugeri, A., Vitanza, C.: Variational inequalities and the elastic-

plastic torsion problem. Journal of Optimization Theory and Applications

117(3), 489–501 (2003)

[7] Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and com-

plementarity problems, vol. 1. Springer Science & Business Media (2003)

[8] Herakovich, C.T., Hodge, P.G.: Elastic-plastic torsion of hollow bars by

quadratic programming. International Journal of Mechanical Sciences 11(1),

53–63 (1969)

55



[9] Leontiev, A., Huacasi, W., Herskovits, J.: An optimization technique for the

solution of the signorini problem using the boundary element method. Structural

and Multidisciplinary Optimization 24(1), 72–77 (2002)

[10] Glowinski, R., Lions, J.L., Trémolières, R., Lions, J.L.: Numerical analysis of

variational inequalities, vol. 8. North-Holland Amsterdam (1981)

[11] Judice, J., Soares, M.: Solution of some linear complementarity problems arising

in variational models of mechanics. Investigaç. Operac. 18, 17–31 (1998)
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Appendix A

DISCRETIZATION OF IN SITU

COMBUSTION MODELS

In this seccion is described briefly the finite diference esqueme of Crank–Nicolson for

the in situ combustion models that were presented in Section 1.2 with the objetive

of to obtain the discrete formulations for to apply the FDA–MNCP and Newton’s

method. The aproximation of derivatives considered are:

∂tw(xm, tn+ 1
2
) =

wn+1
m − wnm

k
, (A.1a)

∂xxw(xm, tn+ 1
2
) =

wn+1
m+1 − 2wn+1

m + wn+1
m−1

2h2
+
wnm+1 − 2wnm + wnm−1

2h2
, (A.1b)

∂xF (w(xm, tn+ 1
2
)) =

F n+1
m+1 − F n+1

m−1

4h
+
F n
m+1 − F n

m−1

4h
, (A.1c)

Φ(w(xm, tn+ 1
2
)) =

Φn+1
m + Φn

m

2
, (A.1d)

where the values of h, k are as in Section 4.2. Same discretization was employed in

[42, 41] to simulate more general and complex combustion models. Goods results

were obtained when compared with analytical solutions.

A.1 Model 1

In this section consider the System 1.5–1.7 and are considered the constants defined

bellow

H =
1

Pe
, λ =

k

h
, µ =

k

h2
. (A.2)
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The discrete formulation as NCP for this model can be found in [38].

A.1.1 Discrete formulation as MNCP

Let be F (θ, η) the differential operator corresponding to the left side of inequality

(3.42) and Q(θ, η) the differential operator corresponding to the left side of equality

(3.43). We write it in the discrete form as MNCP, using Crank-Nicolson scheme,

thus we obtain these operatos in variables (θn+1, ηn+1):

F (θn+1, ηn+1) = Aθn+1 + λT (θn+1)− 2kΨ(θn+1, ηn+1)− LD(θn, ηn) ≥ 0, (A.3)

Q(θn+1, ηn+1) = ηn+1 − kΨn+1 −
[
ηn +

k

2
Ψn

]
= 0, (A.4)

with complementarity condition

θn+1 • F (θn+1, ηn+1) = 0, (A.5)

where LD(θn, ηn) = Bθn − λT (θn) + 2kΨ(θn, ηn) + UR is known in each instant of

time. The matrices A,B ∈ Rm×m and vectors T,Ψ ∈ Rm×1 are:

A =



(4 + 4µH) −2µH 0 · · · 0 0

−2µH (4 + 4µH) −2µH 0

0 −2µH (4 + 4µH) 0

...
. . .

...

0 0 0 (4 + 4µH) −2µH

0 0 0 · · · −4µH (4 + 4µH)



,

(A.6)
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B =



(4− 4µH) 2µH 0 · · · 0 0

2µH (4− 4µH) 2µH 0 0

0 2µH (4− 4µH) 0 0

...
. . .

...

0 0 0 (4− 4µH) 2µH

0 0 0 · · · 4µH (4− 4µH)



,

(A.7)

T n = T (θn) =



Gn
2 −Gn

0

Gn
3 −Gn

1

Gn
4 −Gn

2

...

Gn
M −Gn

M−2

0


, Ψn = Ψ(θn, ηn) =



Φn
1

Φn
2

Φn
3

...

Φn
M−1

Φn
M


, (A.8)

UR =



4µHθn0

0

0
...

0

0


. (A.9)

A.1.2 Discrete formulation as nonlinear system of equations

We write the System (1.5)-(1.6) in the discrete form as nonlinear system of equations,

using Crank-Nicolson scheme, thus we obtain these operatos in variables (θn+1, ηn+1):

G(θn+1, ηn+1) =

 Aθn+1 + λT (θn+1)− 2kΨ(θn+1, ηn+1)− LD(θn, ηn)

ηn+1 − kΨn+1 −
[
ηn +

k

2
Ψn

]  = 0,

(A.10)

where the matrices A,B ∈ Rm×m and vectors T,Ψ ∈ Rm×1 are the same of Sec-

tion A.1.1.
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A.2 Model 2

We obtain the discrete formulation of System 1.9–1.11.

A.2.1 Discrete formulation as MNCP

Let be F (θ, Y, η) the differential operator corresponding to the left side of equal-

ity (3.45) and Q(θ, Y, η) the differential operator corresponding to the left side of

inequalities (3.46)–(3.47). We write it in the discrete form as MNCP, using Crank-

Nicolson scheme, thus we obtain these operators in variables x = θn+1 ∈ RM
+ , y =

(Y n+1, ηn+1) ∈ RM × RM :

F∆(x, y) = −(α1 + α2)θn+1
m−1 + (1 + 2α2)θn+1

m + (α1 − α2)θn+1
m+1 − α3Φn+1

m −RHSn1,m,

Q∆(x, y) =

 LHSn+1
m −RHSn2,m

ηn+1
m + γ1Φn+1

m −RHSn3,m

 ,
where

LHSn+1
m = −(β1 + β2)Y n+1

m−1 + (1 + 2β2)Y n+1
m + (β1 − β2)Y n+1

m+1 − β3Φn+1
m

RHSn1,m = (α1 + α2)θnm−1 + (1− 2α2)θnm − (α1 − α2)θnm+1 + α3Φn
m,

RHSn2,m = (β1 + β2)θnm−1 + (1− 2β2)θnm − (β1 − β2)θnm+1 − β3Φn
m,

RHSn3,m = ηnm − γ1Φn
m,

Φn
m = Y n

m η
n
m exp(−ξ/(θnm + θ0)),

and

α1 =
VT ∆t

4h
, α2 =

λT ∆t

2h2
, α3 =

µT ∆t

2
, β1 =

VY ∆t

4h
,

β2 =
λY ∆t

2h2
, β3 =

µY ∆t

2
, γ1 =

µη ∆t

2
.

(A.11)

Substituting the differential operator F (θ, η) in (3.44) by the discrete operator F∆(θ, η)

and isolating the terms for time step n+ 1 on the left, we obtain the system of equa-

tions describing time evolution. The evaluation equation for the grid points m = 0
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and m = M can be described using the boundary conditions. The boundary condi-

tions impose constant temperature and no fuel at the left end of the interval, x0 = 0.

That is θ(x0, t) = 0, Y (x0, t) = 0 and η(x0, t) = 0, t ≥ 0. As there is no fixed

right point, the boundary conditions at the right are modeled as zero flow Neumann

boundary conditions. Thus, it is considering h, k as Section 4.2 is obtained the

discrete formulation as MNCP

F (x, y) = Aθn+1 − α3Ψn+1 − [Bθn + α3Ψn + Frθ] ≥ 0, (A.12)

Q(x, y) =

 RY n+1 + β3Ψn+1 − [SY n − β3Ψn + FrY ]

ηn+1 + γ1Ψn+1 − [ηn − γ1Ψn]

 = 0. (A.13)

with complementarity condition

θn+1 • F (θn+1, Y n+1, ηn+1) = 0, (A.14)

where x = θn+1 ∈ RM
+ , y = (Y n+1, ηn+1) ∈ RM × RM ,. The matrices A,B,R, S ∈

RM×M and vetors Ψn, F rY , F rθ ∈ RM are showed bellow and for more details see

[38].

A =



(1 + 2α2) (α1 − α2) 0 · · · 0 0

−(α1 + α2) (1 + 2α2) (α1 − α2) 0 0

0 −(α1 + α2) (1 + 2α2) 0 0

...
. . .

...

0 0 0 (1 + 2α2) (α1 − α2)

0 0 0 · · · −2α2 (1 + 2α2)



,
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B =



(1− 2α2) −(α1 − α2) 0 · · · 0 0

(α1 + α2) (1− 2α2) −(α1 − α2) 0 0

0 (α1 + α2) (1 + 2α2) 0 0

...
. . .

...

0 0 0 (1 + 2α2) −(α1 − α2)

0 0 0 · · · 2α2 (1 + 2α2)



,

R =



(1 + 2β2) (β1 − β2) 0 · · · 0 0

−(β1 + β2) (1 + 2β2) (β1 − β2) 0 0

0 −(β1 + β2) (1 + 2β2) 0 0

...
. . .

...

0 0 0 (1 + 2β2) (β1 − β2)

0 0 0 · · · −2β2 (1 + 2β2)



,

S =



(1− 2β2) −(β1 − β2) 0 · · · 0 0

(β1 + β2) (1− 2β2) −(β1 − β2) 0 0

0 (β1 + β2) (1 + 2β2) 0 0

...
. . .

...

0 0 0 (1− 2β2) −(β1 − β2)

0 0 0 · · · 2β2 (1− 2β2)



,
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Ψn =



Φn
1

Φn
2

Φn
3

...

Φn
M−1

Φn
M


, F rθ =



2(α1 + α2)θL

0

0
...

0

0


, F rY =



2(β1 + β2)YL

0

0
...

0

0


.

Joining (A.12), (A.13) and (A.14) is obtained the formulation as MNCP, which can

be resolved by FDA–MNCP described in Section 3.2.

A.2.2 Discrete formulation as nonlinear system of equations

System (1.9)-(1.11) can be written in the discrete form by using Crank-Nicolson

scheme:

G(θn+1, Y n+1, ηn+1) =



Aθn+1 − α3Ψn+1 − [Bθn + α3Ψn + Frθ]

RY n+1 + β3Ψn+1 − [SY n − β3Ψn + FrY ]

ηn+1 + γ1Ψn+1 − [ηn − γ1Ψn]


= 0, (A.15)

where the matrices A, B, R, S, the vectors Ψn, F rθ, F rY and constants α1, α2, α3,

β1, β2, β3 and γ1 are the same as in Section A.2.1. Equation G(θn+1, Y n+1, ηn+1) = 0,

where G is given by A.15 is solved by Newton’s method.

For discrete formulation as NCP of System (1.9)-(1.11), it is written as

G(θn+1, Y n+1, ηn+1) ≥ 0, (A.16)

where function G is given by A.15.
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