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Abstract

The objective of this thesis is to analyze, develop and implement primal and mixed

schemes for certain elliptic problems, based on the philosophy of Hybrid High-Order

(HHO) methods.

We make use of known results, such as Lax-Milgram’s Lemma for primal

formulations, and Babuška-Brezzi’s theory for mixed schemes, in order to establish

the unique solvability of linear and nonlinear problems that arise in the context of

physical problems, for example: fluid mechanics.

We prove the well-posedness of continuous and discrete problems, related to the

Neumann problem, a certain class of nonlinear elliptic problems, and an interior

transmission problems. We include their corresponding a priori error analysis.

In addition, in each of the next chapters, several numerical experiments are

included, which illustrate the good performance of the proposed schemes, and confirm

the theoretical convergence results, as established in the corresponding analysis.
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Resumen

El objetivo de esta tesis es analizar, desarrollar e implementar esquemas primales

y mixtos para ciertos problemas eĺıpticos, basados en la filosof́ıa de los métodos

h́ıbridos de alto orden (HHO).

Hacemos uso de resultados conocidos, como el Lema de Lax-Milgram, para

formulaciones primales, y la teoŕıa de Babuška-Brezzi, para esquemas mixtos, con

el propósito de establecer existencia y unicidad de problemas lineales y no lineales

que surgen en el contexto de problemas f́ısicos, como por ejemplo en la mecánica de

fluidos.

Establecemos la solubilidad única de los problemas continuo y discreto, con su

estimación de error a priori correspondiente, para el problema de Neumann, una

cierta clase de problemas eĺıpticos no lineales y para problemas de transmisión

interior.

En cada uno de los caṕıtulos desarrollados, se incluye varios experimentos

numéricos, que ilustran el buen desempeño de los esquemas propuestos, y confirman

los resultados teóricos de convergencia, obtenidos en el análisis correspondiente.
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INTRODUCTION

In the last decades, a great variety of engineering problems have been solved, such as

the construction of noise maps [128], acoustics [136], aeronautics [55], fluid dynamics

[132], etc. Many of these problems in general cannot be solved analytically, and

therefore addressed by numerical methods, such as finite differences (FD), finite

volumes (FV), finite elements (FE), among others. In this thesis, we choose to use

the finite element method, due to its geometric flexibility and high precision with

high-order polynomials. For a discussion of its advantages and disadvantages with

respect to finite differences and finite volumes, we refer to the introduction in [89].

Engineers frequently face problems that can be described/modeled in most cases

by Partial Differential Equations (PDE). Mathematicians and engineers have been

developing increasingly sophisticated and robust numerical schemes, to approximate

better and faster certain variables such as pressure, speed, deformation and

concentration on the discretization of complex domains. One reason for the success of

numerical analysis is the wide availability of high-performance computing resources

and the increase in the predictive capabilities of the numerical models translated

into such schemes. The main objective of the numerical analysis is to describe the

relationship between the exact solution of the original equation and the approximate

one obtained from its discretized version (numerical scheme). There are two types:

a priori and a posteriori error analyses. The a priori error analysis is responsible

for establishing the convergence of the method, and deriving the optimal order of

convergence, if it is possible. In contrast, the a posteriori error analysis devises

a strategy to improve the quality of the approximation without having to perform

uniform refinement (which is usual in a priori error analysis and increases the degrees
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of freedom very fast). This leads to deduce an a posteriori error estimator, which

can be computed in terms of the approximate solution and the data of the problem.

This estimator is then implemented in an adaptive mesh refinement algorithm. In

this thesis, we will focus only in the a priori error analysis.

In [142] a description of evolution of the finite element method (FEM) is provided.

An application of the FEM in 2D, focused on the aerospace industry, is found in

the pioneering article by Clough et al. [143]. Unlike the finite difference method,

that computes an approximation of the solution at a finite number of points in a

grid, the finite element method looks for a solution in a finite-dimensional space,

based on the discretization of the variational formulation. This methodology was

extended to a wide range of engineering applications during the 1950s and 1960s.

For instance, [151] is the first book that deals with the finite element method in the

area of structural engineering, while [55] deals with other applications. The finite

element method developed in these early years has been commonly known as the

standard continuous Galerkin (CG) method, because it uses piecewise polynomial

continuous functions and the Ritz-Galerkin principle. Furthermore, it is said to

be conforming in the sense that the discrete space is a subspace of the continuous

space. To learn more about its beginnings, we refer to [113, 54, 150].

The challenge of approximating the discontinuous solutions of the hyperbolic

equations has been involved in different fields such as gas dynamics, geophysics,

simulation of oil recovery, granular flows, etc. These discontinuities tend to cause

spurious oscillations, which have been addressed by the finite volumes method

by incorporating properly defined numerical fluxes and slope limiters. The first

work that has allowed the flux to be discontinuous across element interfaces, in

the context of transport equation, has been proposed by Reed and Hill in 1973

[138]. This method is called discontinuous Galerkin (DG) and was first formulated

and analized by Lesaint and Raviart in 1974 [124]. Besides, Cockburn and Shu in

1998 [61] introduced a slope limiter operator to ensure stability of the Runge-Kutta

DG methods (RKDG) for nonlinear hyperbolic problems. RKDG method is an
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explicit DG method that satisfies the nonlinear hyperbolic conservation law locally,

with the high-resolution of Runge-Kutta time-discretization and a local projection

which enforces the global stability of the scheme. For more details, we refer to [56].

Thus, DG methods as well as FV methods can work with nonlinear hyperbolic

conservation laws without presenting spurious oscillations. Later, a more general

version of Nitsche’s method extended the application of DG methods to second order

nonlinear parabolic boundary value problems, called symmetric interior penalty

(SIP) method, which was proposed and analized by Arnold in 1982 [9]. We refer

also the works of Wheeler in 1978 [147] for second-order elliptic problems and Baker

in 1977 [13] for fourth-order elliptic problems. Another member of DG methods is

the local discontinuous Galerkin (LDG) method, introduced by Cockburn and Shu

in 1998 [62] as an extension of the RKDG methods for purely hyperbolic systems to

convection-diffusion systems. LDG can been seen as a generalization of the method

of Bassi and Rebay [18], proposed for the compressible Navier-Stokes equations.

Years later, LDG approach has been applied to elliptic problems in [46, 60]. LDG

method requires the use of the so-called numerical fluxes, which are defined in terms

of the unknowns and the data of the problem. This makes it possible to impose, in

a weak way, the continuity inter elements that is not required in the approximation

spaces. Indeed, the numerical flux of the potential does not depend on the discrete

flux variable, which allows us to locally eliminate the flux variable and solve the

problem only in terms of the potential. The DGs are consistent and unlike the

standard CG are nonconforming, locally conservative, and parallelizable methods.

For a general description, we refer to [10, 8, 69].

The main disadvantage between CG and DG approaches/techniques is that the

latter considerably increases the number of degrees of freedom of the algebraic

system obtained after discretization. For this reason, DG methods that can

be hybridized, have been studied, in the sense that the potential trace can be

introduced as a new unknown, playing as a Lagrange multiplier. In this way, it

is obtained, after a static condensation, a system on the mesh skeleton. These

methods are called hybridizable discontinuous Galerkin (HDG) methods, and have
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been introduced in [58, 59]. The other unknowns are recovered once the Lagrange

multiplier is obtained. For a general description applied to fluid mechanics, we refer

to [134]. Also, a detailed and understandable exposition, can be found in [84].

This thesis addresses linear and nonlinear elliptic problems, using the well-known

Hybrid High Order (HHO) method, introduced by Ern et al. [70, 75] in 2014. This

method, like the HDG method, is locally conservative [71], and allows the treatment

of polytopal meshes with possibly hanging nodes. This has been very studied

in recent years, motivated for example by applications in geoscience, hexagonal

geometries in the design of nuclear reactors and oil reservoirs (with geological

faults). This method, like HDG, allows obtaining discontinuous solutions. The HHO

method belongs to the family of nonconforming schemes, since the approximation

space is not contained in the space where the exact solution lives. The term “hybrid”

is due to the fact that the method uses in addition to the information in the cells

the information on the faces of the skeleton. Furthermore, since polynomials of

arbitrary order k ≥ 0 are used locally in the construction of the discrete space, the

term “high order” is adopted.

HHO methods take ideas from the SIP method, such as the design of local

reconstruction operators and stabilization by a local penalty term, with the

difference that HHO weakly imposes the correspondence between local degrees of

freedom (DOFs) based on elements and faces, and not directly between faces. Also,

it is not necessary to include some penalty parameter to ensure discrete coercivity.

The discrete problem is assembled cell by cell, and the cell-based unknowns

can be removed locally using static condensation (Schur’s decomposition in the

mathematical context), that is, simply solving the unknowns in the faces to recover

(at a low computational cost) the unknowns in the cells. This is a characteristic of

the HHO, which is also share by other nonconforming finite element schemes, as the

HDG schemes. HHO methods, unlike HDG, are not consistent, so it is necessary

to bound the consistency error. In [57] and [66, Section 5.1.6], numerical traces are

given for the HHO methods, obtaining a mixed formulation equivalent to the primal
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HHO. This allows us to establish a link with a new class of HDG methods. Thus,

HDG methods can be seen as a generalization of HHO methods. A mixed version of

the HHO method is found in [73], whose relation to its discrete primal version [75],

is discussed in [3].

Another method of high order that supports polytopal meshes is the so-called

virtual element (VE) method, introduced in its conforming form in [20] and as

nonconforming approach in [11]. For an unified version of both types, see [43].

The VE method is a generalization of the classic finite element method, which

contains, apart from the usual family of polynomials, another class of functions

not necessarily polynomial (solutions of particular partial differential equations).

These functions allow us to introduce high order regularity conditions, and are not

computed explicitly. Then, they are not computationally implemented, reducing

the degrees of freedom only on the polynomial part (vertices of the mesh). A link

between the HHO and the nonconforming VE methods can be found in [57, Section

2.4], while a unified analysis of VE and HHO methods is described in [125].

To address phenomena involving composite materials and porous media, that

appears in elliptic problems with fast oscillation coefficients, monoscale methods are

unaffordable, so multiscale methods are used, for example in the context of standard

finite element [120], HDG [85], and in the so-called multiscale hybrid-mixed (MHM)

method [7]. Thus, the HHO method also addresses these types of problems, see

[52, 53]. This is based on solving local problems of the exact equation with Neumann

conditions imposed by Lagrange multipliers. These local problems are solved with

the monoscale HHO on an initial partition of the heterogeneous domain (scaling the

domain).

Although HHO methods are intended to use high order polynomials, it is possible to

find connections with low order methods (k = 0). For example, they can be linked

with hybrid finite volume (HFV) methods in [75]. In addition, HHO approach is

related to Hybrid Mixed Mimetic (HMM) methods in [67]. Here, HMM methods,
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proposed in [21, 83], can be seen as the unified formulation of HFV methods [88],

Mixed Finite Volume (MFV) methods [82], and mimetic finite difference (MFD)

methods [22]. It is interesting to mention that our HHO methodology can be

directly compared with the classical standard finite element method in the context

of diffusion problems [77].

HHO method has addressed a wide variety of models, allowing a robust treatment

of the physical parameters involved in such models, such as, for example,

heterogeneous/anisotropic diffusion [72, 39], quasi-incompressible linear elasticity

[70], transport with dominant advection [67, 4], problems of nonlinear elasticity in

the small deformation regime [27], nonlinear problems of Leray–Lions [64, 65], Stokes

problem [3], incomprehensible Navier-Stokes equations [26], finite deformations of

hyperelastic materials [1], viscoplastic Bingham fluids in pipes [44], among others.

For a review of several of these works and a detailed analysis of them, consult the

book dedicated to the method [66].

This thesis seeks to complement what has already been studied for HHO. For

example, addressing pure Neumann conditions, internal transmission problems and

a class of nonlinear elliptic problems, so the interest of this work would be:

I Study well-posed models of engineering problems that come from continuum

mechanics.

I Develop appropriate variational formulations to establish existence and

uniqueness of the continuous solution of the problem.

I Establish numerical schemes based on the HHO philosophy, for which we define

appropriate spaces and discrete operators.

I Analyze the solvability of the HHO scheme and establish the corresponding

stability and convergence results of the method.

I Validate the theoretical results obtained through illustrative numerical tests

and simulations.
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This thesis is organized as follows:

In Chapter 1, we present the main definitions related to meshes and their geometries,

as well as some well-known technical results of functional analysis for the treatment of

variational formulations (primal and/or mixed ones) [69]. In addition, a description

of the HHO method for the Poisson problem with mixed boundary conditions and

some numerical examples are included. Part of this discussion is found in the

publication:

I Bustinza, R., Munguia, J.: Revisión del método Hı́brido de Alto Orden para un

problema de difusión variable. REVCIUNI 21(1), 6–14 (2018).

As a result, we establish that the HHO method can also be applied to problems

with Neumann boundary condition, is stable and converges optimally, under similar

regularity assumptions of the exact solution, as considered for Dirichlet problem.

In Chapter 2, the variable diffusion problem with pure Neumann boundary conditions

is discussed. This same problem has been already analyzed with Dirichlet boundary

condition in [72], and with mixed boundary conditions in [76], but it had not been

fully analyzed for the Neumann case. The convergence of the HHO method with

the pure Neumann boundary condition is demonstrated. In addition, it is explained

how to make the discretization and computational implementation of this problem,

under the HHO philosophy. The results of this chapter have led to the publications:

I Bustinza, R., Munguia, J.: Revisión del método Hı́brido de Alto Orden para un

problema de difusión variable. REVCIUNI 21(1), 6–14 (2018).

I Bustinza, R., Munguia-La-Cotera, J.: A hybrid high-order formulation for

a Neumann problem on polytopal meshes. Numerical Methods for Partial

Differential Equations 36, 3 (2020), 524–551. DOI 10.1002/num.22439

In Chapter 3, an extension of the HHO method for nonlinear elliptic problems

is proposed. Although the case of homogeneous Dirichlet boundary conditions

is considered, the methodology can be adapted, without major difficulties, for
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nonhomogeneous, mixed and even pure Neumann boundary conditions. The

contribution of this analysis is the deduction of an estimate of the potential error in

L2−norm, which, up to the author’s knowledge, have not been established before.

Numerical examples are included, validating our theoretical results. This chapter is

contained in the pre-print:

I Bustinza, R. and Munguia, J.: An a priori error analysis for a class of

nonlinear elliptic problems applying the hybrid high-order method. Centro

de Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Chile

(2020). Pre-print 2020-08

In Chapter 4, we introduce an HHO scheme to analyze transmission problems

between two subdomains that can represent porous, gaseous or liquid media

depending on the type of physics being analyzed. In [31] the authors present an

HHO analysis for internal transmission problems, where the transmission boundary

can be curved. However, numerical examples are not included. For this reason, we

aim to dedicate this chapter to linear transmission, with a different analysis. The

existence and uniqueness of the HHO scheme is established, and it is possible to

obtain the expected a priori error estimates. The results of this chapter can be

found in the pre-print:

I Bustinza, R. and Munguia, J.: A mixed Hybrid High-Order formulation for

linear interior transmission elliptic problems. Centro de Investigación en

Ingenieŕıa Matemática, Universidad de Concepción, Chile (2020). Pre-print

2020-10

Finally, an accounting of the works we have developed is made, emphasizing their

contributions. Also, some problems or theoretical aspects to be considered as future

works are included.
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INTRODUCCIÓN

En las últimas décadas se han resuelto una gran variedad de problemas de

ingenieŕıa como por ejemplo, construcción de mapas de ruidos [128], problemas de

acústica [136], aeronáutica [55], dinámica de fluidos [132], etc. Estos modelos, en

general, no pueden ser resueltos de manera anaĺıtica, y por lo tanto son tratados

por métodos numéricos, como Diferencias Finitas (DF), Volúmenes Finitos (VF),

Elementos Finitos (EF), entre otros. En este trabajo de tesis optamos por usar el

método de elementos finitos, debido a su flexibilidad geométrica y a su alta precisión

con polinomios de alto orden. Para una discusión de sus ventajas y desventajas con

respecto a diferencias finitas y volúmenes finitos, consultar la introducción en [89].

Los ingenieros se enfrentan frecuentemente a problemas que pueden ser

descritos/modelados en la mayoŕıa de los casos por Ecuaciones Diferenciales Parciales

(EDP). Matemáticos e ingenieros han ido desarrollando esquemas numéricos cada vez

más sofisticados y robustos, para aproximar mejor y más rápido ciertas variables

como la presión, velocidad, deformación y concentración, sobre la discretización

de dominios complejos. Una razón del éxito del análisis numérico es la amplia

disponibilidad de recursos computacionales de alto rendimiento y el aumento de

las capacidades predictivas de los modelos numéricos traducidos en dichos esquemas.

El objetivo principal del análisis numérico es describir la relación entre la solución

exacta de la ecuación original y la aproximada obtenida de su versión discretizada

(esquema numérico). Existen dos tipos: análisis de error a priori y a posteriori.

El análisis de error a priori se encarga de establecer la convergencia del método

empleado, estableciendo los órdenes de convergencia optimales de ser posible. En

cambio, el análisis de error a posteriori busca diseñar una estrategia que permita
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mejorar la calidad de aproximación sin tener que hacer refinamiento uniforme (lo

usual en el análisis de error a priori). Esto conlleva a deducir algún estimador de

error, que pueda calcularse en términos de la solución aproximada y de los datos del

problema, el cual luego se implementa en un algoritmo de refinamiento adaptativo.

En este manuscrito nos enfocaremos al análisis de error a priori.

Una reseña histórica del método de elementos finitos (MEF) se encuentra en [142].

Una aplicación del MEF en 2D, enfocada a la industria aeroespacial, se encuentra

en el art́ıculo pionero de Clough et al. [143]. A diferencia del método de diferencias

finitas, que calcula una aproximación de la solución en un número finito de puntos

de una cuadŕıcula, el método de elementos finitos busca una solución en un espacio

de dimesión finita, basado en la discretización de la formulación débil de la EDP.

Esta metodoloǵıa se extendió a una amplia gama de aplicaciones en ingenieŕıa

durante los años 50 y 60. Por ejemplo, [151] es el primer libro que trata el método de

elementos finitos en el área de ingenieŕıa estructural, mientras que en [55] se tratan

otras aplicaciones. El método de de elementos finitos desarrollado en estos trabajos

iniciales se conoce comúnmente como método de Galerkin continuo estándar

(continuous Galerkin (CG)), debido a que utiliza funciones continuas polinomiales

a trozos y el principio de Ritz-Galerkin. Además se dice que es conforme, en el

sentido que el espacio discreto es un subespacio del espacio continuo. Para conocer

más detalles sobre sus inicios, referimos al lector a [113, 54, 150].

El desaf́ıo fue entonces (quizás aún lo sigue siendo) aproximar las soluciones

discontinuas de las ecuaciones hiperbólicas involucradas en diferentes campos

como dinámica de gases, geof́ısica, simulación de recuperación de petróleo, flujos

granulares, etc. Estas discontinuidades tienden a provocar oscilaciones espurias, las

cuales han sido abordadas por el método de volúmenes finitos al incorporar flujos

numéricos y limitadores de pendiente adecuadamente definidos. El primer trabajo

que permitió que el flujo fuera discontinuo a través de interfaces de elementos fue en

el contexto de la ecuación de transporte, propuesto por Reed y Hill en 1973 [138].

Este método es llamado Galerkin discontinuo (discontinuous Galerkin (DG)) y fue
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formulado y analizado por Lesaint and Raviart in 1974 [124]. Además, Cockburn

y Shu en 1998 [61] introducen un operador llamado “limitador de pendiente” para

asegurar la estabilidad del método DG de Runge-Kutta para problemas hiperbólicos

no lineales. El método RKDG es un método DG expĺıcito que satisface la ley de

conservación hiperbólica no lineal localmente, con la discretización de tiempo de

alta resolución de Runge-Kutta y una proyección local que asegura la estabilidad

global del esquema. Para obtener más detalles, consulte [56]. Por tanto, los métodos

DG al igual que los métodos FV pueden aproximar las leyes de conservación

hiperbólicas no lineales sin presentar oscilaciones espurias. Posteriormente, una

generalización del método de Nitsche permitió extender los métodos de DG a

problemas de valores de frontera parabólicos no lineales de segundo orden, llamado

método de penalización interior simétrico (SIP), que fue propuesto y analizado por

Arnold en 1982 [9]. Referimos también los trabajos de Wheeler en 1978 [147] para

problemas eĺıpticos de segundo orden y Baker en 1977 [13] para problemas eĺıpticos

de cuarto orden. Otro método DG es el llamado método de Galerkin discontinuo

local (local discontinuous Galerkin (LDG)) introducido por Cockburn and Shu

en 1998 [62] como una extensión de los métodos RKDG de sistemas puramente

hiperbólicos a sistemas de convección-difusión. Los métodos LDG pueden ser vistos

como una generalización del método de Bassi and Rebay [18] para las ecuaciones

de Navier-Stokes de flujos compresibles. Los métodos LDG requieren el uso de los

llamados flujos numéricos, los cuales se definen en términos de las incógnitas y de

los datos del problema. Esto permite imponer de manera débil la continuidad entre

elementos que no se requiere en los espacios de aproximación. Además, el flujo

numérico del potencial no depende de la incógnita flujo discreta, lo cual permite

eliminar localmente esta incógnita (flujo), y resolver el problema solo en términos

del potencial. Los esquemas DG son en general consistentes, y a diferencia del

CG estándar, son métodos no conformes, localmente conservativos y paralelizables.

Para un enfoque más general, referimos a [10, 8, 69].

La desventaja primordial entre CG y DG es que este último incrementa

considerablemente el número de grados de libertad del sistema algebraico obtenido
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después de la discretización. Por tal motivo, se introdujeron métodos DG que

pueden ser hibridizados, en el sentido que se puede introducir la traza del potencial

como una nueva incógnita, actuando como un multiplicador de Lagrange. Después

de ejecutar una condensación estática, se obtiene un sistema sobre el esqueleto

del mallado. Estos métodos son conocidos como métodos Galerkin discontinuo

hibridizable (hybridizable discontinuous Galerkin (HDG)), y fueron introducidos en

[58, 59]. Las demás incógnitas (de volumen), son reconstruidas después de calcular

el multiplicador de Lagrange. Para una descripción general aplicado a mecánica de

fluidos, referimos a [134]. También recomendamos revisar el libro [84], para una

exposición más detallada y comprensible.

Esta tesis aborda problemas eĺıpticos lineales y no lineales, usando el ya conocido

método h́ıbrido de alto orden (Hybrid High Order (HHO)), introducido en 2014

por Ern et al. [70, 75]. Esta técnica, al igual que el método HDG, es localmente

conservativo [71], y permite el tratamiento de mallas politopales incluyendo

posiblemente nodos colgantes, muy estudiadas en los últimos años, motivado por

ejemplo por aplicaciones en geociencia, geometŕıas hexagonales en el diseño de

reactores nucleares y reservorios de petróleo (con fallas geológicas). Cabe señalar

que el tratamiento de mallas politopales puede extenderse naturalmente a HDG,

el cual se desarrolló principalmente para mallas simpliciales. El método HHO

pertenece a la familia de esquemas no conformes, pues el espacio de aproximación

no está contenido en el espacio donde vive la solución exacta. El término “h́ıbrido”

(hybrid) se debe a que el método utiliza además de la información sobre las celdas

la información de las caras del esqueleto. Además, como se utiliza localmente

polinomios de orden k ≥ 0 arbitrario en la construcción del espacio discreto, es que

se adopta el término de “alto orden” (high order).

Los métodos HHO toman ideas del método SIP, como el diseño de operadores

locales de reconstrucción y estabilización por un término de penalización local,

con la diferencia que impone débilmente la correspondencia entre los grados de

libertad local (degrees of freedom (DOFs)), basados en elementos y en caras y

12



no directamente entre las caras. Además, no tiene la necesidad de incluir algún

parámetro de penalización para asegurar coercividad discreta. El problema discreto

se ensambla celda a celda, y las incógnitas basadas en las celdas pueden eliminarse

localmente mediante condensación estática (descomposición de Schur en el contexto

matemático), es decir basta con resolver las incógnitas en las caras para recuperar (a

un bajo costo computacional) las incógnitas en las celdas. Esta es una caracteŕıstica

propia de los HHO, que también la tienen otros esquemas no conformes de elementos

finitos, como se vio en el caso de los esquemas HDG. Los métodos HHO a diferencia

de los HDG, no son consistentes por lo que se necesitará acotar el llamado término

de consistencia. En [57] y [66, Section 5.1.6], se definen trazas numéricas para los

métodos HHO, pudiéndose obtener una formulación mixta equivalente al esquema

HHO primal. Esto permite hacer el v́ınculo con una nueva clase de métodos HDG.

Aśı, los métodos HDG pueden verse como una generalización de los métodos HHO.

Una versión mixta del método HHO es encontrada en [73], cuya relación con su

versión primal discreta [75], es analizado en [3].

Otro método de alto orden y que soporta mallas politopales es el llamado método

de elementos virtuales (virtual element (VE)), introducido en sus formas conforme

en [20] y no conforme en [11]. Para ver una versión unificada de ambos tipos, el

lector puede consultar [43]. El método VE es una generalización del clásico método

de elementos finitos, el cual contiene, además de la usual familia de polinomios,

otra clase de funciones no necesariamente polinomiales (soluciones de ecuaciones

diferenciales parciales particulares). Tales funciones permiten introducir condiciones

de regularidad de alto orden, no se hallan expĺıcitamente y no se implementan,

pudiendo reducir los grados de libertad solo sobre la parte polinomial (vértices

de la malla). Se puede encontrar una relación con la versión no conforme en [57,

Section 2.4] y una versión unificada (enfocado al caso conforme) en [125], donde se

transcribe el método VE en el marco algebraico HHO.

Para abordar fenómenos que involucran materiales compuestos y medios porosos que

aparecen en problemas eĺıpticos con coeficientes de oscilación rápida, los métodos
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monoescala no son recomendables, por lo que se utilizan los métodos multiescala.

Algunos estudios al respecto, en el contexto de elementos finitos estándar, se

encuentran en [120], para HDG en [85], y en los llamados métodos h́ıbridos mixtos

multiescala (multiscale hybrid-mixed (MHM)) en [7]. Es aśı que el método HHO

también aborda este tipo de problemas (véase [52, 53]). Éste se basa en resolver

problemas locales de la ecuación exacta con condiciones Neumann impuestas por

multiplicadores de Lagrange. Estos problemas locales se resuelven con el HHO

monoescala sobre una partición inicial del dominio heterogéneo (escalando el

dominio).

Aunque los métodos HHO están pensados para usar polinomios de alto orden, es

posible encontrar conecciones con métodos de bajo orden (k = 0). Por ejemplo, se

pueden vincular con los métodos de volumen finito h́ıbrido (hybrid finite volume

(HFV)) en [75]. Además, el método HHO está relacionado con los métodos mimético

mixto h́ıbrido (Hybrid Mixed Mimetic (HMM)) en [67]. Aqúı, los métodos HMM,

propuestos en [21, 83], pueden verse como la formulación unificada de los métodos

HFV [88], los métodos de volumen finito mixto (Mixed Finite Volume (MFV))

[82] y el método de diferencia finita mimética (mimetic finite difference (MFD))

[22]. Es interesante mencionar que nuestra metodoloǵıa HHO puede compararse

directamente con el método clásico de elementos finitos estándar, en el contexto de

problemas de difusión ([77]).

El método HHO ha abordado una gran variedad de modelos, permitiendo un

tratamiento robusto de los parámetros f́ısicos involucrados en dichos modelos,

como por ejemplo, difusión heterogénea/anisotrópica [72, 39], elasticidad lineal

cuasi-incompresible [70], transporte con advección dominante [67, 4], problemas de

elasticidad no lineal en el régimen de deformación pequeñas [27], problemas

estacionarios no lineales de Leray–Lions [64, 65], problema de Stokes [3],

ecuaciones incompresibles de Navier-Stokes [26], deformaciones finitas de materiales

hiperelásticos [1], fuidos viscoplásticos de Bingham en tubeŕıas [44], entre otros.

Para una revisión de varios de estos trabajos y un detallado análisis de los mismos
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consultar el libro dedicado al método [66].

Esta tesis busca complementar lo ya estudiado para HHO. Por ejemplo, el abordar

condiciones Neumann puras, problemas de transmisión interior y una clase de

problemas eĺıpticos no lineales, por lo que el interés de este trabajo será:

I Estudiar matemáticamente modelos bien planteados de problemas de ingenieŕıa

que provienen de la mecánica del medio continuo.

I Desarrollar formulaciones variacionales apropiadas para establecer existencia y

unicidad de la solución continua del problema.

I Establecer el esquema numérico basado en la filosof́ıa HHO, para lo cual

definimos espacios y operadores discretos apropiados.

I Analizar la solubilidad del esquema HHO y establecer los resultados de

estabilidad y convergencia correspondientes del método.

I Validar los resultados teóricos obtenidos a través de ensayos y simulaciones

numéricas ilustrativas.

La presente tesis se organiza de la siguiente manera:

En el Caṕıtulo 1, presentamos las principales definiciones relativas a las mallas y

sus geometŕıas. También algunos resultados usuales de análisis funcional para el

tratamiento de formulaciones variacionales: primales y/o mixtas [69]. Se incluye,

además, una descripción del método HHO para el problema de Poisson, con

condiciones mixtas, incluyendo algunos ejemplos numéricos. Parte de esta discusión

se encuentra en la publicación:

I Bustinza, R., Munguia, J.: Revisión del método Hı́brido de Alto Orden para un

problema de difusión variable. REVCIUNI 21(1), 6–14 (2018).

Como resultado, se prueba que el método HHO puede ser aplicado también a

problemas con condición de frontera Neumann, es estable y converge de manera
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óptima, bajo los mismos supuestos de regularidad de la solución exacta, consideradas

para condiciones Dirichlet.

En el Caṕıtulo 2, se analiza el problema de difusión variable bajo condiciones

de frontera Neumann puras. Este mismo problema ha sido ya analizado, bajo

condiciones de frontera Dirichlet en [72], y con condiciones mixtas en [76], pero

no estaba completamente analizado para el caso Neumann. Se demuestra la

convergencia del método HHO para el problem de Poisson con condición de frontera

Neumann pura. Además, se explica cómo realizar la discretización y el ensamblaje

de dicho problema, bajo la filosof́ıa HHO. Los resultados de este caṕıtulo han dado

lugar a las publicaciones:

I Bustinza, R., Munguia, J.: Revisión del método Hı́brido de Alto Orden para un

problema de difusión variable. REVCIUNI 21(1), 6–14 (2018).

I Bustinza, R., Munguia-La-Cotera, J.: A hybrid high-order formulation for

a Neumann problem on polytopal meshes. Numerical Methods for Partial

Differential Equations 36, 3 (2020), 524–551. DOI 10.1002/num.22439

En el Caṕıtulo 3, se propone una extensión del método HHO para problemas

eĺıpticos no lineales. Si bien se considera el caso de condiciones de frontera

Dirichlet homogéneas, la metodoloǵıa puede adaptarse, sin mayores dificultades, para

condiciones Dirichlet no homogéneas, mixtas y hasta Neumann puro. El aporte de

este análisis, es la deducción de la estima en norma L2 del error del potencial, lo

cual, hasta donde se sabe, no hab́ıa sido establecido antes. Se incluyen ejemplos

numéricos que validan la teoŕıa. Este caṕıtulo está contenido en el pre-print:

I Bustinza, R. and Munguia, J.: An a priori error analysis for a class of

nonlinear elliptic problems applying the hybrid high-order method. Centro

de Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Chile

(2020). Pre-print 2020-08

En el Caṕıtulo 4, introducimos un esquema HHO para analizar problemas de

transmisión entre dos dominios que pueden respresentar medios porosos, gaseosos
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o ĺıquidos dependiendo del tipo de f́ısica que se esté analizando. En [31], los

autores presentan un esquema unfitted HHO para problemas de transmisión interior,

donde la frontera de transmisión puede ser curva. Sin embargo, no se incluyen

ejemplos numéricos. Por esta razón, se decidió dedicar este caṕıtulo al problema

de transmisión lineal, con frontera de transmisión poligonal, donde se analiza un

esquema HHO mixto, con un enfoque distinto de [31]. Se prueba la existencia y

unicidad del esquema HHO, y se logran establecer las estimaciones de error a priori

esperadas. Los resultados de este Caṕıtulo se han plasmado en el pre-print:

I Bustinza, R. and Munguia, J.: A mixed Hybrid High-Order formulation for

linear interior transmission elliptic problems. Centro de Investigación en

Ingenieŕıa Matemática, Universidad de Concepción, Chile (2020). Pre-print

2020-10

Finalmente, se hace un recuento de los trabajos realizados, enfatizando el/los

aporte(s). Asimismo, se incluyen algunos problemas o aspectos teóricos a

considerarse como trabajo a futuro.
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Chapter 1

Preliminaries and basic results

In this chapter, we introduce the setting for the development and numerical analysis

to deal with Hybrid High-Order (HHO) methods. These are built upon general

meshes, possibly including polytope (or polytopal) elements and nonmatching

interfaces.

Figure 1.1: Left: Matching interfaces Right: Nonmatching interfaces

Here are the main concepts and properties used in this work, that can be found in

more detail in [69, 66], for example.

1.1 General meshes

The HHO discretization of a PDE problem is a suitable decomposition (mesh) of the

domain of the problem in study. The meshes supported by HHO methods are more

general than those encountered in standard Finite Element methods, and possibly

include general polytope elements and nonmatching interfaces.

The goal of this section is to introduce precise notions of mesh and h-refined mesh

sequence suitable for the analysis.
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Definition 1.1.1 (Polytope) We say that the set P is a polytope in Rd if P is an

open, connected, bounded subset of Rd, such that its boundary ∂P is a finite union of

parts of hyperplanes, say {Hi}1≤i≤nP . Moreover, for all 1 ≤ i ≤ nP , at each point in

the interior of ∂P ∩Hi, the set P is assumed to lie on only one side of its boundary.

An special polytope, is the convex polytope, which is the convex hull of finite number

of points. See [111] for more details.

Figure 1.2: 2-polytopal elements

Definition 1.1.2 (Simplex) Given a family {a0, · · · , ad} of (d + 1) points in Rd

such that the vectors {a1 − a0, · · · , ad − a0} are linearly independent, the interior

of the convex hull of {a0, · · · , ad} is called a non-degenerate simplex of Rd, and the

points {a0, · · · , ad} are called its vertices.

Simplex is a convex polytope generated by the intersection of d independent

hyperplanes. We often call a 2-polytope a polygon, and a 3-polytope a polyhedron.

Definition 1.1.3 (Simplex faces) Let S be a non-degenerate simplex with vertices

{a0, · · · , ad}. For each i ∈ {0, · · · , d}, the convex hull of {a0, · · · , ad}\{ai} is called

a face of the simplex S.

Definition 1.1.4 (Simplicial mesh) A simplicial mesh T of the domain Ω (a

polyhedron) is a finite collection of disjoint non-degenerate simplices T = {Tj}j∈I
with I ⊂ N finite, forming a partition of Ω̄.

Ω̄ =
⋃
T∈T

T

Each T ∈ T is called a simplicial mesh element.
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Definition 1.1.5 (General mesh) A general mesh T of the domain Ω (a

polyhedron) is a finite collection of disjoint polyhedra T = {T} forming a partition

of Ω̄. Each T ∈ T is called a mesh element.

Definition 1.1.6 (Element diameter, meshsize) Let T be a general mesh of the

domain Ω. For all T ∈ T , hT denotes the diameter of T , and the meshsize is defined

as the real number

h = max
T∈T

hT .

We use the notation Th for a mesh T with meshsize h.

Definition 1.1.7 (Element outward normal) Let Th be a general mesh of the

domain Ω (a polyhedron), and let T ∈ Th. We define nT a.e. on ∂T as the (unit)

outward normal to T .

Definition 1.1.8 (Mesh faces) Let Th be a general mesh of the domain Ω (a

polyhedron). We say that a (closed) subset F of Ω̄ is a mesh face if F has

positive (d−1)-dimensional Hausdorff measure and if either one of the two following

conditions is satisfied:

1. There are distinct mesh elements T1 and T2 such that F = ∂T1 ∩ ∂T2. In such

a case, F is called an interface.

2. There is T ∈ T such that F = ∂T ∩∂Ω. In such a case, F is called a boundary

face.

Interfaces are collected in the set F ih, while boundary faces are collected in the set

F bh. Henceforth, we set the collection of faces inherited by Th as

Fh := F ih ∪ F bh.

Moreover, for any mesh element T ∈ Th, the set

FT := {F ∈ Fh|F ⊂ ∂T},

collects the mesh faces composing the boundary of T . The maximum number of

mesh faces composing the boundary of mesh elements is denoted by

N∂ := max
T∈Th

card(FT ).
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Finally, for any mesh face F ∈ Fh, we define the set

TF := {T ∈ Th|F ⊂ ∂T},

that collects the mesh element of Th sharing F .

Definition 1.1.9 (Face normals) For all F ∈ Fh and a.e. x ∈ F , we define the

normal nF to F at x as

1. nT1, the unit normal to F at x pointing from T1 to T2 if F ∈ F ih with F =

∂T1∩∂T2; the orientation of nF is arbitrary depending on the choice of T1 and

T2, but fixed once and for all.

2. n, the unit outward normal to Ω at x if F ∈ F bh.

In the following, we give the standard notion of matching simplicial mesh useful in

the process of refining of a coarse mesh in the context of HHO methods.

Definition 1.1.10 (Matching simplicial mesh) We say that Th is a matching

simplicial mesh if all the mesh element are simplices and if for any T ∈ Th with

vertices {a0, · · · , ad}, the set ∂T ∩ ∂T ′ for any T ′ ∈ Th, T ′ 6= T , is the convex hull of

a (possibly empty) subset of {a0, · · · , ad}.

Definition 1.1.11 (Matching simplicial submesh) Let Th be a general mesh.

We say that T ′h is a matching simplicial submesh of Th if

1. T ′h is a matching simplicial mesh,

2. For all T ′ ∈ T ′h, there is only one T ∈ Th such that T ′ ⊂ T ,

3. For all F ′ ∈ F ′h, the set collecting the mesh faces of T ′h, there is at most one

F ∈ Fh such that F ′ ⊂ F .

Definition 1.1.12 (Shape and contact regularity) Let H ⊂ R+ ∪ {0} denote a

countable set of meshsizes having 0 as its unique accumulation point. We consider

h-refined general mesh sequences (Th)h∈H. We say that the mesh sequence (Th)h∈H is

shape- and contact-regular if for all h ∈ H, Th admits a matching simplicial submesh

T ′h and there exists a real number ρ > 0, independent of h, such that, for all h ∈ H:
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1. ρhS ≤ rS holds, for all simplex S ∈ T ′h of diameter hS, and inradius rS, and

2. ρhT ≤ rS holds, for all T ∈ Th and all S ∈ T ′h, such that S ⊂ T .

1.2 A review of theoretical framework on

functional analysis

In this section, we give a review of important definitions and very well known

theorems in Functional analysis, to deal with PDE problems written in weak sense.

Definition 1.2.1 (Lebesgue spaces) Let Ω be an open bounded subset of Rd, d ≥

1. Given 1 ≤ p ≤ ∞, we define the Lebesgue space as

Lp(Ω) := {v : Ω→ R Lebesgue measurable function s.t. ‖v‖Lp(Ω) < +∞}, (1.1)

where, ‖ · ‖Lp(Ω) : Lp(Ω)→ R is a norm on Lp(Ω), given for each v ∈ Lp(Ω), by

‖v‖Lp(Ω) :=


(∫

Ω

|v|p
)1/p

if p ∈ [1,+∞),

inf
{
M > 0 : |v(x)| ≤M a.e. x ∈ Ω

}
if p = +∞.

Definition 1.2.2 (Sobolev spaces) Let m ≥ 0 be an integer and let 1 ≤ p ≤ ∞

be a real number. We introduce the Sobolev space

Wm,p(Ω) := {v ∈ Lp(Ω) : ∂αv ∈ Lp(Ω)∀α ∈ Nd : |α| ≤ m}, (1.2)

where, given a multi-index α = (α1, α2, · · · , αd) ∈ Nd, |α| :=
∑d

i=1 αi , and ∂αv

denotes the distributional derivative ∂α1 · · · ∂αdv. It is well known that the Sobolev

space Wm,p(Ω) is a Banach space when is equipped with the norm ‖ · ‖Wm,p(Ω) :

Wm,p(Ω)→ R, such that for all v ∈ Wm,p(Ω):

‖v‖Wm,p(Ω) :=

∑
|α|≤m

‖∂αv‖Lp(Ω)

1/p

1 ≤ p <∞,

and, when p = +∞, ‖v‖Wm,∞(Ω) := max|α|≤m ‖∂αv‖L∞(Ω). We also consider the

seminorm | · |Wm,p(Ω) by restricting the above definitions to multi-index α, with |α| =

m.
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For p = 2, we use the notation Hm(Ω) := Wm,2(Ω). Hm(Ω) is a Hilbert space

provided with the scalar product

(v, w)Hm(Ω) :=
∑
|α|≤m

(∂αv, ∂αw)L2(Ω) for all v, w ∈ Hm(Ω).

Now, we consider the following (abstract) problem: Seek u ∈ U such that

a(u, v) = l(v) for all v ∈ V, (1.3)

where U and V are Hilbert spaces, a : U × V → R is a form and l : V → R is a

functional.

Theorem 1.2.1 (Banach–Nečas–Babuška (BNB)) Let U be a Banach space

and let V be a reflexive Banach space. Let a : U × V → R be a continuous bilinear

form and let l : V → R be a continuous linear functional. Then, problem (1.3) is

well-posed if and only if:

(i) There holds the inf-sup condition: there exists C > 0 such that

C ≤ inf
u∈U\{0}

sup
v∈V \{0}

a(u, v)

‖u‖U‖v‖V
. (1.4)

(ii) For each v ∈ V , there holds(
∀w ∈ U, a(w, v) = 0

)
⇒
(
v = 0

)
. (1.5)

Moreover, we have the continuous dependency:

‖u‖U ≤
1

C
‖l‖V ′ .

Proof. We refer to Theorem 2.6 in [86, page 85]. �

Definition 1.2.3 Let H be a Hilbert space, and let a : H ×H → R be a continuous

bilinear form. We say that a is an H-elliptic (or coercive) operator if there is a

constant α > 0, such that

∀ v ∈ H : a(v, v) ≥ α‖v‖2
H . (1.6)

Lemma 1.2.1 Under the assumptions of Definition 1.2.3, if a is H-elliptic, then

there holds the following statements:
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(i) α ≤ inf
w∈H\{0}

sup
v∈H\{0}

a(w, v)

‖w‖H‖v‖H
.

(ii) ∀v ∈ H:
(
∀w ∈ H : a(w, v) = 0

)
⇒
(
v = 0

)
.

Proof. We refer to Lemma 2.8 in [86, page 85]. First, we fix w ∈ H \ {0}. Then,

since a is H-ellipticity, we have

α‖w‖H ≤
a(w,w)

‖w‖H
≤ sup

v∈H\{0}

a(w, v)

‖v‖H
,

and we derive (i) straightforwardly. Next, we prove (ii). We take v ∈ H, and by

hypothesis, we have a(v, v) = 0. Thanks to coerciveness of a on H, we infer v = 0,

and we end the proof. �

The following theorem is useful for establishing the well-posedness of variational

formulations written as (1.3), with V = U .

Theorem 1.2.2 (Lax-Milgram Lemma) Let V be a Hilbert space and let a : V ×

V → R be a V -elliptic continuous bilinear form. Then, for each continuous linear

functional, l : V → R, there exists one and only one solution u ∈ V , such that

a(u, v) = l(v), ∀ v ∈ V. (1.7)

Proof. Problem (1.7) is equivalent to (1.3) when U = V . Then, the well-posedness

of (1.7) follows from Lemma 1.2.1. �

Remark 1.2.1 There is a generalized version of Lax-Milgram Lemma, to deal with

(1.3) (i.e. U 6= V ). We refer to [97, Theorem 4.2].

In the following, we will give another result that helps us to proof the well-posedness

of mixed variational formulations: Given functionals f : U → R, g : P → R, we seek

u ∈ U and p ∈ P , such that

a(u, v) + b(v, p) = f(v), ∀ v ∈ U, (1.8a)

b(u, q) = g(q), ∀ q ∈ P. (1.8b)

If we introduce W := U × P , A
(
(u, p), (v, q)

)
:= a(u, v) + b(v, p) + b(u, q), and

l(v, q) = f(v) + g(q), (1.8) is equivalent to the primal formulation: Find (u, p) ∈ W :

A
(
(u, p), (v, q)

)
= l(v, q) ∀(v, q) ∈ W. (1.9)
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Then, to establish well-posedness of the problem (1.8), we can take into account

Theorem 1.2.1 to (1.9), under appropriate conditions. On the other hand, the

following theorem could be useful to deal with linear mixed variational formulations

of the type (1.8).

Theorem 1.2.3 (Well-posedness for linear mixed variational formulations)

Let U and P be two reflexive Banach spaces. Let a : U × U → R, b : U × P → R

be continuous bilinear forms and let f : U → R, g : V → R be continuous linear

functionals. Then, (1.8) is well-posed if and only if:

(i) For each v ∈ V := {v ∈ U : ∀ q ∈ P, b(v, q) = 0}, there holds(
∀w ∈ V, a(w, v) = 0

)
⇒
(
v = 0

)
. (1.10)

(ii) There exists α > 0 such that

α ≤ inf
u∈V \{0}

sup
v∈V \{0}

a(u, v)

‖u‖V ‖v‖V
. (1.11)

(iii) and, there exists β > 0, such that

β ≤ inf
q∈P\{0}

sup
v∈U\{0}

b(v, q)

‖v‖U‖q‖P
. (1.12)

Proof. We refer to the proof of Theorem 2.34 in [86, page 100] or Theorem 4.7 in

[97, page 162]. �

Lemma 1.2.2 Let V and W be two Banach spaces and let A : V → W be a

continuous linear form. If A is surjective, then there exists α > 0 such that

∀w ∈ W : ∃vw ∈ V : Avw = w, and α‖vw‖V ≤ ‖w‖W . (1.13)

Proof. We make a slightly adaptation of the proof of Theorem A.36 in [86, page 469].

Since A is surjective, thanks to Open Mapping Theorem, we deduce that A
(
BV (0, 1)

)
is open in W , where BV (0, 1) denotes the unit ball in V. Besides, by the linearity of

A, we infer

∃γ > 0 such that BW (0, γ) ⊂ A
(
BV (0, 1)

)
. (1.14)

Now, taking w ∈ W \ {0}, we notice that γ
2

w
‖w‖W

∈ BW (0, γ), so that, from (1.14),

∃z ∈ BV (0, 1) such that Az = γ
2

w
‖w‖W

. Finally, we conclude (1.13) with α := γ/2,

and vw = 2‖w‖W
γ

z ∈ V . �
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Definition 1.2.4 (Dual space, continuous linear functional) Let X be a real

Banach space . The dual space of X is defined as the set of continuous linear

functional from X to R, and is denoted by X ′. Also, we provide to X ′ the following

usual norm: for each f ∈ X ′,

‖f‖X′ := sup
x∈X\{0}

|〈f, x〉|X′,X
‖x‖X

, (1.15)

where 〈·, ·〉X′,X denote the duality product between X ′ and X. Since ±x can be

considered in the supremum, the absolute value can be omitted from the numerator.

Definition 1.2.5 (Dual operator) Let V and W be two normed vector spaces and

let A : V → W be a continuous linear operator. The dual operator AT : W ′ → V ′ is

defined by

∀v ∈ V : ∀w′ ∈ W ′ : 〈ATw′, v〉V ′,V = 〈w′, Av〉W ′,W .

Lemma 1.2.3 Let V and W be two Banach spaces and let A : V → W be a

continuous linear form. If A is surjective, then, there holds the inf-sup condition:

∃α > 0 : inf
w′∈W ′

sup
v∈V

〈ATw′, v〉V ′,V
‖w′‖W ′‖v‖V

≥ α. (1.16)

Proof. The proof is taken from [86, Lemma A.42]. We deduce, from Lemma 1.2.2,

that there exists α > 0, such that for each w′ ∈ W ′,

〈w′, w〉W ′,W = 〈w′, Avw〉W ′,W = 〈ATw′, vw〉V ′,V ≤
1

α
‖ATw′‖V ′‖w‖W .

Hence,

‖w′‖W ′ = sup
w∈W
‖w‖W≤1

〈w′, w〉W ′,W ≤
1

α
‖ATw′‖V ′ ,

and the conclusion follows from the definition of the norm in V ′. �

Remark 1.2.2 The converse holds when V is a reflexive space (Hilbert, in

particular). We refer to Lemma A.42 in [86].

The following corollary is useful for proving the well-posedness of the transmission

problem of Chapter 4.

Corollary 1.2.1 Under the same conditions of Theorem 1.2.3, the mixed problem

(1.8) is well-posed if:
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(i) B : U → P is surjective, where B is the continuous linear operator induced by

bilinear form b, as follows:

∀v ∈ U : ∀q ∈ P : (Bv, q)P = b(v, q),

(ii) and, a is W -elliptic, where W := Ker(B).

Proof. We are going to verify the three items from Theorem 1.2.3. It is easy to

see that V = W , then from Lemma 1.2.1 and the W -ellipticy of a, we ensure that

there holds the conditions (1.10) and (1.11). On the other hand, (1.12) follows from

Lemma 1.2.3 and the surjectivity of B. �

Remark 1.2.3 It is possible to obtain:

(i)⇐⇒ ∃C > 0 s.t. sup
v∈U\{0}

b(v, q)

‖v‖U
≥ C‖q‖P ∀q ∈ P.

We refer to the proof of Lemma 2.1 in [96] or Lemma 2.1 in [94].

1.3 A review on approximation theory in Banach

spaces

Definition 1.3.1 (Polynomial Space) Let k ≥ 0 be an integer. We define the

space of polynomials of d variables, of total degree at most k, as

Pkd :=

p : Rd 3 x→ p(x) ∈ R : ∃ (cα)α∈Akd ∈ Rcard(Akd) s.t. p(x) =
∑
α∈Akd

cαx
α

 ,

where Akd := {α := (α1, · · · , αd) ∈ Nd :
∑d

j=1 αj ≤ k} and for x = (x1, · · · , xd) ∈

Rd, we set xα :=
∏d

i=1 x
αi
i .

Definition 1.3.2 (The broken Polynomial Space) We define the broken

polynomial space as:

Pkd(Th) := {v ∈ L2(Ω) : ∀T ∈ Th : v|T ∈ Pkd(T )},

where Pkd(T ) is spanned by the restriction to T of polynomials in Pkd.
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Definition 1.3.3 (Optimal polynomial approximation) We say that the mesh

sequence (Th)h∈H has optimal polynomial approximation properties if, for all h ∈ H,

all T ∈ Th, and all polynomial degree k, there is a linear interpolation operator

IkT : L2(T ) → Pkd(T ) such that, for all s ∈ {0, · · · , k + 1} and all v ∈ Hs(T ), there

holds

|v − IkTv|Hm(T ) ≤ Capph
s−m
T |v|Hs(T ) ∀m ∈ {0, · · · , s}, (1.17)

where Capp > 0 is independent of both T and h.

Definition 1.3.4 (Admissible mesh sequence) The mesh sequence (Th)h∈H is

admissible, if it is shape- and contact-regular, and it has optimal polynomial

approximation properties.

We next show basic results, valid for admissible mesh sequences.

Lemma 1.3.1 (Diameters comparison) Let (Th)h∈H be an admissible mesh

sequence. For all h ∈ H, all T ∈ Th, and all F ∈ FT , hF is comparable to hT

in the sense that

ρ2hT ≤ hF ≤ hT , (1.18)

where hF denotes the diameter of F .

Proof. We refer to Lemma 1.42 in [69]. �

Lemma 1.3.2 (Inverse inequality) Let (Th)h∈H be an admissible mesh sequence.

For all h ∈ H, all vh ∈ Pkd(Th), all T ∈ Th, and all F ∈ FT , there holds

‖∇vh‖[L2(T )]d ≤ Cinvh
−1
T ‖vh‖L2(T ), (1.19)

where Cinv > 0, only depends on ρ, d, and k.

Proof. We refer to the proof of Lemma 1.44 in [69]. �

Lemma 1.3.3 (Continuous trace inequality) Let (Th)h∈H be an admissible

mesh sequence. For all h ∈ H, all T ∈ Th, all v ∈ H1(T ), and all F ∈ FT ,

there holds

‖v‖2
L2(F ) ≤ Ccti(hT‖∇v‖2

[L2(T )]d + h−1
T ‖v‖

2
L2(T )), (1.20)

where Ccti > 0, only depends on ρ.
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Proof. We refer to the proof of Lemma 1.49 in [69]. �

Lemma 1.3.4 (Discrete trace inequality) Let (Th)h∈H be an admissible mesh

sequence. For all h ∈ H, all vh ∈ Pkd(Th), and all T ∈ Th, there holds

‖vh‖L2(F ) ≤ Ctrh
−1/2
T ‖vh‖L2(T ), (1.21)

where Ctr > 0 only depends on ρ, d, and k.

Proof. We refer to the proof of Lemma 1.46 in [69]. �

Lemma 1.3.5 (Approximation properties of πlT ) Given T ∈ Th, let πlT be the

L2-orthogonal projection onto Pkd(T ). Then, for all s ∈ {0, · · · , l + 1} and all v ∈

Hs(T ), there holds

|v − πlTv|Hm(T ) ≤ C ′apph
s−m
T |v|Hs(T ) ∀m ∈ {0, · · · , s}. (1.22)

Moreover, assuming additionally that s ≥ 1, there holds for all F ∈ FT ,

|v − πlTv|Hm(F ) ≤ C ′′apph
s−m−1/2
T |v|Hs(T ) ∀m ∈ {0, · · · , s− 1}. (1.23)

Here C ′app > 0 and C ′′app > 0 are independent of both T and h.

Proof. We refer to the proofs of Lemmas 1.58 and Lemma 1.59 in [69] or to the proof

of Theorem 1.44 in [66]. �

Lemma 1.3.6 (Local Poincaré–Wintinger inequality) For all h ∈ H, all T ∈

Th, all v ∈ H1(T ), such that
∫
T
v = 0, there holds

‖v‖L2(T ) ≤ CphT‖∇v‖[L2(T )]d , (1.24)

where Cp > 0 only depends on ρ (mesh regularity parameter) (Cp = π−1 if T is

convex).

Proof. We refer to the proof of Lemma 5.8 in [64] or Theorem 3.2 in [19]. The proof

is based on Poincaré-Wintinger inequality. �

In the following section, we give a review of the HHO method when applied to Poisson

problem, with Dirichlet and mixed boundary conditions.
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1.4 An HHO method for Poisson problem with

mixed boundary conditions

Several elliptic problems with Dirichlet boundary conditions have been analyzed in

the context of HHO methods, see e.g. [75, 64, 72, 70]. Part of the description

developed in the following, is taken from [76], where HHO is applied to a class of

variable diffusion problems with mixed boundary conditions. We begin introducing

the model problem. Let Ω ⊂ Rd, d ∈ {2, 3}, be an open, connected, bounded

polytopal domain. We assume that there exists a partition {ΓD,ΓN} of boundary

Γ := ∂Ω, such that Γ = ΓN∪ΓD,
◦
ΓN∩

◦
ΓD = ∅ and |ΓD| > 0. For any connected subset

X ⊂ Ω, with nonzero Lebesgue measure, the inner product and norm of the Lebesgue

space L2(X) will be denoted by (·, ·)X and ‖ · ‖X , respectively. Furthermore, given

x, y > 0, x . y denotes the inequality x ≤ Cy with positive constant C independent

of the diffusion tensor K and the meshsize h, and probably not independent of the

polynomial degree k. The model problem reads: Find u : Ω→ R such that

−∇ · (K∇u) = f in Ω , (1.25a)

K∇u · n = gN on ΓN , (1.25b)

u = gD on ΓD , (1.25c)

where f ∈ L2(Ω), gN ∈ L2(ΓN), gD ∈ H1/2(ΓD), K ∈ [L∞(Ω)]d×d be a tensor-valued

diffusivity and n be unit outward normal. For simplicity, we assume K is piecewise

constant on PΩ (partition of Ω). Let U := H1(Ω) and U0 := {v ∈ U : γ0(v) =

0 on ΓD}. We obtain the primal weak formulation: Find u0 ∈ U0 such that

(K∇u0,∇v)Ω = (f, v)Ω − (K∇u∂,∇v)Ω + (gN , v)ΓN ∀v ∈ U0, (1.26)

where u∂ ∈ H1(Ω) such that γ0(u∂) = gD on ΓD. The weak solution u ∈ U related

to (1.25), is then computed as

u = u0 + u∂. (1.27)

Now, we introduce the discrete spaces:

Uk
h :=

(∏
T∈Th

Pkd(T )

)
×

( ∏
F∈Fh

Pkd−1(F )

)
, Uk

T := Pkd(T )×

( ∏
F∈FT

Pkd−1(F )

)
.
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In addition, we will denote by vh := ((vT )T∈Th , (vF )F∈Fh) an element in Uk
h and

its restriction on T ∈ Th by vT := (vT , (vF )F∈FT ) ∈ Uk
T . Besides, we introduce

over each T ∈ Th, the discrete operator pk+1
T : Uk

T → Pk+1
d (T ) such that, for each

vT := (vT , (vF )F∈FT ) ∈ Uk
T , and each w ∈ Pk+1

d (T ),

(K∇pk+1
T vT ,∇w)T = (K∇vT ,∇w)T +

∑
F∈FT

(vF − vT , K∇w · nTF )F , (1.28)

and ∫
T

pk+1
T vT :=

∫
T

vT , (1.29)

where, nTF is the unit normal to F pointing out of T . Moreover, we define the

bilinear form ah : Uk
h ×Uk

h → R as

ah(uh,vh) :=
∑
T∈Th

aT (uT ,vT ) , (1.30)

where, for each T ∈ Th, the local bilinear forms aT , sT : Uk
T ×Uk

T → R, are given

by

aT (uT ,vT ) := (K∇ pk+1
T uT ,∇ pk+1

T vT )T + sT (uT ,vT ), (1.31a)

sT (uT ,vT ) :=
∑
F∈FT

kF
hF

(πkF (uF −Rk+1
T uT ), πkF (vF −Rk+1

T vT ))F , (1.31b)

where, Rk+1
T vT := vT + (pk+1

T vT − πkTpk+1
T vT ).

Then, the (primal) HHO discretization of problem (1.26) reads: Find u0,h ∈ Uk
h,0 :={

vh ∈ Uk
h | vF ≡ 0 ∀F ⊂ ΓD

}
such that

ah(u0,h,vh) =
∑
T∈Th

(f, vT )T − ah(u∂,h,vh) +
∑
F⊂ΓN

(gN , vF )F ∀vh ∈ Uk
h,0, (1.32)

where u∂,h :=
(
(πkTu∂)T∈Th , (π

k
Fγ0(u∂)

)
F∈Fh

). The discrete solution uh ∈ Uk
h is finally

computed as

uh = u0,h + u∂,h, (1.33)

The next result establishes an estimate of the error between the Projection operator

of the exact solution u, Ikhu :=
(
(πkTu)T∈Th , (π

k
Fγ0(u)

)
F∈Fh

), and the discrete solution

uh, measures in the energy norm, defined as ‖ · ‖a,h := ah(·, ·)1/2. We remark that

this result has been mentioned, without proof, in [76, Theorem 3.1].
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Theorem 1.4.1 (Energy-norm error estimate) Let u ∈ U , defined in (1.27), be

the weak solution, and let uh ∈ Uk
h, defined in (1.33), the discrete solution. Assume

that u further belongs to Hk+2(PΩ), with PΩ being a partition of Ω associated with

the diffusion tensor K. Then, the following holds:

‖Ikhu− uh‖a,h .

{∑
T∈Th

KTρTh
2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

, (1.34)

where, ρT := KT/KT , with KT and KT being the lowest and largest eigenvalues of

tensor K in T , respectively.

Proof. The proof follows similar ideas to the proof of Theorems 3.19 and 4.16 in [66].

�

Next, we provide an estimate of ‖πkhu − uh‖Ω, where uh ∈ L2(Ω) and πkhu ∈ L2(Ω),

such that

uh|T := uT and πkhu|T := πkTu ∀T ∈ Th. (1.35)

To this aim, we require an elliptic regularity property: Given g ∈ L2(Ω), let z ∈ U0

be the solution of

∆z = g in Ω , (1.36a)

∇z · n = 0 on ΓN , (1.36b)

z = 0 on ΓD , (1.36c)

which satisfies the a priori estimate:

‖z‖H2(PΩ) . KT‖g‖Ω, (1.37)

Theorem 1.4.2 (L2-norm error estimate) Under the same assumptions on u as

in Theorem 1.4.1, the elliptic regularity property (1.37), and assuming that f ∈

Hk+δ(Ω), gN ∈ W k+δ,∞(ΓN), with δ = 0 for k ≥ 1 and δ = 1 for k = 0, there holds

K‖πkhu− uh‖Ω . K
1/2ρ1/2h

{∑
T∈Th

KTρTh
2(k+1)
T ‖u‖2

Hk+2(T )

}1/2

+ hk+2
{
‖f‖Hk+δ(Ω) + ‖gN‖Wk+δ,∞(ΓN )

}
, (1.38)

where, ρ := K/K,K := maxT∈Th KT , K := minT∈Th KT , and h := maxT∈Th hT .
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Proof. The proof follows similar ideas from the Theorem 2.4.2 in the Chapter 2, or

it could be deduced from the proof of Theorem 4.21 in [66]. �

Next, we show several numerical examples of (1.25), considering different boundary

conditions (cf. [38]).

1.4.1 Pure Dirichlet boundary condition

In this section, we consider the pure Dirichlet boundary condition, whose analysis is

included in the analysis developed here, taking ΓN = ∅.

Example 1

First, we solve (1.25), with ΓN = ∅, on the unit square Ω = (0, 1)2, with the following

smooth function:

u(x, y) = sin(πx) sin(πy) (1.39)

and heterogeneous anisotropic diffusion tensor:

K(x, y) =

 1 0

0 ε

 , (1.40)

with ε = 10−3. Then, we test the problem with two families of meshes: triangular

and hexagonal form (See Figure 1.3). In Figures 1.4, 1.5, and Tables 1.1, 1.2, we

observe that the rates of convergence of the HHO scheme are in agreement with

Theorems 1.4.1 and 1.4.2. We point out, that for k = 4, the rate of convergence

is being lost, and is worse with the triangular family mesh. This phenomenon is

possibly due to the high anisotropy of the diffusion tensor and the round-off errors.

Figure 1.3: (Left) sequence of simplicial meshes and (Right) sequences of

(predominantly) hexagonal meshes.
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Figure 1.4: Convergence rates of potential (Left) and flux (Right) errors, considering

a sequence of simplicial meshes.

Table 1.1: History of convergence of potential and flux errors, k ∈ {0, 1, 2, 3, 4}.

(Family of simplicial meshes)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

3.07e-02 1.15e+01 1.09e-01 6.09e-03 2.83e-04 7.91e-06

1.54e-02 2.72e+00 2.092 2.31e-02 2.245 4.18e-04 3.881 1.16e-05 4.632 1.65e-07 5.610

7.68e-03 5.21e-01 2.377 4.54e-03 2.343 3.40e-05 3.606 4.03e-07 4.830 3.07e-09 5.724

3.84e-03 1.00e-01 2.381 6.75e-04 2.747 2.68e-06 3.668 1.33e-08 4.917 9.96e-11 4.947

1.92e-03 2.20e-02 2.184 8.79e-05 2.943 1.83e-07 3.870 4.29e-10 4.958 2.68e-10 -1.428

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

3.07e-02 2.74e+00 5.90e-02 5.62e-03 2.60e-04 1.07e-05

1.54e-02 1.24e+00 1.148 2.06e-02 1.526 7.40e-04 2.939 1.93e-05 3.769 3.61e-07 4.906

7.68e-03 5.50e-01 1.168 6.82e-03 1.590 9.76e-05 2.911 1.29e-06 3.886 1.18e-08 4.917

3.84e-03 2.59e-01 1.086 1.93e-03 1.820 1.27e-05 2.944 8.27e-08 3.964 6.19e-10 4.254

1.92e-03 1.27e-01 1.028 5.02e-04 1.944 1.61e-06 2.977 5.22e-09 3.986 3.14e-09 -2.341
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(a) Potential error (b) Flux error

Figure 1.5: Convergence rates of potential and flux errors, considering a family of

hexagonal meshes.

Table 1.2: History of convergence of potential and flux errors, k ∈ {0, 1, 2, 3, 4}.

(Family of hexagonal meshes)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.42e+00 8.77e-02 4.32e-03 2.72e-04 1.58e-05

2.59e-02 9.65e-02 3.877 7.71e-03 3.507 2.66e-04 4.020 8.96e-06 4.921 2.52e-07 5.970

1.29e-02 1.63e-02 2.548 8.44e-04 3.173 1.63e-05 4.007 2.84e-07 4.952 4.02e-09 5.937

6.47e-03 3.57e-03 2.206 1.03e-04 3.047 1.01e-06 4.029 8.92e-09 5.016 6.52e-11 5.974

3.24e-03 8.40e-04 2.091 1.27e-05 3.027 6.29e-08 4.014 2.80e-10 5.007 3.54e-11 0.881

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 4.66e-01 6.46e-02 4.58e-03 3.36e-04 1.98e-05

2.59e-02 1.67e-01 1.477 1.41e-02 2.199 5.95e-04 2.944 2.20e-05 3.931 6.50e-07 4.926

1.29e-02 8.08e-02 1.046 3.27e-03 2.094 7.58e-05 2.957 1.40e-06 3.949 2.08e-08 4.938

6.47e-03 4.01e-02 1.013 7.95e-04 2.049 9.58e-06 2.997 8.85e-08 4.004 6.62e-10 4.996

3.24e-03 2.00e-02 1.004 1.96e-04 2.025 1.21e-06 2.998 5.56e-09 4.002 3.98e-10 0.738
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Example 2

Now, we consider (1.25) with pure Dirichlet conditions on the domain Ω =

(−1, 1)2\[0, 1] × [−1, 0] (see Figure 1.6), such that the exact solution (in polar

coordinates) is given by

u(r, θ) = r2/3 sin(2θ/3), (1.41)

where u ∈ H1+ 2
3
−s for some s > 0 (see [108]), and homogeneous isotropic diffusion

tensor K equal to the identity.

Figure 1.6: L-shaped domain.

Figure 1.7: Convergence rates of potential (Left) and flux (Right) errors.

From Figure 1.7 and Table 1.3, it is observed that the HHO scheme always converges

with order 4/3 for the potential and 2/3 for the flux, respectively. And this behavior

is independent of the degree of approximation considered. This does not contradict

the theoretical results from Theorems 1.4.1 and 1.4.2, due to the little regularity of

the exact solution u in this case.
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Table 1.3: History of convergence of potential and flux errors, k ∈ {0, 1, 2, 3, 4}.

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 5.37e-02 1.96e-02 1.03e-02 5.19e-03 3.23e-03

5.18e-02 2.41e-02 0.971 7.64e-03 1.143 3.87e-03 1.191 1.91e-03 1.213 1.17e-03 1.231

2.59e-02 1.03e-02 1.232 2.90e-03 1.401 1.41e-03 1.454 7.08e-04 1.433 4.31e-04 1.446

1.29e-02 4.24e-03 1.270 1.11e-03 1.381 5.28e-04 1.414 2.67e-04 1.397 1.61e-04 1.407

6.47e-03 1.72e-03 1.307 4.27e-04 1.378 2.01e-04 1.402 1.03e-04 1.388 6.16e-05 1.396

3.24e-03 6.92e-04 1.317 1.66e-04 1.362 7.73e-05 1.379 3.98e-05 1.369 2.38e-05 1.375

1.62e-03 2.77e-04 1.322 6.53e-05 1.350 3.01e-05 1.361 1.56e-05 1.355 9.28e-06 1.359

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 1.80e-01 9.63e-02 6.42e-02 4.99e-02 3.85e-02

5.18e-02 1.23e-01 0.466 6.02e-02 0.570 4.02e-02 0.570 3.16e-02 0.555 2.43e-02 0.556

2.59e-02 8.09e-02 0.603 3.79e-02 0.668 2.53e-02 0.666 1.99e-02 0.666 1.53e-02 0.667

1.29e-02 5.22e-02 0.628 2.39e-02 0.662 1.60e-02 0.663 1.25e-02 0.663 9.66e-03 0.663

6.47e-03 3.34e-02 0.649 1.51e-02 0.669 1.01e-02 0.670 7.89e-03 0.670 6.08e-03 0.670

3.24e-03 2.12e-02 0.656 9.48e-03 0.668 6.33e-03 0.668 4.97e-03 0.668 3.83e-03 0.668

1.62e-03 1.34e-02 0.659 5.97e-03 0.667 3.99e-03 0.667 3.13e-03 0.667 2.41e-03 0.667

1.4.2 Mixed boundary condition

We will consider the nonregular solution (1.41) in polar coordinates: for the mixed

diffusion problem (1.25), and unity diffusion tensor again. This test is run over two

mixed boundary conditions:

First, we consider the domain Ω = (−1, 1)2\[0, 1] × [−1, 0], with the following

partition of the boundary Γ := ∂Ω.

ΓD = {0} × [−1, 0] ∪ [0, 1]× {0} and ΓN := Γ\ΓD. (1.42)
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(a) Potential error (b) Flux error

Figure 1.8: Convergence rates of potential and flux errors.

Table 1.4: History of convergence of potential and flux errors, k ∈ {0, 1, 2, 3, 4}.

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 1.34e-01 3.24e-02 1.67e-02 8.44e-03 5.02e-03

5.18e-02 5.34e-02 1.119 1.32e-02 1.091 6.25e-03 1.194 3.19e-03 1.182 1.91e-03 1.171

2.59e-02 2.13e-02 1.324 5.16e-03 1.355 2.40e-03 1.380 1.23e-03 1.369 7.38e-04 1.375

1.29e-02 8.52e-03 1.316 2.02e-03 1.344 9.33e-04 1.356 4.82e-04 1.349 2.88e-04 1.353

6.47e-03 3.40e-03 1.331 7.96e-04 1.351 3.65e-04 1.359 1.89e-04 1.354 1.13e-04 1.357

3.24e-03 1.36e-03 1.331 3.14e-04 1.344 1.44e-04 1.349 7.47e-05 1.346 4.44e-05 1.348

1.62e-03 5.39e-04 1.329 1.24e-04 1.338 5.67e-05 1.341 2.95e-05 1.339 1.75e-05 1.341

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 2.54e-01 1.24e-01 7.79e-02 5.76e-02 4.45e-02

5.18e-02 1.65e-01 0.519 7.71e-02 0.573 4.90e-02 0.562 3.61e-02 0.567 2.80e-02 0.564

2.59e-02 1.07e-01 0.629 4.84e-02 0.671 3.09e-02 0.669 2.27e-02 0.668 1.76e-02 0.668

1.29e-02 6.86e-02 0.637 3.05e-02 0.664 1.94e-02 0.664 1.43e-02 0.664 1.11e-02 0.663

6.47e-03 4.37e-02 0.652 1.92e-02 0.670 1.22e-02 0.670 9.02e-03 0.670 6.98e-03 0.670

3.24e-03 2.78e-02 0.657 1.21e-02 0.668 7.71e-03 0.668 5.68e-03 0.668 4.40e-03 0.668

1.62e-03 1.76e-02 0.660 7.61e-03 0.667 4.85e-03 0.667 3.58e-03 0.667 2.77e-03 0.667
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In Figure 1.8 and Table 1.4, it is observed similar rate of convergence of 4/3 for

the potential and 2/3 for the flux, respectively, as was found for the pure Dirichlet

boundary condition.

Now, we consider the domain Ω = (−1, 1)2/[0, 1]× [−1, 0], with Γ = ΓD∪ΓN , where

ΓN = {0} × [−1, 0] ∪ [0, 1]× {0} and ΓD := Γ\ΓN . (1.43)

Table 1.5: History of convergence of potential and flux errors, k ∈ {0, 1, 2, 3, 4}.

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 5.35e-02 2.41e-02 1.84e-02 1.46e-02 1.22e-02

5.18e-02 2.85e-02 0.767 1.49e-02 0.582 1.11e-02 0.618 8.55e-03 0.650 6.93e-03 0.687

2.59e-02 1.63e-02 0.808 9.49e-03 0.654 6.88e-03 0.686 5.27e-03 0.697 4.23e-03 0.711

1.29e-02 9.79e-03 0.727 6.02e-03 0.654 4.32e-03 0.668 3.30e-03 0.671 2.65e-03 0.674

6.47e-03 6.06e-03 0.695 3.80e-03 0.666 2.72e-03 0.671 2.08e-03 0.672 1.66e-03 0.673

3.24e-03 3.79e-03 0.678 2.40e-03 0.667 1.71e-03 0.668 1.31e-03 0.669 1.05e-03 0.669

1.62e-03 2.38e-03 0.670 1.51e-03 0.666 1.08e-03 0.667 8.25e-04 0.667 6.60e-04 0.667

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 2.38e-01 1.24e-01 8.17e-02 6.43e-02 5.10e-02

5.18e-02 1.62e-01 0.469 7.94e-02 0.538 5.26e-02 0.536 4.13e-02 0.539 3.28e-02 0.536

2.59e-02 1.07e-01 0.595 5.13e-02 0.632 3.41e-02 0.625 2.67e-02 0.627 2.13e-02 0.627

1.29e-02 6.97e-02 0.614 3.31e-02 0.629 2.21e-02 0.624 1.73e-02 0.625 1.38e-02 0.625

6.47e-03 4.50e-02 0.633 2.13e-02 0.637 1.43e-02 0.632 1.12e-02 0.634 8.89e-03 0.633

3.24e-03 2.89e-02 0.640 1.37e-02 0.637 9.21e-03 0.632 7.20e-03 0.634 5.73e-03 0.634

1.62e-03 1.85e-02 0.643 8.83e-03 0.636 5.94e-03 0.633 4.64e-03 0.634 3.70e-03 0.634
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(a) Potential error (b) Flux error

Figure 1.9: Convergence rates of potential and flux errors.

From Figure 1.9 and Table 1.5, we observe a rate of convergence of 2/3 for the

potential and approximately 7/11 for the flux. These rates are lower possibly

because the nonregularity of the gradient near the origin (Neumann boundary

condition).

We remark that the pure Neumann boundary condition is not included in this

analysis. The latter is analysed in [39] and it will be addressed in Chapter 2.
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Chapter 2

An HHO formulation for a

Neumann problem on general

meshes

In this chapter, we study a Hybrid High-Oder (HHO) method for an elliptic diffusion

problem with Neumann boundary condition. The proposed method has several

features, such as: i) the support of arbitrary approximation order polynomial at

mesh elements and faces on general polyhedral meshes, ii) the design of a local

(element-wise) potential reconstruction operator and a local stabilization term, that

weakly enforces the matching between local element- and face- based on degrees of

Freedom (DOF), and iii) cheap computational cost, thanks to static condensation

and compact stencil. We prove the well-posedness of our HHO formulation, and

obtain the optimal error estimates, according to [72]. Implementation aspects are

throughly discussed. Finally, some numerical examples are provided, which are in

agreement with our theoretical results.

2.1 Introduction

The approximation of diffusive problems on general polyhedral meshes have received

an increasing attention over the last few years, motivated in particular by applications

in the geosciences, where the mesh is often adapted to geological layers, cracks and
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faults leading to cells with polyhedral shape and to nonmatching interfaces. These

considerations are included in the context of Hybrid High-Order methods, which are

derived in terms of a primal formulation, and are designed from two key ingredients:

i) a potential reconstruction in each mesh cell, and

ii) a face-based stabilization consistent, with the high-order provided by the

potential reconstruction.

This design relies on intermediate cell-based discrete unknowns, in addition to the

face-based ones (hence, the term hybrid). We remark that the cell-based unknowns

can be eliminated by static condensation, as it has already been pointed out in[75, 70].

As low-order methods on polyhedral meshes have been studied for quite some time,

we mention that HHO can be seen as a Finite Volume method (FVM) (cf. [82],

[88]) for polynomial of order k = 0 (see Section 2.5 in [75]). HHO can also be

expressed into an equivalent mixed formulation (cf. [76], [73]). In [57], we find the

identification of conservative numerical traces of the flux, and that HHO methods

can be seen as a generalization of HDG methods. Moreover, in Section 2.4 in [57], we

find a link between a nonconforming Virtual Element Method considered in [11], and

HHO methods, by defining an isomorphism between the HHO degrees of freedom

and a local virtual finite-dimensional space (containing those polynomial functions

leading to optimal approximation properties), we identify the projection operator

related to the elliptic operator of HHO.

In what follows, we describe the model problem. Let Ω ⊂ Rd, d ∈ {2, 3}, be an open,

bounded, polytopic domain with Lipschitz-continuous boundary Γ := ∂Ω and unit

outward normal n. Let K ∈ [L∞(Ω)]d×d be a bounded, measurable, and symmetric

tensor describing the material properties, f ∈ L2(Ω) is the forcing term and g ∈

L2(Γ) is the flux through the boundary. We focus on the following variable-diffusion

problem with Neumann boundary condition:

−∇ · (K∇u) = f in Ω , (2.1a)

K∇u · n = g on Γ , (2.1b)∫
Ω

u = 0. (2.1c)
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It is well known that the data f and g must satisfy the compatibility condition∫
Ω

f +

∫
Γ

g = 0 . (2.2)

From here on, we assume that K is strongly elliptic, that is there exist two positive

constants c1 and c2 such that

c1|ξ|2 ≤ ξtK(x) ξ ≤ c2|ξ|2 ∀ξ ∈ Rd, ∀x ∈ Ω,

where | · | represents the usual Euclidean norm. The strong ellipticity implies that

matrix K(x) is uniformly positive definite and thus nonsingular for every x ∈ Ω.

For any connected subset X ⊂ Ω̄ with nonzero Lebesgue measure, the inner product

and norm of the Lebesgue space L2(X) are denoted by (·, ·)X and || · ||X , respectively.

Similar notations will be used for L2(X)d and L2(Γ). It is not difficult to deduce

that the weak formulation of (2.1) reads as: Given f ∈ L2(Ω) and g ∈ L2(Γ), we

seek u ∈ U := {v ∈ H1(Ω) : (v, 1)Ω = 0} such that

(K∇u,∇v)Ω = (f, v)Ω + (g, v)Γ ∀v ∈ U. (2.3)

In addition, thanks to the Poincaré-Wintinger inequality and the Lax-Milgram

lemma, we can ensure that the problem (2.3) is well-posed.

The application of HHO technique Poisson problem with Dirichlet conditions has

been described in [72], while in [76] one can find the corresponding analysis for

mixed boundary conditions. An extension of this approach for a certain class of

nonlinear elliptic problems (p−Laplacian) has been developed in [64]. HHO method

for elliptic problems with homogeneous Neumann boundary value condition, has

already been used in [6], but without its corresponding a priori error analysis, which

is a bit different that the one for mixed/Dirichlet boundary conditions, although it is

reasonable to think that we also should expect similar theoretical results. For these

reasons, the focus of the present work is to describe the Hybrid High-Order method

for linear variable-diffusion problems with nonhomogeneous Neumann boundary

conditions and to develop a complete error estimate. It is important to emphasize

that the involved analysis described in this work is not contained in the context of

[76].
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In Section 2.2, we introduce any assumptions over the diffusion tensor, our main

analysis tools, the degrees of freedom (DOFs) in the context of HHO method,

and the potential reconstruction operator, with its key properties. In Section

2.3, we introduce the discrete problem and study its stability. In Section 2.4,

we perform the error analysis, first in the energy-norm and then in the L2-norm

under additional elliptic regularity assumption. In Section 2.5, we discuss the

computational implementation and, finally in Section 2.6, we present some numerical

examples, which are in agreement with our theoretical results.

2.2 Discrete settings

Let H ⊂ R+ denote a countable set of meshsizes having 0 as its unique accumulation

point and (Th)h∈H a h-refined admissible mesh sequence of Ω (see Section 4.1 in

[74]). Each mesh Th of this sequence is a finite collection of nonempty, disjoint,

open, polytopic elements such that Ω =
⋃
T∈Th T and h = maxT∈Th hT (with hT

the diameter of T ), and there is a matching simplicial submesh of Th with locally

equivalent mesh size and which is shape-regular in the usual sense (γ is the mesh

regularity parameter). We call a face any hyperplanar closed connected subset F of

Ω with positive (d− 1)-dimensional measure and such that (i) either there exist T1,

T2 ∈ Th such that F ⊂ ∂T1 ∩ ∂T2 (F is called an interior face) or (ii) there exists

T ∈ Th such that F ⊂ ∂T ∩ ∂Ω (F is called a boundary face). Interior faces are

collected in the set F ih, boundary faces in F bh, and we set Fh := F ih∪F bh. The diameter

of a face F ∈ Fh is denoted by hF . For each T ∈ Th, FT := {F ∈ Fh |F ⊂ ∂T}

defines the set of faces lying on the boundary of T and, for each F ∈ FT , nTF is the

unit normal to F pointing out of T . In an admissible mesh sequence, for any T ∈ Th,

and any F ∈ FT , hF is uniformly comparable to hT in the sense that, for all h ∈ H

and all T ∈ Th
γ2hT ≤ hF ≤ hT , (2.4)

and the card(FT ) is uniformly bounded. The usual discrete and multiplicative trace

inequalities hold on element faces. The following assumptions and notations will be

taken into account in this work:
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N.1 There is a partition PΩ of Ω so that K is piecewise Lipschitz, and the mesh Th
fits the (polytopal) partition PΩ associated with the diffusion tensor K in the

sense that, there is a unique Ωi in PΩ containing T .

N.2 We denote by KT and KT the lowest and largest eigenvalues of K in T . We

introduce the local heterogeneity/anisotropy ratio ρT := KT/KT ≥ 1.

N.3 Furthermore, A . B denotes the inequality A ≤ CB with positive constant C

independent of the diffusion tensor K and the meshsize h, and probably not

independent of the polynomial degree k.

N.4 To avoid the proliferation of symbols, we assume that for all T ∈ Th, the

Lipschitz constant of K in T , say LKT , satisfies LKT . KT .

In the following lemma, we show that the L2-orthogonal projector onto polynomial

spaces have optimal approximation properties on each mesh element.

Lemma 2.2.1 (L2-orthogonal projector) Given an integer l ≥ 0, and T ∈ Th,

we denote by πlT the L2-orthogonal projector onto Pld(T ). Then, for any s, t ∈ R with

0 ≤ s ≤ t ≤ l + 1 there exists Capp = Capp(γ, l) > 0, such that

|v − πlTv|Hs(T ) ≤ Capph
t−s
T |v|Ht(T ), ∀ v ∈ H t(T ). (2.5)

Besides, there exists C ′app > 0 such that, for all t, 1/2 < t ≤ l + 1, there holds

‖v − πlTv‖∂T ≤ C ′apph
t−1/2
T |v|Ht(T ), ∀ v ∈ H t(T ), (2.6)

where | · |Ht(T ) and | · |Hs(T ) denotes the corresponding seminorms on Sobolev spaces

H t(T ) and Hs(T ), respectively.

Proof. We refer to Theorems 3.2 and 3.3 in [102]. �

2.2.1 Degrees of freedom (DOFs)

Let a polynomial degree k ≥ 0 be fixed. For all T ∈ Th, we define the local space of

DOFs as U k
T := Pkd(T )×

(�
F∈FT P

k
d−1(F )

)
, where Pkd(T ) (resp., Pkd−1(F )) is spanned
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by the restrictions to T (resp., F ) of d-variate (resp., (d− 1)-variate) polynomials of

total degree ≤ k. And the global space of DOFs on the domain Ω.

U k
h :=

(�
T∈Th

Pkd(T )

)
×

(�
F∈Fh

Pkd−1(F )

)
.

For all T ∈ Th, we define the local reduction operator IkT : H1(T ) → U k
T such that,

for all v ∈ H1(T ),

IkTv := (πkTv, (π
k
Fv)F∈FT ), (2.7)

where πkT and πkF are the L2-orthogonal projectors onto Pkd(T ) and Pkd−1(F ),

respectively. The corresponding global interpolation operator Ikh : H1(Ω) → U k
h

is such that, for all v ∈ H1(Ω),

Ikhv := ((πkTv)T∈Th , (π
k
Fv)F∈Fh). (2.8)

2.2.2 Potential reconstruction operator

For all T ∈ Th, we define the potential reconstruction operator pk+1
T : U k

T → Pk+1
d (T )

such that, for each vT := (vT , (vF )F∈FT ) ∈ U k
T and each w ∈ Pk+1

d (T ),

(K∇pk+1
T vT ,∇w)T = (K∇vT ,∇w)T +

∑
F∈FT

(vF − vT , K∇w · nTF )F , (2.9)

and ∫
T

pk+1
T vT :=

∫
T

vT , (2.10)

where we recall that nTF is the unit normal to F pointing out of T .

The following result characterizes the composition of the diffusion-dependent

potential reconstruction with the local reduction operator and shows that pk+1
T IkT

is the K-weighted elliptic projector onto Pk+1
d (T ) only if K is constant in the cell.

Lemma 2.2.2 (Characterization of pk+1
T IkT and polynomial consistency)

For every v ∈ H1(T ) and w ∈ Pk+1
d (T ), there holds

(K∇(v − pk+1
T IkTv),∇w)T = ((K −KT )∇(v − πkTv),∇w)T

−
∑
F∈FT

(πkFv − πkTv, (K −KT )∇w · nTF )F , (2.11)
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where KT denotes the mean-value of K on T . In addition, if K is piecewise constant

on PΩ, we obtain the following orthogonality property:

(K∇(v − pk+1
T IkTv),∇w)T = 0, (2.12)

and the polynomial consistency:

pk+1
T IkTv = v ∀ v ∈ Pk+1

d (T ). (2.13)

Proof. We will give a detailed proof of statements in Lemma 2.1 in [72] and Lemma

3.1 in [76].

Using the fact that KT is a symmetric matrix and using integration by parts, we

obtain that for each w ∈ Pk+1
d (T ),

(KT∇πkTv,∇w)T = (∇πkTv,KT∇w)T

= −(πkTv,∇ · (KT∇w))T +
∑
F∈FT

(πkTv,KT∇w · nTF )F , (2.14)

using the definition of L2-orthogonal projector on Pkd(T ) with∇·(KT∇w) ∈ Pk−1
d (T ),

we can write (2.14) as

(KT∇πkTv,∇w)T = −(v,∇ · (KT∇w))T +
∑
F∈FT

(πkTv,KT∇w · nTF )F , (2.15)

performing integration by parts on the first addend of (2.15), and using L2-orthogonal

projector on Pkd−1(F ) with KT∇w · nTF ∈ Pkd−1(F ) leads to

(KT∇πkTv,∇w)T = (KT∇v,∇w)T −
∑
F∈FT

(πkFv − πkTv,KT∇w · nTF )F , (2.16)

using vT = IkTv in the definition of potential reconstruction operator, we obtain

(K∇pk+1
T IkTv,∇w)T = (K∇πkTv,∇w)T +

∑
F∈FT

(πkFv − πkTv,K∇w · nTF )F , (2.17)

then, subtracting (K∇v,∇w) from both sides of (2.17), we obtain

(K∇(pk+1
T IkTv − v),∇w)T = (K∇πkTv,∇w)T − (K∇v,∇w)

+
∑
F∈FT

(πkFv − πkTv,K∇w · nTF )F , (2.18)
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finally (2.11) follows from (2.16) and (2.18).

Furthermore, noticing that the right-hand side of (2.11) vanishes if K is piecewise

constant on PΩ, it follows the orthogonality property (2.12). In the case of v ∈

Pk+1
d (T ), we can take w = v − pk+1

T IkTv in (2.12), and it follows that v − pk+1
T IkTv is

constant on T . Then, from the definition of potential reconstruction operator and

orthogonal projector, we infer that (v − pk+1
T IkTv, 1)T = 0, and finally we conclude

(2.13). �

Lemma 2.2.3 (Approximation properties for pk+1
T IkT ) There exists a real

number C > 0, depending of γ (mesh regularity parameter) and d, but independent

of the polynomial degree, the meshsize, and the diffusion tensor. So that for any

v ∈ Hs+2(T ), s ∈ {0, · · · , k}, there holds:

∥∥v − pk+1
T IkTv

∥∥
T

+ h
1/2
T

∥∥v − pk+1
T IkTv

∥∥
∂T

+ hT
∥∥∇(v − pk+1

T IkTv)
∥∥
T

+h
3/2
T

∥∥∇(v − pk+1
T IkTv)

∥∥
∂T
≤ CραTh

s+2
T ‖v‖Hs+2(T ) , (2.19)

Here, α = 1/2 if K is piecewise constant, and α = 1 otherwise.

Proof. In Lemma 2.1 in [72], we find a sketch of the proof, we will give a more

detailed proof.

Using the same notation of lemma 2.2.2, and the fact that K is piecewise Lipschitz

on T with Lipschitz constant LKT , we infer that

∣∣(K −KT )(x)
∣∣
2
. LKT hT , ∀x ∈ T . (2.20)

Using Cauchy-Schwarz inequality on (2.11), we obtain

|
(
K∇(v − pk+1

T IkTv),∇w
)
T
| ≤∥∥(K −KT )∇(v − πkTv)

∥∥
T
‖∇w‖T +

∑
F∈FT

∥∥πkFv − πkTv∥∥F ∥∥(K −KT )∇w · nTF
∥∥
F
,

(2.21)

by (2.20) and the approximation properties of πkT , we infer that

∥∥(K −KT )∇(v − πkTv)
∥∥
T
. LKT h

k+1
T ‖v‖Hk+1(T ) , (2.22)
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using Cauchy-Schwarz inequality on (K −KT )∇w · nTF , again (2.20), the discrete

trace inequality ‖∇w‖F . h
−1/2
F ‖∇w‖T , and (2.4), it holds

∥∥(K −KT )∇w · nTF
∥∥
F
. LKT h

1/2
T ‖∇w‖T , (2.23)

using polynomial approximation properties on mesh faces, we have

∥∥πkFv − πkTv∥∥F . h
k+1/2
T ‖v‖Hk+1(T ) . (2.24)

Then, we deduce from (2.21) to (2.24), and the assumption LKT . KT , that

|
(
K∇(v − pk+1

T IkTv),∇w
)
T
| . KTh

k+1
T ‖v‖Hk+1(T ) ‖∇w‖T . (2.25)

We also notice that

∥∥K1/2∇(v − pk+1
T IkTv)

∥∥2

T
=
(
K∇(v − pk+1

T IkTv),∇(v − πk+1v)
)
T

+
(
K∇(v − pk+1

T IkTv),∇(πk+1v − pk+1
T IkTv)

)
T
. (2.26)

We denote by T1 and T2 the addends on the right-hand side of (2.26). Applying

Cauchy Schwarz inequality, and approximation properties of πk+1
T , we obtain

|T1| .
∥∥K1/2∇(v − pk+1

T IkTv)
∥∥
T
KT

1/2hk+1
T ‖v‖Hk+2(T ) . (2.27)

To bound T2, we use (2.25) with w = πk+1v − pk+1
T IkTv, obtaining

|T2| . KTh
k+1
T ‖v‖Hk+1(T )

∥∥∇(πk+1v − pk+1
T IkTv)

∥∥
T
, (2.28)

also, it holds

∥∥∇(πk+1
T v − pk+1

T IkTv)
∥∥
T
≤ KT

−1/2
∥∥K1/2∇(v − pk+1

T IkTv)
∥∥
T
, (2.29)

where we have used the H1-stability of the projector πk+1
T , and

∣∣∣K−1/2
T

∣∣∣
2
≤ KT

−1/2.

Then, we infer from (2.28), (2.29) that

|T2| .
∥∥K1/2∇(v − pk+1

T IkTv)
∥∥
T
ρ

1/2
T KT

1/2hk+1
T ‖v‖Hk+2(T ) . (2.30)

Considering K piecewise constant in (2.26), we notice that T2 vanishes, then it holds

∥∥K1/2∇(v − pk+1
T IkTv)

∥∥
T
. KT

1/2hk+1
T ‖v‖Hk+2(T ) . (2.31)
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Considering K in the general case in (2.26), we obtain from (2.27) and (2.30) that

∥∥K1/2∇(v − pk+1
T IkTv)

∥∥
T
. ρ

1/2
T KT

1/2hk+1
T ‖v‖Hk+2(T ) , (2.32)

finally, using the definition of α, and
∣∣∣K−1/2

T

∣∣∣
2
≤ KT

−1/2 again, it concludes

∥∥∇(v − pk+1
T IkTv)

∥∥
T
. ραTh

k+1
T ‖v‖Hk+2(T ) . (2.33)

Now, we bound the first addend of (2.19) using the facts that v−pk+1
T IkTv ∈ H1(T )∩

L2
0(T ), the local Poincaré inequality, and (2.33), we obtain

∥∥v − pk+1
T IkTv

∥∥
T
. hT

∥∥∇(v − pk+1
T IkTv)

∥∥
T
. ραTh

k+2
T ‖v‖Hk+2(T ) . (2.34)

The consecutive application of the continuous trace inequality and (2.33)-(2.34)

yields

hT
∥∥v − pk+1

T IkTv
∥∥2

∂T
.
∥∥v − pk+1

T IkTv
∥∥2

T
+h2

T

∥∥∇(v − pk+1
T IkTv)

∥∥2

T
. h

2(k+2)
T ‖v‖2

Hk+2(T ) .

(2.35)

For bounding ‖K1/2∇(v − pk+1
T IkTv)‖∂T , we notice that

∥∥K1/2∇(v − pk+1
T IkTv)

∥∥
∂T
≤
∥∥K1/2(∇v − πkT∇v)

∥∥
∂T

+
∥∥K1/2(πkT∇v −∇pk+1

T IkTv)
∥∥
∂T
.

(2.36)

Applying componentwise the approximation property of πkT to ∇v, we obtain

∥∥K1/2(∇v − πkT∇v)
∥∥
∂T
. KT

1/2h
k+1/2
T ‖v‖Hk+2(T ). (2.37)

Without loss of generality, we assume that K is piecewise polynomial, then, using

discrete trace inequality, and the bound on card(FT ), we infer that

∥∥K1/2(πkT∇v −∇pk+1
T IkTv)

∥∥
∂T
. h

−1/2
T

∥∥K1/2(πkT∇v −∇pk+1
T IkTv)

∥∥
T
. (2.38)

If K is piecewise constant, it follows from the fact ∇pk+1
T IkTv ∈

[
Pkd(T )

]d
, and

approximation property of πkT that

∥∥K1/2(πkT∇v −∇pk+1
T IkTv)

∥∥
T
≤
∥∥K1/2∇(v − pk+1

T IkTv)
∥∥
T
, (2.39)

then, in the case of K piecewise constant, we infer from (2.36) to (2.39) that

∥∥K1/2∇(v − pk+1
T IkTv)

∥∥
∂T
. KT

1/2h
k+1/2
T ‖v‖Hk+2(T ). (2.40)
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Otherwise, since
∣∣∣K1/2

T

∣∣∣
2
≤ KT

1/2, it follows∥∥K1/2(πkT∇v −∇pk+1
T IkTv)

∥∥
T
. KT

1/2
∥∥∇(v − pk+1

T IkTv)
∥∥
T
, (2.41)

then, from (2.36), (2.37), (2.38), (2.41) and (2.33), we conclude for the general case

that ∥∥K1/2∇(v − pk+1
T IkTv)

∥∥
∂T
. ρ

1/2
T KT

1/2h
k+1/2
T ‖v‖Hk+2(T ). (2.42)

Finally, it follows from (2.40) and (2.42) and the definition of ρT , the bound of∥∥∇(v − pk+1
T IkTv)

∥∥
∂T

.

�

2.3 Formulation

First, we introduce the discrete global space for our HHO formulation as

U k,0
h :=

{
vh := ((vT )T∈Th , (vF )F∈Fh) ∈ U k

h :
∑
T∈Th

(vT , 1)T = 0

}
. (2.43)

Next, we consider the following discrete semi norm on U k
h,

‖vh‖2
K,h :=

∑
T∈Th

ρ−1
T ‖vT‖

2
K,T , ∀vh ∈ U k

h, (2.44)

where ‖vT‖2
K,T := ‖K1/2∇vT‖2

T + |vT |2K,∂T and |vT |2K,∂T :=
∑
F∈FT

kF
hF
‖vF−vT‖2

F , with

kF := ‖ntTFKnTF‖L∞(F ), for all vT := (vT , (vF )F∈FT ) ∈ U k
T .

Proposition 2.3.1 The map ‖ · ‖K,h defines a norm on U k,0
h .

Proof. It is enough to prove that ∀vh ∈ U
k,0
h : ‖vh‖K,h = 0 ⇒ vh = 0h. Let

vh ∈ U
k,0
h be such that ‖vh‖K,h = 0. This implies (cf. (2.44)) that

∇vT ≡ 0 and vT |F = vF ∀F ∈ FT ∀T ∈ Th. (2.45)

Then, from (2.45) we infer that vT is constant on each T ∈ Th. In addition,

we notice that given any interior face F ∈ Fh, there exist T1, T2 ∈ Th with

F ⊂ ∂T1 ∩ ∂T2, such that vT1|F = vF = vT2 |F . This means that vT = α ∈ R

for each T ∈ Th. Finally, taking into account the zero mean value condition that
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characterizes U k,0
h , we deduce that α = 0 and thus vh = 0h, and we end the proof. �

Hereafter, the local potential reconstruction Rk+1
T : U k

T → Pk+1
d (T ) is defined

such that, for all vT ∈ U k
T ,

Rk+1
T vT := vT + (pk+1

T vT − πkTpk+1
T vT ) . (2.46)

Now, to discretize the left-hand of (2.3), we introduce the following bilinear form on

U k
h ×U k

h

ah(uh,vh) :=
∑
T∈Th

aT (uT ,vT ) , (2.47)

where, for each T ∈ Th, the local bilinear forms aT , sT : U k
T ×U k

T → R, are given

by

aT (uT ,vT ) := (K∇ pk+1
T uT ,∇ pk+1

T vT )T + sT (uT ,vT ), (2.48a)

sT (uT ,vT ) :=
∑
F∈FT

kF
hF

(πkF (uF −Rk+1
T uT ), πkF (vF −Rk+1

T vT ))F . (2.48b)

The linear functional on the right hand side in (2.3) is discretized by means of the

linear functional on U k
h such that

bh(vh) :=
∑
T∈Th

(f, vT )T +
∑
F∈Fbh

(g, vF )F ∀vh := ((vT )T∈Th , (vF )F∈Fh) ∈ U k
h . (2.49)

Then, the discrete problem reads: Find uh ∈ U
k,0
h such that,

ah(uh,vh) = bh(vh) ∀vh ∈ U
k,0
h . (2.50)

To analyse the stability and solvability of the discrete problem, we introduce the

local and global energy semi-norms as follows:

‖vh‖2
a,h :=

∑
T∈Th

‖vT‖2
a,T , where ‖vT‖2

a,T := aT (vT .vT ) . (2.51)

Next result establishes an important relation between ‖ · ‖a,T and ‖ · ‖K,T .

Lemma 2.3.1 For any vT ∈ U k
T , there holds:

ρ−1
T ‖vT‖

2
K,T . ‖vT‖2

a,T . ρT‖vT‖2
K,T . (2.52)

Consequently, for all vh ∈ U k
h, ‖vh‖K,h . ‖vh‖a,h , and then, problem (2.50) is

well-posed.
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Proof. We refer to the proof of Lemma 3.1 in [72]. �

We end this section, introducing the global potential reconstruction operator pk+1
h :

U k
h → Pk+1

d (Th), such that for all vh ∈ U k
h: (pk+1

h vh)|T := pk+1
T vT ∀T ∈ Th, and

also the global stabilization term sh : U k
h ×U k

h → R, given by

sh(uh,vh) :=
∑
T∈Th

sT (uT ,vT ) ∀uh,vh ∈ U k
h .

These operators will be invoked in the next sections.

2.4 Error analysis

In this section we prove error estimates in the energy-norm and also in L2-norm,

under additional regularity assumption on exact solution. First, we start by

establishing some technical results.

Lemma 2.4.1 (Consistency of sT ) Given T ∈ Th, let sT be the stabilization

bilinear form defined in (2.48b), consider α as in Lemma 2.2.3), and let q ∈

{0, · · · , k}. Then, for all v ∈ Hq+2(T ),

sT (IkTv, I
k
Tv)1/2 . KT

1/2ραTh
q+1
T ‖v‖Hq+2(T ) . (2.53)

Proof. Let q ∈ {0, · · · , k} be fixed, and consider v ∈ Hq+2(T ). Taking into account

(2.46), the definition of IkTv, triangle inequality, discrete trace inequality and the

L2-stability of the projectors, we deduce

h
−1/2
F ‖πkF (v −Rk+1

T IkTv)‖F . h
−1/2
F ‖v − pk+1

T IkTv‖F + h−1
F ‖v − p

k+1
T IkTv‖T . (2.54)

Now, since kF ≤ KT for all F ∈ FT , together with the fact that card(FT ) is uniformly

bounded, and the mesh regularity property (2.4), we infer from (2.54) that∑
F∈FT

kF
hF
‖πkF (v −Rk+1

T IkTv)‖2
F . KT

(
h−1
T ‖v − p

k+1
T IkTv‖2

∂T + h−2
T ‖v − p

k+1
T IkTv‖2

T

)
.

(2.55)

Then, using (2.55), and the approximation property of pk+1
T IkT in Lemma 2.19, we

conclude (2.53). We remark that in [66] (Proposition 2.14), there is a proof for

stabilization terms satisfying three conditions, which are checked for sT . �
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The following result will help us to conclude the error estimates of the method. From

now on, we let u ∈ U be the exact solution of (2.3). We define the consistency error

as the linear functional Eh(u; ·) : U k,0
h → R such that Eh(u; ·) := ah(I

k
hu, ·)− bh(·).

Lemma 2.4.2 (Consistency-error estimate) Taking into account the definition

of α (given in Lemma 2.2.3), and assuming, in addition, that the exact solution of

(2.3), u ∈ Hq+2(Th), with q ∈ {0, ..., k}, there holds

sup
vh∈U

k,0
h , ‖vh‖a,h=1

Eh(u;vh) .

{∑
T∈Th

KTρ2α
T h

2(q+1)
T ‖u‖2

Hq+2(T )

}1/2

. (2.56)

Proof. We derive a bound for the consistency error for a generic vh ∈ U
k,0
h . Taking

w := pk+1
T IkTu in (2.9), and using (2.10), we infer that

ah(I
k
hu,vh) =

∑
T∈Th

{
(∇vT , K∇pk+1

T IkTu)T +
∑
F∈FT

(vF − vT , K∇pk+1
T IkTu · nTF )F

}

+ sh(I
k
hu,vh). (2.57)

Since f = −∇· (K∇u) in Ω (in distributional sense), an element-wise integration by

parts in the first term of bh yields∑
T∈Th

(f, vT )T =
∑
T∈Th

{
(K∇u,∇vT )T −

∑
F∈FT

(vT , K∇u · nTF )F

}
. (2.58)

In addition, from the fact that g = K∇u · n on Γ (in distributional sense), we infer

that the second term of bh can be written as∑
F∈Fbh

(g, vF )F =
∑
F∈Fbh

(vF , K∇u · nTF )F . (2.59)

Then, from (2.58), (2.59) and noticing that vF is single-valued on Fh, and the fluxes

K∇u · n are continuous at interior faces, we infer that

bh(vh) =
∑
T∈Th

{
(K∇u,∇vT )T +

∑
F∈FT

(vF − vT , K∇u · nTF )F

}
. (2.60)

Combining (2.57) with (2.60), we arrive at

Eh(u;vh) =
∑
T∈Th

{(
∇vT , K∇(pk+1

T IkTu− u)
)
T

+
∑
F∈FT

(
vF − vT , K∇(pk+1

T IkTu− u) · nTF
)
F

}
+ sh(I

k
hu,vh) := T1 + T2.

(2.61)
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Applying Cauchy-Schwarz inequality on each term of T1, we obtain

|T1| ≤
∑
T∈Th

{
ρ
−1/2
T ‖K1/2∇vT‖T ρ1/2

T ‖K
1/2∇(pk+1

T IkTu− u)‖T

+
∑
F∈FT

ρ
−1/2
T

({
kF
hF

}1/2

‖vF − vT‖F

)
ρ

1/2
T

({
hF
kF

}1/2

‖ K∇(pk+1
T IkTu− u)nTF‖F

)}
.

(2.62)

Now, thanks to Minkowski inequality, recalling (2.44), and taking into account the

inequality ‖K∇w · nTF‖F ≤ k
1/2
F ‖K1/2∇w‖F , together with the mesh regularity

property (2.4), we deduce

|T1| .

(∑
T∈Th

ρT

{
‖K1/2∇(pk+1

T IkTu− u)‖2
T + hT‖K1/2∇(pk+1

T IkTu− u)‖2
∂T

})1/2

‖vh‖K,h .

(2.63)

Next, by the approximation properties (2.31), (2.32), (2.40), and (2.42) of pk+1
T IkT ,

we infer that

‖K1/2∇(pk+1
T IkTu− u)‖2

T + hT‖K1/2∇(pk+1
T IkTu− u)‖2

∂T . KTρ
2α−1
T h

2(q+1)
T ‖u‖2

Hq+2(T ) ,

(2.64)

and thus, replacing (2.64) in (2.63), we derive

|T1| .

(∑
T∈Th

KTρ2α
T h

2(q+1)
T ‖u‖2

Hq+2(T )

)1/2

‖vh‖K,h . (2.65)

Next, in order to bound T2, we first notice that∣∣sh(Ikhu,vh)∣∣ ≤ sh(I
k
hu, I

k
hu)1/2 sh(vh,vh)

1/2 , (2.66)

and then, invoking Lemma 2.4.1 in (2.66), we obtain

|T2| .

(∑
T∈Th

KTρ2α
T h

2(q+1)
T ‖u‖2

Hq+2(T )

)1/2

sh(vh,vh)
1/2 . (2.67)

As consequence, we have established that

Eh(u;vh) .

(∑
T∈Th

KTρ2α
T h

2(q+1)
T ‖u‖2

Hq+2(T )

)1/2 (
‖vh‖K,h + sh(vh,vh)

1/2
)
. (2.68)

Thus, (2.56) follows from the fact that ‖vh‖K,h . ‖vh‖a,h (cf. Lemma 2.3.1),

sh(vh,vh)
1/2 ≤ ‖vh‖a,h, and recalling that ‖vh‖a,h = 1.

�
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Theorem 2.4.1 (Energy-error estimate) Let uh ∈ U k,0
h be the solution of

(2.50), and recall the definition of α (given in Lemma 2.2.3). If, in addition, we

assume that the exact solution of (2.3), u ∈ Hq+2(Th), for some q ∈ {0, ..., k}, then

there holds

‖Ikhu− uh‖a,h .

{∑
T∈Th

KTρ2α
T h

2(q+1)
T ‖u‖2

Hq+2(T )

}1/2

. (2.69)

Moreover, applying Lemma 2.2.3, there holds

‖K1/2(∇u−∇hp
k+1
h uh)‖Ω .

{∑
T∈Th

KTρ2α
T h

2(q+1)
T ‖u‖2

Hq+2(T )

}1/2

. (2.70)

Proof. Since ah is coercive on U k,0
h , provided with the norm ‖ · ‖a,h (consequence of

Lemma 2.3.1), we are able to apply the Third Strang Lemma A.7 in the appendix

in [66], and obtain

‖Ikhu− uh‖a,h ≤ sup
vh∈U

k,0
h , ‖vh‖a,h=1

Eh(u;vh) .

Then, (2.69) is derived by applying Lemma 2.4.2. Now, in order to deduce (2.70),

we first apply triangle inequality, and obtain

‖K1/2(∇u−∇hp
k+1
h uh)‖Ω ≤ ‖K1/2(∇u−∇hp

k+1
h Ikhu)‖Ω+‖K1/2∇hp

k+1
h (Ikhu−uh))‖Ω .

(2.71)

Finally, (2.70) follows from (2.71), (2.51), (2.69), and (2.64). We omit further details.

�

Next, we provide an estimate of the L2-error between uh ∈ L2(Ω) and πkhu ∈ L2(Ω),

where

uh|T := uT and πkhu|T := πkTu ∀T ∈ Th. (2.72)

To this end, we need an additional elliptic regularity assumption in the following

form: Given w ∈ L2
0(Ω) := {q ∈ L2(Ω) : (q, 1)Ω = 0}, we let zw ∈ U be the unique

function such that

(K∇zw,∇v)Ω = (w, v)Ω ∀v ∈ U, (2.73)

which satisfies the a priori estimate:

‖zw‖H2(Ω) . K
−1 ‖w‖Ω , K := minT∈Th KT . (2.74)
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This assumption holds when, for example, the domain Ω is convex and K is Lipschitz

continuous [109]. For simplicity, we assume for the rest of analysis, that K is constant

on Ω. According to Lemma 2.2.3, the latter implies that α = 1/2.

Theorem 2.4.2 (L2-error estimate) Let uh ∈ U
k,0
h be the solution of (2.50), and

assume that the exact solution of (2.3), u ∈ Hq+2(Th), for some q ∈ {0, ..., k}. Then,

when k ≥ 1, there holds

‖πkhu− uh‖Ω . K
−1

K
1/2ρ1/2h

(∑
T∈Th

KTρTh
2(q+1)
T ‖u‖2

Hq+2(T )

)1/2

. (2.75)

Moreover, when k = 0, and assuming in addition that f ∈ H1(Th) and g ∈ W 1,∞(F bh),

there holds

‖π0
hu− uh‖Ω . K

−1
K

1/2ρ1/2 h

{∑
T∈Th

KTρTh
2
T‖u‖2

H2(T )

}1/2

+ K
−1 h

(∑
T∈Th

h2
T ||f ||2H1(T )

)1/2

+ K
−1 h1/2

∑
F∈Fbh

hd+1
F ||g||2W 1,∞(F )

1/2

,

(2.76)

where, K := maxT∈Th KT , ρ := K/K, and h := maxT∈Th hT .

Proof. First, we invoke the Aubin-Nitsche Lemma A.10 in the appendix in [66],

with U := U = H1(Ω) ∩ L2
0(Ω), a(u, v) = (K∇u,∇v)Ω, l(v) := (f, v)Ω + (g, v)Γ,

Uh := U k,0
h , ‖ · ‖Uh := ‖ · ‖a,h, ah := ah, lh := bh, and Ihu := Ikhu. Moreover, we

take L := L2
0(Ω) and introduce the linear reconstruction operator rh : U k,0

h → L2
0(Ω),

which given vh := ((vT )T∈Th , (vF )F∈Fh) ∈ U k,0
h , rh(vh) := vh, where vh ∈ L2

0(Ω) is

such that vh|T := vT ∀T ∈ Th. It is not difficult to check that rh is continuous, and

thanks to the symmetry of ah, the dual consistency error of zw, Edh(zw; ·), verifies,

Edh(zw; ·) := ah(·, Ikhzw) − (w, rh(·))Ω = ah
(
Ikhzw − zwh, ·

)
, (2.77)

with zwh ∈ U
k,0
h being the unique solution of the HHO scheme related to (2.73).

Now, denoting by ‖ · ‖a,h,∗ the dual norm of ‖ · ‖a,h, the referred Aubin-Nitsche
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Lemma A.10 yields us to

‖Ikhu− uh‖Ω ≤ ‖Ikhu− uh‖a,h sup
w∈L2

0(Ω) , ‖w‖≤1

‖Edh(zw; ·)‖a,h,∗︸ ︷︷ ︸
T1

+ sup
w∈L2

0(Ω) , ‖w‖≤1

Eh(u; Ikhzw)︸ ︷︷ ︸
T2

. (2.78)

We now bound T1. Thanks to (2.77), and after applying Theorem 2.4.1 to the HHO

scheme related to (2.73), with q = 0, and elliptic regularity (2.74), we have that

‖Edh(zw; ·)‖a,h,∗ ≤ ‖Ikhzw−zwh‖a,h . (κ)1/2 ρ1/2 h ‖zw‖H2(Ω) . κ−1 (κ)1/2 ρ1/2 h ‖w‖Ω .

Next, invoking (2.69), we derive a bound of T1:

T1 . κ−1 (κ)1/2 ρ1/2 h

{∑
T∈Th

KTρT h
2(q+1)
T ‖u‖2

Hq+2(T )

}1/2

. (2.79)

It remains to bound T2. To this aim, we need to analyze the cases: k ≥ 1 and k = 0.

Case k ≥ 1. Taking into account the orthogonality property (2.12), we proceed as

in the deduction of (2.68), with vh := Ikhzw, and obtain

Eh(u; Ikhzw) .

(∑
T∈Th

KTρT h
2(q+1)
T ‖u‖2

Hq+2(T )

)1/2

×

(∑
T∈Th

|IkT zw|2K,∂T

)1/2

+ sh(I
k
hzw, I

k
hzw)1/2

 . (2.80)

Applying Lemma 2.4.1, with q = 0, we have

sh(I
k
hzw, I

k
hzw)1/2 . (κ)1/2 ρ1/2 h ‖zw‖H2(Ω) . (2.81)

Next, recalling the definition of | · |K,∂T , we have for any T ∈ Th

|IkT zw|2K,∂T =
∑
F∈FT

ρ
−1/2
T

(
κF
hF

)1/2

‖πkF zw − πkT zw‖2
F

=
∑
F∈FT

ρ
−1/2
T

(
κF
hF

)1/2

‖πkF
(
zw − πkT zw

)
‖2
F

≤
∑
F∈FT

ρ
−1/2
T

(
κF
hF

)1/2

‖zw − πkT zw‖2
F

.
∑
F∈FT

(κT )1/2 h2
T ‖zw‖2

H2(T ) , (2.82)
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after applying Lemma 2.2.1, with t=2 (since l := k ≥ 1), and s = 0. Then, plugging

estimates (2.82) and (2.81) into (2.80), together with the elliptic regularity (2.74),

we deduce

T2 . κ−1 (κ)1/2 ρ1/2 h

{∑
T∈Th

KTρT h
2(q+1)
T ‖u‖2

Hq+2(T )

}1/2

,

and thus, we conclude the proof of (2.75) in the case k ≥ 1.

Case k = 0. Considering the definition of ah and bh, we have

Eh(u; I0
hzw) = ah(I

0
hu, I

0
hzw) −

∑
T∈Th

(f, π0
T zw)T −

∑
F∈Fbh

(g, π0
F zw)F

=
∑
T∈Th

(K∇p1
T I0
Tu,∇p1

T I0
T zw)T + sh(I

0
hu, I

0
hzw)

−
∑
T∈Th

(f, π0
T zw)T −

∑
F∈Fbh

(g, π0
F zw)F . (2.83)

On the other hand, we know

(K∇u,∇zw)Ω = (f, zw)Ω + (g, zw)Γ . (2.84)

Now, thanks to the orthogonality property of π0
T , and (2.84), we derive∑

T∈Th

(f, π0
T zw)T =

∑
T∈Th

(π0
Tf, zw)T

=
∑
T∈Th

(π0
Tf − f, zw)T + (f, zw)Ω

=
∑
T∈Th

(π0
Tf − f, zw − π0

T zw)T + (K∇u,∇zw)Ω − (g, zw)Γ . (2.85)

Plugging (2.85) into (2.83), we obtain

Eh(u; I0
hzw) =

∑
T∈Th

[
(K∇p1

T I0
Tu,∇p1

T I0
T zw)T − (K∇u,∇zw)T

]
︸ ︷︷ ︸

T2,1

+ sh(I
0
hu, I

0
hzw)︸ ︷︷ ︸

T2,2

+
∑
T∈Th

(π0
Tf − f, zw − π0

T zw)T︸ ︷︷ ︸
T2,3

+
∑
F∈Fbh

(g − π0
Fg, zw − π0

F zw)F︸ ︷︷ ︸
T2,4

.

(2.86)
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Now, we notice that

(K∇u,∇zw)T −
(
K∇p1

T I0
Tu,∇p1

T I0
T zw
)
T

=
(
K∇(u− p1

T I0
Tu),∇(zw − p1

T I0
T zw)

)
T

+(
K∇(u− p1

T I0
Tu),∇p1

T I0
T zw)

)
T

+
(
K∇p1

T I0
Tu,K∇(zw − p1

T I0
T zw)

)
T

=
(
K∇(u− p1

T I0
Tu),∇(zw − p1

T I0
T zw)

)
T
,

where the two last terms vanish by orthogonality property (2.12). Then, by

approximation property (2.31), Cauchy-Schwarz inequality, and (2.74) we deduce

|T2,1| .

(∑
T∈Th

KTρTh
2
T‖u‖2

H2(T )

)1/2(∑
T∈Th

KTρTh
2
T‖zw‖2

H2(T )

)1/2

. K
−1

K
1/2ρ1/2 h

{∑
T∈Th

KTρTh
2
T‖u‖2

H2(T )

}1/2

‖w‖Ω . (2.87)

Concerning T2,2, we have, after applying Lemma 2.4.1

sT (I0
Tu, I

0
T zw) ≤ [sT (I0

Tu, I
0
Tu)]1/2 [sT (I0

T zw, I
0
T zw)]1/2

≤
(
KT

1/2ρ
1/2
T hT ‖u‖H2(T )

) (
KT

1/2ρ
1/2
T hT ‖zw‖H2(T )

)
.

Then, with the help of Minkowski inequality and (2.74), we obtain

|T2,2| . K
−1

K
1/2ρ1/2 h

{∑
T∈Th

KTρTh
2
T‖u‖2

H2(T )

}1/2

‖w‖Ω . (2.88)

Next, applying Cauchy-Schwarz inequality, Minkowski inequality, approximation

property (2.5), and (2.74), we deduce

|T2,3| ≤
∑
T∈Th

||π0
Tf − f ||T ||zw − π0

T zw||T

≤

(∑
T∈Th

||π0
Tf − f ||2T

)1/2 (∑
T∈Th

||zw − π0
T zw||2T

)1/2

.

(∑
T∈Th

h2
T ||f ||2H1(T )

)1/2 (∑
T∈Th

h2
T |zw|2H1(T )

)1/2

. K
−1 h

(∑
T∈Th

h2
T ||f ||2H1(T )

)1/2

||w||Ω . (2.89)

Now, applying Theorem 1.45 in [66], for p =∞, s = 1, and m = 0, we obtain

‖g − π0
Fg‖L∞(F ) . hF‖g‖W 1,∞(F ) ∀F ∈ F bh. (2.90)
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Also, thanks to that fact that |F | . hd−1
F (d = 2 or 3), there holds

‖g − π0
Fg‖L2(F ) ≤ h

(d−1)/2
F ‖g − π0

Fg‖L∞(F ) . (2.91)

Then, taking into account (2.90)-(2.91), and proceeding as in the deduction of (2.89),

we have

|T2,4| ≤
∑
F∈Fbh

||g − π0
Fg||F ||zw − π0

F zw||F

.

∑
F∈Fbh

||g − π0
Fg||2F

1/2 ∑
F∈Fbh

||zw − π0
F zw||2F

1/2

.

∑
F∈Fbh

hd+1
F ||g||2W 1,∞(F )

1/2 ∑
F∈Fbh

hT |zw|2H1(TF )

1/2

. K
−1 h1/2

∑
F∈Fbh

hd+1
F ||g||2W 1,∞(F )

1/2

||w||Ω . (2.92)

Therefore, (2.87)-(2.89), in connection with (2.92), allow us to conclude that

|T2| . K
−1

K
1/2ρ1/2 h

{∑
T∈Th

KTρTh
2
T‖u‖2

H2(T )

}1/2

+ K
−1 h

(∑
T∈Th

h2
T ||f ||2H1(T )

)1/2

+ K
−1 h1/2

∑
F∈Fbh

hd+1
F ||g||2W 1,∞(F )

1/2

.

(2.93)

The proof of (2.76) follows from (2.79) (with q = k = 0) and (2.93). We omit further

details. �

Remark 2.4.1 If g ∈ P0
d−1(F bh), (2.76) reduces to

‖π0
hu− uh‖Ω . K

−1
K

1/2ρ1/2 h

{∑
T∈Th

KTρTh
2
T‖u‖2

H2(T )

}1/2

+ K
−1 h

(∑
T∈Th

h2
T ||f ||2H1(T )

)1/2

. (2.94)

Remark 2.4.2 It is possible to establish a similar result to Theorem 2.4.2, for

non-piecewise constant diffusion coefficient K. In essence, we need to assume an
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elliptic regularity property for locally variable K (cf. Assumption 4.21 in [66]), and

extend/adapt the theoretical arguments applied for Poisson equation with Dirichlet

boundary condition, as described in Section 4.2 in [66].

The following section, take as reference [50], where, we will discuss several issues of

the implementation of Neumann boundary conditions.

2.5 Implementation

An essential step in the implementation consists in selecting suitable bases for the

polynomial spaces on elements and faces. Particular care is required to make sure

that the resulting local problems are well-conditioned, since the accuracy of the local

computations may affect the overall quality of the approximation. Let T ∈ Th and

denote by xT a point with respect to which T is star-shaped (in the numerical test,

the barycenter of T was used). For a given polynomial degree l ∈ {k, k + 1}, one

possibility leading to a hierarchical basis for Pld(T ), T ∈ Th, is to choose the following

family of monomial functions:

BlT :=

{
d∏
i=1

ηαiT,i| ηT,i :=
xi − xT,i
hT

∀ 1 ≤ i ≤ d, α ∈ Nd, ‖α‖l1 ≤ l

}
. (2.95)

The characteristics of this bases are

i) Basis functions are expressed with respect to a reference frame local to each

element, which ensures that the basis does not depend on the position of the

element.

ii) Using the length scale equal to hT ensures that the basis functions take values

in an interval close to [−1, 1].

A basis for the polynomial space of vector-valued functions Pld(T )d is then obtained

by the Cartesian product of BlT . Similarly, a hierarchical monomial basis can be

defined for the spaces Pld(F )d, F ∈ Fh, using the face barycenter xF and the face

diameter hF .

For computational implementation purposes, finding a basis for U k,0
h could be a hard

task, due to the zero mean value condition that must satisfy all its elements. One
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way to circumvent this difficulty, is to impose this restriction with the help of a

Lagrange multiplier. This lets us to introduce the following discrete scheme, which

reads as: Find (uh, λ) ∈ U k
h × R such that

ah(uh,vh) + λ(vh, 1)Ω + µ(uh, 1)Ω = bh(vh) ∀ (vh, µ) ∈ U k
h × R. (2.96)

Theorem 2.5.1 The problems (2.50) and (2.96) are equivalent, in the sense:

1. If (uh, λ) is a solution of (2.96), then λ = 0 and uh ∈ U
k,0
h is a solution of

(2.50).

2. If uh ∈ U
k,0
h is a solution of (2.50), then (uh, 0) ∈ U k

h × R is a solution of

(2.96).

Proof. It is immediate from the compatibility condition (2.2). �

To deduce the linear system associated to (2.96), we rewrite the term bh as

bh(vh) :=
∑
T∈Th

bT (vT ) , bT (vT ) := (f, vT )T +
∑

F∈FT∩F∂h

(g, vF )F . (2.97)

For integers l ≥ 0 and n ≥ 0, we denote by N l
n :=

 l + n

l

 the dimension of the

space composed of n-variate polynomials of degree at most l.

For any vh in the global discrete space U k
h, we collect its components with respect

to the polynomial bases attached to the mesh cells and faces in a global component

vector denoted by VTF ∈ RNk
T × RNk

F with

Nk
T := card(Th)×Nk

d and Nk
F := card(Fh)×Nk

d−1, (2.98)

where Nk
d and Nk

d−1 denote the dimension of the local cell and face bases, respectively,

while d represents the space dimension. We can decompose the global vector of

coefficients as

VTF =

 VT

VF

 , (2.99)
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where the vectors VT ∈ RNk
T and VF ∈ RNk

F collect the coefficients associated to

element-based and face-based DOFS, respectively.

Also, we can collect, for every vT ∈ U k
T , its components associated to T and ∂T , in

a local component vector denoted by VTFT ∈ RNk
T , and in the similar way, we split

the local vector of coefficients associated to the element T as

VTFT =

 VT

VFT

 , (2.100)

with VT and VFT collecting the coefficients associated to the bases of the element

and faces linked to T , respectively.

Expressing the functions in the discrete formulation (2.96) as a linear combination

of its respective basis functions, we obtain the following system∑
T∈Th

V t
TFTA(T )UTFT + λ

∑
T∈Th

V t
TMT + µ

∑
T∈Th

M t
TUT =

∑
T∈Th

V t
TFTB(T ). (2.101)

Here, the local matrix A(T ) represents the local bilinear form aT , the local vector

B(T ) represents the linear functional bT , and the vector MT ∈ RNk
d collects the

average of the local base functions on T :

A(T ) =

 ATT ATFT

AtTFT AFTFT

 , B(T ) =

 BT

BFT

 , (2.102)

Arranging the equation (2.101) in a matrix form, in order to eliminate the

element-based DOFS (by static condensation), we obtain the following linear global

system corresponding to the discrete problem (2.96): Find (UT , UF , λ) ∈ RNk
T ×

RNk
F × R such that 

ATT ATF MT

AtTF AFF 0F

M t
T 0tF 0





UT

UF

λ


=



BT

BF

0


, (2.103)

where the vector MT ∈ RNk
T denote the vector collecting the average of the functions

of the element-based DOFs, and 0F is the zero vector in RNk
F . Instead of assembling
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the full system (2.103), we can effectively compute the Schur complement of ATT ,

following the system

ATT UT + ÂTF ÛF = BT , (2.104)

ÂtTFUT + ÂFF ÛF = B̂F , (2.105)

where

ÂFF =

 AFF 0F

0tF 0

 , ÂTF =
[
ATF MT

]
, ÛF =

[
UF λ

]t
, and B̂F =

[
BF 0

]t
. From (2.104), we obtain

UT = A−1
TT

[
BT − ÂTF ÛF

]
. (2.106)

Then, replacing (2.106) in (2.105), we derive[
ÂFF − ÂtTFA−1

TT ÂTF

]
ÛF =

[
B̂F − ÂtTFA−1

TTBT

]
. (2.107)

After simplifying the system (2.107), we obtain the following reduced system, where

the element-based DOFs collected in the vector UT no longer appears: AFF − AtTFA−1
TTATF −AtTFA−1

TTMT

−M t
TA
−1
TTATF −M t

TA
−1
TTMT


 UF

λ

 =

 BF − AtTFA−1
TTBT

−M t
TA
−1
TTBT

 .

(2.108)

The advantage of implementing (2.108) instead of (2.103) is that the number of

unknowns in (2.108) is reduced from Nk
T +Nk

F + 1 to Nk
F + 1.

Denoting by ←−−−
T∈Th

the usual assembling procedure based on a global DOF map,

we can assemble all matrix products appearing in (2.108) directly from their local

counterparts, as

BF − AtTFA−1
TTBT ←−−−

T∈Th
BFT − AtTFTA

−1
TTBT , AtTFA

−1
TTMT ←−−−

T∈Th
AtTFTA

−1
TTMT ,

AFF − AtTFA−1
TTATF ←−−−

T∈Th
AFTFT − AtTFTA

−1
TTATFT ,

M t
TA
−1
TTMT =

∑
T∈Th

M t
TA
−1
TTMT , and M t

TA
−1
TTBT =

∑
T∈Th

M t
TA
−1
TTBT .

Besides, the global vector UT can be recovered from (2.104), letting λ = 0 in ÛF , so

that

UT = A−1
TT

(
BT − ATFUF

)
, (2.109)
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Finally, for all T ∈ Th, the local vector UT of element-based DOFs can be recovered

from (2.109) following element-by-element post-processing:

UT = A−1
TT

(
BT − ATFTUFT

)
. (2.110)

2.6 Numerical test

In this section we present a comprehensive set of numerical tests to assess the

properties of our method. We use different meshes for the numerical tests, which

were originally prosed for the FVCA5 benchmark [119].

We based our code on the one developed by Di Pietro [75, 70], where the

implementation of local potential reconstruction operator (2.9), L2-orthogonal

projectors πkT and πkF , are based on the linear algebra facilities (robust Cholesky

factorization) provided by the Eigen3 library [112]. The reduced system on the

skeleton (2.108) is solved using SuperLU [63] through the PETSc 3.4 interface [14].

For each one of the examples presented here, we consider four families of meshes,

which are depicted in Figure 2.1. We also approximate the exact solution considering

piecewise polynomials of degree at most k, with k ∈ {0, 1, 2, 3, 4}. In addition, we

compute the experimental order of convergence (r) as

r = log(eT1/eT2)/ log(hT1/hT2) ,

where eT1 and eT2 are the errors associated to the corresponding variable considering

two consecutive meshsizes hT1 and hT2 , respectively.

2.6.1 Example 1: Constant diffusivity

First, we consider a Neumann problem defined in Ω := (0, 1)2, whose data are such

that its exact solution is given by the smooth function

u(x, y) = sin(πx) sin(πy)− 4

π2
, (2.111)

with diffusivity tensor K := I. Tables 2.1 and 2.2 show the behavior of potential an

flux errors, for each one of the described family of meshes. In all cases, it is noticed

the convergence of the method, at the expected optimal rates of convergence: k+2 for
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the potential, and k+ 1 for the flux, when the solution is approximated by piecewise

polynomials of degree at most k. This is in agreement with Theorems 2.4.1 and

2.4.2, and it can also be observed in Figure 2.2. However, for each one of the family

of meshes, the errors (for potencial and flux) in the last mesh and k = 4 are probably

being affected by round-off errors.

2.6.2 Example 2: Polynomial diffusivity

The aim here is to check the robustness of the method, when we solve on the unit

square domain Ω = (0, 1)2 the nonhomogeneous Neumann problem with

u(x, y) = sin(πx) sin(πy)− 4

π2
, (2.112)

and diffusion tensor (from [137]):

K(x, y) =

 (y − ȳ)2 + ε(x− x̄)2 −(1− ε)(x− x̄)(y − ȳ)

−(1− ε)(x− x̄)(y − ȳ) (x− x̄)2 + ε(y − ȳ)2

 , (2.113)

where (x̄, ȳ) = −(0.1, 0.1). This defines an anisotropic diffusion problem, where

the principal axes of the diffusion tensor vary at each point of the domain. For

the case ε = 10−1, we obtain an anisotropic ratio ρ = 10. Figure 2.3 exhibits the

well behavior of the L2-error approximations of the potential (first column) and

flux (second column), with respect to the mesh size h, and for each one of the four

families of meshes we have considered. Their corresponding histories of convergence

are given in Tables 2.3 and 2.4, and they are in agreement with Theorems 2.4.1

and 2.4.2, despite the fact that it is not covered (at all) by the theory since K is

not constant (as required for proving Theorem 2.4.2). This gives some numerical

evidence that our results could be improved for a general kind of diffusivity tensor,

as we pointwise in Remark 2.4.2. As in Example 1, we also observe in this case, for

each one of the family of meshes, that the round-off errors are probably affecting the

errors (for potencial and flux) in the last hexagonal mesh and k = 4.
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2.6.3 Example 3: Neumann problem with numerical

singularity

Here, we consider the Neumann problem on the unit square domain Ω = (0, 1)2,

where its data are such that the exact solution is given by the potential function:

u(x, y) =
xy

(x+ 0.05)2 + y2
− u , (2.114)

with homogeneous (constant) anisotropic diffusion tensor:

K(x, y) =

 1.5 0.5

0.5 1.5

 . (2.115)

We remark here that u represents the mean value of u in Ω, and notice that u

has a singularity at (−0.05, 0), which is close to ∂Ω. The history of errors for

potential and flux are shown in Tables 2.5 and 2.6, for k ∈ {0, 1, 2, 3}, and for

each of the four considered family of meshes. For the first three family of meshes,

they exhibit that the HHO method converges with the corresponding optimal rate

of convergence k + 2 and k + 1 for the potential and flux error, respectively. This

is also observed in Figure 2.4. For the latter family of meshes, we observe that

the order of convergence behaves as k + 1 and k, respectively. This phenomena

could be explained since the sequence of uniformed hexagonal meshes does not refine

enough in the neighborhood of (−0.05, 0), and then it is not capable of capturing

the induced numerical singularity. This should be improve by performing certain a

posteriori error adaptivity procedure, which would be the subject of future work.
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(a) Triangular (b) Cartesian

(c) Refined (d) Hexagonal

Figure 2.1: Triangular, Cartesian, Refined and Hexagonal initial meshes that define

the family of meshes considered for the numerical examples.

2.6.4 Example 4: Nonregular test

In this section, we will consider the nonregular solution in polar coordinates:

u(r, θ) = r2/3 sin(2θ/3), (2.116)

for the Neumann diffusion problem (2.1), where u ∈ H1+ 2
3
−s for some s > 0 (see

[108]), and homogeneous isotropic diffusion tensor K as the identity is considered.

This test run over the domain Ω = (−1, 1)2/[0, 1]× [−1, 0], see Figure 2.6.
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(a) Potential error (b) Flux error

Figure 2.5: Convergence rates of potential and flux errors.

Table 2.7: History of convergence of potential and flux errors, k ∈ {0, 1, 2, 3, 4}.

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 9.89e-02 3.40e-02 2.64e-02 2.11e-02 1.82e-02

5.18e-02 4.28e-02 1.018 1.86e-02 0.736 1.39e-02 0.780 1.09e-02 0.808 9.00e-03 0.856

2.59e-02 2.15e-02 0.992 1.14e-02 0.699 8.39e-03 0.729 6.46e-03 0.752 5.21e-03 0.787

1.29e-02 1.22e-02 0.811 7.24e-03 0.655 5.23e-03 0.679 4.00e-03 0.686 3.21e-03 0.696

6.47e-03 7.40e-03 0.727 4.58e-03 0.663 3.28e-03 0.674 2.51e-03 0.676 2.01e-03 0.678

3.24e-03 4.59e-03 0.688 2.89e-03 0.665 2.07e-03 0.669 1.58e-03 0.670 1.26e-03 0.670

1.62e-03 2.88e-03 0.674 1.82e-03 0.666 1.30e-03 0.667 9.95e-04 0.667 7.96e-04 0.667

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 2.32e-01 1.20e-01 7.76e-02 6.17e-02 4.90e-02

5.18e-02 1.59e-01 0.461 7.73e-02 0.534 5.09e-02 0.511 4.01e-02 0.525 3.19e-02 0.522

2.59e-02 1.05e-01 0.591 5.00e-02 0.630 3.31e-02 0.622 2.60e-02 0.625 2.07e-02 0.624

1.29e-02 6.88e-02 0.612 3.23e-02 0.627 2.15e-02 0.621 1.68e-02 0.623 1.34e-02 0.623

6.47e-03 4.45e-02 0.632 2.08e-02 0.635 1.39e-02 0.630 1.09e-02 0.632 8.66e-03 0.631

3.24e-03 2.86e-02 0.639 1.34e-02 0.635 8.99e-03 0.630 7.03e-03 0.632 5.60e-03 0.632

1.62e-03 1.83e-02 0.642 8.64e-03 0.635 5.80e-03 0.631 4.53e-03 0.632 3.61e-03 0.632
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Figure 2.6: L-shaped domain.

From Figure 2.5 and Table 2.7, we observe that the order of convergence of the

potential and flux is less than or equal that 2/3. It does not surprise us because the

function is not regular, this does not contradict the Theorems 2.4.1 and 2.4.2. These

results are similar to those found in the Figure 1.9 and Table 1.5 in Section 1.4.2.

Conclusions

In this work we have developed an a priori error analysis (valid for any dimension d ∈

{2, 3}) for a pure Neumann problem, when applying HHO method. We have proved

the convergence of the method, with the optimal rates of convergence when the exact

solution is smooth enough: order k + 1 for the flux error, and k + 2 for potential error,

when piecewise polynomial of degree at most k are considered for the corresponding

approximations. This technique can deal with hanging nodes, as in the Refined mesh

(Figure 1c), and also with triangular, quadrilateral an hexagonal meshes (Figures

1a, 1b and 1d, respectively). There are several computational libraries that can

be used for HHO methods. For example, DiSk++ (Discontinuous Skeletal C++,

https://github.com/datafl4sh/diskpp) which has four levels of abstraction that

allow us to work indirectly over general polytopal meshes in 1D, 2D, and 3D, and

with different mesh input formats, such as: FVCA5, NETGEN, GMESH. The mesh

structure of DiSk++ allows us to use Discontinuous Skeletal methods such as DG,

HDG, as well as standard FEM. This library has been used to solve many problems

as those described in [50], [53], [42], [1], [2], [44], [45], [31] and [51]. On the other

hand, HArDCore (Hybrid Arbitrary Degree::Core, https://github.com/jdroniou/

HArDCore) is a C++ code focused on HHO (Hybrid High Order) methods, but it
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can be useful for a wide range of hybrid methods. It is implemented in two parts,

one for 2D and another for 3D, on general polytopal meshes. It supports the FVCA5

format [119], and their implementation principles are described in Appendix B in

[66]. HArDCore allows us to work on Diffusion problems with Dirichlet or Neumann

boundary conditions, with diffusion tensors that can be piecewise constant or variable

on each cell. We also mention the source codes POLYPHO (http://www.comphys.

com), written in Fortran by Specogna and Di Pietro, and SpaFEDTe (https://

github.com/SpaFEDTe/spafedte.github.com), written in C++, and developed for

Discontinuous Finite Element Spaces by L. Botti.

Numerical results presented here, are in agreement with our theoretical results, even

in a case not covered by the current analysis (cf. Example 2). We refer to Remark

2.4.2 for the tools/ideas we required to extend the validity of Theorem 2.4.2 for

locally variable tensor K. On the other hand, we notice that in Example 3, the

numerical results obtained for hexagonal meshes are not the optimal ones. This is

probably due to the presence of a numerical singularity of the exact solution in a

neighborhood of (0, 0) that affects the accuracy of the method. Then, it would be

better to deduce an a posteriori error estimator for problems having singularities,

inner or boundary layers. Thus, we can perform an adaptive refinement, with the

purpose of recognizing the region of the domain where the singularities/layers are,

improving the quality of approximation in the process. These are the subject of

ongoing work.

72

http://www.comphys.com
http://www.comphys.com
https://github.com/SpaFEDTe/spafedte.github.com
https://github.com/SpaFEDTe/spafedte.github.com


(a) Potential error, Triangular meshes (b) Flux error, Triangular meshes

(c) Potential error, Cartesian meshes (d) Flux error, Cartesian meshes

(e) Potential error, Refined meshes (f) Flux error, Refined meshes

(g) Potential error, Hexagonal meshes (h) Flux error, Hexagonal meshes

Figure 2.2: Rates of convergence of Potential and Flux errors, considering each one

of the family of meshes (Example 1).

73



(a) Potential error, Triangular meshes (b) Flux error, Triangular meshes

(c) Potential error, Cartesian meshes (d) Flux error, Cartesian meshes

(e) Potential error, Refined meshes (f) Flux error, Refined meshes

(g) Potential error, Hexagonal meshes (h) Flux error, Hexagonal meshes

Figure 2.3: Rates of convergence of potential and flux errors, considering each one

of the family of meshes (Example 2).
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(a) Potential error, Triangular meshes (b) Flux error, Triangular meshes

(c) Potential error, Cartesian meshes (d) Flux error, Cartesian meshes

(e) Potential error, Refined meshes (f) Flux error, Refined meshes

(g) Potential error, Hexagonal meshes (h) Flux error, Hexagonal meshes

Figure 2.4: Rates of convergence of potential and flux errors, considering each one

of the family of meshes (Example 3).
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Table 2.1: History of convergence of L2-norm of the Potential error, for each one of

the family of meshes and k ∈ {0, 1, 2, 3, 4} (Example 1).

Triangles

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

3.07e-02 1.23e-01 1.93e-02 1.69e-03 1.05e-04 5.36e-06

1.54e-02 2.95e-02 2.065 2.43e-03 2.999 1.05e-04 4.034 3.24e-06 5.036 8.30e-08 6.041

7.68e-03 7.32e-03 2.005 3.06e-04 2.982 6.49e-06 3.995 1.01e-07 4.991 1.29e-09 5.986

3.84e-03 1.82e-03 2.004 3.83e-05 2.997 4.04e-07 4.005 3.13e-09 5.006 2.05e-11 5.974

1.92e-03 4.56e-04 2.001 4.79e-06 2.999 2.52e-08 4.003 9.77e-11 5.003 7.42e-12 1.468

Cartesian

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 2.07e-01 5.13e-02 8.47e-03 8.41e-04 6.57e-05

3.12e-02 5.15e-02 2.004 6.44e-03 2.987 5.41e-04 3.959 2.79e-05 4.903 1.08e-06 5.912

1.56e-02 1.29e-02 2.002 7.97e-04 3.015 3.40e-05 3.992 8.91e-07 4.969 1.72e-08 5.973

7.81e-03 3.21e-03 2.004 9.92e-05 3.013 2.13e-06 4.005 2.81e-08 4.996 2.71e-10 6.000

3.91e-03 8.03e-04 2.004 1.24e-05 3.008 1.33e-07 4.007 8.82e-10 5.003 4.73e-12 5.851

1.95e-03 2.01e-04 1.993 1.55e-06 2.990 8.32e-09 3.985 2.77e-11 4.975 8.77e-12 -0.889

Refined

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 1.65e-01 4.39e-02 7.15e-03 6.79e-04 5.28e-05

1.25e-01 4.82e-02 1.773 5.62e-03 2.964 4.66e-04 3.940 2.34e-05 4.861 9.03e-07 5.868

6.25e-02 1.30e-02 1.890 6.96e-04 3.014 2.94e-05 3.986 7.59e-07 4.944 1.46e-08 5.947

3.12e-02 3.37e-03 1.943 8.63e-05 3.004 1.84e-06 3.987 2.41e-08 4.963 2.33e-10 5.963

1.56e-02 8.57e-04 1.975 1.08e-05 3.005 1.15e-07 3.999 7.60e-10 4.988 5.72e-12 5.346

Hexagonal

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.70e-01 4.43e-02 4.63e-03 3.81e-04 2.29e-05

2.59e-02 4.21e-02 2.013 6.22e-03 2.832 3.17e-04 3.872 1.31e-05 4.866 3.93e-07 5.867

1.29e-02 1.07e-02 1.965 8.16e-04 2.915 2.05e-05 3.927 4.24e-07 4.917 6.39e-09 5.909

6.47e-03 2.70e-03 1.996 1.04e-04 2.984 1.30e-06 3.995 1.35e-08 4.997 1.02e-10 6.000

3.24e-03 6.77e-04 1.999 1.31e-05 2.993 8.20e-08 3.998 4.25e-10 4.999 1.74e-12 5.878

76



Table 2.2: History of convergence of L2-norm of the Flux error, for each one of the

family of meshes, and k ∈ {0, 1, 2, 3, 4} (Example 1).

Triangles

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

3.07e-02 2.38e-01 2.42e-02 1.67e-03 1.01e-04 4.89e-06

1.54e-02 1.19e-01 1.003 6.02e-03 2.013 2.18e-04 2.954 6.98e-06 3.874 1.68e-07 4.883

7.68e-03 5.96e-02 0.998 1.50e-03 1.995 2.75e-05 2.973 4.56e-07 3.921 5.43e-09 4.935

3.84e-03 2.98e-02 1.001 3.76e-04 2.001 3.45e-06 2.995 2.91e-08 3.970 1.81e-10 4.908

1.92e-03 1.49e-02 1.001 9.39e-05 2.000 4.31e-07 2.998 1.84e-09 3.986 1.70e-10 0.085

Cartesian

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 3.17e-01 6.18e-02 7.60e-03 7.44e-04 5.77e-05

3.12e-02 1.60e-01 0.986 1.54e-02 1.996 9.58e-04 2.980 4.71e-05 3.972 1.82e-06 4.972

1.56e-02 8.01e-02 0.997 3.83e-03 2.013 1.20e-04 2.998 2.95e-06 3.996 5.68e-08 5.005

7.81e-03 4.01e-02 1.001 9.52e-04 2.010 1.50e-05 3.005 1.85e-07 4.006 1.77e-09 5.014

3.91e-03 2.00e-02 1.002 2.38e-04 2.006 1.88e-06 3.005 1.16e-08 4.007 6.57e-11 4.760

1.95e-03 1.00e-02 0.996 5.94e-05 1.993 2.34e-07 2.989 7.22e-10 3.985 9.24e-11 -0.492

Refined

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 2.84e-01 5.37e-02 6.61e-03 6.57e-04 5.05e-05

1.25e-01 1.43e-01 0.990 1.35e-02 1.991 8.32e-04 2.990 4.11e-05 3.998 1.59e-06 4.989

6.25e-02 7.15e-02 0.999 3.36e-03 2.009 1.04e-04 2.999 2.57e-06 4.002 4.94e-08 5.009

3.12e-02 3.58e-02 0.997 8.34e-04 2.004 1.30e-05 2.993 1.60e-07 3.992 1.53e-09 4.996

1.56e-02 1.79e-02 1.000 2.08e-04 2.004 1.63e-06 3.000 1.00e-08 4.001 1.51e-10 3.342

Hexagonal

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 3.36e-01 4.75e-02 4.90e-03 3.41e-04 2.04e-05

2.59e-02 1.67e-01 1.007 1.21e-02 1.967 6.45e-04 2.926 2.22e-05 3.937 6.72e-07 4.927

1.29e-02 8.24e-02 1.014 3.06e-03 1.977 8.23e-05 2.954 1.41e-06 3.953 2.13e-08 4.950

6.47e-03 4.08e-02 1.021 7.68e-04 2.003 1.04e-05 3.000 8.91e-08 4.006 6.70e-10 5.014

3.24e-03 2.02e-02 1.013 1.92e-04 2.002 1.30e-06 3.001 5.59e-09 4.003 2.38e-11 4.827
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Table 2.3: History of convergence of L2-norm of the potential error, for each one of

the family of meshes, and k ∈ {0, 1, 2, 3, 4} (Example 2).

Triangles

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

3.07e-02 7.69e-01 2.25e-02 1.66e-03 1.00e-04 5.02e-06

1.54e-02 2.46e-01 1.652 3.24e-03 2.809 1.20e-04 3.812 3.67e-06 4.790 8.89e-08 5.847

7.68e-03 6.89e-02 1.829 4.29e-04 2.905 8.06e-06 3.877 1.23e-07 4.877 1.50e-09 5.870

3.84e-03 1.80e-02 1.938 5.51e-05 2.959 5.23e-07 3.946 4.00e-09 4.948 2.50e-11 5.904

1.92e-03 4.57e-03 1.977 6.99e-06 2.980 3.33e-08 3.973 1.27e-10 4.974 6.91e-12 1.854

Cartesian

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 8.59e-01 6.31e-02 7.87e-03 7.84e-04 6.35e-05

3.12e-02 3.22e-01 1.412 8.58e-03 2.873 5.97e-04 3.711 2.92e-05 4.733 1.18e-06 5.737

1.56e-02 9.95e-02 1.696 1.10e-03 2.960 4.12e-05 3.857 1.01e-06 4.862 2.04e-08 5.857

7.81e-03 2.72e-02 1.872 1.41e-04 2.974 2.72e-06 3.930 3.30e-08 4.939 3.35e-10 5.935

3.91e-03 7.06e-03 1.952 1.79e-05 2.982 1.74e-07 3.969 1.06e-09 4.974 6.97e-12 5.598

1.95e-03 1.79e-03 1.972 2.26e-06 2.975 1.10e-08 3.966 3.36e-11 4.958 4.74e-12 0.555

Refined

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 5.96e-01 5.84e-02 6.74e-03 7.11e-04 5.22e-05

1.25e-01 2.03e-01 1.552 7.66e-03 2.930 5.04e-04 3.740 2.68e-05 4.732 9.78e-07 5.737

6.25e-02 5.70e-02 1.836 9.65e-04 2.988 3.44e-05 3.873 9.18e-07 4.864 1.68e-08 5.865

3.12e-02 1.49e-02 1.934 1.23e-04 2.964 2.24e-06 3.930 3.01e-08 4.921 2.75e-10 5.919

1.56e-02 3.78e-03 1.974 1.57e-05 2.975 1.43e-07 3.971 9.62e-10 4.966 6.02e-12 5.512

Hexagonal

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 7.34e-01 4.08e-02 3.92e-03 2.90e-04 1.80e-05

2.59e-02 2.41e-01 1.610 5.91e-03 2.790 2.83e-04 3.791 1.08e-05 4.743 3.33e-07 5.756

1.29e-02 7.33e-02 1.704 7.75e-04 2.914 1.91e-05 3.873 3.71e-07 4.842 5.68e-09 5.841

6.47e-03 1.99e-02 1.887 9.93e-05 2.978 1.24e-06 3.961 1.21e-08 4.956 9.28e-11 5.962

3.24e-03 5.13e-03 1.963 1.26e-05 2.989 7.90e-08 3.979 3.88e-10 4.978 1.93e-12 5.597
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Table 2.4: History of convergence of L2-norm of the flux error, for each one of the

family of meshes, and k ∈ {0, 1, 2, 3, 4} (Example 2).

Triangles

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

3.07e-02 3.97e-01 2.80e-02 2.04e-03 1.16e-04 5.43e-06

1.54e-02 2.13e-01 0.902 7.05e-03 2.002 2.63e-04 2.970 7.30e-06 4.013 1.73e-07 5.000

7.68e-03 1.09e-01 0.968 1.77e-03 1.989 3.34e-05 2.966 4.61e-07 3.970 5.43e-09 4.971

3.84e-03 5.46e-02 0.993 4.42e-04 1.997 4.21e-06 2.989 2.90e-08 3.992 1.93e-10 4.813

1.92e-03 2.73e-02 0.999 1.11e-04 1.998 5.28e-07 2.995 1.82e-09 3.995 1.97e-10 -0.024

Cartesian

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 3.50e-01 6.81e-02 8.77e-03 7.69e-04 6.53e-05

3.12e-02 1.76e-01 0.987 1.68e-02 2.011 1.08e-03 3.008 4.91e-05 3.960 2.08e-06 4.960

1.56e-02 8.84e-02 0.996 4.14e-03 2.025 1.34e-04 3.022 3.09e-06 3.991 6.55e-08 4.989

7.81e-03 4.42e-02 1.001 1.03e-03 2.016 1.66e-05 3.014 1.93e-07 4.005 2.06e-09 5.003

3.91e-03 2.21e-02 1.002 2.56e-04 2.008 2.07e-06 3.008 1.21e-08 4.006 8.31e-11 4.638

1.95e-03 1.11e-02 0.996 6.39e-05 1.994 2.59e-07 2.990 7.56e-10 3.984 1.37e-10 -0.718

Refined

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 3.34e-01 6.69e-02 8.25e-03 7.53e-04 6.24e-05

1.25e-01 1.69e-01 0.982 1.65e-02 2.019 1.03e-03 3.009 4.77e-05 3.982 1.98e-06 4.976

6.25e-02 8.50e-02 0.995 4.05e-03 2.026 1.27e-04 3.017 2.99e-06 3.996 6.25e-08 4.989

3.12e-02 4.25e-02 0.997 1.00e-03 2.008 1.58e-05 3.000 1.87e-07 3.990 1.96e-09 4.982

1.56e-02 2.12e-02 1.000 2.50e-04 2.004 1.97e-06 3.002 1.17e-08 3.999 8.28e-11 4.565

Hexagonal

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 3.76e-01 5.06e-02 5.20e-03 3.63e-04 2.18e-05

2.59e-02 1.88e-01 0.999 1.29e-02 1.970 6.88e-04 2.919 2.34e-05 3.953 7.26e-07 4.907

1.29e-02 9.18e-02 1.030 3.25e-03 1.978 8.76e-05 2.956 1.49e-06 3.951 2.32e-08 4.937

6.47e-03 4.51e-02 1.030 8.15e-04 2.006 1.10e-05 3.001 9.42e-08 4.004 7.35e-10 5.006

3.24e-03 2.23e-02 1.016 2.04e-04 2.003 1.39e-06 3.001 5.92e-09 4.002 2.60e-11 4.834
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Table 2.5: History of convergence of L2-norm of the potential error, for each one of

the family of meshes, and k ∈ {0, 1, 2, 3, 4} (Example 3).

Triangles

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

3.07e-02 3.35e-01 1.69e-01 6.49e-02 4.83e-02 3.39e-02

1.54e-02 1.17e-01 1.522 2.42e-02 2.813 1.57e-02 2.056 8.80e-03 2.468 3.70e-03 3.211

7.68e-03 3.52e-02 1.727 6.55e-03 1.881 2.65e-03 2.558 7.10e-04 3.617 1.58e-04 4.530

3.84e-03 9.32e-03 1.918 1.23e-03 2.411 2.17e-04 3.607 3.12e-05 4.508 4.68e-06 5.082

1.92e-03 2.41e-03 1.953 1.53e-04 3.007 1.44e-05 3.915 1.10e-06 4.828 9.27e-08 5.657

Cartesian

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 8.11e-01 4.34e-01 1.97e-01 1.25e-01 8.68e-02

3.12e-02 2.79e-01 1.538 1.05e-01 2.043 3.79e-02 2.369 1.97e-02 2.655 1.38e-02 2.642

1.56e-02 8.57e-02 1.699 2.33e-02 2.173 8.09e-03 2.229 2.50e-03 2.982 1.11e-03 3.636

7.81e-03 2.49e-02 1.790 4.10e-03 2.509 1.04e-03 2.971 2.46e-04 3.350 4.81e-05 4.542

3.91e-03 6.65e-03 1.906 5.94e-04 2.792 7.70e-05 3.756 1.04e-05 4.574 1.34e-06 5.175

1.95e-03 1.70e-03 1.962 7.85e-05 2.910 4.96e-06 3.941 3.17e-07 5.018 2.21e-08 5.903

Refined

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 1.93e-01 3.13e-02 9.06e-03 2.62e-03 1.13e-03

1.25e-01 4.93e-02 1.969 5.25e-03 2.575 1.08e-03 3.074 2.48e-04 3.404 4.82e-05 4.547

6.25e-02 1.26e-02 1.964 7.46e-04 2.813 7.95e-05 3.758 1.04e-05 4.569 1.34e-06 5.168

3.12e-02 3.19e-03 1.983 9.85e-05 2.914 5.13e-06 3.945 3.18e-07 5.024 2.21e-08 5.911

1.56e-02 7.99e-04 1.996 1.26e-05 2.969 3.25e-07 3.981 9.65e-09 5.042 3.39e-10 6.027

Hexagonal

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 2.46e-01 1.54e-01 5.33e-02 4.60e-02 3.40e-02

2.59e-02 8.40e-02 1.553 2.72e-02 2.503 1.64e-02 1.697 9.21e-03 2.321 3.93e-03 3.113

1.29e-02 3.22e-02 1.376 8.97e-03 1.592 3.08e-03 2.402 9.56e-04 3.251 3.11e-04 3.639

6.47e-03 1.08e-02 1.580 1.93e-03 2.224 3.62e-04 3.104 7.79e-05 3.633 1.63e-05 4.273

3.24e-03 3.24e-03 1.742 2.96e-04 2.712 3.33e-05 3.447 4.26e-06 4.203 5.43e-07 4.917
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Table 2.6: History of convergence of L2-norm of the flux error, for each one of the

family of meshes, and k ∈ {0, 1, 2, 3, 4} (Example 3).

Triangles

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

3.07e-02 4.70e-01 1.87e-01 1.18e-01 8.50e-02 4.24e-02

1.54e-02 2.73e-01 0.788 9.94e-02 0.918 5.24e-02 1.181 2.31e-02 1.889 8.04e-03 2.410

7.68e-03 1.71e-01 0.672 5.12e-02 0.952 1.21e-02 2.107 3.24e-03 2.823 1.36e-03 2.553

3.84e-03 9.79e-02 0.804 1.70e-02 1.592 2.28e-03 2.407 3.95e-04 3.036 8.44e-05 4.011

1.92e-03 5.02e-02 0.965 4.36e-03 1.961 3.93e-04 2.537 3.92e-05 3.331 3.35e-06 4.655

Cartesian

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 7.96e-01 3.33e-01 2.08e-01 1.56e-01 1.08e-01

3.12e-02 4.49e-01 0.823 1.63e-01 1.029 1.01e-01 1.040 6.89e-02 1.181 3.77e-02 1.508

1.56e-02 2.47e-01 0.864 8.85e-02 0.881 3.62e-02 1.479 1.77e-02 1.961 8.12e-03 2.217

7.81e-03 1.31e-01 0.911 3.13e-02 1.502 9.19e-03 1.981 2.46e-03 2.854 7.87e-04 3.373

3.91e-03 6.68e-02 0.977 8.56e-03 1.874 1.53e-03 2.587 2.32e-04 3.413 3.91e-05 4.338

1.95e-03 3.34e-02 0.997 2.19e-03 1.959 2.00e-04 2.928 1.66e-05 3.784 1.60e-06 4.595

Refined

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 2.97e-01 9.71e-02 3.73e-02 1.78e-02 8.14e-03

1.25e-01 1.55e-01 0.936 3.30e-02 1.559 9.28e-03 2.007 2.46e-03 2.857 7.87e-04 3.370

6.25e-02 7.83e-02 0.986 8.93e-03 1.884 1.54e-03 2.588 2.32e-04 3.408 3.91e-05 4.330

3.12e-02 3.91e-02 1.000 2.28e-03 1.967 2.01e-04 2.933 1.67e-05 3.790 1.60e-06 4.602

1.56e-02 1.95e-02 1.003 5.71e-04 1.996 2.42e-05 3.056 1.07e-06 3.963 5.49e-08 4.866

Hexagonal

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 4.95e-01 2.11e-01 1.14e-01 6.34e-02 3.79e-02

2.59e-02 3.16e-01 0.647 1.22e-01 0.790 5.85e-02 0.964 2.50e-02 1.344 1.21e-02 1.643

1.29e-02 2.07e-01 0.604 6.36e-02 0.934 2.10e-02 1.468 7.20e-03 1.785 2.55e-03 2.240

6.47e-03 1.24e-01 0.745 2.43e-02 1.395 5.67e-03 1.899 1.29e-03 2.488 3.18e-04 3.015

3.24e-03 6.74e-02 0.883 7.69e-03 1.664 1.12e-03 2.351 1.59e-04 3.029 2.30e-05 3.802
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Chapter 3

An HHO formulation for a class of

nonlinear elliptic problems

In this chapter, we analyse a nonlinear elliptic problem in a bounded domain,

applying the already known hybrid high-order (HHO) method. Our analysis follows

known approaches to deal with diffusion linear problems, and take into account a

nonlinear HHO work in elasticity (which considers a particular nonlinear coefficient).

This approach allows us to obtain high-order approximation of unknowns, by

assembling a nonconforming discrete space based on degrees of freedom over

the interior volume of each element and on the faces of its boundary, through

L2-projections. The principal feature is the use of a gradient reconstruction operator,

whose codomain in the current context, is bigger than the considered in the linear

case. On the other hand, the stabilization term is the same as for the linear case.

In addition, the construction does not depend on the spatial dimension, and it

offers the possibility to use general meshes with polytopal cells and nonmatching

interfaces. The discrete unknowns are chosen such that they are supported over

each element and its boundary. It is important to emphasize that the cell-based

unknowns can be eliminated locally by a Schur complement technique (also known

as static condensation). This allows us to obtain a more compact system, reducing

significantly its size, which is solved by Newton’s method. We establish the

well-posedness of the nonlinear discrete scheme, the stability of the method, and

confirm that it is optimally convergent in the energy norm and in the L2-norm,
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for the potential and its gradient, for smooth enough solutions. In addition, we

also establish the convergence of the L2-projection of the potential error and the

super convergence of the reconstructive potential error, under the same additional

regularity assumption of the exact solution. The latter results, up to the author’s

knowledge, have not been proved before. Several numerical experiments confirm our

theoretical results. We point out that this approach can be also applied/extended

to deal with other boundary conditions (such as nonhomogeneous Dirichlet, mixed

or pure Neumann).

3.1 Introduction

The numerical resolution of nonlinear elliptic partial differential equations (PDEs)

is nowadays of great interest in the engineering practice. These arise in many

areas, including differential geometry (the Monge-Ampère equation) [93], mass

transportation (the Monge-Kantorovich problem) [5, 139], dynamic programming

(Bellman’s equation), fluid dynamics (the geostrophic equations) [129], phase change

problems governed by Stefan’s model [95], the modelling of phenomena such as:

glacier motion [106], incompressible turbulent flows in porous media [78], and airfoil

design [105]. We consider a class of nonlinear elliptic problems arising in heat

conduction and fluid mechanics, that reads as: Find u such that

−div(a(·,∇u)) = f in Ω, (3.1a)

u = 0 on ∂Ω, (3.1b)

where Ω ⊂ Rd, d ∈ {2, 3}, is a polytopal bounded connected domain, with Lipschitz

boundary ∂Ω, a : Ω × Rd → Rd is a nonlinear function, and f represents the

source term. The design of convergent numerical schemes for the solution of such

equations, is thus an important and very active research topic. In this work, we

focus in particular, in the well-known HHO method, under certain hypothesis on

nonlinear function a that will be described in the Section 3.2. The homogeneous

Dirichlet boundary condition (3.1b) is considered only for the sake of simplicity.

We can modify appropriately the mathematical analysis, to deal with more general
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boundary conditions such as mixed boundary conditions, nonhomogeneous Dirichlet

boundary condition, and also Neumann boundary condition.

This approach has several advantageous features, initially described in [75, 70]: (i)

it is independent of the spatial dimension; (ii) it supports arbitrary polynomial

orders k ≥ 0 on fairly general meshes including, e.g., polyhedral elements and

nonmatching interfaces; (iii) it is devised from local reconstruction operators and

a linear local stabilization term; (iv) it is efficiently parallelable (the local stencil

only connects a mesh element with its faces); (v) it has moderate computational

costs, thanks to the possibility of locally eliminating, by static condensation, the

volumetric unknowns for linearized versions of the problem (encountered, e.g., when

solving the corresponding system of nonlinear algebraic equations by the Newton

method or Kačanov’s one).

It is important to point out that a kind of nonlinear elasticity problem, under weak

hypotheses, has been analysed with HHO approach in [27]. For a more general

context, we refer to [64, 65], where the authors analyse the p-Laplacian problem in

Banach spaces, with a stabilization term depending also of the nonlinearity. In the

case of p = 2, we obtain the linear diffusion problem described in [73], but with a

slightly different definition for the reconstruction operator. The case of p-Laplacian

and Leray–Lions equations with pure Neumann boundary conditions is analyse in

[66, Chapter 7]. Albeit, in [64, 27] we can find part of the HHO analysis for (3.1),

in this paper we propose another mathematical analysis (taking into account that

we are dealing only with the case p = 2). Moreover, we are able to deduce an a

priori error estimate for L2-error of reconstructive potential, which, up to author’s

knowledgement, has not been established yet.

Conforming finite element methods on standard meshes have been considered in

[99, 104], in the context of elasticity for mixed formulation, while in [17], the

authors deal with the p-laplacian applying a continuous piecewise linear finite

element approximation. Discontinuous Galerkin (DG) methods on standard meshes
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have been considered in [135], while in [33], the authors apply local discontinuous

Galerkin (LDG) method for the same class of nonlinear elliptic problem we study.

Polytopal meshes have been considered in DG methods in [24], and also with in

Virtual Element (VE) method [23], based on a low-order approximation of the

displacement field.

The lowest-order version of the HHO method (k = 0), can be linked with Hybrid

Finite Volume (HFV) methods in [75], when face unknowns are not eliminated by

interpolation. Also, HHO approach is related to Hybrid Mixed Mimetic (HMM)

methods in [67]. Here, HMM methods can be seen as the unified formulation for

the Hybrid Finite Volume (HFV, [88]) methods, the Mixed Finite Volume (MFV,

[82]) methods, and the Mimetic Finite Difference (MFD, [22]) methods proposed in

[21, 83]. It is important to mention that in [65] , the authors extend the analysis

proposed in [81] for Leray–Lions equations. Moreover, in the case of fully nonlinear

models, one strategy to recover the high-order rate of convergence, seems to be

defining the gradient reconstruction operator in the full polynomial space Pk(T )d.

For more details, we refer to Section 4 in [68].

There is also a connection of HHO technique with other approaches, such as

Hybridizable Discontinuous Galerkin (HDG) methods in [57, Section 4], with the

help of an equivalent mixed formulation is necessary. Also, in [57, Section 2.4], we

find a link with High-order mimetic (HOM) approach, introduced in [127], and with

the nonconforming version of the VE method introduced in [11]. In addition, we

find a unified analysis between HHO and VE methods in [125], but differs from the

standard VE method described in [20].

Finally, in [68], the authors show that the HHO method [75, 64], the nonconforming

versions of MFD [127] and VE [20, 43] methods, can be included in the

generic framework of Gradient scheme (GS), which was originally developed for

encompassing low numerical methods (k = 0). We point out that our analysis is not

included, since the stabilization term is not embedded into the discrete symmetric

gradient operator. We refer to Remark 24 in [68], for further details.
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The rest of the paper is organized as follows. In Section 3.2, we introduce the

continuous model problem and discuss the well-posedness of a weak formulation of

this one. In Section 3.3, we introduce the discrete approximation spaces, where the

unknowns of the HHO scheme will be looked for. Moreover, we also introduce the

potential and gradient reconstruction operators, emphasizing their key properties.

In Section 3.4, we introduce the discrete problem and study its stability. In Section

3.5, we establish the well-posedness of the discrete problem, while in Section 3.6

we perform the a priori error analysis. First, in the energy-norm, and then in the

L2-norm, under additional elliptic regularity assumptions. Section 3.7 contains a

brief description of how we can adapt the approach for other types of boundary

conditions. Finally, in Section 3.8, we present some examples, which are in agreement

with our theoretical results.

3.2 Continuous setting

In this section, we present the continuous problem, and give appropriate assumptions

on the function a that will let us to prove the well-posedness of the corresponding

weak formulation. Then, given f ∈ L2(Ω), we look for u : Ω → R, solution of the

following class of nonlinear elliptic problem:

−div(a(·,∇u)) = f in Ω, (3.2a)

u = 0 on ∂Ω, (3.2b)

where Ω ⊂ Rd, d ∈ {2, 3}, is a polytopal bounded connected domain, with Lipschitz

boundary ∂Ω, while a : Ω× Rd → Rd is a nonlinear function.

Assumption 3.2.1 The vectorial nonlinear function a satisfies the following

properties/hypotheses (see [33]):

(H.1) Carathéodory condition: The function aj(x, ·), j = 1, ..., d, is continuous in

Rd for almost all x ∈ Ω, and aj(·, ζ), j = 1, ..., d, is measurable in Ω for all

ζ ∈ Rd.

(H.2) Growth condition: There exist φj ∈ L2(Ω), j = 1, ..., d, and C > 0 such that

|aj(x, ζ)| ≤ C(1 + |ζ|) + |φj(x)|, for almost all x ∈ Ω and for all ζ ∈ Rd.
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(H.3) Ellipticity condition: The function a = (a1, · · · , ad) has continuous first order

partial derivatives in Rd, for almost all x ∈ Ω. In addition, there exists C > 0

such that
d∑

i,j=1

∂

∂ζj
ai(x, ζ)ζ̃iζ̃j ≥ C|ζ̃|2,

for all ζ := (ζi, ζj)
t, ζ̃ := (ζ̃i, ζ̃j)

t ∈ R2 and for almost all x ∈ Ω.

(H.4) Regularity condition: The function ai(x, ·), i = 1, ..., d, has continuous first

order partial derivatives in Rd for almost all x ∈ Ω. In addition, there exists

C > 0 such that for each i, j ∈ {1, · · · , d}, ∂
∂ζj

ai(x, ζ) satisfies the Carathéodory

condition (H.1), and
∣∣∣ ∂∂ζj ai(x, ζ)

∣∣∣ ≤ C, for all ζ ∈ Rd, and for almost all

x ∈ Ω.

The weak formulation of problem (3.2), that will serve as a starting point for the

development and analysis of the HHO method, reads: Find u ∈ U := H1
0 (Ω) such

that ∫
Ω

a(x,∇u(x)) · ∇v(x) dx =

∫
Ω

f(x) v(x) dx ∀ v ∈ U. (3.3)

We remark that (H.1) - (H.2) guarantee that a is well defined, while (H.3) -

(H.4) ensure that the nonlinear operator in the left-hand side of (3.3) is strongly

monotone and Lipschitz-continuous, thanks to Theorem 32.6 in [144, page 240].

Finally, the well-posedness of the problem (3.3) follows after invoking Theorem 34.1

in [144, page 245].

3.3 Discrete settings

In this section, we recall the notion of admissible mesh sequences, and reasonable

assumptions on such meshes, which are required to define the HHO scheme. First,

we let (Th)h∈H be an h-refined regular mesh sequence of Ω, consisting of polytopal

meshes (cf. Chapter 1 in [66]), with H being a countable set of positive numbers

having 0 as its only accumulation point. Next, for any h ∈ H, Th is a finite

collection of nonempty, disjoint, open, polytope elements T with diameter hT , such

that ∪T∈ThT = Ω, and there is a matching simplicial submesh Jh such that any
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simplex and any face in Jh belongs to just one element and face of Th. Besides, there

exists ρ > 0 (called the mesh regularity parameter), that is independent of h, such

that for every h ∈ H: (i) for any simplex S ∈ Jh of diameter hS and inradius rS, there

holds ρ hS ≤ rS; and (ii) ∀T ∈ Th , ∀S ∈ Jh : (S ⊆ T ⇒ ρ hT ≤ hS). As usual, we

introduce h := maxT∈Th hT . The regularity condition of the mesh sequence, ensures

important geometric bounds on Th and Fh, for any h ∈ H. We refer to Lemma 1.2

in [66] for more details in this context.

Given any Th, with h ∈ H, we call a face any hyperplanar closed connected subset

F of Ω with positive (d − 1)-dimensional measure, and such that: (1) either there

exists T ∈ Th such that F ⊂ ∂T ∩ ∂Ω (in this case, F is called a boundary face), or

(2) there exist T1, T2 ∈ Th such that F ⊂ ∂T1∩∂T2 (and then, F is called an interior

face). Boundary faces are collected in Fb
h , interior faces are callected in the set Fint

h ,

and we set Fh := Fint
h ∪Fb

h . Now, by hF we denote the diameter of a face F ∈ Fh.

For each T ∈ Th, we define FT := {F ∈ Fh : F ⊂ ∂T}, and then, given F ∈ FT , by

nTF we denote the unit normal to F , outward to T .

Throughout this paper, given two different non-negative numbers x, y, by x . y, we

denote the inequality x ≤ C y, where C is a positive constant that is independent

of the meshsize, but may depend on the mesh regularity parameter ρ. In addition,

we also introduce the notation x ≈ y, which means that y . x and x . y.

It is important to emphasize that in this context, the very well-known inequalities

and embeddings, are also valid. We remind here the discrete Poincaré-Wirtinger

inequality [66, Remark 1.46], i.e. given any T ∈ Th:

||w||T . hT ||∇w||T ∀w ∈ H1(T ) ∩ L2
0(T ) , (3.4)

which will be invoked in this paper. Other know results are, for example, the discrete

Sobolev embedding [64, Proposition 5.4], the discrete inverse inequality [69, Lemma

1.44], the discrete and continuous trace inequalities [69, Lemmas 1.46 and 1.49].

Now, we recall the definition and properties of the L2-orthogonal projector. Given

any T ∈ Th and any integer l ≥ 0, we define the L2-orthogonal projector πlT :

L1(T )→ Pld(T ) such that: For all v ∈ L1(T ), πlTv is the unique polynomial in Pld(T )
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that satisfies

(πlTv − v,∇w)T = 0 ∀w ∈ Pld(T ) .

We also introduce the so called elliptic projector π1,l
T : W 1,1(T ) → Pld(T ) such that:

For all v ∈ W 1,1(T ), π1,l
T v is a polynomial in Pld(T ) that satisfies (cf. Definition 1.39

in [66]) (
∇(π1,l

T v − v),∇w
)
T

= 0 ∀w ∈ Pld(T ) ,

(π1,l
T v − v, 1)T = 0 .

For the next result, we set π0,l
T := πlT .

Lemma 3.3.1 (Approximation properties) Given an integer l ≥ 0, T ∈ Th and

κ ∈ {0, 1}. Let πκ,lT be the L2-orthogonal projection or elliptic projector onto Pkd(T ).

Then, for all s ∈ {κ, · · · , l + 1} and all v ∈ Hs(T ), there holds

|v − πκ,lT v|Hm(T ) ≤ C ′apph
s−m
T |v|Hs(T ) ∀m ∈ {0, · · · , s}. (3.5)

Moreover, assuming additionally that s ≥ 1, there holds for all F ∈ FT ,

|v − πκ,lT v|Hm(F ) ≤ C ′′apph
s−m−1/2
T |v|Hs(T ) ∀m ∈ {0, · · · , s− 1}. (3.6)

Here C ′app > 0 and C ′′app > 0 depend only on d, the regularity of the mesh, l, and s.

Proof. We refer to the proofs of Theorems 1.45 and 1.48 in [66]. �

3.3.1 Degrees of freedom (DOFs)

Let k ≥ 0 be fixed. For all T ∈ Th, we define the local space of DOFs as

Uk
T := Pkd(T ) ×

(∏
F∈FT P

k
d−1(F )

)
, where Pkd(T ) (resp., Pkd−1(F )) is spanned by the

restrictions to T (resp., to F ) of d-variate (resp., (d−1)-variate) polynomials of total

degree ≤ k. The global space of DOFs on the domain Ω, is

Uk
h :=

(∏
T∈Th

Pkd(T )

)
×

( ∏
F∈Fh

Pkd−1(F )

)
.

The space Uk
h is equipped with the following discrete semi-norm, ‖ · ‖ε,h : Uk

h → R

‖vh‖2
ε,h :=

∑
T∈Th

‖vT‖2
ε,T , ‖vT‖2

ε,T := ‖∇vT‖2
T +

∑
F∈FT

h−1
F ‖vF − vT‖

2
F . (3.7)
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For each T ∈ Th, we define the local reduction operator IkT : H1(T )→ Uk
T such that,

for all v ∈ H1(T ),

IkTv :=
(
πkTv, (π

k
Fv)F∈FT

)
∈ Uk

T , (3.8)

where πkT and πkF denote the usual L2-orthogonal projectors onto Pkd(T ) and Pkd−1(F ),

respectively. The corresponding global interpolation operator Ikh : H1(Ω) → Uk
h is

then defined, such that for all v ∈ H1(Ω),

Ikhv :=
(
(πkTv)T∈Th , (π

k
Fv)F∈Fh

)
∈ Uk

h . (3.9)

3.3.2 Gradient and Potential reconstruction operators

Based on the local DOFs, we introduce reconstructions of the gradient and of the

potential that will be helpful in the formulation of the method. In what follows,

(·, ·)T and (·, ·)F will denote the usual L2-inner products on T ∈ Th and F ∈ Fh,

respectively. We define the local discrete gradient operator Gk
T : Uk

T → [Pkd(T )]d

such that, given vT ∈ Uk
T , then, Gk

TvT ∈ [Pkd(T )]d satisfies

(Gk
TvT ,φ)T = (∇vT ,φ)T +

∑
F∈FT

(vF − vT ,φ · nTF )F ∀φ ∈ [Pkd(T )]d, (3.10)

where, we recall that nTF is the unit normal to F pointing out of T . The following

proposition shows us the relation between the exact gradient and the discrete gradient

operators.

Proposition 3.3.1 (Commuting property) For all v ∈ H1(T ), there holds

Gk
T IkTv = πkT (∇v) , (3.11)

where πkT acts componentwise.

Proof. For the sake of completeness, we rewrite the proof of Proposition 10 in [65].

First, we fix T ∈ Th and φ ∈ [Pkd(T )]d. Then, plugging the definition (3.8) of IkT

into (3.10), and applying integration by parts, taking into account the definition of

orthogonal projection, together with the fact that divφ ∈ Pk−1
d (T ) ⊂ Pkd(T ) and that
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φ|F · nTF ∈ Pkd−1(F ) for all F ∈ FT , we have

(Gk
T IkTv,φ)T = (∇πkTv,φ)T +

∑
F∈FT

(πkFv − πkTv,φ · nTF )F

= −(πkTv, divφ)T +
∑
F∈FT

(πkFv,φ · nTF )F

= −(v, divφ)T +
∑
F∈FT

(v,φ · nTF )F

= (∇v,φ)T ,

where, we have applied integration by parts again. Then, the conclusion is derived

and we end the proof. �

Remark 3.3.1 In the Appendix of this paper, we show the relevance of introducing

(3.10), with a numerical example.

We also define the local potential reconstruction operator pk+1
T : U k

T → Pk+1
d (T )

such that, for all vT := (vT , (vF )F∈FT ) ∈ Uk
T , pk+1

T vT ∈ Pk+1
d (T ) is the unique

solution of

(∇pk+1
T vT −Gk

TvT ,∇w)T = 0 , ∀w ∈ Pk+1
d (T ), (3.12a)

(pk+1
T vT − vT , 1)T = 0 . (3.12b)

This operator satisfies the following orthogonal property (cf. Section 4 in [64]).

Corollary 3.3.1 (Euler equation) For all v ∈ H1(T ), there holds

(∇(pk+1
T IkTv − v),∇w)T = 0 ∀w ∈ Pk+1

d (T ). (3.13)

Proof. We have the following identity

(∇(pk+1
T IkTv−v),∇w)T = (∇pk+1

T IkTv−Gk
T IkTv,∇w)T+(Gk

T IkTv−∇v,∇w)T ∀w ∈ Pk+1
d (T ).

Then, the conclusion follows from (3.12a) and the commuting property (3.11). �

Remark 3.3.2 We observe from (3.12b) and the definition of πkT , that(
pk+1
T IkTv, 1

)
T

= (πkTv, 1)T = (v, 1)T . Then, there holds

(
pk+1
T IkTv − v, 1

)
T

= 0 ∀T ∈ Th . (3.14)
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The following lemma is similar to the one established for the original Gradient

reconstruction operator (defined for linear elliptic problems), and will be applied

later in this paper (cf. proof of Theorem 3.6.3).

Lemma 3.3.2 (Approximation properties for pk+1
T IkT ) There exists a real

number C > 0, depending on ρ (mesh regularity parameter) and d, but independent

of the polynomial degree, and the meshsize. So that for any v ∈ Hs+2(T ),

s ∈ {0, · · · , k}, there holds:∥∥v − pk+1
T IkTv

∥∥
T

+ h
1/2
T

∥∥v − pk+1
T IkTv

∥∥
∂T

+ hT
∥∥∇(v − pk+1

T IkTv)
∥∥
T

+h
3/2
T

∥∥∇(v − pk+1
T IkTv)

∥∥
∂T
≤ Chs+2

T ‖v‖Hs+2(T ) . (3.15)

Proof. The proof follows immediately from Theorems 1.1 and 1.2 in [65], and

observing that pk+1
T IkT is an elliptic projector, thanks to the Euler equation (3.13),

fixing its constant by (3.14). �

3.4 Formulation

Here, we introduce the following subspace of Uk
h, which strongly incorporates the

homogeneous Dirichlet boundary condition (3.2b):

Uk
h,0 :=

{
vh ∈ Uk

h : vF = 0 ∀F ∈ F bh
}
. (3.16)

Proposition 3.4.1 The map ‖ · ‖ε,h : Uk
h → R, given in (3.7), defines a norm on

Uk
h,0.

Proof. The proof follows the same ideas from the proof of Corollary 2.16 in [66].For

the sake of completeness, we proceed to establish this result. First, we notice that it

is enough to prove

∀vh :=
(
(vT )T∈Th , (vF )F∈Fh

)
∈ Uk

h,0 :
(
‖vh‖ε,h = 0 ⇒ vh = 0 ∈ Uk

h,0

)
.

We let vh :=
(
(vT )T∈Th , (vF )F∈Fh

)
∈ Uk

h,0 be such that ‖vh‖ε,h = 0. This implies,

from (3.7), that there exists C0 ∈ R, such that

vF = vT = C0 ∀F ∈ FT , ∀T ∈ Th .
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Since vF is single value on each F ∈ Fh and vF = 0 on Fb
h , we conclude that

vh = 0 ∈ Uk
h,0, and we end the proof. �

Hereafter, we recall that given vh :=
(
(vT )T∈Th , (vF )F∈Fh

)
∈ Uk

h, we set vh ∈ Pkd(Th)

such that vh|T := vT , for all T ∈ Th.

Now, we consider the following discrete variational formulation of (3.3): Find uh ∈

Uk
h,0 such that, for any vh ∈ Uk

h,0,

Ah(uh,vh) := Nh(uh,vh) + sh(uh,vh) = (f, vh)0,Ω =: bh(vh), (3.17)

where the nonlinear form Nh : Uk
h×Uk

h → R and the bilinear form sh : Uk
h×Uk

h → R,

are assembled element-wise as

Nh(uh,vh) :=
∑
T∈Th

NT (uT ,vT ), and sh(uh,vh) :=
∑
T∈Th

sT (uT ,vT ), (3.18)

from the local contributions NT : Uk
T ×Uk

T → R, and sT : Uk
T ×Uk

T → R, T ∈ Th,

given by

NT (uT ,vT ) :=

∫
T

a(x,Gk
TuT (x)) ·Gk

TvT (x) dx, (3.19a)

sT (uT ,vT ) :=
∑
F∈FT

h−1
F

(
πkF (uF − P k

TuT ), πkF (vF − P k
TvT )

)
F
. (3.19b)

We recall that the local potential reconstruction P k
T : Uk

T → Pk+1
d (T ) is defined such

that, for all vT ∈ Uk
T ,

P k
TvT := vT + (pk+1

T vT − πkTpk+1
T vT ) . (3.20)

Next, we introduce the global discrete gradient operator Gk
h : Uk

h → [Pkd(Th)]d such

that, for all vh ∈ Uk
h,

Gk
hvh|T := Gk

TvT ∀T ∈ Th. (3.21)

Lemma 3.4.1 Let (Th)h∈H be an admissible mesh sequence and k ≥ 0. For any

T ∈ Th, there holds the following equivalence of local semi norms on Uk
T

‖vT‖2
ε,T ≈ ‖Gk

TvT‖2
T + sT (vT ,vT ) ∀vT ∈ Uk

T (3.22)

≈ ‖pk+1
T vT‖2

T + sT (vT ,vT ) ∀vT ∈ Uk
T . (3.23)
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Besides, the hidden constant is independent of the meshsize and vT . Consequently,

for all vh ∈ Uk
h, there holds

‖vh‖2
ε,h ≈ ‖Gk

hvh‖2
Ω + sh(vh,vh) . (3.24)

Proof. We refer to the proofs of Lemma 4 in [75] and Lemma 5.2 in [64]. �

Remark 3.4.1 ‖Gk
hvh‖2

Ω + sh(vh,vh) is usually called energy norm.

Lemma 3.4.2 The nonlinear form Nh, defined in (3.18), is strongly monotone on

Uk
h.

Proof. The strong monotonicity of Nh follows straightforwardly from (3.22) and

(H.3). �

Lemma 3.4.3 (Consistency of sT ) Given T ∈ Th, we let sT be the stabilization

bilinear form defined in (3.18). Then, for each v ∈ Hr+2(T ), with r ∈ {0, · · · , k},

there holds

sT (IkTv, I
k
Tv)1/2 . hr+1

T ‖v‖Hr+2(T ) . (3.25)

Proof. We refer to the proof of Lemma 2.14 in [66]. We omit further details. �

3.5 Well-posedness of (3.17)

Our purpose here, is to establish the unique solvability of (3.17). To this aim, we

notice that the assumptions (H.3) and (H.4) on the coefficients ai, imply that the

nonlinear operator induced by a is strongly monotone and Lipschitz continuous on

[L2(Ω)]d (see, e.g. [98, 101]). This ensures the existence of C1 , C2 > 0, such that

for all θ , θ̃ ∈ [L2(Ω)]d, there hold∫
Ω

(
a(·,θ)− a(·, θ̃)

)
· (θ − θ̃) ≥ C1 ||θ − θ̃||2Ω , (3.26)

and

||a(·,θ)− a(·, θ̃)||Ω ≤ C2 ||θ − θ̃||Ω . (3.27)

Next result shows that the nonlinear operator Ah is also Lipschitz continuous.
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Lemma 3.5.1 There exists CLC > 0, independent of the meshsize, such that

||Ah(vh, ·)− Ah(wh, ·)||Uk,∗
h,0
≤ CLC ||vh −wh||ε,h ∀vh , wh ∈ Uk

h,0 , (3.28)

where Uk,∗
h,0 represents the dual of Uk

h,0.

Proof. Given vh , wh , zh ∈ Uk
h,0, we notice that

Ah(vh, zh)− Ah(wh, zh) =
∑
T∈Th

[(
a(·, Gk

TvT )− a(·, Gk
TwT ), Gk

TzT

)
T

+ sT (vT −wT , zT )

]
.

Now, noticing that (H.4) also implies that a is Lipschitz continuous on [L2(T )]d,

for each T ∈ Th, we have, after applying Cauchy-Schwarz inequality, that

|Ah(vh, zh)− Ah(wh, zh)| .
∑
T∈Th

||Gk
T (vT −wT )||T ||Gk

hzT ||T + sT (vT −wT , zT ) .

Next, we take into account Minkowski inequality, to derive

|Ah(vh, zh)− Ah(wh, zh)| .

(∑
T∈Th

||Gk
T (vT −wT )||2T + sT (vT −wT ,vT −wT )

)1/2

×

(∑
T∈Th

||Gk
TzT ||2T + sT (zT , zT )

)1/2

.

Then, (3.28) follows after invoking Lemma 3.4.1. �

Lemma 3.5.2 There exists CSM > 0, independent of the meshsize, such that

Ah(vh,vh −wh)− Ah(wh,vh −wh) ≥ CSM ||vh −wh||2ε,h ∀vh , wh ∈ Uk
h . (3.29)

Proof. Let vh , wh ∈ Uk
h . Thanks to the definition of Ah, we derive

Ah(vh,vh −wh)− Ah(wh,vh −wh)

=
∑
T∈Th

(
a(·, Gk

TvT )− a(·, Gk
TwT ), Gk

TvT −Gk
TwT

)
T

+ sh(vh −wh,vh −wh) .

Next, applying (3.26), we obtain

Ah(vh,vh −wh)− Ah(wh,vh −wh) ≥ C1

∑
T∈Th

||Gk
T (vT −wT )||2T

+ sh(vh −wh,vh −wh) .

Finally, applying Lemma 3.4.1 again, (3.29) is concluded. �

In order to exhibit that bh ∈ Uk,∗
h,0, we require the following result.
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Lemma 3.5.3 There exists CP > 0, independent of the meshsize, such that

||vh||Ω ≤ CP ||vh||ε,h ∀vh ∈ Uk
h,0 . (3.30)

Proof. We refer to the proof of Lemma 2.15 in [66] �

An immediate consequence of Lemma 3.5.3, is the boundedness of linear functional

bh. This allows us to ensure the unique solvability of the nonlinear HHO formulation

(3.17).

Theorem 3.5.1 There is one and only one solution uh ∈ Uk
h,0 of (3.17), which

satisfies

||uh||ε,h ≤
1

CSM

(
CP||f ||Ω + ||Ah(0, ·)||Uk,∗

h,0

)
. (3.31)

Proof. Thanks to Lemmas 3.5.1 and 3.5.2, the existence and uniqueness of the

solution of (3.17) is consequence of a well known result in nonlinear functional

analysis (see, e.g. Theorem 3.3.23 in Chapter III of [133, page 50], or Theorem

35.4 in [144, page 251]). On the other hand, (3.31) is obtained taking into account

the strong monotonicity of Ah, (3.17), and Lemma 3.5.3. We omit further details. �

3.6 Error analysis

In this Section, we obtain a priori error estimates of the method, in the energy-norm

and also in L2-norm, under additional regularity assumption on exact solution.

We emphasize that the analysis presented here is quite different to the one

shown/described in [64], since we are dealing just with a kind of nonlinear version of

the 2-Laplacian problem.

The following result will help us to conclude the error estimates of the method. From

now on, we let u ∈ U be the exact solution of (3.3), and uh ∈ Uk
h,0 be the unique

solution of (3.17) on the mesh Th. We define the consistency error as the linear

functional Eh(u; ·) : Uk
h,0 → R such that Eh(u; ·) := Ah(I

k
hu, ·)− bh(·).

For the sake of completeness, we introduce the following notations for the flux and

potential fields, and their approximations. First, we recall that σ := a(·,∇u) and

ûh := Ikhu. Next, for each T ∈ Th, we introduce

σT := a(·, Gk
TuT ) , ûT := IkTu and σ̂T := a(·, Gk

T ûT ) .
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Lemma 3.6.1 (Consistency error estimate) Let u ∈ H1
0 (Ω) be the unique

solution of (3.3). Let (Th)h∈H be a regular mesh family. Let a polynomial degree

k ≥ 0 be fixed, and for all h ∈ H, we take the additional regularity u ∈ Hr+2(Th) and

a(·,∇u) ∈ Hr+1(Th), for some r ∈ {0, · · · , k}. Then, there holds

sup
vh∈Uk

h,0, ‖vh‖ε,h=1

Eh(u; vh) . hr+1
(
‖u‖Hr+2(Th) + ‖a(·,∇u)‖Hr+1(Th)d

)
. (3.32)

Proof. We adapt the proof of Theorem 16 in [27]. Using the definition (3.17), fixing

vh ∈ Uk
h,0, we obtain

Eh(u; vh) =
∑
T∈Th

(
σ̂T , G

k
TvT

)
T

+ sh(ûh,vh)− (f, vh)0,Ω

=
∑
T∈Th

(
σ̂T − σ, Gk

TvT
)
T

+ sh(ûh,vh)

+
∑
T∈Th

(
σ, Gk

TvT
)
T
− (f, vh)0,Ω . (3.33)

Considering, for any T ∈ Th, the definition (3.10) of Gk
T with φ := πkTσ ∈ [Pkd(T )]d,

we have that∑
T∈Th

(
Gk
TvT ,σ

)
T

=
∑
T∈Th

{(
σ,∇vT

)
T

+
∑
F∈FT

(
πkTσ · nTF , vF − vT

)
F

}
, (3.34)

where we have used the fact that ∇vT ∈ [Pk−1
d (T )]d, together with the definition of

the L2-orthogonal projector πkT componentwise.

On the other hand, knowing that vh|T = vT for all T ∈ Th, and f = −∇ · σ a.e. in

Ω, and after integrating by parts element by element, we get that

(f, vh)0,Ω =
∑
T∈Th

{(
σ,∇vT

)
T

+
∑
F∈FT

(
σ · nTF , vF − vT

)
F

}
, (3.35)

where we have additionally taken into account that σ ∈ H(div; Ω), (vF )F∈Fh is single

valued, and vF = 0 ∀F ∈ Fb
h .

Now, replacing (3.34) and (3.35) in (3.33), we deduce

Eh(u; vh) =
∑
T∈Th

(
a(·, Gk

T ûT )− a(·,∇u), Gk
TvT

)
T

+ sh(ûh,vh)

+
∑
T∈Th

∑
F∈FT

(
a(·,∇u)− πkTa(·,∇u) · nTF , vF − vT

)
F
. (3.36)
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Then, after applying Cauchy-Schwarz and Minkowski inequalities, we obtain

|Eh(u; vh)| . T1/2 ||vh||ε,h , (3.37)

where

T :=
∑
T∈Th

||a(·, Gk
T ûT )− a(·,∇u)||2T︸ ︷︷ ︸

T1

+
∑
T∈Th

∑
F∈FT

hF ||a(·,∇u)− πkTa(·,∇u)||2F︸ ︷︷ ︸
T2

+ sh(ûh, ûh)︸ ︷︷ ︸
T3

. (3.38)

To bound T1, we apply the Lipschitz continuity (3.27) with θ := ∇u, θ̃ := Gk
hûh,

and invoke the optimal approximation properties of Gk
T IkT (cf. (3.11)) and Lemma

3.3.1 (taking m = 1 and s = r + 2), to deduce

T1 .
∑
T∈Th

‖∇u−Gk
T ûT‖2

T .
∑
T∈Th

h
2(r+1)
T ‖u‖2

Hr+2(T ) . (3.39)

Now, thanks to (3.11) again, we derive

T2 .
∑
T∈Th

h
2(r+1)
T ||a(·,∇u)||2[Hr+1(T )]d . (3.40)

Finally, invoking Lemma 3.4.3, we bound T3, and (3.32) is straightforwardly implied.

We end the proof. �

Theorem 3.6.1 (Energy error estimate) Under the same assumptions and

notations given in Lemma 3.6.1, there holds, for some r ∈ {0, · · · , k}:

‖uh − Ikhu‖ε,h . hr+1
(
‖u‖Hr+2(Th) + ‖a(·,∇u)‖[Hr+1(Th)]d

)
. (3.41)

Moreover, applying Lemma 3.4.1, there holds

‖∇u−Gk
huh‖0,Ω + sh(uh,uh)

1/2 . hr+1
(
‖u‖Hr+2(Th) + ‖a(·,∇u)‖[Hr+1(Th)]d

)
. (3.42)

Proof. First, we take into account the strong monotonicity of nonlinear form Ah,

and obtain

||uh − Ikhu||2ε,h .Ah(uh,uh − Ikhu) − Ah(I
k
hu,uh − Ikhu)

= bh(uh − Ikhu) − Ah(I
k
hu,uh − Ikhu)

= Eh(u; Ikhu− uh)

. sup
vh∈Uk

h,0, ‖vh‖ε,h=1

Eh(u; vh) ||uh − Ikhu||ε,h ,
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and then, we deduce

||uh − Ikhu||ε,h . sup
vh∈Uk

h,0, ‖vh‖ε,h=1

Eh(u; vh) . (3.43)

Thus, (3.41) follows once we apply Lemma 3.6.1. The proof of (3.42) relies on Lemma

3.4.1. We omit further details. �

3.6.1 L2-norm error estimate

Let us turn our attention to the L2-norm for the volumetric part of the error uh−Ikhu,

that is eh := πkhu− uh, where πkhu|T := πkTu and uh|T := uT . To this aim, we rewrite

problem (3.17) as: Find uh ∈ Vh := Uk
h,0 such that, for any vh ∈ Vh,

[Ah(uh),vh] := [Nh(uh),vh] + sh(uh,vh) = (f, vh)0,Ω =: [Fh,vh], (3.44)

where [·, ·] represents the duality product, V (h) := Uk
h, Ah : V (h) → V (h)′ and

Nh : V (h)→ V (h)′ are the nonlinear operators induced by Ah and Nh, respectively.

In particular,

[Nh(wh),vh] :=

∫
Ω

a(·, Gk
hwh) · Gk

hvh ∀wh , vh ∈ V (h).

Now, we can ensure the existence of the Gâteaux derivative of Nh at each zh ∈ V (h),

thanks to the assumption (H.1), as the bounded bilinear form DNh(zh) : V (h) ×

V (h)→ R, given by

DNh(zh)(vh,wh) = lim
t→0

[Nh(zh + tvh),wh]− [Nh(zh),wh]

t

= lim
t→0

∑
T∈Th

{(
a(·, Gk

TzT + tGk
TvT ), Gk

TwT

)
T
−
(
a(·, Gk

TzT ), Gk
TwT

)
T

}
t

=
∑
T∈Th

(
lim
t→0

a(·, Gk
TzT + tGk

TvT )− a(·, Gk
TzT )

t
, Gk

TwT

)
T

=
∑
T∈Th

∫
T

(Gk
TvT )tDa(·, Gk

TzT )Gk
TwT

=

∫
Ω

(
Gk
hwh

)t
Da(·, Gk

hzh)G
k
hvh ∀wh,vh ∈ V (h) , (3.45)

where Da(·, Gk
hzh) denotes the jacobian matrix of a at Gk

hzh. As consequence, we

define DAh(zh) : V (h)× V (h)→ R as the bilinear form

DAh(zh)(vh,wh) := DNh(zh)(vh,wh) + sh(vh,wh) ∀vh , wh ∈ V (h) . (3.46)
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In what follows, we assume that the jacobian tensor Da(·,θ) is symmetric for all

θ ∈ [L2(Ω)]d, and that DNh is hemi-continuous, that is for any vh , wh ∈ V (h), the

mapping R 3 µ→ DNh(vh + µwh)(wh, ·) ∈ V (h)′ is continuous. Thus, applying the

mean value theorem to the referred mapping of real variable, there exists µ0 ∈ (0, 1)

such that

[Nh(I
k
hu)− Nh(uh),vh] =

∫ 1

0

d

dµ

{
[Nh(µ Ikhu+ (1− µ) uh),vh]

}
dµ

=

∫ 1

0

DNh(µ Ikhu+ (1− µ) uh)(I
k
hu− uh,vh) dµ

= DNh(µ0 Ikhu+ (1− µ0) uh)(I
k
hu− uh,vh) ∀vh ∈ V (h) .

Then by introducing ũh := µ0 Ikhu + (1 − µ0) uh ∈ V (h), which is a convex

combination of Ikhu and uh, we have that

DNh(ũh)(I
k
hu− uh,vh) = [Nh(I

k
hu)− Nh(uh),vh] ∀vh ∈ V (h) . (3.47)

Further, it follows from (3.46) and (3.47), that

DAh(ũh)(I
k
hu− uh,vh) = [Ah(I

k
hu)− Ah(uh),vh] ∀vh ∈ V (h) . (3.48)

Next, we establish the following linear auxiliary problem with additional elliptic

regularity assumption: Given g ∈ L2(Ω), we let z ∈ U := H1
0 (Ω) be the unique

solution of

−div(K̃∇z)) = g in Ω, (3.49a)

z = 0 on ∂Ω, (3.49b)

with K̃ ∈ [L∞(Th)]d×d, such that K̃|T := Da(·, Gk
TuT ), for each T ∈ Th. Assuming

further regularity on K̃ so that z ∈ U ∩H2(Ω) and K̃∇z ∈ [H1(Ω)]d, there exists

Cell > 0 only depending on Ω, such that:

||z||H2(Ω) ≤ Cell ||g||0,Ω and ||K̃∇z||H1(Ω)d ≤ Cell ||g||0,Ω . (3.50)

This holds, for example, when Ω is convex, and the tensor K̃ is symmetric and

Lipschitz continuous (cf. [110]). We also consider the HHO formulation of problem

(3.49): Find zh ∈ Vh such that

DAh(ũh)(zh,vh) = (g, vh)0,Ω =: [F̃h,vh] ∀vh ∈ Vh. (3.51)
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We emphasize that invoking Theorem 4.16 in [66] with r = 0, and applying (3.50),

we derive

||Ikhz − zh||ε,h . h ||g||0,Ω . (3.52)

Further, we introduce another nonlinear operator N̂h : [L2(Ω)]d → [L2(Ω)]d as

[N̂h(θ), ζ] :=
∑
T∈Th

(
a(·,θ|T ), ζ

)
T
∀θ , ζ ∈ [L2(Ω)]d. (3.53)

Then, the corresponding Gâteaux derivative of N̂h at each θ ∈ [L2(Ω)]d is given by

DN̂h(θ)(η, ζ) :=
∑
T∈Th

(
Da(·,θ|T )η, ζ

)
T
, ∀η , ζ ∈ [L2(Ω)]d. (3.54)

Now, assuming that DN̂h is hemi-continuous, we ensure that there exists θ̂ ∈

[L2(Ω)]d, a convex combination of ∇u and πkh∇u, such that

DN̂h(θ̂)(∇u− πkh∇u, ζ) = [N̂h(∇u)− N̂h(π
k
h∇u), ζ] ∀ ζ ∈ [L2(Ω)]d. (3.55)

Then, introducing θ̂T := θ̂|T , we set K̂ ∈ [L∞(Th)]d×d such that K̂|T := Da(·, θ̂T ),

and we can derive the following representation of DN̂h(θ̂) as the bilinear form

DN̂h(θ̂)(η, ζ) :=
∑
T∈Th

(
K̂η, ζ

)
T
, ∀η , ζ ∈ [L2(Ω)]d . (3.56)

Theorem 3.6.2 (Error estimate of L2−projection of the potential) Under

the same hypothesis given in Theorem 3.6.1, and assuming that K̂ ∈ [W 1,∞(Th)]d×d.

Let a integer k ≥ 0 be fixed, and for all h ∈ H, we take the additional regularity

u ∈ Hq+2(Th) and a(·,∇u) ∈ Hq+1(Th), for some q ∈ {0, · · · , k}. Then, for k ≥ 1,

there holds

‖πkhu− uh‖0,Ω . hq+2
((

1 + |K̂|[W 1,∞(Th)]d×d
)
‖u‖Hq+2(Th) + ‖a(·,∇u)‖[Hq+1(Th)]d

)
.

(3.57)

Moreover, when k = 0, assuming that f ∈ H1(Th), there holds

‖π0
hu−uh‖0,Ω . h2

((
1+ |K̂|[W 1,∞(Th)]d×d

)
‖u‖H2(Th) +‖a(·,∇u)‖[H1(Th)]d +‖f‖H1(Th)

)
.

(3.58)
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Proof. From problem (3.51), with g := πkhu− uh ∈ L2(Ω) and vh := Ikhu− uh ∈ Vh,

we derive

||πkhu− uh||20,Ω = [F̃h, I
k
hu− uh] = DAh(ũh)(zh, I

k
hu− uh) .

Now, as DAh(ũh) is symmetric, we apply (3.48) to deduce

||πkhu− uh||20,Ω = [Ah(I
k
hu)− Ah(uh), zh]

=
{

[Ah(I
k
hu), zh − Ikhz] − [Fh, zh − Ikhz]

}
︸ ︷︷ ︸

T1

+
{

[Ah(I
k
hu), Ikhz] − [Fh, I

k
hz]
}

︸ ︷︷ ︸
T2

.

(3.59)

Since T1 in (3.59) corresponds to the consistency error of (3.44), Eh(u; zh − Ikhz), we

invoke (3.32) with r = q, and after taking into account (3.52), we obtain

|T1| . hq+1
(
‖u‖Hq+2(Th) + ‖a(·,∇u)‖[Hq+1(Th)]d

)
‖Ikhz − zh‖ε,h

. hq+1
(
‖u‖Hq+2(Th) + ‖a(·,∇u)‖[Hq+1(Th)]d

)
h ‖πkhu− uh‖0,Ω . (3.60)

On the other hand, we notice that T2 in (3.59) is the consistence term Eh(u; Ikhz).

Here, we consider two cases.

(i.A) k ≥ 1. We proceed as in the derivation of (3.36), to have

Eh(u; Ikhz) =
∑
T∈Th

(
a(·, πkT∇u)− a(·,∇u), πkT∇z

)
T︸ ︷︷ ︸

J1

+
∑
T∈Th

∑
F∈FT

(
[a(·,∇u)− πkTa(·,∇u)] · nTF , πkF z − πkT z

)
F︸ ︷︷ ︸

J2

(3.61)

−sh(Ikhu, Ikhz).︸ ︷︷ ︸
J3

We bound J2 applying Cauchy-Schwarz, resulting

|J2| ≤

(∑
T∈Th

∑
F∈FT

‖a(·,∇u)− πkTa(·,∇u)‖2
F

)1/2(∑
T∈Th

∑
F∈FT

‖πkF z − πkT z‖2
F

)1/2

,

By approximation property (3.6), with m = 0 and s := q + 1, we obtain

‖a(·,∇u)− πkTa(·,∇u)‖F . h
q+1/2
T ||a(·,∇u)||Hq+1(T )d . (3.62)
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Similarly, applying approximation property (3.6), we infer

‖πkF z − πkT z‖F ≤ ||z − πkT z||F . h
3/2
T ‖z‖H2(T ). (3.63)

Then, from (3.62), (3.63), and (3.50), with g := πkhu− uh, we derive

|J2| . hq+2||a(·,∇u)||Hq+1(Th)‖πkhu− uh‖0,Ω. (3.64)

Now, we bound J3, using (3.25) with r := q for u, and r := 0 for z, and the first

elliptic regularity estimate in (3.50), yielding to

|J3| ≤ sh(I
k
hu, I

k
hu)1/2 sh(I

k
hz, I

k
hz)1/2

. hq+1 ‖u‖Hq+2(Th) h ‖z‖H2(Ω)

. hq+2 ‖u‖Hq+2(Th) ‖πkhu− uh‖0,Ω. (3.65)

Finally, to bound J1, we invoke the bilinear form (3.56), obtaining

J1 =DN̂h(θ̂)(∇u− πkh∇u, πkh∇z)

=
∑
T∈Th

(
K̂(∇u− πkT∇u), πkT∇z

)
T

=
∑
T∈Th

(
K̂(∇u− πkT∇u), πkT∇z − π0

T∇z
)
T︸ ︷︷ ︸

J1,1

+
∑
T∈Th

(
∇u− πkT∇u, K̂π0

T∇z − π0
T (K̂π0

T∇z)
)
T︸ ︷︷ ︸

J1,2

.

Invoking (H.4), the fact that ||πkT∇z − π0
T∇z||T ≤ ||∇z − π0

T∇z||T , and that K̂

is uniformly bounded, we apply approximation property (3.5) and the first elliptic

regularity estimate in (3.50), and deduce

|J1,1| . hq+2 ||u||Hq+2(Th) ||πkhu− uh||0,Ω . (3.66)

In order to bound J1,2, we notice that π0
T (K̂π0

T∇z) = (π0
TK̂)(π0

T∇z), where π0
TK̂

is defined componentwise. Then, since K̂ ∈ [W 1,∞(Th)]d×d, we invoke the tensorial

version of Theorem 1.45 in [66], and establish that ||K̂ − π0
TK̂||[W 0,∞(T )]d×d .

hT |K̂|[W 1,∞(Th)]d×d . Now, after applying again approximation properties (3.5) as in

(3.66), it yields

|J1,2| . |K̂|[W 1,∞(Th)]d×d h
q+2 ‖u‖Hq+2(Th) ‖πkhu− uh‖0,Ω . (3.67)
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Then, from (3.64), (3.65), (3.66), and (3.67), we deduce the estimate for Eh(u; Ikhz)

in (3.61), and (3.57) is concluded.

(i.B) k = 0. We can rewrite

Eh(u; I0
hz) =[A(I0

hu)− A(uh), I
0
hz]

=
∑
T∈Th

(
a(·, π0

T∇u), π0
T∇z

)
T

+ sh(I
0
hu, I

0
hz) −

∑
T∈Th

(f, π0
T z)T . (3.68)

Playing with the definition of π0
T , we obtain

(f, π0
T z)T = (π0

Tf, z)T = (π0
Tf − f, z − π0

T z) + (f, z)T . (3.69)

Then, from (3.68) and (3.69), and the fact (π0
T∇z − ∇z, π0

Ta(·,∇u))T = 0 for all

T ∈ Th, we deduce

Eh(u; I0
hz) =

∑
T∈Th

(
a(·, π0

T∇u), π0
T∇z

)
T
− (f, z)Ω

+ sh(I
0
hu, I

0
hz) +

∑
T∈Th

(π0
Tf − f, π0

T z − z)T

=
∑
T∈Th

(
a(·, π0

T∇u)− a(·,∇u), π0
T∇z

)
T︸ ︷︷ ︸

T1

+
∑
T∈Th

(
a(·,∇u)− π0

Ta(·,∇u), π0
T∇z −∇z

)
T︸ ︷︷ ︸

T2

+ sh(I
0
hu, I

0
hz)︸ ︷︷ ︸

T3

+
∑
T∈Th

(π0
Tf − f, π0

T z − z)T︸ ︷︷ ︸
T4

. (3.70)

T2, T3 and T4 are bounded by applying Cauchy-Schwarz inequality and very

well-known approximation property (3.5). Then, after take into account the first

elliptic regularity estimate in (3.50), we find

|T2| .h2 ||a(·,∇u)||[H1(Th)]d ||π0
hu− uh||0,Ω (3.71)

|T3| .h2 ||u||H2(Th) ||π0
hu− uh||0,Ω (3.72)

|T4| .h2 ||f ||H1(Th) ||π0
hu− uh||0,Ω . (3.73)
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Now, we aim to bound the remaining term T1. First, we notice that

T1 =DN̂h(θ̂)(∇u− π0
h∇u, π0

h∇z)

=
∑
T∈Th

(
K̂(∇u− π0

T∇u), π0
T∇z

)
T

=
∑
T∈Th

(
∇u− π0

T∇u, K̂π0
T∇z − π0

T (K̂π0
T∇z)

)
T
.

Then, proceeding in analogous way for bounding J1,2, we derive

|T1| . |K̂|[W 1,∞(Th)]d×d h
2 ‖u‖H2(Th) ‖πkhu− uh‖0,Ω . (3.74)

As a result, we establish

|Eh(u; I0
hz)| . h2

((
1 + |K̂|[W 1,∞(Th)]d×d

)
‖u‖H2(Th) + ‖a(·,∇u)‖[H1(Th)]d + ‖f‖H1(Th)

)
,

(3.75)

and the estimate (3.58) is implied. �

Now, we establish another important result.

Theorem 3.6.3 (L2-error estimate of reconstructive potential) Under the

same assumptions of Theorem 3.6.2, elliptic regularity (3.50), we have, for k ≥ 1:

‖pk+1
h uh − u‖0,Ω . hq+2

((
1 + |K̂|[W 1,∞(Th)]d×d

)
‖u‖Hq+2(Th) + ‖a(·,∇u)‖Hq+1(Th)d

)
,

(3.76)

for some q ∈ {0, · · · , k}. Moreover, when k = 0, assuming that f ∈ H1(Th), there

holds

‖p1
huh−u‖0,Ω . h2

((
1+ |K̂|[W 1,∞(Th)]d×d

)
‖u‖H2(Th) +‖a(·,∇u)‖H1(Th)d +‖f‖H1(Th)

)
.

(3.77)

Proof. We proceed as in the proof of Theorem 2.32 from [66]. First, we take u

̂

h :=

pk+1
h Ikh(u), and applying triangle inequality, we have

‖pk+1
h uh − u‖0,Ω ≤ ‖u− u

̂

h‖0,Ω︸ ︷︷ ︸
T1

+ ‖pk+1
h (ûh − uh)‖0,Ω︸ ︷︷ ︸

T2

. (3.78)

Next, after invoking (3.15) with s := q, we derive

T1 . hq+2‖u‖Hq+2(Th) . (3.79)
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Now, using the local Poincaré–Wirtinger (3.4) and the fact(
pk+1
T (ûT − uT )− π0

T (ûT − uT ), 1
)
T

= 0 ∀T ∈ Th ,

we obtain, after applying triangle inequality

T2
2 .

∑
T∈Th

{
‖pk+1

h (ûh − uh)− π0
T (ûT − uT )‖2

T + ||π0
T (ûT − uT )||2T

}
.
∑
T∈Th

h2
T‖∇pk+1

T (ûT − uT )‖2
T︸ ︷︷ ︸

E1

+
∑
T∈Th

‖π0
T (ûT − uT )‖2

T︸ ︷︷ ︸
E2

. (3.80)

We observe that, E1 is bounded thanks to Lemma 3.4.1 and Theorem 3.6.1, while

the boundedness of E2 is deduced by invoking Theorem 3.6.2. Finally, (3.79) and

(3.80) help us to bound (3.78), and we conclude the proof.

�

3.7 Other boundary conditions

Here, we briefly discuss how the HHO scheme is written for nonhomogeneous

Dirichlet, mixed, and nonhomogeneous Neumann boundary conditions, and hint at

the modifications required for establishing the corresponding a priori error estimates.

3.7.1 Nonhomogeneous Dirichlet boundary conditions

We consider the nonlinear problem

− div(a(·,∇u)) = f in Ω , u = g on ∂Ω , (3.81)

with g ∈ H1/2(∂Ω). Denoting by γ : H1(Ω) → H1/2(∂Ω) the trace operator, the

continuous weak formulation is expressed as: Find u ∈ H1
g (Ω) := {w ∈ H1(Ω) :

γ(w) = g} such that

(a(·,∇u),∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω) . (3.82)

Now, if we decompose u = u0 + ug, such that u0 ∈ H1
0 (Ω) and ug ∈ H1

g (Ω), then

we can rewrite (3.82) as: Find u0 ∈ H1
0 (Ω) such that

(a(·,∇u0 +∇ug),∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω) . (3.83)
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The problem (3.83) is well-posed, since its associated nonlinear form results to be

also Lipschitz continuous and strongly monotone in H1
0 (Ω). Now, to establish the

HHO discrete scheme corresponding to (3.83), we follow the ideas given in Subsection

7.1 in [64], and introduce wg,h :=
(

(wg,T )T∈Th , (wg,F )F∈Fh

)
∈ Uk

h such that

wg,T = 0 ∀T ∈ Th , wg,F = 0 ∀F ∈ Fint
h , wg,F = πkFg ∀F ∈ Fb

h .

In order to show a procedure to compute uh, the HHO-approximation of the solution

of (3.83), we decompose it as uh := u0,h + wg,h, with u0,h ∈ Uk
h,0. As a result, the

proposed HHO formulation reads as: Find u0,h ∈ Uk
h,0 such that

Ah(u0,h + wg,h,vh) = bh(vh) ∀vh ∈ Uk
h,0 , (3.84)

with Ah and bh defined as in (3.17). The well-posedness of (3.84) also relies

on Lipschitz continuity and strong monotonocity properties. It is not difficult to

establish similar results to Theorems 3.6.1, 3.6.2 and 3.6.3 in this situation.

3.7.2 Mixed boundary conditions

We consider a nonlinear problem (3.2) with mixed boundary conditions, for which

we assume that there exists a partition {ΓD,ΓN} of the boundary Γ := ∂Ω, such

that Γ = ΓN ∪ ΓD,
◦
ΓN ∩

◦
ΓD = ∅ and |ΓD| > 0. Then, the nonlinear problem with

mixed boundary conditions reads as: Find u : Ω→ R such that

−div(a(·,∇u)) = f in Ω , (3.85a)

a(·,∇u) · n = gN on ΓN , (3.85b)

u = gD on ΓD , (3.85c)

where f ∈ L2(Ω), gN ∈ L2(ΓN), gD ∈ H1/2(ΓD), and n denotes the exterior unit

normal to Γ. We notice that (3.85) does not degenerate into the pure Neumann

case. The continuous weak formulation of (3.85) reads as: Find u ∈ H1
∗ (Ω) := {w ∈

H1(Ω) : w|ΓD = gD} such that

(a(·,∇u),∇v)Ω = (f, v)Ω + (gN , v)ΓN ∀v ∈ H1
D(Ω) := {w ∈ H1(Ω) : w|ΓD = 0} .

(3.86)
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The well-posedness of (3.86) follows from [92]. Next, for the HHO discretization, we

require the following hypothesis.

Assumption 3.7.1 Th fits the partition {ΓD,ΓN}, in the sense that we can define

two sets, FD
h := {F ∈ Fb

h : F ⊂ ΓD} and FN
h := {F ∈ Fb

h : F ⊂ ΓN}, such that

FD
h ∪ FN

h = Fb
h.

Next, we introduce the discrete spaces

Uk
h,gD,D

:= {wh ∈ Uk
h : wF = πkFgD ∀F ∈ FD

h} . (3.87)

Then, the HHO discretization of (3.86) reads as: Find uh ∈ Uk
h,gD,D

such that

Ah(uh,vh) = (f, vh)Ω +
∑
F∈FN

h

(gN , vF )F =: bh(vh) ∀vh ∈ Uk
h,0,D . (3.88)

with Ah defined as in (3.17). Now, to compute uh, we can proceed as

described in the previous subsection. This motivates the introduction of wgD,h
:=(

(wgD,T )T∈Th , (wgD,F )F∈Fh

)
∈ Uk

h,gD,D
, such that

wgD,T = 0 ∀T ∈ Th , wgD,F = 0 ∀F ∈ Fint
h , wgD,F = 0 ∀F ∈ FN

h .

After that, we compute uh = u0,h + wgD,h
, where u0,h ∈ Uk

h,0,D verifies

Ah(u0,h + wgD,h
,vh) = (f, vh)Ω +

∑
F∈FN

h

(gN , vF )F =: bh(vh) ∀vh ∈ Uk
h,0,D ,

(3.89)

where the nonlinear form Ah is defined as in (3.17).

3.7.3 Nonhomogeneous Neumann boundary condition

Now, we consider a nonlinear problem with pure Neumann condition: Find u : Ω→

R such that

−div(a(·,∇u)) = f in Ω , (3.90a)

a(·,∇u) · n = g on Γ , (3.90b)∫
Ω

u = 0 , (3.90c)
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where f ∈ L2(Ω), g ∈ L2(Γ). We look for the continuous weak solution in the Hilbert

space

U := {v ∈ H1(Ω) : (v, 1)Ω = 0} . (3.91)

The corresponding weak formulation to (3.90) is given as: Find u ∈ U such that

(a(·,∇u),∇v)Ω = (f, v)Ω + (g, v)Γ ∀v ∈ U . (3.92)

Now, applying the HHO approach, we seek the discrete weak solution of (3.92) in

the discrete space

Uk,0
h :=

{
vh ∈ Uk

h :
∑
T∈Th

(vT , 1)T = 0

}
. (3.93)

Then, the associated discrete HHO scheme reads as: Find uh ∈ Uk,0
h such that

Ah(uh,vh) = (f, vh)Ω +
∑
F∈Fh

(g, vF )F =: bh(vh) ∀vh ∈ Uk,0
h . (3.94)

with the nonlinear form Ah given as in (3.17). The problem (3.94) has been analised

in a more general context in [66, Chapter 6], but the authors have only developed the

a priori error analysis for the p-Laplacian nonlinear operator, which does not satisfy

our hypotheses here, unless p = 2 (that is the linear Laplacian operator). Their a

priori error analysis does not cover our proposed kind of nonlinear operators.

3.8 Numerical results

In this section, we present a comprehensive set of numerical tests with different

boundary conditions, each of one with its corresponding explicit exact solution. We

start by introducing the families of polytopal meshes we consider in our numerical

computations. We call them: Simplicial I (cf. Figure 3.14), Cartesian (cf. Figure

3.15), Hexagonal (cf. Figure 3.18), and Tilted hexagonal (cf. Figure 3.19), which can

be downloaded from https://github.com/wareHHOuse/diskpp. Other families of

meshes are called Graduated (Cartesian with hanging nodes) as in Figure 3.16 and

Fractured (cf. Figure 3.20), which can be founded in FVCA 5 benchmark [119]. We
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also consider a family of Trapezoidal (cf. Figure 3.17) and uniform refined simplicial

(Simplicial II) meshes (cf. Figure 3.21).

We remark that Example (3.8.1) provides HHO approximations for the nonlinear

model problem (3.2), while Examples (3.8.2)-(3.8.5) solve (3.84), testing the

robustness of the scheme considering smooth and nonsmooth solutions. Examples

(3.8.6)-(3.8.7) deal with (3.85) and (3.90), respectively. In all examples, we compute

the following errors:

I L2-projection of potential error: ‖πkhu− uh‖0,Ω,

I Flux error: ‖∇u−Gk
huh‖0,Ω,

I Reconstructive potential error: ‖u− pk+1
h uh‖0,Ω.

We also remak that we have considered different families of polytopal meshes, and

three nonlinear functions a, that satisfy the hypotheses (H.1), (H.2), (H.3), and

(H.4). The list of examples with their corresponding nonlinear function a, the

exact solution, domain, polytopal meshes considered (see Section 3.8.8), and type of

boundary conditions (B.C.), are resumed in Table 3.1.

For each one of the examples presented here, we approximate the exact solution

with piecewise polynomials of degree at most k, with k ∈ {0, 1, 2, 3, 4}. Besides, the

experimental order of convergence (rate), is computed as

rate = log(eT /eT̃ )/ log(hT /hT̃ ) ,

where eT and eT̃ represent the errors associated to two consecutive meshes T and

T̃ , respectively.

The nonlinear algebraic system, obtained from (3.17), is solved by Newton’s method

with the initial guess given by the solution of the associated Poisson problem. This

choice leads to a considerable reduction of the number of iterations, instead of

using the usual null initial guess. We also consider a tolerance of 10−10 for the

corresponding residual, and fixed the maximum number of Newton’s iterations in

10. The number of iterations needed to attain the prescribed tolerance, in all the

examples presented here, is ≤ 5.
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Ex. a(·, ζ) u Ω Polytopal Mesh B.C.

1
(

1 + 1
1+|ζ|2

)
ζ sin(πx) sin(πy) Square

Fractured
Dirichlet

Hexagonal

2
(
1 + exp(−|ζ|2)

)
ζ exp(x+ πy) Square Graduated Dirichlet

3
(

2 + 1
1+|ζ|

)
ζ cos

(
π
2
y
)

+ χ(x)x3.5 Square Simplicial III Dirichlet

4
(

2 + 1
1+|ζ|

)
ζ cos

(
π
2
y
)

+ χ(x)x3.5 L-shaped Simplicial II Dirichlet

5
(

2 + 1
1+|ζ|

)
ζ r2/3 sin(2θ/3) L-shaped Simplicial II Dirichlet

6
(
1 + exp(−|ζ|2)

)
ζ sin(πx) sin(πy) Square

Cartesian
Mixed

Hexagonal

7
(

1 + 1
1+|ζ|2

)
ζ exp(x+ πy)−Cte. Square

Trapezoidal
Neumann

Tilted

Table 3.1: Summary of data for the 7 examples

The computational code is based on the one developed by Di Pietro in [75], which is

described in [39]. However, we have implemented the computations of the modified

versions of the discrete gradient and potential operators (cf. (3.10) and (3.12)). The

static condensation procedure has been implemented right after the assembling of

the local matrices of the linearized problem over the global system. This allows us

to recompute, on each iteration, the volumetric terms.

3.8.1 Example 1

We consider the nonlinear problem (3.2) with homogeneous Dirichlet boundary

condition, defined in the convex domain Ω := (0, 1)2, and with nonlinear coeffcient

a(·, ζ) :=
(

1 + 1
1 + |ζ|2

)
ζ, for all ζ ∈ R2. The datum f is chosen so that the exact

solution is given by the smooth function u(x, y) = sin(πx) sin(πy). Here, we consider

two families of polytopal meshes: a nonconforming one, that we have called Fractured

in Table 3.1 (cf. Figure 3.20), and conforming meshes with hexagonal-dominant

cells (cf. Figure 3.18). Tables 3.2 and 3.3 show the history of convergence of

potential, flux, and reconstructive potential errors, when the exact solution is

approximated with piecewise polynomials of degree at most k ∈ {0, 1, 2, 3, 4},
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computed using families of Fractured and Hexagonal meshes, respectively. From

both tables, we notice that the scheme converges with the order of convergence of

the aforementioned errors behaves as O(hk+2), O(hk+1) and O(hk+2), respectively.

These are in agreement with Theorems 3.6.1 and 3.6.2. Figures 3.1 and 3.3 resume

the information provided in Tables 3.2 and 3.3, respectively.

(a) Fractured (b) Hexagonal

Figure 3.1: Rates of convergence of potential error vs. h (Example 1)
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Table 3.2: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4} (Example 1 - Fractured meshes)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 1.82e-01 3.70e-02 1.00e-02 3.89e-03 1.70e-03

3.12e-02 5.14e-02 1.821 5.58e-03 2.725 1.10e-03 3.185 2.98e-04 3.701 1.00e-04 4.074

1.56e-02 1.36e-02 1.917 7.69e-04 2.860 9.06e-05 3.600 1.55e-05 4.262 2.91e-06 5.103

7.81e-03 3.53e-03 1.952 1.01e-04 2.937 6.45e-06 3.819 5.86e-07 4.737 5.52e-08 5.733

3.91e-03 9.00e-04 1.976 1.27e-05 2.994 4.24e-07 3.936 1.96e-08 4.907 9.41e-10 5.885

1.95e-03 2.27e-04 1.979 1.59e-06 2.990 2.71e-08 3.954 6.31e-10 4.943 1.52e-11 5.927

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 1.04e-01 3.08e-02 9.07e-03 3.40e-03 1.36e-03

3.12e-02 2.91e-02 1.837 7.68e-03 1.999 1.88e-03 2.265 4.20e-04 3.013 1.39e-04 3.284

1.56e-02 7.80e-03 1.898 1.78e-03 2.106 2.60e-04 2.855 3.57e-05 3.556 7.19e-06 4.268

7.81e-03 2.08e-03 1.907 3.53e-04 2.343 2.81e-05 3.215 2.39e-06 3.904 2.20e-07 5.041

3.91e-03 5.39e-04 1.955 6.15e-05 2.523 2.46e-06 3.519 1.27e-07 4.248 5.91e-09 5.227

1.95e-03 1.37e-04 1.972 9.97e-06 2.617 1.88e-07 3.701 6.38e-09 4.295 1.50e-10 5.275

Reconstructive potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 1.94e-01 3.82e-02 1.01e-02 3.90e-03 1.70e-03

3.12e-02 5.37e-02 1.850 5.71e-03 2.737 1.10e-03 3.189 2.98e-04 3.702 1.00e-04 4.075

1.56e-02 1.41e-02 1.926 7.83e-04 2.868 9.08e-05 3.601 1.55e-05 4.262 2.91e-06 5.103

7.81e-03 3.65e-03 1.956 1.02e-04 2.942 6.46e-06 3.820 5.86e-07 4.737 5.52e-08 5.733

3.91e-03 9.30e-04 1.977 1.29e-05 2.997 4.24e-07 3.937 1.96e-08 4.907 9.41e-10 5.885

1.95e-03 2.35e-04 1.980 1.60e-06 2.992 2.71e-08 3.954 6.31e-10 4.943 1.52e-11 5.927
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Table 3.3: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4} (Example 1 - Hexagonal meshes)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.79e-01 3.14e-02 7.13e-03 2.88e-03 1.19e-03

2.59e-02 4.73e-02 1.920 4.92e-03 2.675 8.04e-04 3.148 2.26e-04 3.669 6.94e-05 4.096

1.29e-02 1.23e-02 1.939 6.78e-04 2.844 6.67e-05 3.572 1.11e-05 4.329 1.92e-06 5.151

6.47e-03 3.15e-03 1.968 8.98e-05 2.930 4.67e-06 3.854 3.97e-07 4.824 3.75e-08 5.699

3.24e-03 8.06e-04 1.973 1.15e-05 2.969 3.02e-07 3.959 1.31e-08 4.927 6.22e-10 5.927

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.96e-01 2.05e-02 6.27e-03 2.53e-03 1.34e-03

2.59e-02 7.63e-02 1.361 4.83e-03 2.082 1.18e-03 2.412 3.10e-04 3.027 1.18e-04 3.499

1.29e-02 2.87e-02 1.404 1.11e-03 2.114 1.83e-04 2.676 3.15e-05 3.280 5.72e-06 4.346

6.47e-03 1.08e-02 1.416 2.07e-04 2.428 2.53e-05 2.865 2.66e-06 3.584 2.32e-07 4.646

3.24e-03 3.99e-03 1.438 3.28e-05 2.666 3.09e-06 3.039 1.94e-07 3.785 8.22e-09 4.828

Reconstructive potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.96e-01 3.19e-02 7.17e-03 2.88e-03 1.19e-03

2.59e-02 5.04e-02 1.960 4.97e-03 2.682 8.06e-04 3.153 2.26e-04 3.670 6.95e-05 4.097

1.29e-02 1.28e-02 1.962 6.83e-04 2.847 6.67e-05 3.575 1.11e-05 4.329 1.92e-06 5.151

6.47e-03 3.27e-03 1.981 9.03e-05 2.932 4.67e-06 3.855 3.97e-07 4.824 3.75e-08 5.699

3.24e-03 8.31e-04 1.981 1.16e-05 2.970 3.02e-07 3.959 1.31e-08 4.927 6.22e-10 5.927

114



(a) Fractured (b) Hexagonal

Figure 3.2: Rates of convergence of flux error vs. h (Example 1)

(a) Fracture (b) Hexagonal

Figure 3.3: Rates of convergence of reconstructive potential errors (Example 1)

3.8.2 Example 2

Here, we solve the HHO discrete nonlinear scheme (3.84), corresponding to the

nonlinear problem (3.81). We take Ω := (0, 1)2 as the domain, and the nonlinear

coefficient a(·, ζ) :=
(
1 + exp(−|ζ|2)

)
ζ, for all ζ ∈ R2. We choose the data f and

g so that the solution u is the smooth function given by u(x, y) := exp(x + π y).

The family of meshes considered for this example, corresponds to a (nonconforming)

graduated rectangular meshes (cf. Figure 3.16). Figure 3.4 shows the well behavior

of the potential, flux and reconstructive potential errors, measure in the L2−norm,

with respect to the nonhomogeneous. Table 3.4 contains their respective histories
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of convergence, which are in agreement with Theorems 3.6.1, 3.6.2 and 3.6.3. We

point out that for k = 4, round-off errors are probably affecting the flux error in the

last refinement iteration mesh. On the other hand, the apparent super-convergence

phenomenon for the flux error (for k ∈ {0, 1, 2}) meshes, could be linked to the fact

that the mesh quality improves when refining.

(a) Potential error vs. h (b) Flux error vs. h

(c) Reconstructive potential error vs. h

Figure 3.4: Rates of convergence of potential, flux and reconstructive potential errors

(Example 2)
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Table 3.4: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4} (Example 2 - Graduated meshes)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 1.74e-01 1.84e-02 1.42e-03 8.61e-05 4.33e-06

1.25e-01 4.74e-02 1.878 2.48e-03 2.895 9.37e-05 3.921 2.81e-06 4.940 7.05e-08 5.939

6.25e-02 1.22e-02 1.953 3.19e-04 2.959 5.97e-06 3.973 8.86e-08 4.985 1.11e-09 5.984

3.12e-02 3.10e-03 1.979 4.03e-05 2.975 3.76e-07 3.980 2.78e-09 4.984 1.75e-11 5.982

1.56e-02 7.77e-04 1.995 5.07e-06 2.992 2.36e-08 3.995 8.69e-11 4.999 2.72e-13 6.004

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 1.23e-01 1.18e-02 5.38e-04 3.92e-05 2.20e-06

1.25e-01 4.75e-02 1.372 2.84e-03 2.054 5.88e-05 3.192 2.78e-06 3.818 7.69e-08 4.835

6.25e-02 1.58e-02 1.592 5.92e-04 2.263 5.86e-06 3.327 1.85e-07 3.910 2.53e-09 4.927

3.12e-02 4.84e-03 1.700 1.15e-04 2.360 5.57e-07 3.389 1.19e-08 3.945 8.09e-11 4.955

1.56e-02 1.41e-03 1.778 2.13e-05 2.427 5.12e-08 3.443 7.58e-10 3.977 3.47e-12 4.543

Reconstructive Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.50e-01 1.79e-01 1.86e-02 1.43e-03 8.64e-05 4.33e-06

1.25e-01 4.82e-02 1.889 2.50e-03 2.896 9.41e-05 3.922 2.81e-06 4.940 7.07e-08 5.939

6.25e-02 1.24e-02 1.959 3.21e-04 2.960 6.00e-06 3.973 8.89e-08 4.985 1.12e-09 5.984

3.12e-02 3.13e-03 1.982 4.06e-05 2.976 3.78e-07 3.980 2.79e-09 4.984 1.75e-11 5.982

1.56e-02 7.85e-04 1.996 5.10e-06 2.992 2.37e-08 3.995 8.71e-11 4.999 2.74e-13 5.998

3.8.3 Example 3

Now, we consider a nonhomogeneous Dirichlet nonlinear problem, defined in the

convex domain Ω = (−1, 1)2. The nonlinear coefficient is setting as a(·, ζ) :=
(
2 +
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1
1+|ζ|

)
ζ, for all ζ ∈ R2, and the exact solution is given by u(x, y) = cos

(
π
2
y
)

+

χ(x)x3.5, where χ(x) denotes the characteristic function on [0, 1] with respect to

x. The HHO approximations are computed considering a family of uniform refined

simplicial meshes, that we have called Simplicial-III (cf. Figure 3.22). We remark

that u ∈ H4(Ω) but does not belong to H4+ε(Ω), for all ε > 0. We report the

histories of convergence of the potential, flux and reconstructive potential errors,

with respect to the nonhomogeneous, in Table 3.5. The results are in agreement

with the corresponding versions of Theorems 3.6.1, 3.6.2 and 3.6.3, since the solution

u has a limited regularity. This is the reason why we observe the optimal rates of

convergence only for k ∈ {0, 1, 2}. In Figure 3.5 we display convergence results for

the refined triangulations and polynomial degrees up to 4.

(a) Potential error vs. h (b) Flux error vs. h

(c) Reconstructive potential error vs. h

Figure 3.5: Rates of convergence of potential, flux and reconstructive potential errors

(Example 3)
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Table 3.5: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4} (Example 3 - Simplicial-III meshes)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

9.23e-02 5.27e-01 1.17e-01 5.74e-03 1.06e-03 4.29e-04

5.18e-02 1.39e-01 2.302 1.46e-02 3.600 4.66e-04 4.346 7.85e-05 4.512 1.44e-05 5.881

2.59e-02 3.52e-02 1.985 1.83e-03 2.997 3.54e-05 3.720 3.39e-06 4.531 8.51e-07 4.077

1.29e-02 8.82e-03 1.985 2.29e-04 2.982 2.42e-06 3.848 1.99e-07 4.067 4.52e-08 4.211

6.47e-03 2.21e-03 2.008 2.86e-05 3.013 1.62e-07 3.915 1.29e-08 3.965 3.60e-09 3.667

3.24e-03 5.52e-04 2.004 3.58e-06 3.007 1.10e-08 3.897 9.54e-10 3.768 2.65e-10 3.774

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

9.23e-02 1.90e-01 1.76e-02 1.20e-03 4.90e-04 9.81e-05

5.18e-02 1.09e-01 0.953 4.98e-03 2.187 2.32e-04 2.845 4.04e-05 4.321 1.50e-05 3.246

2.59e-02 5.73e-02 0.934 1.27e-03 1.967 2.95e-05 2.973 4.55e-06 3.149 8.28e-07 4.183

1.29e-02 2.91e-02 0.971 3.22e-04 1.973 4.17e-06 2.805 3.29e-07 3.768 7.52e-08 3.441

6.47e-03 1.46e-02 0.997 8.09e-05 2.001 5.44e-07 2.952 3.69e-08 3.171 1.04e-08 2.873

3.24e-03 7.33e-03 1.000 2.03e-05 2.000 7.08e-08 2.950 4.85e-09 2.933 1.45e-09 2.844

Reconstructive potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

9.23e-02 5.35e-01 1.17e-01 5.77e-03 1.06e-03 4.29e-04

5.18e-02 1.42e-01 2.301 1.47e-02 3.600 4.68e-04 4.348 7.85e-05 4.513 1.44e-05 5.881

2.59e-02 3.58e-02 1.984 1.84e-03 2.997 3.55e-05 3.721 3.40e-06 4.531 8.51e-07 4.077

1.29e-02 8.97e-03 1.985 2.30e-04 2.982 2.43e-06 3.848 1.99e-07 4.067 4.52e-08 4.211

6.47e-03 2.24e-03 2.008 2.87e-05 3.013 1.63e-07 3.915 1.29e-08 3.965 3.60e-09 3.667

3.24e-03 5.61e-04 2.004 3.59e-06 3.007 1.10e-08 3.897 9.55e-10 3.769 2.65e-10 3.774
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3.8.4 Example 4

Here, we consider the same problem as in Example 3.8.3, but defined in the L-shaped

domain Ω = (−1, 1)2/[0, 1]× [−1, 0], which is clearly nonconvex. We choose a family

of uniform refined simplicial meshes (named Simplicial-II) (cf. Figure 3.21), to

establish the HHO formulation. In Figure 3.6 we display convergence results for

the refined triangulations and polynomial degrees up to 4. Despite the nonconvexity

of the domain, which could not help to ensure the additional regularity require for

the L2-error estimate of the potential as well as of the reconstructive potential, the

obtained results behave similarly to the ones provided in Example (3.8.3) (in a convex

domain), and are still in agreement with Theorems 3.6.1, 3.6.2 and 3.6.3.

(a) Potential error vs. h (b) Flux error vs. h

(c) Reconstructive potential error vs. h

Figure 3.6: Rates of convergence of potential, flux and reconstructive potential errors

(Example 4)
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Table 3.6: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4} (Example 4 - Simplicial-II meshes)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 4.91e-01 1.05e-01 5.05e-03 9.89e-04 3.96e-04

5.18e-02 1.29e-01 1.624 1.32e-02 2.520 4.19e-04 3.023 7.32e-05 3.163 1.33e-05 4.123

2.59e-02 3.26e-02 1.985 1.66e-03 2.994 3.22e-05 3.701 3.17e-06 4.530 7.41e-07 4.164

1.29e-02 8.17e-03 1.985 2.08e-04 2.981 2.21e-06 3.846 1.76e-07 4.143 3.89e-08 4.227

6.47e-03 2.04e-03 2.008 2.60e-05 3.013 1.47e-07 3.922 1.12e-08 3.996 3.06e-09 3.683

3.24e-03 5.11e-04 2.004 3.25e-06 3.006 9.87e-09 3.910 8.05e-10 3.806 2.27e-10 3.766

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 1.12e-01 1.59e-02 1.01e-03 4.06e-04 8.74e-05

5.18e-02 9.14e-02 0.244 4.60e-03 1.505 2.05e-04 1.936 3.57e-05 2.955 1.27e-05 2.343

2.59e-02 5.11e-02 0.838 1.19e-03 1.957 2.66e-05 2.942 3.95e-06 3.176 7.34e-07 4.114

1.29e-02 2.65e-02 0.942 3.00e-04 1.969 3.77e-06 2.804 2.87e-07 3.761 6.52e-08 3.472

6.47e-03 1.34e-02 0.987 7.56e-05 1.999 4.93e-07 2.949 3.20e-08 3.176 9.05e-09 2.863

3.24e-03 6.74e-03 0.997 1.90e-05 2.000 6.40e-08 2.951 4.20e-09 2.938 1.27e-09 2.845

Reconstructive potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 4.96e-01 1.06e-01 5.07e-03 9.90e-04 3.96e-04

5.18e-02 1.31e-01 1.620 1.33e-02 2.520 4.20e-04 3.025 7.32e-05 3.164 1.33e-05 4.123

2.59e-02 3.31e-02 1.984 1.67e-03 2.994 3.23e-05 3.702 3.17e-06 4.530 7.41e-07 4.164

1.29e-02 8.29e-03 1.984 2.08e-04 2.981 2.21e-06 3.846 1.76e-07 4.143 3.89e-08 4.227

6.47e-03 2.08e-03 2.008 2.61e-05 3.013 1.48e-07 3.922 1.12e-08 3.996 3.07e-09 3.683

3.24e-03 5.19e-04 2.004 3.26e-06 3.006 9.89e-09 3.910 8.05e-10 3.806 2.27e-10 3.766
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3.8.5 Example 5

We consider again the L-shaped domain Ω := (−1,−1)2\[0, 1] × [−1, 0], with Γ :=

∂Ω, and another nonlinear coefficient, given by a(·, ζ) :=
(

2 + 1
1+|ζ|

)
ζ, for all ζ ∈ R2.

We choose the data f and g, so that the exact solution u is the nonsmooth function

given (in polar coordinates) by u(r, θ) = r2/3 sin(2θ/3).

(a) Potential error vs. h (b) Flux error vs. h

(c) Reconstructive potential error vs. h

Figure 3.7: Rates of convergence of potential, flux and reconstructive potential errors

(Example 5)

We point out that u ∈ H1+ 2
3
−s(Ω), for an arbitrary small number s > 0. We test

again over a family of uniform refined simplicial meshes (cf. Figure 3.21). In Figure

3.7 we display the rates of convergence corresponding to the potential, flux and

reconstructive potential errors, vs. h, considering polynomials degrees up to 4. The

histories of convergence of these errors, are reported in Table 3.7. We observe that
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the potential and reconstructive potential errors go to zero at a rate that behaves as

O(h4/3), while the flux error decreases to zero as O(h2/3).

Table 3.7: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4} (Example 5 - Simplicial II meshes)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 3.89e-02 8.98e-03 4.41e-03 2.60e-03 1.79e-03

5.18e-02 1.86e-02 0.894 4.02e-03 0.977 1.76e-03 1.112 9.80e-04 1.183 6.33e-04 1.265

2.59e-02 8.30e-03 1.166 1.68e-03 1.261 7.05e-04 1.323 3.78e-04 1.375 2.33e-04 1.441

1.29e-02 3.54e-03 1.222 6.83e-04 1.288 2.81e-04 1.318 1.48e-04 1.347 8.87e-05 1.386

6.47e-03 1.47e-03 1.271 2.75e-04 1.319 1.12e-04 1.334 5.82e-05 1.350 3.45e-05 1.370

3.24e-03 6.03e-04 1.291 1.10e-04 1.326 4.45e-05 1.334 2.30e-05 1.342 1.35e-05 1.352

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 1.78e-01 7.89e-02 4.91e-02 3.49e-02 2.63e-02

5.18e-02 1.21e-01 0.474 5.02e-02 0.551 3.10e-02 0.557 2.20e-02 0.559 1.66e-02 0.559

2.59e-02 7.93e-02 0.607 3.17e-02 0.661 1.96e-02 0.663 1.39e-02 0.664 1.05e-02 0.664

1.29e-02 5.12e-02 0.628 2.00e-02 0.659 1.24e-02 0.659 8.78e-03 0.660 6.63e-03 0.660

6.47e-03 3.27e-02 0.648 1.27e-02 0.665 7.82e-03 0.666 5.54e-03 0.667 4.18e-03 0.667

3.24e-03 2.08e-02 0.654 8.00e-03 0.664 4.94e-03 0.665 3.50e-03 0.666 2.64e-03 0.665

Reconstructive potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.18e-01 6.71e-02 1.39e-02 5.77e-03 3.12e-03 2.04e-03

5.18e-02 2.62e-02 1.142 5.24e-03 1.180 2.12e-03 1.216 1.12e-03 1.242 7.04e-04 1.294

2.59e-02 1.03e-02 1.352 1.99e-03 1.401 7.96e-04 1.412 4.15e-04 1.434 2.53e-04 1.479

1.29e-02 4.04e-03 1.337 7.61e-04 1.376 3.05e-04 1.379 1.57e-04 1.392 9.39e-05 1.420

6.47e-03 1.60e-03 1.344 2.95e-04 1.375 1.18e-04 1.375 6.06e-05 1.382 3.58e-05 1.397

3.24e-03 6.35e-04 1.336 1.15e-04 1.362 4.60e-05 1.361 2.36e-05 1.363 1.39e-05 1.371
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3.8.6 Example 6

Here, we consider the nonlinear problem with mixed boundary conditions (3.85),

defined in the domain Ω := (0, 1)2, with ΓN = {1} × [0, 1] and ΓD := Γ\ΓN . The

chosen nonlinear coefficient is given by a(·, ζ) :=
(
1 + exp(−|ζ|2)

)
ζ, for all ζ ∈ R2,

while the data f , gD and gN are chosen such that the solution u is given again by

u(x, y) = sin(πx) sin(πy). We remark that with this choice, gD = 0. We solve the

HHO nonlinear scheme 3.88, considering two families of polytopal meshes. The first

one is a family of Cartesian meshes (cf. Figure 3.15), and the second one is a family

of Hexagonal-dominant meshes (cf. Figure 3.18). Tables 3.8 and 3.9 report the

histories of convergence of the potential, flux and reconstructive potential errors, for

the family of Cartesian and the Hexagonal meshes, respectively. We notice certain

super-convergence phenomenon for the flux error on the Cartesian (for k ∈ {0, 1, 2})

and Hexagonal (for k ∈ {0, 1}) meshes, which could be related to the fact that

the mesh quality improves when refining. The numerical results provided by this

example support the conjecture that the present approach might behave quite well

even in a case not fully covered by the theoretical results.

(a) Cartesian (b) Hexagonal

Figure 3.8: Rates of convergence of potential error vs. h (Example 6)
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Table 3.8: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4} (Example 6 - Cartesian meshes)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 2.07e-01 3.60e-02 1.48e-02 7.43e-03 2.88e-03

3.12e-02 5.06e-02 2.029 7.17e-03 2.321 1.93e-03 2.933 3.74e-04 4.303 2.07e-04 3.786

1.56e-02 1.28e-02 1.985 9.43e-04 2.927 1.45e-04 3.731 2.34e-05 3.996 3.45e-06 5.909

7.81e-03 3.21e-03 1.995 1.20e-04 2.982 9.60e-06 3.924 7.85e-07 4.908 5.87e-08 5.889

3.91e-03 8.04e-04 2.002 1.49e-05 3.014 6.05e-07 3.996 2.49e-08 4.986 9.36e-10 5.982

1.95e-03 2.01e-04 1.992 1.86e-06 2.994 3.78e-08 3.984 7.82e-10 4.976 1.47e-11 5.970

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 9.31e-02 3.61e-02 1.14e-02 6.26e-03 2.88e-03

3.12e-02 3.76e-02 1.306 9.57e-03 1.910 3.08e-03 1.882 9.44e-04 2.723 2.19e-04 3.712

1.56e-02 1.12e-02 1.749 2.47e-03 1.956 4.10e-04 2.911 5.91e-05 3.999 8.69e-06 4.653

7.81e-03 2.97e-03 1.916 4.91e-04 2.332 4.16e-05 3.309 3.39e-06 4.130 2.48e-07 5.143

3.91e-03 7.60e-04 1.970 7.68e-05 2.682 3.28e-06 3.670 1.76e-07 4.279 6.40e-09 5.284

1.95e-03 1.91e-04 1.984 1.04e-05 2.872 2.24e-07 3.857 9.53e-09 4.187 1.75e-10 5.173

Reconstructive potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.25e-02 2.19e-01 3.76e-02 1.48e-02 7.44e-03 2.88e-03

3.12e-02 5.32e-02 2.035 7.30e-03 2.360 1.93e-03 2.936 3.75e-04 4.301 2.08e-04 3.787

1.56e-02 1.34e-02 1.993 9.58e-04 2.930 1.45e-04 3.731 2.34e-05 3.999 3.45e-06 5.909

7.81e-03 3.35e-03 1.999 1.21e-04 2.986 9.61e-06 3.925 7.85e-07 4.908 5.87e-08 5.889

3.91e-03 8.38e-04 2.003 1.50e-05 3.017 6.05e-07 3.997 2.49e-08 4.986 9.36e-10 5.982

1.95e-03 2.09e-04 1.993 1.87e-06 2.995 3.78e-08 3.984 7.82e-10 4.976 1.47e-11 5.970
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(a) Cartesian (b) Hexagonal

Figure 3.9: Rates of convergence of flux error vs. h (Example 6)

(a) Cartesian (b) Hexagonal

Figure 3.10: Rates of convergence of reconstructive potential errors (Example 6)

(a) Trapezoidal (b) Tilted

Figure 3.11: Rates of convergence of potential error vs. h (Example 7)
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Table 3.9: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4} (Example 6 - Hexagonal)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.55e-01 2.71e-02 8.64e-03 4.68e-03 1.92e-03

2.59e-02 4.05e-02 1.935 4.97e-03 2.446 1.12e-03 2.949 3.39e-04 3.786 9.48e-05 4.340

1.29e-02 9.55e-03 2.073 7.01e-04 2.811 9.64e-05 3.517 1.43e-05 4.540 2.05e-06 5.502

6.47e-03 2.34e-03 2.041 9.53e-05 2.893 6.55e-06 3.897 5.00e-07 4.863 3.57e-08 5.870

3.24e-03 5.84e-04 2.005 1.23e-05 2.958 4.20e-07 3.971 1.62e-08 4.962 5.76e-10 5.966

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.94e-01 2.34e-02 1.07e-02 5.15e-03 2.53e-03

2.59e-02 7.06e-02 1.460 6.72e-03 1.800 2.09e-03 2.360 5.84e-04 3.140 1.82e-04 3.793

1.29e-02 2.63e-02 1.415 1.75e-03 1.931 3.39e-04 2.607 5.49e-05 3.392 8.31e-06 4.430

6.47e-03 9.98e-03 1.406 3.17e-04 2.474 4.48e-05 2.932 4.47e-06 3.635 3.13e-07 4.751

3.24e-03 3.71e-03 1.431 4.80e-05 2.730 5.43e-06 3.053 3.08e-07 3.867 1.06e-08 4.891

Reconstructive potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

5.18e-02 1.74e-01 2.77e-02 8.74e-03 4.69e-03 1.92e-03

2.59e-02 4.38e-02 1.989 5.03e-03 2.462 1.12e-03 2.960 3.40e-04 3.787 9.49e-05 4.341

1.29e-02 1.02e-02 2.085 7.08e-04 2.814 9.66e-05 3.521 1.44e-05 4.540 2.05e-06 5.503

6.47e-03 2.49e-03 2.051 9.59e-05 2.898 6.56e-06 3.898 5.00e-07 4.864 3.57e-08 5.870

3.24e-03 6.18e-04 2.014 1.24e-05 2.960 4.20e-07 3.972 1.62e-08 4.963 5.76e-10 5.966

3.8.7 Example 7

This example, as the previous one, is also not covered by the current analysis.

We are interested in solving the nonhomogeneous Neumann nonlinear problem
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(3.90), with Ω := (0, 1)2, and a(·, ζ) :=
(

1 + 1
1+|ζ|2

)
ζ, for all ζ ∈ R2. The

data f and g are chosen so that the solution u is given by the smooth function

u(x, y) = exp(x + πy) − (exp(1 + π) − exp(π) − exp(1) + 1)/π. Following what we

discussed in Subsection 3.7.3, we proceed to solve the nonlinear HHO scheme (3.94),

considering one family of Trapezoidal meshes (cf. Figure 3.17), and another of Tilted

hexagonal-dominant meshes (cf. Figure 3.19). Since the HHO discrete space includes

the zero mean value condition of its elements, and knowing that it is not simple to

find a basis of such space, we circumvent this searching by imposing this restriction

through a Lagrange multiplier. We have applied this strategy in [39], where we have

solved the Poisson problem with Neumann boundary condition applying the HHO

method. The numerical results are displayed in Figure 3.12, while the histories of

convergence of the potential, flux and reconstructive potential errors, with respect

to the nonhomogeneous, are reported in Tables 3.10 (for the family of Trapezoidal

meshes), and 3.11 (for the family of Tilted meshes). They give numerical evidence

that the current a priori error analysis could be extended to this kind of boundary

conditions.

(a) Trapezoidal (b) Tilted

Figure 3.12: Rates of convergence of flux error vs. h (Example 7)
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Table 3.10: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4} (Example 7 - Trapezoidal meshes)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 1.32e-01 2.81e-02 2.48e-03 1.84e-04 1.16e-05

3.42e-02 4.12e-02 1.907 4.20e-03 3.109 1.95e-04 4.156 7.46e-06 5.244 2.39e-07 6.347

1.72e-02 1.13e-02 1.885 5.68e-04 2.914 1.34e-05 3.896 2.60e-07 4.882 4.18e-09 5.890

8.59e-03 2.93e-03 1.943 7.33e-05 2.948 8.74e-07 3.935 8.44e-09 4.938 6.84e-11 5.923

4.30e-03 7.44e-04 1.979 9.30e-06 2.984 6.33e-08 3.795 2.69e-10 4.980 1.09e-12 5.979

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 7.61e-02 1.17e-02 1.13e-03 7.94e-05 4.78e-06

3.42e-02 3.04e-02 1.505 2.94e-03 2.265 1.57e-04 3.229 5.92e-06 4.250 1.87e-07 5.305

1.72e-02 1.34e-02 1.191 7.32e-04 2.025 2.04e-05 2.968 3.98e-07 3.928 6.41e-09 4.907

8.59e-03 6.45e-03 1.051 1.84e-04 1.988 2.59e-06 2.968 2.57e-08 3.946 2.09e-10 4.933

4.30e-03 3.21e-03 1.009 4.63e-05 1.992 3.27e-07 2.991 1.63e-09 3.984 6.66e-12 4.979

Potential reconstructive

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 1.44e-01 2.84e-02 2.49e-03 1.85e-04 1.16e-05

3.42e-02 4.36e-02 1.954 4.25e-03 3.108 1.97e-04 4.156 7.50e-06 5.243 2.40e-07 6.347

1.72e-02 1.19e-02 1.895 5.74e-04 2.913 1.35e-05 3.896 2.62e-07 4.882 4.19e-09 5.890

8.59e-03 3.07e-03 1.945 7.42e-05 2.947 8.81e-07 3.934 8.44e-09 4.946 6.87e-11 5.923

4.30e-03 7.81e-04 1.980 9.42e-06 2.983 6.37e-08 3.798 2.71e-10 4.972 1.10e-12 5.980
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Table 3.11: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4} (Example 7 - Tilted meshes)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 1.34e-01 1.80e-02 1.21e-03 6.35e-05 1.16e-05

3.42e-02 3.32e-02 2.287 2.46e-03 3.259 8.48e-05 4.357 2.23e-06 5.480 2.39e-07 6.347

1.72e-02 8.52e-03 1.979 3.26e-04 2.939 5.72e-06 3.924 7.57e-08 4.924 4.18e-09 5.890

8.59e-03 2.18e-03 1.964 4.22e-05 2.947 3.73e-07 3.931 2.48e-09 4.925 6.84e-11 5.923

4.30e-03 5.52e-04 1.984 5.36e-06 2.980 2.39e-08 3.974 7.93e-11 4.973 1.09e-12 5.979

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 1.03e-01 9.57e-03 7.12e-04 3.50e-05 4.78e-06

3.42e-02 4.56e-02 1.327 1.86e-03 2.681 8.55e-05 3.470 2.29e-06 4.460 1.87e-07 5.305

1.72e-02 1.85e-02 1.309 3.48e-04 2.442 1.00e-05 3.115 1.49e-07 3.977 6.41e-09 4.907

8.59e-03 7.13e-03 1.377 6.35e-05 2.449 1.19e-06 3.071 9.49e-09 3.966 2.09e-10 4.933

4.30e-03 2.65e-03 1.428 1.14e-05 2.478 1.44e-07 3.057 5.98e-10 3.995 6.66e-12 4.979

Potential reconstructive

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.30e-02 1.50e-01 1.82e-02 1.22e-03 6.37e-05 1.16e-05

3.42e-02 3.67e-02 2.308 2.48e-03 3.265 8.52e-05 4.358 2.24e-06 5.481 2.40e-07 6.347

1.72e-02 9.16e-03 2.018 3.28e-04 2.941 5.74e-06 3.925 7.59e-08 4.924 4.19e-09 5.890

8.59e-03 2.29e-03 1.995 4.24e-05 2.948 3.75e-07 3.932 2.48e-09 4.925 6.87e-11 5.923

4.30e-03 5.74e-04 2.003 5.39e-06 2.980 2.39e-08 3.974 7.95e-11 4.973 1.10e-12 5.980
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(a) Trapezoidal (b) Tilted

Figure 3.13: Rates of convergence of reconstructive potential error vs. h (Ex 7)

3.8.8 Families of polytopal meshes

(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 3.14: Family of Simplicial-I meshes in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

(e) mesh 5

Figure 3.15: Family of Cartesian meshes in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 3.16: Family of Graduated meshes (with hanging nodes) in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 3.17: Family of Trapezoidal meshes in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 3.18: Family of Hexagonal meshes in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 3.19: Family of Tilted Hexagonal meshes in a square domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

(e) mesh 5

Figure 3.20: Family of Fractured meshes in a square domain.
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

(e) mesh 5

Figure 3.21: Family of Simplicial-II meshes in L-shaped domain
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 3.22: Family of Simplicial-III meshes in Square domain

Conclusions

In this paper, we have developed a complete a priori error analysis for a class of

elliptic nonlinear problems, applying the HHO method. It is well known that there

are previous works for nonlinear problems in the context of HHO methods, as Leray

- Lions equations [64, 65], nonlinear elasticity [27], nonlinear Signorini boundary

conditions [45], quasi-Newtonian Stokes problem [148], and nonlinear poroelasticity

[29, 28]. However, the contibution of this work relies on Theorems 3.6.2, and 3.6.3,

which establish the convergence of the L2-projection of the potential error (||πkhu−

uh||Ω) and the super-convergence of the reconstructive potential error (||pk+1
h uh −
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u||Ω), respectively. Up to author’s knowledge, these errors estimates have not been

proved before. It is important to remark that according to what has been discussed

in [64, Section 4.1] for nonlinear problems, we need to consider a variant of the

gradient reconstruction operator Gk
T . Otherwise, the rates of convergence will not

be the expected. We provide a brief discussion on this in the Appendix 3.9, which

includes a numerical comparison.

We have presented seven computational examples, considering three different

nonlinear coefficients that verify the Hypotheses (H.1)-(H.4), and several

admissible families of polytopal meshes, with or without hanging nodes (see Table

3.1). Numerical examples, provided in this paper, confirm our theoretical results,

even for other boundary conditions not covered by us in the present work. In

particular, Example 3.8.5, whose solution is nonsmooth, gives us the motivation

to develop an a posteriori error analysis for nonlinear elliptic problems. This could

be the subject of future work.

3.9 Appendix

Here, we compare the effect of using the standard Gradient reconstruction operator

given in [75] and the variant of the Gradient reconstruction operator (with extended

codomain, from ∇Pk+1
d (T ) to [Pkd(T )]d) introduced in [64], when solving nonlinear

elliptic problems with the HHO method. To clarify the difference, we solve the

nonlinear HHO scheme associated to the Example 3.8.1, with a family of Trapezoidal

meshes (cf. Figure 3.17), considering both kind of Gradient reconstruction operators.

In Figures 3.23, 3.24 and 3.25, we display the rates of convergence of the potential,

flux and reconstructive potential errors, with respect to the meshsize. The boxes on

the left hand side corresponds to the results obtained when using the Standard

gradient reconstruction operator, while the ones on the right hand side are the

respective to the Extended gradient reconstruction operator. They are also reported

in Tables 3.12 and 3.13. As expected, the numerical results associated to the

Extended gradient reconstruction operator are in agreement with our theoretical

results.
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On the other hand, we notice that using the Standard gradient reconstruction

operator, the rates of convergence of the potential and reconstructive potential

errors, for k = 0 and k = 1, are the expected ones. For greater values of k, we

observe a notorious loss in the rate of convergence. Respect to the flux error, we

only recover the optimal rate of convergence for k = 0 when using the Standard

gradient reconstruction operator. Indeed, for k = 0, both approaches have the same

optimal approximation properties, thank to ∇P1(T ) = [P0(T )]d.

(a) Standard (b) Extended

Figure 3.23: Rates of the Potential error vs. h (appendix example)

(a) Standard (b) Extended

Figure 3.24: Rates of the Flux error vs. h (appendix example)
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Table 3.12: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4}, using Standard gradient reconstruction operator

(appendix example)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 2.57e-01 5.37e-02 1.49e-02 5.09e-03 2.49e-03

3.91e-02 6.44e-02 2.001 7.96e-03 2.759 1.70e-03 3.143 3.92e-04 3.706 1.65e-04 3.926

1.95e-02 1.63e-02 1.973 1.09e-03 2.851 1.35e-04 3.638 4.21e-05 3.206 1.40e-05 3.547

9.77e-03 4.11e-03 1.995 1.38e-04 2.992 1.43e-05 3.250 7.48e-06 2.499 2.36e-06 2.574

4.88e-03 1.03e-03 1.994 1.75e-05 2.982 2.31e-06 2.625 1.81e-06 2.048 4.96e-07 2.246

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 1.05e-01 6.83e-02 2.25e-02 1.03e-02 1.42e-02

3.91e-02 4.52e-02 1.223 1.66e-02 2.046 5.84e-03 1.951 4.85e-03 1.087 3.77e-03 1.916

1.95e-02 2.21e-02 1.031 4.33e-03 1.928 2.24e-03 1.378 2.66e-03 0.862 9.73e-04 1.947

9.77e-03 1.10e-02 1.004 1.23e-03 1.826 9.95e-04 1.173 1.36e-03 0.975 4.31e-04 1.178

4.88e-03 5.56e-03 0.986 4.49e-04 1.450 4.81e-04 1.049 6.90e-04 0.973 2.05e-04 1.073

Reconstructive potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 2.74e-01 5.53e-02 1.50e-02 5.10e-03 2.50e-03

3.91e-02 6.80e-02 2.013 8.12e-03 2.774 1.70e-03 3.146 3.96e-04 3.691 1.68e-04 3.906

1.95e-02 1.71e-02 1.980 1.11e-03 2.856 1.38e-04 3.613 4.49e-05 3.131 1.45e-05 3.523

9.77e-03 4.31e-03 1.998 1.41e-04 2.990 1.56e-05 3.152 8.48e-06 2.412 2.46e-06 2.565

4.88e-03 1.08e-03 1.996 1.79e-05 2.971 2.78e-06 2.485 2.07e-06 2.030 5.21e-07 2.235
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Table 3.13: Histories of convergence of potential, flux, and reconstructive potential

errors, considering k ∈ {0, 1, 2, 3, 4}, using Extended gradient reconstruction

operator (appendix example)

Potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 2.57e-01 5.33e-02 1.44e-02 4.73e-03 2.32e-03

3.91e-02 6.44e-02 2.001 7.93e-03 2.754 1.66e-03 3.126 3.44e-04 3.788 1.48e-04 3.982

1.95e-02 1.63e-02 1.973 1.09e-03 2.852 1.26e-04 3.698 2.68e-05 3.670 6.25e-06 4.546

9.77e-03 4.11e-03 1.995 1.38e-04 2.991 9.50e-06 3.743 1.08e-06 4.645 1.03e-07 5.937

4.88e-03 1.03e-03 1.994 1.73e-05 2.993 6.22e-07 3.928 3.36e-08 5.000 1.93e-09 5.728

Flux

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 1.38e-01 3.80e-02 1.01e-02 3.85e-03 1.55e-03

3.91e-02 6.10e-02 1.184 9.81e-03 1.958 2.28e-03 2.156 6.33e-04 2.611 2.05e-04 2.923

1.95e-02 2.83e-02 1.103 2.46e-03 1.990 3.43e-04 2.723 5.76e-05 3.445 1.29e-05 3.976

9.77e-03 1.35e-02 1.073 5.85e-04 2.077 4.20e-05 3.036 4.13e-06 3.812 4.47e-07 4.866

4.88e-03 6.59e-03 1.032 1.40e-04 2.059 4.99e-06 3.069 2.58e-07 3.995 1.39e-08 5.005

Reconstructive potential

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

7.81e-02 2.74e-01 5.48e-02 1.45e-02 4.73e-03 2.32e-03

3.91e-02 6.80e-02 2.013 8.07e-03 2.769 1.66e-03 3.130 3.44e-04 3.788 1.48e-04 3.982

1.95e-02 1.71e-02 1.980 1.11e-03 2.859 1.27e-04 3.698 2.68e-05 3.671 6.25e-06 4.546

9.77e-03 4.31e-03 1.998 1.40e-04 2.993 9.52e-06 3.745 1.08e-06 4.646 1.03e-07 5.937

4.88e-03 1.08e-03 1.996 1.75e-05 2.994 6.23e-07 3.928 3.36e-08 5.000 1.93e-09 5.728
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(a) Standard (b) Extended

Figure 3.25: Rates of the Reconstructive potential error vs. h (appendix example)
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Chapter 4

A mixed HHO formulation for a

linear transmission elliptic

problem

In this chapter, we analyse a linear transmission elliptic problem in a bounded

domain, applying the already known Hybrid High Order (HHO) method. This

approach gives approximation of unknowns in the interior volume of each element

and on the faces of its boundary, in the following sense: obtaining approximations

of exact solution on the space of polynomials of total degree at most k on the

mesh elements and faces. Thus, we obtain a nonconforming discrete formulation,

which is well posed, and after a condensation process, we can reduced it to another

scheme defined on the skeleton induced by the mesh. This allows us to obtain

a more compact system, and reduce significantly the number of unknowns. We

point out that we need to introduce an auxiliary unknown in order to deal with

the nonhomogeneous transmission conditions, that will act as a Lagrange multiplier.

We prove that the method is optimally convergent in the energy norm, as well as in

the L2-norm for the potential, and a weighted L2-norm for the Lagrange multiplier,

for smooth enough solutions. Finally, we include some numerical experiments that

validate our theoretical results, even in situations not covered by the current analysis.
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4.1 Introduction

Transmission problems appear in many areas of engineering and science. They

can involve multiple distinct materials or fluids with different densities, diffusions,

conductivities, Youngs modulus, or Poisson ratio. For example, they appear in the

calculation of magnetic fields of electromagnetic devices [117, 118], in problems of

fluid mechanics and subsonic flow [90, 91, 32], in incompressible multiphase flows

[123], in models of electroporation [114] and electrohydrodynamic [121], and many

other fields.

There are two types of transmission problems, exterior and interior. The work

developed here corresponds to an interior one. In turn, interior transmission

problems fit into interface problems, which can be found in material properties

[141], modeling solid mechanics problems [131, 32], in fluid dynamics [87, 25], and

many other important phenomena in science and engineering.

On the other hand, the numerical solution of exterior problems usually combines

the Finite Element (FE) method with the Boundary Element (BE) method

(see, e.g. [15, 100, 34]). FE method was proposed, for interface problems, in

[131, 30, 48]. Also, it is possible to combine local discontinuous Galerkin (LDG)

method with BE method, which does not require any continuity condition across the

interelement boundaries, it is robust with respect to discontinuous coefficients, and

it allows the use of different polynomial degrees in each element (see [35, 36, 103, 37]).

Moreover, interface problems are divided into interface-fitted and unfitted mesh.

The former is built on body fitted mesh that does not allow the interface to cut

across any of the elements in the mesh, while the latter does not impose that

restriction. There exists several methods, such as immersed interface method

[126, 107], fitted FE method [30], unfitted FE method [115], embedded FE method

[79], multiscale finite element methods [49], extended finite element (XFE) method

[130, 131], fitted HDG method [114], unfitted HDG method [146, 80], for example.

Also, there are works considering a curve as interface. We can refer to the classical
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FE methods [12, 16], and HDG method [122, 145].
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Figure 4.1: An interface-fitted mesh (left), and an unfitted mesh (right).

Interface-fitted mesh is also known as body-fitted or interface conforming, i.e. the

meshes are tailored to fit the interface, (cf. left plot in Figure 4.1). Besides, the

jump conditions across the interface can be easily incorporated into a standard FE

formulation [30, 48]. There are sophisticated use of approximate interface-fitted

meshes [149] and the use of Virtual element methods on an interface-fitted mesh [47].

However, interface-unfitted mesh is more used in time dependent problems, where

the interface moves with time or during iteration (free-boundary), and when the

boundary or the internal interface is curved. This is caused since generating a body

fitted mesh of relatively high quality is challenging and computationally costly,

especially when complex and/or moving interfaces are involved. In this sense, it

may be advantageous to use the same mesh on the domain for different, nearby,

locations of the interface.

A well-known disadvantage for unfitted mesh approach, is the difficulty to capture

the complex geometry of the interface and to enforce jump conditions across the

interface accurately. The resulting linear system may not be always symmetric and

its conditioning has a strong dependence on how the interface cuts the mesh cells.
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Furthermore, a rigorous error analysis is difficult to perform.

In this work, we consider an interface-fitted mesh, since we handle with a polygonal

interface. In transmission problems, in general, it is identified/recognized an internal

domain, a transmission or internal boundary, and an external (annular) domain.

In the existing bibliography only Dirichlet and mixed conditions on the external

boundary are addressed. In this paper we consider pure nonhomogeneous Neumann

condition on the exterior boundary. This work is not addressed to nonmathching

transmision mesh, although it is possible to extend our study, following the analysis

in [116].

Now, we focus on the well known Hybrid High Order (HHO) method, introduced

in [75, 72], which has been applied to a great variety of problems, thanks to its

ability to handle physical parameters. We can mention, for example, linear diffusion

problems [75, 72], quasi-incompressible linear elasticity [70], nonlinear elasticity

problems in the small deformation regime [27], nonlinear Leray–Lions problems

[64, 65], Stokes problem [3], incompressible Navier-Stokes equations [26], and finite

deformations of hyperelastic materials [1], among other problems.

Its design relies on discrete unknowns that are broken polynomials on the mesh and

on its skeleton, from which two key ingredients are devised:

(i) Local reconstructions, that are performed by solving small, parallel problems

inside each element, and conceived so that their composition with the

natural interpolator of sufficiently smooth functions yields a projector on local

polynomial spaces (see Lemma 4.3.3).

(ii) Stabilisation terms that penalise residuals, and are defined at the element level,

so they ensure stability while preserving the approximation properties of the

reconstruction.

These ingredients are combined to formulate local contributions, which are then

assembled as in standard Finite Element methods. We mention several advantageous
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features. Management of polytopal meshes (with possibly hanging nodes), which

is an actual topic that is considered to deal with cracks and other kinds of

discontinuities induced by material defects [131]. Support arbitrary approximation

orders in any space dimension, and exhibits a reduced computational cost, thanks

to the compact stencil, along with the possibility to locally eliminate a large portion

of the unknowns (see Section 5 in [39]), is achieved. Then, we deal with a (linear)

system defined on the skeleton of the mesh.

In lowest-order version (k = 0), HHO method can be linked with the unified

framework Hybrid Mixed Mimetic (HMM) method [67]. In high-order, there is a link

of HHO approach with HDG method [59], a connection with High-Order mimetic

(HOM) [127], and with the nonconforming version of the Virtual Element (VE)

method [11]. In addition, we find a description of the relation between HHO and

VE methods in [125], with an analysis that differs from the standard VE method

described in [20].

We point out that a transmission problem with curved interface, has been studied

in [31], applying an unfitted finite element method (introduced in [115]), with the

philosophy of HHO method. However, we point-wise that this paper does not

include numerical experiments. In this work, we applied the standard HHO method

for a linear transmission problem with nonhomogeneous transmission conditions,

extending the application of the HHO approach described in [75]. We remark that

the analysis here is quite different to the presented in [31], since we introduce an

auxiliary unknown living on the transmission interface, that acts as a Lagrange

multiplier. As result, we derive a discrete mixed HHO formulation.

The rest of this paper is organized as follows. In Section 4.2, we introduce the

model problem and discuss its well-posedness, at continuous level. In Section 4.3,

we describe the main analysis tools, the Degrees of Freedom (DOFs) in the context

of HHO method, and the potential reconstruction operator, with its key properties.

In Section 4.4, we introduce the discrete problem and study its stability. In Section

4.5, we perform the a priori error analysis, first in the energy-norm, and then in the

L2-norm under additional elliptic regularity assumptions. In Section 4.6, we discuss
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the aspects of the computational implementation. Finally, in Section 4.7, we present

some numerical experiments, which are in agreement with our theoretical results.

4.2 Continuous settings

In the present chapter, we will work with two disjoint domains. Let Ω1 be a

bounded and simply connected domain in Rd, d ∈ {2, 3}, with Lipschitz-continuous

boundary Γ1 := ∂Ω1. Let Ω2 be the annular region bounded by Γ1 and a second

Lipschitz-continuous curve Γ2, that is strictly contained in R2−Ω1 (see Figure 4.2).

For any connected subset X ⊂ Ω with nonzero Lebesgue measure, the inner product

and norm of the Lebesgue space L2(X) are denoted by (·, ·)X and ||·||0,X , respectively.

Ω1

Ω2

Γ1

Γ2

Figure 4.2: Geometry of the problem

Next, we consider the following transmission interior model problem: Find u1 :

Ω1 → R and u2 : Ω2 → R such that

−∆u1 = f1 in Ω1 , (4.1a)

−∆u2 = f2 in Ω2 , (4.1b)

u1 − u2 = g on Γ1 , (4.1c)

∇u1 · n1 +∇u2 · n2 = g1 on Γ1 , (4.1d)

∇u2 · n2 = g2 on Γ2 , (4.1e)∫
Ω1

u1 +

∫
Ω2

u2 = 0 , (4.1f)
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where f1 ∈ L2(Ω1) and f2 ∈ L2(Ω2) are the forcing terms, g ∈ H1/2(Γ1) is the jump of

traces of solutions on Γ1, g1 ∈ H−1/2(Γ1) and g2 ∈ H−1/2(Γ2) are the jump of normal

component of fluxes on Γ1, and the normal component of u2 on Γ2, respectively. Here,

n1 represents the unit outward normal to the boundary of Ω1, while n2 denotes the

unit outward normal to the boundary of Ω2 given by ∂Ω2 := Γ1∪Γ2. Also we impose

the following compatibility condition∫
Ω1

f1 +

∫
Ω2

f2 + 〈g1, 1〉Γ1
+ 〈g2, 1〉Γ2

= 0 , (4.2)

for the well-posedness of problem (4.1).

The starting point of the HHO method relies on finding a primal-mixed variational

formulation of (4.1). We consider the equations −∆ui = fi in Ωi, i ∈ {1, 2}, and

after integrating by parts, we deduce that

(∇u1,∇v1)Ω1 − 〈∇u1 · n1, γ
−
0 (v1)〉Γ1 = (f1, v1)Ω1 , (4.3)

(∇u2,∇v2)Ω2 − 〈∇u2 · n2, γ
+
0 (v2)〉Γ1 − 〈∇u2 · n2, γ

+
0 (v2)〉Γ2 = (f2, v2)Ω2 , (4.4)

for all (v1, v2) ∈ H1(Ω1) × H1(Ω2), where 〈·, ·〉Γ1 denotes the duality pairing of

H−1/2(Γ1) and H1/2(Γ1) with respect to the L2(Γ1)-inner product, and analogously

for 〈·, ·〉Γ2 . In addition, γ−0 : H1(Ω1) → H1/2(∂Ω1) and γ+
0 : H1(Ω2) →

H1/2(∂Ω2) correspond to the trace operators on each subdomain. Then, using (4.1d),

introducing the auxiliary unknown ξ := ∇u1 · n1 ∈ H−1/2(Γ1), and taking into

account (4.1e), (4.3), and (4.4), we obtain

2∑
i=1

(∇ui,∇vi)Ωi−〈g1, γ
+
0 (v2)〉Γ1−〈g2, γ

+
0 (v2)〉Γ2−〈ξ, γ−0 (v1)−γ+

0 (v2)〉Γ1 =
2∑
i=1

(fi, vi)Ωi .

(4.5)

Further, we can formulate the jump of the traces of u1 and u2 on Γ1, as

〈λ, γ−0 (u1)− γ+
0 (u2)〉Γ1 = 〈λ, g〉Γ1 ∀λ ∈ H−1/2(Γ1) . (4.6)

We now introduce the Hilbert space

U :=
{

(v1, v2) ∈ H1(Ω1)×H1(Ω2) : (v1, 1)Ω1 + (v2, 1)Ω2 = 0
}
, (4.7)
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provided with the norm ||(v1, v2)||2U := ||v1||21,Ω1
+ ||v2||21,Ω2

and Q := H−1/2(Γ1),

with its usual norm || · ||−1/2,Γ1 . Then, the variational formulation reads as: Find

((u1, u2), ξ) ∈ U×Q such that

a((u1, u2), (v1, v2)) + b((v1, v2), ξ) = F (v1, v2) ∀(v1, v2) ∈ U, (4.8a)

−b((u1, u2), λ) = G(λ) ∀λ ∈ Q. (4.8b)

where a : U×U→ R and b : U×Q→ R are bilinear forms defined as

a((w1, w2), (v1, v2)) := (∇w1,∇v1)Ω1 + (∇w2,∇v2)Ω2 ∀ (w1, w2) , (v1, v2) ∈ U×U ,

b((v1, v2), λ) := 〈λ, γ+
0 (v2)− γ−0 (v1)〉Γ1 ∀ ((v1, v2), λ) ∈ U×Q ,

while the linear functionals F : U→ R and G : Q→ R, are given by

F (v1, v2) := (f1, v1)Ω1 +(f2, v2)Ω2 + 〈g1, γ
+
0 (v2)〉Γ1 + 〈g2, γ

+
0 (v2)〉Γ2 ∀ , , (v1, v2) ∈ U ,

G(λ) := 〈λ, g〉Γ1 ∀λ ∈ Q .

Lemma 4.2.1 b is bounded.

Proof. First, we fix ((v1, v2), λ) ∈ U×Q. Then, we have

b((v1, v2), λ) ≤ ||λ||−1/2,Γ1 (||γ+
0 (v2)||1/2,Γ1 + ||γ−0 (v1)||1/2,Γ1)

≤ ||λ||−1/2,Γ1 ||(v1, v2)||U ,

and we conclude the statement. �

Remark 4.2.1 Thanks to the boundedness of bilinear form b, we can define a

bounded linear operator B : U→ Q′, induced by the bilinear form b, such that

[B(v1, v2), λ] := b((v1, v2), λ) ∀ (v1, v2) ∈ U , ∀λ ∈ Q ,

where [·, ·] stands for the duality pairing induced by the operator and functional

used in this case. It is not difficult to deduce that B((v1, v2)) := R∗(γ+
0 (v2) −

γ−0 (v1)) ∀ (v1, v2) ∈ U, where R : H−1/2(Γ1) → H1/2(Γ1) represents the canonical

Riesz operator between H−1/2(Γ1) and H1/2(Γ1), while R∗ : H1/2(Γ1) → H−1/2(Γ1)

corresponds to the adjoint (Hilbert) Riesz operator of R. Hereafter, 〈·, ·〉r,Γ1 denotes

the inner product on Hr(Γ1), r ∈ {−1/2, 1/2}. Finally, Ker(B) is characterized by

V := Ker(B) := {(v1, v2) ∈ U : γ−0 (v1) = γ+
0 (v2) on Γ1} . (4.9)
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Lemma 4.2.2 a is bounded in U×U, and V-elliptic.

Proof. The continuity of bilinear form a follows from the Cauchy-Schwarz inequality.

To prove the coerciveness of a on V, we first set Ω := Ω1 ∪ Γ1 ∪ Ω2. Next, given

(v1, v2) ∈ V, we define the following measurable function

v :=

 v1 , a.e. ∈ Ω1

v2 , a.e. ∈ Ω2.
(4.10)

Since v1 ∈ H1(Ω1), v2 ∈ H1(Ω2), and γ−0 (v1) = γ+
0 (v2) on Γ1, we infer that v ∈

H1(Ω), with
∫

Ω
v = 0. Then, thanks to the Poincaré-Wintinger inequality, the

seminorm | · |1,Ω is equivalent to || · ||1,Ω in H1(Ω) ∩ L2
0(Ω), we deduce

a((u1, u2), (v1, v2)) = ‖∇v1‖2
0,Ω1

+ ‖∇v2‖2
0,Ω2

= ‖∇v‖2
0,Ω

≥ (1 + C2
p)−1‖v‖2

1,Ω

= (1 + C2
p)−1‖(v1, v2)‖2

U, (4.11)

where Cp > 0 is the constant of Poincaré. �

Lemma 4.2.3 B is surjective.

Proof. Given λ ∈ H−1/2(Γ1), there exists z := −
(
γ̃−0

)−1(
R∗
)−1

λ ∈ [H1
0 (Ω1)]⊥ ⊂

H1(Ω1), such that λ = R∗(γ−0 (z)), where γ̃0 := γ0|[H1
0 (Ω1)]⊥ . For more details, we

refer to [97] (pages 196-198). Now, by setting c := − 1

|Ω1|+ |Ω2|

∫
Ω1

z, we introduce

(v1, v2) ∈ H1(Ω1) × H1(Ω2) such that v1 := z + c and v2 := c, which in addition

verifies that (v1, 1)Ω1 + (v2, 1)Ω2 = 0, letting us to conclude that (v1, v2) ∈ U. Then,

since γ+
0 (v2)− γ−0 (v1) = γ−0 (−z) on Γ1, we infer that

B(v1, v2) = R∗(γ+
0 (v2)− γ−0 (v1)) = R∗(γ−0 (−z)) = λ .

�

We now establish the unique solvability of the variational problem.

Theorem 4.2.1 (Well-posedness) The continuous problem (4.8) is well-posed.

Proof. Taking into account Lemmas 4.2.1, 4.2.2 and 4.2.3, we invoke well known

Babuška-Brezzi’s theory, to conclude that the variational problem (4.8) is well-posed.

�
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Remark 4.2.2 For λ ∈ H1/2(Γ1) given, and (v1, v2) ∈ U defined as in the proof of

Lemma 4.2.3, there holds

b((v1, v2), λ) = 〈λ , γ+
0 (v2)− γ−0 (v1)〉Γ1 = 〈λ , γ−0 (−z)〉Γ1

= 〈λ ,
(
R∗
)−1

λ〉Γ1 = ||λ||2−1/2,Γ1
.

In addition, there exists CINF = CINF(|Ω1|, |Ω2|) > 0 such that

||(v1, v2)||2U ≤ CINF ||z||21,Ω1
.

As result, we can establish the so called inf-sup condition for b:

sup
(w1,w2)∈U\{0}

b((w1, w2), λ)

||(w1, w2)||U
≥ b((v1, v2), λ)

||(v1, v2)||U
≥ C

−1/2
INF

||λ||2−1/2,Γ1

||z||1,Ω1

= C
−1/2
INF ||λ||−1/2,Γ1 .

(4.12)

4.3 Discrete settings

We begin this section giving a general description of the discrete spaces, operators

that we need to introduce for the discretization of the transmission problem,

including some approximation properties. For simplicity, we let Ω be a domain with

polyhedral boundary. Then, we introduce H ⊂ R+ as a countable set of meshsizes

having 0 as its unique accumulation point and {Th}h∈H be an h-refined admissible

mesh sequence of Ω (see Section 1.4 in [69]). Each mesh Th is a finite collection {T}

of nonempty, disjoint, open, polytopal elements such that Ω =
⋃
T∈Th T . In addition,

there is a matching simplicial submesh of Th with locally equivalent meshsize and

which is shape-regular in the usual sense. We also assume (for simplicity) that for

each T ∈ Th, either T ⊂ Ω1 or T ⊂ Ω2, and that there are no hanging nodes on the

transmission boundary Γ1. We call a face, any hyperplanar closed connected subset

F of Ω with positive (d− 1)-dimensional measure, such that (i) either there exist T1,

T2 ∈ Th with F ⊂ ∂T1 ∩ ∂T2 (and F is called an interface) or (ii) there exists T ∈ Th
such that F ⊂ ∂T ∩ ∂Ω (and F is called a boundary face). Interfaces are collected

in the set Fint
h , boundary faces in Fb

h , and we set the list of faces on skeletal induced

by Th as Fh := Fint
h ∪ Fb

h .

On the other hand, given T ∈ Th, FT := {F ∈ Fh |F ⊂ ∂T} denotes the set of

faces lying on the boundary of T and, for each F ∈ FT , nTF is the unit normal to
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F pointing out of T . In an admissible mesh sequence, the diameters of the elements

(hT ) and the diameters of the faces (hF ), linked to each element, are uniformly

comparable, card(FT ) is uniformly bounded, the usual discrete and multiplicative

trace inequalities hold on element faces, and the L2-orthogonal projector onto

polynomial spaces enjoys optimal approximation properties on each mesh element.

In what follows, A . B denotes the inequality A ≤ CB with positive constant C

independent of the polynomial degree k, and the meshsize h of Th, which is set as

h := maxT∈Th hT .

Lemma 4.3.1 (Approximation property of Orthogonal projector) Given

an integer l ≥ 0, there exists a real positive number Ca, depending on the mesh

regularity parameter and l, such that, for all h ∈ H, and all T ∈ Th, denoting by πlT

the L2-orthogonal projector on Pld(T ), and for all s, t ∈ R such that 0 ≤ s ≤ t ≤ l+1,

there holds

|v − πlTv|s,T ≤ Cah
t−s
T |v|t,T , ∀ v ∈ H t(T ) . (4.13)

Moreover, there exists C̃a > 0, such that, for all 1/2 < t ≤ l + 1, there holds

‖v − πlTv‖0,∂T ≤ C̃ah
t−1/2
T |v|t,T , ∀ v ∈ H t(T ), (4.14)

where, given r ≥ 0, | · |r,T denotes the usual seminorm on Sobolev spaces Hr(T ).

Proof. We refer to the proofs of Theorems 3.2 and 3.3 in [102]. �

4.3.1 Degrees of freedom

Let a polynomial degree k ≥ 0 be fixed. For each T ∈ Th, we define the local space of

DOFs as Uk
T := Pkd(T )×

(∏
F∈FT P

k
d−1(F )

)
, where Pkd(T ) (resp., Pkd−1(F )) is spanned

by the restrictions to T (resp., F ) of d-variate (resp., (d− 1)-variate) polynomials of

total degree ≤ k. The global space of DOFs on the domain Ω is then defined as,

Uk
Th :=

(∏
T∈Th

Pkd(T )

)
×

( ∏
F∈Fh

Pkd−1(F )

)
.

Given vh :=
(

(vT )T∈Th , (vF )F∈Fh

)
∈ Uk

Th , we introduce its restriction to the element

T ∈ Th as vT :=
(
vT , (vF )F∈FT

)
∈ Uk

T . In addition, by vh we denote the function
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belonging to Pkd(Th), such that vh|T = vT ∀T ∈ Th. These notations allow us to

introduce the usual seminorm on Uk
Th (see Lemma 4 in [75])

‖vh‖2
1,Th :=

∑
T∈Th

‖vT‖2
1,T , ‖vT‖2

1,T := ‖∇vT‖2
0,T + |vT |21,∂T , (4.15)

for all vh ∈ Uk
Th and all vT ∈ Uk

T , where

|vT |21,∂T :=
∑
F∈FT

h−1
F ‖vF − vT‖

2
0,F .

Now, for each T ∈ Th, we define the local reduction operator IkT : H1(T )→ Uk
T such

that, for each v ∈ H1(T ),

IkTv := (πkTv, (π
k
Fv)F∈FT ), (4.16)

where πkT and πkF are the L2-orthogonal projectors onto Pkd(T ) and Pkd−1(F ),

respectively. The corresponding global reduction operator IkTh : H1(Ω) → Uk
Th is

defined by

IkThv := ((πkTv)T∈Th , (π
k
Fv)F∈Fh) ∀ v ∈ H1(Ω) . (4.17)

4.3.2 Local Gradient reconstruction

For all T ∈ Th, we define the local gradient reconstruction operator Gk
T : Uk

T →

∇Pk+1
d (T ) such that, for all vT := (vT , (vF )F∈FT ) ∈ Uk

T and all w ∈ Pk+1
d (T ),

(Gk
TvT ,∇w)T = (∇vT ,∇w)T +

∑
F∈FT

(vF − vT ,∇w · nTF )F , (4.18)

where nTF is the unit normal to face F pointing out of element T . We define the

potential reconstruction operator pk+1
T : Uk

T → Pk+1
d (T ) such that, for all vT ∈ Uk

T ,

∇pk+1
T vT = Gk

TvT

∫
T

pk+1
T vT =

∫
T

vT . (4.19)

Lemma 4.3.2 (Characterization of pk+1
T IkT and polynomial consistency)

The following property holds for all v ∈ H1(T ):

(∇(v − pk+1
T IkTv),∇w)T = 0 ∀w ∈ Pk+1

d (T ). (4.20)

Consequently, for all v ∈ Pk+1
d (T ), we have

pk+1
T IkTv = v. (4.21)
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Proof. We refer to the proof of Lemma 3.1 in [76]. �

Lemma 4.3.3 (Approximation properties for pk+1
T IkT ) Let a polynomial degree

k ≥ 0, an integer q ∈ {0, · · · , k}, and δ ∈ (1/2, 1] be given. There exists a real

number C > 0, depending on the mesh regularity parameter, possibly on d, k, q,

and δ, but independent of hT , such that, for all h ∈ H, for all T ∈ Th, and all

v ∈ Hq+1+δ(T ), there holds:

∥∥v − pk+1
T IkTv

∥∥
0,T

+ h
1/2
T

∥∥v − pk+1
T IkTv

∥∥
0,∂T

+ hT
∥∥∇(v − pk+1

T IkTv)
∥∥

0,T
+ h

3/2
T

∥∥∇(v − pk+1
T IkTv)

∥∥
0,∂T
≤ Chq+1+δ

T ‖v‖q+1+δ,T .

(4.22)

Proof. We adapt the proof of Lemma 3 in [75]. First, we fix v ∈ Hq+1+δ(T ), with

q ∈ {0, ..., k}, and notice from the orthogonality property (4.20), that

‖∇(v − pk+1
T IkTv)‖0,T = sup

z∈Pk+1
d (T )

‖∇v −∇z‖0,T

≤ ‖∇(v − πk+1
T v)‖0,T . hq+δT ‖v‖q+1+δ,T , (4.23)

where we have used the approximation property (4.13) of πk+1
T (with t = q + 1 + δ

and s = 1).

Now, from the definition of pk+1
T and IkT , we observe that v−pk+1

T IkTv ∈ L2
0(T ). Then,

applying the very well known inequality ||z||0,T . hT |z|1,T , ∀ z ∈ H1(T ) ∩ L2
0(T ),

togehter with (4.23), we infer that

‖v − pk+1
T IkTv‖0,T . hT‖∇(v − pk+1

T IkTv)‖0,T . hq+1+δ
T ‖v‖q+1+δ,T . (4.24)

The consecutive use of a continuous trace inequality, (4.23) and (4.24), yields

hT‖v−pk+1
T IkTv‖2

0,∂T . ‖v−pk+1
T IkTv‖2

0,T+h2
T‖∇(v−pk+1

T IkTv)‖2
0,T . h

2(q+1+δ)
T ‖v‖2

q+1+δ,T .

(4.25)

Finally, for to bound h
3/2
T ‖∇(v−pk+1

T IkTv)‖0,∂T , we introduce ±πkT∇v inside the norm,

obtaining

h
3/2
T

∥∥∇(v − pk+1
T IkTv)

∥∥
0,∂T
≤ h

3/2
T

∥∥∇v − πkT∇v∥∥0,∂T
+h

3/2
T

∥∥πkT∇v −∇pk+1
T IkTv

∥∥
0,∂T

.
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Using the approximation property (4.14) of πkT (applied componentwise to ∇v with

t = q + δ and s = 0), we infer that

hT
∥∥∇v − πkT∇v∥∥2

0,∂T
. h

2(q+δ)
T ‖v‖2

q+1+δ,T . (4.26)

Now, we apply the discrete trace inequality, using the fact that card(FT ) is uniformly

bounded, and that ∇pk+1
T IkTv ∈

[
Pkd(T )

]d
, to infer

‖πkT∇v −∇pk+1
T IkTv‖0,∂T . h

−1/2
T ‖∇(v − pk+1

T IkTv)‖0,T . h
q+δ−1/2
T ‖v‖q+1+δ,T . (4.27)

Finally, the proof is concluded from (4.26) and (4.27) . �

4.4 HHO formulation

From here on, we consider g1 ∈ L2(Γ1), g2 ∈ L2(Ω2), Ω := Ω1 ∪ Γ1 ∪ Ω2, and let

Th be a triangulation of Ω, satisfying the geometric assumptions given in Section

4.3. Next, we introduce the triangulations induced by Th, of each subdomain Ωi,

i ∈ {1, 2}, that is

Ti,h : = {T ∈ Th : T ⊂ Ωi} ,

with Fi,h being the list of faces on skeleton, induced by Ti,h, i ∈ {1, 2}. Moreover, by

Γ1,h and Γ2,h, we denote the partitions of Γ1 and Γ2, respectively, induced by T2,h. At

this point we require also that the partition of transmission boundary Γ1 inherited

by Th, Γ1,h, is quasi-uniform in the sense: considering hΓ1 := max
F∈F1,h

hF , there exists

Cqu > 0, independent of the meshsize, such that

Cqu hΓ1 ≤ hF ∀F ∈ Γ1,h . (4.28)

These notations allow us to introduce the discrete spaces

Uk
Ti,h :=

 ∏
T∈Ti,h

Pkd(T )

×
 ∏
F∈Fi,h

Pkd−1(F )

 , i ∈ {1, 2} .

Then, each element vi,h ∈ Uk
Ti,h is characterized by vi,h :=

(
(vi,T )T∈Ti,h , (vi,F )F∈Fi,h

)
,

i ∈ {1, 2}. Now, we set our discrete approximation space, as Uk,0
Th ×Q

k
h, where

Uk,0
Th :=

vh := (v1,h,v2,h) ∈ Uk
T1,h ×Uk

T2,h :
2∑
i=1

∑
T∈Ti,h

(vi,T , 1)T = 0

 ,
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and Qk
h := Pkd−1(Γ1,h). From here on, we adopt the following notation. Given λh ∈

Qk
h, we set λF := λh|F , for all F ∈ Γ1,h. Then, we introduce the characterization

λh := (λF )F∈Γ1,h
. The space Qk

h is provided with the weighted L2−norm

‖λh‖2
Γ1,h

:=
∑
F∈Γ1,h

hF‖λF‖2
0,F , ∀λh := (λF )F∈Γ1,h

∈ Qk
h . (4.29)

We introduce the seminorm ||| · |||h : Uk
T1,h × Uk

T2,h → R, which is given, for each

(v1,h,v2,h) ∈ Uk
T1,h ×Uk

T2,h , by

|||(v1,h,v2,h)|||2h := ‖v1,h‖2
1,T1,h + ‖v2,h‖2

1,T2,h +
∑
F∈Γ1,h

h−1
F ‖v1,F − v2,F‖2

0,F . (4.30)

Proposition 4.4.1 The map ||| · |||h defines a norm on Uk,0
Th .

Proof. It is enough to check that, for all (v1,h,v2,h) ∈ Uk,0
Th : |||(v1,h,v2,h)|||h = 0 ⇒

(v1,h,v2,h) = (0,0). Let (v1,h,v2,h) ∈ Uk,0
Th be such that |||(v1,h,v2,h)|||h = 0. By

definition of ||| · |||h, this implies

∀T ∈ T1,h ∇v1,T ≡ 0 , ∀F ∈ FT v1,T |F = v1,F (4.31a)

∀S ∈ T2,h ∇v2,S ≡ 0 , ∀F ∈ FS v2,S|F = v2,F (4.31b)

∀F ∈ Γ1,h v1,F = v2,F . (4.31c)

We have from (4.31a), that v1,T is constant on each T ∈ T1,h, and that on each

interior face F ∈ F1,h, there exist T1, T2 ∈ T1,h with F ⊂ ∂T1 ∩ ∂T2, such that

v1,T1|F = v1,F = v1,T2|F . Then, we infer that, there exists a constant C1 > 0 such

that v1,F = C1 ∀F ∈ F1,h. In a similar way, we can deduce from (4.31b), that there

exists C2 > 0 such that v2,F = C2 ∀F ∈ F2,h. Now by (4.31c), we have that on each

transmission face F ∈ Γ1,h, there exist T ∈ T1,h and S ∈ T2,h with F ⊂ ∂T ∩∂S such

that,

C1 = v1,T |F = v1,F = v2,F = v2,S|F = C2 ,

which allows us to state that v1,T = v2,S ≡ C1 ∀ (T, S) ∈ T1,h×T2,h. Finally, due to

the condition
∑

T∈T1,h(v1,T , 1)T +
∑

S∈T2,h(v2,S, 1)S = 0, we deduce that C1 = C2 = 0,

and we conclude the proof. �

Now, for each T ∈ Th, we introduce aT : Uk
T ×Uk

T → R given by

aT (uT ,vT ) :=
(
Gk
TuT , G

k
TvT

)
T

+ jT (uT ,vT ) , (4.32)
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where

jT (uT ,vT ) :=
∑
F∈FT

h−1
F (πkF (uF −Rk+1

T uT ), πkF (vF −Rk+1
T vT ))F ,

with

Rk+1
T vT := vT + (pk+1

T vT − πkTpk+1
T vT ) .

Then, we set the bilinear form ah : Uk,0
Th ×Uk,0

Th → R, as

ah((u1,h,u2,h), (v1,h,v2,h)) =
∑
T∈T1,h

aT (u1,T ,v1,T ) +
∑
S∈T2,h

aS(u2,S,v2,S), (4.33)

which can also be written as

ah((u1,h,u2,h), (v1,h,v2,h)) = Ah((u1,h,u2,h), (v1,h,v2,h)) + jh((u1,h,u2,h), (v1,h,v2,h)) ,

(4.34)

where the consistency contribution Ah : Uk,0
Th × Uk,0

Th → R and the stability

contribution jh : Uk,0
Th ×Uk,0

Th → R are, respectively, defined as

Ah((u1,h,u2,h), (v1,h,v2,h)) :=
∑
T∈Th

(
Gk
TuT , G

k
TvT

)
T

(4.35)

and

jh((u1,h,u2,h), (v1,h,v2,h)) :=
∑
T∈Th

jT (uT ,vT ) . (4.36)

We also introduce the bilinear form bh : Uk,0
Th ×Q

k
h → R, which is defined as

bh((v1,h,v2,h), λh) :=
∑
F∈Γ1,h

(λF , v2,F − v1,F )F ∀ (v1,h,v2,h) ∈ Uk,0
Th ,

λh := (λF )F∈Γ1,h
∈ Qk

h . (4.37)

Then, the discrete scheme associated to (4.8) reads as follows: Find ((u1,h,u2,h), ξh) ∈

Uk,0
Th ×Q

k
h such that

ah((u1,h,u2,h), (v1,h,v2,h)) + bh((v1,h,v2,h), ξh) = Fh((v1,h,v2,h)) ∀(v1,h,v2,h) ∈ Uk,0
Th ,

(4.38a)

−bh((u1,h,u2,h), λh) = Gh(λh) ∀λh ∈ Qk
h , (4.38b)
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where, for each (v1,h,v2,h) ∈ Uk
Th and λh ∈ Qk

h, we define the discrete linear

functionals as:

Fh(v1,h,v2,h) :=
∑
T∈T1,h

(f1, v1,T )T+
∑
S∈T2,h

(f2, v2,S)S+
∑
F∈Γ1,h

(g1, v2,F )F+
∑
F∈Γ2,h

(g2, v2,F )F ,

(4.39)

and Gh(λh) := (λh, g)Γ1,h
. In what follows, we recall the well known relationships

between || · ||0,Γ1 and || · ||−1/2,Γ1 .

Lemma 4.4.1 There holds

||g̃||−1/2,Γ1 . ||g̃||0,Γ1 ∀ g̃ ∈ L2(Γ1) , (4.40)

||λh||0,Γ1 . h
−1/2
Γ1
||λh||−1/2,Γ1 ∀λh ∈ Qk

h . (4.41)

Proof. A proof of (4.40) is available in [140] (page 115), while (4.41) can be proved

in the same spirit of the proof of Lemma 4.6 in [96]. �

From here on, given vh ∈ Uk
Th , we denote by vh the L2(Ω) function such that

vh|T = vT , for all T ∈ Th. Next result, which can be seen as the corresponding to

Lemma 8.3 in [66] for Neumann boundary condition, will be useful for proving the

continuity of linear functional Fh.

Lemma 4.4.2 There holds

||vh||0,Ω . |||vh|||h ∀vh ∈ Uk,0
Th . (4.42)

Proof. The proof for general domain Ω is provided in the appendix of this chapter.

However, when Ω is convex, the proof of (4.42) can be done usign a different

argument, more constructive, which is described next.

Let vh ∈ Uk,0
Th . Since vh ∈ L2

0(Ω), there exists a unique weak solution z ∈ H1(Ω) of

−∆z = vh in Ω ,
∂z

∂ν
= 0 on ∂Ω . (4.43)

Since Ω is convex, we can ensure that z ∈ H2(Ω) and ||z||2,Ω . ||vh||0,Ω (cf. [110]).

This allows us to introduce τv := −∇z ∈ [H1(Ω)]2, which satisfies:

div(τv) = vh in Ω , τv · ν = 0 on ∂Ω , and ||τv||1,Ω . ||vh||0,Ω . (4.44)
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Then, taking into account the fact that τv ∈ H(div; Ω), and the first two statements

in (4.44), we have

||vh||20,Ω = (vh, div(τv))Ω = (vh, div(τv))Ω1 + (vh, div(τv))Ω2

=
∑
T∈T1,h

{
−(∇v1,T , τv)T +

∑
F∈FT

(τv · nTF , v1,T )F

}

+
∑
T∈T2,h

{
−(∇v2,T , τv)T +

∑
F∈FT

(τv · nTF , v2,T )F

}

=
∑
T∈T1,h

{
−(∇v1,T , τv)T +

∑
F∈FT

(τv · nTF , v1,T − v1,F )F

}

+
∑
T∈T2,h

{
−(∇v2,T , τv)T +

∑
F∈FT

(τv · nTF , v2,T − v2,F )F

}

+
∑
F∈Γ1,h

(τv · n1, v1,F − v2,F )F . (4.45)

Now, applying Cauchy-Schwarz, Minkowski and continuous local trace inequalities,

we notice ∑
T∈T1,h

{
−(∇v1,T , τv)T +

∑
F∈FT

(τv · nTF , v1,T − v1,F )F

}

≤
∑
T∈T1,h

(
||∇v1,T ||0,T ||τv||0,T +

∑
F∈FT

(
h
−1/2
F ||v1,T − v1,F ||0,F

)(
h

1/2
F ||τv||0,F

))

≤ ||v1,h||1,T1,h

{ ∑
T∈T1.h

(
||τv||20,T + hT ||τv||20,∂T

)}1/2

. ||v1,h||1,T1,h

{ ∑
T∈T1.h

(
||τv||20,T + ||τv||20,T + h2

T |τv|21,T
)}1/2

. ||v1,h||1,T1,h ||τv||1,Ω1 .

Proceeding in analogous way, we deduce that∑
T∈T2,h

{
−(∇v2,T , τv)T +

∑
F∈FT

(τv · nTF , v2,T − v2,F )F

}
. ||v2,h||1,T2,h ||τv||1,Ω2 ,

and

∑
F∈Γ1,h

(τv · n1, v1,F − v2,F )F .

 ∑
F∈Γ1,h

h−1
F ||v1,F − v2,F ||20,F

1/2

||τv||1,Ω1 .
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Considering these relationships, and applying Minkowski inequality one more time

and the regularity property in (4.44), (4.45) yields to

||vh||20,Ω . |||vh|||h ||vh||0,Ω ,

and we conclude the proof. �

Lemma 4.4.3 Bilinear forms ah and bh , as well as linear functionals Fh and Gh ,

are continuous.

Proof. Let us establish the continuity of the discrete bilinear forms ah and bh. Thanks

to the continuity of aT (see [75]), and applying Cauchy-Schwarz and Minkowski

inequalities, we have

|ah((u1,h,u2,h), (v1,h,v2,h))| . ‖u1,h‖1,T1,h · ‖v1,h‖1,T1,h + ‖u2,h‖1,T2,h · ‖v2,h‖1,T2,h

≤
(
‖u1,h‖2

1,T1,h + ‖u2,h‖2
1,T2,h

)1/2 (
‖v1,h‖2

1,T1,h + ‖v2,h‖2
1,T1,h

)1/2

≤ |||(u1,h,u2,h)|||h |||(v1,h,v2,h)|||h .

Now, for bh, after applying Cauchy-Schwarz and Minkowski inequalities, and Lemma

4.4.1, we obtain

|bh((u1,h,u2,h), λh)| ≤

 ∑
F∈Γ1,h

h−1
F ‖u1,F − u2,F‖2

0,F

1/2 ∑
F∈Γ1,h

hF‖λF‖2
0,F

1/2

≤ |||(u1,h,u2,h)|||h ‖λh‖Γ1,h
.

(4.46)

Next, we prove the continuity of the discrete linear functional Fh. First, we notice

that ∑
F∈F1,h

(g1, v2,F )F =
∑

F∈F1,h

(g1, v2,F − c2)F + c2〈g1, 1〉Γ1 (4.47)

∑
F∈F2,h

(g2, v2,F )F =
∑

F∈F2,h

(g2, v2,F − c2)F + c2〈g2, 1〉Γ2 , (4.48)

where c2 :=
1

|Ω2|

∫
Ω2

v2,h.
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Applying Cauchy-Schwarz inequality appropriately, we have

|Fh(v1,h,v2,h)| ≤ ‖f1‖0,Ω1

 ∑
T∈T1,h

‖v1,T‖2
0,T

1/2

+ ‖f2‖0,Ω2

 ∑
S∈T2,h

‖v2,S‖2
0,S

1/2

+ ||g1||0,Γ1

 ∑
F∈Γ1,h

‖v2,F − c2‖2
0,F

1/2

+ |c2| |Ω2|1/2 ||g1||−1/2,Γ1

+ ||g2||0,Γ2

 ∑
F∈Γ2,h

‖v2,F − c2‖2
0,F

1/2

+ |c2| |Ω2|1/2 ||g2||−1/2,Γ2 .

(4.49)

Thanks to Minkowski inequality, (4.47), and the fact that |c2| ≤ |Ω2|−1/2 ||v2,h||0,Ω2 ,

we obtain

|Fh(v1,h,v2,h)| ≤ C

||v1,h||20,Ω1
+ ||v2,h||20,Ω2

+
∑

F∈Γ1,h∪Γ2,h

‖v2,F − c2‖2
0,F

1/2

,

(4.50)

where

C :=
(
‖f1‖2

0,Ω1
+ ‖f2‖2

0,Ω2
+ ||g1||2−1/2,Γ1

+ ||g2||2−1/2,Γ2
+ ||g1||20,Γ1

+ ||g2||20,Γ2

)1/2
.

Now, we bound the right hand side of (4.50). First, since vh ∈ Uk,0
Th , we apply

Lemma 4.4.2, and get

||v1,h||20,Ω1
+ ||v2,h||20,Ω2

= ||vh||20,Ω . |||vh|||2h . (4.51)

On the other hand, considering zh :=
(

(v2,T − c2)T∈T2,h , (v2,F − c2)F∈F2,h

)
∈ Uk,0

T2,h ,

and denoting by γh(zh) the discrete trace of zh, such that γh(zh)|F = v2,F − c2, on

each F ∈ F2,h, we apply Theorem 6.7 in [66], and deduce∑
F∈Γ1,h∪Γ2,h

||v2,F − c2||20,F = ||γh(zh)||20,∂Ω2
. ||zh||21,T2,h = ||v2,h||21,T2,h . (4.52)

Finally, taking into account (4.51) and (4.52), we conclude from (4.50)

|Fh(v1,h,v2,h)| . |||(v1,h,v2,h)|||h , (4.53)
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which ensures the continuity of Fh.

Now, for the continuity of the discrete linear functional Gh, we recall that g ∈

H1/2(Γ1) ⊂ L2(Γ1). Then, we have

|Gh(λh)| =
∑
F∈Γ1,h

(h
1/2
F λT , h

−1/2
F g)F ≤ ||α1/2 g||0,Γ1 ||λh||Γ1,h

, (4.54)

where α is a parameter defined on Γ1,h such that α|F := h−1
F for each F ∈ Γ1,h. �

Remark 4.4.1 The linear operator Bh : Uk,0
Th → Qk

h, induced by bh, is characterized

by

Bh(v1,h,v2,h) := (v2,F − v1,F )F∈Γ1,h
∀ (v1,h,v2,h) ∈ Uk,0

Th . (4.55)

It is important to notice that bilinear form ah induces another seminorm on Uk
T1,h ×

Uk
T2,h , that is given by

‖(v1,h,v2,h)‖2
a,h := ah((v1,h,v2,h), (v1,h,v2,h)) ∀ (v1,h,v2,h) ∈ Uk

T1,h ×Uk
T2,h . (4.56)

Introducing Vh := Ker(Bh), we establish the following result.

Lemma 4.4.4 (Ellipticity) ah is Vh-elliptic.

Proof. From (4.37), we characterize the kernel of Bh, as

Vh := {(v1,h,v2,h) ∈ Uk,0
Th : v1,F = v2,F ∀F ∈ Γ1,h} .

Now, taking (v1,h,v2,h) ∈ Vh and considering the fact that || · ||1,Ti,h is equivalent to

|| · ||a,Ti,h (cf. Lemma 4 in [75]), we have

ah((v1,h,v2,h), (v1,h,v2,h)) = ‖v1,h‖2
a,T1,h + ‖v2,h‖2

a,T2,h

& ‖v1,h‖2
1,T1,h + ‖v2,h‖2

1,T2,h

= |||(v1,h,v2,h)|||2h . (4.57)

�

Lemma 4.4.5 Bh is a surjective operator.
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Proof. Given λh ∈ Qk
h, we can define (v1,h,v2,h) ∈ Uk,0

Th , such that v1,T ≡ 0,∀T ∈ T1,h,

v1,F =

 −λF , F ∈ Γ1,h

0 , F ∈ F1,h\Γ1,h

, and v2,h = 02,h. Then, the operator Bh is

surjective. �

As in the continuous case, here we can establish also the so called discrete inf-sup

condition, which will help us later to obtain an a priori error estimate corresponding

to λh.

Lemma 4.4.6 There exists C > 0, independent of the meshsize, such that

sup
vh∈U

k,0
Th
\{0}

bh(vh, λh)

|||vh|||h
≥ C ||λh||Γ1,h

∀λh ∈ Qk
h . (4.58)

Proof. Let λh := (λF )F∈Γ1,h
∈ Qk

h\{0}. Then, we construct wh := (w1,h,w2,h) ∈

Uk,0
Th \{0} as in the proof of Lemma 4.4.5, and we notice that

|||wh|||2h = 2
∑
F∈Γ1,h

h−1
F ||λF ||

2
0,F . h−1

Γ1
||λh||20,Γ1

. (4.59)

Then, taking into account (4.59) and the fact that hΓ1 . hF , for all F ∈ Γ1,h, we

have

sup
vh∈U

k,0
Th
\{0}

bh(vh, λh)

|||vh|||h
≥ bh(wh, λh)

|||wh|||h
& h

1/2
Γ1

||λh||20,Γ1

||λh||0,Γ1

& ||λh||Γ1,h
. (4.60)

This allows us to conclude the result. �

Proposition 4.4.2 (Well-posedness) The discrete problem (4.38) is well-posed.

Proof. It is a straightforward consequence of Lemmas 4.4.3, 4.4.4 and 4.4.5. We omit

further details. �

Next result could be useful in the rest of this work.

Corollary 4.4.1 There exists η > 1, independent of the meshsize, such that

η−1|||(v1,h,v2,h)|||h ≤ ‖(v1,h,v2,h)‖a,h ∀ (v1,h,v2,h) ∈ Vh , (4.61)

‖(v1,h,v2,h)‖a,h ≤ η|||(v1,h,v2,h)|||h ∀ (v1,h,v2,h) ∈ Uk,0
Th . (4.62)

Proof. (4.61) follows straightforwardly from the Vh-ellipticity of ah (4.57), while

(4.62) has been established in the proof of Lemma 4.4.3. We omit further details. �
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4.5 A priori error analysis

From here on, we assume that exact solution ui ∈ H1+δi(Ωi), and δi ∈ (1/2, 1],

and ∆ui ∈ L2(Ω) for i ∈ {1, 2}. These assumptions allow us to see ξ belonging

to L2(Γ1), and consider g1 and g2 as elements in L2(Γ1) and L2(Γ2), respectively.

In addition, we introduce û1,h := IkT1,hu1 ∈ Uk
T1,h , û2,h := IkT2,hu2 ∈ Uk

T2,h , where

IkTi,h , for i ∈ {1, 2}, denotes the global interpolation operator that is defined in the

same spirit as in (4.17), and ξ̂h ∈ Qk
h is such that ξ̂h|F := πkF (ξ), for each F ∈ Γ1,h.

It is not difficult to check that (û1,h, û2,h) ∈ Uk,0
Th . We recall again that, given

i ∈ {1, 2}, vi,h :=
(

(vi,T )T∈Ti,h , (vi,F )F∈Fi,h

)
∈ Uk

Ti,h , and we set vi,h ∈ Pkd(Ti,h) such

that vi,h|T = vi,T ∀T ∈ Ti,h.

Now, we introduce the product space Xh := Uk,0
Th ×Q

k
h, provided with the norm

||((v1,h,v2,h), λh)||Xh
:=
(
|||(v1,h,v2,h)|||2h + ||λh||2Γ1,h

)1/2

∀ ((v1,h,v2,h), λh) ∈ Xh ,

and the consistency error as the linear functional Eh(((u1, u2), ξ); ·) : Xh → R such

that, for each ((v1,h,v2,h), λh) ∈ Xh:

Eh(((u1, u2), ξ); ((v1,h,v2,h), λh)) := ah((û1,h, û2,h), (v1,h,v2,h)) + bh((v1,h,v2,h)), ξ̂h)

− bh((û1,h, û2,h), λh) + Gh(λh) − Fh(v1,h,v2,h) .

In our case, we notice that, ∀λh ∈ Qk
h :

bh((û1,h, û2,h), λh) =
∑
F∈Γ1,h

(πkFu2 − πkFu1, λF )F

=
∑
F∈Γ1,h

(λF , γ
+
0 (u2) − γ−0 (u1))F = (λh, g)Γ1 = Gh(λh)

and thus, the consistency error reduces to

Eh(((u1, u2), ξ); ((v1,h,v2,h), λh)) = ah((û1,h, û2,h), (v1,h,v2,h)) + bh((v1,h,v2,h)), ξ̂h)

− Fh(v1,h,v2,h) =: Ẽh(((u1, u2), ξ); (v1,h,v2,h)) .

(4.63)

The latter implies that

||Eh(((u1, u2), ξ); ·)||X∗h = ||Ẽh(((u1, u2), ξ); ·)||Uk,0,∗
Th

, (4.64)

with X∗h and Uk,0,∗
Th denoting the dual space of Xh and Uk,0

Th , respectively. The

following result will help us to bound (4.64).
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Lemma 4.5.1 There holds, for each (v1,h,v2,h) ∈ Uk,0
Th :

Fh(v1,h,v2,h)− bh((v1,h,v2,h), ξ̂h) =
2∑
i=1

∑
T∈Ti,h

(∇vi,T ,∇ui)T

+
2∑
i=1

∑
T∈Ti,h

∑
F∈FT

(∇ui · nTF , vi,F − vi,T )F . (4.65)

Proof. Since fi = −∆ui in Ωi (weak sense), and after performing an element-wise

integration by parts in (fi, vi,h)Ωi , with i ∈ {1, 2}, we obtain that two first addends

of Fh (cf. (4.39)) can be written as

(f1, v1,h)Ω1 =
∑
T∈T1,h

(∇u1,∇v1,T )T −
∑
T∈T1,h

∑
F∈FT

(∇u1 · nTF , v1,T )F , (4.66)

(f2, v2,h)Ω2 =
∑
S∈T2,h

(∇u2,∇v2,S)S −
∑
S∈T2,h

∑
F∈FS

(∇u2 · nSF , v2,S)F . (4.67)

Now, using the fact that ∇u1 ·n1 +∇u2 ·n2 = g1 a.e. on Γ1, and ∇u2 ·n2 = g2 a.e.

on Γ2, and that there exist T ∈ T1,h and S ∈ T2,h, such that n1 = nTF on ∂Ω1 and

n2 = nSF on ∂Ω2, we can write the last two addends of Fh as∑
F∈Γ1,h

(g1, v2,F )F =
∑
F∈Γ1,h

(∇u1 · nTF , v2,F )F +
∑
F∈Γ1,h

(∇u2 · nSF , v2,F )F , (4.68)

∑
F∈Γ2,h

(g2, v2,F )F =
∑
F∈Γ2,h

(∇u2 · nSF , v2,F )F . (4.69)

From the definition of ξ̂h, property of πkF , the fact that ξ = ∇u1 ·n1 a.e. on Γ1, and

that there exist T ∈ T1,h and S ∈ T2,h, such that n1 = nTF = −nSF on Γ1, we derive

bh((v1,h,v2,h), ξ̂h) =
∑
F∈Γ1,h

(∇u1 · nTF , v2,F )F −
∑
F∈Γ1,h

(∇u1 · nTF , v1,F )F . (4.70)

Finally, from equations (4.66)-(4.70), knowing that vi,F is single-valued, and the

normal component of ∇ui is continuous on skeletal induced by Ti,h, i ∈ {1, 2}, we

conclude the proof. �

Lemma 4.5.2 Assuming that ui ∈ Hq+1+δi(Ti,h), i ∈ {1, 2}, and q ∈ {0, ..., k}, there

exists C > 0, independent of the meshsize, such that

||Eh(((u1, u2), ξ); ·)||X∗h ≤ C
(
h

2(q+δ1)
1 ‖u1‖2

q+1+δ1,T1,h + h
2(q+δ2)
2 ‖u2‖2

q+1+δ2,T2,h

)1/2

,

(4.71)

where hi := max
T∈Ti,h

hT , i = 1, 2.
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Proof. First, we take (v1,h,v2,h) ∈ Uk,0
Th . Then, after noticing that Gk

T IkT (w) =

∇pk+1
T IkT (w), for any w ∈ H1(T ), T ∈ Th, and introducing u

̂

1,T := pk+1
T IkT (u1|T ), for

each T ∈ T1,h and u

̂

2,S := pk+1
S IkS(u2|S), for all S ∈ T2,h, we have

ah((û1,h, û2,h), (v1,h,v2,h)) =
∑
T∈T1,h

(Gk
T û1,T , G

k
Tv1,T )T +

∑
T∈T1,h

jT (û1,T ,v1,T )

+
∑
S∈Th,2

(Gk
Sû2,S, G

k
Sv2,S)S +

∑
S∈T2,h

jS(û2,S,v2,S)

=
∑
T∈T1,h

(∇v1,T ,∇u

̂

1,T )T +
∑
T∈T1,h

∑
F∈FT

(v1,F − v1,T ,∇u

̂

1,T · nTF )F

+
∑
S∈T2,h

(∇v2,S,∇u

̂

2,S)S +
∑
S∈T2,h

∑
F∈FS

(v2,F − v2,S,∇u

̂

2,S · nSF )F

+
∑
T∈T1,h

jT (û1,T ,v1,T ) +
∑
S∈T2,h

jS(û2,S,v2,S) . (4.72)

At this point, from (4.72) and Lemma 4.5.1 , we can write the consistency error as

Ẽh(((u1, u2), ξ); (v1,h,v2,h))

=
∑
T∈T1,h

(∇v1,T ,∇(u
̂

1,T − u1))T︸ ︷︷ ︸
T1

+
∑
T∈T1,h

∑
F∈FT

(v1,F − v1,T ,∇(u
̂

1,T − u1) · nTF )F︸ ︷︷ ︸
T2

+
∑
S∈T2,h

(∇v2,S,∇(u

̂

2,S − u2))S︸ ︷︷ ︸
T3

+
∑
S∈T2,h

∑
F∈FS

(v2,F − v2,S,∇(u

̂

2,S − u2) · nSF )F︸ ︷︷ ︸
T4

+
∑
T∈T1,h

jT (û1,T ,v1,T )︸ ︷︷ ︸
T5

+
∑
S∈T2,h

jS(û2,S,v2,S)︸ ︷︷ ︸
T6

. (4.73)

Applying Cauchy-Schwarz inequality, followed by the approximation properties of

pk+1
T IkT (cf. (4.22)), with T either in T1,h or in T2,h, and the definition of the norm

|| · ||1,Ti,h , we can estimate T1, T2, T3, and T4 as

|T1|+ |T2| . ||v1,h||1,T1,h · h
q+δ1
1 |u1|q+1+δ1,T1,h , (4.74)

|T3|+ |T4| . ||v2,h||1,T2,h · h
q+δ2
2 |u2|q+1+δ2,T2,h . (4.75)

Invoking now Theorem 8 in [75], we deduce h
−1/2
F ||πkF (ûi,F − Rk+1

T ûi,T )||F .

hq+δii |ui|q+1+δi,T , ∀F ∈ FT , where T ∈ Ti,h, i ∈ {1, 2}. This allows us to estimate T5
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and T6 as

|T5| . ||v1,h||1,T1,h · h
q+δ1
1 |u1|q+1+δ1,T1,h , (4.76)

|T6| . ||v2,h||1,T2,h · h
q+δ2
2 |u2|q+1+δ2,T2,h . (4.77)

Then, from (4.74)-(4.77), we deduce that for each (v1,h,v2,h) ∈ Uk,0
Th :

Ẽh(((u1, u2), ξ); (v1,h,v2,h))

. |||(v1,h,v2,h)|||h
(
h

2(q+δ1)
1 |u1|2q+1+δ1,T1,h + h

2(q+δ2)
2 |u2|2q+1+δ2,T2,h

)1/2

.
(4.78)

Finally, (4.78) yields to an upper bound for ||Ẽh(((u1, u2), ξ); ·)||Uk,0,∗
Th

, and thanks to

(4.64), we conclude (4.71). �

Theorem 4.5.1 (Energy error estimate) Assuming that ui ∈ Hq+1+δi(Ti,h), i ∈

{1, 2}, with q ∈ {0, ..., k}, there exists C > 0, independent of the meshsize, such that:

‖((û1,h, û2,h)− (u1,h,u2,h)), ξ̂h − ξh)‖Xh

≤ C
(
h

2(q+δ1)
1 ‖u1‖2

q+1+δ1,T1,h + h
2(q+δ2)
2 ‖u2‖2

q+1+δ2,T2,h

)1/2

, (4.79)

where hi := max
T∈Ti,h

hT , i = 1, 2. Moreover, applying Lemma 4.3.3, there also holds

2∑
i=1

∑
T∈Ti,h

||∇ui − ∇pk+1
T ui,T ||20,T

≤ C
(
h

2(q+δ1)
1 ‖u1‖2

q+1+δ1,T1,h + h
2(q+δ2)
2 ‖u2‖2

q+1+δ2,T2,h

)
. (4.80)

Proof. Since bilinear form ah is coercive on Vh and bh satisfies a discrete inf-sup

condition, with corresponding constants that are independent of the meshsize, we

can apply a variant of Lemma A.11 in the appendix in [66], which is valid according

to Remark A.12 in this same appendix. As result, we can establish a global discrete

inf-sup condition: For any ((w1,h,w2,h), ζh) ∈ Xh:

||((w1,h,w2,h), ζh)||Xh
. sup

((v1,h,v2,h),λh)∈Xh\{0}

Ah(((w1,h,w2,h), ζh), ((v1,h,v2,h), λh))

||((v1,h,v2,h), λh)||Xh

,

(4.81)

where the bilinear form Ah : Xh ×Xh → R is given by

Ah(((w1,h,w2,h), ζh), ((v1,h,v2,h), λh)) := ah((w1,h,w2,h), (v1,h,v2,h))

+ bh((v1,h,v2,h), ζh) − bh((w1,h,w2,h), λh) .
(4.82)
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This allows us to apply Corollary A.13 in the appendix in [66], with lh := Fh and

mh := Gh, which yields us to

||((û1,h, û2,h)− (u1,h,u2,h)), ξ̂h − ξh)||Xh
. ||Eh(((u1, u2), ξ); ·)||X∗h .

Then, (4.79) follows straightforwardly from Lemma 4.5.2.

Finally, in order to derive (4.80), we realize, after applying triangle inequality, that

||∇ui−∇pk+1
T ui,T ||0,T ≤ ||∇ui−∇pk+1

T IkT (ui|T )||0,T + ||∇pk+1
T IkT (ui|T )−∇pk+1

T ui,T ||0,T ,

(4.83)

for each T ∈ Ti,h, i ∈ {1, 2}. Thus, (4.80) is deduced from (4.83), after invoking

(4.79) and Lemma 4.3.3. We omit further details. �

Remark 4.5.1 (L2-error estimate of the projection of the trace error)

Concerning the L2-norm of ξ̂h−ξh, Theorem 4.5.1 establishes that, for q ∈ {0, ..., k} :

||ξ̂h − ξh||Γ1,h
. hq+δ11 ||u1||q+1+δ1,T1,h + hq+δ22 ||u1||q+1+δ2,T2,h . (4.84)

On the other hand, we know that

h
1/2
Γ1
||ξ̂h − ξh||0,Γ1 . ||ξ̂h − ξh||Γ1,h

, (4.85)

since we are assuming that the partition on Γ1 is quasi-uniform (cf. (4.28)). Then,

from (4.84) and (4.85), we deduce that

||ξ̂h − ξh||0,Γ1 . h
−1/2
Γ1

(
hq+δ11 ||u1||q+1+δ1,T1,h + hq+δ22 ||u1||q+1+δ2,T2,h

)
. (4.86)

Our next aim, is to provide an error estimate in the L2-norm of the projection

of the errors ei,h := πkTi,hui − ui,h for each i ∈ {1, 2}, where given ui,h :=(
(ui,T )T∈Ti,h , (ui,F )F∈Fi,h

)
, we define ui,h as an element of L2(Ωi), such that

ui,h|T := ui,T and
(
πkTi,hui

)∣∣∣
T

:= πkTui ∀T ∈ Ti,h , i ∈ {1, 2} . (4.87)

To this end, we introduce the following auxiliar problem: Given (w1, w2) ∈ L2(Ω1)×

L2(Ω2) with (w1, 1)0,Ω1 + (w2, 1)0,Ω2 = 0, we look for (z1, z2) ∈ U, such that, in weak
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sense, verifies

−∆ z1 = w1 in Ω1 , (4.88a)

−∆ z2 = w2 in Ω2 , (4.88b)

z1 − z2 = 0 on Γ1 , (4.88c)

∇z1 · n1 +∇z2 · n2 = 0 on Γ1 , (4.88d)

∇z2 · n2 = 0 on Γ2 . (4.88e)

Since the transmission conditions in (4.88) are homogeneous, it is known that (4.88)

is equivalent to: Find z ∈ H1(Ω) ∩ L2
0(Ω) such that:

−∆z =w in Ω := Ω1 ∪ Γ1 ∪ Ω2 ,

∂z

∂n2

= 0 on Γ2 := ∂Ω , (4.89)

with w ∈ L2
0(Ω) such that w|Ω1 = w1 and w|Ω2 = w2. In this case, z|Ω1 = z1 and

z|Ω2 = z2. Then, we assume further regularity on z, the weak solution of (4.89), so

that z ∈ H2(Ω) ∩ L2
0(Ω), and there exists C > 0, independent of the meshsize, such

that

||z||22,Ω ≤ C ||w||20,Ω ,

or, equivalently

‖z1‖2
2,Ω1

+ ‖z2‖2
2,Ω2
≤ C

(
‖w1‖2

0,Ω1
+ ‖w2‖2

0,Ω2

)
. (4.90)

We remark that this assumption holds when, for example, the domain Ω := Ω1∪Γ1∪

Ω2 is convex. From here on, we introduce h := max{h1, h2}.

Theorem 4.5.2 (Error estimate of L2−projection of the potential)

Assuming that the exact solutions ui ∈ Hq+1+δi(Ti,h), i ∈ {1, 2}, with q ∈ {0, ..., k},

and there holds the elliptic regularity property (4.90), we have, for k ≥ 1:

‖πkT1,hu1 − u1,h‖0,Ω1 + ‖πkT2,hu2 − u2,h‖0,Ω2

. h
(
h

2(q+δ1)
1 ||u1||2q+1+δ1,T1,h + h

2(q+δ2)
2 ||u2||2q+1+δ2,T2,h

)1/2

. (4.91)
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For k = 0, assuming in addition that fi ∈ Hδi(Ti,h), for i ∈ {1, 2}, g1 ∈ P0(Γ1,h) and

g2 ∈ P0(Γ2,h), there holds

‖π0
T1,hu1 − u1,h‖0,Ω1 + ‖π0

T2,hu2 − u2,h‖0,Ω2

. h
(
h

2(δ1)
1 ||u1||21+δ1,T1,h + h

2(δ2)
2 ||u2||21+δ2,T2,h

)1/2

+
(
h

2(1+δ1)
1 ||f1||2δ1,T1,h + h

2(1+δ2)
2 ||f2||2δ2,T2,h

)1/2

. (4.92)

Proof. Let ((z1, z2), η) ∈ X := U × H−1/2(Γ1) be the solution of the corresponding

mixed variational formulation associated to (4.88), where η := ∇z1 · n1 on

Γ1 is introduced as auxiliary unknown. This formulation can be seen as (4.8),

with F (v1, v2) := (w1, v1)Ω1 + (w2, v2)Ω2, and G(λ) := 0. Next, we denote by

((z1,h, z2,h), ηh) ∈ Xh the unique solution of the mixed HHO scheme corresponding

to (4.88), that is

Ah(((z1,h, z2,h), ηh), ((v1,h,v2,h), λh)) = (w1, v1,h)Ω1 + (w2, v2,h)Ω2 (4.93)

for all ((v1,h,v2,h), λh) ∈ Xh.

We notice that there holds ∀((v1,h,v2,h), λh) , ((w1,h,w2,h), ζh) ∈ Xh:

Ah(((w1,h,w2,h), ζh), ((v1,h,v2,h), λh)) = Ah(((v1,h,v2,h),−λh), ((w1,h,w2,h),−ζh)) .

(4.94)

As a result, we notice that (4.93) can also be written as

Ah(((v1,h,v2,h), λh), ((z1,h, z2,h),−ηh)) = (w1, v1,h)Ω1 + (w2, v2,h)Ω2 (4.95)

for all ((v1,h,v2,h), λh) ∈ Xh.

This lets us to state that the dual consistency error is given by

Edh(((z1, z2), η), ((v1,h,v2,h), λh)) := Ah(((v1,h,v2,h), λh), ((ẑ1,h, ẑ2,h),−η̂h)))

− (w1, v1,h)Ω1 − (w2, v2,h)Ω2 ,

where ẑi,h := IkTi,h(zi) ∈ Uk
Ti,h, i ∈ {1, 2}, and η̂h =

(
πkF (η|F )

)
F∈Γ1,h

∈ Qk
h. Thanks

to (4.94), it is not difficult to check that ∀((v1,h,v2,h), λh) ∈ Xh there holds

Edh(((z1, z2), η), ((v1,h,v2,h),−λh)) = Ah(((ẑ1,h, ẑ2,h), η̂h), ((v1,h,v2,h), λh))

− (w1, v1,h)Ω1 − (w2, v2,h)Ω2

=: Eh(((z1, z2), η), ((v1,h,v2,h), λh)) . (4.96)

173



Now, invoking Lemma A.14 in the appendix in [66] with U := U, P := H−1/2(Γ1),

Uh := Uk,0
Th , provided with the ||| · |||h−norm and interpolator Ih := IkTh (cf. (4.17)),

Ph := Qk
h, equipped with || · ||Γ1,h

−norm and interpolator Jh := πkΓ1,h
:=
(
πkF

)
F∈Γ1,h

,

ah := ah, and bh := bh. In addition, we introduce L := L2
0(Ω), with the reconstruction

operator rh : Uh → L such that rh(vh) := vh. Then, the error estimate (A.30) in [66]

reads as

||πkT1,hu1 − u1,h||0,Ω1 + ||πkT2,hu2 − u2,h||0,Ω2

≤ ||((u1,h,u2,h), ξh)− ((û1,h, û2,h), ξ̂h)||Xh
sup

(w1,w2)∈L2
0(Ω) , ||w||Ω=1

||Edh(((z1, z2), η), ·)||X∗h︸ ︷︷ ︸
T1

+ sup
(w1,w2)∈L2

0(Ω) , ||w||Ω=1

Eh(((u1, u2), ξ), ((ẑ1,h, ẑ2,h), η̂h))︸ ︷︷ ︸
T2

(4.97)

Then (4.91) and (4.92) are obtained after bounding the terms on the right hand side

of (4.97).

i) Bounding T1. From (4.79) in Theorem 4.5.1, we have

||((u1,h,u2,h), ξh)− ((û1,h, û2,h), ξ̂h)||Xh

. hq+δ11 ||u1||q+1+δ1,T1,h + hq+δ22 ||u2||q+1+δ2,T2,h . (4.98)

From (4.96), we notice that

||Edh(((z1, z2), η), ·)||X∗h = ||Eh(((z1, z2), η), ·)||X∗h ,

which is estimated by applying Lemma 4.5.2 with q = 0 and δ1 = δ2 = 1,

yielding to

||Eh(((z1, z2), η), ·)||X∗h . (h1 ||z1||2,Ω1 + h2 ||z2||2,Ω2)

. h (||w1||0,Ω1 + ||w2||0,Ω2) , (4.99)

where the last inequality has been obtained after applying the ellipticity property

(4.90). Then, from (4.98) and (4.99), we deduce

|T1| . h
(
hq+δ11 ||u1||q+1+δ1,T1,h + hq+δ22 ||u2||q+1+δ2,T2,h

)
. (4.100)
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ii) Bounding T2. At this point, we need to consider two cases: k ≥ 1 and k = 0.

ii.A) The case k ≥ 1. Taking into account (4.63) and the orthogonality property of

pk+1
T (4.20), we proceed as in the derivation of (4.73), and obtain

Ẽh(((u1, u2), ξ), ((ẑ1,h, ẑ2,h))) =
∑
T∈T1,h

∑
F∈FT

(πkF z1 − πkT z1,∇(u

̂

1,T − u1) · nTF )F︸ ︷︷ ︸
E1

+
∑
S∈T2,h

∑
F∈FS

(πkF z2 − πkSz2,∇(u

̂

2,S − u2) · nSF )F︸ ︷︷ ︸
E2

+
∑
T∈T1,h

jT (û1,T , ẑ1,T )︸ ︷︷ ︸
E3

+
∑
S∈T2,h

jS(û2,S, ẑ2,S)︸ ︷︷ ︸
E4

.

(4.101)

Now, taking into account (4.22) and (4.14) (with l = q ≥ 1 and t = 2), we

deduce

|E1| .
∑
T∈T1,h

hq+1+δ1
T ||u1||q+1+δ1,T ||z1||2,T . (4.102)

On the other hand, we notice that

jT (û1,T , ẑ1,T ) ≤ jT (û1,T , û1,T )1/2jT (ẑ1,T , ẑ1,T )1/2

. (hq+δ1T |u1|q+1+δ1)(hT |z1|2,T ) , (4.103)

and then we derive

|E3| .
∑
T∈T1,h

hq+1+δ1
T ||u1||q+1+δ1,T ||z1||2,T . (4.104)

Proceeding in analogous way, we find that

|E2| .
∑
T∈T2,h

hq+1+δ2
T ||u2||q+1+δ2,T ||z2||2,T , (4.105)

|E4| .
∑
T∈T2,h

hq+1+δ2
T ||u2||q+1+δ2,T ||z2||2,T . (4.106)

Now, thanks to (4.102), (4.105), (4.104), (4.106), and the elliptic regularity

property (4.90), we are able to bound
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Ẽh(((u1, u2), ξ), ((ẑ1,h, ẑ2,h))) (cf. (4.101)), and then T2, arriving to

|T2| .

 ∑
T∈T1,h

h
2(q+1+δ1)
T ||u1||2q+1+δ1,T

+
∑
T∈T2,h

h
2(q+1+δ2)
T ||u2||2q+1+δ2,T

1/2

.

(4.107)

ii.B) The case k = 0. It is not difficult to establish

(f1, π
0
T z1)T = (π0

Tf1, z1)T = (π0
Tf1 − f1, z1 − π0

T z1)T + (f1, z1)T ∀T ∈ T1,h ,

(4.108)

(f2, π
0
Sz2)S = (π0

Sf2, z2)S = (π0
Sf2 − f2, z2 − π0

Sz2)S + (f2, z2)S ∀S ∈ T2,h ,

(4.109)

(g1, π
0
F z2)F = (g1, z2)F ∀F ∈ Γ1,h ,

(4.110)

(g2, π
0
F z2)F = (g2, z2)F ∀F ∈ Γ2,h .

(4.111)

Now, taking (v1, v2) := (z1, z2) ∈ U in (4.8a), we have

(f1, z1)Ω1 + (f2, z2)Ω2 + 〈g1, γ
+
0 (z2)〉Γ1 + 〈g2, γ

+
0 (z2)〉Γ2

= (∇u1,∇z1)Ω1 + (∇u2,∇z2)Ω2 + 〈ξ, γ+
0 (z2)− γ−0 (z1)︸ ︷︷ ︸

=0

〉Γ1 ,

and from (4.108)-(4.111), we deduce that∑
T∈T1,h

(f1, π
0
T z1)T +

∑
S∈T2,h

(f2, π
0
Sz2)S +

∑
F∈Γ1,h

(g1, π
0
F z2)F +

∑
F∈Γ2,h

(g2, π
0
F z2)F

=
∑
T∈T1,h

(π0
Tf1 − f1, z1 − π0

T z1)T +
∑
S∈T2,h

(π0
Sf2 − f2, z2 − π0

Sz2)S

+ (∇u1,∇z1)Ω1 + (∇u2,∇z2)Ω2 .

(4.112)
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Then, taking into account (4.63) and (4.112), we have

Eh(((u1, u2), ξ), ((ẑ1,h, ẑ2,h), η̂h))

=
∑
T∈T1,h

[
(∇p1

T I0
Tu1,∇p1

T I0
T z1)T − (∇u1,∇z1)T

]
︸ ︷︷ ︸

E1

+
∑
S∈T2,h

[
(∇p1

SI0
Su1,∇p1

SI0
Sz1)S − (∇u2,∇z2)S

]
︸ ︷︷ ︸

E2

+
∑
T∈T1,h

jT (û1,T , ẑ1,T )︸ ︷︷ ︸
E3

+
∑
S∈T2,h

jS(û2,S, ẑ2,S)︸ ︷︷ ︸
E4

−
∑
T∈T1,h

(π0
Tf1 − f1, z1 − π0

T z1)T︸ ︷︷ ︸
E5

−
∑
S∈T2,h

(π0
Sf2 − f2, z2 − π0

Sz2)S︸ ︷︷ ︸
E6

. (4.113)

In order to bound E1, we first notice that

(∇u1,∇z1)T − (∇p1
T I0

Tu1,∇p1
T I0

T z1)T = (∇u1 −∇p1
T I0

Tu1,∇z1 −∇p1
T I0

T z1)T ,

and, after take into consideration (4.22), we deduce

|E1| .

 ∑
T∈T1,h

h
2(1+δ1)
T ||u1||21+δ1,T

1/2

|z1|2,Ω1 . (4.114)

Proceeding in similar way, we also derive

|E2| .

 ∑
S∈T2,h

h
2(1+δ2)
S ||u2||21+δ2,S

1/2

|z2|2,Ω2 . (4.115)

Next, applying (4.103) with k = 0, we obtain

|E3| .

 ∑
T∈T1,h

h
2(1+δ1)
T ||u1||21+δ1,T

1/2

|z1|2,Ω1 , (4.116)

|E4| .

 ∑
T∈T2,h

h
2(1+δ2)
T ||u2||21+δ2,T

1/2

|z2|2,Ω1 . (4.117)

For E5, we apply Cauchy-Schwarz inequality, and approximation theory, to
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have

|E5| ≤
∑
T∈T1,h

||π0
Tf1 − f1||T ||z1 − π0

T z1||T

≤
∑
T∈T1,h

(
hδ1T ||f1||δ1,T

)
(hT |z1|1,T )

.

 ∑
T∈T1,h

h
2(1+δ1)
T ||f1||2δ1,T

1/2

|z1|1,Ω1 . (4.118)

Analogously, we derive

|E6| .

 ∑
T∈T2,h

h
2(1+δ1)
T ||f2||2δ2,T

1/2

|z2|1,Ω2 . (4.119)

Then, T2 is bounded from (4.114)-(4.119). Finally, the conclusion is also

achieved in this case, thanks to (4.100) (which also holds for k = 0). We

omit further details.

�

Following the ideas given in the proof of Theorem 2.32 in [66] (see also the proof

of Theorem 6.3 in [41]), and with the help of Theorem 4.5.2, we can establish a

superconvergent estimate of the reconstructive potential error in the L2−norm. To

this end, we introduce pk+1
h uj,h ∈ L2(Ωj) such that pk+1

h uj,h|T := pk+1
T uj,T , for all

T ∈ Tj,h, for all j ∈ {1, 2} (cf. (4.19)).

Theorem 4.5.3 (L2-error estimate of the potential) Under the assumptions

that ui ∈ Hq+1+δi(Ti,h), i ∈ {1, 2}, and the elliptic regularity property (4.90), we

have, for k ≥ 1:

‖pk+1
h u1,h − u1‖0,Ω1 + ‖pk+1

h u2,h − u2‖0,Ω2

. h
(
h

2(q+δ1)
1 ||u1||2q+1+δ1,T1,h + h

2(q+δ2)
2 ||u2||2q+1+δ2,T2,h

)1/2

, (4.120)

For k = 0, assuming in addition that fi ∈ Hδi(Ti,h), for i ∈ {1, 2}, g1 ∈ P0(Γ1,h) and

g2 ∈ P0(Γ2,h), there holds

‖p1
hu1,h − u1‖0,Ω1 + ‖p1

hu2,h − u2‖0,Ω2

. h
(
h2δ1

1 ||u1||21+δ1,T1,h + h2δ2
2 ||u2||21+δ2,T2,h

)1/2

+
(
h

2(1+δ1)
1 ||f1||2δ1,T1,h + h

2(1+δ2)
2 ||f2||2δ2,T2,h

)1/2

. (4.121)
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Proof. We give a sketch of the proof, referring to [66, Theorem 2.32] for further

insight. Let, for the sake of brevity u

̂

i,h := pk+1
h IkTi,h(ui|T ) for i ∈ {1, 2}. Then, by

triangle inequality, we obtain

2∑
i=1

‖pk+1
h ui,h − ui‖0,Ωi ≤

2∑
i=1

‖ui − u

̂

i,h‖0,Ωi︸ ︷︷ ︸
T1

+
2∑
i=1

‖pk+1
h (ûi,h − ui,h)‖0,Ωi︸ ︷︷ ︸

T2

(4.122)

Using inside each element T ∈ Ti,h for i ∈ {1, 2}, the approximation properties in

Lemma 4.3.3 with q = k, it follows

T1 .
2∑
i=1

∑
T∈Ti,h

h
2(k+1+δi)
T ||ui||2k+1+δi,T

. (4.123)

Now, using the local PoincarWirtinger (1.24) and the fact
(
pk+1
T (ûi,T − ui,T ) −

π0
T (ûi,T − ui,T ), 1

)
T

= 0 for each i ∈ {1, 2}, we have.

T2
2 .

2∑
i=1

∑
T∈Ti,h

‖pk+1
T (ûi,T − ui,T )‖2

0,T

.
2∑
i=1

∑
T∈Ti,h

h2
T‖∇pk+1

T (ûi,T − ui,T )‖2
0,T︸ ︷︷ ︸

E1

+
2∑
i=1

∑
T∈Ti,h

‖π0
T (ûi,T − ui,T )‖2

0,T︸ ︷︷ ︸
E2

. (4.124)

Then, observing that, E1 . h2‖(û1,h, û2,h)− (u1,h,u2,h)‖2
a,h with Gk

T = ∇pk+1
T , (4.62)

and (4.79), we obtain

E1 . h2
(
h

2(k+δ1)
1 ‖u1‖2

k+1+δ1,T1,h + h
2(k+δ2)
2 ‖u2‖2

k+1+δ2,T2,h

)
. (4.125)

And then, by L2-stability of π0
T

E2 .
2∑
i=1

‖πkTi,hui − ui,h‖
2
0,Ωi

. (4.126)

Finally, we conclude from (4.122)-(4.125), and using (4.126) with Theorem 4.5.2. �

4.6 Computational implementation aspects

We start remarking that the condition (v1,h, 1)Ω1 + (v2,h, 1)Ω2 = 0 given in the

definition of discrete space Uk,0
h , make it difficult to find a basis. Then, we impose
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this restriction in the HHO variational formulation with the help of a Lagrange

multiplier. This procedure yields to the following equivalent discrete scheme: Find

(u1,h,u2,h, α, ξh) ∈ Uk
1,h ×Uk

2,h × R×Qk
h such that

∑
T∈T1,h

aT (u1,T ,v1,T ) + α

( ∑
T∈T1,h

(v1,T , 1)T +
∑
S∈T2,h

(v2,S, 1)S

)
+
∑
F∈Γ1,h

(v2,F − v1,F , ξF )F

+
∑
S∈T2,h

aS(u2,S,v2,S) + β

( ∑
T∈T1,h

(u1,T , 1)T +
∑
S∈T2,h

(u2,S, 1)S

)
+
∑
F∈Γ1,h

(u2,F − u1,F , λF )F

= Fh(v1,h,v2,h)−Gh(λh) ∀(v1,h,v2,h, β, λh) ∈ Uk
1,h ×Uk

2,h × R×Qk
h, (4.127)

where we rewrite (4.39) as

Fh((v1,h,v2,h)) =
∑
T∈T1,h

(f1, v1,T )T +
∑

F∈FT∩Γ1,h

(g1, v2,F )F


+
∑
S∈T2,h

(f2, v2,S)S +
∑

F∈FS∩Γ2,h

(g2, v2,F )F

 ,

=
∑
T∈T1,h

F 1
T (v1,T ) +

∑
S∈T2,h

F 2
S(v2,S), (4.128)

and

Gh(λh) =
∑
F∈Γ1,h

(λF , g)F . (4.129)

For integers l ≥ 0 and n ≥ 0, we denote by N l
n :=

 l + n

l

 the dimension of the

space polynomial in Rn, of degree at most l.

Now, given vi,h in the global discrete space Uk
i,h, we collect its components with respect

to the polynomial bases attached to the mesh cells and faces, in a global component

vector denoted by VTF(i) ∈ RNk
T (i), with

Nk
T (i) := dim(Uk

i,h) = card(Ti,h)×Nk
d + card(Fi,h)×Nk

d−1 for i ∈ {1, 2}. (4.130)

Here, Nk
d and Nk

d−1 denote the dimension of the corresponding local cell and face

bases (d represents the space dimension). We can decompose the global vector of

coefficients as

VTF(i) =

 VT (i)

VF(i)

 , (4.131)
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where the vectors VT (i) and VF(i) collect the coefficients associated to element-based

and face-based DOFS for each subdomain, respectively.

Also, the restriction of VTF(i) over their components associated to T , ∂T and S, ∂S

are denoted by the local component vectors VTFT ∈ RNk
T and VSFS ∈ RNk

S , respectively.

In similar way, we can split these local vectors as

VTFT =

 VT

VFT

 and VSFS =

 VS

VFS

 , (4.132)

with VT , VFT , and VS, VFS , collecting the coefficients associated to the bases of the

elements T , S, and their linked faces, respectively.

Expressing the functions in the discrete formulation (4.127) as a linear combination

of its respective basis functions, we obtain the following problem: Find

(UTF(1), UTF(2), α, ξ) ∈ RNk
T (1) × RNk

T (2) × R× RNk
F such that∑

T∈T1,h

V t
TFTA(T )UTFT + α

( ∑
T∈T1,h

V t
TMT +

∑
S∈T2,h

V t
SMS

)
+
∑
F∈Γ1,h

[V 2
F − V 1

F ]tMFF ξF

+
∑
S∈T2,h

V t
SFSA(S)USFS + β

( ∑
T∈T1,h

M t
TUT +

∑
S∈T2,h

M t
SUS

)
+
∑
F∈Γ1,h

λtFMFF [U2
F − U1

F ]

=
∑
T∈T1,h

V t
TFTF (T ) +

∑
S∈T2,h

V t
SFSF (S)−

∑
F∈Γ1,h

λtFGF , (4.133)

for all (VTF(1), VTF(2), β, λ) ∈ RNk
T (1) × RNk

T (2) × R × RNk
F , where

Nk
F := card(Γ1,h) × Nk

d−1. Here, the local matrices A(T ), A(S) represent the

local bilinear forms aT y aS respectively. The local vector F (T ), F (S) represent the

linear functionals F 1
T and F 2

S in (4.128) respectively, and GF represents the linear

functional (λF , g)F in (4.129). The vector MT ∈ RNk
d collects the average of the local

base functions on T and for each F ∈ Γ1,h, we define MFF := [(ψi, ψj)]1≤i,j≤Nk
d−1

,

where ψi represent the face polynomials on F .

In order to eliminate the element-based DOFS (by static condensation), we divide in

blocks the following matrices

A(T ) =

 ATT ATFT

AtTFT AFTFT

 , F (T ) =

 FT

FFT

 , (4.134)
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A(S) =

 ASS ASFS

AtSFS AFSFS

 , F (S) =

 FS

FFS

 , (4.135)

Arranging the equation (4.133) in a matrix form, where we collect/assemble the

submatrices ATT , ATFT , AFTFT , FT , FFT in ATT (1), ATF(1), AFF(1), FT (1),

FF(1), and ASS, ASFS , AFSFS , FS, FFS in ATT (2), ATF(2), AFF(2), FT (2), FF(2),

respectively, we obtain the linear global system corresponding to the discrete problem

(4.127):

ATT (1) 0 ATF(1) 0 MT (1) 0

0 ATT (2) 0 ATF(2) MT (2) 0

AtTF(1) 0 AFF(1) 0 0 −MΓΓ

0 AtTF(2) 0 AFF(2) 0 MΓΓ

M t
T (1) M t

T (2) 0 0 0 0

0 0 −M t
ΓΓ M t

ΓΓ 0 0





UT (1)

UT (2)

UF(1)

UF(2)

α

ξΓ



=



FT (1)

FT (2)

FF(1)

FF(2)

0

−GΓ



,

(4.136)

where MT (1), MT (2), GΓ and MΓΓ collect the vectors MT , MS, GF and the matrices

MFF , respectively. UT (1), UT (2), UF(1), UF(2) and ξΓ assemble the coefficients of

the local unknowns UT , US, UFT , UFS and ξF , respectively. Now, we compact the

system (4.136), as

ATT ATF MT 0

AtTF AFF 0 MFΓ

M t
T 0 0 0

0 M t
FΓ 0 0





UT

UF

α

ξΓ


=



FT

FF

0

−GΓ


. (4.137)

Then, computing the Schur complement of the block ATT of the system (4.137), we
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deduce another linear system, on the skeleton, as follows:

AFF − AtTFA−1
TTATF −AtTFA−1

TTMT MFΓ

−M t
TA
−1
TTATF −M t

TA
−1
TTMT 0

M t
FΓ 0 0





UF

α

ξΓ


=



FF − AtTFA−1
TT FT

−M t
TA
−1
TT FT

−GΓ


,

(4.138)

Instead of solving the global system (4.137), whose size is

2∑
i=1

[
card(Ti,h)×Nk

d + card(Fi,h)×Nk
d−1

]
+Nk

F + 1, (4.139)

we solve the reduced system (4.138), whose DOF corresponds to the skeleton of the

mesh, then its size is

card(F1,h)×Nk
d−1 + card(F2,h)×Nk

d−1 +Nk
F + 1, (4.140)

Therefore, we obtain, UF , the vector of coefficients of variables polynomials faces

and ξΓ, the vector of coefficients of the auxiliary variable transmission ξ. We remark

that the faces on transmission boundary are counted three times, two times for the

skeleton mesh of each subdomain, and one more for the transmission condition.

Denoting by ←−−−
T∈Th

the usual assembling procedure based on a global DOF map,

we can assemble all matrix products appearing in (4.138) directly from their local

counterparts for each T and S of their subdomains, as

FF − AtTFA−1
TT FT ←−−−

T∈Th
FFT − AtTFTA

−1
TTFT , AtTFA

−1
TTMT ←−−−

T∈Th
AtTFTA

−1
TTMT ,

AFF − AtTFA−1
TTATF ←−−−

T∈Th
AFTFT − AtTFTA

−1
TTATFT ,

M t
TA
−1
TTMT =

∑
T∈T1,h

M t
TA
−1
TTMT +

∑
S∈T2,h

M t
SA
−1
SSMS,

and M t
TA
−1
TTBT =

∑
T∈T1,h

M t
TA
−1
TTBT +

∑
S∈T2,h

M t
SA
−1
SSBS

Besides, from the static condensation (Schur complement), we can recover the global

vector UT , obtaining

UT = A−1
TT

[
FT − ÂTF ÛF

]
. (4.141)

Letting α = 0 in ÛF , yields

UT = A−1
TT

(
FT − ATFUF

)
, (4.142)
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After a post-processing procedure, we obtain the local vectors UT and US in each

subdomain, as follows

UT = A−1
TT

(
FT − ATFTUFT

)
, US = A−1

SS

(
FS − ASFSUFS

)
. (4.143)

4.7 Numerical results

In this section we present a comprehensive set of numerical tests to assess the

theoretical results we have obtained. In all cases, we consider a family of uniform

simplicial meshes, piecewise polynomials of degree at most k, with k ∈ {0, 1, 2, 3, 4}

to approximate the exact solution. The experimental order of convergence (r), is

computed as

r = log(eT /eT̃ )/ log(hT /hT̃ ) ,

where eT and eT̃ are the errors associated to the corresponding variable considering

two consecutive meshes T and T̃ , respectively.

The numerical tests have been run considering a modification of the code used

in [39], which is based, in turn, on the one developed by Di Pietro in [70, 75].

The implementation of local gradient reconstruction operator (4.18), L2-orthogonal

projectors πkT and πkF , are based on the linear algebra facilities (robust Cholesky

factorization) provided by the Eigen3 library [112]. The reduced system on the

skeleton (4.138) is solved by using SuperLU [63] through the PETSc 3.4 interface

[14].

From here on, given (u1, u2, ξ) and (u1,h,u2,h, ξh) the unique solutions of (4.8) and

(4.38), respectively, we introduce the potential error as

• Energy norm of the potential error: ||(û1,h, û2,h)− (u1,h,u2,h)||a,h,

• L2-norm of the flux error:

(
||∇u1 −∇hp

k+1
h u1,h||20,Ω1

+ ||∇u2 −∇hp
k+1
h u2,h||20,Ω2

)1/2
,

• Discrete norm of the projection of the trace error: ||ξ̂h − ξh||Γ1,h
,
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• L2- norm of the projection of the trace error: ||ξ̂h − ξh||0,Γ1,

• L2-norm of the potential error:(
||u1,h − πkT1,hu1||20,Ω1

+ ||u2,h − πkT2,hu2||20,Ω2

)1/2

,

• L2-norm of the reconstructive potential error:

(
||u1 − pk+1

h u1,h||20,Ω1
+ ||u2 − pk+1

h u2,h||20,Ω2

)1/2
,

where ûi,h := IkTi,hui ∈ Uk
Ti,h, for i ∈ {1, 2}.

4.7.1 Example 1: Regular test case

We solve a transmission problem with subdomains Ω1 := (0, 1)2 and Ω2 := (−1, 2)2 \

Ω1 (see Figure 4.6), such that the exact solution is given by

u1(x, y) = (ex−1)(x−1)(ey−1)(y−1)−e2 +5e− 25

4
, u2(x, y) = sin(πx) sin(πy).

(4.144)

On the transmission boundary, we have nonhomogeneous jump of trace of their

potentials, and also nonhomogeneous jump of normal trace of their fluxes. Table

4.1 shows the histories of convergence of the energy norm of the potential error and

the flux error vs meshsize, noticing that they converge at the optimal orders k + 1,

when the exact solution is approximated by piecewise polynomials of degree at most

k ∈ {0, ..., 4}. On the other hand, in Table 4.2, we show the corresponding history of

convergence of the auxiliary unknown ξ, considering the discrete trace (4.29) and the

standard L2−norms. We observe convergence in both two cases, for k ∈ {0, ..., 4},

with orders k + 3/2 and k + 1, respectively. In Table 4.3, we include the histories of

convergence in L2−norm of the potential and reconstructive potential errors, which

behave as O(hk+2). We remark that all these results are in agreement with Theorems

4.5.1, 4.5.2, and 4.5.3, as well as Remark 4.5.1, considering δ1 = δ2 = 1, and they

can also be observed in Figures 4.3, 4.4 and 4.5. In the case of ξ, we notice that rate

of convergence in || · ||Γ1,h
is 1/2 faster than the predicted by Theorem 4.5.1.
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Figure 4.3: Rates of convergence of the (Left) energy norm of the potential error,

and (Righ) flux error (Example 1)

(a) ||ξ̂h − ξh||Γ1,h
vs. h (b) ||ξ̂h − ξh||0,Γ1

vs. h

Figure 4.4: Rates of convergence of the Lagrange multiplier considering the (a)

Discrete trace norm || · ||Γ1,h
, and (b) Standard L2−norm (Example 1)

Figure 4.5: Rates of convergence of the L2-norm of the (Left) potential error, and

(Right) reconstructive potential error (Example 1).
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Figure 4.6: First two simplicial meshes for Example 1.

Table 4.1: Histories of convergence of the energy norm of the potential error and

L2-norm of the flux error, considering k ∈ {0, 1, 2, 3, 4} (Example 1)

Energy norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 1.16e+00 4.68e-01 5.85e-01 1.05e-01 1.27e-01

7.32e-02 7.21e-01 0.817 2.96e-01 0.790 9.15e-02 3.187 2.03e-02 2.835 3.59e-03 6.127

3.66e-02 3.91e-01 0.883 8.50e-02 1.798 1.31e-02 2.803 1.36e-03 3.903 1.11e-04 5.010

1.83e-02 2.00e-01 0.970 2.23e-02 1.928 1.70e-03 2.946 8.65e-05 3.970 3.38e-06 5.041

9.15e-03 1.00e-01 0.993 5.67e-03 1.978 2.15e-04 2.985 5.43e-06 3.993 1.04e-07 5.021

4.58e-03 5.02e-02 1.000 1.42e-03 1.997 2.69e-05 3.001 3.40e-07 4.005 3.24e-09 5.015

L2-norm of the flux error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 7.23e-02 2.82e-01 1.81e-01 2.80e-02 1.57e-02

7.32e-02 2.76e-01 -2.302 1.13e-01 1.567 1.89e-02 3.883 6.74e-03 2.448 8.31e-04 5.047

3.66e-02 1.34e-01 1.047 2.54e-02 2.158 1.38e-03 3.774 4.13e-04 4.030 4.18e-05 4.314

1.83e-02 6.59e-02 1.021 4.37e-03 2.540 1.04e-04 3.727 2.44e-05 4.080 1.51e-06 4.795

9.15e-03 3.28e-02 1.006 7.35e-04 2.572 9.25e-06 3.492 1.49e-06 4.034 4.92e-08 4.937

4.58e-03 1.64e-02 1.003 1.44e-04 2.360 9.57e-07 3.278 9.23e-08 4.019 1.56e-09 4.984
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Table 4.2: Histories of convergence of the L2−projection of ξ − ξh in || · ||Γ1,h
and

|| · ||0,Γ1 norms, for k ∈ {0, 1, 2, 3, 4} (Example 1)

‖ξ̂h − ξh‖Γ1,h

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 3.94e-02 2.56e-01 6.39e-01 9.66e-02 1.67e-01

7.32e-02 1.40e-01 -2.174 2.01e-01 0.419 5.89e-02 4.096 2.49e-02 2.329 3.26e-03 6.760

3.66e-02 2.87e-02 2.285 4.10e-02 2.291 5.68e-03 3.376 1.02e-03 4.613 8.82e-05 5.210

1.83e-02 5.48e-03 2.388 7.26e-03 2.499 5.13e-04 3.470 4.43e-05 4.523 2.02e-06 5.445

9.15e-03 1.00e-03 2.454 1.27e-03 2.518 4.54e-05 3.497 1.96e-06 4.501 4.47e-08 5.501

4.58e-03 1.79e-04 2.487 2.22e-04 2.519 4.01e-06 3.507 8.65e-08 4.506 1.05e-09 5.417

‖ξ̂h − ξh‖0,Γ1

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 3.94e-02 2.56e-01 6.39e-01 9.66e-02 1.67e-01

7.32e-02 1.98e-01 -2.769 2.84e-01 -0.177 8.34e-02 3.500 3.52e-02 1.734 4.62e-03 6.164

3.66e-02 5.74e-02 1.785 8.20e-02 1.791 1.14e-02 2.876 2.04e-03 4.113 1.76e-04 4.710

1.83e-02 1.55e-02 1.888 2.05e-02 1.999 1.45e-03 2.970 1.25e-04 4.023 5.73e-06 4.945

9.15e-03 4.00e-03 1.954 5.07e-03 2.018 1.82e-04 2.997 7.82e-06 4.001 1.79e-07 5.001

4.58e-03 1.01e-03 1.986 1.25e-03 2.019 2.27e-05 3.006 4.89e-07 4.005 5.95e-09 4.916

188



Table 4.3: Histories of convergence of L2-norm of the potential and reconstructive

potential errors, considering k ∈ {0, 1, 2, 3, 4} (Example 1)

L2-norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 2.59e+00 6.82e-01 5.52e-01 8.61e-02 1.11e-01

7.32e-02 6.65e-01 2.338 1.61e-01 2.477 3.93e-02 4.542 9.08e-03 3.864 1.52e-03 7.369

3.66e-02 1.60e-01 2.053 1.93e-02 3.064 2.90e-03 3.759 3.16e-04 4.848 2.35e-05 6.016

1.83e-02 3.97e-02 2.013 2.23e-03 3.111 1.92e-04 3.918 1.02e-05 4.956 3.59e-07 6.032

9.15e-03 9.90e-03 2.003 2.69e-04 3.054 1.22e-05 3.976 3.20e-07 4.988 5.54e-09 6.017

4.58e-03 2.47e-03 2.004 3.32e-05 3.022 7.66e-07 3.999 1.00e-08 5.004 8.68e-11 6.005

L2-norm of the reconstructive potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 2.66e+00 7.52e-01 5.64e-01 8.86e-02 1.11e-01

7.32e-02 7.15e-01 2.259 1.70e-01 2.559 3.99e-02 4.551 9.12e-03 3.906 1.52e-03 7.369

3.66e-02 1.71e-01 2.067 2.03e-02 3.065 2.93e-03 3.768 3.17e-04 4.849 2.36e-05 6.015

1.83e-02 4.22e-02 2.017 2.34e-03 3.116 1.93e-04 3.920 1.02e-05 4.957 3.60e-07 6.031

9.15e-03 1.05e-02 2.004 2.81e-04 3.057 1.23e-05 3.977 3.21e-07 4.988 5.57e-09 6.016

4.58e-03 2.63e-03 2.004 3.47e-05 3.023 7.72e-07 4.000 1.01e-08 5.005 8.71e-11 6.006

4.7.2 Example 2: Another regular test case

We solve (4.1) with subdomains Ω1 := (1, 2)2 and Ω2 := (0, 3)2 \ Ω1, and the data

are such that the exact solution is

u1(x, y) = sin(πx) sin(πy) − 4

π2
, u2(x, y) = cos(πx) cos(πy). (4.145)

We notice that in this case, g1 and g2 are nonhomogeneous on Γ1. Table 4.4 shows

the history of convergence of the energy norm of the potential error and the flux

error, when approximating the exact solution with piecewise polynomials of degree at

most k ∈ {0, 1, 2, 3, 4}. In both two cases, we observe that the rate of convergence

is k + 2, as predicted by Theorem 4.5.1, with δ1 and δ2 close to 1. Concerning the
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auxiliary transmission unknown ξ, in Table 4.6 we report the corresponding histories

of convergence of the projection of ξ − ξh in a weighted L2− norm as well as the

usual L2−norm, for comparison. We notice that the rate of convergence of ξ in the

weighted norm is close to k+ 3/2 (which is 1/2 faster than the predicted by Theorem

4.5.1). Also, we observe an order of convergence k + 1, for ξ in the usual L2-norm,

which is in agreement with Remark 4.5.1. The histories of convergence of L2−norm

of the potential and the reconstructive potential errors, are provided in Table 4.5.

We notice that the rates of convergence for these errors are k + 2, in agreement

with Theorems 4.5.2 and 4.5.3. Figure 4.7 shows the first two initial meshes of the

domain, considered in this numerical simulation, while Figures 4.9, 4.8 and 4.10

resume the information given in Tables 4.4,4.6 and 4.5, respectively.

Figure 4.7: First two simplicial meshes for Example 2

Figure 4.8: Rates of convergence of the Lagrange multiplier considering the (Left)

Discrete trace norm || · ||Γ1,h
, and (Right) Standard L2−norm (Example 2)
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Figure 4.9: Rates of convergence of the (Left) energy norm of the potential error,

and (Right) flux error (Example 2)

Table 4.4: Histories of convergence of the energy norm of the potential error and

L2-norm of the flux error, considering k ∈ {0, 1, 2, 3, 4} (Example 2)

Energy norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 8.74e-01 1.00e+00 6.11e-01 1.14e-01 1.24e-01

7.32e-02 7.20e-01 0.334 2.94e-01 2.104 9.07e-02 3.276 2.01e-02 2.981 3.56e-03 6.102

3.66e-02 3.91e-01 0.882 8.44e-02 1.801 1.30e-02 2.803 1.35e-03 3.899 1.12e-04 4.996

1.83e-02 1.99e-01 0.970 2.22e-02 1.926 1.69e-03 2.941 8.63e-05 3.967 3.39e-06 5.039

9.15e-03 1.00e-01 0.993 5.65e-03 1.975 2.14e-04 2.982 5.43e-06 3.991 1.04e-07 5.023

4.58e-03 5.02e-02 1.000 1.42e-03 1.995 2.69e-05 2.999 3.40e-07 4.004 3.26e-09 5.010

L2-norm of the flux error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 7.45e-01 3.00e-01 1.53e-01 2.90e-02 2.51e-02

7.32e-02 2.75e-01 1.716 1.09e-01 1.732 1.95e-02 3.532 6.73e-03 2.507 8.89e-04 5.738

3.66e-02 1.33e-01 1.042 2.50e-02 2.126 1.62e-03 3.594 4.19e-04 4.007 4.14e-05 4.424

1.83e-02 6.58e-02 1.019 4.54e-03 2.463 1.30e-04 3.637 2.47e-05 4.085 1.50e-06 4.792

9.15e-03 3.28e-02 1.006 7.92e-04 2.519 1.15e-05 3.496 1.50e-06 4.041 4.90e-08 4.931

4.58e-03 1.64e-02 1.003 1.54e-04 2.367 1.13e-06 3.354 9.26e-08 4.023 1.56e-09 4.979
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Figure 4.10: Rates of convergence of the L2-norm of the (Left) potential error, and

(Right) reconstructive potential error (Example 2)

Table 4.5: Histories of convergence of L2-norm of the potential and reconstructive

potential errors, considering k ∈ {0, 1, 2, 3, 4} (Example 2)

L2-norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 2.81e+01 1.41e+00 6.02e-01 6.80e-02 1.11e-01

7.32e-02 7.05e-01 6.331 1.67e-01 3.671 4.17e-02 4.589 9.33e-03 3.413 1.57e-03 7.321

3.66e-02 1.69e-01 2.062 2.02e-02 3.048 3.01e-03 3.792 3.25e-04 4.844 2.45e-05 6.007

1.83e-02 4.17e-02 2.015 2.35e-03 3.106 1.99e-04 3.921 1.05e-05 4.951 3.74e-07 6.033

9.15e-03 1.04e-02 2.004 2.82e-04 3.059 1.26e-05 3.975 3.32e-07 4.985 5.76e-09 6.018

4.58e-03 2.60e-03 2.004 3.46e-05 3.027 7.94e-07 3.998 1.04e-08 5.003 8.99e-11 6.012

L2-norm of the reconstructive potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 5.39e+01 1.46e+00 6.13e-01 7.14e-02 1.12e-01

7.32e-02 7.57e-01 7.331 1.75e-01 3.646 4.23e-02 4.595 9.37e-03 3.490 1.58e-03 7.321

3.66e-02 1.80e-01 2.075 2.12e-02 3.050 3.04e-03 3.799 3.26e-04 4.845 2.45e-05 6.006

1.83e-02 4.43e-02 2.019 2.45e-03 3.109 2.00e-04 3.923 1.05e-05 4.952 3.75e-07 6.032

9.15e-03 1.10e-02 2.005 2.94e-04 3.061 1.27e-05 3.975 3.33e-07 4.985 5.79e-09 6.018

4.58e-03 2.76e-03 2.004 3.61e-05 3.029 8.00e-07 3.999 1.04e-08 5.003 9.03e-11 6.012
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Table 4.6: Histories of convergence of the L2−projection of ξ − ξh in || · ||Γ1,h
and

|| · ||0,Γ1 norms, for k ∈ {0, 1, 2, 3, 4} (Example 2)

‖ξ̂h − ξh‖Γ1,h

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 3.38e-02 5.43e-01 1.72e-01 1.43e-01 3.04e-01

7.32e-02 2.08e-01 -3.127 3.16e-01 0.933 8.74e-02 1.164 3.53e-02 2.399 4.99e-03 7.061

3.66e-02 4.36e-02 2.258 7.33e-02 2.107 9.84e-03 3.151 1.53e-03 4.527 8.52e-05 5.870

1.83e-02 8.21e-03 2.408 1.48e-02 2.306 9.09e-04 3.435 6.87e-05 4.478 1.56e-06 5.772

9.15e-03 1.48e-03 2.471 2.75e-03 2.432 8.09e-05 3.490 3.06e-06 4.490 3.22e-08 5.600

4.58e-03 2.63e-04 2.496 4.92e-04 2.485 7.16e-06 3.505 1.35e-07 4.504 1.30e-09 4.636

‖ξ̂h − ξh‖0,Γ1

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 3.38e-02 5.43e-01 1.72e-01 1.43e-01 3.04e-01

7.32e-02 2.95e-01 -3.722 4.46e-01 0.337 1.24e-01 0.569 4.99e-02 1.803 7.05e-03 6.466

3.66e-02 8.71e-02 1.758 1.47e-01 1.607 1.97e-02 2.651 3.06e-03 4.027 1.70e-04 5.370

1.83e-02 2.32e-02 1.908 4.19e-02 1.806 2.57e-03 2.935 1.94e-04 3.978 4.41e-06 5.272

9.15e-03 5.92e-03 1.971 1.10e-02 1.932 3.24e-04 2.990 1.22e-05 3.990 1.29e-07 5.100

4.58e-03 1.49e-03 1.995 2.78e-03 1.984 4.05e-05 3.004 7.66e-07 4.003 7.36e-09 4.135

4.7.3 Example 3: A numerical singularity

We solve transmission problem (4.1), considering Ω1 := (−1/2, 1/2)2 and Ω2 :=

(−2, 2)2 \ Ω1, with given data such that the exact solution is

u1(x, y) =
xy

(x− 0.55)2 + y2
, u2(x, y) =

x− y
x2 + y2

. (4.146)

We pointwise that in this case, u1 presents a singularity at (0.55, 0), which is close to

Γ1. For this example, we consider two families of simplicial meshes: one conforming

mesh and the other nonconforming, with hanging nodes just on Γ1. We emphasize

that the latter is not covered by the current theory, so our aim is to check the

robustness of our scheme in this situation.
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4.7.3.1 Results when solving using conforming meshes

From Tables 4.7, 4.9 and 4.8, we observe that the method converges at the optimal

rates of convergence, in agreement with Theorems 4.5.1, 4.5.2 and 4.5.3, and

Remark 4.5.1. Figure 4.11 shows the first two conforming meshes, considered in

this situation, while in Figure 4.13 we display the rates of convergence of energy

norm of the potential error and L2-norm of the flux error. Moreover, the rates of

convergence of ξ̂h − ξh in || · ||Γ1,h
and || · ||0,Γ1 norms, are shown in Figure 4.12.

Information contained in Table 4.8 is reported in Figure 4.14.

Figure 4.11: First two conforming meshes for Example 3.

(a) ||ξ̂h − ξh||Γ1,h
vs. h (b) ||ξ̂h − ξh||0,Γ1

vs. h

Figure 4.12: Rates of convergence of the Lagrange multiplier considering the (a)

Discrete trace norm || · ||Γ1,h
, and (b) Standard L2−norm (Example 3, conforming

meshes)
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Figure 4.13: Rates of convergence of the (Left) energy norm of the potential error,

and (Right) flux error (Example 3, conforming meshes)

Table 4.7: Histories of convergence of the energy norm of the potential error and

L2-norm of the flux error, considering k ∈ {0, 1, 2, 3, 4} (Ex3, conforming meshes)

Energy norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.16e-01 7.57e-01 1.85e+00 1.87e+00 1.22e+00 6.09e-01

1.10e-01 1.01e+00 -0.419 1.16e+00 0.689 5.87e-01 1.718 3.59e-01 1.814 4.43e-01 0.472

5.49e-02 6.46e-01 0.635 4.09e-01 1.500 2.60e-01 1.170 2.89e-01 0.311 1.86e-01 1.249

2.75e-02 3.68e-01 0.816 1.76e-01 1.221 1.57e-01 0.730 6.79e-02 2.095 2.63e-02 2.828

1.37e-02 2.32e-01 0.662 1.01e-01 0.798 3.47e-02 2.166 7.69e-03 3.127 1.65e-03 3.978

6.86e-03 1.28e-01 0.861 3.22e-02 1.650 5.29e-03 2.721 7.10e-04 3.444 8.89e-05 4.220

3.43e-03 6.60e-02 0.952 8.77e-03 1.878 7.32e-04 2.854 4.91e-05 3.854 3.07e-06 4.856

L2-norm of the flux error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.16e-01 7.04e-01 1.01e+00 8.45e-01 6.18e-01 3.88e-01

1.10e-01 9.90e-01 -0.505 6.79e-01 0.582 3.34e-01 1.375 2.33e-01 1.446 1.42e-01 1.490

5.49e-02 6.36e-01 0.637 2.80e-01 1.274 1.62e-01 1.046 8.60e-02 1.433 5.29e-02 1.419

2.75e-02 3.61e-01 0.821 1.33e-01 1.081 6.23e-02 1.378 2.60e-02 1.729 9.36e-03 2.505

1.37e-02 2.28e-01 0.656 5.26e-02 1.328 1.20e-02 2.364 3.71e-03 2.797 6.98e-04 3.725

6.86e-03 1.26e-01 0.859 1.41e-02 1.907 1.56e-03 2.949 2.82e-04 3.724 3.77e-05 4.221

3.43e-03 6.51e-02 0.951 3.27e-03 2.107 1.87e-04 3.062 1.98e-05 3.830 1.49e-06 4.659
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Figure 4.14: Rates of convergence of the L2-norm of the (Left) potential error, and

(Right) reconstructive potential error (Example 3, conforming meshes)

Table 4.8: Histories of convergence of L2-norm of the potential and reconstructive

potential errors, considering k ∈ {0, 1, 2, 3, 4} (Example 3, conforming meshes)

L2-norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.16e-01 5.06e-01 6.75e-01 6.25e-01 3.30e-01 1.24e-01

1.10e-01 4.61e-01 0.138 2.17e-01 1.679 9.01e-02 2.870 4.26e-02 3.036 6.30e-02 1.001

5.49e-02 1.29e-01 1.830 3.40e-02 2.672 1.76e-02 2.348 2.28e-02 0.900 1.29e-02 2.276

2.75e-02 2.13e-02 2.605 5.51e-03 2.631 6.56e-03 1.430 2.41e-03 3.250 8.32e-04 3.970

1.37e-02 5.27e-03 2.008 1.91e-03 1.521 7.08e-04 3.195 1.15e-04 4.367 2.63e-05 4.959

6.86e-03 1.41e-03 1.907 2.94e-04 2.706 5.16e-05 3.786 6.16e-06 4.229 7.34e-07 5.172

3.43e-03 3.74e-04 1.912 3.73e-05 2.978 3.55e-06 3.861 2.21e-07 4.804 1.24e-08 5.893

L2-norm of the reconstructive potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.16e-01 7.01e-01 7.13e-01 6.30e-01 3.32e-01 1.25e-01

1.10e-01 5.96e-01 0.238 2.33e-01 1.659 9.24e-02 2.846 4.35e-02 3.013 6.31e-02 1.011

5.49e-02 1.83e-01 1.699 3.83e-02 2.598 1.88e-02 2.292 2.29e-02 0.924 1.30e-02 2.277

2.75e-02 3.96e-02 2.217 7.31e-03 2.394 6.65e-03 1.502 2.42e-03 3.248 8.35e-04 3.969

1.37e-02 1.06e-02 1.884 2.14e-03 1.766 7.16e-04 3.197 1.16e-04 4.359 2.64e-05 4.957

6.86e-03 2.81e-03 1.924 3.22e-04 2.735 5.22e-05 3.786 6.20e-06 4.237 7.37e-07 5.173

3.43e-03 7.23e-04 1.959 4.07e-05 2.985 3.59e-06 3.864 2.22e-07 4.805 1.24e-08 5.892
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Table 4.9: Histories of convergence of the L2−projection of ξ − ξh in || · ||Γ1,h
and

|| · ||0,Γ1 norms, for k ∈ {0, 1, 2, 3, 4} (Example 3, conforming meshes)

‖ξ̂h − ξh‖Γ1,h

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.16e-01 3.11e+00 8.67e+00 9.49e+00 6.14e+00 2.87e+00

1.10e-01 4.23e+00 -0.457 5.52e+00 0.668 2.74e+00 1.842 1.27e+00 2.330 2.11e+00 0.457

5.49e-02 2.68e+00 0.658 1.66e+00 1.732 8.86e-01 1.623 1.36e+00 -0.097 8.49e-01 1.309

2.75e-02 1.09e+00 1.299 4.01e-01 2.052 6.98e-01 0.346 2.90e-01 2.239 9.73e-02 3.134

1.37e-02 3.91e-01 1.476 2.85e-01 0.489 1.32e-01 2.391 2.46e-02 3.539 6.48e-03 3.888

6.86e-03 1.20e-01 1.708 7.96e-02 1.845 1.38e-02 3.258 2.01e-03 3.622 2.18e-04 4.906

3.43e-03 2.89e-02 2.054 1.70e-02 2.225 1.45e-03 3.253 1.14e-04 4.135 6.66e-06 5.030

‖ξ̂h − ξh‖0,Γ1

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.16e-01 4.40e+00 1.23e+01 1.34e+01 8.68e+00 4.06e+00

1.10e-01 8.47e+00 -0.970 1.10e+01 0.154 5.47e+00 1.328 2.55e+00 1.817 4.22e+00 -0.056

5.49e-02 7.58e+00 0.159 4.69e+00 1.234 2.51e+00 1.124 3.85e+00 -0.595 2.40e+00 0.810

2.75e-02 4.37e+00 0.797 1.60e+00 1.551 2.79e+00 -0.156 1.16e+00 1.738 3.89e-01 2.633

1.37e-02 2.21e+00 0.979 1.61e+00 -0.008 7.46e-01 1.894 1.39e-01 3.042 3.67e-02 3.391

6.86e-03 9.59e-01 1.207 6.37e-01 1.344 1.11e-01 2.757 1.61e-02 3.121 1.74e-03 4.405

3.43e-03 3.27e-01 1.554 1.93e-01 1.725 1.64e-02 2.753 1.29e-03 3.635 7.54e-05 4.530

4.7.3.2 Results when solving with meshes having hanging nodes only on

Γ1

The purpose here is to exhibit the robustness of the method when a family of meshes

with hanging nodes only on Γ1 is considered. We emphasize that this case is not

covered by the current analysis. From Tables 4.10, 4.12 and 4.11, we observe that

the different errors we have considered, go to zero at the optimal rates of convergence

as indicated in Theorems 4.5.1, 4.5.2 and 4.5.3, as well as in Remark 4.5.1. Figure

4.7 shows the first two initial meshes (with hanging nodes on Γ1) of the domain, to
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perform this numerical simulation., In addition, Figures 4.17, 4.16 and 4.18, resume

the information given in Tables 4.10, 4.12 and 4.11, respectively. This gives us

numerical evidence that the approach can be extended to deal, at least, with hanging

nodes on Γ1. This could be the subject of future work.

Figure 4.15: First two meshes with hanging nodes on Γ1

(a) ||ξ̂h − ξh||Γ1,h
vs. h (b) ||ξ̂h − ξh||0,Γ1 vs. h

Figure 4.16: Rates of convergence of the Lagrange multiplier considering the (a)

Discrete trace norm || · ||Γ1,h
, and (b) Standard L2−norm (Example 3, nonconforming

meshes)
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Figure 4.17: Rates of convergence of the (Left) energy norm of the potential error,

and (Right) flux error (Example 3, nonconforming meshes)

Table 4.10: Histories of convergence of the energy norm of the potential error and

L2-norm of the flux error, using meshes with hanging nodes on Γ1 (Example 3)

Energy norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.16e-01 7.19e-01 1.73e+00 1.75e+00 1.17e+00 6.06e-01

1.10e-01 9.78e-01 -0.456 1.13e+00 0.639 5.70e-01 1.661 3.52e-01 1.779 4.12e-01 0.574

5.49e-02 6.31e-01 0.630 4.01e-01 1.486 2.53e-01 1.172 2.69e-01 0.390 1.77e-01 1.217

2.75e-02 3.64e-01 0.795 1.76e-01 1.193 1.48e-01 0.771 6.52e-02 2.048 2.62e-02 2.762

1.37e-02 2.32e-01 0.646 9.87e-02 0.829 3.35e-02 2.133 7.70e-03 3.066 1.60e-03 4.013

6.86e-03 1.28e-01 0.862 3.17e-02 1.642 5.23e-03 2.687 7.04e-04 3.458 8.81e-05 4.189

3.43e-03 6.61e-02 0.952 8.69e-03 1.868 7.25e-04 2.849 4.89e-05 3.850 3.05e-06 4.853

L2-norm of the flux error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.59e-01 5.68e-01 8.38e-01 7.48e-01 5.84e-01 3.76e-01

3.30e-01 8.82e-01 -0.637 6.51e-01 0.365 3.30e-01 1.183 2.34e-01 1.322 1.44e-01 1.386

1.65e-01 5.70e-01 0.630 2.73e-01 1.252 1.60e-01 1.044 8.57e-02 1.449 5.14e-02 1.487

8.24e-02 3.44e-01 0.728 1.33e-01 1.042 5.97e-02 1.420 2.58e-02 1.728 9.04e-03 2.502

4.12e-02 2.28e-01 0.591 5.16e-02 1.360 1.18e-02 2.340 3.63e-03 2.830 7.03e-04 3.684

2.06e-02 1.26e-01 0.857 1.40e-02 1.882 1.57e-03 2.912 2.79e-04 3.702 3.74e-05 4.233

1.03e-02 6.52e-02 0.951 3.29e-03 2.090 1.87e-04 3.064 1.96e-05 3.827 1.49e-06 4.652
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Figure 4.18: Rates of convergence of the L2-norm of the (Left) potential error, and

(Right) reconstructive potential error (Example 3, nonconforming meshes)

Table 4.11: Histories of convergence of L2-norm of the potential and reconstructive

potential errors, using meshes with hanging nodes (Example 3)

L2-norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.59e-01 4.53e-01 3.62e-01 2.97e-01 1.79e-01 8.76e-02

3.30e-01 4.56e-01 -0.009 1.83e-01 0.990 7.28e-02 2.030 3.50e-02 2.362 3.59e-02 1.291

1.65e-01 1.23e-01 1.886 2.86e-02 2.676 1.16e-02 2.656 1.29e-02 1.439 9.20e-03 1.964

8.24e-02 1.95e-02 2.654 5.10e-03 2.483 3.88e-03 1.572 1.73e-03 2.891 8.05e-04 3.508

4.12e-02 5.46e-03 1.837 1.37e-03 1.890 5.43e-04 2.837 1.16e-04 3.907 2.06e-05 5.288

2.06e-02 1.44e-03 1.923 2.45e-04 2.490 4.74e-05 3.519 5.84e-06 4.308 6.90e-07 4.900

1.03e-02 3.83e-04 1.910 3.40e-05 2.848 3.32e-06 3.834 2.12e-07 4.785 1.17e-08 5.881

L2-norm of the reconstructive potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

2.16e-01 6.14e-01 4.05e-01 3.06e-01 1.82e-01 8.93e-02

1.10e-01 5.59e-01 0.139 1.99e-01 1.051 7.58e-02 2.068 3.61e-02 2.397 3.62e-02 1.338

5.49e-02 1.66e-01 1.745 3.36e-02 2.561 1.32e-02 2.512 1.31e-02 1.461 9.23e-03 1.965

2.75e-02 3.67e-02 2.186 6.95e-03 2.282 4.03e-03 1.720 1.76e-03 2.907 8.07e-04 3.525

1.37e-02 1.09e-02 1.741 1.66e-03 2.056 5.54e-04 2.847 1.17e-04 3.888 2.08e-05 5.253

6.86e-03 2.87e-03 1.930 2.79e-04 2.579 4.81e-05 3.535 5.87e-06 4.323 6.93e-07 4.916

3.43e-03 7.38e-04 1.958 3.78e-05 2.882 3.36e-06 3.838 2.13e-07 4.787 1.18e-08 5.879
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Table 4.12: Histories of convergence of the L2−projection of ξ − ξh in || · ||Γ1,h
and

|| · ||0,Γ1 norms, for k ∈ {0, 1, 2, 3, 4} using meshes with hanging nodes (Example 3)

‖ξ̂h − ξh‖Γ1,h

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.59e-01 3.45e+00 1.02e+01 1.10e+01 6.71e+00 2.73e+00

3.30e-01 4.68e+00 -0.439 6.19e+00 0.722 3.04e+00 1.860 1.40e+00 2.271 2.57e+00 0.088

1.65e-01 3.03e+00 0.629 1.87e+00 1.728 1.07e+00 1.509 1.67e+00 -0.262 9.98e-01 1.366

8.24e-02 1.22e+00 1.304 3.99e-01 2.224 8.49e-01 0.331 3.36e-01 2.315 1.00e-01 3.310

4.12e-02 3.86e-01 1.664 3.50e-01 0.188 1.56e-01 2.448 2.32e-02 3.851 7.33e-03 3.774

2.06e-02 1.20e-01 1.688 9.84e-02 1.831 1.57e-02 3.306 2.08e-03 3.481 2.44e-04 4.909

1.03e-02 2.92e-02 2.037 2.09e-02 2.234 1.71e-03 3.199 1.15e-04 4.178 7.50e-06 5.023

‖ξ̂h − ξh‖0,Γ1

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

6.59e-01 4.88e+00 1.44e+01 1.56e+01 9.49e+00 3.87e+00

3.30e-01 9.36e+00 -0.940 1.24e+01 0.221 6.08e+00 1.359 2.79e+00 1.770 5.15e+00 -0.413

1.65e-01 8.56e+00 0.129 5.28e+00 1.228 3.02e+00 1.009 4.74e+00 -0.762 2.82e+00 0.866

8.24e-02 4.89e+00 0.805 1.59e+00 1.725 3.40e+00 -0.168 1.34e+00 1.816 4.01e-01 2.811

4.12e-02 2.18e+00 1.164 1.98e+00 -0.312 8.80e-01 1.948 1.31e-01 3.351 4.15e-02 3.274

2.06e-02 9.58e-01 1.188 7.87e-01 1.331 1.26e-01 2.806 1.67e-02 2.981 1.95e-03 4.409

1.03e-02 3.30e-01 1.537 2.37e-01 1.734 1.94e-02 2.699 1.30e-03 3.678 8.48e-05 4.523

Figure 4.19: First two simplicial meshes for Example 4
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4.7.4 Example 4: A nonregular exact solution

We solve transmission problem (4.1), considering Ω1 = (−1, 1)2 \ [0, 1]× [−1, 0] and

Ω2 := (−2, 2)2 \Ω1 (see Figure 4.19), while the data are such that the exact solution

is (u1, u2), where

u1(r, θ) = r2/3 sin(2θ/3) − c1 (in polar coordinates) ,

u2(x, y) = sin(πx) sin(πy) − c2 ,

and c1 and c2 are real constants such that uj ∈ L2
0(Ωj), j ∈ {1, 2}. We point out

that u1 ∈ H1+ 2
3
−s(Ω1), for an arbitrary small number s > 0, and u2 is a smooth

function. Figure 4.19 shows the first two conforming meshes that we consider for

our simulations, while Figure 4.21 exhibits the behavior of the energy norm of the

potential error (left) and the flux error (right), with respect to the meshsize h. Their

corresponding histories of convergence are given in Table 4.13, and do not contradict

Theorem 4.5.1, since in this case the function u1 is nonregular. Similar behavior is

noticed in Table 4.15 for the error of ξ̂h − ξh in the weighted and usual L2−norms,

with rates of convergence 2/3 and 1/6, respectively. These are also displayed in

Figure 4.20. In addition, Table 4.14 (see also Figure 4.15) reports the histories of

convergence of the L2−norm of the potential and the reconstructive potential errors,

which are not the optimal ones, as prescribed by Theorems 4.5.2 and (4.5.3), and by

Remark 4.5.1, due to the lack of smoothness of function u1.

(a) ||ξ̂h − ξh||Γ1,h
vs. h (b) ||ξ̂h − ξh||0,Γ1 vs. h

Figure 4.20: Rates of convergence of the Lagrange multiplier considering the (a)

Discrete trace norm || · ||Γ1,h
, and (b) Standard L2−norm (Example 4)
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Figure 4.21: Rates of convergence of the (Left) energy norm of the potential error,

and (Right) flux error (Example 4)

Table 4.13: Histories of convergence of the energy norm of the potential error and

L2-norm of the flux error, considering k ∈ {0, 1, 2, 3, 4} (Example 4)

Energy norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 1.14e+00 4.61e-01 5.72e-01 1.06e-01 1.25e-01

7.32e-02 7.11e-01 0.817 2.91e-01 0.790 9.17e-02 3.145 2.24e-02 2.664 9.08e-03 4.511

3.66e-02 3.86e-01 0.882 8.43e-02 1.787 1.56e-02 2.554 6.62e-03 1.760 5.31e-03 0.772

1.83e-02 1.97e-01 0.969 2.30e-02 1.875 5.65e-03 1.465 4.12e-03 0.683 3.38e-03 0.654

9.15e-03 9.91e-02 0.991 7.01e-03 1.712 3.43e-03 0.722 2.62e-03 0.654 2.15e-03 0.654

4.58e-03 4.97e-02 0.997 3.04e-03 1.206 2.17e-03 0.658 1.67e-03 0.655 1.36e-03 0.655

L2-norm of the flux error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 7.94e-02 2.77e-01 1.85e-01 2.97e-02 1.89e-02

7.32e-02 2.73e-01 − 1.12e-01 1.551 2.11e-02 3.734 9.99e-03 1.873 5.84e-03 2.023

3.66e-02 1.33e-01 1.040 2.66e-02 2.077 6.26e-03 1.751 4.74e-03 1.075 3.71e-03 0.652

1.83e-02 6.58e-02 1.012 7.13e-03 1.901 3.93e-03 0.670 3.03e-03 0.647 2.38e-03 0.640

9.15e-03 3.31e-02 0.992 3.70e-03 0.947 2.52e-03 0.641 1.94e-03 0.642 1.53e-03 0.641

4.58e-03 1.68e-02 0.981 2.32e-03 0.671 1.62e-03 0.643 1.24e-03 0.644 9.79e-04 0.643
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Figure 4.22: Rates of convergence of the L2-norm of the (a) potential error, and (b)

reconstructive potential error (Example 4)

Table 4.14: Histories of convergence of L2-norm of the potential and reconstructive

potential errors, considering k ∈ {0, 1, 2, 3, 4} (Example 4)

L2-norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 2.48e+00 6.46e-01 5.31e-01 8.44e-02 1.07e-01

7.32e-02 6.37e-01 2.338 1.56e-01 2.443 3.88e-02 4.498 1.03e-02 3.609 4.51e-03 5.435

3.66e-02 1.54e-01 2.046 1.94e-02 3.006 4.96e-03 2.967 3.07e-03 1.750 2.43e-03 0.893

1.83e-02 3.84e-02 2.007 4.02e-03 2.273 2.45e-03 1.014 1.86e-03 0.722 1.49e-03 0.709

9.15e-03 9.94e-03 1.950 2.14e-03 0.907 1.52e-03 0.689 1.16e-03 0.679 9.30e-04 0.678

4.58e-03 3.08e-03 1.693 1.34e-03 0.679 9.56e-04 0.672 7.31e-04 0.671 5.84e-04 0.670

L2-norm of the reconstructive potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 2.55e+00 7.12e-01 5.43e-01 8.67e-02 1.07e-01

7.32e-02 6.86e-01 2.259 1.64e-01 2.525 3.94e-02 4.508 1.04e-02 3.649 4.52e-03 5.436

3.66e-02 1.65e-01 2.059 2.03e-02 3.010 4.99e-03 2.981 3.07e-03 1.754 2.43e-03 0.896

1.83e-02 4.09e-02 2.011 4.09e-03 2.315 2.46e-03 1.021 1.86e-03 0.723 1.49e-03 0.710

9.15e-03 1.05e-02 1.956 2.15e-03 0.929 1.52e-03 0.690 1.16e-03 0.680 9.30e-04 0.678

4.58e-03 3.20e-03 1.720 1.34e-03 0.682 9.56e-04 0.673 7.31e-04 0.671 5.84e-04 0.671
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Table 4.15: Histories of convergence of the L2− projection of ξ − ξh in || · ||Γ1,h
and

|| · ||0,Γ1 norms, for k ∈ {0, 1, 2, 3, 4} (Example 4)

‖ξ̂h − ξh‖Γ1,h

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 8.75e-02 4.74e-01 8.06e-01 1.14e-01 2.25e-01

7.32e-02 2.17e-01 -1.562 3.03e-01 0.769 6.75e-02 4.262 5.45e-02 1.269 4.21e-02 2.877

3.66e-02 4.75e-02 2.192 8.03e-02 1.915 3.16e-02 1.096 2.86e-02 0.929 2.70e-02 0.638

1.83e-02 1.14e-02 2.064 3.43e-02 1.227 2.09e-02 0.597 1.80e-02 0.669 1.70e-02 0.668

9.15e-03 4.92e-03 1.210 2.04e-02 0.751 1.32e-02 0.659 1.13e-02 0.668 1.07e-02 0.668

4.58e-03 2.93e-03 0.749 1.28e-02 0.676 8.33e-03 0.668 7.14e-03 0.668 6.75e-03 0.668

‖ξ̂h − ξh‖0,Γ1

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 8.75e-02 4.74e-01 8.06e-01 1.14e-01 2.25e-01

7.32e-02 3.07e-01 -2.158 4.28e-01 0.173 9.54e-02 3.667 7.71e-02 0.674 5.95e-02 2.281

3.66e-02 9.51e-02 1.692 1.61e-01 1.415 6.31e-02 0.596 5.73e-02 0.429 5.41e-02 0.138

1.83e-02 3.22e-02 1.564 9.71e-02 0.727 5.90e-02 0.097 5.10e-02 0.169 4.82e-02 0.168

9.15e-03 1.97e-02 0.710 8.16e-02 0.251 5.29e-02 0.158 4.54e-02 0.168 4.29e-02 0.168

4.58e-03 1.66e-02 0.248 7.23e-02 0.175 4.71e-02 0.167 4.04e-02 0.168 3.82e-02 0.167

4.7.5 Example 5: A nonsmooth enough exact solution

Here, we solve the linear transmission problem (4.1), considering the same domain

as in Example 4, whose data are such that its exact solution is given by

u1(x, y) = cos
(π

2
y
)

+ χ(x)x3.5 − c1 ,

where χ(x) is the characteristic function on [0, 1] with respect to x, and

u2(x, y) = sin(πx) sin(πy) − c2 ,

with c1 and c2 being real constants, such that u1 and u2 have zero mean value in

Ω1 and Ω2, respectively. It is known that u1 ∈ H4(Ω1), but does not belong to
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H4+ε(Ω1), for an arbitrary small number ε > 0. Table 4.16 reports the histories of

convergence of the energy norm of the potential error and the flux error, considering

k ∈ {0, 1, 2, 3, 4}. We observe that the rates of convergence are the expected optimal

ones: k+ 1, when the solution is approximated by piecewise polynomials of degree at

most k ∈ {0, 1, 2, 3}. These are in agreement with Theorems 4.5.1. For k = 4, we

still notice convergence, but not at the optimal rate of convergence, since the exact

solution is not smooth enough. We display these results also in Figure 4.24. On the

other hand, in Figure 4.23, we show the behavior of the weighted and usual L2−norms

of ξ̂h−ξh, with respect to the meshsize h. Their corresponding histories of convergence

are displayed in Table 4.18, and they are the optimal ones, as predicted by Theorem

4.5.1 and Remark 4.5.1. In Table 4.17 we provide the histories of convergence in the

L2−norm of the potential and the reconstructive potential errors. The behavior of the

rates of convergence, for k ∈ {0, 1, 2, 3} are in agreement with the ones predicted by

Theorems 4.5.2 and 4.5.3 for smooth functions, and are resumed in Figure 4.25. We

notice again a lost in the order of convergence for k = 4, due to the small smoothness

of u1.

(a) ||ξ̂h − ξh||Γ1,h
vs. h (b) ||ξ̂h − ξh||0,Γ1

vs. h

Figure 4.23: Rates of convergence of the Lagrange multiplier considering the (a)

Discrete trace norm || · ||Γ1,h
, and (b) Standard L2−norm (Example 5)
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Figure 4.24: Rates of convergence of the (Left) energy norm of the potential error,

and (Right) flux error (Example 5)

Table 4.16: Histories of convergence of the energy norm of the potential error and

L2-norm of the flux error, considering k ∈ {0, 1, 2, 3, 4} (Example 5)

Energy norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 1.13e+00 4.56e-01 5.54e-01 1.01e-01 1.21e-01

7.32e-02 7.00e-01 0.820 2.83e-01 0.817 8.75e-02 3.171 1.93e-02 2.834 3.43e-03 6.124

3.66e-02 3.79e-01 0.884 8.15e-02 1.798 1.25e-02 2.802 1.30e-03 3.899 1.06e-04 5.010

1.83e-02 1.93e-01 0.970 2.14e-02 1.928 1.63e-03 2.946 8.28e-05 3.969 3.26e-06 5.030

9.15e-03 9.72e-02 0.993 5.44e-03 1.978 2.06e-04 2.985 5.21e-06 3.991 1.10e-07 4.887

4.58e-03 4.87e-02 1.000 1.37e-03 1.997 2.58e-05 3.001 3.27e-07 4.001 6.60e-09 4.065

L2-norm of the flux error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 1.69e-01 2.70e-01 1.79e-01 2.65e-02 1.66e-02

7.32e-02 2.76e-01 − 1.09e-01 1.564 1.83e-02 3.921 6.53e-03 2.408 8.07e-04 5.198

3.66e-02 1.35e-01 1.035 2.45e-02 2.149 1.33e-03 3.775 3.96e-04 4.044 4.04e-05 4.320

1.83e-02 6.67e-02 1.016 4.24e-03 2.530 1.00e-04 3.733 2.34e-05 4.082 1.45e-06 4.799

9.15e-03 3.33e-02 1.004 7.18e-04 2.562 8.88e-06 3.498 1.43e-06 4.033 4.80e-08 4.918

4.58e-03 1.66e-02 1.003 1.40e-04 2.359 9.17e-07 3.281 8.85e-08 4.017 1.85e-09 4.706

207



Figure 4.25: Rates of convergence of the L2-norm of the (a) potential error, and (b)

reconstructive potential error (Example 5)

Table 4.17: Histories of convergence of L2-norm of the potential and reconstructive

potential errors, considering k ∈ {0, 1, 2, 3, 4} (Example 5)

L2-norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 2.50e+00 6.43e-01 5.20e-01 8.12e-02 1.04e-01

7.32e-02 6.33e-01 2.362 1.53e-01 2.463 3.70e-02 4.538 8.57e-03 3.863 1.43e-03 7.367

3.66e-02 1.53e-01 2.049 1.84e-02 3.062 2.74e-03 3.756 2.98e-04 4.845 2.21e-05 6.015

1.83e-02 3.80e-02 2.012 2.13e-03 3.110 1.81e-04 3.917 9.61e-06 4.955 3.41e-07 6.021

9.15e-03 9.47e-03 2.003 2.56e-04 3.053 1.15e-05 3.976 3.03e-07 4.987 5.81e-09 5.876

4.58e-03 2.37e-03 2.004 3.17e-05 3.022 7.24e-07 3.999 9.52e-09 5.000 1.90e-10 4.940

L2-norm of the reconstructive potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 2.59e+00 7.07e-01 5.31e-01 8.35e-02 1.04e-01

7.32e-02 6.84e-01 2.287 1.61e-01 2.542 3.76e-02 4.548 8.60e-03 3.905 1.44e-03 7.366

3.66e-02 1.64e-01 2.062 1.93e-02 3.063 2.77e-03 3.765 2.99e-04 4.846 2.22e-05 6.014

1.83e-02 4.05e-02 2.016 2.23e-03 3.114 1.83e-04 3.919 9.64e-06 4.956 3.42e-07 6.020

9.15e-03 1.01e-02 2.004 2.68e-04 3.056 1.16e-05 3.977 3.04e-07 4.987 5.83e-09 5.876

4.58e-03 2.52e-03 2.004 3.30e-05 3.023 7.29e-07 4.000 9.55e-09 5.000 1.90e-10 4.944
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Table 4.18: Histories of convergence of the L2−projection of ξ − ξh in || · ||Γ1,h
and

|| · ||0,Γ1 norms, for k ∈ {0, 1, 2, 3, 4} (Example 5)

‖ξ̂h − ξh‖Γ1,h

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 6.37e-01 4.14e-01 8.23e-01 1.08e-01 2.37e-01

7.32e-02 3.01e-01 1.287 2.78e-01 0.685 7.36e-02 4.148 3.33e-02 2.023 4.50e-03 6.808

3.66e-02 7.49e-02 2.009 5.89e-02 2.237 7.23e-03 3.348 1.39e-03 4.586 1.20e-04 5.234

1.83e-02 1.78e-02 2.075 1.11e-02 2.406 6.51e-04 3.473 6.04e-05 4.520 2.79e-06 5.424

9.15e-03 4.25e-03 2.064 2.02e-03 2.463 5.75e-05 3.500 2.67e-06 4.501 6.63e-08 5.394

4.58e-03 1.03e-03 2.045 3.59e-04 2.491 5.08e-06 3.508 1.18e-07 4.504 3.14e-09 4.408

‖ξ̂h − ξh‖0,Γ1

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 6.37e-01 4.14e-01 8.23e-01 1.08e-01 2.37e-01

7.32e-02 4.26e-01 0.692 3.93e-01 0.089 1.04e-01 3.553 4.71e-02 1.428 6.37e-03 6.212

3.66e-02 1.50e-01 1.509 1.18e-01 1.737 1.45e-02 2.848 2.77e-03 4.086 2.39e-04 4.734

1.83e-02 5.03e-02 1.575 3.14e-02 1.906 1.84e-03 2.973 1.71e-04 4.020 7.88e-06 4.924

9.15e-03 1.70e-02 1.564 8.06e-03 1.963 2.30e-04 3.000 1.07e-05 4.001 2.65e-07 4.894

4.58e-03 5.84e-03 1.544 2.03e-03 1.990 2.87e-05 3.007 6.69e-07 4.003 1.77e-08 3.907

The purpose of the next two examples, is to study the robustness of our

implementation when the domain Ω := Ω1 ∪ Γ1 ∪ Ω2 is nonconvex. We remark

that in this situation, we can not ensure the validity of (4.90), and then Theorems

4.5.2 and 4.5.3 do not hold, necessarily.

4.7.6 Example 6: A regular solution in a nonconvex Ω

In this example, we approximate the solution of (4.1), with subdomains Ω1 =

(−2, 2)2 \ [−1, 2] × [−2, 1] and Ω2 := (−3, 3)2 \ (Ω1 ∪ [0, 3] × [−3, 0]), and the data

209



are such that the exact solution is given by the smoothness functions

u1(x, y) =
xy

x2 + y2
− 13 ln(2)− 5 ln(5)

14
, u2(x, y) = cos(πx) cos(πy) . (4.147)

We consider a family of simplicial meshes, whose coarse/first mesh is displayed in

Figure 4.26. In Tables 4.19 and 4.21 we report the rates of convergence of the method,

when the solution is approximated by piecewise polynomials of degree at most k ∈

{0, 1, 2, 3, 4}. We notice that the results are in agreement with Theorem 4.5.1 and

Remark 4.5.1. On the other hand, from Table 4.20, we notice that the convergence of

the potential and the reconstructive potential errors behave as O(hk+2), the optimal

rate predicted by Theorems 4.5.2 and 4.5.3, despite the fact that this situation is not

covered by the current theory. We can also see these behaviors in Figures 4.27, 4.29

and 4.28.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 4.26: Initial mesh for Examples 6 and 7
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Figure 4.27: Rates of convergence of the (Left) energy norm of the potential error,

and (Right) flux error (Example 6)

Table 4.19: Histories of convergence of energy norm of the potential error and

L2-norm of the flux error, considering k ∈ {0, 1, 2, 3, 4} (Example 6)

Energy norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 8.29e-01 1.05e+00 5.77e-01 1.17e-01 1.25e-01

7.32e-02 7.18e-01 0.248 2.94e-01 2.182 9.07e-02 3.178 2.01e-02 3.032 3.55e-03 6.123

3.66e-02 3.89e-01 0.883 8.44e-02 1.800 1.30e-02 2.802 1.34e-03 3.899 1.10e-04 5.008

1.83e-02 1.99e-01 0.970 2.22e-02 1.928 1.69e-03 2.945 8.59e-05 3.968 3.36e-06 5.039

9.15e-03 9.98e-02 0.993 5.63e-03 1.977 2.13e-04 2.985 5.40e-06 3.992 1.04e-07 5.020

4.58e-03 4.99e-02 1.000 1.41e-03 1.996 2.68e-05 3.000 3.38e-07 4.004 3.27e-09 4.992

L2-norm of the flux error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 7.86e-01 3.12e-01 1.77e-01 2.90e-02 1.81e-02

7.32e-02 2.76e-01 1.797 1.12e-01 1.763 1.93e-02 3.805 6.74e-03 2.505 8.53e-04 5.248

3.66e-02 1.33e-01 1.051 2.52e-02 2.150 1.43e-03 3.752 4.11e-04 4.036 4.19e-05 4.346

1.83e-02 6.56e-02 1.022 4.40e-03 2.517 1.09e-04 3.713 2.43e-05 4.081 1.50e-06 4.801

9.15e-03 3.27e-02 1.006 7.49e-04 2.555 9.68e-06 3.497 1.48e-06 4.034 4.90e-08 4.939

4.58e-03 1.63e-02 1.003 1.46e-04 2.362 9.89e-07 3.296 9.18e-08 4.019 1.57e-09 4.975
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Figure 4.28: Rates of convergence of the L2-norm of the (Left) potential error, and

(Right) reconstructive potential error (Example 6)

Table 4.20: Histories of convergence of L2-norm of the potential and reconstructive

potential errors, considering k ∈ {0, 1, 2, 3, 4} (Example 6)

L2-norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 3.25e-01 1.24e+00 5.13e-01 5.88e-02 9.96e-02

7.32e-02 5.95e-01 -1.041 1.48e-01 3.650 3.63e-02 4.553 8.26e-03 3.374 1.38e-03 7.358

3.66e-02 1.46e-01 2.024 1.77e-02 3.064 2.65e-03 3.776 2.87e-04 4.848 2.13e-05 6.014

1.83e-02 3.64e-02 2.006 2.04e-03 3.113 1.75e-04 3.922 9.23e-06 4.957 3.26e-07 6.030

9.15e-03 9.10e-03 2.002 2.45e-04 3.057 1.11e-05 3.978 2.91e-07 4.988 5.03e-09 6.015

4.58e-03 2.27e-03 2.004 3.02e-05 3.025 6.96e-07 4.000 9.11e-09 5.005 7.94e-11 5.996

L2-norm of the reconstructive potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 2.40e+00 1.28e+00 5.24e-01 6.19e-02 9.99e-02

7.32e-02 6.40e-01 2.269 1.55e-01 3.624 3.68e-02 4.563 8.29e-03 3.454 1.38e-03 7.358

3.66e-02 1.56e-01 2.038 1.85e-02 3.065 2.67e-03 3.784 2.88e-04 4.849 2.13e-05 6.013

1.83e-02 3.87e-02 2.010 2.14e-03 3.117 1.76e-04 3.924 9.26e-06 4.957 3.27e-07 6.029

9.15e-03 9.66e-03 2.003 2.56e-04 3.060 1.12e-05 3.978 2.92e-07 4.988 5.05e-09 6.015

4.58e-03 2.41e-03 2.004 3.16e-05 3.026 7.01e-07 4.000 9.14e-09 5.005 7.97e-11 5.996
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Figure 4.29: Rates of convergence of the Lagrange multiplier considering the (Left)

Discrete trace norm || · ||Γ1,h
, and (Right) Standard L2−norm (Example 6)

Table 4.21: Histories of convergence of the L2-projection of ξ − ξh in || · ||Γ1,h
and

|| · ||0,Γ1 norms, for k ∈ {0, 1, 2, 3, 4} (Example 6)

‖ξ̂h − ξh‖Γ1,h

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 4.88e-02 5.18e-01 1.15e+00 1.51e-01 3.07e-01

7.32e-02 1.37e-01 -1.774 3.66e-01 0.595 1.06e-01 4.096 4.49e-02 2.080 6.51e-03 6.620

3.66e-02 3.31e-02 2.050 7.97e-02 2.199 1.03e-02 3.369 1.94e-03 4.531 1.70e-04 5.255

1.83e-02 6.45e-03 2.359 1.54e-02 2.372 9.26e-04 3.469 8.57e-05 4.503 3.94e-06 5.436

9.15e-03 1.18e-03 2.455 2.81e-03 2.453 8.22e-05 3.494 3.79e-06 4.498 8.79e-08 5.486

4.58e-03 2.11e-04 2.482 5.02e-04 2.488 7.27e-06 3.504 1.68e-07 4.506 4.41e-09 4.324

‖ξ̂h − ξh‖0,Γ1

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 4.88e-02 5.18e-01 1.15e+00 1.51e-01 3.07e-01

7.32e-02 1.94e-01 -2.369 5.18e-01 -0.000 1.50e-01 3.501 6.35e-02 1.485 9.20e-03 6.025

3.66e-02 6.62e-02 1.550 1.59e-01 1.699 2.05e-02 2.869 3.88e-03 4.031 3.41e-04 4.755

1.83e-02 1.83e-02 1.859 4.35e-02 1.872 2.62e-03 2.969 2.42e-04 4.003 1.11e-05 4.936

9.15e-03 4.71e-03 1.955 1.12e-02 1.953 3.29e-04 2.994 1.52e-05 3.998 3.51e-07 4.986

4.58e-03 1.19e-03 1.981 2.84e-03 1.987 4.11e-05 3.004 9.48e-07 4.005 2.49e-08 3.823
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4.7.7 Example 7: Nonsmooth solution in nonconvex Ω

Given Ω1 = (−2, 2)2 \ [−1, 2]× [−2, 1] and Ω2 := (−3, 3)2 \ (Ω1 ∪ [0, 3]× [−3, 0]), we

solve (4.38), with f1, f2, g1, g2 and g given so that the exact solution is

u1(x, y) =
xy

x2 + y2
− 13 ln(2)− 5 ln(5)

14
, u2(r, θ) = r2/3 sin(2θ/3) − c , (4.148)

where u2 is given in polar coordinates, and c is a real constant such that u2 has zero

mean value in Ω2. We pointwise that u2 ∈ H1+2/3−ε(Ω2), for an arbitrary small

number ε > 0, since its gradient has a singularity at origin. The family of simplicial

meshes we consider here, is the same as in Example 4.7.6, and we approximate also

the exact solution of (4.1) with polynomials of degree at most k ∈ {0, 1, 2, 3, 4}.

The numerical results, obtained by the HHO method, can be seen in Tables 4.22,

4.24 and 4.23. They are also displayed in Figures 4.31, 4.30 and 4.32, respectively.

We notice here that the nonsmoothness of u2 affects the rates of convergence of

the energy norm of the potential error, the flux error, the discrete norm of trace

error, in the sense that they are not the optimal ones established in Theorem 4.5.1.

On the other hand, we notice also that the potential and reconstructive potential

errors decay to zero as O(h2/3), for any of the values of k we have considered in this

simulation. This situation is not covered by our current analysis, and motivate us

to obtain an a posteriori error estimator that could help us to improve the quality of

the approximation. This could be the subject of future work.

(a) ||ξ̂h − ξh||Γ1,h
vs. h (b) ||ξ̂h − ξh||0,Γ1 vs. h

Figure 4.30: Rates of convergence of the Lagrange multiplier considering the (a)

Discrete trace norm || · ||Γ1,h
, and (b) Standard L2−norm (Example 7)
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Figure 4.31: Rates of convergence of the (Left) energy norm of the potential error,

and (Right) flux error (Example 7)

Table 4.22: Histories of convergence of the energy norm of the potential error and

L2-norm of the flux error, considering k ∈ {0, 1, 2, 3, 4} (Example 7)

Energy norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 2.21e-01 1.14e-01 8.32e-02 6.21e-02 5.08e-02

7.32e-02 1.36e-01 0.836 6.65e-02 0.928 5.06e-02 0.855 3.86e-02 0.816 3.22e-02 0.786

3.66e-02 7.83e-02 0.793 3.97e-02 0.747 3.19e-02 0.665 2.45e-02 0.655 2.04e-02 0.655

1.83e-02 4.54e-02 0.786 2.49e-02 0.674 2.03e-02 0.655 1.56e-02 0.655 1.30e-02 0.655

9.15e-03 2.69e-02 0.755 1.58e-02 0.655 1.29e-02 0.655 9.89e-03 0.655 8.23e-03 0.656

4.58e-03 1.63e-02 0.726 1.00e-02 0.653 8.18e-03 0.656 6.28e-03 0.656 5.22e-03 0.657

L2-norm of the flux error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 1.45e-01 7.86e-02 5.14e-02 3.95e-02 3.09e-02

7.32e-02 1.03e-01 0.597 4.53e-02 0.946 3.22e-02 0.805 2.52e-02 0.773 1.98e-02 0.766

3.66e-02 6.38e-02 0.687 2.79e-02 0.701 2.06e-02 0.642 1.62e-02 0.639 1.27e-02 0.637

1.83e-02 3.92e-02 0.703 1.78e-02 0.645 1.32e-02 0.638 1.04e-02 0.639 8.18e-03 0.638

9.15e-03 2.43e-02 0.691 1.15e-02 0.638 8.50e-03 0.639 6.67e-03 0.640 5.25e-03 0.639

4.58e-03 1.52e-02 0.678 7.36e-03 0.639 5.46e-03 0.641 4.28e-03 0.642 3.37e-03 0.641
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Figure 4.32: Rates of convergence of the L2-norm of the (Left) potential error, and

(Right) reconstructive potential error (Example 7)

Table 4.23: Histories of convergence of L2-norm of the potential and reconstructive

potential errors, considering k ∈ {0, 1, 2, 3, 4} (Example 7)

L2-norm of the potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 5.51e-02 2.17e-02 1.50e-02 1.03e-02 8.12e-03

7.32e-02 1.86e-02 1.866 9.55e-03 1.414 7.04e-03 1.300 5.20e-03 1.170 4.16e-03 1.149

3.66e-02 9.21e-03 1.014 5.56e-03 0.779 4.04e-03 0.800 3.06e-03 0.765 2.45e-03 0.764

1.83e-02 5.48e-03 0.748 3.46e-03 0.686 2.48e-03 0.703 1.89e-03 0.693 1.52e-03 0.693

9.15e-03 3.42e-03 0.680 2.17e-03 0.670 1.55e-03 0.676 1.19e-03 0.674 9.50e-04 0.673

4.58e-03 2.15e-03 0.669 1.37e-03 0.668 9.77e-04 0.670 7.47e-04 0.669 5.98e-04 0.669

L2-norm of the reconstructive potential error

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 6.82e-02 2.38e-02 1.53e-02 1.04e-02 8.15e-03

7.32e-02 2.34e-02 1.836 9.89e-03 1.510 7.08e-03 1.319 5.22e-03 1.177 4.17e-03 1.152

3.66e-02 1.02e-02 1.199 5.62e-03 0.816 4.05e-03 0.806 3.07e-03 0.768 2.45e-03 0.766

1.83e-02 5.64e-03 0.855 3.47e-03 0.696 2.48e-03 0.705 1.89e-03 0.694 1.52e-03 0.694

9.15e-03 3.45e-03 0.711 2.17e-03 0.673 1.55e-03 0.677 1.19e-03 0.674 9.50e-04 0.674

4.58e-03 2.16e-03 0.677 1.37e-03 0.669 9.77e-04 0.670 7.47e-04 0.669 5.98e-04 0.669
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Table 4.24: Histories of convergence of the L2-projection of ξ − ξh in || · ||Γ1,h
and

|| · ||0,Γ1 norms, for k ∈ {0, 1, 2, 3, 4} (Example 7)

‖ξ̂h − ξh‖Γ1,h

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 1.70e-01 9.39e-02 8.77e-02 3.18e-02 2.57e-02

7.32e-02 4.97e-02 2.107 3.31e-02 1.792 1.38e-02 3.174 8.77e-03 2.216 6.80e-03 2.281

3.66e-02 1.47e-02 1.759 9.54e-03 1.795 5.01e-03 1.463 3.79e-03 1.212 3.03e-03 1.168

1.83e-02 5.20e-03 1.500 3.34e-03 1.515 2.21e-03 1.185 1.69e-03 1.166 1.35e-03 1.166

9.15e-03 2.18e-03 1.251 1.40e-03 1.257 9.83e-04 1.166 7.52e-04 1.166 6.01e-04 1.166

4.58e-03 9.65e-04 1.179 6.15e-04 1.185 4.38e-04 1.168 3.35e-04 1.168 2.68e-04 1.168

‖ξ̂h − ξh‖0,Γ1

k = 0 k = 1 k = 2 k = 3 k = 4

h error rate error rate error rate error rate error rate

1.31e-01 1.70e-01 9.39e-02 8.77e-02 3.18e-02 2.57e-02

7.32e-02 7.03e-02 1.512 4.68e-02 1.197 1.95e-02 2.578 1.24e-02 1.621 9.62e-03 1.685

3.66e-02 2.94e-02 1.259 1.91e-02 1.295 1.00e-02 0.963 7.57e-03 0.712 6.06e-03 0.668

1.83e-02 1.47e-02 1.000 9.44e-03 1.015 6.24e-03 0.685 4.77e-03 0.666 3.82e-03 0.666

9.15e-03 8.73e-03 0.751 5.58e-03 0.757 3.93e-03 0.666 3.01e-03 0.666 2.41e-03 0.666

4.58e-03 5.46e-03 0.678 3.48e-03 0.684 2.48e-03 0.667 1.89e-03 0.667 1.52e-03 0.668

Conclusions

In this chapter we have proposed a new mixed HHO formulation to approximate

the solution of a transmission interior elliptic problem, with nonhomogeneous

transmission boundary conditions. First, we derive the variational formulation,

at continuous level, introducing the normal trace on the transmission boundary, of

the solution living in inner subdomain, as an auxiliary unknown. In practice, this

unknown acts as a Lagrange multiplier. Then, we propose a discrete variational

scheme, applying the HHO approach. Although we have considered, for simplicity, a

family of uniform simplicial meshes for the current analysis, it is possible to extend
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it to deal with polytopal meshes, as in [39].

We have proved that our discrete mixed HHO scheme is well-posed and convergent

in the energy-norm, as well as in the usual L2-norm. Our a priori error estimates

establish that when we approximate the solution with piecewise polynomial of degree

at most k ≥ 0, the flux and energy norm of the potential error go to zero with

optimal order of convergence k+δ, while the L2−norm of potential and reconstructive

potential errors’ orders behave as O(hk+1+δ), for some δ ∈ (1/2, 1] (cf. Theorems

4.5.1, 4.5.2 and 4.5.3). The L2−projection of the error of Lagrange multiplier is

measured in a suitable weighted L2−norm (cf. (4.29)), and converges, at least, with

order k + δ (cf. Theorem 4.5.1). We also have computed the classical L2−norm of

this projection, noticing a convergence that decays to 0 as O(hk+δ−1/2), which is in

agreement with Remark 4.5.1.

Numerical examples, provided in this work, are in agreement with our theoretical

results. In particular, results from Examples 4.7.1, 4.7.2, and 4.7.3.1, show us that

our theoretical rates of convergence are achieved. In Example 4.7.5, we consider

as exact solution a function that lives in H4(Ω1) but not in H5(Ω1). According to

Theorems 4.5.1, 4.5.2 and 4.5.3, we should expect optimal order of convergence for

the energy norm of the potential error, the flux error in the L2-norm, the weighted

L2- norm of the error of the Lagrange multiplier, the potential and the reconstructive

potential errors in the L2−norm, when the solution is approximated by piecewise

polynomials of degree at most k ≤ 3, which is what we observe in Tables 4.16, 4.18,

and 4.17, whose results are also displayed in Figures 4.24, 4.23 and 4.25, respectively.

On the other hand, since the exact solution in Example 4.7.4 is nonregular, we do not

expect to obtain optimal rates of convergence. The results are displayed in Figures

4.21, 4.20 and 4.22, and reported in Tables 4.13, 4.15 and 4.14. Then, we just

confirm that results from these tables are in agreement with Theorems 4.5.1, 4.5.2 and

4.5.3, for q = 0 and k ∈ {1, 2, 3, 4}. Surprisingly, we notice an unexpected (better)

behavior of the errors for k = 0. As a consequence, this motivates us to develop,

an a posteriori error analysis, in order to improve the quality of approximation and

recover the optimal rate of convergence, if possible. This would be the subject of a

future work.
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We recall that in Example 4.7.3.2, we have performed our HHO approach, considering

a family of simplicial meshes having hanging nodes only on the transmission boundary

Γ1. We observe that the convergence of the method behaves similarly as when we solve

the same problem considering a family of conforming meshes (see Example 4.7.3.1),

despite the fact that our analysis, in its current form, does not covered the use of

family of meshes with hanging nodes on Γ1. This could also be the subject of future

work, taking the analysis developed in [116] as reference.

It is important to emphasize that the proofs of Theorems 4.5.2 and 4.5.3 rely on the

well known elliptic regularity property (4.90), which can be established if we assume

that Ω := Ω1∪Γ1∪Ω2 is a convex domain. In this sense, and with the aim of testing

the robustness of our computational implementation to deal with nonconvex domain

Ω (cf. Figure 4.26), we consider Examples 4.7.6 and 4.7.7. We consider an smooth

solution in Example 4.7.6, and the numerical results we obtain are surprisingly in

agreement with Theorems 4.5.2 and 4.5.3 (and of course with Theorem 4.5.1, too),

despite the our current theory does not support them. In Example 4.7.7, the solution

is nonsmooth, and then, we do not expect optimal rates of convergence. The results

have been reported in Tables 4.22, 4.24 and 4.23, and confirm our suspicious. As in

Example 4.7.4, it would be desirable to find an a posteriori error estimator for this

problem, that let us to improve our approximation and get the optimal convergence’s

behaviour.

Finally, we point out that the analysis described in this paper, can be applied and/or

extended to deal with linear transmission problems with variable diffusion, and / or

with other type of boundary conditions on the external boundary of Ω2. In addition,

taking into account [64] and [41], we are motivated to extend this approach to deal

with certain class of nonlinear transmission problems.

Appendix

In what follows, we write down the proof of Lemma 4.4.2, for a general Ω := Ω1 ∪

Γ1 ∪ Ω2 (convex or nonconvex domain).

To this aim, given vh :=
(
vT1,h ,vT2,h

)
∈ Uk,0

Th , where we recall Th := T1,h ∪ T2,h, we
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introduce wh ∈ Pkh(Th), such that

wh

∣∣∣
T

:= wT :=

 v1,T , T ∈ T1,h ,

v2,T , T ∈ T2,h .

We notice that (wh, 1)Ω = (v1,h, 1)Ω1 + (v2,h, 1)Ω2 = 0, since Uk,0
h . Then, we

define wh :=
(

(wT )T∈Th , (wF )F∈Fh

)
∈Wk,0

h :=
{
zh ∈Wk

h | (zh, 1)Ω = 0
}

, where Wk
h

collects the DOF’s on Ω, such that

wF :=

 vF,1 , F ∈ F1,h\Γ1,h

vF,2 , F ∈ F2,h

. Then, applying Theorem 6.5 in [66], we infer

that

||v1,h||20,Ω1
+ ||v2,h||20,Ω2

= ||wh||20,Ω . ||wh||21,h . (4.149)

Using the definition of ‖ · ‖1,h, and that
∑
T∈Th

‖∇wT‖2
0,T =

∑
T∈T1,h

‖∇v1,T‖2
0,T +∑

T∈T2,h

‖∇v2,T‖2
0,T , we obtain

‖wh‖2
1,h =

∑
T∈T1,h

‖∇v1,T‖2
0,T +

∑
T∈T2,h

‖∇v2,T‖2
0,T +

∑
T∈Th

∑
F∈FT

h−1
F ‖wF−wT‖

2
0,F , (4.150)

Then, given F ∈ Γ1,h (transmission face), there exist T ∈ T1,h and S ∈ T2,h, such

that F ⊂ ∂T ∩ ∂S, and using definition of wh, we obtain

‖wF − wT‖2
0,F + ‖wF − wS‖2

0,F = ‖v2,F − v1,T‖2
0,F + ‖v2,F − v2,S‖2

0,F , (4.151)

and by triangle inequality on the first term on the right hand side, we obtain

‖wF −wT‖2
0,F + ‖wF −wS‖2

0,F . ‖v2,F − v1,F‖2
0,F + ‖v1,F − v1,T‖2

0,F + ‖v2,F − v2,S‖2
0,F .

(4.152)

Thus, we can write the third term on the right hand of (4.150), as∑
T∈Th

∑
F∈FT

h−1
F ‖wF − wT‖

2
0,F .

∑
T∈T1,h

∑
F∈FT

h−1
F ‖v1,F − v1,T‖2

0,F +

+
∑
S∈T2,h

∑
F∈FT

h−1
F ‖v2,F − v2,S‖2

0,F +
∑
F∈Γ1,h

h−1
F ‖v2,F − v1,F‖2

0,F . (4.153)

Replacing (4.153) in (4.150), we have that

‖wh‖2
1,h . ‖v1,h‖2

1,h + ‖v2,h‖2
1,h +

∑
F∈Γ1,h

h−1
F ‖v2,F − v1,F‖2

0,F . (4.154)

Finally, from (4.149) and (4.154), we conclude the proof.
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Discussion and future works

In this thesis, we have developed primal and mixed schemes based on Hybrid

High-Order (HHO) methods, which have been introduced by Di Pietro and Ern

[75, 70]. We have established unique solvability of continuous and discrete problem,

as well as their convergence, all illustrated by examples and numerical simulations.

The main results/conclusions of this thesis are:

1. In Chapter 2, a variable diffusion problem has been analyzed with pure

Neumann boundary conditions, introducing a Lagrange multiplier for the null

mean condition, to ensure uniqueness for problems with this kind of boundary

conditions. It has been proved that the variational problem and its HHO

formulation are well-posedness, and has been verified the a priori error estimate

in an example with a sufficiently smooth exact solution. The scheme has been

also tested with another example, whose exact solution this time is not smooth

enough. This last example motivates us to carry out an a posteriori error

analysis, to recover the optimal convergence rate found for smooth solutions.

The content of this chapter have lead to the publication [39].

2. In Chapter 3, we have carried out an a priori error analysis of a class of

nonlinear elliptic equations, applying the HHO method. In this case, the

hypotheses on the nonlinear function are quite different of the works developed

in [64, 65, 27]. In addition, we have demonstrated superconvergence for the

potential, which has not been addressed for this problem in the literature, until

now. The extension of this work to other boundary conditions should not be

difficult. For a future work, we would like to address dual-dual HHO schemes

for a class of elliptic nonlinear problems. This chapter is also contained in the
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pre-print [41].

3. In Chapter 4, we propose a mixed scheme over two domains, where we deal

with two different solutions that can represent the density of two different

fluids. An additional unknown, that represents the flux from the interior

to the exterior domain, has been introduced. This allows us to weakly

imposed the jump of the solutions at the transmission boundary, in the

mixed formulations. The existence and uniqueness of the mixed variational

formulation and the corresponding mixed HHO scheme, have been proved

invoking the Babuška-Brezzi theory. The analysis described in this chapter

is contained in the pre-print [40]. We hope to extend our analysis to interior

and exterior transmission problems with variable diffusion and/or including

nonlinearities, as a future work.

4. We can say that the HHO method is more natural than other schemes discussed

in the introduction of this thesis, since it involves local reconstructive operators,

which have commutative properties with their respective differential operators.

For example, the reconstructive gradient in (3.11) and the reconstructive

divergent operator in [73, Lemma 2]. These operators are deduced from

properties obtained by applying integration by parts to the differential operator.

The stabilization term of this method helps us to preserve the high order of the

approach. It let us to handle variable diffusive tensors, deformations in the

field of elasticity, etc.

5. A relevant computational issue of HHO methods is the fact that we can solve

a system on the skeleton of the mesh. This reduces the operational cost since

smaller systems of equations would be being solved, showing to be a competitive

scheme with the usual continuous Galerkin methods. In contrast to other

methods that solve them on a reference element, HHO solves them on their

respective physical element. This allows us to work with very general meshes,

including with hanging nodes.

6. The use of hybridization technique has helped us to compare HHO method

with other schemes, such as HDG, with the notorious difference that explicit
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numerical fluxes are not longer required by HHO approach. The deduction of

equivalence between the discrete norm, in particular the one defined in Chapter

4 that includes the jump in the transmission boundary, as well as the induced

“energy norm” of the schemes, has been very useful for bounding the error of

consistency of HHO schemes. Another important contribution is the proof of

superconvergence of the potential unknown, using duality tools.

7. Finally, HHO schemes have been implemented in the C ++ programming

language, and several numerical examples have been tested to verify the

convergence error predicted in the a priori error analysis.
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Discusión y trabajos futuros

En esta tesis hemos desarrollado esquemas primales y mixtos basados en los

métodos h́ıbridos de alto orden (HHO), introducido por Di Pietro y Ern [75, 70].

Hemos demostrado solubilidad de los problemas continuo y discreto, aśı como

su convergencia. Todo esto ha sido ilustrado mediante ejemplos y simulaciones

numéricas. Los principales resultados y/o conclusiones de este trabajo son:

1. En el Caṕıtulo 2 se ha analizado el problema de difusión variable bajo

condiciones de frontera Neumann puro, introduciendo un multiplicador de

Lagrange para la condición de media nula. Esto último para asegurar la

unicidad de solución para problemas con este tipo de condiciones de frontera.

Se ha probado que el problema variacional y su formulación HHO están bien

puestos. Además se ha comprobado la estimación de error a priori, con un

ejemplo con solución exacta suficientemente suave. Se ha probado también el

esquema con otro ejemplo, cuya solución esta vez no es suave. Este último

ejemplo nos motiva a realizar un análisis de error a posteriori y recuperar la

convergencia asintótica encontrada para soluciones suficientemente suaves. El

contenido de este caṕıtulo ha dado lugar a la publicación [39].

2. En el Caṕıtulo 3 se ha desarrollado un análisis de error a priori para una clase

de ecuaciones estacionarias eĺıpticas no lineales, aplicando el método HHO.

Las hipótesis sobre la función no lineal difieren de las consideradas en trabajos

similares. Además, se ha probado un resultado de superconvergencia para el

potencial, que no hab́ıa sido deducido antes, según la literatura revisada hasta

este momento. Creemos que la extensión de condiciones Dirichlet homogéneas

a otras condiciones de frontera es natural. Para un trabajo futuro se desea
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abordar esquemas dual-dual para problemas no lineales eĺıpticos. El contenido

de este caṕıtulo se encuentra en el pre-print [41].

3. En el Caṕıtulo 4, hemos obtenido un esquema mixto sobre dos subdominios,

donde lidiamos con dos soluciones distintas que pueden representar la densidad

de dos fluidos diferentes. Se ha introducido una incógnita adicional, que

representa el flujo desde el dominio interior al exterior. Esto nos ha permitido

imponer débilmente el salto de las soluciones en la frontera de transmisión,

en la formulación mixta (continua) y en el equema mixto HHO también. La

existencia y unicidad de la formulación variacional mixta y su esquema mixto

HHO, ha sido asegurada gracias a la teoŕıa de Babuška-Brezzi. Esperamos

extender nuestro análisis a problemas de transmisión interior y exterior con

difusión variable y/o incluyendo no linealidades. Este caṕıtulo se ha plasmado

en el pre-print [40].

4. Consideramos que el método HHO es más natural que otros esquemas

discutidos en la introducción de esta tesis, debido a que involucra operadores

reconstructivos locales, los cuales tienen propiedades conmutativas con sus

operadores diferenciales de referencia. Es el caso del gradiente reconstructivo

en (3.11) y del operador divergente reconstructivo en [73, Lemma 2]. Estos

operadores se deducen de propiedades obtenidas al aplicar integración por partes

al operador diferencial. El término de estabilización de este método ayuda a

preservar el alto orden de aproximación del operador reconstructivo. Esto nos

permite trabajar con tensores difusivos variables, deformaciones en el campo

de la elasticidad, etc.

5. Un relevante aspecto computacional de los métodos HHO, es el hecho que

permite resolver un sistema definido en el esqueleto del mallado. Esto reduce

el costo operacional pues se estaŕıan resolviendo sistemas de ecuaciones más

pequeños, mostrando ser un esquema competitivo con los usuales métodos de

Galerkin continuos. En constraste con otros mtodos que los resuelven en un

elemento de referencia, el método HHO los puede resolver en su elemento f́ısico

respectivo. Esto nos permite trabajar con mallas muy generales, inclusive con
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nodos colgantes.

6. El uso de la técnica de hibridización nos ha ayudado a comparar el método

HHO con otros esquemas, como el HDG, con la notoria diferencia de no

tener que definir expĺıcitamente flujos numéricos en los esquemas HHO. La

deducción de equivalencia entre la norma discreta, en particular la referida al

Caṕıtulo 4 que incluye el salto en la frontera de transmisión, y la “norma de

enerǵıa” inducida de los esquemas, es muy útil a la hora de acotar el error de

consistencia de los esquemas HHO. Otra importante contribución es la prueba

de la superconvergencia de la incógnita potencial, aplicando herramientas de

dualidad.

7. Por último, los esquemas HHO han sido implementados usando el lenguaje

de programación C++, y se han testeado con varios ejemplos numéricos para

verificar la velocidad de convergencia predicha en los análisis de error a priori.
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[111] Grünbaum, B., Kaibel, V., Klee, V., and Ziegler, G. M. Convex

polytopes. Springer, New York, 2003.

[112] Guennebaud, G., and Jacob, B. Eigen v3. http: // eigen. tuxfamily.

org , 2010.

239

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org


[113] Gupta, K. K., and Meek, J. L. A Brief History of the Beginning of

the Finite Element Method. International Journal for Numerical Methods in

Engineering 39, 22 (1996), 3761–3774.

[114] Guyomarc’h, G., Lee, C.-O., and Jeon, K. A discontinuous Galerkin

method for elliptic interface problems with application to electroporation.

Communications in Numerical Methods in Engineering 25, 10 (2009), 991

– 1008.

[115] Hansbo, A., and Hansbo, P. An unfitted finite element method based on

Nitsche’s method for elliptic interface problems. Computer Methods in Applied

Mechanics and Engineering 191 (2002), 5537–5552.

[116] Hansbo, P., Lovadina, C., Perugia, I., and Sangalli, G. A Lagrange

multiplier method for the finite element solution of elliptic interface problems

using non-matching meshes. Numerische Mathematik 100, 1 (2005), 91–115.

[117] Heise, B. Nonlinear Field Calculations with Multigrid-Newton Methods.

IMPACT of Computing in Science and Engineering 5, 2 (1993), 75 – 110.

[118] Heise, B. Analysis of a Fully Discrete Finite Element Method for a Nonlinear

Magnetic Field Problem. SIAM Journal on Numerical Analysis 31, 3 (1994),

745–759.

[119] Herbin, R., and Hubert, F. Benchmark on Discretization Schemes for

Anisotropic Diffusion Problems on General Grids. In Finite Volumes for

Complex Applications V, R. Eymard and J.-M. Hérard, Eds. John Wiley &

Sons, 2008, pp. 659–692.

[120] Hou, T., Wu, X.-H., and Cai, Z. Convergence of multi-scale finite element

method for elliptic problems with rapidly oscillating coefficients. Mathematics

of Computation 68 (1999), 913–943.

[121] Hu, W.-F., Lai, M.-C., and Young, Y.-N. A hybrid immersed boundary

and immersed interface method for electrohydrodynamic simulations. Journal

of Computational Physics 282 (2015), 47–61.

240



[122] Huynh, L., Nguyen, N., Peraire, J., and Khoo, B. A high-order

hybridizable discontinuous Galerkin method for elliptic interface problems.

International Journal for Numerical Methods in Engineering 93 (2013),

183–200.

[123] Kummer, F., and Oberlack, M. An Extension of the Discontinuous

Galerkin Method for the Singular Poisson Equation. SIAM Journal on

Scientific Computing 35, 2 (2013), A603–A622.

[124] La Saint, P., and Raviart, P. A. On a Finite Element Method for Solving

the Neutron Transport Equation. In Mathematical Aspects of Finite Elements

in Partial Differential Equations: Proceedings of a Symposium Conducted

by the Mathematics Research Center, the University of Wisconsin–Madison,

C. de Boor, Ed. Elsevier, 1974, pp. 89–123.

[125] Lemaire, S. Bridging the hybrid high-order and virtual element methods.

IMA Journal of Numerical Analysis 41, 1 (2021), 549–593.

[126] LeVeque, R. J., and Li, Z. The immersed interface method for elliptic

equations with discontinuous coefficients and singular sources. SIAM Journal

on Numerical Analysis 31, 4 (1994), 1019–1044.

[127] Lipnikov, K., and Manzini, G. A high-order mimetic method on

unstructured polyhedral meshes for the diffusion equation. Journal of

Computational Physics 272 (2014), 360–385.

[128] Mantilla, I., and Munguia, J. Construcción de mapas de ruido con

elementos finitos y Newmark. TECNIA 22, 2 (2012), 35–44.

[129] Medjo, T. Mixed formulation of the two-layer quasi-geostrophic equations of

the ocean. Numerical Methods for Partial Differential Equations 15 (1999),

489–502.

[130] Melenk, J. M., and Babuška, I. The partition of unity finite element

method: basic theory and applications. Computer methods in applied

mechanics and engineering 139, 1 (1996), 289–314.

241
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