UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA CIVIL

TESIS

"EVALUACIÓN ESTRUCTURAL DE UN EDIFICIO EXISTENTE COMO REFUGIO VERTICAL ANTE SISMO Y TSUNAMI EN EL DISTRITO DE LA PUNTA"

PARA OBTENER EL TITULO PROFESIONAL DE INGENIERO CIVIL

ELABORADO POR:

JULIAN MILLER PALACIOS ESPINOZA

ASESOR:

Dr. MIGUEL AUGUSTO DIAZ FIGUEROA

LIMA- PERÚ

2019

© 2019, Universidad Nacional de Ingeniería. Todos los derechos reservados **"El autor autoriza a la UNI a reproducir de la Tesis en su totalidad o en parte, con fines estrictamente académicos."** Palacios Espinoza, Julian Miller jpalaciose@uni.pe

Teléfono: 935392193

A Dios, por estar conmigo y darme fuerzas; a mi madre, por su amor infinito y su lucha constante; a mi padre, quien me educó a pesar de las dificultades; a mi familia entera, por su apoyo incondicional; y a los investigadores del CISMID, por introducirme a la investigación.

AGRADECIMIENTOS

Al culminar un trabajo arduo y lleno de retos como el desarrollo de una tesis me invade la emoción de satisfacción de haber logrado la meta trazada, sin embargo, esta meta no hubiese sido alcanzada sin la participación de personas e instituciones que han facilitado la culminación de este trabajo. Por ello, es para mí un verdadero honor y placer utilizar este espacio para ser justo y consecuente con ellos, expresándoles mis agradecimientos:

- A mi "Alma Mater", la Universidad Nacional de Ingeniería, en especial a la prestigiosa Facultad de Ingeniería Civil, por haberme brindado la oportunidad de realizar mis estudios de pregrado y formarme tanto profesional como humanamente.
- Agradezco, también de forma muy especial, al Dr. Miguel Diaz, por haberme brindado la oportunidad de recurrir a su capacidad, experiencia y conocimiento científico; asimismo por su apoyo, exigencia y consejos, los cuales han sido fundamentales para la realización de esta tesis.
- Al Msc. Jorge Morales por su paciencia y confianza mostrada hacia mi persona al compartirme conocimientos sobre los efectos de tsunami, la simulación numérica de este fenómeno y el post procesamiento para la interpretación de resultados.
- De igual manera, quiero agradecer al Dr. Carlos Zavala, director del CISMID, por haberme brindado la oportunidad de ser parte del Laboratorio de Estructuras, prestigioso grupo que lidera con éxito y sobre todo centro en el cual desarrollé la habilidad de investigar.
- Al Dr. Miguel Estrada, exdirector del CISMID, persona generosa y siempre dispuesta a colaborar en la investigación e innovación, por sus conocimientos, apoyo y recomendaciones, los cuales me inspiraron a realizar este trabajo de investigación.
- A la estudiante de pregrado, Beatriz Julca, persona muy dedicada y colaboradora, quien se ha introducido al mundo de la investigación mediante el apoyo en el procesamiento de los datos de las simulaciones numéricas de tsunami realizadas en este trabajo.

ÍNDICE

RESUMEN	4
ABSTRACT	5
PRÓLOGO	6
LISTA DE TABLAS	8
LISTA DE FIGURAS	9
LISTA DE SÍMBOLOS Y SIGLAS	13
CAPÍTULO I: INTRODUCCIÓN	18
1.1 GENERALIDADES	18
1.2 PROBLEMÁTICA	20
1.3 OBJETIVOS	21
1.3.1 Objetivo General	21
1.3.2 Objetivos Específicos	21
1.4 HIPÓTESIS	21
1.4.1 Hipótesis General	21
1.4.2 Hipótesis Específicas	22
CAPÍTULO II: FUNDAMENTO TEÓRICO	23
2.1. ORIGEN DEL TSUNAMI	23
2.2 SIMULACIÓN NUMÉRICA DE TSUNAMI	23
2.2.1 Parámetros de Fuente Sísmica	24
2.2.2 Deformación del Fondo Marino	24
2.2.3 Teoría de Aguas Poco Profundas	25
2.3 CARGAS DE TSUNAMI (MLIT 2570)	26
2.3.1 Relación entre el Número de Froude y el parámetro " $lpha$ "	27
2.4 ANÁLISIS ESTÁTICO NO LINEAL (AENL)	28
2.4.1 Método del Espectro de Capacidad (ATC-40)	29
2.4.2 Objetivos de diseño sísmico por desempeño (ATC-40)	32
2.5 ANÁLISIS DINÁMICO NO LINEAL (ADNL)	33
2.5.1 Modelo de Fibras	33
2.5.2 Amortiguamiento de Rayleigh	34
2.6 DEGRADACIÓN DE LA CAPACIDAD ESTRUCTURAL	35
2.6.1 Modelo degradante de Takeda	35
2.6.2 Modelo de degradación de resistencia	36

2.7 ESTIMACIÓN DE DAÑOS MEDIANTE LA METODOLOGÍA HAZUS – MH2 1	37
CAPÍTULO III: DIAGNÓSTICO DE REFUGIOS VERTICALES	39
3.1 RECOPILACIÓN DE DATOS DE EDIFICIOS PROPUESTOS COMO	
REFUGIO POR TSUNAMI	39
3.2 GEOMÉTRICA Y SISTEMA ESTRUCTURAL	41
3.3 ESTUDIO DE VIBRACIÓN AMBIENTAL	42
CAPÍTULO IV: DEMANDA PARA LA EVALUACIÓN ESTRUCTURAL	45
4.1 DEMANDA SÍSMICA	45
4.1.1 Estudio de la respuesta sísmica en el distrito de La Punta	46
4.1.2 Generación de Registros Sísmicos Sintéticos	47
4.2 DEMANDA POR TSUNAMI	51
4.2.1 Escenarios Tsunamigénicos	52
4.2.2 Fase de Propagación	55
4.2.3 Fase de Inundación	56
4.2.4 Altura Equivalente de Tsunami (TEH)	57
4.2.5 Fuerzas de Tsunami	61
CAPÍTULO V: ESTUDIO DE UN EDICIFIO OBJETIVO	63
5.1 MODELAMIENTO DE LA ESTRUCTURA	63
5.1.1 Propiedades de los materiales	63
5.1.2 Degradación cíclica	64
5.1.3 Disposición de Fibras en secciones Transversales	65
5.1.4 Configuración del Análisis Estático No lineal (AENL)	66
5.1.5 Configuración del Análisis Dinámico No lineal (ADNL)	67
5.2 RESULTADOS DEL ANÁLISIS SÍSMICO	67
5.2.1 Análisis Dinámico No Lineal (ADNL)	68
5.2.2 Análisis Estático No Lineal (AENL)	71
5.3 RESULTADOS DE ANÁLISIS POR TSUNAMI	78
5.4 DESEMPEÑO ESTRUCTURAL DEL EDIFICIO	80
5.5 NIVEL DE DAÑO DEL EDIFICIO	85
CONCLUSIONES	87
RECOMENDACIONES	89
BIBLIOGRAFÍA	90
ANEXOS	94

ANEXO 1	95
ANEXO 2	98
ANEXO 3	99
ANEXO 4	103
ANEXO 5	120

RESUMEN

En 1746, el departamento de Lima fue devastado por un sismo y un tsunami subsecuente, y causó la muerte del 96% de la población de la provincia del Callao. Mediante el Proyecto realizado por la colaboración UNI-JICA: "Mejora de la tecnología para la mitigación de desastres por sismo y tsunami en el Perú: Un proyecto SATREPS" (Yamazaki et al., 2010-2015) se realizaron numerosos estudios con los que se concluyeron que un sismo severo (magnitud 8.6~8.9 Mw) puede ocurrir en el departamento de Lima (Pulido et al., 2011), seguido por un tsunami que golpearía una gran área costera. Por consiguiente, escenarios desastrosos pueden ocurrir en la costa de Lima.

Basado en los últimos estudios y en la información de sismos históricos en la provincia del Callao, la municipalidad de La Punta, el distrito más propenso a tsunamis de esta provincia, ha designado 19 edificios de concreto armado como refugios por tsunami. No obstante, la falta de estudios sobre la vulnerabilidad estructural de estos edificios ante un escenario sísmico y tsunami subsecuente, hace incierto el desempeño adecuado de los edificios seleccionados. Estos estudios deben considerar la capacidad residual de la estructura después del sismo y en estas condiciones tiene que soportar el tsunami, por esta razón la aplicación directa de los análisis convencionales por sismo (análisis lineales que propone la norma NTP E.030 - 2018) y tsunami (análisis lineales del FEMA P646 y MLIT 2570) no es apropiada para estos eventos extraordinarios.

Esta investigación describe una metodología para evaluar la acción secuencial de sismo y tsunami subsecuente, con el objetivo de evaluar el desempeño estructural y el nivel de daño para poder garantizar la seguridad de un edificio determinado y de sus habitantes. La evaluación estructural es llevada a cabo en tres pasos: 1) Definir el escenario sísmico y estimar las fuerzas correspondientes de tsunami. 2) Determinar el desempeño sísmico del edificio de concreto armado a través de análisis no lineales. Y 3) Realizar los análisis estáticos no lineales para evaluar el desempeño por tsunami del edificio con capacidad estructural degrada debido al evento sísmico.

La aplicación de esta metodología podría mejorar la designación de edificios que sirvan como refugio vertical por tsunami y de esta manera proteger la integridad de las personas durante el tsunami.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 4 Bach. Julian Miller Palacios Espinoza

ABSTRACT

In 1746, Lima Region was hit by a severe earthquake and a consecutive tsunami in Callao City caused 96% of casualties in the Callao City population. Under the UNI-JICA project: "Enhancement of earthquake and tsunami disaster mitigation technology in Peru: A SATREPS project" (Yamazaki et al., 2010-2015), several studies were realized, and they concluded that a severe earthquake (8.6~8.9 Mw) may occur in Lima City (Pulido et al., 2011), following by tsunami which may hit a large coastal area. In that sense, harmful scenarios can occur.

Based on last studies, and historical earthquake consequences in Callao City; Local government in La Punta, the most tsunami prone district in Callao, has designated 19 reinforced concrete (RC) buildings as tsunami shelters. Nevertheless, the lack of the structural vulnerability studies of these buildings in front of an earthquake and consecutive tsunami scenario, makes the good performance of the selected buildings uncertain. These studies ought to consider the residual structural capacity after the earthquake and in that damage condition the structure has to withstand the tsunami forces, because of that, the direct application of the conventional seismic analysis (linear analysis proposed by Technical Standard of Building NTP E.030 - 2018) and tsunami analysis (linear analysis guidelines published by FEMA P646 y MLIT 2570) is not appropriated for these extraordinary events.

This research describes a methodology to analyze the sequential action of the earthquake and its consecutive tsunami, with the aim of evaluating the structural performance and damage level to guarantee the structural safety of buildings and their inhabitants. Subsequently, the structural assessment was carried out in three steps: 1) to set the seismic and consecutive tsunami scenario and the corresponding tsunami forces. 2) to determine the seismic performance of the RC building through a nonlinear analysis. And 3) to conduct the static nonlinear analyses to evaluate the tsunami performance in the damaged building considering a residual structural capacity.

The application of this methodology might improve the appropriated designation of buildings as tsunami shelters, and thus, to protect the life integrity during the tsunami.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 5 Bach. Julian Miller Palacios Espinoza

PRÓLOGO

En este trabajo, el autor ha realizado una serie de simulaciones para estudiar el comportamiento estructural de edificios frente a sismos de diferentes niveles y sus subsecuentes tsunamis, es decir estudiar el mecanismo de falla resultante en un edificio dañado por el sismo cuando enfrenta las cargas producidas por el impacto del tsunami; con la finalidad de brindar una metodología de evaluación de la vulnerabilidad por sismo y su correspondiente tsunami, teniendo como zona de estudio el distrito de La Punta, Callao.

Mediante las simulaciones numéricas de tsunami, se determina las profundidades de inundación y velocidades de propagación del tsunami acorde con el área inundable. Usando las ecuaciones propuestas en los lineamientos de Japón, basadas en información levantada después de terremotos tsunamigénicos severos, y las simulaciones numéricas se estima la demanda por tsunami en el edificio considerando características como la distancia a la costa, el tipo de superficie de trayectoria del tsunami hasta el edificio, el área de sus aberturas, entre otras.

Las simulaciones se han realizado considerando un edificio de concreto armado de siete pisos construido en la década de 1980, tomando en cuenta el comportamiento inelástico de los elementos estructurales para los análisis por sismo y tsunami. La degradación de la capacidad estructural después del análisis por sismo fue estimada de análisis estáticos y dinámicos no lineales para cuatro escenarios de sismo tsunamigénico. Para el caso del análisis dinámico se generaron registros sintéticos a partir de los registros de sismos ocurridos en la zona central del Perú en el año 1966, 1970 y 1974.

La finalidad de esta tesis es proveer una metodología de análisis para la evaluación estructural de edificios frente a escenarios de sismo y tsunami. En consecuencia, proporcionar una herramienta para la toma de decisiones sobre si un edificio puede servir correctamente como refugio temporal frente a tsunamis. En ese sentido, la metodología propuesta en esta tesis considera la degradación de la capacidad estructural por acciones sísmicas y cargas cíclicas de tsunami, resultando ser una propuesta novedosa para la evaluación de edificios existentes que puedan ser usados como refugios temporales ante tsunami.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 6 Bach. Julian Miller Palacios Espinoza

Este tema toma mayor importancia, en vista de que, Lima atraviesa una etapa de silencio sísmico, siendo el último sismo severo el ocurrido en el año de 1746, donde la ciudad de Lima y Callao fue devastada y el subsecuente tsunami causó la muerte del 96% de la población de la provincia del Callao. Estudios como el realizado por el proyecto SATREPS (2010-2015) concluyeron que existe una alta probabilidad de que el sismo esperado sea de una magnitud de 8.6Mw a 8.9Mw. En la tesis se concluye que para escenarios mayores a 0.75g de PGA (correspondiente a un escenario de magnitud 8.7 Mw) el daño por tsunami es mayor al daño sísmico que, por sí mismo, causa daños extensivos y con el efecto del tsunami ocasiona que la estructura colapse, este resultado se debe principalmente a que el edificio no cuenta con un área adecuada de aberturas; sin embargo, los análisis presentados en este trabajo podrán servir como base para estudiar la capacidad residual de los edificios y si estos son aptos para soportar cargas subsecuentes como las originadas por el tsunami o réplicas, principalmente.

Por lo expuesto, se considera que el autor proporciona conclusiones sumamente útiles para ser compartidas con la comunidad científica y profesionales relacionados con la reducción de la vulnerabilidad estructural, a la vez que se ha identificado posibles temas para investigaciones futuras.

> Dr. Miguel Augusto Díaz Figueroa Asesor de la tesis

LISTA DE TABLAS

Tabla N° 2.1	Valor del coeficiente " α " según MLIT 257027
Tabla N° 2.2	Valores de Factores de modificación del Amortiguamiento, ka
	(ATC-40)
Tabla N° 2.3	Objetivos de diseño sísmico por desempeño para edificaciones
	(ATC-40)
Tabla N° 2.4	Características de los estados de daños para estructuras tipo
	C2M
Tabla N° 3.1	Datos del Plan de Contingencias del distrito de La Punta
Tabla N° 3.2	Periodos predominantes obtenidos de la medición de vibración
	ambiental
Tabla Nº 4.1	Parámetros del Espectro de Diseño según la Norma E030 y
	parámetros equivalentes para el estudio de Pulido et al (2015) 45
Tabla N° 4.2	Relación entre PGA y Magnitud Mw para el distrito de La Punta46
Tabla N° 4.3	Resolución de la topografía y batimetría para la simulación
	numérica de Tsunami55
Tabla Nº 4.4	Porcentaje de abertura en los entrepisos del edificio en estudio58
Tabla N° 5.1	Factores de Degradación de Energía en Modelos de Fibras
	según Tanaka (1990)65
Tabla N° 5.2	Periodos y factores de masa efectiva para los primeros cuatro
	modos
Tabla N° 5.3	Valores de cortante máximo obtenidos del análisis dinámico no
	lineal70
Tabla N° 5.4	Valores de Desplazamiento Espectral (Sd) y Amortiguamiento
	(β) de la estructura en el punto de desempeño sísmico
Tabla N° 5.5	Parámetros de degradación del análisis por sismo y tsunami
	para el primer entrepiso
Tabla N° 5.6	Distorsiones máximas obtenidas de la metodología para el
	primer entrepiso considerando un análisis por sismo estático
	(AENL) y dinámico (ADNL)85
Tabla N° 5.7	Estado de daño estimado para una edificación tipo C2M
	diseñado con una norma de exigencia moderada
Tabla N° 5.8	Estados de daño obtenidos para los escenarios sísmicos de
	PGA=0.55g - 0.85g

LISTA DE FIGURAS

Figura N° 2.1 Proceso de origen de un tsunami en las costas peruanas23
Figura N° 2.2 Parámetros de fuente sísmica para la generación de la
condición inicial del tsunami24
Figura N° 2.3 Distribución de la fuerza de tsunami (tomado de Nakano, 2008). 27
Figura N° 2.4 Relación entre α y <i>Fr</i> .(tomado de Asakura, 2002)28
Figura N° 2.5 Estimación del amortiguamiento viscoso equivalente. (tomado
de ATC-40, 1996)
Figura N° 2.6 Muestra la metodología del ATC-40 para la determinación del
punto de desempeño (Punto de color rojo)
Figura N° 2.7 Distribución de Fibras en: a) Columna, b) Viga y c) Muro. El
comportamiento de los materiales en las secciones se muestra
en d)
Figura N° 2.8: Modelo degradante de Takeda
Figura N° 2.9 Muestra el modelo de Wang y Shah (1987)
Figura N° 3.1 Clasificación por edad de la población del distrito de La Punta40
Figura N° 3.2 Capacidad vs. Demanda de personas en caso de solo
evacuación vertical y en caso de evacuación horizontal y
vertical en conjunto. Fuente: Mas, 2013
Figura N° 3.3 Muestra el nivel de daño de las edificaciones en el distrito de La
Punta, para el escenario sísmico de Pulido (izquierda) y
Jiménez (derecha). Los círculos blancos indican la ubicación de
los edificios de refugio41
Figura N° 3.4 Vista frontal de la estructura en estudio ubicado a 35m de la
orilla del mar, la imagen derecha es del plano arquitectónico
del Edificio LP41
Figura N° 3.5 Vista en planta del edificio en estudio
Figura N° 3.6 Ubicación de puntos de medición de vibración ambiental43
Figura N° 3.7 Espectros de Fourier, en a) la dirección 1 (ch-01) y en b) la
dirección 2 (ch-02)43
Figura N° 4.1 Espectros de respuesta escalados a PGA=1g, obtenidos para
el distrito de La Punta a partir de los datos de la estación DHN,
la Norma E030 y Huamán (1991)47

Figura N° 4.2 Rotación de las componentes Norte y Este de los registros
sísmicos48
Figura N° 4.3 Puntos de coordenadas (Acc. en X, Acc. en Y) para los
registros de 1966, 1970 y 1974 escalados al espectro de
PGA = 0.85g. Registros girados de manera que se presenten
mayores aceleraciones en X48
Figura N° 4.4 Acelerogramas escalados al EPU LP de PGA 0.55g, 0.65g,
0.75g y 0.85g a partir del registro de 1966 (a, b, c y d
respectivamente)49
Figura N° 4.5 Acelerogramas escalados al EPU LP de PGA 0.55g, 0.65g,
0.75g y 0.85g a partir del registro de 1970 (a, b, c y d
respectivamente)50
Figura N° 4.6 Acelerogramas escalados al EPU LP de PGA 0.55g, 0.65g,
0.75g y 0.85g a partir del registro de 1974 (a, b, c y d
respectivamente)51
Figura N° 4.7: Distribución de desplazamientos para los escenarios sísmicos
de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la
esquina inferior derecha). Cada escenario consta de 280 sub
fallas cada uno53
Figura N° 4.8 Deformación inicial de la superficie del océano para los
escenarios sísmicos de 8.5 a 9.0 Mw (desde la esquina
superior izquierda a la esquina inferior derecha)54
Figura N° 4.9 Definición de dominios para la simulación numérica de tsunami
y ubicación del Edificio LP. a) y b) muestran los dominios
definidos, el dominio 5 y 6 comprenden el área del callao y el
distrito de La Punta respectivamente c) y d) muestra el dominio
6, la ubicación del edificio LP y los 18 puntos de control56
Figura N° 4.10 Inundación para el escenario de 8.8 Mw.
Figura N° 4.11 Relación entre Cortante basal y porcentaje de aberturas
según Okuda et al. (2008), Ci es el coeficiente de cortante
basal58
Figura N° 4.12 Altura de los edificios de refugio y la Máxima altura de Ola
para el escenario de 9.0 Mw en el edificio LP (línea roja)59
Figura N° 4.13 Muestra la altura equivalente de tsunami vs. tiempo para el
Punto 15, se muestran los resultados de los escenarios de

	8.5 a 9.0 Mw (desde la esquina superior izquierda a la	
	esquina inferior derecha)	60
Figura N° 4.31	1 Muestra la relación de la altura TEH vs. PGA, obtenida a	
	partir de las simulaciones numéricas de tsunami.	61
Figura N° 4.32	2 Esquema de los patrones de carga de tsunami aplicados en	
	cada piso conforme aumenta el nivel del tsunami	62
Figura N° 5.1	Diagrama Esfuerzo - deformación de: a) Concreto y b) Acero	63
Figura N° 5.2	Ciclo histerético considerando la degradación de rigidez.	
	Recuperado de CSI (2011).	65
Figura N° 5.3	Muestra la disposición de las fibras definidas para la	
	columna P7	66
Figura N° 5.4	Modelo Estructural del Edificio en estudio, elaborado en el	
	software Perform 3D.	67
Figura N° 5.5	Distorsión en cada entrepiso para los escenarios simulados de	
	PGA 0.55g a 0.85g (desde la esquina superior izquierda a la	
	esquina inferior derecha).	70
Figura N° 5.6	Curva de capacidad por Sismo para cada entrepiso, (a) en	
	dirección X y (b) en dirección Y	72
Figura N° 5.7	Efectos de rotación en el análisis en dirección X	73
Figura N° 5.8	Diagrama momento (kg-m) vs curvatura (rad/m) de dos	
	columnas ubicadas en el eje que sufre mayor desplazamiento	74
Figura N° 5.9	Aceleración espectral vs Desplazamiento espectral en	
	dirección X (izquierda) y en dirección Y (derecha) se puede	
	observar de los puntos de desempeño sísmico (negro)	75
Figura N° 5.10) Distorsión en cada entrepiso para escenarios de PGA de	
	0.55g a 0.85g en direcciones X e Y. La línea de color rojo	
	representa las distorsiones obtenidas del análisis dinámico no	
	lineal y la línea azul indica las distorsiones del análisis estático	
	no lineal	77
Figura N° 5.11	1 Distorsión vs Fuerza Cortante en cada entrepiso para los	
	patrones de carga que se muestran debajo de cada letra	78
Figura N° 5.12	2 Curva de capacidad por Tsunami de cada entrepiso, (a) en	
	dirección X y (b) en dirección Y	79
Figura N° 5.13	3 Metodología para obtener el desempeño por sismo y tsunami	
	de un edificio	81

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 11 Bach. Julian Miller Palacios Espinoza

Figura N° 5.14 Rutina principal para el análisis por sismo y tsunami	82
Figura Nº 5.15 Muestra una captura del programa realizado para el Análisis	
por Sismo y Tsunami	83
Figura Nº 5.16 Aplicación de la metodología para el primer entrepiso, curva	
de capacidad por sismo (rojo) y por tsunami (azul) en	
dirección X (columna izquierda). Análisis en dirección Y	
(columna derecha)	84

LISTA DE SÍMBOLOS Y SIGLAS

<u>SÍMBOLOS</u>

*A*_{roof} : Desplazamiento del último nivel.

- λ : Ángulo de deslizamiento de la falla sísmica.
- δ : Ángulo de inmersión de la falla sísmica.
- α_1 : : Coeficiente de masa modal del primer modo.
- *a*: Parámetro que amplifica la altura de inundación de tsunami (h).
- α_{pi} : Aceleración espectral del último punto de la regresión bilineal.
- α_u : Aceleración espectral en el estado último.
- α_y : Aceleración espectral en el punto de cambio de pendiente.
- α_r : Constante alfa de Rayleigh.
- *B* : Ancho del Edificio expuesto a la presión de tsunami.
- β_r : Constante beta de Rayleigh.
- β_0 : Amortiguamiento viscoso equivalente.
- β_{eff} : Amortiguamiento efectivo.
- *c* : Matriz de amortiguamiento.
- *C* : Constante de Wang y Shah menor que 1.0.
- δ_{jk} : Delta de Kronecker.
- d : Profundidad de la esquina superior izquierda del área de falla sísmica.
- d_u : Desplazamiento espectral en el estado último.
- d_{γ} : Desplazamiento espectral en el punto de cambio de pendiente.
- d_{pi} : Desplazamiento espectral en el último punto de la regresión bilineal.
- *D* : Profundidad en un punto determinado del océano.
- D_{ws} : Coeficiente de Wang y Shah.
- ε_i : Amortiguamiento correspondiente al modo i.
- Σ : Elemento de superficie.
- *F* : Fuerza en el punto máximo alcanzado.
- *Fd* : Fuerza degradada.
- *Fr* : Número de Froude.
- *g* : Aceleración de la gravedad.
- *h* : Profundidad de inundación.
- k_a : Factor de modificación del amortiguamiento.
- *k* : Matriz de rigidez.

λ : Primera constante de Lame.

Lon,Lat: Coordenadas de la esquina superior izquierda del área de la falla sísmica.

- L : Longitud del área de la falla sísmica.
- : Matriz de masa. m

FACULTAD DE INGENIERÍA CIVIL

- m': Parámetro que determina la razón de daño.
- Mw : Magnitud de momento sísmico.
- *M y N* : Flujo de descarga en las direcciones x e y.
- Nt : Número de entrepisos.
- : Número de ciclos realizados. n
- : Máxima elevación de la superficie del agua. $\eta_{m \Delta x}$
- : Coeficiente de rugosidad de Manning. η
- : Densidad del tsunami. n
- $p_{x}(z)$: Presión de diseño actuando a una distancia z del nivel del terreno.
- PF : Factor de participación modal del primer modo.
- : Carga de tsunami aplicada a un piso. Q_{7}
- : Dirección (Azimut) de la falla sísmica. Ø
- : Amplitud del primer modo para el piso i. φ_i
- : Aceleración Espectral. S_a
- : Desplazamiento Espectral. S_d
- : Dislocación de la falla sísmica. u
- : Velocidad de avance en el momento que ocurre la máxima elevación de μ_n la superficie del agua.
- : Segunda constante de Lame, μ
- u_i^j : Componente "i" del desplazamiento en el punto (x1, x2, x3) debido a la fuerza de magnitud "F" en la dirección "j" en (ξ 1, ξ 2, ξ 3).
- : Vector de velocidad en las direcciones x e y. u, v
- \bar{u}, \bar{v} : Velocidad promedio en las direcciones x e y.
- : Dirección coseno de la normal al elemento de superficie $d\Sigma$. ν_k
- V : Cortante Basal
- t : Tiempo.
- Xi : Desplazamiento máximo en el i-ésimo ciclo.
- Χf : Desplazamiento de rotura, bajo el incremento de una carga monotónica.
- : Frecuencia angular para el modo i. ωί

- W : Ancho del área de la falla sísmica.
- *W*: : Peso sísmico de todo el edificio.
- Wi/g : Masa sísmica del entrepiso i.
- z_1 : Altura inferior de la superficie expuesta a la presión de tsunami.
- z_2 : Altura superior de la superficie expuesta a la presión de tsunami.

<u>SIGLAS</u>			
AENL	: Análisis Estático No Lineal.		
ADNL	: Análisis Dinámico No Lineal.		
ATC	: Consejo de Tecnología Aplicada (Applied Technology Council)		
C2M	: Estructura de muros estructurales de concreto armado y de altura		
	mediana.		
CHPO	: Análisis Estatico No lineal con altura de tsunami Constante		
	(Constant Height Pushover Analysis)		
CISMID	: Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación		
	de Desastres.		
CCTT	: Curva de Capacidad de Tsunami Trilinealizada.		
DCRC	: Centro de Investigación de Control de Desastres (Disaster Control		
	Research Center)		
DHN	: Estación Acelerográfica en la Dirección de Hidrografía y		
	Navegación.		
E030	: Norma técnica NTP E. 030 "Diseño Sismorresistente" actualizada		
	al año 2018.		
EPU LP	: Espectro de Peligro Uniforme para el distrito de La Punta.		
FEMA	: Agencia Federal para el Manejo de Emergencias (Federal		
	Emergency Management Agency)		
HAZUS-MH	: Metodología Multi-Amenaza del programa HAZUS (Hazard-United		
	States)		
JCO	: Oficina del Gabinete Japonés (Japanese Cabinet Council)		
MLIT	: Ministerio de Tierra, Infraestructura, Transporte y Turismo		
	(Ministry of Land, Infraestructure, Transport and Tourism)		
PGA	: Aceleración Pico del Suelo (Peak Ground Acceleration)		
PQR	: Estación Acelerográfica en el Parque de la Reserva.		
RPAS	: Sistema Aéreo Piloteado Remotamente (Remotely Piloted		
	Airecraft System)		
RPA	: Vehículo Aéreo Piloteado Remotamente (Remotely Piloted		
	Aircraft)		
SATREPS	: Sociedad de Investigación en Ciencia y Tecnología para el		
	Desarrollo Sostenible. (Science and Technology Research		
	Partnership for Sustainable Development)		

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 16 Bach. Julian Miller Palacios Espinoza

SENCICO	: Servicio Nacional de Capacitación para la Industria de la	
	Construcción.	
SRTM	: Transbordador Espacial con Misión Topográfica (Shuttle Radar	
	Topography Mission)	
TEH	: Altura Equivalente de Tsunami (Tsunami Equivalent Height)	
ТН	: Análisis Tiempo-Historia.	
USGS	: Servicio Geológico de los Estados Unidos (United States	
	Geological Survey.	
VHPO	: Análisis Estatico No lineal con altura de tsunami Variable (Variable	
	Height Pushover Analysis)	

CAPÍTULO I: INTRODUCCIÓN

1.1 GENERALIDADES

Desde la década del 2000 se han venido realizando numerosas investigaciones sobre el impacto de un tsunami en las estructuras ubicadas en la costa, debido a que durante esta década se han presentado estos eventos. Por ejemplo, el evento sísmico de Sumatra de 2004, donde se reportaron 150,000 muertes en once países incluyendo Indonesia, Tailandia, Malasia, India y Sri Lanka. Es preciso resaltar que los daños en las edificaciones y otras estructuras en este evento fueron principalmente debido al tsunami (Jain et al., 2005).

En Estados Unidos, desde el año 2004, la Agencia Federal para el Manejo de Emergencias (FEMA por sus siglas en inglés) ha venido desarrollando proyectos para poder recopilar información sobre las fuerzas de tsunami con la finalidad de proponer lineamientos de diseño para estructuras de evacuación vertical ante tsunamis (FEMA P646, 2008). En el 2012 se publicó la segunda edición de estos lineamientos.

En Japón, varias investigaciones han buscado establecer los requisitos estructurales para diseñar y construir edificios resistentes a cargas de tsunami. De modo que, en el 2005, la Oficina del Gabinete Japonés (JCO por sus siglas en inglés) estableció los lineamientos de diseño para refugios ante tsunami, introduciendo el coeficiente "a" el cual estima a grandes rasgos la intensidad de las presiones sobre una estructura debido a las olas del tsunami. Este coeficiente está relacionado con el número de Froude (el número de Froude depende de la velocidad y profundidad de inundación del tsunami), dicha relación fue obtenida mediante ensayos de laboratorio (Asakura et al., 2003).

Posteriormente, se examinó la validez de este coeficiente con el estudio de edificaciones afectadas por el tsunami de Sumatra de 2004 (Nakano, 2008) y con la información del tsunami del Este de Japón del año 2011 (Asai et al., 2012). En el año 2011, el Ministerio de Tierras, Infraestructura, Transporte y Turismo de Japón (MLIT) propuso lineamientos provisionales sobre el diseño estructural de los edificios de evacuación ante tsunamis (lineamiento conocido como MLIT 2570), donde se rectifica el coeficiente "a" de manera que depende de la existencia de estructuras de disipación de energía y de la distancia de la estructura a la costa. En el Perú existe como antecedente una publicación que recopila información de diversas investigaciones sobre los efectos del tsunami con la finalidad de realizar

un análisis estructural de un edificio típico de evacuación vertical resistente a sismo y tsunami, este análisis es realizado considerando los efectos del evento sísmico y de las cargas de tsunami independientemente (Condori, 2013).

En el año 2014, Macabuag realiza un análisis de sensibilidad en estructuras aporticadas bajo los regímenes de los lineamientos de diseño ante tsunami del MLIT 2570, FEMA 646 y ASCE 7- 16, cabe señalar que este estudio no considera el daño estructural precedente al tsunami que el evento sísmico origina. Finalmente concluye que los estándares de diseño japoneses (MLIT 2570) originan un patrón de cargas más conservador para el diseño ante tsunami.

En el año 2017, Petrone et al. presentan tres formas de analizar la demanda del tsunami:

- Análisis dinámico tiempo historia (TH), este análisis permite la incorporación de la respuesta dinámica de la estructura ante el tsunami, teniendo en cuenta como varía la velocidad y altura del tsunami.
- Análisis estático no lineal con altura constante (CHPO), es un análisis donde el patrón de cargas asignado a la edificación tiene una altura constante con un flujo de velocidad variable, para este análisis es necesario un control de desplazamiento.
- Análisis estático con altura variable (VHPO) en este análisis la altura es incrementada según la inundación y la velocidad es calculada manteniendo el número de Froude constante, pues es más real para un rango de profundidades de inundación, cabe resaltar que para este análisis se realiza un control por fuerza aplicada.

Como conclusión de los resultados se obtiene que el VHPO provee una buena aproximación de la demanda del tsunami comparado con los resultados del TH. Por otro lado, el CHPO arroja una predicción no tan confiable pues subestima del 5-20% de cortante en las columnas.

Si bien es cierto se han planteado lineamientos para el análisis estructural de edificios ante cargas de tsunami, también se debe verificar el comportamiento de la estructura después de ocurrido el evento sísmico, es decir considerar una pérdida de la capacidad estructural. En ese caso, el objetivo del análisis sismorresistente sería conocer de la manera más cercana posible las pérdidas de rigidez y resistencia debido al sismo, para luego asegurar que esta capacidad estructural degradada sea suficiente para enfrentar los efectos del tsunami.

En base a las investigaciones antes mencionadas el aporte de esta tesis es proponer una metodología que considere el daño estructural debido a las solicitaciones sísmicas que experimenta una edificación para luego realizar el análisis por tsunami considerando el comportamiento no lineal de la estructura.

1.2 PROBLEMÁTICA

La investigación sobre los tsunamis se torna más importante en estos días, pues un evento de esta magnitud puede alterar el orden demográfico, social y económico de una región. Por ejemplo, cuando sucedió el tsunami del año 2001 en la zona sur del Perú por lo menos 75 personas fallecieron, donde 26 fueron a causa del tsunami producido, según el USGS (Servicio Geológico de los Estados Unidos). Asimismo, según crónicas históricas de 1746, el Callao fue afectado por un tsunami cuyas olas fueron de 21 m de altura aproximadamente, produciendo la muerte de más del 96% de la población en ese entonces (CISMID, 2015).

La base de datos de tsunamis indica que existe un alto riesgo de ocurrencia de tsunamis en la costa del Perú. Frente a esta realidad, aún no se ha considerado en las normas nacionales la manera de evaluar las acciones producidas por los tsunamis sobre las estructuras y construcciones vulnerables a este tipo de fenómenos. Por otro lado, las lecciones aprendidas en los últimos eventos y principalmente del terremoto y tsunami de Tohoku nos revelan la gran necesidad de evaluar el comportamiento de estructuras ante fuerzas generadas por el flujo del tsunami y el impacto de escombros, pues muchas personas salvaron sus vidas escapando a edificios altos que pudieron ser capaces de resistir las acciones inducidas por el tsunami aun cuando no fueron diseñadas para tales fines. Por lo tanto, es importante definir criterios de diseño específicos e implementar construcciones especiales en caso de emergencia, que puedan ser capaces de resistir primero el sismo y después los efectos del tsunami. (Condori, 2013)

Una de las zonas costeras expuesta al peligro de Tsunami es el distrito de La Punta, por ello se han realizado diversas actividades en este distrito para mitigar el daño por tsunami, tales como el establecimiento de rutas de evacuación, simulacros y el desarrollo de un plan de contingencias ante tsunami en este distrito, este plan contempla el refugio en edificios que pueden servir para tal fin y que han sido seleccionados por el comité Distrital de Defensa Civil del distrito de La Punta por su altura, que debe ser de un mínimo de cuatro pisos, por su

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 20 Bach. Julian Miller Palacios Espinoza

estructura sólida, su fácil acceso y la dimensión de sus azoteas, cabe resaltar que este plan está regulado por la Ordenanza Municipal N°003-013/2010.

Sin embargo, aún no se han realizado trabajos de su evaluación estructural que garantice su funcionalidad después de sismo y del tsunami subsecuente.

1.3 OBJETIVOS

1.3.1 Objetivo General

Analizar el comportamiento estructural ante solicitaciones de sismo y el subsecuente tsunami de un edificio de concreto armado de siete niveles propuesto como refugio vertical en el distrito de La Punta para la evaluación de su vulnerabilidad estructural.

1.3.2 Objetivos Específicos

- Realizar un diagnóstico general de la información existente acerca del análisis sísmico y de tsunami para evaluar edificios propuestos como evacuación vertical.
- Realizar un modelo estructural del edificio en estudio, determinar las demandas de tsunami que afectaría a la edificación, evaluar el comportamiento sísmico de la edificación y considerar el decremento de rigidez y resistencia de la estructura.
- Realizar simulaciones numéricas para determinar la respuesta del edificio frente a la carga de tsunami establecida, mediante diferentes aproximaciones o metodologías.

1.4 HIPÓTESIS

1.4.1 Hipótesis General

Un edificio representativo del distrito de La Punta, no diseñado ni estructurado para ser refugio vertical, es capaz de soportar un sismo tsunamigénico, considerando un cierto nivel de daño debido al sismo, es decir, la disminución o degradación de la capacidad estructural existente, para luego enfrentar las cargas del tsunami subsecuente.

1.4.2 Hipótesis Específicas

- Es posible estimar la demanda por tsunami en edificios propuestos como evacuación vertical usando la información existente dispuesta en lineamientos y a través de simulaciones numéricas de tsunami.
- Mediante las curvas de capacidad por sismo y tsunami de una estructura se puede evaluar el desempeño estructural de un edificio considerando un decremento de la capacidad estructural debido al daño por sismo.
- Mediante simulaciones numéricas de un rango de escenarios tsunamigénicos se puede observar la dependencia entre el desempeño estructural y el estado de daño después del evento sísmico.

CAPÍTULO II: FUNDAMENTO TEÓRICO

2.1. ORIGEN DEL TSUNAMI

Los tsunamis son fenómenos relativamente poco frecuentes, pero pueden causar numerosas pérdidas humanas y cuantiosos daños materiales como en el Callao, en 1746, Sanriku, Japón, en 1896 y 1933 y en Chile, en 1960 (Kuroiwa et al. 2002). La Figura N° 2.1 muestra el proceso de origen de un tsunami, partiendo en un inicio de un sismo tsunamigénico (sismo que origina tsunami) donde la placa sudamericana se desliza violentamente produciendo un levantamiento en el fondo marino que desplazará el agua que se encuentre sobre él.

Figura N° 2.1 Proceso de origen de un tsunami en las costas peruanas. Recuperado de: http://www.oannes.org.pe/seminario/02oceanografPazTsunamis.htm

2.2 SIMULACIÓN NUMÉRICA DE TSUNAMI

Para determinar las cargas de tsunami en un área de estudio se recomienda utilizar los datos de una simulación numérica de tsunami, en el cual se debe tener un modelo de la zona de estudio con tamaños de grilla adecuados para asegurar una apropiada exactitud en la predicción de las cargas (FEMA 646).

En el presente trabajo la simulación numérica de tsunami es realizada usando el programa TUNAMI-N2 (Tohoku University's Numerical Analysis Model for Investigation of Near-field Tsunami No.2) realizado por Koshimura (2009). El código fuente está basado en la teoría de aguas poco profundas y fue desarrollado por el Centro de Investigación de Control de Desastres (DCRC – Universidad de

Tohoku, Japón). Este modelo simula la etapa de propagación e inundación de un tsunami a partir de condiciones iniciales del sismo generador.

2.2.1 Parámetros de Fuente Sísmica

La fuente sísmica de los terremotos para la generación de la condición inicial del tsunami o la deformación inicial de la superficie del océano puede describirse teóricamente usando nueve parámetros, estos son mostrados en la Figura N° 2.2.

Donde:

Lon,Lat: Ubicación en el plano de la esquina superior izquierda del área de la falla,

- d : Profundidad de la esquina superior izquierda del área de la falla,
- L : Longitud del área de la falla,
- W : Ancho del área de la falla,
- ø : Dirección (Azimut) de la falla,
- λ : Ángulo de deslizamiento,
- δ : Ángulo de inmersión de la falla,
- u : Dislocación.

2.2.2 Deformación del Fondo Marino

El desplazamiento inicial de la superficie del océano o condición inicial del tsunami es determinado calculando la deformación de la estructura del fondo del océano basado en relaciones propuestas por Okada (1985). En esta sección se muestra la ecuación (2.1), la cual fue usada para el cálculo del desplazamiento, esfuerzos e inclinación productos de la dislocación que sufre la estructura del fondo del océano durante un evento sísmico. Esta ecuación se basa en estudios previos de un modelo realístico de la estructura de la tierra. Estos estudios revelan que el efecto de la curvatura de la tierra es despreciable para eventos de poca profundidad y a distancias menores a 20°, pero las capas verticales pueden algunas veces causar considerables efectos en los campos de deformación. Entonces, el desplazamiento " $u_i(x1, x2, x3)$ " debido a la dislocación " $\Delta u_i(\xi1, \xi2,$ $\xi3)$ " a través de la superficie " Σ " en un medio isotrópico es dado por:

$$u_{i} = \frac{1}{F} \iint_{\Sigma} \Delta u_{j} \left[\lambda \delta_{jk} \frac{\partial u_{i}^{n}}{\partial \xi_{n}} + \mu \left(\frac{\partial u_{i}^{j}}{\partial \xi_{k}} + \frac{\partial u_{i}^{k}}{\partial \xi_{j}} \right) \right] v_{k} d\Sigma$$
(2.1)

Donde:

 δ_{jk} : Delta de Kronecker,

 λ : Primera constante de Lame,

 μ : Segunda constante de Lame,

 Σ : Elemento de superficie,

 v_k : Dirección coseno de la normal al elemento de superficie $d\Sigma$,

 u_i^j : Componente "i" del desplazamiento en el punto (x1, x2, x3) debido a la fuerza de magnitud "*F*" en la dirección "*j*" en (ξ1, ξ2, ξ3),

2.2.3 Teoría de Aguas Poco Profundas

Para el modelamiento de tsunamis se usa la teoría de aguas poco profundas, esta teoría considera que la profundidad característica es mucho menor que la longitud de onda de las olas en el mar, teniendo en cuenta esta asunción y considerando el agua de mar como un fluido incompresible de densidad "p" la ecuación de continuidad, mostrada en la Ecuación (2.2), y las ecuaciones de cantidad de movimiento, en la Ecuación (2.3) y Ecuación (2.4), describen cómo la velocidad y la presión de un fluido en movimiento están relacionadas. Estas ecuaciones son resueltas en un código fuente elaborado por Koshimura (2009).

Las dos expresiones básicas son mostradas a continuación. La ecuación de continuidad puede ser expresada como:

$$\frac{d\eta}{dt} + \frac{dM}{dx} + \frac{dN}{dy} = 0$$
(2.2)

Donde:

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 25 Bach. Julian Miller Palacios Espinoza

 η : Amplitud de la onda.

M y N: Flujo de descarga en las direcciones x e y.

t : Tiempo.

La ecuación de momento incluyendo la fricción en el fondo puede ser expresada como:

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M^2}{D}\right) + \frac{\partial}{\partial y} \left(\frac{MN}{D}\right) = -gD \frac{\partial \eta}{\partial x} - \frac{gn^2}{D^{\frac{7}{3}}} M\sqrt{M^2 + N^2}$$
(2.3)

$$\frac{\partial N}{\partial t} + \frac{\partial}{\partial x} \left(\frac{MN}{D}\right) + \frac{\partial}{\partial y} \left(\frac{N^2}{D}\right) = -gD \frac{\partial \eta}{\partial x} - \frac{gn^2}{D_3^{\frac{7}{3}}} N\sqrt{M^2 + N^2}$$
(2.4)

$$M = \int_{-h}^{\eta} u dz = \bar{u}(\eta + h)$$
 (2.5)

$$N = \int_{-h}^{\eta} v dz = \bar{v}(\eta + h)$$
 (2.6)

$$D = \eta + h \tag{2.7}$$

Donde:

 $\frac{gn^2}{D^{\frac{7}{3}}}M\sqrt{M^2+N^2}, \frac{gn^2}{D^{\frac{7}{3}}}N\sqrt{M^2+N^2}$: Fricción en el fondo de océano.

D : Profundidad en un punto determinado del océano.

 η : Coeficiente de rugosidad de Manning.

u, *v* : Vector de velocidad en las direcciones x e y.

 \bar{u}, \bar{v} : Velocidad promedio en las direcciones x e y.

g : Aceleración de la gravedad.

h : Profundidad del tsunami.

2.3 CARGAS DE TSUNAMI (MLIT 2570)

La distribución de presión de tsunami que actúa a lo largo de la altura de la estructura, se asume de forma triangular con una altura que equivale a " α " veces la altura de inundación de diseño por tsunami "h". Se puede deducir de la ecuación (2.8) que el factor "a * h" está directamente relacionado con la fuerza de tsunami, en adelante a este factor es referido como Altura Equivalente de Tsunami (TEH). Por otro lado, los valores de " α " son establecidos según el MLIT, como se muestra

en la Tabla N° 2.1 y la representación física de este valor se puede apreciar en la Figura N° 2.3. La fórmula de diseño es definida por:

$$p_x(z) = \rho * g * (a * h - z)$$
 (2.8)

Donde:

 $p_x(z)$: Presión de diseño actuando a una distancia "z" del nivel del terreno.

 ρ : Densidad del agua del tsunami.

a: Parámetro que amplifica la profundidad de Tsunami.

Tabla N° 2.1 Valor del coeficiente " α " según MLIT 2570.

Figura Nº 2.3 Distribución de la fuerza de tsunami (tomado de Nakano, 2008).

2.3.1 Relación entre el Número de Froude y el parámetro "α"

Para conocer el efecto de la dinámica de la ola mediante el valor de " α ", se han realizado investigaciones sobre la relación entre " α " y el número de Froude. Se define el número de Froude en la ecuación (2.9), como:

$$Fr = \frac{\mu_{\eta}}{\sqrt{g \,\eta_{máx}}} \tag{2.9}$$

Donde:

Fr: Número de Froude.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 27 Bach. Julian Miller Palacios Espinoza

 μ_{η} : Velocidad de avance en el momento que ocurre la máxima elevación de la superficie del agua.

 η_{max} : Máxima elevación de la superficie del agua.

La relación entre " α " y "*Fr*" se muestra en la Figura N° 2.4 donde se aprecia que " α " aumenta linealmente desde 1.0 hasta 3.0 conforme "*Fr*" aumenta de 0.1 a 1.6.

Figura N° 2.4 Relación entre α y *Fr*.(tomado de Asakura, 2002).

La Ecuación (2.10) representa la tendencia de los datos:

$$\alpha = 1.2 * Fr + 1.0 \ (0.1 \le Fr \le 1.6) \tag{2.10}$$

Al tomar α =3, el máximo valor observado que corresponde a la máxima presión de ola, la fuerza de tsunami sobre el edificio está siendo sobreestimada en 20% aproximadamente, esto es debido a que por lo general el valor de máxima presión de ola no ocurre en todos los puntos de la medición realizada por Asakura (2002). Por ello, si se cuenta con los datos suficientes para el cálculo del número de Froude en cada punto, resulta más apropiado considerar la distribución de presión de los puntos de medición de forma simultánea para el cálculo de la máxima fuerza de tsunami.

2.4 ANÁLISIS ESTÁTICO NO LINEAL (AENL)

En este análisis la estructura es sometida a un patrón de cargas laterales que se incrementan hasta que la estructura alcanza un desplazamiento determinado (control por desplazamiento) o un patrón de fuerzas determinado (control por fuerza). Cabe resaltar que la estructura es modelada considerando sus características no lineales. El proceso de análisis comienza con la respuesta

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 28 Bach. Julian Miller Palacios Espinoza

elástica de la estructura asociada a una rigidez inicial, pero luego, con el incremento de las fuerzas los elementos superan su cedencia y disminuye la rigidez, con ello, dicha estructura consigue incursionar en el rango inelástico en proporción a su ductilidad. Al aplicar entonces el análisis estático no lineal se obtiene una curva expresada en términos de desplazamiento versus la cortante en la base para un patrón de cargas determinado.

2.4.1 Método del Espectro de Capacidad (ATC-40)

Este método es conocido como el método del ATC-40 (1996). Para realizar este método es necesario convertir la curva de capacidad obtenida del análisis estático no lineal, que está en términos de cortante basal (*V*) y desplazamiento del último entrepiso (Δ_{roof}) al espectro de capacidad en términos de aceleración espectral (*S_a*) y desplazamiento espectral (*S_a*), para realizar esta transformación se usan las ecuaciones (2.11), (2.12), (2.13) y (2.14).

$$S_a = \frac{V/W}{\alpha} \tag{2.11}$$

$$S_d = \frac{\Delta_{roof}}{PF \times \varphi_{roof}} \tag{2.12}$$

$$\alpha = \frac{\left[\sum_{i=1}^{Nt} \frac{(W_i \varphi_i)}{g}\right]^2}{\left[\sum_{i=1}^{Nt} \frac{W_i}{g}\right] \left[\sum_{i=1}^{Nt} \frac{(W_i \varphi_i^2)}{g}\right]}$$
(2.13)

$$PF = \frac{\left[\sum_{i=1}^{Nt} \frac{(W_i \varphi_i)}{g}\right]}{\left[\sum_{i=1}^{Nt} \frac{(W_i \varphi_i^2)}{g}\right]}$$
(2.14)

Donde:

V: Cortante Basal

 Δ_{roof} : Desplazamiento del último nivel.

- *S_a*: Aceleración Espectral
- *S_d*: Desplazamiento Espectral
- α_1 : Coeficiente de masa modal del primer modo.
- *PF*: Factor de participación modal del primer modo.
- *W*: Peso sísmico de todo el edificio.
- Wi/g: Masa sísmica del entrepiso i.
- φ_i : Amplitud del primer modo para el piso i.
- *Nt*: Número de entrepisos.

De la misma manera, la demanda que usualmente está en términos de Aceleración espectral versus Periodo (T_i) se debe convertir a un formato de S_d y S_a , para ello se utiliza la siguiente ecuación (2.15):

$$S_{di} = \frac{T_i^2}{4\pi^2} S_{ai} \times g \tag{2.15}$$

Una de las fórmulas que utiliza este método es la ecuación (2.16), la cual es usada para el cálculo del amortiguamiento efectivo, esta ecuación se basa en la formulación de Chopra (1995) para la obtención del amortiguamiento viscoso equivalente, el procedimiento para ello se muestra en la Figura N° 2.5.

Figura Nº 2.5 Estimación del amortiguamiento viscoso equivalente. (tomado de ATC-40, 1996)

$$\beta_{eff} = k_a \beta_0 + 5 = \frac{63.7k_a (\alpha_y * d_{pi} - d_y * \alpha_{pi})}{\alpha_{pi} * d_{pi}} + 5$$
(2.16)

Donde:

 β_{eff} : Amortiguamiento efectivo.

 β_0 : Amortiguamiento viscoso equivalente.

 d_{v} : Desplazamiento espectral del punto de cambio de pendiente.

 α_{v} : Aceleración espectral del punto de cambio de pendiente.

*d*_{pi}: Desplazamiento espectral del último punto de la regresión bilineal.

 α_{pi} : Aceleración espectral del último punto de la regresión bilineal.

 k_a : Factor de modificación del amortiguamiento.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 30 Bach. Julian Miller Palacios Espinoza

El factor k_a depende del comportamiento estructural del edificio, de manera práctica el ATC-40 propone tres categorías de comportamiento estructural:

- Tipo A: Estructura que presenta un comportamiento histerético estable, similar al comportamiento de la Figura N° 2.5.
- Tipo B: Estructura que desarrolla lazos histeréticos de área reducida a comparación del Tipo A.
- Tipo C: Estructura que presenta un comportamiento histerético pobre con una gran reducción de área encerrada por los lazos histeréticos (área severamente ajustada).

La Tabla N° 2.2, muestra la dependencia entre el factor k_a y el tipo de comportamiento estructural.

Comportamiento Estructural	β ₀ (Porcentaje)	k _a
Tipo A	≤ 16.25 > 16.25	$\frac{1.0}{1.13 - \frac{0.51(\alpha_y * d_{pi} - d_y * \alpha_{pi})}{\alpha_{pi} * d_{pi}}}$
Tipo B	≤ 25 > 25	$0.67 \\ 0.845 - \frac{0.446(\alpha_y * d_{pi} - d_y * \alpha_{pi})}{\alpha_{pi} * d_{pi}}$
Tipo C	Cualquier otro valor.	0.33

Tabla N° 2.2 Valores de Factores de modificación del Amortiguamiento, k_a (ATC-40).

Habiendo obtenido los espectros de demanda y capacidad, se realiza el procedimiento descrito a continuación:

- Definir un intervalo de periodos para el análisis, para luego realizar un análisis para cada línea de periodo. En el paso siguiente se describe el cálculo para una línea de periodo.
- La línea de periodo se intercepta con la curva de capacidad, y se realiza una aproximación bilineal hasta ese punto de intercepción, para luego utilizar la ecuación (2.16), con la finalidad de estimar el amortiguamiento efectivo.
- Una vez estimado el amortiguamiento efectivo se determina la aceleración espectral que le corresponde a dicho amortiguamiento y periodo, con esta aceleración se plotea un punto en la línea de periodo (ver Figura N° 2.6).

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 31 Bach. Julian Miller Palacios Espinoza

4) De la misma manera se obtiene los puntos para los periodos definidos, dichos puntos forman la curva de demanda con amortiguamiento variable (curva azul), al interceptar esta curva con la curva de capacidad se obtiene el punto de desempeño.

Figura N° 2.6 Muestra la metodología del ATC-40 para la determinación del punto de desempeño (Punto de color rojo).

2.4.2 Objetivos de diseño sísmico por desempeño (ATC-40)

El objetivo de desempeño de un edificio especifica el desempeño sísmico deseado. El desempeño sísmico es descrito mediante la definición del estado de daño permisible (nivel de desempeño) para una amenaza sísmica dada (movimiento sísmico del suelo).

El nivel de desempeño describe un estado de daño límite, este estado es descrito por el daño físico en la edificación, la amenaza a la seguridad de vida de las personas en el edificio y la funcionalidad del edificio después del sismo. Los objetivos de desempeño se observan en la Tabla N° 2.3.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 32 Bach. Julian Miller Palacios Espinoza
	Niveles de Desempeño Sísmico							
0		Complet. Operacional	Operacional	Seguridad de Vida	Cerca al Colapso			
e Diseño	Frecuente	Objetivo Básico						
Sismo d	Ocasional	Objetivo Esencial	Objetivo Básico					
ivel de 9	Raro	Ob. Crítica Seguridad	Objetivo Esencial	Objetivo Básico				
z	Muy Raro		Ob. Crítica Seguridad	Objetivo Esencial	Objetivo Básico			

Tabla Nº 2.3 Objetivos de diseño sísmico por desempeño para edificaciones (ATC-40).

2.5 ANÁLISIS DINÁMICO NO LINEAL (ADNL)

Este tipo de análisis se basa en un procedimiento paso a paso donde la carga y la respuesta estructural son evaluadas en cada incremento de tiempo (Δ t), este análisis provee más información sobre el comportamiento de las estructuras, más aún si se trata de estructuras irregulares donde se requiere obtener una representación razonable de la respuesta sísmica (Chambers, 2004).

2.5.1 Modelo de Fibras

El modelo es aplicable a estructuras no lineales sometidas a flexión, como las que se trata en el presente trabajo, en este modelo la sección transversal se subdivide en un número discreto de fibras longitudinales de comportamiento uniaxial, por lo que las relaciones momento - curvatura no se especifican explícitamente, sino que se obtienen de la integración de la respuesta de cada una de las fibras de acuerdo con el material que se le asignó, el modelo de fibras se puede apreciar en la Figura N° 2.7.

Las hipótesis asumidas para este tipo de modelo son deformaciones pequeñas y que las secciones planas permanecen planas para cualquier tipo de cargas, pues se supone que existe una adherencia perfecta entre fibras, sin considerar fenómenos como el deslizamiento del acero longitudinal.

Según los resultados obtenidos de prototipos experimentales realizados por Barleck et al. (2014) el modelo de fibras es de mayor grado de refinamiento comparado a los modelos trilineales que se acostumbran a utilizar para definir las rótulas plásticas.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 33 Bach. Julian Miller Palacios Espinoza

Figura N° 2.7 Distribución de Fibras en: a) Columna, b) Viga y c) Muro. El comportamiento de los materiales en las secciones se muestra en d).

2.5.2 Amortiguamiento de Rayleigh

Este tipo de amortiguamiento es muy utilizado y establece una relación lineal con la matriz de masa y rigidez como muestra la ecuación (2.17), cabe resaltar que es un caso particular del amortiguamiento de Caughey y Kelly (1965).

$$c = \alpha_r * \boldsymbol{k} + \beta_r * \boldsymbol{m} \tag{2.17}$$

$$\alpha_r = 2 * \omega_1 * \varepsilon_1 - \beta_r * \omega_1^2 \tag{2.18}$$

$$\beta_r = 2 * \frac{\omega_2 * \varepsilon_2 - \omega_1 * \varepsilon_1}{\omega_2^2 - \omega_1^2}$$
(2.19)

Donde:

- *c*: Matriz de amortiguamiento.
- *k*: Matriz de rigidez.
- *m*: Matriz de masa.
- α_r : Constante alfa de Rayleigh.
- β_r : Constante beta de Rayleigh.
- ω_i : Frecuencia angular para el modo i.
- ε_i : Amortiguamiento correspondiente al modo i.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 34 Bach. Julian Miller Palacios Espinoza

Para estimar el amortiguamiento de Rayleigh, es necesario especificar las relaciones de amortiguamiento y periodo al menos de los dos primeros modos de vibración, que son los que contribuyen a la respuesta total de la estructura.

2.6 DEGRADACIÓN DE LA CAPACIDAD ESTRUCTURAL

2.6.1 Modelo degradante de Takeda

Basado en la observación experimental sobre el comportamiento de elementos de concreto armado, un modelo histerético fue desarrollado por Takeda, Sozen y Nielsen (1970). Este modelo ha sido ampliamente usado en el análisis de la respuesta sísmica de estructuras de concreto armado (Ver Figura N° 2.8). La rigidez de descarga, después de la fluencia está dada por la ecuación (2.20), como:

$$Kr = \frac{Qc + Qy}{dc + dy} * \left(\frac{dm}{dy}\right)^{-\alpha}$$
(2.20)

Donde:

Kr: Pendiente de la curva de descarga.

Qy: Fuerza de fluencia.

Qc: Fuerza donde se produce el agrietamiento.

dy: Desplazamiento de fluencia.

dc: Desplazamiento donde se produce el agrietamiento.

dm: Máximo desplazamiento alcanzado.

 α : Parámetro de degradación de rigidez.

Figura N° 2.8: Modelo degradante de Takeda. (Recuperado de Gorgulu y Taskin, 2015).

2.6.2 Modelo de degradación de resistencia

La reducción de la resistencia en el punto máximo alcanzado puede ser escrito mediante la ecuación (2.21), como:

$$Fd = F * (1 - D_{ws})$$
(2.21)

$$D_{ws} = \frac{e^{m\beta} - 1}{e^m - 1}$$
(2.22)

$$\beta = C \sum_{i}^{n} \frac{Xi}{Xf}$$
(2.23)

Donde:

Fd: Fuerza degradada.

F: Fuerza en el punto máximo alcanzado.

- D_{ws} : Coeficiente de Wang y Shah (1987).
- *m*': Parámetro que determina la razón de daño, para m' = 1.0 la aproximación predice satisfactoriamente el comportamiento histérico de especímenes diseñados según los requerimientos del ACI 318-83.
- *n*: Número de ciclos realizados.
- *C*: Constante de Wang y Shah menor que 1.0.
- Xi: Desplazamiento máximo en el i-ésimo ciclo.
- *Xf*: Desplazamiento de rotura, bajo el incremento de una carga monotónica.

A continuación, en la Figura N° 2.9, se muestra la degradación de resistencia según Wang y Shah.

Figura N° 2.9 Muestra el modelo de Wang y Shah (1987)

2.7 ESTIMACIÓN DE DAÑOS MEDIANTE LA METODOLOGÍA HAZUS – MH2.1

El Proyecto HAZUS-MH 2.1 fue llevado a cabo en Estados Unidos para evaluar los daños sísmicos de forma aproximada, mediante el uso del método de espectro de capacidad y curvas de fragilidad, cabe resaltar que la metodología asume que el daño estructural es independiente que los daños no estructurales.

Este proyecto toma en cuenta 36 tipos de edificaciones (Ver ANEXO 1) los cuales son basados en el sistema de clasificación del FEMA 178 (FEMA, 1992), adicionalmente se ha subclasificado estos tipos según el número de entrepisos del edificio. El objetivo de este proyecto fue estimar daños en una región para diferentes escenarios sísmicos, además de identificar los edificios más vulnerables o las regiones con mayor número de edificios dañados.

Las predicciones del estado de daño permiten al usuario entender la naturaleza y la extensión de los daños por ello es mejor ser descrito en términos de sus componentes, como el estado de las vigas, columnas, muros, techos, etc. Por ejemplo, los daños estructurales y no estructurales para una estructura de tipo C2M (muros de concreto armado y de 5 a 7 pisos) se muestran en la Tabla N° 2.4.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 37 Bach. Julian Miller Palacios Espinoza

	Daño Estructural	Daño No Estructural
Leve	Grietas delgadas en la superficie de los muros.	Pocas grietas son observadas en las aberturas de los tabiques y en las intersecciones con los techos.
Moderado	La mayoría de los muros presentan grietas diagonales. Algunos presentan largas grietas y hay desprendimiento de concreto en los bordes.	La mayoría de los tabiques necesitan reparación y algunos ser remplazados. Algunas partes del falso techo se han caído
Extensivo	La mayoría de los muros presentan largas grietas diagonales y en algunos son profundas. Hay desprendimiento de concreto alrededor de la grieta, algunas columnas pueden presentar un colapso parcial.	La mayoría de los tabiques se agrietan y pueden requerir reemplazos. El falso techo ha colapsado parcialmente y algunos accesorios de luz caen.
Completo	La mayoría de los muros, columnas y vigas han fallado. Aproximadamente el 10% del área total del edificio colapsa.	La mayoría de tabiques necesitan ser removidos y reubicados. El falso piso cae en su totalidad y requiere una reubicación.

Tabla Nº 2.4 Características de los estados de daños para estructuras tipo C2N
--

CAPÍTULO III: DIAGNÓSTICO DE REFUGIOS VERTICALES

3.1 RECOPILACIÓN DE DATOS DE EDIFICIOS PROPUESTOS COMO REFUGIO POR TSUNAMI

Se realizó un levantamiento fotogramétrico con un sistema aéreo piloteado remotamente (RPAS por sus siglas en inglés), con el cual se determinó la ubicación, la altura y áreas en planta de los 19 edificios propuestos como refugio vertical ante tsunami, estos datos se pueden observar en la Tabla N° 3.1. Asimismo, se puede observar la capacidad máxima de personas establecida en la Ordenanza N° 003-013/2010. Según los resultados del censo nacional del 2007, el distrito de La Punta, albergaba un total de 4536 personas, teniendo una clasificación entre su población por edades como se muestra en la Figura N° 3.1, se puede apreciar que hay un considerable número de personas ancianas en este distrito las cuales tendrían dificultades para su evacuación.

Código del	Dirección	Capacidad	Altura	Área
Edificio		(personas)	(m)	(m2)
S01	Jr. Saenz Peña N° 275	540	14	1514
S02	Jr. Saenz Peña cdr. 4	160	13	437
S03	Jr. Larco Nº 151	70	11	159
S04	Jr. Arrieta N° 295	200	25	285
S05	Jr. Arrieta N° 320	1450	14	1619
S06	Jr. Arrieta N° 492	25	11	88
S07	Av. Bolognesi N° 508	50	11	199
S08	Av. Bolognesi N° 11	120	11	190
S09	Av. Bolognesi cdr. 1	100	10	694
S10	Jr. Tnte. Palacios N°375	60	17	155
S11	Jr. Ferré N° 460	220	20	256
S12	Jr. Figueredo N° 470	110	21	323
S13	Jr. Figueredo N° 520	30	20	342
S14	Jr. Moore N° 496	165	23	246
S15	Jr. Moore N° 380	75	12	179
S16	Jr. Tarapacá Nº 155	105	11	192
S17	Jr. Tarapacá N° 288	200	16	285
S18	Jr. Ellas Aguirre N°155	450	13	356
S19	Escuela Naval	3000	17	10738

Tabla Nº 3.1 Datos del Plan de Contingencias del distrito de La Punta.

En el año 2013, Mas analizó la evacuación de las personas en el distrito de La Punta, resultando que la evacuación a los edificios sería las más efectiva, con el cual se lograría evacuar el 99.6% de la población para el escenario sísmico propuesto por Pulido et al. (2011). El resultado principal de este trabajo fue el análisis de la capacidad y demanda de personas durante la evacuación resultando

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 39 Bach. Julian Miller Palacios Espinoza

que en 14 de los edificios se subestima la demanda de personas. Estos resultados se pueden observar en la Figura N° 3.2.

Figura N° 3.1 Clasificación por edad de la población del distrito de La Punta. Fuente: INEI, 2007.

Figura N° 3.2 Capacidad vs. Demanda de personas en caso de solo evacuación vertical y en caso de evacuación horizontal y vertical en conjunto. Fuente: Mas, 2013.

En el año 2014, Adriano et al. estimaron la probabilidad de daño en los edificios de La Punta, basados en las funciones de fragilidad construidas por Suppasri et al. (2012), a partir de 250,000 estructuras evaluadas en el gran tsunami de Japón del 2011. En la Figura N° 3.3 muestra el daño por tsunami desde un daño menor hasta el volcamiento de la edificación (rojo). De esta figura se puede observar que, para el edificio en estudio, el daño sería de menor a moderado.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 40 Bach. Julian Miller Palacios Espinoza

Figura N° 3.3 Muestra el nivel de daño de las edificaciones en el distrito de La Punta, para el escenario sísmico de Pulido (izquierda) y Jiménez (derecha). Los círculos blancos indican la ubicación de los edificios de refugio.

La estructura en estudio es un edificio de los 19 edificios seleccionados como evacuación vertical ante tsunami en el distrito de La Punta (todos los otros edificios se pueden apreciar en el ANEXO 2), y este edificio (en adelante llamado como edificio LP) se encuentra a 35 m de la orilla del mar. La vista en elevación de muestra en la Figura N° 3.4.

Figura N° 3.4 Vista frontal de la estructura en estudio ubicado a 35m de la orilla del mar, la imagen derecha es del plano arquitectónico del Edificio LP.

3.2 GEOMÉTRICA Y SISTEMA ESTRUCTURAL

El edificio está conformado por siete niveles y el sistema estructural es de muros estructurales en las dos direcciones. Las dimensiones en planta de la estructura son de 22.6 m x 18.5 m, con una altura constante de entrepiso de 3 m excepto por

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 41 Bach. Julian Miller Palacios Espinoza

 A
 B
 C
 D
 E

 4.20
 5.35
 2.75
 3.75

 0

 6.75

 0

 5.00

 0

 6.75

 0

 6.73

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

el primer nivel, el cual es de 4.25 m de altura, estas características se aprecian en la Figura N° 3.5.

Figura Nº 3.5 Vista en planta del edificio en estudio.

3.3 ESTUDIO DE VIBRACIÓN AMBIENTAL

La medición de las vibraciones naturales de la estructura se realizó entre las 9:00 y 11:30 horas del día 19 de abril de 2018. Se registró la vibración ambiental en tres puntos del edificio LP medido en la azotea.

En cada punto se tomaron mediciones de velocidad y aceleración, para cada una de las direcciones de los ejes de la edificación. Se midieron tres direcciones ortogonales de la vibración, las cuales coinciden con las direcciones horizontales: longitudinal (X) y transversal (Y), así como en la dirección vertical (Z) de la estructura. Los puntos de medición y los ejes de referencia X, Y y Z a los que se hace mención se muestran en la Figura N° 3.6.

Finalmente se obtuvieron los periodos predominantes del análisis de Fourier realizado a los registros de aceleraciones y velocidades de las vibraciones ambientales medidas. En la Figura N° 3.7 se muestra los espectros de Fourier calculados de una de las mediciones hechas, se aprecia que en la dirección 1, el periodo es 0.37 s y en la dirección 2, 0.42 s.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 42 Bach. Julian Miller Palacios Espinoza

Figura N° 3.6 Ubicación de puntos de medición de vibración ambiental.

Figura Nº 3.7 Espectros de Fourier, en a) la dirección 1 (ch-01) y en b) la dirección 2 (ch-02).

La Tabla N° 3.2 muestra los periodos predominantes obtenidos de las vibraciones en cada punto de medición. Adicionalmente, se indican las direcciones X, Y y Z, de acuerdo con los ejes globales planteados en la Figura N° 3.6.

Se observa que existen dos periodos predominantes en las direcciones horizontales, las cuales son de 0.372 s (CH-01 en la dirección X) y 0.421 s (CH-02 en la dirección Y) en los tres puntos de medición en la edificación. Estos periodos predominantes sirvieron para ajustar el modelo numérico del edificio en

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 43 Bach. Julian Miller Palacios Espinoza estudio, con la finalidad de garantizar una adecuada relación con el comportamiento de la estructura real.

Punto	Medición	Periodo (s)				
		CH-01 (X)	CH-02 (Y)	CH-03 (Z)		
Punto 01	#1	0.378	0.425	0.371		
	#2	0.369	0.423	0.370		
	#3	0.372	0.417	0.369		
Punto 02	#1	0.370	0.420	0.421		
	#2	0.376	0.411	0.419		
	#3	0.377	0.421	0.419		
Punto 03	#1	0.372	0.421	0.364		
	#2	0.369	0.423	0.370		
	#3	0.369	0.426	0.372		

Tabla Nº 3.2 Periodos predominantes obtenidos de la medición de vibración ambiental.

CAPÍTULO IV: DEMANDA PARA LA EVALUACIÓN ESTRUCTURAL

4.1 DEMANDA SÍSMICA

La estimación de la demanda por sismo, de acuerdo con la norma técnica NTP E. 030 "Diseño Sismorresistente" actualizada al año 2018 (E030), se realiza utilizando el espectro de diseño, el cual considera parámetros que dependen de la ubicación del edificio y su uso.

En el año 2015, Pulido et al. realizaron el estudio del movimiento de suelo para un sismo extraordinario de 8.8 Mw que se espera en Lima y Callao. En esta investigación se obtuvo una aceleración pico del suelo (PGA) de 800 cm/s² en el distrito de La Punta (0.815g aprox.) a este valor le correspondería un factor de uso equivalente a 1.65 (según los criterios de la norma E030), mayor a 1.5 que es lo que establece esta norma para edificaciones que sirvan como refugio. En la Tabla N° 4.1 se muestran los valores para el caso de estudio considerando la norma E030 y el estudio de Pulido et al. (2015), se puede notar que la diferencia de aceleraciones es significativa.

En este contexto, se debe de realizar estudios sobre como relacionar adecuadamente el escenario de sismo tsunamigénico con la demanda sísmica, estos estudios son complicados pues los escenarios que originan tsunami son de magnitudes altas y en las leyes de atenuación un problema es cuando el sismo ocurre con magnitudes altas (Mw> 8.0) pues no están bien representadas en los datos empíricos (Abramhamson et al., 2016).

Sin embargo, para poder abordar esta cuestión se propuso una relación lineal entre PGA y magnitud Mw, basándose en la investigación realizada por Pulido et al. (2015), los valores de esta relación lineal se muestran en la Tabla N° 4.2.

	Norma E030	Pulido et al (2015)
Z	0.45	0.45
S	1.1	1.1
U	1.5	1.65*
ZUS*g	0.74g	0.82g

Tabla N° 4.1 Parámetros del Espectro de Diseño según la Norma NTP E.030 y parámetros equivalentes para el estudio de Pulido et al (2015).

*Factor de uso equivalente que estima un PGA similar al obtenido por Pulido et al (2015).

Mw	8.4	8.5	8.6	8.7	8.8	8.9	9.0
PGA (g)	0.50	0.58	0.66	0.74	0.82	0.90	0.98

Tabla N° 4.2 Relación entre PGA y Magnitud Mw para el distrito de La Punta.

4.1.1 Estudio de la respuesta sísmica en el distrito de La Punta

La definición del espectro objetivo es relevante para el análisis dinámico no lineal, pues en este tipo de análisis se debe de generar registros sísmicos cuyos espectros de respuesta sean compatibles con el espectro característico de la zona de estudio, el espectro objetivo. En ese sentido, se estimaron los espectros de respuesta de los sismos registrados en la estación acelerográfica de la Dirección de Hidrografía y Navegación (DHN), ubicada a 0.35 km del distrito de La Punta. Los registros son de magnitudes de varían desde 3.9 a 5.5 Mw. y cuyos epicentros se ubicaron frente a la costa del Callao, Ancón, Cañete, Ica entre otros. (en la Figura N° 4.1 se puede apreciar los espectros calculados).

Asimismo, se determinaron los espectros de diseño para un suelo tipo S2 y S3 según la Norma E030 (ED S2 y ED S3), se tuvo en cuenta también el Espectro de Peligro Uniforme para el distrito de La Punta (EPU LP) según el Servicio Nacional de Capacitación para la Industria de la Construcción - SENCICO (2016).

Para un rango de periodos que comprenden los periodos predominantes del edificio LP (0.37 s - 0.42 s) el EPU LP resulta ser el más adecuado como espectro objetivo según los registros de la estación acelerográfica y los espectros de diseño resultan ser muy conservadores (ver Figura N° 4.1). Debido a este resultado se optó por conveniente utilizar el espectro de peligro uniforme como espectro objetivo en la zona de estudio, sin embargo, para poder determinar el espectro objetivo, es necesario realizar un análisis más profundo. Una de las investigaciones que se puede tomar en cuenta es la microzonificación sísmica de La Punta realizado por Huaman (1991), donde se calculó la respuesta dinámica en la Escuela naval, ubicado a 0.60 km del edificio en Estudio. En este estudio se calculó el espectro promedio considerando el perfil estratigráfico de La Punta.

Sin embargo, el espectro propuesto por esta investigación no se asemeja a lo calculado a partir de los registros de la estación DHN.

Todos los espectros mencionados anteriormente fueron escalados a un PGA=1g, con la finalidad de compararlos, ver Figura N° 4.1.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 46 Bach. Julian Miller Palacios Espinoza

Figura N° 4.1 Espectros de respuesta escalados a PGA=1g, obtenidos para el distrito de La Punta a partir de los datos de la estación DHN, la Norma E030 y Huamán (1991).

4.1.2 Generación de Registros Sísmicos Sintéticos

Para la generación de registros de aceleración se escalaron los espectros de respuesta de los registros de la estación Parque de la Reserva (PQR) del año 1966, 1970 y 1974 a espectros de PGA de 0.55g, 0.65g, 0.75g y 0.85g cuya forma está definida en la Figura Nº 4.1, cabe señalar que se escalaron ambas componentes horizontales en direcciones ortogonales usando el Programa SeismoMatch 2018, el cual utiliza el algoritmo de "wavelets" para el escalamiento espectral. Este método es una manera aproximada para realizar un escalamiento espectral en el dominio del tiempo mediante la adición de ondículas a los registros de aceleración el cual preserva las características no estacionarias del registro original (Hancock, 2006). Además, se realizó un análisis de las componentes de las aceleraciones de manera que se presenten aceleraciones más desfavorables en las direcciones de análisis (La Figura N° 4.2 muestra la forma en que se rotaron las componentes Norte y Este de los registros), del análisis se definieron ángulos de rotación de 92°, 19° y 88° para los registros de 1966, 1970 y 1974 respectivamente. Los registros se rotaron de manera que se presenten las mayores aceleraciones en X, de la misma manera se obtuvo el par de aceleraciones más desfavorables para la dirección en Y. Los resultados de este análisis se pueden observar en la Figura N° 4.3. Si bien es cierto los sismos fueron registrados en la estación PQR, estos son válidos también para el distrito de La Punta en cuanto a la direccionalidad de propagación de las ondas sísmicas, pues la dirección desde el hipocentro a estos lugares son prácticamente los mismos.

Figura Nº 4.2 Rotación de las componentes Norte y Este de los registros sísmicos.

Figura N° 4.3 Puntos de coordenadas (Acc. en X, Acc. en Y) para los registros de 1966, 1970 y 1974 escalados al espectro de PGA = 0.85g. Registros girados de manera que se presenten mayores aceleraciones en X.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 48 Bach. Julian Miller Palacios Espinoza

Teniendo en cuenta las consideraciones mencionadas anteriormente se definieron 24 pares de aceleraciones para el análisis dinámico no lineal, originados a partir de tres registros de la estación PQR, estos se escalaron a cuatro espectros de diferentes valores de PGA, obteniéndose 12 casos, y a cada uno de estos se analizaron en la dirección más desfavorable para X e Y. De este modo resultaron un total de 24 registros sintéticos. Las componentes de aceleración más desfavorables para la dirección X se muestran en la Figura N° 4.4, Figura N° 4.5 y Figura N° 4.6, para los registros de 1966, 1970 y 1970, respectivamente.

Figura N° 4.4 Acelerogramas escalados al EPU LP de PGA 0.55g, 0.65g, 0.75g y 0.85g a partir del registro de 1966 (a, b, c y d respectivamente)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 49 Bach. Julian Miller Palacios Espinoza

Figura N° 4.5 Acelerogramas escalados al EPU LP de PGA 0.55g, 0.65g, 0.75g y 0.85g a partir del registro de 1970 (a, b, c y d respectivamente)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 50 Bach. Julian Miller Palacios Espinoza

Figura N° 4.6 Acelerogramas escalados al EPU LP de PGA 0.55g, 0.65g, 0.75g y 0.85g a partir del registro de 1974 (a, b, c y d respectivamente)

4.2 DEMANDA POR TSUNAMI

Para determinar las fuerzas de tsunami se llevó a cabo simulaciones numéricas de tsunami en el distrito de La Punta, los cuales consistieron en dos fases: la fase de propagación y la de inundación. Con los resultados de la simulación se procedió

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 51 Bach. Julian Miller Palacios Espinoza a calcular las fuerzas de tsunami, utilizando la ecuación (2.8), con ello se obtuvo los patrones de cargas más desfavorables, para el análisis tsunami-sísmico.

4.2.1 Escenarios Tsunamigénicos

En este estudio los modelos fuente están basados en seis diferentes escenarios sísmicos. El primero es un modelo basado en la distribución de acoplamiento intersísmico en las zonas de subducción en un periodo de 265 años desde el terremoto de 1746, aquí también se incluyen las mediciones de la deformación del fondo marino obtenidos a partir de sensores GPS y transpondedores acústicos, así también información de sismos históricos para finalmente proponer la distribución de deslizamientos que resulta en una magnitud de 8.8 Mw (Pulido et al., 2011). Los otros cinco escenarios fueron calculados escalando los desplazamientos propuestos por el modelo anteriormente mencionado, de tal manera que resulten en sismos de magnitudes de 8.5 Mw, 8.6 Mw, 8.7 Mw, 8.9 Mw y 9.0 Mw. Con la finalidad de tener un rango de escenarios de diferentes intensidades.

4.2.1.1 Parámetros de las Fuentes Sísmicas

La fuente del primer escenario sísmico está dividida en 280 sub-fallas, cada una de 20 km x 20 km, en un área de ruptura de 700 km de largo por 160 km de ancho. La magnitud de momento calculada es de 8.8 Mw. La distribución de deslizamientos muestra dos asperezas principales, la mayor localizada a 70 km al oeste de Lima con un deslizamiento de 15.4 m, y la segunda al sur de Lima con un valor de hasta 13.0 m. Los otros 5 escenarios tienen las mismas características a excepción de la magnitud de los desplazamientos, siendo los mayores desplazamientos de 4.9 m, 6.9 m, 9.8 m, 15.4 m, 20.0 m y 28.4 m para los escenarios 8.5 Mw, 8.6 Mw, 8.7 Mw, 8.9 Mw y 9.0 Mw respectivamente. La Figura N° 4.7 muestra la distribución de desplazamientos para magnitudes 8.5 a 9.0 Mw.

4.2.1.1 Deformación Inicial de la Superficie del Océano

El desplazamiento inicial de la superficie del océano o condición inicial del tsunami es determinado mediante el código fuente elaborado por Koshimura (2009) que calcula la deformación de la estructura del fondo marino basado en relaciones propuestas por Okada (1985). La Figura N° 4.8 muestra el resultado de la condición inicial del tsunami para los escenarios sísmicos 8.5 a 9.0 Mw.

Figura N° 4.7: Distribución de desplazamientos para los escenarios sísmicos de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha). Cada escenario consta de 280 sub fallas cada uno.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 53 Bach. Julian Miller Palacios Espinoza

Figura N° 4.8 Deformación inicial de la superficie del océano para los escenarios sísmicos de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha).

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 54 Bach. Julian Miller Palacios Espinoza De las figuras anteriores se observa que la diferencia de las magnitudes es de solo 0.1, sin embargo, las deformaciones positivas (levantamiento) en el fondo marino difieren en varios metros, mostrando así la variación exponencial del peligro con un ligero incremento en la magnitud de momento sísmico.

4.2.2 Fase de Propagación

La propagación e inundación fueron calculadas usando el programa TUNAMI-N2 en el sistema de coordenadas UTM, Zona 18S y el área de cálculo fue dividida en seis dominios o regiones, los dominios se conectan unos a otros usando el sistema de mallas anidadas. En esta etapa se utilizó la batimetría obtenida por la DHN (Dirección de Hidrografía y Navegación) mediante los portulanos y cartas de recalada interpolados hasta 1 m. Así también, la topografía fue obtenida de un levantamiento topográfico actualizado con un vehículo aéreo piloteado remotamente (RPA) e integrada con la información obtenida de la misión topográfica SRTM (Shuttle Radar Topography Mission). Esta última fue descargada con una resolución espacial de 90 m para luego ser interpolada. Tabla N° 4.3 detalla dónde se usó la batimetría y topografía para cada dominio, el dominio 6 es usado para el análisis de inundación. En la Figura N° 4.9 se observa la extensión de este dominio.

	Este	e(m)	Nort	e (m)	Resol.	Fuente de Datos	
Dominio	Min	Max	Min	Max	m	Batimetría	Topografía
1	-123900	504255	8222000	9028355	405	GEBCO 27s	GEBCO 27s
2	152600	333095	8582900	8750435	135	GEBCO 9s	GEBCO 9s
3	228200	283370	8633500	8699695	45	DHN 5m	SRTM+Google
4	238675	274540	8646775	8684890	15	DHN 5m	SRTM+RPA
5	261885	269720	8662700	8679430	5	DHN 5m	SRTM+RPA
6	263600	265040	8663980	8665180	1	DHN 1m	RPA
						(Interpolado)	

	Tabla N° 4	4.3 Resolución	de la topografía	y batimetría para	la simulación	numérica de	Tsunami
--	------------	----------------	------------------	-------------------	---------------	-------------	---------

Para conocer el comportamiento del tsunami se colocó puntos de control cercanos al edificio LP, como se puede apreciar en la Figura N° 4.9c. En el programa TUNAMI-N2 se definió el tiempo total de simulación a 3 horas (180 minutos) y el intervalo de tiempo para la simulación, con el fin de satisfacer la estabilidad numérica, es de 0.02 segundos.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 55 Bach. Julian Miller Palacios Espinoza

Figura N° 4.9 Definición de dominios para la simulación numérica de tsunami y ubicación del Edificio LP. a) y b) muestran los dominios definidos, el dominio 5 y 6 comprenden el área del callao y el distrito de La Punta respectivamente, c) y d) muestra el dominio 6, la ubicación del edificio LP y los 18 puntos de control.

4.2.3 Fase de Inundación

Como resultado de la simulación numérica del tsunami se obtienen las profundidades de inundación, con las que se elaboró el mapa de inundación para el área en estudio. Se muestra en la Figura N° 4.10, el mapa de Inundación

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 56 Bach. Julian Miller Palacios Espinoza

8665200 EDIFICIO LI 8664900 Profundidad de Inundación (m) 89 3664600 0 - 10 3664300 EDIFICIO LE 8664000 664000 ר 0.5 Km 0.125 0.25 264000 264300 264600 264900 263400 263700

correspondiente al escenario sísmico de 8.8 Mw generado del procesamiento de los resultados de la simulación numérica de tsunami.

Figura Nº 4.10 Inundación para el escenario de 8.8 Mw.

4.2.4 Altura Equivalente de Tsunami (TEH)

Con los resultados de las componentes de velocidad, X e Y, se calculó la velocidad resultante en cada uno de los 18 puntos de control. Dicho valor de velocidad resultante se utilizó para calcular el número de Froude, este valor se empleó en la ecuación (2.10) para hallar el coeficiente "a" el cual está relacionado linealmente con el número de Froude (Asakura, 2003). Los valores de número de Froude fueron obtenidos para cada punto de análisis en los 180 minutos de la simulación numérica de tsunami. Además, se consideró el valor del coeficiente "a" según los lineamientos propuestos por el MLIT. Dicho valor fue de a = 2 según la Tabla N° 2.1, va que el edificio objetivo se encuentra en La Punta, donde existe una estructura natural de disipación de energía (la isla San Lorenzo y el rompeolas del distrito de La Punta) y el edificio está a una distancia menor a 500 m de la costa. Uno de los coeficientes que se debe de definir para estimar de manera adecuada la fuerza de tsunami en un edificio es el porcentaje de aberturas, ante esta situación Okuda et al. (2008) estudiaron diversas estructuras variando el porcentaje de aberturas, concluyendo que al incrementar el porcentaje de aberturas en la edificación disminuye la cortante en la base proporcionalmente, no obstante, si el porcentaje de aberturas es mayor a 32% la fuerza se mantiene como si el porcentaje de aberturas fuese 32% para este tipo de edificios (ver Figura N° 4.11). En el presente trabajo se evaluaron estos parámetros, para calcular la fuerza de tsunami apropiadamente, en la Tabla N° 4.4. se puede apreciar los porcentajes de abertura para cada entrepiso del edificio.

Considerando ambos valores de TEH, es decir, a partir de los valores obtenidos del coeficiente "*a*" según el MLIT y de acuerdo con la propuesta de Asakura (2003), se determinó el máximo coeficiente "*a*", el cual está directamente relacionado a las cargas del tsunami. A continuación, en la Figura N° 4.13 se muestran las alturas equivalentes de tsunami ante los escenarios de 8.5 a 9.0 Mw, estas alturas corresponden al punto de control número 15 (ver Figura N° 4.9c), que registró mayores valores de TEH. Asimismo, se muestra los gráficos para los otros 17 puntos de control ubicados alrededor del edificio en el ANEXO 4.

Figura N° 4.11 Relación entre Cortante basal y porcentaje de aberturas según Okuda et al. (2008), Ci es el coeficiente de cortante basal.

Piso	н	Porcentaje de	Porcentaje de
	(m)	aberturas en	aberturas en Y
		X (%)	(%)
1	4.25	50	95
2 - 4	3.00	40	95
3 - 7	3.00	30	95

Tabla Nº 4.4 Porcentaje de abertura en los entrepisos del edificio en estudio.

La máxima altura obtenida en el edificio fue de 12.1m, correspondiente al evento de 9.0 Mw, esta altura se tomó como referencia en la Figura N° 4.12 para compararla con la altura de los edificios propuestos como refugio ante tsunami, de manera que se pueda observar cuales tendrían la altura necesaria ante un evento de esta magnitud.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 58 Bach. Julian Miller Palacios Espinoza

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 59 Bach. Julian Miller Palacios Espinoza

Figura N° 4.13 Muestra la altura equivalente de tsunami vs. tiempo para el Punto 15, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Se calcularon los valores máximos de altura TEH en el edificio LP a partir de las simulaciones numéricas de tsunami realizadas. Estos valores se relacionaron con el valor de PGA definidos en la Tabla N° 4.2 con la finalidad de obtener una relación entre PGA y la fuerza de tsunami representada por la altura TEH. Esta relación se puede ver en la Figura N° 4.14. La relación obtenida entre estos dos parámetros es exponencial y se puede estimar mediante la ecuación (4.1):

$$TEH(m) = C_H * e^{5*PGA}, \quad 0.58g < PGA < 0.98g \quad (4.1)$$

El valor de C_H , dependerá del proceso mediante el cual se obtuvo los valores de los parámetros que amplifican la profundidad de tsunami, *a*.

Figura N° 4.14 Muestra la relación de la altura TEH vs. PGA, obtenida a partir de las simulaciones numéricas de tsunami.

4.2.5 Fuerzas de Tsunami

La carga de tsunami aplicada en cada piso del Edificio LP se halló integrando la presión del tsunami desde la mitad de la altura del entrepiso inferior hasta la mitad de la altura del entrepiso analizado, como muestra la ecuación (4.1) a continuación:

$$Q_z = \rho g \int_{z_1}^{z_2} (a * h - z) B \, dz \tag{4.1}$$

Donde:

 Q_z : Carga de tsunami aplicada a un piso.

B: Ancho del Edificio LP expuesto a la presión de tsunami.

 z_1 : Altura inferior de la superficie expuesta a la presión de tsunami.

 z_2 : Altura superior de la superficie expuesta a la presión de tsunami.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 61 Bach. Julian Miller Palacios Espinoza

Con los valores de fuerza en cada dirección se puede establecer patrones de carga conforme aumenta el nivel del tsunami tal como se muestra esquemáticamente en la Figura N° 4.15. Dados estos patrones se realiza el análisis estático no lineal considerando la variación del nivel del tsunami.

Figura N° 4.15 Esquema de los patrones de carga de tsunami aplicados en cada piso conforme aumenta el nivel del tsunami.

CAPÍTULO V: ESTUDIO DE UN EDICIFIO OBJETIVO

5.1 MODELAMIENTO DE LA ESTRUCTURA

En esta investigación se utilizó el Software Perform 3D v.7 para el análisis dinámico no lineal, considerando la no linealidad geométrica, el comportamiento inelástico de los materiales y los factores de degradación de energía.

5.1.1 Propiedades de los materiales

Para el comportamiento del acero se ha tomado en cuenta un modelo bilineal sin pérdida de resistencia, considerado tanto a tracción como a compresión. Se tomó en cuenta el comportamiento del acero de fy=4200 kg/cm2 pues en los planos se indica ese dato, no obstante, se disminuyó los valores de esfuerzo de fluencia y esfuerzo último para tomar en cuenta la degradación de su resistencia debido a diversos factores como la corrosión por la presencia de humedad, presencia de grietas o poco recubrimiento del acero, que se fue prolongando a lo largo de 39 años en el edificio desde su construcción.

Por otro lado, el comportamiento del concreto fue modelado como concreto no confinado pues los espaciamientos en los elementos de concreto armado, según los planos, no garantizan un adecuado confinamiento. El f'c del concreto considerado es de 210 kg/cm2, indicado también en los planos, para este material se ha considerado un modelo trilineal con pérdida de resistencia, sin considerar la colaboración a tracción del concreto. Los modelos utilizados para el concreto y acero se muestran en la Figura N° 5.1.

Figura N° 5.1 Diagrama Esfuerzo - deformación de: a) Concreto y b) Acero.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 63 Bach. Julian Miller Palacios Espinoza

5.1.2 Degradación cíclica

Bajo cargas cíclicas elevadas, la mayoría de los componentes estructurales se someterán a una degradación progresiva de rigidez y resistencia. Según los ciclos aumenten, la curva esfuerzo-deformación se degradará, disminuyendo la rigidez, resistencia, disipación de energía y/o la ductilidad de la estructura.

Es aceptado usar la curva de esfuerzo-deformación obtenida de una carga monotónica como si esta envolviese a la curva originada por una carga cíclica, pues según ensayos realizados en laboratorio la curva sigue la forma de la envolvente de la curva obtenida de una carga cíclica (Reyna et al. 2016). Esta envolvente toma en cuenta implícitamente la degradación en la resistencia efectiva y ductilidad. Sin embargo, no toma en cuenta la degradación de energía en el ciclo histerético.

En el análisis dinámico no lineal debe considerarse la degradación de rigidez y resistencia, si es que es significativa, cambiando la forma del ciclo histerético como se indica en la Figura N° 5.2. En Perform 3D se puede considerar esto especificando factores de degradación de energía, el cual es la razón entre el área del ciclo histerético degradado y del no degradado. Para pequeñas deformaciones la razón es 1.0 (no hay degradación) y disminuye según la deformación aumente (se degrada). Así que, durante el análisis, cada vez que una nueva histéresis comienza se determina la deformación máxima considerando todos los ciclos hasta ese estado, no solo el ciclo actual. Luego, se calcula el factor de degradación de energía para la deformación máxima y se ajusta la rigidez para aproximarse al área degradada del nuevo ciclo. Los factores considerados se muestran en la Tabla N° 5.1

Cabe resaltar que, en este software, el efecto de estrechamiento (también conocido como "pinching", consiste en la recuperación de la rigidez desde la tensión a la compresión y viceversa) no puede ser modelado localmente en los elementos, no obstante, el comportamiento global y los máximos valores de cargas laterales y distorsiones de piso son estimados adecuadamente (Burak y Unal, 2012).

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 64 Bach. Julian Miller Palacios Espinoza

Figura Nº 5.2 Ciclo histerético considerando la degradación de rigidez. Recuperado de CSI (2011).

Punto	Concreto No Confinado	Punto	Deformación Unitaria	Acero
Y	1.00	Y	-	0.70
U	0.90	1	0.0025	0.68
L	0.70	2	0.0040	0.64
R	0.40	3	0.0060	0.62
Х	0.30	Х	-	0.60

Tabla N° 5.1 Factores de Degradación de Energía en Modelos de Fibras según Tanaka (1990).

5.1.3 Disposición de Fibras en secciones Transversales

La disposición de fibras de las vigas y columnas se configuró en el programa Perform 3D, el cual permite hasta 12 fibras por sección para un elemento tipo viga y 60 fibras para un elemento tipo columna. Las fibras tienen dos tipos de materiales: concreto armado de f'c 210 kg/cm2 y acero de 4200 kg/cm2, por ejemplo, para la columna P7, mostrada en los planos se subdividió en 32 fibras (20 de concreto y 12 de acero). Estas fibras y la sección de la columna se pueden observar en la Figura N° 5.3, la disposición de las fibras de todas las columnas se encuentra en el ANEXO 5.

N°	Material	Área	Coord Eje 1	Coord Eje 2
		(cm2)	(cm)	(cm)
1	Concreto f'c 210	156	-6.25	-31.25
2	Concreto f'c 210	156	6.25	-31.25
3	Concreto f [°] c 210	156	-6.25	-18.75
4	Concreto f [°] c 210	156	6.25	-18.75
5	Concreto f'c 210	156	-6.25	-6.25
6	Concreto f'c 210	156	6.25	-6.25
7	Concreto f'c 210	156	-6.25	6.25
8	Concreto f'c 210	156	6.25	6.25
9	Concreto f'c 210	156	-6.25	18.75
10	Concreto f'c 210	156	6.25	18.75
11	Concreto f'c 210	156	-6.25	31.25
12	Concreto f'c 210	156	6.25	31.25
13	Concreto f'c 210	141	-18.12	18.75
14	Concreto f'c 210	141	-18.12	34.25
15	Concreto f'c 210	141	-29.37	18.75
16	Concreto f'c 210	141	-29.37	31.25
17	Concreto f'c 210	141	-40.62	18.75
18	Concreto f [°] c 210	141	-40.62	31.25
19	Concreto f [°] c 210	141	-51.87	18.75
20	Concreto f [°] c 210	141	-51.87	31.25
21	Acero fy 4200	5.12	8.5	-33.5
22	Acero fy 4200	5.12	8.5	33.5
23	Acero fy 4200	5.12	-8.5	33.5
24	Acero fy 4200	5.12	-8.5	-33.5
25	Acero fy 4200	5.12	8.5	-8.5
26	Acero fy 4200	5.12	-8.5	-8.5
27	Acero fy 4200	5.12	-8.5	16.5
28	Acero fy 4200	5.12	8.5	16.5
29	Acero fy 4200	5.12	-31	16.5
30	Acero fy 4200	5.12	-31	33.5
31	Acero fy 4200	5.12	-53.5	16.5
32	Acero fy 4200	5 12	-53.5	33.5

Figura Nº 5.3 Muestra la disposición de las fibras definidas para la columna P7.

5.1.4 Configuración del Análisis Estático No lineal (AENL)

Para el análisis sísmico se asignó al edificio patrones de carga proporcionales al producto de masa y desplazamiento modal de cada entrepiso, se asignó para los dos primeros modos. Este patrón se caracteriza porque las fuerzas incrementan en altura. Para el análisis por tsunami, se asignó patrones de carga que incrementan en altura, a diferencia del patrón por carga sísmica, las fuerzas de estos patrones decrecen en altura, induciendo en la estructura una falla frágil. Las

cargas de tsunami fueron estimadas con los procedimientos descritos en el capítulo anterior.

5.1.5 Configuración del Análisis Dinámico No lineal (ADNL)

Para el cálculo del amortiguamiento se utilizó la formulación de Rayleigh con un porcentaje de amortiguamiento de 5% para los dos primeros modos. El tiempo de análisis varía dependiendo del registro sísmico y el intervalo de análisis es de 0.02s. El análisis tiempo historia es llevado a cabo para 24 registros sísmicos.

5.2 RESULTADOS DEL ANÁLISIS SÍSMICO

Se ha realizado el modelo del edificio tomando en cuenta los planos del edificio y los periodos predominantes obtenidos del estudio de vibraciones ambientales (ver Figura N° 5.4) sin embargo, para el análisis no lineal se ha considerado un modelo donde los muros de albañilería no aportan rigidez a la estructura, por lo que los periodos del modelo son razonablemente mayores a los medidos del estudio de vibraciones ambientales. A continuación, se muestra en la Tabla N° 5.2, los datos modales del modelo no lineal.

Figura N° 5.4 Modelo Estructural del Edificio en estudio, elaborado en el software Perform 3D.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 67 Bach. Julian Miller Palacios Espinoza

Modo	T (s)	Factor de masa	Factor de masa
		efectiva X	efectiva Y
1	0.59	8.07%	70.66%
2	0.44	67.57%	7.29%
3	0.16	2.27%	12.8%
4	0.15	14.81%	2.99%
	Σ =	92.72%	93.74%

Tabla N° 5.2 Periodos y factores de masa efectiva para los primeros cuatro modos.

5.2.1 Análisis Dinámico No Lineal (ADNL)

En esta sección se realizó las simulaciones numéricas para determinar la respuesta de la estructura ante 24 registros sísmicos, los seis primeros de ellos fueron de PGA=0.55g, de los cuales 3 de ellos fueron aplicados de manera que las aceleraciones en la base en la dirección X sean las más desfavorables y los otros tres más desfavorables en la dirección Y. De estos seis análisis se plotearon las máximas distorsiones en X de cada entrepiso (Figura Nº 5.5a) y las distorsiones en Y de cada entrepiso (Figura N° 5.5b). Se observa que la estructura es más rígida en la dirección X y los eventos que originan mayores distorsiones para el caso de PGA=0.55g son: 1966X (Generado del sismo de 1966 y analizado de manera que las aceleraciones en la base sean más desfavorables en X) y 1966Y. Por otro lado, en la dirección Y, el evento de 1974Y origina las mayores distorsiones en Y, asimismo se puede observar los resultados para los otros valores de PGA= 0.65g y 0.75g, sin embargo, cuando el PGA=0.85g, el evento 1970X genera mayores distorsiones en X y el evento 1970Y genera mayores distorsiones en Y. Adicionalmente, se puede notar que conforme los valores de PGA incrementan las distorsiones también lo hacen. Del análisis dinámico se puede rescatar que mientras algunos registros generan mayores distorsiones en los entrepisos superiores otros generan mayores distorsiones en los pisos inferiores y que en promedio los entrepisos que sufren mayores distorsiones son el segundo y el tercero.

Cabe resaltar que según este análisis el edificio presenta distorsiones mayores a lo establecido por la norma E030 para estructuras de concreto armado en todos los escenarios analizados, esto es debido a una inadecuada configuración estructural y falta de elementos estructurales sismorresistentes. Este resultado indica que la estructura estaría experimentando daños estructurales que pueden afectar la evacuación vertical por tsunami en el edificio.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 68 Bach. Julian Miller Palacios Espinoza

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 69 Bach. Julian Miller Palacios Espinoza

Figura N° 5.5 Distorsión en cada entrepiso para los escenarios simulados de PGA 0.55g a 0.85g (desde la esquina superior izquierda a la esquina inferior derecha).

Los valores máximos de distorsión en promedio fueron generados de los registros escalados a partir del sismo de 1974. Así como la distorsión, se obtuvo la cortante basal en el tiempo, en promedio la cortante última que puede actúa en la estructura según este análisis en X es de 6927 kN y en la dirección Y de 5182 kN. Las máximas cortantes obtenidas en cada dirección se muestran en la Tabla N° 5.3. Se puede notar que a pesar de que el evento 1970 genera las mayores distorsiones en la estructura, cuando PGA=0.85g, las cortantes máximas no son generadas por este evento. Esto principalmente se debe a que la estructura responde dinámicamente de manera diferente para cada registro sísmico.

Es preciso resaltar que, este análisis fue llevado a cabo con la finalidad de evaluar a detalle la respuesta estructural del edificio, pues se trata de una estructura irregular donde se requiere obtener una representación razonable de su respuesta sísmica. En la siguiente sección se presenta el análisis estático no lineal, cuyo procedimiento es menos laborioso, para luego comparar con los resultados de este análisis detallado.

	Registi	o 1966	Registr	o 1970	Registro 1974			
PGA	Vx (kN)	Vy (kN)	Vx (kN)	Vy (kN)	Vx (kN)	Vy (kN)		
0.55g	5572.08	4130.01	5454.36	4022.10	5140.44	4865.76		
0.65g	6150.87	4316.40	6111.63	4453.74	6955.29	5258.16		
0.75g	6543.27	4718.61	6562.89	4914.81	7259.40	5307.21		
0.85g	7161.30	5022.72	6876.81	5501.51	7161.80	5532.84		

Tabla Nº 5.3 Valores de cortantes máximas obtenidas del análisis dinámico no lineal.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 70 Bach. Julian Miller Palacios Espinoza

5.2.2 Análisis Estático No Lineal (AENL)

Se llevó a cabo el análisis estático no lineal a partir de un patrón de cargas cuyas fuerzas son directamente proporcional al producto de la masa y el desplazamiento modal de cada entrepiso. Este análisis se realizó para el primer modo, el cual resultó tener una mayor participación de masa en la dirección Y y el segundo modo en la dirección X.

Después de haber realizado este análisis se obtuvo la curva de capacidad de la estructura, sin embargo, para conocer el estado en los entrepisos, se revisó las distorsiones y cortantes para cada entrepiso, pues las distorsiones de la curva de capacidad general del edificio podrían subestimar las distorsiones de uno de los entrepisos, se plotean estas curvas en la Figura N° 5.6.

Se puede observar en esta figura que la estructura es más rígida en la dirección X (tiene una pendiente inicial mayor), este efecto principalmente es originado por que existen elementos estructurales que contribuyen al comportamiento estructural en esta dirección, elementos tales como placas en la dirección X, columnas cuya dimensión más larga está orientada en la dirección X, y pórticos de concreto armado en esa dirección.

Adicionalmente, se puede observar un comportamiento frágil en la dirección X, cuando se llega a una distorsión de 0.3% en promedio, a diferencia del análisis en la dirección Y, que es más dúctil. El comportamiento frágil es producido por los efectos de rotación que provoca la falla de las columnas del pórtico en dirección X, los efectos de rotación se muestran en la Figura N° 5.7 y el diagrama momento curvatura de dos columnas que fallan en el primer piso se muestra en la Figura N° 5.8. Cabe resaltar que la relación entre la cortante y la distorsión de entrepiso no es la misma para el caso de tsunami, pues la distribución de fuerzas en el patrón de cargas es diferente.

Figura N° 5.6 Curva de capacidad por Sismo para cada entrepiso, (a) en dirección X y (b) en dirección Y.

Luego de calcular la curva de capacidad de la estructura, se procedió a definir la demanda sísmica mediante los espectros de demanda según las ecuaciones establecidas en la Norma E030, de manera que los factores Z*U*S resultan 0.55g, 0.65g, 0.75g y 0.85g correspondientes a los cuatro valores de PGA del ADNL. Posteriormente se estimó el punto de desempeño sísmico mediante la metodología del espectro de capacidad (ATC-40) considerando una estructura

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 72 Bach. Julian Miller Palacios Espinoza Tipo C, es decir que presenta un comportamiento histerético pobre, pues la estructura no cuenta con una distribución de acero en sus elementos que garantice el buen comportamiento histerético, los puntos de desempeño se pueden observar en la Figura N° 5.9.

PERFORM-3D V7.0.0 : MODELO TSU _ **D X** File Phase Task Help Entire structure - 5 DEFLECTED SHAPES -8 📇 💷 Series SISMO X 💌 🛃 Case [2] = [1] + push2 Plot Scale and Type Limit States Displacement Scaling Simple scaling. Displ scale factor 5
 Base on size of structure Max. displ / max. structure dimension 0.25 Displacement scale factor = 25.21 Plot Type for Limit State Usage Ratios -· Entire elements are colored. C Components are colored. Frame elements only. Click to move yellow line to desired point. Reference drift = .002918 0.0 Close Plot Animate if desired. Slower Faster Distance to view point (multiple of max. dimension) H2 Click in figures LH1→ (in degrees). Vangle 0 → Basic Plan ↑ View H1 angle 0 → H1 H2 PERFORM-3D V7.0.0 : MODELO TSU - 0 X File Phase Task Help Entire structure - 🖪 🔡 -3 🗳 🗔 ▼ 2 Case [2] = [1] + push2 Plot Scale and Type Limit States Displacement Scaling C Simple scaling. Displ scale factor 5 Base on size of structure Max. displ / max. structure dimension 0.25 Displacement scale factor = 25.21 Plot Type for Limit State Usage Ratios-Entire elements are colored. C Components are colored. Frame elements only. Click to move yellow Reference drift = .00503 mar d 0.00.000 Close Plot te if desired. Slower Faster view point (multiple of max. dimension) H2 L H1 creter angles V angle 0 + Standard Views Basic Plan H1 H2

Figura N° 5.7 Efectos de rotación en el análisis en dirección X.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 73 Bach. Julian Miller Palacios Espinoza

Figura N° 5.8 Diagrama momento (kg-m) vs curvatura (rad/m) de dos columnas ubicadas en el eje que sufre mayor desplazamiento.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 74 Bach. Julian Miller Palacios Espinoza

Figura N° 5.9 Aceleración espectral vs Desplazamiento espectral en dirección X (izquierda) y en dirección Y (derecha). Se puede observar los puntos de desempeño sísmico (negro).

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 75 Bach. Julian Miller Palacios Espinoza Como resultado de la aplicación del método espectro de capacidad se puede observar en la Tabla N° 5.4 los valores de desplazamiento espectral y amortiguamiento de la estructura, claramente se puede apreciar que, conforme la demanda aumenta, estos valores aumentan al igual que los daños estructurales que sufrirá la estructura.

	Х		Y				
PGA	Sd (cm)	β(%)	Sd (cm)	β(%)			
0.55g	13.1	16.2	18.1	6.5			
0.65g	17.3	17.8	21.9	8.9			
0.75g	21.8	18.9	26.5	10.1			
0.85g	26.7	21.2	32.2	11.2			

Tabla N° 5.4 Valores de Desplazamiento Espectral (Sd) y Amortiguamiento (β) de la estructura en el punto de desempeño sísmico.

Después de determinar el punto de desempeño sísmico se identificó el paso de computo en el análisis en el cual llegaba a este punto, con la finalidad de conocer las distorsiones de todos los entrepisos. En líneas generales se puede decir que el análisis estático no lineal arroja distorsiones de entrepiso mayores al dinámico no lineal, sin embargo, para los entrepisos 6 y 7 de los casos de PGA=0.55g y 0.65g, se subestiman las acciones sísmicas.

Las distorsiones máximas para cada entrepiso se pueden observar en la Figura N° 5.10, la distorsión máxima entre todos los entrepisos del análisis dinámico es de 1.25% y del estático 1.76%, esta distorsión excede en 29% al dinámico.

Con fines prácticos, se utilizará los resultados del análisis estático en la metodología de la presente tesis, no obstante, si las irregularidades de la edificación generan mayores distorsiones entonces se debe de considerar los resultados del análisis dinámico.

Figura N° 5.10 Distorsión en cada entrepiso para escenarios de PGA de 0.55g a 0.85g en direcciones X e Y. La línea de color rojo representa las distorsiones obtenidas del análisis dinámico no lineal y la línea azul indica las distorsiones del análisis estático no lineal.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 77 Bach. Julian Miller Palacios Espinoza

5.3 RESULTADOS DE ANÁLISIS POR TSUNAMI

El análisis estático no lineal por tsunami, en este caso se realiza usando patrones de carga que incrementan en altura y es llevado a cabo mediante un control por fuerza, esto quiere decir que el análisis acabará en una fuerza máxima. A comparación del análisis sísmico, en este análisis habrá una mayor influencia de la falla por corte, esto quiere decir que tendrá una resistencia más alta pero una ductilidad menor, debido a la distribución de las cargas aplicadas. Para analizar la influencia de esta distribución en la curva de capacidad de la estructura, se ha realizado simulaciones numéricas para diferentes distribuciones en los patrones de carga, con la finalidad de apreciar cómo cambia la forma de la curva de capacidad según la distribución de las cargas asignadas en el análisis. La Figura N° 5.11 muestra la variación de la forma de las curvas de capacidad para cada uno de los entrepisos de un edificio de cinco niveles, obtenidas a partir de un patrón de fuerzas sísmicas (a), un patrón de fuerzas de tsunami (d) y otros dos patrones comprendidos entre los anteriores (b y c). Se puede rescatar de esta figura que la resistencia es mayor para un patrón de tsunami y la ductilidad es menor.

muestran debajo de cada letra (a, b, c y d).

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 78 Bach. Julian Miller Palacios Espinoza Tomando en cuenta las consideraciones antes mencionadas se obtuvo la curva de capacidad por tsunami para el edificio en las dos direcciones de análisis, como se esperaba estas curvas tienen mayor resistencia y menor ductilidad a comparación de la curva de capacidad sísmica, pues se induce a una falla por corte en el edificio. La Figura N° 5.12 muestra las curvas de capacidad por tsunami para cada entrepiso a fin de conocer el comportamiento más detallado y no solo tener en cuenta la curva de capacidad general del edificio. No obstante, esta curva fue obtenida sin considerar la degradación de la capacidad estructural provocado por el evento sísmico, en la siguiente sección se analizará este efecto.

Figura N° 5.12 Curva de capacidad por Tsunami de cada entrepiso, (a) en dirección X y (b) en dirección Y.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 79 Bach. Julian Miller Palacios Espinoza

5.4 DESEMPEÑO ESTRUCTURAL DEL EDIFICIO

Luego de haber calculado el punto de desempeño sísmico, se obtuvieron los parámetros de degradación según el modelo degradante de Takeda, Sozen y Nielsen (1970), además de la degradación de la resistencia usando las ecuaciones de Wang y Shah (1987). Estos parámetros fueron utilizados para estimar el daño después del evento sísmico y modificar la capacidad estructural resistente al tsunami del edificio objetivo. Adicionalmente, las ecuaciones de Wang y Shah fueron utilizadas para degradar la resistencia de la curva de capacidad de tsunami debido a las olas más incidentes cercanas al edificio según la simulación numérica de tsunami.

Esta metodología se muestra en la Figura Nº 5.13, donde se puede observar siete eventos de sismo tsunamigénico, donde el evento N°1 es de intensidad leve y los eventos aumentan paulatinamente hasta el evento N°7 que es de intensidad severa. La metodología propuesta en este trabajo comienza con el análisis sísmico que inicia en el punto "O", luego mediante el método de espectro de capacidad se obtiene el punto de desempeño sísmico (por ejemplo, el símbolo de color rojo Δ), en este punto se calculan los parámetros de degradación y se realiza la descarga de la cortante hasta interceptar el eje de desplazamientos (se obtiene el desplazamiento residual representado por la distancia entre esta intercepción y el punto de inicio O). En estas condiciones actuarán las olas del tsunami, para analizar el comportamiento de este efecto se utilizó la curva de capacidad de tsunami degradada con los parámetros calculados anteriormente, cabe resaltar que la fuerza máxima del tsunami está relacionada con la intensidad del evento sísmico y si se intercepta esta fuerza con la curva de capacidad degrada por tsunami se obtiene el punto de desempeño por sismo y tsunami subsecuente (el símbolo de color azul Δ). Este proceso se realiza para cada uno de los entrepisos y en las dos direcciones de análisis.

Se puede observar que a partir del evento N°4 los desplazamientos provocados por el tsunami son más significativos que los originados por el sismo y aquí radica la importancia de esta metodología para evaluar un edificio no diseñado como refugio, pero propuesto como evacuación vertical.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 80 Bach. Julian Miller Palacios Espinoza

Figura N° 5.13 Metodología para obtener el desempeño por sismo y tsunami de un edificio.

Con la finalidad de mostrar los procesos que se realiza en esta metodología se escribió un código en lenguaje de programación Python, el cual está compuesto por rutinas, tales como:

- area: Calcula el área bajo una gráfica, compuesta por un conjunto de puntos.
- lini : Realiza una regresión lineal a los puntos de la curva de capacidad.
- energia: Verifica que el área bajo la curva de capacidad sea igual al área bajo la regresión trilineal.
- degrad: Obtiene los parámetros de degradación para un nivel de distorsión.
- reajuste: Reajusta la curva de capacidad de Tsunami según los parámetros de degradación.
- tsusisana: Es la rutina principal que realiza el análisis por sismo y tsunami, esta rutina se puede observar en la Figura N° 5.14.

🁌 *fi	nctions.py - C:\Users\jpalacios.CLEAROS\Desktop\TSUSISANA\functions.py (2.7.15)*	
File	Edit Format Run Options Window Help	٦
def	tsusisana(fdir=r'G:PO RESULTS', drifts='FUSH', forces='ASAK', dirr='X', ev=2, p=2, FS=2.0,	•
	FT=1.7, lims=[-0.01,15,-10,1600],sd=0.7,ts=12000.0,n=3):	
	###CAMBIO DE UNIDADES###	
	if dirr='Y':	
	ii=2*p	
	elif dirr=='X':	
	11=2*P-1	
	ipga-[oisoios, oiso, oisoios]	
	la="P%i%s"%(p,dirr)	
	##	
	<pre>mat1=np.genfromtxt(fdir+r'\PO RESULTS\D_SISMO%s.txt'%dirr,delimiter=',',skip_header=22,</pre>	
	skip footer=2).transpose()*1000.0	
	akin footer=).transnose()/100.0	
	** ······	
	<pre>xmax,ymax=(np.amax(mat1[4]),np.amax(mat2[1]))</pre>	
	<pre>lx=[x for x in mat1[ii+2][:-1]/xmax]###</pre>	
	ly=[y for y in mat2[p][:-1]/ymax]	
	TAVALORED INICIALED FARA ARALISIS FOR SISMO	
	(1, y)=(x1+FS, y)+FS)	
	lx.reverse()	
	ly.reverse()	
	[x3, y3,m3,x2, y2]= lini(lx, 1y, 0.05)	
	11x=[x0, X1, X2, X3]	
	$[1]_{[V]}[V]_{V}(x,y)$	
	[ax, llx, lly]=area(llx, lly)	
	##CONSERVACION DE ENERGIA PARA ANÁLISIS POR SISMO	
	<pre>[llx,lly,m]=energia(a0,ax,0.01,llx,lly,m1,m3,xmax,ymax)#erar=0.01</pre>	
	Ixi=[a for a in lix]	

	[ss,kr,d,dx]=degrad(sd,llx,lly,n,m) #x=5 n: veces a la que llega a una distorsion de sd	L
	<pre>matsu1=np.genfromtxt(fdir+r'\PO RESULTS\D_TSUNA%s.txt'%dirr,delimiter=',',skip_header=22,</pre>	
	<pre>skip_footer=2).transpose()*1000.0</pre>	
	<pre>matsu2=np.genfromtxt(fdir+r'\PO RESULTS\%s TSUNA%s.txt'%(dirr,dirr),delimiter=',',skip_header=14,</pre>	
	**	
	<pre>xmax, ymax=(np.amax(matsu1[4]), np.amax(matsu2[1]))</pre>	
	<pre>ltx=[x for x in matsul[ii+2][:-1]/xmax]###</pre>	
	lty=[y for y in matsu2[p][-1]/ymax]	
	##VALORES INICIALES PARA ANALISIS FOR TSUNAMI	
	[x, yo, m, x, yi] - im((cx, icy, 0.03) x1, y1=(x+Fr, v1*Fr)	
	ltx.reverse()	
	lty.reverse()	
	[x3,y3,m3,x2,y2]= lini(ltx,lty,0.05)	
	11tx=[x0, x1, x2, x3]	
	[10] [x] [y] [x] [x] [x] [x] [x] [x] [x] [x] [x] [x	
	[ax,lltx,llty]=area(lltx,llty)	
	##CONSERVACION DE ENERGIA PARA ANÁLISIS POR TSUNAMI	
	<pre>[lltx,llty,m]=energia(a0,ax,0.01,lltx,llty,m1,m3,xmax,ymax)#erar=0.01</pre>	
	ltxi=[a for a in lltx]	
	<pre>ityi=[a for a in ifty] [[]tx.][tv]=reduste([]tx.][tv.m.kr.d.dx)</pre>	
		-
_		<u> </u>

Figura Nº 5.14 Rutina principal para el análisis por sismo y tsunami.

Además de las rutinas antes mencionadas se realizó un programa donde se coloca los datos de la curva de capacidad, los factores de ajuste para la regresión trilineal, la dirección, el entrepiso a analizar, la distorsión alcanzada del análisis sísmico, los ciclos de olas de tsunami a considerar y la máxima fuerza de tsunami calculada para el entrepiso. Luego el programa aplica la metodología propuesta en esta tesis y muestra esquemáticamente el análisis realizado al edificio (ver Figura N° 5.15).

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 82 Bach. Julian Miller Palacios Espinoza

Figura N° 5.15 Muestra una captura del programa realizado para el Análisis por Sismo y Tsunami.

Para realizar un análisis más simplificado se trilinealizó las curvas de capacidad obtenidas anteriormente, teniendo en cuenta la conservación de la energía de la curva real y la curva trilinealizada. En la Figura N° 5.16, se puede observar esta trilinealización realizada a las curvas de capacidad por sismo y tsunami, sin embargo, en el caso de la curva por tsunami se modificó esta curva aplicando los parámetros de degradación, esta curva es la de color negro etiquetada como "CCTT degradada".

Las gráficas superiores muestran los resultados correspondientes al primer entrepiso para el evento de PGA=0.75g y las inferiores muestran los resultados para el evento de PGA=0.85g. Se puede apreciar en el resultado de este último evento que la demanda de tsunami es mayor a la curva de capacidad y no existe una intercepción, esto significa que la demanda supera la capacidad de la estructura y falla por desplazamiento lateral.

El edificio repentinamente falla para el evento 0.85g pues las fuerzas de tsunami correspondiente actúan en un área considerable, ya que no existen el porcentaje de aberturas suficiente para que disminuya la fuerza, si fuese el caso contrario podría observarse con más precisión la distorsión en la que el tsunami provoca mayores daños. De la Figura N° 5.16 se observa que las distorsiones de tsunami son mayores que las del análisis sísmico para eventos mayores a un PGA=0.75g.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 83 Bach. Julian Miller Palacios Espinoza

Figura N° 5.16 Aplicación de la metodología para el primer entrepiso, curva de capacidad por sismo (rojo) y por tsunami (azul). Análisis en dirección X (columna izquierda) y análisis en dirección Y (columna derecha).

Los principales parámetros de degradación estimados en la aplicación de la metodología para el primer entrepiso ante los eventos de 0.75g y 0.85g se muestran en la Tabla N° 5.5, estos parámetros son: la relación entre la rigidez de descarga y la inicial (Kr/Ki), el coeficiente de degradación de resistencia (D_{ws}) y la distorsión residual después del evento sísmico.

	Ana	álisis en d	irección X	Análisis en Dirección Y				
PGA	Kr/Ki (%) D _{ws} (%) D.		D. Residual (%)	Kr/Ki (%)	D _{ws} (%)	D. Residual (%)		
0.75	28.3	8.5	0.773	26.6	11.4	0.566		
0.85	26.0	12.1	0.999	24.4 14.5		0.788		

Tabla Nº 5.5 Parámetros de degradación del análisis por sismo y tsunami para el primer entrepiso.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 84 Bach. Julian Miller Palacios Espinoza

Tras la aplicación de la metodología se obtuvieron las distorsiones máximas en cada entrepiso, resultando que el entrepiso más afectado es el primer entrepiso debido a que las cargas de tsunami están más concentradas en la base del edificio. Las distorsiones máximas del primer entrepiso se pueden observar en la Tabla N° 5.6, asimismo, se puede interpretar que para el evento de PGA=0.85g se obtiene una distorsión significativa por sismo, pero los efectos del tsunami causan que la estructura colapse.

		AE	ENL		ADNL						
PGA	Dist	orsión X	Dis	torsión Y	Dist	orsión X	Distor	sión Y (%)			
		(%)		(%)		(%)					
0.55		0.68		0.72		0.39		0.72			
0.65		0.89	1.03			0.52	0.79				
0.75		1.13	1.252		0.58			0.81			
		Colapsa		Colapsa		Colapsa		Colapsa			
0.85	1.34	por	1.57	por	0.69	por	1.15	por			
		Tsunami		Tsunami		Tsunami		Tsunami			

Tabla N° 5.6 Distorsiones máximas obtenidas de la metodología para el primer entrepiso considerando un análisis por sismo estático (AENL) y dinámico (ADNL)

5.5 NIVEL DE DAÑO DEL EDIFICIO

Para la estimación de daños en la estructura, se utilizó como referencia la metodología Hazus-MH 2.1, la cual define como tipo de estructura C2M a edificios de mediana altura (4 a 7 pisos) cuyo sistema estructural es de muros estructurales, como el edificio en estudio del presente trabajo.

Los niveles de daño que se definen en HAZUS-MH 2.1 están relacionados con la distorsión de entrepiso, es así que, para el tipo de estructuras C2M se define diversos tipos de distorsiones dependiendo de la exigencia de la norma sísmica con el cual fue diseñado. En la Tabla N° 5.7 se muestra la relación entre estados de daño y los intervalos de distorsión de entrepiso para una exigencia de norma moderada, asumida para el modelo de estudio pues para esta exigencia se espera una capacidad de fluencia (d_y =2.0 cm y α_y :=0.25g) y estado último (d_u = 26.3 cm y a_u =0.625g) similares a lo obtenido en la curva de espectro de capacidad del modelo en análisis. Las tablas de HAZUS MH-2.1 muestran los estados de daño según las distorsiones de entrepiso y se encuentran en el ANEXO 3.

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 85 Bach. Julian Miller Palacios Espinoza

Según las distorsiones de la Tabla N° 5.6 y los estados de daño establecidos para el edificio en estudio (ver Tabla N° 5.7) se puede obtener la Tabla N° 5.8 que muestra el estado de daño para cada uno de los escenarios, esta tabla es uno de los resultados principales obtenidos en esta investigación.

Tabla N° 5.7 Estado de daño estimado para una edificación de tipo C2M diseñado con una norma de exigencia moderada.

Daño	Distorsión (%)	Sd (cm)			
Leve	< 0.33	< 3.8			
Moderado	0.33 - 0.70	3.8 - 8.0			
Extensivo	0.70 - 1.93	8.0 - 22.0			
Colapso	1.93 - 5.00	22.0 - 56.2			

Tabla N° 5.8 Estados de daño obtenidos para los escenarios sísmicos de PGA=0.55g – 0.85g.

	Daño co	on AENL	Daño con ADNL					
PGA	Х	Y	X	Y				
0.55g	Moderado	Extensivo	Moderado	Extensivo				
0.65g	Extensivo	Extensivo	Moderado	Extensivo				
0.75g	Extensivo	Extensivo	Moderado	Extensivo				
0.85g	Colapso	Colapso	Colapso	Colapso				

Mediante la estimación de los estados de daño y las recomendaciones del ATC-40, el objetivo de desempeño sísmico del edificio en estudio es básico, y no tiene una configuración estructural adecuada para comportarse como un refugio vertical ante tsunami que pueda soportar la acciones sísmicas y las acciones del subsecuente tsunami, los objetivos de desempeño se observan en la Tabla N° 2.3.

CONCLUSIONES

- 1. La demanda de tsunami que actúa en la edificación fue calculada a partir de simulaciones numéricas de tsunami de seis escenarios de sismo tsunamigénico de 8.5 a 9.0 Mw, en estas simulaciones se identificaron las olas de mayor altura que actúan localmente en el edificio, la disminución del tiempo de arribo de la primera ola y de las velocidades del tsunami debido a estructuras que disipan la energía de tsunami como la isla San Lorenzo y el Rompeolas del distrito La Punta.
- Según las simulaciones numéricas de tsunami para un escenario de magnitud 9.0 Mw, la altura de siete de los 19 edificios propuestos como refugio vertical en La Punta son menores que la altura de inundación, resultando que el uso de estos edificios sea inadecuado para soportar un tsunami de esta magnitud.
- Se estimó la altura equivalente de tsunami usando el coeficiente propuesto en el MLIT 2570 y los valores obtenidos de las velocidades y alturas de tsunami cercanos al edificio, se obtuvo fuerzas de tsunami mayores usando los coeficientes de los lineamientos japoneses.
- 4. Los puntos de desempeño sísmico fueron obtenidos según el método de espectro capacidad, considerando un comportamiento estructural tipo C, todos los escenarios sísmicos ocasionan daños extensivos en el edificio que dificultan la evacuación vertical por tsunami pues varios elementos no estructurales dañados obstaculizaran el traslado de las personas.
- Se llevaron a cado análisis estáticos y dinámicos no lineales al edificio propuesto como refugio ante tsunami, las distorsiones obtenidas del análisis estático resultaron ser, por lo general, mayores a los del análisis dinámico.
- 6. El edificio en estudio fue analizado para cuatro escenarios sísmicos, como resultado principal de este análisis se obtuvo que para escenarios mayores a 0.75g de PGA (correspondiente a un escenario de magnitud 8.7 Mw) el daño por tsunami es mayor al daño sísmico que, por sí mismo, causa daños extensivos y con el efecto del tsunami ocasiona que la estructura colapse, esto se debe principalmente a que el edificio no cuenta con suficientes aberturas, para atenuar la fuerza de tsunami ocasionando que el edificio sea vulnerable ante las fuerzas de tsunami.

- 7. Se presentó una metodología para la evaluación estructural ante fallas por desplazamiento vertical de edificios sujetos a la acción secuencial de sismo y tsunami. La importancia de esta metodología radica en que puede estimar el escenario con la que la estructura tendría mayores daños por tsunami que por sismo.
- 8. Se estudió la influencia de la distribución de fuerzas de los patrones de carga en la curva de capacidad, resultando que para los patrones de tsunami se obtienen curvas de capacidad con mayor resistencia, pero menor ductilidad que los patrones por sismo.
- 9. A pesar de las limitaciones del estudio (por ejemplo, no se analizó los efectos de socavación), este trabajo provee los primeros lineamientos aplicados en la costa peruana para análisis por sismo y tsunami subsecuente. Las guías actuales de diseño para edificaciones costeras sujetas a las cargas de tsunami no establecen explícitamente como considerar una simulación numérica de tsunami para la estimación de fuerzas ni como estimar el daño que sufre la estructura después del sismo tsunamigénico.
- 10. La demanda sísmica establecida por la norma E030 no está vinculada a una demanda por tsunami, por ello en el presente trabajo se ha considerado estudios de peligro sísmico para establecer una relación entre la demanda sísmica y la amenaza por tsunami en la zona de estudio.

RECOMENDACIONES

- El edificio estudiado fue uno con irregularidades en planta (Irregularidad por torsión y esquinas entrantes) y de una configuración estructural tal que los elementos verticales se repetían en altura, pero si se tratase del caso contrario se debe de tomar en cuenta el análisis dinámico no lineal para la evaluación por sismo.
- La profundidad máxima de inundación en la ubicación de otros edificios de refugio puede llegar a ser mayor a la calculada en el caso de estudio, en este sentido, se recomienda evaluar los otros edificios pues podrían experimentar distorsiones de entrepiso mayores a los límites permisibles.
- 3. Los efectos de socavación son importantes y se debe de realizar estudios más elaborados en este aspecto, por ello los lineamientos japoneses recomiendan que los edificios de refugio por tsunami sean cimentados con pilotes, así evitar la falla por deslizamiento o volteo de la cimentación.
- 4. Se debe de realizar estudios sobre como relacionar adecuadamente el escenario de sismo tsunamigénico con la demanda sísmica, es decir el registro de aceleraciones para el análisis o el espectro de demanda para la zona de estudio, de manera que se pueda utilizar escenarios más oportunos para el diseño y evaluación de estos edificios.
- 5. El edificio estudiado no fue construido para ser refugio vertical por tsunami, por lo que no cuenta con el porcentaje de aberturas suficiente para que disminuyan las fuerzas de tsunami, esto genera que falle por desplazamiento lateral, por ello se recomienda que los edificios para evacuación vertical cuenten con la adecuada cantidad de aberturas.

BIBLIOGRAFÍA

- Abrahamsom N., Gregor N. y Addo K., "BC Hydro Ground Motion Prediction Equations For Subduction Earthquakes", Earthquake Spectra Journal, California, Estados Unidos de América, 2016.
- Adriano B., Mas E., Koshimura S., Estrada M., y C. Jimenez, "Scenarios of Earthquake and Tsunami Damage Probability in Callao Region, Peru Using Tsunami Fragility Functions", Journal Disaster of Research, Fuji, Japón, 2014.
- Applied Technology Council, ATC-40, "Seismic Evaluation and Retrofit of Concrete Buildings", California, Estados Unidos de América, 1996.
- Asai, T., Nakano y Y. Tateno T, "Tsunami load evaluation based on damage observation after the 2011 Great East Japan Earthquake", Bulletin of ERS, No. 45, Tokio, Japón, 2012.
- Asakura R., Iwase K., Tsuyoshi I., Takao M., Kaneto T., Fujii N., y Ohmori M., "The Tsunami Wave Force Acting on Land Structures", Coastal Engineering 2002: pp. 1191-1202, Gales, Reino Unido, 2003.
- ASCE/SEI 7 "Minimun Design Loads For Buildings and Other Structures", Virginia, Estados Unidos de América, 2017.
- Barleck P., Galíndez E. y Pavoni S., "Modelación Numérica de Columnas de Hormigón Armado Sometidas a Cargas Cíclicas", Buenos Aires, Argentina, 2014.
- Burak B. y Unal M., "Analytical Evaluation of the Cyclic Response of Reinforced Concrete Beam-to-Column Connections", The 15th World Conference on Earthquake Engineering, Lisboa, Portugal, 2012.
- Caughey T. y Kelly, M., "Classical normal modes in damped linear dynamic systems", Journal of Engineering Mechanics, Virginia, Estados Unidos de América, 1965.
- Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (CISMID), Análisis De Vulnerabilidad Y Riesgo Ante Sismo Y Tsunami En Zonas Urbanas – Distrito De Santa Rosa. Programa Presupuestal 068: Reducción De Vulnerabilidad Y Atención De Emergencias Por Desastres. Lima, Perú, 2015.

- Chambers J., "Nonlinear Dynamic Analysis The Only Option for Irregular Structures", The 13th World Conference on Earthquake Engineering, Vancouver, Canadá, 2004.
- 12. Chopra A., "Dynamics of Structures. Fourth Editiion", Prentice-Hall, Inc., New Jersey, Estados Unidos de América, 1995.
- Computers and Structures, Inc. CSI, "CSI User Guide PERFORM-3D", California, Estados Unidos de América, 2011.
- Condori, J. "Análisis y diseño estructural de evacuación vertical resistente a sismos y tsunamis", Servicio Nacional de Capacitación para la Industria de la Construcción, SENCICO, Lima, Perú, 2013.
- 15. Gorgulu O. y Taskin B., "Numerical simulation of RC infill walls under cyclic loading and calibration with widely used hysteretic models and experiments", Basel, Suiza, 2015.
- 16. FEMA P646, "Guidelines for Design of Structure for Vertical Evacuation from Tsunamis", Estados Unidos de América, 2008.
- Hancock J., Watson J., Abrahamson N., Bommer J., Markatis A., McCoyh E. y Mendis R., "An Improved Method of Matching Response Spectra of Recorded Earthquake Ground Motion Using Wavelets", Journal of Earthquake Engineering, Gales, Reino Unido, 2006.
- 18. Huamán C., "Microzonificación Sísmica de La punta y El Callao", Universidad Nacional de Ingeniería, Lima, Perú, 1991.
- Jain S., Murty C., Rai D., Malik J., Sheth A., y Jaiswal A, "Effects of M9 Sumatra Earthquake and Tsunami of 26 December 2004", Current Science, Vol 88, No 3, pp. 357-359, Bengaluru, India, 2005.
- Koshimura, S., TUNAMI Code, "Tohoku University Numerical Analysis Model for Investigation of Tsunamis", JST-JICA Perú Project, Sendai, 2009.
- 21. Kuroiwa, J. "Disaster Reduction Living in harmony with nature", Editorial NSG S.A.C., Lima, Perú, 2002.
- 22. Mas E., Adriano B. y Koshimura S., "An Integrated Simulation of Tsunami Hazard and Human Evacuation in La Punta, Peru", Journal Disaster of Research, Fuji, Japón, 2013.
- 23. MLIT 2570, "Acerca de los conocimientos adicionales relacionados con el método de diseño, etc. de un edificio seguro para resistencia estructural

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 91 Bach. Julian Miller Palacios Espinoza

contra tsunamis" (en japonés), Ministry of Land, Infraestructure, Transport and Tourism, Tokyo, Japón.

- Nakano Y., "Design load evaluation for tsunami shelters based on damage observations after Indian Ocean Tsunami disaster due to the 2004 Sumatra earthquake", The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
- 25. Nakano Y. "Structural design requirements for tsunami evacuation buildings in Japan", Japan Concrete Institute, Tokio, Japón, 2013.
- 26. Norma Técnica E-030 "Diseño Sismorresistente", Reglamento Nacional de Edificaciones, Lima, Perú, 2018.
- 27. Ordenanza N° 003-013/2010, "Norma que regula el acceso a los edificios que sirvan como refugios de emergencia ante la amenaza de tsunami en el distrito de La Punta", Lima, Perú, 2010.
- 28. Petrone C., "Tsunami Analysis of Structures: Comparison among different approaches", The 16th World Conference on Earthquake Engineering, Santiago, Chile, 2017.
- Pulido N., Tavera H., Perfettini H., Chlieh M., Aquilar Z., Aoi S., Nakai S. y Yamazaki F., "Estimation of Slip Scenarios for Megathrust Earthqueakes: A case study for Peru", The 4th IASPEI/IAEE International Symposium, Santa Barbara, Estados Unidos de América, 2011.
- 30. Pulido N., Aquilar Z., Tavera H., Chlieh M., Calderón D., Sekiguchi T., Nakai S. y Yamazaki F., "Scenario Source Models and Strong Ground Motion for Future Megaearthquakes: Application to Lima, Central Peru", Bulletin of the Seismological Society of America, California, Estados Unidos de America, 2015.
- 31. Reyna R., Saito T., Matsui T. y Hayashi K., "Confinement Effect of Concrete with Carbon Fiber Sheet Reinforcement under Compressive Loading", International Journal of Structural and Civil Engineering Research, California, Estados Unidos de América, 2016.
- 32. Servicio Nacional de Capacitación para la Industria de la Construcción SENCICO, "Actualización eel Programa de Cómputo Orientado a la Determinación del Peligro Sísmico en el País", Lima, Perú, 2016.
- Suppasri A., Mas E., Charvet I., Gunasekera R., Imai K., Fukutani Y., Abe
 Y. y Imamura F., "Building damage characteristics based on surveyed data

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 92 Bach. Julian Miller Palacios Espinoza

and fragility curves of the 2011 Great East Japan tsunami", Natural Hazards, Basel, Suiza, 2012

- 34. Takeda T., Sozen M. y Nielsen N., "Reinforced Concrete Response to Simulated Earthquakes", Journal of the Structural Division, Nueva York, Estados Unidos de América, 1970.
- 35. Tanaka H., "Effect of Lateral Confining Reinforcement on the Ductile Behaviour of Reinforced Concrete Columns", Ph.D. Dissertation, Canterbury, Nueva Zelanda, 1990.
- 36. Wang M. y Shah S., "Reinforced Concrete Hysteresis Model Based on the Damage Concept", Earthquake Engineering and Structural Dynamics, Tokyo, Japan, 1987.
- 37. Yamazaki F., Zavala C., Nakai S., Koshimura S., Saito T. y Midorikawa S.,"Enhancement of earthquake and tsunami disaster mitigation technology in Peru: A SATREPS project", Tokio, Japón, 2010.

- ANEXO 1: Sistema estructural de edificios.
- ANEXO 2: Edificios de evacuación en el distrito de La Punta.
- ANEXO 3: Parámetros de la curva de fragilidad estructural.
- ANEXO 4: Gráfica de la Altura Equivalente de Tsunami.
- ANEXO 5: Disposición de Fibras en Columnas.

Metodología Hazus: Sistema Estructural de edificios.

				ł	Height		
No.	Label	Description	Range		Тур	ical	
			Name	Stories	Stories	Feet	
1	W1	Wood, Light Frame (≥ 5,000 sq. ft.)		1 - 2 All	1	14	
2	W2	Wood, Commercial and Industrial (> 5,000 sq. ft.)			2	24	
3	S1L		Low-Rise	1 - 3	2	24	
4	S1M	Steel Moment Frame	Mid-Rise	4 - 7	5	60	
5	S1H		High-Rise	8+	13	156	
6	S2L		Low-Rise	1 - 3	2	24	
7	S2M	Steel Braced Frame	Mid-Rise	4 - 7	5	60	
8	S2H		High-Rise	8+	13	156	
9	S3	Steel Light Frame		All	1	15	
10	S4L		Low-Rise	1 - 3	2	24	
11	S4M	Steel Frame with Cast-in-Place Concrete Shear Walls	Mid-Rise	4 - 7	5	60	
12	S4H		High-Rise	8+	13	156	
13	S5L		Low-Rise	1 - 3	2	24	
14	S5M	Steel Frame with Unreinforced Masonry Infill Walls	Mid-Rise	4 - 7	5	60	
15	S5H		High-Rise	8+	13	156	

				ł	Height	
No.	Label	Description	Range		Турі	cal
			Name	Stories	Stories	Feet
16	C1L		Low-Rise	1 - 3	2	20
17	C1M	Concrete Moment Frame	Mid-Rise	4 - 7	5	50
18	C1H		High-Rise	8+	12	120
19	C2L		Low-Rise	1 - 3	2	20
20	C2M	Concrete Shear Walls	Mid-Rise	4 - 7	5	50
21	C2H		High-Rise	8+	12	120
22	C3L		Low-Rise	1 - 3	2	20
23	C3M	Concrete Frame with Unreinforced Masonry Infill Walls	Mid-Rise	4 - 7	5	50
24	СЗН		High-Rise	8+	12	120
25	PC1	Precast Concrete Tilt-Up Walls		All	1	15
26	PC2L		Low-Rise	1 - 3	2	20
27	PC2M	Precast Concrete Frames with Concrete Shear Walls	Mid-Rise	4 - 7	5	50
28	PC2H		High-Rise	8+	12	120
29	RM1L RM1M	Reinforced Masonry Bearing	Low-Rise Mid-Rise	1-3 4+	2	20
30		Walls with Wood or Metal Deck Diaphragms			5	50
31	RM2L		Low-Rise	1 - 3	2	20
32	RM2M	Reinforced Masonry Bearing	Mid-Rise	4 - 7	5	50
33	RM2H	Walls with Precast Concrete Diaphragms	High-Rise	8+	12	120

			Height					
No.	Label	Description	Range		Турі	cal		
			Name Stories		Stories	Feet		
34	URML	Unreinforced Masonry Bearing	Low-Rise Mid-Rise	1 - 2 3+	1	15		
35	URMM	Walls			3	35		
36	MH	Mobile Homes		All	1	10		

Edificios de evacuación en el distrito de La Punta

Edificios Refugio de Emergencia en La Punta

Jr. Arrieta

Capacidad

25 personas

Av. Bolognesi

N° 492

N° 508

N°11

Capacidad

50 personas

Av. Bolognesi

120 personas

Capacidad

Capacidad

60 personas

Bach. Julian Miller Palacios Espinoza

Jr. Sáenz Peña cdra. 4 Capacidad 160 personas

Jr. Arrieta N° 295 Capacidad 200 personas

Jr. Arrieta N° 320 Capacidad 1450 personas

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta

Jr. Figueredo N° 470 Capacidad 110 personas

Jr. Moore N° 496 Capacidad

165 personas Jr. Moore N° 380 Capacidad

75 personas

Jr. Tarapacá N° 155 Capacidad 105 personas

ANEXOS

Jr. Tarapacá N° 288 Capacidad

Escuela Naval Capacidad **3mil personas**

98

Metodología Hazus: Parámetros de la curva de fragilidad estructural según el nivel de diseño sísmico.

Building Properties			Interstory Drift at Threshold of Damage State					Spectral Displacement (inches)						
Туре	Height	(inches)	S			Slight	Slight Moderate		Э	e Extensive		Complet	te	
	Roof	Modal	Slight	Moderate	Extensive	Complete	Median	Beta	Median	Beta	Median	Beta	Median	Beta
W1	168	126	0.0040	0.0120	0.0400	0.1000	0.50	0.80	1.51	0.81	5.04	0.85	12.60	0.97
W2	288	216	0.0040	0.0120	0.0400	0.1000	0.86	0.81	2.59	0.88	8.64	0.90	21.60	0.83
S1L	288	216	0.0060	0.0120	0.0300	0.0800	1.30	0.80	2.59	0.76	6.48	0.69	17.28	0.72
S1M	720	540	0.0040	0.0080	0.0200	0.0533	2.16	0.65	4.32	0.66	10.80	0.67	28.80	0.74
S1H	1872	1123	0.0030	0.0060	0.0150	0.0400	3.37	0.64	6.74	0.64	16.85	0.65	44.93	0.67
S2L	288	216	0.0050	0.0100	0.0300	0.0800	1.08	0.81	2.16	0.89	6.48	0.94	17.28	0.83
S2M	720	540	0.0033	0.0067	0.0200	0.0533	1.80	0.67	3.60	0.67	10.80	0.68	28.80	0.79
S2H	1872	1123	0.0025	0.0050	0.0150	0.0400	2.81	0.63	5.62	0.63	16.85	0.64	44.93	0.71
S3	180	135	0.0040	0.0080	0.0240	0.0700	0.54	0.81	1.08	0.82	3.24	0.91	9.45	0.90
S4L	288	216	0.0040	0.0080	0.0240	0.0700	0.86	0.89	1.73	0.89	5.18	0.98	15.12	0.87
S4M	720	540	0.0027	0.0053	0.0160	0.0467	1.44	0.77	2.88	0.72	8.64	0.70	25.20	0.89
S4H	1872	1123	0.0020	0.0040	0.0120	0.0350	2.25	0.64	4.49	0.66	13.48	0.69	39.31	0.77
S5L														
S5M														
S5H														
C1L	240	180	0.0050	0.0100	0.0300	0.0800	0.90	0.81	1.80	0.84	5.40	0.86	14.40	0.81
C1M	600	450	0.0033	0.0067	0.0200	0.0533	1.50	0.68	3.00	0.67	9.00	0.68	24.00	0.81

Structural Fragility Curve Parameters - High-Code Seismic Design Level

Building Prope	rties		Interstory Drift at Threshold of Damage State					Spectral Displacement (inches)						
Туре	Height	(inches)					Slight	Slight		Э	Extensiv	е	Comple	te
	Roof	Modal	Slight	Moderate	Extensive	Complete	Median	Beta	Median	Beta	Median	Beta	Median	Beta
C1H	1440	864	0.0025	0.0050	0.0150	0.0400	2.16	0.66	4.32	0.64	12.96	0.67	34.56	0.78
C2L	240	180	0.0040	0.0100	0.0300	0.0800	0.72	0.81	1.80	0.84	5.40	0.93	14.40	0.92
C2M	600	450	0.0027	0.0067	0.0200	0.0533	1.20	0.74	3.00	0.77	9.00	0.68	24.00	0.77
C2H	1440	864	0.0020	0.0050	0.0150	0.0400	1.73	0.68	4.32	0.65	12.96	0.66	34.56	0.75
C3L														
СЗМ														
СЗН														
PC1	180	135	0.0040	0.0080	0.0240	0.0700	0.54	0.76	1.08	0.86	3.24	0.88	9.45	0.99
PC2L	240	180	0.0040	0.0080	0.0240	0.0700	0.72	0.84	1.44	0.88	4.32	0.98	12.60	0.94
PC2M	600	450	0.0027	0.0053	0.0160	0.0467	1.20	0.77	2.40	0.81	7.20	0.70	21.00	0.82
PC2H	1440	864	0.0020	0.0040	0.0120	0.0350	1.73	0.64	3.46	0.66	10.37	0.68	30.24	0.81
RM1L	240	180	0.0040	0.0080	0.0240	0.0700	0.72	0.84	1.44	0.86	4.32	0.92	12.60	1.01
RM1M	600	450	0.0027	0.0053	0.0160	0.0467	1.20	0.71	2.40	0.81	7.20	0.76	21.00	0.75
RM2L	240	180	0.0040	0.0080	0.0240	0.0700	0.72	0.80	1.44	0.81	4.32	0.91	12.60	0.98
RM2M	600	450	0.0027	0.0053	0.0160	0.0467	1.20	0.71	2.40	0.79	7.20	0.70	21.00	0.73
RM2H	1440	864	0.0020	0.0040	0.0120	0.0350	1.73	0.66	3.46	0.65	10.37	0.66	30.24	0.72
URML URMM														
МН	120	120	0.0040	0.0080	0.0240	0.0700	0.48	0.91	0.96	1.00	2.88	1.03	8.40	0.92

Building Properties			Interstory Drift at Threshold of Damage State				Spectral Displacement (inches)							
Туре	Height (inches)					Slight		Moderate		Extensive		Complete		
	Roof	Modal	Slight	Moderate	Extensive	Complete	Median	Beta	Median	Beta	Median	Beta	Median	Beta
W1	168	126	0.0040	0.0099	0.0306	0.0750	0.50	0.84	1.25	0.86	3.86	0.89	9.45	1.04
W2	288	216	0.0040	0.0099	0.0306	0.0750	0.86	0.89	2.14	0.95	6.62	0.95	16.20	0.92
S1L	288	216	0.0060	0.0104	0.0235	0.0600	1.30	0.80	2.24	0.75	5.08	0.74	12.96	0.88
S1M	720	540	0.0040	0.0069	0.0157	0.0400	2.16	0.65	3.74	0.68	8.46	0.69	21.60	0.87
S1H	1872	1123	0.0030	0.0052	0.0118	0.0300	3.37	0.64	5.83	0.64	13.21	0.71	33.70	0.83
S2L	288	216	0.0050	0.0087	0.0233	0.0600	1.08	0.93	1.87	0.92	5.04	0.93	12.96	0.93
S2M	720	540	0.0033	0.0058	0.0156	0.0400	1.80	0.70	3.12	0.69	8.40	0.69	21.60	0.89
S2H	1872	1123	0.0025	0.0043	0.0117	0.0300	2.81	0.66	4.87	0.64	13.10	0.69	33.70	0.80
S3	180	135	0.0040	0.0070	0.0187	0.0525	0.54	0.88	0.94	0.92	2.52	0.97	7.09	0.89
S4L	288	216	0.0040	0.0069	0.0187	0.0525	0.86	0.96	1.50	1.00	4.04	1.03	11.34	0.92
S4M	720	540	0.0027	0.0046	0.0125	0.0350	1.44	0.75	2.50	0.72	6.73	0.72	18.90	0.94
S4H	1872	1123	0.0020	0.0035	0.0093	0.0262	2.25	0.66	3.90	0.67	10.50	0.70	29.48	0.90
S5L														
S5M														
S5H														
C1L	240	180	0.0050	0.0087	0.0233	0.0600	0.90	0.89	1.56	0.90	4.20	0.90	10.80	0.89
C1M	600	450	0.0033	0.0058	0.0156	0.0400	1.50	0.70	2.60	0.70	7.00	0.70	18.00	0.89
C1H	1440	864	0.0025	0.0043	0.0117	0.0300	2.16	0.66	3.74	0.66	10.08	0.76	25.92	0.91
C2L	240	180	0.0040	0.0084	0.0232	0.0600	0.72	0.91	1.52	0.97	4.17	1.03	10.80	0.87

Structural Fragility Curve Parameters – Moderate Code Seismic Design Level

Building Properties			Interstory Drift at Threshold of Damage State				Spectral Displacement (inches)							
Type Height (inches)		1					Slight		Moderate		Extensive		Complete	
	Roof	Modal	Slight	Moderate	Extensive	Complete	Median	Beta	Median	Beta	Median	Beta	Median	Beta
C2M	600	450	0.0027	0.0056	0.0154	0.0400	1.20	0.81	2.53	0.77	6.95	0.73	18.00	0.91
C2H	1440	864	0.0020	0.0042	0.0116	0.0300	1.73	0.66	3.64	0.68	10.00	0.70	25.92	0.87
C3L														
СЗМ														
СЗН														
PC1	180	135	0.0040	0.0070	0.0187	0.0525	0.54	0.89	0.94	0.92	2.52	0.97	7.09	1.04
PC2L	240	180	0.0040	0.0069	0.0187	0.0525	0.72	0.96	1.25	1.00	3.37	1.03	9.45	0.88
PC2M	600	450	0.0027	0.0046	0.0125	0.0350	1.20	0.82	2.08	0.79	5.61	0.75	15.75	0.93
PC2H	1440	864	0.0020	0.0035	0.0094	0.0263	1.73	0.68	3.00	0.69	8.08	0.77	22.68	0.89
RM1L	240	180	0.0040	0.0069	0.0187	0.0525	0.72	0.96	1.25	0.99	3.37	1.05	9.45	0.94
RM1M	600	450	0.0027	0.0046	0.0125	0.0350	1.20	0.81	2.08	0.82	5.61	0.80	15.75	0.89
RM2L	240	180	0.0040	0.0069	0.0187	0.0525	0.72	0.91	1.25	0.96	3.37	1.02	9.45	0.93
RM2M	600	450	0.0027	0.0046	0.0125	0.0350	1.20	0.81	2.08	0.80	5.61	0.75	15.75	0.88
RM2H	1440	864	0.0020	0.0035	0.0094	0.0263	1.73	0.67	3.00	0.69	8.08	0.70	22.68	0.86
URML URMM														
MH	120	120	0.0040	0.0080	0.0240	0.0700	0.48	0.91	0.96	1.00	2.88	1.03	8.40	0.92

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta Bach. Julian Miller Palacios Espinoza

Gráfica de la Altura Equivalente de Tsunami.

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 1, se muestran los resultados de los escenarios de Mw. 8.5 a 9.0 (desde la esquina superior izquierda a la esquina inferior derecha)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 103 Bach. Julian Miller Palacios Espinoza

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 2, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 104 Bach. Julian Miller Palacios Espinoza

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 3, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 105 Bach. Julian Miller Palacios Espinoza

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 4, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 106 Bach. Julian Miller Palacios Espinoza

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 5, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 6, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 108 Bach. Julian Miller Palacios Espinoza

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 7, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 109 Bach. Julian Miller Palacios Espinoza

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 8, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 110 Bach. Julian Miller Palacios Espinoza

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 9, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 111 Bach. Julian Miller Palacios Espinoza

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 10, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 112 Bach. Julian Miller Palacios Espinoza

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 11, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 12, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 13, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 115 Bach. Julian Miller Palacios Espinoza

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 14, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 116 Bach. Julian Miller Palacios Espinoza

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 16, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 17, se muestran los resultados de los escenarios de 8.5 a 9.0 Mw (desde la esquina superior izquierda a la esquina inferior derecha)

Estas graficas muestran la altura equivalente de tsunami vs. tiempo para el Punto 18, se muestran los resultados de los escenarios de Mw. 8.5 a 9.0 (desde la esquina superior izquierda a la esquina inferior derecha)

ANEXO 5

Disposición de Fibras en Columnas.

Disposición de las fibras en la sección de la Columna P1:

PERFORM-3D V7.0.0 : MODELO TSU	-	-		-		-		= ×	
File Phase Task Help									
U⊯∎∎ro∎∎‱J⊷rchm≁i⊛									
COMPONENT PROPERTIES									
Materials Strength Sects Compound	Structu	ural Fibers	Capaci	ties	Shear and To	rsion	Other Propert	ies	
Inelastic Elastic Cross Sects									
STRUCTURAL FIBER TO BE ADDED OR CHANGED Axis 2									
Type Column, Inelastic Fiber Section	Material Type Inelastic Steel Material, Non-Buckling 👻 🖓							Der	
	Matala	-IN	ACTEC.CO			Ψĺ	→ → ∧	xis 3	
New dit an existing section.	Materia	arname ine				<u> </u>	L		
	Fib	per Area	Axis 2 C	Coord	Axis 3 Coo	rd			
Name PTT						1			
Bename Text for filter.			Add	Insert H	Replace Dele	te			
Length Unit m Force Unit kgf	SIRUL	TUHAL FIB	ER LIST (MAX 60	IJ UICK to higi	nlight row for thse	rt, Heplace of De	iete.		
	No. Typ	pe Mat	erial Name		Area	Axis 2 Coord	Axis 3 Coord		
Status Saved.	1 Co	ncrete Con	nc-Concreto210		0.0167	-0.3333	-0.0625		
Check Save Save As Delete	2 Co	ncrete Con	c-Concreto210		0.0167	-0.2	-0.0625		
	3 Co	ncrete Con	c-Concreto210		0.0167	-0.0667	-0.0625		
Fiber Areas and Coordinates	4 Co	ncrete Con	c-Concreto210		0.0167	0.0667	-0.0625		
FIXED SIZE option	5 Co	ncrete Con	nc-Concreto210		0.0167	0.2	-0.0625		
	6 Co	ncrete Con	c-Concreto210		0.0167	0.3333	-0.0625		
Section Properties	7 Co	oncrete Con	nc-Concreto210		0.0167	-0.3333	0.0625		
Concrete Steel	8 Co	oncrete Con	c-Concreto210		0.0167	-0.2	0.0625		
Area = .2004 .007168	9 Co	oncrete Con	nc-Concreto210		0.0167	-0.0667	0.0625		
	10 Co	oncrete Con	nc-Concreto210		0.0167	0.0667	0.0625		
Inertia about Axis 3 = 01039 5.616e-4	11 Co	ncrete Con	nc-Concreto210		0.0167	0.2	0.0625		
Axis 2 Centroid = 0 0	12 Co	ncrete Con	nc-Concreto210		0.0167	0.3333	0.0625		
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	13 Ste	eel Reb	ar-A615Gr60		0.000512	-0.36	-0.085		
Inertia about Axis 2 = 7.828e-4 5.179e-5	14 Ste	eel Reb	ar-A615Gr60		0.000512	-0.36	0.085		
Axis 3 Centroid = 0 0	15 Ste	eel Reb	par-A615Gr60		0.000512	-0.335	-0.085		
	16 Ste	eel Reb	ar-A615Gr60		0.000512	-0.335	0.085		
	17 Ste	eel Reb	ar-A615Gr60		0.000512	-0.18	-0.085		
Import Components Export Components	18 Ste	eel Reb	ar-A615Gr60		0.000512	-0.18	0.085		
	19 Ste	eel Reb	ar-A615Gr60		0.000512	0	-0.085		
Selected components of this type.	20 Ste	eel Reb	ar-A615Gr60		0.000512	0	0.085	-	
C All components of all types.	21 Ste	eel Reb	ar-A615Gr60		0.000512	0.18	-0.085	_	
	22 Ste	eel Reb	ar-A615Gr60		0.000512	0.18	0.085		
	= 23 Ste	eel Reb	ar-A615Gr60		0.000512	0.335	-0.085		
	24 Ste	eel Reb	ar-A615Gr60		0.000512	0.335	0.085		
	25 Ste	eel Reb	ar-A615Gr60		0.000512	0.36	-0.085	1	
	26 Ste	eel Reb	ar-A615Gr60		0.000512	0.36	0.085	I	

Disposición de las fibras en la sección de la Columna P2:

PERFORM-3D V7.0.0 : MODELO TSU	and the second second second second		
le Phase Task Help			
	SHOLD		
▐▆▆▞▖▆▐▙▆▕J▖▖▛▖▌▛▖▖			
COMPONENT PROPERTIES			
Materiale Strength Sector Compound	Structural Fibers Canacities	Shear and Torsion	Other Properties
Inelastic Flastic Cross Sosta			o alor i ropolitov
Elono Elono Elono Secto.	STRUCTURAL FIBER TO BE ADDED OR CHANG	ED	Axis 2
Tuna Column Instantia Fiber Section	Material Tune Inclusio Steel Material New Puel-line	- B	Fiber
	Material Type Thelastic Steel Material, NorPolicking	<u></u>	Axis 3
New Choose type and name to	Material Name Rebar-A615Gr60	<u>▼</u> < <u></u> <b< td=""><td></td></b<>	
edit all existing section.	Fiber Area Axis 2 Coord	Axis 3 Coord	-
Name F_P2T1			
Text for filter.	Add Insert	Replace Delete	
Brurge Rename Filter	//_		
Length Unit m Earce Unit kaf	STRUCTURAL FIBER LIST (MAX 60) Click to hig	shlight row for Insert, Replace or	Delete.
	No. Type Material Name	Area Axis 2 Coo	ord Axis 3 Coord 🔺
Status Saved.	1 Concrete Conc-Concreto210	0.02 -0.3333	-0.075
Charles Course Courses	2 Concrete Conc-Concreto210	0.02 -0.2	-0.075
CUECK DAVE 2946 42 Delete	3 Concrete Conc-Concreto210	0.02 -0.0667	-0.075
Fiber Areas and Coordinates	4 Concrete Conc-Concreto210	0.02 0.0667	-0.075
FIXED SIZE option	5 Concrete Conc-Concreto210	0.02 0.2	-0.075
· · · · · · · · · · · · · · · · · · ·	6 Concrete Conc-Concreto210	0.02 0.3333	-0.075
Section Properties	7 Concrete Conc-Concreto210	0.02 -0.3333	0.075
Loncrete Steel	8 Concrete Conc-Concreto210	0.02 -0.2	0.075
Area = .24 .007168	10 Concrete Conc-Concreto210	0.02 -0.06677	0.075
Inertia about Axis 3 = .01244 5.616e-4	11 Concrete Conc-Concreto210	0.02 0.00077	0.075
	12 Concrete Conc-Concreto210	0.02 0.3333	0.075
Axis 2 Centroid = 5.8346-6 U	13 Steel Rebar-A615Gr60	0.000512 0	-0.11
Inertia about Axis 2 = .00135 8.673e-5	14 Steel Rebar-A615Gr60	0.000512 0	0.11
Auto 2 Combrid - 0	15 Steel Rebar-A615Gr60	0.000512 0.18	0.11
	16 Steel Rebar-A615Gr60	0.000512 0.18	-0.11
	17 Steel Rebar-A615Gr60	0.000512 -0.18	-0.11
Import Components Export Components	18 Steel Rebar-A615Gr60	0.000512 -0.18	0.11
	19 Steel Rebar-A615Gr60	0.000512 0.335	0.11
Selected components of this type.	20 Steel Rebar-A615Gr60	0.000512 0.335	-0.11 👻
C All components of all types.	21 Steel Rebar-A615Gr60	0.000512 -0.335	-0.11
	22 Steel Rebar-A615Gr60	0.000512 -0.335	0.11
	23 Steel Rebar-A615Gr60	0.000512 0.36	0.11
	24 Steel Rebar-A615Gr60	0.000512 0.36	-0.11
	25 Steel Rebar-A615Gr60	0.000512 -0.36	-0.11
	20 Steel Rebar-A615Grb0	0.000512 -0.36	10.11

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 121 Bach. Julian Miller Palacios Espinoza Disposición de las fibras en la sección de la Columna P3:

PERFORM-3D V7.0.0 : MODELO TSU			_	_	
ile Phace Tack Help					
		-1			
16 98 7 2 6 7 7 10 10	패혜인브(환)	<u>4</u>			
COMPONENT PROPERTIES					
	Churchwell Eit		hear and Tora	ion Y	Other Properties
Materials Strength Sects Lompound	Structural Fib	Ders Capacities 5	near and 1 ors	ion	Uther Properties
Inelastic Elastic Lross Sects.	STRUCTURAL	L FIBER TO BE ADDED OR CHANGED			Axis 2
			F 1		Fibe
Type Column, Inelastic Fiber Section	Material Type	Inelastic Steel Material, Non-Buckling	1		Axis
New Choose type and name to	Material Name	Rebar-A615Gr60	<u>→</u> 🗄		
edit an existing section.	Fiber Area	Axis 2 Coord	Axis 3 Coord		
Name F_P3T1					
Text for filter.		Add Insert Repla	ce Delete		
Purge Rename Filter				_	
Levelt Init Error Init Inf	STRUCTURAL	L FIBER LIST (MAX 60) Click to highlight	row for Insert,	Replace or Del	ete.
Lengerionik (ini Poice onik (kgi	No Type	Material Name	Area	Axis 2 Coord	Axis 3 Coord
Status Saved.	1 Concrete	Conc-Concreto210	0.025	-0.41677	-0.075
	2 Concrete	Conc-Concreto210	0.025	-0.25	-0.075
Check Save Save As Delete	3 Concrete	Conc-Concreto210	0.025	-0.0833	-0.075
- Fiber Areas and Coordinates	4 Concrete	Conc-Concreto210	0.025	0.0833	-0.075
FIXED SIZE option	5 Concrete	Conc-Concreto210	0.025	0.25	-0.075
TINED SIZE Spillin	6 Concrete	Conc-Concreto210	0.025	0.4167	-0.075
Section Properties	7 Concrete	Conc-Concreto210	0.025	-0.4167	0.075
Concrete Steel	8 Concrete	Conc-Concreto210	0.025	-0.25	0.075
Area = .3 .007168	9 Concrete	Conc-Concreto210	0.025	-0.0833	0.075
Inertia about Avis 3 = 02431 6 741e-4	10 Concrete	Conc-Concreto210	0.025	0.0833	0.075
	11 Concrete	Conc-Concreto210	0.025	0.4167	0.075
Axis 2 Centroid = -5.834e-6 0	13 Steel	Rebar-A615Gr60	0.000512	0.4107	-0.11
Inertia about Axis 2 = .001688 8.673e-5	14 Steel	Rebar-A615Gr60	0.000512	0	0.11
hii 2 Contrit	15 Steel	Rebar-A615Gr60	0.000512	0.1533	0.11
Axis 3 Lentroid = U U	16 Steel	Rebar-A615Gr60	0.000512	0.1533	-0.11
	17 Steel	Rebar-A615Gr60	0.000512	-0.1533	-0.11
Import Components Export Components	18 Steel	Rebar-A615Gr60	0.000512	-0.1533	0.11
· · · · ·	19 Steel	Rebar-A615Gr60	0.000512	0.3067	0.11
Selected components of this type.	20 Steel	Rebar-A615Gr60	0.000512	0.3067	-0.11
C All components of all types.	21 Steel	Rebar-A615Gr60	0.000512	-0.3067	-0.11
	22 Steel	Rebar-A615Gr60	0.000512	-0.3067	0.11
	23 Steel	Rebar-A615Gr60	0.000512	0.46	0.11
	24 Steel	Rebar-A615Gr60	0.000512	0.46	-0.11
	25 Steel	Repar-Ab15Gr60	0.000512	-0.46	-0.11
	26 Stee	IRepar-Ab15Gr60	10.000512	1-0.46	10.11

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 122 Bach. Julian Miller Palacios Espinoza Disposición de las fibras en la sección de la Columna P5:

PERFORM-3D V7.0.0 : MODELO TSU	_		-	-)
ile Phase Task Help		1				
) 🖻 🖬 🖹 📕 📾 🗳 🛨 🖬 🗠 🎞 🖉 🚅	<u>혀이라.</u>	1				
COMPONENT PROPERTIES						
	0	Y	CI IT 1	· · · · · ·	01 0 1	_
Materials Strength Sects Compound	Structural Fib	ers Lapacities	Shear and Lors	ion	Uther Propertie	:S
Inelastic Elastic Cross Sects.	STRUCTURAL	FIRER TO BE ADDED OR CHANGED			Axis 2	
	ornooronae		e i		r † Fibe	er
Type Column, Inelastic Fiber Section 📃 🛃	Material Type	Inelastic Steel Material, Non-Buckling 🔄	21			i. 2
Mew P Choose type and name to	Material Name	Rebar-A615Gr60	▼ 41			15 0
edit an existing section.	Fiber Area	Avia 2 Coord	Avia 2 Coord	·	1	
Name F P5T8	Tibel Alea	Axis 2 Coold	Axis 5 Coold			
Text for filter		Add Insert Rep	ace Delete	1		
🗃 Purge Rename Filter Filter						
	STRUCTURAL	FIBER LIST (MAX 60) Click to highligh	it row for Insert,	Replace or Del	ete.	
Length Unit m Force Unit kgf	No Trees	Matarial Nama		Auto 2 Canad	Auto 2 Count	
Status Saved	1 Concrete	Conc Concreto210	0.0197	AXIS 2 COUIU	0.0625	-
	2 Concrete	Conc-Concreto210	0.0187	-0.075	-0.0625	
Check Save Save As Delete	3 Concrete	Conc-Concreto210	0.0187	0.075	-0.0625	
	4 Concrete	Conc-Concreto210	0.0187	0.225	-0.0625	
Fiber Areas and Coordinates	5 Concrete	Conc-Concreto210	0.0187	-0.225	0.0625	
FIXED SIZE option	6 Concrete	Conc-Concreto210	0.0187	-0.075	0.0625	
Section Properties	7 Concrete	Conc-Concreto210	0.0187	0.075	0.0625	
Concrete Steel	8 Concrete	Conc-Concreto210	0.0187	0.225	0.0625	
Area = .2546 .006144	9 Concrete	Conc-Concreto210	0.02625	-0.075	-0.2125	
	10 Concrete	Conc-Concreto210	0.02625	-0.075	-0.3875	
Inertia about Axis 3 = 1.006186 2.143e-4	11 Concrete	Conc-Concreto210	0.02625	-0.225	-0.2125	
Axis 2 Centroid =0618603833	12 Concrete	Conc-Concreto210	0.02625	-0.225	-0.3875	
hustin shout Avia 2 000041 2107s 4	13 Steel	Rebar-A615Gr60	0.000512	0.26	0.085	
Inertia about Axis 2 = 1.000341 2.1076-4	14 Steel	Rebar-A615Gr60	0.000512	0.26	-0.085	
Axis 3 Centroid = .1237 .1162	15 Steel	Rebar-A615Gr60	0.000512	-0.26	-0.085	
	16 Steel	Rebar-A615Gr60	0.000512	-0.26	0.085	
	17 Steel	Repar-Ac15Gr60	0.000512	0.11	0.085	
Import Components Export Components	18 Steel	Repair-Ao 15GR0	0.000512	0.04	-0.085	
	20 Steel	Peber A615Gr60	0.000512	-0.04	-0.005	-
Selected components of this type. Import	21 Steel	Rebar-A615Gr60	0.000512	-0.04	-0.262	-
All components of all types.	22 Steel	Rebar-A615Gr60	0.000512	-0.04	-0.435	
	23 Steel	Rebar-A615Gr60	0.000512	-0.26	-0.262	_
				<u> </u>		_

e Phase Task Help		
🖻 🖬 🗹 🔳 🖬 🛍 🛨 🖬 🗖 🖬	嫱р⋳⋓	
COMPONENT PROPERTIES		
Materials Strength Sects Compound	Structural Fibers Capacities SI	near and Torsion Other Properties
Inelastic Elastic Cross Sects.	STRUCTURAL FIBER TO BE ADDED OR CHANGED	Axis 2
Type Column, Inelastic Fiber Section 🗾 🛃	Material Type 🛛 Inelastic Steel Material, Non-Buckling 🗾 🛃	f Fiber
Choose type and name to	Material Name Rebar-A615Gr60	Axis 3
edit an existing section.	Fiber Area Axis 2 Coord	Axis 3 Coord
Name F_P6T10		
Text for filter.	Add Insert Replac	e Delete
Length Unit m Force Unit kgf	STRUCTURAL FIBER LIST (MAX 60) Click to highlight	ow for Insert, Replace or Delete.
	No. Type Material Name	Area Axis 2 Coord Axis 3 Coord 🔺
Status Saved.	1 Concrete Conc-Concreto210	0.0146 -0.0625 -0.2917
Check Save Save Ac Delete	2 Concrete Conc-Concreto210	0.0146 0.0625 -0.2917
	3 Concrete Conc-Concreto210	0.0146 -0.0625 -0.175
Fiber Areas and Coordinates	4 Concrete Conc-Concreto210	0.0146 0.0625 -0.175
FIXED SIZE option	5 Concrete Conc-Concreto210	0.0146 -0.0625 -0.0583
	6 Concrete Conc-Concreto210	0.0146 0.0625 -0.0583
Section Properties	7 Concrete Conc-Concreto210	0.0146 -0.0625 0.0583
Concrete Steel	8 Concrete Conc-Concreto210	0.0146 0.0625 0.0583
Area = .1752 .004096	9 Concrete Conc-Concreto210	0.0146 -0.0625 0.175
	10 Concrete Conc-Concreto210	0.0146 0.0625 0.175
Inertia about Axis 3 = 6.844e-4 2.959e-5	11 Concrete Conc-Concreto210	0.0146 -0.0625 0.2917
Axis 2 Centroid = 0 0	12 Concrete Conc-Concreto210	0.0146 0.0625 0.2917
	13 Steel Rebar-A615Gr60	0.000512 0.085 -0.31
Inertia about Axis 2 = 0.006956 2.235e-4	14 Steel Rebar-A615Gr60	0.000512 -0.085 -0.31
Axis 3 Centroid = 0	15 Steel Rebar-A615Gr60	0.000512 -0.085 0.31
	16 Steel Rebar-A615Gr60	0.000512 0.085 0.31
	17 Steel Rebar-A615Gr60	0.000512 0.085 -0.14
Import Components Export Components	18 Steel Rebar-A615Gr60	0.000512 -0.085 -0.14
	19 Steel Rebar-A615Gr60	0.000512 0.085 0.085
Selected components of this tune	20 Steel Rebar-A615Gr60	0.000512 -0.085 0.085 -

Disposición de las fibras en la sección de la Columna P6:

Evaluación Estructural de un Edificio Existente como Refugio Vertical ante Sismo y Tsunami en el Distrito de La Punta 124 Bach. Julian Miller Palacios Espinoza

Disposición de las fibras en la sección de la Columna P7:

PERFORM-3D V7.0.0 : MODELO TSU	_					
File Phase Task Help						
D2 90× 9 69 110 14:	â⊫¤I⊒I & I⊄	l				
COMPONENT PROPERTIES						
Materials Strength Sects Compound	Structural Fibe	rs Capacities Sh	ear and Torsion	Other Properties		
Inelastic Elastic Cross Sects		<u>н</u>				
	STRUCTURAL	FIBER TO BE ADDED OR CHANGED		Axis Z		
Type Column, Inelastic Fiber Section 🔍 🕄	Material Type	Inelastic Steel Material, Non-Buckling 💌 🛣	1	e Fiber		
	Material Name	Bebaró6150r60		Axis 3		
edit an existing section.	material Hame			ii		
Name E P7T11	Fiber Area	Axis 2 Coord	Axis 3 Coord			
Taut for Ohm		Add Inset Replac	a Deleta			
Purge Rename Filter Filter		Adu Inseit Neplac				
	STRUCTURAL	FIREBILIST (MAX 60) Click to bigblight r	ow for Insert. Beplace or De	ete		
Length Unit m Force Unit kgf		index of the second sec				
Status Saved	No. Type	Material Name	Area Axis 2 Coord	Axis 3 Coord		
ordere joaved.	1 Concrete	Conc-Concreto210	0.0156 -0.0625	-0.3125		
Check Save Save As Delete	2 Concrete	Conc-Concreto210	0.0156 0.0625	0.1875		
	4 Concrete	Conc Concreto210	0.0156 0.0625	0.1875		
Fiber Areas and Coordinates	5 Concrete	Conc-Concreto210	0.0156 -0.0625	-0.0625		
FIXED SIZE option	6 Concrete	Conc-Concreto210	0.0156 0.0625	-0.0625		
Section Properties	7 Concrete	Conc-Concreto210	0.0156 -0.0625	0.0625		
Concrete Steel	8 Concrete	Conc-Concreto210	0.0156 0.0625	0.0625		
Area = 3 006144	9 Concrete	Conc-Concreto210	0.0156 -0.0625	0.1875		
	10 Concrete	Conc-Concreto210	0.0156 0.0625	0.1875		
Inertia about Axis 3 = 0.01114 2.992e-4	11 Concrete	Conc-Concreto210	0.0156 -0.0625	0.3125		
Axis 2 Centroid = .1316 .1408	12 Concrete	Conc-Concreto210	0.0156 0.0625	0.3125		
	13 Concrete	Conc-Concreto210	0.0141 -0.1812	0.1875		
Inertia about Axis 2 = 1.01337 3.505e-4	14 Concrete	Conc-Concreto210	0.0141 -0.1812	0.3125		
Axis 3 Centroid = .094 .09667	15 Concrete	Conc-Concreto210	0.0141 -0.2937	0.1875		
	16 Concrete	Conc-Concreto210	0.0141 -0.2937	0.3125		
	17 Concrete	Conc-Concreto210	0.0141 -0.4062	0.18/5		
Import Lomponents Export Components	19 Concrete	Conc. Concreto210	0.0141 -0.4002	0.1875		
	20 Concrete	Conc-Concreto210	0.0141 -0.5187	0.3125		
Selected components of this type. Import	21 Steel	Rebar-A615Gr60	0.000512 0.085	-0.335		
 All components of all types. 	22 Steel	Rebar-A615Gr60	0.000512 0.085	0.335		
	23 Steel	Rebar-A615Gr60	0.000512 -0.085	0.335		
	24 Steel	Rebar-A615Gr60	0.000512 -0.085	-0.335		
	25 Steel	Rebar-A615Gr60	0.000512 0.085	-0.085		
	26 Steel	Rebar-A615Gr60	0.000512 -0.085	-0.085		
	27 Steel	Rebar-A615Gr60	0.000512 -0.085	0.165		
	28 Steel	Rebar-A615Gr60	0.000512 0.085	0.165		
	29 Steel	Rebar-A615Gr60	0.000512 -0.31	0.165		
	30 Steel	Repar-A615Gr60	0.000512 -0.31	0.335		
	31 Steel	Rebar-Actor/CO	0.000512 -0.535	0.105		
	32 Steel	Rebar-Ab15Gr60	0.000512 -0.535	0.335		