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Abstract 

One of the main challenges the Peruvian Electric System faces is the coordinated 

expansion of generation capacity and transmission to supply the demand requirements in 

the medium and long-term. Likewise, this process occurs in a context in which non-

conventional renewable technologies such as solar photovoltaic (PV) and wind have 

experienced considerable cost reductions, which, added to the short development times 

that they entail, make them the ideal candidates to carry out the expansion of generation 

capacity. However, it is found that the country currently lacks the tools to carry out 

medium and long-term expansion planning considering these new technologies. Thus, 

this thesis presents 1) a methodology to synthesize hourly time series of solar PV and 

wind generation anywhere in the country, 2) a technique to reduce (cluster) the dimension 

of planning problems, and 3) an optimization model for the expansion of an electric power 

system that considers the operation of renewable plants, energy storage systems, and the 

AC short-term constraints. The results obtained show that these three proposals together 

make up a complete planning framework that allows evaluating different power systems 

in a context of scarcity of information, taking care of short-term validity of medium and 

long-term solutions, and achieving a correct trade-off between the technical and economic 

benefits of the solutions, versus the operating and investment costs of the decisions.  
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Chapter 1 

1 Introduction 

As non-conventional renewable generation technologies continue decreasing their 

investment cost and increasing their efficiencies [1]–[4], electrical systems all over the 

world will get their renewable energy resources (RER) penetration level growing up, as 

is forecasted by many global organizations like [1] who projects that RER production will 

account for a 86% of global power generation. At the same time, electricity will have 

49% of the share in final consumption by 2050. This fact will bring several benefits to 

human development and new challenges that energy sector actors shall face to smooth 

the path of this energy transition. 

Renewable resources like wind and solar have some particularities that aggravate the most 

critical problems that electrical systems usually have in operation and planning. These 

particularities mainly refer to their intermittent behavior, which is intrinsic to the 

resources, and their decoupled technology (presented in the majority of existing solar PV 

and wind applications) that affects the system's reliability, decreasing its capacity to cope 

with the various natural and human-made phenomena. 

Although the trend in prevailing technologies to make new generation capacity additions 

in the world is clear, developing countries still have a set of barriers that make them 

vulnerable to the challenges this new energy form brings and prevent them from reaping 

the benefits of renewable energy. As studied in [5], renewable resources in developing 

countries represent an opportunity in four significant sectors like socioeconomic 

development, energy access, energy security, and climate change mitigation. 

Nevertheless, to take advantage of these benefits, these countries first have to overcome 

some barriers, which can be classified in market failures like monopolies, externalities, 

and information asymmetry; and system failures such as legitimizing the process, lack of 

capabilities and social particularities, as suggested by [6]. 

The remainder of Chapter 1 provides a brief introduction to the challenges that renewable 

energies represent for energy and power systems and how they have been addressed 
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globally, the current situation of Peruvian regulations regarding renewable energies, the 

kinds of problems this dissertation aims to address, and the thesis outline. 

1.1 Renewable Energy Challenges 

On the one hand, both operation problems: real-time operation and dispatch scheduling, 

must deal with the intermittent behavior of solar and wind resources. It is known that 

while penetration level increases, the system gets more vulnerable to RER generation 

fluctuation, as studied in [7]–[11]. Cited studies show that short-period fluctuations in 

solar irradiance or wind speed change drastically load demands as seen by the system 

operator creating a significant ramp up or down, which make it compulsory to have must-

run machines or energy storage systems in the grid. Also, the unpredictable availability 

of the generation capacity of this kind of plant makes the scheduling process of day-ahead 

electricity markets difficult. Sometimes, complexity is such that the system operation 

coordinator assumes a deterministic generation time-series that plant owners prepare and 

send to them, avoiding the responsibility to accurately forecast this input, as evidenced in 

[12], [13] for the Peruvian case. This problem affects physical markets and the wholesale 

electricity market, as studied in [14]. Plenty of approaches have been studied in the 

literature [15], [16], [25]–[28], [17]–[24] to overcome these problems. 

Although uncertainties are present everywhere in the energy sector's value chain, it should 

be noticed that the farther the time horizon analysis is, the more challenging it becomes 

to resolve the problem. Thus, on the other hand, system expansion planning problems are 

at a higher level of complexity [29], [30]. 

Furthermore, successfully overcoming these problems is conditioned to information on 

resources measurements and existing plants' historical records. Unfortunately, developing 

countries that are recently increasing their investment expenditures in RER plants usually 

lack this information. Although private agents make their field studies, the gathered 

information is not socialized, and public and academic organisms are obliged to resort to 

other methods to develop their activities. 

Indeed, this is of the points on which recent works on barriers to renewable energy in 

developing countries strongly coincide. Specifically on the lack of capabilities [6] and 

information barriers [5], since these countries do not have access to databases on the 
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potential and production of renewable energies. Neither do they have the capabilities to 

develop proper mathematical models in order to study its phenomena. 

1.1.1 Challenges addressed in Energy Planning 

The evaluation of the impacts and the feasibility of the inclusion of renewable energy 

resources within energy systems have been studied in various works. In [31], a 

methodology based on the joint and iterative use of two software is proposed. One is 

EnergyPLAN, which simulates the national energy system on annual, monthly, and 

hourly time scales; and the other is GenOpt, which solves the problem of optimizing the 

selection of policies and technical measures using the outputs of the previous software as 

inputs and also updating its inputs as a result. Consequently, it tries to find the optimal 

mix of resources for the energy matrix, although it does not consider the variables' 

uncertainties. 

Unlike the previous one that performs a static optimization, a multistage study is 

presented in [32], where the impacts of implementing renewable energies within the 

French energy system are studied. In that work, in addition to considering thirteen cut-off 

years for the analysis until 2050, it is also roughly included the variability of wind energy 

sources by considering representative scenarios to model the seasons of the year that 

affect demand and availability of wind resources among others. Due to limitations of the 

TIMES model that is used, it is not possible to correctly represent the restrictions of the 

short and medium-term operation, nor to simulate the 8760 hours of a typical year. 

More specific cases are also treated in the literature. So in [33], the implications of 

implementing large-scale wind generation in energy systems with a high presence of 

nuclear plants are analyzed. This study makes use of the EnergyPLAN and MATLAB 

software set. Consideration of uncertainties in wind energy production in this research is 

achieved by using the Monte Carlo method. Several time-series of wind energy 

production are generated by performing the same number of runs of the energy software 

and consequently obtaining different answers. However, as the study's objective was not 

to find an optimal plan, conclusions were limited to describing the implications of each 

result. 

The specific safety implications of planning electric power systems in the presence of 

variable renewable generation are discussed in [34]. In that research, a similar approach 
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to the previous cases is used, using two models: TIMES and PLEXOS. The PLEXOS 

model allows an evaluation of security restrictions evaluating a typical year of operation, 

while the TIMES model performs the generation of scenarios combining the various 

expansion policies of the system. The uncertainty of renewable generation is not 

considered in the study, and on the contrary, the same annual production profile is used 

for all the alternatives. 

Another problem of interest for countries with a lower degree of electrification is the 

energy planning of isolated systems, which is presented as an alternative to the high 

investment costs of the traditional expansion of interconnected energy systems. In this 

field of study, [35] presents a multi-criteria optimization model for selecting the optimal 

mix of energy sources for the province of Cajamarca in Peru. The study identifies 

opposing objectives, assesses the importance (weights) of the alternatives for each 

objective, and finally uses a distance technique to select the optimal combination. The 

representation of the system, located in an isolated place, lacks detailed modeling of 

routes and is presented as an energy balance; also, uncertainties are not considered in this 

work. A complete review of configurations, models, and optimization techniques used in 

isolated systems planning, is presented in [36]. 

1.1.2 Challenges addressed in Power System Planning 

Regarding the planning of electrical systems, several contributions have been made to 

consider the integration of variable renewable energy sources. In [37], the penetration of 

renewable energies is maximized by penalizing the waste of its generation within the 

transmission expansion planning. However, the problem is addressed in a weekly 

resolution, ignoring the variations of the wind resource in a shorter time scale. Another 

approach is presented in [38], where probability density functions are considered to 

randomly generate wind generation and demand values (using Monte Carlo). With these 

values, several scenarios are created and used to run the optimal flow sub-problem whose 

average result will then be used by the master problem that optimizes investments in 

transmission within an iterative process. 

A more comprehensive approach is presented in [39], where generation planning is also 

carried out evaluating the inclusion of power plants based on renewable energy resources. 

The variation in demand and renewable sources are taken into account from the analysis 
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of historical data, which are reduced to twenty-four operating points through a K-means 

clustering process to make the optimization problem treatable. 

Consideration of energy storage systems has also been integrated into the planning of 

transmission systems, thus in [40], the use of batteries is included as a mechanism to 

reduce the waste of variable renewable generation and its impact on the investment cost 

of the transmission system by producing the effect of "cutting peaks and filling valleys" 

that reduces the required capacity of the installations. The problem case study is based on 

academic test systems, and its horizon analysis comprises 168 points that make up the 24 

hours of the seven days of a week. Another approach is presented in [41], where energy 

storage systems are optimally located to minimize the construction of transmission lines 

by considering energy storage as a generation plant. The treatment of this problem 

considers 48 operating points being 30 min each time step, and application is performed 

over an academic 6-buses system. 

On the other hand, contributions to the operation of electrical systems have shown the 

security problems caused by the inclusion of intermittent renewable energy sources. In 

[42], an optimization model is proposed to perform an optimal short-term dispatch, 

considering within its formulation the restrictions necessary to identify the spinning 

reserve that can cope with sudden variations in wind resources. Similarly, another study 

is shown in [43] that determines the machines that must operate to respond to the 

intermittency of wind power generation in northern Peru. 

As seen, when using mathematical models to develop expansion plans considering 

renewable energies, it is necessary to care about the dimension of the data. A correct data 

dimension reduction process allows the problem to be tractable and preserve the behavior 

and impact of renewables in the power system along the planning horizon, focusing on 

the short-term operation, which gets to be the most challenging part of analyzing due to 

computational limitations.  

1.2 Motivating Case: Peruvian Power System 

Peru became a South American region benchmark in 2008 when the Legislative Decree 

N° 1002 for the Promotion of Electricity Generation Investment with Renewable Energies 

was approved by the Peruvian Government. However, since that milestone and despite 
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the critical ratio of new renewable projects development and the clarification of the 

challenges and opportunities these technologies represent, no progress has been made on 

regulations.  

1.2.1 Overview of Peruvian Power System 

According to the report [44] published by the Peruvian ISO (Independent System 

Operator), in 2019, the maximum electrical load demand reached by the Peruvian System 

was 7,017.57 MW representing a growth of 1.93% year-on-year compared to 2018, where 

maximum demand was 6,884.59 MW. As for energy, total production in 2019 was 

52,889.14 GWh, 4.08% more than the amount generated in the previous year. 

From this amount of energy, 1,646.16 GWh (3.11%) was injected by wind plants whereas 

761.73 GWh (1.44%) by solar photovoltaic (PV) plants, totalizing a share of 4.55% for 

renewable energies. 

Additionally, the sector regulator published the yearbook [45], which mentioned that the 

Peruvian electricity sector represents a US$ 5,065.26 million market, which is composed 

of regulated users (residential, commercial, and industrial) who pay a regulated tariff, and 

free users (industrial) who pay a tariff established by contracts signed directly with 

distributors or generators. The regulated market represents 60.8% of the total electricity 

market, while the free market is 39.2%. 

Renewable capacity installed in the Peruvian system is 660.5 MW, representing 4.98% 

of the total installed power of 13,255.3 MW in 2019. Hydropower has 38.95% of total 

capacity with 5,163.1 MW, while thermoelectric plants achieve a significant generation 

park with 7,431.7 MW (56.07%). A curious fact reported by [44] is that between 2018 

and 2019, no new renewable capacity was added. 

Regarding the quality of supply, the system regulator presented in [46] that the System 

Average Interruption Frequency Index (SAIFI) was 5.12 times a year for Lima, capital of 

Peru, whereas SAIFI for the rest of the country was 16.5 interruptions by year, that is, 

more than triple. Moreover, Lima's System Average Interruption Duration Index (SAIDI) 

value was 14.9 hours a year, while the same index increases up to 36.9 hours/year for the 

rest of the country. Reported values correspond to the operational year 2018. 
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1.2.1.1 Projections 

The Peruvian ISO published the study [47] on the growth projections for the Peruvian 

electricity sector until the year 2032. This document analyzes the historic electricity 

demand from 2008 until 2019, resulting in a Compound Annual Growth Rate (CAGR) of 

4.90%. In addition, the ISO estimates a CAGR of 3.41% for the period from 2019 to 2032. 

This projection means that load demand for the year 2032 will reach 10,995 MW, an 

increase of about 4,000 MW in the maximum demand from the levels of 2019, as depicted 

in Figure 1. 

In the same document, the ISO indicates that an additional generation capacity of 2,100 

MW should be installed to meet system requirements. 

 

Figure 1. Historic and projected growth for Total Peruvian System electricity load (based on [47]) 

The actual pipeline of new generation projects presented to the ISO, which in the case of 

Peru is also the organism in charge of evaluating and approving new installations 

transmission and generation in the system, accounts for more than 20,000 MW submitted 

between 2019 and 2021 inclusive, as reported in the web of ISO [48]. From this total 

capacity, 72.2% belongs to wind and solar PV projects, with 7,615.20 MW and 6,918.70 

MW each technology. 

4,198

7,108

10,995

0

2,000

4,000

6,000

8,000

10,000

12,000

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
26

20
27

20
28

20
29

20
30

20
31

20
32

TO
TA

L 
SY

ST
EM

 D
EM

A
N

D
 (M

W
)

YEAR



 

18 

 

1.2.2 Peruvian regulations regarding renewable energies 

As evidenced in the previous paragraph, Peru has a significant renewable portfolio, which 

is even larger than total installed capacity, resulting from private initiatives, given that 

the government has not announced new tenders since 2015 [49]. Indeed, more than 14 

GW of non-conventional and intermittent renewable projects would be installed in the 

Peruvian system in the following years if they get ISO approval. 

However, there is a concern about the impact that renewable projects will cause on the 

system, as has been stated by the Peruvian ISO in [50] where they mentioned that 

renewable plants cause a decrease in short-circuit levels, reduction of the inertia of the 

system, displacement of the dispatch of thermal plants by technical minimums, among 

others. In conclusion, the ISO proposed the definition of a maximum renewable injection 

value for each bar, which in practice restricts and delays the implantation of new projects, 

contrary to national interests. 

Legislative Decree N° 1002 announced a national interest to develop and include 

renewable energies within the electricity generation matrix. It also established that 

renewable plants must be considered with zero marginal cost and therefore have dispatch 

priority. Despite this, little or no adjustments have been made to the planning 

methodologies of the national electricity system. 

On the one hand, the criteria and methodology for preparing the Transmission Plan, 

established by the Ministerial Resolution N° 129-2009-MEM-DM, indicates that the 

electricity demand to be considered in the study represents the maximum annual values 

for each year of analysis within a horizon of 10 years. Then, the national planning 

methodology for the transmission expansion uses hour blocks to represent the behavior 

of load demand within a period to simulate an economic dispatch. This official 

methodology also specifies the construction of demand scenarios to perform a sensibility 

analysis and obtain a robust plan. The Transmission Plan is elaborated every two years 

by the ISO. 

On the other hand, the general criteria for the definition of the Investment Plan of sub-

transmission, established by Regulator Resolution N° 217-2013-OS/CD, also 

contemplates a 10-year analysis horizon using a single demand value for each year, 

corresponding to the maximum demand. However, it does not consider hour blocks, 
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economic dispatch, or a sensitivity assessment within the methodology. Each electricity 

distributor must prepare an Investment Plan every four years for its concession area to be 

evaluated and approved by the system Regulator. 

As evidenced, current Peruvian regulations regarding planning processes are not prepared 

to consider the implantation of new renewable technologies such as solar PV and wind 

plants which have an intermittent behavior that cannot be represented by the use of annual 

maximum values or hour blocks. This fact also limits the evaluation of complementary 

equipment like energy storage systems. Beyond the modification of time scales both for 

national and sub-national planning methodologies, planning regulations should consider 

the use of specialized mathematical models that allows the analysis of new expansion 

technologies in addition to transmission lines.  

1.3 Research Statement 

To better understand the opportunities and challenges that renewable energies could have 

within the power systems of developing countries, this thesis develops an expansion 

planning framework for the medium and long-term horizon. This dissertation is not 

designed to be a comprehensive study of every aspect of power system expansion 

planning in the presence of renewable energies but focused on critical issues identified as 

the most critical challenges in developing countries. Specifically, this dissertation 

addresses the following research questions: 

 What methodologies should be used to estimate the behavior of solar PV and wind 

renewable plants in any part of a country in a context of scarcity of information? 

 How to reduce the data dimension of a planning problem for the expansion of a power 

system in the medium or long-term to allow the use of detailed mathematical models 

of non-conventional renewable energy plants, energy storage systems, and AC short-

term operation constraints? 

 What is the medium or long-term power system expansion planning optimization 

model representing renewable plants, energy storage systems, and AC short-time 

operation constraints? 

Any proposals must be consistent with sound scientific and mathematical theory and 

include two essential aspects. First, it has to be the result of studying the state of art on 
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solving the problems mentioned above, focusing on the existing barriers in developing 

countries. Second, any proposals should include an application to an existing case and, if 

possible, a comparison of the results with historical information or specialized software 

for power system simulation. In the first element, proposals may not be fully generalizable 

to countries different from Peru because information accessibility and technical criteria 

will depend on the studied system. 

1.4 Thesis Outline 

Chapter 2 provides a literature review about the approaches presented to address the 

questions mentioned previously. From the analysis of these works, the main gaps in the 

literature are found. Proposals to fill these gaps are described and discussed in detail in 

subsequent chapters. 

Chapter 3 presents synthesis methods to generate hourly time-series for solar PV and 

wind plants. The construction of these methods considers the absence of historic resource 

measurements, as is the case of developing countries. Based on this condition, complete 

methodologies for gathering information, randomly generating time-series for each 

resource, and assessing the power produced by solar PV and wind plants located in any 

place over the country are presented. The chapter concludes with a discussion about the 

results obtained after applying the presented methodologies in different places worldwide 

and its comparison with historical values. 

Chapter 4 addresses the challenges produced by the dimension of the data sets involved 

in expansion planning problems, specifically when it is vital to study the impact of 

increasing the penetration of intermittent renewable plants into the power systems. This 

chapter examines a cutting-edge method for clustering energy-related time-series that 

preserve the correlation, simultaneity, randomness, and variability between all the 

elements present in the power system. The chapter concludes with applying the presented 

method to an existing system located in the northern part of Peru, which comprises 

residential and industrial loads and projected solar PV and wind power plants. 

Chapter 5 studies the construction of a novel expansion planning optimization model for 

power systems to analyze the impact of expansion decisions for the medium or long-term 

within the short-term operation. This chapter proposes the equations required to represent 
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the principal expansion alternatives of a power system such as transmission lines, 

capacitors, solar PV and wind plants, and battery energy storage systems. All these 

equations accomplish to preserve the linearity of the model, at the same time that achieves 

a correct representation of the AC-related phenomena like the voltage, losses, and reactive 

power. The chapter concludes with the analysis of the results of applying the proposed 

optimization model into the system used in the previous chapter, which demonstrates how 

well the model manages the trade-off between the technical and economic benefits 

obtained when new equipment is implemented into the system and the investments and 

operation cost involved in that decisions. 

Chapter 6 examines the joint application of the main contributions of this thesis presented 

in previous chapters into a new existing system located in the eastern part of Peru. The 

chapter first synthesizes hourly time-series for all identified expansion alternatives of 

renewable plants. Then, the proposed clustering process is applied to reduce the planning 

problem's data dimension. The chapter concludes with applying the proposed 

optimization model, which achieves an optimal plan to resolve the capacity problem of 

the case study.  

Finally, Chapter 7 summarizes the findings and presents the conclusions and 

recommendations for further work. 
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Chapter 2 

2 Literature Review 

Expansion of global generation capacity has been dominated by renewable plants for 

many years [51]. In that sense, plenty of works have treated the problems that 

intermittency of these non-conventional resources cause to power systems. However, 

most of the studies started from the existing conditions of developed countries. Since 

principal renewable investors have recently switched their focus from developed 

countries to developing countries [51], a significant gap has been evident because of a 

lack of information, measurement, and technical capacity about renewable resources [5], 

[6]. This chapter demonstrates the need for further study on synthesis methods adapted to 

a scarcity of historical information to provide developing countries with the necessary 

input to start a planning process. 

This chapter also addresses the existing literature gap on the mathematical modeling of 

relevant phenomena present on power systems that integrate renewable resources. The 

review reveals the need to deepen the study on new methods to tackle the intractability 

problem produced by the data dimension of expansion planning studies and new 

equations to represent the short-term operation of new expansion alternatives like 

renewable plants and storage systems that require small time steps. 

The following sections provide a review of state of the art for these gaps, identify areas 

where existing methods can be improved, and motivate the focus of the research presented 

in subsequent chapters. 

2.1 Synthesis methods 

2.1.1 Solar Energy 

One of the first proposals to model solar hourly radiation values was presented in [52]. 

The daily and annual periodicity of hourly insolation values was removed using a Fourier 

analysis, and time-dependent frequency distribution (TDFD) was employed to synthesize 

insolation values. Likewise, [53] presented an autoregressive-moving average (ARMA) 
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technique to generate synthetic values starting from monthly mean values of the clearness 

index 𝐾𝑇. 

A novel approach was described in [54], where it was demonstrated that the clearness 

index was the variable that induces the randomness into the series, in contrast with 

previously published researches that treat solar irradiance as a random variable itself. 

Then, an ARMA model for clearness index was used to generate synthetic irradiance 

values. 

However, the previously mentioned works coincide in presenting complex statistical 

analysis and models that became too difficult to understand and implement in practical 

applications. 

On the other side, [55] developed an artificial intelligence (AI) model to synthesize solar 

hourly radiation time-series. Although formulation does not require a deep statistical 

analysis of variables' interrelation, it is necessary to have historic time-series values to 

train the AI model. Indeed, most AI models have the same limitation. As reviewed in 

[56], AI models that do not need historic solar measurements require historical values for 

many other parameters. 

Another reasonable attempt was presented by [57], where an energy output model was 

used to generate synthetic hourly radiation values. Although energy output is coherent 

with historical measurements, results showed that the power generation profile does not 

reflect actual stochastic solar behavior. 

An interesting approach was developed by [58], who, through a simple model based on a 

beta distribution, generates a 10-min solar irradiance time-series. Validation of model 

showed that daily and monthly means between actual and synthetic series coincide and 

that 10-min solar irradiance profile preserves the actual behavior acceptably. However, 

the proposed procedure needs a historic hourly solar irradiance time-series to start. 

[59] developed a simple algorithm to generate hourly solar radiation values implemented 

using a web page with the same aim. The algorithm needs as arguments distances instead 

of coordinates, and starting from that, hourly values are generated. Nonetheless, 

algorithm equations were explicitly defined for the southwest region of Western 

Australia. Thus applicability to other places is limited and must be carried out carefully 

since model calibration depends on comprehensive historical measurement data. 
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Another major group of works looks to generate synthetic time-series at high temporal 

resolutions. In that line, [60] proposed a model that uses a second-order Markov transition 

matrix (MTM) to synthesize a 1-min time resolution time-series. While final model only 

needs as input a daily clearness index (𝐾𝑇), it is needed data at the same time scale of 1-

min to calibrate the model. 

Also, [61] presented a simple approach to generate five-minute global horizontal 

irradiance (GHI) and direct normal irradiance (DNI) interpolating hourly mean values. 

The method uses 1-min historical observed data (re-scaled to 5-min) to calibrate a model, 

which then is used to interpolate hourly mean solar irradiance values obtaining good 

results though validation is performed only in the Australian territory. The authors suggest 

that the method would be suitable for applying to Typical Meteorological Year (TMY) 

records. 

However, the same authors later recommend using another attempt they proposed that 

combines Fourier series, autoregressive models, and white noise terms. This new attempt 

achieves to synthesize daily and hourly time-series since it was demonstrated that 

generated series include patterns that have not occurred in the recorded data but are 

equally as likely to occur, thus better suits evaluation and planning requirements [62]. 

The application of the described method needs to have historical data to force the 

generated series' distribution. 

Recently, a novel approach to downscale DNI time-series from 1-h to 1-min that can be 

applied in any location without requiring any local adaptation was presented in [63]. After 

training the model with 14 years of measured 1-min DNI data, it only needs an hourly 

DNI time-series for any location. 

2.1.2 Wind Energy 

Similar to the case of the solar resource, research effort has also been made for wind 

energy. In that way, [64] compared six well-established approaches to generate synthetic 

wind time-series. According to their test results, authors concluded that methods based 

on independent and identically distributed values, one-step Markov model, two-step 

model, and Box-Jenkins model do not generate representative and accurate synthetic 

time-series. Therefore, recommend using the Shinozuka method or the embedded Markov 

chain model. 
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Despite these findings, plenty of works have been published later using supposedly not 

recommended methods. One of them is [65], where it is used a first-order Markov chain 

model to synthesize wind speed time-series obtaining good results with more than 90% 

of the agreement for statistical parameters between historical and synthetic series. 

However, to improve results, a higher-order Markov model must be used as 

recommended by the authors. 

In [66], first- and second-order Markov chain models are employed to generate synthetic 

wind speed time-series for two localities in Malaysia. After comparing principal statistics 

such as mean, standard deviation, autocorrelation, Weibull distribution parameters, and 

spectral density of real and generated series, the authors concluded that both models have 

a good performance synthetizing wind speed time-series. Although the cited paper does 

not analyze similarity in wind speed profile, it must be said that neither the first- or 

second-order Markov model achieves reproducing actual behavior accurately. However, 

it is true that a higher-order or larger size transition matrix of Markov models better 

preserves statistical characteristics of historical data, as studied in [67]. An interesting 

analysis of the pitfalls of using Markov models to synthetically generate wind speed time-

series to be later used in planning processes, specifically for energy storage planning, is 

presented in [68], where it is demonstrated that generated time-series lacks the persistence 

of actual data and would predict a radically different storage requirement. 

A novel approach was presented by [69], who developed a model inspired by the 

foundation of Markov transition matrixes, obtaining very realistic wind speed time-series. 

For the calibration of the model, a set of 7 years’ measurements was required. 

Similarly, [70] proposed using a model based on Copula theory yielding good results that 

help perform steady-state analysis of power systems. A comparison between synthetic 

and natural energy generated by some existing wind farms in Europe was taken as a 

validation criterion. Regrettably, no graphs of real and generated time-series were 

provided in the publication, making it impossible to compare the reproduction accuracy 

of actual behavior. Another attempt using Copula theory was presented by [71], who also 

addresses the synthesis of wind direction. The statistical validations against one-year 

measurements data obtained positive results; however, the wind speed profile does not 

reflect an actual wind speed time-series.   
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Meanwhile, [72] presented a simple yet exciting methodology to produce synthetic wind 

speed time-series. Starting from the premise that wind speed comprises periodic 

deterministic and stochastic components, a five-step methodology is developed, 

supported by a genetic algorithm for tuning parameters. The paper proposal's main 

advantage is that the model only needs aggregate statistical parameters such as yearly 

mean, monthly mean, and monthly maximum wind speed. Generated time-series properly 

preserves actual wind behavior, although persistence is still not achieved.  

Indeed, persistence is a characteristic that is not discussed in most of the mentioned 

papers, even though this characteristic can represent the difference between a completely 

random and a realistic wind speed time-series. An interesting approach to achieve this 

feature was presented by [73], who uses the optimization model of the Assignment 

Problem to re-sequence the generated values to accomplish persistence requirements. An 

hourly measured wind speed data was needed to resolve this optimization problem, 

similar to [69]. 

[74] also produced very realistic wind speed time-series using a model that combines 

Fourier series and ARMA to characterize seasonal trend and autocorrelation in residue, 

respectively. Nevertheless, again, three years’ historical data is employed to train the 

model. 

2.2 Time-series clustering techniques 

The traditional way to perform power system planning studies consists of simplifying 

both model and data to make problems tractable. In that sense, load data usually is 

represented using demand blocks, and power equations are limited to model just DC 

flows, ignoring other electric parameters like reactive power, losses, and voltage [75]–

[78]. 

However, recent advances in power generation technologies [1], [3] have brought plenty 

of new alternatives on capacity additions that go further than typical thermal or 

hydroelectric plants. In that sense, any current expansion planning study should 

contemplate as valid alternatives wind farms, solar PV parks, or even energy storage 

systems, technologies that make the technique of demand blocks obsolete since the new 



 

27 

 

relevant operation time scales are very short, in the order of seconds, minutes, 15-minutes, 

30-minutes or 1-hour, depending on the planning horizon [29], [79]. 

Therefore, as has been declared in plenty of previous works [80]–[84], these new 

technologies require planning studies to be conducted in a lower time scale to preserve 

data variability and randomness. Also, time-series must be congruent between them 

because simultaneity and correlation among renewable resources and load time-series are 

crucial to evaluating the expansion plan's quality. 

As these new technologies increase their penetration in traditional power systems, it 

becomes more necessary to downgrade time scale analysis to steps of seconds, minutes, 

or, at most, 1-hour because, as mentioned in [85]. Although planning is done for the 

medium and long-term horizon, results have to account for the short-term operational 

needs. 

Nevertheless, the problem of shifting time scale analysis from demand blocks approach 

to 1-hour simulation step or lower is that optimization models get computationally 

intractable because of dimensionality. 

One method to overcome this problem was presented in [86], where a novel way to use 

blocks and duration curves is proposed to preserve correlations between load and wind 

production. Although the proposal reduces the dimensionality of data, it has the 

disadvantage of forcing all locations to have the same correlation value, which is not 

realistic since wind resource and demand have different behavior on each bus bar. 

Clustering techniques are being used in the literature to overcome this trouble. In [81], a 

comparison of the differences in investment decisions when using the duration curves 

modeling and K-means clustering algorithm (to produce representative hours) is 

performed. The results show that the objective expansion plan change depending on the 

chosen data modeling technique. Mentioned work reduces a year into 48 representative 

hours. 

Another case is presented in [80], where it is also studied the benefits of using a clustering 

method (to produce representative days) over traditional load blocks. The mentioned 

paper demonstrates that clustering is a more suitable way to conduct planning studies 

since it allows evaluating flexibility performance of final systems, drastically reducing 

load shedding and curtailed energy—cited paper yields four representative days per year. 
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As indicated by [29], data aggregation for a short-term evaluation of the system could be 

done on representative days or representative hours. However, inter-temporal constraints 

like ramping or storing cannot be considered when selecting representative hours due to 

the loss of chronology. An essential finding of mentioned work is that the impact of short-

term uncertainty modeling is less critical as the number of representative days increases. 

The application case considers a full-year data set which is then clustered in 10 

representative days. 

The use of clustering techniques is also helpful when planning large-scale real-size power 

systems that include renewable plants where dimensionality is an aspect to consider. An 

interesting case is presented in [87] where the transmission expansion planning of the 

European Continental South West (CSW) region, conformed by Portugal, Spain, and 

France, is performed. This investigation makes use of 4 clusters to model load and 

renewables. 

While a clustering process to obtain representative days is the preferred technique for 

energy planning applications, there is no standard way to perform it. Thus, some authors 

have expressed the need to pre-group data before applying any clustering or aggregation 

technique over the complete data set. That is the case of [82], where an aggregation within 

seasons is performed to evaluate the requirement of dynamic probabilistic reserve in the 

Mexican power system. The mentioned paper produces three representative days for each 

season, although it uses a simple averaging process, not a clustering technique. A similar 

criterion is presented in [30], where a previous month clustering process is performed to 

define three seasons. Within each one, another clustering process is done to yield three 

representative days. 

Several clustering techniques have been developed for different types of time-series data, 

as documented in [88]. Depending on the specific application, one or another technique 

will be preferred to be applied. A revision of the performance of some standard algorithms 

for load modeling is made in [89]. 

Another interesting approach is presented in [85], where the main objective is to reduce 

data dimension to evaluate interday storage devices, complementing typical intraday 

energy balancing. The authors proposed a modified hierarchical clustering technique 

similar to a discretization procedure but considering a dynamic time-step chosen 
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automatically by an algorithm. This proposal produces an equivalent of 28 representative 

days to perform expansion planning studies.  

2.3 Expansion planning optimization models 

An important insight from the previous section is that, despite applying clustering 

methods, most of the mentioned works only employ a simple representation of the 

transmission system. They apply the transportation model (refer to [90], [91]), which 

turns their applications into an energy balancing problem. Just a few of them implement 

a DC model. Indeed, most of the research on Transmission Expansion Planning (TEP) 

has focused on studying DC models, as evidenced by the comprehensive review presented 

in [78], where 84% of the more than 70 papers analyzed used this model. However, DC 

models can not represent all phenomena of power transmission, such as losses, reactive 

power, or voltage fluctuations. It is essential to mention that most of the literature about 

Generation Expansion Planning (GEP) does not consider any transmission network at all, 

as revealed by [75], where it was found that 81% of analyzed papers only consider a single 

node approach. 

Some approaches to electrical system expansion planning in the presence of intermittent 

technologies like solar PV and wind plants suggest using relevant operational points to 

represent the production of renewable along the year. That is the case of [92], where four 

snapshots per year are used, or as in [93], which considers 36 operational points resulting 

from three blocks for each month. However, when considering the penetration of 

intermittent renewable energies and fast-operation technologies like energy storage 

systems, modeling of renewable generation cannot be addressed through hour blocks and 

must use time-slices of at most 1-hour, as indicated in [29], [79]. 

Of the models that consider the influence of the hourly behavior of renewables within the 

planning process, we have on the one hand the approach presented in [84], which 

performs an analysis of a whole year in hourly steps (intra-year) but in a small system 

and without a multi-year evaluation. Despite this, obtained results demonstrate how 

renewable plants could improve the quality of electric service in places where electrical 

faults and disconnections are widespread.  
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On the other hand, [82] presents multi-year planning that considers hourly time-series for 

each season and each typical day (within the season) instead of the whole yearly time-

series. However, their analysis does not contemplate intertemporal or dynamic 

optimization, evaluation of the intra-year operation, and neither model adequately 

simultaneity and correlation between renewable generation and demand, since a unique 

renewable time-series is used for all typical days within the same season. 

A decomposition method is required to tackle computational power limitations when both 

characteristics should be implemented together (multi- and intra-year analysis). For 

example, in [83], a DC model is applied for the South American region using several 

commercial software, or in [87], where a stochastic DC model is designed to study the 

expansion planning of the whole European CSW region. However, as mentioned 

previously, a pure DC flow analysis does not reveal all aspects that a planning study must 

evaluate when facing renewables and energy storage plants. 

Some of the leading power supply security (i.e., generation availability) and flexibility 

(i.e., ramping requirement) concerns caused by the intermittent behavior of renewable 

resources have been studied in the literature [7]–[11], [43], [82]. However, other aspects 

must also be analyzed when facing the presence of renewable plants in the power system, 

such as reactive power flows, technical losses, and voltage quality. It is necessary to enter 

into the AC world to address these problems. 

Plenty of proposals to represent electrical characteristics of power systems using AC 

models have been presented in the literature [94]–[100]. Some popular models are based 

on relaxations of nonlinear constraints and binary decision variables [99]; others use the 

so-called reformulation-linearization technique (RLT) [98]. Recent AC models are using 

the special ordered set method (SOS) [96]. However, all these approaches require the 

utilization of new fictitious variables that increase the dimension of the optimization 

problem, being not suitable for real case applications or when analysis requires using 

short time steps, as it is required for renewable and storage technologies, due to 

dimensionality computational problems. 

An interesting approach was presented in [101], where an iterative procedure is used to 

solve a DC model that considers multistage analysis, network reconfiguration, and 

technical losses. This approach not just allow the optimization model to remain a mixed-

integer linear model (without transforming it into a mixed nonlinear model) but also leave 
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the calculation of complex functions (used for technical losses) out of the optimization 

equations constraints avoiding increasing the complexity and dimension of the problem 

and its solution time. 

2.4 The Gap in the Literature and Research Objectives 

One of the common challenges that almost all South America and other developing 

countries face is the scarcity of solar atlas or an official source of information about solar 

resources within its territory. Hence, obtaining measurement data at scales of 1-min, 5-

min, or even 1-hr is almost impossible most of the time, making it very difficult to adopt 

some of the models proposed in developed countries. 

Similarly, public-access databases for wind resources are relatively rare in Latin 

American countries. As seen, most of the proposed models to synthesize wind speed time-

series found in the literature make extensive use of historical data at the scale of 1-h or 

more frequently, which could be very difficult to find in developing countries. 

Two simple but effective methodologies to synthesize hourly solar irradiance time-series 

and wind speed time-series based on aggregate input data are proposed in Chapter 3 of 

this dissertation to overcome this gap. These methodologies can be helpful for projects 

evaluation and system expansion planning purposes. 

Another gap is found in defining a clustering technique to be used within an energy 

planning process. Although many applications have already used clustering techniques, 

there is no standard procedure for choosing the best clustering technique, metric, and 

other relevant parameters. In that sense, Chapter 4 explores the principal clustering 

techniques used in the literature, proposes using an index to evaluate the quality of any 

clustering process, and finally recommends some parameters tuning based on test results. 

Finally, the last identified gap refers to the absence of an optimization model that allows 

the analysis of power systems, including renewable generators and energy storage 

systems, with the particularity that considers active and reactive power flows, technical 

losses, and voltage values. This dissertation addressed this gap in Chapter 5, where the 

model is constructed, presented, and tested on an existing system. 
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Therefore, this research aims to expand the literature on power system expansion planning 

with a particular focus on developing countries by meeting these goals: 

 To develop a methodology to generate hourly electricity production time-series for 

solar PV and wind renewable plants using aggregate data as input. 

 To define a clustering technique to reduce the data dimension of an expansion 

planning problem for power systems to allow the application of a detailed 

optimization model. 

 To design an optimization model for the power system, generation and transmission, 

expansion planning that considers renewable plants, energy storage systems, and AC 

short-term operation constraints like voltage fluctuations, reactive power, and 

technical losses.  
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Chapter 3 

3 Synthesis of hourly renewable 

production time-series 

This chapter presents methodologies to synthesize solar and wind production time-series 

based on aggregate input data using statistical and optimization methods to fill the 

information gap required for planning purposes in developing countries.  

Studied technologies correspond to solar PV and wind since they account for more than 

70% of projected new global additions, as estimated by [1]. 

The content of this chapter has been structured into three sections. The proposed 

methodology is presented in Section 3.1. Real application cases are performed and 

discussed in Section 3.2, whereas conclusions are reported in Section 3.3. 

3.1 Methodology 

3.1.1 Methodology for Solar Energy 

The proposed methodology for generating synthetic solar PV power generation data 

consists of five steps, as depicted in Figure 2. 

 

Figure 2. Methodology for Solar Energy 

The first step seeks to gather relevant solar data about a specific geographic coordinate. 

The second step shows the statistical tool and settings used to generate random global 

Solar data gathering

Solar daily insolation 

random values generation

Solar hourly global data 

calculation

Solar stochastic 

behaviour reproduction

Solar PV power 

assessment



 

34 

 

horizontal insolation values. Then, the third step describes the equations needed to 

calculate the hourly global radiation incident on the PV array starting from the values 

generated in the previous step. Subsequently, the fourth step presents the process of 

converting solar radiation into PV power generation values. Finally, step five models the 

stochastic behavior of clouds that pass over the PV panel and other phenomena. 

3.1.1.1 Solar data gathering 

Available open-access information about solar irradiance and insolation in Peru is limited 

to very few sources. On the one hand, the Peruvian Ministry of Energy of Mines released 

in 2003 a non-interactive solar map [102] that shows average month solar insolation 

values for the whole country, but the ability to extract precise values for any given 

coordinate is limited since it was delivered as static images instead of being implemented 

over a GIS platform. 

On the other hand, some international companies and organisms provide this kind of 

information. While many of them are private commercial services (e.g., Meteonorm or 

Solargis), there is a couple of open-access services provided by the NASA called POWER 

[103] and by the European Commission called PVGIS [104]. This chapter employs five 

parameters provided by POWER service and one by PVGIS to complete this 

methodology. 

For a given pair of latitude (𝜙 in °) and longitude (𝜆 in °), the monthly mean daily global 

horizontal insolation (𝐻 measured in 𝑘𝑊ℎ 𝑚2 𝑑𝑎𝑦⁄⁄ ) is obtained from PVGIS (average 

of all years available for each month will be used), while the maximum and minimum 

variations of 𝐻 (𝐻𝑚𝑎𝑥 and 𝐻𝑚𝑖𝑛 in %), the maximum and minimum air temperature at 2 

m values (𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 in °𝐶), and the surface albedo (𝜌𝑔) are retrieved from POWER. 

Parameters mentioned above must be obtained for each month 𝑚 = 1. . 𝑀 as an average 

daily value. 

3.1.1.2 Solar daily insolation random values generation 

A free plug-in for Microsoft Excel called Ntrand [105] is used to generate random values 

for global horizontal insolation. This plug-in was created by Numerical Technologies as 

a simple but powerful tool that provides a complete suite of statistical functionalities. 

One of the distributions supported by Ntrand is the Truncated Normal Distribution, which 

is proposed to be employed in this chapter. 
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A random variable derived from this distribution could be obtained using the following 

expression: 

𝐻𝑠𝑦𝑛 = Φ−1 (Φ(𝛼) + 𝑈 ∙ (Φ(𝛽) − Φ(𝛼))) 𝜎 + 𝜇 (3.1) 

Where Φ represents the cumulative distribution function of standard normal distribution, 

Φ−1 is its inverse, and 𝑈 is a uniform random number. Parameters 𝛼 and 𝛽 are the 

normalized values of the lower (𝑎) and upper (𝑏) bounds of truncated normal for a given 

mean (𝜇) and standard deviation (𝜎). 

The desired quantity 𝑁 of random numbers could be obtained using the Ntrand matrix 

function 𝑁𝑡𝑅𝑎𝑛𝑑𝑇𝑟𝑢𝑛𝑐𝑛𝑜𝑟𝑚(𝑁, 𝑎, 𝑏, 𝜇, 𝜎, 0) in Microsoft Excel, providing required 

parameters. 

In an Excel worksheet, a (𝑁 × 𝑀) matrix must be constructed to obtain 𝑁 = 8760 

random values for every month (𝑀 = 12) of a typical year. The content of each matrix 

column should be the Ntrand matrix function considering the monthly mean daily global 

horizontal insolation, the maximum, and the minimum values for the corresponding 

month 𝑚. 

Notice that no value was not recovered for the standard deviation of this parameter. So, 

it will be assumed equal to the multiplication of a constant 𝑘 by the mean value (𝜎 = 𝑘 ∙

𝜇). In this chapter, the value of 𝑘 is set to 0.5. 

Therefore, random generation process results depend on the value of these four 

parameters. From these, maximums and minimums could be treated as quasi-fixed values 

since they come from historical measures. On the other side, mean value and constant 𝑘 

value should be considered factors that introduce uncertainty in the process and could be 

used to generate distinct synthetic time-series to represent multiple scenarios for the 

stochastic behavior of solar resources. 

Two additional terms must be appended when calling the Ntrand Excel function to avoid 

the problem of producing identical random values for places with the same aggregate 

input parameters. The final formula would be 𝑁𝑡𝑅𝑎𝑛𝑑𝑇𝑟𝑢𝑛𝑐𝑛𝑜𝑟𝑚(… , 𝑅𝜙, 𝑅𝜆), where 

𝑅𝜙 and 𝑅𝜆 are the last five digits of 𝜙 and 𝜆 starting from the right, which usually belongs 

to the decimal part when working with a precision of at least six digits. These constants 

are used in the function as random seeds. 
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Although different values for each hour of a typical year are obtained after this process, 

generated values are still a daily insolation value. 

3.1.1.3 Solar hourly global radiation calculation 

This third step explains the calculation flow needed to convert the global daily horizontal 

radiation synthesized in the second step into hourly total radiation over a tilted solar panel. 

Four primary relations will be used following the order presented in Figure 3 to achieve 

this objective. 

 

Figure 3. Calculation flow to convert Daily Horizontal Radiation (𝑯𝒔𝒚𝒏) into Hourly Total Radiation (𝑰𝑻) 

To start, it should be clear that total radiation incident on the PV panels (𝐻) corresponds 

to the sum of direct or beam radiation (𝐻𝑏), diffuse radiation (𝐻𝑑) and albedo or ground 

reflected radiation (𝐻𝑔). However, when working with horizontal radiation values, as 

synthetized in the previous step, the reflected component is neglected due to this physical 

disposition. 

In that sense, the estimated hourly radiation value (𝐼) obtained through eq. (3.2) from this 

global daily data will account just for beam and diffuse components (𝐼 = 𝐼𝑏 + 𝐼𝑑). 

𝑟𝑡 =
𝐼

𝐻𝑠𝑦𝑛
 (3.2) 

The definition of 𝑟𝑡 and other needed values are explained in Appendix A, from eq. (7.1) 

to eq. (7.8). 

After this first relation, the hourly global horizontal radiation 𝐼 is obtained. This value 

could be related to the extraterrestrial horizontal radiation (𝐼𝑜) by a ratio called the hourly 

clearness index (𝑘𝑇) indicated in eq. (3.3). Special care should be taken to consider only 

positive values for 𝐼, and therefore, for 𝑘𝑇.  

𝑘𝑇 =
𝐼

𝐼𝑜
 (3.3) 

Hsyn Isyn = f(Hsyn) = Ibeam + Idiffuse

Idiffuse = Isyn * f(kT)

kT = f(Isyn)

Itotal = f(Ibeam , Idiffuse , β , γ , ρg)
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The equations needed for the calculus of 𝐼𝑜 are given Appendix A, from eq. (7.9) to eq. 

(7.10). 

The second relation gives us the value of the clearness index (𝑘𝑇) for each hour. This 

index can then define the hourly diffuse fraction, which relates diffuse radiation and 

global horizontal radiation. 

𝐼𝑑

𝐼
= 𝑓(𝑘𝑇) (3.4) 

𝑓(𝑘𝑇) represents a piecewise function whose definition is presented in eq. (7.11) of 

Appendix A. 

Diffuse radiation (𝐼𝑑) is obtained applying the third relation presented in eq. (3.4). With 

this value, it is possible to clear the value of the beam radiation since 𝐼𝑏 = 𝐼 − 𝐼𝑑. 

As suggested by [106], for PV panels placed on the southern hemisphere, the HDKR 

anisotropic model is suitable. Hence, the HDKR model will be used to calculate the total 

incident radiation on a tilted surface with slope 𝛽 (in 𝑟𝑎𝑑) and surface azimuth angle 𝛾 

(in 𝑟𝑎𝑑) as defined in eq. (3.5). For the sake of simplicity suggested model is used in this 

chapter, although a selection process could be carried out to choose the best model, 

similar to [107]. 

𝐼𝑇 = (𝐼𝑏 + 𝐼𝑑𝐴𝑖)𝑅𝑏 + 𝐼𝑑(1 − 𝐴𝑖) (
1 + cos 𝛽

2
) [1 + 𝑓 sin3 (

𝛽

2
)]

+ 𝐼𝜌𝑔 (
1 − cos 𝛽

2
) 

(3.5) 

Complementary equations for this fourth relation are shown in Appendix A, from eq. 

(7.12) to eq. (7.16). 

Having an Excel worksheet with the hourly total radiation values for an entire typical 

year, it is possible to use the Solver Tool to optimize the slope angle (𝛽) to maximize 

estimated annual energy. This angle will be close to the latitude 𝜙 for most places in Peru. 

The reflectance of the ground (𝜌𝑔) would be the month average recovered in step one. 
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3.1.1.4 Solar stochastic behavior reproduction 

The effect of shadows produced by clouds that pass over the PV panel is represented by 

a factor 𝑓𝐶𝐿𝐷. Although clouds interrupt beam radiation, diffuse radiation continues to be 

present. Hence, only direct radiation is affected by factor 𝑓𝐶𝐿𝐷 as indicated in eq. (3.6). 

𝐼𝑏
∗ = 𝑓𝐶𝐿𝐷𝐼𝑏 (3.6) 

Factor 𝑓𝐶𝐿𝐷 is generated randomly for each hour using the procedure shown in (3.7). Note 

that global radiation hour-to-hour variation is achieved using Step 2, where random values 

are obtained, so additional noise is introduced in this step. 

𝑎𝑢𝑥 = 0; 

for(𝑖 in 1. . 𝑁) { 

if(𝑎𝑢𝑥 ≥ 𝑟𝑎𝑛𝑑1
𝑖 ) { 

𝑓𝐶𝐿𝐷
𝑖 = 𝑎𝑢𝑥; 

𝑎𝑢𝑥 = 0; 

} else { 

𝑓𝐶𝐿𝐷
𝑖 = 1; 

𝑎𝑢𝑥+= 𝑟𝑎𝑛𝑑2
𝑖 ; 

} 

} 

(3.7) 

𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are random numbers between 0 and 1 generated for each hour 𝑖 by the 

non-volatile Excel matrix function 𝑁𝑇𝑅𝐴𝑁𝐷(𝑁). 

3.1.1.5 Solar PV power assessment 

Air temperature varies within a day; however, available data from the first step only 

provides the minimum and maximum values for each month. A relationship between 

global radiation and air temperature has to be used to approximate the value of air 

temperate for each hour of a day. In that sense, the proposed model presented in [108] 

will be adapted to this need. 

𝐻

𝐻𝑜

= 𝑐 ∙ (
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑖𝑛
)

0.5

 (3.8) 
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In eq. (3.8), the constant 𝑐 is a function of the altitude and distance to the sea, and their 

coefficients are determined using historical data. In this chapter, the value of this constant 

will be estimated using available data from step one. 

To find out the value of constant 𝑐, monthly mean daily extraterrestrial radiation 𝐻𝑜 has 

to be evaluated using the following expression: 

 𝐻𝑜 =
24

𝜋
𝐺𝑜𝑛(cos 𝜑 cos 𝛿 sin 𝜔𝑠 + 𝜔𝑠 sin 𝜑 sin 𝛿) (3.9) 

Extraterrestrial radiation should be calculated for the recommended average day for 

months indicated in [106]. Consequently, twelve different values will be obtained for 

constant 𝑐. Thus, the average value must be considered. 

𝑐 = ∑
𝑐𝑚

𝑀

𝑀

𝑚=1

 (3.10) 

Prieto’s proposed model [108] is then extended in this chapter to calculate hourly values. 

In consequence, the air temperature for a specific hour 𝑖 is determined by Eq. (3.11). It is 

assumed that minimum temperature is the same for every day of the corresponding month 

and that the maximum temperature solved from the equation for each hour is the 

representative air temperature for that hour. 

𝑇𝑖 = (
𝐼

𝐼𝑜
∙

√𝑇𝑚𝑖𝑛

𝑐
)

2

+ 𝑇𝑚𝑖𝑛 (3.11) 

Since the temperature has an inertial behavior, the actual temperature hour value and 

previous hour value are weighted using a factor 𝑧. In that sense, the final ambient 

temperature value is defined as shown in Eq. (3.12). 

𝑇𝑎
𝑖 = 𝑧𝑇𝑖 + (1 − 𝑧)𝑇𝑎

𝑖−1 (3.12) 

Now, it is possible to calculate cell temperature (𝑇𝑐) using eq. (3.13), which is the inferred 

equation presented in [109]. 

𝑇𝑐 =

𝑇𝑎 + (𝑇𝑐,𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇) (
𝐺𝑇

𝐺𝑇,𝑁𝑂𝐶𝑇
) [1 −

𝜂𝑚𝑝,𝑆𝑇𝐶(1 − 𝛼𝑝𝑇𝑐,𝑆𝑇𝐶)
𝜏𝛼 ]

1 + (𝑇𝑐,𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇) (
𝐺𝑇

𝐺𝑇,𝑁𝑂𝐶𝑇
) (

𝛼𝑝𝜂𝑚𝑝,𝑆𝑇𝐶

𝜏𝛼 )
 (3.13) 
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Nominal operating cell temperature (𝑁𝑂𝐶𝑇) is defined for solar irradiance 𝐺𝑇,𝑁𝑂𝐶𝑇 =

0.8 𝑘𝑊 𝑚2⁄  and ambient temperature 𝑇𝑎,𝑁𝑂𝐶𝑇 = 20°𝐶. Values for cell temperature under 

NOCT condition (𝑇𝑐,𝑁𝑂𝐶𝑇 in °𝐶), efficiency at maximum power point (𝜂𝑚𝑝,𝑆𝑇𝐶 in %), 

temperature coefficient of power (𝛼𝑝 in % °𝐶⁄ ) and cell temperature (𝑇𝑐,𝑆𝑇𝐶 in °𝐶) under 

standard test conditions (𝑆𝑇𝐶) can be found in the solar PV module datasheet. 

Although solar irradiance striking the PV panel (𝐺𝑇) is an instantaneous value, the hourly 

total incident radiation (𝐼𝑇) value obtained in step 3 will be used here, assuming that flat 

radiation occurs for the entire hour bin. 

Finally, the following Eq. (3.14) is used to calculate the output power of the PV panel: 

𝑃𝑃𝑉 = 𝑃𝑆𝑇𝐶𝑓𝑃𝑉 (
𝐺𝑇

𝐺𝑇,𝑆𝑇𝐶
) [1 + 𝛼𝑝(𝑇𝑐 − 𝑇𝑐,𝑆𝑇𝐶)] (3.14) 

Rated capacity of PV panel under standard test condition (𝑃𝑆𝑇𝐶 in 𝑊) is obtained from 

the module datasheet. Solar irradiance for STC (𝐺𝑇,𝑆𝑇𝐶) is equal to 1 𝑘𝑊 𝑚2⁄ . 

In this equation, a derating factor (𝑓𝑃𝑉) is employed to account for losses occasioned by 

soiling, mismatching, transformation, degradation, etcetera. Do notice that losses by 

irradiance level, temperature, and clouds are internalized in the proposed procedure, so 

𝑓𝑃𝑉 should only account for other factors. Its value strictly depends on the place 

conditions where the solar PV panel is mounted, such as the level of dust, rain, among 

others. Typical values are approximately between 75-95% [110]–[117]. 

3.1.2 Methodology for Wind Energy 

The proposed methodology for wind resources to generate synthetic data consists of four 

steps, as shown in Figure 4.  

 

Figure 4. Methodology for Wind Energy 

Wind data gathering

Wind speed random 

values generation

Wind speed values 

reordering

Wind power assessment
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The first step gathers relevant wind data about a specific geographic coordinate. The 

second step shows the randomly generating process of wind speed values using 

information retrieved in the previous step. In step three, an optimization model is used to 

reorder randomly generated values of the second step. Finally, the fourth step presents 

the process to obtain wind power generation values. 

3.1.2.1 Wind data gathering 

The Peruvian Government released an interactive tool called Wind Atlas in the year 2016. 

This tool allows obtaining the yearly scale (𝛽𝑦) and shape (𝛼𝑦) parameters for the Weibull 

distribution approximation at 100m height. Correspondent average wind speed (𝑣𝑦 in 

𝑚 𝑠⁄ ) and standard deviation (𝜎𝑦) can be obtained with the function 

𝑁𝑡𝑊𝑒𝑖𝑏𝑢𝑙𝑙𝑆𝑡𝑑𝑒𝑣(𝛼𝑦, 𝛽𝑦) provided by the Excel plug-in Ntrand [105]. 

Additionally, air density value (𝜌 in 𝑘𝑔 𝑚3⁄ ) must be obtained for the total altitude 

(including wind tower) above sea level (ℎ in 𝑚) for the selected location. Needed 

equations are presented in Appendix B. 

Since Peruvian Wind Atlas does not provide monthly average wind speed values, the 

POWER [103] database will be used to acquire monthly averages (𝑣𝑚,𝑝 in 𝑚 𝑠⁄ ). 

Having these values, a parameter 𝑘𝑚 is defined for each month relating the monthly and 

annual average of these values (𝑘𝑚 = 𝑣𝑚,𝑝 (∑ 𝑣𝑚,𝑝 12⁄ )⁄ ). 

For other countries, the RE Data Explorer [118], a renewable energy resource geospatial 

explorer created by The National Renewable Energy Laboratory (NREL), could be used 

to gather wind speed time-series at different heights. 

If another source of data were used, e.g., in-site measurement, Weibull scale and shape 

parameters could be obtained 1) using one of the methods presented in [119]–[121], 2) 

using the function 𝑁𝑡𝑊𝑒𝑖𝑏𝑢𝑙𝑙𝑃𝑎𝑟𝑎𝑚(𝜇, 𝜎) being 𝜇 the mean and 𝜎 the standard 

deviation of speed values; or 3) employing the 𝑓𝑖𝑡𝑑𝑖𝑠𝑡𝑟(𝑤𝑠, 𝑑𝑒𝑛𝑠𝑓𝑢𝑛 =

"𝑤𝑒𝑖𝑏𝑢𝑙𝑙", 𝑙𝑜𝑤𝑒𝑟 =  0) function in the software R [122] with package MASS [123], 

where 𝑤𝑠 is an array containing wind speed values. Monthly averages, as well, may be 

obtained from the same data source. 
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3.1.2.2 Wind speed random values generation 

The inverse Weibull distribution will be employed to generate random values through the 

following expression (3.15), which is implemented in a function available in the Excel 

plug-in Ntrand [105]. 𝑣𝑠𝑦𝑛
𝑢  represents the set of unordered generated values. 

𝑣𝑠𝑦𝑛
𝑢 = 𝛽 (ln

1

1 − 𝑈
)

1 𝛼⁄

 (3.15) 

Where 𝑈 is a uniform random number. 

The desired quantity 𝑁 of random numbers could be obtained using the Ntrand matrix 

function 𝑁𝑡𝑅𝑎𝑛𝑑𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑁, 𝛼, 𝛽, 0) in Microsoft Excel, providing the required 

parameters. 

In an Excel worksheet, a (𝑁 × 𝑀) matrix must be constructed to obtain 𝑁 = 8760 

random values for every month (𝑀 = 12) of a typical year. The content of each matrix 

column should be the Ntrand matrix function considering the scale (𝛽𝑚) and shape (𝛼𝑚) 

parameters values for the corresponding month 𝑚, which could be obtained with the 

matrix function 𝑁𝑡𝑊𝑒𝑖𝑏𝑢𝑙𝑙𝑃𝑎𝑟𝑎𝑚(𝑣𝑚, 𝜎𝑚) having 𝑣𝑚 = 𝑘𝑚𝑣𝑦 and 𝜎𝑚 = 𝑘𝑚𝜎𝑦. These 

relationships represent a good approximation of actual parameter monthly variation as 

inferred from the data shown in [124]. 

Similar to the solar case, additional terms must be appended when calling the Ntrand 

Excel function to avoid obtaining identical random values for places with the same 

aggregate input parameters. The final formula would be 𝑁𝑡𝑅𝑎𝑛𝑑𝑊𝑒𝑖𝑏𝑢𝑙𝑙(… , 𝑅𝜙, 𝑅𝜆), 

where 𝑅𝜙 and 𝑅𝜆 have the exact definition as indicated in 3.1.1.2. 

Wind speed values generally are reported at 100m height. However, the wind turbine hub 

can be placed at a different height, so values must be scaled using the power-law 

presented in eq.(3.16) as suggested by [125]. 

𝑣𝑠𝑦𝑛
𝑢 = 𝑣𝑠𝑦𝑛

𝑢 (
ℎ

ℎ𝑟𝑒𝑓
)

𝛾

  (3.16) 

Where 𝑣𝑠𝑦𝑛
𝑢  and 𝑣𝑠𝑦𝑛

𝑢  are the wind speed values for heights ℎ and ℎ𝑟𝑒𝑓, respectively. 

Power law exponent 𝛾, also known as Hellman’s wind shear or friction exponent, could 

be approximated using one of the formulas presented in [126], [127], but since both 

NASA POWER and site measurements most frequently report wind speed values for 
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more than one height, it is possible to clear the value of 𝛾 for each month using the 

monthly average speed values. 

 

Figure 5. Wind diary cycle for a point in Chile [128]. 

Since natural wind behavior has a sinusoidal-like form, as evidenced in Figure 5, obtained 

for latitude -37.09° and longitude -72.67° from [128], diurnal pattern formulation 

proposed by [109] will be adapted and applied to synthetic values. 

𝑣𝑓𝑖𝑛𝑎𝑙 = 𝑣𝑠𝑦𝑛
𝑜 (1 + 𝛿 cos[

2𝜋

24
(𝑖 − 𝜙)]) (3.17) 

In eq. (3.17), parameter 𝑖 ∈ {1. .24} represents the hours of the day, 𝜙 is the hour of day 

at which peak wind speed used to occur, and 𝛿 is the diurnal pattern strength whose typical 

value goes from 0.0 to 0.4. 𝑣𝑠𝑦𝑛
𝑜  is the correspondent synthetic value for the hour of year 

and month analyzed after being ordered using the algorithm presented next. 

3.1.2.3 Wind speed values reordering 

Until the previous step, generated values represent a random set of numbers, with almost 

all wind speed synthesis processes reviewed in section 2.1.2. However, it is possible to 

reorder the generated time-series to be more realistic, attending to the persistence 

characteristics that wind speed has. 

In that sense, an algorithm that uses the Assignment Problem optimization model is 

proposed in (3.18), similar to [73]. 
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𝑎 = 0 

𝑏 = rand(20: 32); 

while(𝑎 < 𝑁) { 

𝑣𝑠𝑦𝑛
𝑠𝑢𝑏 = 𝑣𝑠𝑦𝑛

𝑢 [𝑎: 𝑏]; 

𝑐 = rand(12: 24); 

for (𝑗 in 1. . length(𝑣𝑠𝑦𝑛
𝑠𝑢𝑏)) { 

for (𝑖 in 1. . length(𝑣𝑠𝑦𝑛
𝑠𝑢𝑏))) { 

𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑 = 𝑣𝑠𝑦𝑛
𝑠𝑢𝑏[𝑗]/max(𝑣𝑠𝑦𝑛

𝑠𝑢𝑏); 

𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = (1 + cos[
2𝜋

length(𝑣𝑠𝑦𝑛
𝑠𝑢𝑏)

(𝑖 − 𝑐)]); 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑗, 𝑖] = abs(𝑝𝑎𝑡𝑡𝑒𝑟𝑛2  − 𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑2); 

} 

} 

𝑣𝑠𝑦𝑛
𝑢 [𝑎: 𝑏] = AssignmentProblem(𝑣𝑠𝑦𝑛

𝑠𝑢𝑏 , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠); 

𝑎+= 𝑏; 

if(𝑎 ≥ N) break; 

𝑏 = rand(20: 32); 

if(𝑎 + 𝑏 > N) 𝑏 = N − 𝑎; 

} 

(3.18) 

This algorithm takes as input the values of 𝑣𝑠𝑦𝑛
𝑢  which was obtained in eq. (3.16) and 

replace its values in chunks. In each iteration, a subset of the generated time-series is 

created. The size of this subset is chosen randomly between 20 and 32 hours, which tries 

to represent a natural “diary” cycle length. After that, this subset is compared with a 

sinusoidal pattern whose hour of peak speed is set by a random function between 12 and 

24 since typically wind blows stronger in the afternoon and night. The distance between 

the pattern and the normalized subset is calculated as suggested in [73]. 

With these values, the assignment problem is finally solved. As a result, it is obtained a 

reordered time-series which is used to replace the original correspondent values in 𝑣𝑠𝑦𝑛
𝑢 . 

This newly ordered time-series is represented by 𝑣𝑠𝑦𝑛
𝑜  and is the one that must be used in 

eq. (3.17).  
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Parameters of the random functions can be revised to adapt to other locations' diary cycle 

patterns. 

3.1.2.4 Wind power assessment 

Although wind turbine manufacturers provide their products' power-wind speed (P-S) 

curves, no equation exists. In that sense, a piece-wise linearization function should be 

constructed to represent P-S curves [129]. 

𝑃𝑊 = 𝑓(𝑣𝑓𝑖𝑛𝑎𝑙)
𝜌

𝜌0
𝜂𝑊  (3.19) 

Eq. (3.19) shows the power calculation formula used to assess the generated power of a 

wind turbine for a specific wind speed (𝑣𝑓𝑖𝑛𝑎𝑙). In this equation, 𝜌 is the air density 

defined in step one (3.1.2.1), 𝜌0 = 1.225 𝑘𝑔 𝑚3⁄  is the standard air density at sea level, 

𝑓(𝑣𝑓𝑖𝑛𝑎𝑙) is the piece-wise linearization function that models the P-S curve of wind 

turbine and 𝜂𝑊 is a derating factor. 

Typical 𝜂𝑊 values are in a range of 80-90% [124], [130]–[135] and reflect the losses 

caused due to wake effect, availability, electrical efficiency, turbine performance, 

environment, and curtailments.  

3.2 Validations 

3.2.1 Validation of methodology for Solar Energy 

Three tests will be performed. The first test will evaluate the accuracy of proposed data 

sources. Then, methodology output until the second step will be compared with a 

historical time-series of irradiance. Finally, an existing PV power plant will be simulated 

through the proposed methodology, and its results will be contrasted with actual values. 

3.2.1.1 Test N° 1 – Comparison of solar data sources for a point in Chile 

Both POWER and PVGIS databases employ complex models to approximate solar 

radiation for a wide range worldwide. Hence, values obtained from these places are not 

historic measurement values but a mathematical approximation. 

In order to quantify how accurate are data provided by these platforms, they will be 

compared with values obtained from the Solar Explorer published by the Ministry of 
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Energy of Chile [136], which has a normalized root-mean-square deviation (nRMSD) of 

5.7% (observed vs. simulated) for the northern part of Chile (between latitudes -17° and 

-30°), according to [137]. 

Values for the comparison are gathered for a place located at latitude -18.37° and 

longitude -70.14°. 

Table I. Deviation of solar data sources respect to official values for a point in Chile. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

EU-PVGIS -2.1% -1.8% -1.4% 0.5% 1.7% 3.8% 6.0% 5.5% 0.3% 2.6% 2.0% -0.3% 

USA-POWER -0.5% 2.8% -5.3% -18.0% -28.8% -37.0% -36.5% -36.8% -27.2% -23.9% -16.7% -7.7% 

Values offered by PVGIS-NSRDB (2005-2015) are significantly more accurate than 

those provided by POWER, as shown in Table I. NASA’s data display information lower 

by more than 10% from Chilean’s values for 8 out of 12 months. 

 

 

Figure 6. Comparison of GHI (kWh/m2) from different solar data sources for a point in Chile. 

In that sense, it is validated that using PVGIS to obtain information about Global 

Horizontal Insolation (GHI) should be preferred over the POWER database, as proposed 

in step one (3.1.1.1). 
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3.2.1.2 Test N° 2 – Comparison of total GHI for a point in Slovakia 

The second test validates the quality of synthetic hourly values generated. Hence, historic 

hourly measurement data is used to compute the total monthly and annual global 

horizontal irradiance received, then compared with the amounts produced by synthetic 

values. 

Available data of Slovakia for years 2014, 2015, and 2017 were downloaded from [138] 

to perform this analysis. Geographic coordinates correspond to latitude 49.03° and 

longitude 20.32°, for which information was gathered from POWER and PVGIS-

COSMO (2005-2015). 

Figure 7 represents the daily behavior of measured and synthetic values only for the 

recommended average day for months indicated in [106], although both time-series 

correspond to a full year. 

It should be noticed that daily behavior for the same month is different from year to year. 

Therefore, synthetically generated values roughly coincide with some days. 

 

Figure 7. Time-series of solar global horizontal radiation (kW/m2) for a point in Slovakia. 

Figure 8 reflects that the total monthly global horizontal insolation received each month 

fluctuates year to year. Despite this, synthetic amounts seem similar to actual values for 

some months (Table II). The mean value of yearly nRMSD values comparing the total 

monthly amount of energy surpass 13.5%, having 12.6%, 9.8%, and 18.3% for years 

2014, 2015, and 2017, respectively. 

Nevertheless, if a mean aggregates the three historic yearly time-series, resulting amounts 

tend to be more likely than synthetic ones. Specifically, deviations get reduced to a mean 

absolute percentage error (MAPE) of 5% (each year independently reaches 10.9%, 7.1%, 

and 11.1%), while the nRMSD totals 10.6%. 
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Table II. Deviations of total monthly GHI (kWh/m2/month) values for a point in Slovakia. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Avg 35.58 56.59 103.45 128.78 159.78 188.11 172.05 149.96 98.41 67.16 38.37 29.89 1228.13 

Syn 35.01 56.05 102.16 139.97 152.69 155.01 168.13 140.56 97.82 63.95 38.38 26.41 1176.14 

Var -1.6% -0.9% -1.2% 8.7% -4.4% -17.6% -2.3% -6.3% -0.6% -4.8% 0.0% -11.6% -4.2% 

 

Figure 8. Comparison of total monthly GHI (kWh/m2) for a point in Slovakia. 

These results validate the proposed procedure until step four (3.1.1.4) and also suggest 

that to deal with uncertainty, synthetic series should also be generated for monthly mean 

daily GHI (𝐻) values in a range around ±10.6%. 

3.2.1.3 Test N° 3 – Comparison of solar energy with an existing solar park in Peru 

The third test corroborates the results of all steps (from 3.1.1.1 until 3.1.1.5). In that sense, 

the historical power output of an existing PV plant in Peru is used to evaluate the quality 

of synthetic time-series generated for a similar plant. 

The studied plant is Majes Solar Park (Figure 9) which is located at latitude -16.44° and 

longitude -72.22°, so data is gathered for this point from POWER and PVGIS-NSRDB 

(2005-2015). 

This plant uses fixed PV panels sloped at 15° facing the north [139]. Although the existing 

plant comprises modules of 350, 370, 390, and 410 W manufactured by TSolar, 

simulation is made using technical specifications of Hanwha Solar Q.Peak Duo L-G5.2 

for a rated power of 380 W [140]. A total of 57 894 panels are considered for the 

simulation, giving a total installed power of 22 MW, as it is in reality. 
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Figure 9. Location and satellite image of Majes Solar Park in Peru. 

Solar resource for the plant’s location is good and almost stable throughout the year, as 

shown in Figure 10. The yearly average daily total insolation received over a PV panel is 

6,365 Wh/m2/day. Furthermore, the expected daily behavior of radiation is almost 

constant for every month of the year, as represented in Figure 11. 

 

Figure 10. Monthly average daily total insolation (Wh/m2/day) over a PV panel for a point in Peru. 
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Figure 11. Monthly average daily hourly irradiance (W/m2) over a PV panel for a point in Peru.  

For the simulation, a value of 86% was used for the derating factor 𝑓𝑃𝑉. Table III reports 

the total monthly energy produced (actual and synthetic) by the solar park. It also shows 

the variation between both values. Correspondent MAPE is 4.9%, while the nRMSD is 

5.4%. 

Table III. Deviation of total monthly solar energy output (MWh) values for a point in Peru. 

 Actual Synthetic Variation 

January 3630.41 3512.84 -3.2% 

February 3345.25 3246.72 -2.9% 

March 3474.82 3624.32 4.3% 

April 3615.47 3280.31 -9.3% 

May 3210.09 3319.55 3.4% 

June 3164.76 3074.66 -2.8% 

July 3061.85 3338.34 9.0% 

August 3806.71 3551.88 -6.7% 

September 3818.65 3555.02 -6.9% 

October 4070.51 3888.83 -4.5% 

November 3841.99 3774.42 -1.8% 

December 3811.57 3667.79 -3.8% 

Total 42852.08 41834.70 -2.4% 

Mean 3571.01 3486.22  
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Figure 12. Total monthly solar energy output (MWh) for a point in Peru. 

Besides validating total energy output between actual and synthetic values, a comparison 

between output power profiles is also needed. Figure 13 displays power output time-series 

for the first and second weeks of the year. It can be noticed that synthetic series achieves 

reproducing stochastic behavior of solar resources. It should not be forgotten that the 

proposed methodology does not try to adjust natural solar curves but to generate realistic 

probable ones. 

 

Figure 13. Time-series of total solar power output (MW) for a point in Peru. 
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3.2.2 Validation of methodology for Wind Energy 

Three tests will be performed to validate the proposed procedure. Both tests will compare 

total energy produced when wind speed is converted using 42 wind turbines of a specific 

model for all data sources. Used turbine model corresponds to Siemens SWT-2.3-108 

[141], a turbine of 2.3 MW nominal power, with a hub height of 80 m and wind cut-in, 

cut-out, and rated speed values of 3, 25, and 11 m/s, respectively. 

3.2.2.1 Test N° 1 – Comparison of wind energy for a point in India 

In contrast with solar resource data availability, gathering data for wind resources for free 

is not an easy task. The National Renewable Energy Laboratory (NREL) has developed 

RE Data Explorer [118], a renewable energy resource geospatial explorer. Although this 

explorer covers only a minor part of the world, it is a valuable tool to obtain free data. 

For this test, a place in India at 248 masl, latitude 25.44°, and longitude 78.57° is 

analyzed. The RE Explorer allows obtaining a full-year measurement data of wind speed 

at different heights, besides other parameters. 

Weibull parameters 𝛽𝑦 and 𝛼𝑦 are calculated using the obtained wind speed time-series 

at 100 m as the average result of the R function indicated in 3.1.2.1 and methods 1, 2, and 

3 of [119]. 

Then, monthly means are calculated for wind speed at 40 m and 80 m, which is then used 

to clear the value of power-law exponent 𝛾 for each month. Starting from these monthly 

values for mean wind speed at 40 m and 𝛾, correspondent mean wind speed values at 100 

m (𝑣𝑚,𝑝) is calculated. Now, it is possible to find the values of the parameter 𝑘𝑚 described 

in 3.1.2.1. A value of 𝜙 = 22 and 𝛿 = 0.2 is used in this test. 

Since the process is intended to be applied in Peru, where there are no free wind speed 

time-series at 100 m, monthly mean wind speed values at 100 m were inferred from 

measurements at 40 m, although data retrieved from RE Data Explorer give us 

measurements at this height. Then, a measure of accuracy is done between actual and 

approximate values. 

Table IV. Deviations of monthly mean wind speed (m/s) values for a point in India. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Actual 4.995 5.255 5.159 5.485 7.093 8.751 6.828 6.984 6.592 4.697 3.774 4.250 

Approx 5.133 5.419 5.302 5.645 7.293 8.855 6.864 7.016 6.684 4.866 3.977 4.418 

Var 2.8% 3.1% 2.8% 2.9% 2.8% 1.2% 0.5% 0.5% 1.4% 3.6% 5.4% 4.0% 
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As shown in Table IV, approximate values differ from actual mean values 2.6% on 

average, having a maximum on November when variation reaches up to 5.4%, which is 

still acceptable.  

 

Figure 14. Time-series of total wind power output (MW) for a point in India. 

If the power generation profile calculated using the unordered wind speed time-series is 

revised (Figure 14), it is found that it has a more erratic behavior than the actual one. 
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(b) 

Figure 15. Monthly and annual daily (a) synthetic and (b) actual profile of wind speed for a point in India. 

In this context, it could be said that the unordered time-series represents a more 

complicated-to-integrate-into-power system wind project since it will require a more 

robust and flexible system to absorb such variation in power. This, somehow, could be a 

positive attribute for planning activities but, in contrast, could increase the expansion plan 

cost. 

A more realistic time-series is successfully obtained after applying the reordering 

algorithm indicated in 3.1.2.3, as shown in Figure 14. It is interesting to notice that peak 

and valley moments coincide acceptably between both series, confirming that a good 

value of 𝜙 was choose. 

Indeed, the monthly and annual daily profiles (Figure 15) reveal a similar pattern between 

synthetic and natural time-series. However, it can be noticed that historic time-series have 

a smoother behavior and more dispersed values during the whole day, with a notable 

exception near hour 19. In contrast, dispersion is minor and almost the same along the 

year in the synthetic time-series. 

On the other side, the proposed methodology produces quite realistic total monthly wind 

energy values as shown in Table V. Correspondent MAPE is 8.3%, while the nRMSD is 

13.7%. The maximum discrepancy occurs in June and September whit an underestimation 

of 17.8% and an overestimation of 6.0% in wind energy production, respectively. 
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Remember that even the actual production of wind farms is not the same each year. For 

the simulation, a value of 85% was used for the derating factor 𝜂𝑊. 

Table V. Deviation of total monthly wind energy output (MWh) values for a point in India. 

 Actual Synthetic Variation 

January 10445.60 9298.15 -11.0% 

February 11372.26 9729.97 -14.4% 

March 11382.02 10400.56 -8.6% 

April 13069.84 13220.91 1.2% 

May 23178.49 22987.15 -0.8% 

June 35351.94 29044.86 -17.8% 

July 22610.76 20006.27 -11.5% 

August 21399.94 22009.06 2.8% 

September 17773.97 18839.08 6.0% 

October 7906.84 7679.01 -2.9% 

November 3798.43 4582.08 20.6% 

December 6819.88 6919.43 1.5% 

Total 185109.99 174716.53 -5.6% 

Mean 15425.83 14559.71  

The actual energy calculation used wind speed measurements for 80 m height because of 

the hub height of the wind turbine model. Likewise, ordered synthetic values were scaled 

to that height through power law. 

 

Figure 16. Total monthly wind energy output (MWh) for a point in India. 
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3.2.2.2 Test N° 2 – Comparison or wind energy for a point in Chile 

A place in Chile with latitude -24.65°, longitude -70.24°, and an altitude of 2588 masl is 

analyzed in this second test. Measurement data is obtained from [142] and corresponds 

to yearly wind speed measurements at different heights and other parameters. 

𝛽𝑦 and 𝛼𝑦 are calculated using the time-series of wind speed at 50 m in the same way 

described in the previous test 3.2.2.1. Then, 𝛾 is cleared for each month using the monthly 

mean wind speeds at 10 and 40 m. Next, using the calculated value of 𝛾, mean wind speed 

values at 50 m (𝑣𝑚,𝑝) is calculated. To generate synthetic series, a value of 𝜙 = 11 and 

𝛿 = 0.2 is used in this test. 

Table VI. Deviations of monthly mean wind speed (m/s) values for a point in Chile. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Actual 5.553 6.578 6.705 6.420 7.104 8.996 9.777 7.459 5.895 8.997 6.163 6.538 

Approx 5.588 6.550 6.642 6.382 7.037 9.006 9.727 7.372 5.736 8.896 5.986 6.383 

Var 0.63% -0.43% -0.93% -0.59% -0.94% 0.11% -0.52% -1.17% -2.71% -1.12% -2.87% -2.38% 

In Table VI, it could be seen deviations between actual monthly mean wind speed and 

approximate value estimated using power law for a hub height of 50 m. 

 

Figure 17. Time-series of total wind power output (MW) for a point in Chile. 
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Similar to the previous test 3.2.2.1, it is also evident that unordered time-series present a 

more erratic behavior than the actual one. This behavior is improved after applying the 

proposed reordering algorithm, as depicted in Figure 17. 

This Chilean point’s monthly and annual daily wind speed profile do not have a standard 

performance (Figure 15-b). Hardly this profile will fit a sinusoidal-like form, but a good 

result is achieved. 

 

(a) 

 

(b) 

Figure 18. Monthly and annual daily (a) synthetic and (b) actual profile of wind speed for a point in Chile. 
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A MAPE of 4.2% and an nRMSD of 6.2% are obtained when comparing total monthly 

energy. Maximum discrepancies occur in January and July when deviations reach 5.9% 

and -11.4%, respectively. For this simulation, a value of 85% was used for the derating 

factor 𝜂𝑊. 

Table VII. Deviation of total monthly wind energy output (MWh) values for a point in Chile. 

 Actual Synthetic Variation 

January 12547.62 13287.62 5.9% 

February 16525.08 16823.45 1.8% 

March 19579.51 18759.00 -4.2% 

April 16451.77 17333.11 5.4% 

May 21838.07 21177.52 -3.0% 

June 26015.00 25655.07 -1.4% 

July 32140.78 28477.46 -11.4% 

August 23289.61 22459.02 -3.6% 

September 14595.80 14283.17 -2.1% 

October 26930.13 27670.87 2.8% 

November 15543.86 14243.40 -8.4% 

December 18047.32 18158.87 0.6% 

Total 243504.55 238328.55 -2.1% 

Mean 20292.05 19860.71  

Both actual and synthetic wind speed values had to be scaled to wind turbine model hub 

height of 80 m since they were initially referenced for a height of 50 m. 

 

Figure 19. Total monthly wind energy output (MWh) for a point in Chile. 
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3.2.2.3 Test N° 3 – Comparison of wind energy with a real wind farm in Peru 

The third test simulates an existing wind farm in Peru and compares the synthesis results 

and its historical power output time-series. 

The plant studied is Tres Hermanas Wind Farm, located at latitude -16.39° and longitude 

-75.08° and has an altitude of 217 masl, so data is gathered from POWER and [143]. 

This plant uses two models of wind turbines: 8 turbines Siemens SWT-2.3-108 and 25 

turbines SWT-3.15-142 [139]. However, simulation employs just one type, as mentioned 

in 3.2.2. Forty-two turbines are considered for the simulation, giving a total installed 

power of 96.6 MW, being 97.15 MW in reality. 

 

Figure 20. Location and site image of Tres Hermanas Wind Farm in Peru. 

From [143] it is retrieved Weibull parameters 𝛼𝑦 and 𝛽𝑦 at 100 m height and from NASA 

POWER, monthly mean wind speed values at 10 and 50 m. Having these values it is 

possible to cleared power law exponent 𝛼 and then calculate monthly mean wind speed 

values at 100 m height. 

A value of 𝜙 = 17 and 𝛿 = 0.2 is used in this test to generate synthetic series. Also, a 

value of 85% was used for the derating factor 𝜂𝑊. 

In this case, there is no availability of a time-series of actual wind speed but a series of 

power plant output. Hence, Figure 21 shows the monthly and annual daily profile of 

power generation for both synthetic and actual time-series. It is evidenced that synthetic 

Tres Hermanas Wind Farm
97,15 MW
Ica, Peru
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time-series have a noisier behavior when comparing month profiles, although the annual 

mean is quite similar. 

A common finding in both tests is the noisier behavior of monthly daily profiles since a 

random generation process is employed. It is impossible to affine the monthly daily 

profiles because available data allows modeling only some parameters at a precision scale 

of months when it would be necessary to model hourly parameters. 

 

(a) 

 

(b) 

Figure 21. Monthly and annual daily (a) synthetic and (b) real profile of wind power (MW) for a point in Peru. 
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This fact is not entirely a bad aspect of the proposed methodology whenever it produces 

a more exigent-to-integrate wind farm time-series, as indicated in a previous test. Indeed, 

developing planning studies considering this kind of synthetic time-series could guarantee 

that when actual implementation is done, the power system will not get into a more 

stressed situation than it was considered when simulated, which in essence represents the 

worst case. 

In terms of energy, the synthesis methodology yields an annual amount greater in 5.6%  

than the average of measured values with an nRMSD of 9.4%, as shown in Table VIII. 

Month-to-month variations have a mean error of 7.7% (MAPE). 

 

Figure 22. Time-series of total wind power output (MW) for a point in Peru. 

However, the nature of wind resources makes energy production change year to year. As 

shown in Figure 23, total monthly energy production is very different every year, with 

some exceptions in July and November, where production is quite the same. 

If synthetic results are compared to each year independently, it can be found nRMSD 

values of 12.5%, 15.8%, and 14.9% for years 2016, 2017, and 2018, respectively. 

However, when averaged, this value is reduced until 9.4%, as indicated previously.  
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Table VIII. Deviation of total monthly wind energy output (MWh) values for a point in Peru. 

 Average Synthetic Variation 

January 32302.01 39340.20 21.8% 

February 29939.20 34978.23 16.8% 

March 41116.80 40548.28 -1.4% 

April 41852.42 42975.77 2.7% 

May 42732.15 43293.23 1.3% 

June 36318.82 41967.99 15.6% 

July 38270.57 45320.03 18.4% 

August 45750.20 46922.11 2.6% 

September 44846.52 44895.43 0.1% 

October 46864.77 44286.17 -5.5% 

November 39551.08 40588.14 2.6% 

December 39490.29 40716.75 3.1% 

Total 479034.82 505832.32 5.6% 

Mean 39919.57 42152.69  

 

Figure 23. Total monthly wind energy output (MWh) for a point in Peru. 

According to the results, it could be said that the proposed methodology tends to 

overestimate the total wind energy production. This aspect should be taken into account 

when using these synthetic time-series to perform medium and long-term planning. It 

would be recommendable to generate multiple time-series varying parameter values to 

internalize methodology uncertainties into the planning process. 
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3.3 Chapter conclusions 

The proposed methodology presents a simple but effective approach for producing 

synthetic hourly production values for solar and wind renewable plants. 

According to the results presented, the methodology for solar resources successfully 

synthesizes time-series of output power, which correctly replicates typical behavior. On 

the other hand, the calculus of produced solar energy is slightly underestimated with the 

proposed methodology, having a discrepancy of 2.4% in the yearly totals. 

For wind resources, the randomness of the proposed methodology was encountered as a 

problem since it produces time-series in which variability is not realistic. This unrealistic 

time-series could be used as a worst-case scenario because such variability makes it hard 

to integrate its corresponding wind plant into a non-flexible power system. 

This behavior is corrected by solving the assignment optimization problem, which gives 

a more realistic profile for the output power of wind farms. On the other hand, the 

produced energy calculation over or under-estimates actual production within a variation 

range of -5.6% to 5.6%. 

Comparison with existing solar and wind plants could help estimate the expected error 

for future uses of synthetic time-series. 

The presented methodology is novel because it uses aggregate parameters as input and 

does not require historical time-series, suitable for developing countries lacking 

renewable information. Besides, this flexible and parametric methodology can generate 

multiple time-series scenarios modifying aggregate input parameters to achieve enough 

range of cases to incorporate uncertainties that may be used in future research work. 
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Chapter 4 

4 Time-series clustering to reduce 

data dimension 

This chapter evaluates the most used clustering technique presented in the literature and 

proposes applying a quality index to identify the best parameters to use within the 

clustering process. 

Additionally, parameter tuning is suggested for future applications based on the results 

obtained after applying the technique to an existing data set. 

4.1 Methodology 

As suggested by [80], [81], [85], [86], it is essential that the reduced study scenarios 

maintain the correlation, simultaneity, randomness, and variability within all the time-

series presented in the whole power system. 

Some approaches have been presented in previous works analyzed in Section 2.2. 

However, none of them have applied their methodology into an existing power system, 

where each load and renewable plant have a particular time-series, in contrast to academic 

problems where it is generally considered that all bus bars have the same load or resource 

profile. 

Existing literature on clustering for energy planning suggests that a pre-aggregating step 

must be done to combine all available data into a unique value for each time-step when 

looking for representative hours or to get a unique time-series when looking for 

representative days to start the process. However, presented cases only consider historical 

information to perform the pre-grouping step. An average between load and renewable 

generation is proposed in [81], while the net load (load minus renewable generation) is 

recommended in [80].  

In this chapter, the aim is not only to cluster time-series of the existing infrastructure of 

loads and renewable plants but also to allow the evaluation of new time-series of 
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candidate plants that must be evaluated into the planning process through an optimization 

model. Therefore, the proposed method for pre-aggregating data is an averaging of 

normalized time-series in order to: 

 Accomplish to maintain the correlation, simultaneity, randomness, and variability 

between all the time-series without the influence of big loads or plants. 

 Allow the analysis of other elements that also depends on time-series to pre-set their 

operation like a run-of-the-river hydroelectric plant. 

Concerning the technique used to perform the clustering process, most works have chosen 

the K-means method [30], [81], [87], [144] over the hierarchical method [80], [85]. In 

addition to choosing the clustering method, another critical selection is the metric used to 

calculate the distance between elements and clusters centroids. In that sense, this chapter 

explores and evaluates different metrics for the K-means clustering technique is 

developed.  

The proposed methodology is presented below. 

Having a set of raw time-series, where each series can represent a different element such 

as a generator or a load, the proposed procedure is described below: 

1. Normalize each time-series in order to have all values between 0 and 1. 

2. Add up all time-series and then normalize the new aggregated time-series. At this 

point, we obtain a vector of dimension Y, where Y=H*N, H is the number of time 

steps per day, and N is the number of days of the time window analyzed (typically 

365). 

3. Rearrange the vector into days to have a matrix of HxN. 

4. Apply the Time-series K-Mean function, which is provided by the Python library 

TSLearn [145]. This function will group days into clusters. 

5. Identify the most representative day for each cluster. 

6. Expand each representative day into its original raw time-series (generators, loads, 

etcetera). 

The following code is executed using the Python 3 environment provided for free by 

Google Colab to perform step 4. 

pip install tslearn 

from tslearn.clustering import Time-seriesKMeans 
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km = Time-seriesKMeans(n_clusters=C, metric=M, n_init=I, 

random_state=0) 

df_cc = km.fit_predict(df_X) 

In the variable df_cc we obtain the cluster label to which each time-series (day) 

provided in df_X belongs. Dataframe df_X corresponds to the result of steps 1 to 3. 

Values of C and I allow choosing, respectively, the specific number of clusters we are 

looking to have and the number of times the model will run in order to find the best fit. 

The metric used to calculate the K-means algorithm is set to Euclidean by default, but it 

can be changed to DTW (Dynamic Time Warping) [146] or Soft-DTW [147], specifying 

it in the parameter ‘metric’ (M). 

Once clusters are defined, each cluster's most representative time-series (day) must be 

identified, as indicated in step 5. This task is performed by calculating the distance (the 

same as the chosen metric for step 4) between each member (day) and cluster centroid 

(provided in km.cluster_centers_). The chosen representative time-series for 

each cluster represent a day of the year. Consequently, having this day, it is possible to 

obtain the individual series (generators, loads, etcetera) that composed the aggregated 

chosen time-series. 

4.2 Application 

As shown in the methodology, the clustering process can be tuned by changing the 

number of clusters, the number of initial runs, and the selected metric. In that sense, in 

this section, data of an existing power system will be used to choose the best set of 

parameters. 

4.2.1 Case study 

The proposed methodology is applied in the same system called PRC60 that will be 

presented, detailed, and analyzed in section 5.2.1. This power system, located in the 

northern part of Peru, has no presence of renewable plants. Two existing plants near the 

country’s areas with the best solar and wind resources have been chosen and added to 

complement the system's data. 
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Figure 24. Location and satellite image of Talara Wind Farm in Peru. 

On the one hand, a 30 MW plant near the application power system is used for wind 

resources. This plant started its commercial operation in 2014. Its generator’s hub height 

is 80 m and has an estimated annual production of 119,673.0 MWh.  

 

Figure 25. Location and satellite image of Tacna Solar Park in Peru. 

On the other hand, a 20 MW plant that started its commercial operation in 2012 is selected 

for solar resources. This plant has an estimated annual production of 47,196 MWh and 

was installed in the southern part of Peru. 

Talara Wind Farm
30 MW
Piura, Peru

Tacna Solar Park
20 MW
Tacna, Peru
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Figure 26. Power profiles of a load demand (blue), a wind farm (red) and a solar park (green) presented in 

PRC60 power system.  

An annual generation time-series of each plant is appended to the 20 demand registers the 

system initially has. These demands correspond to loads in 10 kV, 14 kV, 22.9 kV, and 

60 kV. 

Each demand register is composed of two time-series: one for active power and one for 

reactive power. However, just active power time-series are considered for the clustering 

process, although both series could be included if the optimization model can use them 

as input. 

As a result, the complete dataset comprises 22 time-series, all of them corresponding to 

actual measurements.  

4.2.2 Parameters tuning 

The goal of the proposed procedure is to reduce the number of series for analysis without 

losing the essential system’s insights as a whole. As reviewed in section 2.2, there is no 

consensus on the number of representative days to use. In this case, we look to find seven 

representative days which can emulate each typical weekday, as explained later. For this 

reason, we set parameter 𝐶 = 7. 

Trying to perform an expansion planning optimization without this clustering process will 

have to consider the 365 days x 96 steps/day = 35,040 points a typical yearly time-series 

has, which is an intractable number of points for an existing system expansion planning. 
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It must be noticed that the procedure converts each time-series into per-unit values before 

aggregating, making the actual magnitude of each series irrelevant and prioritizing 

simultaneity and correlation among renewable resources and load time-series.  

 

Figure 27. Annual time-series of the PRC60 system rearranged as daily time-series.  

Although [80] recommends using DTW [146] as the metric for the clusterization process, 

the three different K-Means Clustering metrics implemented by the library TSLearn [145] 

are evaluated in order to find the optimal clustering metric. Comparison is made using 

the Silhouette coefficient. 

As indicated in [148], the Silhouette coefficient is an internal measure widely used for 

cluster validation since it expresses the cluster separation and cohesion quality. Well-

separated clusters with lower within-cluster variations must tend to have Silhouette 

coefficient (S) values near to 1. 

Table IX. Silhouette coefficient and processing time for different metrics used in a K-Means Clusterization   

 Euclidian DTW  Soft-DTW 

10 initial runs 
S = 0.236515 

(53.768 s) 

S = 0.254996 

(382.588 s) 

S = 0.341826 

(1322.590 s) 

30 initial runs 
S = 0.233946 

(1403.559 s) 

S = 0.275713 

(2360.074 s) 

S = 0.398355 

(5108.184 s) 

According to the results presented in Table IX, the best metric for clustering the presented 

power system time-series is Soft-DTW [147] since its Silhouette coefficients are greater 

than those achieved by other metrics, although its processing time is by far more 

considerable. Furthermore, it was found that increasing the number of initial runs (run 

with different centroid seeds) improved the S coefficient. In that sense, more tests are 

done only with this metric to find the best number of initial runs. 
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Table X. Silhouette coefficient and processing time for Soft-DTW metric used in a K-Means Clusterization  

 Soft-DTW 

10 initial runs 
S = 0.341826 

(1322.590 s) 

20 initial runs 
S = 0.341826 

(17824.393 s) 

30 initial runs 
S = 0.398355 

(5108.184 s) 

50 initial runs 
S = 0.398355 

(9630.030 s) 

70 initial runs 
S = 0.398355 

(15924.537 s) 

S coefficient showed in Table X demonstrate that the best number of initial runs is 30. 

Before this quantity, the Silhouette coefficient is lower, and after that value, the 

coefficient does not improve. 

In conclusion, subsequent analysis will consider the clustering process using the Soft-

DTW metric and 30 initial runs. Nevertheless, it must be noticed that this parameters 

tuning process can be replicated for each new set of data If extra precision is required.  

4.2.3 Results 

The expected result of the application of the proposed methodology is composed of two 

things: 

 The actual centroid of each cluster, i.e., representative days 

 Weight or number of time-series of each cluster 

The first element helps us define our base values or scenarios for simulation, while the 

second tells us how much these simulation results must be considered in the aggregate 

evaluation.  

Figure 28 shows the seven clusters created and all of its time-series. Additionally, it shows 

the calculated centroid plotted in red and above their representative weight (𝜌𝑑𝑎𝑦
𝑡 ) which 

means the fraction of the total number of daily time-series that belongs to each cluster, or 

in this case, the number of days of a year that belongs to each cluster. 

In the previous sub-section 4.2.2, it was mentioned that the clustering technique would 

look to have 7 clusters representing each weekday. Obtained results capture this objective 

producing, for example, clusters 4 and 7 that capture Saturdays and Sundays, cluster 6 

that groups holidays, clusters 1, 3, and 5 that represent the most productive days of a week 

and, finally, cluster 2 that summarizes the least productive day of a typical workweek. 
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Figure 28. Clusters obtained for PRC60 system. 

It is essential to mention that this centroid is fictitious and does not correspond to any 

actual time-series. In order to have an actual centroid, an iterative process have to be done 

to find the time-series with the closest distance to this fictitious centroid. This process can 

be performed using the cross-similarity matrix for the correspondent metric as follows: 

import numpy as np 

 

dist = cdist_soft_dtw(df_X.reshape(df_X.shape), df_cc.cluster_centers_

.reshape((C, df_X.shape[1]))) 

df_C = np.zeros(X) 

 

for cluster_n in range(C): 

  d_init = 100 

  for index in range(df_X.shape[0]): 

    if df_y[index] == cluster_n: 

      if dist[index][cluster_n] < d_init: 

        df_C[cluster_n] = index 

        d_init = dist[index][cluster_n] 

 

Once identified every actual centroid, the correspondent date will be known, making it 

possible to identify the raw time-series to use in a later simulation process. 

Cluster 1 Cluster 2 Cluster 3 

Cluster 4 Cluster 5 Cluster 6 

Cluster 7 
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Figure 29. Real centroids of clusters obtained for PRC60 system. 

Last Figure 29 plots the actual centroid of all created clusters. These centroids correspond 

to the aggregated time-series formed following the proposed methodology. Therefore, 

they do not represent a specific load demand or renewable plant itself. 

Resulted clusters will be used in Chapter 5 to plan PRC60 system expansion. 

4.3 Chapter conclusions 

The proposed methodology reduced the 35,040 points of the existing yearly time-series 

into 7 days x 96 steps/day = 672 points maintaining the correlation, simultaneity, 

randomness, and variability within all the time-series. 

In order to define the best parameters to use in a time-series clustering process for energy 

planning studies, the Silhouette coefficient was used to measure the quality of clustering 

results. This coefficient can help, also, to evaluate new clustering techniques or metrics.  
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Chapter 5 

5 Expansion planning using a 

practical AC model 

In this chapter, a practical optimization model that considers an AC optimal power flow 

is presented to address the gap found in existing literature, which generally only performs 

a DC power flow.  

The presented model includes equations representing several elements like conventional 

generation plants, renewable plants like solar PV, wind, and hydro whose operation is 

pre-set by time-series, battery energy storage systems, transmission lines, and capacitors 

for reactive compensation. All equations accomplish to be written considering active and 

reactive power flow, losses assessment, and voltage fluctuation. 

The proposed model performs an intra-year study in a deterministic way, avoiding the 

analysis of year-to-year variation of renewable resources. Finally, the implementation of 

the model is done using the AMPL language [149] and the Gurobi solver [150]. 

5.1 Methodology 

The proposed model is based on the ones presented in [101], [151]. Over this model, 

many additions and modifications have been made to represent conventional and 

renewable generators, energy storage systems, reactive compensation equipment, and 

AC-related parameters. 

5.1.1 Conventional Generation Plants 

In order to take into account the reactive power flows that occur on existing systems, 

conventional power generation plants are represented using equations (5.1) to (5.4). The 

first equation (5.1) limits the máximum and minimum value of the active power (𝑔𝑎𝑖
𝑡) of 

each generator. Then equations (5.2) and (5.3) restrict its capacitive and inductive reactive 

power (𝑔𝑟𝑖
𝑡), respectively, using the current value of the active power and a fixed power 
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factor for each case. Finally, active and reactive power are related by equation (5.4) which 

guarantee apparent power would not exceed its maximum generation capacity (𝑔𝑖
𝑚𝑎𝑥). 

𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑔𝑎𝑖

𝑡 ≤ 𝑔𝑖
𝑚𝑎𝑥                        , ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇  (5.1) 

𝑔𝑟𝑖
𝑡 ≤ 𝑔𝑎𝑖

𝑡 tan(acos 0.95)             , ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇  (5.2) 

𝑔𝑟𝑖
𝑡 ≥ −𝑔𝑎𝑖

𝑡 tan(acos 0.99)          , ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇  (5.3) 

(𝑔𝑎𝑖
𝑡)2 + (𝑔𝑟𝑖

𝑡)2 ≤ (𝑔𝑖
𝑚𝑎𝑥)2          , ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇  (5.4) 

Capacitive and inductive reactive power are limited differently according to Peruvian 

technical criteria [152]. Consequently, it must be modified depending on the application 

case.  

5.1.2 Renewable Generation Plants 

In contrast with conventional plants where dispatched power is decided during the 

optimization process; in the case of renewable plants, available renewable power (𝜁𝑝
𝑡) is 

an independent (predefined) value for each time step. 

𝑧𝑎𝑝
𝑡 = 𝜁𝑝

𝑡 cos(acos 0.95)                , ∀𝑝 ∈ 𝑍, 𝑡 ∈ 𝑇  (5.5) 

𝑧𝑟𝑝
𝑡 ≤ 𝑧𝑎𝑝

𝑡 tan(acos 0.95)              , ∀𝑝 ∈ 𝑍, 𝑡 ∈ 𝑇  (5.6) 

𝑧𝑟𝑝
𝑡 ≥ −𝑧𝑎𝑝

𝑡 tan(acos 0.99)           , ∀𝑝 ∈ 𝑍, 𝑡 ∈ 𝑇  (5.7) 

Given that all renewable plants must participate by supplying reactive power (𝑧𝑟𝑖
𝑡) to the 

system, equations (5.5) to (5.7) conduct a simple calculation to determine the value that 

each power component must have considering recommended power factors [152], similar 

to the approach presented earlier in 5.1.1. 

𝜁𝑝
𝑡 = 𝑡𝑠𝑝

𝑡 𝑢𝑝𝜔𝑝                                     , ∀𝑝 ∈ 𝑍, 𝑡 ∈ 𝑇  (5.8) 

Available power for each time 𝑡 is determined by multiplying the number of units 

installed (𝜔𝑝 ≥ 0: integer) within a plant, the power capacity of each unit (𝑢𝑝) and the 

per-unit power value (𝑡𝑠𝑝
𝑡) for time 𝑡 obtained from clustered time-series (see Chapter 4). 

This way of modeling non-dispatchable plants can also be extended to cover the case of 

hydroelectric plants. 

An approach of considering modular expansion capacity values of supply-side 

alternatives (renewable generators, energy storage systems, and reactive compensators) 
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is implemented in the proposed model. As explained in [153], this approach avoids the 

need to discretize the continuous capacity values obtained in a post-processing phase, 

losing the optimality properties.  

5.1.3 Energy Storage Systems 

Equations proposed in [154] are used as a basis to model the operation of battery energy 

storage units, which consider a fixed capacity of units. However, as the number of units 

to install must be determined within the optimization problem, equations were 

reformulated to maintain their linearity. 

As a convention, charge power (𝑒𝑝𝑐𝑏
𝑡 ≤ 0) is considered negative, whereas discharge 

power (𝑒𝑝𝑑𝑏
𝑡 , 𝑒𝑝𝑑𝑎𝑏

𝑡  and 𝑒𝑝𝑑𝑟𝑏
𝑡 ≥ 0) is considered positive, denoting that device behaves 

as a load or a generator, respectively. Both variables are limited by the product of battery 

nominal power (𝑒𝑝𝑏
𝑛𝑜𝑚) and an integer variable (𝜔𝑏 ≥ 0) that represent the number of 

units installed (if any), as seen in equations (5.9) and (5.10). 

𝑒𝑝𝑐𝑏
𝑡 ≥ −𝑒𝑝𝑏

𝑛𝑜𝑚𝜔𝑏                           , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  (5.9) 

𝑒𝑝𝑑𝑏
𝑡 ≤ 𝑒𝑝𝑏

𝑛𝑜𝑚𝜔𝑏                              , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  (5.10) 

𝑒𝑝𝑑𝑎𝑏
𝑡 = 𝑒𝑝𝑑𝑏

𝑡 cos(acos 0.95)      , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  (5.11) 

𝑒𝑝𝑑𝑟𝑏
𝑡 ≤ 𝑒𝑝𝑑𝑎𝑏

𝑡 tan(acos 0.95)    , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  (5.12) 

𝑒𝑝𝑑𝑟𝑏
𝑡 ≥ −𝑒𝑝𝑑𝑎𝑏

𝑡 tan(acos 0.99) , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  (5.13) 

𝑒𝑝𝑎𝑏
𝑡 = 𝑒𝑝𝑑𝑎𝑏

𝑡 + 𝑒𝑝𝑐𝑏
𝑡                      , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  (5.14) 

𝑒𝑝𝑟𝑏
𝑡 = 𝑒𝑝𝑑𝑟𝑏

𝑡                                     , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  (5.15) 

𝑒𝑐𝑏
𝑡 = 𝑒𝑐𝑏

𝑡−1 − (
𝑒𝑝𝑑𝑏

𝑡

𝜂𝑏
+ 𝑒𝑝𝑐𝑏

𝑡 ) Γ    , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇/𝑡 ≥ 2  (5.16) 

𝑒𝑐𝑏
𝑡 ≤ 𝑒𝑐𝑏

𝑛𝑜𝑚𝜔𝑏                                  , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  (5.17) 

𝑒𝑐𝑏
𝑡 ≥ (1 − Db)𝑒𝑐𝑏

𝑛𝑜𝑚𝜔𝑏                , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  (5.18) 

∑ 𝑒𝑝𝑑𝑏
𝑠𝑡

𝑠=𝑡−𝜏𝑏+1 ≤ 𝑒𝑝𝑏
𝑛𝑜𝑚𝜔𝑏𝜏𝑏      , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇/𝑡 ≥ 𝜏𝑏  (5.19) 

𝑒𝑝𝑑𝑏
1 = 0                                             , ∀𝑏 ∈ 𝐵  (5.20) 

𝑒𝑐𝑏
1 = 0                                                , ∀𝑏 ∈ 𝐵  (5.21) 
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Similarly to conventional and renewable generation, battery discharge power (𝑒𝑝𝑑𝑏
𝑡 ) is 

divided into active (𝑒𝑝𝑑𝑎𝑏
𝑡 ) and reactive (𝑒𝑝𝑑𝑟𝑏

𝑡) components as written in equations from 

(5.11) to (5.13). It is understood that electronic devices such as inverters would do the job 

of splitting discharge power. Net active and reactive power outcomes are calculated in 

equations (5.14) and (5.15), respectively. 

Equation (5.16) estimates actual energy accumulated on the battery (𝑒𝑐𝑏
𝑡). Having as a 

base the amount of energy of the previous time step (𝑒𝑐𝑏
𝑡−1), it is added the energy charged 

(through 𝑒𝑝𝑐𝑏
𝑡) and reduced the energy discharged (through 𝑒𝑝𝑑𝑏

𝑡 ) which is affected by 

the efficiency of this process (𝜂𝑏). The energy added or reduced is inferred from its 

respective power multiplying by Γ, which in the application case of this chapter will be 
1

4
 

that indicated a time step of 15 min (a quarter of an hour). Maximum energy stored on 

the battery is limited by equation (5.17), while minimum charge level is defined in 

equation (5.18) using the parameter depth of discharge (Db). 

Batteries can not discharge at maximum power for long periods. For that reason, equation 

(5.19) limits, linearly, the number of continuous cycles (𝜏𝑏 expresed in number of time 

steps) the battery can discharge under this condition. 

The last two equations set the initial conditions of this device.  

It is essential to mention that, unlike the case of conventional generators, it is not 

implementing a quadratic equation like (5.4) for renewable plants nor energy storage 

systems in order to avoid the increment of computational complexity since, in both cases, 

the value of maximum capacity installed depends on an integer variable which would 

create a Quadratic Constraints Problem (QCP). This fact does not affect the quality of the 

solutions produced by the model, as demonstrated in section 5.2. 

5.1.4 Transmission Lines 

Power flows are modeled using transmission lines’ susceptance (𝑏𝑙𝑙) and conductance 

(𝑔𝑙𝑙). Additionally, for each busbar, a voltage phase angle (𝜃𝑖
𝑡) and deviation voltage 

(𝛿𝑉𝑖
𝑡) is considered. Deviation voltage is limited to be between ±0.05 𝑝𝑢. Subindex 𝑖𝑗 

denotes the difference between the value of bar 𝑖 and bar 𝑗, in that order. Proposed model 

is based on the ones presented in [99], [101], [155]. 
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|𝑓𝑎𝑙
𝑡 − (𝑔𝑙𝑙∆𝛿𝑉𝑖𝑗

𝑡 − 𝑏𝑙𝑙∆𝜃𝑖𝑗
𝑡 )| ≤ (1 − 𝜔𝑙)𝑀                 , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇  (5.22) 

|𝑓𝑟𝑙
𝑡 + (𝑏𝑙𝑙∆𝛿𝑉𝑖𝑗

𝑡 + 𝑔𝑙𝑙∆𝜃𝑖𝑗
𝑡 )| ≤ (1 − 𝜔𝑙)𝑀                 , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.23) 

|𝑓𝑎𝑙
𝑡| ≤ 𝑓𝑙

𝑚𝑎𝑥𝜔𝑙                                                                   , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.24) 

|𝑓𝑟𝑙
𝑡| ≤ 𝑓𝑙

𝑚𝑎𝑥𝜔𝑙                                                                   , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.25) 

(𝑓𝑎𝑙
𝑡)2 + (𝑓𝑟𝑙

𝑡)2 ≤ (𝑓𝑙
𝑚𝑎𝑥)2𝜔𝑙                                        , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.26) 

𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡 ≤ 𝑓𝑙
𝑚𝑎𝑥𝜔𝑙                                                       , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.27) 

−𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡 ≤ 𝑓𝑙
𝑚𝑎𝑥𝜔𝑙                                                   , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.28) 

𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡 ≤ 𝑓𝑙
𝑚𝑎𝑥𝜔𝑙                                                       , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.29) 

−𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡 ≤ 𝑓𝑙
𝑚𝑎𝑥𝜔𝑙                                                    , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.30) 

(𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡)
2

+ (𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡)
2

≤ (𝑓𝑙
𝑚𝑎𝑥)2𝜔𝑙         , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.31) 

(𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡)
2

+ (−𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡)
2

≤ (𝑓𝑙
𝑚𝑎𝑥)2𝜔𝑙     , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.32) 

(−𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡)
2

+ (𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡)
2

≤ (𝑓𝑙
𝑚𝑎𝑥)2𝜔𝑙     , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.33) 

(−𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡)
2

+ (−𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡)
2

≤ (𝑓𝑙
𝑚𝑎𝑥)2𝜔𝑙  , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   (5.34) 

Active and reactive power flow through line 𝑙 at hour 𝑡 are represented by 𝑓𝑎𝑙
𝑡 and 𝑓𝑟𝑙

𝑡, 

respectively. The values of these variables are calculated in equations (5.22) and (5.23), 

while total power flow is bounded to be within the line’s maximum capacity (𝑓𝑙
𝑚𝑎𝑥) by 

equations from (5.24) to (5.34) which aggregate flow components in distinct ways. Total 

power flow also includes active (𝑞𝑎𝑙
𝑡) and reactive (𝑞𝑟𝑙

𝑡) losses, which are calculated 

externally as explained in 5.1.7. 

It is essential to mention that most commercial linear solvers such as CPLEX and Gurobi 

can handle the quadratic constraints considered within the formulation since equations 

are still convex. 

Additionally, a binary decision variable 𝜔𝑙 is introduced to decide whether a candidate 

line should exist or not. Existing elements have a fixed value of 𝜔𝑙 = 1. 

Big M constant is set as suggested in [156], while voltage phase angle is restricted by 

|𝜃| ≤ 𝜋 for each bar. 
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5.1.5 Reactive compensators 

The proposed model also considers a block of constraints to solve the Reactive Power 

Planning (RPP) problem, the exclusion of which would produce expansion plans with 

cost overruns since all reactive power needs must be attended by generators and 

transmission lines, as explained in [157]. 

Consequently, within the model, static compensators are considered whose production is 

injected to the corresponding bus, following equation (5.35): 

𝑐𝑟𝑐 = 𝑢𝑐𝜔c                                           , ∀𝑐 ∈ 𝐶  (5.35) 

Reactive power is determined by multiplying the number of units installed or activated 

(𝜔𝑐 ≥ 0: integer) and the capacity of each unit (𝑢𝑐). 

For existing capacitor banks, 𝜔𝑐 represents the number of steps which is considered a 

fixed value during the whole analysis period. If the application case considers capacitor 

banks that can be controlled remotely in real-time, this integer variable must be indexed 

by time and include additional equations to set limits on up or down steps. 

For new banks, 𝜔𝑐 means the number of units that should be installed in a busbar in order 

to accomplish objective function and power system constraints. 

5.1.6 Busbars 

Active and reactive power balance must be performed at each bar 𝑗 every time 𝑡 in order 

to attend active (𝑑𝑎𝑡) and reactive (𝑑𝑟𝑡) power requirements. In this model 𝑑𝑟𝑡 is 

calculated from 𝑑𝑎𝑡 using a fixed power factor.  Resource variables have been added to 

help convergence capturing renewable production wastage (𝑧𝑙𝑜𝑠𝑠𝑘
𝑡 ), demand curtailment 

(𝑟𝑎𝑘
𝑡 ) and capacitive (𝑟𝑟𝑐𝑘

𝑡) and inductive (𝑟𝑟𝑖𝑘
𝑡 ) reactive compensation additional needs. 

∑ 𝑔𝑎𝑖
𝑡  + ∑ 𝑧𝑎𝑝

𝑡 + ∑ 𝑒𝑝𝑎𝑏
𝑡 + ∑ (𝑓𝑎𝑙

𝑡 −
1

2
𝑞𝑎𝑙

𝑡)
in

− ∑ (𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡)
out

=

∑ 𝑑𝑎𝑡 − 𝑟𝑎𝑘
𝑡 + 𝑧𝑙𝑜𝑠𝑠𝑘

𝑡                           , ∀𝑘 ∈ 𝑁, 𝑡 ∈ 𝑇  

(5.36) 

∑ 𝑔𝑟𝑖
𝑡  + ∑ 𝑧𝑟𝑝

𝑡 + ∑ 𝑒𝑝𝑟𝑏
𝑡 + ∑ (𝑓𝑟𝑙

𝑡 −
1

2
𝑞𝑟𝑙

𝑡)
in

− ∑ (𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡)
out

+

∑ 𝑐𝑟𝑐 = ∑ 𝑑𝑟𝑡 + 𝑟𝑟𝑖𝑘
𝑡 − 𝑟𝑟𝑐𝑘

𝑡               , ∀𝑘 ∈ 𝑁, 𝑡 ∈ 𝑇  

(5.37) 

Active resource variables are always positive and limited by the following equations: 
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0 ≤ 𝑟𝑎𝑘
𝑡 ≤ ∑ 𝑑𝑎𝑡                                   , ∀𝑘 ∈ 𝑁, 𝑡 ∈ 𝑇  (5.38) 

0 ≤ 𝑧𝑙𝑜𝑠𝑠𝑘
𝑡 ≤ ∑ 𝑧𝑎𝑝

𝑡                              , ∀𝑘 ∈ 𝑁, 𝑡 ∈ 𝑇  (5.39) 

Reactive resource variables are also positive but have no upper limits.  

Additionally, default values for voltage phase angle (𝜃𝑠𝑙𝑎𝑐𝑘
𝑡 ) and voltage deviation 

(𝛿𝑉𝑠𝑙𝑎𝑐𝑘
𝑡 ) should be set for slack busbar. These values could be used to represent the 

criticality of the present situation. For example, if the current system has voltage 

problems, then voltage deviation could be set at −0.025, which means the voltage at slack 

is 0.975 𝑝𝑢. 

5.1.7 Losses assessment 

As demonstrated in [101], an iterative process to calculate losses is a correct way to 

perform these complex calculations without affecting the linearity and dimension of the 

optimization model. 

In that sense, the algorithm presented in Figure 30 iteratively resolves the optimization 

model and calculates active and reactive losses of transmission lines while the deviation 

of current and previous objective function value is more than 0.5%. 

 

Figure 30. Iterative process to calculate active and reactive losses. 
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The equations needed to calculate losses are expressed in (5.40) and (5.41): 

𝑞𝑎𝑙
𝑡 = 𝜔𝑙𝑔𝑙 ((1 + 𝛿𝑉𝑖

𝑡)2 + (1 + 𝛿𝑉𝑗
𝑡)

2
− 2(1 + 𝛿𝑉𝑖

𝑡)(1 + 𝛿𝑉𝑗
𝑡) cos ∆𝜃𝑖𝑗

𝑡  )  (5.40) 

𝑞𝑟𝑙
𝑡 = −𝜔𝑙𝑏𝑙 ((1 + 𝛿𝑉𝑖

𝑡)2 + (1 + 𝛿𝑉𝑗
𝑡)

2
− 2(1 + 𝛿𝑉𝑖

𝑡)(1 + 𝛿𝑉𝑗
𝑡) cos ∆𝜃𝑖𝑗

𝑡  )  (5.41) 

These must be applied for each transmission line in each time step (∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇).  

5.1.8 Objective function 

The model's objective is to minimize the cost of generation, losses, curtailment, wastage, 

and investment. It is understood that the investment cost for existing elements is zero, as 

well as for the new elements, the binary or integer variables will have non-zero values. 

min 𝑣 = 8760Γ ∑ 𝜌ℎ𝑜𝑢𝑟
𝑡 (𝑓𝑐 ∑ 𝐶𝑔

𝑖 𝑔𝑎𝑖
𝑡

𝑖∈𝐺

+ 𝐶𝑀𝑔 𝑓𝑝 ∑(𝑞𝑎𝑙
𝑡 + 𝑞𝑟𝑙

𝑡)

𝑙∈𝐿𝑡∈𝑇

+ 𝐶𝐸𝑁𝑆𝑓𝑐 ∑(𝑟𝑎𝑘
𝑡 + 𝑟𝑟𝑖𝑘

𝑡 + 𝑟𝑟𝑐𝑘
𝑡 + 𝑧𝑙𝑜𝑠𝑠𝑘

𝑡 )

𝑘∈𝐵

)

+ ∑ @𝐼𝑝𝑢𝑝𝜔𝑝

𝑝∈𝑍

+ ∑ @𝐼𝑏𝑒𝑐𝑏
𝑛𝑜𝑚𝜔𝑏

𝑏∈𝐵

+ ∑ @𝐼𝑐𝑢𝑐𝜔𝑐

𝑐∈𝐶

+ ∑ @𝐼𝑙𝜔𝑙

𝑙∈𝐿

 

(5.42) 

Since model data is a reduced version of complete registers, each scenario must be 

multiplied by a weight factor (𝜌ℎ𝑜𝑢𝑟
𝑡 =

1

24
𝜌𝑑𝑎𝑦

𝑡 ) which transmit the importance of each 

time step in the evaluation.  

Power values are converted into energy values using the load factor (𝑓𝑐) for the 

conventional generators and resource variables that indeed represent fictitious generators 

and loads; while the loss factor (𝑓𝑝 = 0.7𝑓𝑐
2 + 0.3𝑓𝑐 [158]) is used for active and reactive 

transmission line losses. 

The energy generated by conventional plants are valued at 𝐶𝑔
𝑖  (in $/𝑀𝑊ℎ) which depends 

on the combustible used by each power plant. Losses of energy are valued at the market 

marginal cost 𝐶𝑀𝑔  (in $/𝑀𝑊ℎ). Finally, the energy of fictitious loads and generators are 

valued using a curtailment cost value, which is considered 𝐶𝐸𝑁𝑆 = 6,000 $/𝑀𝑊ℎ for the 

Peruvian electrical system. Energy injected into the system by the renewable generators 

and batteries is valued at zero cost. The model will try to install the optimal capacity since 
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renewable energy injected above system requirements (i.e., renewable wastage 𝑧𝑙𝑜𝑠𝑠𝑘
𝑡 ) is 

penalized in the objective function. 

The investment cost is calculated as the product of the installed power of renewable plant, 

energy storage system or capacitor bank, multiplied by the annuity cost (@𝐼), which is 

the sum of their annualized CAPEX cost, calculated considering an estimated lifetime (in 

years) and an annual discount rate (in %), and their OPEX cost. For the case of 

transmission lines, parameter @𝐼 represents the total annualized cost of the element 

(CAPEX and OPEX), not a unitary cost, so it is not necessary to be multiplied by power 

or length. 

All terms are expressed in the same monetary unit, which could be thousands or millions 

of US$ in this case, in order to avoid big order numbers that can lead to numerical 

instabilities during the optimization process. 

5.1.9 Notes on extending the proposed model 

For the sake of reading, the complete model is presented in Appendix C. 

If a particular application case needs to represent grid dynamics (e.g., rotations of power 

transformers) and grid reconfiguration (e.g., divisions or junctions of transmission lines), 

the equations (7) to (28) presented in [101] could be appended to this model. 

Alternative energy storage systems like pumped storage hydropower plants can also be 

included in the proposed model without losing linearity, employing the formulation 

suggested in [159]. 

Also, the presented model, which performs an intra-year analysis only, can be re-written, 

indexing all relevant parameters and variables to a year (𝛾 ∈ 𝑌) if a multi-year analysis is 

needed. 

Environmental constraints could also be included following an approach of weights that 

promote or penalize different technologies based on the convenience for each country or 

region. Such weights can be obtained from additional studies similar to [160]. 

However, additions of new equations and constraints will, inevitably, increase problem 

complexity making necessary the use of big-scale methods to resolve the optimization 

problems. Some of the most used methods are presented and compared in [161]. These 

methods should also be considered when applied to real-sized cases. 
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Since the main objective of this thesis is to present a novel planning framework to perform 

medium or long-term analysis considering short-term implications, implementation of 

such methods has been left out of the scope of this work. 

5.2 Application 

An existing system existing in the northern part of Peru is used as the case study. We will 

refer to this system as the Paita Ring Circuit 60 kV or PRC60. 

5.2.1 Case study 

The PRC60 system is located near the Pacific Ocean, surrounded by sand and water, as 

shown in Figure 31. This place has the Paita seaport, the second most important in Peru, 

after Callao in Lima. 

Load behavior in this area is predominantly domestic, although some industries mainly 

linked to the extraction and processing of lobsters are also present. 

As mentioned in Chapter 4, this system has available registers for only 20 loads, to which 

two additional time-series: one for a wind plant and one for a solar plant, have been 

appended. 

 

Figure 31. Satellite view of PRC60 system. 
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The whole system is a ring circuit, and their central node (slack node) is the substation 

Piura Oeste 220/60 kV, which is interconnected to the national system (SEIN). 

 

Figure 32. One-line diagram of PRC60 without projects in the year 2024. 

All simulation and optimization processes consider that slack node voltage is 0.975 𝑝𝑢 

since the main problem in this system is referred to low voltage profiles that start 

upstream. 

Validation of the results of the optimization model is performed using the specialized 

electrical software DigSilent PowerFactory. All PowerFactory simulation models use the 

same parameters as those used in the optimization model. Moreover, the active power of 

all generators (conventional and renewable) and energy storage systems are configured 

as indicated by the optimization model results, leaving the software calculates the reactive 

power flow, considering the same limits used in the proposed model. The number of 

active units of capacitor banks is also set as specified by the optimization process.  

On the other hand, the losses of all components and the power flow values of transmission 

lines and transformers are calculated by PowerFactory simulation software. 

5.2.2 Solution scenarios 

Six different scenarios are studied to validate the correct operation of the proposed 

optimization model. The business-as-usual situation for the year 2024 is C01. Following 
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scenarios from C02 to C05, implement one or two technologies that would solve existing 

voltage problems on some bus bars of PRC60. Finally, scenario C06 makes all the 

technologies supported by the optimization model compete. 

5.2.2.1 C01: Base scenario 

Figure 33 shows the results of the electrical simulation of the PRC60 system at the 

moment of maximum coincident demand when working under scenario C01. This 

moment would be used in subsequent simulations. 

This case represents the BAU scenario. Simulation evidences voltage problems on almost 

all the bars of the right side of the ring circuit (indicated in blue). Voltage values drop to 

0.89 𝑝𝑢, which is out of a normal operational scenario where values should always be 

between 0.95 𝑝𝑢 and 1.05 𝑝𝑢. 

This system already has five capacitor banks distributed on medium-voltage bars and one 

in the slack node, a high-voltage bus bar. Nevertheless, even though they are activated at 

maximum capacity, voltage problems persist in this scenario. 

Notice that some equipment is colored red because they are overloaded, although the 

optimization model constrained them to avoid exceeding their maximum capacity. The 

reason lies in the simplified mathematical representation used to keep model linearity. 

Fortunately, overloads are 1.6% on average, which is a small and acceptable value. 

 

Figure 33. Electrical simulation of PRC60 system at maximum coincident demand - Scenario C01. 
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The annual operation cost valorizes the production of conventional generators. The cost 

of fictitious generators is mainly originated by capacitive power that must be injected 

(through resource variable) to accomplish bus bars voltage limits.  

Elapsed time: 11𝑚 22.812𝑠 

Total scenario C01 cost is $ 375′932,219 

 Operation cost: $ 42′153,810 

 Fictitious cost: $ 333′778,409 

5.2.2.2 C02: Capacitor banks 

Voltage problems of the PRC60 system can be economically solved in scenario C02 by 

considering only new capacitor banks. These new banks, and all system additions, are 

supposed to take place on bars Arenal 60 kV, La Huaca 60 kV, or Paita 60 kV. 

As shown in Figure 34, the solution proposed by the optimization model manages to 

correct voltage problems of the right-side bus bars of the system by adding two new 

capacitor banks on bars La Huaca 60 kV (𝐶2) and Paita 60 kV (𝐶3). However, it must be 

noticed that simulation evaluates a specific moment where maximum coincident demand 

takes place. 

 

Figure 34. Electrical simulation of PRC60 system at maximum coincident demand - Scenario C02. 
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Installed power is 20 MVAR for 𝐶2 and 15 MVAR for 𝐶3, both banks are static and 

remain at the same step (maximum capacity) throughout the period. Furthermore, this 

operation scenario does not require existing capacitor banks installed on bars Tierra 

Colorada 10 kV and Piura Oeste 60 kV. 

Elapsed time: 44𝑚 33.700𝑠 

Total scenario C02 cost is $ 65′996,362 

 Operation cost: $ 34′107,197 

 Fictitious cost: $ 31′816,115 

 Capacitors cost: $ 73,050 

Fictitious cost comprises inductive power (43.7%) and capacitive power (56.3%), 

denoting that voltage levels are under or over specified limits on some periods. These 

problems occur since capacitor banks have a static behavior. 

The total cost of this scenario is -82.4% lower than scenario C01. 

5.2.2.3 C03: Energy storage systems 

For scenario C03, the optimization model only considers the installations of energy 

storage systems to solve voltage problems of PRC60. 

 

Figure 35. Electrical simulation of PRC60 system at maximum coincident demand - Scenario C03. 
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As a result, three BESS are added to the PRC60 system and, as shown in Figure 35, 

manage to solve voltage problems at the moment of maximum demand. A BESS of 22 

MVA is installed at Arenal 60 kV (𝐵1), 114 MVA at La Huaca 60 kV (𝐵2) and 32 MVA 

at Paita 60 kV (𝐵3). All BESS have 4 hours of storage. 

Although batteries are faster enough to respond to load fluctuations, additional capacitive 

power is needed when operational limits of BESS prevent them from injecting more 

reactive power. The model could have installed a higher capacity of BESS to gain more 

reactive power into the system, but economic benefits did not justify additional 

investment. In that sense, all existing capacitor banks are used in this scenario. 

Elapsed time: 2ℎ 13𝑚 31.670𝑠 

Total scenario C03 cost is $ 97′524,802 

 Operation cost: $ 37′432,446 

 Fictitious cost: $ 16′280,087 

 Batteries cost: $ 43′812,269 

The total cost of this scenario is -74.1% lower than scenario C01. 

All subsequent scenarios consider that a maximum of 100 MW can be installed per BESS. 

Nevertheless, in this scenario, this value was increased up to 150 MW since previous 

solutions set 𝐵2 to 100 MW, denoting that this parameter was limiting the optimal 

solution. 

5.2.2.4 C04: Solar plants and energy storage systems 

In this fourth scenario, the optimization model is limited to using energy storage systems 

and solar plants as solution alternatives, and, again, results achieved to correct voltage 

profiles on right-side bus bars of the PRC60 system. 

Additions in this scenario consist of one solar plant and three BESS. As in the previous 

scenario, storage systems are installed in all three available bars but with distinct 

capacities, which are 31 MVA for 𝐵1, 53 MVA for 𝐵2 and 19 MVA for 𝐵3. For the case 

of renewable plants, just one plant was decided to be built in La Huaca 60 kV with a 

nominal power of 30 MVA solar (𝑆2). 
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Figure 36. Electrical simulation of PRC60 system at maximum coincident demand - Scenario C04. 

To complement the operation scenario, the optimization model decides to deactivate the 

existing capacitor bank of slack bar Piura Oeste 60 kV and, also, to shut down 

conventional generator Maple, located in the same bus bar. 

Elapsed time: 3ℎ 24𝑚 58.500𝑠 

Total scenario C04 cost is $ 76′750,884 

 Operation cost: $ 35′006,033 

 Fictitious cost: $ 8′847,293 

 Batteries cost: $ 26′861,093 

 Solar plants cost: $ 6′036,465  

The total cost of this scenario is -79.6% lower than scenario C01. 

Fictitious cost in this scenario represents the need for additional capacitive power in an 

amount that is almost half that of the previous scenario C03.  

5.2.2.5 C05: Wind pants and energy storage systems 

As an alternative scenario, in this fifth case, the optimization model solves voltage 

problems by considering energy storage systems combined with wind plants. 
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Figure 37. Electrical simulation of PRC60 system at maximum coincident demand - Scenario C05. 

Specifically, results indicate that two renewable plants of 80 MVA (𝐸2) and 15 MVA 

(𝐸3) must be installed in La Huaca 60 kV and Paita 60 kV, respectively. Additionally, 

and unlike the previous scenario, two BESS are considered in this solution: 𝐵2 with a 

capacity of 12 MVA, and 𝐵3 with 13 MVA. 

All existing capacitors are activated in this scenario, and just the Maple generator is off. 

Elapsed time: 1ℎ 42𝑚 16.840𝑠 

Total scenario C05 cost is $ 59′646,091 

 Operation cost: $ 28′072,355 

 Fictitious cost: $ 5′938,582 

 Batteries cost: $ 6′519,683 

 Wind plants cost: $ 19′115,471  

The total cost of this scenario is -84.1% lower than scenario C01. 

The fictitious cost in this case also represents the need for additional capacitive power. 
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5.2.2.6 C06: Solar and wind plants, energy storage systems, and capacitor banks 

Finally, scenario C06 makes all available technologies compete. In this way, the final 

solution can take advantage of the main benefits of each technology, optimizing 

expansion plan cost. 

 

Figure 38. Electrical simulation of PRC60 system at maximum coincident demand - Scenario C06. 

The scenario solution includes the installation of two capacitor banks: 𝐶2 of 25 MVA and 

𝐶3 of 10 MVA; three energy storage systems: 𝐵1 of 4 MVA, 𝐵2 of 6 MVA and 𝐵3 of 17 

MVA; and finally just one renewable plant: 𝐸2 of 10 MVA wind. 

Existing capacitor banks in bars Tierra Colorada 10 kV and Piura Oeste 60 kV are 

disconnected in this operation scenario, and also Maple generator is turned off. 

The reason why this conventional generator is off in some scenarios is the fact that it is 

one of the most expensive plants in the PRC60 system, with a variable cost of 

130 $/𝑀𝑊ℎ, the same that Tablazo G1; while other conventional plants have a value of 

30 $/𝑀𝑊ℎ which is also considered as the spot price of the market (𝐶𝑀𝑔 ). 

Elapsed time: 5ℎ 22𝑚 53.900𝑠 

Total scenario C06 cost is $ 46′322,795 

 Operation cost: $ 30′395,787 
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 Fictitious cost: $ 6′800,545 

 Capacitors cost: $ 73,050 

 Batteries cost: $ 7′041,258 

 Solar plants cost: Not installed 

 Wind plants cost: $ 2′012,155 

The total cost of this scenario is -87.7% lower than scenario C01. 

Again, the fictitious cost is mainly additional capacitive power. Although it represents a 

significant amount of money, it has to be mentioned that this reactive energy is being 

valued at a considerable value (𝐶𝐸𝑁𝑆 ). If this fictitious energy were valued at 𝐶𝑀𝑔 , the 

fictitious cost would represent only $ 34,000. 

5.3 Chapter conclusions 

Cost 

Case 
Operation Fictitious Capacitors Batteries Solar PV Wind Total 

C01 42′153,810 333′778,409 − − − − 375′932,219 

C02 34′107,197 31′816,115 73,050 − − − 65′996,362 

C03 37′432,446 16′280,087 − 43′812,269 − − 97′524,802 

C04 35′006,033 8′847,293 − 26′861,093 6′036,465 − 76′750,884 

C05 28′072,355 5′938,582 − 6′519,683 − 19′115,471 59′646,091 

C06 30′395,787 6′800,545 73,050 7′041,258 − 2′012,155 46′322,795 

Presented optimization model achieve to evaluate electrical systems taking into account 

AC operation restrictions like technical loses, reactive power, and voltage values; without 

losing linearity and yielding consistent and verifiable results. 

Also, the proposed model accomplish to solve electrical system problems at the minimum 

cost. Furthermore, demonstrate that, when allowed, it can choose the optimal mix of 

technologies to provide the best expansion plan in term of cost. 
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Chapter 6 

6 Case Study: Electrical system of 

eastern Peru 

In this final chapter, an application of the three main contributions of this thesis will be 

performed on an electrical system elaborated, taking as a base an existing system of 

eastern Peru.  

As indicated in 5.1.9, the application case for the proposed planning framework must be 

performed on a medium-size system due to the detailed representation of system 

elements. In that sense, an existing system belonging to the distribution company Electro 

Oriente, called the ELOR system, was taken as the base case. Over this system, some 

considerations have been established to build the ELOR-C system, a critical version of 

the ELOR base system. 

6.1 System description 

The system is located in Loreto, which belongs to the northeast jungle region of Peru. 

Demand is primarily domestic. Industrial load represents less than 10% of total installed 

power. 

The original ELOR system has two points of interconnection to the National Electrical 

System (SEIN). One is found in San Martin, at the southernmost substation denominated 

Bellavista 138 kV, from which a transmission line starts towards substation Juanjuí 138 

kV. Since this line is usually open thus it is not considered into the ELOR-C system. The 

other point is in Moyobamba, at the northernmost substation called Belaunde Terry 

220/138 kV, towards which a 220 kV transmission line arrives. This 220 kV line crosses 

the Andes mountain range. It is subjected to several climatological phenomena that cause 

an average of 8 hours of disconnection each year (considering historic failures from 2017 

to 2020 as reported by Peruvian ISO: COES), being one of the reasons why it was 

considered a critical electrical system by the regulator Osinergmin [162]. This line's 
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capacity was limited when constructing the ELOR-C system, forcing the optimization 

model to obtain an expansion plan that turns this system into a resilient one. 

 

Figure 39. Satellite view of ELOR-C system. 

Load power values used in the ELOR-C system correspond to projected values for 2026, 

approved by the regulator Osinergmin [163]. Moreover, system topology and capacities 

also correspond to 2026, except the 220 kV transmission line capacity that arrives at 

Belaunde Terry 220 kV, which is limited to its 2018 maximum active power flow value. 

A generator represents this injection within the ELOR-C system, and its capacity 

corresponds to the maximum power injected during the system maximum coincident 

demand moment.  

The total installed load capacity of the ELOR-C system equals 127.79 MW, while the 

total installed generation capacity is just 75.80 MW. Each load has an associated demand 

profile (12 available yearly registers). Also, it is considered that the slack bar (Belaunde 

Terry 220 kV) has a voltage of 0.975 pu as an initial condition, affecting the voltage 

quality of all bus bars downstream. 

In that sense, the optimization problem involves finding the best mix of technologies that 

provide the necessary generation capacity to supply system demand requirements with an 

adequate voltage quality. 
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ELOR-C system consists of 44 bars, 3 exiting generators, 14 loads, 3 exiting capacitors, 

42 existing transmission lines, 28 renewable projects, 6 BESS projects, and 6 capacitor 

projects. For each project, the model has to decide the optimal capacity to install. 

6.2 Renewable time-series synthesis 

Generation technologies considered as expansion alternatives for the ELOR-C system are 

solar photovoltaic (PV), wind and hydro plants, in addition to battery energy storage 

systems (BESS) and capacitive reactive power compensators. All alternatives are 

supposed to be installed in one of the following bars: Belaunde Terry 138 kV, Gera 60 

kV, Pongo 60 kV, Rioja 60 kV, Tarapoto 138 kV, and Yurimaguas 33 kV. 

While the injections of BESS and capacitors are calculated by the optimization model, as 

formulated in Chapter 5, renewable plants need a time-series to use as an input to deduce 

their production, having each technology a particular profile as depicted in Figure 40. 

In the case of hydro plants, three alternatives presented in [164] are considered for this 

study. For each hydro project, a time-series obtained from three existing hydro plants is 

associated. The selected plants are Platanal G2, Chaglla G2, and Cerro del Águila G3, 

whose power production records were obtained from COES for 2018. 

 

Figure 40. Active power production profiles for three generation alternatives with distinct technologies. 

On the other hand, a synthesis process had to be performed to obtain the expected 

production time-series for each solar PV and wind plant formulated as expansion options. 

Twenty-five time-series were synthesized using the proposed methodologies presented in 

Chapter 3: 13 for wind plants and 12 for solar PV plants. 
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An average of 2 projects for each technology, solar PV and wind, were formulated for 

each of the six available bus bars. This situation caused the projects to be very close to 

each other., as shown in Figure 41, making gathered climatological data very similar. 

 

Figure 41. Satellite view of substation Pongo 60 kV and two solar plant projects of ELOR-C system. 

Different seeds were used during the random generation processes To overcome that 

situation. The last five digits of the decimal part of its coordinates served as seeds for 

each plant, as described in Chapter 3.  

As a result, the proposed methodology generates unique time-series for each project no 

matter how close they are.  

 

Figure 42. Active power production profiles for two wind plants located closely together. 
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Figure 42 shows the power profile of two wind plants formulated to be connected in 

substation Tarapoto 138 kV and demonstrates that synthetic time-series are sufficiently 

different despite this. 

 

Figure 43. Active power production profiles for three solar plants located closely together. 

Similarly, Figure 43 serves to verify that power profiles for the three solar projects 

formulated for substation Belaunde Terry 138 kV are not equal despite the proximity 

between them. 

Although the quality of wind resources in the geographic area of the ELOR-C system is 

not as good as solar resources, both technologies were treated in the same way when 

formulating the generation alternatives since implantation decision should be evaluated 

by the optimization model instead of a priori evaluation or judgment.  

6.3 Demand and renewable time-series clustering 

Forty time-series are available for the ELOR-C system. 12 time-series correspond to 

demand records obtained from feeders at 10 kV, 22.9 kV, and 33 kV. Another 3 time-

series belong to the three existing hydro plants selected to be taken as dispatch model. 

Finally, 25 time-series come from the synthesis process carried out in 6.2. 

The time scale for all time-series is 1-hour, having each one 8760 values. In that sense, 

this section aims is to reduce their size to only 168 values, i.e., 7 typical days.  

As proposed in Chapter 4, a K-Means Clusterization process is used to accomplish this 

goal. The metric used to cluster time-series is Soft-DTW with 30 initial runs. 
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The clustering process was performed on the free cloud service provided by Google called 

Colab and was executed in 157.827 seconds. The obtained Silhouette coefficient was 

0.339409. 

 

Figure 44. Clusters obtained for ELOR-C system. 

Figure 44 shows the seven clusters obtained for the ELOR-C system. In contrast with the 

case study of Chapter 4, these clusters seem to be very similar. That is because the 1-hour 

scale smooths the variations that occurred intra-hour. Differences between clusters would 

be more visible if the time scale were 15-min or shorter. 

 

Figure 45. Real centroids of clusters obtained for ELOR-C system. 

As indicated, that similarity is just a visual perception since when analyzing real centroids 

altogether, it is notorious that each cluster has a different magnitude representing the 7 
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typical days that methodology looked to obtain. Each typical day will be used in the 

optimization process considering their weight. 

6.4 Costs of expansion technologies 

Economic variables shown in Table XI have been elaborated using the values presented 

in [93], where historical investments in generation capacity in Peru are studied. Future 

cost projections for solar PV and wind technologies presented by IRENA and IEA are 

also recuperated. Likewise, the cost for battery storage systems (BESS) took as input the 

projections presented by NREL. It is important to mention that an expert judge finally 

decided all variables gathered and those missing.  

Table XI. Economic variables for expansion technologies   

 Investment 

Cost 

OPEX Cost 

(%) 

Useful life 

(year) 

Hydro 2,700 $/kW 4.0% 30 

Solar PV 1,098.5 $/kW 1.8% 25 

Wind 1,516.5 $/kW 2.0% 25 

BESS 500 $/kWh 2.5% 10 

Capacitor 15 $/kVAR 1.5% 25 

Additional considerations for BESS technology are that storage duration is 4 hours, 

round-trip efficiency is 89%, deep-of-discharge is 100%, and it can operate at maximum 

power for a maximum of 7 hours. 

Energy injected by any of these technologies is valued at 0 $/MWh. On the other side, 

generation cost for existing generators is assumed 25 $/MWh while load curtailment is 

penalized at 6,000 $/MWh. 

6.5 Expansion planning optimization 

As indicated in 6.1, the optimization problem consists in finding the optimal mix of 

technologies that provide the necessary generation capacity to supply system demand 

requirements keeping an adequate voltage quality. Results will represent the optimal 

expansion planning for the year 2026 under the premises established in the previous 

sections. 
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In other words, the optimization problem will attempt to resolve a medium-term planning 

problem considering the short-term operation concerns. 

6.5.1 C01: Base scenario 

As expected, the base case configuration cannot provide the necessary energy the system 

needs to operate correctly. Such a situation is depicted in Figure 46, where it is notorious 

that generation capacity reaches a maximum value of around 75 MW. 

 

Figure 46. ELOR-C system operation – base case C01. 

For this scenario, the model set existing capacitors located in Tarapoto 10 kV and 

Tarapoto 138 kV at maximum capacity, 10 MVAR, and 5 MVAR, respectively. On the 

other side, the existing capacitor in Belaunde Terry 220 kV was not activated in this 

scenario. 

Elapsed time: 3𝑚 57.389𝑠 

Total scenario C01 cost is $ 933′518,335 

 Operation cost: $ 10′907,492 

 Losses cost: $ 1′612,949 

 Fictitious cost: $ 920′997,894 
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35% of the fictitious cost is due to load curtailment, while the rest corresponds to 

additional capacitive power needed to maintain voltage levels between 0.95 pu and 1.05 

pu. 

 

Figure 47. Voltage levels in load bars of ELOR-C system – base case C01. 

However, despite the fictitious reactive capacity injected into the system, voltage levels 

drop to minimum values throughout the analyzed period, as shown in Figure 47.  

6.5.2 C02: Optimized scenario 

The optimization model obtained an optimal expansion plan that minimizes operation and 

investment costs while guaranteeing short-term variables like voltage stay in an 

acceptable range. 

The expansion plan consists in installing 80 MVA of solar plants (6 plants) and 15 MVA 

of hydro plants (3 plants) distributed among the buses Tarapoto 138 kV, Pongo 60 kV, 

and Yurimaguas 60 kV as shown in Figure 48. Additionally, 60 MVA and 240 MWh of 

BESS (6 plants) were selected to be installed among all available buses. Finally, the 

model decided to install 3 capacitors with a total capacity of 25 MVAR between buses 

Tarapoto 138 kV, Pongo 60 kV, and Rioja 60 kV. No wind plants were chosen since the 

wind resource quality in this area is not as good as solar. 
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Existing capacitors in buses Tarapoto 10 kV and Tarapoto 138 kV were activated with 

7.5 MVAR and 5 MVAR, respectively. Also, the usage factor of the existing generation 

got decreased due to the presence of new capacity. The operation cost of the existing 

generation in this scenario C02 is 23% lower than that obtained in scenario C01. 

Another important finding is that transmission losses are reduced by 19% in the optimized 

scenario C02, where new generation plants are distributed within the ELOR-C system. 

 

Figure 48. Satellite view of ELOR-C system with selected renewable projects. 

Elapsed time: 7ℎ 45𝑚 7.100𝑠 

Total scenario C02 cost is $ 81′083,477 

 Operation cost: $ 8′389,313 

 Losses cost: $ 1′302,564 

 Fictitious cost: $ 29′915,707 

 Capacitors cost: $ 53,438 

 Batteries cost: $ 21′988,099 

 Solar plants cost: $ 12′768,538 

 Wind plants cost: Not installed 

 Hydro plants cost: $ 6′647,818 

The total cost of this scenario is -91.3% lower than scenario C01. 
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Fictitious cost is 97% lower than the obtained in the base case. 83% of this fictitious cost 

is produced by additional capacitive power, while load curtailment represents 16%. The 

presence of load curtailment means that the expansion plan can not meet all demand 

requirements. A total of 791.75 MWh of non-served energy occurs in this scenario, 

equivalent to an effective power of 0.09 MW during the whole year. In scenario C01, the 

non-served energy is 53,182.46 MWh. 

 

Figure 49. ELOR-C system operation – optimized case C02. 

The total energy provided by renewable plants (solar and hydro) is 181.28 GWh, 

representing a penetration of almost 38% into the ELOR-C system, whose annual demand 

energy is 477.17 GWh. This fact demonstrates that the optimization model maximizes 

renewable penetration without causing renewable wastage or voltage problems. 

An essential part of the expansion plan is the battery energy storage systems that help 

save the energy produced in excess due to the considerable amount of solar energy 

installed and return that energy to the system when demand reaches its peak hours. In 

Figure 49, this operation dynamic can be seen when generation (purple and yellow areas) 

is greater than load demand (red line) and when the stored energy is then re-injected to 

the system (green area). 
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Stored energy in BESS throughout the analysis period is presented in Figure 50 in color 

green. Also, power consumed when charging (yellow) and power injected when 

discharging (red) is presented in the same graphic.  

 

Figure 50. Operation of BESS installed in ELOR-C system – optimized case C02. 

Thanks to the fact that the model considers each technology's generation profile, the 

voltage levels, and the wastage energy, the optimal plan does not include any wind plant. 

If the analysis were just a cost issue, the model would have decided to install wind plants 

over BESS plants, but it was not. Installing 60 MW of BESS requires an annual cost of 

$ 21′988,099, but if an equivalent wind capacity had been installed, the cost would have 

been only $ 13′421,022, 39% less. However, the benefits of having BESS in the short-

term operation of the system make the model choose it over other available technologies. 

The optimal expansion plan also improves the voltage levels of the bars presented in 

Figure 47. The same buses are shown in Figure 51, where it can be seen that now the 

voltage levels fluctuate around 1 pu. It is imperative to mention that voltage levels 

practically follow the production behavior of renewable energies, having peaks values 

when injections are at high levels and getting low values when renewable generation 

decreases. A relevant insight is that although solar variability affects system voltage 

levels, the optimization model obtained a plan that has better voltage levels than the base 

case C01 all the time, without the need to have pre-limited the amount of renewables the 
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model can evaluate. This fact represents a game-changer for the current planning process 

where the maximum renewable capacity allowed to be installed in a system is calculated 

ex-ante to precisely avoid voltage problems. With the model presented in this thesis, such 

a procedure would not be necessary anymore. 

 

Figure 51. Voltage levels in load bars of ELOR-C system – optimized case C02. 

If the ELOR-C system problem were solved using an optimization model that does not 

consider the voltage and reactive power, the obtained expansion plan would be cheaper 

by 60.7%. DC expansion plan would contemplate 20 MW of solar plants, 15 MW of 

hydro plants, and 25 MVA and 100 MWh of BESS, representing a total annual investment 

of $ 19′006,161. The new generation capacity was added to bridge the gap between 

coincident maximum load demand and existing installed generation, which is just one of 

the existing problems of the ELOR-C system. 

It is essential to mention that the proposed model allows us to evaluate the quality of 

expansion plans comprehensively, considering active and reactive power, losses, and 

voltage levels. In effect, a DC model would have neglected the influence of intermittent 

renewables over the voltage values since a DC flow establishes a value of 1 pu to all buses 

permanently. 
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6.6 Chapter conclusions 

This case study demonstrates that the planning methodology proposed in this thesis is 

helpful to perform a complete optimal expansion planning study. 

Proposed synthesis methodologies allow to generate the required hourly time-series for 

any identified project without having in-site measurements, which helped speed up the 

whole planning process. 

Likewise, the proposed clustering technique managed to reduce the problem dimensions, 

allowing the application of a realistic optimization model that considers important electric 

variables such as voltage, reactive power, and losses.  
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Chapter 7 

7 Conclusions 

7.1 Findings 

 In this Thesis, a comprehensive planning framework was presented to perform 

optimal expansion planning studies of the coordinated transmission and generation of 

actual power systems, even when historic measurements on solar and wind resources 

are not available. 

 The presented planning framework could be a relevant input to formulate updates on 

existing planning regulations or to propose new energy politics. 

 In Chapter 3, it is presented two synthesis methodologies to generate hourly time-

series of solar PV and wind plants, that are simple but effective in generating synthetic 

values starting from aggregate parameters without having historical time-series. 

 Both synthesis methodologies successfully replicate the typical behavior of solar PV 

and wind plants, creating unique time-series even when project locations are very 

close.  

 Synthesis methodologies are flexible and parametric, making it possible to generate 

multiple time-series scenarios modifying input parameters to achieve enough range 

of cases to incorporate uncertainties in a robust planning process. 

 In Chapter 4, it is presented a clustering technique to reduce the dimension of the data 

from real application cases. This technique produces energy planning-abled time-

series since it maintains the correlation, simultaneity, randomness, and variability 

within all the time-series considered. 

 A coefficient was proposed to measure the quality of clustering results, which will be 

helpful when evaluating new clustering techniques or metrics that may appear in the 

future. 

 In Chapter 5, it is presented an optimization model that achieves to evaluate electrical 

systems taking into account AC operation restrictions like technical losses, reactive 

power, and voltage values; without losing linearity and yielding consistent and 

verifiable results. 
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 The proposed optimization model manages to solve the coordinated generation and 

transmission medium-term planning problem while considering realistic short-term 

operation concerns. It also finds the optimal operation program for battery energy 

storage systems to maximize the penetration of renewable energy into the system, 

providing the flexibility required to absorb its intermittencies. 

 The proposed optimization model manages the trade-off between the technical and 

economic benefits gained when implementing new equipment into the system and the 

investments and operation costs involved in that decision. 

 In Chapter 6, the complete planning framework was successfully applied to a Peruvian 

medium-size power system to obtain a medium-term optimal expansion plan. 

 They obtained results show that the proposed model improves voltage quality by 

deciding the best amount of renewable energies to install in the system without pre-

limiting the amount of renewables for each bus bar. 

 The presented model allows the analysis of voltage levels as a dimension of the 

expansion plan's quality, representing a clear improvement over traditional DC 

models that consider a constant value of 1 pu for all bus bars, hiding the impacts of 

intermittent generation. 

7.2 Future work 

 The inclusion of environmental restrictions should be addressed in future research on 

energy planning to adapt the optimization model to the national objectives and 

commitments of the energy matrix. 

 In order to address, in a better way, the voltage regulation problem within the 

optimization problem, it could be considered the addition of variable reactive 

compensators as an expansion option. 

 The proposed model could be expanded to include the representation of pumped 

storage hydropower as an alternative to battery energy storage systems. 

 It would be essential to study the best way to cluster energy-related time-series and 

find a standard or minimum acceptable value for the Silhouette coefficient that 

evaluates the quality of the clusterization process. 

 When it is necessary to analyze a large-sized electrical system, evaluate a model of 

greater complexity, or study the inter-year expansion (dynamic programming), a big 
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scale technique must be implemented to allow the optimization model to converge 

towards an optimal response. 

 Further studies must be done on the iterative approach presented in this dissertation 

to know the limitations of its application in energy planning problems. 

 It is recommended to establish a Peruvian System Standard Case on which new 

planning proposals can be applied and compared to help future research efforts on the 

Peruvian reality. 

 A national software could be implemented to improve access to information to 

accelerate the adoption of renewable technologies involved in the distributed 

generation using the methodologies presented in Chapter 3 about renewable time-

series synthesis.  
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A Complementary equations to 

calculate solar radiation 

Relation between Horizontal Daily Radiation and Horizontal Hourly Radiation 

This sub-section corresponds to the needed equation to resolve eq. (3.2). 

Variable 𝑟𝑡 is defined as indicated in [106]. 

𝑟𝑡 =
𝜋

24
(𝑎 + 𝑏 cos 𝜔)

cos 𝜔 − cos 𝜔𝑠

sin 𝜔𝑠 − 𝜔𝑠 cos 𝜔𝑠
 (7.1) 

Where coefficients 𝑎 and 𝑏 are given by the following equations: 

𝑎 = 0.4090 + 0.5016 sin(𝜔𝑠 −
𝜋

3
) (7.2) 

𝑏 = 0.6609 − 0.4767 sin(𝜔𝑠 −
𝜋

3
) (7.3) 

To calculate the hour angle 𝜔, the solar time (𝑡𝑠) has first to be determined. Solar time 

does not coincide with civil time (𝑡𝑐), so some corrections have to be applied as indicated 

in eq. (7.4). Civil time should be written for the midpoint of the hour. For example, for 

the hour 10 of a day, civil time must be 𝑡𝑐 = 9.5 ℎ𝑟 because its hour bin comprises from 

9 to 10 ℎ𝑟. 

𝑡𝑠 = 𝑡𝑐 +
𝜆

15°
− GMT + 𝐸 (7.4) 

In this equation, all terms are expressed in hours, GMT is the time zone, and 𝐸 is defined 

by [106] as: 

𝐸 = 3.82(0.000075 + 0.001868 cos 𝐵 − 0.032077 sin 𝐵

− 0.014615 cos 2𝐵 − 0.04089 sin 2𝐵) 
(7.5) 

Where 𝐵 = 2𝜋(𝑛 − 1) 365⁄  is calculated for the 𝑛th day of the year. Subsequently, the 

hour angle is then given by: 



 

110 

 

𝜔 =
𝜋

180°
(𝑡𝑠 − 12) ∙ 15° (7.6) 

Two additional angles have to be defined also. These are the declination angle (𝛿) and 

the sunset hour angle (𝜔𝑠) which is a function of latitude and declination [106]. 

𝛿 = 0.006918 − 0.399912 cos 𝐵 + 0.070257 sin 𝐵 − 0.006758 cos 2𝐵

+ 0.000907 sin 2𝐵 − 0.002697 cos 3𝐵 + 0.00148 sin 3𝐵 
(7.7) 

cos 𝜔𝑠 = − tan 𝜙 tan 𝛿 (7.8) 

Calculation of Extraterrestrial Horizontal Radiation 

This sub-section corresponds to the needed equation to calculate eq. (3.3). 

The equation for calculating 𝐼𝑜 is given by the following expression [106]: 

𝐼𝑜 =
12

𝜋
𝐺𝑜𝑛(cos 𝜑 cos 𝛿 (sin 𝜔2 − sin 𝜔1) + (𝜔2 − 𝜔1) sin 𝜑 sin 𝛿) (7.9) 

Where 𝜑 is the latitude (𝜙) expressed in radians, 𝜔1 and 𝜔2 are the hour angles that define 

an hour (𝜔1 < 𝜔2) and 𝐺𝑜𝑛 is the extraterrestrial radiation incident on a plane always 

normal to the radiation. 𝐺𝑜𝑛 is calculated as shown in eq. (7.10). 

𝐺𝑜𝑛 = 𝐺𝑠𝑐(1.00011 + 0.034221 cos 𝐵 + 0.00128 sin 𝐵 + 0.000719 cos 2𝐵

+ 0.000077 sin 2𝐵) 
(7.10) 

Solar constant 𝐺𝑠𝑐 is set equals to 1.367 𝑘𝑊 𝑚2⁄ . 

Relation between Horizontal Hourly Radiation and Horizontal Hourly Diffuse 

Radiation 

This sub-section presents the definition of the piecewise function mentioned in eq. (3.4) 

[165]. 

𝐼𝑑

𝐼
= {

1.0 − 0.09 ∙ 𝑘𝑇 for 𝑘𝑇 ≤ 0.22

0.9511 − 0.1604 ∙ 𝑘𝑇 + 4.388 ∙ 𝑘𝑇
2 − 16.638 ∙ 𝑘𝑇

3 + 12.336 ∙ 𝑘𝑇
4 for 0.22 < 𝑘𝑇 ≤ 0.80

0.165 for 𝑘𝑇 > 0.80

 (7.11) 

Complementary equations for HDKR anisotropic model 

This sub-section corresponds to the needed equation to calculate eq. (3.5). 

Three additional values are required to solve mentioned equation: 1) the ratio between 

beam radiation on a tilted surface to a horizontal surface (𝑅𝑏), 2) the anisotropy index 
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(𝐴𝑖) and 3) the horizon brightening factor (𝑓). Required definitions are presented below 

[106]: 

𝑅𝑏 ≈ 𝑅𝑏,𝑎𝑣𝑒 =
𝑎𝑅𝑏,𝑎𝑣𝑒

𝑏𝑅𝑏,𝑎𝑣𝑒

 (7.12) 

𝑎𝑅𝑏,𝑎𝑣𝑒
= (sin 𝛿 sin 𝜑 cos 𝛽 − sin 𝛿 cos 𝜑 sin 𝛽 cos 𝛾)(𝜔2 − 𝜔1)

+ (cos 𝛿 cos 𝜑 cos 𝛽 + cos 𝛿 sin 𝜑 sin 𝛽 cos 𝛾)(sin 𝜔2

− sin 𝜔1) − cos 𝛿 sin 𝛽 sin 𝛾 (cos 𝜔2 − cos 𝜔1) 

(7.13) 

𝑏𝑅𝑏,𝑎𝑣𝑒
= cos 𝜑 cos 𝛿 (sin 𝜔2 − sin 𝜔1) + sin 𝜑 sin 𝛿 (𝜔2 − 𝜔1) (7.14) 

𝐴𝑖 =
𝐼𝑏

𝐼𝑜
 (7.15) 

𝑓 = √
𝐼𝑏

𝐼
  (7.16) 

It has to make sure factor 𝑓 have a value distinct of zero only when beam radiation (𝐼𝑏) 

is positive. 
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B Complementary equations to 

calculate wind speed 

Calculation of air density 

This sub-section presents the equations required to calculate air density used in sub-

section 3.1.2.1. 

For this purpose, first temperature (𝑇) and pressure (𝑝), both absolutes, at a specific height 

must be calculated using eq. (7.17) and (7.18): 

𝑇 = 𝑇0 − 𝐿ℎ (7.17) 

𝑝 = 𝑝0 (1 −
𝐿ℎ

𝑇0
)

𝑔𝑀 𝑅𝐿⁄

 (7.18) 

Where 𝑝0 = 101 325 𝑃𝑎 and 𝑇0 = 288.15 𝐾 are the sea-level standard atmospheric 

pressure and temperature, respectively, 𝑔 = 9.80665 𝑚 𝑠2⁄  is the earth-surface 

gravitational acceleration, 𝐿 = 0.0065 𝐾/𝑚 is the temperature lapse rate, 𝑅 =

8.31447 𝐽 𝑚𝑜𝑙 − 𝐾⁄  is the ideal universal gas constant and 𝑀 = 0.028644 𝑘𝑔 𝑚𝑜𝑙⁄  is 

the molar mass of dry air. 

Finally, air density can be calculated as shown in eq.(7.19). 

𝜌 =
𝑝𝑀

𝑅𝑇
 (7.19) 
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C Practical AC Optimization Model 

In this appendix, the complete optimization model constructed in Chapter 5 is presented. 

min 𝑣 = 8760Γ ∑ 𝜌ℎ𝑜𝑢𝑟
𝑡 (𝑓𝑐 ∑ 𝐶𝑔

𝑖 𝑔𝑎𝑖
𝑡

𝑖∈𝐺

+ 𝐶𝑀𝑔 𝑓𝑝 ∑(𝑞𝑎𝑙
𝑡 + 𝑞𝑟𝑙

𝑡)

𝑙∈𝐿𝑡∈𝑇

+ 𝐶𝐸𝑁𝑆𝑓𝑐 ∑(𝑟𝑎𝑘
𝑡 + 𝑟𝑟𝑖𝑘

𝑡 + 𝑟𝑟𝑐𝑘
𝑡 + 𝑧𝑙𝑜𝑠𝑠𝑘

𝑡 )

𝑘∈𝐵

) + ∑ @𝐼𝑝𝑢𝑝𝜔𝑝

𝑝∈𝑍

+ ∑ @𝐼𝑏𝑒𝑐𝑏
𝑛𝑜𝑚𝜔𝑏

𝑏∈𝐵

+ ∑ @𝐼𝑐𝑢𝑐𝜔𝑐

𝑐∈𝐶

+ ∑ @𝐼𝑙𝜔𝑙

𝑙∈𝐿

 

Subject to 

∑ 𝑔𝑎𝑖
𝑡  + ∑ 𝑧𝑎𝑝

𝑡 + ∑ 𝑒𝑝𝑎𝑏
𝑡 + ∑ (𝑓𝑎𝑙

𝑡 −
1

2
𝑞𝑎𝑙

𝑡)
in

− ∑ (𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡)
out

= ∑ 𝑑𝑎𝑡 −

𝑟𝑎𝑘
𝑡 + 𝑧𝑙𝑜𝑠𝑠𝑘

𝑡                                                                          , ∀𝑘 ∈ 𝑁, 𝑡 ∈ 𝑇  

∑ 𝑔𝑟𝑖
𝑡  + ∑ 𝑧𝑟𝑝

𝑡 + ∑ 𝑒𝑝𝑟𝑏
𝑡 + ∑ (𝑓𝑟𝑙

𝑡 −
1

2
𝑞𝑟𝑙

𝑡)
in

− ∑ (𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡)
out

+ ∑ 𝑐𝑟𝑐 =

∑ 𝑑𝑟𝑡 + 𝑟𝑟𝑖𝑘
𝑡 − 𝑟𝑟𝑐𝑘

𝑡                                                            , ∀𝑘 ∈ 𝑁, 𝑡 ∈ 𝑇  

0 ≤ 𝑟𝑎𝑘
𝑡 ≤ ∑ 𝑑𝑎𝑡                                                                 , ∀𝑘 ∈ 𝑁, 𝑡 ∈ 𝑇  

0 ≤ 𝑧𝑙𝑜𝑠𝑠𝑘
𝑡 ≤ ∑ 𝑧𝑎𝑝

𝑡                                                           , ∀𝑘 ∈ 𝑁, 𝑡 ∈ 𝑇  

𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑔𝑎𝑖

𝑡 ≤ 𝑔𝑖
𝑚𝑎𝑥                                                          , ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇  

𝑔𝑟𝑖
𝑡 ≤ 𝑔𝑎𝑖

𝑡 tan(acos 0.95)                                               , ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇  

𝑔𝑟𝑖
𝑡 ≥ −𝑔𝑎𝑖

𝑡 tan(acos 0.99)                                            , ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇  

(𝑔𝑎𝑖
𝑡)2 + (𝑔𝑟𝑖

𝑡)2 ≤ (𝑔𝑖
𝑚𝑎𝑥)2                                            , ∀𝑖 ∈ 𝐺, 𝑡 ∈ 𝑇  

𝑧𝑎𝑝
𝑡 = 𝜁𝑝

𝑡 cos(acos 0.95)                                                  , ∀𝑝 ∈ 𝑍, 𝑡 ∈ 𝑇  

𝑧𝑟𝑝
𝑡 ≤ 𝑧𝑎𝑝

𝑡 tan(acos 0.95)                                                , ∀𝑝 ∈ 𝑍, 𝑡 ∈ 𝑇  

𝑧𝑟𝑝
𝑡 ≥ −𝑧𝑎𝑝

𝑡 tan(acos 0.99)                                             , ∀𝑝 ∈ 𝑍, 𝑡 ∈ 𝑇  

𝜁𝑝
𝑡 = 𝑡𝑠𝑝

𝑡 𝑢𝑝𝜔𝑝                                                                       , ∀𝑝 ∈ 𝑍, 𝑡 ∈ 𝑇  

𝑒𝑝𝑐𝑏
𝑡 ≥ −𝑒𝑝𝑏

𝑛𝑜𝑚𝜔𝑏                                                             , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  
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𝑒𝑝𝑑𝑏
𝑡 ≤ 𝑒𝑝𝑏

𝑛𝑜𝑚𝜔𝑏                                                                , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  

𝑒𝑝𝑑𝑎𝑏
𝑡 = 𝑒𝑝𝑑𝑏

𝑡 cos(acos 0.95)                                        , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  

𝑒𝑝𝑑𝑟𝑏
𝑡 ≤ 𝑒𝑝𝑑𝑎𝑏

𝑡 tan(acos 0.95)                                      , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  

𝑒𝑝𝑑𝑟𝑏
𝑡 ≥ −𝑒𝑝𝑑𝑎𝑏

𝑡 tan(acos 0.99)                                   , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  

𝑒𝑝𝑎𝑏
𝑡 = 𝑒𝑝𝑑𝑎𝑏

𝑡 + 𝑒𝑝𝑐𝑏
𝑡                                                        , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  

𝑒𝑝𝑟𝑏
𝑡 = 𝑒𝑝𝑑𝑟𝑏

𝑡                                                                       , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  

𝑒𝑐𝑏
𝑡 = 𝑒𝑐𝑏

𝑡−1 − (
𝑒𝑝𝑑𝑏

𝑡

𝜂𝑏
+ 𝑒𝑝𝑐𝑏

𝑡 ) Γ                                      , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇/𝑡 ≥ 2  

𝑒𝑐𝑏
𝑡 ≤ 𝑒𝑐𝑏

𝑛𝑜𝑚𝜔𝑏                                                                    , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  

𝑒𝑐𝑏
𝑡 ≥ (1 − Db)𝑒𝑐𝑏

𝑛𝑜𝑚𝜔𝑏                                                  , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇  

∑ 𝑒𝑝𝑑𝑏
𝑠𝑡

𝑠=𝑡−𝜏𝑏+1 ≤ 𝑒𝑝𝑏
𝑛𝑜𝑚𝜔𝑏𝜏𝑏                                        , ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇/𝑡 ≥ 𝜏𝑏  

𝑒𝑝𝑑𝑏
1 = 0                                                                               , ∀𝑏 ∈ 𝐵  

𝑒𝑐𝑏
1 = 0                                                                                  , ∀𝑏 ∈ 𝐵  

|𝑓𝑎𝑙
𝑡 − (𝑔𝑙𝑙∆𝛿𝑉𝑖𝑗

𝑡 − 𝑏𝑙𝑙∆𝜃𝑖𝑗
𝑡 )| ≤ (1 − 𝜔𝑙)𝑀                 , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇  

|𝑓𝑟𝑙
𝑡 + (𝑏𝑙𝑙∆𝛿𝑉𝑖𝑗

𝑡 + 𝑔𝑙𝑙∆𝜃𝑖𝑗
𝑡 )| ≤ (1 − 𝜔𝑙)𝑀                 , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   

|𝑓𝑎𝑙
𝑡| ≤ 𝑓𝑙

𝑚𝑎𝑥𝜔𝑙                                                                   , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   

|𝑓𝑟𝑙
𝑡| ≤ 𝑓𝑙

𝑚𝑎𝑥𝜔𝑙                                                                   , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   

(𝑓𝑎𝑙
𝑡)2 + (𝑓𝑟𝑙

𝑡)2 ≤ (𝑓𝑙
𝑚𝑎𝑥)2𝜔𝑙                                        , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   

𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡 ≤ 𝑓𝑙
𝑚𝑎𝑥𝜔𝑙                                                       , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   

−𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡 ≤ 𝑓𝑙
𝑚𝑎𝑥𝜔𝑙                                                   , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   

𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡 ≤ 𝑓𝑙
𝑚𝑎𝑥𝜔𝑙                                                       , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   

−𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡 ≤ 𝑓𝑙
𝑚𝑎𝑥𝜔𝑙                                                    , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   

(𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡)
2

+ (𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡)
2

≤ (𝑓𝑙
𝑚𝑎𝑥)2𝜔𝑙         , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   

(𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡)
2

+ (−𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡)
2

≤ (𝑓𝑙
𝑚𝑎𝑥)2𝜔𝑙     , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   

(−𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡)
2

+ (𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡)
2

≤ (𝑓𝑙
𝑚𝑎𝑥)2𝜔𝑙     , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   
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(−𝑓𝑎𝑙
𝑡 +

1

2
𝑞𝑎𝑙

𝑡)
2

+ (−𝑓𝑟𝑙
𝑡 +

1

2
𝑞𝑟𝑙

𝑡)
2

≤ (𝑓𝑙
𝑚𝑎𝑥)2𝜔𝑙  , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇   

𝑐𝑟𝑐 = 𝑢𝑐𝜔c                                                                            , ∀𝑐 ∈ 𝐶  

|𝛿𝑉𝑘
𝑡| ≤ 0.5                                                                          , ∀𝑘 ∈ 𝑁, 𝑡 ∈ 𝑇 

|𝜃𝑘
𝑡| ≤ 𝜋                                                                                , ∀𝑘 ∈ 𝑁, 𝑡 ∈ 𝑇 

𝑒𝑝𝑐𝑏
𝑡 ≤ 0 

𝑒𝑝𝑑𝑏
𝑡 , 𝑒𝑝𝑑𝑎𝑏

𝑡 , 𝑒𝑝𝑑𝑟𝑏
𝑡, 𝑟𝑟𝑖𝑘

𝑡 , 𝑟𝑟𝑐𝑘
𝑡 ≥ 0 

𝜔𝑝, 𝜔𝑏 , 𝜔𝑙, 𝜔𝑐 ≥ 0: integer 
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