UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE CIENCIAS

ESCUELA PROFESIONAL DE INGENIERIA FÍSICA

INFORME DE SUFICIENCIA PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO FISICO

TITULADO

ANALISIS TÉCNICO-ECONÓMICO DE UN SISTEMA

FOTOVOLTAICO AISLADO DE 7.2 kWp EN EL PUESTO DE

VIGILANCIA FRONTERIZO PUERTO PARDO – MADRE DE

DIOS

PRESENTADO POR: ALVARO EDUARDO GÓMEZ CASTRO

Asesor:

Dr. MANFRED HORN

LIMA – PERU 2015

RESUM	(EN	4
CAPÍTI	JLO 1. INTRODUCCIÓN	5
1.1.	Antecedentes	5
1.2.	Objetivos	6
CAPÍTU	JLO 2. FUNDAMENTO TEÓRICO	7
2.1.	Energía Solar Fotovoltaica	7
2.2.	Recurso Solar	9
2.2.	1. Radiación Solar sobre la Tierra	9
2.3.	Configuraciones de un Sistema Fotovoltaico	10
2.3.	1. Sistema Aislado	11
2.3.2	2. Sistema Conectado a Red	12
2.3.	3. Sistema Bimodal.	12
2.3.4	4. Sistema Hibrido	13
2.4.	Componentes Principales de un Sistema Fotovoltaico Aislado	14
2.4.	1. Modulo Fotovoltaico	14
2.4.2	2. Batería	18
2.4.	3. Controlador de Carga	
2.4.4	4. Inversor de Corriente	
CAPÍTU	JLO 3. DESCRIPCIÓN DEL PROYECTO	
3.1.	Ubicación Geográfica	23
3.2.	Descripción del Puesto de Vigilancia Fronterizo	24
3.3.	Sistema Fotovoltaico Implementado	
3.3.	1. Fichas técnicas de los componentes principales	
3.3.	1.2. Batería A602/1415 SOLAR	
3.3.	1.3. Controlador de Carga Tristar MPPT 45	
3.3.	1.4. Inversor de Corriente Quattro 48/8000	
3.3.2	2. Planos de la Instalación	35
3.3.	3. Fotografías de la Instalación	
CAPÍTU	JLO 4. ANÁLISIS TECNICO	
4.1.	Potencial de Radiación Solar	
4.2.	Estimación de la Demanda	39
4.2.	1. Caso Teórico	39
4.2.2	2. Caso Real	41
4.3.	Resultados	
4.3.	1. Caso Teórico	
4.3.2	2. Caso Real	47
CAPÍTI	ILO 5. ANÁLISIS ECONÓMICO	

5.1. Costos de Inversión	51
5.2. Análisis del Costo de Ciclo de Vida	53
5.2.1. Análisis CCV – Caso Teórico	54
5.2.2. Análisis CCV – Caso Real	55
CAPÍTULO 6. OBSERVACIONES Y DISCUSIONES	56
CAPITULO 7. CONCLUSIONES	57
BIBLIOGRAFÍA	58
ANEXO 1. PLANOS DE LAS INSTALACIONES DEL P.V.F PUERTO	
PARDO	61
ANEXO 2. ESPECIFICACIONES TECNICAS DE LAS BASES DEL	
PROYECTO	64
ANEXO 3. ATLAS SOLAR DEL PERU	67
ANEXO 4. INFORME PVSYST CASO TEORICO	68
ANEXO 5. INFORME PVSYST CASO REAL	71
ANEXO 6. CALCULO DE TIEMPO DE REPOSICIÓN DE BATERÍAS	74

RESUMEN

En el presente informe se analizó el Sistema Fotovoltaico Instalado en el Puesto de Vigilancia de Frontera de la Comunidad Nativa de Puerto Pardo en el departamento de Madre de Dios.

El análisis técnico se realizó mediante la utilización de una herramienta informática llamada PVSyst, la cual permite realizar simulaciones de sistemas fotovoltaicos. Fueron considerados dos escenarios: el primero, considera que el puesto de vigilancia esta implementado al 100% de lo planificado. El segundo, considera el estado actual del puesto de vigilancia.

Con estos dos escenarios se realizó un análisis económico mediante la metodología del Costo de Ciclo de Vida para determinar cuál es el escenario más rentable.

Palabras claves (Keywords). Energia Solar Fotovoltaica. Sistema Fotovoltaico Aislado. PVSyst. Costo de Ciclo de Vida.

CAPÍTULO 1. INTRODUCCIÓN

1.1. Antecedentes

Por lo complicado de la geografía peruana y poblaciones dispersas es complicado tener el 100% de cobertura eléctrica. El Perú ha realizado notables esfuerzos en los últimos años para disminuir la brecha de electrificación. La cobertura eléctrica promedio nacional pasó de 57% en el año 1993, a 71 % el año 2003 y ha llegado a tener el 91% de cobertura en el año 2013. Las actuales políticas de inclusión social energética aseguran elevar aún más este porcentaje en los próximos años con la finalidad de acercarnos a un 100% [1].

Parte de este aumento es generado a través de generación eléctrica mediante energías renovables, en los últimos dos años 2013-2014, se llevó a cabo la Primera Subasta RER para Suministro de Energía a Áreas no Conectadas a RED (Instalaciones RER Autónomas) [2] donde se instalarán como mínimo 150,000 instalaciones fotovoltaicas domiciliarias en todo el Perú.

Adicional al plan de nacional, existen otras instituciones que utilizan tecnologías renovables no convencionales para energizar ciertos requerimientos como por ejemplo empresas de telecomunicaciones, mineras, organismo gubernamentales, gobiernos regionales y municipales, etc.

El Ministerio del Interior mediante la Resolución Ministerial 0270-2012-IN/0501 aprobó la Directiva N° 010-2012-IN "Normar Lineamientos Técnicos para el desarrollo de los Puestos de Vigilancia de Frontera como Complejo de Inclusión de Frontera"; el cual establece las normas y procedimientos técnicos-administrativos que permitan garantizar la adecuada ejecución del desarrollo de los Puestos de Vigilancia de Fronteras como Complejo de Inclusión de Fronteras a nivel nacional [3].

Se implementarán soluciones integrales para alojamiento, oficinas, servicios higiénicos y almacenaje, así como redes de agua, desagüe, luz y data necesaria para el funcionamiento de las instalaciones [4].

El 19 de abril de 2013, el Ministerio del Interior publico las bases para la Licitación Publica N° 005-2013-IN-DGA-DL "Adquisición de Equipos para Sistema de Panel Solar para Puestos de Vigilancia" para cinco instalaciones ubicadas en los departamentos de en los departamentos de Piura, Loreto y Madre de Dios, como parte del equipamiento para el mejoramiento de los Puesto de Vigilancia Fronterizo de la Policía Nacional del Perú [5].

El 26 de junio de 2013 se otorgó la Buena Pro de la Licitación Pública N° 005-2013-IN-DGA-DL al Consorcio Norte Renovables SAC – SUD Energies Renovables SL [6]. Este consorcio se encargó de realizar la ejecución de todo el proyecto de acuerdo a los términos de referencia.

1.2. Objetivos

- El objetivo principal es realizar un análisis del Sistema Fotovoltaico implementado en el Puesto de Vigilancia Fronterizo de la Comunidad Nativa de Puerto Pardo.
- Determinar el costo del kWh del Sistema Fotovoltaico propuesto.
- Analizar el comportamiento actual del Sistema Fotovoltaico y determinar el kWh del sistema.

CAPÍTULO 2. FUNDAMENTO TEÓRICO

2.1. Energía Solar Fotovoltaica

El aprovechamiento de la energía solar para la producción directa de electricidad se inició hace un poco más de 160 años, en el año 1839, el científico francés Edmond Becquerel descubrió el efecto fotovoltaico al observar en un experimento con una celda electrolítica (dos electrodos metálicos dispuestos en una solución conductora), generó aumento de electricidad cuando la celda se exponía a la luz. A partir de entonces, se estudió el comportamiento de varios materiales expuestos a la luz hasta que, en 1954, Daryl Chapin, Calvin Fuller y Gerald Pearson desarrollaron la primera celda fotovoltaica de silicio con 6% de eficiencia, capaz de convertir la energía solar en electricidad suficiente para alimentar equipos eléctricos. En 1958, se comenzó a trabajar en el uso de celdas fotovoltaicas para aplicaciones espaciales y hasta hoy se reconoce como la fuente más adecuada para estas aplicaciones [7].

Desde entonces, la evolución del mercado fotovoltaico viene siendo bastante intensa en los últimos años. En el 2013, el mercado solar fotovoltaico mundial tuvo un año record, después de una breve desaceleración, la instalación de más capacidad que cualquier otra tecnología renovable excepto tal vez la energía hidroeléctrica. Más de 39 GW han sido añadidos, con lo que la capacidad instalada total asciende aproximadamente a 139 GW, casi toda la mitad de toda la capacidad fotovoltaica en funcionamiento se añadió en los últimos años, y 98% se ha instalado desde los inicios del 2004 [8].

Por primera vez desde 2004, más nueva capacidad se instaló en Asia que en Europa. Sólo en China se ha instalado más que en toda Europa, con más de 11 GW. Japón ocupó el segundo lugar con casi 7 GW, y los Estados Unidos el tercer lugar con más de 4 GW [9].

Figura **2**-1. Capacidad Global Total Solar Fotovoltaica (2004 - 2013). (Fuente: REN21)

Los precios de las celdas y los módulos cayeron rápidamente de \$4/Wp en el 2008 a \$0.8/Wp en el 2012, pero desde entonces se han estabilizado. Los precios en 2008 fueron mayores de lo esperado, dada la tendencia a la formación continua, debido a la escasez de capacidad de cristales de silicio. Los precios más bajos del mercado en el 2012 y 2013 pueden haber estado por debajo de los costos totales, incluido el retorno de la inversión. Sin embargo, existe una gran cantidad de evidencia que los costos de las células y módulos, tanto de Silicio o Películas delgadas, seguirán disminuyendo a medida que aumenta el despliegue y la tecnología mejora en las próximas dos décadas. Se espera que los costos de módulos caigan a \$0,3/Wp a \$0,4/Wp para el año 2035 [10].

Figura 2-2. Precios de módulos y proyección al 2035 basado en la curva de aprendizaje (Fuente: IEA).

2.2. Recurso Solar

El sol es la principal fuente de energía para la tierra. Adicionalmente de ser responsable por el mantenimiento de la vida en el planeta, la radiación solar se constituye como una fuente inagotable de energía, habiendo un enorme potencial de su utilización por medio de sistemas de captación y conversión en otra forma de energía [11]. El sol es una estrella promedio, de masa igual a $2x10^{30}$ kg y radio de $6.96x10^8$ m . En él se pueden encontrar la mayoría, sino todos los elementos de la tierra. El Hidrogeno (H) y el Helio (He) son los elementos más abundantes, representando el 80 y 18% respectivamente. Toda la energía generada por el sol se da por un proceso de fusión, en el cual el Hidrogeno es transformado en Helio, liberando grandes cantidades de energía [12].

2.2.1. Radiación Solar sobre la Tierra.

La radiación solar es del tipo electromagnético. La cantidad de radiación que incide sobre la superficie terrestre es bastante variable, siendo influenciada por la geometría Sol-Tierra, por las condiciones climáticas [13]. La irradiación solar que incide en la tierra, en la capa superior atmosférica, es denominada Irradiación Extraterrestre. La constante Solar (Io) es definida como el valor de la irradiación extraterrestre que llega sobre una superficie perpendicular a los rayos solares en la distancia promedio Tierra-Sol, y tiene un valor aproximado de 1367 W/m². Considerando el radio medio y la constante solar se tendría una potencia aproximada de 174 mil TW [14].

Las pérdidas del flujo de potencia entre el espectro de la irradiación incidente en la capa superior de la atmosfera y el espectro de irradiación global que incide en una superficie terretre es de aproximadamente de 27%, resultando cerca de 1000 W/m^2 sobre la superficie [15].

Figura 2-3. Distribución espectral de irradiación. (Fuente: Tavares. Galdinho).

2.3. Configuraciones de un Sistema Fotovoltaico

Un gran número de combinaciones son posibles para los sistemas fotovoltaicos. La configuración óptima para una aplicación depende de las cargas usuarias, el tipo de carga, el recurso solar, fuentes de energías auxiliares y muchos otros factores. Se realizara una breve descripción de algunas configuraciones:

2.3.1. Sistema Aislado.

Es un tipo de sistema que opera autónomamente y proporciona energía eléctrica a cargas independientes de la red eléctrica. El sistema aislado es más utilizado para cargas eléctricas pequeñas y medianas o cuando otras fuentes de energía no son adecuadas. Los sistemas asilados pueden ser diseñados para energizar cargas eléctricas en corriente alterna AC o en corriente continua DC y normalmente se almacena la energía en baterías [16].

Los sistemas fotovoltaicos aislados son clasificados por sus componentes y la manera en la cual operan en combinación con otras fuentes de energía.

- Sistemas de acoplamiento directo, es el tipo de sistema donde la salida del módulo fotovoltaico es directamente conectada a la carga DC [17].
- Sistemas autorregulados, es el tipo de sistema que no utiliza sistemas de control activo para proteger la batería [18].
- Sistemas de carga controlados, es el tipo de sistema que cuenta con controlador de carga para prevenir el daño a la batería [19].

Figura 2-4. Sistema Fotovoltaico aislado para cargas AC. (Fuente: J.Dunlop, Photovoltaic Systems).

2.3.2. Sistema Conectado a Red.

Es un sistema fotovoltaico que opera en paralelo y es conectado a la red eléctrica. Estos sistemas son los más simples y con costo más reducido porque requiere de menos componentes y no utiliza baterías. El componente primario en un sistema conectado es el inversor, el cual convierte la salida DC del arreglo fotovoltaico a AC para sincronizarse con la red eléctrica [20].

Figura 2-5. Sistema Fotovoltaico conectado a Red. (Fuente: J.Dunlop, Photovoltaic Systems).

2.3.3. Sistema Bimodal.

Es un sistema fotovoltaico que puede operar en modo aislado y conectado a red, y utiliza batería. El componente principal en un sistema bimodal es el inversor, quien extrae energía de las baterías en vez del arreglo fotovoltaico. En este caso, el arreglo simplemente actúa como una fuente de carga para el sistema de baterías. Opera en forma similar a los sistemas UPS y tienen muchos componentes similares [21].

Figura 2-6. Sistema Fotovoltaico bimodal. (Fuente: J.Dunlop, Photovoltaic Systems).

2.3.4. Sistema Hibrido.

Es un sistema aislado que incluye dos o más fuetes de energía. Fuentes de energía comúnmente usados en sistemas híbridos son arreglos fotovoltaicos, generador, turbinas de viento y turbinas de micro hidro. Los sistemas híbridos ofrecen muchas ventajas sobre sistemas únicos de energía fotovoltaica o con generador eléctrico, incluyendo mayor confiabilidad y flexibilidad en los cumplimientos de cargas variables [22].

Figura 2-7. Sistema Híbrido. (Fuente: J.Dunlop, Photovoltaic Systems).

2.4. Componentes Principales de un Sistema Fotovoltaico Aislado

Un sistema fotovoltaico es constituido por un bloque generador, un bloque de acondicionamiento de energía y un bloque de almacenamiento. El bloque generador contiene los arreglos fotovoltaicos, constituidos por módulos fotovoltaicos en diferentes

2.4.1. Modulo Fotovoltaico.

La mayoría de los materiales utilizados en la conversión fotovoltaica son cristalinos, caracterizándose por tener una estructura de átomos que se repite. Actualmente, el silicio es el material más utilizado en la producción de celdas fotovoltaicas, pudiendo ser encontrado en las formas monocristalina, multicristalina o policristalina y amorfa. Existen también nuevos materiales en estudio, algunos ya en estado de comercialización, que se basan en la combinación de los semiconductores de las

familias de la tabla periódica 3A y 5A, tales como el Arseniuro de galio (GaAs); y 2A y 6A, como diseleniuro de Cobre-Indio (CuInSe2) y el Telururo de Cadmio (CdTe). Estas tecnologías, en combinación con el silicio amorfo, se conocen como tecnologías de película delgada, debido a sus características de construcción [23].

Figura 2-8. Tipos de celdas fotovoltaicas. (Fuente: E. Fagundes, J. Tavares, Sistemas Híbridos).

Actualmente, la investigación en el campo tecnológico, en particular en relación con el silicio cristalino, se dirigen a la mejoría de la absorción de la radiación solar. En ese sentido han desarrollado capas anti-reflectantes más eficientes, minimizando la cantidad de radiación reflejada en la superficie de las celdas fotovoltaicas. El diseño y la forma de los contactos metálicos delanteros se han mejorado con el fin de optimizar el compromiso entre el área expuesta a la radiación y la zona para recoger las cargas creadas. La textura de la superficie del material en las celdas se produce con el fin de maximizar el uso de la radiación solar incidente sobre ellos. Por lo tanto, las pruebas de laboratorio realizadas con módulos de silicio cristalino comerciales que muestran eficiencias superiores al 20% ya son posibles [24].

En términos de eficiencia de conversión fotovoltaica, la tecnología del silicio cristalino (c-Si) es una de las tecnologías utilizadas en aplicaciones terrestres para generar energía eléctrica, que tiene la eficiencia comercial más alta, alrededor de 15% para los paneles disponibles en el mercado . Las tecnologías de películas delgadas, siendo inherentemente menos eficiente y también debido a que todavía no inicia su desenvolvimiento, en la actualidad cuenta con un rendimiento del 8% para los módulos comerciales, lo que significa que se necesita aproximadamente el doble de la superficie

de los módulos fotovoltaicos de capa fina para la misma energía proporcionada por los módulos de c-Si. A pesar de los módulos de capa fina ya tienen hoy un precio más bajo por watt pico (Wp) que el c-Si, el área de superficie para una potencia instalada dada debe ser tomada en cuenta en el análisis económico, cuando la elección de una u otra tecnología fotovoltaica [25].

El módulo también tiene la función de proteger las celdas de la intemperie, aislarlos eléctricamente de contacto exteriores y proporcionar rigidez mecánica al conjunto. El módulo fotovoltaico comprende, además de las células, de tiras de metal pequeñas para interconectar las celdas responsables de proporcionar la salida de los contactos externos; por un material encapsulante dispuesto directamente sobre las celdas, típicamente un polímero aislante y transparente (EVA – Vinilo de Acetato Etileno), por un vidrio templado, anti-reflectante para la cubierta; la parte posterior, normalmente hecha de cloruro de polivinilo, una caja de conexiones situada en la parte posterior del módulo, y una estructura metálica que soporta todo el dispositivo [26].

• Características eléctricas

Las características eléctricas de los módulos más importantes son: potencia, tensión y corriente. Las curvas características corriente versus tensión y potencia versus tensión, típicas de una celda del módulo fotovoltaico.

Figura 2.9 Características Eléctricas de Módulos fotovoltaicos. (Fuente: E. Fagundes, J. Tavares, Sistemas Híbridos).

Las características eléctricas de los módulos son basadas en condiciones estándar: irradiancia de 1000 W/m, temperatura de la celda de 25 ° C y la masa de aire (AM) igual a 1,5. En estas condiciones, los valores de corriente de corto circuito (Isc) y la tensión de circuito abierto (Voc) son los máximos valores alcanzables cuando el módulo opera sin carga. Bajo carga, el valor de potencia máxima (Pmp) se obtiene por el producto de los valores máximos de corriente y Tensión (Imp y Vmp). Idealmente, los generadores fotovoltaicos deberían siempre operan en el punto de máxima potencia, pero, en la práctica, operan en un punto de la curva I-V correspondiente a las características I-V de la carga [27].

Otra forma de analizar los parámetros de la máxima potencia de la celda es a través de su Facto de Forma (FF). Cuanto mayor el factor de forma, mas aproximado a un rectángulo será la curva, consecuentemente, mayor será su área. El factor de forma asume valores siempre menores que la unidad, debe calcularse por la razón entre el producto IM x VM por el producto Isc x Voc. Para las celdas de silicio mono y policristalino, el parámetro varía poco de una celda a otra y conociéndose su valor, se puede calcular la potencia máxima de la celda a través de la ecuación [28].

$$Pmp = FF x Isc x Voc$$
(1)

Entre los factores que influyen en las características de la celda, la irradiancia y la temperatura son los más importantes. Los bajos niveles de irradiación reducen la corriente generada sin causar una reducción considerable de la tensión, mientras que los valores altos de temperatura de la celda reducen la tensión en mayor medida que el aumento de corriente, trasladando de este modo el punto de máxima potencia a la izquierda [29].

Figura 2.10. Influencia de la irrandiancia (Izq.) y la temperatura (Der.) en los módulos fotovoltaicos. (Fuente: J.Dunlop, Photovoltaic Systems).

2.4.2. Batería.

En sistemas fotovoltaicos aislados, el uso de sistemas de almacenamiento de energía se hace necesario para atender la demanda en periodos en los cuales la generación es nulo o insuficiente (la noche o en días lluviosos o nublados). Así, parte de la energía solar convertida en energía eléctrica por los módulos fotovoltaicos durante el día es almacenada para ser utilizada en otros momentos para atender la demanda [30].

Una batería es un conjunto de celdas o vasos electroquímicos, conectados en serie y/o en paralelo, capaces de almacenar energía eléctrica en forma de energía química por medio de un proceso electroquímico de oxidación y reducción que ocurre en su interior. Cuando una batería cargada es conectada a una carga eléctrica, ocurre el proceso inverso, es decir, una corriente continua es producida por la conversión de energía química en energía eléctrica [31].

De los acumuladores electroquímicos existentes, la de batería de Plomo-ácido sigue siendo la tecnología más utilizada. Baterías con tecnología más modernas, tales como Níquel-Cadmio (NiCd), Níquel-Hidrato metálico (NiMH), ion de Litio (Li-ion), entre otras, aunque presentan ventajas (mayor eficiencia, mayor vida útil, mayor profundidad de descarga), generalmente no son todavía más viables económicamente en la mayoría de los sistemas fotovoltaicos [32].

La batería de plomo-ácido está constituida básicamente por un ánodo de dióxido de plomo, también llamado electrodo positivo; un cátodo de plomo, también llamado electrodo negativo, y un electrolito de ácido sulfúrico diluido en el agua. Durante el proceso de carga, debe estar conectado a los terminales de la batería un generador CC (Por ejemplo: Módulos fotovoltaicos), con una tensión superior a la batería, así que haya una inyección de corriente por el electrodo positivo. El proceso es reversible, y la batería se descarga cuando se conecta a sus terminales a una carga eléctrica, circulando la corriente en la dirección opuesta de la corriente de carga [33]. Las reacciones químicas que ocurren durante el funcionamiento de las baterías son las siguientes:

• Electrodo positivo

$$PbO_2 + SO_4^{2-} + 4H^+ + 2e^- \xleftarrow{carga-descarga} PbSO_4 + 2H_2O$$

• Electrodo negativo

$$Pb + SO_4^{2-} \xleftarrow{carga-descarga} PbSO_4 + 2e^{-1}$$

• Reacción global de la celda

$$Pb + PbO_2 + 2H_2SO_4 \xleftarrow{carga-descarga} 2PbSO_4 + 2H_2O$$

Cuando se está cargando la batería, el electrodo positivo tiene un depósito de dióxido de plomo mientras que el negativo se acumula plomo. Este proceso implica la liberación de ácido sulfúrico del electrolito, aumentando su concentración. En la descarga, la reacción química que se produce hace que tanto la placa positiva y negativa tengan un depósito de sulfato de plomo, absorbiendo ácido sulfúrico del electrolito y en consecuencia la disminución de su concentración [34].

Adicionalmente a los elementos que la componen las baterías pueden ser clasificadas básicamente como abiertas y cerradas. Las abiertas son aquellas donde el nivel del electrolito debe ser periódicamente verificado. En las selladas, o de válvula regulada (VRLA) el electrolito es confinado en el separador o está en forma de gel, éstas son conocidas como "libres de mantenimiento" [35].

2.4.2.1. Baterías estacionarias de placas tubulares (OPzS y OPzV), las baterías OPzS y OPzV representan características constructivas semejantes, siendo las OPzS baterías estacionarias con placas tubulares positivas conteniendo electrolito líquido y separadores especiales, en cuanto las OPzV son baterías estacionarias con placas tubulares conteniendo electrolito (H₂SO₄) inmovilizado en un gel y válvulas de seguridad. Su principal diferencia es la configuración de los electrodos positivos,

constituidos por placas tubulares, que son evueltas por tubos permeables a través de los cuales el electrodo circula. La principal función de esos tubos es mantener una materia activa confinada, el cual permite un aumento de la vida cíclica de la batería [36].

Figura 2.11. Vista en corte de un batería del tipo OPzV. (Fuente: J. Tavares. M.Galindo, Manual de Engenharia FV).

Las ventajas de la OPzV son:

- No requieren reposición de agua.
- Pueden ser utilizadas en cualquier posición.
- No liberan gases, por lo tanto no representan riesgo de incendio o explosión.
- No tienen problemas de derrame del electrolito.
- Tienen menos restricciones en el transporte.

La mayor desventaja de este tipo de baterías es su elevado costo. Aunque por su mayor vida útil, es una opción viable en algunas aplicaciones.

2.4.3. Controlador de Carga.

El controlador de carga, también conocido como un regulador de carga o tensión, es un dispositivo electrónico que funciona con corriente continua, el cual es incluido en la mayoría de los sistemas aislados con el objetivo de proteger la batería contra cargas y descargas excesivas, aumentando la vida útil. Los controladores deben desconectar el generador fotovoltaico cuando la batería alcanza la carga plena e interrumpir el suministro de energía cuando el estado de carga de la batería alcanza un nivel mínimo de seguridad. Para mejorar el desempeño del controlador de carga, este puede también incorporar un sensor de temperatura, con la función de compensar el efecto de la variación de temperatura en los parámetros de la batería [37].

Los procesadores modernos son equipados con microprocesadores de electrónica de potencia que operan por modulación de anchos de pulsos (PWM, por sus siglas en inglés) y efectúan la carga de la batería en 3 estados:

- En bruto (Bulk), se da cuando la batería esta descargada y el controlador aplica la mayor corriente que el módulo fotovoltaico puede entregar. Hasta que se alcanza una tensión final de carga preestablecida. Con este proceso se repone el 80-90% de la capacidad de la batería.
- Absorción, en esta fase la tensión de la batería se mantiene constante en el valor de tensión de carga por un intervalo de tiempo acumulado hasta que la batería se considere totalmente cargada.
- Flotación, en esta fase la tensión de la batería se mantiene constante con una corriente controlada en PWM, sin embargo el nivel de tensión de flotación, que es menor al de absorción [38].

2.4.3.1. Controlador MPPT, los controladores de Seguimiento del Punto de Máxima Potencia (MPPT por sus siglas en inglés) del panel fotovoltaico para aumentar la eficiencia del proceso de carga. Para esto el equipo funciona en una tensión de entrada más elevada que los controladores convencionales e incluye un convertidor DC-DC como la primera etapa, a fin de alcanzar en un mejor desempeño entre la curva I-V del panel y la batería. Los controladores MPPT tienen una eficiencia entre el 92-97%. La función del MPPT es optimizar la extracción de la potencia del generador

fotovoltaico, a través del ajuste continuo o periódico de sus valores de tensión y corriente para cada condición de irradiación y temperatura de la celda fotovoltaica, de modo que este siempre esta polarizado en un punto de máxima potencia [39].

2.4.4. Inversor de Corriente.

El inversor de corriente es el dispositivo responsable de convertir la corriente continua de los equipos de generación y almacenada por la batería, en corriente alterna, también conocido como convertidor de CC - CA. El principio de funcionamiento se basa en mecanismos de conmutación que alteran el flujo de corriente entre los sentidos positivo y negativo. Las técnicas utilizadas en la conversión son diversas, y su calidad depende de la energía suministrada por el inversor a la carga [40].

Entre las principales características de los inversores son sus voltajes de entrada de funcionamiento (DC) y de salida (AC), frecuencia de salida, potencia, capacidad de reacción, la eficiencia y la forma de onda de salida. El inversor puede ser monofásico o trifásico, dependiendo de las necesidades del sistema. Inversores monofásicos pueden reunirse para asistir a un sistema trifásico, siempre siguiendo ciertas recomendaciones. Con relación a la conmutación, los inversores pueden ser conmutados por la red (conmutación naturales) o auto conmutados (conmutación forzada). Algunos modelos tienen un control de descarga de la batería, eliminando el uso del controlador hacia la carga de la batería (consumo) [41].

CAPÍTULO 3. DESCRIPCIÓN DEL PROYECTO

3.1. Ubicación Geográfica

El proyecto se desarrolló en la Comunidad Nativa Puerto Pardo, distrito de Tambopata, provincia de Tambopata, departamento de Madre de Dios. Las coordenadas geográficas son 12.5°S y 68.66°O. El centro poblado se encuentra a aproximadamente 80 km aguas abajo del rio Madre de Dios.

Figura 3.1. Recorrido fluvial a Puerto Pardo. (Fuente: Propia).

Figura 3.2. Entrada a Puerto Pardo. (Fuente: Propia).

La comunidad cuenta con una Institución Educativo Inicial, una Institución Básica Regular N 52004, un puesto Capitanía de la Marina de Guerra y un Puesto de Vigilancia de Frontera de la Policía Nacional del Perú.

La comunidad cuenta con 44 viviendas, pero no todas están habitadas por la migración de la población a Puerto Maldonado por temporada escolar.

Figura 3.3. Plano Urbano del CCPP Puerto Pardo. (Fuente: Gob. Reg. de Madre de Dios).

3.2. Descripción del Puesto de Vigilancia Fronterizo

El Puesto de vigilancia de frontera tiene un área total de 353 m², un área techada de 280 m² dividida en dos bloques, uno para la zona administrativa y de descanso de los suboficiales y encargados de 179 m²; y otro para la zona de detención y el comedor 101 m².

El puesto contará con instalaciones sanitarias de agua y desagüe completa, el primero contara con un sistema de bombeo de agua. Las instalaciones eléctricas interiores y

exteriores serán energizadas por el Sistema Fotovoltaico instalado. La instalación interior cuenta con tomacorrientes, puntos de luz con fluorescentes dobles de 40 watts. Los dormitorios, oficinas y áreas comunes cuentan con ventiladores de techo. Los planos de arquitectura e instalaciones eléctricas son mostrados en el Anexo 1.

Figura 3.4. Vista exterior del Puesto de Vigilancia de Puerto Pardo. (Fuente: Norte Renovables).

Figura 3.5. Vista interior del Puesto de Vigilancia de Puerto Pardo. (Fuente: Norte Renovables).

3.3. Sistema Fotovoltaico Implementado

Las especificaciones técnicas de las bases para la Licitación Publica N° 005-2013-IN-DGA-DL "Adquisición de Equipos para Sistema de Panel Solar para Puestos de Vigilancia" se muestran en el Anexo 2. A continuación se muestran un cuadro de resumen de los componentes principales del sistema fotovoltaico solicitado e implementado.

Tabla 1. Componentes solicitados e instalados en el CCPP Puerto Pardo.

Componente del Sistema Fotovoltaico	Característica Solicitada	Característica Implementada
Arreglo Fotovoltaico	Mínimo 7.2 kWp, Celdas monocristalinas a 48 VDC	7.2 kWp (40x180Wp) celdas monocristalinas a 48VDC
Banco de Baterías	Mínimo 1200 Ah/48 VDC (57600 Wh)	1382 Ah@C100 a 48 VDC (66336 Wh)
Controlador de Carga	Mínimo 160 Amperios en tecnología MPPT	180 Amperios en tecnología MPPT (4 x 45Amp)
Inversor de Corriente	Mínimo 6000 W a 48 VDC	8000 W a 48 VDC

(Fuente: Propia).

3.3.1. Fichas técnicas de los componentes principales

3.3.1.1. Modulo Fotovoltaico TM-M572180

TM-SERIES MONOCRYSTALLINE TM-M572180 - TM-M572175 - TM-M572170 180W / 175W / 170W

FEATURES

- High module conversion efficiency up to 15.4%, through superior manufacturing technology.
- Guaranteed 0 to +5% power tolerance.
- Robust and corrosion free modules. Entire module certificated to withstand high wind loads and snow loads up to 5400Pa.
- Anodized aluminum frame improves load resistance capabilities.
- Highly transparent, low-iron, and tempered glass and antireflective coating.
- Excellent performance under low light environments.

BENEFITS

- International certificates to ensure the best quality and performance.
- Manufacturing process certified under the ISO 9001 standards.
- Product liability insurance.
- Local technical support.
- Enhanced design for easy installation and long term reliability.

Tamesol

WARRANTIES

I0-years warranty on material and workmanship.

- Linear power output warranty: power output decrease yearly. Year 25 rated power output not below than 80%.
- Additional warranted production insurance by top world insurance companies.

www.tamesol.com

TM-SERIES MONOCRYSTALLINE TM-M572180 · TM-M572175 · TM-M572170 180W / 175W / 170W

OTamesol

STO.	THE ME70400	The 84570475	T84 84570470		
SIC	1101-101572160	110-10072175	1101-101572170		
Nominal Power (Pmax)	180 W	175 W	170 W		
Voltage at Pmax (Vmp)	36 V	35.5 V	35.5 V		
Current at Pmax (Imp)	5 A	4.93 A	4.79 A		
Open Circuit Voltage (Voc)	43.9 V	43.3 V	43.4 V		
Short Circuit Current (Isc)	5.3 A	5.23 A	5.08 A		
Module efficiency	15.37%	15.06%	14.75%		
Power Tolerance		0, +5%			
Max. system voltage		1.000 V DC			
Max. series fuse rating		20 A			
Operating temperature range	-40 °C to +85 °C				

Electric characteristics at standard conditions (STC) STC conditions: Irradiance: 1.000Wilm2, cell temperature: 25°C, AM=1.5

NOCT	TM-M572180	TM-M572175	TM-M572170
Nominal Power (Pmax)	129 W	125 W	122 W
Voltage at Pmax (Vmp)	31.3 V	30.8 V	30.9 V
Current at Pmax (Imp)	4.13 A	4.08 A	3.95 A
Open Circuit Voltage (Voc)	39 V	38.4 V	38.5 V
Short Circuit Current (Isc)	4.57 A	4.51 A	4.37 A

Electric characteristics at normal operation conditions (NOCT) NOCT conditions: Irradiance: 800Wilm2, ambient temperature: 20°C, AM=1.5, wind speed: 1m/s

THERMAL CHARACTERISTICS	
Nominal operating cell temperature (NOCT)	45 ± 2 °C
Temperature coefficient of Pmax	-0.45 %/°C
Temperature coefficient of Voc	-0.33 %/°C
Temperature coefficient of Isc	+0.06 %/°C
Temperature coefficient of Vmp	-0.420 %/°C

Modules per pallet	26
Nº of pallets per HC container (40')	28

PARTNER

Mono-crystalline silicon 125 x Solar cells 125 mm **Cell arrangement** 72 cells in series Dimensions 1580x808x40 mm Weight 15.6 kg Max. load 5400 Pa Front cover Low-iron tempered glass 3.2 mm

Anodized aluminum alloy
EVA (ethylene vinyl acetate)
IP65
6
≥1000 mm / 4 mm ²
MC4

V2 - January 2013 - © Tamesol Desa S.L. All rights reserved.

3.3.1.2. Batería A602/1415 SOLAR

Network Power > Sonnenschein A600 SOLAR > Benefits

Sonnenschein A600 SOLAR Unmatched dryfit Gel technology for renewable energy storage

Sonnenschein A600 SOLAR is a premium range, developed specifically for applications where cycling is required. It has extraordinary energy-saving features in addition to robust reliability, proven for decades in many installations worldwide.

Your benefits:

- > Exceptional cycling performance 3000+ cycles* at 60 % Depth of Discharge C₁₀
- > dryfit Gel VRLA technology
- > Lowest energy consumption saving costs
- > Strong tubular plate technology for longer life in the toughest conditions
- > Proof against deep discharge greater long-term energy delivery
- > Horizontal mounting possible easy installation and maintenance
- > Completely recyclable low CO₂ footprint

Specifications:

- > Nominal capacity 294 3919 Ah C₁₂₀ (20°C)
- > Cycling performance at 20 °C (with IU charging): 2400 cycles at 60 % Depth of Discharge (C_{10}) at 20 °C
- For enhanced performance and for systems ≥ 48 V we recommend IUI charging, to reach 3000+ cycles at 20 °C
- > Designed in accordance with IEC 61427 and IEC 60896-21/22
- > Long shelf life up to 2 years at 20 °C without recharge due to the very low self discharge rate
- > Also available as flame-retardant version on request (V0)
- > Manufactured in Europe in our ISO 9001 certified production plants
- > Trouble-free transport of operational cells, no restrictions for rail, road, sea and air transportation (IATA, DGR, clause A67)
- > Approval: UL (Underwriter Laboratories)

3919 Ah C...

Maintenance- 3000 free (no at 6

topping up)

*With IUI charging, at 20 °C

Network Power > Sonnenschein A600 SOLAR > Technical data

Sonnenschein A600 SOLAR Technical data

Technical characteristics and data

Туре	Part number	Nom. voltage	Nominal capacity C ₁₂₀ 1.85 Vpc 20 °C	Discharge current I ₁₂₀	Length (I)	Width (b/w)	Height up to top of cover (h1)	Height incl. con- nectors (h2)	Weight	Terminal	Pole pairs
A000/005 001 AD	NOCCORDINGT	v	A11	A	105	111dX. 11111	111dX. 11111	111dX. 11111	approx. Kg	E MO	
A602/295 SULAR	NG2020295H20FA	2	294	2.45	105	208	357	399	19.0	F-IM8	1 .
A602/370 SOLAR	NGS6020370HS0FA	2	367	3.05	126	208	357	399	23.0	F-M8	1
A602/440 SOLAR	NGS6020440HS0FA	2	440	3.66	147	208	357	399	27.0	F-M8	1
A602/520 SOLAR	NGS6020520HS0FA	2	519	4.32	126	208	473	515	30.0	F-M8	1
A602/625 SOLAR	NGS6020625HS0FA	2	623	5.19	147	208	473	515	35.0	F-M8	1
A602/750 SOLAR	NGS6020750HS0FA	2	727	6.05	168	208	473	515	39.0	F-M8	1
A602/850 SOLAR	NGS6020850HS0FA	2	848	7.06	147	208	648	690	49.0	F-M8	1
A602/1130 SOLAR	NGS6021130HS0FA	2	1131	9.42	212	193	648	690	66.0	F-M8	2
A602/1415 SOLAR	NGS6021415HS0FA	2	1413	11.7	212	235	648	690	80.0	F-M8	2
A602/1695 SOLAR	NGS6021695HS0FA	2	1695	14.1	212	277	648	690	95.0	F-M8	2
A602/1960C SOLAR	NGS6021960HS0FB	2	1959	16.3	212	277	717	759	115	F-M8	2
A602/2600 SOLAR	NGS6022600HS0FA	2	2613	21.7	216	400	775	816	160	F-M8	3
A602/3270 SOLAR	NGS6023270HS0FA	2	3266	27.2	214	489	774	816	198	F-M8	4
A602/3920 SOLAR	NGS6023920HS0FA	2	3919	32.6	214	578	774	816	238	F-M8	4

8

Capacities $C_1 - C_{120}$ (20 °C) in Ah

Туре	С ₁ 1.67 Vpc	С ₃ 1.75 Vpc	С ₅ 1.77 Vpc	С ₁₀ 1.80 Vpc	С ₁₀₀ 1.85 Vpc	С ₁₂₀ 1.85 Vpc
A602/295 SOLAR	123	167	193	218	286	294
A602/370 SOLAR	154	209	241	272	357	367
A602/440 SOLAR	185	251	290	326	429	440
A602/520 SOLAR	229	307	342	380	505	519
A602/625 SOLAR	275	369	410	456	606	623
A602/750 SOLAR	321	431	479	532	707	727
A602/850 SOLAR	367	513	626	681	829	848
A602/1130 SOLAR	489	684	834	908	1105	1131
A602/1415 SOLAR	612	855	1043	1135	1382	1413
A602/1695 SOLAR	734	1026	1252	1363	1658	1695
A602/1960C SOLAR	824	1209	1359	1573	1937	1959
A602/2600 SOLAR	1047	1548	1782	2025	2547	2613
A602/3270 SOLAR	1309	1935	2228	2532	3184	3266
A602/3920 SOLAR	1571	2322	2673	3038	3821	3919

3.3.1.3. Controlador de Carga Tristar MPPT 45

TRISTAR MPPTTM CONTROLADOR DE PANELES SOLARES CON DETECCIÓN DEL PUNTO DE MÁXIMA POTENCIA

Producto mostrado con instrumento opcional.

El controlador de paneles solares **TriStar MPPT** de Morningstar, con tecnología TrakStar Technology™, es un avanzado controlar de carga de baterías con capacidad de detección del punto de máxima potencia (MPPT) para paneles fotovoltaicos independientes de la red eléctrica, de hasta 3 KW de potencia. Este controlador tiene un incomparable rendimiento pico del 99% y mucho menos pérdidas de energía que otros controladores MPPT del mercado.

El TriStar MPPT aplica un avanzado algoritmo de seguimiento de carga para extraer la máxima potencia del panel fotovoltaico. Hace un barrido extremadamente rápido de toda la curva I-V para determinar la ubicación del pico de potencia. Este producto es el primer controlador de paneles fotovoltaicos con conexión Ethernet integrada para acceder a la Internet. También ofrece hasta 200 días de registro de datos.

Principales características y beneficios

Máxima extracción de energía

- La tecnología TrakStar MPPT ofrece:
 - Detección del punto de potencia pico superior al de otros controladores MPPT
 - Barrido rápido de toda la curva I-V
 - Reconocimiento de varios picos de potencia durante períodos de sombra o en instalaciones combinadas de grupos de paneles fotovoltaicos
 - Excelente respuesta a la salida del sol y con bajo nivel de irradiación solar

Fiabilidad extremadamente alta

- Factor térmico de alto margen, sin ventiladores de enfriamiento
- Diseño con circuitos en paralelo para reducir la sobrecarga y prolongar la vida útil de los componentes electrónicos
- Sin relés mecánicos
- Tiene protección contra cortocircuito en el panel
- Inductores encapsulados en epoxi y tarjetas de
- circuito impreso con revestimiento normalizado

Muy alto rendimiento

- Rendimiento pico del 99%
 Algoritmo exclusivo de seguimiento de carga
- Algoritmo exclusivo de seguimiento de carga que reduce al mínimo las pérdidas de energía
 Deia consumo acompéridas
- Bajo consumo energético
- Servicio continuo a plena carga a 45 °C sin pérdida de capacidad nominal
- Selectos componentes electrónicos de alta capacidad para reducir las pérdidas por calentamiento

 Funciones completas de interconexión en red y comunicaciones

Permite monitorear el sistema, registrar datos y ajustar parámetros. Utiliza protocolo MODBUS™ de configuración

- abierta y software MS View de Morningstar. • Meterbus: Para comunicaciones entre productos
 - compatibles de Morningstar • Conexión serie RS-232: Para conectar a una computadora personal
 - computadora personal • EIA-485: Para comunicaciones entre varios
 - dispositivos comunes a un bus colector
 - Ethernet: Para conexión a la Internet o a una red local. Visualización con programa navegador de la Internet y envío de mensajes y texto.

Registro de mediciones y datos

- El instrumento opcional TriStar y el instrumento remoto brindan datos detallados de operación, alarmas y fallas
- Indicación de estado del sistema en pantalla de tres LEDs
- Hasta 200 días de registro de datos vía instrumentos o conectores de comunicación

Estad	o del sist	ema:	
	53.60V	28C	54.2A
	2867W		MPPT

Registro de datos:

Today Batt	Day: -1 Batt
46.4 Vmin	47.2 Vmin
Today Solar	Day: -1 Solar
58.9 Amax	56.8 Amax
Today Solar	Day: -1 Solar
107.2 Vmax	105.5 Vmax

GARANTÍA: Cinco años de garantía. Comuníquese con Morningstar o su distribuidor autorizado para obtener los términos completos de la garantía.

8 Pheasant Run Newtown, PA 18940 USA Tel: +1 215-321-4457 Fax: +1 215-321-4458 E-mail: info@morningstarcorp.com Website: www.morningstarcorp.com

© 2010-2012 MORNINGSTAR CORPORATION IMPRESO EN EE.UU. 2245-R3-9/10

CE 🚇

3.3.1.4. Inversor de Corriente Quattro 48/8000

Dos entradas CA con conmutador de transferencia integrado

El Quattro puede conectarse a dos fuentes de alimentación CA independientes, por ejemplo a la red del pantalán o a un generador, o a dos generadores. Se conectará automáticamente a la fuente de alimentación activa.

Ouattro 48/5000/70-50/30

Quattro

24/3000/70-50/30

Dos salidas CA

La salida principal dispone de la función "no-break" (sin interrupción). El Quattro se encarga del suministro a las cargas conectadas en caso de apagón o de desconexión de la red eléctrica/generador. Esto ocurre tan rápido (menos de 20 milisegundos) que los ordenadores y demás equipos electrónicos continúan funcionando sin interrupción. La segunda salida sólo está activa cuando a una de las entradas del Quattro le llega alimentación CA. A esta salida se pueden conectar aparatos que no deberían descargar la batería, como un calentador de agua, por ejemplo.

Potencia prácticamente ilimitada gracias al funcionamiento en paralelo Hasta 10 unidades Quattro pueden funcionar en paralelo. Diez unidades 48/10000/140, por ejemplo, darán una potencia de salida de 90 kW/100 kVA y una capacidad de carga de 1400 amperios.

Capacidad de funcionamiento trifásico

Capacidad de funcionalmento infrasco Se pueden configurar tres unidades para salida trifásica. Pero eso no es todo: hasta 10 grupos de tres unidades pueden conectarse en paralelo para proporcionar una potencia del inversor de 270 kW/300kVA y más de 4.000A de capacidad de carga.

PowerControl – En casos de potencia limitada del generador, del pantalán o de la red El Quattro es un cargador de baterias muy potente. Por lo tanto, usará mucha corriente del generador o de la red del pantalán (16A por cada Quattro SkVA a 230 VCA). Se puede establecer un límite de corriente para cada una de las entradas CA. Entonces, el Quattro tendrá en cuenta las demás cargas CA y utilizará la corriente sobrante para la carga de baterías, evitando así sobrecargar el generador o la red del pantalán.

PowerAssist - Refuerzo de la potencia del generador o de la red del pantalán

Esta función lleva el principio de PowerControl a otra dimensión, permitiendo que el Quattro complemente la capacidad de la fuente alternativa. Cuando se requiera un pico de potencia durante un corto espacio de tiempo, como pasa a menudo, Quattro compensará inmediatamente la posible falta de potencia de la corriente del pantalán o del generador con potencia de la batería. Cuando se reduce la carga, la potencia sobrante se utiliza para recargar la batería.

Energía solar: Potencia CA disponible incluso durante un apagón El Quattro puede utilizarse en sistemas FV, conectados a la red eléctrica o no, y en otros sistemas eléctricos alternativos.

a configuración del sistema no puede ser más sencilla Una vez instalado, el Quattro está listo para funcionar.

Si ha de cambiarse la configuración, se puede hacer en cuestión de minutos mediante un nuevo procedimiento de configuración del conmutador DIP. Con los conmutadores DIP se puede incluso programar el funcionamiento en paralelo y en trifásico: ¡sin necesidad de ordenador!

Además, también se puede utilizar un VE.Net en vez de los conmutadores DIP. Y hay sofisticados programas disponibles (VE.Bus Quick Configure y VE.Bus System Configurator) para configurar varias nuevas y avanzadas características.

			10 ¹	
	12/3000/120-50/30	12/5000/220-100/100		
Quattro	24/3000/70-50/30	24/5000/120-100/100	24/8000/200-100/100	
		48/5000/70-100/100	48/8000/110-100/100	48/10000/140-100/100
PowerControl / PowerAssist	Sí			
Conmutador de transferencia integrado	Sí			
2 entradas CA	Rango de tensión de entrada: 187-265 V CA Frecuencia de entrada: 45 – 65 Hz Factor de potencia: 1			
Corriente máxima (A)	50/30	2x100	2x100	2x100
		INVERSOR		
Rango de tensión de entrada (V CC)	9,5 - 17V 19 - 33V 38 - 66V			
Salida (1)	Tensión de salida: 230 VAC ± 2% Frecuencia: 50 Hz ± 0,1%			
Potencia cont. de salida a 25 °C (VA) (3)	3000	5000	8000	10000
Potencia cont. de salida a 25°C (W)	2500	4500	7000	9000
Potencia cont. de salida a 40°C (W)	2200	4000	6300	8000
Pico de potencia (W)	6000	10000	16000	20000
Eficacia máxima (%)	93 / 94	94/94/95	94/96	96
Consumo en vacío (W)	15/15	25/25/25	30/35	35
Consumo en vacío en modo de ahorro (W)	10/10	20/20/20	25/30	30
Consumo en vacío en modo búsqueda (W)	4/5	5/5/6	8/10	10
		CARGADOR		
Tensión de carga de 'absorción' (V CC)	14,4 / 28,8	14,4 / 28,8 / 57,6	28,8 / 57,6	57,6
Tensión de carga de "flotación" (V CC)	13,8 / 27,6	13,8 / 27,6 / 55,2	27,6 / 55,2	55,2
Modo de "almacenamiento" (V CC)	13,2 / 26,4	13,2 / 26,4 / 52,8	26,4 / 52,8	52,8
Corriente de carga batería casa (A) (4)	120 / 70	220/120/70	200/110	140
Corriente de carga batería de arranque (A)	4 (sólo modelos de 12 y 24V)			
Sensor de temperatura de la batería	Si			
		GENERAL		
Salida auxiliar (A) (5)	25	50	50	50
Relé programable (6)	1x	Зx	3x	3x
Protección (2)	a-g			
Puerto de comunicación VE.Bus	Para funcionamiento paralelo y trifásico, supervisión remota e integración del sistema			
Puerto com. de uso general (7)	1x	2x	2x	2x
Características comunes	Temperatura	de funcionamiento: -20 a +50 °C	Humedad (sin condensación): ma	áx. 95%
		CARCASA		
Características comunes	Materia	l y color: aluminio (azul RAL 5012)	Categoría de protección: IP	21
Conexiones de la batería	Cuatro pernos M8 (2 conexiones positivas y 2 negativas)			
Conexión 230 V CA	Bornes de tornillo de 13 mm. ² (6 AWG)	Pernos M6	Pernos M6	Pernos M6
Peso (kg)	19	34/30/30	45/41	45
		470 x 350 x 280		
Dimensiones (al x an x p en mm.)	362 x 258 x 218	444 x 328 x 240	470 x 350 x 280	470 x 350 x 280

Seguridad

- Emisiones / Inmunidad Directiva de automoción Directiva de automoción 1) Puede ajustrare a 60 Hr; 120 V 60 Hz si se solicita 2) Claves de protección: a) contociutor de salida b) sobrecarga c) tensión de la bateria demasiado alta d) tensión de la bateria demasiado baja h) temperatura demasiado alta († 230 V CA en la sulda del inversor g) ondulación de la tensión de entrada demasiado al

- ida demasiado alta

Panel Multi Control Digital

Una solución práctica y de bajo coste de seguimiento remoto, con un selector rotatorio con el que se pueden configurar los niveles de Power Contro y Power Assist.

Panel Blue Power Se conecta a un Multi o a un Quattro y a todos los dispositivos VE.Net, en particular al controlador de baterías VE.Net. Representación gráfica de corrientes y tensiones.

- 2004/104/EC
- Carga no lineal, factor de cresta 3:1
 a 25 x² de temperatura ambiente
 S le desconceta si no hay fuente CA externa disponible
 Reife programable que puede configurarse como alarma general, subtensión CC o señal de arranque para el generador Capacidad nominal C2: 320/V/A
 Capacidad nominal C2: 340 hasta 35/VDC, 14 hasta 66/VDC
 Entre otras funciones, para comunicarse con una batería BMS de Litio-Ion

EN 60335-1, EN 60335-2-29 EN 55014-1, EN 55014-2, EN 61000-3-3, EN 61000-6-3, EN 61000-6-2, EN 61000-6-1

Funcionamiento y supervisión controlados por ordenador Hay varias interfaces disponibles: - Convertidor MK2.2 VE.Bus a RS232

Convertidor MK2.2 VE.Bus a RS232
 Se conecta al puerto KS232 de un ordenador (ver "Guía para el VEConfigure")
 Convertidor MK2.USB VE.Bus a USB
 Se conecta a un puerto USB (ver Guía para el VEConfigure")
 Convertidor VE.Net a VE.Bus
 Interfaz del VE.Net (ver la documentación VE.Net)
 Victron Global Remote
 El Global Remote su módem que envía alarmas, avisos e informes sobre el
 estado del sistema a teléfonos móviles mediante mensajes de texto (SMS).
 Quattro e inversores en una página web mediante una conexión GPRS. El
 acceso a esta web es gratuito.
 Victron thement Remote
 Para conectar a Ethernet.

Monitor de baterías BMV

El monitor de baterías BMV dispone de un

El monitor de baterias BMV dispone de un avanzado sistema de control por microprocesador combinado con un sistema de medición de alta resolución de la tensión de la bateria y de la carga/descarga de corriente. Aparte de esto, el software incluye unos complejos algoritmos de cálculo, como la fórmula Peukert, para determinar exactamente el estado de la carga de la batería. El BMV muestra de manera selectiva la tensión, corriente, Ah consumidos o tiempo restante de carga de la batería. El montor también almacena una multitud de datos relacionados con el rendimiento y uso de la batería. con el rendimiento y uso de la batería. Hay varios modelos disponibles (ver la documentación del monitor de baterías).

Victron Energy B.V. | De Paal 35 | 1351 JG Almere | Países Bajos Centralita: +31 (0)36 535 97 00 | Fax: +31 (0)36 535 97 40 E-mail: sales@victronenergy.com | **www.victronenergy.com**

3.3.2. Planos de la Instalación

Figura 3.6. Diagrama Eléctrico del Sistema Fotovoltaico Instalado. (Fuente: Norte Renovables).

Figura 3.7. Plano de la estructura para el Sistema Fotovoltaico Instalado. (Fuente: Norte Renovables).
3.3.3. Fotografías de la Instalación

Figura 3.8. Arreglo fotovoltaico y estructuras inslados. (Fuente: Norte Renovables).

Figura 3.9. Banco de baterías y tablero de control y potencia. (Fuente: Norte Renovables).

CAPÍTULO 4. ANÁLISIS TECNICO

En el presente capítulo se realizará una simulación del sistema fotovoltaico mediante el software PVSyst (<u>www.pvsyst.com</u>). PVsyst es una herramienta que sirve para desarrollar instalaciones fotovoltaicas que permite el estudio, la simulación y análisis de datos completa de los sistemas fotovoltaicos. Este software permite dimensionar el tamaño de las instalaciones teniendo en cuenta la radiación solar que recibiría en función de su ubicación gracias a su base de datos meteorológica, que permite su diseño en 3D y que tiene en cuenta la proyección de sombras gracias a la simulación del movimiento del sol durante el día [46].

4.1. Potencial de Radiación Solar

El CC.PP. Puerto Pardo de acuerdo al Atlas Solar elaborado por el Senamhi tiene un rango de irradiación incidente diario en promedio anual entre 5 y 5.5 kWh/m² (Ver Anexo 3). Para los cálculos realizados en este informe se utilizó utilizo la base de datos del software Meteoronorm, quien genera la data de las estaciones meteorológicas cercanas y en zonas donde no hay estaciones, por la interpolación entre las diferentes estaciones. En el Perú cuenta con la base de datos de 26 estaciones meteorológicas y una de ellas se encuentra en Puerto Maldonado.

La irradiación obtenida para el CC.PP Puerto Pardo se muestra en la siguiente tabla.

Mes	Irradiación Global Horizontal (kWh/m ²)
Enero	5.38
Febrero	5.11
Marzo	5.28
Abril	5.38
Mayo	5.23
Junio	5.06
Julio	5.50
Agosto	5.33
Septiembre	5.21
Octubre	5.30
Noviembre	5.47
Diciembre	5.11
Año	5.28

Tabla 2. Datos de Irradiación Global Horizontal del CCPP Puerto Pardo.

(Fuente: Software Meteornorm).

4.2. Estimación de la Demanda

En el presente informe se analizarán dos alternativas, las cuales son descritas a continuación:

4.2.1. Caso Teórico

Es la demanda con todas las cargas a instalar en el Puesto de Vigilancia una vez concluidas todas las etapas del plan de desarrollo de los puestos de vigilancia de fronteras. Las cuales incluyen equipamiento de oficinas, equipamiento de dormitorios y sistema de abastecimiento de agua y desagüe.

Del plano de instalaciones eléctricas en el Anexo 1, de la información de las siguientes etapas de implementación y de la inspección visual inicial, obtenemos el cuadro de cargas del Puesto de Vigilancia para el Caso Teórico.

Cargas	Unidades	Potencia (W)	Potencia Total (W)	Horas de uso	Demanda (kWh)
Ventiladores	17	60	1020	4	4.1
Fluorescentes Interiores	52	40	2080	4	8.3
Fluorescentes Exteriores	16	40	640	4	2.6
Motobomba 1 1/2 HP	1	1100	1100	0.5	0.6
Televisor	3	90	270	3	0.8
Computadoras	3	250	750	10	7.5
Refrigerador	1	250	250	20	5.0
Telefono Portero	1	300	300	0.25	0.1
Cargado de Celular	4	10	40	2	0.1
Total			6450		29.0

Tabla 3. Cuadro de Cargas - Caso Teórico del Puesto de Vigilancia de

Puerto Pardo. (Fuente: Propia).

Por tratarse de una zona de frontera no se obtuvo la demanda diaria para el diseño del Sistema Fotovoltaico, por lo que para la realización de los cálculos se asume el siguiente comportamiento de la demanda.

Figura 4.1. Demanda estimada para el caso Teórico del Puesto de Vigilancia de Puerto Pardo. (Fuente: Propia).

4.2.2. Caso Real

Es la demanda con las cargas que están implementadas y operativas en el Puesto de Vigilancia al momento de realizar el informe.

Mediante una inspección visual se obtiene el cuadro de cargas del Puesto de Vigilancia para el Caso Real.

Tabla A	Cuadro d	le Caroas _	Caso Real	del Puesto	de Vi	oilancia	de
1 abia 4.	Cuaulo u	ie Cargas –	Caso Real	uel ruesto		gnancia	ue

Cargas	Unidades	Potencia (W)	Potencia Total (W)	Horas de uso	Demanda (kWh/día)
Ventiladores	17	60	1020	6	6.1
Fluorescentes Interiores	52	40	2080	4	8.3
Fluorescentes Exteriores	16	40	640	4	2.6
Televisor	1	90	90	11	1.0
Cargado de Celular	3	10	30	2	0.1
Total			3860		18.1

Puerto Pardo. (Fuente: Propia).

Mediante entrevistas y observaciones a los habitantes del Puesto de Vigilancia se obtiene el comportamiento de la demanda del Puesto de Vigilancia para el Caso Real.

Figura 4.2. Demanda estimada para el caso Real del Puesto de Vigilancia de Puerto Pardo. (Fuente: Propia).

4.3. Resultados

Los resultados obtenidos en el PVS yst luego de ingresar toda la información elaborada.

4.3.1. Caso Teórico

	T Amb	GlobH	or	GlobE	ff	E Avail	EUnused	E Miss	E User	E Load	SolFrac
	°C	kWh/m².mes	kWh/m².dia	kWh/m².mes	kWh/m².dia	kWh	kWh	kWh	kWh	kWh	
Enero	26.9	166.7	5.38	143	4.61	813	9.4	119.2	778.9	898.1	0.867
Febrero	26.7	143.1	5.11	130.2	4.65	728	0.4	142.3	668.9	811.2	0.825
Marzo	26.8	163.7	5.28	159.7	5.15	899	9.1	68.7	829.5	898.1	0.924
Abril	26.7	161.3	5.38	171.1	5.70	1025	167.5	58.6	810.6	869.2	0.933
Mayo	25.5	162.2	5.23	186.3	6.01	1118	142.2	0	898.1	898.1	1
Junio	24.7	151.9	5.06	181.8	6.06	1094	134.8	0	869.2	869.2	1
Julio	25	170.4	5.50	202.6	6.54	1289	299.4	0	898.1	898.1	1
Agosto	26.7	165.2	5.33	181.3	5.85	1086	134.7	0	898.1	898.1	1
Septiembre	27.3	156.2	5.21	156.9	5.23	879	8.3	59.6	809.6	869.2	0.931
Octubre	27.9	164.4	5.30	153.2	4.94	879	65.5	101.3	796.9	898.1	0.887
Noviembre	27.2	164.2	5.47	143.3	4.78	803	8.9	156.3	712.9	869.2	0.82
Diciembre	27.2	158.5	5.11	135.6	4.37	780	28.7	197.3	700.9	898.1	0.78
Año	26.55	1927.7	5.28	1945.1	5.33	11393	1008.9	903.2	9671.8	10575	0.915

Tabla 5. Resultados Principales obtenidos del PVSyst - Caso Teórico. (Fuente: PVSyst).

T Amb: Temperatura ambientalGlobHor: Irradiación Global HorizontalGlobEff: Irradiación EfectivaE Avail: Energía Solar Disponible

EUnused: Energía no utilizada (batería cargada)

E Miss: Energía Faltante E User: Energía suministrada al Usuario E Load: Energía Necesaria del Usuario SolFrac: Fracción Solar (E User/ E Load)

	Yr	Lu	Yu	Lc	Ya	Ls	Yf	PR
_	kWh/m².día		kWh/kWp/día		kWh/kWp/día		kWh/kWp/día	
Enero	4.8	0.042	4.8	1.025	3.74	0.248	3.49	0.726
Febrero	4.83	0.002	4.83	1.075	3.75	0.431	3.32	0.688
Marzo	5.32	0.041	5.32	1.174	4.11	0.393	3.72	0.698
Abril	5.86	0.775	5.86	1.009	4.08	0.326	3.75	0.64
Mayo	6.17	0.637	6.17	1.052	4.48	0.455	4.02	0.652
Junio	6.22	0.624	6.22	1.047	4.55	0.522	4.02	0.647
Julio	6.7	1.341	6.7	0.825	4.53	0.51	4.02	0.601
Agosto	6.02	0.603	6.02	1.044	4.37	0.345	4.02	0.669
Septiembre	5.39	0.038	5.39	1.205	4.15	0.4	3.75	0.695
Octubre	5.11	0.293	5.11	1.050	3.77	0.201	3.57	0.698
Noviembre	4.96	0.041	4.96	1.113	3.81	0.509	3.3	0.665
Diciembre	4.55	0.129	4.55	0.917	3.51	0.368	3.14	0.69
Año	5.5	0.381	5.5	1.044	4.07	0.391	3.68	0.669

Tabla 6. Resultados Normalizados obtenidos del PVSyst - Caso Teórico. (Fuente: PVSyst).

Yr: Energía Incidente Referencial en la superficie FV

Yu: Potencial Normalizado de Producción FV

Ya: Producción Normalizado del Arreglo FV

Yf: Producción Normalizado del Sistema (E User/Potencia nominal)

PR: Relación de Desempeño (Yf/Yr)
Lu: Energía No Utilizada Normalizada (E Unused/Potencia nominal)
Lc: Perdidas del Arreglo FV Normalizado (Yu-Ya-Lu)
Ls: Perdidas del Sistema Normalizada (Ya-Yf)

Figura 4.3. Producciones Normalizadas para el Caso Teórico. (Fuente: PVSyst).

4.3.2. Caso Real

	T Amb	GlobH	or	GlobE	ff	E Avail	EUnused	E Miss	E User	E Load	SolFrac
_	°C	kWh/m².mes	kWh/m².dia	kWh/m².mes	kWh/m².dia	kWh	kWh	kWh	kWh	kWh	
Enero	26.9	166.7	5.38	143	4.61	887	251.6	0	560.6	560.6	1
Febrero	26.7	143.1	5.11	130.2	4.65	801	226.1	0	506.3	506.3	1
Marzo	26.8	163.7	5.28	159.7	5.15	1029	395.2	0	560.6	560.6	1
Abril	26.7	161.3	5.38	171.1	5.70	1085	476.5	0	542.5	542.5	1
Mayo	25.5	162.2	5.23	186.3	6.01	1195	547	0	560.6	560.6	1
Junio	24.7	151.9	5.06	181.8	6.06	1208	584.8	0	542.5	542.5	1
Julio	25	170.4	5.50	202.6	6.54	1371	722.9	0	560.6	560.6	1
Agosto	26.7	165.2	5.33	181.3	5.85	1174	529.2	0	560.6	560.6	1
Septiembre	27.3	156.2	5.21	156.9	5.23	1009	398.4	0	542.5	542.5	1
Octubre	27.9	164.4	5.30	153.2	4.94	941	321	0	560.6	560.6	1
Noviembre	27.2	164.2	5.47	143.3	4.78	888	271.6	0	542.5	542.5	1
Diciembre	27.2	158.5	5.11	135.6	4.37	847	228.4	0	560.6	560.6	1
Año	26.55	1927.7	5.28	1945.1	5.33	12434	4952.6	0	6600.1	6600.1	1

Tabla 7. Resultados Principales obtenidos del PVSyst – Caso Real. (Fuente: PVSyst).

T Amb: Temperatura ambientalGlobHor: Irradiación Global HorizontalGlobEff: Irradiación EfectivaE Avail: Energía Solar Disponible

EUnused: Energía no utilizada (batería cargada)

E Miss: Energía Faltante E User: Energía suministrada al Usuario E Load: Energía Necesaria del Usuario SolFrac: Fracción Solar (E User/ E Load)

	Yr	Lu	Yu	Lc	Ya	Ls	Yf	PR
	kWh/m².día		kWh/kWp/día		kWh/kWp/día		kWh/kWp/día	
Enero	4.8	1.127	4.8	0.702	2.97	0.464	2.51	0.523
Febrero	4.83	1.122	4.83	0.726	2.98	0.467	2.51	0.52
Marzo	5.32	1.771	5.32	0.606	2.95	0.435	2.51	0.472
Abril	5.86	2.206	5.86	0.747	2.91	0.399	2.51	0.428
Mayo	6.17	2.451	6.17	0.727	2.99	0.479	2.51	0.407
Junio	6.22	2.707	6.22	0.539	2.97	0.46	2.51	0.404
Julio	6.7	3.239	6.7	0.475	2.99	0.475	2.51	0.375
Agosto	6.02	2.371	6.02	0.668	2.98	0.465	2.51	0.417
Septiembre	5.39	1.844	5.39	0.618	2.93	0.418	2.51	0.466
Octubre	5.11	1.438	5.11	0.783	2.89	0.382	2.51	0.491
Noviembre	4.96	1.257	4.96	0.732	2.97	0.463	2.51	0.506
Diciembre	4.55	1.023	4.55	0.629	2.9	0.391	2.51	0.551
Año	5.5	1.880	5.5	0.663	2.95	0.441	2.51	0.457

Tabla 8. Resultados Normalizados obtenidos del PVSyst - Caso Real. (Fuente: PVSyst).

Yr: Energía Incidente Referencial en la superficie FV

Yu: Potencial Normalizado de Producción FV

Ya: Producción Normalizado del Arreglo FV

Yf: Producción Normalizado del Sistema (E User/Potencia nominal)

PR: Relación de Desempeño (Yf/Yr)
Lu: Energía No Utilizada Normalizada (E Unused/Potencia nominal)
Lc: Perdidas del Arreglo FV Normalizado (Yu-Ya-Lu)
Ls: Perdidas del Sistema Normalizada (Ya-Yf)

Figura 4.5. Producciones Normalizadas para el Caso Real. (Fuente: PVSyst).

Figura 4.6. Diagrama de Pérdidas para el Caso Real. (Fuente: PVSyst).

CAPÍTULO 5. ANÁLISIS ECONÓMICO

En el presente capítulo se realizará el análisis económico de los casos presentados en el capítulo anterior, utilizando el Costo del Ciclo de Vida (CCV) para poder hacer una comparación y determinar cuál es la mejor alternativa desde el punto de vista económico.

5.1. Costos de Inversión

El costo adjudicado al consorcio ejecutor en la LICITACION PUBLICA Nº 005-2013-IN-DGA-DL. "ADQUISICIÓN DE EQUIPOS PARA SISTEMA DE PANEL SOLAR PARA PUESTOS DE VIGILANCIA" fue de S/. 798,765.65 Nuevos soles incluido el Impuesto General a las Ventas (IGV), para 5 sistemas fotovoltaicos.

Por lo tanto el costo para total para el Sistema Instalado en el Puesto de Vigilancia Fronterizo de Puerto Pardo fue de S/. 159,753.13 incluido IGV.

Concepto	Monto Total Soles (Inc. IGV)	Monto Total Dólares (Inc. IGV)
Costo de Inversión del Sistema Fotovoltaico del Puesto de Vigilancia Puerto Pardo	S/. 159,753.13	\$ 57,465.15

Tabla 9. Inversión Total del Proyecto. (Fuente: Norte Renovables).

Este monto incluye todas las partidas relacionadas desde la compra de equipos, la ingeniería del diseño, el traslado hasta la CCNN de Puerto Pardo y la instalación de todos los componentes.

De forma aproximada y manteniendo en reserva la utilidad de las empresas ejecutoras del proyecto se mostrara en la Tabla 9 los montos del proyecto en forma desagregada.

PARTIDA	DESCRIPCIÓN	MONTO NUEVOS SOLES (INC. IGV)	MONTO DOLARES (INC. IGV)
1	SUMINISTRO DE COMPONENTES	S/. 126,280.61	\$ 44,424.68
1.1	ARREGLO FV	S/. 20,204.90	\$ 7,107.95
1.2	BATERIAS	S/. 41,672.60	\$ 14,660.14
1.3	EQUIPOS ELECTRONICOS	S/. 20,204.90	\$ 7,107.95
1.4	ESTRUCTURAS (INCLUYE TABLERO Y RACKS)	S/. 11,365.26	\$ 3,998.22
1.5	CASETA DE DRYWALL	S/. 25,256.12	\$ 8,884.94
1.6	ACCESORIOS ELECTRICOS	S/. 1,262.81	\$ 444.25
1.7	CERCO	S/. 6,314.03	\$ 2,221.23
2	MONTAJE ELECTROMECANICO	S/. 6,314.03	\$ 2,771.23
3	TRANSPORTE DE MATERIALES	S/. 12,628.06	\$ 5,042.47
4	GASTOS GENERALES	S/. 14,530.42	\$ 5,226.77
	TOTAL	S/. 159,753.13	\$ 57,465.15

Tabla 10. Inversión por partidas del proyecto. (Fuente: Norte Renovables).

*Los montos son referenciales e incluyen los costos de ingeniería, utilidad e IGV.

El costo total del suministro de materiales se descompone gráficamente de la siguiente manera.

Figura 5.1. Costo de componentes en forma cporcentual. (Fuente: Norte Renovables).

5.2. Análisis del Costo de Ciclo de Vida

El presente análisis del Costo de Ciclo de Vida es elaborado según el modelo del manual del laboratorio de Sandia.

El tiempo de reposición del banco de baterías utilizado en el modelo es calculado en el Anexo 6.

5.2.1. Análisis CCV – Caso Teórico

ANÁLISIS DEL COSTO DEL CICLO DE VIDA (CCV)

Ciudad del análisis	Puerto Pardo	Año de análisis			2015
Tarifa Años de ciclo de vida útil Tasa de inversión	20 12.0%	Tasa de inflación Tasa de inflación	general de combustit	ble	3% 5%
Tasa de descuento	9.0%	Inflación c	liferencial del	combustible	2%
Sistema: 7.2	kW				
Item	Valor actual de un año Valor actual años	l cantidad en X dolares		Factor de valor actual	Monto de valor actual
Inversion Inicial		57465.15	х	1	57465.15
Operación y mantenimiento - Inspección anual	20	574.65	Х	9.13	5245.73
Costos de energía - Combustible de generador					
Reparaciones y reposicion Banco de Baterias 1	10	17181.38	х	0.422	7257.60
Valor residual - 20% de original	20	11493.03	х	0.178	2050.71
COSTO TOTAL DEL CICLO	DE VIDA ÚTIL				67917.77
ENERGÍA GENERADA ANU ENERGÍA GENERADA EN x	JALMENTE (kWh)* AÑOS (kWh)*			9,671.00 193,420.00	
PRECIO DE LA TARIFA SC	DLAR (US\$/kWh)				0.35

* Valores Aproximados

5.2.2. Análisis CCV – Caso Real

ANÁLISIS DEL COSTO DEL CICLO DE VIDA (CCV)

Ciudad del análisis	Puerto Pardo		Año de análisis			2015
Años de ciclo de vida útil	20		Tasa de inflación	n general		3%
Tasa de inversión	12.0%		Tasa de inflación	n de combusti	ble	5%
Tasa de descuento	9.0%		Inflación	diferencial del	combustible	2%
Sistema: 7.	2 kW					
Item	Valor actual de un año	Valor actual uniforme en X años	cantidad en dolares		Factor de valor actual	Monto de valor actual
Inversion Inicial			57465.15	Х	1	57465.15
Operación y mantenimiento - Inspección anual		20	574.65	Х	9.13	5245.73
Costos de energía - Combustible de generado	r					
Reparaciones y reposicion Banco de Baterias 1	13		17181.38	Х	0.326	5604.20
Valor residual - 20% de original	20		11493.03	Х	0.178	2050.71
COSTO TOTAL DEL CICLO	DE VIDA ÚTII					66264.37
ENERGÍA GENERADA ANI ENERGÍA GENERADA EN >	UALMENTE (kv k AÑOS (kWh)*	Wh)*			6,600.10 132,002.00	
PRECIO DE LA TARIFA SO	OLAR (US\$/k	Wh)				0.50

* Valores Aproximados

CAPÍTULO 6. OBSERVACIONES Y DISCUSIONES

- El sistema fotovoltaico para el Caso Teórico proporciona el 91% de la energía requerida anual para las condiciones establecidas en el presente informe. Solamente en los meses de Mayo a Agosto es posible proporcionar el 100% de la demanda.
- La eficiencia global del sistema para el Caso Teórico es en promedio anual del 67%.
- De toda energía suministrada al usuario para el Caso Teórico, el 58% es proporcionada por el banco de baterías y el 42 % es proporcionada por el arreglo fotovoltaico durante el tiempo de generación
- El sistema fotovoltaico para el Caso Real proporciona el 100% de la energía requerida anual para las condiciones establecidas en el presente informe. Lo cual es lo que se espera porque la demanda se redujo aproximadamente en 38%.
- Para el Caso Real, se desperdicia aproximadamente el 40% de la energía solar disponible por el hecho de la reducción de la demanda.
- La eficiencia global del sistema para el Caso Real es en promedio anual del 45%.
- De toda energía suministrada al usuario para el Caso Real, el 67% es proporcionada por el banco de baterías y el 33 % es proporcionada por el arreglo fotovoltaico durante el tiempo de generación.
- Para ambos casos solo se requiere un cambio del banco de baterías para el periodo de 20 años analizados.
- Al no estar finalizado toda la implementación del sistema, el costo de la energía por cada kilo Vatio hora (kWh) utilizado tiene un aumento aproximado del 41%.

CAPITULO 7. CONCLUSIONES

- El sistema fotovoltaico implementado proporciona aproximadamente el 91 % de la curva de demanda asumida en el caso Teórico (26.4 kWh/día) y el sistema tiene una eficiencia del 66.9%, donde las mayores pérdidas se dan en el arreglo fotovoltaico por perdidas de temperatura como la predominante. Con este escenario el banco de batería tendrá una vida útil de 10 años para mantener el 80% de capacidad, el cuál es el punto crítico de todo sistema fotovoltaico y el más caro de todos los componentes.
- El costo del kWh del sistema fotovoltaico para el Caso Teórico es de 0.35 \$/kWh (aproximadamente 1.13 S/./kWh).
- Actualmente el sistema fotovoltaico implementado proporciona el 100 % de la curva de demanda asumida en el caso Real. Por esta reducción de la demanda al no estar el Puesto de vigilancia finalizado, el sistema tiene una reducción de la eficiencia a 45.7%, donde las mayores pérdidas se dan porque la batería se encuentra en flotación y la energía que el arreglo fotovoltaico puede suministrar no tiene donde entregarla. Con este escenario el banco de batería tendrá una vida útil de 13 años para mantener el 80% de capacidad, el cuál es el punto crítico de todo sistema fotovoltaico y el más caro de todos los componentes. El costo del kWh del sistema fotovoltaico para el Caso Real es de 0.50 \$/kWh (aproximadamente 1.60 S/./kWh).

BIBLIOGRAFÍA

[1] <u>http://www.minem.gob.pe/minem/archivos/2ResEje-2014-2025%20Vf.pdf</u> (consultado el 12/12/14)

[2] <u>http://www2.osinerg.gob.pe/EnergiasRenovables/EnergiasRenovables.html</u> (consultado el 12/12/14)

[3] Bases para la la contratación de Bienes ADJUDICACIÓN DE MENOR CUANTÍA Nº 078-2012-IN-DGA DERIVADA DE LA LICITACION PÚBLICA Nº 022-2012-IN-DGA. "ADQUISICIÓN E INSTALACIÓN DE PUESTOS DE VIGILANCIA DE FRONTERA"

[4]https://www.mininter.gob.pe/userfiles/RM-Nro_0270-2012-IN-0501.pdf(consultado el 12/12/14)

[5] Bases para la la contratación de Bienes LICITACION PUBLICA Nº 005-2013-IN-DGA-DL. "ADQUISICIÓN DE EQUIPOS PARA SISTEMA DE PANEL SOLAR PARA PUESTOS DE VIGILANCIA"

[6]

http://zonasegura.seace.gob.pe/mon/docs/procesos/2013/25/2583864/445030235rad7 <u>C8F5.pdf</u> (consultado el 12/12/14)

[7] E. Fagundes, J. Tavares. Sistemas Hibridos. Soluções Energéticas para a Amazônia. Ministerio de Minas e Energia, Brasilia. p. 37-38, (2008).

[8] REN21. Renewables 2014 Global Status Report. p. 47-50. (2014).

[9] International Energy Agency. Technology Roadmap Solar Photovoltaic Energy. p. 9. 2014.

[10] Ibid. p. 22-23.

[11] J. Tavares. M.Galindo. Manual de Engenharia para Sistemas Fotovoltaicos.GTES-CEPEL-DTE-CRESESB. Rio de Janeiro. p. 67. (2014).

[12] E. Fagundes, J. Tavares. Op. Cit., p.39

- [13] Ibid. p. 45.
- [14] Ibid. p. 76.
- [15] Ibid. p. 80.

[16] James P. Dunlop. Photovoltaic Systems. American Technical Publishers, Incorporated. p. 102. (2010).

- [17] Ibid. p. 102.
- [18] Ibid. p. 103.
- [19] Ibid. p. 103
- [20] Ibid. p. 105-106
- [21] Ibid. p. 107-108
- [22] Ibid. p. 110.
- [23] E. Fagundes, J. Tavares. Op. Cit., p.57.
- [24] Ibid. p. 60.
- [25] Ibid. p. 60.
- [26] Ibid. p. 64.
- [27] Ibid. p. 67.
- [28] Ibid. p. 67.
- [29] Ibid. p. 68.
- [30] J. Tavares. M.Galindo. Op. Cit., p.163.
- [31] Ibid. p. 164.
- [32] Ibid. p. 164.
- [33] E. Fagundes, J. Tavares. Op. Cit., p.138.

[34] Ibid. p. 138.

[35] Ibid. p. 136.

[36] J. Tavares. M.Galindo. Op. Cit., p.187-188.

[37] Ibid. p. 203-205.

[38] Ibid. p. 214.

[39] Ibid. p. 215,244

[40] E. Fagundes, J. Tavares. Op. Cit., p.163-164.

[41] Ibid. p. 164,167.

[42] Frank Kreith, D. Yogi Goswami. Handbook of Energy Efficiency and Renewable Energy. CRC Press. p. 3-4. (2007).

[43] Ibid. p. 3-4.

[44] Sandia National Laboratories. Stand-Alone Photovoltaic Systems. p. 60-61. (1995).

[45] Frank Kreith, D. Yogi Goswami. Op.Cit., p.3-4,3-5.

[46]http://energiadoblecero.com/herramientas-de-diseno-y-calculo/pvsyst(consultado el 23/06/15)

ANEXO 1. PLANOS DE LAS INSTALACIONES DEL P.V.F PUERTO PARDO

ANEXO 2. ESPECIFICACIONES TECNICAS DE LAS BASES DEL PROYECTO

Tensión en circuito abierto del Módulo Solar Fotovoltaico. El Postor debe proporcionar la máxima diferencia de potencial (Voltaje entre sus terminales) bajo irradiancia de AM 1.5 a 25°C de temperatura de la celda Solar. Corriente en corto circuito. El Postor debe proporcionar el dato de la máxima corriente foto generada, cuando sus terminales esti corto circuito, a una irradiancia de AM 1.5 y 25 °C de temperatura de la Celda solar. Coeficientes Térmicos para Potencia, Voltaje y Corriente El Postor deberá dar los tres coeficientes térmicos en magnitud, e indicando cuáles de ello son positi cuales son negativos. Módulo Solar Fotovoltaico con diodo de bloqueo y diodo de paso. El Postor indicara si los módulos llevan integrado dentro de su estructura y en su caja de conexione diodo, o do diodos en cata módulo, uno de bloqueo y diodo de paso. Eficiencia y relación de potencia pico por metros cuadrados de superficie. El Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo Garantia 10 a dos III. Requerimientos Mínimos de la Adquisición (2. Batería Solar) Las baterías deberán configurarse a una tensión de servicio de 48 V. pudiendo los postores decidir qué de batería utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garan ANOS Las baterías deberán configurarse a una tensión de servicio de 48 V. pudiendo los postores decidir qué de batería utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garan ANOS Las baterías deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de batería utilizar. Siem y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garan ANOS Las baterías deberán configurarse a de Adquisición (2. Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa ANOS DE GARANTIA III. Requerimientos Mínimos de la Adquisición (Componentes de cada sistema) La configuración ser		
El Postor debe proporcionar la máxima diferencia de potencial (Voltaje entre sus terminales) bajo irradiancia de AM 1.5 a 25 ° C de temperatura de la celda Solar. Corriente en corto circuito. El Postor debe proporcionar el dato de la máxima corriente foto generada, cuando sus terminales esti corto circuito, a una irradiancia de AM 1.5 y 25 ° C de temperatura de la Celda solar Coeficientes Térmicos para Potencia, Voltaje y Corriente El Postor deberá dar los tres coeficientes térmicos en magnitud, e indicando cuáles de ello son positi cuales son negativos. Módulo Solar Fotovoltacio con diodo de bloqueo y diodo de paso. El Postor indicara si los módulos llevan integrado dentro de su estructura y en su caja de conexione diodo, o dos diodos en cada módulo, uno de bloqueo y otro de paso. Eficiencia y relación de potencia pico por metros cuadrados de superficie. El Postor deberá entregar la relación de eficiencia referido a unidades de superficie para una irradianci 1000W/m2 Número de Celdas Solares en serie por módulo. El Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo Garantía 10 años III. Requerimientos Mínimos de la Adquisición (2.Batería Solar) Las baterías deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qui de batería utilizar. Siempre y cuando la capacidad de almacenamiento (57.600 Watts) no varié. Garan ANOS Las baterías deberán configurarse a una tensión de servicio de 48 V. pudiendo los postores decidir qui de batería utilizar. Siempre y cuando la capacidad de almacenamiento (57.600 Watts) no varié. Garan ANOS Las baterías deberán configurarse a una tensión de servicio de 70 de carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa ANOS DE GARANTIA III. Requerimientos Mínimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa ANOS DE GAR	Te	ensión en circuito abierto del Módulo Solar Fotovoltaico.
Corriente en corto circuito. El Postor debe proporcionar el dato de la máxima corriente foto generada, cuando sus terminales está corto circuito, a una irradiancia de AM 1.5 y 25 ° C de temperatura de la Celda solar Coeficientes Térmicos para Potencia, Voltaje y Corriente El Postor deberá dar los tres coeficientes térmicos en magnitud, e indicando cuáles de ello son positi cuales son negativos. Módulo Solar Fotovoltaico con diodo de bioqueo y diodo de paso. El Postor indicara si los módulos llevan integrado dentro de su estructura y en su caja de conexione diodo, o dos diodos en cada módulo, uno de bioqueo y otro de paso. Eficiencia y relación de potencia pico por metros cuadrados de superficie. El Postor deberá entregar la relación de eficiencia referido a unidades de superficie para una irradiance 1000W/m2 Número de Celdas Solares en serie por módulo. El Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo Garantia 10 años III. Requerimientos Minimos de la Adquisición (2.Batería Solar) Las baterías deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qué de batería utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garan NOS Las baterías deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de bateria utilizar. Sier y cuando la capacidad de almacenamiento (52,600 Watts) no varié. Garantia 5 ANOS III. Requerimientos Minimos de la Adquisición (2.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa ANOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración se de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa ANOS DE GARANTIA III. Requerimientos Minimos de la Adquisición Potencia de entrega 6,000 Wa ANOS DE GARANTIA III. Requerimientos Minimos de la Adquisición Potencia de entrega 6,000 Wa ANOS DE GARANTIA III.	El irr	Postor debe proporcionar la máxima diferencia de potencial (Voltaje entre sus terminales) bajo adiancia de AM 1.5 a 25° C de temperatura de la celda Solar.
El Postor debe proporcionar el dato de la máxima corriente foto generada, cuando sus terminales está corto circuito, a una irradiancia de AM 1.5 y 25 ° C de temperatura de la Celda solar Coeficientes Térmicos para Potencia, Voltaje y Corriente El Postor deberá dar los tres coeficientes térmicos en magnitud, e indicando cuáles de ello son positi cuales son negativos. Módulo Solar Fotovoltaico con diodo de bioqueo y diodo de paso. El Postor indicara si los módulos llevan integrado dentro de su estructura y en su caja de conexions diodo, o dos diodos en cada módulo, uno de bioqueo y otro de paso. Eficiencia y relación de potencia pico por metros cuadrados de superficie. El Postor deberá entregar la relación de eficiencia referido a unidades de superficie para una irradianci 1000W/m2 Número de Celdas Solares en serie por módulo. El Postor deberá proporcionar el número de celdas solares conectadas en serielmódulo Garantia 10 años III. Requerimientos Minimos de la Adquisición (2.Bateria Solar) Las baterías deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir quí de batería utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garant ANOS Las baterías deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de batería utilizar. Sier y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantia 5 ANOS III. Requerimientos Minimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa ANOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa años de garantia. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantia 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wat ANOS DE GARANTIA III. Requerimie	C	prriente en corto circuito.
Coeficientes Térmicos para Potencia, Voltaje y Corriente El Postor deberá dar los tres coeficientes térmicos en magnitud, e indicando cuáles de ello son positi cuales son negativos. Módulo Solar Fotovoltaico con diodo de bloqueo y diodo de paso. El Postor indicara si los módulos llevan integrado dentro de su estructura y en su caja de conexione diodo, o dos diodos en cada módulo, uno de bloqueo y otro de paso. Eficiencia y relación de potencia pico por metros cuadrados de superficie. El Postor deberá entregar la relación de eficiencia referido a unidades de superficie para una irradiano 1000W/m2 Nümero de Ceidas Solares en serie por módulo. El Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo Garantia 10 años III. Requerimientos Minimos de la Adquisición (2 Bateria Solar) Las baterias deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qué de bateria utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garan ANOS Las baterias deberán configurarse a 48 v, pudiendo los postores decidir qué de bateria utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garan ANOS Las baterias deberán configurarse a 48 v, pudiendo los postores decidir qué tega de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monófasico /Potencia de entrega 6,000 Wat años de garantia. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ Monofásico /Potencia de entrega 6,000 Wat ANOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: • Paneles Solares- Potencia de entrega 7,200 Watts. • Cantroladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ Monofásico /Potencia de entrega 6,000 Wat ANOS DE GARANTIA III. Requerimientos Minimos de la Adqui	El co	Postor debe proporcionar el dato de la máxima corriente foto generada, cuando sus terminales está rto circuito, a una irradiancia de AM = 1.5 y 25 ° C de temperatura de la Celda solar
El Postor deberá dar los tres coeficientes térmicos en magnitud, e indicando cuáles de ello son positi cuales son negativos. Módulo Solar Fotovoltaico con diodo de bloqueo y diodo de paso. El Postor Indicara si los módulos llevan integrado dentro de su estructura y en su caja de conexionel diodo, o dos diodos en cada módulo, uno de bloqueo y otro de paso. Eficiencia y relación de potencia pico por metros cuadrados de superficie. El Postor deberá entregar la relación de eficiencia referido a unidades de superficie para una irradiano 1000W/m2 Número de Celdas Solares en serie por módulo. El Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo Garantia 10 años III. Requerimientos Minimos de la Adquisición (2.Bateria Solar) Las baterías deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qué de batería utilizar. Siempre y cuando la capacidad de almacenamiento (57.600 Watts) no varié. Garan ANOS Las baterías deberán configurarse a 48 v, pudiendo los postores decidir qué de batería utilizar. Sier y cuando la capacidad de almacenamiento (57.600 Watts) no varié. Garantia 5 ANOS III. Requerimientos Minimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa ANOS DE GARANTTA III. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa ANOS DE GARANTTA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: • Paneles Solares. Potencia de entrega 7,200 Watts. • Al Baterías – Capacidad de almacenamiento 77.600 WATTS DE POTENCIA EXPLICAR LA RAX TIEMPO DE RADÍACION (4.0 kwir/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. • Controladores de corag 48 V/ puestoria de Entrega 7	C	peficientes Térmicos para Potencia, Voltaje y Corriente
 Módulo Solar Fotovoltaico con diodo de bloqueo y diodo de paso. El Postor indicara si los módulos llevan integrado dentro de su estructura y en su caja de conexions diodo, o dos en cada módulo, uno de bloqueo y otro de paso. Eficiencia y relación de potencia pico por metros cuadrados de superficie. El Postor deberá entregar la relación de eficiencia referido a unidades de superficie para una irradiano 1000W/m2 Número de Celdas Solares en serie por módulo. El Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo Garantía 10 años III. Requerimientos Minimos de la Adquisición (2.Bateria Solar) Las baterias deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qué de bateria utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garant ANOS Las baterias deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de bateria utilizar. Sier y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garant ANOS Las baterias deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de bateria utilizar. Sier y cuando la capacidad de almacenamiento. Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 WatANOS DE GARANTIA II. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 WatANOS DE GARANTIA II. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: Paneles Solares- Potencia de entrega 7,200 Watts. MOS DE GARANTIA II. Requerimientos Solarde entrega 7,200 Watts. De Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantia 5 años Se considerará 01 Invers	El cu	Postor deberá dar los tres coeficientes térmicos en magnitud, e indicando cuáles de ello son positiv ales son negativos.
El Postor indicara si los módulos llevan integrado dentro de su estructura y en su caja de conexione diodo, o dos diodos en cada módulo, uno de bloqueo y otro de paso. Eficiencia y relación de potencia pico por metros cuadrados de superficie, El Postor deberá entregar la relación de eficiencia referido a unidades de superficie para una irradiano 1000W/m2 Número de Celdas Solares en serie por módulo. El Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo Garantia 10 años III. Requerimientos Minimos de la Adquisición (2.Bateria Solar) Las baterías deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qué de batería utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garant ANOS Las baterías deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qué de batería utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garant ANOS Las baterías deberán configurarse a 48 v. pudiendo los postores decidir qué tipo de batería utilizar. Sier y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantía 5 ANOS III. Requerimientos Minimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa ANOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ Monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente! • Paneles Solares - Potencia de entrega 7,200 Watts. • H Baterías - Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RA: TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. • Controladores de carga 48 V/ Potencia de Entrega 7,200	M	ódulo Solar Fotovoltaico con diodo de bloqueo y diodo de paso,
 Eficiencia y relación de potencia pico por metros cuadrados de superficie, El Postor deberá entregar la relación de eficiencia referido a unidades de superficie para una irradianci 1000W/m2 Número de Celdas Solares en serie por módulo, El Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo Garantia 10 años III. Requerimientos Minimos de la Adquisición (2.Bateria Solar) Las baterias deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qué de bateria utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garant ANOS Las baterias deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de bateria utilizar. Siem y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garant ANOS Las baterias deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de bateria utilizar. Siem y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantia 5 ANOS Ill. Requerimientos Minimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wataños de garantía. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wataños de garantía. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wataños de garantía. II. Requerimientos Mínimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: Paneles Solares. Potencia de entrega 7,200 Watts. 41 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RATTIEMPO DE RADÍACION (4.0 kwh/m.	El di	Postor indicara si los módulos llevan integrado dentro de su estructura y en su caja de conexione odo, o dos diodos en cada módulo, uno de bloqueo y otro de paso.
El Postor deberá entregar la relación de eficiencia referido a unidades de superficie para una irradiano 1000W/m2 Número de Celdas Solares en serie por módulo, El Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo Garantía 10 años III. Requerimientos Minimos de la Adquisición (2.Bateria Solar) Las baterías deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qui de batería utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garant ANOS Las baterías deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de bateria utilizar. Sier y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantía 5 ANOS III. Requerimientos Minimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ Monofásico /Potencia de entrega 6,000 Wa años de garantia. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: • Paneles Solares- Potencia de entrega 7,200 Watts. • 1 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAJ TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. • Controladores de carga 48 V/ Potencia de entrega 7,200 Watts. • 1 Paneles Solares- Potencia de entrega 7,200 Watts. • 1 Paneles Colares de Carga 48 V/ Potencia de entrega 6,000 Watts, 5 AÑOS • Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS • In	Ef	iciencia y relación de potencia pico por metros cuadrados de superficie.
Número de Celdas Solares en serie por módulo, El Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo Garantía 10 años III. Requerimientos Minimos de la Adquisición (2.Bateria Solar) Las baterias deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qui de bateria utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garant AÑOS Las baterias deberán configurarse a 48 v. pudiendo los postores decidir qué tipo de bateria utilizar. Sier y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantía 5 AÑOS III. Requerimientos Minimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wataños DE GARANTIA III. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wataños de garantía. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wataños DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente. • Paneles Solares - Potencia de entrega 7,200 Watts. • 41 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCI	EI 10	Postor deberá entregar la relación de eficiencia referido a unidades de superficie para una irradianci I00W/m2
El Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo Garantia 10 años III. Requerimientos Minimos de la Adquisición (2.Bateria Solar) Las baterias deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qui de bateria utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garant AÑOS Las baterias deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de bateria utilizar. Sier y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantia 5 AÑOS III. Requerimientos Minimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wat AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ Monofásico /Potencia de entrega 6,000 Wat años de garantia. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantia 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wat AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: • Paneles Solares- Potencia de entrega 7,200 Watts. • 41 Baterias - Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RA TIEMPO DE RADIACION (4.0 kwhm2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. • Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts, 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS • Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS SARANTIA	N	úmero de Celdas Solares en serie por módulo.
III. Requerimientos Minimos de la Adquisición (2.Bateria Solar) Las baterias deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir que de bateria utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garart AÑOS Las baterias deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de bateria utilizar. Sier y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantía 5 AÑOS III. Requerimientos Minimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wat años DE GARANTIA III. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wat años de garantía. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wat AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: Paneles Solares- Potencia de entrega 7,200 Watts. 41 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RA TIEMPO DE RADIACION (4.0. kwh/W2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS	E	Postor deberá proporcionar el número de celdas solares conectadas en serie/módulo regatio 10 pôse
 Las baterias deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir que de bateria utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garar AÑOS Las baterias deberán configurarse a 48 v. pudiendo los postores decidir qué tipo de bateria utilizar. Sier y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantia 5 AÑOS Las baterias deberán configurarse a 48 v. pudiendo los postores decidir qué tipo de bateria utilizar. Sier y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantia 5 AÑOS III. Requerimientos Mínimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 WatANOS DE GARANTIA III. Requerimientos Mínimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ Monofásico /Potencia de entrega 6,000 Wataños de garantía. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wataños DE GARANTIA III. Requerimientos Mínimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: Paneles Solares- Potencia de entrega 7,200 Watts. 41 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAZ TIEMPO DE RADIACION (4.0 kwh/w/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA 		. Requerimientos Minimos de la Adquisición (2.Bateria Solar)
de bateria utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varie. Garar AÑOS Las baterias deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de bateria utilizar. Sier y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantía 5 AÑOS III. Requerimientos Mínimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Mínimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa años de garantía. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa años DE GARANTIA III. Requerimientos Mínimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: • Paneles Solares- Potencia de entrega 7,200 Watts. • 1 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RA TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. • Controladores de carga 48 V/ potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS	La	is baterías deberán configurarse a una tensión de servicio de 48 V., pudiendo los postores decidir qué
Las baterias deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de bateria utilizar. Sier y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantia 5 AÑOS III. Requerimientos Mínimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Mínimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa años de garantia. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa años de garantia. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Mínimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: • Paneles Solares- Potencia de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAZ TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. • Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS • Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS	de Af	e bateria utilizar. Siempre y cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garan NOS
III. Requerimientos Minimos de la Adquisición (3.Controlador de Carga Robusta) Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ Monofásico /Potencia de entrega 6,000 Wa años de garantia. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: • Paneles Solares- Potencia de entrega 7,200 Watts. • 11 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAZ TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. • Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS • Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS	La y (is baterías deberán configurarse a 48 v, pudiendo los postores decidir qué tipo de batería utilizar. Sier cuando la capacidad de almacenamiento (57,600 Watts) no varié. Garantía 5 AÑOS
 Voltaje de Servicio 48 V de acuerdo a la nueva configuración. Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ Monofásico /Potencia de entrega 6,000 Wa años de garantía. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wal años DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: Paneles Solares- Potencia de entrega 7,200 Watts. 41 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAZ TIEMPO DE RADIACION (4.0 kwh/m2/día) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS 	Ш	Requerimientos Minimos de la Adquisición (3.Controlador de Carga Robusta)
Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ Monofásico /Potencia de entrega 6,000 Wa años de garantía. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Mínimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: • Paneles Solares- Potencia de entrega 7,200 Watts. • 1 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAZ TIEMPO DE RADIACION (4.0 kwh/m2/día) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. • Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS • Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS	Vo	oltaje de Servicio 48 V de acuerdo a la nueva configuración.
III. Requerimientos Mínimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ Monofásico /Potencia de entrega 6,000 Wa años de garantia. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantía 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Mínimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: • Paneles Solares- Potencia de entrega 7,200 Watts. • 41 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAZ TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. • Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS • Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS	Se	a considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wal
III. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) Se considerará 01 Inversores de Onda Pura 48V/220 V/ Monofásico /Potencia de entrega 6,000 Wa años de garantia. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantia 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wat AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: Paneles Solares- Potencia de entrega 7,200 Watts. 41 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAI TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS Inversores de Onda Pura 48//220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA	~	
años de garantia. Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantia 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wal AÑOS DE GARANTIA III. Requerimientos Mínimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: • Paneles Solares- Potencia de entrega 7,200 Watts. 41 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAJ TIEMPO DE RADIACION (4.0 kwh/m2/día) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. • Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS • Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA	III St	. Requerimientos Minimos de la Adquisición (4.Inversor de Onda Pura) a considerará 01, Inversores de Onda Pura 48//220 V/ Monofásico /Potencia de entrega 6.000 Wai
 Controladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantia 5 años Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wa AÑOS DE GARANTIA III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: Paneles Solares- Potencia de entrega 7,200 Watts. 41 Baterias - Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAZ TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA 	aŕ	los de garantia.
Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wal ANOS DE GARANTIA III. Requerimientos Mínimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: Paneles Solares- Potencia de entrega 7,200 Watts. 41 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAZ TIEMPO DE RADIACION (4.0 kwh/m2/día) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA	C	ontroladores de carga 48 V/ sumados otorguen 240 o más amperios. Garantia 5 años
III. Requerimientos Minimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: • Paneles Solares- Potencia de entrega 7,200 Watts. • 11 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAZ TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. • Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS • Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA	Se	e considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Wat
 III. Requerimientos Mínimos de la Adquisición (Componentes de cada sistema) La configuración será la siguiente: Paneles Solares- Potencia de entrega 7,200 Watts. 41 Baterias – Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAZ TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS 		
 La configuración será la siguiente: Paneles Solares- Potencia de entrega 7,200 Watts. 41 Baterias - Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAZ TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS Inversores de Onda Pura 48V/220 V/ monofàsico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA 	ш	. Requerimientos Mínimos de la Adquisición (Componentes de cada sistema)
 41 Baterias - Capacidad de almacenamiento 57,600 WATTS DE POTENCIA EXPLICAR LA RAI TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA 	La	onfiguración será la siguiente:
 TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAE DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA 	i.	41 Baterias – Capacidad de almacenamiento 57.600 WATTS DE POTENCIA EXPLICAR LA RAZ
 DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Potencia de Entrega 7,200 Watts. 2 DE 80 AMP. C/U O 1 DE 160 MUST BE MPPT. GARANTIA 5 AÑOS Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA 		TIEMPO DE RADIACION (4.0 kwh/m2/dia) POR POTENCIA DEL SISTEMA Y CAPACIDAD
MUST BE MPPT, GARANTIA 5 ANOS Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA		DESCARGA DEL 50% por puesto de vigilancia Fronteriza. Controladores de carga 48 V/ Rotencia de Entreca 7 200 Watte 2 DE 80 AMP. C/U O 1 DE 160
Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS GARANTIA	•	MUST BE MPPT. GARANTIA 5 AÑOS
GARANTIA	•	Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts, 5 AÑOS
 Estructure de Conorte 		GARANTIA

LIC	ITACIÓN PÚBLICA Nº 005-2013-IN-DGA-DL "ADQUISICIÓN DE EQUIPOS PARA SISTEMA DE PANEL LAR PARA PUESTOS DE VIGILANCIA"
30	LAR FARA FUESTUS DE VIGILANCIA
	 En su totalidad las instalaciones fotovoltaicas estarán aterrados con un sistema de protección a tierra, a través del tablero de distribución.
	 Se instalarán pararrayo tetrapuntal Franklin, aterradas a un pozo a tierra. Los valores de la Resistencia de Ruesta Tierra deberán ser menores a 10 Obmios.
	 La puesta a tierra consistirá básicamente en uno o más electrodos enterrados conectados mediante
	 conductor de cobre desnudo de 16mm2 de diametro. Cerco perimétrico de la zona donde se instalara la Matriz Solar (paneles y estructura)
	Se considerará 01 Inversores de Onda Pura 48V/220 V/ monofásico /Potencia de entrega 6,000 Watts 5 AÑOS
	Los paneles solares serán de tecnología Silicio Monocristalino los cuales sumados en la totalidad los mismos que componen el sistema otorguen una potencia de 7.200 Watts., es decir podrán considerarse las siguientes potencias 120, 150, 180, 200, 230 o 250 Watts. El controladores de carga serán de 48V los cuales sumados provean 240 o más amperios de corriente. El inversor de corriente deberá ser de 48V / 220V salida monofásico, para una potencia de entrega de 6 KW. El sistema será diseñado en 48 voltios, para una entrega de Potencia de 7,200 Watts.
_	
	CAPITULO IV

ANEXO 3. ATLAS SOLAR DEL PERU

ANEXO 4. INFORME PVSYST CASO TEORICO

PVSYST V6.12			Página 1/3
Sistem	a Aislado: Pará	metros de la simulación	
Proyecto : Proyecto Ais	lado at Puerto Parc	lo	
Lugar geográfico	Puerto Pardo	País	Peru
Ubicación Hora definido como	Latitud Hora Legal Albedo	12.5°S Longitud Huso hor. UT-4 Altitud 0.20	68.5°W 178 m
Datos climatológicos:	Puerto Pardo	Síntesis - Meteonorm 6.1	
Variante de simulación : Tesis	s Puerto Pardo Teo	rico Final	
	Fecha de simulación	30/08/15 15h58	
Parámetros de la simulación			
Orientación Plano Receptor	Inclinación	20° Acimut	0°
Modelos empleados	Transposición	Perez Difuso	Measured
Características generador FV			
Módulo FV	Si-mono Modelo	TM-M572180	
Número de módulos FV N° total de módulos FV Potencia global generador Caract. funcionamiento del generado	Pabricante En serie N° módulos Nominal (STC) pr (50°C) V mpp Superficie módulos	2 módulos En paralelo 40 Pnom unitaria 7.20 kWp En cond. funciona. 64 V I mpp	20 cadenas 180 Wp 6.37 kWp (50°C) 100 A
	Supericle modulos	51.1 m -	
Factores de pérdida Generador FV	/		
Pérdidas por polvo y suciedad del ge Factor de pérdidas térmicas	enerador Uc (const)	Fracción de Pérdidas 20.0 W/m²K Uv (viento)	3.0 % 0.0 W/m²K / m/s
Pérdida Óhmica en el Cableado F	Res. global generador	9.7 mOhm Fracción de Pérdidas	1.3 % en STC
Pérdida Calidad Módulo Pérdidas Mismatch Módulos Efecto de incidencia, parametrizació	n ASHRAE IAM =	Fracción de Pérdidas Fracción de Pérdidas 1 - bo (1/cos i - 1) Parám. bo	-0.8 % 1.0 % en MPP 0.05
Parámetro del Sistema	Tipo de sistema	Sistema Aislado	
Batería	Modelo	A602/1415 SOLAR	
Características del banco de batería	Fabricante s Tensión N° de unidades Temperatura	Sonnenschein 48 V Capacidad Nominal 24 en serie Fijo (20°C) NEDE 100(1 45)	1135 Ah
Regulador	Modelo Fabricante Tochología	MPP1 180(4x45) Morningstar MPPT convertor Coof temp	5.0 m\//°C/olom
Convertidor Efic	iencias Máx. y EURO	99.0/97.0 %	-5.0 mv/ C/elem.
Umbrales de Regulación Baterías Comando o	Carga de Generador Auxiliar	56.6/50.4 V Descarga 47.3/51.6 V	45.6/50.4 V
Necesidades de los usuarios :Con	s. domésticos diarios media	Constante durante el año 29.0 kWh/Día	
PVsvst Evaluation mode		Tradución ein corra	tía. Sólo el texto indée está carantinodo
r vayar Evaluation moue		raducción sin garar	no, coro el texto ingles esta garantizado.

PVSYST V6.12									Página 2/3	
	Sie	stema A	islado: R	esulta	dos prir	icipales				
Proyecto : Proyecto Aislado at Puerto Pardo Variante de simulación : Tesis Puerto Pardo Teorico Final										
Parámetros principa Orientación Campos Generador FV Batería banco de baterías Necesidades de los u	ales del siste FV usuarios Co	ma Tipo N° N° ons. domés	o de sistema inclinación de módulos Modelo de unidades sticos diarios	Aislac 20° 40 A602/ 24 Consta	lo 1415 SOL Te ante durant	a Pnon AR Tecno nsión/Capa e el año g	cimut 0 n total 7 blogía e cidad 4 global 1	• .20 kWp rrada, Ge 8 V / 113 0.57 MWh	l 5 Ah n/año	
Resultados principa Producción del Sister Pérdida de carga	ales de la sim na Fact	ulación Energía Ener or de rend Fracció	rgía utilizada imiento (PR) in de tiempo	11393 9672 66.9 % 9.0 %	kWh/añd kWh/año Ex 6 F	roduc. espe ‹ced. (inutili Fracción sol Energía fa	cífico 1 zado) 1 ar SF 9 Itante 9	582 kWh/ 009 kWh/ 1.5 % 03 kWh/a	kWp/año año ño	
Producciones normalizadas	(por kWp instalad	o): Potencia r	nominal 7.20 kWp	l	Factor	de rendimiento	(PR) y Frac	ción solar SI		
Tesis Puerto Pardo Teorico Final										
			ances y lesu							
	kWh/m ²	GIODEff kWh/m²	E Avail kWh	kWh	E Miss kWh	E User kWh	ELOad kWh	SolFrad		
Enero	166.7	143.0	813	9.4	119.2	778.9	898.1	0.867	-	
Febrero	143.1	130.2	728	0.4	142.3	668.9	811.2	0.825		
Marzo	163.7	159.7	899	9.1	68.7	829.5	898.1	0.924		
Abril	161.3	1/1.1	1025	167.5	58.6	810.6	869.2	0.933		
Junio	151.9	181.8	1094	134.8	0.0	869.2	869.2	1 000		
Julio	170.4	202.6	1289	299.4	0.0	898.1	898.1	1.000		
Agosto	165.2	181.3	1086	134.7	0.0	898.1	898.1	1.000		
Septiembre	156.2	156.9	879	8.3	59.6	809.6	869.2	0.931		
Octubre	164.4	153.2	879	65.5	101.3	796.9	898.1	0.887		
Noviembre	164.2	143.3	803	8.9	156.3	712.9	869.2	0.820		
Diciembre	158.5	135.6	780	28.7	197.3	700.9	898.1	0.780	_	
Año	1927.7	1945.1	11393	1008.9	903.2	9671.8	10575.0	0.915		
Leyendas: Glob Glob E Av EUn	Leyendas: GlobHor Irradiación global horizontal GlobEff Global efectivo, corr. para IAM y sombread E Avail Energía Solar Disponible EUnused Pérdida de energía no utilizada (batería pli						ss Energia faltante ser Energia suministrada al usuario vad Necesidad de energía del usuario (Carga) rrac Fracción solar (EUtilizada/ECarga)			
PVsyst Evaluation mode						Traducció	on sin garantía.	Sólo el texto ind	lés está garantizad	

ANEXO 5. INFORME PVSYST CASO REAL

PVSYST V6.12				Página 1/3
Sistem	na Aislado: Pará	metros de la simulació	n	
Proyecto : Proyecto Ais	lado at Puerto Parc	lo		
Lugar geográfico	Puerto Pardo	F	País Peru	
Ubicación Hora definido como	Latitud Hora Legal Albedo	12.5°S Long Huso hor. UT-4 Alt 0.20	itud 68.5°W titud 178 m	
Datos climatológicos:	Puerto Pardo	Síntesis - Meteonorm 6.1		
Variante de simulación : TEsi	s Puerto Pardo_Rea	al_Final		
	Fecha de simulación	30/08/15 16h50		
Parámetros de la simulación				
Orientación Plano Receptor	Inclinación	20° Aci	mut 0°	
Modelos empleados	Transposición	Perez Dif	fuso Measur	ed
Características generador FV				
Módulo FV	Si-mono Modelo	TM-M572180		
Número de módulos FV N° total de módulos FV Potencia global generador Caract. funcionamiento del generado Superficie total	Fabricante En serie N° módulos Nominal (STC) or (50°C) V mpp Superficie módulos	Tamesol 2 módulos En para 40 Pnom unit 7.20 kWp En cond. funcio 64 V Ir 51.1 m² Ir	ilelo 20 cade aria 180 Wp ona. 6.37 kW npp 100 A	enas √ ∕p (50°C)
Factores de pérdida Generador F\	,			
Pérdidas por polvo y suciedad del g Factor de pérdidas térmicas	enerador Uc (const)	Fracción de Pérdi 20.0 W/m²K Uv (vie	idas 3.0 % nto) 0.0 W/n	n²K / m/s
Pérdida Óhmica en el Cableado F	Res. global generador	9.7 mOhm Fracción de Pérdi	idas 1.3 % e	n STC
Pérdida Calidad Módulo Pérdidas Mismatch Módulos Efecto de incidencia, parametrizació	n ASHRAE IAM =	Fracción de Pérdi Fracción de Pérdi 1 - bo (1/cos i - 1) Parám	idas -0.8 % idas 1.0 % e . bo 0.05	n MPP
Parámetro del Sistema	Tipo de sistema	Sistema Aislado		
Batería	Modelo	A602/1415 SOLAR		
Características del banco de batería Regulador	Fabricante s Tensión N° de unidades Temperatura Modelo	Sonnenschein 48 V Capacidad Nom 24 en serie Fijo (20°C) MPPT 180(4x45)	iinal 1135 Al	ı
Convertidor Efic	Fabricante Tecnología iencias Máx, y FURO	Morningstar MPPT converter Coef. te 99.0/97.0 %	mp5.0 m∖	//°C/elem.
Umbrales de Regulación Baterías Comando o	Carga de Generador Auxiliar	56.6/50.4 V Desca 47.3/51.6 V	arga 45.6/50	.4 V
Necesidades de los usuarios :Cor	us. domésticos diarios media	Constante durante el año 18.1 kWh/Día		
PVsyst Evaluation mode		Traducción s	sin garantía, Sólo el tex	to inglés está garantizado.

PVSYST V6.12									Página 2/3	
Provecto :	Provecto	Sistema A Aislado at	islado: R Puerto Par	tesulta do	dos prin	cipales		·		
Variante de simulación : TEsis Puerto Pardo_Real_Final										
Parámetros princi Orientación Campo Generador FV Batería banco de baterías Necesidades de lo Resultados princi Pardunción del Sia	ipales del sis os FV s usuarios pales de la s	stema Tipo N° Cons. domés simulación	o de sistema inclinación de módulos Modelo de unidades sticos diarios	Aislac 20° 40 A602/ 24 Consta	lo 1415 SOL/ Te ante durant	ac Pnom AR Tecno nsión/Capac e el año g	total 7 logía e bidad 4 lobal 6	o 7.20 kWp orrada, Ge 18 V / 113: 6600 kWh/	l 5 Ah año	
Froducción del Sis	lema	Energia	rgía utilizada	6600 H	Wh/año E>	ced. (inutiliz	ado) 4	953 kWh/	año	
Pérdida de carga	F	actor de rend Fracció	imiento (PR) ón de tiempo	45.7 % 0.0 %	5 F	racción sola Energía fal	ante 0	00.0 %) kWh/año		
Producciones normalizad	das (por kWp inst	alado): Potencia r	nominal 7.20 kWp		Factor	de rendimiento	(PR) y Frac	ción solar SI	:	
The second secon	The field of the subscription of the subscr									
		Ba	lances y resu	iltados pi	incipales					
	GlobHo	r GlobEff	E Avail	EUnused	E Miss	E User	E Load	SolFrad	;	
	kWh/m²	KWh/m*	KVVh	KW/h	KWh	KVVh	K∜¥h	4.000	_	
Enero	140.7	140.0	801	201.0	0.000	506.2	506.9	1.000		
Marro	163.7	159.7	1029	395.2	0.000	560.6	560.6	1.000		
Abril	161.3	171.1	1085	476.5	0.000	542.5	542.5	1 000		
Mayo	162.2	186.3	1195	547.0	0.000	560.6	560.6	1.000		
Junio	151.9	181.8	1208	584.8	0.000	542.5	542.5	1.000		
Julio	170.4	202.6	1371	722.9	0.000	560.6	560.6	1.000		
Agosto	165.2	181.3	1174	529.2	0.000	560.6	560.6	1.000		
Septiembre	156.2	156.9	1009	398.4	0.000	542.5	542.5	1.000		
Octubre	164.4	153.2	941	321.0	0.000	560.6	560.6	1.000		
Noviembre	164.2	143.3	888	271.6	0.000	542.5	542.5	1.000		
Diciembre	158.5	135.6	847	228.4	0.000	560.6	560.6	1.000		
Año	1927.7	1945.1	12434	4952.6	0.000	6600.1	6600.1	1.000		
Leyendas: G G E	SlobHor Irra SlobEff Glo Avail En- Unused Pé	idiación global horiz ibal efectivo, corr. p ergía Solar Disponil rdida de energía no	zontal para IAM y sombre ble • utilizada (batería	ados plena)	E Miss E User E Load SolFrac	Energía faltante Energía suminis Necesidad de e Fracción solar (trada al usu nergía del u EUtilizada/E	uario Isuario (Carga ECarga))	
PVsyst Evaluation mode						Traducción	sin garantía.	Sólo el texto ind	lés está garantizado	

ANEXO 6. CALCULO DE TIEMPO DE REPOSICIÓN DE BATERÍAS

Las baterías A602/1415 SOLAR tienen el siguiente comportamiento del ciclado en función de la Profundidad de descarga a una temperatura ambiental promedio de 20°C.

Figura Anexo 3-1. Curva Profundidad de descarga Vs Número de Ciclos. (Fuente: Exide-Sonnenschein).

A una temperatura distinta de la nominal, el ciclado de la batería tiene el siguiente comportamiento, la cual indica que se reduce el número de ciclos al aumentar la temperatura del ambiente.

Figura Anexo 3-2. Curva % Número de Ciclos Vs Temperatura.

(Fuente: Exide-Sonnenschein).

Para el Caso Teórico, de la Tabla 5 obtenemos que la energía proporcionada al usuario es de aproximadamente 26.5 kWh/día y de la figura 4.4 se obtiene que el 58% de esta carga es proporcionada por el banco de baterías.

Con estos datos obtenemos la siguiente información

Demanda Suministrada	58% Batería	Capacidad Extraída	%
(kWh/dia)	(kWh/día)	(Ah)	Ciclado
26.5	15.4	320.2	28%

Utilizando las gráficas de las baterías podemos aproximar lo siguiente:

Ciclos a 20° C	Ciclos a 27° C (Ciclos 20°C * 0.75)	Años a 27°C
5058.94	3794.20	10.39

Por lo que se puede concluir que la duración del banco de baterías para el caso teórico es de aproximadamente 10 años.

Para el Caso Real, de la Tabla 7 obtenemos que la energía proporcionada al usuario es de aproximadamente 18.0 kWh/día y de la figura 4.6 se obtiene que el 67.4% de esta carga es proporcionada por el banco de baterías.

Con estos datos obtenemos la siguiente información

Demanda Suministrada	58% Batería	Capacidad Extraída	%
(kWh/dia)	(kWh/día)	(Ah)	Ciclado
18.0	12.6	251.3	22%

Utilizando las gráficas de las baterías podemos aproximar lo siguiente:

Ciclos a 20° C	Ciclos a 27° C (Ciclos 20°C * 0.75)	Años a 27°C
6442.74	4832.05	13.24

Por lo que se puede concluir que la duración del banco de baterías para el caso teórico es de aproximadamente 13 años.