Universidad Nacional de Ingeniería

Programa Académico de Ingeniería de Petróleo y Petroquímica

Análisis de los Esquemas de Refinación para la Maximización de Destilados Medios en la Refinería La Pampilla

Tesis para optar el título profesional de INGENIERO PETROQUIMICO

César Augusto Batalla Orosco

Promoción 79 - 1

LIMA - PERU

1982

A mis queridos padres:

Rosa e Hildebrando.

Mi más profundo agradecimien to a todas las personas que colaboraron en la elaboración de esta tesis y en especial a mi profesor y amigo Ing. Ernesto Barreda.

Agradezco a Petróleos del Perú por haberme brindado las facilidades necesarias para el estudio de la <u>Re</u> finería La Pampilla en la presente Tesis.

INDICE

			Pág
i. RE	SUMEN		
ii. CO	NCLUSIO	NES Y OBSERVACIONES	
iii. RE	COMENDA	CIONES	
CAPITUL	O I. ES	QUEMA DE REFINACION EXISTENTE EN	
		ELAPA"	1
1.1	Antece	dentes	1
1.2	Breve	Historia	2
1.3	Capaci	dad de Refinación actual	4
	1.3.1	Unidades de Destilación Primaria	
		I y II	4
	1.3.2	Unidad de Destilación al Vacío	6
	1.3.3	Unidad de Craqueo Catalítico Flui	
		do (FCC)	7
1.4	Rendim	uientos de Destilados Medios	8
	1.4.1	Unidades de Destilación Primaria	
		I y II	9
	1.4.2	Influencia de la Carga en el ren-	
		dimiento de los Destilados Medios	12
	1.4.3	Unidad Ĉe Destilación al Vacío	15
	1.4.4	Unidad de Craqueo Catalítico Flui	
		do (FCC)	16
1.5	Mejora	s Oqerativas en las Unidades exis-	
	tentes	para maximizar los rendimientos de	
	Destil	ados Medios	17
	1.5.1	Antecedentes	17
	1.5.2	Medidas tomadas	19 [.]
	1.5.3	Incremento del rendimiento del Die	
		sel en las Unidades de Destilación	
		Primaria	21
	1.5.4	Especificaciones: Petroperú-Itintec	22
	1.5.5	Especificaciones características	
		de los productos refinados en Relapa	25

	1.5.6	Incremento de la producción de Die-	
		sel con LVGO	49
	1.5.7	Mezcla de LCO (Aceite Cíclico Lige-	
		ro) de FCC en el Pool de Diesel	55
	1.5.8	Estabilidad a la oxidación del Die-	
		sel N° 2 en mezclas con LVGO y LCO	58
1.6	Esquema	as de Refinación propuestos	61
CADTTIII) TT	MPLIACION DE LA UNIDAD DE DESTILACION	
CALLION		L VACIO A 12 MBPD	65
2.1	Limita	ciones de la Unidad	65
	2.1.1	Horno	65
	2.1.2	Columna	65
	2.1.3	Variables del proceso	66
	2.1.4	Variables de operación	66
2.2	Modifie	caciones posibles en la columna de	
	Destila	ación al Vacío	67
	2.2.1	Cálculo de la capacidad de vapor a	
		través del Plato 14	67
	2.2.2	Cálculo de los tiempos de residencia	
		en los Platos Recolectores o Acumula	
		dores 1 y 2 de la columna	70
	2.2.3	Comparación de los Flujos de Diseño,	
		actual y de ampliación	75
CAPITULO	o III. I	INSTALACION DE UNA UNIDAD DE REDUCCION	
	1	DE VISCOSIDAD (VISBREAKING)	76
3.1	Defini	ción y comentarios	76
	3.1.1	Calidad de la carga	77
	3.1.2	Parámetros de diseño	77
	3.1.3	Formación de Coque	79
	3.1.4	Correlaciones de Visbreaking	80
3.2	Propie	dades de los productos	81
	3.2.1	Gasolina de Visbreaking	81
	3.2.2	Gasóleo Ligero de Visbreaking	82

	3.2.3 Gasoleo de Visbreaking como carga a FCC	82
. 3.3	Pruebas analíticas de control a la carga y	
	su objetivo en una Planta Reductora de Vis-	
	cosidad	83
	3.3.1 Características del Residual de Va-	
	cío de Relapa	85
3.4	Posibles rendimientos de la Planta Reducto-	
	ra de Viscosidad a diferentes severidades	89
3.5	Métodos utilizados para evaluar rendimien-	
	tos en una Planta Reductora de Viscosidad	91
	3.5.1 Conversión total	91
	3.5.2 Indice de Reducción de Viscosidad	
	(IRV)	92
	3.5.3 Indice de Reducción de Combustoleo	
	(IRC)	93
3.6	Posibles esquemas de la utilización de la	
	Unidad Reductora de Viscosidad	94
CAPITUL	O IV. AMPLIACION DE LA UNIDAD DE CRAQUEO	
	CATALITICO FLUIDO (FCC) A 8MBPD	95
4.1	Antecedentes	95
	4.1.1 Reparaciones mayores del Sistema Re-	
	actor-Regenerador	95
	4.1.2 Ventajas ofrecidas por el Promotor de	
	Combustión sobre el Catalizador CBZ-1	98
4.2	Operación de la Unidad a Baja Presión	102
4.3	Uso de nuevos catalizadores para maximizar	
	LCO	104
4.4	Avances y mejoras en los nuevos catalizado-	
	res	108
	4.4.1 Tolerancia a los metales	108
	4.4.2 Aumento del Octanaje de la Gasolina	110

4.5	Familia	a de Catalizadores Super-D	121
CAPITUL		ALISIS TECNICO-ECONOMICO DE LOS ESQUE S DE REFINACION PROPUESTOS	
5.1	Introd	ucción	127
5.2	Esquema	as propuestos	127
	5.2.1	Caso Base 1 Usando Catalizador Su-	
		per-D	127
	5.2.2	Caso Base 2 Usando Catalizador	
		CBZ-1	128
5.3	Balance	es globales de los esquemas propues-	
	tos		12 9
5.4	Cálculo	o de la viscosidad del Diesel Nº 2 y	
		idual Nº 6 para los esquemas propues-	
	tos	• • •	143
5.5	Diagra	mas de Flujos Integrales	
	_	is económico de los esquemas propues-	
	tos		152
	5.6.1	Ampliación de la Unidad de Vacío a	
		12 MBPD	152
	5.6.2	Ampliación de la Unidad de FCC a	
		8 MBPD	156
	5.6.3	Bases económicas para las nuevas unı	
		dades	160
	5.6.4	Caso 1-A y 1-B	168
	5.6.5	Caso 2-A y 2-B	176
	5.6.6	Caso 3-A, 3-B y 3-C	183
	5.6.7	Caso 4	194
	5.6.8	Caso 5	198
	5.6.9	Caso 6	202
CAPITUL	O VI. 0	PTIMIZACION DEL PROCESO DE REFINACION	
		E LA AMPLIACION DE LA REFINERIA LA	
	P	AMPILLA	
6.1	Introd	ນດວ່ຽນ	206

6.2	Diseño	del Programa	206
	6.2.1	Tarjetas de control del sistema ope-	
		rativo de la computadora	20 7
	6.2.2	Sentencias del MPS Control Language	
		Program	208
	6.2.3	Tarjetas de datos de entrada	209
6.3	Formula	ación de restricciones del rendimien-	
	to de	productos	211
	6.3.1	Destilación Primaria I	211
	6.3.2	Destilación Primaria II	211
	6.3.3	Destilación al Vacío I	212
	6.3.4	Destilación al Vacío II	212
	6.3.5	FCC-I	212
	6.3.6	FCC-II	213
	6.3.7	Visbreaking	213
	6.3.8	Unifining-Platforming	214
6.4	Restri	cciones por balance de cargas a las	
	Unidad	es	214
6.5	Restri	cciones por capacidad de las Unidades	214
6.6	Restri	cciones por Viscosidad	215
6.7	Restri	cciones de GLP a FCC I y II	215
6.8	Restri	cciones de Vapor Reid en la gasolina	
	84		216
6.9	Restri	cción por producción de productos	216
6.10	Restri	cciones por demanda de productos	217
6.11	Lista	de actividades	218
6.12	Diagra	ma de la Matriz Base	
6.13	Result	ados del Programa	221

ANEXOS

- 1. Metodología empleada pora el Cálculo de los Factores de Descuento
- 2. Economic Indicators
- 3. Viscosity Blending Values
- 4. Costos típicos de Inversión y Servicios (UOP)

- 5. Cuadro de precios al consumidor en los países con Empresas miembros de Arpel
- 6. Gráficos
- 7. Listado del Programa

BIBLIOGRAFIA

RESUMEN

El presente estudio analiza en primer lugar el esquema actual de la Refinería y el porcentaje de la producción de destilados medios, las mejoras operativas existentes para maximizar los destilados medios y hasta qué punto es factible hacerlas sin modificar el actual esquema; sin embargo, estas mejoras operativas fueron las medidas inmediatas que se tuvieron que hacer y se continuarán haciendo en la Refinería "La Pampilla" debido a un aumento considerable de la demanda de los destilados medios, en especial el Diesel Nº 2 en los últimos años.

Estas mejoras operativas dependen principalmente de la flexibilidad del Esquema de Refinación que se tenga, en tendiéndose por flexibilidad a la capacidad de disminuir la producción de un producto para aumentar la de otro, en este caso la gasolina por tener una demanda menor que los Destilados Medios fue la que disminuyó y el corte Kero/Turbo y Diesel aumentaron.

Esto se hizo primeramente bajando el punto final de las gasolinas en las Unidades hasta los límites permisibles de operación y/o de especificación, con lo cual el porcentaje de gasolina que no se producía pasaba a formar parte de los más pesados, en este caso los destilados medios.

También se elevó el punto final del Diesel al máximo ganando de esta manera una parte de Diesel que se perdía en el pool de residuales.

Se suprimió la producción de nafta pesada en la Unidad de Destilación Primaria I, para aumentar el corte de

kero/turbo.

En la Unidad de Destilación al Vacío se modificaron las condiciones de operación para producir un gasoleo liviano con especificación de Diesel, parte del LCO (a ceite cíclico ligero) de la Unidad de FCC se envía al pool de Diesel, aumentando la producción de Diesel.

Todas estas medidas sin embargo, sirven para solucionar el problema actualmente y en algunos casos por paradas de planta imprevistas es difícil satisfacer la demanda, para lo cual el segundo punto tratado es la ampliación de la Unidad de Vacío de 10 a 12 MBPD, sin modificar sustancialmente el diseño principal en la co lumna, para lo que se analizó principalmente las varia bles principales que limitan la capacidad de la unidad, es decir, la capacidad de vapor admisible en los platos 13 y 14 y la capacidad del horno.

El tercer punto es la ampliación de la Unidad de Craqueo Catalítico Fluído a 8 MBPD, donde la limitante principal es la temperatura de la carga a la unidad, para aumentar la eficiencia y rendimiento de esta unidad.

Pero como se puede apreciar, la Refinería "La Pampilla" tiene la Unidad de Destilación Primaria II sin su respectiva unidad de destilación al vacío y además sin una unidad de conversión, y este es el cuarto punto, es decir solucionar la demanda de destilados medios a mediano plazo, implementando estas nuevas unidades al sistema ya existente, pero debido a que el crudo Selva produce residuales de alta viscosidad, se hace necesario el estudio de una unidad reductora de viscosidad para no tener problemas con la viscosidad de los residuales.

Como quinto punto es necesario hacer una evaluación económica de las ampliaciones; primeramente se hace la
evaluación de las ampliaciones de vacío y FCC resultan
do rentables, y en segundo lugar se hacen evaluaciones
de las unidades nuevas de vacío, craqueo catalítico
fluído (FCC) o Hydrocraquin y Visbreaking a diferentes capacidades para determinar cual es el esquema más
rentable.

Finalmente al esquema de refinación más rentable se le optimiza mediante un programa de computación de la IBM 360 llamado "MPS" (Mathematical Program System) que resuelve matrices de programación lineal (PL); minimizan do los costos de operación para todo el conjunto integrado, de unidades existentes, ampliadas y las nuevas unidades.

1. CONCLUSIONES Y OBSERVACIONES

- 1. Se ha tomado como base del estudio un crudo 100% Selva en un rango de 30 a 32º API para hacer la comparación de las mejoras operativas en la Refinería La Pampilla a partir del año 1977 que entró ya en pleno funcionamiento la Unidad de Destilación Primaria II.
- 2. Se deberá continuar produciendo gasolinas y naftas con el punto final de ebullición más bajo permisible por las especificaciones Petroperú-Itintec, es decir la gasolina de destilación primaria I cerca a 280°F, y la nafta cerca de 360°F, también la gasolina de destilación primaria II cerca a 325°F, para de esta manera seguir maximizando los destilados medios.
- 3. Se podría aumentar la producción del corte Turbo/
 Kero a expensas del diesel aumentando el punto final de estos productos hasta el máximo permisible,
 es decir el Turbo hasta 550°F y el Kerosene a 572°F.

Actualmente el Turbo tiene un punto final de 510° a 540°F en la Unidad de Destilación Primaria I y 460-505°F en la Unidad de Destilación Primaria II.

El Kerosene de Destilación Primaria II tiene un pun to final de 480° a 530°F, esto se puede hacer si la carga es totalmente Crudo Selva, pues el Turbo y Ke ro son bastante estables a la oxidación y la degra dación y no son muy ácidos, en cambio los crudo LCT y HCT son inestables y presentan en algunos ca sos un color verdoso y debido a su alta acidez se tiene que neutralizar con soda y luego separarla

en el precipitador electrostático elevando sus cos tos de operación.

- 4. Se maximizaría aún más la producción de Diesel aumentando el punto final, pues de manera indirecta, se limita el punto final a 725°F y las inspecciones realizadas muestran un promedio de 710°F y asi se deberá continuar optimizando el fraccionamiento entre el Diesel y el AGO evitando la pérdida de Diesel en AGO, pues el AGO va al pool de Residuales y éstos se venden a menor precio que el Diesel.
- 5. Se puede observar que con la variación adecuada de las condiciones de operación el gasoleo liviano de vacío I (LVGO) sale con las especificaciones del Diesel por la cual este corte debe ir enteramente al pool de Diesel pues la viscosidad y el índice de cetano final no exceden las especificaciones, en cambio para la nueva unidad se tiene una corrida de prueba que muestra una mayor producción de LVGO sin embargo, el índice de cetano y la viscosidad son las limitantes, es por eso que los rendimientos proyectados son tomados prudentemente con el fin de mantener las especificaciones de Diesel y pueda también el Gasoleo ligero de vacío II (LVGO) al pool de Diesel sin necesidad de un tratamiento posterior.
- 6. En cuanto la mezcla de Aceite cíclico ligero (LCO) de FCC con el Diesel, tiene muchas más limitantes tales como el Número de cetano (>45), color, oxida ción, viscosidad y azufre (%P), el color y la oxida ción nos dan un máximo de 10% de LCO en el pool de Diesel pues el LCO contiene compuestos muy inestables sin embargo, con el tratamiento de un antioxi dante adecuado se puede elevar considerablemente

el % de LCO en el Diesel.

En cuanto al Número de Cetano, éste permite un máximo de 20% de LCO en el pool de Diesel, con lo cual se deduce que con un tratamiento adecuado antioxidante se podría elevar en un 20% en volumen la producción del Diesel, lo cual económicamente resulta bastante atractivo.

- 7. La capacidad de vapor a través del plato 14 es la limitante principal para aumentar la capacidad de la Unidad de Destilación al Vacío, pues tiene una capacidad de vapor máxima, pero aumentando la capacidad de la unidad a 12 MBPD, la capacidad de vapor no supera a ésta, por lo que se puede aumentar la carga a la Columna de Destilación al Vacío sin mayores modificaciones en la columna.
- 8. Debido a el revamping de la Unidad de Vacío a 12 MBPD, se necesita un nuevo horno para que funcione conjuntamente con el horno 11-H2 y disminuir la se veridad a la cual está trabajando este horno, pues tiene más de 13 años y su eficiencia ha disminuido en los últimos años.
- 9. Debido a la alta viscosidad que tiene el Crudo Reducido de Destilación Primaria II se deduce que el Residual de Vacío de este crudo reducido, tendrá u na viscosidad mayor de 1000 SSF a 122°F, lo cual representa un problema en las mezclas, en el pool de residuales, por lo cual se considera la incorporación de una unidad reductora de viscosidad para solucionar dicho problema.
- 10. La carga a la unidad Reductora de Viscosidad (Visbreaking) deberá tener un bajo contenido de Asfal-

tenos, pues la presencia de éstos limita las condiciones de operación y aumenta la severidad de la unidad.

- 11. El incremento de la severidad de la Viscoreducción es producido por el aumento de temperatura en los hornos, dando como resultado un aumento en la formación de coque en los hornos, lo cual originaría paradas extras para el correspondiente decoquifica do.
- 12. Las propiedades de la Nafta y/o Gasolina de Viscoreducción son las típicas de las Gasolinas obtenidas en un proceso de craqueo térmico, por lo cual
 requieren un proceso de endulzamiento, para poder
 mezclarlos en el pool de gasolinas. Sin embargo,
 el actual crudo Selva contiene poco azufre < 1% pe
 so.
- 13. Las gasolinas de Visbreaking, son altamente suceptibles a la reformación catalítica, lo cual nos in dica que podría formar parte de la carga de unifining-platforming.
- 14. La Gasolina de Visbreaking es muy corrosiva e ines table a la formación de Gomas, por su alto conteni do de olefinas, sin embargo, su carácter corrosivo se puede mejorar mediante un tratamiento con sosa y su inestabilidad se volvería despreciable, al mez clarse con la producción total de la refinería.
- 15. El Gasoleo Ligero o Fuel-Oil de Visbreaking esperado, tendrá una gravedad °API de 30-33 y un Número de Cetano de 40-47 y una viscosidad de 34 SSU a 100°F pero inestable a la oxidación; como se puede

apreciar el único problema radica en su <u>inestabili</u> dad a la oxidación, fácilmente remediable mediante un adecuado antioxidante.

- 16. La Unidad de Viscoreducción (Visbreaking) produce además un gasoleo pesado que podría tener buenas características como para poder ser utilizado como carga a la nueva unidad de FCC con un catalizador adecuado.
- 17. De acuerdo a las condiciones de operación la unidad modificada de FCC debe tener una carga fresca con la temperatura igual a 410°F, sin embargo, debido a que no existe un horno de precalentamiento la temperatura es menor lo cual implica:
 - Un mayor régimen de circulación del catalizador para mantener el rendimiento y una conversión adecuada.
 - Limita el régimen de carga fresca a menos de 7 MBPD.
 - El principal problema que se tiene al querer maximizar el LCO, es que el catalizador deberá tener poca actividad, comparado con los otros; el
 CBZ-4 es el que ha sido diseñado para maximizar
 el LCO, pues permite una buena mantención de la
 selectividad y limita la cantidad de coque y tam
 bién permite aumentar la carga fresca hacia el
 reactor.

También aumenta la producción de HCO y Slurry, sin embargo, aumentando el reciclo podemos maximizar el LCO, pero limitados por el aumento de co que y gas.

Sumado a esto viene la tendencia actual de dise-

ño de los catalizadores a maximizar la producción de la selectividad y la producción de Gasolina y minimizar la producción de gases tóxicos debido al gran control del medio ambiente, por lo que la familia CBZ de la Davison está siendo desplazada por la nueva familia de catalizadores Super-D Extra y que con el transcurso del tiempo volverá obsoleta a la familia de catalizadores CBZ pues ofrece muchas ventajas.

19. Según el análisis económico efectuado, las capacidades de las unidades del esquema más rentables son:

Unidad de	Destilación al Vacío II	33	MBPD
Unidad de	Craqueo Catalítico - FCC-II	18	MBPD
Unidad de	Visbreaking	18	MBPD

20. Debido al nivel inflacionario que atraviesa el país actualmente resulta una medida dudosa de la rentabilidad la Tasa Interna de Retorno (TIR), pues la inflación no es constante, en cambio el Valor Actual Neto (VAN), modificado por los factores de des cuento (que es función de la tasa mínima de ganancia reducida, tasa de riesgo y la tasa de inflación) es una medida mucho más real y exacta.

Es por eso que se emplea este criterio en la evaluación económica.

21. El esquema de refinación en el cual se tiene una <u>u</u> nidad de Hydrocraquin es mucho menos rentable debi do a que es necesaria la instalación de una Planta de Hidrógeno que eleva considerablemente los Costos de inversión.

iii. RECOMENDACIONES

- 1. Se recomienda la ampliación de la Unidad de Vacío de 11 a 12 MBPD, pues la limitante principal, la Capacidad Máxima de Vapor que tiene el plato 14 es mucho mayor que el Volumen Vaporizado en la Zo na Flash para 12 MBPD; por lo tanto es factible esta ampliación sin modificaciones importantes en la columna y además es muy rentable económicamente.
- 2. Se recomienda la ampliación de la Unidad de FCC a 8 MBPD y la limitante principal es la temperatura de la carga fresca, que es demasiado baja; para aumentar esta temperatura es necesaria la compra de un horno de precalentamiento de 8 MBPD.
- 3. Para poder satisfacer y equilibrar la demanda de los Destilados Medios es necesaria la ampliación de la refinería La Pampilla con nuevas unidades y el esquema económicamente más rentable recomienda la inversión en:

Una Unidad de Vacío de 33 MBPD Una Unidad de FCC de 18 MBPD Una Unidad de Visbreaking de 18 MBPD.

4. Al aumentar la capacidad de la Unidad de Vacío a 12 MBPD el tiempo de permanencia del LVGO y HVGO en los acumuladores 1 y 2 respectivamente, disminuye y está muy próximo al tiempo de permanencia mínimo, para mantener el equilibrio termodinámico; sobre todo cuando se obtiene un LVGO con especificación de Diesel, por lo que se recomienda tener en cuenta esta limitante al variar las condicio-

nes de operación.

- 5. Se recomienda que el material de construcción de la nueva unidad de FCC sea diseñada para trabajar a severidades altas, es decir; para que trabaje con una temperatura de carga fresca mayor de 600°F; la temperatura del reactor mayor de 1000 °F y la temperatura del regenerador mayor de 1350°F, lo cual dará a esta unidad mayor flexibilidad; tanto en la carga, como en las condiciones de operación y los rendimientos de los productos.
- 6. Debido a que en un futuro no muy lejano, las cargas a FCC serán cada vez más pesadas es recomenda ble el uso de la familia de catalizadores Super-D, se debe hacer corridas de prueba con estos catalizadores, debido a que la tendencia actual hacia estos catalizadores viene precedida por las siguientes ventajas:
 - Excelente resistencia a la atricción (dureza y densidad).
 - Alta actividad.
 - Mayor rendimiento de productos líquidos.
 - Estabilidad hidrotérmica superior.
 - Incremento del rendimiento de Gasolina (*)
 - Bajo rendimiento de Gas seco (H2).
 - Selectividad de Coque superior.
 - Excelente capacidad de agotamiento (bajas tempe raturas de regeneración).
 - Mayor resistencia a los metales que cualquier o tro catalizador comercial.
- :*) Debido a que la gasolina de FCC con el catalizador Super-D tiene un punto final de 430°F; esto se puede reducir hasta 380°F, obteniéndose así mayor producción de LCO.

- Alto rendimiento de Isobutano.
- Incremento en el potencial de alquilado.

 Permite utilizar hasta 50% de crudo reducido o 20% de residual de vacío en la carga fresca.
- 7. Aun con la ampliación de la refinería "La Pampilla" proyectada en este estudio, a partir del año 1985 se tendrá que importar no solo Petróleo Resi dual Nº 6, sino que además se tendrá que importar en menor cantidad GLP y Destilados Medios y estas importaciones seguirán incrementándose cada año, por lo cual se recomienda hacer el estudio de una nueva refinería a nivel costa, proyectándose su capacidad para satisfacer las demandas hasta el año 2000; su construcción se haría por etapas; como u na primera etapa, la construcción de una unidad de Destilación Primaria que empiece a funcionar como máximo en 1986.
- 8. Se recomienda que esta nueva refinería tenga una gran flexibilidad; para poder absorber las fluctuaciones que se pudiera tener en la futura deman da de estos productos y evitar de esta manera la importación.

CAPITULO I

ESQUEMA DE REFINACION EXISTENTE EN "RELAPA"

1 ANTECEDENTES

La revisión de la evolución de las ventas de Combusti bles en los últimos años en el Perú, nos permitió ver una tasa promedio de 4.8% anual en el crecimiento de la demanda; independientemente de este crecimiento na tural, la venta de Destilados Medios viene registrando un ritmo de crecimiento mucho mayor a partir del a ño 1974.

Esto es debido a la creciente escasez del Petróleo Crudo, aunado al incremento de su precio realizado por la OPEP en 1973, originando un cambio en la política de precios en el mercado, aumentándolos, especialmente a la Gasolina.

Además originó una profunda revisión de los planes energéticos. El Desarrollo de Tecnologías más completas, para el aprovechamiento integral de los Destilados y Productos Residuales de Petróleo.

Entre los años 1960-1974 la estructura de la demanda se mantuvo aproximadamente constante, en los siguientes porcentajes: Gasolina 33%, Destilados Medios 36% y Residuales 31%; sin embargo, a partir de 1974 se registró un aumento en la demanda de los Destilados Medios en contraste con la significativa reducción en la de gasolinas, habiéndose apreciado en el año 1979 la siguiente estructura: Gasolina 24%, Destilados Medios 44% y Residuales 32%.

Llamamos Destilados Medios a los cortes de Kerosene/ Turbo y Diesel y que normalmente son obtenidos en las unidades de Destilación Primaria. La demanda de estos productos aumentó, especialmente el Diesel, dando como resultado que el precio del Diesel a nivel mundial se haya elevado notablemente y (en algunos países igualado o superado el precio de la gasolina).

La principal causa de esta situación es el perfeccio namiento del motor Diesel que tiene una mayor eficien cia que el motor gasolinero y además se suma a esto el fuerte encarecimiento de la gasolina, la que incentivó a un cambio gradual pero seguro hacia el motor Diesel. En el Perú este factor está incidiendo en ma yor fuerza debido a la apreciable diferencia que se mantiene entre los precios de la Gasolina y el Diesel (S. 240 y S. 135 valor de venta).

Es sabido que las Refinerías de Petróleo cuentan con una relativa flexibilidad en cuanto a la fijación de sus condiciones de operación lo que permite variaciones del volumen de producción dentro de un cierto rango, dando preferencia a uno u otro producto; dando es pecial importancia al ahorro y mejor utilización de la energía, en el caso particular de PETROPERU, la demanda de Destilados Medios no podrá ser cubierta por la producción de las refinerías existentes con los esque mas actuales de procesamiento, tecnología en uso y es pecificaciones de productos vigentes, en el Perú en 1982.

1.2 BREVE HISTORIA

La Refinería La Pampilla, tal como la conocemos actualmente, ampliada su capacidad hasta 100 MB, ha si-

do sometida desde su arranque inicial, a varias modificaciones, mejoras y ampliaciones.

La inauguración oficial de La Pampilla se realizó el 17 de diciembre de 1967, aproximadamente dos años des pués de la firma del contrato (12 de octubre de 1965), de la Empresa Petrolera Fiscal (EPF), con la firma ja ponesa MARUBENI Ltda., Japan Gasoline Co., a quien le encargó la construcción, suministro de equipos y financiación de La Pampilla. La capacidad inicial de la Refinería fue de 20 MBPD, habiendo sido su costo de S. 552 MM.

La Empresa Petrolera Fiscal (EPF) entró a integrar "Petróleos del Perú", el 24 de julio de 1969, merced al Decreto Ley Nº 17753, y que crea esta Empresa Petrolera. En 1970 se realizó la primera ampliación para incrementar su capacidad a 30 MBPD, contándose para ello con los servicios de UOP y Japan Gasoline Co., el costo de esta primera ampliación fue aproximadamente de S/. 70 MM.

Durante 1973-1974, con personal de Pampilla, se hicie ron estudios y la ejecución de las obras para aumentar la capacidad de la Refinería hasta 35-37 MBPD. El 24 de octubre de 1974 PETROPERU celebró un contrato con la firma TECHNIP (Francia) para una nueva ampliación de La Pampilla, con lo que se incrementa la capacidad a 100 MB/D. La terminación mecánica de esta obra se efectuó el 28 de noviembre de 1976, entrando en operación oficial el 24 de mayo de 1977.

Paralelamente a las obras de ampliación realizadas por TECHNIP, PETROPERU ejecutó parte del Proyecto de Ampliación. El costo total estimado para el Proyecto fue de aproximadamente S/. 4,800 MM.

La refinería La Pampilla se encuentra ubicada en el Distrito de Ventanilla, Provincia Constitucional del Callao, en el kilómetro 25 de la carretera Lima-Venta nilla

.3 CAPACIDAD DE REFINACION ACTUAL

.3.1 UNIDADES DE DESTILACION PRIMARIA I y II

El Crudo procesado en los últimos 3 años se ha incrementado en un 54%, de 52.1 MB/DC (*) en 1977 a 80.16 MB/DC en 1979, disminuyendo ligeramente en el año 1980.

En los siguientes cuadros estadísticos podemos apr \underline{e} ciar la clase de crudo procesado, a partir de la Am pliación de La Pampilla (1977).

La Unidad de Destilación Primaria I tiene una capacidad de refinación de 35 MBPD y la Unidad de Destilación Primaria II de 65 MBPD. La Unidad de Destilación II, trabaja a máx. capacidad y se completa la carga total con la otra unidad, para cumplir con el Modelo Matemático (MORE).

(*) MB/DC: Se obtiene de dividir el Crudo Total Acumulado durante el año o período, entre el tiempo en días trans curridos en ese año o período, sin importar el tiempo que no trabajó la unidad por paradas de planta y/o des perfectos.

a) AÑO 19.77 . CUADRO 1

CRUDO	U. DESTI	LACION I	U. DESTIL	ACION II	ТОТ	' A L
PROCESADO	MB/DC	*	MB/DC	8	MB/DC	૪
.	0.01.4		45.110		24 522	
Ecuatoriano	6.341	38.9	15.449	41.4	21.790	41.28
Venezolano	4.941	30.3	10.134	27.2	15.075	28.56
Selva	3.804	23.3	9.086	24.4	12.890	24.42
Belœ	0.698	4.3	2.356	6.3	3.054	5.79
ONO	0.190	1.2	0.105	0.3	0.295	0.56
TOTAL	16.176	100.0	36.611	100.0	52.787	100.0

b) AÑO **1978**.. CUADRO 2

CRUDO	U. DESTI	STILACION I U. DESTILACION II		TOTAL		
PROCESADO	MB/DC	*	MB/DC	8	MB/DC	8
Selva	13.377	91.32	43.229	90.89	56.606	90.99
Bel∞	0.374	2.55	1.876	3.94	2.250	3.62
ONO	0.408	2.79	1.847	3.88	2.255	3.62
Venezolano	0.087	0.59	0.717	1.51	0.804	1.29
Ecuatoriano	0.001		0.018	0.04	0.019	0.03
TOTAL	14.648	100.0	47.557	100.0	62.205	100.0

c) AÑO **1979..** CUADRO 3

CRUDO PROCESADO	U. DESTII MB/DC	ACION I	U. DESTIL	ACION II	TOT MB/DC	A L %
Sel v a	17.884	85.8	59.569	96.6	77.453	93.89
ONO	1.135	5.4	1.059	1.7	2.194	2.66
Bel∞	0.258	1.2	0.632	1.0	0.890	1.08
Gasoleos	0.149	0.7			0.149	0.18
Reprocesado	1.425	6.9	0.377	0.7	1.802	2.18
TOTAL	20.653	100.0	61.366	100.0	82.49	100.0

d) AÑO 1980.. CUADRO 4

CRUDO	U. DESTILACION I		U. DESTILACION II		TOTAL	
PROCESADO	MB/DC	ફ્ર	MB/DC	፟	MB/DC	8
elva	17262.0	94.53	60166.3	97.8	77428	97.09
.N.O.	663.3	3.63	1324.7	2.2	1988	2.49
elœ	332.4	1.82			332.4	0.41
asoleos	2.3	0.01			2.3	0.01
OTAL	18260	100.0	61491.0	100.0	79749.7	100.00

Como se observa, la carga a la Unidad de Destilación II debe ser máxima, ya que se obtiene un mejor fraccionamiento del crudo. No obstante, se debe procesar en la Unidad de Destilación I un flujo de carga que permita obtener el crudo reducido necesario para alimentar a la Unidad de Vacío, de no ser así se tendrá que completar la carga con Crudo Reducido de Destilación II ocasionando que el horno 11-H2 traba je con mayor severidad para la transferencia calórica de la Unidad de Destilación II a planta de vacío y representa una limitación este horno, ya que tiene más de 12 años de servicios para subir la carga.

Además se debe observar que a partir de junio las cargas son 100% Crudo Selva.

1.3.2 UNIDAD DE DESTILACION AL VACIO

Esta Unidad de Vacío tiene como carga los crudos reducidos de Unidad de Destilación Primaria I y/o Unidad de Destilación Primaria II y cuya capacidad es de 10.8-11.0 MBPD, como máximo, sin embargo, esta capacidad es insuficiente, limitando las torres de des

tilación primaria.

En el siguiente cuadro apreciaremos las cargas procesadas por la unidad desde el año 1977.

CUADRO 5

CARGA (MB/DC)	AÑO
7.254	177
8.926	' 78
10.071	' 79
8.284	' 80

1.3.3 UNIDAD DE CRAQUEO CATALITICO FLUIDO (F.C.C.)

La unidad de FCC tiene una capacidad de 6.7-7.0 MBPD y la carga puede provenir del Aceite Cíclico Ligero (LVGO), Aceite Cíclico Pesado (HVGO), y el Gasóleo Pesado de Destilación Primaria (AGO). En el siguien te cuadro veremos el volumen craqueado por la unidad.

CUADRO 6

CARGA I	E F.C.C.	AÑO
FRESCA	TOTAL	
(MB/DC)	(MB/DC)	
5.749	6.274	177
5.695	6.026	78
6.124	6.329	'79
5.912	6.174	' 80

4 RENDIMIENTOS DE DESTILADOS MEDIOS

Se denomina Destilados Medios a aquellos derivados del petróleo que tienen un rango de Destilación comprendido entre 150°C-370°C (300°F-725°F), ASTM-D86.

En RELAPA normalmente se consideran como Destilados Medios a los siguientes productos:

	CUADRO 7	
Producto	Rango de P. Inicial	Ebullición (°F) P. Final
Turbo (jet-fuel)	300-330°	500
Kerosene	330	572
Diesel	360-412	725

En el período 77-79 la calidad del petróleo crudo ha variado bastante y, en 1977 se procesó un 23.3% de crudo selva y un 68.9% de crudo importado, en 1979 el crudo fue 100% nacional compuesto por 96.6% Crudo Sel va y el resto de crudos Belco y ONO.

El Crudo de la Selva peruana por el hecho de provenir de diferentes zonas productoras presenta una variedad muy marcada en sus rendimientos. Inicialmente en 1977 el Crudo Selva (Pavayacu, Trompeteros, Capirona) procesado en RELAPA tenía un rango de °API entre 25°-28°, pero con la puesta en marcha del servicio del Ramal Norte del Oleoducto (Occidental Petroleum Company), se observó una variación en la calidad del crudo, presen tando un °API entre 28-34°AFI. Este cambio favoreció el aumento de gasolina y de Destilados Medios.

En la Unidad de Destilación Primaria II de acuerdo e los objetivos de producción se cambia de operación

(Kerosene/Turbo); en Destilación Primaria I solo se produce Kerosene.

1.4.1 UNIDADES DE DESTILACION PRIMARIA I y II

De acuerdo a los siguientes cuadros se podrá observar los cambios de producción de los Destilados en las Unidades Primarias I y II, debido al cambio de crudo y los esfuerzos por maximizar los Destilados Medios hechos en RELAPA.

CUADRO 8 1977

Productos	U. Destilación Primaria I		U. Dest Primar	ilación ia II	TOTAL	
	MB/DC	ક	MB/DC	8	MB/DC	*
Gas	0.129	0.80	0.146	0.40	0.275	0.52
G.L.P.	0.097	0.60	0.439	1.20	0.536	1.01
Gasolina	1.472	9.10	5.675	15.50	7.237	13.71
Nafta	0.728	4.50			0.728	1.38
Turbo	1.456	9.00	3.771	10.30	5.227	9.90
Kerosene	0.129	0.80	0.073	0.20	0.202	0.38
Diesel	2.394	14.80	8.311	22.70	10.705	20.28
Total Dest. Medios	3.974	24.60	12.155	33.20	16.134	30.56
AGO	0.064	0.40	1.464	4.00	1.528	2.89
Crudo Reducido	9.447	58.40	16.109	44.00	25.556	48.41
Pérdidas	0.258	1.60	0.622	1.70	0.880	1.67
Crudo Procesado	16.176	100.00	36.611	100.00	52.787	100.00
Total	15.918	98.41	35.989	98.30	51. 90 7	98.33

CUADRO 9 - 1978

Productos	U. Destilación Primaria I			U. Destilación Primaria II		TOTAL	
	MB/DC	8	MB/DC	*	MB/DC	8	
Gas	0.138	0.94	0.053	0.11	0.191	0.31	
3.L.P.	0.006	0.04	0.305	0.64	0.311	0.50	
Gasolina	1.751	11.95	6.153	12.94	7.904	12.71	
Nafta	0.240	1.64			0.240	0.39	
Turbo	0.485	3.31	5.200	10.93	5.685	9.14	
Kerosene	1.550	10.58	0.816	1.72	2.366	3.80	
Diesel	1.915	13.07	10.638	22.37	12.553	20.18	
Total Dest. Medios	3.950	26.96	16.654	35.02	20.604	33.12	
AGO	<0.001		1.584	3.33	1.585	2.55	
Crudo Reducido	8.452	57.70	22.303	46.90	30.775	49.44	
Pérdidas	0.110	0.75	0.503	1.06	0.613	0.99	
Crudo Procesado	14.648	100.00	47.557	100.00	62.205	100.00	
Total	14.538	99.25	47.053	98.94	61.591	99.01	
CUADRO 10	- 19	79					
Gas	0.209	1.01	0.014	0.02	0.223	0.27	
G.L.P.			0.205	0.33	0.205	0.25	
Gasolina	2.404	11.57	9.851	16.05	12.255	14.92	
Nafta	1.028	4.95			1.028	1.25	
Turbo	0.300	1.44	5.960	9.71	6.260	7.62	
Kerosene	2.963	14.26	2.745	4.47	5.708	6.95	
Diesel	2.569	12.37	14.869	24.23	17.438	21.23	
Total Dest. Medios	5.832	28.07	23.574	38.41	29.406	35.80	
AGO	0.072	0.35	2.250	3.67	2.322	2.83	
Crudo Reducido	10.398	50.05	25.442	41.46	35.840	43.63	
Pérdidas	0.833	4.01	0.032	0.05	0.865	1.05	
Crudo Procesado	20.776	100.00	61.334	100.00	82. 14 2	100.00	
Total	19.943	95.99	23.574	99.96	81.277	49.89	

CUADRO 11 1980

Productos	U. Destilación Primaria I		U. Desti Primari		TOTAL	
	MB/DC	8	MB/DC	8	MB/DC	8
Gas	182.6	1.0	30.75	0.05	213.3	0.27
GLP			166.0	0.27	166.0	0.21
Hasolina	2187.5	11.98	9340.5	15.19	11528.0	14.45
Vafta	346.9	1.9			346.9	0.43
[urbo	164.3	0.9	6309.0	10.26	6473.3	8.12
Kerosene	2647.7	14.5	3093.0	5.03	5740.7	7.2
Diesel	2501.6	13.7	13946.2	22.68	16447.8	20.62
Total Dest. Medios	5313.6	29.1	23348.2	37.97	28661.8	35.94
√G0	246.5	1.35	2029.2	3.3	2275.7	2.85
Crudo Reducido	8783.1	48.1	26195.2	42.6	34978.3	50.13
Pérdidas	913.0	5.0	381.2	0.62	1294.2	1.62
Total	17060.2	95.4	61109.7	99.4	78169.9	98.0
Crudo	18260	100.0	61491	100.0	79749	100.0

CUADRO 12 - RENDIMIENTOS DESTILADOS MEDIOS
PRODUCCION TOTAL 77-80

	1	977		1	9 7	8
	U.D. I	U.D. II	TOTAL %	U.D. I %	U.D. II	TOTAL %
Turbo	9.0	10.3	9.9	3.3	10.9	9.14
Kero	0.8	0.2	0.38	10.6	1.7	3.80
Dicsel	14.8	22.7	20.28	13.1	22.4	20.18
Total	24.6	33.2	30.56	27.0	35.0	33.12

	1	979		1 9 8 0			
				U.D. I %			
urbo	1.4	9.7	7.62	0.9	10.26	8.12	
ero	14.3	4.5	6.95	14.5	5.03	7.2	
iesel	12.4	24.2	21.23	13.7	22.68	20.62	
'o tal	28.1	38.4	35.8	29.1	37.97	35.94	

Como se puede apreciar el porcentaje en la producción de Destilados Medios se ha ido incrementando desde 30.56% hasta 35.8% en 1979 y en 1980 (octubre) debido a la variación de la calidad de la carga y a las medidas para maximizar destilados medios se lle ga hasta 35.94.

Se debe tener en cuenta que el AGO se emplea en pequeña proporción para la producción del Diesel ya que es muy pesado, es preferible utilizarlo como carga a F.C.C.

1.4.2 <u>INFLUENCIA DE LA CARGA EN EL RENDIMIENTO DE LOS DES</u> <u>TILADOS MEDIOS</u>

En los siguientes cuadros estadísticos apreciaremos los cambios en los rendimientos de los productos y sobre todo en los Destilados Medios.

CUADRO 13 - INFLUENCIA DEL CRUDO SELVA (100% vol) SOBRE LOS DESTILADOS MEDIOS EN LA UNIDAD DE DESTILACION I

°API	28.2	31.1	31.9	32.7
PRODUCTOS				
Gasolina	8.6	8.3	8.9	11.5
Nafta	4.0	6.5	7.3	5.0
Kerosene	16.3	16.5	16.8	20.0
Diesel	8.7	9.0	10.8	9.9
D. Medios	25.0	25.5	27.6	29.9
AGO	2.3	3.0	2.9	2.8
C. Reducido	60.1	56.7	53.3	50.8

CUADRO 14 - INFLUENCIA DEL CRUDO SELVA (100% vol) SOBRE LOS
DESTILADOS MEDIOS ASI COMO EL TIPO DE OPERACION
EN LA UNIDAD DE DESTILACION II

°API	28	. 2	31	.1	31	. 9	32	. 7
PRODUCTOS	TIPO O	PERAC.	TIPO O	PERAC.	TIPO O	PERAC.	TIPO O	PERAC.
*/****	TURBO	KERO	TURBO	KERO	TURBO	KERO	TURBO	KERO
LPG	0.4	0.3	0.4	0.4	0.3	0.4	0.4	0.4
Gasolina	13.1	10.7	17.2	16.3	16.6	16.7	16.7	17.8
Kerosene	-	16.0	=	21.0		18.8	=	22.9
'Iurbo	10.2	=	12.7	-	12.4	\$ 5.2	15.4	-
Diesel	24.1	19.5	25.7	16.1	27.1	18.4	27.3	16.9
D. Medios	34.3	35.6	38.4	37.1	39.5	37.2	42.7	39.8
AGO	3.4	4.5	3.5	3.3	4.4	4.3	4.6	4.4
C. Reducido	48.8	49.0	40.5	42.9	39.2	41.4	35.6	37.6

INFLUENCIA DEL CRUDO ONO EN LOS RENDIMIENTOS CON CRUDO SELVA

El año 1979 se refina un crudo 100% nacional, obteniéndose en promedio un 94.3% Crudo Selva y el resto de ONO y Belco.

a) Análisis del Crudo Selva con Crudo HCT-0NO en la Unidad de Destilación II

Composición: HCT-0NO 22.3%

Selva 77.7% + OAPI Promedio: 33.2

Productos	Rendimientos	(%)
LPG	0.4	
Gasolina	16.6	
Turbo	16.7	
Diesel	26.6	
D. Medios	43.3	
AGO	3.7	
C. Reducido	35.0	
Pérdidas	1.0	

Este tipo de crudo es bueno por su buena Calidad y Rendimiento en los Destilados Medios. Sin embargo, para poder procesarlo en la U. Destilación II, tenemos que mezclarlo con crudo Selva hasta una proporción de 40% HCT-ONO.

b) Análisis del Crudo Selva con Crudo LCT-0NO en la Unidad de Destilación II

Composición: LCT-ONO 44% %

HCT-C. Blanco 14.7% - °API Promedio: 34

Selva 41.3%

Productos	Rendimientos				
GLP	0.4				
Gasolina	19.8				
Kerosene	16.8				
Diesel	25.3				
D. Medios	42.1				
AGO	3.6				
C. Reducido	33.6				
Pérdidas	n.5				

El corte Kero/Turbo del crudo LCT-ONO tiene la particularidad de contener hidrocarburos de propiedades inestables con el tiempo. Este corte presenta una variación de su color entre claro y brillante a un color verdoso.

Esta propiedad lo hace inadecuado para producir Turbo-Combustible por la estricta especificación en la calidad de este producto. El colorante agregado al Kerosene doméstico hace la venta de este producto y no siendo apto como Kerosene Industrial ya que por especificación, este debe ser claro y brillante. Asimismo, el corte Kero/Turbo presenta una alta acidez que es neutraliza da con soda y separada en el precipitador electrostático con los otros tipos de crudo Selva y HCT debido a la baja acidez del Kero es innecesa rio el tratamiento cáustico de este corte.

1.4.3 UNIDAD DE DESTILACION AL VACIO

La Unidad de Destilación al Vacío produce un Gasóleo Ligero de Vacío (GLV) o en inglés Light Vacuum Gasoil (LVGO), además un Gasóleo Pesado de Vacío (GPV) o High Vacuum Gasoil (HVGO) y el residual de

vacío; actualmente un cierto porcentaje del LVGO (GLV) se mezcla en el pool de Diesel conjuntamente con el Aceite Cíclico Ligero (ACL) de FCC.

El siguiente cuadro nos indica la cantidad de LVGO agregado al pool de Diesel en los últimos tiempos:

CUADRO 15

A Ñ O	1977 1 9		1 9 7	9 7 8 1 9		7 9	1 9 8 0	
	B/DC	ક	B/DC	z	B/DC	¥	B/DC	8
LVGO	-	-	374.5	3.0	486.5	2.79	816.3	4.96
Total Diesel	-	_	12244.0	100.0	17572.9	100.0	16464.3	100.0

Para la maximización del Diesel se hizo las pruebas de laboratorio y se calculó una cantidad de 1500 B/D de LVGO al pool de Diesel sin que sobrepase las especificaciones límites, solo influye en la destilación ASTM del Diesel-2 haciéndolo más pesado.

1.4.4 UNIDAD DE CRAQUEO CATALITICO FLUIDO (F.C.C.)

Actualmente se está enviando el Aceite Cíclico Lige ro (ACL) de FCC o Light Ciclic Oil (LCO) al pool de Diesel, se puede usar hasta un máximo de 15% del LCO en el pool de Diesel sin que la mezcla total salga fuera de especificación, aproximadamente 900 B/D.

CUADRO 16 - CANTIDAD DE LVGO ACREGADO AL DIESEL EN LOS ULTIMOS AÑOS

AÑO	1977		1 9	7 8	1 9	1 9 7 9		8 0
	B/DC	8	B/DC	8	B/DC	%	B/DC	8
1.00	-	_	488.04	3.89	624.4	3.58	617.08	3.74
Diesel	-	-	12244.0	100.0	17572.9	100.0	16464.3	100.0

1.5 <u>MEJORAS OPERATIVAS EN LAS UNIDADES EXISTENTES PARA</u> MAXIMIZAR RENDIMIENTOS DE DESTILADOS MEDIOS

1.5.1 ANTECEDENTES

Para hacer el estudio de las mejoras operativas tomadas en la refinería se tomaron en cuenta los siguientes puntos:

El estudio se hace a partir del año 1977 en que entra en funcionamiento la Unidad de Destilación Primaria II.

- Como actualmente el crudo procesado proviene en su totalidad de la Selva y tiene un rango de 29-32ºAPI se hará una comparación de las especificaciones del crudo procesado desde el año 1977 en a delante con el siguiente crudo base del estudio.

CUADRO 17 - CRUDO BASE DEL ESTUDIO

ESPECIFICACIONES	R A I	N G O		
LSF ECTITIONES	Mínimo	Máximo		
Tipo de Crudo				
Gravedad °API a 60°F	30.0	32.0		
Viscosidad SSU a 100°F	54	80		
Viscosidad SSU a 130°F	45	62		
Azufre Total % P	-	0.5		
Sales Lb/MB	-	10.0		
Presión de Vapor REID (Kg/cm ²)	2.3	2.8		
Agua y Sedimentos % Vol	-	1.0		
Vanadio ppm	=	36		
Punto de Escurrimiento (°F)	0			
Agua Libre % vol	-	0.5		
Factor de Caracterización (KUOP)	11.5	12.5		
Base Crudo	Intermedia			

- Comparando las especificaciones de cada uno de los productos de las unidades por años teniendo en cuenta el crudo base dentro del rango 30-32ºAPI que es lo que resulta decisivo para la comparación de dichas especificaciones y asi hacer notar todas las medidas tomadas y que puedan tomarse con el fin de maximizar los destilados medios en la Pampilla.

INCREMENTO DEL RENDIMIENTO DEL CORTE KEROSENE-TURBO EN LAS UNIDADES DE DESTILACION PRIMARIA

Desde el año 1977 PETROPERU tomó medidas para maximizar los Destilados Medios en especial el Kerosene que muestra un fuerte incremento en la demanda so-

bre todo como Kerosene doméstico que se vende a aproximadamente 7 \$/Bbl y el precio de importación del Turbo Combustible es 40 \$/Bbl lo cual originaría un déficit para la Empresa.

En el caso del Kerosene, que es un corte de especificaciones difíciles de obtener en las unidades de Destilación Primaria, se tiene que orientar el consumo de otros combustibles como Lpg, Residuales y Gasolina en la construcción de aparatos domésticos que usen Kerosene.

.5.2 MEDIDAS TOMADAS

- Reducir el punto final de la Gasolina y Nafta Destilación Primaria I así como la Gasolina de Destilación II al mínimo compatible con las especificaciones del Kerosene y/o Turbo. Generalmente se obtenían Gasolinas con el punto final entre 340-350°F y Naftas con punto final entre 390-400°F, puesto que la refinería estaba orientada a la máxima producción de Gasolinas, sin embargo, bajo estas condiciones de operación se generaban excedentes de gasolina, por lo cual desde 1977 hasta la actualidad el punto final de la gasolina de Des tilación Primaria está en el rango de 280-290°F (ver Gráficos 1, 2 y 5) la Gasolina de Destilación Primaria II entre 325-335°F, y la Nafta Destilación Primaria I entre 360-380°F, lo cual indica con claridad que se están maximizando Destilados Medios, y deberá continuarse con dicha medida.
- Actualmente en la Pampilla no se produce el corte de Nafta pesada en la Unidad de Destilación Prima

ria I lo cual origina un aumento en la producción del corte Turbo/Kerosene sin embargo, este aumento es más significativo en la producción del Diesel.

Según las especificaciones de PETROPERU-ITINTEC el punto final del Turbo A-1 puede ser de 550°F, en los últimos años el punto final del Turbo de Destilación Primaria I está en el rango de 510-540°F y el Turbo de Destilación Primaria II está en el rango de 460-505°F lo cual nos da una posibilidad de aumentarla hasta 550°F sin embargo, esto depende de la demanda del Diesel el cual tiene un mayor incremento en la demanda. Asi mismo al 50% recuperado el Turbo A-1 tiene como máximo 450°F y el Turbo de Destilación Primaria II está en el rango de 420-430°F y el Turbo de Destilación Primaria II está en el rango de 390-410°F que reafirma lo anterior.

En cuanto al Kerosene según las especificaciones de PETROPERU-ITINTEC el punto final como máximo es de 572°F y a partir de 1977 el rango del punto final del Kerosene está entre 480-530°Γ, lo cual nos permitiría poder aumentar la producción de Kerosene pero así como el Turbo, la producción de Kerosene tam bién depende de la demanda del Diesel.

En general la reducción del punto final de la Gasolina y Nafta de Destilación Primaria I y la Gasolina de Destilación Primaria II es la solución para aumentar la producción del corte Kero/Turbo puesto que se aumenta el rango de los Destilados Medios y se puede maximizar el corte Kero/Turbo o el Diesel.

5.3 <u>INCREMENTO DEL RENDIMIENTO DEL DIESEL EN LAS UNIDA-</u> DES DE DESTILACION PRIMARIA

Desde el año 1977 con el objeto de maximizar los Destilados Medios se amplió el rango de temperaturas, mientras que se reducían los puntos finales de las Naftas se aumentó al máximo punto final del Die sel permitido por las especificaciones PETROPERU-ITINTEC.

- Según estas especificaciones tenemos que para un 90% recuperado lo máximo es de 675°F, lo cual per mitió aumentar la producción del Diesel puesto que lo normal estaba en el rango de 650-660°F.
- Aparte de esto de manera indirecta se limita el punto final a 725°F y las inspecciones realizadas en los últimos años indican un promedio de 710°F y se podría aumentar aún más la producción del Diesel manteniendo el punto final a 725°F.
- Optimizar el fraccionamiento entre el Diesel y el AGO con el objeto de evitar la pérdida de Diesel en el producto más pesado como el AGO, ya que aparte de bajar la producción de Diesel, se pierden ingresos para la empresa puesto que el AGO en tra al pool de Residuales que se vende a menor precio que el Diesel.

Como resultado de estas medidas en febrero de 1978 se incrementó la producción de Turbo combustible al bajar el punto final de las Naftas y el Diesel aumentó hasta 700 B/D aumentándose el punto final del Diesel, lo cual indica que la medida tomada dio bue nos resultados.

Los siguientes cuadros y gráficos ilustrarán las conclusiones y observaciones, puesto que muestran los cambios y modificaciones en las determinaciones de cada producto con el fin de maximizar los Destilados Medios desde el año 1977.

1.5.4 ESPECIFICACIONES PETROPERU-ITINTEC

CUADRO 18 - PRINCIPALES ESPECIFICACIONES DE LA GASOLINA (PETROPERU - ITINTEC)

DESTI LADOS	GASOLINA 9	5 GASOLINA 84
PRUEBAS	Mín. Máx	. Mín. Máx.
Color	Azul	Amarillo
RVP, Lb/Pulg ²	10	10
Relación V/L a 140°F	20	20
Est. Oxidación Minutos	240	240
Corrosión Lám. Cobre	1	1
Goma existente	5	5
Azufre Total % P	0.2	0.2
Plomo ml TEL/Galón	4.0	4.0
Gr TEL/Galón	4.2	3 4.23
10% Recuperado °F	158	158
50% "	284	284
90% "	392	392
Punto Final	430	430
P	96	96
Residuo % vol.	2	2

CUADRO 19 - PRINCIPALES ESPECIFICACIONES DEL TURBO Y KERO-SENE (PETROPERU - ITINTEC)

A											
DESTILADOS	TUR	BO B	TURB	0 Λ-1	KERO	SENE					
PRUEBAS	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.					
" API a 60°F	45	57	40	51	-	-					
Ap arienci a	C	/Ъ	С	/ b	С	/ b					
Color Saybolt	+:	22	+	14	+	<u>1</u> 5					
RVP, Lb/Pulg ²	2	3									
Punto Inflamación °F			103	150	110						
Punto Congelación °F		-72		-58							
Viscosidad Cst a N°F				6							
Viscosidad Cst a 30°F				15							
Azufre Total % P		0.2		0.2		0.25					
Mercaptanos % P		0.003		0.001							
Aromáticos % vol		20		20							
Olefinas % vol		5		5							
N.M. mg MOH/Gm		0.015		0.1							
ΛΡΙ x Punto Anilina	5250		5250								
Cal. Neto Comb. BTU/Lb	18400		18400								
Corrosión Lam. Cobre		1		1		3					
Goma Existente		7		7							
Goma Potencial		14		14							
Destilación °F											
10% Recuperado	Rep	ort.		400		392					
20% "		290	Rep	ort.							
50% "		370		450							
90% "		470									
95% "	Rep	ort.	Rep	ort.							
Punto Final	Rep	ort.		550		572					
Residuo % Vol.		1.5		1.5							
Pérdidas % Vol.		1.5		1.5							
Prueba de Combustión											
16 hr. mg/Kg					3	5 ———					

CUADRO 20 - PRINCIPALES ESPECIFICACIONES DEL DIESEL Y RESIDUAL (PETROPERU - ITINTEC)

					Fi-4-47	T J	D:+<1	
Destilados	Diesel	Nº 1	Diesel	2 פאו		eo Ind. al Nº 5		eo ina.
Pruebas	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.
lor ASTM		2		3		-		-
nto I nfla mación °F	115		125		130		150	
scosidad Cinemática a 100°F en Cst	1.4	2.5						
scosidad en SSU a 100°F			32	45	150			
scosidad en SSF a 122ºF						40	45	300
urbón Conradson % Peso						14		
irbón Conradson en 10% Fondos % Peso		0.15		0.35				
<pre>stado Oxidación mg/100 ml</pre>				2.5				
<pre>şua y Sedimentos % Volumen</pre>	Traz	as		0.10		1.0		2.0
enizas % Peso		0.01		0.02		0.10		
unto Fluidez °F		+10		+40		+45		+80
ndice Cetano	45		45					
anadio ppm								180
zufre Total % Peso	0.	3	*	1.0		2.0		3.0
edimentos por								
extracción % Peso						0.25		
brosión Lam. Cobre		3		3				
Destilación °F								
unto Inicial	320							
10% Recuperado	Repo	ort.						
90% Recuperado		5 50		675				
Punto Final				7 25				
Arrastre Caustico	Nu	lo						

1.5.5 ESPECIFICACIONES CARACTERISTICAS DE LOS PRODUCTOS REFINADOS EN RELAPA

CUADRO 21 - ESPECIFICACIONES CARACTERISTICAS DE LA GASOLINA DE DESTILACION PRIMARIA I

FECHA	8-6-77	2-7-77	31-7-77	31-8-77	18-9-77	17-10 -7 7	16 - 11 - 77	20-1-78	20-2-78
DETERMINACION	0-0 77	2-7-77	01 / //	01 0-77	10-3-77	17-10 77	10-11-77	-	20-2-70
°API Crudo	30.1	30.7	30.7	30.1	30.2	29.7	31.3	29.8	30.7
°API Gasolina	64.9	68.2	67.3	70.1	66.0	68.7	68.8	67.1	64.4
Color			C/B	C/B	C/B	C/B	C/B	C/B	
Destilación ASTM									
Punto Inicial °F	118	96	98	80	86	86	94	96	112
5%	152	122	126	112	122	124	124	126	148
10%	17 2	138	142	130	142	140	140	140	160
20%	180	158	162	152	166	162	162	164	17 6
50%	210	198	204	196	206	202	202	206	204
90%	260	248	250	218	254	256	27 0	250	238
95%	2 7 0	260	262	266	268	290	284	264	246
Punto Final	300	27 0	302	280	304	294	302	294	268
% Recobrado	98.0	98.0	98.0	99.0	98.0	95.5	98.0	97.5	98.0
% Residuo	0.7	0.7	0.5	0.7	0.7	0.5	1.3	0.8	0.7
% Pérdidas	1.3	1.3	1.5	0.3	1.3	4.0	0 .7	0.7	1.3

continua..

FECHA	21-03-78	20-07-78	20-10-78	24-11-78	30-12-78	06-05-79	16-06-79	27-07-79
DETERMINACION		20 0. 70	20 20 10	2. 22 70	00 12 70	00 00 70	10 00 70	2. 00
°API Crudo	30.3	30.3	30.8	31.1	31.3	31.7	31.5	30.9
°API Gasolina	65.3	65.4	65.0	63.3	65.3	69.0	67.4	66.4
Color		C/B	C/B	C/B	C/B	OP		
Destilación ASTM								
Punto Inicial °F	100	94	10 0	114	132	10 0	106	114
5%	132	1 48	140	156	164	13 8	14և	148
10%	144	166	158	174	174	152	158	160
20%	17 0	190	180	196	18 6	166	176	176
50%	20 և	2 2 8	218	23 8	21 0	194	204	204
90%	244	2 7 6	274	296	24€	230	244	244
95%	256	288	294	310	258	240	254	254
Punto Final	284	310	330	322	282	27 0	280	286
% Recobrado	98.0	98.0	98.5	97.5	98.0	98.0	98.0	98.0
% Residuo	0.7	0.7	1.1	1.0	1.0	0.7	0.7	0.7
Rérdidas	1.3	1.3	0.4	1.5	1.0	1.3	1.3	1.3

continúa...

FECIA DETERMINACION	10-10-79	24-09-79	11-08-80	18-08-80	28-08-80	31-08-80	04-09-80	23-09-80
°API Crudo	31.5	31.2	31.0	31.1	30.8	31.3	29.9	31. 0
°API Gasolina	62.4	67.4	69.0	69.6	68.7	69.5	68.9	70.7
Color			C/B	C/B	OP	C/B	OP	
Destilación ASTM								
Punto Inicial °F	120	106	100	94	98	100	98	86
5%	157	140	138	128	132	134	130	122
10%	172	154	152	144	148	148	1 46	130
20%	186	168	168	164	168	166	166	158
50%	210	198	200	198	198	200	200	194
90%	238	232	246	242	242	241	248	240
95%	248	242	260	252	252	252	260	258
Punto Final	282	280	296	290	290	298	274	286
% Recobrado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	0.7	0.7	0.7	0.7	0.7	0.6	0.7	0.7
% Pérdidas	1.3	1.3	1.3	1.3	1.3	1.4	1.3	1.3

CUADRO 22 - ESPECIFICACIONES CARACTERISTICAS DE LA NAFTA DE DESTILACION PRIMARIA I

AHOGA	08-06-77	02-07-77	31-07-77	31-08-77	18-09-77	17-10-77	16–11–77	2 0- 0 1-78
DEDERMINACION		02 0	02 0	02 00	20 00	2, 20 ,,	10 11	
°API Crudo	30.1	30.7	30.7	30.1	30.2	29.7	31.3	29.8
°API Nafta	51. 9	52.4	51.8	52.6	53.0	51.8	52.8	52.7
Color	C/B			C/B	OP	OP	OP	C/B
Dest. ASTM								
Punto Inicial °F	188	208	224	210	218	218	220	240
5%	248	248	262	244	250	254	250	260
10%	262	260	272	256	260	262	260	266
20%	276	272	280	266	266	274	27 0	274
50%	304	296	296	292	280	298	294	290
90%	348	340	326	336	320	346	340	328
95%	36 6	358	340	354	346	366	356	342
Punto Final	40 6	390	364	37 6	384	400	394	368
% Recobrado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.2	1.2	1.2	1.2	1.2	1.2	1.0	1.2
% Pérdidas	0.8	0.8	0.8	0.8	0.8	0.8	1.0	0.8

Continua...

FECHA	2 0 –02 –7 8	21- 02 -7 8	20-10-7 8	30–12–7 8	06-06-79	16-06-79	27-07-79	10-10-7 9
DETERMINACION	20 02 70		20 20 70	30 22 / 3		20 00 70		
°API Crudo	30.7	30.3	30. 8	31.3	31.7	31. 5	30.9	31.5
°API Nafta	51.3	49.4	51.5	52.4	54.2	53. 8	55.1	51.6
Color			C / B	C/B	C/B			
Dest. ASTM								
Punto Inicial °F	256	244	27 0	272	250	248	216	248
5%	266	2 7 0	286	286	264	266	252	260
10%	2 7 0	280	290	290	26 8	2 7 0	258	264
20%	276	292	295	296	272	274	2 68	27 0
50%	292	316	312	308	286	290	288	284
90%	332	36 8	350	346	317	328	320	31 8
95%	354	392	368	364	330	342	332	332
Punto Final	384	420	398	398	360	374	356	336
% Recobrado	98.0	98.0	98.5	98.0	98.0	98.0	98.0	98.0
% Residuo	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
% Pérdidas	0.8	0.8	0.3	0.8	0.8	0.8	0.8	0.8 0

Continúa...

Ontinución...

FECHA	24 - 09 -7 9	11-08-80	18-08-80	28-08-80	02-09-80	05-09-80	23-09-80
DETERMINACION			25 55 55				
°API Crudo	31.2	31.0	31.1	30.8	31.3	30.8	31.0
°API Nafta	53.8	54.6	54.7	55.3	54.9	56.2	55.1
Color		C/B	C/B	C / B	C / B	C / B	C/B
Dest. ASTM							
Punto Inicial °F	232	246	228	228	228	224	220
5%	253	260	248	248	248	240	244
10%	258	264	254	254	256	246	253
20%	265	268	260	260	266	252	263
50%	283	284	280	280	286	272	287
90%	318	316	318	318	324	317	328
95%	332	330	338	338	338	338	344
Punto Final	367	362	368	368	372	378	377
% Recobrado	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.2	1.2	1.2	1.2	1.2	1.2	1.2
% P érd idas	0.8	0.8	0.8	0.8	0.8	0.8	0.8

CUADRO 23 - DETERMINACIONES CARACTERISTICAS DEL TURBO DE DESTILACION PRIMARIA I

FECHA	08-06-77	08-07-77	31-07-77	31-08-77	18-09-77	17-11-77	2 0 –0 1–7 8	20-02-78
DETERMINACION			02 01 11	02 00	20 00	_, ,,	20 02 70	20 02 70
°API Crudo	30.1	30.7	30.7	30.1	30.2	29.7	29.8	30.7
°API Turbo	43.8	43.4	44.4	42.1	43.0	40.5	43.5	37.7
Pto. Inflamación °F	116	118	116	114	86	132	103	14 4
Color	C/B			OP	OP	OP		C/B
Destilación ASTM								
Punto Inicial	310	316	318	314	25 6	320	290	355
5%	344	342	344	344	288	356	314	37 6
10%	350	352	352	366	31 0	366	324	388
20%	364	366	360	394	3 36	382	340	406
50%	402	400	390	410	402	420	388	452
90%	462	458	442	466	51 2	47 2	466	522
95%	478	476	458	484	536	486	480	544
Punto Final	500	512	47 8	500	560	500	496	556
% Recuperado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
* Residuo	1.4	1.3	1.4	1.5	1.4	1.4	1.4	1.4
3 Pérdidas	0.6	0.7	0.6	0.5	0.6	0.6	0.6	0.6

Continua...

FECHA	21-03-7 8	20-07-78	20-10-78	24-11-78	30-12-78	08-06-79	16-06-79	27-07-79
DETERMINACION								
°API Crudo	30.3	30.3	30.8	31.1	31.3	31.7	31.5	30.9
OAPI Turbo	38.0	41.7	44.2	40.0	40.7	42.7	42.7	44.7
Pto. Inflamación °F	145	1 30	107	139	143	126	125	117
Color		OP	OP	OP	OP	OP	C/B	-
Destilación ASTM								
Punto Inicial	352	320	298	330	344	330	334	316
5%	3 7 6	354	328	365	374	356	358	344
10%	388	366	342	376	384	364	368	354
20%	90 م	380	358	394	400	376	380	364
50%	448	436	400	460	452	41 6	420	392
90%	5 2 8	530	468	558	530	480	484	448
95%	556	550	484	580	546	490	496	460
Punto Final	568	564	502	594	562	510	514	47 8
% Recuperado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.4	1.4	1.3	1.4	1.4	1.4	1.4	1.4
% Pérdidas	0.6	0.6	0.7	0.6	0.6	0.6	0.6	0.6

Continua...

FECHA	10-10-79	24-09-79	11-08-80	18-08-80	28-08-80	02-09-80	05-09-80	23-09-80
DETERMINACION								
API Crudo	31.5	31.2	31.0	31.1	30.8	31.3	31.2	31.0
°API Turbo	41.1	41.0	42.1	45.1	43.1	43.1	44.5	44.7
Pto. Inflamación °F	124	131	124	112	-	120	11 6	118
Color	C/B	_	OP	OP	C/B	C / B	C / B	OP
Destilación ASTM								
Punto Inicial	340	340	324	312	326	326	314	320
5%	360	368	350	340	350	350	336	346
10%	37 0	378	360	348	360	360	345	355
20%	386	392	378	360	372	374	358	366
50%	428	434	430	392	420	424	402	394
90%	490	510	518		500	496	474	450
95%	504	526	540	458	52 0	514	490	463
Punto Final	526	542	556	4 94	544	534	512	482
% Recuperado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.4	1.4	1.4	1.4	1.4	1.4	1.5	1.5
% Pérdidas	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5

CUADRO 24 - DETERMINACIONES CARACTERISTICAS DEL DIESEL Nº 2 DE DESTILACION PRIMARIA I (1977 - 1980)

FECHA DETERMINACION	08-06-77	08-07-77	31-07-77	31-08-77	18-09-77	17-11-77	16-11-77	16-11- 7 7 D.P.
API Crudo	30.1	30.7	30.7	30.1	30.2	29.7	31.3	31.3
°API Diesel	33.2	33.9	33.7	35.1	38.0	34.8	35.2	31.5
Pto. Inflamación °F	220	226	205	60	105	306	_	180
Color			0.5	o	0.5	OP	0.5	0.5
SSU a 100°F	41.7	41.6	42.5	35.6	34.8	45.3	37.7	50.3
Dest. ASTM								
Punto Inicial	41 0	396	41 6	388	280	318	378	496
5%	454	452	460	418	330	380	412	524
10%	474	476	480	446	358	400	426	540
20%	51 0	502	506	47 0	400	426	450	554
50%	566	562	568	504	486	482	516	600
90%	678	680	7 08	538	586	600	656	690
95%	7 08	72 0	7 48	572	616	636	692	734
Punto Final	722	732	7 60	580	648	646	714	748
% Recobrado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.8	1.8	1.8	1.7	1.8	1.8	1.8	1.8
3 Pédida	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2

Continua...

Ontinuación...

FECHA DETERMINACION	20-01-7 8	20-02-78	21-02-78	20-07-78	20–10–78	20-10-78 D.P.	24-11-78	30-12-78
°API Crudo	29.8	30 . 7	30.3	30.3	30.8	30.8	31.1	31.3
°API Diesel	38.8	31.7	30.9	42.1	31.5	33.1	25.7	29.5
Pto. Inflamación °F	120	130	225	124	210	198	166	176
Color	1.0				0.5	0.5	1.0	a <u>⊷</u> a
SSU a 100°F	35.5	45.7	50.5		40.3	42.7	40.8	40.6
Dest. ASTM								
Punto Inicial	294	316	444	440	425	404	380	406
5%	326	430	492	502	464	458	468	456
10%	344	476	516	534	478	494	486	476
20%	372	524	542	562	498	520	510	500
50%	464	588	606	606	550	580	560	560
90%	632	672	694	664	684	698	710	664
95%	692	70 0	72 0	678	72 6	732	736	682
Punto Final	712	720	744	686	7 40	738	7 40	694
% Recobrado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.6	1.8	1.8	1.8	1.7	1.7	1.8	1.8
E Pérdida	0.4	0.2	0.2	0.2	0.3	0.3	0.2	0.2

FECHA DETERMINACION	30-12-78 D.P.	08-06-79	16-06-79	27-07-79	24-09-79	10-10-79	10-10-79 D.P.	11-08-80
°API Crudo	31.3	31.7	31.5	30.9	31.2	31.5	31.5	31.0
°API Diesel	32.8	28.8	38.5	35.3	28.2	31.5	33.9	30.1
Pto. Inflamación °F	175	_	_	-	220	178	-	190
Color	-	0.5	_	0.5	0.5	_	-	1.5
SSU a 100°F	46.5	40.2	34.9	42.8	43.9	33.9	45.2	38.6
Dest. ASTM								
Punto Inicial	374	422	336	328	466	386	488	400
5%	480	466	37 0	408	<u> </u>	448	518	446
10%	518	486	388	452	510	47 6	532	464
20%	554	504	408	492	526	502	546	488
50%	606	5 48	474	540	578	548	582	538
90%	670	667	646	618	690	626	640	644
95%	686	708	696	640	730	648	660	688
Punto Final	696	730	722	656	746	672	674	710
% Recobrado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.6	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Pérdida	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2

FECHA DETERMINACION	11-08-80 D.P.	18-08-80	18-08-80 D.P.	28-08-80	28-08-80 D.P.	02-09-80	02-09-80 D.P.	05-09-80	2 3- 0 9-80
°API Crudo	31.0	31.4	31.4	30.8	30.8	31.3	31.3	31.2	31.0
°API Diesel	33.1	33.1	35.3	32.9	33.8	31.9	33.5	31.4	33.1
Pto. Inflamación °F	250	164	160	-	-	170	210	208	152
Color	0.5	0	0	0.5	0.0	0.5	0.0	1.5	0.5
SSU a 100°F	44.8	38.8	39.4	37.8	43. Û	38.8	43.4	41.8	36.8
Dest. ASTM									
Punto Inicial	466	384	366	350	412	374	436	430	336
5%	504	436	434	402	480	434	486	464	394
10%	522	462	464	428	506	438	510	484	427
20%	546	492	497	460	534	490	536	510	466
50%	592	534	546	518	582	550	584	562	524
90%	656	626	638	624	656	640	658	690	638
95%	676	654	662	658	674	668	678	7 40	6 7 4
Punto Final	686	678	668	688	688	698	698	7 60	692
% Recobrado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.7	1.8	1.8	1.7	1.7	1.8	1.8	1.8	1.8
% Pérdida	0.3	0.2	0.2	0.3	0.3	0.2	0.2	0.2	0.2

CUADRO 25 - DETERMINACIONES CARACTERISTICAS DE LA GASOLINA DE DESTILACION PRIMARIA II

FECHA DETERMINACION	02-07-77	17-07-77	01-08-77	12-08-77	25-09-77	27-10-77	22-11-77	09 -01-7 8	17-02-78
°API Crudo	31.0	30.8	31.0	30.8	30.2	29.7	30.5	31.0	30.7
°API Gasolina	59.8	62	61.0	62.0	59.8	62.4	62.2	60.9	59.3
Color	C/B	C/B	C/B	OP	C/B	C/B	C/B	C/B	C/B
Dest. ASTM									
Punto Inicial	114	112	118	88	126	118	102	122	136
5%	152	146	144	114	160	146	136	160	170
10%	170	158	168	134	172	160	154	174	184
20%	194	172	188	164	188	180	180	194	200
50%	240	220	220	226	228	236	232	236	238
90%	308	288	288	296	286	308	304	302	298
95%	322	302	304	316	300	318	322	316	310
Punto Final	342	316	338	338	330	328	338	350	348
% Recobrado	98.0	98.0	98.0	97.5	98.0	98.0	98.0	98.0	98.0
% Residuo	0.6	0.7	0.7	0.6	0.7	0.7	0.7	0.5	0.6
[%] Pérdidas	1.4	1.3	1.3	1.9	1.3	1.3	1.3	1.5	1.4

Continúa...

FECHA DETERMINACION	23-04-78	05-05-78	21-07-78	09-10-78	14-10-78	22-11-78	29-12-78	18-06-79
°API Crudo	30.0	31.0	30.2	30.7	30.8	31.0	30.9	30.4
°API Gasolina	61.8	61.9	62.4	62.2	62.2	60.9	63.1	64.0
Color	3203	C/B		3202	32,12	C/B	C/B	
Dest. ASTM							-, -	
Punto Inicial	184	128	126	126	120	156	138	11 0
5%	172	168	166	162	156	186	170	148
10%	186	182	180	176	170	196	182	166
20%	200	198	196	192	192	208	196	188
50%	238	240	236	236	236	246	230	232
90%	298	300	294	298	300	304	284	288
95%	310	312	308	314	314	318	296	300
Punto Final	348	332	322	340	358	334	324	320
% Recobrado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	0.6	0.7	0.7	0.7	0.5	0.7	0.7	1.0
% Pérdidas	1.4	1.3	1.3	1.3	1.5	1.3	1.3	1.0

Continua...

Ombinación...

FECHA DETERMINACION	30-06-79	26-09-79	20–10–79	03–10–79	27-09-79	05-08-80	06-08-80	13-08-80
°API Crudo	30.4	31.1	30.7	30.2	30.5	30.8	31.0	31.1
°API Gasolina	63.0	60.5	62.9	63.3	62.1	64.3	64.0	64.6
Color		C/B	C/B		C/B	C/B	C/B	C/B
Dest. ASTM								
Punto Inicial	116	130	116	102	114	118	130	120
5%	156	162	158	140	154	158	160	154
10%	170	178	172	158	170	171	174	168
20%	192	196	190	188	188	198	190	184
50%	236	238	236	232	232	230	229	222
90%	296	296	300	294	292	284	290	282
95%	308	308	314	308	304	298	304	296
Punto Final	334	328	346	348	328	328	322	326
% Recobrado	98.0	98.0	98.0	98.5	98.0	98.0	98.0	98.0
% Residuo	0.7	0.8	0.7	0.5	0.7	0.7	0.8	0.7
% Pérdidas	1.3	1.2	1.3	1.5	1.3	1.3	1.2	1.3

CUADRO 26 - DETERMINACIONES CARACTERISTICAS DEL TURBO DE DESTILACION PRIMARIA 11

FECIA DETERMINACION	02-07-77	01-08-77	12-08-77	27-10-77	22-11-77	09-01-78	17-02-78
	31.0	31.0	30.8	29.7	20. 5	21.0	20.7
°API Crudo					30.5	31.0	30.7
°API Turbo	41.4	42.5	42.7	42.8	41.0	41.8	41.5
Pto. Inflamación °F	118	120	110	122	112	124	114
Color	C/B	C/B	C/B	OP	C/B	L/A	C/B
Destilación ASTM							
Punto Inicial	322	306	314	318	300	322	312
5%	354	336	340	348	336	352	342
10%	366	946	356	360	352	362	356
20%	382	358	372	37 4	374	376	374
50%	416	392	412	406	416	406	412
90%	466	450	482	, 44 4	476	446	468
95%	480	464	496	460	490	458	480
Punto Final	488	478	510	486	504	482	490
% Recuperado	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.4	1.4	1.4	1.4	1.4	1.2	1.4
% Pérdidas	0.6	0.6	0.6	0.6	0.6	0.8	0.6

Continua...

PECIA	21-07-78	09-10-78	18-06-79	27-09-79	05-08-80	24-08-80	05-09-80
DETERMINACION							
°API Crudo	30.2	30.7	30.4	30.5	30.8	31.3	30.4
°API Turbo	44.3	43.8	45.3	43.5	44.8.	45.0	43.3
Pto. Inflamación °F	124	-	114	108	118	114	121
Color	-	-	-	OP	OP	C/B	
Dest. ASTM							
Punto Inicial	322	318	318	314	330	320	328
%%	346	344	340	344	350	344	352
10%	354	354	348	354	358	352	365
20%	366	368	360	368	368	362	384
50%	394	402	384	398	394	392	430
90%	440	458	428	448	446	444	510
95%	450	4 7 0	438	458	456	456	526
Punto Final	462	482	446	468	482	482	542
% Recuperado	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.4	1.4	1.4	1.4	1.4	1.4	1.4
% Pérdidas	0.6	0.6	0.6	0.6	0.6	0.6	0.6

CUADRO 27 - DETERMINACIONES CARACTERISTICAS DEL KEROSENE DE DESTILACION II

FECHA	25-09-77	09-01-78	19-01-78	17-02-78	23-04-78	05-05-78	14-10-78	29-12-78
DETERMINACION								
°API Crudo	30.2	31.0	31.0	30.7	30.0	31.0	30.8	30. 9
°API K ero sene	41.9	41.7	40.5	41.5	42.2	43.7	43.7	45.2
Pto. Inflamación °F	112	118	126	114	122	119	122	116
Color	C/B	OP	OP	C/B	C/B	C/B	OP	OP
Dest. ASTM								
Punto Inicial	320	328	330	316	314	312	324	318
5%	344	354	362	342	346	344	348	340
10%	354	364	374	354	360	354	356	350
20%	366	378	394	374	376	368	372	360
50%	400	408	432	412	416	400	402	386
90%	454	448	488	464	480	448	450	434
95%	464	458	500	478	494	458	460	तिरीत
Punto Final	47 8	472	512	492	506	47 0	484	456
% Recuperado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.4	1.4	1.4	1.4	1.4	1.4	1.3	1.4
Pérdidas	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.6

Continúa...

FECHA	30-06-79	26-03-79	20-09-79	03-10-79	06-08-80	13-08-80	02-09-80
DETERMINACION							
°API Crudo	30.4	31.1	30.7	30.2	31.0	31.1	30.8
°API K eros ene	44.5	42.3	41.3	42.3	41.6	42.1	44.5
Pto. Inflamación °F	120	117	119	116	117	116	118
Color	OP	OP	C/B	C/B	C/B	OP	OP
Dest. ASTM							
Punto Inicial	316	322	316	314	330	314	330
5%	348	354	352	348	358	348	350
10%	356	364	37 0	360	370	362	360
20%	368	380	392	376	390	382	372
50%	396	412	446	420	440	432	402
90%	442	464	522	486	524	518	454
95%	450	474	534	494	542	538	464
Punto Final	462	492	550	508	550	560	482
% Recuperado	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.4	1.5	1.4	1.5	1.4	1.5	1.4
* Pérdidas	0.6	0.5	0.6	0.5	0.6	0.5	0.6

CUADRO 28 - DETERMINACIONES CARACTERISTICAS DEL DIESEL Nº 2 DE DESTILACION PRIMARIA 11

FECHA	02-07-77	17-07-77	20-07-77	01-08-77	12-08-77	25-09-77	27-10-77	22-11-77
DETERMINACION								-
°API Crudo	31.0	29.3	29.3	31.0	30.8	30.2	29.7	30.5
°API Diesel	31.8	34.8	32.4	32.5	32.8	32.2	32.0	32.7
Pto. Inflamación °F	245	-	-	-	_	-	-	112
Color	0.5	0.5	2.0	0.5	0.5	0.5	0.5	0.5
SSU a 100°F	46.8	-	-	45.8	41.7	44.1	46	44.6
Destilación ASTM								
Punto Inicial °F	480	416	416	384	442	410	404	408
5%	514	448	470	466	484	480	474	456
10%	528	466	492	500	51 0	508	510	496
20%	544	484	522	530	538	532	580	528
50%	592	534	584	584	588	578	610	576
90%	684	630	706	670	674	652	680	654
95%	704	650	738	688	694	672	702	674
Punto Final	712	662	744	702	704	680	720	682
Recuperado	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
% Residuo	1.8	1.8	1.8	1.6	1.8	1.8	1.8	1.8
% Férdidas	0.2	0.2	0.2	0.4	0.2	0.2	0.2	0.2

FECHA	09-01-78	07-02-78	23-04-78	05-05-78	21-07-78	09-10-78	14-10-78
DETERMINACION							
°API Crudo	31.0	30.7	30.0	31.0	30.2	30.7	30.8
°API Diesel	34.8	32.7	32.8	33.3	33.3	33.4	33.6
Pto. Inflamación °F	-	-	-	-	225	=	-
Color	0.5	0.5	-	0.5	0.5	0	0.5
SSU a 100°F	43.8	44.5	43.2	42.5	42.8	45.0	40.8
Destilación ASTM							
Punto Inicial °F	416	440	428	462	452	434	426
5%	444	488	480	502	484	488	470
10%	464	512	504	518	502	512	496
20%	482	532	532	534	522	534	522
50%	524	582	586	574	568	580	572
90%	604	662	684	660	670	672	670
95%	624	680	710	678	700	694	698
Punto Final	634	700	722	692	706	702	706
% Recuperado	98.0	98.0	98.0	98.0	98.0	98.0	98.0
* Residuo	1.7	1.8	1.8	1.8	1.8	1.8	1.6
% Perdidas	0.3	0.2	0.2	0.2	0.2	0.2	0.4

Continúa...

FECHA	22-11-78	29-12-78	06-06-79	30-06-79	26-09-79	27-09-79	03-10-79
DETERMINACION							
°API Crudo	31.0	30.9	30.4	30.4	31.1	30.5	30.2
°API Diesel	33.2	34.0	33. 9	33.5	33.2	32.9	32.9
Pto. Inflamación °F	-	s():	-	-	::	\ 	-
Color	0.5	0.5	0.5	0.5	0.5	0.5	-
SSU a 100°F	44	42.6	-	43	42.8	42.0	45.0
Destilación ASTM							
Punto Inicial °F	402	430	416	398	390	360	366
5%	476	480	464	468	472	460	476
10%	504	500	488	496	504	494	512
20%	534	520	514	522	532	522	542
50%	586	566	562	574	580	5 7 0	590
90%	702	656	666	676	668	6 70	672
95%	732	676	692	702	692	694	694
Punto Final	736	690	700	712	706	702	704
Recuperado	98.0	98.0	98.0	98.0	98.0	98.0	98.0
6 Residuo	1.8	1.8	1.8	1.8	1.8	1.8	1.7
Pérdidas	0.2	0.2	0.2	 0.2	0.2	0.2	0.3

FE CHA	2 0–10–7 9	05-08-80	06-08-80	13-08-80	24-08-80	02-09-80	05-09-80
DETERMINACION	20 20 70		00 00 00	25 00 00	21 00 00	02 00 00	00 00 00
°API Crudo	30.7	30.8	31.0	31.1	31.3	30.8	30.4
°API Diesel	32.8	33.6	33.1	33.1	33.7	33.5	32.8
Color	0.5	0.5	-	0.5	0.5	0.5	0.5
SSU a 100°F	46.0	-	-	44.0	43.4	43.1	45.1
Destilación ASTM							
Punto Inicial °F	364	396	386	364	434	416	426
5 %	492	466	472	462	480	476	490
10%	528	496	506	506	500	502	500
20%	560	522	542	544	524	528	546
50%	608	572	594	602	572	574	598
90%	664	678	660	674	670	668	672
95%	680	706	676	692	694	690	694
Punto Final	688	712	682	700	7 08	708	704
Recuperación	98.0	98.0	98.0	98.0	98.0	98.0	98.0
Residuo	1.8	1.8	1.8	1.8	1.8	1.8	1.8
% P ér didas	0.2	0.2	0.2	0.2	0.2	0.2	0.2

.5.6 INCREMENTO DE LA PRODUCCION DE DIESEL CON LVGO

Actualmente en la refinería La Pampilla se envía to da la producción de LVGO (Gasóleo Liviano de Vacío), al pool de Diesel debido a que se le obtiene con es pecificaciones dentro del rango de las especificaciones Diesel.

Sin embargo, se puede observar que Crudo Reducido de Destilación Primaria I tiene una mejor producción de LVGO con especificación Diesel que el crudo reducido de Destilación Primaria II.

Los siguientes cuadros obtenidos en el laboratorio lo demuestran.

Las pruebas se hicieron en un equipo TBP.

Condiciones de Operación: Relación de Reflujo 1/1
Presión de Operación:
5 mm Hg

CUADRO 29 - CARACTERISTICAS DE LOS CRUDOS REDUCIDOS

	Unidad Dest. Prim. I	Unidad Dest. Prim. II
Gravedad específica Punto de Escurrimiento °F Viscosidad cinemática (Cst.)	0.9407 +65	0.9562 ÷55
a 100°F a 210°F	186. 9 14.5	1237.4 36.5
Azufre % peso	0.49 4.11	0.53 9.31
Carbón Conradson % Peso Punto de Inflamación °F	145	315 5.70
Asfaltos % Peso Contenido de Níquel ppm	5.26	29
Contenido de Vanadio ppm Nº d e N eutralización	33	
mgr KOH/gr.	2.61	sta e r 1

Como se puede observar muy claramente el Crudo Reducido de Destilación Primaria I es menos viscoso que el Crudo Reducido de Destilación II, en cambio el contenido de asfaltos no es muy diferente, no así el punto de inflamación.

<u>CUADRO</u> 30 - DESTILACION TBP DEL CRUDO REDUCIDO DE LA UNIDAD DE DESTILACION I

Rango TBP a 760 mm Hg (°F)	% Volumen del Corte	% Volumen acumulado	Gravedad Específica 15/4°C referida al Crudo Reducido
390 - 430	0.5	0.5	0.7889
430 - 469	0.75	1.25	0.8097
469 - 508	0.63	1.88	0.8200
508 - 547	1.75	3.63	0.8386
547 - 585	1.70	5.33	0.8506
585 - 623	2.16	7.49	0.8589
623 - 658	1.59	9.08	0.8583
658 - 695	4.54	13.62	0.8631
695 - 732	4.28	17.90	0.8803
732 - 767	4.63	22.53	0.8843
767 - 803	5.03	27.56	0.8852
803 - 838	5.83	33. 39	0.8880
838 - 841	1.20	34.59	0.8953

CUADRO 31 - DESTILACION TBP DEL CRUDO REDUCIDO DE LA UNIDAD DE DESTILACION II

Rango TBP a 760 mm Hg (°F)	% Volumen del Corte	% Volumen Acumulado	Gravedad Específica 15/4°C referida al Crudo Reducido
PI - 610	1.08	1.08	0.845
610 - 678	1.49	2.57	0.864
678 - 716	1.20	3.77	0.868
716 - 733	1.25	5.02	0.877
733 - 750	1.25	6.27	0.885
750 - 759	1.25	7.52	0.887
759 - 775	1.25	8.77	0.888
775 - 788	1.25	10.02	0.889
788 - 803	1.43	11.45	0.889
803 - 806	1.25	12.70	0.889
806 - 816	1.43	14.73	0.891
816 - 833	1.31	15.44	0.895

CUADRO 32 - DESTILACION ASTM D-1160 DEL CRUDO REDUCIDO

Unidad de Destil	ación Prim	aria I	Unid. de Dest. Primaria II				
% Vol. Acumulado ref. al C. Reduc.	Temperature of 2 mm Hg 760 mm Hg		% Volumen Acumulado		atura °F 760 πm Hg		
0	152	441	Ū	218	520		
5	260	573	5	358	696		
10	308	634	10	412	762		
20	378	721	20	470	832		
30	426	779	3 0	518	889		
40	469	831	40	559	937		
50	522	894	50	602	387		
60	612	998	60	636	1025		

CUADRO 33 - CARACTERISTICAS DEL GASOLEO LIVIANO DE VACIO
(LVGO), OBTENIDO A PARTIR DE LOS CRUDOS REDUCIDOS

	Dest. Prim. I	Dest. Prim. II	Espec. Minimo	Diesel 2 Maximo
Corte TBP oF	390-803	520-775		
Rendimiento % Vol, sobre el Crudo Reducido	27.56	8 .7 7		
Color ASTM	0.5	0.5		
Punto de Inflamación °F	225	245	125	
Viscosidad SSU a 100°F	45.3	45.8	32	45
Carbón C. % Peso, 10% Fondos	0.13	0.16		0.35
Estabilidad a la Oxidación mg/100 ml				2.5
Agua y Sedimentos % Vol	0.Ü	0.0	0.1	
Cenizas % Peso	:::	:=:		0.02
Punto de Fluidez °F	+20	+25		+40
Indice de Cetano	54.5	51.5	45	
Azufre Total % Peso	0.21	0.16		1.0
Corrosión Lámina de Cobre	1a	1a		3.0
Destilación:				
30% Recuperado °F	673	652		675
Punto Final ^c F	693	665		725

Como se puede observar el % LVGO de Destilación Primaria II es alto y está dentro de las especificaciones del Diesel Nº 2 y por lo tanto nuede ir al pool de Diesel sin mayor problema, en cambio el LVGO de Destilación Primaria II solo es de = 9% pero también está dentro de las especificaciones del Diesel, sin embargo, el Número de Cetano está en los tímites.

CUADRO 34 - UNIDAD DE VACIO: CORRIDA DE PRULDA

		PROD	CCION Y	PORCEN	TAJE EN VO	LUMEN			RESUL	TADOS DE LABO	RATORIO	
Fecha y Hora	LVGO (BPD)	% Vol.	HVGO (BPD)	% Vol.	Residual de Vacío (BPD)	∜ Vol.	LVGO + HVGO % Peso Carbón	SSF a 122°F Crudo Reducido Dest. I	SSF a 122°F Crudo Reducido Dest. II	SSF a 122°F Mezcla C. Reducido Dest. IyII	SSF a 210°F Residual de Vacío	Punto Penetración Residual de Vacío 85/100
8-2-80												
17.00	147 0	13.92	4772	45.19	4318	40.89		78.3			229	285
19.00	1470	13.92	5069	48.00	4021	38.08					236	289
23.00	1433	13.57	5069	48.00	4058	38.43						
9-2-80												
1.00	1176	11.14	5267	49.88	4117	38.99			231		359	
3.00	956	9.05	5267	49.88	4337	41.07					377	205
7.00	136 0	12.88	5366	50.31	3834	36.31			284		340	
11.00	1 50 7	14.27	4772	45.19	4281	40.59		45.5			246	
15.00	1 50 7	20.93	3485	48.40	2208	30.67			260		28 7	
19.00	1379	19.15	2445	33.96	3376	46.89		142.1	236	150.6	284	
23.00	1479	20.47	2000	27.78	3730	51.81			242		284	196
10-2-80												
3.00	1470	20.42	2000	27.78	3730	51.51			179	165	409	185
7.00	1470	20.42	2000	27.78	3730	51.81			620		608	200
11.00	1470	20.76	2000	28.25	3610	50.97	0.8				842	108
15.00	1 470	20.76	2693	38.04	2917	41.20					- · -	
19.00	1516	14.52		30.49	5741	54.99			259		62 9	124
23.00	1362	12.89	4641	43.95	4597	43.16	0.8		322	138	591	150

Fecha	CARGA 1	DE CRUIDO F EN (BPD)	EDUCI DO		M PERATUR		S PLATOS	DE VACIO		R E F	L U (BPD)	J O S
y H or a	Dest. I	Dest. II	Carga Total	Zona de Vapor 2	Tope	L VG O	HVGO	Resid.	Salida E-27	L VG O	H V GO	Malla
8-2-80												
17.00	5560	5000	10560									
19.00	5560	5000	10560	662	162	228	482	632		12600	5000	640
23.00	5560	5000	10560	675	156	227	492	642		12600	5040	640
9-2-80												
1.00	5560	5000	10560									
3.00	5560	5000	10560	675	162	238	498	642		12880	5040	640
7. 00	5560	5000	10560	680	155	234	504	648		12600	4340	640
11.00	5560	5000	10560	677	133	711	452	615		11200	3640	640
15.00	2200	5000	7200	673	130	208	468	610		9520	2520	640
19.00	2200	5000	72 00	675	125	204	483	625	275	77 00	2520	640
23.00	2200	5000	7 200	675	160	290	550	620	335	77 00	2380	640
10-2-8 0												
3.00	2 20 0	500 0	7 200	678	168	300	556	620	304	7 000	2380	320
7.00	220 0	5000	7200	679	172	304	560	621	321	72 80	2340	320
11.00	2080	5000	7 080	675	151	285	545	620	218	7280	2940	320
15.00	2080	5000	7 080	675	135	233	495	642	219	7000	3500	320
19.00	5540	5000	10440	676	144	240	518	655	240	10080	5040	320
23.00	5560	5000	10560	678	168	222	508	640	250	6510	5 74 0	320

.5.7 MEZCLA DE LCO (ACEITE CICLICO LIGERO) DE FCC EN EL POOL DE DIESEL

Las diferencias de precio de los Destilados Medios y de los residuales en los últimos años, han orientado las operaciones de refinación en la dirección de maximizar la producción de los primeros a expensas de los segundos, pero siempre respetando las es pecificaciones de los productos terminados.

Una de las operaciones que permite tal maximización es la adición de LCO al pool de Diesel.

El Aceite Cíclico Ligero (LCO), es el diluyente 1deal de los combustibles residuales de alto conteni
do de azufre, ya que es el componente con la más ba
ja relación de viscosidad/contenido de azufre en la
refinería y esto permite minimizar el volumen total
de Combustibles Residuales y evitar la concesión de
indeseables.

Por ser el Aceite Cíclico Ligero producto de una <u>de</u> sintegración (craqueo) catalítica, presenta una com posición rica en aromáticos aunque también contiene hidrocarburos no saturados suceptibles a sufrir oxi dación o descomposición por lo cual algunas de sus propiedades cambian con el tiempo.

Se debe hacer notar que las propiedades que presenta el LCO son de carácter variable, dependiendo del tipo de carga y del modo de operación de la unidad de Craqueo Catalítico y que solamente es factible controlar en el rango de ebullición de la misma. Sin embargo, en algunos casos esto podría no resultar económico, bajar demasiado el Punto Final de la Gasolina de FCC con el fin de aumentar el rango de LCO ya que a las temperaturas mas altas de ebullición se encuentran algunos cortes suceptibles al plomo tetraetílico el cual es demasiado caro, por lo que se incrementa el costo operativo de la Gasolina.

ALTERNATIVAS PARA EL USO DEL ACEITE CICLICO LIGERO

- 1. Incorporarlo al pool de Combustibles Residuales.
- 2. Incorporarlos al pool de Destilados Medios, obviamente la segunda alternativa es más atractiva desde el punto de vista económico ya que permite maximizar los Destilados Medios y evitar asi su importación.

INCORPORACION DEL ACEITE CICLICO LIGERO (LCO) EN EL POOL DE DIESEL

Las propiedades críticas que limitan la incorporación del Aceite Cíclico Ligero en el pool son:

- Número de Cetano, que debe ser mayor o igual a 45
- Color
- Oxidación
- Porcentaje de Azufre
- Viscosidad.

:UADRO	36	-	MEZCLA	DE	DIESEL	CON	ACEITE	CICLICO	LIGERO
			(LCO)						

Diesel % Vol	100	-	95	90	80	60	50
Aceite Cíclico Ligero	-	100	5	10	20	40	50
°API a 60°C	33.0	20.6	32.3	31.7	30.4	27.8	26.6
Viscosidad a 100°F (SSU)	36	35.1	35.95	35.9	35.8	35.6	35.5
Azufre % Peso	-	0.5	0.03	0.05	0.11	0.21	0.26
Indice de Cetano (*)	53	17.1	52	49.3	45.8	35	30
Color ASTM	0.5	0.5	0.5	U. 5	0.5	0.5	0.5
Insolubles mg/100 ml	0.45	4.65	0.50	0.91	1.3	2.4	2.8
Destilación ASTM							
P.I. °F	336	420	348	350	354	391	394
50%	524	500	523	522	521	520	518
90%	638	565	632	629	624	621	620
P.F.	692	621	687	683	678	676	674

(*) Indice de Cetano Calculado.

Como se puede apreciar las propiedades más limitantes son las gomas presentes y el indice de cetano. En el siguiente gráfico se puede apreciar el máximo porcentaje de LCO teniendo como limitante el Indice de Cetano. (Gráfico).

Con el actual Aceite Cíclico Ligero obtenido con el catalizador CBZ-1 lo máximo que se podría mezclar de él en el pool de Diesel es un 20% en volumen lo cual significa un incremento notable del Diesel, sin embargo, se debe tener en cuenta la formación de go mas por los compuestos inestables del LCO que se o-xidan fácilmente. En La Pampilla se realizaron pruebas de estabilidad a la oxidación.

5.8 ESTABILIDAD A LA OXIDACION DEL DIESEL Nº 2 EN MEZ MEZCLAS CON LVGO y LCO

Cualquier combustible tiene contacto con aire, agua o la humedad ambiental, si el combustible tiene com puestos inestables como el LCO, el almacenamiento en presencia de aire y/o luz lo oxida, dando lugar a la formación de gomas y sedimentos.

Método Empleado. - ASTM D-2274-74, prueba de estabilidad a la oxidación, mide la tendencia de un combustible a depositar productos de descomposición en los componentes del sistema de combustible de los motores.

Este método consiste en pasar un flujo de oxígeno de 3 lt/hr a través de una muestra de 350 ml de com bustible filtrado a 203°F (95°C) y por 16 horas con tinuas, luego se enfría y se determinan los sedimen tos por filtración y las gomas quedan adheridas a la celda de oxidación. Los datos de precisión dados por el método que los resultados para un mismo operador, se consideran sospechosos, si para un ran go de 0 a 1.0 mg/100 ml difieren en más de 0.3 mg/100 ml (30% error) de una muestra virgen.

Adicionalmente se realizó el método de alteración del color y se puede tomar como un índice de la estabilidad del combustible y se considera superior a aquel combustible que sufre menor degradación del color.

El Diesel 2 producido en La Pampilla se civalaó con 5 y 10% de LCO y tal como sale a la venta (con LVSO y LCO) los aditivos inhibidores a la oxidación de u tilizaron en concentraciones recomendadas por tilizaron.

fabricantes y se añadieron primero al LCO y son:

Aditivo N° 1 (20 lb/MB); Aditivo N° 2 (3 lb/MB) Aditivo N° 3 (0.25% vol.); Aditivo N° 4 (8 lb/MB) Aditivo N° 4 (0.75% Peso).

CUADRO 37 - ESTABILIDAD A LA OXIDACION DE MEZCLAS DE DIESEL Nº 2 y 2000

100 - -	100	95 5	90	100 Diesel	95	90	95	90	95	90	95	90	95	90
-	100	5	10	Diesel										
_				a venta	5	10	5	10	5	10	5	10	5	10
	_	-	-	(LVGO)	1	1	2	2	3	3	4	4	5	5
0.36	4.5	0.38	0.77	0.38	0.15	0.43	0.02	0.06	0.09	0.14	0.22	0.35	0.11	0.23
0.09	0.15	0.12	0.14	0.11	0.12	0.12	0.11	0.11	0.11	0.16	0.15	0.14	0.09	0.12
0.45	4.65	0.50	0.91	0.49	0.27	0.55	0.13	0.17	0.20	0.30	0.37	0.49	0.20	0.35
0.5	1.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1.0	2.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0
0	-	-5	-46	_4	+18	-10	+32	+28	+25	+15	+8	-4	+25	+10
0 0 1	.09 .45 .5	.45 4.65 .5 1.0 .0 2.5	.09 0.15 0.12 .45 4.65 0.50 .5 1.0 0.5 .0 2.5 1.0	.09 0.15 0.12 0.14 .45 4.65 0.50 0.91 .5 1.0 0.5 0.5 .0 2.5 1.0 1.0	.09 0.15 0.12 0.14 0.11 .45 4.65 0.50 0.91 0.49 .5 1.0 0.5 0.5 0.5 .0 2.5 1.0 1.0 1.0	.09 0.15 0.12 0.14 0.11 0.12 .45 4.65 0.50 0.91 0.49 0.27 .5 1.0 0.5 0.5 0.5 0.5 .0 2.5 1.0 1.0 1.0 1.0	.09	.09 0.15 0.12 0.14 0.11 0.12 0.12 0.11 .45 4.65 0.50 0.91 0.49 0.27 0.55 0.13 .5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 .0 2.5 1.0 1.0 1.0 1.0 1.0 1.0	.09 0.15 0.12 0.14 0.11 0.12 0.12 0.11 0.11 .45 4.65 0.50 0.91 0.49 0.27 0.55 0.13 0.17 .5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 .0 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.09 0.15 0.12 0.14 0.11 0.12 0.12 0.11 0.11 0.11 .45 4.65 0.50 0.91 0.49 0.27 0.55 0.13 0.17 0.20 .5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 .0 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.09 0.15 0.12 0.14 0.11 0.12 0.12 0.11 0.11 0.11 0.16 .45 4.65 0.50 0.91 0.49 0.27 0.55 0.13 0.17 0.20 0.30 .5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 .0 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0	.09 0.15 0.12 0.14 0.11 0.12 0.12 0.11 0.11 0.11 0.16 0.15 .45 4.65 0.50 0.91 0.49 0.27 0.55 0.13 0.17 0.20 0.30 0.37 .5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 .0 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.09 0.15 0.12 0.14 0.11 0.12 0.12 0.11 0.11 0.11 0.16 0.15 0.14 .45 4.65 0.50 0.91 0.49 0.27 0.55 0.13 0.17 0.20 0.30 0.37 0.49 .5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 .0 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.09 0.15 0.12 0.14 0.11 0.12 0.12 0.11 0.11 0.11 0.16 0.15 0.14 0.09 .45 4.65 0.50 0.91 0.49 0.27 0.55 0.13 0.17 0.20 0.30 0.37 0.49 0.20 .5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0

⁽⁻⁾ Significa que existe degradación del combustible (oxidación) máx. 30%

Se nota claramente que cuando se agrega el 10% de LOO esta mezcla pasa del 30% máximo de error, pero agregando los aditivos se llega a superar la degradación, en cambio el Diesel con LVGO y LOO está dentro de los límites normales de oxidación. Si se quiere llegar al 20% de LOO agregado se tiene necesariamente que utilizar aditivos. Los mejores se obtienen con los aditivos N° 3 y N° 5.

⁽⁺⁾ Significa que el combustible garó estabilidad a la oxidación con el aditivo.

.6 ESQUEMAS DE REFINACION PROPUESTOS

.6.1 INTRODUCCION

El principal problema es la capacidad de las Unidades de Vacío y FCC con respecto a las unidades de destilación produciéndose el problema de no poder maximizar la viscosidad del residual Nº 6 debido a la falta de capacidad de Destilación al Vacío y las limitaciones en las torres de destilación, para maximizar la extracción del Diesel y aumentar la viscosidad del crudo reducido.

La viscosidad máxima del Petróleo Industrial Nº 6 es de 300 SSF a 122°F (50°C) sin embargo, la viscosidad de este ha sido mucho menor desde la ampliación de La Pampilla.

CUADRO 38

	Viscosidad SSF a
Año	122°F (50°C)
1977	274
1978	260
1979	252

Con lo cual se nota claramente que no se puede maxi mizar el Diesel si una parte de ellos se va como parte del Petróleo Residual Nº 6 y viéndose necesariamente hacer los estudios de ampliación de la uni dad de Vacío, con un nuevo horno y además ver la posibilidad de poner una nueva unidad para que trabaje con U. Destilación II, asi como también ampliar la unidad de FCC y/o ver la posibilidad de concruena nueva unidad de FCC pero con parámetros de de aces

no tendientes a maximizar los Destilados Medios tales como:

- Baja conversión Relación de carga combinada al máximo
- Uso de nuevos catalizadores.

Y como la viscosidad de los residuales especialmente de U. Destilación al Vacío II tendrán alta visco sidad se hará el estudio de la instalación de una U nidad Reductora de Viscosidad "Visbreaking".

.6.2 ANTECEDENTES

En la última reunión de expertos de ARPEL y otros e ventos internacionales tales como el Simposium de FCC de 1979-1980 (UOP), considerando que el alto precio del crudo y la demanda de la Gasolina Diesel el nivel de contaminantes de muchos crudos extranje ros y requerimientos ambientales, entre otros todos ellos han contribuido a la necesidad de plantear es quemas de procesamiento en el que además de las uni dades convencionales de destilación primaria, de va cío, se alternan unidades Reductoras de Viscosidad (Visbreaking), unidades adicionales de destilación al Vacío, proceso DEMEX, DEMEX-RCD UNIBON, incluso procesos de Hidrotratamiento de los cortes recuperables como Diesel, minimizando la producción de productos pesados.

Es interesante remarcar que como común denominador a todos estos esquemas se mantiene un adecuado e mi librio de la capacidad de las Unidades de Vacío y de la unidad de Craqueo Catalítico con relación al volumen de crudo procesado, es decir la capacidad de FCC es equivalente al 30-35% de la capacidad de las

unidades de Destilación Primaria y las nuevas Unida des de Vacío, Reductoras de Viscosidad, etc. son complementarias y adicionales para maximizar la producción de Destilados Medios sin aumentar el volumen de crudo procesado.

Un ejemplo comparativo muy consistente presentado en ARPEL, por PEMEX "Reducción de Residuales en el Proceso de Refinación de Crudo", debido a que consideran el procesamiento de 100 MBPD de un crudo de 33ºAPI, con un rendimiento de 41.7% Vol de residuo primario y 45.3% de Residuo de Vacío, que son muy similares a los obtenidos en la Unidad de Destilación II de La Pampilla.

El ejemplo comparativo de la UOP, también es consis tente la información ya que se analiza una refinería que procesa 100 MBPD de crudo de 29.8ºAPT con un rendimiento de 44.7% Vol de Crudo Reducido.

En el año 1979 se tiene un 13% Vol de Crudo Reducido en Relapa y en 1980 un 50%.

CUADRO 39

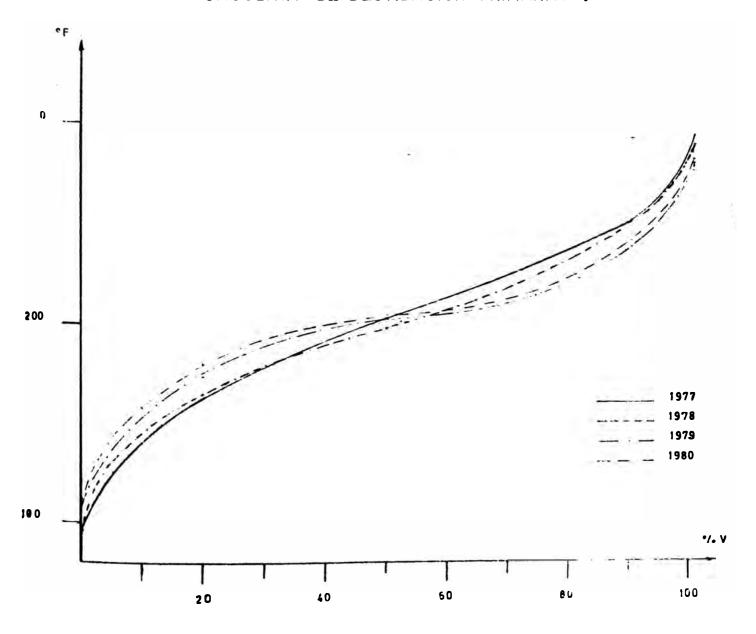
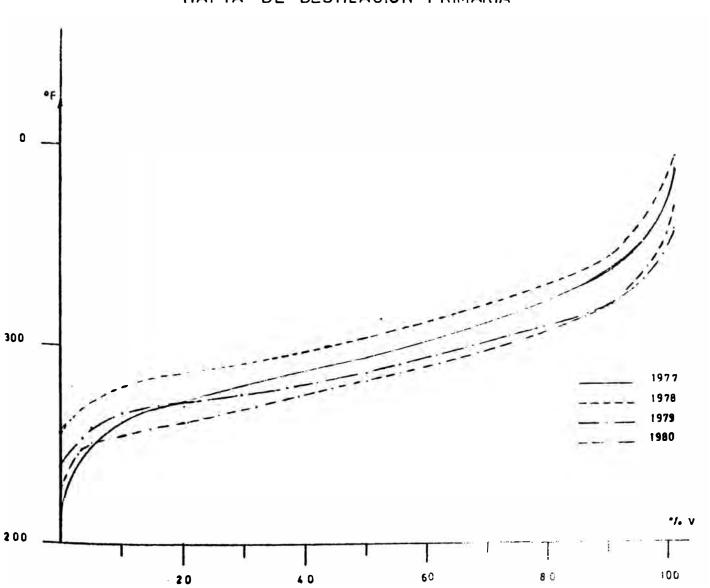
Petróleo Crudo API	29.8 (UOF)	33.0 (PEMEX)	33.0 (RELAPA)
Unidades de Procesamiento	MB/L	MB/L	MB/D
Destilación Primaria	100.0	100.0	100.0
Destilación al Vacío	45.0	42. 0	11.0
Reductora de Viscosidad	25.0	20.0	
Cracking Catalitico	27. 0	35.0	7.0

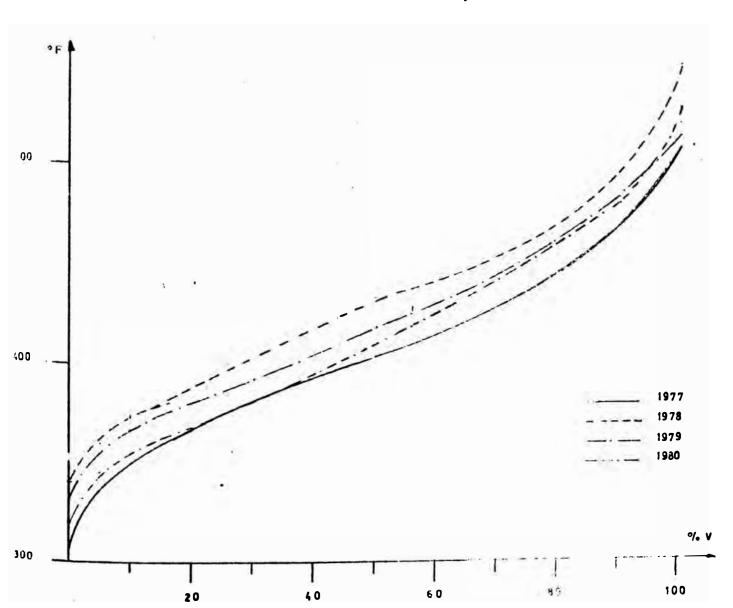
Como se nota en el cuadro mostrado se nota una falta de capacidad en las unidades de Destilación el Vacío, Craqueo Catalítico y una Reductora de Valence.

sidad, por consiguiente el estudio de la tesis se centrará en determinar las capacidades necesarias de dichas unidades que se podrían adecuar al actual sistema de refinación y además un revamping o ampliación sin modificar sustancialmente el diseño original de las Unidades de Vacío y FCC.

GRAFICO Nº 1

DESTILACION A S.T.M. DE LA GASOLINA DE DESTILACION PRIMARIA I


GRAFICO Nº2

DESTILACION A.S.T.M. DE LA NAFTA DE DESTILACION PRIMARIA

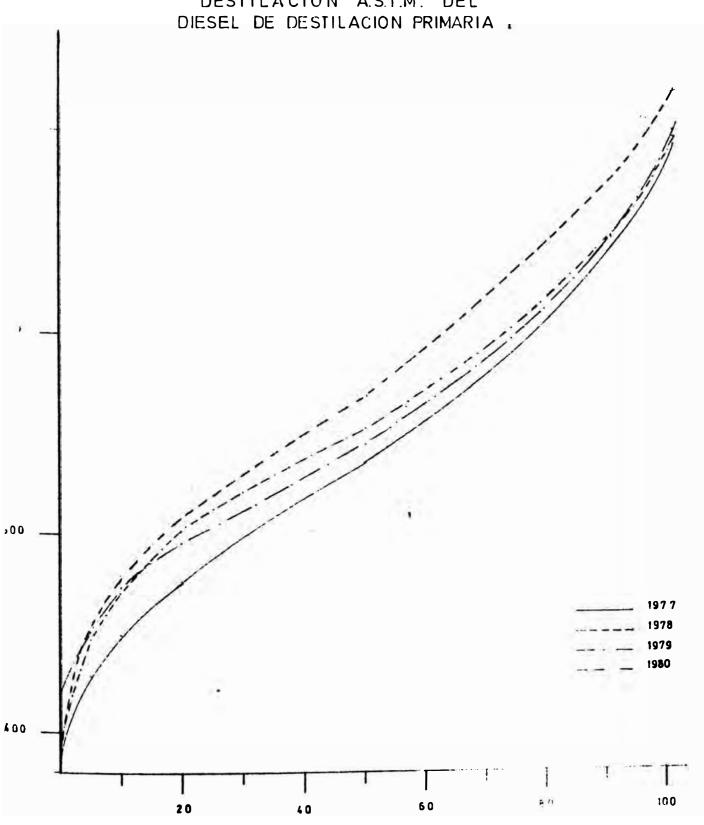
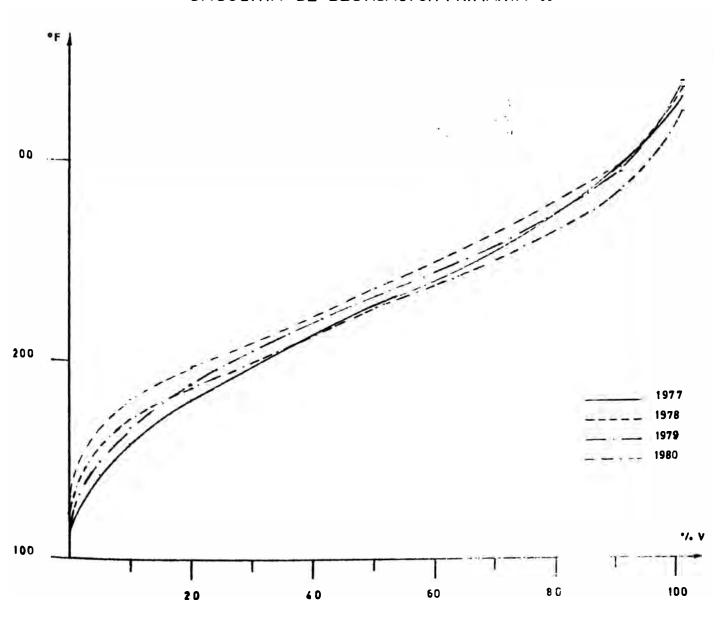
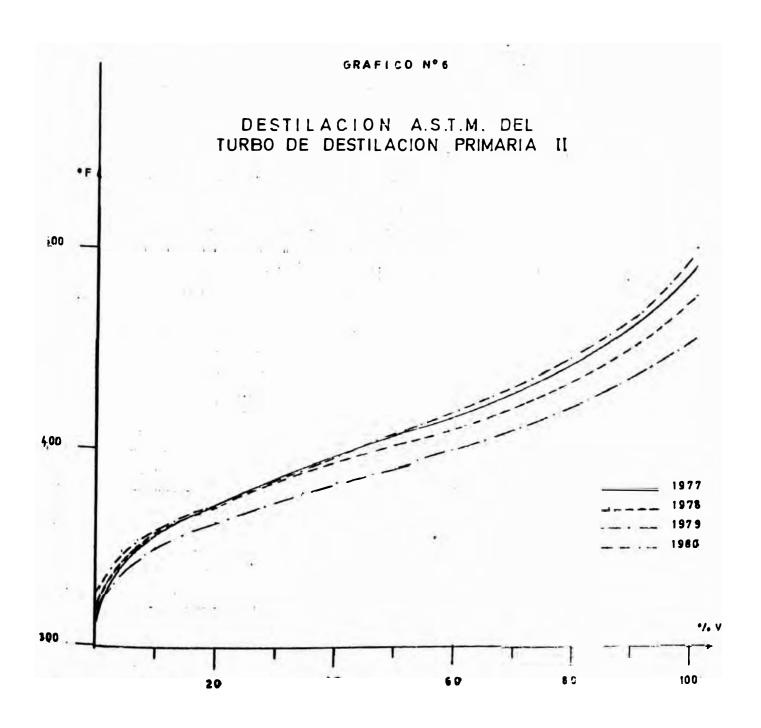
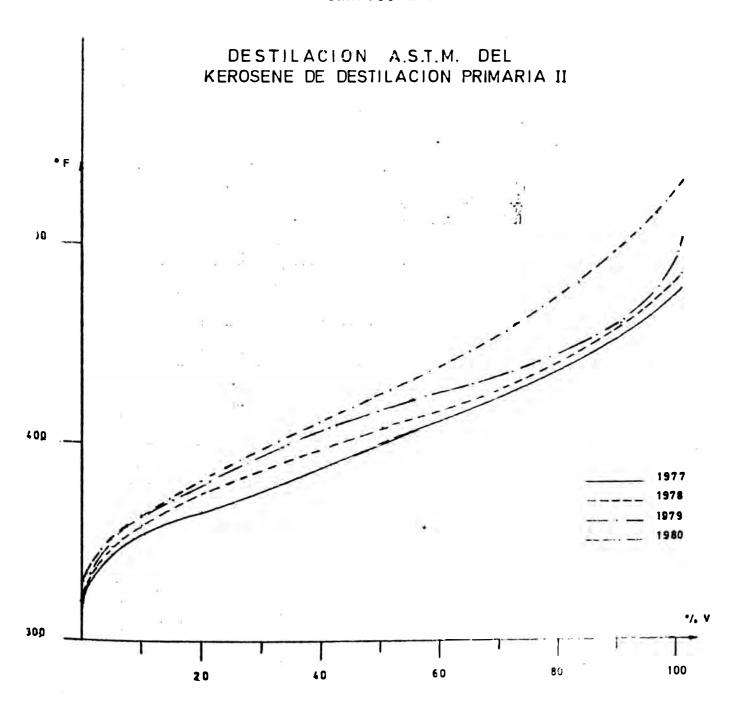


GRAFICO Nº3

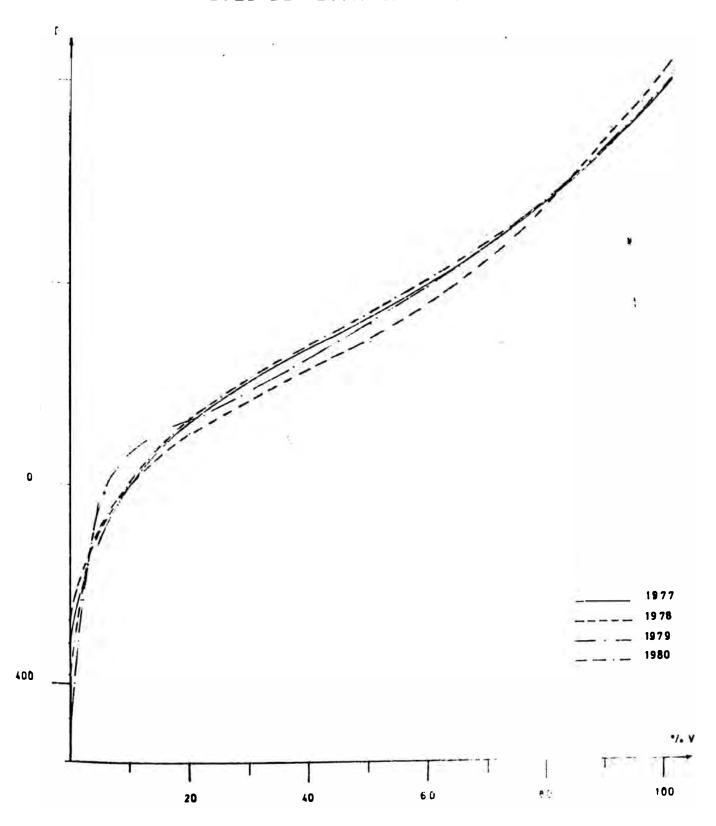
DESTILACION A.S.T.M. DEL TURBO DE DESTILACION PRIMARIA






GRAFICO Nº 5

DESTILACION A.S.T.M. DE LA GASOLINA DE DESTILACION PRIMARIA II



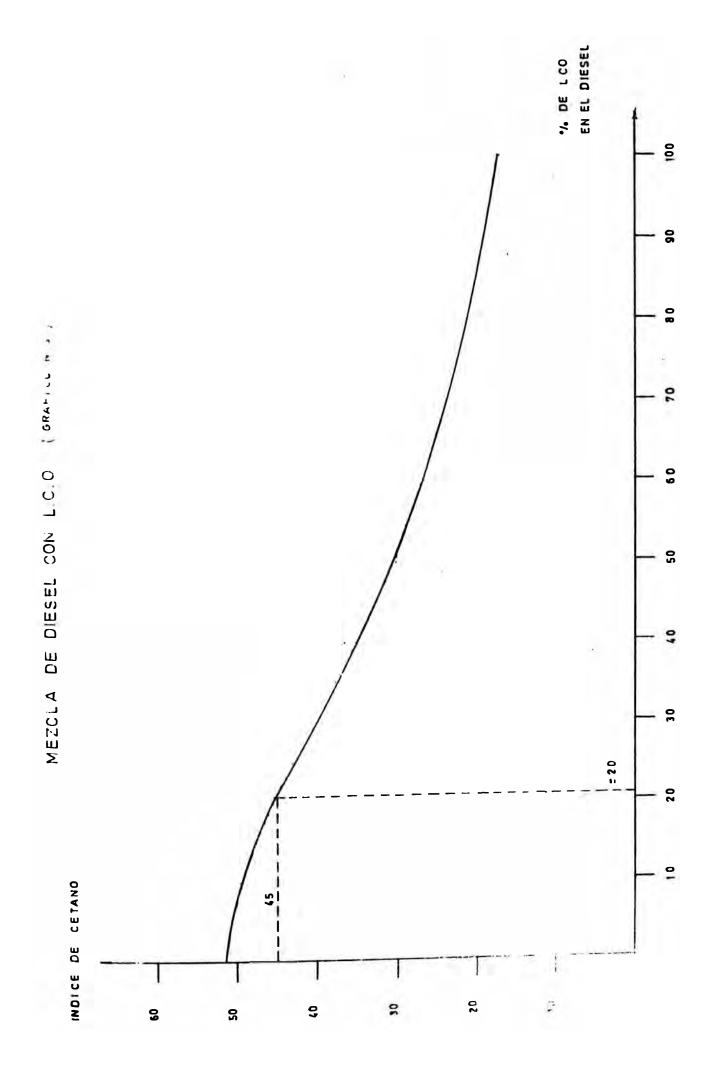


GRAFICO Nº 7

DESTILACION A.S.T:M. DEL DIESEL DE DESTILACION PRIMARIA II

CAPITULO II

AMPLIACION DE LA UNIDAD DE DESTILACION AL VACIO A 12 MBPD

2.1 LIMITACIONES DE LA UNIDAD

2.1.1 HORNO

- La temperatura de calentamiento en el horno es una limitante principal, pues no se debe exceder de 680°F, ya que a esta temperatura se produce craqueo.
- La capacidad del Horno 11-H2; pues la capacidad de diseño es de 10 MBPD, pero aumentando la severidad en él se puede llegar a 11 MBPD, sin embargo, esta unidad ya tiene más de 13 años de funcio namiento y su eficiencia ha disminuido en los últimos años.

2.1.2 COLUMNA

- Temperatura de operación del horno
- Perfil de temperaturas de la columna
- El vacío existente en la zona de expansión
- Capacidad de vaporización de la carga admisible por los platos 13 y 14.
 - Caída de presión
 - Velocidad lineal superficial de los computes tos vaporizados
 - Altura de las campanas

- Altura de vertederos
- Altura de bajantes
- Volumen de los platos recolectores o acumuladores.

2.1.3 VARIABLES DEL PROCESO

- Calidad de la carga
- Tiempo de residencia de los productos en los platos recolectores para establecer un buen equilibrio termodinámico.

2.1.4 VARIABLES DE OPERACION

- Temperatura
- Presión
- Volumen de reflujos de condensadores de contacto.

Las limitantes principales en este caso son: el hor no y la capacidad de vapor admisible por los platos 13 y 14.

El horno 11-H2, debido a el tiempo de servicios que tiene, produce paradar de la unidad fuera de las programadas, por lo cual es recomendable la compra de un horno gemelo para que el horno 11-H2 trabaje a menos severidad y menos carga y aumentando así su eficiencia y el tiempo total de parada de la unidad. Disminuiría debido a que uno de los hornos made es tar trabajando mientras el otro estí an mantenimiento, lo cual alargará el tiempo de vida del mantenimiento, lo cual alargará el tiempo de vida del mantenimiento.

2.2 <u>MODIFICACIONES POSIBLES EN</u> LA <u>COLUMNA DE DESTILACION</u> <u>AL VACIO</u>

Aqui la otra limitante es la capacidad de vapor a <u>tra</u> vés del plato 14, si la capacidad del plato es menor que la capacidad de vapor máxima, entonces la columna no requerirá mayores modificaciones.

2.2.1 <u>CALCULO DE LA CAPACIDAD DE VAPOR A TRAVES DEL PLATO</u> 14

Según los datos de diseño, los platos 13 y 14 son del tipo "Bubble Cup Tray", o sea plato de copas de burbujeo. Las copas de burbujeo tienen las ranuras rectangulares.

Para este tipo de platos, la fórmula para exicular la capacidad de vapor máxima es:

$$Q_{VM} = 15.06 A_f \sqrt{H_f (\rho_b \rho_v)/\rho_v}$$

donde:

A = Superficie Total de danuras

ρ₁ = Densidad del Liquido

 ρ_{v} = Densidad del Vapor

además $A_f = c H_f N_f N_c$

c = Ancho de cada ranura

 $H_{\mathbf{f}}$ = Altura de las ramuras

N_f = Número de ranuras de cada campata

N = Número de campanas del plato.

Del Gráfico 10:

El número de campanas en la cuarta parte es:

 $5 \times 6 + 3 + 4 + 5 = 42$

El total de campanas es = 168 \rightarrow N_C = 168

Para una Capacidad de 12 MBPD de la Unidad de Vacío obteniendo un LVGO con especificación de Diesel

1) Cálculo de ρ_1 y ρ_v :

En la Zona Flash:

Temp = 680°F P = 75 mm Hg

LVGO = 1800 Bb1/día, 32°API, $M \simeq 260.0$ lb/mol-lb

 $HVGO = 5820 \text{ Bbl/dia}, 25^{\circ}API, M = 346.8 \text{ lb/mol-lb}$

Residual de Vacío = 4380 Bbl/día

o sea el 63.5% Vol Vaporizado.

LVGO: $32^{\circ}API = 302.7 \text{ lb/Bbl}$

1800 Bbl x 302.7 lb x Día x 1 hr

D**ía** Bbl 24 hr 3600 seg

LVGO = 6.306 lb/seg

HVGO: $25^{\circ}API = 316.2 \text{ lb/Bbl}$

5820 Bbl x 316.2 lb x Dia x 1 hr

Día Bbl 24 hr 3600 seg

HVGO = 21.299 lb/seg

Total de Moles:

LVGO = 6.306 lb/seg = 0.0242 mol-lb/seg 260.6 lb/mol-lb

$$HVGO = {21.299 \text{ lb/seg} \atop 346.8 \text{ lb/mol-lb}} = 0.0614 \text{ mol-lb/seg}$$

Total = 0.0856 mol-lb/seg.

2) Cálculo del Volumen Ocupado: y ρ_{ij}

Condiciones:
$$P = 75 \text{ mm Hg abs} = 1.451 \text{ PSIA}$$

 $T = 680^{\circ}\text{F} = 1140^{\circ}\text{R}$

$$V_V = 0.0856 \text{ mol-lb} \times 10.73 \text{ PSIA x pie}^3 \times 1140^{\circ} \text{R}$$

seg mol-lb-°R 1.451 PSIA

$$V_v = 721.624 \text{ pie}^3/\text{seg} = 20'434,116.4 \text{ cm}^3/\text{seg}$$

$$\rho_{v} = \frac{(6.306 + 21.299)}{721.624} = 0.0382 \text{ lb/pie}^{3}$$

$$\rho_{v} = 0.0328 \text{ lb/pie}^{3}$$

3) Cálculo de p1:

LVGO:
$$^{\circ}API = 32 \rightarrow \rho_{60^{\circ}F} = 53.91 \text{ lb/pie}^{3} \quad k = 11.85$$

a 680°F
$$\rho_{LVGO} = 38.5 \text{ lb/pie}^3$$

HVGO:
$$^{\circ}API = 25 \rightarrow \rho_{60^{\circ}F} = 56.32 \text{ lb/pie}^{3} \quad k = 11.85$$

a 680°F
$$\rho_{HVGO} = 42.2 \text{ lb/pie}^3$$

$$\rho_1$$
 = 0.236 (38.5) + 0.764 (42.2) = 41.327 lb/pie³

$$\rho_1 = 41.327 \text{ lb/pie}^3$$

Con todos los datos encontrados calculamos de dau dal máximo de vapor a través del plato 14

$$A_f = 1.4 (5.1) (20) (168) = 23990.4 cm$$

 $Q_{VM} = 15.06 (23990.4) \sqrt{5.1 (41.327-0.0328)70.0328}$ $Q_{VM} = 28'950,439.1 \text{ cm}^3/\text{seg}$

+ Q_{VM} > 20'434,116.4 cm³/seg que es el volumen Vaporizado en la Zona Flash para 12 MBPD, esto significa que SI SE PUEDE ELEVAR LA CAPACIDAD A 12 MBPD SIN MAYORES MODIFICACIONES EN LA COLUMNA.

2.2.2 <u>CALCULO DE LOS TIEMPOS DE RESIDENCIA EN LOS PLATOSº</u> <u>RECOLECTORES O ACUMULADORES 1 y 2 DE LA COLUMNA DE VACIO</u>

BASES

- El LVGO permanecerá 2.5 minutos como mínimo en el acumulador Nº 1 para mantener un buen equilibrio Termodinámico y Térmico en esta parte de la colum na, mientras que el HVGO deberá permanecer 4 minutos en el Acumulador Nº 2.
- El reflujo inferior, circulante (SLOP WAX), tiene por finalidad mantener un nivel adecuado de producto condensado en los platos de campana 13 y 14 para un perfecto burbujeo de los vapores ascendentes del Crudo Reducido Vaporizado por lo cual el flujo de 640 BPD se considera invariable.
- El Tiempo de Residencia o mejor dicho de Permanen cia del LVGO en el Acumulador Nº 1 es el resultado de dividir el volumen del Acumulador entre el flujo total de LVGO que ingresa al Acumulador Nº 1.
- Igualmente el Tiempo de Residencia del Accumulator

No 2 es el resultado de dividir el volumen del Acumulador N° 2 entre el flujo total de HVGO que ingresa al Acumulador.

El Acumulador Nº 1 tiene una capacidad máxima de 1,300 galones pero siempre se deja una altura libre en el acumulador para mayor flexibilidad de la operación y no rebase el LVGO dicho acumulador, produciêndose el inundamiento del plato inferior. Este volumen es de 200 galones.

Volumen Máximo de Operación: 1360 galones = 30.95 barriles

Volumen Normal de Operación: 1100 galones = 26.2 barriles

El Acumulador Nº 2 tiene una capacidad máxima de 2,000 galones, pero al dejar una altura libre para mayor flexibilidad de operación, la capacidad normal es de aproximadamente 400 galones menos.

Volumen Máximo de Operación = 2000 galones = 47.62 barriles

Volumen Normal de Operación = 1600 galones = 38.1 barriles

CUADRO 40 - DATOS DE DISEÑO

Capacidad: 10,000 BPF

	GPM	EPD
LVGO (Flujos) a Stock	50	1714.3
Reflujo	200	4.7.1
Flujo Total del Acumulador Nº 1	25 1	120,000

Cálculo del Tiempo de Residencia

Operación Normal

Volumen del Acumulador Nº 1 = 1100 Gal. Flujo Total del Acumulador Nº 1 = 250 Gal/min.

$$\Theta_{RN1} = \frac{1100 \text{ Gal}}{250 \text{ Gal/min}}$$

 $\Theta_{RN1} = 4.4 \text{ min.}$

Operación a Máxima Capacidad

Volumen del Acumulador Nº 1: Máximo = 1300 Gal. Flujo Total del Acumulador Nº 1 = 250 Gal.

$$\theta_{RM1} = \frac{1300 \text{ Gal}}{250 \text{ Gal/min}}$$

 $\Theta_{\rm RM1}$ = 5.2 min.

CUADRO 41

The state of the s		
HVGO (flujos)	GPM	BPD
A Stock	97	3325.7
Reflujo Superior	171	5862.9
Reflujo Inferior	20	685.7
Flujo Total del Acumulador Nº 2	288	9874.3

Cálculo del Tiempo de Residencia

Operación Normal

Volumen del Acumulador N° 2 = 1600 Cal. Flujo Total del Acumulador N° 2 = 288 Cal/min.

$$\theta_{RN2} = \frac{1600 \text{ gal}}{288 \text{ gal/min}}$$

$$\Theta_{\rm RN2}$$
 = 5.55 min

Operación a Máxima Capacidad

Volumen del Acumulador N° 2 Máximo = 2000 gal. Flujo Total del Acumulador N° 2 = 288 gal/min.

$$\theta_{\rm RM2} = \frac{2000 \, \rm gal}{288 \, \rm gal/min}$$

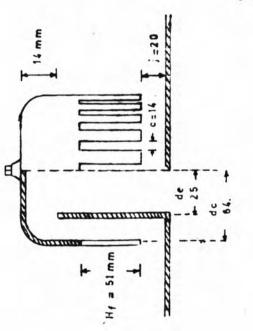
$$\theta_{\rm RM2}$$
 = 6.94 min.

Teniendo como base este cálculo podemos hallar los Tiempos de Residencia para 8 MBPD, 11 MBPD y 12 MBPD de carga que es lo que se busca hallar finalmente. Los datos de 8 y 11 MBPD son datos de opera ción y el de 12 MBPD es el Proyectado.

CUADRO 42

CARGA A LA UNIDAD	DAD 10,000 BPD (Diseño)		8,000 BPD		11,000 BPD		12,000 BPD Proyectado	
LVGO (Flujos)	GPM	BPD	GPM	BPD	GPM	BPD	GPM	BPD
A Stock	50	1,714.3	42	1,440	47.6	1,632	52.5	1,800
Reflujo	200	6,857.1	359.3	12,320	351.2	12,040	374.5	12,840
Total Acumulador Nº 1	250	8,571.4	401.3	13,760	398.8	13,672	427.0	14,580
Tiempos de Residencia								
o _{rn1} (min)	4.4	4.4	2.7	2.7	2.8	2.8	2.6	2.6
$\Theta_{\rm RM1}$ (MIN)	5.2	5.2	3.2	3.2	3.3	3.3	3.0	3.0
HVGO (Flujos)	GPM	BPD	GPM	BPD	GP M	BPD	GPM	BPD
A Stock	97	3,325.7	115.5	3,960	150.1	5,148	169.7	5,820
Reflujo Superior	171	5,862.9	61.2	2,100	134.7	4,620	155.2	5,320
Reflujo Inferior	20	685.7	18.2	624	18.7	640	18.7	640
Total Acumulador Nº 2	288	9,874.3	194.9	6,684	303.5	10,408	343.6	11,780
Tiempos de Residencia								
⇔ _{RN2} (MIN)	5.6	5.6	8.2	8.2	5.3	5.3	4.7	4.7
$ \frac{1}{2} \times \mathbb{R}^{1} $ (MIN)	6.9	6.9	10.3	10.3	6.6	6.6	5.8	5.8

2.2.3 COMPARACION DE LOS FLUJOS DE DISEÑO, ACTUAL Y DE AMPLIACION


CUADRO 43

	D I S E Ñ O		A C T U A L		AMPLIACION	
	BPSD 60°F	Temp. °F	BPSD	Temp. 60°F	BPSD	Temp. 60°F
Crudo Reducido al hormo de Vacío	9 3 60	630	11026		12000	
Materiales en la Zona Flash	9360	700	11026	657	12000	680
L VG O	2400	700	1439	657	1800	680
HVGO	4800	700	5545	657	5820	680
Residual de Vacío	2100	700	4042	657	4380	680
HVGO Total	14168	480	10165	470	12870	475
HVGO Reflujo de Malla	560	480	640	470	686	475
HVGO Reflujo	9236	150	4620	203	7050	180
HVGO a Stock	4800	150	554 5		5820	150
LVGO Total	11500	200	13292	214	12300	205
LVGO Reflujo	9024	100	11853	120	10500	105
LVGO a Stock	2400	150	1439		1800	150

Como se puede apreciar el Enfriador (intercambiador de calor) del reflujo de LVGO no funcio na adecuadamente, por lo que se requiere uno nuevo para poder aumentar la capacidad a 12 MBPD y no necesitar de una cantidad excesiva de reflujo de LVGO como actualmente se tiene.

No I NUMERO DE COPAS DEL PLATON ... TAI 3-1-5 - 5x6" = 168

BURBUJEO DE COPA

C = 1.4 cm Hr = 5.1 cm Nr = 20 ranuras

CAPITULO III

<u>INSTALACION DE UNA UNIDAD DE REDUCCION</u> <u>DE VISCOSIDAD (VISBREAKING)</u>

3.1 <u>DEFINICION Y COMENTARIOS</u>

El proceso de reducción de Viscosidad, es un craqueo o desintegración térmica moderada, mediante este proceso se convierten residuos pesados de alta viscosidad que no son útiles directamente como Residual # 6 en aceites de menor viscosidad, con el objeto de:

- Reducir o eliminar el costoso uso de diluentes.
- Producir productos más rentables que el Residual # 6.

Al igual que en todo proceso de desintegración térmica, este proceso genera gas, gasolina y gasóleos lige ros de mayor valor económico que la carga, también al reducirse la viscosidad y el volumen del residuo, obviamente se reduce el consumo de diluyentes y el volumen de Residual # 6 que es de menor precio. Como con secuencia de la generación de gasóleos ligeros durante este proceso, simultáneamente se obtiene la ventaja de una reducción en la temperatura de escurrimiento del residuo, pues estos gasóleos presentes actúan como diluentes.

En general, los residuos pesados de carga a plantas reductoras de viscosidad proceden de los fondos de una torre de destilación al vacío que ha sido alimenta da con residuos atmosféricos. También pueden utilizarse otros residuos virgenes pesados, que por su alta viscosidad lo justifiquen.

1.1.1 CALIDAD DE LA CARGA

De la calidad de la carga depende en gran parte el grado de conversión factible en el proceso, y, por consecuencia, la duración de la corrida.

Se consideran buenas cargas las de alto contenido de aceites pesados y bajo contenido de asfaltenos, ya que a la presencia de alto contenido de estos úl timos se le atribuye que a severidades altas se generen residuos que no pasen la prueba NBTL (NAVY BOILER AND TURBINE LABORATORY) de estabilidad térmi ca que exigen algunos usuarios del Residual # 6. Es to limita en algunos casos el grado de severidad.

Los valores de asfaltenos insolubles en pentano de las cargas a plantas reductoras de viscosidad que fluctúan entre 2-12% para los de base parafínica y de 18-28% para los de base nafténica, recomendándose como mejores cargas las de menor contenido. Una prueba que correlaciona el contenido de asfaltenos con la calidad de la carga es la temperatura de ablandamiento de asfaltos, determinada por el método ASTM D-2398, a medida que sube el porcentaje de asfaltenos también sube proporcionalmente la temperatura de ablandamiento.

3.1.2 PARAMETROS DE DISEÑO

<u>Variables de Operación</u> - Las principales variables en la reducción de viscosidad para el diseño son:

- Temperatura a la salida del horno
- Tiempo de residencia en el horno
- Presión en el horno
- Características de la carga.

Un incremento en cualquiera de las tres variables da como resultado un incremento en la severidad de la viscoreducción (VISBREAKING). Los estudios mues tran que estas variables son intercambiables dentro de los límites razonables, esto es, para una severidad dada, el índice de rendimiento de gasolina, la distribución y calidaddel producto son los mismos prescindiendo de la combinación de la temperatura, tiempo de residencia y presión usada para obtener e sa severidad.

Temperatura y Tiempo de Residencia (e_p). - Antiguamente cuando se deseaba obtener mayor rendimiento de gasolina con la reducción de viscosidad de los residuos, el rango de temperaturas estaba entre 842 878°F (450-470°C) y el tiempo de residencia era de varios minutos referidos a la carga líquida.

Actualmente la producción está orientada a la mayor producción de gasólcos. Luego para lograr esto las temperaturas se elevan al rango de 836-914°F (480-490°C) y el tiempo de residencia es más corto (pocos minutos).

CUADRO 44		
Diseño Tiempo de Residencia Temporatura, °F Rendimientos, % Peso	Antiguo Varios minutos 842 - 878	Actual Pocos minutos 896 - 914
Gas y LPG	1,7	1.3
Gasolina	5.2	4.3
Gasóleos	7.5	15.9
Residuos	85.8	7 7 , 5.

Presión. Es otro importante parámetro para el dise no del viscoreductor. Actualmente la presión el dise

llegar a ser de 50 atm (735 PSI) para la fase <u>líqui</u> da de la viscoreducción y de 7-20 atm (103-294 PSI) para un 20-40% vaporizado a la salida del horno, <u>de</u> pendiendo de la experiencia en el proceso y los ren dimientos de las cargas.

3.1.3 FORMACION DE COQUE

Un incremento en la severidad de la viscoreducción producido por un aumento de la temperatura en el horno da como resultado un incremento en los rendimientos de los destilados, aumentando la conversión total del residual de vacío. Sin embargo, también se manifiesta un aumento en la formación de coque en el horno y el cual si trabaja a extremas severidades tendría que parar para el correspondiente des coquificado.

Además los gasóleos producidos a condiciones severas son mucho más inestables con la prueba NBTL de estabilidad térmica.

La formación de coque se produce a altas severida des debido a que las resinas y accites pesados que mantienen separados o dispersos a los constituyentes asfálticos son craqueados y los constituyentes asfálticos separados se unen 7 forman depósitos de coque en el serpentin del horno o durante el test NBTL de estabilidad térmica.

- Conforme se incrementa el craqueo térmico la concentración de constituyentes reactivos allo fina en
el horno. La alta concentración de radicida reactivos promueve una condensación de brata a mase.
Estas moléculas son de cadena larga a mase.

les de poder dispersor que el material asfáltico original.

Estos dos fenómenos causados por la alta severidad hacen que el residuo craqueado sea inestable.

A suaves y moderadas severidades los depósitos de coque en el horno y los separadores son muy leves.

3.1.4 CORRELACIONES DE VISBREAKING

Las correlaciones de los rendimientos de los productos están en función de los n-pentanos $(n-C_5)$ y los puntos de ablandamiento.

En todo caso la severidad se limita a un máximo en el cual los gasóleos y residuos son estables con la prueba NBTL de estabilidad térmica.

La sedimentación por extracción con benceno de los n-pentanos insolubles (o el punto de ablandamiento) da como resultado un incremento sustancial en el rendimiento de gasóleos, un pequeño incremento en la nafta y una disminución en los rendimientos de gasolina.

El contenido de sedimentos en la carga afecta la es tabilidad térmica de los gasóleos de viscoreducción.

Las cargas con alto contenido de sedimentos producen bajos rendimientos de gasóleos, y la presencia de materiales asfálticos de alto peso molecular reduce el límite de severidad para obtener gasóleos estables Con las correlaciones obtenidas es posible estimar las características con bastante confianza a partir de las propiedades de la carga. Estas correlaciones no son confiables si no se sabe el contenido de sedimentos de la carga.

También se obtiene una buena correlación usando el punto de ablandamiento como factor de caracterización de la carga, sin embargo, esta correlación no es tan exacta como el método usado de los insolubles del n-pentano y además estas correlaciones fue ron desarrolladas solamente para residuales de vació y por consiguiente no es aplicable para residuos atmosfericos.

3.2 PROPIEDADES DE LOS PRODUCTOS

3.2.1 GASOLINA DE VISBREAKING

Las propiedades de la Nafta y la Gasolina de Viscoreducción son las típicas características de las ga solinas obtenidas en un proceso de Craqueo Térmico.

La Gasolina podrá ser conveniente en la mayoría de los casos para mezclarlo en el pool de Casolinas después de su endulzamiento. En general los números de octanos son medianamente bajos y de contenido de azufre en algunos casos alto, sin embargo, en nuestro caso tenemos solo 0.906% de azufre en la carga, y según las experiencias para bajos porcenta jes de azufre en la carga el % de azufre es bajo y podrá estar entre 0.2 y 0.4 como máximo.

Las Gasolinas de Visbreaking son altamente succepti-

bles a la Reformación Catalítica.

Como se puede apreciar esta Gasolina es altamente corrosiva y es muy inestable a la formación de gomas por su alto contenido de olefinas. Sin embargo, su carácter corrosivo se corrige con un tratamiento a base de sosa y su inestabilidad se volvería despreciable al mezclarse con la producción total de la refinería, el punto final de ebullición está entre 400-410°F.

3.2.2 GASOLEO LIGERO DE VISBREAKING

La viscoreducción produce cantidades significativas de Fuel-Oil Nº 2 y Diesel Nº 2 los cuales son de buena calidad, son inherentemente mejores que los combustibles para los hornos de Craqueo Catalítico desde el punto de vista de quemado.

Este Fuel-Oil sin tratar tiene una gravedad °API de 30-33 y un Número de Cetano de 40-47 y una Viscosidad de 34 SSU a 100°F; como se aprecia este corte puede ir a pool de Diesel pero teniendo siempre su inestabilidad a la oxidación lo cual se puede remediar mediante aditivos.

3.2.3 GASOLEO DE VISBREAKING COMO CARGA A FCC

Un sustancial rendimiento de una carga de Craqueo Catalítico de mediana calidad puede ser recobrado de los productos líquidos de Viscoreducción de institución al Vacío.

Se hizo una prueba con un Gasóleo de Viscoreducció:.

el cual presentaba las siguientes características: una gravedad 18.1ºAPI y un Factor de Caracteriza-ción de 11.5, un contenido de níquel de 0.2 ppm y un contenido de vanadio de 0.3 ppm y un residuo de carbón en peso de 1.45%.

Para cualuar las características de este gasóleo de viscoreducción se craquearon catalíticamente en una planta piloto un Gasóleo Virgen, un Gasóleo pesado a las mismas condiciones que el Gasóleo de Viscoreducción.

A las mismas condiciones de operación los rendimien tos de Gasolina fueron intermedios para el Gasóleo de Viscoreducción entre el Gasóleo Virgen y el Gasó leo Pesado, asi mismo los rendimientos de Gasóleo y la formación de Coque.

Estos resultados demuestran que este Gasóleo de Vis coreducción es un buen incremento para la carga de FCC y un buen sustituto del HVGO.

PRUEBAS ANALITICAS DE CONTROL A LA CARGA Y SU OBJETI-VO EN UNA PLANTA REDUCTORA DE VISCOSIDAD

Peso Específico. Se usa para balances de materiales y para correlación de resultados de otras pruebas.

<u>Viscosidad SSF a 210°F.-</u> Se usa para evaluaciones del proceso.

Penetración.- Mide consistencia de asfalto.

Las pruebas anteriores se complementan para detinirella carga, en cuanto se refiere a su consistencia o ma

rácter de ligera o pesada.

Para un mismo crudo, indica grado de agotamiento en el proceso anterior al de la planta reductora.

Sedimento por Centrifugación. - Indica el contenido de contaminantes sólidos detectables físicamente por centrifugación.

<u>Sedimento por Extracción con Benceno.</u>

Detecta cuanti tativamente los contaminantes sólidos insolubles en benceno.

Asfaltenos en nC₅ y nC₇.- Sirve para calificar la calidad de la carga para este proceso, pues según parece repetidas veces en las literatura, estos asfaltenos pueden limitar el grado de severidad por afectar a la prueba de estabilidad térmica NBTL. Además indica que puede acortarse la duración de corridas.

<u>Carbón Conradson</u> %. - Dato que da una orientación com parativa entre diferentes cargas en cuanto a la tendencia a la formación de coque y carbón durante el proceso.

Destilado a 1000°F.- Indica en este caso el grado de agotamiento en procesos anteriores y os útil para determinar el grado de conversión en el proceso de reducción de viscosidad al comparar el resultado de esta prueba en la carga con el del residuo de la planta.

3.3.1 <u>CARACTERISTICAS DEL RESIDUAL DE VACIO DE RELAPA</u>

CUADRO 45 - RESIDUAL DE VACIO - DATOS LABORATORIO RELAPA

PRUEBAS	METODO ASTM	CARGA LA PLANTA
Peso Específico a	D-1298	0.9854
Densidad °API	D-1298	12.1
Viscosidad SSF a 210°F	D-88	456 *
Agua y Sedimento, % Vol	D-1796	0.1
Sedimento Extracción por Benceno, % Peso	D-2317	0.098
Asfaltenos en (nC ₇), % Peso	D-3279	14.5
Carbón Conradson, % Peso	D-524	5.11
Factor de Caracterización	UOP	10.0
Destilado a 1000°F, % Vol	D-1160	24.0
Azufre, %	D-2622	0.906
Temperatura de Inflamación ° F	D-93	+ 350
Temperatura Escurrimiento °F	D-97	+ 100

^{*} La Viscosidad del Residual de Vacío fue baja a fines de diciembre de 1980 y enero de 1981 por lo cual se tomó es te residual de vacío para poder obtener los posibles ren dimientos y la severidad a la que trabajaría la Unidad de Viscoreducción.

De esta tabla los resultados más importantes para determinar las posibles características y rendimien tos de la unidad Reductora de Viscosidad son:

Porcentaje en Peso de Asfaltenos.- Ouc en el residual de vacío es de 14.5% lo cual nos indica que la temperatura de ablandamiento será alta, o sea la unidad trabajará a severidad media o severidad alta, sin embargo, el principal problema de la Viscoredac ción es la Inestabilidad de los Fuel producidos si el Cracking Térmico es demasiado severo (o alta ce-

veridad), notándose la formación de Asfaltenos, esto se debe principalmente a la presencia de asfalte nos en la carga a la Unidad de Viscoreducción, una sustancia amorfa de color oscuro la cual existe como un coloide altamente dispersado en el Fuel. El Cracking Severo podría destruir los balances de la solución de coloides y llevar a una formación de Asfaltenos.

Esta característica de la formación de Asfaltenos nos indica claramente que para un Residual de Vacío del Crudo 100% Sclva, la severidad de la Planta de Visbreaking tendrá que ser media como máximo por el regular contenido de Asfaltenos (14.5%).

Antes generalmente entre las correlaciones de Craqueo Térmico se tomaba en cuenta como factor de caracterización la gravedad "API para medir la suceptibilidad de viscoreducción de la carga sin embargo, esta relación es indirecta y no es muy confiable, sin embargo, se encontró que las suceptibilidades de Viscoreducción están relacionadas a los Normal Pentanos (n-C₅) y los Normal Heptanos (n-C₇) insolubles que nos da el porcentaje de Asfaltenos en la carga.

También el Punto de Ablandamiento por el método de la bola y anillo, °F (Ring and Ball Softening Point) es una medida de la suceptibilidad a la Viscoreducción y está ligada directamente con los n-pentanos insolubles, los Stocks que tienen bajo punto de ablandamiento y bajos n-Pentanos y/o n-Heptanos mues tran una buena suceptibilidad hacia la Viscoreducción.

Los residuales que tienen bajo punto de ablandamien

to y bajos n-pentanos y/o n-heptanos insolubles con tienen una gran proporción de fuel-oil, y si consideramos al Residual de Vacío como una mezcla de Fuel-Oil Pesado y Asfaltenos, se observa que es el Fuel-Oil Pesado el que se Craquea a temperaturas no muy severas y produce aceites de baja viscosidad. A bajas y moderadas severidades los Asfaltenos no precipitan a través del horno.

SEDIMENTOS EXTRACCION POR BENCENO, PORCENTAJE EN PESO

Esta es otra correlación muy importante para saber aproximadamente los rendimientos de los productos como GLP, Gasolina, Fuel Oil Liviano y Residual de Visbreaking.

Las cargas de alto contenido de Sedimentos producen bajos rendimientos de Destilados, principalmente el de los Fuel-Oil, en el caso del Residual de Vacío, este contiene 0.098% lo cual nos indica que es un porcentaje alto, por consiguiente los rendimientos serán bajos.

Esta correlación además nos da los grados de severidad a los que trabajará la Planta Reductora de Viscosidad. Además, por el lado analítico, se observan incrementos de insolubles en Benceno y Sedimento. Precisamente en base a los niveles de insolubles en Benceno y Sedimento por centrífuga, correlacionados a las manifestaciones anteriores que limitan la duración de las corridas, se establecen tres niveles de Severidad, para los cuales se fijaron los siguientes límites:

CUADRO 46

Grados de	L I M I	T E S			
Severidad	Insolubles en Benceno, % Peso	Sedimento por Centrifugación % Volumen			
Baja	0.02 MAX.	0.05 - 0.2			
Media	0.02 a 0.3	0.2 - 1.0			
Alta	n.3 a 1.0 +	1.0 - 4.0 +			

Como se puede apreciar nuevamente el grado de severidad para la Planta Productora de Viscosidad que tenga como carga el Residual de Vacío será media.

De acuerdo al Porcentaje en Peso de Insolubles y el Grado de Severidad se pueden apreciar los posibles Rendimientos de la Planta Reductora de Viscosidad, en el cuadro 47, según estos posibles rendimientos se podría obtener hasta un 17.2% en volumen de Gasó leo Liviano que está dentro de las especificaciones del Diesel, con lo cual se maximizaría el Diesel Nº 2 y a la vez se podría aumentar la producción del corte Turbo/Kerosene aumentándoles el Punto Final en las unidades de Destilación Primaria.

Como se puede observar los rendimientos de Gas, Gasolina y Gasóleo se incrementan a medida que se aumenta el Grado de Severidad. Es interesante apreciar la reducción progresiva de los Destilados a + 1000°F y simultáneamente el incremento de Gasóleo que puede ser utilizado como carga a Plantas Catalíticas.

3.4 POSIBLES RENDIMIENTOS DE LA PLANTA REDUCTORA DE VISCOSIDAD A DIFERENTES SEVERIDADES

CUADRO 47

Grado de Severidad	S	everida	ad Baja		Severidad Media			Severidad Alta						
Determinación % Peso, Insolu- bles en Benceno	0.0000	0.005	0.010	0.020	0.05	0.10	0.15	0.20	0.30	0.40	0.50	0.60	0.80	1.0
Gas y LPG % Vol	3.0	3.1	6.0	5.8	5.5	5.4	5.0	5.2	5.0	5.0	5.0	6.0	7.0	8.7
Gasolina (400°F) % Vol.	4.0	4.2	3.4	3.8	4.2	4.8	6.7	8.0	9.5	9.8	10.0	12.0	14.0	15.0
Gasóleo Liviano (650°F) % Vol.	10.64	12.79	13.04	13.79	15.2	17.46	16.8	17.0	17.2	18.04	18.86	19.06	19.27	19.88
Gasóleo Pesado (1000°F) % Vol.	17.36	20.86	21.27	22.48	22.8	24.74	25.2	25.5	25.8	25.96	27.14	27.44	27.73	28.62
Residuc (+1000°F)% Vol.	68.0	62.05	60.49	58.13	57.13	51.9	50.3	49.5	45.6	44.3	42.0	40.0	38.0	37.0
Total % Vol.	103.0	103.0	104.2	104.0	104.0	104.3	104.9	105.2	103.1	103.1	103.0	104.5	106.0	109.2

CUADRO 49 - COMPARACION DE LAS CARACTERISTICAS DE LOS RESIDUOS ATMOSFERICOS RESIDUALES DE VACIO Y LOS RENDIMIENTOS DE UNA VISCOREDUCTORA

TIPO DE CRUDO	CRUDO DE	CRUDO DE TACHING		CRUDO ARABE LIGHT		LVA EN PRIMARIA I	CRUDO SELVA EN DESTILACION PRIMARIA II	
DETERMINACION	Residuo Atmosfér.	Residual de Vacío	Residuo Atmosfér.	Residual de Vacío	Residuo Atmosférico	Residual de Vacío	Residuo Atmosfer.	Residual de Vacio
% Peso/% Vol. del Crudo	69.4/66.6	41.7/38.52	48.1/43.89	20.5/17.54	55.75/51.29	27.9/18.72	46.2/41.89	22.06/18.82
°API	27. 3	21.5	17.7	8.5	18.9	10.0	16.5	8.0
Sp-gra 60°F	0.8911	0.9254	0.9484	1.0114	0.9407	1.000	0.9562	1.0143
% Peso de Azufre	0.15	0.19	3.0	4.4	0.49	8.0	0.53	0.906
Nitrogeno en Ppm	2100	3500	1900	4500		(I)	848	(**)
% Peso de Asfaltenos	4.4	7.6	1.8	4.3	5.26	14.	5 .7 0	14.5
% Peso de Carbón	3.8	7.9	7. 5	14.2	u.11	5.0	9.31	5.11
Vanadio en Ppm	1.1	1.9	26	66	33	-	29	- 7
Niquel en Ppm	5.0	9.3	10.0	24	Nulo	-	Nulo	_

VISCOREDUCCION DE LOS RESIDUOS DE VACIO

Rendimientos				
% Peso/% Volumen				
Gas y LPG	1.8/3.33	1.7/3.44	3.31/5.4	3.23/5.0
C ₅ -400°F P.F. Gasolina	8.4/10.46	7.2/9.66	3.36/4.8	6.66/9.5
Gasóleos 650°F P.F.	12.6/13.63	12.4/14.67	15.26/17.46	15.04/17.2
Residuos de V.B.+650°F	77.2/72.58	78.7/72.23	78.07/76.64	75.07/71.4

3.5 <u>METODOS UTILIZADOS PARA EVALUAR LOS RENDIMIENTOS EN UNA PLANTA REDUCTORA DE VISCOSIDAD</u>

Para evaluar los rendimientos de la Planta Reductora de Viscosidad se utilizan los siguientes métodos:

- 1. Conversión Total
- 2. Indice de Reducción de Viscosidad (IRV)
- 3. Indice de Reducción de Combustóleo (IRC)

3.5.1 CONVERSION TOTAL

Se define convencionalmente para este proceso conversión total como la diferencia en volumen de la suma de la producción de gas (equivalente en líquido), Gasolina y el Destilado a 1000°F del residuo de la planta menos el destilado a 1000°F de la carga de la planta.

En el caso del Residual de Vacío el porcentaje Destilado hasta 1000°F fue de 24% y de acuerdo a la Se veridad se obtienen los siguientes rangos de Conversión Total.

CUADRO 50

Grado de Severidad	Baja	Media	Alta
Productos	_		
Gas y LPG % Vol Gasolina Gasóleo Liviano Gasóleo Pesado hasta 1000°F Total Carga:	3.0 - 5.8 4.0 - 3.8 10.64 - 13.79 17.36 - 22.48 35.0 - 45.87	15.2 - 17.2	5.0 = 8.7 9.8 - 15.0 18.04 - 19.85 25.96 - 28.62 58.3 - 72.2
Dest. a 1000°F Conversión Total	24.0 - 24.0 11.0 - 21.87	24.0 - 24.0 22.87 - 33.5	

Aunque las condiciones de operación de temperatura y tiempos de residencia a diferentes temperaturas en los hornos son los que generan el grado de severidad, invariablemente se pueden detectar los efectos de alta severidad por análisis del residuo. Un alto grado de severidad se puede generar ya sea por altas temperaturas en el horno y cortos tiempos de residencia o por altos tiempos de residencia y bajas temperaturas.

Según el cuadro 50 se puede apreciar que la Conversión Total varía de 11.0% a 48.2% según la severidad a la que se trabaje, sin embargo, por razones de inestabilidad a la oxidación en los productos finales solo se podrá llegar a una conversión final de 33.5%, que es la máxima para una severidad media.

3.5.2 INDICE DE REDUCCION DE VISCOSIDAD (I.R.V.)

Este es un método que es muy utilizado en la Planta Reductora de Viscosidad de la Refinería 18 de Marzo, Atecapatzalco México, el cual sirve para determinar cuantitativamente el Grado de Reducción de Viscosidad. Se puede visualizar con facilidad el grado de Reducción de Viscosidad si se considera que el resi duo de la planta estuviera formado por la mezcla de dos componentes básicos, uno con viscosidad de la carga y el otro con viscosidad de un diluente seleccionado.

Como el Grado de Reducción de Viscosidad que tiene la Planta Reductora de Viscosidad se puede medir co mo si la planta generara un solo diluente, la grafi ca ASTM D-241 sección de mezclas, es muy útil. Para determinar en forma rápida el grado de reducción

que está logrando la planta, dicha refinería utiliza el siguiente sistema al cual denomina Indice de Reducción de Viscosidad (IRV).

Localizar en la gráfica ASTM D-341, tamaño 405 mm x 520 mm los puntos de viscosidad en segundos universal de la carga y residuo determinados a una misma temperatura y medir la distancia entre estos dos puntos. Las variaciones de esta distancia miden proporcionalmente aumentos o disminuciones de conversión de la carga a un equivalente de diluente de referencia seleccionado según convenga.

Esta distancia en la ordenada de la gráfica se mide por conveniencia en centímetros, en realidad este método sirve para medir la cantidad de diluyente ahorrado por concepto de disminución del volumen de residuo con respecto a la carga. Esto generalmente para la preparación del Residual Nº 6, que tiene un máximo de 300 SSF a 122°F, en otras palabras se necesita más diluente para preparar una cantidad determinada de la carga de la Planta Reductora que el residuo que se obtiene de la Planta Reductora.

3.5.3 INDICE DE REDUCCION DE COMBUSTOLEO (IRC)

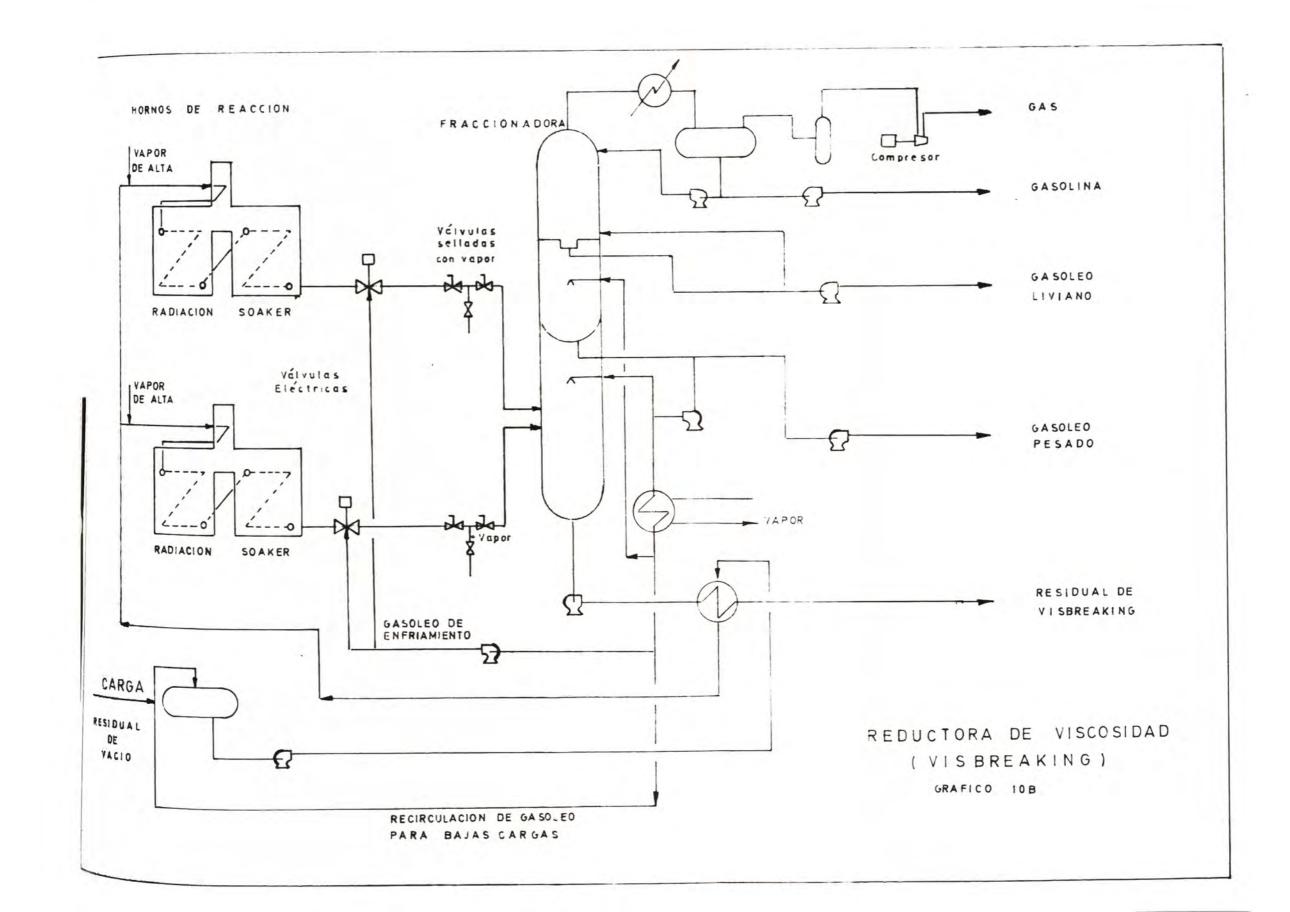
Este método, al igual que el anterior nos indica la cantidad de diluyente ahorrado pero en forma de Reducción de Combustóleo, o sea a menor Residual (Combustóleo) y de menor viscosidad se necesita menos diluente.

Se define el IRC como:

I.R.C. = A - B donde:

- A = Volumen de Combustóleo de 300 SSF a 122°F elabo rable a partir de 100 unidades de volumen de la carga a la planta.
- B = Volumen de Combustóleo de 300 SSF a 122°F elabo rable a partir del volumen de residuo de la planta correspondiente a 100 unidades de carga a la planta.

3.6 POSIBLES ESQUEMAS DE LA UTILIZACION DE LA UNIDAD REDUCTORA DE VISCOSIDAD


Generalmente los productos de la gasolina son:

Gas

Gasolina

Residuo (Gasóleo Liviano + Gasóleo Pesado + Residuo a + 1000°F)

Sin embargo, como el presente estudio tiene como fina lidad Maximizar Destilados Medios el principal objeti vo será extraer el Gasóleo Liviano (-650°F) que con tratamiento antioxidante puede aumentar la cantidad de Diesel N° 2. Además, cualquiera de los Gasóleos puede ser utilizado como carga a una unidad de Craqueo Catalítico (FCC) lo cual incrementaría a su vez la producción de LCO y Gasolina, lo cual es atractivo económicamente sin embargo, se debe tener en cuenta las especificaciones del Residual N° 6.

CAPITULO IV

AMPLIACION DE LA UNIDAD DE CRAQUEO CATALITICO FLUIDO (FCC)

4.1 ANTECEDENTES

La Unidad de Craqueo Catalítico Fluído tiene una capacidad de diseño inicial de 6670 BPD y está operando desde el 26 de diciembre de 1967.

Es una unidad Integral Reactor Regenerador modelo UOP "Stack" con el reactor elevado y regenerador presiona do, esta unidad fue modificada a partir del 18 de mayo de 1976 durante 47 días, modernizándose el diseño del proceso y adecuándolo al sistema de "Riser Cracking" y mejorando los materiales de construcción del sistema Reactor-Regenerador.

4.1.1 <u>REPARACIONES MAYORES DEL SISTEMA REACTOR-REGENERA-</u> DOR

Cambio y mejora en la calidad de los materiales de los principales equipos del Sistema Reactor-Regenerador.

- 1º Cambio de la cámara plena y mejora del material de acero de baja aleación 5 Cr 1/2 Mo a acero inoxidable 18 Cr- 8 Ni.
- 2º Cambio de ciclón del reactor, enlainado interior del mismo con material antierosivo y modificación de la Pierna del Ciclón para facilitar el montaje de la extensión del Riser. Las medi

das del ciclón no han sido modificadas.

- 3º Cambio de la bajante del reactor y recubrimiento interior con material antierosivo, el diámetro interior se mantiene.
- 4º Cambio y modificación del Riser e instalación de material antierosivo en el interior.

Dos cambios fundamentales se han realizado en esta parte del equipo: Disminución del diámetro nominal de 30" a 24" y la extensión del Riser, dentro del reactor para adaptar el sistema de "Riser Cracking".

5° Cambio del distribuidor de aire y mejora del ma terial de 5 Cr - 1/2 Mo a acero inoxidable 18 Cr - 8 Ni.

Cambio y Mejora del Sistema de Control del Proceso.

Reubicación de las termocuplas del Reactor hasta las inmediaciones del tope del Riser.

Reubicación de la toma inferior del nivel de catalizador en el reactor hasta el nivel 104'6" del agotador.

Cambio en el Riser

La unidad de FCC en su Sistema de Reactor-Regenerador estaba provista de un Riser con 107 pies de lon gitud y 28" ID, actualmente el Riser es de 24" ID con una extensión dentro del Reactor, la cual es re querida para realizar todo el proceso de craques dentro del Riser. El nuevo Riser está provisto de un recubrimiento antierosivo de 3/4" de espesor.

La longitud total del nuevo Riser es de 124 ples y se tiene una velocidad de 31 pies/seg y un tiempo de residencia de 5 segundos, como máximo.

Como consecuencia de estas modificaciones, las principales variables de operación del Reactor Regenerador se mantendrán lo más constantes posibles como sigue:

CUADRO 51

Carga	7,000			
RCC	1.10 - 1.20			
Temperatura Carga Fresca	400 - 440°F			
Presión Fraccionadora	8.0 psig			
Temperatura Reactor	910 - 930°F			
Presión Regenerador	22.0 psig			
Nivel Reactor	65" H ₂ 0 (*)			
Venteo Manual Turbo Soplador	Cerrado			

(*) O el mínimo requerido para mantener el diferencial ade cuado en la válvula deslizante del catalizador gastado.

Como la temperatura de la carga fresca es baja (400-410°F) se tiene que utilizar catalizadores muy activos, los cuales tienen promotores de combustión para favorecer la combustión com pleta del CO a CO₂ y mantener una temperatura del Reactor por encima de los 420°F con el fin de obtener mayor rendimiento de productos y una mayor conversión.

4.1.2 <u>VENTAJAS OFRECIDAS POR EL PROMOTOR DE COMBUSTION</u> SOBRE EK CATALIZADOR CBZ-1

En 1976 la División de Investigación de la Davison presentó las ventajas del promotor de combustión, que fue descrito y sintetizado como sigue:

- El CO del gas de chimenea es reducido o eliminado.
- Los niveles de carbón sobre el catalizador regene rado (CRC) son reducidos lo cual aumenta la conversión y la selectividad.
- Una utilización más eficiente de la Energía (Calor) debido a la baja pérdida de Calor con los ga
 ses de chimenea y una reducción de las temperaturas de la Carga precalentada debido a que se utiliza la energía de la reacción CO → CO₂.
- Reducir la reactivación del catalizador debido a la eliminación del utilizado en la antorcha de aceite y los ciclones de vapor de enfriamiento.
- Reducir el ciclón y la válvula deslizante usado debido a la reducción de los flujos recirculantes de catalizador.
- Baja pérdida de catalizador regenerado debido a la reducción de los requerimientos de aire.

Los beneficios anotados arriba son un resultado directo del calor liberado por la reacción de ${\rm CO} + {\rm CO}_2$ (de 10 a 160 BTU/lb de coque) y la alta temperatura de la fase densa del catalizador. El catalizador más caliente permite reducir las razones Catalizador/Aceite a una temperatura constante y reducir

los flujos de recirculación del catalizador, reducir las carga de coque al Regenerador y la recuperación de más cantidad de productos, sin embargo, la tempe ratura de la Carga precalentada es muy baja y la má xima capacidad de procesamiento de la unidad es de 7000 BPD sin un horno de precalentamiento, debido a que la carga está constituida por HVGO y AGO princi palmente y no una carga combinada de LVGO y HVGO. La carga es menor y debido a problemas en la unidad, la carga actualmente es menor de 7000 BPD.

CUADRO 52 - CUADRO COMPARATIVO DE RENDIMIENTO DE LA UNIDAD DE FCC CON CATALIZADOR DE ALTA ALUMINA, ZEOLITICO XZ-25 y CBZ-1 (Referidos a la Carga Total)

		i.	ALTA ALUMINA		ZEOLITIC	XZ-25	CBZ-1 ACTUAL
TIPO DE CATALIZAD	OR -	Diseñc Caso I	Diseño Caso II	Operación Promedio	Antes Riser Cracking	Con Riser Cracking	Con Riser Crackin
Carga Presca	BPD	6,670	5,670	6,945	6,969	5,805	5,926
GLP Primaria	BP D	78	12	314	340	253	338
SLP Platforming	BPD	118	7 9	77	, -	35	143
GAS Primaria	BPD		-	20	30	-	; - ;
Carga Total	BPD	6,866	6,761	7,356	7,33°	6,093	6,407
Carga Total	% Vol	100.0	100.0	100.0	100.0	100.0	100.0
Gas Table 1	% Vol	:	-	6.2	5.7	6.3	4.08
GLP	% Vol	8.1 (C ₃)	8.9 (C ₃)	17. 3	20.9	24.5	27.36
Butano	% Vol	13.2 (C ₄)	12.7 (C ₄)	2.2	4.0	11.0	7.71
Gasolina	% Vol	38.6	37.8	45.3	61.3	53.€	57.61
LCO	% Vol	24.3	24.7	21.0	9.7	9.8	14.41
HCO	% Vol	14.5	14.8	9.4	4.3	6.7	3.03
Aceite Clarificado	% Vol	4.3	4.9	4.8	6.0	5.4	3.64
Total de Productos	% Vol	103.5	103.8	106.2	111.9	117.3	117.84
Ganancia	% Vol	3.5	3.8	6.2	11. 9	17. 3	17.84
% Conversión	Vol	5 5	55	63	78.9	76.8	77.9
RON de Gasolina		=	9 /3 0	91.7	89.7	91.2	90.1
PVR de Gasolina		-	£. → £	9.1	8.4	10.1	7.7
Temp. del Reactor	٥Ē	890	920	888	911	9 32	930
RCC		1.05	1.10	1.14	1.10	1.10	1.10
"API de la carga		28.0	20.0	28.1	27.7	28.9	27.2
🖰 Diesel		0.0	0.0	14.0	15.3	19.3	-
% ACC		-		-	-	_	19.0
crudo % Vol Orito		-	_	37.0	1.8	_	
Ecuador		-	_	27.9	50.8	77.0	< 1
Polivia		-	=	14.6	2.6	-	9-0
$\mathtt{Bel}\mathbf{\infty}$		#	-	11.7	25.9	-	-
Ce uta		-	-	::	<u>~</u>	15. 9	<u> </u>
S elva		-	25 — 2	7 4 7	-	-	100.0
0 tro s		_	-	8.8	18.9	7.1	-
Adición de Cat. IM	I/D	1.09	1.10	0.710	0.79	0.820	0.635

Como se puede apreciar la Carga Fresca en promedio está por debajo de la Carga de Diseño debido princi palmente a la temperatura de precalentamiento de la Carga Fresca.

Según las nuevas condiciones de Diseño para la unidad modificada de FCC a Riser Cracking, la temperatura de la Carga Fresca debe estar por encima de los 410°F, sin embargo, el promedio indica una temperatura de 338°F y esto trae consigo las siguientes variaciones:

- 1º Mientras más baja sea la temperatura de precalentamiento de la carga fresca mayor será el Régimen de Recirculación de Catalizador para mantener el rendimiento de la Gasolina GLP y LCO y una Conversión de 78% Vol.
- 2º Al tener una baja temperatura la carga fresca, disminuye o limita el régimen de la carga Fresca, a menos de 7000 BPD.

La solución más adecuada para la ampliación a 8000 BPD, es la instalación de un Horno de Precalentamien to. Normalmente, las Unidades de Riser Cracking típicas poseen Hornos de Precalentamiento o Catalizadores Activos con una actividad superior a 30% Vol. de conversión en forma consistente, la temperatura de precalentamiento supera los 600°F y la temperatura del reactor es mayor de 950°F, obteniéndose así una disminución de los reciclos y en algunos casos se hacen cero, esta disminución del volumen de recipicales va acompañada de un aumento del régimen de car ga que en el caso nuestro podrá ser de 800° (4)° 50° teniéndose así mayores rendimientos.

Observando el Cuadro 52 de rendimientos de los cata lizadores utilizados en la unidad de Craqueo Catalítico Fluído, los rendimientos de Gasolina siempre van en aumento así como el GLP, en cambio el LCO ha disminuido, sin embargo, con el catalizador CBZ-1 se logra un incremento pero esto es más notorio debido a que actualmente se maximiza LCO y para esto se ha reducido el punto final de la Gasolina, lo cual da como resultado un aumento de la producción de LCO.

4.2 OPERACION DE LA UNIDAD A BAJA PRESION

La presión del Regenerador a no dudarlo es tan solo u na de las muchas variables que se tienen que controlar y poder utilizar para maximizar o minimizar algún producto, sin embargo, la presión en el Regenerador está directamente ligada con el régimen de Recirculación del catalizador (RRC o CRR) y también con la cantidad de carbón sobre el catalizador regenerado (CRC).

En el caso de la unidad de FCC el RRC es bajo 1.10 y el regenerador está presionado a 23 psig y ésto debido a que la Velocidad de Quemado del Coque aumenta con el incremento en la Presión Parcial del Oxígeno. Además la Presión Parcial depende directamente de la Presión Absoluta, entonces un aumento de la Presión en el Regenerador permite que la regeneración se efectúe a un menor régimen de recirculación del catalizador (RRC) en comparación con los regeneradores de menor presión bajo ciertas condiciones.

Fundamentalmente la velocidad total del quemado de co que es una función tanto de la transferencia másica del oxígeno como de la cinética intrínseca de la re ción carbón-oxígeno. Pasing estableció que la veloci dad de reacción es:

$$R = \frac{P}{\frac{1}{K_D} + \frac{1}{K_R C_R}}$$

donde:

R = Velocidad total de reacción en moles/hr/lb de ca talizador.

P - Presión Parcial del oxígeno. ATM.

K_D = Coeficiente de transferencia de masa en moles/hr/
atm/lb de Catalizador.

K_R = Constante específica de velocidad de reacción en moles/hr/atm/lb de Catalizador.

C_R = % de Carbón en el Catalizador.

Esta ecuación indica la relación de primer orden entre la velocidad de quemado, Presión Parcial del oxígeno y Carbón en el Catalizador. Es evidente que al variar la Presión del Regenerador se tendrá un mayor efecto en las unidades que funcionan con RRC alto a di ferencia de las unidades que funcionan con RRC bajo.

La presión de Diseño del Regenerador constituye un compromiso entre los efectos positivos y negativos de una mayor o menor presión de operación. Con base en estas consideraciones la mayoría de las unidades se han limitado a un intervalo de presiones de regenerador relativamente limitado por el Diseño Mesánico. DE BIDO A ESTO LA PRESION DEL REGENERADOR NO SE CONSIDERA UNA VARIABLE DE OPERACION VERDADERAMENTE INDEPUNDIENTE.

4.3 USO DE NUEVOS CATALIZADORES PARA MAXIMIZAR L.C.O.

El principal problema que se tiene al querer maximizar el L.C.O. se debe generalmente a que la mayoría de los nuevos catalizadores se diseñan con el fin de maximizar los rendimientos de Gasolina, la Selectividad y disminuir los gases tóxicos que salen por la chimenea debido a el gran control de las normas para el cuidado del medio ambiente y también el incremento del octabaje de esta gasolina.

Además la serie de catalizadores CBZ de la Davison es y está siendo desplazado por la familia de la Davison Super-D, lo cual poco a poco volverá obsoleta a la fa milia CBZ y de los cuales el CBZ-4 es el catalizador indicado para maximizar L.C.O. puesto que el cataliza dor CBZ-4 fue diseñado para dar un máximo rendimiento de Light Cycle Oil (L.C.O.) y permitir así al refinero una buena mantención de la cantidad de coque y selectividad de gas y también aumentar la carga fresca hacia el reactor sin embargo, desafortunadamente el CBZ-4 también incrementa los rendimientos de H.C.O. y Slurry, pero incrementando el reciclo se podría reductr estos rendimientos junto con un gran incremento del L.C.O.

Como reciclando podemos conseguir maximizar el rendimiento de LCO esto finalmente estará limitado por la habilidad del refinero para controlar el incremento de rendimientos de Coque y Gas.

Las Variables que afectan la producción del Propanoson:

La calidad de la Carga.- En general las euge fur finicas son las que favorecen los incrementos de

rendimientos de Propano.

La Actividad del Catalizador. Los incremettos de la actividad del Catalizador incrementan también el rendimiento de propano, puesto que el propano es un producto de Craqueo Zeolítico y se opone al Craqueo Térmico

Por consiguiente, si queremos maximizar LCO lo primero que debemos hacer con respecto a los nuevos ca talizadores es encontrar un catalizador de menor ac tividad lo cual se opone a las tendencias actuales.

Según las siguientes tablas se puede apreciar las características, propiedades y rendimientos de la familia de catalizadores CBZ y el catalizador XZ-25.

CUADRO 53 - PROPIEDADES TIPICAS DEL CATALIZADOR FRESCO

CATALIZADOR	CB7-1	CBZ-2	CBZ-3	CBZ-4	XZ-25
ANALISIS QUIMICO: % Peso Base Seca					
Al ₂ 0 ₃ Na ₂ 0 SO ₄ Fe T.V. (1500°F) SiO ₂	28.5 0.75 0.60 0.1 12.0	29.0 0.5 0.4 0.1 12.0	29.0 0.6 0.6 0.1 12.0	30.0 0.4 0.3 0.1 12.0	30.6 0.11 - 0.11 - 65.7
ANALISIS FISICO:					
Area Superficial M ² /gr Volumen Poroso cc/gr Densidad Aparente gr/cc	290 0.47 0.52	250 0.47 0.52	265 0.47 0.52	225 0.47 0.53	0.58 0.53
Indice de Desgaste Davison	37	30	33	25	170
Equilibrio Típico Microactividad	70	64	67	F-1	81:

CUADRO 54 - COMPARACION DE RENDIMIENTOS DE LOS CATALIZADORES CBZ y XZ-25

CATTAL TOATOR	CBZ	- 1	CBZ	- 2	XZ -	25	CBZ	- 4
CATALIZADOR	% Peso	% Vol.	% Peso	% Vol.	% Peso	% Vol.	% Peso	% Vol.
Conversión		79.58		75.37		73.22		70.61
H ₂	0.07		0.07		0.06		0.06	
н ₂ s	0.09		0.09		0.09		0.09	
	0.72		0.81		0.82		0.83	
C ₁ C ₂ = C ₂ C ₃ = C ₄ = iC ₄	1.10		0.91		0.83		0.74	
c_2	0.32		0.38		0.39		0.40	
c ₃ =	4.66	8.05	3.31	5.73	2.86	4.98	2.42	4.1
c_3	1.7 6	3.12	1.74	3.10	1.70	3.02	1.63	2.9
c _u =	4.69	6.97	4.65	6.92	4.52	6.72	4.31	6.4
iC ₄	4.81	7.71	4.18	6.71	3.89	6.24	3.54	5.6
nC ₄	1.39	2.15	1.05	1.62	0.93	1.44	0.81	1.2
C ₅ =	3.26	4.50	4.19	5.78	4.50	6.21	4.85	6.6
nC _µ C ₅ = iC ₅	5.57	8.05	4.23	6.11	3.67	5.31	3.01	4.3
nC ₅	0.54	0.78	0.43	0.63	0.39	0.56	0.33	0.4
C _E -430° F	41.29	48.37	40.29	47.38	39.7 9	46.87	38.98	46.0
L.C.O.	16.32	15.40	17.64	16.80	17.49	16.75	18.05	17.3
H.C.O.	0.0	0.0	1.20	1.10	2.41	2.25	3.69	3.48
Aceite Clarificado	5.92	4.81	7.64	6.47	8 .7 0	7.50	9.47	8.2
Coque	7.46	-	7.14	-	6.89	-	6.77	
Total	99.97	109.81	99.95	108.35	99.95	107.85	99.98	106.95

CUADRO 55 - COMPARACION DE LAS CONDICIONES DE OPERACION Y
CALIDAD DE PRODUCTOS

TIPO DE CATALIZADOR	CBZ-1	CB Z - 2	XZ-25	CB Z-4
Condiciones de Operación				
Temperatura de la Carga		Igual pa	ra Todos	
Ulujo de Carga BPD		Igual pa	ra Todos	
Razón de Reciclo	1.23	1.25	1.25	1.24
Temperatura del Reactor °F	920	320	920	920
CRR T/M	5.4	6.5	6.9	7.5
C/0	3.7	4.4	4.7	5.2
Inspección de Productos				
Gasolina				
J 4A°	59.34	59.47	59.51	59.58
RVP	8.06	7.89	7.80	7.70
мои	89.N	88.5	88.2	87.90
RON	79.1	79.2	79.1	78.90
LCO: P.F. °F	524	524	524	5 24

4.4 AVANCES Y MEJORAS EN LOS NUEVOS CATALIZADORES

4.4.1 TOLERANCIA A LOS METALES

Actualmente la tendencia general en las Unidades de Craqueo Catalítico es procesar cargas pesadas y muchas contienen contaminantes metálicos, la concentración de estos contaminantes metálicos depende de la procedencia de la carga, el rango de ebullición y el grado de preprocesamiento.

Estos metales presentes en forma de pórfidos se depositan sobre el catalizador donde actúan en contra de la selectividad y en favor de las indeseables re acciones de deshidrogenación, incrementando la formación de gas y coque y además aceleran la pérdida de superficie y el contenido de zeolita en el catalizador.

Muchos estudios muestran que los catalizadores zeolíticos son menos suceptibles a la desactivación permanente por metales que el catalizador amorfo, a demás los contaminantes metálicos afectan al catali zador zeolítico reduciendo la selectividad probable mente debido al incremento de multiplicidad de sitios de craqueo activo comparado con el catalizador amorfo.

Diferentes catalizadores fueron desactivados permanentemente en diferentes grados debido a los contaminantes metálicos.

La actividad de deshidrogenación de los metales desorbidos decae con los ciclos sucesivos de Renación Regeneración.

La desactivación de metales a diferentes flujos con sucesivos ciclos de Reacción-Regeneración dependen del catalizador zeolítico usado.

Estos conceptos de contaminación de metales son las bases para el desarrollo de una familia de cataliza dores llamados Residcat (Catalizadores de Residuales) los cuales son mucho más tolerantes a los metales que cualquier catalizador comercial.

La familia de catalizadores Resideat se basa en la matriz del catalizador de la Davison Super-D y a través de una combinación de la estructura de los poros, la composición de la matriz y el uso de zeo-lita altamente estable se alcanzan altos niveles de actividad y selectividad manteniendo niveles de metales arriba de 2% en peso de Níquel y Vanadio a una proporción de 2/1 entre el Vanadio y el Níquel, que equivalen aproximadamente a 6,700 ppm Ni y 13,300 ppm V.

Con el uso de procedimientos de laboratorio, en los cuales el catalizador es impregnado con Ni y V en u na proporción de (2 V/Ni), vapor desactivado y análisis por hidroactividad, la familia Residcat puede ser comparada como se aprecia en el Gráfico 10. El más tolerante es el GRZ-1, manteniendo una buena actividad arriba de 20,000 ppm Ni + V. Sin embargo, debido a su costo el catalizador GRZ-1 debe ser escogido para niveles altos de metales y para bajos niveles de metales. Los Residcat 20 y 30 se recomiendan debido a su buena efectividad y bajo costo.

Debido a que la familia SUPER-D de la Davison es si milar en muchas propiedades a los Residcat, en el Gráfico 11 se puede apreciar la comparación del catalizador SUPER-D EXTRA con dos catalizadores competitivos donde el SUPER-D EXTRA, muestra mucho mejor selectividad de gas en el rango común de operación puesto que pocos refineros sobrepasan los 5000 ppm de contaminantes metálicos.

De interés particular es la tendencia particular a procesar cargas residuales las cuales contienen el ion sodio (Na[†]). Generalmente el Na[†] es un resulta do de una pobre operación de desalado o la contaminación con agua de mar. El ion Sodio sin embargo, es un serio veneno para el catalizador, puesto que no solo neutraliza los sitios de Craqueo Acido sino que acelera la saturación de ls superficie del Cata lizador. Aunque la nueva familia Residcat es resis tente al Na[†], éste sigue siendo un contaminante muy serio y debe ser minimizado. Ver Gráfico 13.

4.4.2 <u>AUMENTO DEL OCTANAJE DE LA GA</u>SOLINA

Con la finalidad de eliminar el aditivo MMT del bos ter del octano, incrementar la perfomance y las demandas económicas en los futuros vehículos a motor, la Davison tiene cerca de 10 años de estudio de catalizadores los cuales fueron y son diseñados para aumentar catalíticamente el octanaje de la Gasolina bajo cualquier condición de operación y virtualmente con cualquier tipo de carga. Estos catalizadores actualmente están en el mercado con el nombre comercial de Octacat.

Debido a que el octanaje de la Gasolina es afectado por casi cualquier parámetro de operación en el proceso de cracking, el rango de variables de operación va desde la Severidad de la operación a los estatos de companion de la companion d

fectos de los metales contaminantes y desde la composición de las cargas hasta el nivel de carbón en el Catalizador Regenerado.

Como puede apreciarse en el Gráfico 14, los cambios en la temperatura del reactor, el grado de conversión y el tipo de carga bajo ciertas condiciones preparadas, pueden hacer drásticos cambios en el número de octano de la Gasolina de FCC (de 4 a 6 RON). Adicionalmente el incremento de los metales contaminantes baja la presión parcial del hidrocarburo, in crementa la temperatura del regenerador, lo que incrementa el vapor del proceso elevando asi más de 2 números el RON.

Sin embargo, aparte de estas variaciones en las variables de operación el Catalizador Octacat ha mostrado un incremento en el RON y el MON.

La composición del nuevo catalizador Octacat es com parado con el catalizador típico que existe en el mercado, el CBZ-1. En las unidades piloto de FCC de la Davison a una Severidad y Actividad constante. Se puede apreciar en los cuadros 56 y 57 los aumentos conseguidos en la calidad de la Gasolina.

- El octanaje de la Gasolina se incrementó de 2.0 a 3.3 RON y el MON de 0.7 a 1.5.
- Los rendimientos de las Olefinas, especialmente el C₄ fueron incrementados sustancialmente. Este cambio fue obtenido sin incrementar los rendimientos de los hidrocarburos ligeros, representando un incremento en la relación olefinas/parafinas.
- La Selectividad de la Gasolina es alta.

La Selectividad de Coque y Gas seco se incrementó significativamente.

- La calidad de los Aceites Cíclicos no fue general mente afectada o poco aumentada.

En los análisis de la Gasolina, en cuanto a las Parafinas, Olefinas, Aromáticos y punto de Anilina (relativo al contenido de Aromáticos) y el Número de Bromo (relativo al contenido de Olefinas) muestran que el incremento de octanaje es el resultado del incremento de contenido de Aromáticos y Olefinas en la Gasolina craqueada.

CUADRO 56 - DATOS DE PLANTA PILOTO DE FCC DE LA DAVISON

	OCTACAT II	CB Z - 1
Conversión % Vol.	72.5	71.0
Rendimientos Referidos a la Carga Fresca (C.F.) Gases		
Hidrógeno & Peso	0.02	0.03
C ₁ + C ₂ % Reso	1.0	1.1
Total de 😋 % Vol.	7.0	7.3
c₃ = % vol.	5.0	5.5
Total de C_{μ} % Vol.	10.1	9.1
C ₄ % Vol.	5.0	3.8
iČ ₄ % Vol.	4.6	4.4
C ₅ ⁺ Gasolina		
% Vol. C.F.	63.0	61.0
% Vol C ₅ + Gasolina/Conversión	0.87	0.86
Número de Octano, sin Plomo		
RON	90.3	86.8
MON	78.5	76.6
Punto de Anilina, °F	92	90
Nº de Bromo	6.8	46
% Parafinas	36	5.1
% Olefinas	21	14
% Aromáticos	43	3 5
Light Cicle Oil (LCO)		
% Vol. C.F.	9.8	10.2
Densidad °API	20.5	19.5
Punto de Anilina °F	162	162
Coque, % Peso C.F.	4.2	5. %

Desactivación del Catalizador: 1520°F, 20% Vapor y 20% Aire Presión Atmosférica durante 12 horas. Condiciones de la Planta Piloto: 40 WHSV, Pelación Catali-

Condiciones de la Planta Piloto: 40 WHSV, Pelación Catalina zador/Aceite = 4, Temperatura 920°F, Carga, Gasóleo del oeste de Texas.

CUADRO 57 - COMPARACION DEL OCTACAT CON UN CATALIZADOR ESTANDARD

	OCTACAT IIB	OCTACAT TIB-1	CATALIZADOR ESTANDARD
Conversión	+0.5	+1.5	Base
C4 = /iC4	0.9	0.9	0.75
Gasolina			
Selectividad	0.91	0.90	0.88
RON (sin Plomo)	+2.3	+4.0	Base
MUN ("")	*0.8	+1.5	Base
Punto de Anilina, °F	90	90	93
Nº Brano	44	48	39
Coque	-1.2	-0.6	Base

Desactivación del Catalizador: 1520°F, 20% Vapor y 80% Aire, Presión Atmosférica durante 12 horas.

Condiciones de la Planta Piloto: 40 WHSV, relación Catalizador/Aceite = 3, Temperatura 920°F, Carga Gasóleo del oes te de Texas.

Además los beneficios del Octanaje no están restringidos para una fracción particular de la Gasolina, como se puede observar en el Cuadro 58 de los datos obtenidos para los componentes ligeros (100-230°F) y pesados (230-430°F), los cuales muestran cambios significantes.

CUADRO 58 - BENEFICIO DE OCTANAJE COMO UNA FUNCION DEL RANGO DE EBULLICION

	OCTAC	II TA	CBZ	- 1
	100-230°F	230-430°F	100-230°F	230-430°F
Total Gasolina, % Vol.	42.4	57. 6	40.4	59.6
RON (sin Plamo)	91.5	83.6	89.6	80.0
MON ("")	78.1	74.7	78.2	72.5
Nº Bromo	93	31	67	24
Punto de Anilina °F	118	75	127	80

Otro dato obtenido es el referente al rango de temperaturas de reacción, conversión permitida por un aumento de temperatura, los aumentos de Octanaje muestran una buena perfomance de 920° a 1000°F, esos datos muestran una tendencia a reducir los bene ficios de Octanaje a Altas Temperaturas (RON = 3.5 a 920°F y 2.8 a 1000°F).

Los resultados comerciales son limitados sin embargo, los resultados son promisorios, en un ensayo comercial de Octacat los incrementos en la Gasolina son de 1.0 RON y 0.7 MON con solo 34% de catalizador Octacat en inventario. Este cambio fue llevado a cabo a condiciones de operación constantes y este resultado es consistente con el del laboratorio, en grandeciendo la predicción de 2.3 puntos de RON a 100% de efectividad de Octacat, esto se puede observar en los Gráficos 15 y 16.

4.4.3 CONTROL DE EMISIONES DE CO

La oxidación de una parte de toda la emisión de 🐃

del Regenerador es ahora factible a través del uso de varias técnicas en el diseño del Regenerador y/o Promotores que aceleran la reacción CO → CO₂, llama dos Promotores de Combustión.

Un ejemplo de los cambios notados con el uso de un promotor de combustión en una operación convencional de Regeneración se muestra en el Cuadro 59 y el Gráfico 17. Estos datos fueron tomados directamente de una unidad comercial operando a temperaturas relativamente bajas (1156°F) en la Fase Densa del Regenerador (lecho) y altos niveles de Carbón en el Catalizador Regenerado (CRC = 0.55% Peso). adición del Catalizador con aditivo de combustión de CO la temperatura de la fase densa del Regenerador se incrementa sustancialmente en 140°F con solo un pequeño incremento en la temperatura de los ciclones (30°F) y el gas de chimenea bajo su contenido de CO a 0.4%. Estos cambios fueron acompañados por mantenimiento del aire utilizado y la reducción de la carga de coque al Regenerador (4.5 a 3.1 en peso de rendimiento) resultado de la alta actividad del Catalizador Zeolítico (bajo CRC) y disminución de la Circulación del Catalizador de 15 ton/min a 9 ton/min.

CUADRO 59 - COMPARACION DE UN CATALIZADOR CONVENCIONAL Y
UN CATALIZADOR CON PROMOTOR DE OXIDACION DE CO

	DHZ - 15	CCZ - 22
Tipo de Regeneración	Convencional	Max. Oxidación CO
CRC, % Peso	0.55	0.07
Carga Fresca, BPD	19,398	21,130
Reciclo, BPD	1,731	O
Carga Total, BPD	21 ,1 29	21,130
Conversión, % Vol.	73.7	72.0
Rendimientos		
H ₂ , % Peso C.F.	0.02	0.02
H ₂ S, % Peso C.F.	0.04	0.04
C ₁ + C ₂ , % Peso C.F.	1.7	1.8
C ₃ , % Vol. C.F.	3.1	4.5
C ₃ =, % Vol. C.F.	5.4	7.4
iC ₄ , % Vol. C.F.	8.0	6.3
nC ₄ , % Vol. C.F.	4.7	3.0
$C_{\mu}^{\frac{1}{2}}$, % Vol. C.F.	7.4	7. 5
C ₅ + Gasolina, % Vol. C.F.	59.5	59.6
LCO, % Vol. C.F.	19.0	19.9
HOO, % Vol. C.F.	7.3	8.1
Coque, & Vol. C.F.	4.5	3.1
Liquido Recuperado, % Vol.	114.2	116.3

Notar que el dramático cambio a baja relación Catalizador-Aceite (bajo flujo de Circulación de Catalizador) no reduce significativamente la conversión y un resultado directo de reducir el CRO (0.65 a 0.07 peso) va acompañado de una alta efectividad de la actividad del catalizador.

Con un catalizador zeolítico, el CRC afecta directa mente la actividad del Craqueo Zeolítico, dando del mo resultado una sifnificativa reducción en la efectiva actividad y selectividad, los gráficos 18 y 19 muestran que el CRC reduce drásticamente la actividad del catalizador (4%/0.1% peso coque). Este cambio en la actividad es un resultado directo de la reducción de la efectividad zeolítica.

4.4.4 CONTROL DE LA EMISION DE SO $_{\mathbf{x}}$

La reducción de las emisiones del Regenerador de óxidos de Azufre en los gases de chimenea es otro trabajo que puede ser efectivamente manejado en muchos casos por una composición especial del catalizador de craqueo.

Mucho trabajo se ha realizado en el área del control de emisión de sulfuros de los gases de chimenea usando alcalinizador ${\rm Al}_2{\rm O}_3$ para absorber el ${\rm SO}_2$. En 1973 se usó el Mg agregado al catalizador como absorbedor de ${\rm SO}_2$.

El mecanismo propuesto para la reducción de las emi siones de SO₂ con una composición especial puede ser ilustrada por las siguientes ecuaciones:

Regenerador:

Formación de SO_X : S en el coque + $O_2 \rightarrow SO_2 + SO_3$

Oxidación de SO_2 : 2 SO_2 + O_2 \rightarrow 2 SO_3

Formación de Sulfato: Oxido de Metal (OM) \cdot SO₃ \rightarrow MSO₁,

Reactor:

Reducción de Sulfato: 2 MSO₄ + 8 H₂ \rightarrow MS + MO + H₂S + 7 H₂D

Despojador:

Hidrólisis de Sulfuro: MS + H₂O → MO + H₂S

Básicamente, el SO_2 es oxidado a SO_3 en el Regenera dor, absorbido sobre la superficie del catalizador como sulfato (SO_4) , luego llevado al reactor donde es reducido en la reacción de craqueo a H_2S , existiendo el sistema con los productos craqueados.

La Davison tiene varios años de estudio para la reducción de emisiones de SO_{X} , sin embargo, hace poco tiempo que la industria comenzó a investigar el potencial de estos catalizadores para ayudar a disminuir y controlar la contaminación ambiental. El re sultado de una reciente prueba comercial de la Davi son Residcat 205 grado SO_{X} (en realidad es un catalizador multifuncional, diseñado para resistencia de metales particularmente en el control de la emisión de SO_{X}), muestra una reducción de 38% de SO_{X} con solo 34% de catalizador en inventario. Este re sultado es alentador para esta nueva serie de catalizadores.

CUADRO 60 - COMPARACION DEL CATALIZADOR CEZ-1 CON EL SUPER
D y EL SUPER D EXTRA (DATOS DE PLANTA PILOTO)

		CBZ-1	SUPER D	SUPER D EXTRA
Propiedades :	Físicas (Cat. Fres∞)			
Area Superfi	•	290	135	155
volumen de Po	nnis, cc/gr.	0.52	0.78	0.77
DIVII		37/3.5	4/0.6	9/1.0
Conversión,	% Vol.	73.0	74.0	82.0
Rendimientos	C.F.			
Hidrógeno	% Peso	0.03	0 02	0.03
$c_1 + c_2$	% Peso	1.5	1.1	1.6
Total C ₃		8.8	7.3	9.9
_	% Vol.	6.4	5.8	7.1
Total C ₄	% Vol.	9.7	10.5	12.2
•	% Vol.	4.0	3.9	3.4
ic_{i}	% Vol.	4.6	5.7	7.8
C ₅ + Gasolin	a % Vol.	61.0	64.5	69.5
C ₅ + Gasolin	a/Conversión	0.84	0.87	0.85
Número de Oc	tano sin Plomo			
RON		0.88	87.0	89.0
MON		77.4	7 6. 8	78.0
Punto de A	nilina, °F	90	92	85
№ de Bron	n	40	35	27
Light Cycle	Oil (LCO)			
Rendimient	o % Vol. C.F.	8.6	8.5	7.6
Gravedad c	API	17.5	17.0	13.4
Punto de A	Anilina, °F	80	7 9	મેપુ
Coque, % Pes	so, C.F.	5.2	4.4	r 1

Desactivación del Catalizador

para CBZ-1: a 1520°F, 12 horas, 20% vapor en el aire, o PLIÓ.
para SUPER D y SUPER-D EXTRA: 1350°F, 8 horas, 100% vapor y 10 FCF.

Condiciones de la Unidad Piloto

40 WHSV, Relación Catalizador/Aceite = 4, 920°F y la carga Casólo. En sado del ceste de Texas.

CONTROL DE EMISIONES PARTICULARES

La reducción de los finos en la emisión de los gases de chimenea ha sido de interés en la Industria Refinera y la Davison con el fin de reducir las emi siones investigó durante varios años desarrollando y produciendo la línea de catalizadores SUPER D. Es ta familia de Catalizadores es fuerte y densa. Algunas características físicas típicas y de craqueo se pueden observar en el Cuadro 60, en la comparación del CBZ con el SUPER D y el SUPER D EXTRA.

Como se puede ver las densidades comparadas con la del CBZ-1 son significativamente altas (0.78 vs. 0.55 gr/cc). También se puede apreciar que el grado SUPER D tiene una buena actividad catalítica y se lectividad hacia la Gasolina, Gas y Coque.

Otra familia de catalizadores para controlar las emisiones particulares es el CBZ-101 de la Davison. Estos catalizadores fueron diseñados para llevar a cabo actividades y selectividades de productos craqueados comparable al CBZ-1, pero con una densidad sustancialmente mayor y mejor trabajo, estos resultados se muestran en el Cuadro 61.

4.5 FAMILIA DE CATALIZADORES SUPER-D

El catalizador SUPER-D es el que actualmente tiene ma yor acogida entre los nuevos Catalizadores y actualmente existen más de 80 unidades que lo utilizan, y si gue creciendo el número de pedidos. Esto no fue fácil puesto que tuvo que desplazar a la familia de los CBZ.

Los siguientes son los factores que originaron el éxi to del catalizador SUPER-D:

- Excelente resistencia a la atricción (dureza y densidad).
- Actividad alta.
- Mayor Volumen de productos líquidos.
- Estabilidad Hidrotérmica superior.
- Incremento del rendimiento de Gasolina.
- Rendimiento bajo de Gas Seco (H_2) .
- Incremento en el potencial de alquilado.
- Alto rendimiento de Isobutano.
- Selectividad de Coque Superior.
- Excelente capacidad de agotamiento (Temp. de regene rador bajas).
- Mayor resistencia a los metales que cualquier cata lizador comercial disponible.

CUADRO 61 - COMPARACION DEL CATALIZADOR CBZ-1 y EL CBZ-101

		CBZ-101	CBZ-1
Propiedades Fí	Fresco		
Area Superfici	al m ² /gr	190	290
Vol. de Poros,	cc/gr	0.72	0.52
DI/JI		22/1.8	37/3.5
Conversión, %	Vol.	77.0	75.5
Rendimientos C	.F.		
Hidrógeno	% Peso	0.015	0,015
$C_1 + C_2$	% Peso	1.5	1.3
Total C ₃	% Vol.	6.9	7.0
c ₃	% Vol.	5.4	5.4
Total C _u	% Vol.	11.1	9.9
с _и =	% Vol.	3.8	3.1
iČų	% Vol.	6.3	5.8
C ₅ ⁺ Gasolina	% Vol.	66.0	64.5
C ₅ + Gasolina/	Conversión	0.86	0.85
Número de Octa	no sin Plomo		
RON		88.9	88.8
MON		78.6	78.2
Punto de Ani	lina, °F	85	85
Nº de Bromo		24	29
Light Cycle Oi	1 (LCO)		
Rendimiento, %	Vol. C.F.	15.7	17.1
Gravedad °API		19.5	20.0
Punto de Anili	na, °F	85	93
Coque, \$ Peso	C.F.	4.7	5.3

Desactivación del Catalizador: 1520°F, 12 horas, 20% vapor en el aire, a O PSIG.

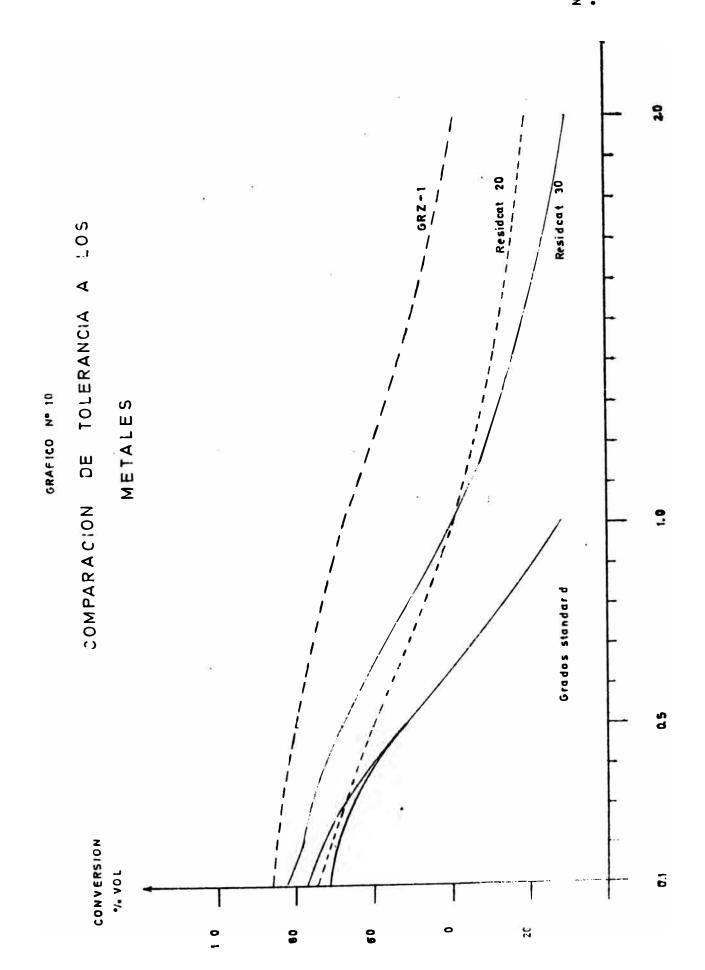
Condiciones de Unidad Piloto: 40 WHSV, relación Catalizador/Aceite - 4, 920°F y la carga es de Refinerías de Costa Este. Como se ha observado, tanto en la planta piloto como en una gran variedad de operaciones comerciales, los catalizadores Super-D tienen una selectividad única que los diferencia de todos los otros catalizadores de Craqueo Fluído. La matriz de los Catalizadores SU PER-D tiene un Area Superficial baja, por lo cual la mayor parte del craqueo se realiza en la propia Zeoli ta esencialmente pura, por lo cual tienen una mayor selectividad hacia Gas y Coque que se origina del Craqueo de la Zeolita esencialmente pura. Asimismo la matriz actúa como receptora de los metales y hace que los metales contaminantes de deshidrogenación tal como el Ni, Cu y V sean mucho menos activos.

La evidencia de estos fenómenos son los bajos rendimientos de Hidrógeno y Gases ligeros asi como de Coque y Altos rendimientos de líquido. El área superficial baja también contribuye al bajo rendimiento de Coque y alta recuperación de líquido debido a su alta capacidad de agotamiento.

Asimismo, la disminución en el rendimiento de Hidróge no resulta de un mayor grado de saturación de los productos. Esto es evidente en el incremento del rendimiento de Isobutano y en los rendimientos relativamen te menores de insaturados ligeros.

En el Cuadro 62 se muestran las tendencias de rendimientos para el SUPER-D EXTRA comparado con el Catalizador de otra firma, el catalizador H (el Catalizador más popular de la competencia).

A una temperatura de reactor constante de 980°F el ca talizador SUPER-D EXTRA manifiesta la selectividad descrita antes. El rendimiento de Gases Ligeros incluyendo el Hidrógeno es menor con el Catalizador SU- PER-D EXTRA. El rendimiento de Isobutano fue superior mientras que los rendimientos tanto de Propileno como de Butileno fueron menores. En el mercado actual, don de aparentemente el Isobutano constituye el factor limitante en la manufactura del Alquilado, el mayor rendimiento de Isobutano habrá de originar una mayor producción de Alquilado, ya que el producto requerido para lograr el balance de alimentación de Alquilado para muchas operaciones es de hecho, el Isobutano. Con el catalizador SUPER-D EXTRA se obtuvo una ganancia mayor de 2.0% en volumen de la Carga Fresca en Gasoli na y un aumento de casi 1.0% en volumen de la Carga Fresca en productos líquidos. A pesar de su mayor ni vel de conversión, el rendimiento de Coque fue modera damente inferior.


CUADRO 62 - RESULTADOS COMERCIALES EN UNIDADES FCC DAVISON VS. COMPETENCIA

		<u>DAVISON</u> SUPER-D EXTRA	COMPETENCIA H
C ₂ y Ligeros	% Peso C.F.	3.2	4.0
•	% Vol. C.F.	3.5	3.3
Propileno C ₃ =	% Vol. C.F.	7.8	8.8
Isobutano iC,	% Vol. C.F.	6.9	5.0
Butano Normal (nC _L)	% Vol. C.F.	2.1	1.6
Butileno Cu =	% Vol. C.F.	7.6	8.3
Gasolina C ₅ +	% Vol. C.F.	61.8	59.6
roo	% Vol. C.F.	17.3	19.4
HCO	% Vol. C.F.	2.9	3.0
Coque	% Peso C.F.	5.5	5.6
Recuperación Liquid	a % Vol.	109.9	109.0
Conversión	% Vol.	79.8	77.6
Temp. Reactor	٥F	980	980
Régimen de Alimenta	ción	Base	Base + 2.1% Vol.
Temperatura de Rege	nerador	1246	1238

Actualmente se está operando gran cantidad de Unidades de Craqueo Catalítico con un % de Residual de Vacío en la carga para lo cual están utilizando el cata lizador SUPER-D o SUPER-D EXTRA. Este último, por las propiedades antes mencionadas es de mayor preferencia, de igual modo se utiliza en mayor proporción con la carga el Residuo Atmosférico o Crudo Reducido.

Teniendo en cuenta que todos los Catalizadores en existencia Maximizan la Producción de Gasolina, la cual
tiene un punto de ebullición de 430°F en promedio, co
mo nuestro caso es el de maximizar LCO, reduciendo el
punto final de la gasolina al rango de 385-390°F, el
% en volumen del total de la Gasolina que pasaría a
formar parte del Light Cycle Oil (LCO) sería aproxima
damente de 10%.

Con esta operación y observando los rendimientos del SUPER-D y SUPER-D EXTRA, el que nos daría mayor producción de LCO sería el SUPER-D EXTRA, además mantendríamos la producción de Gasolina.

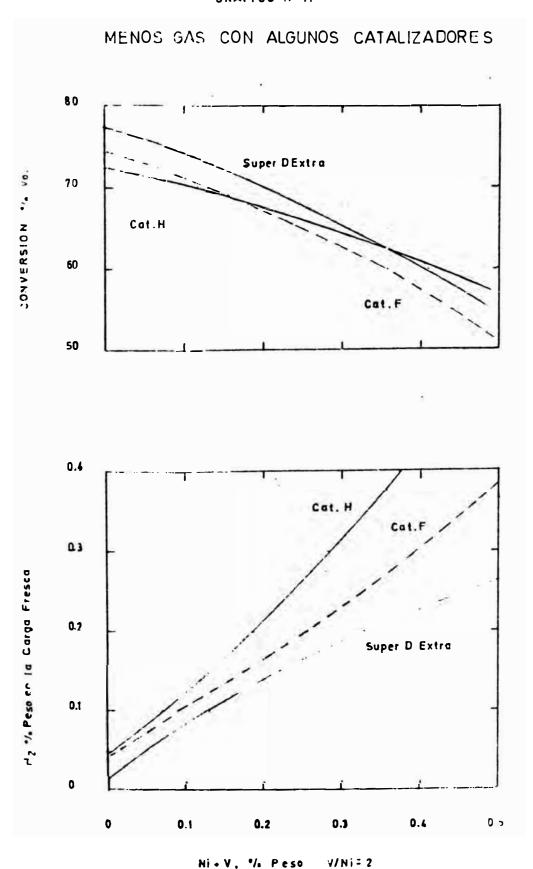


GRAFICO Nº -12

CONTENIDO DE METALES ORIGINA

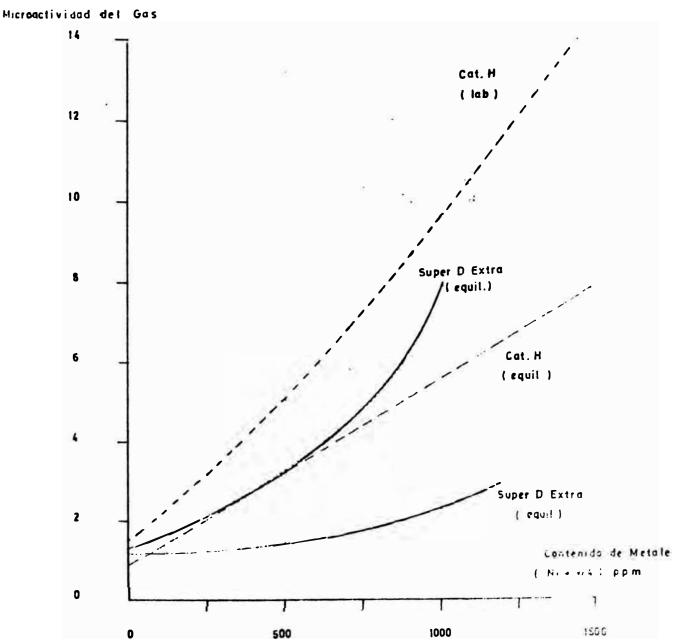
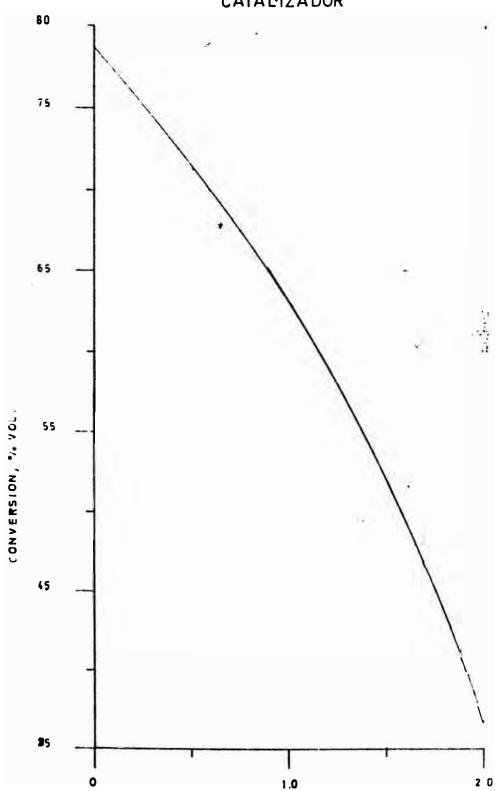



GRAFICO Nº13

EL ION Na REDUCE LA ACTIVIDAD DEL CATALIZADOR

Ne AGREGADO AL CATALIZADOR, % PESO

CAMBIOS EN EL OCTANAJE AL MODIFICAR LAS CONDICIONES DE OPERACION

GRAFICO Nº 14

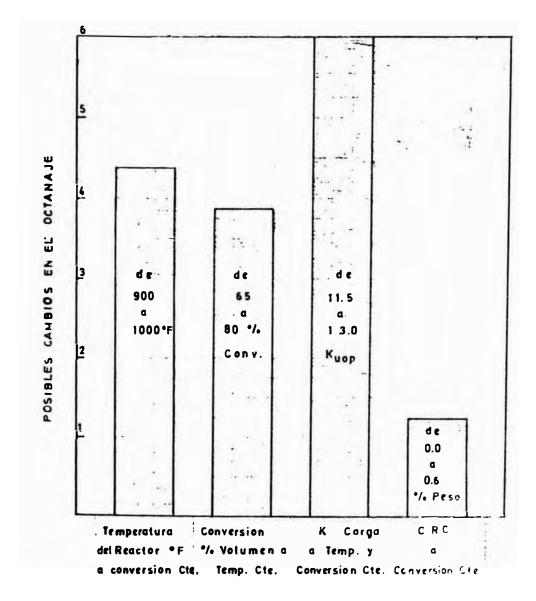
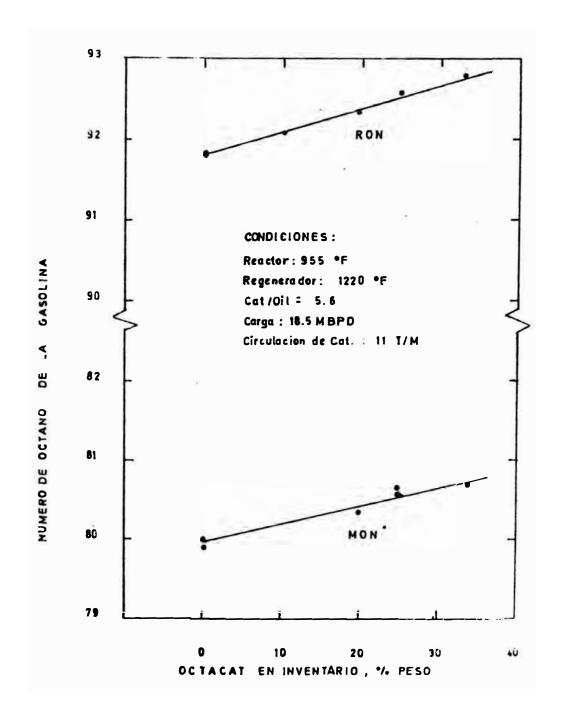
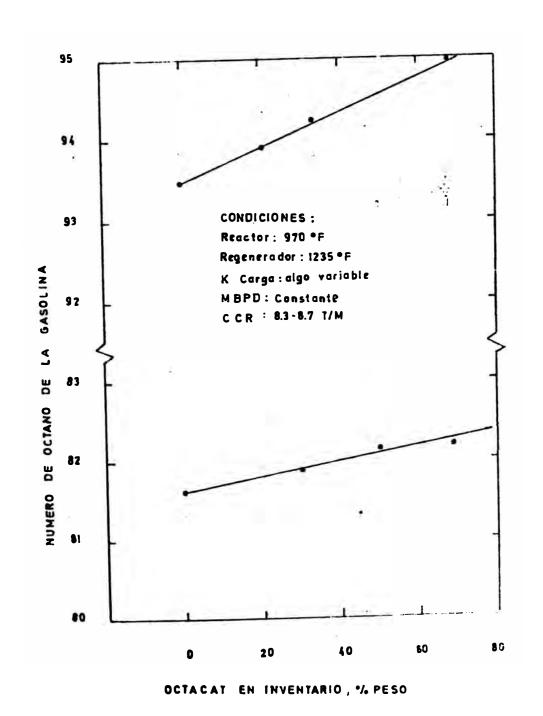
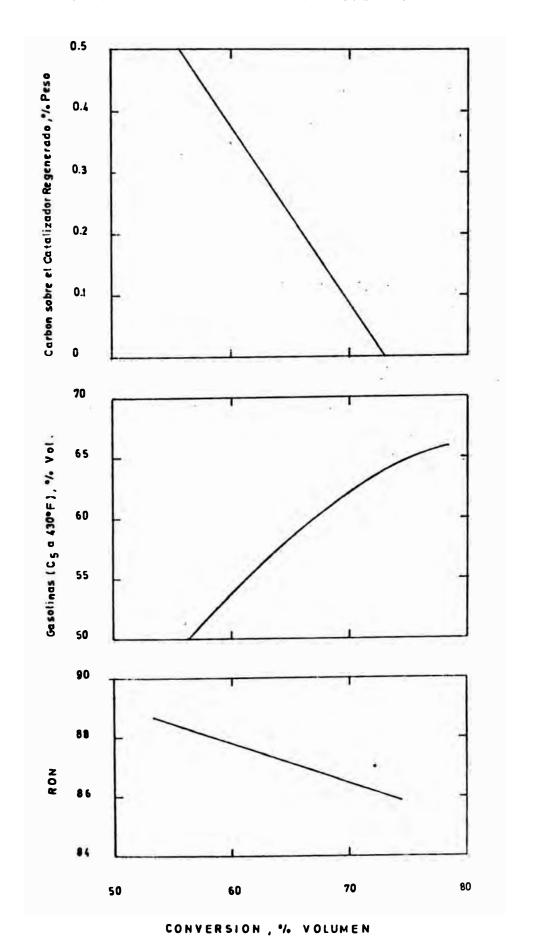


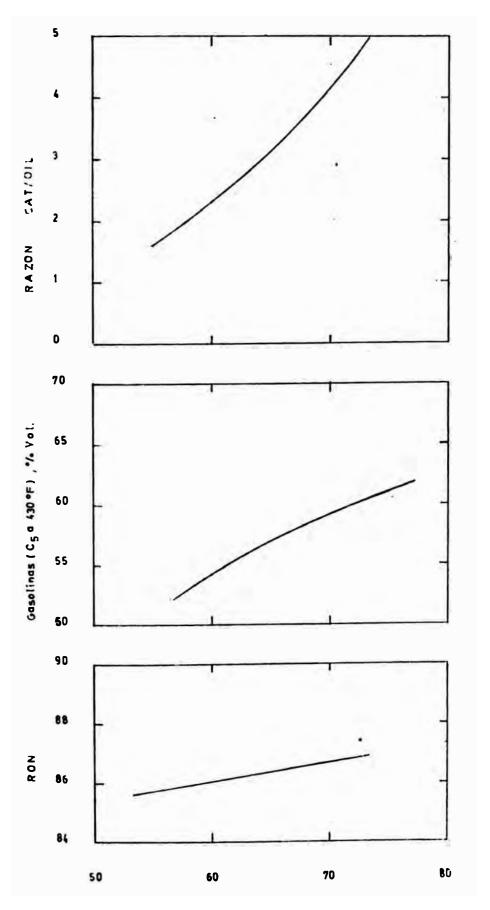
GRAFICO Nº 15

INCREMENTO DEL RON EN LA GASOLINA


GRAFICO Nº 16

OCTACAT II AGREGADO AL CBZ-1


GRAFICO Nº 18

EFECTO DE LA VARIACION DE L CRC A CONSTANTE RAZON CAT/OIL = 4

GRAFICO Nº 19

EFECTO DE LA VARIACION DE LA RAZON A CAT/OIL A CRC CONSTANTE

CONVERSION, % VOLUMEN

CAPITULO V

ANALISIS TECNICO-ECONOMICO DE LOS ESQUEMAS DE REFINACION PROPUESTOS

5.1 INTRODUCCION

como se puede apreciar se necesita una Nueva Unidad de Vacío, una Unidad de Visbreaking y una Unidad de Conversión que puede ser una unidad de Craqueo Catalítico (FCC) o una de Hidrocracking, se calculará las capacidades más convenientes económicamente.

Teniendo en cuenta el tipo de catalizador a usarse se toma como caso base a las unidades de destilación pri maria actuales, la Unidad de Vacío ampliada a 12 MBPD y la unidad de FCC a 8 MBPD en pleno funcionamiento.

5.2 ESQUEMAS PROPUESTOS

Caso Base 1: Usando el Catalizador SUPER-D Caso Base 2: Usando el Catalizador CBZ-1.

5.2.1 CASO BASE 1 Usando Catalizador SUPER-D

CASO 1-A:

Instalación de una Nueva Unidad de Vacío de 20 MBPD Instalación de una Nueva Unidad de FCC de 10 MBPD

CASO 1-B:

Instalación de una Nueva Unidad de Vacío de 20 MBPD Instalación de una Nueva Unidad de FCC - de 11 MBPD Instalación de una Unidad de Visbreaking de 12.58 MBPD

CASO 2-A:

Instalación de una Nueva Unidad de Vacío de 27 MBPD Instalación de una Nueva Unidad de FCC de 18 MBPD

CASO 2-B:

Instalación de una Nueva Unidad de Vacío de 27 MBPD Instalación de una Nueva Unidad de FCC de 18 MBPD Instalación de una Unidad de Visbreaking de 16 MBPD

Aint 3 A:

Instalación de una Nueva Unidad de Vacío de 33 MBPD Instalación de una Nueva Unidad de FCC de 18 MBPD

CASO 3-B:

Instalación de una Nueva Unidad de Vacío de 33 MBPD Instalación de una Nueva Unidad de FCC de 18 MBPD Instalación de una Unidad de Visbreaking de 16 MBPD

CASO 3-0:

Instalación de una Nueva Unidad de Vacío de 33 MBPD Instalación de una Nueva Unidad de FCC de 18 MBPD Instalación de una Unidad de Visbreaking de 18 MBPD

5.2.2 CASO BASE 2: Usando el Catalizador CBZ-1

CASO 4:

Instalación de una Nueva Unidad de Vacía de 27 MBPD Instalación de una Nueva Unidad de FCC de 15 MBPD Instalación de una Unidad de Visbreaking 15.45 MBPD

CASO 5:

Instalación de una Nueva Unidad de Vacío de Callada Instalación de una Nueva Unidad de Féd de Callada Instalación de una Unidad de Visbreaking de 17.8 de F CASO BASE 1: Usando Catalizador SUPER-D EM FCC-I.

CASO 6:

Instalación de una Nueva Unidad de Vacío de 33 MBPD Instalación de una Unidad de Hidrocracking de 18 MBPD Instalación de una Unidad de Visbreaking de 18 MBPD.

Im rada caso se han tomado los resultados a la MA

- For siguientes cuadros muestran los Balances Globales en cada uno de los casos y esto es más perceptible en los Gráficos mostrados (20 a 27).
- « Además se ha calculado la viscosidad final que tendrán el Diesel Nº 2 y el Residual Nº 6 para cada caso.

5.3 BALANCE: GLUBALES DE LOS ESQUEMAS

CUADRO 63 - BALANCE GLOBAL ACTUAL DE LA REFINERIA LA PAMPILLA

PRODUCTOS	D. PRIM MEPD	ARLA I	D. PRIM MBPD	ARIA II	D. AL 1 MBPD	ACIO %	FI MBPD	CC &	REFOI MBPD	RMING %	TOTAL MBPD = %
Carga Total	35.0	100.0	65.0	100.0	11.0	100.0	7.539	100.0	1.7	100.0	
Ges combactible	0.342	0.98					0.308	4.08	0.13	7.64	0.780
GLP (+)			0.40	0.62			2.063	27.36	0.14	8.23	2.064
(-)							-0.539	-7.1			
Butano (C ₄)							0.581	7.71			0.581
Gasolina (+)	4.272	12.21	10.00	15.38			4.343	57.61	1.43	84.13	19.444
(-)									-0.601	-35.35	
Nafta	1.099	3.14							-1.099	-64.65	
Turbo	2.307	6.59	4.407	6.78							6.714
Kerosene	2.800	8.00	4.966	7.64							7.766
Diesel	5.145	14.70	15.643	24.07							20.788
AGO	0.475	1.35	2.316	3.56			-1.665	-22.09			0.946
Crudo Reducido	17.950	51.29	27.180	41.81	-11.0	-100.0					34.13
TAGO					1.650	15.0					1.650
HVGO					5.335	48.5	-5.335	-70.81			
Residual de Vacío					4.015	36.5					4.015
ro							1.086	14.41			1.086
HCO							0.228	3.03			0.228
Aceite Clarificado							0.274	3.64			0.274
Total Recuperado	34.39	98.26	64.912	99.86	11.0	100.0	8.884	117.84			100.646
Perdidas (Ganancias)	0.61	1.74	0.088	0.14	-	-	(1.345)	(17.84)			(0.646)

CIADRO 64 - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA CON LA AMPLIACION DE VACIO Y FCC

(CASO BASE 1)

	D. PRU	ARIA I	D. PRIM MBPD	ARIA II	D. AL MBPD	VACIO %	FI MBPD	CC %	refoi MBPD	RAIDNG 8	TOTAL MEPD = %
Cerga Total	35.0	100.0	65.0	100.0	12.0	100.0	8.616	100.0	1.7	100.0	
Gas Combustible	0.342	0.98					0.363	4.21	0.13	7.64	0.835
GLP (+)			0.40	0.62			2.150	24.96	0.14	8.23	2.074
(-)							-0.616	-7.1			
Butano (C _{LL})							0.740	8.59			0.740
Gasolina (+)	4.272	12.21	10.000	15.38			5.279	61.27	+1.43	84.13	20.380
(-)									-0.601	-35.35	
Nafta	1.099	3.14							-1.099	-64.65	
Turbo	2.307	6.59	4.407	6.78							6.714
Kerosere	2.800	8.00	4.966	7.64							7.766
Diesel	5.145	14.70	15.643	24.07							20.788
AGO	0.475	1.35	2.316	3.56			-2.18	-25.3			0.611
Crudo Reducido	17.95	51.29	27.180	41.81	-12.0	-100.0					33.130
LVGO					1.80	15.0					1.800
HVGO					5.82	48.5	-5.82	-67.6			
Residual al Vacío					4.38	36.5					4.380
							1.375	15.96			1.375
HCO							0.253	2.94			0.253
Aceite Clarificado							0.395	4.58			0.395
Total Recuperado	34.39	98.26	64.912	99.86	12.0	100.0	10.556	122.51	1.7	100.0	101.241
Pérdidas (Garancias)	0.61	1.74	0.088	0.14	-	-	(1.939)	(22.51)	-	-	(1.241)

CUADRO 65 - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA CON AMPLIACION DE VACIO Y FCC (CASO BASE 2)

									_		
	D. PRO	MARIA I	D. PRIM	ARIA II	d. al v MBPD	VACID I	FI MBPD	CC %	refoi MBPD	RMING 8	TOTAL MBPD = \$ "
Cargo Total	35.0	100.0	65.0	100.0	12.0	100.0	8.616	100.0	1.7	100.0	
Ges Ombetible	0.342	0.98					0.345	4.00	0.13	7.64	0.817
GLP (+)			0.40	0.62			2.240	26.0	0.14	8.23	2.164
(-)							-0.616	-7.1			
Butano (C _{II})							0.646	7.5			0.646
Gasolina (+)	4.272	12.21	10.000	15.38			5.057	58.7	1.43	84.13	20.158
(-)									-0.601	-35.35	
Nafta	1.099	3.14							-1.099	-64.65	
Turbo	2.307	6.59	4.407	6.78							6.714
Kerosene	2.800	8.00	4.966	7.64							7.766
Diesel	5.145	14.70	15.643	24.07							20.788
AGO	0.475	1.35	2.316	3.56			-2.18	-25.3			0.611
Crudo Reducido	17.95	51.29	27.180	41.81	-12.0	-100.0					33.130
TAGO					1.80	15.0					1.80
					5.82	48.5	-5.82	-67.6			
Residual de Vacío					4.38	36.5					4.38
							1.326	15.4			1.326
НСО							0.267	3.1			0.267
Aceite Clarificado							0.302	3.5			0.302
Total Recuperado	34.39	98.26	64.912	99.86	12.0	100.0	10.183	118.19	1.7	100.0	100.869
Pérdidas (Ganancias)	00.61	1.74	0.088	0.14	-	-	(1.567)	(18.19)	-	-	(0.869)

CUADRO 66 - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA AMPLIACION (CASO 1-A)

	D. PRIM	ARIA I	D. PELM	ARIA II	D. AL VI	ACIO :	D. AL VAS	CIO II	1 Ma 20		1 52	- 1.	REFOR MEPD	MING	TOTAL
Carga Total		100.0	65.0	100.0	12.0	100.0		100.3	3.31d	200.0	1:0.754	133.3	1.70	160.6	
Gas	0.342	5.98						•	0.322	4.3.	0.+53	4.21	C.13	7.64	1.293
GLP (+)			0.40	0.62					2.150	14.96	2.867	24.95	0.14	8.23	3.997
(-)		1		1			3		-0.516	-7.1	-0.764	-7.1			
Butano (C ₄)									0.740	3.59	0.934	8.53		!	1.865
Casolina (+)	4.272	12.21	10.600	15.38				1	5.279	: 61.27	6.595	31.27	1.43	34.1	26.975
(-)							1					i	-0.601	-35.35	
Nafta	1.699	3.14	1		1		1	1	i	1	1	1	-1.059	-54.65	i
Turbo	2.367	6.55	4.407	6.78			1					1			ĉ.?14
Kerosene	2.800	8.00	4.966	7.64				!	!	1	1	i	1	i i	7.765
Oficei	5.145	14.70	15.643	1 24.37	1				1		;		1	:	20.788
ACO	0.475	1.35	2.316	1 3.5€	!			1	-2.18	-15.3	-3.611	-5.67			
Crudo Reducido	17.950	1 81.19	27.180	41.81	-12.0	-10C.C	-20.0	-100.0			-0.049	-5.10			13.13
1109		5	4	1	1.8	15.0	2.381	14.8		4	i	i	į		4.7€
194			1		5.82	48.5	3.840	44.2	1-5,02	-17.5	1-3,840	1-32.13	1	1	•
de la lacto		6	1	1	4.35	35.5	8.200	41.0	1	1		i			12.58
***			1	r	!	1			1 225	21,36	5.715	15.55	1	1	3.593
38 ÷	1	1	,			1		1	3.253	1 2.24	1 0.316	2.54			0.559
There (for the saus)		ć.	1	Ŧ		1	1	1	C	4.50	0.493	4.88			0.555
F 24 13 14 34	34.290	∮ 98.26	184.912	99.36	12.6	103.0	20.0	100.0	13.550	: 121.51	13.187	122.61	1		104.213
4	1.11	1.74	0.083	0.14	-	-	-				(2.423)	1;12.517		1	4,113;

CUADRO 67 - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA AMPLIACION (CASO 1-B)

	D. PRIM	ARIA I	D. PRIMA	ARIAII	C. AL V	ACIO I	D. AL VA MBPD	CIO :I	VISERE/ MBPC	KING "	603 2966	- I	F00 18 80	- II	REFOR	RMI NG	TOTAL MBPD = %
Carga Total	35.0	160.0	65.C	100.0	12.C	130.0	20.0	100.û	12.580	100.0		100.0	11.340		1.7	100.0	
Gas	0.342	0.98		1					0.654	5.2	0.363	4.21	0.498	4.21	G.13	7.64	1.987
GLP (+)			0.40	0.82	18						2.150	24.96	2.955	24.96	0.14	8.23	4.189
(-)	i		i i								-0.616	-7.1	-0.840	-7.1			
Butano (C ₄)											0.740	€.59	1.017	8.59			1.757
Gasolina (+)	4.272	12.21	10.0C	15.38					1.195	9.5	5.279	61.27	7.255	61.27	1.43	84.1	28.830
(-)		İ													-0.501	-35.35	
Nafta	1.574	4.49								1					-1.099	-54.65	
Turbo	2.307	6.59	4.407	6.78													6.714
Kerosene	2.800	00.8	4.996	7.64		ļ		1				!					7.766
Di es e i	5.145	14.70	15.643	24.07		1						i					20.788
AGO	1		2.316	3.56							-2.18	-25.3	-0.611	-5.16			ĺ
Crudo Reducido	17.950	51.29	27.180	41.81	-12.0	-100.0	-20.0	-1.00.0			1	!	-1.00	-8.45			12.13
FA00	1	1	ļ	ļ	1.80	15.0	2.960	14.8			i	•					4.7£C
HVCO	1	1	1		5.82	48.5	8.840	44.2			-5.82	-67.6	-8.84	-74.66	i		
Residual de Vacio				Ì	4.38	36.5	8.200	41.0	-12.580	-100.0		Ä		i			
Gas Gled Ligero VB)								2.164	17.2		i			<u> </u>		2.164
Casties Pesade VB				1					3.246	25.8			-0.549	-4.64	Ì	i	2.697
thus due de VB									5.736	45.6		1	1		İ	İ	5.736
fier.		1				Ì				1	1.375	15.96	1.89	15.96			3.265
24		i]	Ì	è	i				0.253	2.94	C.343	2.54			3.501
🖔 👉 🖟 🖓 arificado				1		Ė				İ	0.398	4.58	0.542	4.58			0.937
1 Navagerado	34.39	32.36	64.912	99.86	12.0	100.0	20.0	100.0	16.528	103.3	10.555	122.51	14.505	122.51	1.7	100.0	104.321
≝ Pareal (deminotas)	0.51	1.74	0.683	0.14	-	-	-	-	(0.528)	(3.3)	(1.939)	(22.51)	2.665	(22.51)	-	-	(4.321)

CUADRO 68 - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA AMFLIACION (CASO 2-A)

	D. PRIM	ARIA I	D. PRIMARIA II MEPO		D. AL VACIO I		D. AL VACIO II		FCC - 1 14280 - 1		300 - 11 1 - 80 1 - 3		REFORMING .		TOTAL MBPD = 5
Carga Total	35.0	100.0	65.0	100.0	12.0	100.0	27.0	130.0	8,616	100.0	19.173	100.0	1.70	100.0	
Gas	0.342	0.98							0.063	7.21	0.812	4.21	0.13	7.64	1.647
GLP (+)			0.40	0.62					2.150	24.9€	4.511	24.95	0.14	8.23	5.607
(-)				+					-ú.616	-7.10	-1.278	-0.63			1
Butano (C ₄)								l i	0.740	ਏ. 59	1.656	8.59	:		2.396
Gasolina (+)	4.272	12.21	10.000	15.38					5.279	61.27	11.812	€1.27	1.43	34.1	32.192
(-)													-0.601	-35.35	
Nafta	1.099	3.14							1				-1.099	-64.65	
Turbo	2.307	6.59	4.407	€.78						1]			6.714
Kerosene	2.800	8.00	4.966	7.64											7.766
Diesel	5.145	14.70	15.643	24.07								!			20.788
AGO	C.475	1.35	2.316	3.56		P			-2.18	-25.3	-0.611	-3.17			
Crudo Reducido	17.950	51.29	27.180	41.81	-12.0	~100.0	-27.0	-10C.J	1		-5.455	-28.29		1	0.675
LVGO		1			1.8	15.0	3.996	14.8				j.		i	5.796
HVGC	1	!		1	5.82	48.5	11.934	44.2	-5.82	-67.6	-11.934	-6:.91			i
Residual de Vacio		1			4.38	36.5	11.073	41.0				Ì			15.450
LC0	1				f	19			1.375	15.95	3.67?	18.98			4.452
HCO	1								0.253	2 94	0.555	2.54		!	0.819
Aceite Clarificado	1		-	i					0.395	4.58	0.633	4.58			1.270
Total Recuperado	34.39	38.26	64.912	99.86	12.0	100.0	27.0	. 100.0	10.556	122,51	24.895	122.51	1.7	100.0	
Pérdidus (Ganancias)	0.61	1.74	0.088	0.14	-	-	-	-	(1.935)	(22.51)	(5.617)	(22.51)	-	- 1	(5.580)

CUADRO 69 - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA AMPLIACION (CASO 2-B)

	D. PRIM	ARIA I	D. PRIMA	RIAII	D. AL V	ACIO I	D. AL VA MBPD	CIC II	VISBRE/ MSPD	4KING	FCC MBTD	- I	76 5 1895	- 1.	REFOR	RMING i <u>9.</u>	TOTAL MBPD =
Carga Total	35.0	100.0	65.0	100.0	12.0	100.0	27.0	100.0	16.0	100.0	8.616	100.0	19.278	100.0	1.70	100.0	
Gas	0.342	0.98		Í					0.832	5.2	0.363	4.21	0.812	4.21	0.13	7.64	2.479
GLP (+)		8.	0.40	0.62							2.150	24.96	4.611	24.96	0.14	€.23	5.607
(-)											-0.616	-7.1	-1.278	-6.63			
Butano (C ₄)	1								į.		0.740	٤.59	1.t5£	8.59	, .	i	2.396
Gasclina (+)	4.272	12.21	10.0	15.38	i i	5303			1.520	9.5	5.279	61.27	11.812	61.27	1.43	34.1	33.712
(-)			1												-0.601	-35.35	
hafta	1.099	3.14)		-1.699	-64.55	
Turbo	2.307	6.59	4.407	6.78												i	6.714
Kerosene	2.800	8.00	4.966	7.64								!				İ	7.766
Siesel	5.145	14.70	15.643	24.07				1									20.783
AG0	0.475	1.35	2.316	3.56	Î	Ì					-2.18	-25.3	-0.611	3.17	i	1	K
Crudo Reducido	17.95	51.29	27.186	1.81	-12.0	-100.0	-27.0	-100.C	-0.550	-3.44	3	i	-5.455	28.30	!	İ	0.125
LVGO	ř	1	1	i	1.30	15.0	3.99€	14.8		Ì	,		8		į		5.796
HVC0	E C	1	1	1	5.82	48.5	11.934	44.2		!	-5.82	-€7.6	-11.934	-61.90			
Residual de Vacio	ì	i	!		4.38	36.5	11.070	41.0	-15.450	90.5€).			į į	1
lascieo Ligero VD		î	Ť				ì		2.752	17.2			į į			1	2.752
asoleo Pesado VB	l	1	1	ŀ	l				4.128	25.8					i.		4.118
sistado de Va	F	1		1	1		1		7.296	45.€					ĺ		7.298
	5	i		Ì	1		1		!	l	1.375	15.96	3.077	15.96		1	4.452
uči				(4) (4)	į		1		t i	i	0.253	2.94	0.555	2.54	1	No.	0.819
le Terrificade	61	İ			Ŷ	6					0.195	4.58	0.883	4.58			1.273
iva fadare des	34.39		64.912	•	12.0	100.0	27.0	100.0	16.528	103.3	10.556	122.51	24.895	122.51	1.7	200.0	106.108
aet ,e⊥mariias	0.61	1 1.74	3.088	0.14	5	-			(0.528)	(3.3)	(1.935)	(22.51)	(5.617)	(22.51)	# 3	g - =	(6.106)

CUADRO 70 - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA AMPLIACION (CASO 3-A)

	C. PRIMARIA I MBPD %		C. PRIMARIA II MBPD		D. 4L VACIO 1		D AL VACID :: 1		700 - 1 1 Pu-D				REFORMING MEPO		TOTAL
Carga Total	35.C	100.0	65.G	100.0	12.0	100.0	33.0	100.0	S.#15	100.0	19.275	100.0	1.70	100.0	
Gas	0.342	0.98			:		li li		€.3€3	2.22	0.312	4.21	0.13	7.64	1.547
GLP (+)			0.40	0.62					2.150	24.98	4.311	1 24.9€	0.14	8.23	5.607
(-)	İ		i.						-0.515	-/.10	-1.278	-6.53			
Butano (C ₄)	1	3	1						0.740	ć.59	1.556	6.59			2.396
Gasolina (+)	4.272	12.21	10.000	15.38		į.			5.279	61.27	11.812	61.27	1.43	84.1	32.192
(-)												ĺ	-0.601	- 35.35	
Nafta	1.099	3.14								İ			-1.099	-64.85	
Turbo	2.307	6.59	4.407	6.78	ļ							1	•		6.714
Kerosene	1.800	8.00	4.966	7.64								!			7.786
Diesei	5.145	14.75	15.643	24.07					1	İ		ĺ			20.788
A00	J. 475	1.35	2.316	3.55		i			-2.18	-25.3	-0.611				
Crudo Reducido	17.950	51.29	27.160	41.81	-12.G	-100.0	-33.0	-190.0		!	-0.130				
F.1.E.G	i	ĺ	ŀ	ì	1.8	15.0	4.834	14.8	1	1					6.664
HV60		İ	!		5.82	48.5	14.586	44.2	-5.52	-€7.€	-14.586	4			
Restucat de Vacio	± .	1	ì		4.38	36.5	13.533	41.0		1	-2.670	•			15.237
14.8		İ	1	i	ļ.		1		1.075	11.90	3.077	15.95			4.452
, 194	Î				ı	i	i		63	1.54	0.666	2.04			0.819
ing a martitate				i.		į	1		E. 035	4.35	0.883	4.58			1.278
, 17% ok eraso	14.39	38.26	\$54.912	\$9.86	12.0	100.0	22.0	100.8	10.555	1112.51	13.517	122.51	1.70	100.0	105,680
M. ulis (Cunancias)	0.61	1.74	3.088	0.14	0	-	-	-	[1.939]	(22.51)		(22.51)	-		(5.580)

CUADR<u>O 71</u> - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA AMPLIACION (CASC 3-B)

	D. PRIN	AARIA I	D. PRIM	ARIA II	D. AL V	ACIO I	3. AL 7/ M3PD	.210 11	VI SBREA MB AD	ANI (C		- :	FCC VSFD	- II	REFOR MBPD	RMI NG	TOTAL
Carga Total	35.0	100.0	.65.0	100.0 B		100.0	33.C	130.0	16.0	100.0	3.816	1::: -	14,27	100.0	1.70	100.0	
Gäs	0.342	1 2.98	i	1					0.332	٠.٤	o.ter	4	0.812	4.21	0.13	7.64	2.479
GLP (+)		i	0.40	C.62;							2.150	24.36	4.311	24.98	0.14	8.23	5.607
(-)		1									-0 t16	-7.1	-1.278	-2.53		1	1
Butano (C _A)			1								0.740	3.59	1.683	ê.59			2.396
Gasolina (+)	4.272	12.21	10.0	15.38					1.520	9.5	5.179	61.27	11.612	£1.27	1.43	84.1	33.712
(-)	1														-0.501	-35.35	!
Nafta	1.099	3.14	1		i										-1.099	-64.65	
Turbo	2.307	6.59	4.407	6.78						i							6.714
Kerosene	2.800	3.00	4.986	7.64	•					í		:		1	(7.766
Diesel	5.148	14.70	15.643	24.07								i					20.788
ACO	0.475	1.35	2.316	3.55	!			1		İ	-2.18	-25.3	-0.611	-3.139			
Cruco Reducido	17.95	51.29	27.180	41.81	- 12.0	-100.0	-33.0	-100.0		1	. 3		-0.130	-0.67		1	
LVGC			1	1	1.30	15.0	4.884	14.8		1 7						1	6.684
HVGC	ì	:			5.32	43.5	14.586	44.2	1	•	-5.82	-67.6	-14.505	-75.60			
Residual de Vacto		i	1	1	4.38	36.5	13.530	41.0	- 16.5	-100.0	i i		-1.010	-9.91			
Cascino Ligara VB	1	-7-	1				1		2.752	17.2			ŧ			1	2.752
ಟುವರ್ಗಿಂ Pesadu VR	1	i	1		1	1			4.128	25.8	i		-0.783	-3.96	Ì		3,535
Restaub de VB	1		1		1				7.296	÷5.6		1					7.296
100	1				Ì	1	11 3		1		1.575	15.96	3.077	15.95			4.452
4.C	;				1						0.263	2.54	0.830	2.94			0.819
Clamificado	1	1	1			i					1 0.555	4.58	(.383	4.33		1	1.178
Recuperado	34.39			2 99.S€	12.0	100.0	33.0	100.0	16.525	103.3	10.550	122.51	24.505	122.51	1.7	100.0	136.138
tras (Ganancias) 0.61	1.7	1 3.033	3 C.14	-	-	-	-	(0.528)	(3.3)	(1.939)	(22.51)	(8.617)	(22.51)	1.00	-	(6.103)

CUADR<u>O 72</u> - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA AMPLIACION (CASO 3-C)

	D. PRIM	ARIA I	D. PRIM MPPD	ARIA II	C. VAC	IC I	D. VACI	II O	VISSRE MB9D 1	AKING I	FCC KSF.		FSC -	::,	REFO!	RMI NG	TOTAL MBPD = 1
Carga Total	35.0	160.0	65.0	100.0	12.0	100.0	33.0	100.0	18.00	100.0	3.616	100.1	19.273	100.0	1.70	100.0	
Gas	0.342	0.98							0.936	5.2	3.363	4.21	0,812	4.21	0.13	7.64	2.533
GLP (+)			0.40	0.62		i				ş .	2.150	24.9€	4.511	24.96	0.14	8.23	5.607
(-)											-0.616	-7.10	-1.278	-6.63			
Butano (C _A)	1		2	1							0.740	8.59	1.656	8.59	i		2.396
Gasolina (+)	4.272	12.21	10.0	15.38					1.716	9.5	5.279	61.27	11.812	61.27	1.43	84.1	33.902
(-)															-0.601	-35.35	
Nafta	1.059	3.14													-1.059	-64.65	
Turbo	2.307	6.59	4.407	6.78													€.714
Kerosone	2.300	8.00	4.966	7.64							100				ļ		7.756
Diesel	5.145	14.70	15.643	24.37	Ì												20.788
AGG	0.475	1.35	2.316	3.56	1			i			-2.18	-25.3	-0.611	-0.631			
Crudo Reducido	17.95	51.29	27.180	1.81	-12.0	-100.0	-33.0	100.0	-0.090	-0.5		1					0.040
LVGC		1			1.80	15.0	4.984	14.8									6.684
ria0				1	5.32	48.5	14.586	44.2			-5.82	-67.5	-14.586	-C.757			
Residual de Vacio		1	1		4.38	36.5	13.530	41.0	-17.910	-99.5							
Casoleo Ligera VB	1	1					1		3.096	17.2							3.096
Casáleo Pesaso VP		1	1		1			1	4.644	25.8		i	-2.803	-0.145	,		1.841
Residuo de VB	i		1				1		8.208	45.6							9.108
ac.	i	1	1	1	1						1.375	15.96	3.677	15.08			4.452
	1		1	1	1				1	!	0.253	2.94	0.366	2.94			0.019
42 Tim Clarificado	1	Ì							!		J.395	4.58		i			1.276
led up arado	34.39	38.25	64.512	99 85	12.0	100.3	33.0	100.0	18.594	103.3	10.556	122.51		122.51	1.70	100.0	106.174
🤼 Mas (Gunancias,	. C.61	1.74	0.028	0.14	-	-		-	(0.554)	1		1	(4.339)	1	6.	_	(6.174)

CUADRO 73 - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA AMPLIACION (CASO 4)

	D. PRIM	ARIA I	D. PRIMA	RIA II	D. VAC	10 1	C. VACI	0 11	VISBREA MEPO	KING	FCC MB/FD	- [F00 KD: 0	- II 	REFO!		TOTAL MBPD = %
Carga Total	35.0	100.0	65.0	100.0	12.0	100.6	27.0	100.0	15.450	100.0	8.616	100.0	16.146	100.0	1.7	100.0	
Gas	0.342	0.980		1	1				0.803	5.2	C.345	4.G	0.646	4.0	0.13	7.64	2.266
GLP (+)			0.40	0.62							2.240	25.0	4.198	26.0	0.14	8.23	5.216
(-)						l i					-0.616	-7.1	1.146	-7.1		•	
Butano (C ₄)											0.645	7.5	1.211	7.5			1.857
Gasolina (+)	4.272	12.21	10.0	15.38					1.463	9.5	€.057	58.7	9.478	58.7	1.43	84.12	31.104
(-)				/							1				-0.601	-35.35	
Nafta	1.099	3.14													-1.099	-64.65	
Turbo	2.307	6.59	4.407	6.78										l		4	6.714
Kerosene	2.800	00.8	4.956	7.64										į			7.756
ünesel	5.145	14.70	15.643	24.07										•	1		20.788
ACC	0.475	1.35	2.316	3.56							-2.18	-25.3	-0.611	-3.72			
Crudo Reducido	17.95	51.29	27.180	1.81	-12.0	-100.0	-27.0	-100.0									6.13
LV30	i	1	1	1	1.8	15.0	3.996	14.8		11				:			5.796
EV00	i		i		5.82	48.5	11.934	44.2			-5.82	-67.6	-11.934	-73.91			
Residual de Macio	1		i		4.38	36.5	11.070	41.0	-15.45	-100.0				i			
lasóleo Ligero VS	1	İ			1				2.657	17.2							2.657
Casóles Pesado VB						1			3.986	25.8			-2.455	-15.21			1.531
Actions de va	!				1			1	7.045	45.6	1					- 0	7.045
	3	1	į		1 .	1		İ			1.326	15.4	2.426	15.4			3.812
1 -			1			1			1 3		0.267	3.1	0.500	3.:			0.767
t. Charitheado											C.3G2	3.5	0.565	3.5		1	0.867
cos squas sta	34.39	98.26	64.912	99.86	12.C	100.0	27.0	100.0	15.959	103.3	10.183	118.19	11.064	112.19			104.31€
rutuus jäananotas) J.6.	1.74	0.038	0.14	-	-	-	-	(0.509)			(18.19)	(2.938)	(13.19)			(4.316)

CUADRO 74 - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA AMPLIACION (CASC 5)

	D. PRIN	ARIA I	O. PRIN	KRIA YI	D. VAC	IS 1	D. VACI	3 1:	VIJBRE/ MBPE	AKING	45PD	- :	#30 -539	- 17	REFOR	RMINS	TOTAL MBPD = %
Carga Total	35.0	100.0	65.0	100.0	12.0	100.0	33.C	100.C	17.910	100.0	3.616	160.J	15.373	100.0	1.7	100.0	
Gas	0.342	0.98		1					0.931	5.2	0.348	4. 7	0.776	1 2.0	0.13	7.64	2.523
GLP (+)			0.40	0.62	10					1	2.040	25.0	5.038	26.0	0.14	8.23	5.826
(-)										1	-0.516	-7	-1.375	-7.1	1		
Butano (C _A)											0.€4€	7.5	1.453	7.5			2.099
Gasclina (+)	4.272	12.21	10.0	15.38					1.701	9.5	5.057	58.7	11.374	5ā.7	1.43	54.13	33.233
(-;		1	1									1	1		-0.601	-35.35	
Rafta	1.099	3.14				3					į		1		-1.099	-64.65	
Turbo	2.307	6.59	4.407	6.78									1	1			6.714
Kurcsene	2.800	8.00	4.966	7.64										Ì	į		7.765
Diese?	5.145	14.70	15.643	24.07									i				20.788
AGO	0.475	1.35	2.31	3.56						1	-2.18	-25.3	-ü.611	i		1	
lúredo Reaucido	17.95	51.29	27.100	1.61	-12.6	-100.0	-33.0	-100.3		1	1	1		1	1		0.130
EVG3	1			1	1.80	15.0	4.884	14.8			1	1		İ	i	1	€.664
i #460	1	1		1	5.82	42.5	14.586	44.2		i	-5.32	-67.5					
Residual de Vacio	i			1	₹.38	36.5	13.530	41.0	-17.910	1-100.0		1		1			
Saudies Engers MS	1		-	1					3.080	17.2		1		į		1	3.030
Preside result VI	1		1	1		1	1		4.621	15.8	1	1		1		1	1.313
nestado de la	1	1	1	1					3.156	45.6	1	i				1	2.163
Lite			1	1						1	1.325	15.4	2.933	15.4		1	4.309
1.5%		4	i	1							0.267	3.1	0.630	3.1			0.837
ing i dismrisude	1	1			1	1		1 12		1	6.302	3.5	6.278	3.5			0.930
	154.39	53.2	34.91	2 99.86	12.3	100.0	33.C	130.0	18.449	103.1	10.123	110.19	22.901	113.11	1.7	1:00.0	164.983
a a aa jaanancia:	3 3.61	1.7	3C.C	3 0.14	-	-	-		(0.589)	i	i	i	(3.125)		1	-	(4.983)

CUADRO 75 - BALANCE GLOBAL DE LA REFINERIA LA PAMPILLA AMPLIACION (CASO 6)

	D. PRI!	MARIA I	C. PREM	ARIA II	D. AL V MBPD	ASIS . I	I. AL VA MBRD	212 11	iiedre Mari	A2-3	F.S.		* 51.3		FEFS.	MING L	TOTAL
Carga Total	35	130.0	65.0	105.0	12.0	100.0	33.0	100 0	14.0	1:5.5	٠.::٤				1.7	100.1	
Gas Combustible	0.342	32.0				į	i	1	0.936	5.2	C.363	1.32			0.13	7.64	1.771
GLP (+)			0.40	0.82							1.150	14.96	0.130	1.6	0.14	8.23	2.254
(-)										1	-0.5.6	i ov. 1 g -7 !		1		į	!
Butano (C ₄)			1 9				1				3.740	8.59	1.170	5.50			1.310
Gasolina (+)	4.272	12.21	10.00	15.38					1.71	9.5	5.279	£1.27	2,612	11.40	1.43	84.13	24.142
(-)		1		0				i		1				i	-0.601	-35.35	
Nafta	1.099	3.14									i		5 .28	32.7	-1.099	-64.65	5.88€
Turbo	2.307	€.59	4.407	6.78	i					,			2,700	15.0		İ	9.414
Herosene	2.800	8.00	4.965	7.64						•	i		3.020	10.0		į	11.366
Ciesel	5.145	14.70	15.643	24.07	1								€.√30	30.2			35.183
AGO	0.475	1.35	2.316	3.5€							-2.18	-25.3	-0.611	-3.394			•
Crudo Reducido	17.950	51.29	27.180	41.31	-12.3	-100.0	- 33.0	-100.C	-0.09	-0.3							0.04
5750	1				1.30	15.0	4.884	14.8								1	6.684
₹. 7. .0	İ				5.52	48.5	14.586	44.2		i	_3.e	-c7.0	-14.503	- 31.05%		i	
Aug tabul de Vacio	r a	!	!		4.38	36.5	13.530	41.0	-17.91	-94 5	M K	:		į		i	
San Sind Linguist Vil	i	1	1		1				3.095	17.2	1	ļ		1	i		3.055
4 . les 12 E		i	1		!				4.644	25.ê	1	i.	-2.815	-13.572		1	1.641
in the de	:		9	:	i				8.207	45.6	100			1		i	£.101
*		1	1	:	1					i	1	1 75.25		2		ì	/5
	1	l	1	i		1					0.2:0	1 1.54				İ	0.280
30 ° ** 15 GJ				1	1						0.394	6	ì	!			0.395
	4			59.912	•	100.C	33.0	100.0			10.505		25.933	i	1.7	100.0	1438
ne nikitas,	0.510	0.75	-	0.033	***	-	-	-	(0.594)	(3.3)	(1.939)	(13.51)	(2.985)	(16.6)	-	i -	(4.823)

5.4 CALCULO DE LA VISCOSIDAD DEL DIESEL Nº 2 Y RESIDUAL Nº 6 PARA LOS ESQUEMAS PROPUESTOS

ESQUEMA ACTUAL DE LA PAMPILLA

CUADRO 76

DIFSEL N° 2	DIESEL DEST. I	DIESEL DEST. II	LVGO D. VACIO	LCO DE FCC	TOTAL
Volumen (MRPD)	5.145	15.643	1.650	1.086	23.524
28H a 100°T	110	45	46	36	43.3
VBN a 100°T	46.87	44.35	43.94	49.71	45.12
(Vol.) x (VBN)	241.15	693.77	72.501	53.985	1061.406

CUADRO 77

PESIDUAL Nº 6	HOO+AC FCC	AGO	C. REDUCIDO DEST. I	C. REDUCIDO DEST. II	RESIDUAL DE VACIO	TOTAL
Volumen (MBPD)	0.502	0.946	6.950	27.180	4.015	39.593
SSU a 100°F	118					
SSF a 122°F		40	57	280		260
SSF a 210°F					700	
VBN a 122°F	36.15	26.76	25.18	19.37	7.8	19.606
(Vol.) x (VBII)	18.147	25.315	175.0	5 26. 48	31.317	776.259

CASO BASE 1

DIESEL DEST. I	DIESEL DEST. II	LVGO D.VACIO	LCO FCC	TOTAL.
5.145	15.643	1.800	1.375	23.963
40	45	46	36	43.1
46.87	44.35	43.94	49.71	45.160
241.15	693.77	79.092	68.351	1'15
	DEST. I 5.145 40 46.87	DEST. I DEST. II 5.145 15.643 40 45 46.87 44.35	DEST. I DEST. II D. VACIO 5.145 15.643 1.800 40 45 46 46.87 44.35 43.94	DEST. I DEST. II D. VACIO FCC 5.145 15.643 1.800 1.375 40 45 46 36 46.87 44.35 43.94 49.71

RESIDUAL Nº 6	HOO+AC FCC	AGO	C. REDUCIDO DEST. I	C. REDUCIDO DEST. II	RESIDUAL PE VACIO	TOTAL
Volumen (MBPD)	0.648	0.611	5.950	27.180	4.380	38.769
SSU a 100°F	118					
SSF a 122 T		140	5.7	280		256
SSI a 210°F					.300	
VBN a 1271	36.LS	26.76	25.18	19.37	9.29	19.505
(Vol.) x (VBN)	23,425	10.350	149.821	526.48%	40.090	756.766

CASO BASE 2

CUADRO 80

DIESEL Nº 2	DIESEL DEST. I	DIESEL DEST. II	LVGO D. VACIO	LCO FCC	TOTAL
Volumen (MBPD)	5.145	15.643	1.800	1.326	23.914
SSU a 100°F	110	45	46	3:	43.2
VBN a 100°1	46.87	44.35	43.94	57.7±	45.158
(Vol.) x (VEN)	241.15	693.77	79.092	55.915	1079.927

RESIDUAL Nº 6	HO)+AC FCC	AG0	C. REDUCIDO DEST. I	e. REINCTA DEST. II	RESIDUAL DE VACIO	TOTAL.
Volumen (MBPD)	0.563	0.611	5.950	27.183	4.380	38.690
SSU a 100°F	118					
SSF a 122°F		40	57	280		
SSF a 210°F						101
VBN a 122°F	36.1 5	26.76	25.16	19.37	5.00	ैं j. 48h
(Vol.) x (VBN)	20.569	16.350	149.321	526.48	w T	*** 4, :16

CASO 1-A

DIESEL Nº 2	DIESEL DEST. I	DIESEL DEST. II	LVGC VACIO I y II	ICO FOCLYII	TOTAL
Volumen (MBPD)	5.145	15.643	4.760	3.093	28.641
SSU a 100°F	110	45	47	38	43
VBN a 100°)	46.87	44.35	43.56	48.17	45.084
(VOJ.) × (VBN)	241.15	693.77	207.346	148.990	1291.256

CUADRO 83

RESIDUAL Nº 6	HCO+AC FCC-I	HCO+AC FCC-II	C. RED. DEST. I	O. RED. DEST. II	RESIDUAL VACIO I	RESIDUAL VACIO II	TOTAL
Volumen (MBPD)	0.648	0.809	5.95	7.180	4.38	8.200	27.167
SSU a 100°F	118	130					
SSF a 122°F			57	280			820 (*)
SSF a 210°F					300	1000	
VBN a 122°F	36.15	35.85	25.18	19.37	4.59	1.1	16.226
(Vol.) x (VBN)	23.425	29.003	149.821	139.076	40.690	58.794	440.809

^(*) Fuera de especificación, se necesita un diluyente para relajar la Viscosidad hasta 300 SSF a 122°F.

CASO 1-B

DIESEL Nº 2	DIESEL DEST. I	DIESEL DEST. II	LVGO VACIO I y II	LCO FCC I y I'	GASCLEC LIGERO VE	FOTAL
Volumen (MBPD)	5.145	15.643	4.760	3,265	2.104	30.977
SSU a 100°F	40	45	47	38	XX:	42.4
VBN a 100°F	46.87	44.35	43.54	48.17	1.00	15. 4.5
(Vol.) x (VBN)	241.15	693.770	207.345	157.275	4: 1: 1:12	I

RESIDUAL Nº 6	C. REDUCIDO DEST. I	C. REDUCIDO DEST. II			GASOLEO PESÁDO VB	RESIDUO DE VB	TOTAL
Volumen (MBPD)	5.950	7.180	0.648	0.890	2.697	5.736	23.101
SSU a 100°F			118	130	150		
SSF a 122°F	5 7	280					184
SSF a 210°F						+1600	
VBN a 122°F	25.18	19.37	36.1 5	35.85	35.46	6.7	20.705
(Vol.) x (VBN)	149.821	139.076	23.425	31. 907	95.636	38.431	478.296

CASO 2-A

CUADRO 86

DIESEL Nº 2	DIESEL DEST. I	DIESEL DEST. II	LVGO VACIO I y II	LCO FCC I y II	TOTAL
Volumen (MBPD)	5.145	15.643	5.796	4.452	31.036
SSU a 100°F	40	45	47	38	43.02
VBN a 100° F	46.87	44.35	43.56	48.17	45.168
(Vol.) x (VBN)	241.1 5	693.77	252.473	214.453	1401.486

RESIDUAL Nº 6	HCO+AC FCC-I	HOO+AC FCC-II	C. RED. DEST. I	C. RED. DEST. II	RESIDIAL VACIO I	RESIDUAL VACIO II	TOTAL
Volumen (MBPD)	0.648	1.449	0.495	0.180	4.380	11.070	18.222
SSU a 100°F	11 8	130					
SSF a 122°F			57	280			5800 (*)
SSF a 210°F					30 0	1000	
VBN a 122°F	36.15	3 5. 85	25.18	19.37	9.29	7.17	11.601
(Vol.) x (VBN)	23.425	51.947	12.464	3.487	40.690	79.372	.111.385

^(*) Fuera de especificación, se necesita un diluyente para rebajar la Visco idad hasta 300 SSF a 122°F.

CASO 2-B

DIESEL Nº 2	DIESEL DEST. I	DIESEL DEST. II	LVG0 VACIO I y II	LCO FCC I y II	GASOLEO LIGERO VB	TOTAL
Volumen (MBPD)	5.145	15.643	5 .7 96	4.452	2.752	33.788
SSU a 100°F	40	45	47	38	39	42.70
VBN a 100°F	46 , 87	44.35	43.56	48.17	47.49	45.350
(Vol.) x (VBN)	241.15	693.77	252.474	214.453	130.629	1532.276

CUADRO 89

RESIDUAL Nº 6	HCO+AC FCC-I	HCO+AC FCC-II	GASOLEO PESADO VB	RESIDUO DE VB	C. REDUCIDO DEST. I	TOTAL
Volumen (MBPD)	0.648	1.449	4.128	7.296	0.125	13.646
SSU a 100°F	118	130	150			
SSF a 122°Γ					57	225
SSF a 210°F				+1600		
VBN a 122°F	36.15	35.85	35.46	6.7	25.18	20.063
(Vol.) x (VBN)	23.425	51.947	146.379	48.883	3.148	273.782

CASO 3-A

DIESEL Nº 2	DIESEL DEST. I	DIESEL DEST. II	LVGO VACIO I	LVGO VACIO II	LCO FCC I y II	TUTAL
Volumen (MBPD)	5.145	15.643	1.800	4.884	4.452	31.924
SSU a 100°F	40	45	47	47	3.5	43.03
VBN a 100°F	46.87	44.35	43.56	43.50	48.17	+1.124
(Vol.) x (VBN)	241.15	693.77	78.468	212.747	214.450	35%,

CUADRO	9	1
--------	---	---

RESIDUAL Nº 6	HCO+AC FCC-I	HCO+AC FCC-II	RESIDUAL VACIO I	RESIDUAL VACIO II	TOTAL
Volumen (MEPD)	0.648	1.449	1.707	13.350	17.334
SSU a 100°F	118	130			
SSF a 1270F					9850 (*)
SSF a 210%			300	1000	
VBN a 122°F	36.15	35.85	9.29	7.17	10.492
(Vol.) × (VBN)	23.425	51.947	15.858	90.651	191.881

^(*) l'uera de especificación, se necesita un diluyente para rebajar la Viscosidad hasta 300 SSF a 122°F.

CAS0 3-B

DIESEL Nº 2	DIESEL DEST. I	DIESEL DEST. II	LVGO VACIO I y II	ICO FCC I y II	GASOLEO LIGERO VB	TOTAL
Volumen (MBPD)	5.145	15.643	6.684	4.452	2.752	34.676
SSU a 100°F	40	45	47	38	39	42.9
VBN a 100°F	46.87	44.35	43.56	48.17	47.49	45.31
(Nol.) x (ABM)	241.15	693.77	291.155	214.453	130.692	1571.22

HCO+AC FCC-I	HCO+AC FCC-II	GASULEO PESADO VB	PESIDUG PESIDUG	TOTAL
0.684	1.449	3.365	7.296	12.758
118	130	150		
				248
			+1400	
36.15	35.85	35.46	6.34	1 .1
23.425	51.947	119.323	45. 47	"" (· · · · ·
	9.684 118 36.15	FCC-I FCC-II 0.684 1.449 118 130 36.15 35.85	FCC-I FCC-II PESADO VB 0.684 1.449 3.365 118 130 150 36.15 35.85 35.46	FCC-I FCC-II PESADO VB DE VB 0.684 1.449 3.365 7.296 118 130 150 +1496 36.15 35.85 35.46 6.36

<u>CASO 3-C</u>

:UADRO 94

DIESEL Nº 2	DIESEL DEST, I	DIESEL DEST. II	LVGO VACIO I y II	LCO FCC I y II	GASOLEO LIGERO VB	TOTAL
/olumen (MBPD)	5.145	15.643	6.684	4.452	3.096	35.020
3SU a 100°F	ЦU	45	47	38	39	42.08
VBN a 100°F	46.87	44.35	43.56	48.17	47.49	45.33
(Vol.) \times (VBN)	241.15	693.77	291.155	214.453	147.029	1587.557

CUADRO 95

RESIDUAL Nº 6	HCO+AC FCC-I	HCO+AC FCC-II	GASOLEO PESADO VB	RESIDUO VB	C. REDUCIDO DEST. I	TOTAL
Volumen (MBPD)	0.648	1.449	1.841	8.208	0.04	12.186
SSU a 100°F	118	130	150			
SSF a 122°F					57	297
SSG a 210°F				+1400		
VBN a 122°F	36.15	35.85	35.46	6.85	25.18	19.19
(Vol.) x (VBN)	23.425	51.947	65.282	56.225	1.007	233.886

CASO 4

DIESEL Nº 2	DIESEL DEST, I	DIESEL DEST. II	LVGO VACIO I y II	LCO FCC I y II	GASOLEO LIGERO VB	TOTAL
Volumen (MBPD)	5.145	15.643	5.796	3.812	2.657	33.053
SSU a 100°F	40	45	47	38	39	42.09
VBN a 100°F	46.87	44.35	43.56	43.17	47.49	45.297
(Vol.) x (VBN)	241.15	693.77	252.474	183.624	126.181	14 37.199

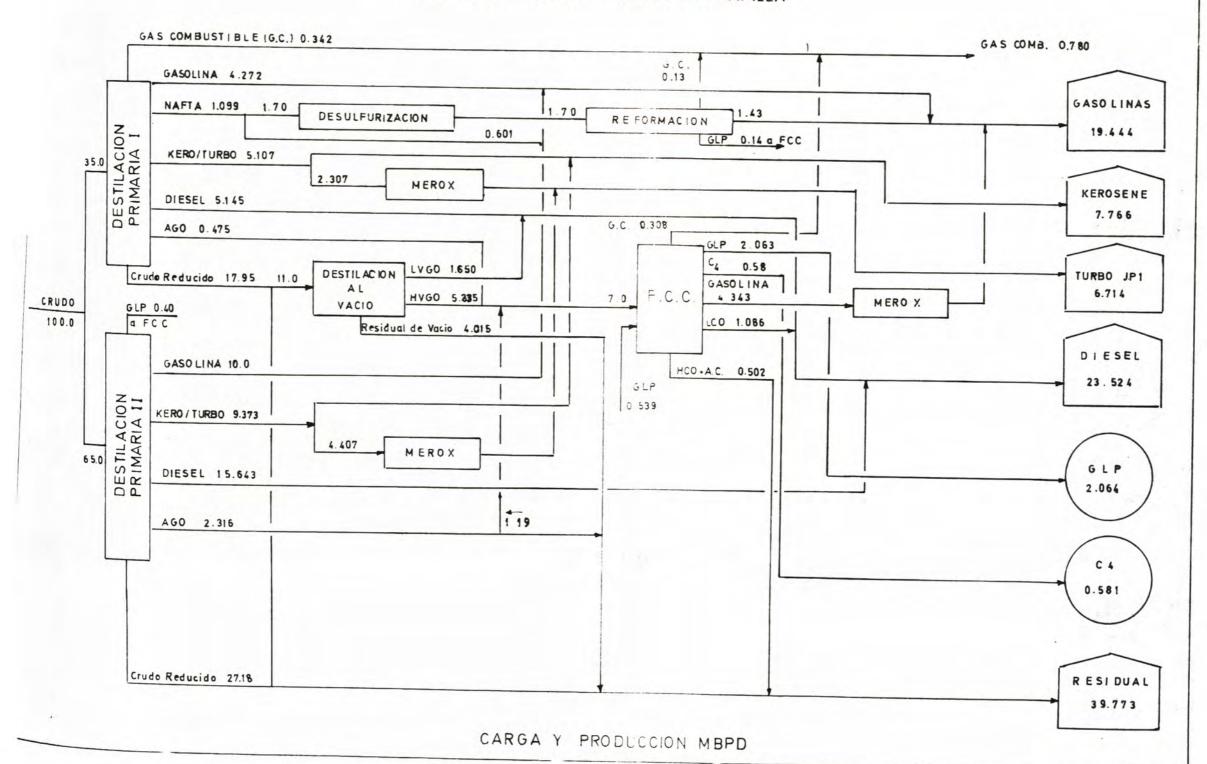
RESIDUAL Nº 6	HOO+AC FCC-I	HCO+AC FCC-II	GASOLEO PESADO VB	RESIDUO DE VB	C. REDUCIDO DEST. I <u>y</u> II	TOTAL
Volumen (MBPD)	0.569	1.065	1.531	7.045	6.13	16.340
SSU a 100°F	11 3	130	150			
SSF a 122°F					60	296
SSF a 210°F				+1400		
VBN a 122°F	36.15	35.85	35.46	6.85	25.15	19.306
(Vol.) x (VBN)	20.569	38.180	54.289	48.258	154.169	315.465

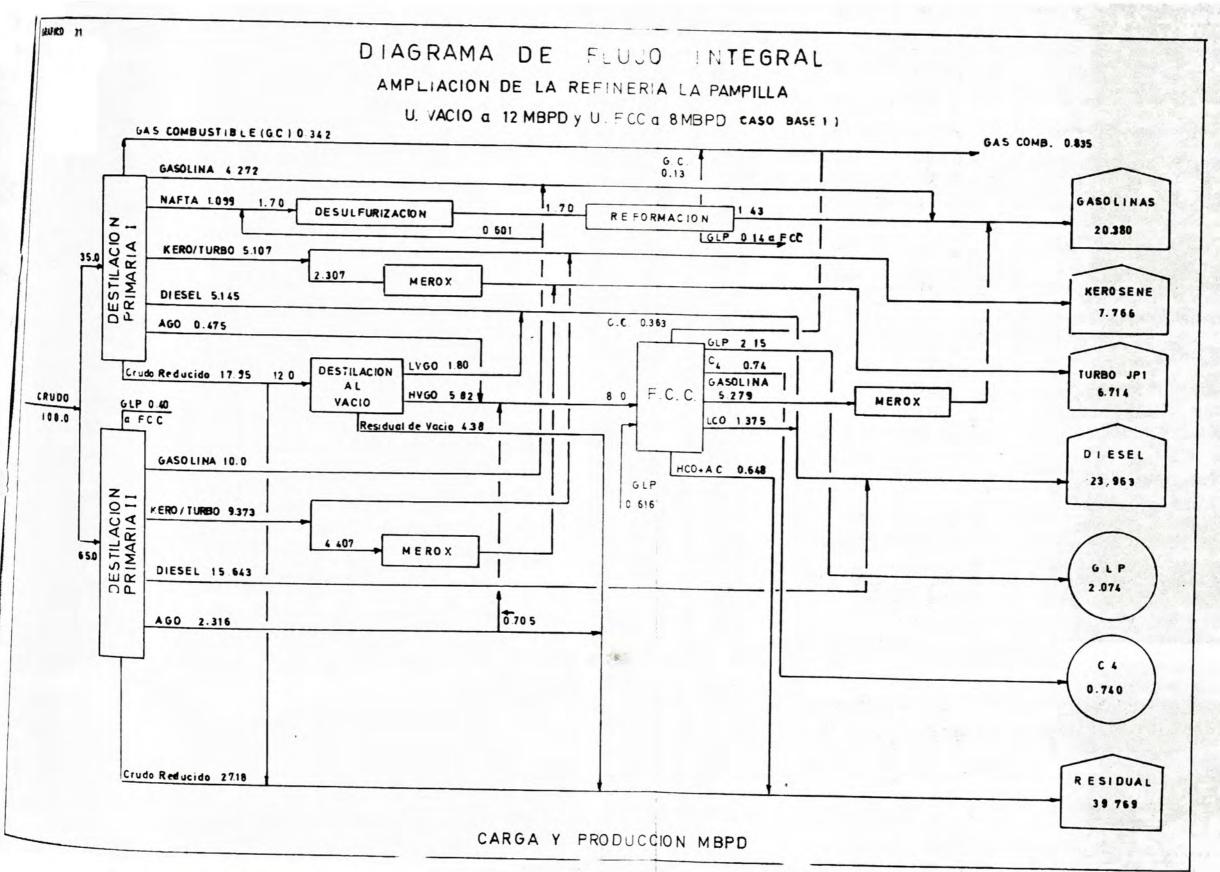
CASO 5

			CONTRACTOR OF THE SECTION OF THE SEC			
DIESEL Nº 2	DIESEL DEST. I	DIESEL DEST. II	LVGO VACIO I <u>y</u> II	LCO FCC I <u>Y</u> II	GASOLEO LIGERO VB	TOTAL
Volumen (MBPD)	5.145	15.643	6.684	4.309	3.080	34.861
SSU a 100°F	40	45	47	38	39	42.9
VBN a 100°F	46.87	44.35	43.56	48.17	47.49	45.32
(ol.) x (VBN)	241.15	693.77	291.155	207.564	146.269	1579.908

DECEMBE 110 c	HCO+AC	HOO+AC	GASOLE0	RESIDUO	C. REDUCIDO	TOTAL
RESIDUAL Nº 6	FCC-I	FCC-II	FESADO VB	DE VB	DEST. II	101111
Volumen (MBPD)	0.569	1.278	4.621	8.166	0.130	14.76
SSŲ a 100°F	118	130	150			
SSF a 122°F					57	259
SSF a 210°F				+1490		
[∞] VBN a 122°F	36.15	35. 85	35.46	6.85	25.18	19.60
(Vol.) x (VBN)	20.569	45.816	163.861	55.937	3 .27 ℃	293. 👀

CASO 6

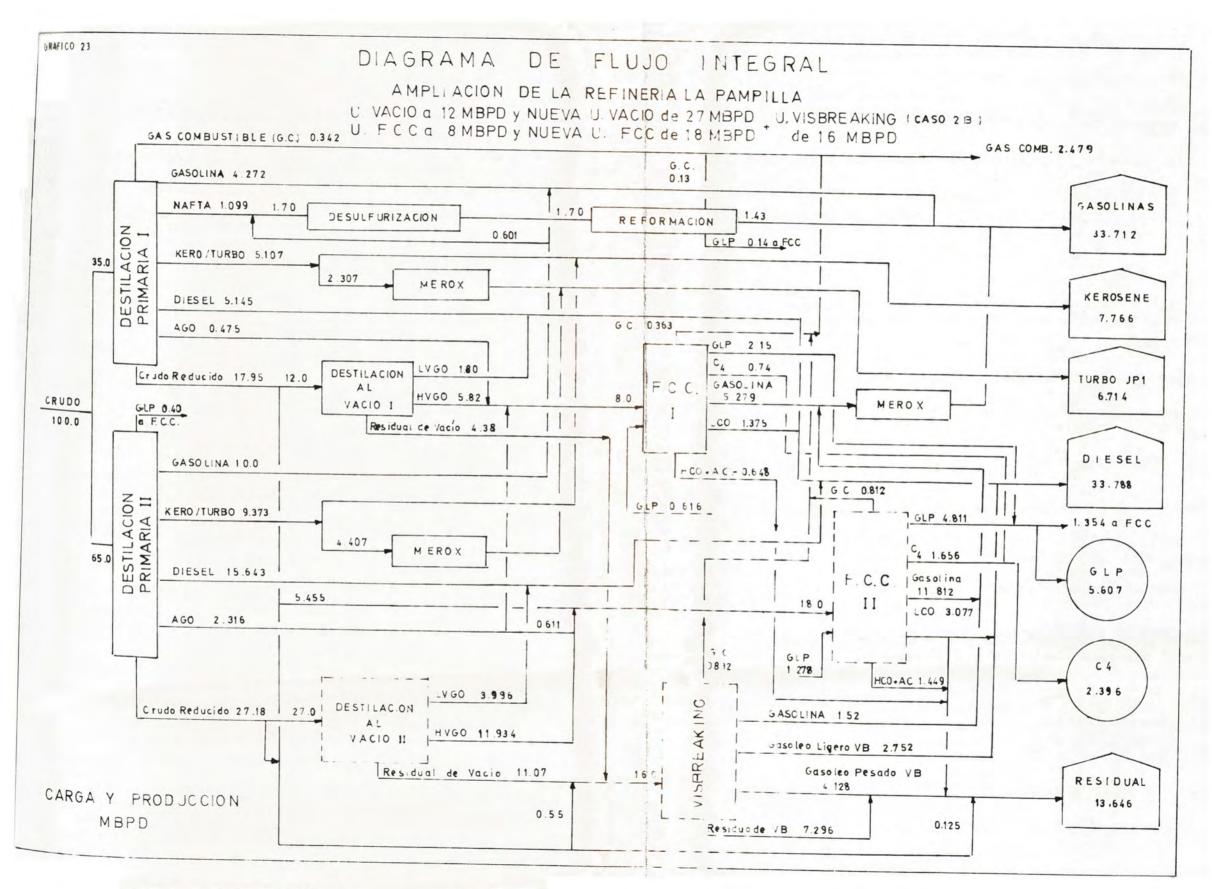

UADRO 100

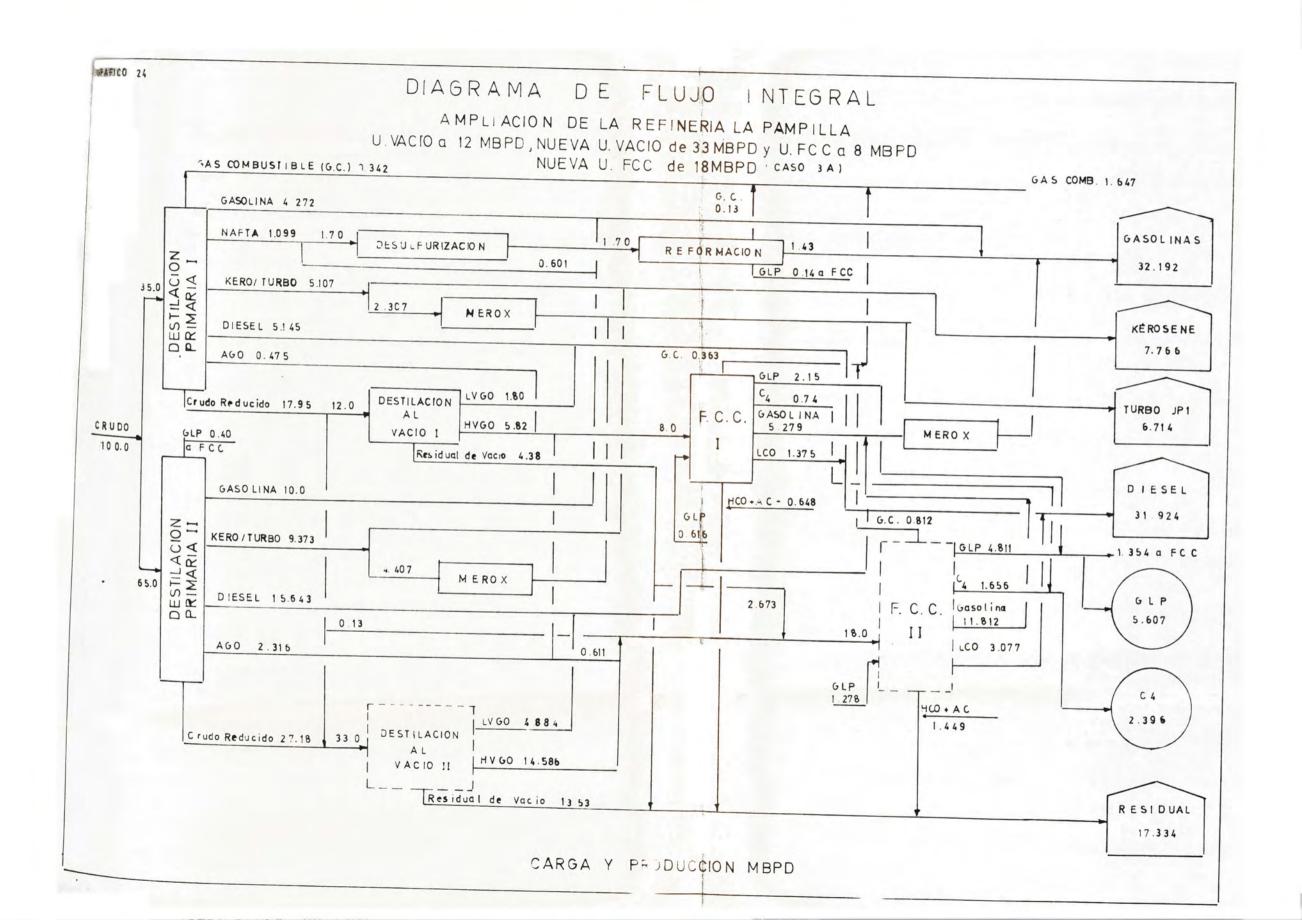

DIFSEL Nº 2			LVGO VACIO 1 y II			DIESEL HIDROCRAC.	TOTAL
/olumen (MBPD)	5.145	15.643	6.684	3.096	1.375	5.400	37.343
3SU a 100°F	Li i i	45	47	39	36	45	43.02
VBN a 100°F	46.8/	44.35	43.56	47.49	49.71	44.35	45.013
(Vo].) ^ (ABM)	241.15	693.77	291.155	147.02	68.351	239.49	1680.945

RESIDUAL № 6	HCO FCC-I	AC FCC - I	C. REINICIDO DEST. II	GASOLEO PESADO VB	RESIDUAL DE VB	TOTAL
Volumen (MBPD)	0.253	0.395	0.04	1.841	8.207	10.736
SSU a 100°F	118	118		150		
SSF a 122°F			280			2030 (*)
SSF a 210°F					+1400	
VBN a $122^{\circ}\Gamma$	36.15	36.15	19.37	35.46	6.85	13.572
$(V \bullet 1.) \times (VBN)$	4.146	14.279	0.775	65.282	56.225	14 .707

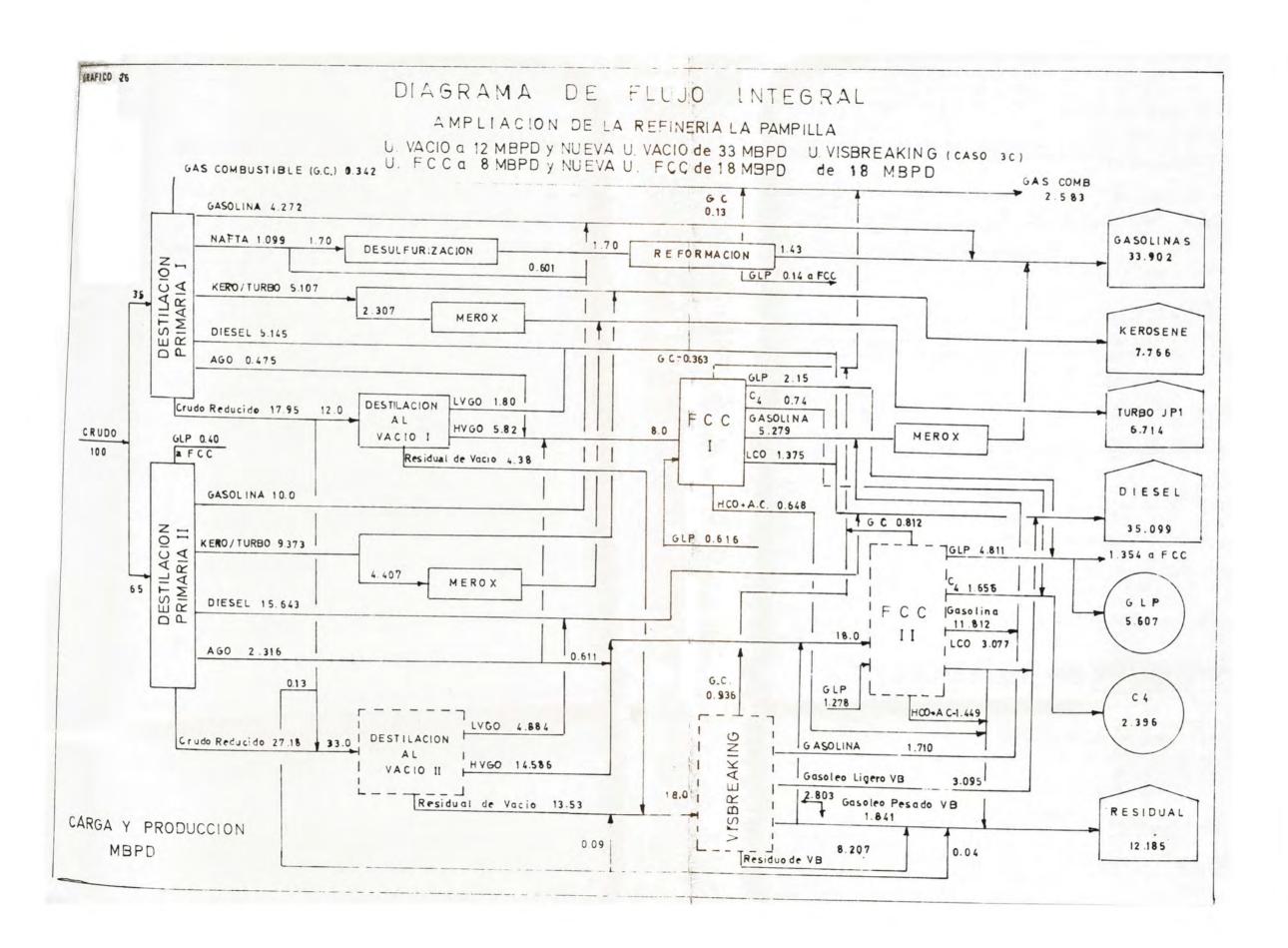
^(*) Fuera de especificación, se necesita un diluyente para rebajar la Viscosidad hasta 300 SSF a 122ºF.

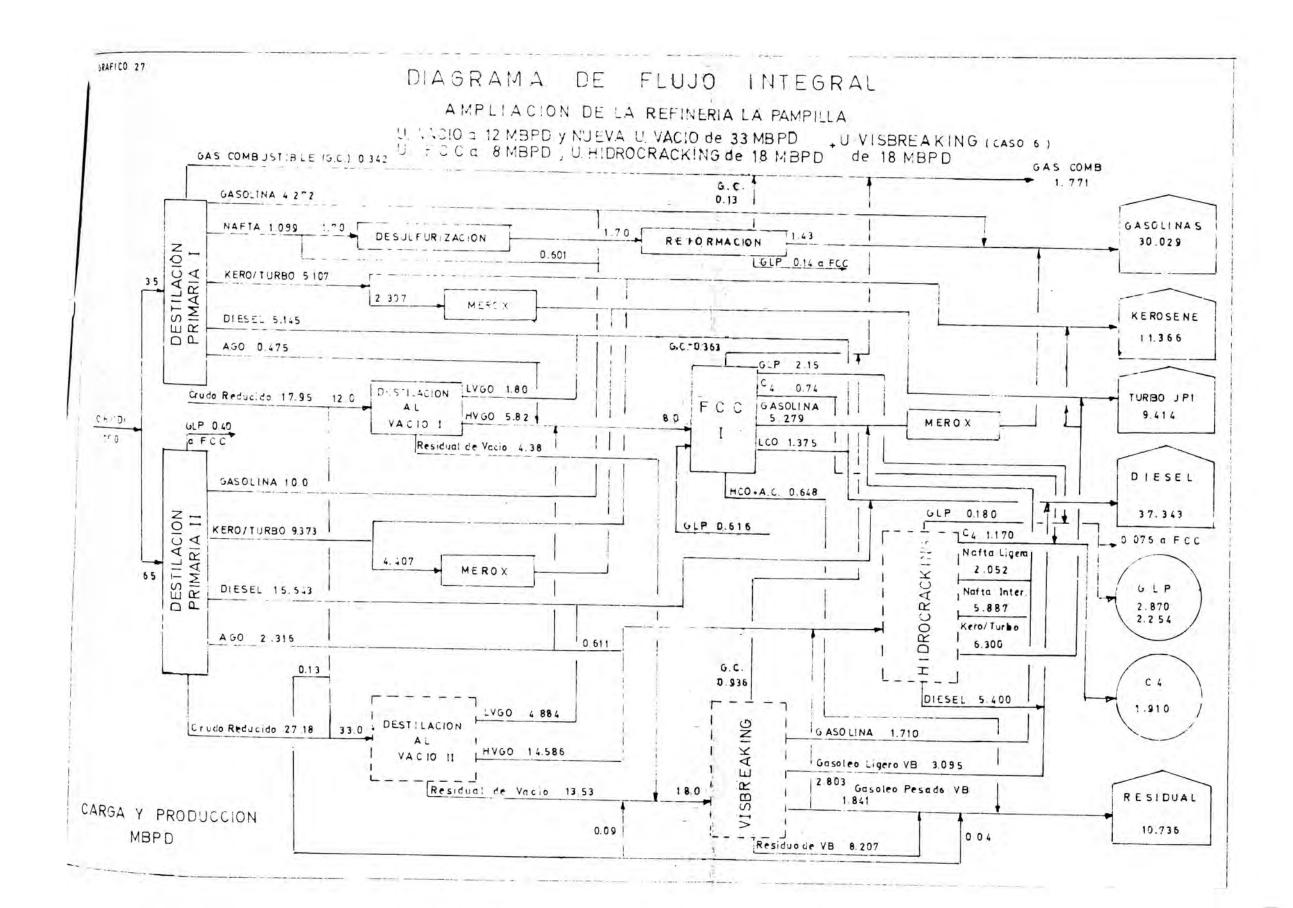
DIAGRAMA DE FLUJO INTEGRAL ACTUAL DE LA REFINERIA LA PAMPILLA


DIAGRAMA DE FLUJO INTEGRAL AMPLIACION DE LA REFINERIA LA PAMPILLA U. VACIO a 12 MBPD, NUEVA U. VACIO de 27 MBPD y U. FCC a 8 MBPD GAS COMBUSTIBLE (G.C.) 0.342 NUEVA U. FCC de 18 MBPD (CASO 2-A) GAS COMB. 1.647 GASOLINA 4.272 G.C. 0.13 NAFTA 1.099 DESULFURIZACION 1.70 GASOLINAS DESTILACION PRIMARIA I 1.43 REFORMACION 0.601 GLP 0.14 a FCC 32.192 KERO / TURBO 5.107 35.0 2.307 MEROX DIESEL 5.145 KEROSENE AGO 0.475 G.C. 0.363 7.766 GLP 2.15 C4 0.74 Crudo Reducido 17.95 12.0 LVGO 1.80 DESTILACION GASOLINA 5.279 F. C. C. TURBO JP1 CRUDO HVGO 5.82 GLP 0.40 8.0 VACIO 1 6.71 4 MEROX 100.0 a FCC Residual de Vacio 4.38 LCO 1.375 GASOLINA 10.0 DIESEL HCO+A.C. - 0.648 DESTILACION PRIMARIA II GLP G. C. 0.812 31.036 KERO/TURBO 9.373 0.615 GLP 4.811 1. 35 4 a FCC 4. 40 7 MEROX 65.0 1.656 DIESEL 15.643 GLP F. C. C. | Gasolina 5.455 11.812 5.607 18.0 H AGO 2.316 I LCO 3.077 0.611 GLP 1.278 C 4 HCO + A C LVGO 3.996 1.449 2.396 Crudo Reducido 27.18 DESTILACION 27.0 HVGO 11.934 VACIO II' Residual de Vacio 11.07


0.675


CARGA Y PRODUCCION MEPD


RESIDUAL


18.222

5.6 ANALISIS ECONOMICO DE LOS ESQUEMAS PROPUESTOS

5.6.1 AMPLIACION DE LA UNIDAD DE VACIO A 12 MBPD

BASES:

Volumen Incremental: Colocar un horno de 10 MBPD, a dicional al actual que permitiría operar a 12 MBPD y el año operativo de la unidad se alargaría de 330 a 340 días, al utilizarlo como horno de relevo durante los 10 días al año durante la parada anual de 30 días por refacciones y mantenimiento de la unidad.

Depreciación de 6 años, que es el tiempo que falta depreciar la unidad de Destilación al Vacío.

La unidad puede procesar hasta 12 MBPD sin modifica ciones mayores en la columna de destilación.

Tanto los Ingresos Incrementales como los Costos de Operación se han afectado por los factores de infla ción de precios en dólares indicados en el cirvular PLN 016-81.

ESTIMADO DE COSTOS DE AMPLIACION DE LA UNIDAD DE DESTILACION DE VACIO DE LA REFINERJA LA PAMPILLA (M US\$)

Precio CIF Callao del Horno para 12 MBPD	510.0
Tuberías y Accesorios	51.0
Obras Civiles	33.5
Inst. Mat. Eléctricos,	
Pintura, etc.	60.8
Erección y Montaje	113.2
Total a Dic. de 1980	768.5

Inversión en 1981: 768.5 x 1.11 = 853 M US\$

RENDIMIENTOS Y PRECIOS

Unidad de Destilación al Vacío:

Unidad de Craqueo Catalítico (FCC)

	%	\$/B
Gas	0.0421	20.72 (2)
GLP	0.2496	27.80
Gasolina + C _{li}	0.6386	30.32
LCO	0.1596	29.07
HCO + AC	0.0752	20.72 (1)
Ganancia	(0.2251)	-
Total/Prom.	1.000	35.539

- (1) Valorizado como Diesel (Precio Exportación, Junio 1981)
- (2) Valorizado como Residual 6 (Precio de Exportación, Junio 1981).

INGRESOS INCREMENTALES:

Operación Normal

LVGO:
$$2 \frac{MB}{DO} \times 0.15 \times 330 \times \frac{DO}{ANO}$$
 (29.07 - 20.77) $\frac{6}{B} = 820.53 \times 330 \times 3$

Operación Adicional:

LVGO:
$$10 \frac{MB}{DO} \times 0.15 \times 10 \frac{DO}{ANO} \times (29.07 - 20.72) \frac{\$}{B} = 125.77 \times 10^{-10}$$

HVGO:
$$10 \frac{MB}{DO} \times 0.485 \times 10 \frac{DO}{ANO}$$
 (35.539 - 20.72) $\frac{\$}{B}$ = 718.722 M \$/AÑO

Ingreso Incremental Total

1670.522 M \$/AÑO

COSTOS DE OPERACION

Unidad de Destilación al Vacío

$$2 \frac{MB}{DO} \times 330 \frac{DO}{ANO} \times 0.287 \frac{\$}{B} = 189.42 \text{ M} \$/AMO$$

Operación Adicional

Unidad de Destilación al Vacío

$$10 \frac{MB}{DO} \times 10 \frac{DO}{ANO} \times 0.287 \frac{\$}{B} = 28.7 \text{ M } \$/ANO$$

Unidad de Craqueo Catalítico

$$10 \frac{MB}{DO} \times 0.485 \times 10 \frac{DO}{ANO} \times 2.5 \frac{\$}{B} = 121.25 \$/4NO$$

Costo de Operación Total = 339.62 \$/AÑO

CUADRO 102 - FLUJO NETO DE FONDOS DE LA AMPLIACION DE VACIO A 12 MBPD (M US\$)

A R O	INVESTION	INCRESOS INCRESIDATATES	COSTO DE OPERACION	DEPREMIACION	UTILIDAD BRUTA	UTILIDAD NETA	FLUJO NETO DE FUNDOS
81	(853)						
82		1855	3 7 7	107	1372	686	7 93
83		2021	410	107	1504	752	859
84		2183	444	107	1632	816	923
8 5		2336	474	107	1724	862	969
86		2487	505	107	1876	938	1045
87		264 9	538	107	2004	1002	1109
88		2821	574	107	2140	1070	1177
89		3005	611	107	2 288	1144	1251

VAN = 2,896 M US\$ a 1981

TIR = 101%

Plazo de Recuperación = 1 ANO.

5.6.2 AMPLIACION DE LA UNIDAD DE FCC A 8 MBPD

BASES:

Colocar un horno de precalentamiento de 8 MBPD, lo cual permitirá operar la Unidad a mejores condiciones que las actuales, obteniéndose una mayor producción.

Las condiciones de operación estarán limitadas por el material de acero 18 Cromo - 8 Níquel.

- Tanto los ingresos incrementales como los Costos de Operación se han efectuado por los Factores de Precios en Dólares indicados en el circular PLN 016-81.

ESTIMADO DE COSTOS. DE AMPLIACION DE LA UNIDAD DE CRAQUEO CATALITICO DE LA REFINERIA LA PAMPILLA(M US\$)

Precio CIF (Callao) del Horno de 8 MBPD y accesorios:	400.0
Tuberías y Accesorios	100.0
Obras Civiles	10.0
Instrumentación, Sist, Eléctricos, Pinturas, etc.	57.b
Erección y Montaje	19
Total Dic. de 1980	671
Inversión en 1981: €70 x 1.11	21:31 · 12

RENDIMIENTOS Y PRECIOS

Unidad de Craqueo Catalítico Fluído (FCC)

	CBZ-1 % Vol	SUPER-D EXTRA % Vol	\$/B
Gas	4.0	4.21	20.72 (1)
FILE	26.0	24.96	27.80
Gasolina+C _u	66.2	69.8n	30.87
1,00	15.4	15.36	/a. n7 (2)
HCE + AC	6.6	7.52	25, 77 (3)
Ganancia	(0.1819)	(0.2251)	
Total/Prom.	34.304	36 3 8 50	

- (1) Valorizado como Residual Nº 6 (Precio Exportación Junio 1981)
- (2) Valorizado como Diesel Nº 2 (Precio Exportación Junio 1381).
- (3) Valorizado como Residual Nº 6 (Precio Exportación Junio 1981).

INGRESOS INCREMENTALES

CBZ-i

$$1\frac{11B}{D0} \times 330 \times \frac{D0}{ANO}$$
 (34.304 - 20.72) $\frac{$}{B} = 10482.72 \text{ M M M M M}$

SUPER-D EXTRA

$$1 \frac{MB}{DO} \times 330 \times \frac{DO}{ANO}$$
 (35.539 - 20.72) $\frac{3}{B} = 45001.27 \times 32004$

COSTO DE OPERACION

$$1 \frac{MB}{DO} \times 330 \frac{LO}{A\overline{NO}} \times 2.5 \frac{\$}{B} = 825 \text{ M US} \text{ JANO}$$

CUADRO 103 - FLUJO NETO DE FONDOS DE LA AMPLIACION DE FCC A 8 MBPD (M US\$)

(USANDO EL CATALIZADOR CBZ-1)

A N O	INVERSION	INGRESOS INCREMENTALES	COSTO DE OPERACION	DEPRECIACION	UTTLIDAD BRUTA	UTILIDAD NETA	FLUUO NETO DE FONDOS
81	(744)						(744)
82		4977	916	93	3968	1984	20 77
83		5425	998	93	4333	2167	2260
84		5859	1078	93	4687	2344	2437
85		6268	1153	93	5022	2511	2604
86		6675	1228	93	5354	2677	2770
87		71 09	1308	93	5 7 08	2854	2947
88		7572	1393	93	6085	3043	3136
89		8064	1483	93	6488	3244	3337

VAN = 9186 M US\$

5.6.3 BASES ECONOMICAS PARA LAS NUEVAS UNIDADES

- 3.1 Se asume que las ampliaciones de la Unidad de Vacío a 12 MBPD y FCC a 8 MBPD, han sido reali zadas y por lo tanto no se toma en cuenta dichos gastos.
- 3.2 Las reducciones del Residual Nº 6 serán compradas en cada caso al precio de exportación de este producto, lo cual significa que La Pampilla Mantendrá su cuota de Residual Nº 6 constante.
- 3.3 El año operativo de cualquiera de las Unidades será de 330 días.
- 3.4 La Depreciación será de 10 años para cualquiera de las nuevas unidades.
- 3.5 Tanto los Ingresos Incrementales como los Costos de Operación han sido afectados por los Factores de Inflación de precios en dólares in dicados en el circular PLN 016-81.
- 3.6 Los costos de Inversión estimados tienen como base el precio FOB de las siguientes unidades (Dic. 1980)

Unidad de Vacío de 33 MBPD 14,700 M US\$
Unidad de FCC de 18 MBPD y
Recuperación de Gases 37,600 M US\$
Unidad de Visbreaking de 16 MBPD 9,200 M US\$

3.7 Los Ingresos Incrementales y Costos de Operación se calcularon para el año 1981 y fueron proyectados con los Indicadores Económicos. Como resultado de este Análisis Económico a los Esquemas de Ampliación propuestos; el esquema más ren table es el Caso 3-C que consta:

Una Unidad de Vacío de 33 MBPD Una Unidad de FCC de 18 MBPD Una Unidad de Visbreaking de 18 MBPD.

La Evaluación de cada uno de los esquemas se ha hecho suponiendo un Financiamiento Externo y es por e so que el proyecto de ampliación se ha evaluado financieramente, es decir se incluye la Amortización y los Intereses en el Flujo Neto de Fondos, que está preparado en dólares.

PREPARACION DEL FLUJO DE FONDOS NETO

El Flujo Neto de Fondos (FNF) se obtiene para cada año de vida del proyecto según la siguiente relación:

$$FFN = (I - C - D - i) - a (I - C - D - i) + D - A$$

donde:

I = Ingresos Incrementales

C = Costos de Operación

D = Depreciación

i = Intereses

a = Tasa de Impuestos (0.55)

A = Amortización.

El Valor Actual Neto (VAN) del Proyecto se obtendrá sumando los resultados anuales que se obtengan de multiplicar cada uno de los Flujos Netos de Fondo de cada año por sus correspondientes Factores de Descuento.

Año	Factor de Descuento
1982	1.0000
1983	0.8334
1984	0.7002
1985	0.5934
1986	0.5073
1987	0.4336
1988	0.3705
1989	0.3167
1990	0.2707
1991	0.2313
1992	0.1963
1993	0.1677
1994	0.1433

CUADRO A - INDICADORES ECONOMICOS

	1982	1983	1984	1985	1986	1987	1988	1989	1990
Tipo de Cambio (Promedio Anual) (Soles/US\$)	554	677	777	868	953	1030	1111	1200	1925
Inflación Interna (% Crecimiento Anual)	40.0	30,0	20.0	20.0	15.0	15.0	15.0	15.0	12.0
Inflación Externa (% Crecimiento Anual)	11.0	9.0	8.0	7.0	6.5	6.5	6.5	6.5	6.0
Precio Petróleo y Productos (% Incremento Anual)	11.0	9.0	8.0	7.0	6.5	6.5	6.5	6.5	6.5
Precio Materiales y Suministros (% Incremento Anual)	50.2	35.6	20.1	20.6	17.5	16.0	15.7	15.9	14.6
Precio Servicios Compredos (% Incremento Anual)	51.4	36.0	24.2	20.6	17.6	16.1	15.7	16.0	14.8

CUADRO B - PRECIOS DE LOS PRODUCTOS (\$/Bb1)

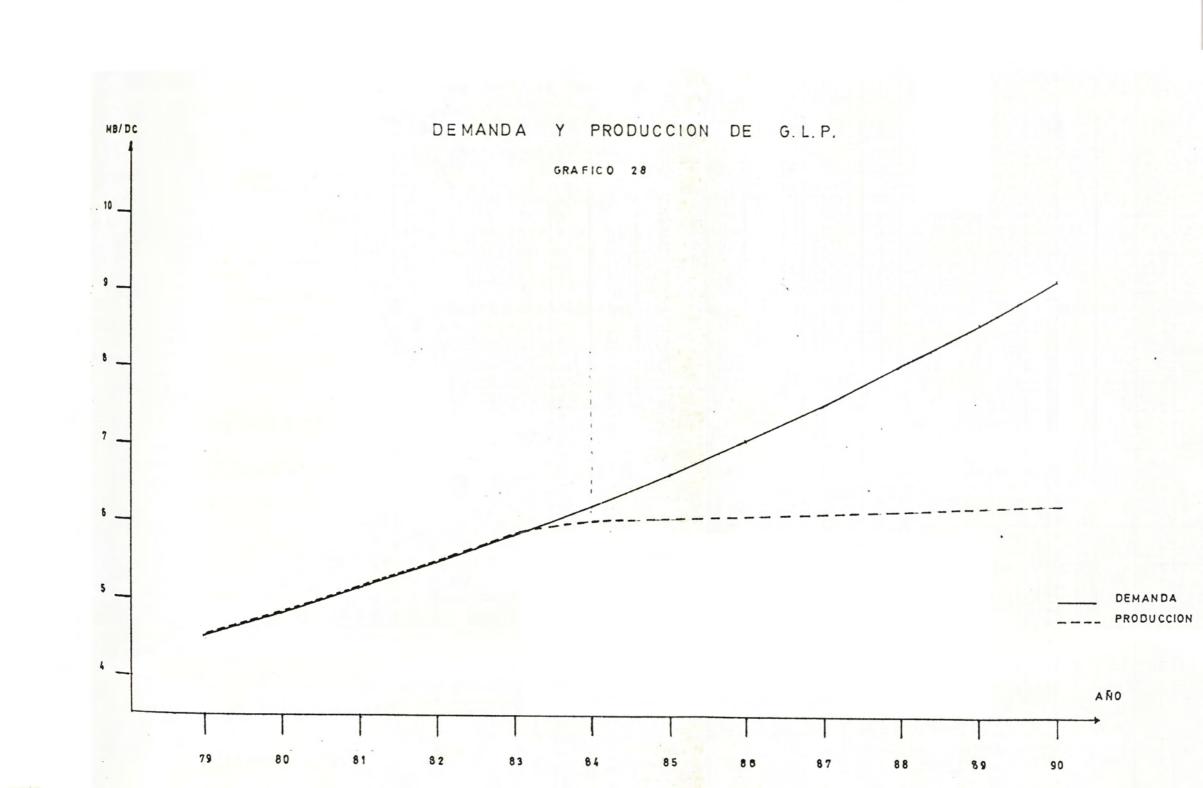
	4050	4000	4			1 9	8 1			
*	1979	1980	ENE	R O	MAR	Z 0	MA	Y 0	JUNIO	
(1) = Exportación (2) = Importación	(1)	(1)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
Crudo HCT-PP-BE	-	27.24	28.77	-	23.16	•	27.85	-	28.88	•
Crudo LCT-PP-BE	_	26.85	29.26	-	28.45	-	30.85	-	29.74	-
Crudo Selva	_	26.46	30.60	-	29.20	-	30.85	-	30.85	_
GLP	26.7	29.9	-	51.85	-	52.46	-	58.23	-	56.99
Gasolina 84	26.6	24.7	28.38	42.87	26.83	43.35	31.65	53.46	30.82	51.48
Kero/Turbo	34.2	28.74	33.87	44.88	29.85	45.90	56.76	31.15	55.44	
Diesel	33.9	26.38	30 .7 6	42.33	27.88	42.84	29.43	52.80	29.07	54 .7 8
Residual	16.8	17.90	23.01	33.66	25.22	34.17	22.34	39.60	20.72	38.28

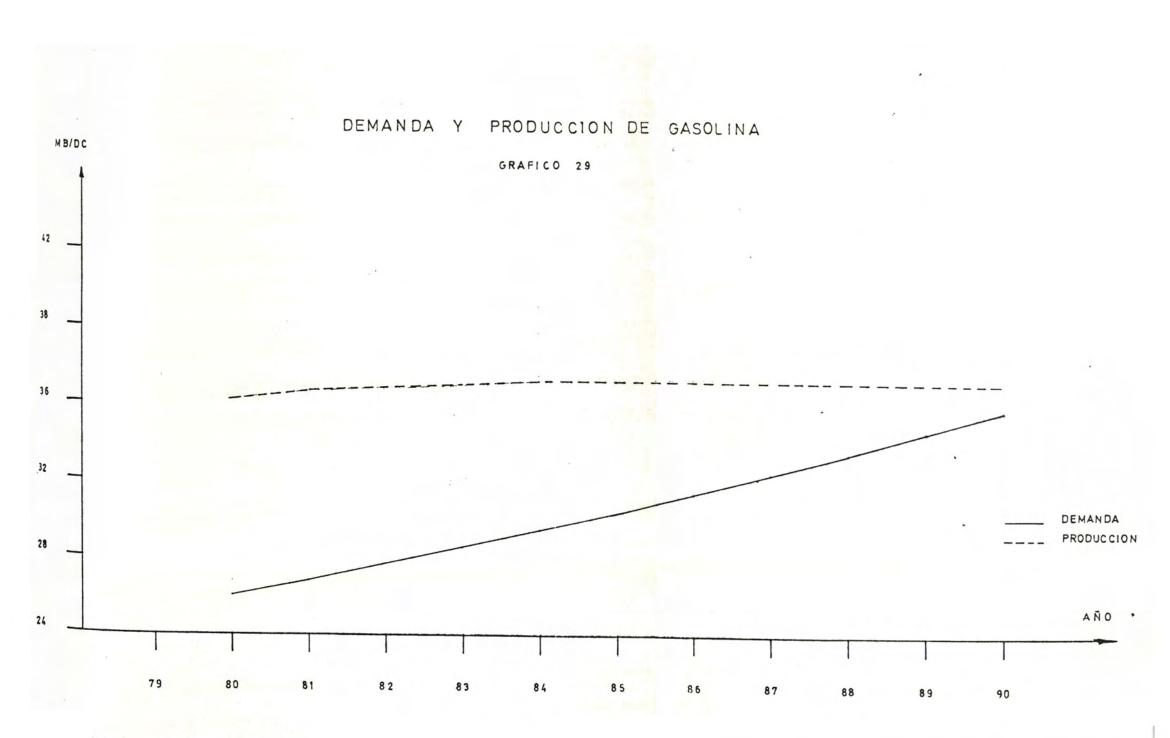
TASA DE CAMBIO PROMEDIO:

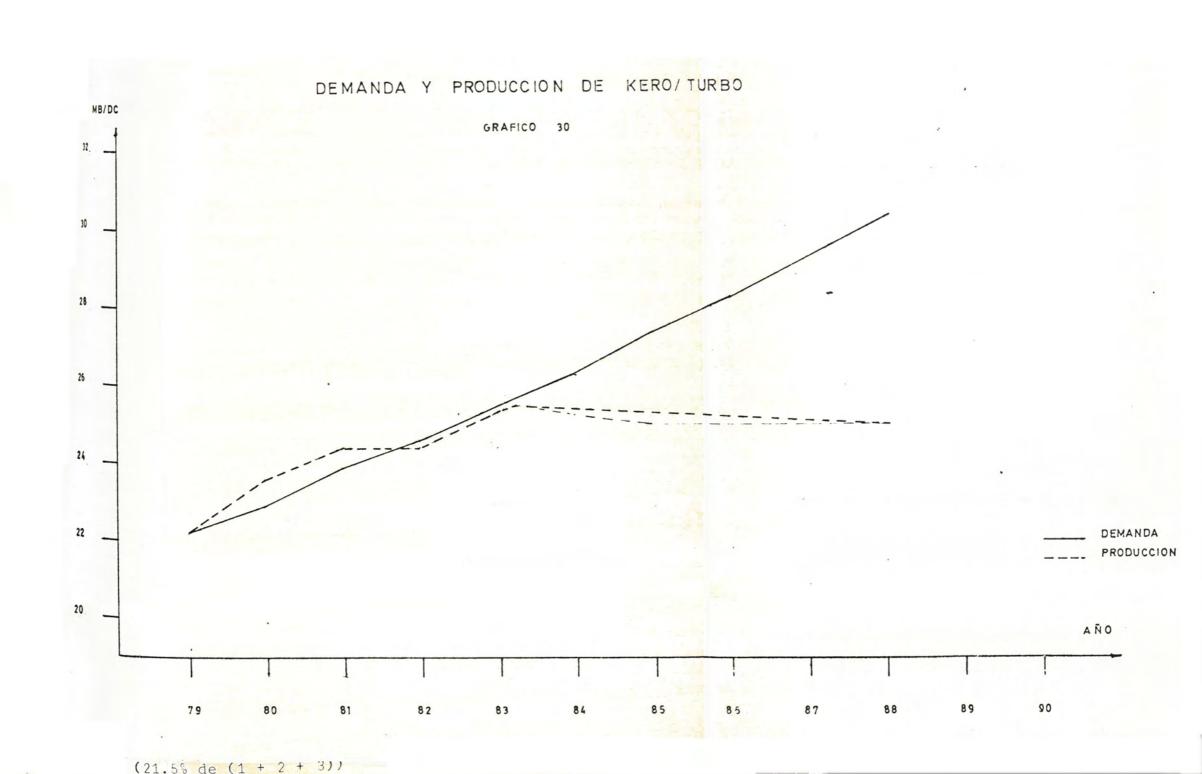
Año 1979: 222.9 \$%./US\$
Año 1980: 288.4 \$%./US\$
Año 1981: 374.8 \$%./US\$

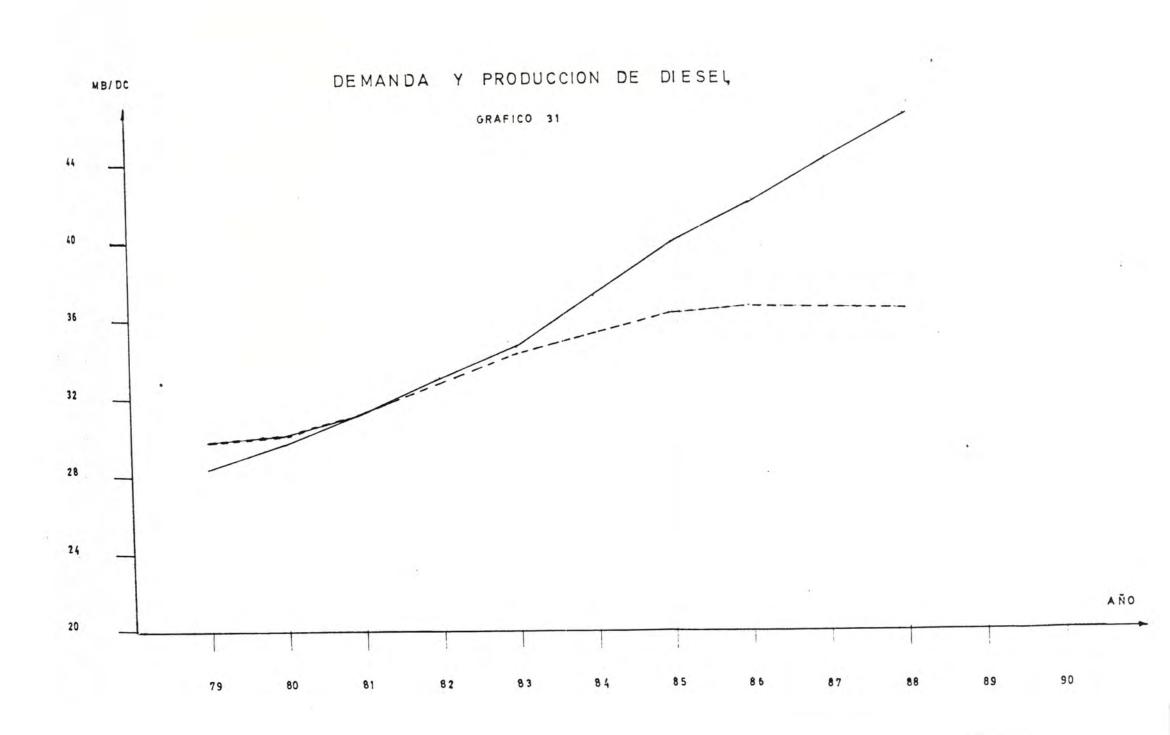
CUADRO C - COSTOS OPERATIVOS REFINERIA LA PAMPILLA

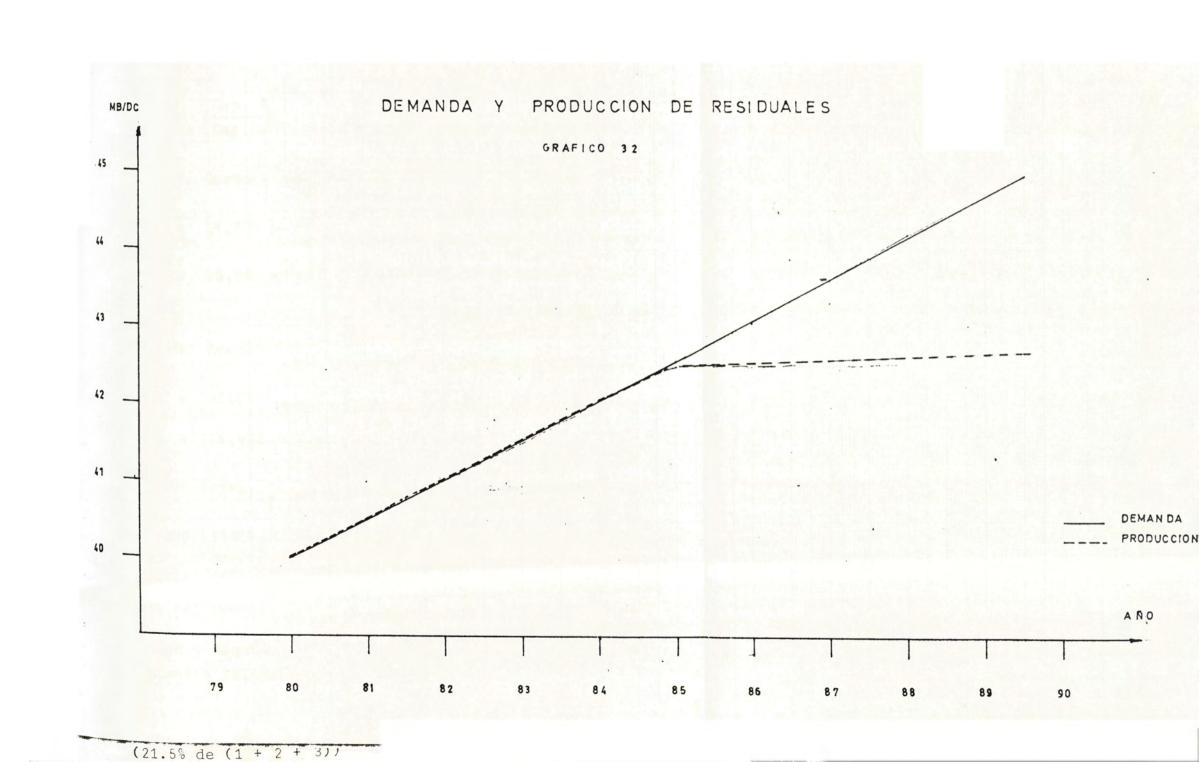
	1977 S/./Bbl	1 9	7 8	1 9	7 9	1 9	8 0	1981 (*)	
		S/./Bbl	US\$/Bbl	S/./Bbl	US\$/Bbl	S/./Bbl	US\$/Bb1	S/./Bbl	US\$/Bb1
Destilación Primaria I	19.6	41.0	0.27	44.58	0.20	81.32	0.282	106.71	0.285
Destilación Primaria II	27.24	35.68	0.23	46.80	0.21	67.77	0.235	85.22	0.227
Destilación al Vacío	20.22	39.60	0.25	52.74	0.24	73.25	0.254	105.99	0.283
Craqueo Catalítico y R.G.	73.38	171.76	1.10	243.35	1.55	403.72	1.400	566.44	1.512
Reformación Catalítica	121.99	366.39	2.35	343.82	1.53	605.68	2.100	960.25	2.562


^(*) Hasta el mes de Junio.


CUADRO D - COSTOS UNITARIOS DE LOS PRODUCTOS REFINADOS


PRODUCTO	1 9	7 9	1 . 9	8 O	1 9	8 1
	S/./Bb1	US\$/Bbl	S/./Bb1	US\$/Bbl	S/./Bbl	US\$/Bbl
Destilación Primar	ia I					
Gasolina/Nafta	122.38	0.549	235,90	0.818	281.88	0.752
Kero/Turbo	74.01	0.332	144.76	0.502	166.56	0.444
Diesel/AGO	88.05	0.395	150.24	0.521	162.09	0.433
Crudo Reducido	22.96	0.103	65.18	0.226	53.44	0.143
Pestilación Primar	ia II					
Propano	161.16	0.723	242.52	0.841	267.21	0.713
Gasolina	106.77	0.479	151.68	0.526	196.81	0.525
Kero/Turbo	75.34	0.338	97.47	0.338	130.04	0.347
Diesel/AGO	51.04	0.229	72.09	0.250	88.55	0.236
Crudo Reducido	34.10	0.153	45.85	0.159	52.73	0.141
Destilación al Vac	ío					
Gasóleos L. y P.	117.70	0.528	181.38	0.629	248.92	0.664
Residual	39.23	0.176	76.13	0.264	69.87	0.186
Desulf-Reformación Catalítica						
Propano	154.0	0.691	456.78	1.584	488.62	1.304
Nafta Reformada	563.0	2.526	921.34	3.195	1452.12	3.875
Craqueo Catalítico						
GLP	350.84	1.574	534.64	1.854	708.6E	1.991
Butano/Gasol FCC	342.60	1.537	540.69	1,875	678.54	1.411
Cíclicos/A. Clar.	158.93	0.713	284.62	0.987	337 . 40). Ji 183


CUADRO E - COSTOS DE SERVICIOS INDUSTRIALES


1 9 7 8		1979		1980		1 9 8 1		
S/./TM	US\$/TM	S/./TM	US\$/TM	S/./TM	US\$/TM	S%./TM	US\$/TM	
15.14	0.097	19.02	0.085	23.15	0.08	39.86	0.104	
66.08	0.425	80.80	0.360	110.09	0.382	181.0	0.483	
252.50	1.624	450.70	2.010	609.33	2.113	880.54	2.351	
843.66	5.426	1416.94	6.318	1406.94	4.879	1740.01	4.643	
sy. /kw	US\$/KW	s/./kw	US\$/KW	S/./KW	US\$/KW	S/./W	US\$/KW	
95.32	0.61	139.78	0.63	246.5	0.85	432.16	1.13	
	S/./TM 15.14 66.08 252.50 843.66 S/./KW	S/./TM US\$/TM 15.14 0.097 66.08 0.425 252.50 1.624 843.66 5.426 S/./KW US\$/KW	S/./TM US\$/TM S/./TM 15.14 0.097 19.02 66.08 0.425 80.80 252.50 1.624 450.70 843.66 5.426 1416.04 S/./KW US\$/KW S/./KW	S/./TM US\$/TM S/./TM US\$/TM 15.14 0.097 19.02 0.085 66.08 0.425 80.80 0.360 252.50 1.624 450.70 2.010 843.66 5.426 1416.94 6.318 S/./kW US\$/kW S/./kW US\$/kW	S/./TM US\$/TM S/./TM US\$/TM S/./TM 15.14 0.097 19.02 0.085 23.15 66.08 0.425 80.80 0.360 110.09 252.50 1.624 450.70 2.010 609.33 843.66 5.426 1416.94 6.318 1406.94 S/./KW US\$/KW S/./KW US\$/KW S/./KW	S/./TM US\$/TM S/./TM US\$/TM S/./TM US\$/TM 15.14 0.097 19.02 0.085 23.15 0.08 66.08 0.425 80.80 0.360 110.09 0.382 252.50 1.624 450.70 2.010 609.33 2.113 843.66 5.426 1416.04 6.318 1406.94 4.879 S/./kW US\$/kW S/./kW US\$/kW S/./kW US\$/kW	S/./TM US\$/TM S/./TM US\$/TM S/./TM US\$/TM S/./TM 15.14 0.097 19.02 0.085 23.15 0.08 39.86 66.08 0.425 80.80 0.360 110.09 0.382 181.0 252.50 1.624 450.70 2.010 609.33 2.113 880.54 843.66 5.426 1416.94 6.318 1406.94 4.879 1740.01 S/./kW US\$/kW S/./kW S/./kW S/./kW S/./kW S/./kW	

CASO 1-A

Instalación de Una Nueva Unidad de Vacío de 20 MBPD Instalación de una Nueva Unidad de FCC de 10 MBPD

Cálculo del Precio FOB de la Unidad de Vacío.

Costo 1 =
$$(\frac{\text{Cap. 1}}{\text{Cap. 2}})$$
Costo 2 = $(\frac{\text{Cap. 2}}{\text{Cap. 2}})$
Costo 2 = $(\frac{\text{Cap. 2}}{\text{Cap. 1}})^{0.6}$
= 14,700 x $(\frac{20}{33})^{0.6}$

= 10,000 M US\$

Cálculo del Precio FOB de la Unidad de FCC

Costo 2 = 37,600
$$\left(\frac{10}{18}\right)^{0.6}$$

= 26,430 M. US\$

Precio FOB Total = 36,430 M US\$ (1989)

Precio FOB (1982) = 36,430 x 1.22 = 44,445 M USS

Cálculo del Precio CIF

1) Equipo y Maquinaria	44,445
2) Repuestos (6.5% de 1)	5,083
3) Embalaje + Flete + Segueo (15% de (1 + 2))	7,109
4) Derecho de Aduana (21.5% de (1 + 2 + 3))	11,704
Precio CIF	66,134

Estimación de la Inversión Total	N US\$
Costos Directos (C.D.)	
Equipo y Maquinaria	f6 , 138
Tub ería s y Accesorios	7,276
Obras Civiles	×, 113
Instrumentación. Sistemas Diéctricos, Pinturas, etc.	4,360
Erección y Montaje	11,905
Total Costos Lirectos	33,057
Costos Indirectos (C.T.)	
Servicios, Ingeniería y Supervisión (7% C.D.)	6,510
Total (C.D. + C.I.)	99,571
<pre>Gastos Pre-Operativos y Administrativos (2% Total (C.D. + C.I.))</pre>	1,392
Contingencias (15% Total (C.D. + C.I.))	14,933
Capital de Trabajo (1% Total (C.D. + C.I.))	346
Costo de la Inversión Total	117,49% M dS\$

CUADRO 105 - CALCULO DE LOS INGUESOS INCREMENTALOS. (1461)

PRODUCTO	RENDI CASO 1-A MBPD	MIENTUS CASO BASE 1 118PD	· PITERENCIA MBPD	#/B	(AMANCIA (PERDITA) M US\$/AÑO
Gas	1.288	0.835	0.453	20.8	3,110
GLP	3,997	2.074	1.923	25.7	16,944
Butano	1.665	0.740	0.925	31.7	9,677
Gasolina	26.975	20.388	6.587	1 1	68,907
Turbe	6.714	6.714	×	57.6	44
Kerosene	7.766	7.766	-	12.5	×
Diesel	28.641	23.963	4.478	30. i	46,46.7
Residual	26.618	38.763	(12.151)		(·····································
Diluyente	2.862	<u></u>	(2.8EZ)	30.1	129,400
Ingreso Incremental Total					62,1*1

Costos de Operación (1981)

Unidad de Vacío

$$20 \frac{MB}{DO} \times 330 \frac{EO}{ADO} \times 0.287 \frac{$}{B} = 1,695$$

Unidad de fil.

14.
$$\frac{Mb}{100}$$
 2 150 $\frac{LO}{ANO}$ > 2.5 $\frac{$}{B}$ = 8,250

Lusto de Operación Total = 10,145 M us)

CUADRO 106 - FLUJO DE FONDOS NETO - CASO 1-A - (M US\$)

AÑO	(INVERSION) DEUDA	INGRESOS INCREMENTALES	COSTO DE OPERACION	DEPRECIACION	AMORTIZACION	IMERESES	UTILIDAD BRUTA	UTILIDAD NETA	FLUJO DE FONDOS NETO
82	(117,495)								
83	117,495					13,806			(13,806)
84	93,996	43 , 775	13,189	14,687	23,499	13,806	2,093	942	(7,870)
85	70,497	46,840	14,113	14,687	23,499	11,045	6,995	3,148	(5,664)
86	46,998	49,885	15,031	14,687	23,499	8,284	11,883	5,347	(3,465)
87	23,499	53,127	16,008	14,687	23,499	5, 523	16,909	7,609	(1,203)
88		56,581	17,048	14,687	23,499	2,762	22,384	9,938	1,126
89		60,258	18,156	14,687			27,412	12,335	27,022
90		63,874	19,246	14,687			29,941	13,473	28,160
91		67,706	20,400	14,687			32,619	14,679	29,366
92		71,768	21,624	14,687			35,457	15,956	30,643
93		76,074	22,922	14,687			38,465	17,309	31,996
94		80,639	24,297	14,687			41,655	18,745	33,432

VAN = 16,905 M US\$

CASO 1-B

Instalación	de	una	Nueva	Unic	dad	dе	Vacío	de	20	MBPI	ט
Instalación	de	una	Nueva	Unio	iad	·le	FCC	de	11	MBPI)
Instalación	de	una	Unidad	d de	Vis	bre	aking	de	12	,580	ВРГ

Cálculo del Precio FOB	M US\$
Unidad de Vacío de 20 MBPD Unidad de FCC de 11 MBPD	10,000
Costo 2 = Costo 1 $\left(\frac{\text{Cap}}{\text{Cap}}\frac{2}{1}\right)^{0.6}$	
$= 37,600 (\frac{11}{18})^{1.6} =$	28,000
Unidad de Visbreaking de 12,580 BPD	
Costo 2 = Costo 1 $\left(\frac{\text{Cap}}{\text{Cap}}, \frac{2}{1}\right)^{0.6}$	
$= 9,200 \left(\frac{12,580}{16,000} \right)^{0.8} =$	7,965
Costo Total FOB (1980)	45,965
Costo FOB (1982) = $45,965 \times 1.22$ =	56,078
Cálculo del Precio CIF	
1) Equipo y Maquinaria	55,078
2) Repuestos (6.5% de 1)	3,64%
3) Embalaje + flete + Seguro (15% de (1 + 2))	8,959
4) Derecho de Aduana (21.5% de (1 + 2 + 3))	14,757
Precio Total CIF (1982)	Se in the second

Estimación de la Inversión Total

Costos Directos (C.D.)	M US\$
Equipo y Maquinaria	83,449
Tuberías y Accesorios	9,180
Obras Civiles	3,505
Instrumentación, Gistemas Eléctricos Pinturas, etc.	F, 259
Erección y Montaje	15,271
Total Costos Directos	11/,566

Costos Indirectos (C.I.)	
Servicios, Ingeniería y Supervisión (7% C.D.)	8,237
Total (C.D. + C.T.)	125,901
<pre>Gastos Preoperativos y Administrativos (2% Total (C.D. + C.I.))</pre>	2,518
<pre>Contingencias (15% total (C.D. + C.I.))</pre>	18,885
Capital de Trabajo (1% Total (C.D. + C.I.))	1,259
Costo de la Inversión fotal	143,562 M US\$

CUADRO 107	CALCULO	DE I	LOS	TNURESOR	1 NC REMENTALES	([.].)
------------	---------	------	-----	----------	-----------------	--------

PRODUCTO	RENDIM CASO 1-B MBPD	IENTOS CASO BASE MEPD	ITFERENCIA FBPD	PRECTO \$7P	GANANCIA (PEPDILA) M IS\$ZAÑO
Gas	1.987	0.835	1.152	211.4	7,908
GLP	4.189	2.074	2.115	21 , 7	13.636
Rutano	1.757	0.740	1.017	31.7	10,639
Gasolina	28.830	20,388	8,442	11.4	88, 412
Turbo	6.714	6.714	-	17.	
Kerosene	7.766	7.766	=	32.	5
Diesel	30.977	23.963	7.014		221- 21-35
Residual	23.101	38.769	(15.669)	20.7	1 a 6, 500
Diluyente	_	_	(14)	-	-
I.I. Total					

Costos de Operación (1981)

Unidad de Vacío

20
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.287 $\frac{\$}{B}$ = 1,895 M US\$

Unidad de FCC

11
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 2.5 $\frac{\$}{B}$ = 9,075 M US\$

Unidad de Visbreaking (*)

12.58
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.150 $\frac{\$}{B}$ = 623 M US\$

Costo de Operación Total = 11,593 M US\$

(*) La Unidad de Visbreaking produce vapor de alta, lo cual disminuye su Costo de Operación.

CUADRO 108 - FLUJO DE FONDOS NETO - CASO 1-B - (M US\$)

AÑO	(INVERSION) DEUDA	INGRESOS INCREMENTALES	COSTOS DE OPERACION	DEPRECIACION	AMORTIZACION	INTERESES	UTILIDAD BRUTA	UIILIDAD NETA	FLUIO DE FONDOS NETO
82	(148,565)								
83	148,565	E(17,456			(17,456)
84	118,852	123,459	15,071	18,571	29,713	17,456	72,361	32,563	21,421
85	89,139	132,100	16,126	18,571	29,713	13,847	83,556	37,600	26,458
86	59,426	140,687	17,174	18,571	29,713	10,474	99,468	44,761	33,619
8 7	29,713	149,831	18,290	18,571	29,713	6,983	105,987	47,694	36,552
88		159,570	19,479	18,571	29,713	3,491	118,029	53,113	41,971
89		169,942	20,745	18,571			130,626	58,782	77,353
90		180,139	21,990	18,571			139,578	62,810	81,381
91		190,947	23,309	18,571			149,068	67,081	85,652
92		202,404	24,708	18,571			159,126	71,607	90,178
93		214,548	26,190	18,571			169,788	76,405	94,976
94		227,421	27,762	18,571			181,088	81,490	100,061

VAN = 178,914 M US\$

<u>CASO 2-A</u>

Instalación de una Nueva Unidad de Vacío de 27 MB Instalación de una Nueva Unidad de FCC de 18 NB	
Cálculo del Precio FOB	१ शहर
Unidad de Vacio de 27 MPPD	
Costo 2 - Posto 1 (Cap. 2) 11.6	
$= 10,760 \left(\frac{27}{33}\right)^{0.6} =$	11,975
Unidad de FCC de 13 MBPD	37,600
Costo Total FOB (Dic. 1989)	40,475
Costo Total FOB (1982) = 49,575 x 1.22 =	611,482
Cálculo del Frecio CIT	M ISS
1) Equipo y Maquinaria	60,482
2) Repuestos (6.5% de 1)	$*$, $\cdot 31$
3) Embalaje + Flete + Seguro (15% de (1 + 2))	9,1152
4) Derecho de Aduana (21.5% du (1 + 2 + 3))	15,20
fotal Precio CIF (1982)	ar, arn
Estimación de la Inversión Total	
Costos Directos (C.D.)	11 143
Equipo y Maquinaria	60,000
Tuberías y Accesorios	4, 107
Obras Civiles	3,7%
Instrumentación, Sistemas Eléctricos, Pinturas, etc.	·
Erección y Montaje	Togar.
Total Costos Directos	1

Costos Indirectos	M US\$
Se rvici os, Ingeniería y Supervisión (7% C.D.)	8,883
Total (C.D. + C.I.)	135,793
Gastos Pre-Operativos y Administrativos (2% Total (C.E. + G.I.))	2,716
Contingencias (15% Total (C.D. F.C.T.))	20,368
Capital de Trabajo (1% Total (C.D. + 5.1.))	1,350
Costo de la Inversión Total	160,225

CUADRO 109 - MALEULE DE LOS INGPESOS INCHEMENTALES (1781)

PRODUCTO	CASO 2-A (MBPP)	CASO BASE (MBPD)	DIFERENCIA (MBPD)	PRLCIO	CANANCTAS (PERDITAS) US M\$/ANO
:\as	1.647	U.835	0.812	30.8	5,574
GLP	5.607	2.074	3.534	26.7	31,.129
Butano	2,396	0.740	1.656	31.7	17,324
Gasolina	31.192	20.388	11.804	31.7	123,48%
l'urt:0	6.714	6,714	-	32.5	w
kerosene	7.760	7.766	=	35.6	(×
Diesel	31.03	23.963	7.07	31: . 1	10,256
Residual	19.222	38.769	(20.547)	A. 7	(140,257)
Ciluyente	11.748	¥	(4.793)	3:2.1	(47,162)
I.I. Total					10,241

Costos de Operación (1931)

Unidad de Vacío de 27 MBPD

27
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.287 $\frac{\$}{B}$ = 2.55 M 11

Unidad de FCC de 18 MBPD

18
$$\frac{MB}{DO}$$
 × 330 $\frac{DO}{ANO}$ × 2.5 $\frac{\xi}{B}$ = 14,850 H (1).

Costo de Operación Total = 17,408 M US

CUADRO 110 - FLUJO DE FONDOS NETO - CASO 2-A - (M US\$)

AÑO	(INVERSION) DEUDA	INGRESOS INCREMENTALES	COSTO DE OPERACION	DEPRECIACION	AMORTIZACION	INTERESES	UTILIDAD BRUTA	UTILIDAD NETA	FLUJO DE FONDOS NETO
82	(160,225)								
83	160,225					18,827			(18,827)
84	128,180	78,320	22,630	20,028	32,045	18,827	16,835	7,576	(4,441)
85	96,135	83,802	24,214	20,028	32,045	15,061	24,499	11,025	(992)
86	64,090	89,249	25,788	20,028	32,045	11,296	32,137	14,462	2,445
87	32,045	95,051	27,464	20,028	32,045	7,531	40,028	18,013	5,996
88		101,229	29,249	20,028	32,045	3,765	48,187	21,684	9,667
89		107,809	31,151	20,028			56,630	25,484	45,512
90		114,278	33,020	20,028			61,230	27,554	47,582
91		121,135	35,002	20,028			66,105	29,747	40,775
92		128,402	37,101	20,028			71,273	32,073	52 , 101
93		136,107	39,328	20,028			76,751	34,538	54,566
94		144,273	41,687	20,028			82,558	37,151	57 , 179

VAN = 54,413 M US\$

CASO 2-B

Instalación de una Nueva Unidad de Vacío de 27 Instalación de una Nueva Unidad de TCC de 18 Instalación de una Unidad de Vishreaking de 16	MBFD
Cálculo del Precio FOB	M US\$
Unidad de Vario de 25 MBPD	
$(\operatorname{osto} 2 = \operatorname{Costo} 1 \left(\frac{\operatorname{Cap} 2}{\operatorname{Cap} 1} \right)^{0.5}$	
$= 14,700 \left(\frac{27}{33}\right)^{0.6} =$	[1,%75
Unidad de FCC de 18 MBPD	37,600
Unidad de Visbreaking de 16 MBPD	9,200
Costo Total FOE (Dic. 1980)	58 , 775
Costo Total FOB (1982) = $58,775 \times 1.22$ =	71,706
Cálculo del Precio CIF	и ИЗ\$
1) Equipo y Maquinaria	71,706
2) Repuestos (6.5% de 1)	4,661
3) Embalaje + Flete + Seguro (15% de (1 + 2)	14,455
4) Derecho de Aduana (21.5% de (1 + 2 + 3))	18,892
Total Precio CIT (1982)	7.14
Estimación de la Inversión Total	
Costos Directos (C.D.)	12
Equipo y Maquinaria	170,
Tuberías y Accesorios	12,767
Obras Civiles Instrumentación, Sistemas Eléctrices,	_ ii 9
Pinturas, etc.	· d, · ·
Erección y Montaje	
Total Costos Directos	

Costos Indirectos (C.I.)	M US\$
Servicios Ingeniería y Supervisión (7% C.D.)	10,785
Total (C.D. + C.I.)	164,850
<pre>Gastos Pre-Operativos y Administrativos (2% Total (C.D. + C.I.))</pre>	3,298
<pre>Contingencias (15% Total (C.D. + C.I.))</pre>	24,728
Capital de Trabajo (1% Total (C.D. + C.I.))	1,649
Costo de la Inversión Total	194,525

CUADRO 111 - CALCULO DE LOS INGRESOS INCREMENTALES (1)81)

PRODUCTO	RENDIM CASO 2-B MBPD	IIENTOS CASO BASE MBPD	DIFERENCIA MBPD	PRECIO US\$/B	GANANCIA (PERDIDA) M US\$/AÑO
Gas	2.479	0.835	1.644	20.8	11,285
GLP	5.607	2.074	3.533	26.7	31,129
Butano	2.396	0.740	1.656	31.7	17,323
Gasolina	33.712	20.388	13.324	31.7	139,382
Turbo	6.714	6.714	₩)	32.5	
Kerosene	7.766	7 .7 66	*	32.5	-
Diesel	33.788	23.963	3.825	30.1	95,592
Residuales	13.646	38.769	(24.120)	20.7	(163,764)
Diluyente	_	-	-		-
I.I. Total					122,947

Costos de Operación Estimados M US\$

Unidad de Vacío de 27 MBPD

27
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.287 $\frac{\$}{B}$ = 2,557

Unidad de FCC de 18 MBPD

18
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 2.5 $\frac{\$}{B}$ = 14,850

Unidad de Visbreaking de 16 MBPD

16
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.150 $\frac{\$}{B}$ = 792

Costo de Operación Total 18,199 i US\$

CUADRO 112 - FLUJO DE FONDOS NETO CASO 2-B - (M US\$)

FLUJO DE UIILIDAD UTILIDAD COSTO DE (INVERSION) **INGRESOS** DEPRECIACION **AMORTIZACION** INTERESES ANO **BRUTA** NETA FONDOS NETO INCREMENTALES **OPERACION** DEUDA 82 (194,525) 83 194,525 22,857 (22,857)30,184 84 155,620 170,531 23,860 24,315 38,905 22,857 99,499 44,774 85 116,715 182,468 25,530 24,315 38,905 18,286 114,337 51,451 36,861 86 77,810 194,328 27,189 24,315 3H,905 13,714 129,110 58,099 43,509 87 38,905 206,959 28,956 24,315 38,905 65,045 9,143 144,545 50,455 88 220,412 30,838 24,315 38,905 4,572 160,687 72,309 57,719 89 234,738 32,843 24,315 177,580 79,911 104,226 90 248,822 34,814 24,315 189,693 85,361 109,676 91 263,751 36,902 24,315 202,534 91,140 115,455 92 279,576 39,116 24,315 216,145 97,265 121,580 93 296,351 41,464 24,315 230,572 103,757 128,072 94 314,132 43,951 24,315 245,866 110,639 134,954

VAN = 243,380 M US\$

CASO 3-A

Instalación de una Nueva Unidad de Vacío de 33 MBPD Instalación de una Nueva Unidad de FCC de 18 MBPD

Cálculo del Precio FOB	M US\$
Unidad de Vacío de 37 MBPD Unidad de FCC de 18 MBPD	14,700 37,600
Costo Total FOB (Dic. 1980) Costo Total FOB (1982) = 52,300 x 1.22 =	52,300 63,806
Cálculo del Precio CIF	
1) Equipo y Maquinaria 2) Repuestos (6.5% de 1)	63,806 4,148
3) Embalaje + Flete + Seguro (15% de (1 + 2))	10,193
4) Derecho de Aduana (21.5% de (1 + 2 + 3))	16,802
Total Precio CIF (1982)	94,949
Estimación de la Inversión Total	
Costos Directos (C.D.)	M US\$
Equipo y Maquinaria	94,949
Tuberías y Accesorios	10,444 3,998
Obras Civiles	,,
Instrumentación, Sistemas Eléctricos, Pinturas, etc.	7,121
Erección y Montaje	17,375
Total Costos Directos	137,878
Costos Indirectos (C.I.)	
Servicios, Ingeniería y Supervisión (7% de C.D.)	4.452
Total (C.D. + C.I.)	143,

Gastos Pre-Operativos y Administrativos	
(2% Total (C.D. + C.I.))	2,865
Contingencias (15% Total (C.D. + C.I.))	21,488
Capital de Trabajo (1% Total (C.D. + C.I.))	1,432
Costo de la Inversión Total	169,035

CUADRO 113 - CALCULO DE LOS INGRESOS INCREMENTALES (1981)

PRODUCTO	RENDIM CASO 3-A MBPD	IIENTOS CASO BASE MBPD	DIFERENCIA MBPD	PRECIO US\$/B	GANANCIA (FERDINA)
Gas	1.547	0.835	0.812	20.8	5,574
GLP	5.607	2.074	3.533	26.7	31,129
Butano	2.396	0.740	1.656	31.7	17,323
Gasolina	32.192	20.388	11.804	31.7	123,482
Turbo	6.714	6.714	-	32.5	
Kerrosene	7.766	7 .7 66	-	32.5	(
Diesel	31.924	23.963	7.961	30.1	79,077
Residuales	17.334	38.769	(21.435)	20.7	(146,422)
Diluyente	5.179	法	(5.179)	30.1	(51,443)
I.I. Total					58,720

Costos de Operación Estimados

Unidad de Vacío de 33 MBPD

33
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.287 $\frac{\$}{B}$ = 3,126

Unidad de FCC de 18 MBPD

18
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 2.5 $\frac{\$}{B}$ = 14,850

Costo de Operación Total = 17,976

CUADRO 114 - FLUJO NETC DE FONDOS

CASO 3-A (M US\$)

AÑO	(INVERSION) DEUDA	INGRESOS INCREMENTALES	COSTC DE OPERACION	DEPRECIACION	AMORTIZACION	INTERESES	UTILIDAD BRUTA	UTILIDAD NETA	FLUJO DE FONDOS NETO
82	(169,035)								
83	169,035					19,862			(19,862)
84	135,228	7 6,336	23,369	21,130	33,507	19,862	11,975	5,389	(7,288)
85	101,421	31,68 0	25,005	21,130	33,807	15,889	19,656	8,845	(3,832)
86	67,614	86,989	26,630	21,130	33,807	11,917	27,312	12,290	(387)
87	33,807	92,643	28,361	21,130	33,807	7,945	35,207	15,843	3,166
88		98,665	30,205	21,130	33,807	3,972	43,358	19,511	6,834
89		105,079	32,168	21,130			51,782	23,302	44,432
90		111,384	34,098	21,130			56,156	25,270	46,400
91		118,067	36,144	21,130			60,794	27,357	48 , 487
92		125,151	33,313	21,130			65,708	29,569	50,699
93		132,660	40,611	21,130			70,920	31,914	53,044
94		140,620	43,048	21,130			76,442	34,399	55,529

VAN = 45,429 M US\$

CASO 3-B

Instalación de una Nueva Unidad de Vasio de 33 MBPD Instalación de una Nueva Unidad de FCC de 18 MBPD Instalación de una Unidad de Visbreaking de 16 MBPD

Cálculo del Premio FOB	M USS
Unidad de Vacío de 33 MbPD	14,700
Unidad de FOC de 18 APPD	37,000
Unidad de Vishreaking de 16 MBPD	9,200
Costo Total FOR (Dic. 1986)	g1,500
Costo Total FOB (1982) = 61,586 \times 1.22 $^{-1}$	75,030
Cálculo del Precio CIF	
1) Equipo y Maquinaria	75,030
2) Repuestos (6.5% de 1)	4,877
3) Embalaje + Flete + Seguro (15% de (1 + 2))	11,986
4) Derecho de Aduana (21.5% de (1 + 2 + 3))	19,757
Total Precio CIF (1982)	111,650
Estimación de la Enversión Total	
Costos Directos (C.D.)	M US?
	121,650
Equipo y Maquinaria	11,282
Tuberías y Accesorios	·· , 096
Obras Civiles	
Instrumentación, Sistemas Eléctricos, Pinturas, etc.	g, *1.
Erección y Montaje	7.1,52
Total Costos Directos	107,

Costos Indirectos (C.I.)	
Servicios, Ingeniería y Supervisión (7% C.D.)	10,880
Total (C.D. + C.I.)	166,308
Gastos Pre-Operativos y Administrativos (2% Total (C.D. + C.I.))	3,326
Contingencias (15% Total (C.J. + C.I.))	24, 1144
Capital de Trabajo (1% Total (C.D. + (I.))	1,660
Costo de la Inversión Potal	191 , 2011

CUADRO 115 - CALCULO DE LOS INGRESOS INCREMENTALES

PRODUCTO	RENDIM CASO 3-B MBPD	TEMIOS CASO BASE MBPD	DIFERENCIA MBPD	PRECTO TD\$/B	GANANCIA (PEKDIDA) M US\$/AÑO
Gas	2.479	0.835	1.644	20.8	11,284
GLP	5.607	2.074	3.533	26.7	31,129
Butano	2.396	0.740	1.656	31.7	17,323
Gasolina	33.712	20.388	13,324	31.7	139,382
Turbo	6.714	6.714	-	32.5	-
Kerosene	7.766	7.760		1 th 1	
Diesel	34.676	23.983	10.717	8:i. T	196,412
Residual	12.758	38.769	(25,011)	261,7	(7,181)
Diluyente	-	E	2		
I.I. Total					1.1.

Costos de Operación Estimados

Unidad de Vacío de 33 MBPD

33
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.287 $\frac{\$}{B}$ = 3,126

Unidad de FCC de 18 MBPD

18
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x.2.5 $\frac{\$}{B}$ = 14,850

Unidad de Visbroaking de 16 MBPD

16
$$\frac{MB}{DO}$$
 x 330 $\frac{100}{ANO}$ x 0.150 $\frac{5}{B}$ = 732

Costo de Operación Potal = 18,768 M USC

CUADRO 116 - FLUJO DE FONDOS NETO CASO 3-3 - (M US\$)

AÑO	(INVERSION) MONTO	INGRESOS INCREMENTALES	COSTOS DE OPERACION	DEPRECIACION	AMORTICACION	INTERESES	UTILIDAD BRUTA	UTILIDAD NETA	FLUJO DE FONDOS NETO
82	(196,240)								
83	195,240					23,058			(23,058)
84	156,992	166,204	24,399	24,844	39,248	23,058	93,903	42,256	2 7, 852
85	117,744	177,838	26,106	24,844	3 9,248	18,446	108,442	48,798	33,394
86	78,496	189,397	27,803	24,844	39,248	13,934	122,916	55,312	40,908
87	39,248	201,708	29,610	24,844	39,248	9,223	138,031	62,114	47 ,7 10
88		214,819	31,535	24,844	39,248	4,611	153,829	69,223	54,819
89		228,783	33,584	24,844			170,356	76,660	101,504
90		242,510	35,599	24,844			182,068	81,931	106,775
91		257,061	37,735	24,844			194,482	87,517	112,361
32		272,484	39,999	24,844			207,642	93,439	118,283
93		238,833	42,399	24,844			221,590	99,716	124,560
94		306,163	44,943	24,844			236,376	106,369	131,213

VAN = 231,804 M US\$

CASO 3-C

Instalación de una Nueva Unidad de Vacío de 33 MBPD Instalación de una Nueva Unidad de FCC de 18 MBPD Instalación de una Unidad de Visbreaking de 18 MBPD

Cálculo del Precio FOB	M US\$
Unidad de Vacío de 33 MBPD	14,700
Unidad de FCC de 18 MBPD	37,600
Unidad de Visbreaking de 18 MBPD	
Costo 2 = 9,200 $(\frac{18}{16})^{0.6}$ =	9,874
167	
Costo Total FOB (Dic. 1980)	62,174
Costo Total FOB (1982) = $62,174 \times 1.22$	75,852
Cálculo del Precio CIF	
1) Equipo y Maquinaria	75,852
2) Repuestos (6.5% de 1)	4,930
3) Embalaje + Flete + Seguro (15% de (1 + 2))	12,117
4) Derecho de Aduana (21.5% de (1 + 2 + 3))	19,973
Total Precio CIF (1982)	112,872
Estimación de la Inversión Total	
Costos Directos (C.D.)	M US
Equipo y Maquinaria	112,87 /
Tuberías y Accesorios	12,030
Obras Civiles	4,038
Instrumentación, Sistemas Eléctricos, Pinturas, etc.	8,452
Erección y Montaje	14,600
Total Costos Directos	रेंद्र रे.तस

Costos Indirectos (C.I.)

Servicios, Ingeniería y Supervisión (7% C.D.)

10,952

Total (C.D. + C.I.)	167,600
<pre>Gastos Pre-Operativos y Administrativos (2% Total (C.D. + C.T.))</pre>	3,352
Contingencias (15% Total (6.5 + 6.T.))	25,140
Capital de Trabajo (1% Total (C.D. + C.T.))	1,678
Costo de la Inversión Total M Usi	197,770

CUADRO 117 - CALCULO DE LOS INGRESOS INCREMENTALES (1981)

PRODUCTO	RENDII CASO 3-C MBPD	TIENTOS CASO BASE 1 MBPD	DIFERENCIA MBPD	PRECIO US\$/B	CANANCIA (PERDIPA) M US\$/AÑO
Cas	2.583	0.835	1.748	20.8	11,998
GLP	5.607	2.074	3.533	26.7	31,129
Butano	2.396	0.740	1.656	31.7	17,323
Gasolina	33.902	20.388	13.514	31.7	141,370
Turbo	6.714	6.714	-	32.5	-
Kerosene	7.766	7.766	=	2	-
Diesel	35.02	23,963	11.957	30.1	109,829
Residual	12.185	3 8.7 69	(2€,584)	20.7	(150 , 595)
Diluyente	-	(2)	-	브	
I.I. Total					131,452

Costos de Operación Estimados (1981)

Unidad de Vacío de 33 MBPD

33
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.287 $\frac{\$}{B}$ = 3,125

Unidad de FCC de 18 MBPD

$$18\frac{MB}{DO} \times 330 \stackrel{DO}{ANO} \times 2.50 \stackrel{\$}{B} = 14,850$$

Unidad de Visbreaking de 18 MBPD

18
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.150 $\frac{\$}{B}$ = 891

Costo de Operación Total = 18,886 M US\$

CUADRO 118 - FLUJO DE FONDOS NETO - CASO 3-C - (M US\$)

AÑO	(INVERSION) MONTO	INGRESOS INCREMENTALES	COSTOS DE OPERACION	DEPRECIACION	AMORTIZACION	INTERESES	UTTLIDAD BRUTA	UTILIDAD NETA	FLUJO DE FONDOS NETO
82	(197,770)								
83	197,770					23,238			(23,238)
84	158,216	172,729	24,552	24,722	39,554	23,238	100,217	45,098	30,266
85	118,662	184,820	26,270	24,722	39,554	18,590	115,238	51,857	37,025
86	79,108	196,833	27,977	24,722	39,554	13,943	130,191	58,586	43,754
87	39,554	209,627	29,796	24,722	39,554	9,295	145,814	65,616	50,784
88		223,252	31,732	24,722	39,554	4,647	162,151	72,968	58,136
89		237,764	33 ,7 95	24,722			179,247	80,661	105,383
90		252,030	35,882	24,722			191,426	86,142	110,864
91		267,152	37,972	24,722			204,458	92,006	116,728
92		283,181	40,250	24,722			218,209	98,453	123,175
93		300,172	42,665	24,722			232,785	104,753	129,475
94		318,182	45,225	24,722			248,235	111,706	136,428

VAN = 245,382 M US\$

CASO 4

Instalación de una Nueva Unidad de Vacío de 27 MBPD Instalación de una Nueva Unidad de FCC de 15 MBPD Instalación de una Unidad de Visbreaking de 15.45 MBPD

Cálculo del Precio FOB	M US\$
Unidad de Vacío de 27 MBPD	
Costo 2 = Costo 1 $(\frac{\text{Cap 2}}{\text{Cap 1}})^{0.6}$	
Costo 2 = 14.700 $\left(\frac{27}{33}\right)^{0.6}$ =	11,975
Unidad de FCC de 15 MBPD	
Costo 2 = 37,600 $(\frac{15}{18})^{0.6}$ =	33,704
Unidad de Visbreaking de 15,450 MBPD	
Costo 2 = 9,200 $(\frac{15.45}{16})^{0.6}$ =	9,010
Costo Total FOB (Dic. 1981)	54,689
Costo Total FOB (1982) = $54,689 \times 1.22$	66,721
Cálculo del Precio CIF	
1) Equipo y Maquinaria	66,721
2) Repuestos (6.5% de 1)	4,337
3) Embalaje + Flete + Seguro (15% de (1 + 2))	10,659
<pre>4) Derecho de Aduana (21.5% de (1 + 2 + 3))</pre>	17,569
Total Precio CIF (1982)	99,286

Estimación de la Inversión Total

Costos Directos (C.D.)	M US\$
Equipo y Maquinaria	99,286
Tuberías y Accesorios	10,921
Obras Civiles	4,170
Instrumentación, Sistemas Eléctricos, Pinturas, etc.	7,446
Erección y Montaje	18,169
Total Costos Directos	139,992
Costos Indirectos (C.I.)	
Servicios, Ingeniería y Supervisión (7% C.D.)	9,800
Total (C.D. + C.I.)	149,792
<pre>Gastos Pre-Operativos y Administrativos (2% Total (C.D. + C.I.))</pre>	2,996
<pre>Contingencias (15% Total (C.D. + C.I.))</pre>	22,469
<pre>Capital de Trabajo (1% Total (C.D. + C.I.))</pre>	1,498
Costo de la Inversión Total M USS	176,755

CUADRO 119 - CALCULO DE LOS COSTOS INCREMENTALES (1981)

PRODUCTOS	RENDIMIENTOS COS CASO 4 CASO BASE 2 MBPD MBPD		DIFERENCIA MBPD	PRECIO US\$/B	GANANCIA (PERDIDA)
Gas	2.266	0.817	1.449	20.8	9,946
GLP	5.216	2.164	3.052	26.7	26,891
Butano	1.857	0.646	1.211	31.7	12,668
Gasolina	31.104	20.158	10.946	31.7	114,506
Turbo	6.714	6.714	-	32.5	201
Kerosene	7.766	7. 766		32.5	-
Diesel	33.053	23.914	9.139	30.1	90,7/7
Residual	16.340	38.690	(22.350)	20.7	(152,673)
I.I. Total					102,115

Costos de Operación Estimados (1981)

Unidad de Vacío de 27 MBPD

27
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.287 $\frac{$}{B}$ = 2,557

Unidad de FCC de 15 MBPD

15
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 2.5 $\frac{\$}{B}$ = 12,375

Unidad de Visbreaking de 15.45 MBPD

15.45
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.15 $\frac{\$}{B}$ = 765

Costo de Operación Total = 15,697 M US\$

CUADRO 120 - FLUJO NETO DE FONDOS - CASO 4

AÑO	(INVERSION) MONTO	INCRESOS INCREMENTALES	COSTO DE OPERACION	DEPRECIACION	AMORTI ZACION	INTERESES	UITLIDAD BRUTA	UTILIDAD NETA	FLUJO NETO DE FONDOS
82	(176,755)								
83	176,755					20,767			(20,767)
84	141,404	132,750	20,406	22,094	35,351	20,767	69,483	3 1, 267	18,010
85	106,053	142,043	21,834	22,094	35,351	16,615	81,500	36,675	23,418
86	70,702	151,276	23,253	22,094	35,351	12,461	93,468	42,061	28,804
87	35,351	161,109	24,764	22,094	35,351	8,307	105,944	47,675	34,418
88		171,581	26,374	22,094	35,351	4,175	118,938	53,522	40,265
89		182,734	28,089	22,094			132,552	59,649	81,743
90		193,698	29,774	22,094			141,830	63,824	85,918
91		205,320	31,561	22,094			151,666	68,250	90,344
92		217,639	33,454	22,094			162,092	72,942	95,036
93		230,697	35,462	22,094			173,142	77,914	100,008
94		244,539	37,589	22,094			184,856	83,187	105,281

VAN = 174,212 M US\$

<u>CASO 5</u>

Instalación	de	una	Nueva	Unidad	d٠	Vacío	de	33	MBPD
Instalación	de	una	Nueva	Unidad	de	FCC	do	1 8	MBPD
Instalación	de	una	Unidad	de Vi	sbro	eaking	de	17.	. 11 MBPD

Cálculo del Precio FOB	M US\$
Unidad de Vacío de 33 MBPD	14,700
Unidad de FCC de 18 MBPD	37,6(0)
Unidad de Visbreaking de 17.91 MBPD	
Costo 2 = 9,200 $\left(\frac{17.91}{16}\right)^{0.6}$	9,844
Costo Total FOB (Dic. 1980)	62,144
Costo Total FOB (1982) = 62,144 x 1.27 =	75,816
Cálculo del Precio CIF	
1) Equipo y Maquinaria	816
2) Repuestos (6.5% de 1)	4,928
3) Embalaje + Flete + Seguro (15% de (1 + 2))	12,112
4) Derecho de Aduana (21.5% de (1 + 2 + 3))	19,960
Total Precio CIF (1982)	112,820
Estimación de la Inversión Total	
Costos Directos (C.D.)	M USS
Equipo y Maquinaria	112,820
Tuberías y Accesorios	12,410
Obras Civiles	4,738
Instrumentación, Sistemas Eléctricos, Pinturas, etc.	8,462
Erección y Montaje	20,646
Total Costos Directos	159,076

201,850

Costos Indirectos (C.I.)

Servicios, Ingeniería y Supervisión
(7% C.D.)

Total (C.D. + C.I.)

Gastos Pre-Operativos y Administrativos
(2% Total (C.D. + C.I.))

Contingencias
(15% Total (C.D. + C.I.))

Capital de Trabajo
(1% Total (C.D. + C.I.))

CUADRO 121 - CALCULO DE LOS INGRESOS INCREMENTALES (1981)

PRODUCTO	CASO 5	OIMIENTOS CASO BASE 2	DIFERENCIA MBPD	PRECIO US\$/B	(ANANCIA (PERDIDA)
	MBPD	MBPD	11010		M US\$/AÑO
Gas	2.523	0.817	1.706	20.8	11,710
GLP	5.826	2.164	3.662	26.7	32,266
Butano	2.099	0.646	1.453	31.7	15,200
Gasolina	33.233	20.158	13.075	31.7	136,778
Turbo	6.714	6 .7 14	-	32.5	=
Kerosene	7.766	7.766	-	30.5	-
Diesel	34.861	23.914	10.947	30.1	108,737
Residual	11.961	38.690	(26.725)	20.7	(182,586)
I.I. Total					122,105

Costos de Operación Estimados (1981)

Costo de la Inversión Total

Unidad de Vacío de 33 MBPD

33
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.287 $\frac{\$}{B}$ = 3,125

Unidad de FCC de 18 MBPD

18
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 2.50 $\frac{\$}{B}$ = 14,850

Unidad de Visbreaking de 17.91 MBFD

17.91
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.150 $\frac{$}{B}$ = 887

Costo de Operación Total = 18,862

CUADRO 122 - FLUJO NETO DE FONDOS - CASO 5 - (M US\$)

AÑO	(INVERSION) MONTO	INGRESOS INCREMENTALES	COSTOS DE OPERACION	DEPRECIACION	AMORTIZACION	INTERESES	UTILIDAD BRUTA	UTILIDAD NETA	HLUJO NETO DE FONDOS
82	(200,850)					AWA			
83	200,850					23,600			(23,600)
84	160,680	158,737	24,261	25,106	40,170	23,600	85,770	38,597	23,533
85	120,510	169,849	25,959	25,106	40,170	18,880	99,904	44,957	29,893
86	80,340	180,889	27,646	25,106	40,170	14,160	113,971	51,287	36,223
87	40,170	192,647	29,443	25,106	40,170	9,446	128,658	57,896	42,832
88		205,169	31,357	25,106	40,170	4,720	143,986	64,794	49,73)
89		218,505	33,395	25,106			160,004	72,001	97,107
90		231,615	35,399	25,106			171,110	76,999	102,105
91		245,512	37,523	25,106			182,884	82,297	107,403
92		260,243	39,774	25,106			195,364	87,914	113,020
93		275,858	42,16 0	25,106			208,592	93,867	118,973
94		292,409	44,690	25,106			222,614	100,176	125,282

VAN = 213,250 M US\$

CASO 6

Instalación de una Nueva Unidad de Vacío de 33 MBPD Instalación de una Unidad de Hidrocraquin de 18 MBPD Instalación de una Unidad de Visbreaking de 18 MBPD

1) Cálculo del Precio FOB (1980) de la Unidad de

Hidrocraquin Datos Económicos: (Precio FOB 1976) M US\$ Capacidad: 13 MBPD Indice Anual de Chemical Engineering Año 1976 = 192.1 Año 1980 = 261.2 18,640 Material y Labor 5,180 Diseño, Ingeniería y Gastos de Contratistas 23,820 Costo 2 = Costo 1 $\left(\frac{\text{Cap } 2}{\text{Cap } 1}\right)^{0.5}$ $= 23,820 \left(\frac{18}{13}\right)^{0.6}$ 32,980 Precio FOB 1980 $= 32,980 \left(\frac{261.2}{192.1}\right)$ 44,820 44,820 1) Unidad de Hidrocraquin de 18 MBPD 14,700 2) Unidad de Vacío de 18 MBPD 3) Unidad de Visbreaking de 18 MBPD

Costo 2 = Costo 1
$$\frac{\text{Cap 2}}{\text{Cap 2}}$$
 0.6

= 9200 $\left(\frac{18}{16}\right)^{0.6}$ 9,874

Costo Total FOB (1980) 67,394

Costo Total FOB (1982) = 69,394.x 1.22

Cálculo del Precio CIF	
	11 US\$/
1) Equipo y Maquinaria	84,660
2) Repuestos (6.5% de 1)	5,503
3) Embalaje + Flete + Seguro (15% de (1 + 2))	13,524
4) Derecho de Aduana (21.5% de (1 + 2 + 3))	22,293
Total Precio CIF (1982)	125,980
Estimación de la Inversión Total	
Costos Directos (C.D.)	M US.5
Equipo y Maquinaria	125,980
Tubería y Accesorios	13,858
Obras Civiles	5,231
Instrumentación, Sistemas Eléctricos, Pinturas, etc	9,450
Erección y Montaje	22,418
Total Costos Directos	176,997
Costos Indirectos (C.I.)	
Servicios, Ingeniería y Supervisión (7 C.D.)	12,390
Total (C.D. + C.I.)	189,387
<pre>Gastos Pre-Operativos y Administrativos (2% Total (C.D. + C.I.))</pre>	3,788
<pre>Contingencias (15% Total (C.D. + C.I.))</pre>	28,408
<pre>Capital de Trabajo 1% Total (C.D. + C.I.)</pre>	1,897
Costo de la Inversión Total	223,480

CUADRO 123 - CALCULO DE LOS INGRESOS INCREMENTALES (1981)

PRODUCTO	CASO 6 MBPD	CASO BASE 1 MBPD	DIFERENCIA MBPD	PRECIO US\$/B	GANANCIA (PERDIDA) M US\$/AÑO
Gas	1.771	0.835	0.936	20.8	6,425
GLP	2.870	2.074	0.796	26.7	7,013
Butano	1.910	0 .7 40	1.170	31.7	12,239
Gasolina	30.028	20.388	9.640	31.7	100,844
Turbo	9.414	6.714	2.700	32.5	28,958
Kerosene	11.366	7 .7 66	3.600	32.5	38,610
Diesel	37.343	23.963	13.38	30.1	132,904
Residual	10.736	38.769	(28.033)	20.7	(191,493)
Diluyente	2.100	=	(2.100)	30.1	(20,860)
I.I. Total					114,640
Costos de	Op era ció	ón Estimados	(1981)		
Unidad de	Vacío de	e 33 MBPD			M US\$
33 <u>MB</u> x	330 <u>DO</u> <u>ANO</u>	x 0.287 \$\frac{\$}{B}	=		3,125
Unidad de	Hidrocra	acking de 18	MBPD		
$18 \frac{MB}{DO} x$	330 <u>DO</u> <u>AÑO</u>	x 3.0 $\frac{\$}{B}$	=		17,820

Unidad de Visbreaking de 18 MBPD

18
$$\frac{MB}{DO}$$
 x 330 $\frac{DO}{ANO}$ x 0.150 $\frac{\$}{B}$ = 891

Costo de Operación Total = 21,836

CUADRO 124 - FLUJO DE FONDOS NETO - CASO Nº 6

AÑO	(INVERSION) MONTO	INGRESOS INCREMENTALES	COSTOS DE OPERACION	DEPRECIACION	AMORTIZACION	INTERESES	UTILIDAD BRUTA	UTILIDAD NETA	FLUJO DE FONDOS NETO
82	(223,490)								
83	223,480					26,259			(26,259)
84	178,784	153,942	28,387	27,935	44,696	26,259	71,361	32,113	15,352
85	134,088	164,718	30,374	27,935	44,696	21,007	85,402	38,431	21,670
86	89,392	175,425	32,348	27,935	44,696	15,755	99,387	44,724	27,963
87	44,696	186,827	34,451	27,935	44,696	10,504	113,937	51,272	34,511
38		198,971	36,690	27,935	44,696	5,252	129,094	58,092	41,331
89		211,904	39,075	27,935			144,894	65,202	93,137
90		224,618	41,419	27,935			155,264	69,869	97,804
91		238,095	43,905	27,935			166,255	74,815	102,750
92		252,381	46,539	27,935			177,907	80,058	107,993
93		267,524	49,331	27,935			190,258	85,616	113,551
94		283,675	52,291	27,935			203,349	91,507	119,442

VAN = 183,285 M US\$

CRONOGRAMA DE LA AMPLIACION DE LA REFINERIA LA PAMPILLA (TENTATIVO)

	-			-	•	-	8	-	_	_	_						1													3				I						8	4	
	E	F	M	A	M	1	J	A	S	0	N	D	E	F	M	A	М.	1	1/4	Is	10	N	D	E	F	M	AIN			A	5	0	NI	1	E	-	1	1	1	1.	1.	
ESTUDIO DE FACTIBILIDAD	х	x	x					1	1	+	1	1	1	1	+	1	1	+	+	+	T				+		+	+	1	+			+	7	+	+	+	1	7	+	A	S
PROBACION DEL PROYECTO				×	1			1	1	-	1	1	1	-	-	+	+	+		+	1				+	+	+	+	+	-		-	+	+	+	+	+	-	+	-	Н	1
RECALIFICACION A FIRMAS			1		X	x	1	+	+	1	1	+	+	-	-	-	-	1	+	+	-		_		-	-	+	+	-	-		-	+	+	+	+	+	+	-	-		1
EPARACION DE BASES DEL CON- PGO DE SUMINISTRO Y CONSTRUCC.		1		1	1	1	×	X	+	1	+	+	+	+	-	-	1	+	+	-				-	+	+	+	+	+	+		+	+	+	+	+	+	-	+	-		-
ROBACION DE LAS BASES L CONCURSO		1	1	1	1	1	1	+	X	+	+	+	1	-			+	+	+	+	-		-		+	+	+	+	-	-	-	+	+	+	+	+	+	+	-	-	H	1
NCURSO - PREPARACION PROPUESTAS		1	1	+	+	1	+	-	1	+	1	X	x	+	+	+	+	+	+	-			-	+	+	+	-	+	-		+	+	+	+	+	+	+	1	-			1
ECCION DE CONTRATISTAS	1	-	1	-	-	+	1	-	+	+	+	+		+	1	+	+	+	+	-			-	-	-	+	-	+	-	H	+	+	+	+	+	+	+	-	-	-	-	
Y APROBACION DEL CONTRA-	1	1	1	+	+	+	+		-	+	+	+	1	×	. x		+	-	+			-	+	-		+	+	-			+	+	+	+	+	+	-	-	-		+	+
NO DETALLA DO Y CONSTRUCCION	1	1	1	1	1	1	+	1	İ	+	1	+	+	-	-	+	T _x	-	-	_	,		-		+	+	+	-			+	+	+	+	+	-	-	-	-		4	+
MINACION MECANICA	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	1	1	1	1	^	^	-	^	X)	X X	×	X	X	X	x	X	X	X	1							1	
TA EN FUNCIONAMIENTO	+	+	+	+	+	+	+	+	-	+	+	+	+	+	-		-	-				-	1	-	-	-					1	1		×	x	x	×	x	x			
	+	+	-	-	1	-	+	-	-	-	1	+	1	1				<u>i</u>					1											X	X	x	×	x	X			
BA DE GARANTIA		+	-	+	1	+		-	1	-	-		1	-		-																		x	x	x	x	х	x			T
TACION DE LA OBRA					-				-	1				1	1	1		1					T						1	1	1	+	1	-	-	x				1	+	1

CAPITULO VI

OPTIMIZACION DEL PROCESO DE REFINACION DE LA AMPLIACION DE LA REFINERIA "LA PAMPILLA"

6.1 INTRODUCCION

Debido a la futura ampliación de la Refinería La Pampilla, se hace necesario determinar las capacidades y las alternativas óptimas de mezcla y producción de los productos comerciales, tomando en conjunto las Unidades existentes ya ampliadas y las nuevas Unidades que se instalen para Minimizar los Costos de Operación, esto sujeto a diferentes restricciones tales co mo la Demanda, Viscosidad, Capacidad de la Unidad, etc.

Este estudio consiste en la aplicación de la Programa ción Lineal, haciendo uso del Método Simplex en la solución del problema, utilizando el programa de computación de la IBM-360 "MPS"; (Mathematical Program System), que resuelve matrices de Programación Lineal.

6.2 DISEÑO DEL PROGRAMA

Es necesario el uso de tres fajos de Tarjetas.

<u>Fajo 1.-</u> Tarjetas de control del sistema operativo de la computadora, estas tarjetas dan órdenes al sistema operativo e indican el tipo de trabajo a ser ejecutado.

<u>Fajo 2.-</u> Tarjetas del MPS Control Language (Lenguaje de Control del MPS). Estas tarjetas son usadas por

el usuario para comunicar al MPS la estrategia propuesta para resolver un problema de PL, es decir, a través de estas tarjetas el usuario indica al MPS, la secuencia de rutinas que serán llamadas o ejecutadas para resolver el problema.

<u>Fajo 3.-</u> Tarjetas de datos, estas tarjetas contienen los datos del problema de PL.

El Gráfico 33 muestra la secuencia de los 3 fajos de tarjetas definidos. Los números 1, 2 y 3 corresponden a los fajos respectivos.

6.2.1 TARJETAS DE CONTROL DEL SISTEMA OPERATIVO DE LA COMPUTADORA

- // MPSS 1241 JOB ..., CLASS A: Inicio de trabajo (esta tarjeta es proporcionada por el centro de cómputo de la UNI). CLASS A, significa prioridad A.
- // EXEC MPS: Usar el compilador para el programa de control del MPS (Control Language), imprimir el Programa Compilado y Ejecutado)
- // CPC. SCRATCH 1 DO VOL = SER = OSISCR: Es el llamado al disco OSISCR; en mi caso fue necesario el uso de este disco por el tamaño de la matriz.
- // CPC . SYSIN DO * : Indica los dispositivos de Entrada/Salida que se va a utilizar. En este caso lectura de tarjetas e impresora.
- / *: Indica el fin del conjunto de tarjetas del programa fuente o del bloque de datos.

- // EXEC.SYSIN DO * : Indica que a continuación vienen las tarjetas de datos.
- // Indica el Fin del trabajo.

6.2.2 <u>SENTENCIAS DEL MPS CONTROL LANGUAGE PROGRAM</u>

INITIALE: Procedimiento de inicialización, tiene por función fijar algunos parámetros (tales como to lerancias de error computacional) a valores estanda rizados.

CONVERT: Lee los datos de entrada, revisa la existencia de errores y convierte los datos a formato binario empaquetado y los escribe en la unidad Prob file.

PROBFILE: Es una unidad de almacenamiento (cinta, disco, tambor) que contiene la representación inter na de un problema de PL.

CONVERT: Tiene los siguientes parámetros:

X DATA: El nombre de los datos de entrada que serán convertidos, en este caso llamado "MINICOST".

- XPB NAME: El nombre que el usuario asigna al problema que será construido por convert, "PROBFILE".
- CHECK: Después que el modelo completo haya sido convertido, este parámetro ocasiona un chequeo para detectar duplicaciones en los nombres de las columnas.
- SUMMARY: Este parámetro ocasiona la impresión de

la siguiente información.

- 1) Para cada fila, el tipo de Restricción, el Número Interno de las variables de holgura y el nú mero de elementos diferentes de cero.
- 2) Para cada Columna; su Número Interno y el Núme ro de elementos diferentes de cero.
- SETUP: El procedimiento convert ha reducido los datos de entrada a un problema binario empaqueta-do en la unidad probfile. SETUP es el mecanismo básico para iniciar la solución de este problema, sus propósitos principales son:
 - 1) Asignación de Almacenamiento y la Inicialización de dispositivos de Entrada/Salida.
 - 2) Creación de la Matriz de Trabajo.
 - 3) Determinación de una Solución inicial.
- RANGE: Es un parámetro que se utiliza para indicar que enseguida viene el nombre de un vector de Rango.
- BOUND: Indica que enseguida viene un vector de acotamiento.
- PRIMAL: Es el procedimiento de optimización principal.

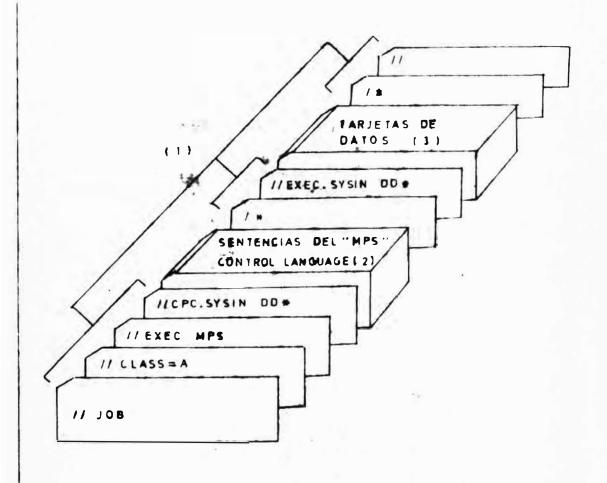
6.2.3 TARJETAS DE DATOS DE ENTRADA

MINICOST, es el nombre del conjunto de datos y es

la primera tarjeta. Ver el listado de los datos de entrada, observar que la primera sección requerida es ROWS y se especifican los tipos de filas. La se gunda sección requerida es COLUMNS (Columnas). La tercera sección requerida es RHS, llamada restric. La cuarta sección es BOUNDS, que pone los límites en el valor de las variables.

Para la introducción del problema a la computadora es necesario nombrar las variables que ingresan y a qué fila pertenecen para diferenciar a las unidades existentes y las que se incorporarán se nombra con la primera letra "E" que significa existente y "A" de ampliación; para mejor entendimiento ver la lista de actividades.

Se usará como base un día operativo normal, asumien do constantes los rendimientos para el rango de capacidad dado a cada unidad.


- Los Costos de Operación son los referentes al año 1981.
- Los Costos de Importación de los productos ya el<u>a</u> borados para poder satisfacer la demanda son de 1981.
- Se ha tomado los rendimientos que Maximizan Desti lados Medios.

SECUENCIA COMPLETA DE FAJOS DE TARJETAS

PARA CORRER EL PROGRAMA DE PL USANDO EL

MPS/ 360

GRAFICO 33

6.3 FORMULACION DE RESTRICCIONES DEL RENDIMIENTO DE PRODUCTOS

6.3.1 I. <u>DESTILACION PRIMARIA I</u>

	I-1	Rendimiento de Gas Combustible (ERGC1)	
		EGC1GC - 0.0098 ECD1 = 0	 (1)
	I-2	Rendimiento de Gasolina (ERG1)	
		EG184 - 0.1221 ECD1 = 0	 (2)
	I-3	Rendimiento de Nafta (ERNF1)	
		EN1UP - 0.0314 FCD1 = 0	 (3)
	I-4	Rendimiento de Kero-Turbo (ERKT1)	
		EKT1KT - 0.1459 ECD1 = 0	 (4)
	I- 5	Rendimiento de Diesel (ERDS1)	
		EDS1DS - 0.147 ECD1 = 0	 (5)
	I-6	Rendimiento de AGO (ERAG1)	
		EAG1FC1 - 0.0135 ECD1 = 0	 (6)
	I-7	Rendimiento de Crudo Reducido (ERCR1)	
		ECR1V1 + ECR1V2 - ECR1VB + ECR1RS - 0.5129	
		ECD1 = 0	 (7)
6.3.2	II.	DESTILACION PRIMARIA TI	
	II-1	l Rendimiento de GLP (ERGL2)	
		EGL2GL - 0.0062 ECD2 = 0	 (8)
	II-2	Rendimiento de Gasolina (ERG2)	
		EG284 + EG2UP - 0.1538 ECD2 = 0	 (9)
	II-3	Rendimiento de Kero-Turbo (ERKT2)	
		EKT2KT - 0.1442 ECD2 = 0	 (10)
	II-4	Rendimiento de Diesel (ERDS2)	
		EDS 2DS - 0.2407 ECD2 = 0	 (11)
	II-5	Rendimiento de AGO (ERAG2)	
		EAG2FC1 - EAG2FC2 - 0.0356 ECD2 = 0	 (12)

	11-6 Rendimiento de Crudo Reducido (ERCR2)		
	ECR2V2 - 0.418 ECD2 = 0		(13)
6.3.3	III. <u>DESTILACION AL VACIO I</u>		
	III-1 Rendimiento de LVGO (ERLG1)		
	ELG1DS - 0.15 ECV1 = 0		(14)
	III-2 Rendimiento de HVGO (ERHG1)	00000000000000000000000000000000000000	(17)
	EHG1FC1 - 0.485 ECV1 = 0		(15)
	III-3 Rendimiento de Residual de Vacío (ER		(10)
			(16)
			, _ 0 /
6.3.4	IV. DESTILACION AL VACIO II		
	IV-1 Rendimiento de LVGO (ARLG2)		
	ALG2DS - 0.148 ECV2 = 0		(17)
	IV-2 Rendimiento de HVGO (ARHG2)		
	AHG2FC2 - 0.442 ECV2 = 0		(18)
	IV-3 Rendimiento de Residual de Vacío (ARRY	12)	
	$ARV2VB \qquad 0.410 ECV2 = 0$		(19)
6.3.5	v. <u>FCC-I</u>		
	V-1 Rendimiento de Gas Combustible (ERGCF1)		
	EGCFC1GC - 0.0421ECFC1 = 0		(20)
	V-2 Rendimiento de GLP (ERGLF1)		
	EGLFC1F1 + EGLFC1GL $- 0.2496$ ECFC1 = 0		(21)
	V-3 Rendimiento de Butano (ERBUF1)		
			(22)
	V-4 Rendimiento de Gasolina (ERGF1)		(22)
	EGFC184 - G.6127 ECFC1 = 0		(23)
	V-5 Rendimiento de LCO (ERLC1)	U Serve	(21:)
	BILLING - II INGK BILLING - II		

	V-6 Rendimiento de HCO (ERHC1)		
	EHC1RS - 0.0294 ECFC1 = 0		(25)
	V-7 Rendimiento de Aceite Clarificado (ERA	\C1)	
	EAC1RS - 0.0458 ECFC1 = 0		(26)
6.3.6	VI. FCC-II		
	VI-1 Rendimiento de Gas Combustible (ARGCE		
			(27)
	VI-2 Rendimiento de GLP (ARGLF2)		
	AGLFC2F2 + AGLFC2GL - 0.2496 ACFC2 =	0	(28)
	VI-3 Rendimiento de Butano (ARBUF2)		
	ABU2BU + ABU284 - 0.0859 ACFC2 = 0		(29)
	VI-4 Rendimiento de Gasolina (ARGF2)		
	AGFC284 - 0.6127 ACFC2 = 0		(30)
	VI-5 Rendimiento de LCO (ARLC2)		
	ALC2DS - 0.1596 ACFC2 = 0		(31)
	VI-6 Rendimiento de HCO (ARHC2)		
	AHC2RS - 0.0294 ACFC2 = 0		(32)
	VI-7 Rendimiento de Aceite Clarificado (ARA	C2)	
	AAC2RS - 0.0458 ACFC2 = 0		(33)
6.3.7	VII. <u>VISBREAKING</u>		
	VII-1 Rendimiento de Gas Combustible (ARGC	•	
	AGCVBGC - 0.052 ACVB = 0		(34)
	VII-2 Rendimiento de Gasolina (ARGVR)		
	AGVB84 - 0.095 ACVB = 0		(35)
	VII-3 Rendimiento de Gasóleo Ligero (ARGLVB		(00)
	AGEVEDES - 0.172 nove		(36)
	VII-4 Rendimiento de Gasóleo Pesado (ARGPVI		(22)
	AGPVBFC2 + AGPVBRS - 0.258 ACVB = 0		
	VII-5 Rendimiento de Residual de Visbreaking		
	ARSVBRS - 0.456 ACVB = 0		(20)

6.3.8 VIII. UNIFINING - PLATFORMING

VIII-1 Rendimiento de Gas Combustible (ERGCUP) EGCUPGC - 0.0764 ECUP = 0 --- (39) VIII-2 Rendimiento de GLP (ERGLUP) EGLUPFC1 - 0.0823 ECUP = 0--- (40) VIII-3 Rendimiento de Gasolina (ERGUP) EGUP84 - 0.841 ECUP = 0--- (41) 6.4 RESTRICCIONES POR BALANCE DE CARGAS A LAS UNIDADES Destilación al Vacío I (EBCV1) ECR1V1 - ECV1 = 0--- (42) Destilación al Vacío II (ABCV2) ECR1V2 + ECR2V2 - ACV2 = 0--- (43) FCC-I (EBCF1) EAG1FC1 + EAG2FC1 + EHG1FC1 + EGLFC1F1 + + EGLUPFC1 - ECFC1 = 0 --- (44) FCC-II (ABCF2) AGP VBFC2 + EAG2FC2 + AHG2FC2 - AGLFC2F2 ---- (45) - ACFC2 = 0 Visbreaking (ABCVB) --- (46) ECR1VB + ERV1VB + ARV2VB - ACVB = 0Unifining - Platforming (EBCUP) --- (47) EG2UP + EN1UP - ECUP = 0

6.5 RESTRICCIONES POR CAPACIDAD DE LAS UNIDADES

Destilación Primaria I (ERCAPD1)

14 < ECD1 < 35

Destilación Primaria II (ERCAPD2)

39 < ECD2 < 65

(48)

```
Destilación al Vacío I (ERCAPV1)
       5.5 \le ECV1 < 12
                                                    --- (50)
    Destilación al Vacío II (ARCAPV2)
       24 < ACV2 < 33
                                                    --- (51)
    FCC-I (ERCAPF1)
       5.385 < ECFC1 < 8.616
                                                    --- (52)
    FCC-II (ARCAPF2)
       10.71 < ACFC2 < 19.278
                                                   --- (53)
    Visbreaking (ARCAPVB)
       11 < ACVB < 18
                                                    --- (54)
    Unifining-Platforming (ERCAPUP)
                                                    --- (55)
       0.8 \leq ECUP \leq 1.7
   RESTRICCIONES POR VISCOSIDAD
    1. El Diesel Nº 2 debe tener como máximo 45 SSF a 100°F
       y le corresponde un VBN (Viscosity Blending Number)
       de 44.35 a 100°F (RVIDS2) (Ver Anexo
        46.87 EDS1DS + 44.35 EDS2DS + 43.56 (ELG1DS + ALG2DS)
        + 48.17 (ELC1DS + ALC2DS) + 47.49 AGLVBDS - 44.35 PDDS2 < 0
                                                    --- (56)
     2. El Residual Nº 6 debe tener como máximo 300 SSF a
        122°F y le corresponde un VBN de 19.16 a 122°F
        (RVIRS6) (Ver Anexo
        25.18 ECR1RS + 36.15 (EHC1RS + EAC1RS) + 35.85 (AHC2RS +
        + AAC2DS) + 35.46 AGPVBRS + 6.7 ARSVBRS - 19.16 PDRS6 < 0
                                                    --- (57)
6.7
    RESTRICCIONES DE GLP A FCC I y II.
     FCC-I (RGLPF1)
        EGLFC1F1 + EGLUPFC1 - 0.071 ECFC1 = 0 --- (58)
```

6.6

FCC-II (RGLPF2)

AGLFC2F2 - 0.0663 ACFC2 = 0 --- (59)

6.8 RESTRICCIONES DE VAPOR REID EN LA GASOLINA 34

Restricción por Mínimo PVR.- La gasolina 84 debe tener como mínimo 6 PVR al cual le corresponde un PVRI (Reid Vapor Pressure Blending Index Number) de 87.5 (RMINPVR)

Restricción por Máximo PVR.- La Gasolina 84 debe tener como máximo PVR = 10 al cual le corresponde un PVRI = 157 (RMAXPVR)

6.9 RESTRICCIONES POR PRODUCCION DE PRODUCTOS

Gas Combustible (PROGC)

GLP (PROGLP)

EGL2GL + EGLFC1GL + AGLFC2GL - PDGLP =
$$0$$
 (64)

Butano (PROBU)

EBU1BU + ABU2BU PDBU =
$$0$$
 --- (65)

Gasolina 84 (PROG84)

EG184 + EG284 + EBU184 + EGFC184 + ABU284 +

$$+ AGFC284 + AGVB84 + EGUP84 - PDG84 = 0$$
 (66)

Kero/Turbo (PROKT)

$$\mathbf{E}\mathbf{K}\mathbf{T}\mathbf{1}\mathbf{K}\mathbf{T} + \mathbf{E}\mathbf{K}\mathbf{T}\mathbf{2}\mathbf{K}\mathbf{T} - \mathbf{P}\mathbf{D}\mathbf{K}\mathbf{T} = 0 \qquad \qquad --- \quad (67)$$

6.10 RESTRICCIONES POR DEMANDA DE PRODUCTOS (MBPD)

La demanda de los productos es para el año 1985, esta demanda es la que sobra al restar a la demanda total la producción de Talara (producción constante), es ne cesario incluir variables adicionales a los productos pues permitirán hacer factible el sistema cuando la demanda sea mayor que la capacidad de producción. El significado de estas variables es la cantidad de productos que se debe importar y/o que se puede reemplazar por la producción de una nueva Refinería a construir.

Demanda de GLP (RPDGLP)	
IGLP + PDGLP > 4.0	(70)
Demanda de Gasolina 84 (RPDG84)	
IG84 + PDG84 > 28.0	(71)
Demanda de Kero-Turbo (RPDKT)	
IKT + PDKT > 17.0	(72)
Demanda de Diesel Nº 2 (RPDDS2)	
IDS2 + PDDS2 > 35.0	 (73)
Demanda de Residual Nº 6 (RPDRS6)	
IRS6 + PDRS6 > 34.0	(7!:)

6.11 LISTA DE ACTIVIDADES

- 1. EGC1GC = Gas Combustible de Destilación Primaria I a Gas Combustible.
- 2. EG184 = Gasolina de Destilación Primaria I al Pool de Gasolina 84
- 3. EN1UP = Nafta de Destilación Primaria I a Platforming
- 4. EKT1KT = Kero/Turbo de Destilación Primaria I al Pool de Kero/Turbo
- 5. EDS1DS = Diesel de Destilación Primaria I al Pool de Diesel
- 6. EAG1FC1 = AG0 de Destilación Primaria I a FCC-I
- 7. ECR1V1 = Crudo Reducido de Destilación Primaria I a

 Destilación al Vacío I
- 8. ECR1FC2 = Crudo Reducido de Destilación Primaria I a FCC-II
- 9. ECR1VB = Crudo Reducido de Destilación I a Visbreaking
- 10. ECR1RS = Crudo Reducido de Destilación Primaria I al Pool de Residual
- 11. EGL2GL = GLP de Destilación Primaria II a GLP
- 12. EG284 = Gasolina de Destilación Primaria II al Pool de Gasolina 84
- 13. EKT2KT = Kero/Turbo de Destilación Primaria II al Pool de Kero/Turbo
- 14. EDS2DS = Diesel de Destilación Primaria II al Pool de Diesel
- 15. EAG2FC1 = AGO de Destilación Primaria II a FCC-I
- 16. EAG2FC2 = AGO de Destilación Primaria II a FCC-II
- 17. ECR2V2 = Crudo Reducido de Destilación Primaria II a

 Destilación al Vacío II
- 18. ECR2VB = Crudo Reducido de Destilación Primaria II a
 Visbreaking
- 19. ELG1DS = LVGO de Destilación al Vacío I al Pool de Diesel

- 20. EHG1FC1 = HVGO de Destilación al Vacío I a FCC-I
- 21. ERV1VB = Residual de Vacío de Destilación al Vacío I a Visbreaking
- 22. ALG2DS = LVGO de Destilación al Vacío II al Pool de Diesel
- 23. AHG2FC2 = HVGO de Destilación al Vacío II a FCC-II
- 24. ARV2VB = Residual de Vacío de Destilación al Vacío II a Visbreaking
- 25. EGCFC1GC = Gas Combustible de FCC-I a Gas Combustible
- 26. EGLFC1GL = GLP de FCC-I a GLP
- 27. EGLFC1F1 = GLP de FCC-I Recirculado a FCC-I
- 28. EBU184 = Butano de FCC-I al Pool de Gasolinas 84
- 29. EBU1BU = Butano de FCC-I a Butano
- 30. EGFC184 = Gasolina de FCC-I al Pool de Gasolina 84
- 31. ELC1DS = LCO de FCC-I al Pool de Diesel
- 32. EHC1RS = HCO de FCC-I al Pool de Residuales
- 33. EAC1RS = Aceite Clarificado de FCC-I al Pool de Residuales
- 34. AGCFC2GC = Gas Combustible de FCC-II a Gas Combustible
- 35. AGLFC2GL = GLP de FCC-II a GLP
- 36. AGLFC2F2 = GLP de FCC-II Recirculado a FCC-II
- 37. ABU284 = Butano de FCC-II al Pool de Gasolina 84
- 38. ABU2BU = Butano de FCC-II a Butano
- 39. AGFC284 = Gasolina de FCC-II al Pool de Gasolina 84
- 40. ALC2DS = LCO de FCC-II al Pool de Diesel
- 41. AHC2RS = HCO de FCC-II al Pool de Residuales
- **42.** AAC2RS = Aceite Clarificado de FCC-II al Pool de Resi duales
- 43. AGCVBGC = Gas Combustible de Visbreaking a Gas Combustible
- 44. AGVB84 = Gasolina de Visbreaking al Pool de Gasolina 84
- **45.** AGLVBDS = Gasóleo Ligero de Visbreaking al Pool de Die sel
- **46.** AGPVBRS = Gasóleo Pesado de Visbreaking al Pool de Residuales

- 47. ARSVBRS = Residual de Visbreaking al Pool de Residual
- **48. EGCUPGC = Gas** Combustible de Platforming a Gas Combustible
- 49. EGLUPFC1 = GLP de Platforming a FCC-I
- 50. EGUP84 = Gasolina de Platforming al Pool de Gasolina
 84
- 51. EG2UP = Gasolina de Destilación Primaria II a Platforming
- 52. PDGC = Producción de Gas Combustible
- 53. PDGLP = Producción de GLF
- 54. PDG84 = Producción de Gasolina 84
- 55. PDKT = Producción de Kero/Turbo
- 56. PDDS2 = Producción de Diesel Nº 2
- 57. PDRS6 = Producción de Residual Nº 6
- 58. IGLP = Importación de GLP
- 59. IG84 = Importación de Gasolina 84
- 60. IKT = Importación de Kero/Turbo
- 61. IDS2 = Importación de Diesel Nº 2
- 62. IRS6 = Importación de Residual Nº 6
- 63. ECD1 = Carga a Destilación Primaria I
- 64. ECD2 = Carga a Destilación Primaria II
- 65. ECV1 = Carga a Destilación al Vacío I
- 66. ACV2 = Carga a Destilación al Vacío II
- 67. ECFC1 = Carga a FCC-I
- 68. ACFC2 = Carga a FCC-II
- 69. ACVB = Carga a Visbreaking
- 70. ECUP = Carga a Uniifining-Platforming

		MATRIZ BASE	5 5 6 6 6 6 6		A A A A A E E	[.]. [.]. [.]. [.].	tilitie –
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# C - # 5	8 6 L C C C C C C C C C C C C C C C C C C		D D D D D D D G G G G G G G G G G G G G	1 5 5
1: 200 5:121),	165 - 15 - 25 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C275 2 28 2 28 2 2802 287 2264 1 204	1294 1284 2261 226122	27 2 287 204 1204 1704 204 0.	20 0 22 0 2 0 2 0 2 0 3	5.0,50	5 555 5c 36 3 H2
(2)1173							
6.923) E.3021							1111:
£5,83 £1,021							
Chart Const							
C.OF / 10°50							
6.M							
5.4				++++++			
£.0	+						
E 7-94 E -864							
poerre.							
E 19th Ecres : BOANS							
10 3cm h 10 3cm h			11111				
K 2551			1 1 1 1 1 1 1				-
E18 102%							. 3
15.80							
1008							
15.55					, ,		
E PO					1 1		. 0
je n. :					1,		
							. 0
	2-25 -215 -355	Jan 1					. 0
635	75 1		6-15 26.79	35 85 35 85	25 44 5 "	344 X5 (1346),	10
6340		900 134		960 34			. 0
	· · · · · · · · · · · · · · · · · · ·	96C .17		96C 134	175		3 0
			1-1-1-1				. 0
						100	
1					1	(1)	
	**************************************						1 11
	· · · · · · · · · · · · · · · · · · ·					1	1 2 17
[] ; ;							1 2 34
							2 39 0
							2 5345
							2 10 710
		···					2 00 3
		-					

6.13 RESULTADOS DEL PROGRAMA

Según se puede apreciar en el listado mostrado en el Anexo, los resultados para minimizar los costos de o peración son los siguientes:

Las capacidades de las unidades, mejor dicho las car gas a las que deben operar para Minimizar los Costos y satisfaciendo todas las restricciones para el año 1985 son:

Destilación Primaria I, trabajará a máxima capacidad
35 MBPD

Destilación Primaria II, trabajará a máxima capacı-dad. 65 MBPD

Destilación al Vacío I, trabajará a 10.129 MBPD

Destilación al Vacío II, trabajará a máxima capacı-dad, 33 MBPD

Craqueo Catalítico I (FCC-I) trabajará a mínima capa cidad, 5.385 MBPD

Craqueo Catalítico II (FCC-II) trabajará a 16.814 MBPD Visbreaking trabajará a 17.227 MBPD

Unifininf-Platforming trabajará a máxima capacidad, 1.7 MBPD

Sin embargo, la Producción final de productos elaborados es menor que la Demanda, por lo que se necesita importar algunos productos.

Producción de Gas Comb	bustible 2.076	MBPD
Producción de GLP	3.485	MBPD
Producción de Butano	Cero	
Producción de Gasolina	32.244	MBPD
Producción de Kero/Tu	rbo 14.479	MBPD
Producción de Diesel	33.699	MBPD
Producción de Residual	les 15.073	MBPD

222.

Importación:

Importación d	e GLP	0.515	MBPD
Importación d	e Kero/Turbo	2.520	MBPD
Importación d	e Diesel	1.300	MBPD
Importación d	e Residuales	18.926	MBPD

Con lo que se observa que a partir del año 1985, aún haciendo trabajar a máxima capacidad todas las unida des sin excepción, se necesitará Importar algunos productos en pequeña cantidad a excepción del residual que ha sido el más afectado y esta importación irá aumentando aun teniendo en cuenta la nueva Refinería de Iquitos y conforme transcurran los años, además teniendo en cuenta ya la ampliación de La Pampilla, con lo que se plantea otra interrogante, ¿cómo solucionar o minimizar estas importaciones?, primer lugar el único producto en exceso es la gasolina, la cual disminuiría los costos; esto es como paso inmediato, sin embargo, es preferible adelantar se a los hechos y la mejor solución es construir otra Refinería a nivel Costa que sea proyectada su construcción en etapas para satisfacer la demanda na cional hasta el año 2000.

La primera etapa sería la construcción de una unidad de Destilación Primaria en forma casi paralela a la Ampliación de la Refinería La Pampilla, lo cual nos ayudaría a satisfacer la Futura Demanda y dejar de lado la Importación que sería demasiado costosa, pues la diferencia actual entre el Producto Refinado de Importación respecto al de Exportación es bastante apreciable, pues los precios de los Combustibles Nacionales están por debajo de los precios de otros países.

ANEX OS

1. METODOLOGIA EMPLEADA PARA EL CALCULO DE LOS FACTORES DE DESCUENTO

La Inflación de 2 dígitos ha dejado obsoletos los Métodos tradicionales para evaluar proyectos en los que se utiliza ba una Unica Tasa de Descuento.

La Tasa de Inflación (Interna y Externa) estimada para los años venideros es muy variable y es necesario por esta razón calcular la tasa de descuento para cada año.

Esta situación impide la Evaluación tradicional de Proyectos a base de la Tasa Interna de Retorno (TIR), ya que al existir Tasas de Descuento Variables, no existe una tasa ú nica de corte (TIR), con la cual comparar.

El cálculo de la Tasa de Descuento para cada año es:

$$(1 + TDi) = (1 + TGM) (1 + TRR) (1 + TIi)$$

TDi = Tasa de descuento para el año 1

TGM = Tasa de ganancia mínima requerida, valor del dinero en el tiempo = 5%

TRR = Tasa requerida por riesgo (*)

TIi = Tasa de inflación del año 1

Las tasas de Inflación (Interna y Externa) se tomaron de los Indicadores Económicos (Cuadro A, Cap. V), Evaluación Económica.

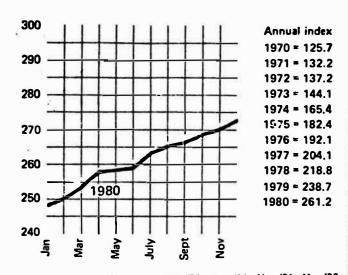
(*) Cuando el Proyecto es Financiado con recursos propios se considera como cero (0) la tasa requerida por riesgo (TRR).

EJEMPLO DE CALCULO DE LA TASA DE DESCUENTO

La Tasa de Descuento para el año 83 ca:

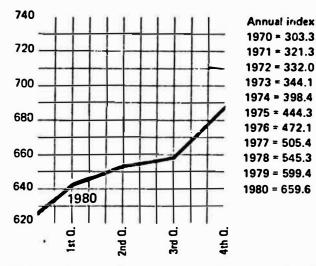
$$TD_{83} = (1 + 0.05) (1 + 0.05) (1 + 0.6)$$
 $TD_{83} = 1.20 - 1.00$
 $TD_{83} = 20\%$

De igual forma se calculó para los próximos anos:

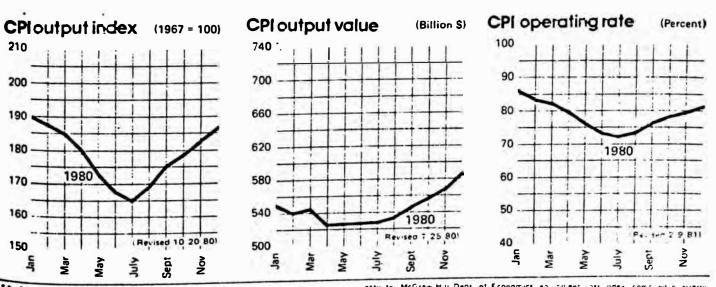

CALCULO DE LOS FACTORES DE DESCUENTO

$$FD_{83} = \frac{1}{1 + TD_{83}} = \frac{1}{1 + 0.2} = 0.8334$$

$$FD_{84} = \frac{1}{(1 + TD_{83})(1 + TD_{84})} = \frac{1}{(1.2)(1.19)} = 0.7003$$


y así sucesivamente.

रित्राति। विशिष्ट्राति।


CE DIGINI COST INCAY	May '81 Prelim.	Apr. '81 Revised	Mar. '81 Final	May 80 Final	
(1957-59 = 100)	294.4	289.5	286.3	258.5	
Equipment, machinery, supports	323.1	321.3	314.8	291.3	
Construction labor	237.5	226.8	226.6	200.7	
Buildings	273.7	268.2	267.1	235.2	
Engineering & supervision	259.4	255.6	254.9	208.7	
Fabricated equipment	321.1	321.3	314.7	290.9	
Process machinery	300.2	295.9	294.4	270.6	
Pipe, valves & fittings	358.5	357.8	346.5	329.0	
Process instruments	282.1	275.0	272.1	245.5	
Pumps & compressors	388.1	379.1	379.1	328.9	
Electrical equipment	222.1	219.8	216.1	203.6	
Structural supports & misc	324.5	324.3	314.0	295.6	
MOTE Date to and a hormonical of the sec	da da.				

NOTE: Details and subcomponents of this index are described in Chemical Engineering, Feb. 18, 1963, pp. 143-152. (Reprints are available. No. 132 on the reprint order form in the back of each issue.) For recapping and updating, see issues of Apr. 25, 1966. May 5, 1969, Nov. 13, 1972. Apr. 28, 1975 and May 8, 1978.

M&S equipment cost index	1st Q.	4th Q.	3rd Q.
	1981	1980	1980
(1926 = 100)	696.9	688.0	659.4
Process industries, average	717.7	706.9	677.5
Cement	719.6	708.5	676.9
Chemical	707.4	696.8	668.8
Clay products	695.6	685 4	656.0
Glass	668.5	660.4	632.8
Pain*	7128	703.3	674.4
Paper	675.8	665.8	639.2
Petroleum products	758.7	746.4	714.5
Rubber	745.5	733.6	699.9
Related industries, electrical power	6.686	630.9	652.0
Mining, milling	725.1	715 9	684.4
Refrigerating	820.3	809.2	775.1
Steam power	699.5	690.2	662.9

CURRENT BUSINESS INDICATORS $_$	Latest	Previo	ous	Year ago
CPI output index (1967 = 100) CPI value of output, billion \$ CPI operating rate, %. Construction cost index (1913 = 100) Producer prices, industrial chemicals (1967 = 100) Index of industrial activity (1967 = 100) Hourly earnings index, chemicals & allied products (1967 = 100) Productivity index, chemicals & allied products (1967 = 100) 1	Agr. '81=591.1(P) Agr. '81=80.0(P) Apr. 30. '81=3472.9 Apr. '81=360.8 Agy 2, '81=143.2 st Q. '81=282.8 st Q. '81=205.7	Mar. '81=186.2(P) Feb. '81=595.3(R) Feb. '81=80.8(R) Apr. 23, '81=3473.6 Mar. '81=352.5 Apr. 25, '81=142.5 4th O. '80=277.0 4th O. '80=202.9	Feb. '81=187.6(R) Jan. '81=600.7 Jan. '81=80.8 Apr. 16=3468.3 Feb. '81=349.4 Apr. 18, '81=141.8 3rd Q. '80=270.7 3rd Q. '80=192.9	Apr. '80=180.5 Mar. '80=543.5 Mar. '90=82.8 May 1, '80=3138. Apr. '80=322.1 May 4, '80=143.9 1st Q, '80=258.1 1st Q, '80=199.4

SOURCES CPI output index, Federal Reserve Board, McGraw Hill Dept of Fconomics CPI salve of output, U.S. Dept of Commerce, Eureau of Census, McGraw Hill Dept of Economics CPI operating late, Federal Reserve Board, McGraw Hill Dept of Economics CPI operating late, Federal Reserve Board, McGraw Hill Dept of Economics (See Chem. Eng., Apr. 10, 1967; pp. 197-198 for citetas on these first three Grandmic indicators), construction cost index, chamical wholesale price index, industrial

activity. McGraw Hill Dept. of Economics, equipment cast index, complient distriety by Ateishall and Swift, Los Angeles, for 47 different industries free Chon. Eng., Nov. 1947, pp. 124-6, for method of obtaining M&S numbers and May 8, 1918 for M&S indexes since 19561.

VISCOSITY BLENDING NUMBERS CORRESPONDING TO SAYBOLT FUROL VISCOSITY A 122°F

Sá	ybolt
F	rol
Se	conds
Я	122°F

01.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
24	29.78	29.73	29.70	29.68	29.65	29.62	29.59	29.56	29.52	29.49
25 26	29.46	29.43	29.40	29.37	29.35	29.32		29.26	29.24	29.21
26	29.18	29.16	29.13	29.11	29.08	29.06		29.01	28.98	28.96
27	28.94	28.92	28.91	28.88	28.85	28.83	=	28 .7 9	28.76	28.74
28	28.72	28.70	28.68	28.66	28.64	28.62		28.58	28.56	28.54
29	28.52	28.50	28.48	28.46	28.44	28.42	28.40	28.38	28.36	28.34
30	28.33	20 21	00 00	00 07	00.05	00 00	00.04			
31	28.13	28 31 28.11	28.29	28.27	28.25	28.23	28.21	28.19	28.17	28.15
32	27.94	27.92	28.09 27.90	28.07 27.89	28.05	28.03	28.01	27.99	27.97	27.95
33	27.77	27.92	27.90	27.59	27.87 27.70	27.85	27.84	27.82	27.80	27.79
34	27.77	27.73	27.74	27.72	27.70	27.69 27.52	27.67 27.51	27.65	27.64	27.62
• •	27.00	27.30	27.57	27.55	27.54	27.52	27.51	27.49	27.48	27.46
35	27.44	27.43	27.41	27.40	27.38	27.37	27.35	27.34	27.32	27.31
36	27.29	27.28	27.26	27.25	27.23	27.22	27.20	27.19	27.32	27.16
37	27.15	27.14	27.12	27.11	27.10	27.08	27.07	27.06	27.04	27.10
38	27.02	27.00	26.99	26.98	26.96	26.95	26.94	26.92	26.91	26.90
39	26.89	26.88	26.87	26.85	26.84	26.83	26.81	26.80	26.79	26.77
40	26.76	26.75	26.74	26.72	26.71	26.70	26.69	26.67	26.66	26.65
41	26.64	26.63	26.62	26.61	26.60	26.59	26.58	26.57	26.56	26.55
42	26.53	26.52	26.51	26.50	26.49	26.48	26.47	26.46	26.45	26.44
43	26.42	26.41	26.40	26.39	26.38	26.37	26.36	26.35	26.34	26.33
44	26.31	26.30	26.29	26.28	26.27	26.26	26.25	26.24	26.23	26.22
1.5					06.46	06.45	06 411	06.40	06.40	00 44
45	26.20	26.19	26.18	26.17	26.16	26.15	26.14	26.13	26.12	26.11
46 47	26.09	26.08	26.07	26.06	26.05 25.95	26.04 25.94	26.03 25.93	26.02 25.92	26.01 25.92	26.00 25.91
47 48	25.98	25.97	25.96	25.96	25.95 25.87	25.86	25.85	25.84	25.84	25.83
49	25.90 25.82	25.89 25.81	25.88 25.80	25.87 25.79	25.79	25.78	25.77	25.76	25.76	25.75
73	23.02	23.61	25.60	23.75	25.75	23.70	20.,,	23.70	20.70	20.70
	0	1	2	3	4	5	6	7	8	9
50	25.74	25.66	26.58	25.50	25.42	25.34	25.26	25.13	25.10	25.02
60	24.95	24.88	24.81	24.75	24.68	24.61	24.55	24.48	24.41	24.35
70	24.28	24.23	24.17	24.12	24.08	24.01	23.95	23.90	23.84	23.73
80	23.73	23.67	23.62	23.57	23.52	23.47	23. 42	23.37	23.32	23.27
90	23.22	23.17	23.13	23.09	23.05	23.01	22.97	22.93	22.89	22.85
									00.55	00.54
100	22.81	22.78	22.75	22.71	22.68	22.65	22.61	22.58	22.55	22.51
110	22.49	22.45	22.42	22.39	22.35	22.32	22.29	22.25	22.22	22.19
120	22.16	22.13	22.10	22.08	22.05	22.02	22.00	21.97	21.94	21.92
130	21.89	21.86	21.83	21.81	21.78	21.76	21.73	21.70 21.46	21.67 21.43	21.65 21.41
140	21.62	21.60	21.58	21.55	21.53	21.51	21.48	21.40	21.43	21.41

4.5.										
150	21.39	21.37	21.3 5	2 1. 33	21.30	21.23	21.26	21.23	21.21	21.19
160	21.17	21.14	21. 12	21.10	21.08	21.06	21.04	21.02	21.00	
170	20.96	20.94	20.92	20.90	20.89	20.87	20.85	20.84	20.82	
180	20.78	20.76	20.74	20.72	20.71	20.69	20.67	20.66	20.64	-
190	20.60	20.58	20.56	20.55	20.53	20.51	20.49	20.48	20.46	20.45
									20.10	20.10
200	20.43	20.42	20.40	20.39	20.37	20.36	20.34	20.33	20.31	20.29
210	20.28	20.27	20.26	20.24	20.23	20.21	20.21	20.18	20.17	20.15
220	20.14	20.13	20.11	20.10	20.08	20.07	20.05	20.04	20.02	20,01
230	20.00	19.99	19.97	19.96	19.94	19.93	19.91	19.90	19.88	19.87
240	19.86	19.85	19.84	19.82	19.81	19.80	19.78	19.77	19.76	19.74
										20
250	19.73	19.72	19.71	19.69	19.68	19.67	19.65	19.64	19.63	19.61
260	19.60	19.59	19.58	19.57	19.55	19.54	19.53	19.51	19.50	19.49
270	19.48	19.46	19.45	19.44	19.43	19.42	19.41	19.40	19.39	19.38
280	19.37	19.36	19.34	19.33	19.32	19.31	19.30	19.29	19.28	19.27
290	19.26	19.25	19.24	19.23	19.22	19.21	19.20	19.19	19.18	19.17
			•							
	0	10	20	30	40	50	60	7 0	80	90
300	19.16	19.07	18.98	18.89	18.81	18.73	18.63	18.55	18.46	18.37
400	18.28	18.21	18.14	18.07	17.99	17.92	17.85	17 .7 7	17.70	17.63
500	17.56	17.51	17.46	17.41	17.36	17.30	17.23	17.19	17.14	17.09
600	17.04	17.00	16.96	16.92	16.87	16.83	16.78	16.74	16.70	16.66
700	16.62	16.58	16.55	16.52	16.48	16.45	16.41	16.38	16.34	16.31
800	16.28	16.25	16.22	16.19	16.15	16.12	16.09	16.05	16.02	15.99
900	15.96	15.93	15.90	15.87	15.8 5	15.82	15.79	15.7 7	15.74	15.71
1000	15.68	15.66	15.63	15.60	15.58	15.55	15.53	15.50	15.48	15.46
1100	15.42	15.40	15.38	15.36	15.33	15.31	15.29	15.26	15.24	15.22
1200	15.20	15.17	15.15	15.13	15.11	15.09	15.07	15.0 5	15.03	15.01
1300	14.99	14.97	14.95	14.93	14.91	14.89	14.87	14.85	14.83	14.81
1400	14.79	14.77	14.75	14.73	14.71	14.69	14.67	14.6 6	14.63	14.61
										4
1500	14.60	14.58	14.56	14.5 5	14.53	14.52	14.50	14.49	14.47	14.45
1600	14.44	14.42	14.41	14.3 9	14.38	14.36	14.35		14.32	
1700	14.29	14.27	14.26	14.24	14.23	14.21	14.20	14.18	14.17	14.15
1800	14.14	14.13	14.11	14.10	14.08	14.07	14.05	14.04	14.02	14.01
1900	14.00	13.99	13.98	13.96	13.95	13.94	13.92	13.91	13.99	13.89
					4.00	EAA	600	70 0	800	900
0000	0	100	200	300	400	500 13.41	13.32	13.22	13.13	13.04
2000	13.87	13.78	13.69	13.60	13.50	12.67	12.62	12.56	12.51	12.45
3000	12.95	12.90	12.84	12.7 9	12.73 12.20	12.16	12.02	12.07	12.02	11.98
4000	12.39	12.34	12.29	12.25	11.77	11. 73	11.69	11.65	11.61	11.57
5000	11.93	11.89	11.85	11. 81	TT. //	11./3	11.03	,		
6000	11 50	11.50	11.47	11.44	11.40	11.37	11.34	11.30	11. 27	11.24
7000	11.53 11.21	11.50 11.18	11.47	11.12	11.09	11.06	11.03	11.00	10.97	10.94
8000	10.92	10.89	10.87	10.84	10.82	10.79	10.77	10.74	10.72	10.69
9000	10.92	10.89	10.67	10.60	10.58	10.56	10.54	10.52	10.50	10.48
3000	10.07	10.04	10.02	10.00						

Saybolt Furol Seconds ■ 122°F

•										
10000	10.46	10.44	10.42	10.40	10.38	10.36	10.34	10.32	10.30	10.28
11000	10.26	10.24	10.22	10.21	10.19	10.17	10.16	10.14	10.12	10.11
12000	10.09	10.07	10.05	10.04	10.02	10.00	9.99	9.97	9.95	9.94
13000	9.92	9.90	9.89	9.87	9.86	9.84	9.83	9.81	9.79	9.78
14000	9.77	9.76	9.74	9.73	9.71	9.70	9.68	9.67	9.65	9.64
										•••
15000	9.63	9.62	9.61	9.60	9.58	9.57	9.56	9.54	9.53	9.52
16000	9.51	9.49	9.48	9.47	9.45	9.45	9.44	9.43	9.42	9.41
17000	9.40	9.38	9.37	9.36	9.35	9.34	9.33	9.32	9.31	9.30
18000	9.29	9.28	9.27	9.26	9.25	9.24	9.23	9.22	9.21	9.20
19000	9.19	9.18	9.17	9.16	9.15	9.14	9.13	9.12	9.11	9.10
	0	1000	2000	3000	4000	5000	6000	7000	8000	9000
20000	9.09	9.01	8.93	8.85	8.78	8.70	8.63	8.55	8.47	8.40
30000	8.32	8.27	8.22	8.17	8.11	8.06	8.01	7.95	7.90	7.85
40000	7.80	7.76	7.72	7.68	7.64	7.60	7.56	7.52	7.48	7.44
50000	7.40	7.37	7.34	7.31	7.27	7.24	7.21	7.17	7.14	7.11
60000	7.08	7.05	7.02	7.00	6.97	6.94	6.92	6.89	6.86	6.84
70000	6.81	6.78	6.76	6.74	6.72	6.70	6.68	6.66	6.64	6.62
80000	6.60	6.58	6.56	6.54	6.52	6.50	6.48	6.46	6.44	6.42
90000	6.40	6.38	6.36	6.34	6.33	6.31	6.29	6.28	6.26	6.24
30000	0.40	0.30	0.30	0.04	0.00	0.01	0.23	0.20	0.20	0.24
	0	100000	200000	300000	400000	500000	600000	700000	800000	900000
1000000	2.79	6.22	5.15	4.53	4.10	3.83	3.53	3.30	3.10	2.94
1000000	2.79	2.67	2.55	2.43	2.32	2.22	2.15	2.08	2.00	1.93
2000000	1.88	1.83	1.78	1.73	1.67	1.62	1.57	1.51	1.46	1.41
30 00000	1.36	1.33	1.30	1.26	1.23	1.20	1.16	1.13	1.10	1.06
4000000	1.03	1.00	0.97	0.94	0.91	0.88	0.85	0.82	0.7 9	0.76
5000000	0.74	0.72	0.70	0.68	0.65	0.63	0.61	0.58	0.56	0.54
6000000	0.52	0.50	0.48	0.46	0.44	0.42	0.40	0.38	0.36	0.34
7000000	0.32	0.30	0.29	0.27	0.26	0.24	0.23	0.21	0.20	0.18
8000000	0.16	0.14	0.13	0.11	0.09	0.08	0.06	0.05	0.03	0.01
9000000	0.00	♥ • ▲ ∃	0.20							

TABLE II

TABLE II

VISCOSITY BLENDING VALUES CORRESPONDING TO SAYBOLT UNIVERSAL VISCOSITY a 100°F (REVISION OF DECEMBER 30, 1957)

Saybolt Universal Seconds a 100°F

a 100)										
	0.0	0.2	0.4	0.6	0.8		0.0	0.2	0.4	0.6	0.8
30	56.41	56.12	55.83	55.56	55.26	60	40.20	40.16	40.13	40.09	40.05
31	55.00	54.75	54.48	54.22	53.99	61	40.02	39.99	39.95	39.92	39.89
32	53.74	53.49	53.26	53.03	52.80	62	39.85	39.82	39.79	39.75	39,72
33	52.59	52.37	52.15	51.95	51.75	63	39.69	39.66	39.63	39.60	39.72
34	51.54	51.34	51.15	50.96	50.77	64	39.54	39.51	39.48	39.45	39.42
	02.0 .	01.01	31.13	30.30	30.77	54	051	0.7.01	33. 10	99.43	03.42
35	50.58	50.40	50.23	50.06	49.87	65	39.39	39.36	39.33	39.30	39,28
36	49.71	49.55	49.38	49.22	49.07	66	39.25	39.22	39.19	39.17	39.14
37	48.91	48.76	48.61	48.46	48.31	67	39.11	39.09	39.06	39.03	39.01
38	48.17	48.04	47.89	47.76	47.63	68	38.98	38.96	38.93	38.91	38.88
39	47.49	47.36	47.24	47.11	46.99	69	33.86	38.83	38.81	38.78	38.76
	.,,	17.00	.,,,,,	,,,,,	, 0, 00		• • • • • • • • • • • • • • • • • • • •				
40	46.87	46.75	46.63	46.52	46.40	7 0	38.74	38.71	38.69	38.67	38.74
41	46.29	46.18	46.07	45.96	45.85	71	38.62	38.60	38.57	38.55	38.53
42	45.75	45.64	45.54	45.44	45.34	72	38.51	08.48	38.46	38.44	38.42
43	45.25	45.15	45.05	44.96	44.87	73	38.40	38.38	38.36	38.33	38.31
44	44.78	44.69	44.61	44.52	44.43	74	38.29	38.27	38.25	38.23	38.21
		-									
45	44.35	44.26	44.18	44.10	44.02	74:	38 .1 9	38.17	38.15	38.13	38.11
46	43.94	43.86	43.78	43.71	43.63	76	38.09	38.08	38.06	38.04	38.02
47	43.56	43.48	43.41	43.34	43.27	77	39.00	3 7. 98	37.36	37.34	37.93
48	43.20	43.13	43.06	43.00	42.33	78	37.91	37. 39	3 7. 87	37.85	37.84
49	42.87	42.80	42.74	42.67	42.61	7.3	37.82	37.80	37. 78	37.77	37.75
50	42.55	42.49	42.43	42.37	42.31	20	37.73	37.72	37.70	37.68	37.67
51	42.25	42.20	42.14	42.08	42.03	8;	37.65	37.63	37. 62	37.60	37.58
52	41.97	41.92	41.86	41.81	41.76	85	37.57	37.55	37.54	37.52	37.50
53	41.71	41.66	41.60	41.55	41.51	83	37.49	37.47	37.46	37.44	37,43
54	41.46	41.41	41.36	41.31	41.27	811	37.41	37.40	37.38	37.37	37.35
							0.0	17 20	27 2!	37.29	37.28
55	41.22	41.17	41.13	41.08	41.04	85	37.34	37.32	37.31 37.24	37.29	37.20
56	40.99	40.95	40.91	40.86	40.82	86	37. 26	37.25 37.18	37.24	37.14	91.24
57	40.78	40.74	40 .7 0	40.66	40.62	87	37.19	37.15	37.10	37.18	37.07
58	40.58	40.54	40.50	40.46	40.42	98	37.13	37.11	37.10	37.03	37.01
59	40.38	40.34	40.31	40.27	40.23	89	37.06	37.04	11/ • to 1	902	J . • U I

Saybolt Universal Seconds a 100°F

	0.0	0.2	0.4	0.6	0.8		0.	0 0.2	0.4	0.6	0.8
90	36.99	36.98	36.97	36. 95	36.94	95	36.	69 36.6	7 36.66	36.65	36.64
91	36.93	36.92	36.9 0	36.89	36.88	96	3 6.	63 36.63	2 36.61	36.59	36.58
92	36.87	36.85	36.84	36.83	36.82	97	36.	57 36.50	6 36.55	36.54	36.5 3
93	36.80	36.79	36.78	36.77	36.76	98	36.	52 36.53	1 36.50	36.49	36.47
94	36.74	36.73	36.72	36.71	36.7 0	99	36.	46 36.49		36.43	36.42
	0	1	2	3	4		5	6	7	8	9
100	36.41	36.36	36.31			1	36.16	36.11	35.07	36.02	35 .9 8
110	35.93	35.89	35.85				35.72	35.68	35.64	35.60	35.57
120	35.53	35.49	35.45				35.34	35.31	35.27	35.24	35.20
130	35.17	35.49	35.45				35.01	34.98	34.94	34.91	
140	34.85							34.57			34.88
170	34.03	34.82	34.79	34.7	76 34.7	5	34.70	34.57	34.65	34.62	34.59
150	34.56	34.52	34.51	34.4	18 34.4	5	34.42	34.40	34.37	34.34	34.32
160	34.29	34 .27	34.24	34.2			34.17	34.14	34.12	34.09	34.09
170	34.04	34.02	34.00	3 3.9	33.9	5	33.93	33.90	33.88	33.86	33.83
180	33.81	33.79	33.76	33.7	74 33.73	2	33.70	33.68	33.65	33.63	33.61
190	33.59	33.57	33.55	3 3. 5	33. 50)	3 3. 48	33.46	33.44	33.42	33.40
	0	F	40	4.5	j 20		26	30	35	40	45
200		5	10	15		,	32.89	32.80	32.71	32.62	52.54
250	33.38	33.28	33.28	3 3.0			32.04	31.97	31.89	31.82	31.74
300	32.45	32.37	32.28				31.32	31.25	31.18	31.12	31.05
350	31.67	31.60	31.52		=		30.68	30.62	30.56	30.51	30.45
400	30.99	30.92	30.86				30.15	30.10	30.05	30.00	29.95
700	30.40	30.35	3 0.30	30.2	5 30.20	,	JC - 13	30.10	30.75	50.00	23,30
450	29.90	29.85	29.80	29.7	5 29.70)	29.65	29.60	29.55	29.51	29.46
500	29.42	29.37	29.33	2 9.2	•		29.19	29.15	29.10	29.06	29.02
550	28.98	28.94	28.90	28.8	_		28.79	28.74	28.70	28.67	28.65
600	28.60	28.56	28.52	28.4			28.40	28.37	28.33	28.30	28.26
650	28.23	28.19	28.16	28.1			28.07	28.04	28.01	27.99	27.95
_		,							07.54	27 (0	22.66
700	27.92	27.89	27.86	27.8			27.77	27.74	27.71	27.69	27.66
750	27.64	27.61	27.58	27. 5	5 27.53		27.50	27.48	27.45	27.43	27.40
B 00	27.38	27.35	27.33	27. 3	0 27.28		27.25	27.23	27.20	27.19	27.15
0 50	27.13	27.10	27.08	27.0			27.00	26.38	26.96	26.94	26.92
900	26.90	26.88	26.86	26.8	4 26.82		26.90	26.78	26.76	26. 14 / 15. 14	9.72 96.59
950	26.70	26.68	26.66	26.6			26.60	26.58	26. 56	· · · · · · ·	26.52

LA PAMPILLA REFINERY EXPANSION STUDY

TABLE I

TYPICAL INVESTMENT COSTS

Basis: Battery Limits, Curve type, 1980 Gulf Coast Costs

VACUUM UNIT (33,000 BSD)

M and L (Material and Labor) DE and CE (Design, Engineering and	11,500.000
Contractor Expenses)	3,200,000
Estimated Erected Cost, U.S. Dollars	14,700,000

FCC AND GAS CON UNIT (18,000 BSD)

M and L (Material and Labor)	29,500,000
DE and CE (Design, Engineering and Contractor Expenses)	8,100,000
Estimated Erected Cost, U.S. Dollars	37,600,000

VISBREAKING UNIT (16,000 BSD)

M and L (Material and Labor) DE and CE (Design, Engineering and Contractor Expenses)	7,200,000
	2,600,000
Estimated Erected Cost, U.S. Dollars	9,200,000

LA PAMPILLA REFINERY EXPANSION STUDY

TABLE II

TYPICAL UTILITY CONSUMPTIONS

Process Unit	Capacity BSD	Power KV	Steam MLB/HR	Cooling Water GPM	Fuel
Vacuum	33,000	995	31.5	2,470	67
FCC and Gas Con	18,000	1170	94.0	6 , 220	224
Visbr ea king Unit	16,000	755	(51.5)*	59	28

^{*} Steam Production.

[&]quot;UOP"

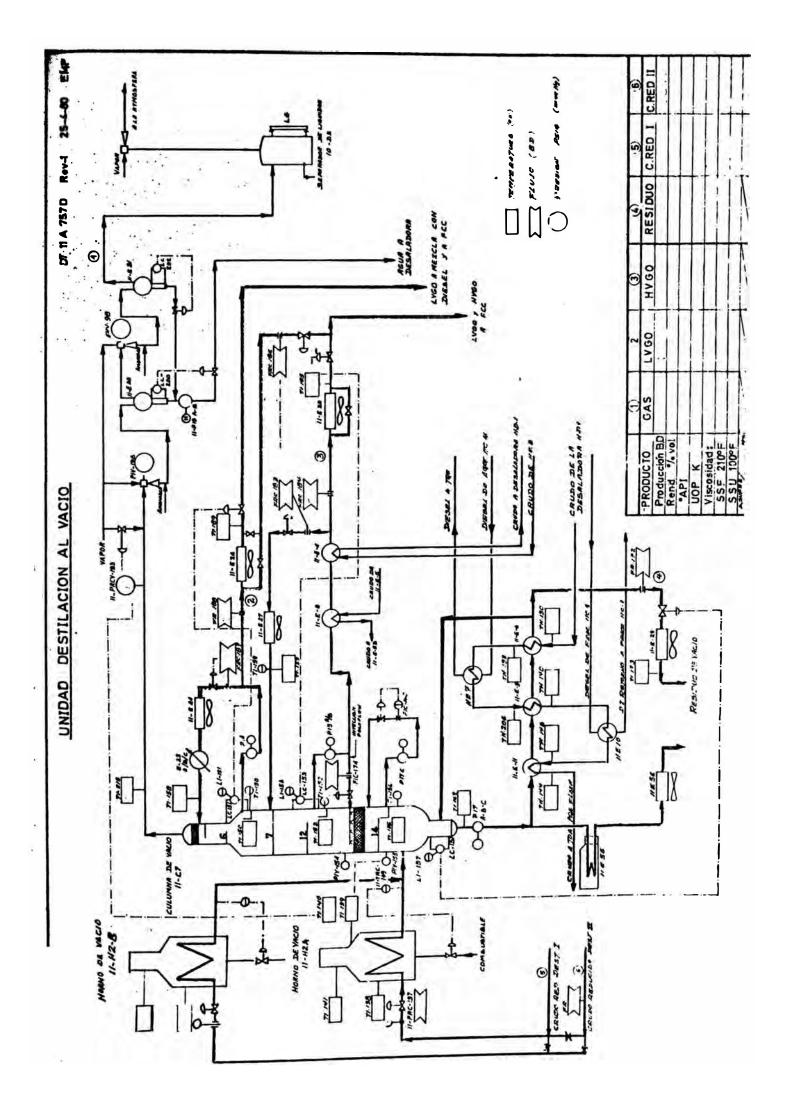
CUADRO DE PRECIOS AL CONSUMIDOR EN LOS PAISES CON EMPRESAS MIEMBROS DE ARPEL

VIGENTES AL

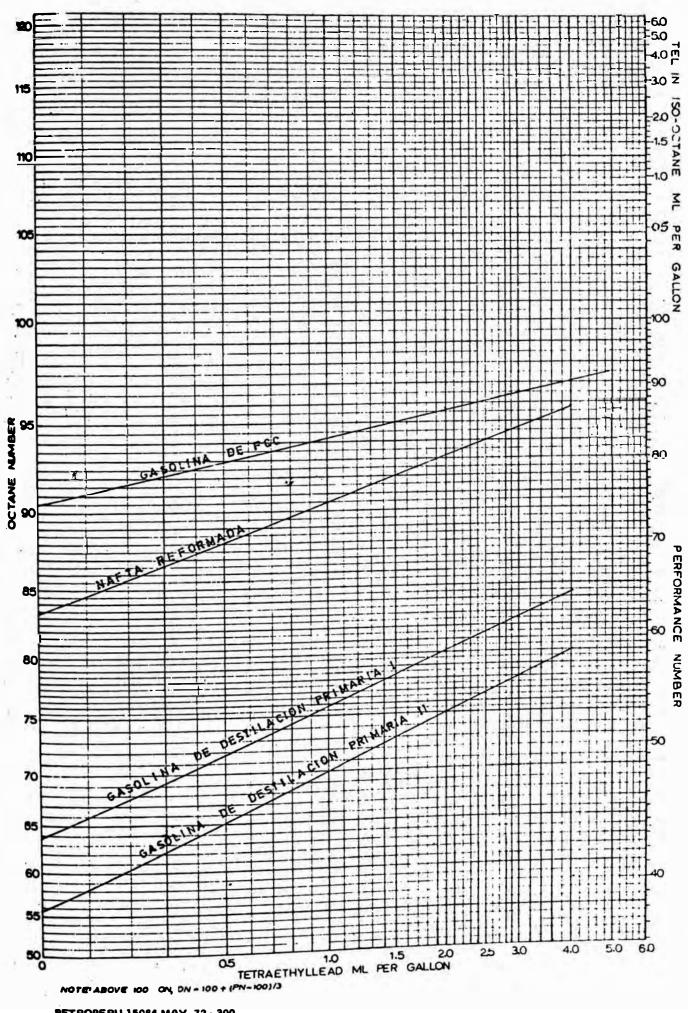
15 - 5 - 81

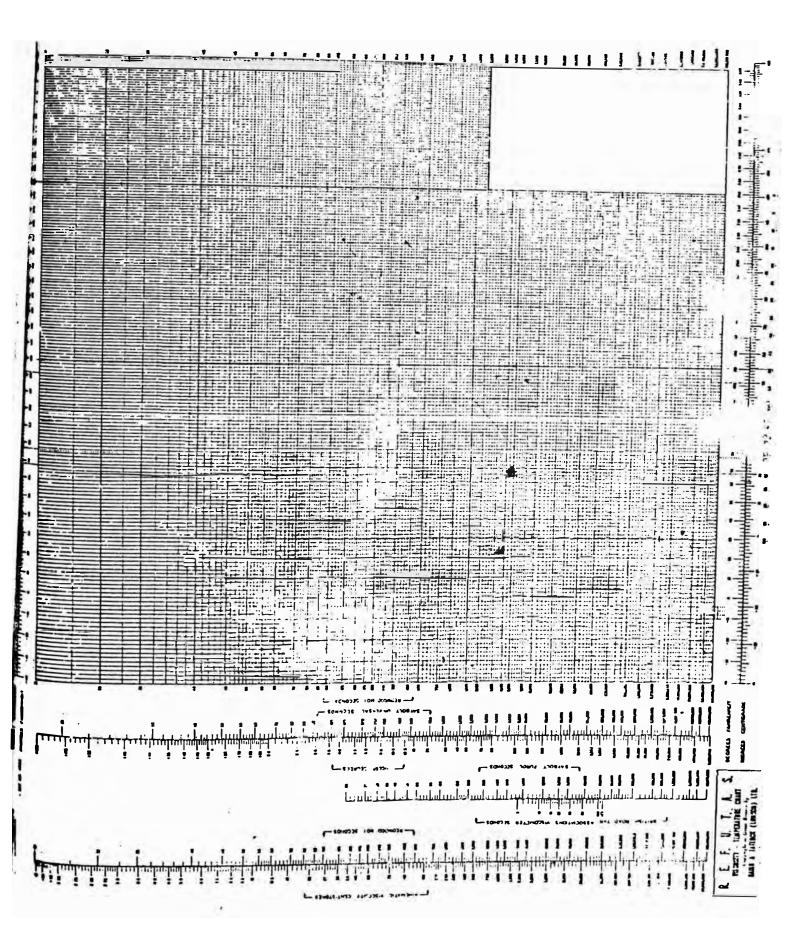
PRODUCTOS	ARGENT YPF		SP Abi		BRASI PETROB Cr		CHILE ENAP		COLOM ECOPET		ECUA CEF S			EXICO EME's USS	PERU PETROP a/./L			GUAY ICAP USS		A31U53 A870 88U
kyrus **	Lt		13.25 ^{Lt}	0.53	60.00 ^{Lt} .	0.75	24.86 ^{Lt.}	0.64	10.30,Lt	0.22	L	t.	1.80	Lt. _{0.08}	86.85 Lt	0.25	15.06	Lt. _{1.46}	0.22	Lt. _{0.0}
Geolina Mitur 6)		1			(2)	- 1			(7)		2.64	0.11								
لناعد المالية المالية المالية	1450	0.45	6.00	0.24	66.00	0.83	18.80	0.46	8.98	0.19	3.96	0.16	2.80	0.12	a1.90	0.24	9.57	0.94	0.15	0.04
نيدايد ١٤٠٤ د. بدارين	1760	0.55	7.00	0.28			20.60	0.53	11.10	0.23	5.28	0.21	4.GO	0.18	98.28	0.29	11.90	1.17	0.35	Ú.08
ו יוע נישון ישואר	830	0.26	8.72	0.35	25.50	0.32	15.62**	0.40	5.02(7)	0.11	5.81	0.23	2.35	0.19	51.04	0.:5	5.54	0.52	0.14	0.5
Turus Fuel JP 4	840	0.26															7.25	0.71		•
יייוריייט מתוקצודומה	1060	0.33	4.00	0.16	33.00	0.41	13.40	0.34	8.98	0.19	1.59	0.06	0.55	0.02	14.53	0.34	4.65	0.46	6.13	0.0
wroseno moustrial			4.00	0.16			14.01(2)	0.36	1						48.61	0.14			ĺ	
لمحجد (تع ساء ١٩٢٨)	1060	0.33	6.00	0.24	32.50	0.41	16.80(5)	0.43	8.98	0.19	2.91	0.12	0.65	0.03	nu .76)	0.1	3.95	0.39	0.10	0.03
muich usum	520	0.16	1										7			ļ				
ital cil kg.	403	0.13	7.37	0.29																
retrous Ind. Comb. N°5				-			10.72 Kg	0.27		_			0.30	0.013	33.82	0.10	3.09	0.30		
letroleo Ind. Curo. Nº6					18.12(1	0.23	9.69	0.25	3.83	0.09	1.85	0.07		0.011			2.27	0.22	0.04	0.004
Ges Licuade de Patréles (GLP) kg Ges natural m'	937 72.20	0.47	3.00	0.12	26.40	0.33	22.66(6)	0.58			10.50	0.42	2.40	0.11	35.38(4)	6.10	10.04	0.96	0.40	0.69
Trementine mineral Senzel semún					71.10	0.89				-	ŧ									
Salvente de cauche (borrache)					74.30	0.93														
Tasa de Cambio per USS 1	\$	3194	\$ 2	5.00	Cr\$	79.86	\$ 39	00.6	\$ 47.	50	s. :	25.00	\$:	22.84	s./358	.60	\$ 10	.195	Bs.	4.30
NOTAS:	U	NIDAD	MONETAR	IA:		Sh: Pa	sos balivie							FUENTE						
·· Procio en Aerepueno		. Boliva	_			s/: So									ción elabor	ada es	base c l	مع بالرجم	dar.s	
(1) esente de Impueste	C	r. Crucel				S: Suc									hades per				J	

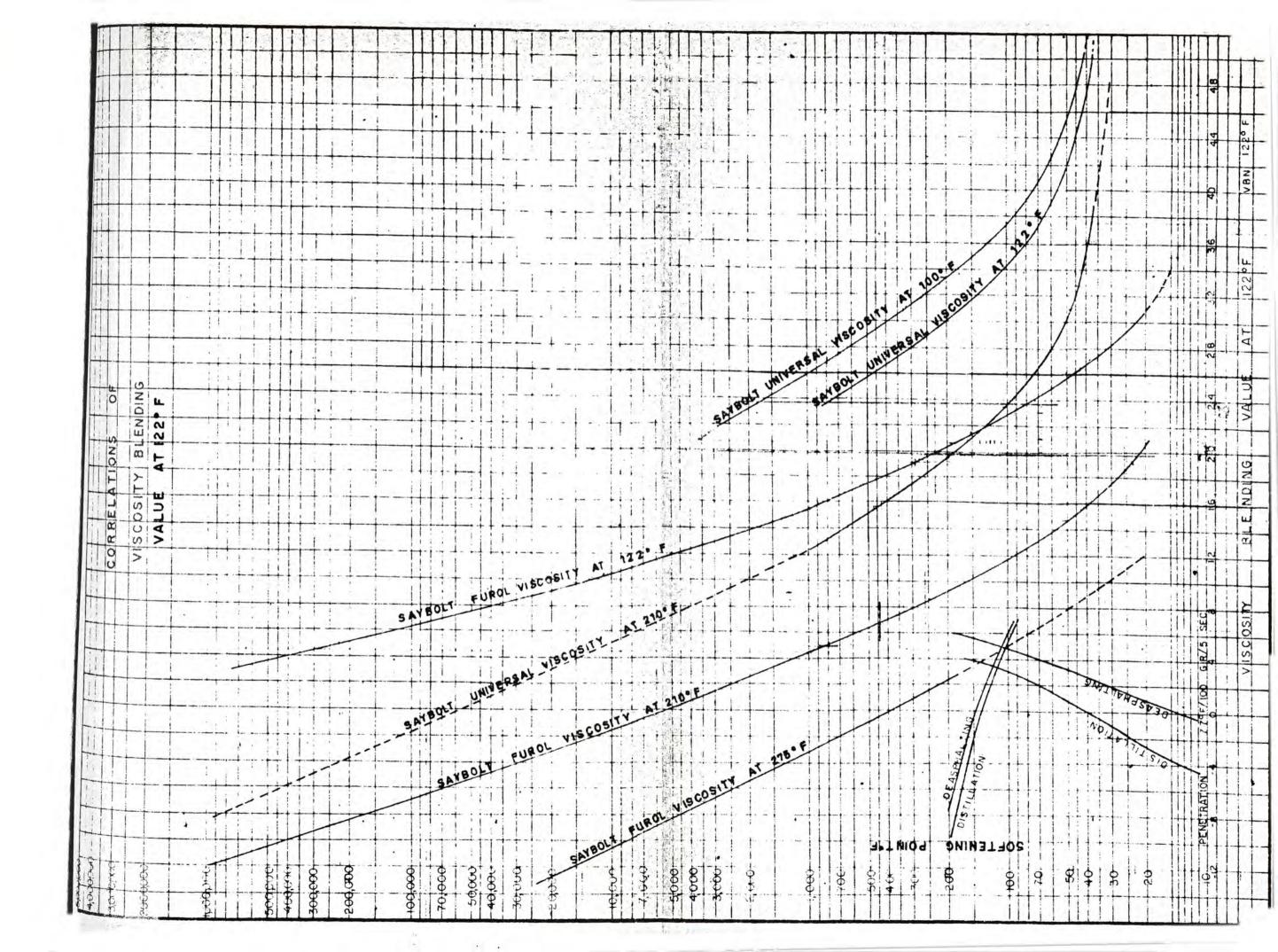
(5) Precio en boca de expendio


(6) Precio local venta.

(7) Precio promedio al distribuidor


USS: Déleves USA


S. Peses


m': metre cúbice

TETRAETHYLLEAD SUSCEPTIBILITY CHART

3 1.49.51 JI WPSS1242 T113PPP1 17 BATALLA-CESA	
111	
	6
	,
	4

ECK - 7P57363 V2-M3 - 817308124	(KDATAT TO UTCOST)		XeHS; ixeStatCij				
CCNTRINE PRUSRAY COMPTECT - APS7360 V2-	40VE (40VA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	US CHOOLIST	XFHS, TEST	AANGE PEXIT			
CCNTRINE	2448	2563	5575	0073			

148 - 3.37 - 158 - 3.37 - 158 - 3.37 - 158 - 3.37 - 158 - 3.37 - 158 - 3.37 - 158 - 3.37 - 158 - 3.37 - 158 - 3.37 - 158 - 3.38 - 15		PAGE	1 - 81/3081C3D
114 - 3.37 - 2.3 / 11.5 - 2.5 101. - 3.1 / 11.5 - 2.5 101. - 3.1 / 11.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 3.1 / 1.5 - 2.5 101. - 4.1 / 1.5 - 2.5 101. - 4.1 / 1.5 - 2.5 101. - 5.1 / 1.5 101. - 5.1 / 1.5 101. - 5.1 / 1.5 101. - 5.1 / 1.5 101. - 5.1 / 1.5 101. - 5.1 / 1.5 101. - 5.1 / 1.5 101. - 5.1 / 1.5 101. - 6.1 / 1.5 101. - 7.1	S CONVERT 41 41 COST TO PROBLE		
	7C °C = 24.11		
- 4245 5 101. 1 111.5 = 3 ECT (18). - 5. JAIS ERBS (S) - 3 VAJET EPOPTES. - 435 5 20 103. 455 7 10. 3 411.54 ATRIA(S) - 0 43 JUR EPROPTES. - 50 105 5 20 105. - 50 105 5 20 105. - 50 105 5 20 105. - 50 105 5 20 105. - 50 105 5 20 105.			
- 3.45. 5.50 [60]. 5. 1141. 2565(10). 5. 1143. 2561[10). 5. 1143. 2561[10). 6. 1143. 2561[10]. 7. 1143. 2561[10]. 7. 1143. 2561[10]. 6. 1143. 2561[10]. 7. 1143. 2561[10]. 7. 1143. 2561[10]. 7. 1143. 2561[10]. 7. 1143. 2561[10]. 7. 1143. 2561[10]. 7. 1143. 2561[10]. 7. 1143. 2561[10]. 7. 1143. 2561[10].			
1 1113 CFR31S) - 3 VAJS CFR04(5). - 3113 CFR31S) - 3 VAJS CFR04(5). - 3113 CFR31S) - 3 VAJS CFR04(5). - 3113 CFR31S) - 3 AJUR CFR04(5). - 3113 CFR31S) - 3 AJUR CFR04(5). - 3113 CFR45(5) - 6 AJUR CFR04(5). - 3113 CFR45(5) - 6 AJUR CFR04(5).	1- 3.00 5.50 16%.		
- 5. Jan 3 ECTION. 3 41 13 4 EMB3 (S) - 3 VAUET CFMUTIN). 3 50 4 10 4 F 3 4 4 5) - 0 AAJUR EPRURIS). - 3 4 1 13 4 ER CA (S) - 0 AAJUR EPRURIS). CAP 113 4 ER CA (S) - 0 AAJUR EPRURIS).		The second secon	
3 1133 (MR3)151 - 3 VAJUT SPROTIN). RESPECTOR. 3 1132 ARRIVES) - 0 44302 SPROTIN. - 350135 SECTION. CASTION 3 1135 SPACKING 9 1135 SPACKING 9 1135 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 10 125 SPACKING 11 125 SPACKING 12 12 SPACKING 12 SPACKIN	2- C2 1/14 3 SCT 1/4Ns		4
- 41014 CF809(S) - 3 VAUCT EF807(K) 41014 FR804(S) - 0 41000 EF804(S) 100 105 SECTION 100 105 SECTION 100 105 SECTION 100 105 SECTION 100			
*£517164. *£51716 3 41704 F7804[5] - 0 45007 EFROM[5]. 5 50 705 50 ETTDM. 5 71.35 EFROM[5] - 0 75005 EFROM[5].	- (5		
\$551916 5 31 413.4 FRRIATES) = 0 443018 EPROATES). - 32 435 SECTION: - 452 1754 5 41 456 EPROATES) = 0 44350 EPROATES).	3- 315's SECTION.		4
3 41.3A ERACK(S) - 0 44JUR EPROK(S). CAD 113A 3 41.3A ERACK(S) - 0 74JUR EPROK(S).			
5 41.3h chackist - C 4135h = Fridatist.	J 11113 FERTINES -		
3 41.3h shack(s) - 0 4135h shudts).	5- 355 05 CTTOS.		
J 41.3h chach(S) - C 4135h Efredats).	1011 fet 2		, ,
	J 41 . JA CRAUM(S) -		

81/308	PAGE 2 -							25-MS	MP5736	XECUTIR.		
					4	197		. ए : प	סבטאים הג	MENT S BY	त उन स्टा	-च र ह
EAGIFC.	EDSIDS4		EKTIK	3	EN 1UP		EG184	5	EGC 13C	7	ELUP	37
EGZUP EHGLFC EGLFC10 AGCFC20	EG2845 ELG1DS4	L2GL3	ECR 2 V	4	ECRIRS EAG2FC2	73	EAG2FC1	• • • • • • • • • • • • • • • • • • • •	EDS 20S	3	ECRIVI ECTZKT	3 L
EGLECT	EACIRS4	CFC1GC2	EHC1R	3	ELCIDS		EGFC184	· · · · · · · · · · · · · · · · · · ·	715705 530144	3	EVIVE FYIVE	114
AHC2RS AR SVBR	ALC2054	PVBFC23	AGFC2	5	ABU284 AGLVBDS	-:::::3:	480289 460364	· E • • • • 3		6 4	TOL FUZI	LJI
PD G842	P03tt	ULP3	PUGLP	2	PDGC		530724	13	EUL JP-C	· · · · · 4	TAC Sa S	1 i s
IDS2 \	INI *	842	IG84	••••2	IGLP	4	ĎDR \$6	••••4	PL DS2	3	57KI	127
1 7		•										_
1 2												
12												
" M												
7				•						•		
7.7.7												
-5/3/3												
	7											
			-	_								
3.40 E	* · · · · · · · · · · · · · · · · · · ·											
										-		
									-,			-

- 101	PAGE 3 - I	01.29
Capo	AREGE AREGE AREGE AREGE AREGE AREGE AREGE AREGE AREGE AREGE AREAS	E FRAGT E ERCR2 E ERGCF1
'.	2/ E ROLÉI3 E ROLÉI4 L ÉGGI3 E ERLCI3 E EPGUP3 E ENCVI3 E ARGEZ3	E ABCV2 E ARLCZ E ARRSVB G RVIDSZ E PROGLP
7 9	PRISES STATISFICS - (5 PCAS) 137 VARIABLES, 323 ELEMENTS, DENSITY = 3.57	G RPDG84
10		+
12 12 13 13 13 13 13 13 13 13 13 13 13 13 13		25 25
14		
16 17 18	<u> </u>	
10		

			1	1	1	.01		-					
PA 6E		!											
d.		1	-										
	1	1											
	1	1											
ì			1										
1 1			:					1					
- 198 a. Joseph	los to	3.15	dita			J		1					
-15° 15°					1	l.							
•					1	-				3)			
•					1	-							
MPS/350 V2-48	i i	- No.			1	-	The Course of th						
MPS/350 V2-48	i i	- No.			1	-)	•	
MPS/350 V2-48	i i				1	-					7		

. 1

### ##################################		
1		
######################################		
######################################		
### ### ##############################		
######################################		
## ## ## ## ## ## ## ## ## ## ## ## ##		
44.022 44.022 44.0221 6.0012 6.0012 6.0012 6.0012 6.0013 6.001		
A A A A A A A A A A A A A A A A A A A		
######################################		
######################################		
# 4 5 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		3
# # # # # # # # # # # # # # # # # # #		
### ##################################		A
4 5 5 1 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7		Line of the same
44.35 44.02 44.02 44.02(4) 44.02(4) 44.02(4) 44.02(4) 44.02(4) 44.02(4) 44.02(4) 44.02(4) 45.02		*
######################################		
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
# # # # # # # # # # # # # # # # # # #		
41		012
E 243CJ2 243CJ2 543CJ2 543CF1		
E SUCTI		
יי בינינים		1
6 44 1052 6 AV 1850		* °C *
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7
-		À
6.4.		1
ia v	·	
	42.	

	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	
	1880 1880 1880 1880 1880 1880 1880 1880	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	

2010		1.00000	Church		
=-81/3		25000	ERCAL	1.60303	
C. 8145		25.1400	Er Co L	1.00000	The state of the s
107102		12000	CRGLZ	0.0000	Talk
2,234	NO NO NO NO NO NO NO NO NO NO NO NO NO N	50.7000	ERGZ QMAX, VR	1.95000	
2,234		0.0546	FR 52	1.500000	
12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		35000	E9KT2		A Comment of the Comm
1 2 Z Z Z		1.00000	ER 135.2	0,0000.1	OH /
6.25235 6.25C1		44.35550	PRU052 E 4 A G 2	1.00000	
13462501		23603	E9 AG2	1,00000	
5452FC2		1,500.0	EK CR 2	1.50000	
C-K272		1.0000	ERLGI	0.00000-1	
5.3133 c.101701		43.30000	EP H31	1.00000	7.7 0-1
1211C1		1.0000	Ef AV.	1.00000	
4. 52.33		1.0000	A9162	1.00000	
4-02.30		43.55000	ARHG2	1,00000	V. 1
44.V2.13		1.65550	AREV2	1.00000	
21VZVB		1.0000	PCOC	-	
12120171		1 55000	RGLPF1	00000	
20140101		1.00000	EPGLF1	٢	
1013		2.207c0 1.0000	Ex RUF 1	-	0.1
10131		936.5000	EPHUF1 RAAX2VR	14 CC000	
2. JI 34		1.23400	FOGFL	1.00000	
101013 101013 101013		1 - 5000 6	TAXP VR		
5-5175		030/1-4	PELI 3.2	1.00000	, i
610143 610143		56.15000	PENAS	12 0 0 0 0	1.71
21212		35.150.0	500356	1.00000	(*)
					Ž.
					, , , , , , , , , , , , , , , , , , ,

4.2	(#) = ·			The state of the s						
600	是一	Aulficul Aulficul	ARGCE2 FUNCBJ	7.0000 2.26100	PR 13C	1.66000				
6	· 5 —	45LFCZF2	ABCF2	1.0000	FGLPFZ				· · - · - · · · · · · · · · · · · · ·	
	<u> </u>	ASLFEZUL	FUNCBU	2.25100 1.0000	ARGLEZ	1.60633		Q1.	v a a	
12	٠ ين	45 LFC25L	FUNCBJ	2.28700	ARBUE 2	1.00000				
	<u>.</u>	42 02 3 J	FRCBU	1.00000	A00115.2			27 (2.4)		
	5	A31234	FUNCAJ RMI SPVR	2.28766	ARBUEZ RMAXZVR	1.03000 980.0000				-
	5	43023+	PROUB4	1.0000					2 0	
•	CENTR	A . FC 234	241M6A3	134.0000	EMAXP VR	134.0000				V (
		40F323+	P911564	1.0000	VAIVAL AK	134.00033				
0	, <u>≼</u>	A-C2)3	FUNCRJ	1.20400	ARLCZ	1.65000	SECT MANAGEMENT STREET, TO SEC. AND AND			£^`
•	· iii	4-6542	RVILS2 FUNOBJ	43.17000 1.20430	AP HCS	1.00000				ť
	Z	740552	KV11:20	32.65670	73735	1.00000-	- · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
C .:	10	44C542	FUNDRU	1.20400	PFDRS 5	1.00000			NATIONAL SALES INC.	
-	10 Z	446233 4564366	VACCAB	1.00000	PRIJUS	1:00000				
		4. C. V. C.	TUNCRI	.23000	76.202	1.0000-				
6	" <mark>8</mark>	40 433+	PP 0084	1.0000	-ARGL VO	1.00000-				
	12 -1	42 6 7 3 17 2	RVIUS2	41.49000	PK0 05 2	1:0000				
	" S	AJPVSFCZ	FUNCEJ	•12630	And Part -	i.ccuou-	· — · — · — · — · — — — — — — — — — — —			·
C	<u> </u>	42PV3F32	AACEZ FUNCRJ	1.6660	145'7P	-1.00000-				X
	AC A	726 A352	PVICSO	35.46230	PRIIPS	1.0000	ANSA SA NE			
	15 Z	4124347	FUNCRI	• 12000	AFR SVH	1.00000-				
C.	-	4421342	RV1635 ERGCUP	5.70000	PRO35	1.00000				V
	16 K	= JJJFJ1	FUNCBJ	1.60000	ESCENE	: F. CCCOO				14
	17 50	ニュレファレエ	RGCPF1 FUNCEJ	1.00000 - 3.30000	Et GIJP	1.30000				
6	* ×	こりひょう ナ	RMINPVR	87.55000	₹ ₩ 4X₽ ∀ R					
		4 و ^ح ل ر ت	PROG84	1.((000	-0060	5				
	19 S	ر ان در د ان در	FUNCEJ FUNCAJ	- 20.86666 - 23.70000	PPOSC PRUGL P	- 1.00000				
		FJJLP	KAUPEA	1.0000	11.0021					
-		4	PRIJBU FUNJBU	- 1.(((CC - 21.7(()#))	4W [717 V R	- 81.5C000				
•		+ 5 - 6 - 6	RMAXPVR	- 157.0000	PK 1634	- 1.00000				n11
	5	2223+	4.00	1.00.00		#1) (mm) mm				<u>01</u> ;
			FUILIS J	- 32.50300	54 JK 1	1.00000			Extendition of the control of the co	
) dia	20126	Filiality	- 33.144.3	Sective	- 44.35CJJ				
	20	47.732	<u> </u>	- 23.78.66	(AIS'0	- 19.100000 - 19.10000				
	ຸບ					- 1.0600				
•	' <u> </u>	1,1,5	FrJ .t_m.j FrJ .t_m.j	21.6660	PRISEP	1.00000				
	4 0	432+	FU (1)	51.56000 [5.5000		1.0000			* * *	
_	,14	132	FU. 1	2 1 • 3CCCC	20032					
0		1133	F0. J	33.300.0	470R 20	1.00000				
	• <u>병</u>					25 5000 970 970 (FE)	ANNA AMERICAN ANNA ANNALISMENTA	2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * *	
_	, 4								C. D	
•	-~_									
	* ~~									923
c	• 11								· • · · • · • • •	1754
U	٠٠٠					:			120 ET 150	
	124					*****		PART A RELIGIOUS	PRODUCTION AND AND AND AND AND AND AND AND AND AN	
	1. <u>1.2</u>	C)								
28										CONTRACTOR OF THE PARTY OF THE
						* t			200	
						and the second s				

	1457 530 VZ-148		
ALSTAIC ROBEL	17.66.55 RPD0.23	\$5.50350	
BOUTS PULLA	000000000000000000000000000000000000000		
777	שלוני בייני		
V 1	224 244 244 244 244 244 244 244 244 244		
- E US (177) 11.04 EC FC 1	15. 71665		
1.1 44.7	11.5550		
LA CAPOLICA ECUP	1.755.50		
- MOATH			
î qadı			

VEFIVED AS FUNDS JUNION

	NUM3 : R	Ch	AT	ACTIVITY	SLACK ACTIV	ITYLOWER	LIMIT UPPER	LIMIT.	.DUAL ACTIVITY	
	1	FUNGBJ	ВS	1837.45745-	1089.45	145	NONE	NCNE	20.80000	
	2 3	ERSC1 ERS1	ES	49		9		•	30.82000 30.82000-	
_	5	ER VF1	E3	•				:	87.41000 84.3000	The second of
3	6 7	ERDST ERAGI	EJ			4		:	49.68678	19/2
	3	ERCT1 EAGL2	ES	:					58.52620- 82.78000	17/3 male
	10	EKK 12	ES			7	•	•	87.64000 87.64000	1.1 2004
-	123	ERDS2 ERAG2	ĔĢ				,: 4		84.62000- 58.11403	
<u>_</u>	14	EKLG1	-Eg-	 	-			:	58.61120- 84.25000	1
<u> </u>	1 2	EREST ERRST ERRVI	Eg			•				True / - True
	13	TREGE	- E0			·····			60.45167 84.25000 57.74403	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u> </u>	<u> </u>	AKHG2 AKKV2	35	-	•			:		5 //
5	- <u>- 1</u>	ERGCF1	E3	-	•				48.02578-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2	£ 3	- ERBUF1 - ERBF1	E3	•			-	,	30,49600-	35 30
_	<u> </u>	ERLC1 ERGUP	E.O.		-		•	<u>:</u>	83.69600 27.80000 27.80000	1 0 40000 mg 2 2
4	27	#BCV2	DOC:00			**		•	58.77620- 58.77620-	2800.45
H KS	33	EKHCI ERAFI	EQ	•	•			•	57.16437 57.16437	
≥_	21	ARGCF2	E 3				•	•	20.83000	
<u>5</u>	ک ر د د	143UF2	ËĴ				•	:	29.41300 29.41300	
	25	AKLCZ	E SOCO						83.69600 57.17553	
		34102 34022	<u> </u>	1.000		9.	•	:	57.17553 57.17553	0
2	17	AKUCVB	- EQ		:	*	•	•	20.80000 31.42000	*
<u> </u>		AN SLVB	EQ	•	•		•		84.68000 58.27403	
2_	+2	ARRSVB ENGCUP	E3	(2)	•			•	29.34322	
ii.	+ + + 5	- 30CF1 - 30CF2	EO		:		•	:	50.28678- 58.39403-	The same of the sa
>	17	ASCVA	EQ		:		•	• ,	58.39403- 60.72667-	
-	+ 0	₹vIDS2	EO	30:14481	30.74	•31 -	•	NONE	31.70000-	
5					2000					
∢.								_		
7				3.5.						
.u										
2			-		* * * * * * * * * * * * * * * * * * * *	•				
ii.										
JAN CELINGENICH			-	***************************************			4			· · · · · · · · · · · · · · · · · · ·
-			_							- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

-		EX	ECUTO	JR. MPS/360 V2	- 48				G E 19	_{81/30} 0129
	। यदः र	•••RUw••	41	ACTIVITY	STACK ACTIVITY .	.towe? timiT∪	PPER-LIMIT		9	
) J	AVIRSS RULPF1	LL **	. 24 24 3-	.24243		NONE			
	ر د د	RGE PFZ	8.5	1803.53362	1303.50362-	· NONE	NCNE	25.505975		
4	25	PRISEP	E.3 E.2	437.44786-	*	•	•	20:80000-		A. A
4	37	23.0664	E.3					31.70000		10.34
_	39	PK JK T	EQ EQ	· · · · · · · · · · · · · · · · · · ·				88.03000-		
	- 31	RPULLE	tt	ရှင်ငှပုခွဲပွဲပွဲ		<u> </u>		51.71230- 57.00000-	-	Y
	.3	RPD684	BS LL	32.24394	4.24394-	26.00000 17.0000	NONE NONE	55.30000-		٠
-	2 5	450025 450025	-tt	35.00000 34.00000	*:	35.00000 34.0000	NONE	54.83600- 38.33000	T 10 - 1	
										13
				39		7				
										1113
										111
_						-t			•	
								<u> </u>		* *
-										

<u>. N</u>	MALE CALUNY AT	ACTIVITY	I PUI COST	.LUME LIMIT	.UPPER LIMIT.	REDUCED CUST.	
<u>:</u>	7 = £01	35.CCC00 35.CCCCC	•	14.00000	35.00000 65.00000	63.76879- 63.30582-	
2 2 3 3	70 ACV2 JL	13.12387 31.0000 5.30500		5.50000 24.00000	- 12.00000 - 33.00000	4:00084-	
<u>-</u>	(1 =CFC1 'L	5.38500			- 61600 19.27800	11.41867	- 4
i S	72 ÅČFČŽ BS	16.31392	•	11.000.00	18.0000		*,
⋖	14 CUP UL	1.7000	•	80000 -	1.70000 NONE NUNE	6.86276	. V.
r L	75 E0184 BS	4.27350 1.69900	•83000 •83000		NONE		
	78 -ATIKT 35	5.17253	• 59033		NONE		
<u>9</u> —	20 5701LCI 32	5.14500 -47250	•6CU00		NONE		
	31 20° 1V1 35	13.12987	•25000 •25000		NONE		
	33 ECRIVE LL	1.57713	• 25000 • 25000		NONE	1.95)47-	
4	of GGL 2GL 3S	•40300	• 92000		NONE	•	3
2	30 CUZ84 33 37 CUZUP 85	9.39600 .63103	• 58000 • 5300	•	NONE NONE		υ
ACIONA NA	28 EKTZKT 35 29 EU32:35 35	7.37300 15.64550	• 35000 • <u>2</u> 5000				1 3
2 —	JJ SAGZECT CC	21340	• 2 3255 • 23000				- 2
₹	# 2 :CE2V2 B3	27.17050	13500		NONE		
	#3 £LG105 BS	1.51933	•65000 •65000		NCNE		
	35 4KV1V8 88	3.69704 4.83400	.27500 .65000		———— NONĒ ————NONĒ ——		
<u>></u>	y/ AHGZFCZ BS	14.58600	•65000 •27200		NCNE	•	
2	## ZJCFC1JC LL	13.53000		A characteristic (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic) (according to the characteristic)		23.83000-	
	LJÚ BULFCIFI 55 LJI BULFCIGL LL	367	2.25 100		NCNE NCNE	33.41322-	
	132 EBUIRG LL 133 EBUIRG BS	45257	2.28700	•	NCNE *	31.70000	01
ဥ	134 FURCISH 35	3 - 25939 • 85945	1.20400		NONE		01
<u> </u>	LUD CHIRS BU	.153:2	1.23400		NONE NONE	·	
6	. J 40 JF (. 20) 35	• 24663	1.23400		NCNE -		. <u></u> _
<u>ن</u> س	AUJ AULFEZIE 35	1.11476 3.00199	2.25100		NONE -		
<u>ä</u> _	441 46 J28U LL	1.44432	2.20100 2.23730 2.23730		NGNE	31:70000	
0	LLS AUFC234 35	10.36189	1.20+00	•	NONE	•	B#g
<u> </u>	114 ALCZUS 35	4.68393 .49453	1.23433		NONE		-
S							7.75.65
₹							
#							У
2. iii							
2							. 4
DE INGER							
٥	(96)	7 1			***		
CNAL				3712-51			

וס		-								
. 64. CN	ER . CIJLUMA.	I. AT	٠٠.٠	ACLIVITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.		
3	A AAC29S	100		. 35581	1.23433	•••	NA NA NA NA NA NA NA NA NA NA NA NA NA N	•		
	450V084	250		1.03657	.22000	••	NO.N	••	!	
	-		Į,	3.54582	12000	. •	N N N N N N N N N N N N N N N N N N N	••		
AŢ!	ZE			1.45553	.12000		NON NON	•		
	+			1.42970	3.90000	 				
	for			3.4845.5	26.70000-	• •				
1	28 2380 29 PUS84		111	32.24394	31.70000-	• •	NO.	•		9
			Leste.	500	32.50003-		NOO.	•••		,
	52 504 55 53 16LP			15-67384	57.0000-		NON	••		
	15 1634 15 INT		Q a	2.52350	55.50000		NON	00005:15		
1	10 1352 1 1856			13.35317	34.80000	•	NON			
				•						
									 - -	
isa										

EXECUTUR. MP3/36U V2-48	
T = 11 - 11 - 11 - 1 - 10	
i vo:	
0 30	
	40
) 非工厂	
CE	
AI	A. T. T. T. T. T. T. T. T. T. T. T. T. T.
a a	OR
13:	
NI	
30	
ר יייי אור אינייייייייייייייייייייייייייייייייייי	
200	
οĀ	
Z 91	
Āū	
SH	
NC.	

BIBLIOGRAFIA

- 1. Annual Book of ASTM (American National Standard)
 - ANSI/ASTM D 341-77
 - ANSI/ASTM D 2161-74
- 2. Manual Fisher/Tag
 - ASTM Designation: D-466
- El Petróleo Refino y Tratamiento Químico por Pierre Wuithier. Versión Española.
 Tomo I (Procesos de Refino 5, 6, 7)
 Tomo II (Torres de Platos)
- 4. Ludwing Ernest G. Applied Process Design for Chemical and Petrochemicals Plants. Tomo II: Distillation.
- 5. Manual de Operaciones, Unidad de Cracking Catalítico Fluído División Operaciones Sección Conversión Relapa.
- 6. Manual del Ingeniero Químico por John H. Perry, Tomos I y II.
- 7. The Davison Chemical Guide to Catalitic Cracking.
- 8. Balance de Materia en la Unidad de Craqueo Catalítico Fluído Parte I (The Davison Chemical).
- 9. Davison. Super-D, Ahora el Nuevo Estandar Mundial de Catalizadores de Craqueo Fluído. (The Davison Chemical).
- 10. Davison da la Bienvenida al Carbón en su Estudio Trimes tral de Catalizadores de Craqueo Tipo Fluído. (1979). (The Davison Chemical).
- 11. Davison Survey of Fluid Catalytic Cracking of Residuum (The Davison Chemical).

- 12. Normas para Evaluar Proyectos PETROPERU.
- 13. Costos Operativos Refinería La Pampilla Ing. Pedro Andía.

SEMINARIO TECNICO SOBRE DESTILADOS MEDIOS PETROLEOS DEL PERU (ABRIL - 1980)

- 14. "Alternativas de Maximización de Destilados Medios a través del Crudo Reducido de RELAPA". por Ing. Ernesto Barreda - Refinería La Pampilla.
- 15. "Maximización de la Producción de Destilados Medios" por Ing. Didier Vergara C. Dpto. Manufactura Ing. Jorge Fernández C. Dpto. Técnico.
- 16. "El Proceso de Hidrocraquin en la Proudcción de Destilados Medios" por Ing. José Merino - Dpto. Tecnología, Div. Manufactura.
- 17. "Producción de Destilados Medios en RELAPA" por: Ing. Próspero Pachas Ing. Edgardo Candela.
- 18. "El Proceso de Cracking Catalítico como Productor de Destilados Medios" por: Ing. Rafael Antezana.
- 19. "Estabilidad a la Oxidación del Diesel Nº 2" por: Ing. Rosario de Dancuart.
- 20. Experiencias y Evaluación de la Operación con Cataliza dor Zeolítico XZ-25 en la Refinería "La Pampilla" División Técnica Sección Ingeniería RELAPA.
- 21. Primer Congreso Andino de Petróleo Tomo III Refinación y Petroquímica (RP-14)
 "Ampliación de la Refinería La Pampilla en la Costa Central del Perú".

TESIS

22. "Análisis y Optimización de una Unidad de Craqueo Catalitico"

por: Briones Cabello, Jesús.

23. "Optimización de Mezcla de Gasolinas". por: Chiri Ubillus, Leoncio.

24. "Optimización de la Ukidad de Destilación al Vacío de RELAPA"

por: Contreras Clemente, Enrique.

25. "Estudio Técnico-Económico para la Instalación de una Unidad de Visbreaking"

por: Taype Romero, Guillermo.

26. "Modificación de la Unidad Merox de Gasolina FCC de la Refinería La Pampilla"

por: Céspedes Morante, Jorge.

REVISTAS

Revista Técnica ARPEL

27. "Modelo Matemático de la Refinería de Talara" por los Departamentos: Manufactura y Sistemas y Procesos de Datos.

VII. Reunión - Río de Janeiro - 1970

- 28. "Optimización del Proceso de Refinación" por: Ing. Guillermo Torres O. (YPFB)

 XXVIII. Reunión México 1977.
- 29. "Experiencias de la Modificación de la Unidad FCC a Ri ser Cracking en la Refinería La Pampilla" por: Ernesto Barreda (PETROPERU) XXVIII. Reunión - México - 1977.

30. "Experiencia Operacional sobre la Incorporación del Aceite Cíclico Ligero en Mezclas de Gasoil en la Refinería de Cardon"

por: Pedro Delfin Irausquin y otros (PDVSA)
XXXIV. Reunión - Viña del Mar, Chile - 1979.

31. "Desintegración Térmica Aplicada a la Reducción de Vis cosidad de Asfaltos"

por: Edgardo Argaez Valencia (PEMEX) XXVIII. Reunión - México - 1977.

32. "Experiencias Realizadas en la Planta Reductora de Viscosidad situada en la Refinería "18 de Marzo" Atzcopot zalco, México"

por: Roberto Caballero G. (PEMEX) XXXVI. Reunión - Río de Janeiro - 1980.

33. Cuadro de Precios al Consumidor en Latinoamerica (5/5/81).

Chemical Engineering

- 34. "Optimizing Method for Vacuum Rectification Part I" February 1, 1967 (Págs. 145-154).
- 35. Economic Indicators
 Jun 1981.

The Oil and Gas Journal

- 36. "Thermal Visbreaking of Heavy Residues" November 9, 1959, Vol. 57 N° 46.
- 37. "HDS + HOC = High Resid Conversion", Jun 25, 1979.
- 38. "Design, Uses of Modern SDA Process" September 30, 1974
- 39. "Modern FCC Units Incorporate many Design Advances" Jan 17, 1977.