Universidad Nacional de Ingeniería

Facultad de Ingeniería Mecánica

TESIS

Aplicación de la metodología BIM para optimizar el diseño de las instalaciones eléctricas de centros educativos

Para obtener el título profesional en Ingeniería Mecánica Eléctrica

Elaborado por

Roberth Erick Diaz Ruiz

(i) <u>0009-0001-9907-6368</u>

Asesor

MSc. Ing. Jorge Vera Ermitaño

(D) 0000-0002-2887-1348

TOMO I DE I

LIMA – PERÚ

2023

Dedicatoria

A mis padres, quienes me han brindado su apoyo, amor y confianza durante toda mi vida.

Agradecimientos

En primer lugar, agradezco a la Universidad Nacional de Ingeniería, mi alma matar, por lo conocimientos adquiridos y su exigencia académica.

A mi asesor de tesis, el Msc. Ing. Jorge Vera Ermitaño, por su guía y enseñanzas valiosas.

A mi familia y amigos, por su constante motivación y comprensión, a todos aquellos que de una forma u otra han contribuido en mi formación académica y personal, gracias por ser parte de este logro.

Finalmente, dedico esta tesis a mí mismo, por nunca perder la motivación, el esfuerzo y la perseverancia en alcanzar mis metas y sueños.

Resumen

Para diseñar las instalaciones eléctricas de una nueva edificación se requiere del plano de planta o distribución y planos auxiliares, sin embargo, limitarse a esto hace del diseño impreciso y carente de comunicación con las otras disciplinas de la construcción, este llamado método tradicional presenta estas deficiencias que podrían solventarse aplicando la metodología BIM, es así que el propósito del presente trabajo consiste en analizar el proceso de diseño de las instalaciones eléctricas de centros educativos mediante metodología tradicional y BIM.

Primero se establecen los parámetros de diseño, que nos servirán para determinar la distribución de los componentes de nuestra instalación eléctrica como luminarias, tomacorrientes, alimentadores, tableros, etc. Esta distribución será el dato de entrada para diseñar las instalaciones eléctricas siguiendo la metodología tradicional y a la par la metodología BIM.

Al diseñar las mismas instalaciones eléctricas bajo estos enfoques distintos nos permitirá desarrollar un análisis comparativo en el cálculo de circuitos eléctricos, metrados e identificación de interferencias. Finalmente, se discuten los resultados obtenidos y se evalúan las ventajas y desventajas de las metodologías analizadas.

Palabras clave — metodología BIM, instalaciones eléctricas, metrado de instalaciones eléctricas, interferencia de instalaciones eléctricas.

Abstract

To design the electrical installations of a new building, the floor or distribution plan and auxiliary plans are required, however, limiting to this makes the design imprecise and lacking in communication with the other construction disciplines, this so-called traditional method presents these deficiencies that could be solved by applying the BIM methodology, so the purpose of this paper is to analyze the design process of electrical installations in educational centers using traditional and BIM methodology.

First, the design parameters are established, which will help us to determine the distribution of the components of our electrical installation such as lights, outlets, feeders, boards, etc. This distribution will be the input data to design the electrical installations following the traditional methodology and at the same time the BIM methodology.

By designing the same electrical installations under these different approaches, it will allow us to develop a comparative analysis in the calculation of electrical circuits, meters and interference identification. Finally, the results obtained are discussed and the advantages and disadvantages of the analyzed methodologies are evaluated.

Keywords — BIM methodology, electrical installations, measurement of electrical installations, interference of electrical installations.

Tabla de Contenido

	Pag.
Prologo	1
Abreviatura y siglas	3
Capítulo I. Introducción	5
1.1 Generalidades	5
1.2 Descripción del problema de investigación	6
1.2.1 Planteamiento de la realidad problemática	6
1.2.2 Formulación del problema	7
1.2.2.1 Problema general	7
1.2.2.2 Problemas específicos	7
1.3 Objetivos del estudio	8
1.3.1 Objetivo general	8
1.3.2 Objetivos específicos	8
1.4 Antecedentes investigativos	8
1.4.1 Antecedentes Internacionales	8
1.4.2 Antecedentes Nacionales	13
Capítulo II. Marcos teórico y conceptual	18
2.1 Marco teórico	18
2.1.1 Componentes de una instalación eléctrica	18
2.1.1.1 Alimentadores y conductores	18
2.1.1.2 Elementos de montaje	19
2.1.1.3 Tablero	22
2.1.2 Protección en instalaciones eléctricas	23
2.1.2.1 Protección contra sobre corriente y cortocircuito	23
2.1.2.2 Protección contra electrocución	25
2.1.3 Tipos de circuitos y cálculo de carga	26

2.1.3.1	Circuitos de Iluminación	.26
2.1.3.2	Circuitos de tomacorriente.	.27
2.1.3.3	Determinación de la máxima demanda	27
2.1.4 Lu	minotecnia	.28
2.1.4.1	Magnitudes y unidades	.28
2.1.4.2	Método de Lumen	.28
2.1.5 Me	etodología BIM	.30
2.1.5.1	Definición BIM	.30
2.1.5.2	Hitos históricos	.31
2.1.5.3	Niveles BIM	.32
2.2 Mar	co conceptual	.32
Capítulo	III. Hipótesis y operacionalización de las variables	40
3.1 Hipć	otesis general	40
3.2 Hipć	otesis específicas	40
3.3 Ope	racionalización de las variables	41
Capítulo	IV. Metodología de la investigación	42
4.1 Tipo	y diseño de la investigación	42
4.2 Unio	lad de análisis	.42
4.3 Matı	riz de consistencia	44
Capítulo	V. Desarrollo de la tesis	45
5.1 Pará	ámetros de diseño	45
5.1.1 Ub	icación geográfica del Centro Educativo	45
5.1.2 Inf	raestructura	45
5.2 Dise	ño luminotécnico	47
5.2.1 An	nbientes interiores	47
5.2.2 An	nbientes exteriores	54
5.2.3 De	terminación del Número de Circuitos	56
5.3 Dete	erminación y ubicación de los circuitos de tomacorriente y fuerza	58

5.4 Distribución de los circuitos y tableros	60
5.5 Metodología Tradicional	61
5.5.1 Diseño de circuitos derivados	61
5.5.1.1 Cálculo de conductores	61
5.5.1.2 Cálculo de protecciones	68
5.5.2 Diseño de circuito alimentador	71
5.5.2.1 Determinación de la máxima de manda	72
5.5.2.2 Cálculo de conductores	73
5.5.2.3 Cálculo de protecciones	77
5.5.3 Cálculo de puesta a tierra	79
5.5.4 Metrados	80
5.6 Metodología BIM	84
5.6.1 Configuración general y paso previos	84
5.6.1.1 Vincular Revit	85
5.6.1.2 Modelamiento Eléctrico	85
5.6.2 Cálculo de circuitos eléctricos	92
5.6.2.1 Modelado de circuitos eléctricos	94
5.6.3 Metrado BIM	98
5.6.4 Detección de interferencias mediante Autodesk Navisworks Manage	101
Capítulo VI. Análisis y discusión de resultados	106
6.1 Análisis de los resultados	106
6.1.1 Análisis en el diseño de circuitos derivados y alimentadores	106
6.1.2 Análisis de metrado	109
6.1.2.1 Comparación de metrados	109
6.1.2.2 Comparación de presupuestos	111
6.1.3 Análisis de detección de interferencias	112
6.2 Contrastación de la hipótesis	112
Conclusiones	115

Recomendaciones	117
Referencias bibliográficas	118
Apéndice	121
Anexos	138

Lista de Tablas

		Pag.
Tabla 1	Conteo de proyectos por número de pisos	5
Tabla 2 I	Dimensionamiento de los conductores automático	12
Tabla 3	Variación de Presupuesto Entre Ambas Metodologías Según Capítulos	13
Tabla 4 I	Metrados Obtenidos de la Metodología BIM y Metodología Tradicional	14
Tabla 5	Interferencias detectadas a través de la metodología BIM	16
Tabla 6	Costo por incompatibilidad	17
Tabla 7	Color de los Conductores	19
Tabla 8	Número de conductores en cajas	21
Tabla 9	Símbolos eléctricos	35
Tabla 10	Matriz de Operacionalización de Variables	41
Tabla 11	Matriz de consistencia lógica	44
Tabla 12	Edificaciones de centro educativo	46
Tabla 13	Extracto de característica de Luminaria	48
Tabla 14	Calculo y dimensionado luminotécnico del Bloque 1	51
Tabla 15	Calculo y dimensionado luminotécnico del Bloque 2	51
Tabla 16	Calculo y dimensionado luminotécnico del Bloque 3	52
Tabla 17	Calculo y dimensionado luminotécnico del Bloque 4	52
Tabla 18	Calculo y dimensionado luminotécnico del Bloque 5	53
Tabla 19	Extracto de característica de Luminaria	54
Tabla 20	Determinación del número de circuitos de iluminación	57
Tabla 21	Distribución de tomacorrientes según bloque	60
Tabla 22	Datos eléctricos conductor NH-80	63
Tabla 23	Cálculo de conductores TD1 - Bloque 1	65
Tabla 24	Cálculo de conductores TD2 - Bloque 2	65
Tabla 25	Cálculo de conductores TD3 - Bloque 3	66
Tabla 26	Cálculo de conductores TD4 - Bloque 5	66

Tabla 27	Cálculo de conductores TD5 - Bloque 4	67
Tabla 28	Cálculo de conductores TD-AL	67
Tabla 29	Datos eléctricos conductor NH-80	69
Tabla 30	Cálculo de protecciones TD1 - Bloque 1	69
Tabla 31	Cálculo de protecciones TD2 - Bloque 2	70
Tabla 32	Cálculo de protecciones TD3 - Bloque 3	70
Tabla 33	Cálculo de protecciones TD4 - Bloque 5	70
Tabla 34	Cálculo de protecciones TD5 - Bloque 4	71
Tabla 35	Cálculo de protecciones TD-AL	71
Tabla 36	Determinación de carga y demanda tableros de distribución	72
Tabla 37	Determinación de carga y demanda tablero general	72
Tabla 38	Cálculo de conductores TG	76
Tabla 39	Cálculo de conductores de acometida	76
Tabla 40	Datos eléctricos conductor N2XOH	78
Tabla 41	Cálculo de protecciones TG	78
Tabla 42	Cálculo de protecciones acometida	79
Tabla 43	Planilla de metrado de instalaciones eléctricas	83
Tabla 44	Cálculo de conductores según circuito	97
Tabla 45	Cálculo de conductores TG	98
Tabla 46	Planilla Revit de metrado de instalaciones eléctricas	100
Tabla 47	Diferencia en la caída de tensión calculada mediante la metodología tradic	cional
y metodo	logía BIM	107
Tabla 48	Partidas con metrados igual aplicando la metodología tradicional y BIM	109
Tabla 49	Comparación de metrados de alimentadores eléctricos	109
Tabla 50	Comparación de metrados de tuberías de PVC	110
Tabla 51	Comparación de presupuesto mediante metodología BIM vs Tradicional	111
Tabla 52	Interferencias identificadas con el software Autodesk Navisworks	112
Tabla 53	Subtableros de distribución	127

Tabla 54	Tablero general1	28
Tabla 55	Metrado de salidas para alumbrado, tomacorrientes y fuerza1	29
Tabla 56	Metrado de salidas para alumbrado, tomacorrientes y fuerza1	29
Tabla 57	Metrado de salidas especiales1	29
Tabla 58	Metrado de tuberías de PVC1	30
Tabla 59	Metrado de artefactos1	30
Tabla 60	Metrado de accesorios1	30
Tabla 61	Metrado de tableros1	31
Tabla 62	Metrado de sistemas de conductos1	31
Tabla 63	Factores de corrección para temperatura ambiente diferente a 30°c a s	ser
aplicados	a la capacidad de corriente nominal1	50
Tabla 64	Factores de reducción para grupos de más de un circuito o cable multipolar a s	ser
usados co	on las capacidades de corriente nominales1	51
Tabla 65	Factores de corrección para temperatura ambiente distinta de 30 °C para cab	les
al aire y d	listinta a 20 °C para cables en ductos enterrados1	52
Tabla 66	Factores de corrección para cables embutidos en ductos para resistividad	les
térmicas (de suelo distintas de 2,5 K.m/W1	52
Tabla 67	Factores de reducción para más de un circuito en ductos enterrados1	53

Lista de Figuras

Pág
Figura 1 Nivel de adopción BIM de acuerdo con el tamaño de empresa constructora 6
Figura 2 Vista 3D de los elementos eléctricos.
Figura 3 Tendido de tubos PVC empotrados10
Figura 4 Gráfica de resultados obtenidos referente al presupuesto entre ambas
metodologias1
Figura 5 Simbología de fusible24
Figura 6 Curvas de disparo de protecciones termomagnéticas
Figura 7 Niveles de madurez BIM
Figura 8 Máximas Caídas de Tensión Permitidas en un Circuito
Figura 9 Curva de demanda
Figura 10 Diferencia entre el modelo BIM y el modelo MEP
Figura 11 Ubicación del centro educativo49
Figura 12 Infraestructura del centro educativo por bloques4
Figura 13 Altura referencial en metros de las salidas eléctricas80
Figura 14 Plano de planta8
Figura 15 Longitudes referenciales del metrado82
Figura 16 Modelo BIM de arquitectura del centro educativo de nivel inicial85
Figura 17 Familia de la línea eléctrica PVC del proveedor Pavco Wavin86
Figura 18 Modelo BIM de tomacorriente altura 0.48
Figura 19 Modelo BIM del circuito eléctrico de tomacorriente del Bloque 5 del centro
educativo8
Figura 20 Familia BIM de interruptores
Figura 21 Modelo BIM y características eléctricas de la luminaria Josfel RAS 3x36W88
Figura 22 Modelo BIM y características eléctricas de la luminaria Josfel RAS 4x18W89
Figure 23 Modelo RIM y características eléctricas de la luminaria. Josfel RSP 2X26W 89

Figura 24 Modelo BIM y características eléctricas de la luminaria Josfel MER H 1X150W
90
Figura 25 Modelo BIM del circuito eléctrico de iluminación del Bloque 5 del centro educativo
90
Figura 26 Modelo BIM y características eléctricas del suministro eléctrico tipo estrella
380/220 V91
Figura 27 Modelo BIM del tablero de distribución91
Figura 28 Características eléctricas del tablero de distribución monofásico 220 V(izquierda)
y el tablero de distribución trifásico 380/220 V (derecha)92
Figura 29 Modelo BIM del alimentador y tablero eléctrico del Bloque 5 del centro educativo
92
Figura 30 Pantalla de configuración de cableado en Revit93
Figura 31 Pantalla de configuración de tamaño de cable NH-80 en Revit94
Figura 32 Circuito eléctrico de iluminación del tablero TD4 en el bloque 595
Figura 33 Comando para crear tablas de planificación96
Figura 34 Selección de tabla para categoría circuitos eléctricos96
Figura 35 Tabla de planificación del circuito del tablero TD4 en el bloque 597
Figura 36 Selección de tabla para categoría tubos99
Figura 37 Tabla de planificación de tubos
Figura 38 Interferencia entre la disciplina sanitaria (caja de registro) y eléctrica
(alimentador)
Figura 39 Interferencias Instalaciones eléctricas y arquitectura103
Figura 40 Interferencias Instalaciones eléctricas y sanitaria
Figura 41 Interferencias entre Instalaciones eléctricas
Figura 42 Sección de conductor seleccionado mediante metodología BIM y tradicional
107
Figura 43 Diferencia en la caída de tensión calculada mediante la metodología tradicional
y metodología BIM108

igura 44 Medición con metrado tradicional	110
igura 45 Medición con metrado BIM	111
igura 46 Comparación del proceso tradicional y BIM para el dime	nsionado de
onductores	113
igura 47 Modelo BIM de arquitectura	122
igura 48 Modelo BIM de instalaciones eléctricas	123
igura 49 Interferencias entre arquitectura y eléctricas 1	132
igura 50 Interferencias entre arquitectura y eléctricas 2	132
igura 51 Interferencias entre sanitarias y eléctricas 1	133
igura 52 Interferencias entre sanitarias y eléctricas 2	133
igura 53 Interferencias entre sanitarias y eléctricas 3	134
igura 54 Interferencias entre eléctricas y eléctricas 1	134
igura 55 Interferencias entre eléctricas y eléctricas2	135
igura 56 Interferencias entre eléctricas y eléctricas 3	135
igura 57 Interferencias entre eléctricas y eléctricas 4	136
igura 58 Interferencias entre eléctricas y eléctricas 5	136
igura 59 Interferencias entre eléctricas y eléctricas 6	137

Prologo

El presente proyecto de tesis tiene como objetivo principal aplicar la metodología BIM para optimizar el diseño de las instalaciones eléctricas de centros educativos.

El CAPÍTULO I proporciona una comprensión general del tema tratado. Se aborda la problemática existente, se establecen los objetivos a alcanzar y se exponen los fundamentos y criterios considerados en la elaboración de este proyecto de investigación.

El CAPÍTULO II reúne el conocimiento técnico y de ingeniería relevante para la elaboración del proyecto. Se definen los componentes clave de una instalación eléctrica, se detallan las protecciones eléctricas, se exploran los distintos tipos de circuitos y se aborda el cálculo de cargas y la luminotecnia. Además, se amplía la definición y comprensión de la metodología tradicional y BIM, resaltando sus características y beneficios respectivos.

El CAPÍTULO III presenta la hipótesis general del proyecto, así como las hipótesis específicas que serán evaluadas durante el estudio. También se presenta de manera tabulada la operacionalización de las variables dependientes e independientes, con el fin de establecer una base sólida para el análisis posterior.

El CAPÍTULO IV describe el tipo y diseño de la investigación, así como la unidad de análisis seleccionada para el estudio. Además, se presenta la operacionalización de las variables, detallando la forma en que serán medidas y evaluadas.

En el CAPÍTULO V se establecen los parámetros de diseño necesarios y se determina la distribución de los componentes eléctricos, lo cual servirá como punto de partida para aplicar tanto la metodología tradicional como el enfoque BIM en el diseño de las instalaciones eléctricas.

El CAPÍTULO VI se dedica al análisis exhaustivo de los resultados obtenidos. Se realiza una comparación detallada de los cálculos de conductores, se analiza el metrado realizado y se examina la detección de posibles interferencias entre los diferentes sistemas.

Estos análisis comparativos permitirán evaluar la eficacia y las diferencias significativas entre los enfoques tradicional y BIM.

Finalmente, se presentan las conclusiones derivadas de la investigación realizada y se proponen recomendaciones pertinentes, con el objetivo de mejorar los procesos de diseño de las instalaciones eléctricas en centros educativos, fomentando la adopción de enfoques más avanzados y eficientes en el ámbito de la ingeniería y la construcción.

Abreviatura y siglas

Ampacidad: La capacidad de conducción de corriente eléctrica de un conductor o cable, expresada en amperios, sin que se sobrecaliente o dañe.

Caída de tensión: La disminución del voltaje que ocurre en un sistema eléctrico debido a la resistencia y reactancia de los conductores y componentes.

Código Nacional de Electricidad: Conjunto de normas y regulaciones que establecen los requisitos y estándares para el diseño, instalación y uso seguro de sistemas eléctricos.

Guía de diseño de espacios educativos: Documento que proporciona pautas y recomendaciones para la planificación y diseño de instalaciones educativas, considerando aspectos funcionales y de seguridad.

Instalación eléctrica: Conjunto de elementos y circuitos eléctricos que suministran energía eléctrica a un edificio, vivienda o lugar específico.

Interferencia: actividades o elementos de diferentes disciplinas que se entrelazan o superponen de manera no planificada, lo que puede causar problemas, retrasos o conflictos durante el proceso de construcción.

Metodología BIM: Building Information Modeling (Modelado de Información para la Construcción). Es un enfoque de trabajo colaborativo que utiliza modelos digitales 3D para la planificación, diseño, construcción y operación de proyectos.

Metodología tradicional: En el contexto de la construcción y diseño de instalaciones eléctricas, se refiere al enfoque convencional que hace uso, por ejemplo, de planos 2D, metrados manuales y con ausencia de coordinaciones entre disciplinas.

Metrado: El proceso de calcular y medir las cantidades y dimensiones de los materiales necesarios para llevar a cabo una construcción o proyecto.

Ministerio de Economía y Finanzas: Entidad gubernamental encargada de la gestión económica y financiera del país, incluyendo la asignación de presupuestos para proyectos y obras públicas.

Osinergmin: Organismo Supervisor de la Inversión en Energía y Minería, entidad reguladora en Perú encargada de supervisar y regular el sector eléctrico y de hidrocarburos.

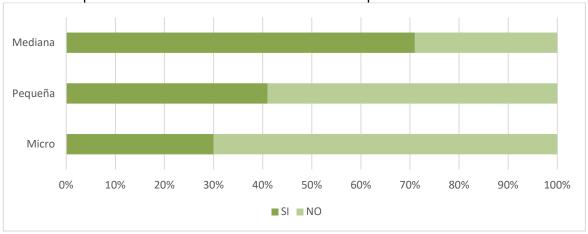
Presupuesto: Estimación detallada de los costos y gastos necesarios para llevar a cabo un proyecto, incluyendo los costos de materiales, mano de obra y otros recursos.

Reglamento Nacional de Edificaciones: Conjunto de normas y regulaciones que establecen los requisitos técnicos y de seguridad para la construcción de edificaciones en un el Perú.

Capítulo I. Introducción

1.1 Generalidades

En el contexto actual, el "Segundo estudio de adopción BIM en proyectos de edificación en Lima y Callao" (2020) revela que 39.1% de los proyectos de edificación urbanos adopto la metodología BIM, dentro de estos, los proyectos de viviendas masivas, hoteles y oficinas revela la adopción más alta a esta metodología (entre un 80%-100%), en segundo lugar los centros educativos y centros comerciales (entre 40% y 70%), el nivel de adopción BIM más bajo se presenta en las edificaciones multifamiliares y otros (comisarías, restaurantes, entre otros) con valores entre el 15% y 30%.


Tabla 1Conteo de provectos por número de pisos

Uso	Número de Pisos				
000	4 o menos	5 a 7	8 a 11	12 a 20	21 a más
Centro Comercial	6	1	0	0	0
Centro Educativo	3	0	0	0	0
Edificación Multifamiliar	17	76	44	49	9
Hotel	0	0	0	3	0
Oficina	1	0	0	5	0
Otro	3	2	1	0	0
Vivienda masiva	0	0	1	1	0

Fuente: (Departamento de Ingeniería PUCP, 2021)

El mismo estudio aplicado al nivel de adopción de la metodología BIM de los profesionales en Lima y Callao revela que las empresas pequeñas de no más de 10 trabajadores son los que menos aplican esta metodología con 30% de adopción, seguido por la pequeña empresa de 11 a 49 trabajadores con 41% y finalmente las medianas empresas con más de 50 a 250 trabajadores logran el 71%.

Nivel de adopción BIM de acuerdo con el tamaño de empresa constructora

Fuente: (Departamento de Ingeniería PUCP, 2021)

Figura 1

Así se muestra que Lima cuenta con profesionales capacitados para la aplicación de la metodología BIM, con el factor técnico necesario para ser empleado a lo largo y ancho de nuestra región y el país, pero que aún no superan las limitaciones, que supone implementar esta tecnología.

1.2 Descripción del problema de investigación

1.2.1 Planteamiento de la realidad problemática

Durante la etapa de diseño de una nueva edificación, se definen los diferentes planos de construcción como es: plano de cimentación, plano estructural, plano arquitectónico, plano de distribución, plano hidráulico entre otros. Tradicionalmente, es el plano de distribución o de planta, llevado al software Auto-CAD, el empleado para el diseño de las instalaciones eléctricas, en este plano se ubican los diferentes componentes de la instalación eléctrica, como son los tableros, luminarias, tomacorrientes, etc., sin embargo, esta no deja de ser una distribución horizontal, que en el mejor de los casos es representada tridimensionalmente con fines ilustrativos o comerciales. (condumex, 2007)

Aunque ampliamente utilizada, la metodología empleada para el diseño de las instalaciones eléctricas anteriormente descrita no deja de tener deficiencias, al ser el diseño bidimensional y con ausencia de comunicación con otras áreas de la construcción, el resultado es una aproximación en los cálculos y diseños que puede generar más

adelante retrasos, replanteos y pérdida económica para el proyecto. (Bartosz Jankowskia, 2023)

Prueba de esto, son los problemas de ejecución de obras públicas, ampliando plazos y con obras paralizas, resultado de expedientes técnicos deficientes, así la Contraloría General de la Republica muestra que, para el segundo trimestre del 2022, existen 2346 obras publicas paralizadas con un costo aproximado de 29 mil millones de soles.

En este contexto y cuestionando la efectividad de la metodología tradicional con sus numerosas deficiencias, obras públicas como: "Creación del servicio de educación inicial escolarizada en la I.E.I N° 2255 en el barrio 6 B del sector Alto Porvenir – distrito el Porvenir, provincia de Trujillo – región La Libertad", podrían verse afectadas.

Así, a través del proceso de diseño de las instalaciones eléctricas de este centro educativo nos planteamos: ¿En qué medida la aplicación de la metodología BIM optimiza el diseño de las instalaciones eléctricas de centros educativos?, como un modo de cuantificar las ventajas a nivel técnico que presenta esta moderna metodología frente a la metodología tradicional y que se pierden en este proyecto, al igual que se pierden en otros miles de proyectos de construcción que se ejecutan actualmente en nuestro país.

1.2.2 Formulación del problema

1.2.2.1 Problema general

¿En qué medida la aplicación de la metodología BIM optimiza el diseño de las instalaciones eléctricas de centros educativos?

1.2.2.2 Problemas específicos

- a) ¿En qué medida la aplicación de la metodología BIM optimiza el proceso de dimensionamiento de los conductores eléctricos de las instalaciones eléctricas de centros educativos bajo los estándares normativos del CNE-Utilización?
- b) ¿En qué medida la aplicación de la metodología BIM optimiza el costeo de las instalaciones eléctricas de centros educativos?

c) ¿En qué medida la aplicación de la metodología BIM optimiza la detección de interferencias de las instalaciones eléctricas de centros educativos?

1.3 Objetivos del estudio

1.3.1 Objetivo general

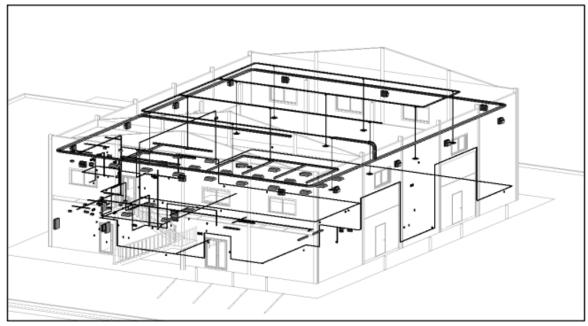
Aplicar la metodología BIM para optimizar el diseño de las instalaciones eléctricas de centros educativos.

1.3.2 Objetivos específicos

- a) Aplicar la metodología BIM para optimizar el proceso de dimensionamiento de los conductores eléctricos de las instalaciones de las eléctricas de centros educativos bajo los estándares normativos del CNE-Utilización.
- b) Aplicar la metodología BIM para optimizar el costeo de las instalaciones eléctricas de centros educativos.
- c) Aplicar la metodología BIM para optimizar la detección de interferencias de las instalaciones eléctricas de centros educativos

1.4 Antecedentes investigativos

Existen diversos estudios sobre el efecto de la aplicación de la metodología BIM al proceso de diseño de las instalaciones eléctricas, así tenemos:

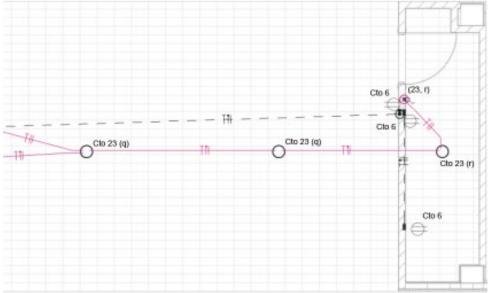

1.4.1 Antecedentes Internacionales

Fernando Gómez Lucena (2020), en su trabajo de fin de máster titulado "Aplicación de la tecnología BIM para el cálculo y diseño de instalaciones en una nave industrial" realizo el diseño de las diversas áreas para la instalación de saneamiento, abastecimiento, ventilación, alumbrado y redes en baja tensión, en esta última destaca el uso de la metodología BIM para el cálculo de la longitud de conductores en el proceso de metrado e interferencias, así concluye:

...la metodología BIM está en fase de implantación, cambiando los métodos de trabajo llevados a cabo tradicionalmente. Es una ventaja notable obtener en un mismo modelo una gran cantidad de información en cuanto a planos, mediciones, cálculos, etc., que permitan trabajar con facilidad en los diferentes ámbitos del

proyecto. Cada elemento del modelo contiene información propia que permite relacionarlo con el resto, una novedad en comparación con la utilización de los softwares 2D tradicionales. (Fernando Gómez Lucena, 2020, p.119)

Figura 2
Vista 3D de los elementos eléctricos



Fuente: (Lucena, 2020)

Jorge Ernesto Vega Suárez (2020), en su "Diseño de instalaciones eléctricas usando metodología BIM y software Revit" logro el diseño de las instalaciones eléctricas con una demanda de 16.8 kVA, un tablero y 17 circuitos ramales para cargas pequeñas, estufa, iluminación y fuerza calculando de forma semiautomática la longitud de los conductores y los tramos de canalización con tubos Conduit de tipo y diámetro comercial.

Figura 3

Tendido de tubos PVC empotrados.

Fuente: (Suárez, 2020)

El software Revit integra reglas para la optimización con los parámetros y normas que se le define. Este aporte no es solo frente al diseño sino a la cuantificación de materiales y elaboración de memorias de diseño eléctrico, ya que se genera de forma automática los cálculos necesarios de conductores, regulación de tensión, distribución de circuitos, equilibrio de cargas, entre otros. Esto hace realmente evidente la mejoría de la calidad del diseño realizado frente a la metodología tradicional de diseño, obteniendo cuantificación y tablas de planificación de cantidades de obra. (Jorge Ernesto Vega Suárez, 2020, p.19)

Chen Nan (2016), en su artículo "Application of BIM in Building Electrical Design" realiza un análisis profundo en el proceso de diseño eléctrico empleando la metodología BIM y la metodología tradicional, en esta destaca que:

La característica de la tecnología BIM es hacer que el diseño sea fino, la visualización y mejora en la capacidad de cooperación entre profesionales, reduciendo la aparición de conflictos de diseño y otros problemas, y la detección integral de colisiones en la tubería es un punto brillante en la aplicación de la

tecnología BIM (...) así pues, el potencial de aplicación del diseño eléctrico de edificios basado en la tecnología BIM tendrá un gran impacto en el trabajo de diseño eléctrico tradicional. (Chen Nan, 2016, p. 761)

Sin embargo, el autor también señala que aún existen algunas deficiencias al aplicar esta metodología, como son:

- El software BIM aún no ha formado un estándar unificado para cumplir con los estándares de diseño, el nivel de localización aún debe mejorarse.
- El contenido de la biblioteca no es perfecto y debe agregarse de acuerdo con las necesidades reales.
- La compatibilidad de los datos BIM y otro software de análisis se pueden optimizar.

Juan Hidalgo Lebrato (2016), en su trabajo de fin de grado "Análisis de aplicación de la metodología BIM al modelado y cálculo de instalaciones eléctricas" logra realizar el diseño eléctrico aplicando la metodología BIM y la metodología tradicional para su posterior comparación, siguiendo la metodología BIM, el autor emplea el software Revit MEP siendo capaz de realizar el estudio luminotécnico y el calcular de manera automática lo conductores.

Tabla 2Dimensionamiento de los conductores automático

Α	В	С	D	E	F	G	Н	1
Panel	Nombre de carga	Longitud	Carga verdadera	Corriente verdadera	Tipo de cable	Caída de voltaje	Potencia nominal	Tamaño de cable
CG	L1	60 m	1014 W	4.41 A	XHHW	1.354 V	20 A	1-#8, 1-#8, 1-#12
CG	L2	64 m	858 W	3.73 A	XHHW	1.230 V	20 A	1-#8, 1-#8, 1-#12
CG	L3	71 m	858 W	3.73 A	XHHW	1.349 V	20 A	1-#8, 1-#8, 1-#12
CG	L4	77 m	858 W	3.73 A	XHHW	1.467 V	20 A	1-#8, 1-#8, 1-#12
CG	L5	82 m	858 W	3.73 A	XHHW	1.563 V	20 A	1-#8, 1-#8, 1-#12
CG	E1	113 m	11 W	0.05 A	XHHW	0.027 V	20 A	1-#8, 1-#8, 1-#12
CG	E2	52 m	2 W	0.01 A	XHHW	0.002 V	20 A	1-#8, 1-#8, 1-#12
CG	TC1	22 m	800 W	3.48 A	XHHW	0.399 V	20 A	1-#8, 1-#8, 1-#12
CG	TCx3 2	43 m	1200 W	1.73 A	XHHW	0.333 V	20 A	3-#8, 1-#8, 1-#12
CG	TC4	11 m	800 W	3.48 A	XHHW	0.196 V	20 A	1-#8, 1-#8, 1-#12
CG	TCX3 4	42 m	1200 W	1.73 A	XHHW	0.322 V	20 A	3-#8, 1-#8, 1-#12
CG	TALADRO COLUMNA	17 m	1500 W	2.17 A	XHHW	0.167 V	20 A	3-#8, 1-#8, 1-#12
CG	FRESADORA	22 m	2200 W	3.18 A	XHHW	0.323 V	20 A	3-#8, 1-#8, 1-#12
CG	RECTIFICADORA PLANA	28 m	22000 W	31.75 A	XHHW	4.031 V	20 A	3-#8, 1-#8, 1-#12
CG	TORNO	34 m	7500 W	10.83 A	XHHW	1.692 V	20 A	3-#8, 1-#8, 1-#12
CG	CENTRO DE MECANIZADO	42 m	33000 W	47.63 A	XHHW	9.330 V	20 A	3-#8, 1-#8, 1-#12
CG	RECTIFICADORA CILÍNDRICA	36 m	7500 W	10.83 A	XHHW	1.809 V	20 A	3-#8, 1-#8, 1-#12
CG	CNC	31 m	18500 W	26.7 A	XHHW	3.818 V	20 A	3-#8, 1-#8, 1-#12
CG	SIERRA DE CINTA	26 m	2000 W	2.89 A	XHHW	0.350 V	20 A	3-#8, 1-#8, 1-#12
CG	CS3	38 m	10767 W	15.54 A	XHHW	3.313 V	20 A	3-#8, 1-#8, 1-#12
CG	CS4	18 m	2241 W	3.23 A	XHHW	0.332 V	20 A	3-#8, 1-#8, 1-#12
CG	CS1	30 m	37107 W	53.56 A	XHHW	9.092 V	20 A	3-#8, 1-#8, 1-#12
CG	CS2	27 m	12947 W	18.69 A	XHHW	2.548 V	20 A	3-#8, 1-#8, 1-#12
CG	P1	15 m	600 W	0.87 A	XHHW	0.059 V	20 A	3-#8, 1-#8, 1-#12
CG	TC3	44 m	800 W	3.48 A	XHHW	0.784 V	20 A	1-#8, 1-#8, 1-#12
CG	TC2	41 m	800 W	3.48 A	XHHW	0.736 V	20 A	1-#8, 1-#8, 1-#12
CG	TCx3 3	35 m	1200 W	1.73 A	XHHW	0.272 V	20 A	3-#8, 1-#8, 1-#12
CG	TCx3 1	23 m	1200 W	1.73 A	XHHW	0.178 V	20 A	3-#8, 1-#8, 1-#12

Fuente: (Lebrato, 2016)

Al término de su trabajo de fin de grado concluye:

El modelado en BIM permite reducir enormemente el tiempo empleado en la ejecución de la documentación del proyecto, permitiéndonos centrar nuestra atención en el diseño. Revit incluye herramientas de detección automática de colisiones, herramientas de análisis del diseño, y cálculos automatizados, lo que conlleva una reducción significativa del tiempo necesario para ejecutar un proyecto, y una mejor detección de los errores y defectos en el diseño. También permite una gestión de los elementos más sencilla e intuitiva. Todo esto unido al ritmo de desarrollo de aplicaciones, el respaldo institucional, y a la rápida expansión que está sufriendo, tanto en el ámbito académico, como en el profesional, nos lleva a afirmar que BIM va a suponer a corto plazo una revolución en el modelado de edificios e instalaciones. (Lebrato, 2016, p.193)

1.4.2 Antecedentes Nacionales

Helen Juliet Solórzano Churampi (2020), en su tesis "Análisis comparativo entre metodología BIM y método tradicional, implementando gestión de tiempo y costos en la institución educativa 30975", realiza un análisis comparativo de metrados aplicando la metodología BIM y tradicional.

Para la metodología tradicional, toma los resultados del expediente técnico del proyectado ya ejecutado "Ampliación de aulas, dirección, sala de cómputo, y mejoramiento de cerco perimétrico, losa multideportiva y área de circulación de I.E. 30975 – Uchuy Sihuis, distrito de Tintay Puncu –Tayacaja – Huancavelica", por otro lado, para obtener los resultados aplicando la metodología BIM, el autor realiza el modelado tridimensional y cálculo de costos y presupuesto.

El autor logra mostrar una reducción del presupuesto obtenido aplicando la metodología BIM respecto a la metodología tradicional del 5.03% del presupuesto de instalaciones eléctricas, que equivalen a S/. 1 293.99, y un 7.97% de reducción en el presupuesto total de obra, equivalente a S/. 8 385.01.

Tabla 3

Variación de Presupuesto Entre Ambas Metodologías Según Capítulos

ITEM	PARTIDA	PARCIAL CON METRADO METODOLOGIA BIM	PARCIAL CON METRADO METODOLOGIA TRADICIONAL	VARIACION EN COSTOS	VARIACION EN PORCENTAJE %
01	CONSTRUCCION DE INFRAESTRUCTURA EDUCATIVA	597,563.85	589,178.84	8,385.01	1.42%
01.01	ESTRUCTURAS	324,556.08	310,707.60	13.848.48	4.46%
01.02	ARQUITECTURA	243,506.15	,	- 6,542.60	-2.62%
01.03	INSTALACIONES ELECTRICAS	27,020.80	250,048.75		5.03%
01.04	INSTALACIONES SANITARIAS	2,480.82	25,726.81	1,293.99 - 214.86	-7.97%
01.04	INOTALAGIONES SANTANAS	2,400.02	2,695.68	- 214.00	-7.5770
Fuente	e: (Helen Juliet Solórzano Churamp	oi, 2020)			

Con esto concluye que:

Existe una variación significativa entre metodología BIM y método tradicional, implementando gestión de tiempo y costos en la institución educativa 30975, en comparación con la metodología tradicional. La metodología BIM nos da la ventaja en su etapa de diseño, al realizar el modelamiento virtual completo del proyecto genera datos más exactos en metrados y por ende un ahorro de dinero y tiempo.

Los Bach. Eryck Antonio Díaz Aroca y Aldair Fernando Ríos Manzanares (2022), en su trabajo de suficiencia profesional "Comparación metodología BIM y tradicional en elaboración de expediente técnico, caso: I.E.I n° 383 comunidad porvenir de Inayuga - distrito Napo - Maynas – Loreto, 2022", muestran el proceso de elaboración del expediente mencionado, usando las metodologías BIM y tradicional con el objetivo de encontrar ventajas y desventajas entre ambas metodologías, evaluando específicamente el parámetro costo.

A través de la elaboración de las partidas de obra en el software Revit (metodología BIM) y en el software S10 (metodología tradicional) se obtienen los metrados y por consiguiente el presupuesto de obra:

Tabla 4Metrados Obtenidos de la Metodología BIM y Metodología Tradicional

DESCRIPCION		AD	METRADO CON METODOLOGIA TRADICIONAL	METRADO CON METODOLOGIA BIM	VARIACION DE METRADOS
INSTALACIONES ELECTRICAS		T			•
TABLERO ELECTRICO		Т			
TABLERO DE DISTRIBUCION (05 Circuitos)	UND	Т	1.00	1.00	0
CONDUCTORES ELECTRICOS		Т			
CONDUCTOR DE CU TIPO NYY/1KV 3-1x50 + 1x35 mm2	M	Т	100.00	14.71	85.29
CONDUCTOR DE CU TIPO NYY/1KV 4-1x6 mm2	M	Т	80.00	110.92	-30.92
CONDUCTOR DE CU TIPO NYY/1KV 1x6 mm2	M	Т	60.00	101.56	-41.56
ALUMBRADO Y TOMACORRIENTES		Т			
CENTRO DE LUZ Con Conductor de Cu THW 2-1x2.5 mm2 En Tuberia PVC SEL de 20 mm	PTO		11.00	11.00	0
SALIDAPARATOMACORRIENTE BIPOLAR DOBLE CON PUESTA ATIERRA	PTO	Т	9.00	9.00	0
ARTEFACTO DE ALUMBRADO FLUORESCENTE DE 1x20; Con reflector metalico, Con equipo de encendido de alta potencia Inc. Acc	UND		3.00	11.00	-8
POZO DE PUESTA A TIERRA Con Varilla de Cobre Resistencia Menor 10 Ohms	JGO		1.00	1.00	0
PRUEBAS DE AISLAMIENTO Y RESISTIVIDAD	GLB	Т	1.00		

Fuente: (Bach. Eryck Antonio Díaz Aroca y Aldair Fernando Ríos Manzanares, 2022)

Figura 4

Gráfica de resultados obtenidos referente al presupuesto entre ambas metodologias

Fuente: (Bach. Eryck Antonio Díaz Aroca y Aldair Fernando Ríos Manzanares, 2022)

Así, los autores concluyen:

El presupuesto obtenido mediante metodología BIM fue 523,693.13 soles y el presupuesto obtenido de forma tradicional 548,637.07. La variación porcentual de los presupuestos (Tradicional y BIM) es de 4.55%, que representa monetariamente 24,943.94 soles. La precisión de los metrados obtenidos mediante la metodología BIM logró una reducción significativa en el costo, aun tratándose de un proyecto pequeño (Bach. Eryck Antonio Díaz Aroca y Aldair Fernando Ríos Manzanares, 2022)

Saavedra Mario Antonio y Miranda Zapata Gianmarco (2021), en su tesis "Análisis comparativo del modelo tradicional y del modelo BIM en la construcción de losa deportiva, Talara, Piura" muestran el modelamiento BIM de las diversas áreas de la construcción, estos son: estructuras, arquitectura, sanitaria y eléctrica con el fin realizar un análisis comparativo de los metrados y las interferencias entre estas áreas, obteniendo:

417 incompatibilidades e interferencias en la construcción de la losa deportiva entre las 4 especialidades analizadas, que al poder encontrarlas en la etapa de planificación nos ayuda a que en la ejecución de la obra ya estas mismas ya estén corregidas.

Metrados con el software Autodesk Revit generados automáticamente mediante las tablas de planificación dando como resultados un 32.95% de porcentaje de diferencias entre ambas metodologías, sin incluir la partida de acero en vigas de las graderías cuyo porcentaje es de 2151% de diferencia. (Saavedra Mario Antonio y Miranda Zapata Gianmarco, 2021, p.117).

Tabla 5Interferencias detectadas a través de la metodología BIM

METODOLOGÍA BIM			
DESCRIPCIÓN	INTERFERENCIAS (und)	INTERFERENCIAS (%)	
ARQUITECTURA VS ESTRUCTURAS	96	23.02	
ARQUITECTURA VS SANITARIAS	115	27.58	
ARQUITECTURA VS ELECTRICAS	96	23.02	
ESTRUCTURAS VS SANITARIAS	59	14.15	
ESTRUCTURAS VS ELECTRICAS	50	11.99	
SANITARIAS VS ESTRUCTURAS	1	0.24	
TOTAL	417	100.00	

Fuente: (Br. Arrunátegui Saavedra Mario Antonio y Br. Miranda Zapata Gianmarco, 2021)

Se compararon los presupuestos utilizando ambas metodologías y se concluyó que, gracias a la utilización de las herramientas BIM se logró encontrar un desfase del 13.71% que equivaldrían a S/23 961.39 soles. (Saavedra Mario Antonio y Miranda Zapata Gianmarco, 2021, p.117).

Tabla 6Costo por incompatibilidad

ESPECIALISTAS	MESTODOLOGÍA BIM
Software (REVIT)	1,500.00
NAVISWORK	3,200.00
Jefe de Proyecto	5,760.00
Capacitacion BIM	2,880.00
Especialista BIM	3,840.00
Arquitecto	3,456.00
Estruturalista	4,224.00
Instalaciones Electricas	1,536.00
Instalaciones Sanitarias	1,536.00
TOTAL	27,932.00
Incompatibilidades	417
COSTO POR INCOMPATIBILIDADES	66.98

Fuente: (Br. Arrunátegui Saavedra Mario Antonio y Br. Miranda Zapata Gianmarco, 2021)

Capítulo II. Marcos teórico y conceptual

2.1 Marco teórico

2.1.1 Componentes de una instalación eléctrica.

2.1.1.1 Alimentadores y conductores

Conductor eléctrico es el alambre o cable destinado a transportar energía eléctrica de un equipo eléctrico hacia otro o hacia tierra, dentro de estos, los alimentadores son conductores eléctricos comprendidos entre la caja de conexión o caja de toma, u otra fuente de alimentación, y los dispositivos de sobrecorriente del circuito o circuitos derivados. (Ministerio de Energía y Minas, 2006), así tenemos, los conductores eléctricos que van entre el equipo de medida y el primer tablero de la instalación y los conductores que van desde el tablero general a los tableros de distribución (División de ingeniería de electricidad, 2019)

Dentro de las instalaciones eléctricas podemos encontrar tres tipos de conductores, estos son:

- Conductor activo, es aquel destinado a transportar la energía eléctrica, llamado fase en sistemas de corriente altera y positivo o negativo en los sistemas de corriente continua.
- Conductor de neutro, es aquel conectado a un punto neutro de un sistema y capaz de contribuir con la transmisión de la energía eléctrica. (Ministerio de Energía y Minas, 2004)
- Conductor de protección, son los conductores que enlazan las partes metálicas no conductoras de los equipos eléctricos o elementos de montaje con el electrodo de puesta a tierra.

Dentro de las instalaciones eléctricas se encuentran los conductores de tipo enhebrado (también llamado cable, formado por varios alambres de igual sección) y los conductores tipo alambre (conformado por un único elemento conductor sólido).

Sin distinguir en su conformación, el CNE – Utilización establece la sección mínima 2.5mm2 para los circuitos derivados de fuerza y alumbrado y 1,5 mm2 para los circuitos de control de alumbrado. Asimismo, cuando se requiera emplear un código de colores para los conductores de un circuito, debe emplearse la siguiente tabla:

Tabla 7

Color de los Conductores

Corriente continua	Corriente alterna	Color
Positivo	Fase A o R	Rojo
Negativo	Fase B o S	Negro
	Fase C o T	Azul
	Neutro	Blanco
	Tierra	Verde o verde con franjas amarillas

Fuente: CNE-Utilización

2.1.1.2 Elementos de montaje

a) Canalización

Elemento de la instalación eléctrica diseñado para contener y proporcionar protección mecánica a los conductores, algunos de estos elementos son los tubos (Conduit), charolas, ductos y electroducto.

Tubo (Conduit) metálico: Pueden ser usados en interiores y exteriores, en ambientes húmedos e incluso corrosivos (protegidos adecuadamente con pintura anticorrosiva), siendo el sistema de canalización más comúnmente usado. Para ser embebidos en pared se prefieren el tubo metálico pesado o tubo metálico semipesado, para mampostería, tubo metálico de pared delgada y para lugares donde se dificulta los dobleces o existen vibraciones metálicas se usa el tubo metálico flexible. (condumex, 2007)

- Tubo (Conduit) no metálico: Tiene gran variedad de aplicaciones y está construido de diversos materiales, siendo el PVC (policloruro de vinilo) el más común en instalaciones residenciales. Se caracteriza por su resistencia a la humedad y a agentes físicos específicos, sin embargo, debido a su resistencia mecánica, no deben ser usados de soporte para luminarias y equipos eléctricos.
- Electroducto: Consiste en conductores eléctricos en forma de barra metálica que son capaces de alimentar grandes demandas de energía eléctrica, son usualmente de cobre o aluminio. Debido a sus características, son usadas en instalaciones industriales, comerciales y edificios de oficinas.
- b) Cajas y accesorios para canalización
- Cajas eléctricas: Son terminaciones que permiten acomodar la llegada de los tubos
 Conduit metálicos, no metálicos y cables armados con el fin de empalmar cables y
 proporcionar salida para contactor, apagadores y salida para luminarias.
 (condumex, 2007)

Estas cajas se clasifican en las siguientes:

- Caja para apagadores
- Caja octogonal
- Caja cuadrada

Las mismas que en su mayoría son intercambiables y de propósito general, salvo requerimientos de la instalación eléctrica, como pueden ser:

- Número de conductores que entran
- El tipo y numero de dispositivos que se conectan
- El método de alambrado usado

Tabla 8Número de conductores en cajas

Dimensión nomin	al de cajas [mm]	Volumen de caja [cm
		245
	100 x 30	
_		344
Octogonal	100 x 55	
		344
	100 x 30	
_		491
Cuadrada -	100 x 55	
Gudaruda		491
_	120 x 30	
		688
	120 x 55	
Dadaada	400 45	81
Redonda	100 x 15	101
	75 x 50 x 30	131
=	75 X 50 X 50	163
	75 x 50 x 50	103
-	73 230 230	163
	75 x 50 x 56	100
_	70,000,00	204
	75 x 50 x 65	
Dispositivo -		245
	75 x 50 x 75	
-		147
	100 x 55 x 30	
-		229
_	100 x 50 x 50	
		262
	100 x 60 x 50	
		229
_	95 x 50 x 65	
	05 50 00	344
Mampostería -	95 x 50 x 90	004
·	100 v 60 v 60	331
-	100 x 60 x 60	364
	100 x 60 x 90	30 4
	100 x 00 x 90	3,8/mm profundidad
Caja de paso	95 x 50	3,0/11III proidhdidad
Caja ao paso	30 X 30	7,7/mm profundidad
	100	r,r/mm profundada

Fuente: CNE-Utilización

 Interruptor: Es un dispositivo diseñado para abrir y cerrar circuitos, de operación rápida y baja capacidad que se usa para controlar aparatos eléctricos de baja potencia o luminarias, los más comunes son de accionamiento tipo balancín y empotrados en cajas. (NTP-IEC 60669-1, 2004) Tomacorriente: Las tomas de corriente son los dispositivos destinados a conectar eléctricamente un conductor o cable flexible a un aparato eléctrico mediante espigas y ranuras. (Instituto Nacional de Seguridad e Higiene en el Trabajo, 2019).
 En el Perú la NTP-IEC 60884-1 establece tomacorrientes de espiga redonda tipo tres en línea y tipo Schuko.

2.1.1.3 Tablero

Es un panel o conjunto de estos dotado de barras, dispositivos de protección, maniobra y conexiones diseñadas para transportar las corrientes hacia los alimentadores y/o circuitos de alumbrado o fuerza, construidos para su colocación en un gabinete adosado o empotrado en la pared y accesible solo por el frente (Ministerio de Energía y Minas, 2006)

Según su función los tableros se pueden clasificar (Rodriguez, 2013):

- Tablero general: Es el tablero principal de la instalación eléctrica que aloja los dispositivos de protección y maniobra de los alimentadores y que permite controlar total o parcialmente sobre toda la instalación interior.
- Tablero auxiliar: Es aquel tablero alimentado por el tablero general que protege y opera sub-alimentadores que alimentan tablero de distribución.
- Tablero de distribución: Son tableros que albergan dispositivos de protección y
 maniobra que operan directamente sobre los circuitos de la instalación eléctrica,
 son alimentados por el tablero general o tablero auxiliar.
- Tablero de paso: Son tableros que albergan únicamente dispositivos de protección de derivaciones que no pueden ser conectados directamente al alimentador por su capacidad.
- Tablero de comando: Son tableros que permiten protegen y operar directamente sobre un equipo eléctrico de forma individual o grupal pertenecientes al mismo circuito.

 Tablero de control: Son tableros que albergan depósitos de protección y control o únicamente de control, con la capacidad de opera dispositivos individuales o grupales, así como también programada y no programada.

2.1.2 Protección en instalaciones eléctricas

Una instalación eléctrica de baja tensión debe contar con los elementos necesarios en el circuito eléctrico capaces de proteger contra sobrecorriente, cortocircuitos y corriente de fuga.

La corriente de sobrecarga es toda aquella que circula en una instalación eléctrica que sobrepasa a la corriente para la que fue diseñada, causando efectos principalmente térmicos que debilitan el aislamiento en el conductor. Si esta corriente circula por más de una hora puede causar daños a la instalación, cortocircuitos o incendios.

Por otro lado, el cortocircuito, es una falla producida por el paso directo de corriente elevada entre la fase-neutro, fase-tierra o fase-fase de la instalación eléctrica, es decir, es un efecto producto de la baja impedancia entre elementos de potencial diferente que produce un arco eléctrico.

Por último, la corriente de fuga es aquella corriente que circula fuera del circuito eléctrico, normalmente fluye a tierra o a elementos conductores.

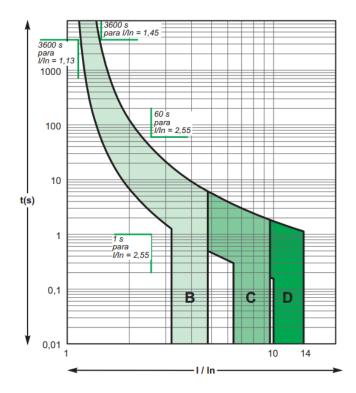
2.1.2.1 Protección contra sobre corriente y cortocircuito

• Fusibles: Es un dispositivo compuesto por un soporte adecuado y un elemento conductor con bajo punto de fusión, este dispositivo se conecta en serie en algún punto de la instalación eléctrica para que se funda cuando la intensidad de corriente sea superior la establecida, protegiendo a los elementos eléctricos como conductores o cargas eléctricas. Es el dispositivo masa antiguo inventado para la protección eléctrica y siendo uno de los más confiables. (Eaton, 2018)

Figura 5

Simbología de fusible

Fuente: Norma IEEE/ANSI


Interruptores termomagnéticos: Es un dispositivo compuesto por elementos sensibles a los efectos térmicos producto de una sobrecorriente (lamina bimetálica) y magnéticos producto de cortocircuitos (bobina), capaces de interrumpir el flujo de corriente si esta sobrepasa ciertos valores. Al igual que los fusibles, protege las instalaciones eléctricas contra sobrecorriente y cortocircuitos. (Schneider Electric, 2018)

Según su tipo de aplicación, podemos seleccionar la curva de disparo que mejor se ajuste a la instalación. Estas curvas muestran el tiempo de disparo en función de la intensidad de corriente.

- Curva B: Equivalente a la antigua curva L, ideal para la protección de personas y generadores.
- Curva C: Equivalente a la antigua curva U, son los más usadas en instalaciones eléctricas domiciliarias, alumbrado y tomacorriente, ideales para la protección de conductores.
- Curva D: Ideal para la protección de conductores con elevada corriente de arranque

Figura 6

Curvas de disparo de protecciones termomagnéticas

Fuente: (Schneider Electric, 2018)

2.1.2.2 Protección contra electrocución

• Interruptor diferencial: Es un dispositivo de protección que bajo el principio electromagnético es sensible a las fugaz y capaz de interrumpir el circuito eléctrico. Su fin es proteger la vida de las personas contra contactos a elementos energizados. Su funcionamiento se basa en que la suma de corrientes en un punto es igual a cero, en una instalación monofásica la corriente de fase y de neutro son en todo momento cero, del mismo modo en una instalación trifásica, la suma vectorial de las corrientes de fase se compensa con la del neutro sumando cero.

El contacto puede ser del tipo directo, donde la persona tiene contacto con un elemento del circuito eléctrico normalmente energizado, por otro lado, un contacto indirecto es aquella donde la persona tiene contacto con un elemento que no conduce electricidad en una situación de normalidad.

Los interruptores ofrecen intensidades nominales de defecto de 10 mA, 30 mA, 300 mA hasta 500mA, según la norma IEC 60 479 las sensibilidades de hasta 30 mA son usada para salvaguardar la vida de personas y las mayores a esta son empleadas para protección contra incendios.

 Puesta a tierra: Es la instalación de conexión de los elementos conductores no energizados a tierra, para que en caso de corrientes de fuga o descargas atmosféricas la energía eléctrica fluya fácilmente a tierra y proteja a las personas

La configuración común es la jabalina vertical, de donde se conoce la resistencia:

$$R_T = \frac{\rho}{2\pi L} ln\left(\frac{4L}{d}\right)$$

Donde:

 ρ : Es la resistividad del terreno (Ω .m)

L: Longitud de la jabalina (m)

D: Diámetro equivalente de la jabalina (m)

El CNE-Utilización establece que el valor de resistencia de pozo a tierra no puede exceder 25 Ω .

2.1.3 Tipos de circuitos y cálculo de carga

Los circuitos de una instalación eléctrica se pueden clasificar según el tipo de aplicación en circuito de iluminación, tomacorriente y fuerza.

2.1.3.1 Circuitos de Iluminación

Es el circuito eléctrico que parte desde el tablero de distribución y que generalmente a través del techo llega cada una de las luminarias y dispositivos de control como interruptores.

Para su diseño, el proyectista debe asegurar que cumpla con los requisitos técnicos de iluminación (ver Anexo 2) mediante cálculos convencionales o programas de cómputo según el tipo de tarea o actividad visual a realizar en un ambiente especifico (Ministerio de Vivienda, 2019).

El diseño debe cumplir con los requisitos mínimos de iluminación de forma eficiente,

para lo cual la Guía de diseño de espacios educativos en su apartado de confort visual

indica el color interno de aulas con reflexión en:

• Pisos: 15%-30%

• Paredes: 50%-70%

Techos: 80%

2.1.3.2 Circuitos de tomacorriente.

Es el circuito que parte del tablero de distribución y va por el piso a cada uno de los

tomacorrientes.

Al ser un circuito con accesorios de conexión para cargas que no se conocen, se

limita el número máximo de salidas a 12 por circuito, asimismo, su capacidad será desde

10A, 15A, 20A, 30A, 50A o 60A (Ministerio de Energía y Minas, 2006),

Adicionalmente para locales de educativos de nivel inicial como aulas, SUM, sala

de psicomotricidad, etc. Debe haber 1 tomacorriente doble (alto y fijo) cada 10 m2

debidamente aterrizado a tierra y distribuida convenientemente en el perímetro del

ambiente (Ministerio de Educacion, 2018).

2.1.3.3 Determinación de la máxima demanda.

Los proyectos de instalaciones eléctricas necesariamente incluyen un análisis de la

potencia instalada y máxima demanda bajo cualquiera de los 2 métodos que mejor se

ajuste al proyecto:

Método 1: Considerando las cargas a instalarse (proyectadas), los factores de

demanda y simultaneidad

Método 2: Considerando las cargas unitarias, los factores de demanda y

simultaneidad.

Para el caso de escuelas, la máxima demanda empleando el método 1 se calcula

(Ministerio de Energía y Minas, 2006):

27

- Una carga básica de 50 W/m2 de área de aulas; mas
- 10 W/m2 del área restante del edificio, calculada con las dimensiones exteriores;
 mas
- Cargas de calefacción, aire acondicionado y fuerza, basadas en la potencia nominal del equipo instalado.

Los factores de simultaneidad para edificaciones hasta 900m2 será de 75% de la carga por m2 y 50% de la carga por m2 por el área en exceso a las 900m2.

2.1.4 Luminotecnia

Es la ciencia encargada de estudiar las formas de producir luz, así como su aplicación y control.

2.1.4.1 Magnitudes y unidades

- Flujo Luminoso: Es la cantidad de luz emitida por una fuente de luz en la unidad de tiempo, se mide en lumen (Lm)
- Iluminación o luminancia: Mide el flujo de luz por unidad de superficie, su unidad es el lux

$$Luminancia = \frac{Flujo\ luminoso}{unidad\ de\ superficie}$$

Intensidad luminosa: Es la cantidad fotométrica de referencia, se mide en candelas
 (cd), se define como el flujo luminoso emitida en el interior de un Angulo solido

2.1.4.2 Método de Lumen

Es el método por el cual se calcula el valor medio de iluminancia en un lugar específico, para esto se necesita:

- Dimensiones del ambiente y la altura de trabajo
- Superficie del ambiente
- Nivel de iluminación recomendada para el ambiente
 La relación que existe entre las dimensiones del local viene dada por:

$$k = \frac{s}{h(a+b)}$$

k : Índice local

h : Diferencia entre altura de luminaria y área de trabajo

s : Superficie del ambiente

a : Ancho del local

b : Largo del local

El flujo de iluminación se define como:

$$\Phi_T = \frac{E \cdot S}{Cu \cdot Cm}$$

 Φ_T : Flujo total calculado

E : Nivel de iluminación según ambiente

s : Superficie del ambiente

Cm : Factor de mantenimiento

Cu : Factor de utilización

Este último factor, utilización es proporcionado por el fabricante, en cambio el factor de mantenimiento es calculado a partir de 4 factores:

$$Cm = FDFL \cdot FSL \cdot FDLU$$

FDFL : Factor de depreciación del flujo luminoso de la lampara

FSL : Factor de supervivencia de la lampara

FDLU: Factor de depreciación de la luminaria

Finalmente, con este método se obtiene el número de luminarias y el emplazamiento:

$$N_L = \frac{\Phi_T}{\Phi_L}$$

N_L: Numero de lámparas

 Φ_T : flujo total calculado

 Φ_L : flujo de la luminaria

$$N_a = \sqrt{\frac{N_L}{b} \cdot a}$$

$$N_b = N_a \cdot \left(\frac{b}{a}\right)$$

2.1.5 Metodología BIM

2.1.5.1 Definición BIM

La palabra BIM son siglas del inglés Building Information Modeling y existen múltiples definiciones de BIM, el UK BIM Task Group la define como:

En esencia es la creación de valor a través de la colaboración en todo el ciclo de vida de un activo apoyado en la creación, recopilación y el intercambio de modelos 3D y los datos compartidos, inteligentes, estructurados, y vinculados a ellos.

BIM es pues un nuevo acercamiento al diseño y construcción, que a diferencia de las metodologías tradicionales no genera pérdidas innecesarias y errores al hacer hincapié en la interoperabilidad de las diversas áreas que confluyen en un proyecto de edificación, este nuevo acercamiento empieza al momento que BIM imita el proceso real de construcción, es decir los modelos no son solo sólidos, si no que contienen información real del objeto que representan como su forma, material, propiedades físicas, etc. Esta información es guarda en una base de datos única que permite integrar y coordinación el

proceso de diseño, de este modo cada actor que participa en el proyecto conoce el desarrollo de este.

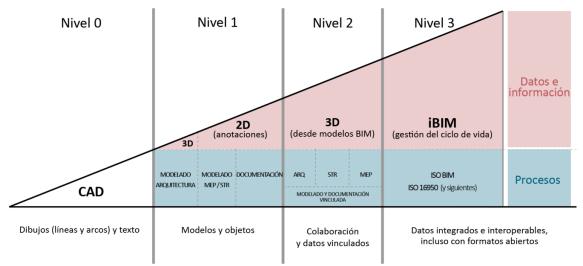
2.1.5.2 Hitos históricos

Al inicio la metodología BIM era más una idea que una realidad, surgió en los años sesenta donde los ordenadores eran limitados y con complicadas interfaces.

El primer paso se dio en 1957 con el Doctor Patrick J. Hanratty, al crear el primer programa de fabricación asistido por ordenador (CAM) llamado Pronto, el cual se basada en el control numérico, en 1961 este evoluciona a gráficos generados por ordenador convirtiéndose en el primer programa en usar gráficos interactivos (CAM/CAD) para complejos modelos de matrices.

En 1963 llego el primer diseño asistido por ordenador (CAD) a través del software Skecthpad, con este se logro el modelado de sólidos, dando paso a dos corrientes, la geometría sólida constructiva (CGS) y la representación de limites (BREP).

El desarrollo que se logro para los años 70 definió por primera vez el diseño paramétrico, representaciones 3D de alta calidad y una base de datos de para análisis, en otra palabra BIM.


Sin embargó, no fue hasta 1987 que se lanzo el primer software BIM llamado ArchiCAD bajo el concepto de edificio virtual para el sistema operativo de Lisa de Apple, un año más tarde Parametric Technology Corporation lanzaría Pro ENGINEER una CAD con motor de modelado paramétrico.

Con la experiencia obtenida en Pro ENGINEER, dos de las mentes creativas de este proyecto, Irwin Jungreis y Leonid Raiz iniciaron su propia compañía Charles River Software en Cambridge, que para 2000 lanzaron un programa llamado Revit, desarrollado en C++ y un motor de cambio paramétrico que fue finalmente adquirida por Autodesk revolucionando el mundo BIM hasta como lo conocemos hoy.

2.1.5.3 Niveles BIM

Figura 7

Niveles de madurez BIM

Fuente: BIM Managment

Define en base al progreso tecnológico alcanzado en el grado de colaboración e intercambio de información.

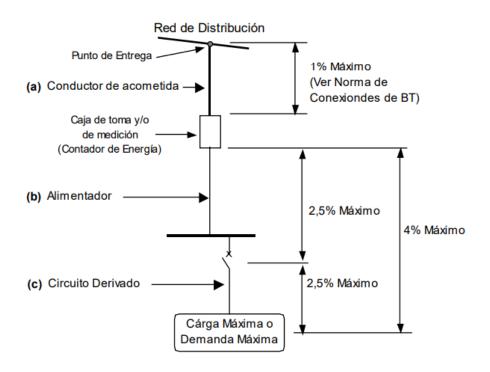
- Nivel 0: Se opera en 2 dimensiones (CAD) con una colaboración baja
- Nivel 1: Colaboración parcial, donde se opera en 2 o 3 dimensiones
- Nivel 2: Requiere uso de modelos tridimensionales de todas las partes del proyecto, sin necesariamente estar integrados.
- Nivel 3: Es aquel donde todas las partes están integradas en un solo modelo BIM

2.2 Marco conceptual

• Acometida: El Código Nacional de Electricidad - Suministro la define como:

Parte de una instalación eléctrica comprendida entre la red de distribución (incluye el empalme) y la caja de conexión y medición o la caja de toma. (CNE – Suministro)

Según las necesidades del usuario, las acometidas pueden ser del tipo monofásica o trifásica, y según las condiciones de la red distribución pueden ser del tipo aéreas o subterráneas.


 Caída de tensión: Es el efecto de perdida de tensión a lo largo del recorrido del conductor provocado por la resistencia eléctrica, esta resistencia depende del calibre del conductor, la longitud del circuito, el material y la temperatura de operación, (Centelsa, 2005)

La selección del calibre del conductor será al menos, la que garantice caída de tensión dentro de los parámetros permitidos por el CNE-Utilización:

- "Una caída de tensión total máxima de 4% para el alimentador más circuito derivado; es decir desde el punto de conexión al contador de energía hasta el último punto de utilización".
- "Una caída de tensión máxima de 2,5%, tanto para el alimentador y para el circuito derivado".

Figura 8

Máximas Caídas de Tensión Permitidas en un Circuito

Fuente: (Ministerio de Energia y Minas, 2005)

Para un circuito monofásico, la caída de tensión es:

$$\Delta V = 2I(R\cos\phi + X\sin\phi)L$$

Para un circuito trifásico, la caída de tensión es:

$$\Delta V = (3I)^{0.5} (R\cos \emptyset + X\sin \emptyset) L$$

Donde:

I= Corriente a plena carga (A)

R= resistencia del material (Ω /m)

X= reactancia del material (Ω/m)

L= longitud del conductor (m)

V= tensión nominal (V)

- CNE-Suministro: El Código Nacional de Electricidad establece los requerimientos mínimos de seguridad para proteger a las personas durante la instalación, operación o mantenimiento de las instalaciones eléctricas tanto de suministro como las de comunicaciones, y sus equipos asociados, sin que se afecte a las propiedades públicas o privadas, ni al medio ambiente, ni al Patrimonio Cultural de la Nación. (Ministerio de Energía y Minas, 2001)
- CNE-Utilización: El Código Nacional de Electricidad establece las reglas
 preventivas para salvaguardar las condiciones de seguridad de las personas, de
 la vida animal y vegetal, y de la propiedad, frente a los peligros derivados del uso
 de la electricidad; así como la preservación del ambiente y la protección del
 Patrimonio Cultural de la Nación. (Ministerio de Energía y Minas, 2006)
- Cuadro de cargas: Es aquel cuadro que ofrece una visión clara y rápida de las instalaciones eléctricas, en este se encuentra resumido el número de circuito, detalle de la carga eléctrica, la cantidad, la potencia de esta carga y demás características eléctricas relevantes. Con estos datos, el cuadro de cargas permite determinar la máxima demanda instalada por cada circuito y el total en la instalación eléctrica.

 Diagrama Unifilar: Se llama así aquel plano donde se grafica los conductores de una instalación eléctrica a través de una sola línea, es decir los conductores de fase y nuestro (Revista Electrica, 2019).

A través de este se puede obtener una versión simplificada de las instalaciones eléctricas, útil para identificar fallas, realizar mantenimiento, modificaciones, etc.

A fin de lograr su fácil entendimiento hace uso de símbolos de elementos eléctricos como son:

Tabla 9

Símbolos eléctricos	
Descripción	Símbolo
Tablero general o de distribución	
Dispositivos de protección y maniobra	*
Carga eléctrica	$-\!\!\otimes\!\! \stackrel{M}{\longrightarrow}$
Conductor	
Тіетта	<u>_</u>

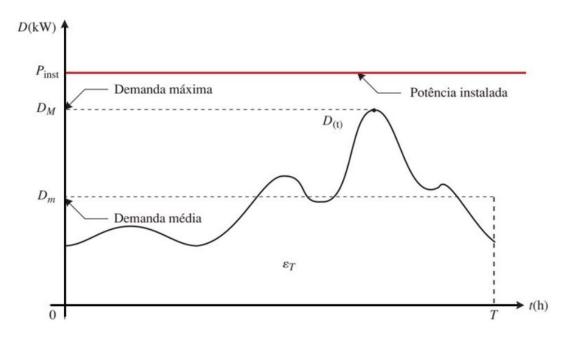
Factor de demanda: Se define como la relación de la demanda máxima de la
instalación o sistema en un periodo de tiempo y la carga total conectada, esta
relación resulta útil para el cálculo de conductores al permitir determinar la mayor
carga probable que debe soportar la instalación y no sobredimensionar los
conductores y demás elementos eléctricos. (Ministerio de energía española, 2020)

$$f_{Demanda} = \frac{Demanda\ maxima}{Potencia\ instalada}$$

Factor de potencia: Se define como el cociente de potencia consumida y la potencia generada y es un indicador sobre el correcto aprovechamiento de la energía donde un factor de potencia de 1 indica que toda la energía generada está siendo consumida y, por el contrario, un factor de potencia menor a uno indica que se consume mayor energía para producir trabajo útil. (Comisión Nacional para el Uso Eficiente de la Energía de Mexico, 2016)

$$f_{Carga} = \frac{Potencia\ activa}{Potencia\ aparente}$$

• Indeci: El Instituto Nacional de Defensa Civil - INDECI es un organismo público ejecutor que conforma el SINAGERD, responsable técnico de coordinar, facilitar y supervisar la formulación e implementación de la Política Nacional y el Plan Nacional de Gestión del Riesgo de Desastres, en los procesos de preparación, respuesta y rehabilitación.

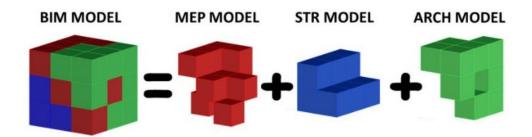

Desarrolla, propone y asesora al ente rector, así como a los distintos entes públicos y privados que integran al SINAGERD sobre la política y lineamientos y mecanismos, en materia de procesos de preparación, respuesta y rehabilitación.

Asiste en los procesos de respuesta y rehabilitación, en especial cuando el peligro inminente o desastre sobrepase la capacidad de respuesta, proporcionando a través de las autoridades competentes el apoyo correspondiente. (Presidencia del Consejo de Ministros, 2011)

 Máxima demanda: Las normas de las conexiones eléctricas de la Dirección General de Electricidad la definen como "Valor máximo de la carga durante un periodo de tiempo dado, por ejemplo, un día, un mes, un año, etc."

Figura 9

Curva de demanda



Fuente: (Tecnologico de Monterrey, 2016)

 MEP: Proviene de las siglas en ingles mechanical, electrical and plumbing y es la encarga de asegurar que los diseños de estos sistemas sean seguro y habitables.
 Con la innovación en el campo MEP, los complicados métodos tradicionales de cálculo están dando paso a la creación y análisis siguiendo los principios BIM.

Este principio permite a los ingenieros tomar las decisiones más adecuadas para crear instalaciones de calidad y evitar sobreprecios, al permitir mediante un modelo tridimensional visualizar y dotar de herramientas que automatizan muchos cálculos, como los metrados. (i-bim, 2021)

Figura 10Diferencia entre el modelo BIM y el modelo MEP

Fuente: (BibLus, 2022)

 Metrado: Es el cálculo o cuantificación por partidas (producto o servicio que conforma el presupuesto) de la cantidad de obra a ejecutar. Luego de la concepción del proyecto, este es diseñado y con las unidades correctas podemos medirlo y finalmente costearlo. (Ministerio de Vivienda, Contruccion y Saneamiento, 2011)

El proceso de metrado se puede realizar de 2 formas, en plano (gabinete) o en campo (in situ) siguiendo las etapas constructivas:

- Estructuras
- Arquitectura
- Instalaciones sanitarias
- Instalaciones eléctricas
- Instalaciones especiales
- Nivel de iluminación: También conocida como iluminancia, se define como la cantidad de luz incidente por el área de superficie expresada en lux.

$$Lux = \frac{lm}{m^2}$$

La iluminancia es una consecuencia directa de la fuente luminosa, y no depende del entorno como si lo hace la reflectancia.

La iluminancia o nivel de iluminación junto a la reflectancia son los que producen la sensación de claridad, podemos decir pues que el ojo percibe los niveles de luminancia y no niveles de iluminación. (Ministro de trabajo, Empleo y Seguridad Social, 2016)

Norma técnica de calidad de los suministros eléctricos: Establece los niveles mínimos de calidad de los servicios eléctricos, incluido el alumbrado público, y las obligaciones de las empresas de electricidad y los Clientes que operan bajo el régimen de la Ley de Concesiones Eléctricas, Decreto Ley N°25844.

Asimismo, establece los aspectos, parámetros e indicadores sobre los que se evalúa la Calidad del Servicio de la Electricidad. Se especifica la cantidad mínima de puntos y condiciones de medición. Se fijan las tolerancias y las respectivas compensaciones y/o multas por incumplimiento. Asimismo, se establecen las obligaciones de las entidades involucradas directa o indirectamente en la prestación y uso de este servicio en lo que se refiere al control de la calidad. (Ministerio de Energía y Minas, 2010)

Osinergmin: Es el Organismo Supervisor de la Inversión en Energía y Minería una institución pública encargada de regular, supervisar y fiscalizar las actividades que desarrollan las personas jurídicas de derecho público interno o privado y las personas naturales, en los subsectores de electricidad, hidrocarburos y minería, siendo integrante del Sistema Supervisor de la Inversión en Energía compuesto por el Instituto Nacional de Defensa de la Competencia y Protección de la Propiedad Intelectual y el Organismo Supervisor de la Inversión en Energía. Tiene personería jurídica de derecho público interno y goza de autonomía funcional, técnica, administrativa, económica y financiera. (LEY N.º 28964, 2007)

Capítulo III. Hipótesis y operacionalización de las variables

3.1 Hipótesis general

La aplicación de la metodología BIM optimiza significativamente el diseño de las instalaciones eléctricas de centros educativos

3.2 Hipótesis específicas

- a) La aplicación de la metodología BIM optimiza significativamente el proceso de dimensionamiento de los conductores eléctricos de las instalaciones eléctricas de centros educativos bajo los estándares normativos del CNE-Utilización.
- b) La aplicación de la metodología BIM optimiza significativamente el costeo de las instalaciones eléctricas de centros educativos.
- c) La aplicación de la metodología BIM optimiza significativamente la detección de interferencias de las instalaciones eléctricas de centros educativos.

3.3 Operacionalización de las variables

Tabla 10Matriz de Operacionalización de Variables

Variables	Definición conceptual	Dimensiones	Indicadores
Variable Independiente	Uso de modelos digitales y herramientas	1.Modelamiento digital.	1. Grado de información del modelo
Metodología BIM	colaborativas para optimizar la planificación,	2.Coordinación de disciplinas	2. Cantidad de interferencias
	diseño, construcción y gestión de proyectos	3.Planificación de la construcción.	3. Reducción del tiempo de diseño y errores.
	de construcción e infraestructuras		
Variable Dependiente	Es el un conjunto definido de etapas	1.Conductor eléctrico	1.1 Tolerancia (caída de tensión no mayor del
Diseño de las instalaciones	específicas para modelar cada componente	2.Metrado	2,5% de acometida y circuito derivado; caída
eléctricas de centros educativos	de la instalación eléctrica bajo los estándares	3.Detección de interferencias.	de tensión total no mayor al 4%)
	normativos del CNE-Utilización.		1.2 Tolerancia (Ampacidad del conductor)
			2. Porcentaje de Ahorro de cantidad de obra.
			3. Cantidad de interferencias

Capítulo IV. Metodología de la investigación

4.1 Tipo y diseño de la investigación

El presente trabajo de investigación tiene como objetivo aplicar la metodología BIM para optimizar el diseño de las instalaciones eléctricas de centros educativos, en ese sentido la investigación tiene un enfoque cuantitativo, ya que hace uso de conocimientos técnicos para diseñar instalaciones eléctricas (razonamiento deductivo) y su posterior análisis comparativo, contrastando las hipótesis a través de análisis de datos y métodos estadísticos (Sampieri, 2014).

Asimismo, tiene un nivel correlacional, al tener como finalidad conocer la relación o grado de asociación entre dos variables (Sampieri, 2014), en este caso, se desea conocer: ¿En qué medida la aplicación de la metodología BIM optimiza el diseño de las instalaciones eléctricas de centros educativos?, donde la variable independiente es metodología BIM y la variable dependiente es diseño de las instalaciones eléctricas de centros educativos.

Por último, la presente investigación es de nivel experimental, al manipular la variable independiente para conocer su consecuencia en la variable dependiente (Sampieri, 2014), en este caso la aplicación de la metodología BIM afecta el proceso de diseño de las instalaciones eléctricas.

4.2 Unidad de análisis

La unidad de análisis es el centro educativo de nivel inicial N°2255 ubicado en el barrio 6B del sector Alto Porvenir, distrito del Porvenir, provincia de Trujillo, departamento de La Libertad.

Dicho centro educativo inicio sus actividades en el 2014, con un total de 52 niños de las tres edades 3, 4 y 5 años del nivel inicial, para el 2019 ya contaba con una población de 98 estudiantes según la matricula del mismo año.

La Institución Educativa se encuentra en un terreno de 2,784.01 m2 de topografía llana, careciendo de servicios básicos como agua, alcantarillado y energía eléctrica. A pesar de ello, la institución ofrece servicios educativos públicos estatales.

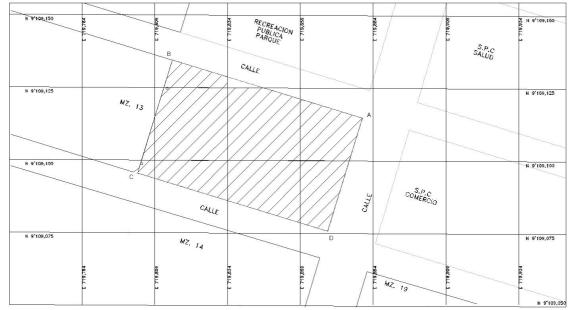
Con el proyecto de mejoramiento se proyecta 5 aulas con sus respectivos depósitos, servicios higiénicos, además de una sala de psicomotricidad, aula de servicios múltiples y patio de formación, como lo exige la Guía de diseño de espacios educativos del Minedu. Asimismo, el área de influencia de la I.E. N°2255 se ha delimitado entorno a un radio de 0.5 Km.

4.3 Matriz de consistencia Tabla 11

Matriz de consistencia lógica

Título: Aplicación de la metodología BIM para optimizar el diseño de las instalaciones eléctricas de centros educativos.											
Objetivos	Hipótesis	Variables									
Objetivo General	Hipótesis General	V. Independiente									
Aplicar la metodología BIM para optimizar el	La aplicación de la metodología BIM optimiza	Aplicación de									
diseño de las instalaciones eléctricas de	significativamente el diseño de las	metodología BIM									
centros educativos.	instalaciones eléctricas de centros educativos.										
Objetivos Específicos	Hipótesis Especificas	V. Dependiente									
a) Aplicar la metodología BIM para	a) La aplicación de la metodología BIM	Optimización del									
optimizar el proceso de	optimiza significativamente el proceso de	diseño de las									
dimensionamiento de los conductores	dimensionamiento de los conductores	instalaciones									
eléctricos de las instalaciones de las	eléctricos de las instalaciones eléctricas	eléctricas de centros									
eléctricas de centros educativos bajo	de centros educativos bajo los	educativos									
los estándares normativos del CNE-	estándares normativos del CNE-										
Utilización.	Utilización.										
b) Aplicar la metodología BIM para	b) La aplicación de la metodología BIM										
optimizar el costeo de las instalaciones	optimiza significativamente el costeo de										
eléctricas de centros educativos.	las instalaciones eléctricas de centros										
	educativos.										
c) Aplicar la metodología BIM para	c) La aplicación de la metodología BIM										
optimizar la detección de interferencias	optimiza significativamente la detección										
de las instalaciones eléctricas de	de interferencias de las instalaciones										
centros educativos	eléctricas de centros educativos.										
	Objetivo General Aplicar la metodología BIM para optimizar el diseño de las instalaciones eléctricas de centros educativos. Objetivos Específicos a) Aplicar la metodología BIM para optimizar el proceso de dimensionamiento de los conductores eléctricos de las instalaciones de las eléctricas de centros educativos bajo los estándares normativos del CNE-Utilización. b) Aplicar la metodología BIM para optimizar el costeo de las instalaciones eléctricas de centros educativos. c) Aplicar la metodología BIM para optimizar la detección de interferencias de las instalaciones eléctricas de centros eléctricas de las instalaciones eléctricas de las instalaciones eléctricas de las instalaciones eléctricas de	Objetivo General Aplicar la metodología BIM para optimizar el costeo de las instalaciones eléctricas de dimensionamiento de los conductores eléctricas de centros educativos de las instalaciones del CNE-Utilización. Dipetivos Específicos Aplicar la metodología BIM para optimizar el proceso de dimensionamiento de los conductores eléctricas de centros educativos bajo los estándares normativos del CNE-Utilización. Dipetivos Específicos Aplicar la metodología BIM para optimizar el costeo de las instalaciones eléctricas de centros educativos bajo los estándares normativos del CNE-Utilización. Dipetivos Específicos Hipótesis Especificas a) La aplicación de la metodología BIM optimiza significativamente el proceso de dimensionamiento de los conductores eléctricos de las instalaciones eléctricas de centros educativos bajo los estándares normativos del CNE-Utilización. b) Aplicar la metodología BIM para optimizar el costeo de las instalaciones eléctricas de centros educativos. c) Aplicar la metodología BIM para optimizar la detección de interferencias de las instalaciones eléctricas de centros educativos. c) Aplicar la metodología BIM para optimizar la detección de interferencias de las instalaciones de las									

Capítulo V. Desarrollo de la tesis


5.1 Parámetros de diseño

5.1.1 Ubicación geográfica del Centro Educativo

El centro educativo se encuentra ubicado en la Mza. LL, LT 26, en el sector de Alto Porvenir, Distrito El Porvenir, Provincia de Trujillo, Departamento de La Libertad.

Figura 11

Ubicación del centro educativo

Fuente: Elaboración propia

5.1.2 Infraestructura

El centro educativo posee un aérea total de 2 784.01 m2 distribuida entre infraestructura pedagógica, administrativa y complementaria en 5 edificaciones y áreas libres, en la tabla 9 se muestran las edificaciones que forman parte del centro educativo con las áreas correspondientes.

Tabla 12Edificaciones de centro educativo

Edificación	Ambiente	Área aproximada (m²)
	Aula – 01	59.15
	Aula – 02	59.15
	Deposito 1	5.24
Bloque 1	Deposito 2	5.24
	S.H. 01 – Niños	10.40
	S.H. 02 – Niñas	6.34
	Aula – 03	59.15
	Aula – 04	59.15
	Deposito 3	5.24
Bloque 2	Deposito 4	5.24
	S.H. 03 – Niñas	6.34
	S.H. 04 – Niños	10.40
	Aula – 05	59.15
	Deposito 5	5.24
DI O	Deposito 6	5.24
Bloque 3	S.H. 05 – Niñas	6.34
	S.H. 05 – Niños	10.40
	Sala de psicomotricidad	71.95
	Sala de usos múltiples	75.24
	Cocina	11.70
DI 4	Deposito 7	5.82
Bloque 4	S.H. Discapacitados	5.72
	S.H. Docente hombres	5.72
	S.H. Docente mujeres	5.72
	Dirección	13.49
	Sala de profesores	12.87
	Recepción y espera	19.20
	S.H.	3.80
	Depósito 8	3.80
Bloque 5	Depósito de material	
ed	lucativo	7.30
	Tópico	16.72
	Cuarto de limpieza	4.19
	Cuarto de basura	3.41
	S.H.	2.77

Figura 12

Infraestructura del centro educativo por bloques AULA AL AIRE LIBRE-04 AULA AL AIRE LIBRE-03 AULA AL AIRE LIBRE-05 JARDIN AULA-05 SALA DE USOS AULA-03 MULTIPLES AREA DE JARDIN SALA DE PSICOMOTRICIDAD PATIO DE FORMACION JUEGOS-01 **JARDIN** AULA-01 AULA-02 PATIO PRINCIPAL

Fuente: Elaboración propia

5.2 Diseño luminotécnico

Con el objetivo de cumplir con los requisitos mínimos de iluminación de una forma eficiente y práctica, en el presente diseño se estudia cada ambiente para disponer del tipo de luminaria seleccionado en cantidad y emplazamiento necesario.

JARDIN

AULA AL

AIRE LIBRE-02

AULA AL

AIRE LIBRE-01

JARDIN

5.2.1 Ambientes interiores

Con fines didácticos, se presenta el cálculo de luminarias para el Aula – 01 que servirá como ejemplo para el cálculo en otros ambientes empleando el método de lumen y los niveles lumínicos mínimos exigidos por la Norma EM.010.

Paso 1. Datos de entrada.

Dimensiones:

- a = 6.5 m, b = 9.1 m
- $S = a*b = 6.5 * 9.1 = 59.15 m^2$
- H = 3.1 m
- h = 2.6

Reflexión (ver Anexo 1):

• Techo = 80%

Pared = 50%

Requisito mínimo de iluminación (ver Anexo 2):

• E = 250 lux

Luminaria: La lampara escogida es de tipo fluorescente que serán instaladas en luminarias para adosar de luz directa con capacidad para 3 lamparás, las características de esta y otras luminarias empleadas en el centro de educativo se pueden encontrar en el anexo 3 y 4.

Tabla 13Extracto de característica de Luminaria

	Tipo de lampara	Tipo de luminaria	Numero de Lamp P/Lumin	Flujo/l (Lúmenes)
_	Led	Led directo con rejilla	3	3700

Fuente: Elaboración propia

Paso 2. Cálculo de índice de local (k)

Utilizando la Ecuación.

$$k = \frac{a \cdot b}{h \cdot (a+b)}$$
$$k = \frac{6.5 \cdot 9}{2.6 \cdot (6.5+9)}$$
$$k = 1.4583$$

Paso 3. Cálculo de coeficiente de utilización (Cu).

Se acude a la tabla de coeficientes de utilización en el Anexo 5, y las características físicas de reflexión exigidas por norma, se obtiene:

$$Cu = 0.495$$

Paso 4. Cálculo de coeficiente de mantenimiento (Cm).

Debido a las características del entorno en la que se encontrara la luminaria, así como también la actividad en el aula, se considera un mantenimiento medio.

$$Cm = 0.7$$

Paso 5. Cálculo de flujo luminoso

Se reemplaza los datos en la ecuación

$$\Phi_T = \frac{E \cdot S}{Cu \cdot Cm}$$

$$\Phi_T = \frac{250 \cdot 59.15}{0.495 \cdot 0.7}$$

$$\Phi_T = 42676.76 \ lm$$

Paso 6. Numero de luminarias

Para el cálculo del número de luminarias se utiliza la Ecuación.

$$N = \frac{\Phi_T}{n \cdot \Phi_L}$$

$$N = \frac{42676.76}{3 \cdot 3700}$$

$$N = 3.84$$

Paso 7. Emplazamiento de luminarias

Finalmente, reemplazando en las ecuaciones se obtiene la distribución optima en el ambiente a iluminar

$$N_a = \sqrt{\frac{N}{b} \cdot a}$$

$$N_a = \sqrt{\frac{3.84}{9.1} \cdot 6.5}$$

$$N_a = 1.65$$

$$N_b = N_a \cdot \left(\frac{b}{a}\right)$$

$$N_b = 1.65 \cdot \left(\frac{9.1}{6.5}\right)$$

$$N_b = 2.32$$

Con fin de obtener la mejor simetría y una iluminación uniforme, se determina la siguiente distribución:

$$N_a = 2 \text{ y } N_b = 3$$

A continuación, se muestra en tablas los resultados obtenidos del diseño de iluminación según el bloque de la unidad educativa. La distribución final de las luminarias se muestra en los planos del Apéndice B.

Tabla 14

Calculo y dimensionado luminotécnico del Bloque 1

	BLOQUE 1																
		Descripcio	ón			Ca	racterísticas de la lampa	ara y luminaria					F	Resultados			
Ambiente		[Dimensiones	Iluminación Tipo de luminaria Luminoso Potencia utilización Cm L			Flujo Total	Numero de luminarias	Numero de Iuminarias	Emplaz	amiento						
7 1110101110	Largo (m)	Ancho (m)	Área (m2)	Altura (m)	A(h') (m)	(lux)	ripo do farillidada	(Lum)	(W)	K	Cu	0	riajo rotat	diseñadas	calculadas	Na	Nb
Aula – 01	9.10	6.50	59.15	3.10	2.60	250	Josfel Ras 3x36W	11100	78	1.46	0.50	0.7	42676.77	3.84	6	2	3
Aula – 02	9.10	6.50	59.15	3.10	2.60	250	Josfel Ras 3x36W	11100	78	1.46	0.50	0.7	42676.77	3.84	6	2	3
Deposito 1	2.62	2.00	5.24	3.10	1.90	100	Josfel Ras 4x18W	3200	32	0.60	0.30	0.7	2495.24	0.78	1	1	1
Deposito 2	2.62	2.00	5.24	3.10	1.90	100	Josfel Ras 4x18W	3200	32	0.60	0.30	0.7	2495.24	0.78	1	1	1
S.H. 01 – Niños	3.25	3.20	10.40	3.10	2.60	100	Josfel Ras 4x18W	3200	32	0.62	0.31	0.7	4854.54	1.52	1	1	1
S.H. 02 – Niñas	3.20	1.98	6.34	3.10	2.60	100	Josfel Ras 4x18W	3200	32	0.47	0.30	0.7	3017.14	0.94	1	1	1

Fuente: Elaboración propia

Tabla 15

Calculo y dimensionado luminotécnico del Bloque 2

Calcalo y	411110110		Idillillo		uo. D.												
							BLOQUE	E 2									
		Descripci	ón			Ca	racterísticas de la lampa	ara y luminaria					F	Resultados			
Ambiente		[Dimensiones Illuminación Tipo de luminaria Luminoso Coef de utilización Cm				Tipo de luminaria Luminoso		Fluio Total	Numero de Iuminarias	Numero de Iuminarias	Emplaz	amiento				
7 111101101110	Largo (m)	Ancho (m)	Área (m2)	Altura (m)	A(h') (m)	(lux)	1,00 40 14111114114	(Lum)	(W)	K	Cu	· · · ·	i iajo rota.	diseñadas	calculadas	Na	Nb
Aula – 03	9.10	6.50	59.15	3.10	2.60	250	Josfel Ras 3x36W	11100	78	1.46	0.50	0.7	42676.77	3.84	6	2	3
Aula – 04	9.10	6.50	59.15	3.10	2.60	250	Josfel Ras 3x36W	11100	78	1.46	0.50	0.7	42676.77	3.84	6	2	3
Deposito 3	2.62	2.00	5.24	3.10	1.90	100	Josfel Ras 4x18W	3200	32	0.60	0.30	0.7	2495.24	0.78	1	1	1
Deposito 4	2.62	2.00	5.24	3.10	1.90	100	Josfel Ras 4x18W	3200	32	0.60	0.30	0.7	2495.24	0.78	1	1	1
S.H. 03 – Niñas	3.20	1.98	6.34	3.10	2.60	100	Josfel Ras 4x18W	3200	32	0.47	0.30	0.7	3017.14	0.94	1	1	1
S.H. 04 – Niños	3.25	3.20	10.40	3.10	2.60	100	Josfel Ras 4x18W	3200	32	0.62	0.31	0.7	4854.54	1.52	1	1	1

Tabla 16

Calculo v dimensionado luminotécnico del Bloque 3

Calculo y uli	110110101	iado idii	milotooi	noo aoi	Dioque	, 0											
							BLOQUE 3										
		Descripció	n			Car	acterísticas de la lamp	oara y luminar	ia					Resultados			
		1	Dimensiones					Flujo		Coe utiliza				Numero de	Numero de	Empla	zamient o
Ambiente	Largo (m)	Ancho (m)	Área (m2)	Altura (m)	A(h') (m)	lluminació n (lux)	Tipo de luminaria	Luminos o (Lum)	Potenci a (W)	К	Cu	CE	Flujo Total	luminaria s diseñada s	luminarias calculada s	Na	Nb
Aula – 05	9.10	6.50	59.15	3.10	2.60	250	Josfel Ras 3x36W	11100	78	1.4 6	0.5 0	0.7	42676.7 7	3.84	6	2	3
Deposito 5	2.62	2.00	5.24	3.10	1.90	100	Josfel Ras 4x18W	3200	32	0.6 0	0.3	0.7	2495.24	0.78	1	1	1
Deposito 6	2.62	2.00	5.24	3.10	1.90	100	Josfel Ras 4x18W	3200	32	0.6 0	0.3	0.7	2495.24	0.78	1	1	1
S.H. 05 – Niñas	3.20	1.98	6.34	3.10	2.60	100	Josfel Ras 4x18W	3200	32	0.4 7	0.3	0.7	3017.14	0.94	1	1	1
S.H. 05 – Niños	3.25	3.20	10.40	3.10	2.60	100	Josfel Ras 4x18W	3200	32	0.6 2	0.3 1	0.7	4854.54	1.52	1	1	1
Sala de psicomotr.	11.33	6.35	71.95	3.10	3.10	300	Josfel Ras 3x36W	11100	78	1.3 1	0.4 8	0.7	64570.4 1	5.82	6	2	3

Fuente: Elaboración propia

Tabla 17

Calculo y dimensionado luminotécnico del Bloque 4

Odlodio y diffic	mode y difficultionado idiffilificación de Bioque 4																
							BLOQUE 4										
		Descripción Características de la lampara y luminaria Re						Resultados									
Ambiente		С	Dimensiones	;		Iluminación	Tipo de luminaria	Flujo Luminoso	Potencia (W)		ef de ación	Cm	Fluio Total	Numero de Iuminarias	Numero de Iuminarias	Emplaz	amiento
Ambiente	Largo (m)	Ancho (m)	Área (m2)	Altura (m)	A(h') (m)	(lux)	ripo de laminana	(Lum)	i otoricia (vv)	K	Cu	OIII	Tidjo Total	diseñadas	calculadas	Na	Nb
Sala de usos múltiples	11.00	6.84	75.24	3.10	3.10	200	Josfel Ras 3x36W	11100	78	1.36	0.48	0.7	44483.81	4.01	6	2	3
Cocina	2.60	4.50	11.70	3.10	2.00	300	Josfel Ras 3x36W	11100	78	0.82	0.37	0.7	13611.71	1.23	2	1	2
Deposito 7	2.60	2.24	5.82	3.10	1.90	100	Josfel Ras 4x18W	3200	32	0.63	0.35	0.7	2377.29	0.74	1	1	1
S.H. Disc.	2.60	2.20	5.72	3.10	2.40	100	Josfel Ras 4x18W	3200	32	0.50	0.30	0.7	2723.81	0.85	1	1	1
S.H. Docente H	2.60	2.20	5.72	3.10	2.40	100	Josfel Ras 4x18W	3200	32	0.50	0.30	0.7	2723.81	0.85	1	1	1
S.H. Docente M	2.60	2.20	5.72	3.10	2.40	100	Josfel Ras 4x18W	3200	32	0.50	0.30	0.7	2723.81	0.85	1	1	1

Tabla 18

Calculo y dimensionado luminotécnico del Bloque 5

							BLOQUE 5												
		Descripción				Características de la lampara y luminaria				Resultados									
Ambiente		Γ	Dimensiones			Iluminación	Tipo de luminaria	Flujo Luminoso	Potencia	Coef de utilización				Cm	Flujo Total	Numero de Iuminarias	Numero de Iuminarias	Emplaz	zamiento
Ambiente	Largo (m)	Ancho (m)	Área (m2)	Altura (m)	A(h') (m)	(lux)	ripo de laminana	(Lum)	(W)	K	Cu	Oili	riajo rotar	diseñadas	calculadas	Na	Nb		
Dirección	4.15	3.25	13.49	3.10	2.40	500	Josfel Ras 3x36W	11100	78	0.76	0.35	0.7	27697.28	2.50	3	1	3		
Sala de profesores	4.15	3.10	12.87	3.10	2.40	300	Josfel Ras 3x36W	11100	78	0.74	0.34	0.7	16130.50	1.45	2	1	2		
Recepción y espera	4.80	4.00	19.20	3.10	2.40	200	Josfel Ras 4x18W	3200	32	0.91	0.40	0.7	13776.91	4.31	4	2	2		
S.H.	1.95	1.95	3.80	3.10	2.40	100	Josfel Ras 4x18W	3200	32	0.41	0.30	0.7	1810.71	0.57	1	1	1		
Depósito 8	1.95	1.95	3.80	3.10	1.90	100	Josfel Ras 4x18W	3200	32	0.51	0.30	0.7	1810.71	0.57	1	1	1		
Dep. de mat. edu.	4.40	1.66	7.30	3.10	1.90	100	Josfel Ras 4x18W	3200	32	0.63	0.35	0.7	2968.19	0.93	1	1	1		
Tópico	4.40	3.80	16.72	3.10	2.40	500	Josfel Ras 3x36W	11100	78	0.85	0.38	0.7	31648.64	2.85	3	1	3		
Cuarto de limpieza	2.15	1.95	4.19	3.10	2.40	500	Josfel Ras 3x36W	11100	78	0.43	0.30	0.7	9982.14	0.90	1	1	1		
Cuarto de basura	1.95	1.75	3.41	3.10	2.40	500	Josfel Ras 3x36W	11100	78	0.38	0.30	0.7	8125.00	0.73	1	1	1		
S.H.	1.95	1.42	2.77	3.10	2.40	100	Josfel Ras 4x18W	3200	32	0.34	0.30	0.7	1318.57	0.41	1	1	1		

5.2.2 Ambientes exteriores

El cálculo de la iluminación en ambientes exteriores se enfocará en el patio de formación, lugar que tendrá mayor flujo de personas y que servirá para practicar actividades deportivas, demandando niveles lumínicos superiores al resto de los ambientes exteriores, para esto se empleará el método de lumen o flujo total.

Paso 1. Datos de entrada.

Dimensiones:

- a = 12.5 m, b = 35 m
- $S = a*b = 12.5 * 35 = 437,5 m^2$
- H = 4.5 m

Requisito mínimo de iluminación (ver Anexo 2):

• E = 300 lux

Luminaria: La lampara escogida es de tipo vapor de sodio que serán instaladas en luminarias para adosar de luz directa con capacidad para 1 lampará, las características se pueden encontrar en el anexo 3 y 4.

Tabla 19Extracto de característica de Luminaria

Tipo de lampara	Tipo de luminaria	Numero de Lamp P/Lumin	Flujo/l (Lúmenes)
Vapor de sodio	Para suspender tipo High Bay, de iluminación directa	1	16000

Paso 2. Cálculo de índice de local (k).

Reemplazando los datos de entrada en la Ecuacion.

$$k = \frac{a \cdot b}{h \cdot (a+b)}$$

$$k = \frac{12.5 \cdot 35}{4.5 \cdot (6.5 + 9)}$$

$$k = 2.046$$

Paso 3. Cálculo de coeficiente de utilización (Cu).

Se acude a la tabla de coeficientes de utilización en el anexo 5, y las características físicas de reflexión exigidas por norma, se obtiene:

$$Cu = 0.62$$

Paso 4. Cálculo de coeficiente de mantenimiento (Cm).

Reemplazando en la ecuación, teniendo en cuenta que el factor de deprecación de la fuente luminosa de la lampara, así como la depreciación de la luminaria es 0.9 y el factor de supervivencia de la lampara 1 (Sarda, 1979), tenemos:

$$Cm = FDFL \cdot FSL \cdot FDLU$$
 $Cm = 0.9 \cdot 1 \cdot 0.9$ $Cm = 0.81$

Paso 5. Cálculo de flujo luminoso

Empleando la Ecuación se obtiene:

$$\Phi_T = \frac{E \cdot S}{Cu \cdot Cm}$$

$$\Phi_T = \frac{300 \cdot 437.5}{0.62 \cdot 0.81}$$

$$\Phi_T = 260 \ 172.14 \ lm$$

Paso 6. Numero de luminarias

Para obtener la cantidad de las luminarias se reemplaza en la Ecuación.

$$N = \frac{\Phi_T}{n \cdot \Phi_L}$$

$$N = \frac{260 \ 172.14}{1600}$$

$$N = 16.26$$

Paso 7. Emplazamiento de luminarias

Finalmente, reemplazando en las ecuaciones se obtiene la distribución optima en el ambiente a iluminar

$$N_a = \sqrt{\frac{N}{b} \cdot a}$$

$$N_a = \sqrt{\frac{16.26}{35} \cdot 12.5}$$

$$N_a = 2.4$$

$$N_b = N_a \cdot \left(\frac{b}{a}\right)$$

$$N_b = 2.4 \cdot \left(\frac{35}{12.5}\right)$$

$$N_b = 6.74$$

Con fin de obtener la mejor simetría y una iluminación uniforme, se determina la siguiente distribución:

$$N_a = 3 \text{ y } N_b = 6$$

5.2.3 Determinación del Número de Circuitos

Al conocer el número de salidas y la carga de esta, el CNE permite que el número máximo de salidas por circuito sea mayor a 12, siempre que la corriente total menor al 80%

de la capacidad nominal de circuito de tomacorriente que lo protege (Ministerio de Energía y Minas, 2006).

Tabla 20

Determinación del número de circuitos de iluminación

Edificación	Circuito	Ambiente	Puntos	Potencia (W)	Pot Total (W)
		Aula – 01	6	468	
		Aula – 02	6	468	
		Deposito 1	1	32	
	Circuito 1 iluminación interior	Deposito 2	1	32	1096
Bloque 1		S.H. 01 – Niños	1	32	
ыочие і		Pasadizo	1	32	
		S.H. 02 – Niñas	1	32	
		Aula al aire libre 01	3	156	
	Circuito 2 iluminación exterior	Aula al aire libre 02	3	156	472
		Corredor	5	160	
		Aula – 03	6	468	
		Aula – 04	6	468	
		Deposito 3	1	32	
	Circuito 1 iluminación interior	Deposito 4	1	32	1096
		S.H. 03 – Niñas	1	32	
Bloque 2		S.H. 04 – Niños	1	32	
		Pasadizo	1	32	
		Aula al aire libre 01	3	156	
	Oirea de Oileasia e eléa e esteria	Aula al aire libre 02	3	156	F70
	Circuito 2 iluminación exterior	Corredor	5	160	576
		Corr. del Aula 04	2	104	
		Aula – 05	6	468	
		Aula al aire libre 05	2	104	
		Sala psicomotricidad	6	468	
		Deposito 5	1	32	
Bloque 3	Circuito 1 Iluminación interior	Deposito 6	1	32	1200
		S.H. 05 – Niñas	1	32	
		S.H. 06 – Niños	1	32	
		Pasadizo	1	32	
		Corredor	6	192	
	Circuito 2 iluminación exterior	Corredor posterior	5	260	452

Edificación	Circuito	Ambiente	Puntos	Potencia (W)	Pot Total (W)
		Sala de usos múltiples	6	468	
		Cocina	2	156	
	Circuito 1 iluminación	Deposito 7	1	32	752
Pleaue 4	interior	S.H. Discapacitados	1	32	752
Bloque 4		S.H. Docente hombres	1	32	
		S.H. Docente mujeres	1	32	
	Circuito 2 iluminación	Corredor	4	128	440
	exterior	Corredor posterior	6	312	440
		Dirección	3	234	
		Sala de profesores	2	156	
		Recepción y espera	4	128	
		S.H.	1	32	
	Circuito 1 iluminación	Depósito 8	1	32	
Bloque 5	interior	Depósito de material educativo	1	32	1036
,		Tópico	3	234	
		Cuarto de limpieza	1	78	
		Cuarto de basura	1	78	
		S.H.	1	32	
	Circuito 2 iluminación	Corredor	4	128	004
	exterior	Corredor posterior	3	156	284
	Circuito 1	Patio de formación	12	1807.2	1807.2
Ambientes	Circuito 2	Patio de juegos	6	903.6	903.6
VIIIDIGIIIG9	Circuito 3	Pared lateral	9	468	468
	Circuito 4	Frontis	12	624	624

5.3 Determinación y ubicación de los circuitos de tomacorriente y fuerza

El diseño se realiza en base a lo requerido por el Código Nacional de Electricidad – Utilización, la Norma Técnica "Criterios de Diseño para Locales Educativos del Nivel de Educación Inicial" y La Norma Técnica "Accesibilidad Universal en Edificaciones", a continuación, se enlista los requerimientos necesarios para las distribución y ubicación de los tomacorrientes aplicados a un centro educativo de nivel inicial:

- Para ambientes como aula, sala de psicomotricidad y sala de usos múltiples, se distribuirá conveniente 1 tomacorriente alto y fijo por cada 10 m2 con 180 W de potencia por salida de tomacorriente.
- La sala de usos múltiples debe contar con tomacorriente para proyector multimedia.
- Para ambientes administrativos ubicados en el bloque 5, se empleará tomacorrientes convenientemente distribuidos a una altura de 0.4 m.
- En la cocina se destinará un tomacorriente por cada refrigerador; Y donde se disponga de una cocina a gas se debe proveer de un tomacorriente detrás de la ubicación prevista para la cocina.
- En los baños de profesores, discapacitados y baño en oficinas administrativas se ubicará un tomacorriente a 1.2m.

En la tabla se muestra el resultado de aplicar la normativa a la distribución y ubicación de tomacorrientes.

Tabla 21Distribución de tomacorrientes según bloque

Edificación	Circuito	Ambiente	Cantidad de tomacorrientes dobles	Altura	Potencia (W)	Potencia total (W)
	Circuita 2	Aula – 01	6	1.5	1080	1000
Plague 1	Circuito 3	Aula al aire libre 01	1	1.5	180	1260
Bloque 1	Circuito 4	Aula – 02	6	1.5	1080	1260
	Circuito 4	Aula al aire libre 02	1	1.5	180	1200
	Circuito 3	Aula – 03	6	1.5	1080	1260
Plagua 2	Circuito 3	Aula al aire libre 03	1	1.5	180	1200
Bloque 2	Circuito 4	Aula – 04	6	1.5	1080	1060
	Circuito 4	Aula al aire libre 04	1	1.5	180	1260
	Circuito 3	Aula – 05	6	1.5	1080	1260
Bloque 3	Circuito 3	Aula al aire libre 05	1	1.5	180	1200
	Circuito 4	Sala de psicomotricidad	7	1.5	1260	1260
	Circuito 3	Sala de usos múltiples	9	1.5	1620	1620
		Cocina	4	1.2	720	
Bloque 4	Circuito 4	S.H. Discapacitados	1	1.2	180	1260
	Circuito 4	S.H. Docente hombres	1	1.2	180	1200
		S.H. Docente mujeres	1	1.2	180	
		Dirección	2	0.4	360	
		Sala de profesores	2	0.4	360	
Bloque 5	Circuito 3	Recepción y espera	2	0.4	360	1980
Dioque 3	Circuito 3	S.H.	S.H. 1 1.2 1		180	1900
		Tópico	3	0.4	540	
		S.H.	1	1.2	180	

5.4 Distribución de los circuitos y tableros.

La ubicación de los tableros debe cumplir con los requerimientos del Código Nacional de Electricidad y ubicarse convenientemente próximo al punto de entrega del suministro eléctrico y a las cargas que el mismo atenderá.

El tablero debe ubicarse en áreas donde no se encuentre expuesto a daños y maltratos y sea fácilmente accesible cuando sea necesario (MINISTERIO DE ENERGIA Y MINAS, 2008).

El tablero debe ubicarse tan alto como sea posible, pero teniendo en cuenta que ninguna manija de dispositivo de protección quede a más de 1,7 m sobre el nivel del piso (MINISTERIO DE ENERGIA Y MINAS, 2008).

Como del resultado de aplicar estos criterios, la distribución del tablero general y los tableros de distribución se pueden observar en el Apéndice 2.

5.5 Metodología Tradicional

5.5.1 Diseño de circuitos derivados

Para determinar el calibre del conductor eléctrico se tendrá en cuenta el conductor del tipo NH-80 (cable libre de halógenos, baja emisión de humos densos y no propaga el incendio) y los siguientes criterios:

- Número de puntos de salida en cada circuito
- Potencia prevista para cada salida
- Capacidad de los conductores
- Caída de tensión

5.5.1.1 Cálculo de conductores

Para calcular la sección del conductor se debe conocer la corriente que circulará por esta, ya sea para circuitos de iluminación o tomacorriente.

Al ser nuestros circuitos monofásicos, se tiene la siguiente expresión que calcula la corriente que circula producto de la carga que alimenta:

$$I = \frac{P}{V \cdot \cos \varphi}$$

La sección del conductor seleccionado será la que sea capaz de conducir esta corriente calculada, adicionalmente, el CNE establece que la máxima caída de tensión en un circuito derivado no debe superar el 2.5%, para lo cual usaremos la ecuación:

$$\Delta V = 2RIL\cos\varphi$$

Paso 1. Datos de entrada.

- Potencia = 1260 W
- Tensión = 220 V
- L = 43.33 m
- $\cos \varphi = 0.9$
- T. ambiente = 27°C

Paso 2. Cálculo del corriente nominal de la carga

$$In = \frac{P}{V \cdot \cos \varphi}$$

$$In = \frac{1260}{220 \cdot 0.9}$$

$$In = 6.36 A$$

Paso 3. Cálculo de la corriente de diseño

$$Id = 1.25 \cdot In$$

$$Id = 1.25 \cdot 6.36$$

$$Id = 7.95 A$$

Paso 4. Selección del calibre del conductor.

Para la selección del calibre del conductor se debe tener en cuenta el efecto de la temperatura ambiental y del agrupamiento de los conductores en el ducto que los conduce, para este caso estos factores son (ver Anexo 6):

$$Ka = 1$$

$$Kt = 1.036$$

De los datos del fabricante se selección el conductor 1x4 mm2 NH-80, verificando:

Tabla 22Datos eléctricos conductor NH-80

Sección (mm²)	Capac. Corriente ducto 30°C (A)
2.5	20
4	26
6	34

Fuente: Indeco

$$Id < Ic \cdot Ka \cdot Kt$$

7.95 < 26 · 1 · 1.036
7.95 $A <$ 26.936 A

Paso 5. Verificando la caída de tensión

A efectos de la temperatura, la resistencia del conductor se ve afectada como sigue:

$$T_{operac.} = T_{ambiente} + (T_{max} - T_{ambiente}) \cdot \left(\frac{I}{I_{max}}\right)^{2}$$

$$T_{operac.} = 27 + (80 - 27) \cdot \left(\frac{6.36}{26.936}\right)^{2}$$

$$T_{operac.} = 52.7^{\circ}C$$

$$R_{operacion} = R_{20^{\circ}C} \cdot \left(1 + \alpha (T_{operac.} - 20)\right)$$

$$R_{operacion} = 4.61 \cdot \left(1 + 0.00393(52.7 - 20)\right)$$

$$R_{operacion} = 5.2 \text{ ohm/km}$$

Luego:

$$\Delta V = 2RIL\cos\varphi$$

$$\Delta V = 2 \cdot 5.2 \cdot 7.95 \cdot 43.33 \cdot 0.9$$

$$\Delta V = 3.23 V$$

$$\Delta V\% = 1.46 \%$$

Paso 6. Selección de tubo conduit.

Para la selección del tubo conduit se empleará la tabla 6 "Máximo número de conductores de una dimensión en tuberías pesadas o livianas" del CNE-Utilización, con el que se selecciona la tubería liviana ¾" o 20 mm.

A continuación, se muestra en tablas los resultados obtenidos del cálculo de conductores según el bloque de la unidad educativa, así mismo el diagrama unifilar de este se muestra en el Apéndice B.

Tabla 23

Cálculo de conductores TD1 - Bloque 1

TD-1 Bloque 1															
Circuito derivado	M.D.(W)	U(V)	cosφ	L(m)	In(A)	Id(A)	Ка	Kt	Ic(A)	Sección del cable (mm2)	R (t=20) (ohm/km)	r t (ohm/km)	ΔV(V)	ΔV(%)	Tubo (mm)
C-1 Alumbrado interior	1096	220	0.9	18.4	5.54	6.92	1	1.036	20.72	2.5	7.41	8.41	1.93	0.88	20
C-2 Alumbrado exterior	472	220	0.9	38.47	2.38	2.98	1	1.036	20.72	2.5	7.41	8.14	1.68	0.76	20
C-3 Tomacorriente Aula -01	1260	220	0.9	43.33	6.36	7.95	1	1.036	26.94	4	4.61	5.20	3.23	1.47	20
C-4 Tomacorriente Aula -02	1260	220	0.9	38.52	6.36	7.95	1	1.036	26.94	4	4.61	5.20	2.87	1.30	20

Fuente: Elaboración propia

Tabla 24

Cálculo de conductores TD2 - Bloque 2

parodio de conductores FBZ Bioque Z															
	TD-2 Bloque 2														
Circuito derivado	M.D.(W)	U(V)	cosφ	L(m)	In(A)	Id(A)	Ka	Kt	Ic(A)	Sección del cable (mm2)	r 20 (ohm/km)	rt (ohm/km)	ΔV(V)	ΔV(%)	Tubo (mm)
C-1 Alumbrado interior	1096	220	0.9	18.4	5.54	6.92	1	1.036	20.72	2.5	7.41	8.41	1.93	0.88	20
C-2 Alumbrado exterior	576	220	0.9	37.07	2.91	3.64	1	1.036	20.72	2.5	7.41	8.19	1.99	0.90	20
C-4 Tomacorriente Aula -03	1260	220	0.9	43.39	6.36	7.95	1	1.036	26.94	4	4.61	5.20	3.23	1.47	20
C-3 Tomacorriente Aula -04	1260	220	0.9	38.78	6.36	7.95	1	1.036	26.94	4	4.61	5.20	2.89	1.31	20

Tabla 25

Cálculo de conductores TD3 - Bloque 3

TD-3 Bloque 3															
Circuito derivado	M.D.(W)	U(V)	cosφ	L(m)	In(A)	Id(A)	Ка	Kt	Ic(A)	Sección del cable (mm2)	r 20 (ohm/km)	rt (ohm/km)	ΔV(V)	ΔV(%)	Tubo (mm)
C-1 Alumbrado interior	1200	220	0.9	26.08	6.06	7.58	1	1.036	20.72	2.5	7.41	8.45	3.00	1.37	20
C-2 Alumbrado exterior	452	220	0.9	32.52	2.28	2.85	1	1.036	20.72	2.5	7.41	8.13	1.36	0.62	20
C-3 Tomacorriente Aula -05	1260	220	0.9	42.6	6.36	7.95	1	1.036	26.94	4	4.61	5.20	3.17	1.44	20
C-4 Tomacorriente Psicomotricidad	1260	220	0.9	46.53	6.36	7.95	1	1.036	26.94	4	4.61	5.20	3.47	1.58	20

Fuente: Elaboración propia

Tabla 26

Cálculo de conductores TD4 - Bloque 5

	TD-4 Bloque 5														
Circuito derivado	M.D.(W)	U(V)	cosφ	L(m)	In(A)	Id(A)	Ka	Kt	Ic(A)	Sección del cable (mm2)	r 20 (ohm/km)	r t (ohm/km)	ΔV(V)	ΔV(%)	Tubo (mm)
C-1 Alumbrado interior	1036	220	0.9	14.7	5.23	6.54	1	1.036	20.72	2.5	7.41	8.39	1.45	0.66	20
C-2 Alumbrado exterior	284	220	0.9	29.1	1.43	1.79	1	1.036	20.72	2.5	7.41	8.02	0.75	0.34	20
C-3 Tomacorriente	1980	220	0.9	22.35	10.00	12.50	1	1.036	26.94	4	4.61	5.32	2.68	1.22	20

Tabla 27

Cálculo de conductores TD5 - Bloque 4

TD5- Bloque 4															
Circuito derivado	M.D.(W)	U(V)	cosφ	L(m)	In(A)	Id(A)	Ka	Kt	Ic(A)	Sección del cable (mm2)	r 20 (ohm/km)	rt (ohm/km)	ΔV(V)	ΔV(%)	Tubo (mm)
C-1 Alumbrado interior	752	220	0.9	14.05	3.80	4.75	1	1.036	20.72	2.5	7.41	8.27	0.99	0.45	20
C-2 Alumbrado exterior	440	220	0.9	32.35	2.22	2.78	1	1.036	20.72	2.5	7.41	8.12	1.31	0.60	20
C-3 Tomacorriente SUM	1620	220	0.9	47.39	8.18	10.23	1	1.036	26.94	4	4.61	5.27	4.59	2.09	20
C-4 Tomacorriente	1260	220	0.9	12.7	6.36	7.95	1	1.036	26.94	4	4.61	5.20	0.95	0.43	20

Fuente: Elaboración propia

Tabla 28

Cálculo de conductores TD-AL

Calcalo de cortadoto	100 10 7	\ <u></u>													
	TD-AL														
Circuito derivado	M.D.(W)	U(V)	cosφ	L(m)	In(A)	Id(A)	Ka	Kt	Ic(A)	Sección del cable (mm2)	r 20 (ohm/km)	r t (ohm/km)	ΔV(V)	ΔV(%)	Tubo (mm)
C-1 Alumbrado patio	1807.2	220	0.9	45.57	9.13	11.41	1	1.036	26.94	4	4.61	5.30	4.96	2.25	20
C-2 Alumbrado juegos	903.6	220	0.9	56.95	4.56	5.70	1	1.036	20.72	2.5	7.41	8.34	4.88	2.22	15
C-3 Alumbrado	468	220	0.9	54.61	2.36	2.95	1	1.036	20.72	2.5	7.41	8.14	2.36	1.07	15
C-4 Alumbrado frontis	624	220	0.9	46.65	3.15	3.94	1	1.036	20.72	2.5	7.41	8.22	2.72	1.24	15

5.5.1.2 Cálculo de protecciones

La protección por sobrecorriente actúa en función de la protección del conductor y de todo elemento aguas debajo de este, en ese sentido, para su selección se aplica el siguiente criterio:

Donde:

Id= Corriente de diseño

It= Corriente de la protección por sobrecorriente

Ic= Corriente del conductor

Para la protección diferencial, el CNE exige que debe contar con no mas de 30 mA de umbral de operación de corriente residual, debe instalarse aguas abajo y con corriente nominal igual o mayor que el interruptor del tipo termomagnético.

Finalmente, la sección del conductor de puesta a tierra se seleccionará teniendo que su corriente nominal sea mayor que la capacidad nominal del dispositivo de sobrecorriente del circuito y la tabla de mínima sección de conductores para enlaces equipotenciales de canalizaciones y equipos dispuesto en el CNE y en el Anexo 8.

Siguiendo con el ejemplo en el circuito de tomacorriente C3 del bloque 1, se calcula:

Paso 7. Selección del dispositivo de protección sobrecorriente y diferencial

Teniendo en cuenta que:

$$Id = 7.95 A$$

$$Ic = 36.26 A$$

El CNE - Utilización recomienda el uso de un termomagnético con capacidad nominal de 15 A, para este caso usaremos un interruptor termomagnético de capacidad comercial de 20 A, verificando que:

De esto, se selecciona el dispositivo de protección diferencial de capacidad 20A y sensibilidad 30 mA.

Paso 8. Selección del calibre del conductor de puesta a tierra.

Teniendo en cuenta que nuestro dispositivo de protección es de capacidad 20A, de datos del fabricante del conductor se tiene que:

Tabla 29

Datos eléctricos conductor NH-80

Sección [mm²]	Capac. Corriente ducto 30°C
Seccion [mm]	[A]
1.5	15
2.5	20
4	26

Fuente: Nexans

Con esto se selecciona el conductor 1x2.5 mm2 NH-80.

A continuación, se muestra en tablas los resultados obtenidos del cálculo de dispositivos de protección y conductor de puesta a tierra según el bloque de la unidad educativa, así mismo el diagrama unifilar de este se muestra en el Apéndice B.

Tabla 30

Cálculo de protecciones TD1 - Bloque 1

Odiodio do protocolorio	0 101	Dioquo I										
TD-1 Bloque 1												
	Valtaia	l do	l dal	Canadidad	Diferen	cial	Calibre					
	Voltaje	I. de	I. del	Capacidad			Tierra					
Circuito derivado	(V)	diseño(A)	conductor(A)	Term. (A)	Capacidad (A)	Sen. (mA)	(mm2)					
C-1 Alumbrado interior	220	6.92	20.72	16	16	30 mA	-					
C-2 Alumbrado exterior	220	2.98	20.72	16	16	30 mA	•					
C-3 Tomacorriente Aula -01	220	7.95	36.26	20	20	30 mA	2.5					
C-4 Tomacorriente Aula -02	220	7.95	36.26	20	20	30 mA	2.5					

Tabla 31

Cálculo de protecciones TD2 - Bloque 2

		•	TD-2 Bloque 2				
	\	1 -1-	1 4-1	C	Diferen	cial	Calibre
Circuito derivado	Voltaje (V)	I. de diseño(A)	I. del conductor(A)	Capacidad Term. (A)	Capacidad (A)	Sen. (mA)	Tierra (mm2)
C-1 Alumbrado interior	220	6.92	20.72	16	16	30 mA	-
C-2 Alumbrado exterior	220	3.64	20.72	16	16	30 mA	-
C-4 Tomacorriente Aula -03	220	7.95	36.26	20	20	30 mA	2.5
C-3 Tomacorriente Aula -04	220	7.95	36.26	20	20	30 mA	2.5

Tabla 32

Cálculo de protecciones TD3 - Bloque 3

·			TD-3 Bloque 3				
	\	1 -1-	1 4-1	Cid-d	Diferencial		Calibre
	Voltaje	I. de	I. del	Capacidad			Tierra
Circuito derivado	(V)	diseño(A)	conductor(A)	Term. (A)	Capacidad (A)	Sen. (mA)	(mm2)
C-1 Alumbrado interior	220	7.58	20.72	16	16	30 mA	-
C-2 Alumbrado exterior	220	2.85	20.72	16	16	30 mA	-
C-3 Tomacorriente Aula -05	220	7.95	36.26	20	20	30 mA	2.5
C-4 Tomacorriente Psic.	220	7.95	36.26	20	20	30 mA	2.5

Fuente: Elaboración propia

Tabla 33

Cálculo de protecciones TD4 - Bloque 5

TD-4 Bloque 5											
					Diferen	cial	Calibre				
	Voltaje	I. de	I. del	Capacidad			Tierra				
Circuito derivado	(V)	diseño(A)	conductor(A)	Term. (A)	Capacidad (A)	Sen. (mA)	(mm2)				
C-1 Alumbrado interior	220	6.54	20.72	16	16	30 mA	-				
C-2 Alumbrado exterior	220	1.79	20.72	16	16	30 mA	-				
C-3 Tomacorriente	220	12.50	36.26	20	20	30 mA	2.5				

Tabla 34Cálculo de protecciones TD5 - Bloque 4

			TD-5 Bloque	4			
	Voltaje	I. de	I. del	Capacidad	Diferen	cial	Calibre Tierra
Circuito derivado	(V)	diseño(A)	conductor(A)	Term. (A)	Capacidad (A)	Sen. (mA)	(mm2)
C-1 Alumbrado interior	220	4.75	20.72	16	16	30 mA	-
C-2 Alumbrado exterior	220	2.78	20.72	16	16	30 mA	-
C-3 Tomacorriente SUM	220	10.23	36.26	20	20	30 mA	2.5
C-4 Tomacorriente	220	7.95	36.26	20	20	30 mA	2.5

Tabla 35

Cálculo de protecciones TD-AL

•							
			TD-AL				
					Diferen	cial	Calibre
	Voltaje	I. de	I. del	Capacidad			Tierra
Circuito derivado	(V)	diseño(A)	conductor(A)	Term. (A)	Capacidad (A)	Sen. (mA)	(mm2)
C-1 Alumbrado patio	220	11.41	36.26	16	16	30 mA	2.5
C-2 Alumbrado juegos	220	5.70	20.72	16	16	30 mA	2.5
C-3 Alumbrado	220	2.95	20.72	16	16	30 mA	2.5
C-4 Alumbrado frontis	220	3.94	20.72	16	16	30 mA	2.5

Fuente: Elaboración propia

5.5.2 Diseño de circuito alimentador

Para determinar el calibre del alimentador principal y secundario se tendrá en cuenta el conductor del tipo N2XOH (cable libre de halógenos, baja emisión de humos densos no propaga el incendio y adecuada resistencia a la intemperie) y los siguientes criterios:

- Cálculo de máxima demanda
- Capacidad de los conductores
- Caída de tensión

5.5.2.1 Determinación de la máxima de manda

Usando el método 1 para el cálculo de máxima demanda con carga previstas (futuras) y lo indicado por el CNE – Utilización en su regla 050-204, se calcula la máxima demanda como sigue:

Tabla 36

Determinación de carga y demanda tableros de distribución

Tablero	Descripción	Cant.	Área (m²)	Carg. básica (W/m²)	P.I. (W)	F.D.	M.D. (W)
TD-1	Área Básica Aulas	1	118.00	50	5 900.0	0.75	4 711.13
10-1	Área pasadizos, S.H., depósitos	1	38.15	10	381.5	0.75	4 / 11.13
TD-2	Área Básica Aulas	1	118.00	50	5 900.0	0.75	4 711.13
10-2	Área pasadizos, S.H., depósitos	1	38.15	10	381.5	0.75	4 / 11.13
1	Área Básica Aulas	1	59.00	50	2 950.0	0.75	
TD-3	Área de psicomotricidad, pasadizos, S.H., depósitos	1	117.90	10	1 179.0	0.75	3 096.75
TD-4	Área de dirección, sala de prof., Tópico, pasadizos, S.H., depósitos, Hall	1	93.07	10	930.7	0.75	698.03
'	Área de cocina	1	11.50	25	287.5	1	
TD-5	Área de SUM, pasadizos, S.H., depósitos	1	107.10	10	1 071.0	0.75	1 090.75
TD-AL	Equipos de Ilum. HighBay - 150W	18	-	150.6	2 710.8	1	3 802.8
I D-AL	Equipos de Ilum. Tipo braquete	21	-	52	1 092.0	1	3 002.0
TB-1	Electrobomba de 1.0 HP	1	-	746	746.0	1	746

Fuente: Elaboración propia

Tabla 37

Determinación de carga y demanda tablero general

	<u> </u>				
Tablero	Descripción	Cant.	P.I. (W)	F.D.	M.D.(W)
	Carga de TD-1	1	4 711.13	1	
	Carga de TD-2	1	4 711.13	1	
	Carga de TD-3	1	3 096.75	1	
TG	Carga de TD-4	1	698.03	1	18 856.58
10	Carga de TD-5	1	1 090.75	1	10 030.30
	Carga de TD-				
	AL	1	3 802.8	1	
	Carga de TB-1	1	746	1	

5.5.2.2 Cálculo de conductores

Para el cálculo de la sección del conductor alimentador se debe conocer la corriente que circulará por esta y dependerá del sistema trifásico o monofásico y la carga determinada por la máxima demanda calculada, así se tiene las siguientes expresiones.

$$I = \frac{P}{V \cdot \cos \varphi}$$

$$I = \frac{P}{\sqrt{3} \cdot V \cdot \cos \varphi}$$

La sección del conductor seleccionado será la que sea capaz de conducir esta corriente calculada, adicionalmente, el CNE establece que la máxima caída de tensión en un circuito alimentador no debe superar el 2.5% y la caída de tensión máxima del alimentador y circuito derivado no debe superar el 4%, para lo cual usaremos la ecuación, según el sistema eléctrico que corresponda:

$$\Delta V = 2RIL\cos\varphi$$

$$\Delta V = \sqrt{3}RIL\cos\varphi$$

Así tenemos para el tablero TD-1

Paso 1. Datos de entrada.

- Máxima demanda = 1260 W
- Tensión = 220 V
- Sistema = monofásico
- L = 30.6 m
- $\cos \varphi = 0.9$
- T. ambiente = 27°C

Paso 2. Cálculo del corriente nominal de la carga

$$In = \frac{P}{V \cdot \cos \varphi}$$

$$In = \frac{4711.13}{220 \cdot 0.9}$$

In = 23.79 A

Paso 3. Cálculo de la corriente de diseño

$$Id = 1.25 \cdot In$$

$$Id = 1.25 \cdot 23.79$$

$$Id = 29.74 A$$

Paso 4. Selección del calibre del conductor.

Para la selección del calibre del conductor se debe tener en cuenta el factor de corrección de instalación enterrada, para este caso estos factores son:

$$Ke = K1 \cdot K2 \cdot K3 \cdot K4$$

K1 = Factor de corrección por agrupamiento de cables (Tabla 5C y 5D del CNE – Utilización)

*K*2 = Factor de corrección por temperatura del terreno (Tabla 5A del CNE – Utilización)

K3 = Factor de corrección por resistividad térmica del terreno (Tabla 5B del CNE –Utilización)

K4 = Factor de corrección por profundidad (referencia UNE 211435:2011)

Asimismo, los mencionados factores se pueden encontrar en el anexo 7.

$$Ke = 0.75 \cdot 0.926 \cdot 1 \cdot 1.01$$

 $Ke = 0.7$

De los datos del fabricante se selección el conductor 1x6 mm² N2XOH, verificando:

$$Id < Ic \cdot Ke$$

29.74 < 55 · 0.7
29.74 $A < 38.57 A$

Paso 5. Verificando la caída de tensión

A efectos de la temperatura, la resistencia del conductor se ve afectada como sigue:

$$T_{operac.} = T_{ambiente} + (T_{max} - T_{ambiente}) \cdot \left(\frac{I}{I_{max}}\right)^{2}$$
 $T_{operac.} = 27 + (90 - 27) \cdot \left(\frac{23.79}{38.57}\right)^{2}$
 $T_{operac.} = 76.47^{\circ}C$
 $R_{operacion} = R_{20^{\circ}C} \cdot \left(1 + \alpha (T_{operac.} - 20)\right)$
 $R_{operacion} = 3.08 \cdot (1 + 0.00393(76.47 - 20))$
 $R_{operacion} = 3.76 \text{ ohm/km}$

Luego:

$$\Delta V = 2RIL\cos\varphi$$

$$\Delta V = 2 \cdot 3.76 \cdot 29.74 \cdot 30.6 \cdot 0.9$$

$$\Delta V = 4.93 V$$

$$\Delta V\% = 2.24 \%$$

Paso 6. Selección de tubo conduit.

Para la selección del tubo conduit se empleará la tabla 6 "Máximo número de conductores de una dimensión en tuberías pesadas o livianas" del CNE-Utilización, con el que se selecciona la tubería pesada 1 1/4" o 35 mm.

A continuación, se muestra en tablas los resultados obtenidos del cálculo de conductores, así mismo el diagrama unifilar de este se muestra en el Apéndice B.

Tabla 38Cálculo de conductores TG

								TG								
Tablero	M.D.(W)	U(V)	cosф	L(m)	Fases	I(A)	ld(A)	Ke	Ic(A)	Terna	Sección del cable (mm2)	r 20 (ohm/km)	r t (ohm/km)	ΔV (V)	ΔV (%)	Tubo (mm)
TD-01	4 711.13	220	0.9	30.60	Monofásico	23.79	29.74	0.70	54.01	1	10	1.83	2.18	3.57	1.62	35
TD-02	4 711.13	220	0.9	47.08	Monofásico	23.79	29.74	0.70	54.01	1	10	1.83	2.18	4.40	2.00	35
TD-03	3 096.75	220	0.9	20.30	Monofásico	15.64	19.55	0.70	38.58	1	6	3.08	3.65	2.09	0.95	35
TD-04	698.03	220	0.9	25.44	Monofásico	3.53	4.41	0.70	38.58	1	6	3.08	3.40	0.55	0.25	35
TD-05	1 090.75	220	0.9	41.45	Monofásico	5.51	6.89	0.70	38.58	1	6	3.08	3.45	1.42	0.65	35
TD-AL	3 802.80	220	0.9	4.00	Monofásico	19.21	24.01	0.70	38.58	1	6	3.08	3.70	0.51	0.23	35
TB-1	746.00	220	0.8	31.02	Monofásico	4.99	6.23	0.70	38.58	1	6	3.08	3.44	0.85	0.39	35

Tabla 39

Cálculo de conductores de acometida

Tablero	M.D.(W)	U(V)	cosф	L(m)	Fases	I(A)	Id(A)	Ke	Ic(A)	Terna	Sección del cable (mm2)	r 20 (ohm/km)	r t (ohm/km)	ΔV (V)	ΔV (%)	Tubo (mm)
TG	18 856.58	380	0.9	17.1	Trifásico	31.83	39.79	0.70	70.7	1	16	1.15	1.37	1.16	0.3	35

5.5.2.3 Cálculo de protecciones

La protección por sobrecorriente actúa en función de la protección del conductor y de todo elemento aguas debajo de este, en ese sentido, para su selección se aplica el siguiente criterio:

Donde:

Id= Corriente de diseño

It= Corriente de la protección por sobrecorriente

Ic= Corriente del conductor

Para la protección diferencial, el CNE exige que debe contar con no mas de 30 mA de umbral de operación de corriente residual, debe instalarse aguas abajo y con corriente nominal igual o mayor que el interruptor del tipo termomagnético.

Finalmente, la sección del conductor de puesta a tierra se seleccionará teniendo que su corriente nominal sea mayor que la capacidad nominal del dispositivo de sobrecorriente del circuito y la tabla de mínima sección de conductores para enlaces equipotenciales de canalizaciones y equipos dispuesto en el CNE-Utilización y en el anexo 9.

Siguiendo con el ejemplo en el circuito alimentador del tablero TD-1, se calcula:

Paso 7. Selección del dispositivo de protección sobrecorriente y diferencial

Teniendo en cuenta que:

$$Id = 29.74 A$$

$$Ic = 56.98 A$$

El CNE - Utilización recomienda el uso de un termomagnético con capacidad nominal de 30 A, para este caso usaremos un interruptor termomagnético de capacidad comercial de 32 A, verificando que:

De esto, se selecciona el dispositivo de protección diferencial de capacidad 32A y sensibilidad 30 mA.

Paso 8. Selección del calibre del conductor de puesta a tierra.

Teniendo en cuenta que nuestro dispositivo de protección es de capacidad 32A, de datos del fabricante del conductor se tiene que:

Tabla 40Datos eléctricos conductor N2XOH

Sección [mm²]	Capac. Corriente ducto 30°C
Seccion [mm]	[A]
4	42
6	55
10	77

Fuente: Nexans

Con esto se selecciona el conductor 1X6 mm2 N2XOH.

A continuación, se muestra en tablas los resultados obtenidos del cálculo de dispositivos de protección y conductor de puesta a tierra según el bloque de la unidad educativa, así mismo el diagrama unifilar de este se muestra en el Apéndice B.

Tabla 41Cálculo de protecciones TG

Calculo de	protección	163 10					
				TG			
		I. de	I. del	Capacidad	Diferen	cial	Calibre Tierra
Tablero	Voltaje (V)	diseño(A)	conductor(A)	Term. (A)	Capacidad (A)	Sen. (mA)	(mm2)
TD-01	220	29.74	38.58	32	32	30	6
TD-02	220	29.74	54.01	32	32	30	6
TD-03	220	19.55	38.58	25	25	30	4
TD-04	220	4.41	38.58	25	25	30	4
TD-05	220	6.89	38.58	25	25	30	4
TD-AL	220	24.01	38.58	32	32	30	6
TB-1	220	6.23	38.58	16	16	30	2.5

Tabla 42

Cálculo de protecciones acometida

Tablero	Voltaje (V)	I. de diseño(A)	I. del conductor(A)	Capacidad Term. (A)	Calibre Tierra (mm2)
TG	380	39.79	70.7	63	16

Fuente: Elaboración propia

5.5.3 Cálculo de puesta a tierra

Para el cálculo de la resistencia de puesta a tierra se tendrá en cuenta la configuración de jabalina vertical y la ecuación:

$$R_T = \frac{\rho}{2\pi L} ln\left(\frac{4L}{d}\right)$$

Paso 1: Datos de entrada

 ρ = 200 (Ω .m)

L=2.4 m

d = 0.016 m

Paso 2: Reemplazando en la ecuación

$$R_T = \frac{200}{2\pi \cdot 2.4} ln \left(\frac{4 \cdot 2.4}{0.016} \right)$$

$$R_T = 84.84 \Omega$$

Paso 3: Se adiciona gel para mejorar la conductividad eléctrica, este disminuye aproximadamente a 40% la resistividad del terreno

$$R_T = 84.84 * 0.4$$

$$R_T = 33.93 \,\Omega$$

Paso 4: Como última medida para cumplir con el CNE- Utilización, se agrega una jabalina en paralelo, para esto se considerará una separación entre jabalinas de 4m.

$$R_T = 33.93 \cdot 0.543$$

$$R_T = 18.42 \Omega$$

Con esto se determina el sistema de pozos a tierra con 2 jabalinas verticales de 2.4 m de longitud en paralelo y separados 4m.

5.5.4 Metrados

Para el cálculo o cuantificación por partidas de las instalaciones eléctricas se tendrá en cuenta la Norma Técnica "Metrados para obras de edificación y habilitaciones urbanas", la altura de las salidas determinada por la Norma Técnica "Criterios de Diseño para Locales Educativos del Nivel de Educación Inicial", la Norma Técnica "Accesibilidad Universal en Edificaciones" y el plano de distribución o planta del centro educativo.

Con fines didácticos, calcularemos la longitud del tubo conduit en el tramo del subtablero TD-1 a la salida de luminaria adosada en el baño de niños, para esto haremos uso de las alturas referenciales y el plano de distribución tal como se muestra:

Figura 13

Altura referencial en metros de las salidas eléctricas

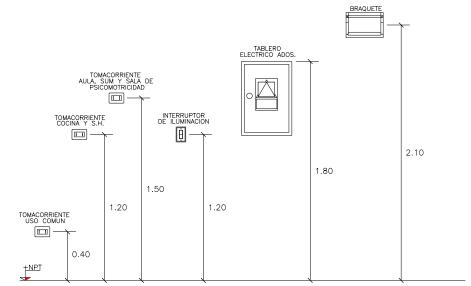
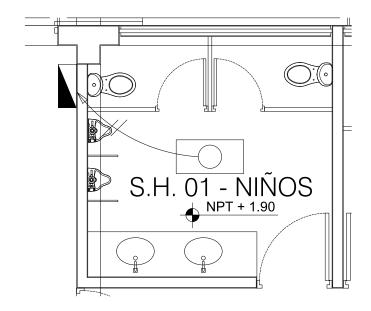
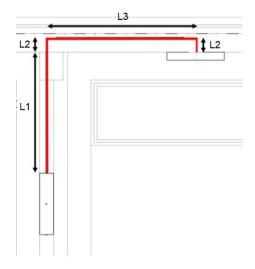



Figura 14

Plano de planta

Fuente: Elaboración propia

Paso 1. Datos de entrada.


- Altura referencial del tablero = 1.8m
- Altura referencial de la luminaria adosada = 3.1m
- Distancia horizontal = 2m
- Profundidad de empotrado de tubería = 0.15 m

Paso 2. Cálculo de metrado.

Calculando la longitud del recorrido del tubo conduit:

Figura 15

Longitudes referenciales del metrado

$$L_{tubo\ conduit} = L1 + L2 + L3 + L2$$

L1 = distancia del tablero al nivel del techo

L2 = profundidad de empotramiento

L3 = distancia horizontal

$$L_{tubo\;conduit} = (3.1-1.8) + 0.15 + 2 + 0.15$$

$$L_{tubo\ conduit} = 3.6\ m$$

Este mismo proceso se repite en cada uno de los tramos entre las salidas en toda la instalación eléctrica, esto para el cálculo de longitud de tubo conduit y de los conductores; El metrado de elementos discretos como luminarias, interruptores, tomacorrientes, tableros, etc. se realiza únicamente contando uno a uno desde el plano de planta.

A continuación, se muestra el resultado del metrado ordenado según partida:

Tabla 43Planilla de metrado de instalaciones eléctricas

Item	Descripción	Unidad	Cantidad	Precio S/.	Parcial S/.
5.00	INSTALACIONES ELECTRICAS Y MECANICAS				
5.01	SALIDAS PARA ALUMBRADO, TOMACORRIENTE Y				
	FUERZA				
05.01.01	SALIDA PARA CENTRO DE LUZ P/EQ. ADOSADO	pto	123.00	60.45	7435.35
05.01.03	SALIDA PARA TOMACORRIENTE DOBLE C/TOMA A TIERRA	pto	63.00	62.01	3906.63
05.01.04	SALIDA PARA TOMACORRIENTE DOBLE A PRUEBA DE AGUA	pto	5.00	64.74	323.7
05.01.06	SALIDA PARA TOMACORRIENTE BIPOLAR SIMPLE PARA PROYECTOR	pto	1.00	71.95	71.95
05.01.07	SALIDA PARA INTERRUPTOR SIMPLE UNIPOLAR 10 A	pto	35.00	60.56	2119.6
05.01.08	SALIDA PARA INTERRUPTOR DOBLE 10 A	pto	7.00	49.98	349.86
05.01.09	SALIDA PARA INTERRUPTOR TRIPLE	pto	1.00	49.98	49.98
05.01.10	SALIDA PARA INTERRUPTOR CONMUTACION SIMPLE	pto	22.00	49.98	1099.56
05.01.11	SALIDA PARA INTERRUPTOR CONMUTACION DOBLE	pto	1.00	49.98	49.98
05.01.12	SALIDA PARA BRAQUETE	pto	51.00	51.01	2601.51
05.01.18	CAJAS DE PASO OCTOGONAL DE 100 X 100 X 30 MM.	und	6.00	56.73	340.38
05.01.20	CAJAS DE PASO CUADRADAS DE 100 X 100 X 30 MM.	und	4.00	56.73	226.92
05.01.21	CAJAS DE PASO CUADRADAS DE 100 X 100 X 55 MM.	und	1.00	56.73	56.73
5.02	ALIMENTADORES ELECTRICOS				
05.02.01	CABLE N2XOH 1x16mm²	m	77.56	12.76	989.6656
05.02.02	CABLE N2XOH 1x10mm²	m	116.59	8.3	967.697
05.02.03	CABLE N2XOH 1x6mm²	m	401.19	5.53	2218.5807
05.02.04	CABLE N2XOH 1x4mm²	m	88.55	4.04	357.742
05.02.05	CABLE N2XOH 1x2.5mm²	m	32.08	2.94	94.3152
05.02.06	CABLE NH-80 1X4mm²	m	947.26	2.7	2557.602
05.02.07	CABLE NH-80 1x2.5mm ²	m	1402.34	2.43	3407.6862
5.03	SALIDAS ESPECIALES				
05.03.01	SALIDA PARA ELECTROBOMBA	pto	1.00	176.5	176.5
5.04	TUBERIA DE PVC				
05.04.01	TUBERIA PVC-SAP ELECTRICA DE 15 mm	m	157.44	3.1	488.05
05.04.02	TUBERIA PVC-SAP ELECTRICA DE 20 mm	m	36.40	4.03	146.69
05.04.03	TUBERIA PVC-SAP ELECTRICA DE 35 mm	m	151.93	4.6	698.89
05.04.04	TUBERIA PVC-SEL ELECTRICA DE 20 mm	m	1203.97	1.6	1926.36
5.05	ARTEFACTOS				
05.05.01	SUM. E INSTAL. EQUIPO FLUORESCENTE ADOSADO, LUMINARIA TIPO JOSFEL RAS-3X36 W CON REJILLA METALICA	und	54.00	218.32	11789.28
05.05.02	SUM. E INSTAL. EQUIPO FLUORESCENTE ADOSADO, LUMINARIA TIPO JOSFEL RAS-4X18 W CON REJILLA METALICA	und	51.00	158.8	8098.8
05.05.03	SUM. E INSTAL. ARTEFACTO BRAQUETE, LUMINARIA TIPO JOSFEL RSP-2X26 W	und	51.00	129.47	6602.97
05.05.04	SUM. E INSTAL. LUMINARIA TIPO JOSFEL O SIMILAR, SISTEMA HIGH BAY, MOD. MER H-150	und	18.00	276.08	4969.44
5.06	ACCESORIOS				
05.06.01	TOMACORRIENTE DOBLE C/TOMA A TIERRA	und	63.00	23.1	1455.3
05.06.02	TOMACORRIENTE DOBLE A PRUEBA DE AGUA	und	5.00	40.26	201.3

05.06.04	TOMACORRIENTE BIPOLAR SIMPLE PARA PROYECTOR	und	1.00	36.23	36.23
05.06.05	INTERRUPTOR SIMPLE UNIPOLAR 10 A	und	35.00	12.22	427.7
05.06.06	INTERRUPTOR DOBLE 10 A	und	7.00	15.93	111.51
05.06.07	INTERRUPTOR TRIPLE	und	1.00	27.16	27.16
05.06.08	INTERRUPTOR CONMUTACION SIMPLE	und	22.00	18.42	405.24
05.06.09	INTERRUPTOR CONMUTACION DOBLE	und	1.00	18.42	18.42
05.06.10	INTERRUPTOR AUTOMATICO 25 KA, 3 X 63 A	und	1.00	172.91	172.91
05.06.11	INTERRUPTOR TERMOMAGNETICO, 2 X 32 A	und	3.00	57.91	173.73
05.06.12	INTERRUPTOR TERMOMAGNETICO, 2 X 25 A	und	3.00	57.91	173.73
05.06.13	INTERRUPTOR TERMOMAGNETICO, 2 X 20 A	und	9.00	51.83	466.47
05.06.14	INTERRUPTOR TERMOMAGNETICO, 2 X 16 A	und	15.00	50.91	763.65
05.06.15	INTERRUPTOR DIFERENCIAL 2 X 16 A, SENSIBILIDAD 30 m	und	5.00	115.91	579.55
	A				
05.06.16	INTERRUPTOR DIFERENCIAL 2 X 20 A, SENSIBILIDAD 30 m	und	9.00	120.91	1088.19
	A				
05.06.17	INTERRUPTOR DIFERENCIAL 2 X 25 A, SENSIBILIDAD 30 m	und	3.00	124.91	374.73
	Α				
05.06.18	INTERRUPTOR DIFERENCIAL 2 X 32 A, SENSIBILIDAD 30 m	und	3.00	124.91	374.73
	A				
5.07	TABLEROS				
05.07.01	TABLERO GENERAL TG	und	1.00	1239.93	1239.93
05.07.02	SUBTABLERO STD-1	und	1.00	1389.93	1389.93
05.07.03	SUBTABLERO STD-2	und	1.00	1193.93	1193.93
05.07.04	SUBTABLERO STD-3	und	1.00	1193.93	1193.93
05.07.05	SUBTABLERO STD-4	und	1.00	1193.93	1193.93
05.07.06	SUBTABLERO STD-5	und	1.00	1193.93	1193.93
05.07.07	SUBTABLERO T-AL	und	1.00	1193.93	1193.93
5.09	SISTEMAS DE CONDUCTOS				
05.09.01	BUZON DE CONCRETO 0.80 X 0.80 X 0.70 M. PARA REDES ELECTRICAS	und	10.00	170.93	1709.3

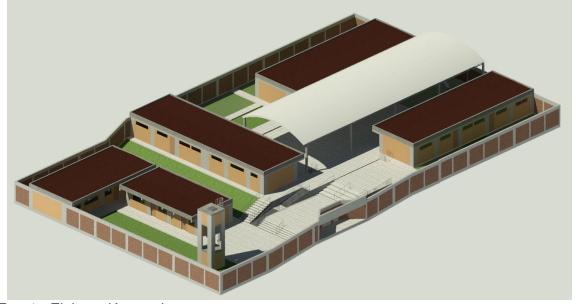
5.6 Metodología BIM

5.6.1 Configuración general y paso previos

Para el modelado en BIM usaremos principalmente el software Revit 2023, este software de trabajo colaborativo está dotado con herramientas para el cálculo automático de instalaciones eléctricas y metrado por partidas de los recursos que usaremos en el proyecto.

Luego de haber instalado el software, crearemos un nuevo proyecto y elegiremos una de las plantillas disponibles, en este caso seleccionaremos la plantilla eléctrica que está dotado con herramientas MEP específicas, luego se definen las unidades que usaremos, en general es preferible unidades en metros o centímetros, salvo casos como la medida del diámetro de tubo que se mide en pulgadas.

Es necesario crear nuevos niveles que nos servirán de referencia para el modelado BIM y las vistas del proyecto, sin embargo, estas estarán completamente definidas al sincronizarse con los niveles definidos en la plantilla de arquitectura.


5.6.1.1 Vincular Revit

La metodología BIM es el proceso de creación y gestión de la información de un proyecto de construcción, por este motivo, el modelado eléctrico se ejecuta sobre el modelo arquitectónico y estructural ya definidos.

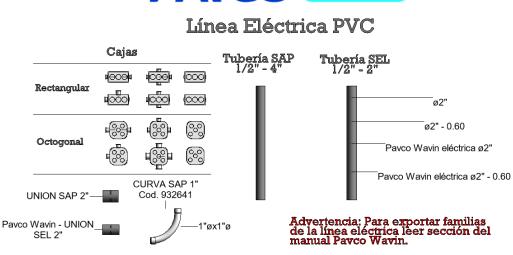
En nuestro caso emplearemos el modelo arquitectónico de la unidad educativa inicial ya definido como se muestra en la Figura 18.

Figura 16

Modelo BIM de arquitectura del centro educativo de nivel inicial

Fuente: Elaboración propia

5.6.1.2 Modelamiento Eléctrico


El modelo eléctrico de este proyecto contempla componentes desde el suministro eléctrico hasta la carga final, modelando tubos, conductores y alimentadores, luminarias, interruptores, tomacorrientes, cajas, buzones y tableros eléctricos estos agrupados según el tipo de aplicación.

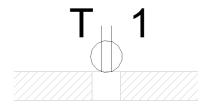
a) Circuito de tomacorriente:

Es aquel que comprende desde la salida del subtablero de distribución hasta el tomacorriente, empezando por los tubos que serán modelados a partir de la familia de tubos del proveedor Pavco Wavin.

Figura 17

Familia de la línea eléctrica PVC del proveedor Pavco Wavin

Al usar estos archivos, o realizar diseños con estos archivos, está aceptando los términos fijados en cualquier portal de Wavin Revit. Wavin no se hará responsable por cualquier pérdida, gasto, costo o daño directo o indirecto de cualquier naturaleza que surja o resulte del uso de los archivos.

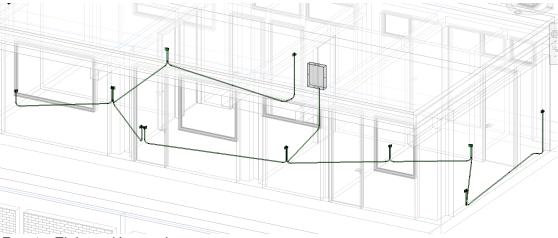

Fuente: Pavco Wavin

Los modelos de esta familia tienen los atributos de los tubos y accesorios de PVC que se usan en los proyectos de construcción, haciendo de este modelado fiel a la realidad.

Por otro lado, la familia de tomacorrientes ha sido modelados para cumplir con los requerimientos de la Norma DGE "Símbolos Gráficos de Electricidad".

Figura 18

Modelo BIM de tomacorriente altura 0.4



Fuente: Elaboración propia

Haciendo uso del modelo BIM de componentes eléctricos se puede lograr un modelo del circuito de tomacorrientes como se muestra en la Figura

Figura 19

Modelo BIM del circuito eléctrico de tomacorriente del Bloque 5 del centro educativo

Fuente: Elaboración propia

b) Circuito iluminación

Es aquel que comprende desde la salida del subtablero de distribución hasta las luminarias, para los tubos se emplearan las familias del proveedor Pavco Wavin como se realizó en el circuito de tomacorrientes.

Los interruptores se modelaron con las distintas configuraciones que se emplean en el proyecto (interruptor de 1,2 y 3 tiempos, interruptor de 3 vías) y cumpliendo con los requerimientos de la Norma DGE "Símbolos Gráficos de Electricidad", estos son:

Figura 20
Familia BIM de interruptores

1 TIEMPO	2 TIEMPOS	3 TIEMPOS	1 TIEMPO 3 VIAS	2 TIEMPOS 3 VIAS	3 TIEMPOS 3 VIAS
S	2S	3S •	S3	2S3	3 S 3

Por último, como se definió en el diseño luminotécnico, se modelaron 4 tipos de luminarias con sus características eléctricas, estos son:

Figura 21

Modelo BIM y características eléctricas de la luminaria Josfel RAS 3x36W

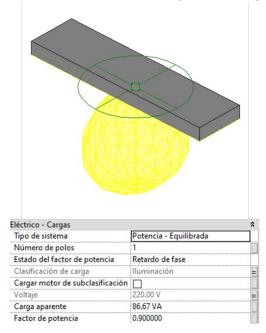


Figura 22

Modelo BIM y características eléctricas de la luminaria Josfel RAS 4x18W

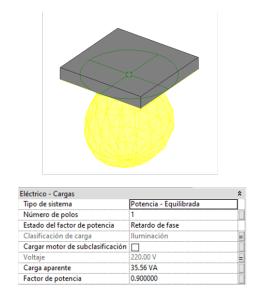
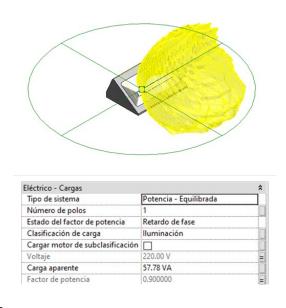
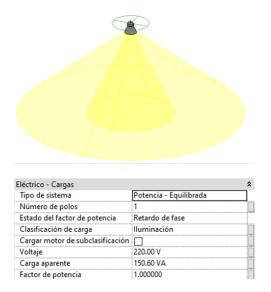
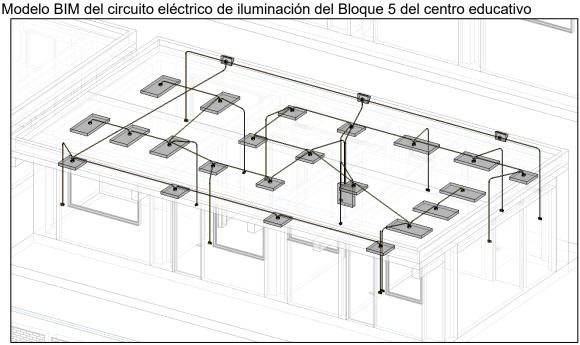


Figura 23

Modelo BIM y características eléctricas de la luminaria Josfel RSP 2X26W

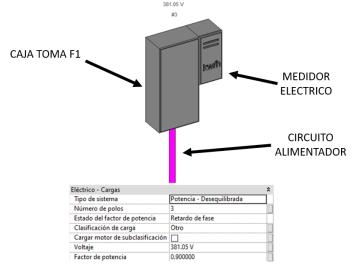




Figura 24

Modelo BIM y características eléctricas de la luminaria Josfel MER H 1X150W

Haciendo uso del modelo BIM de componentes eléctricos se puede lograr un modelo del circuito de iluminación como se muestra en la Figura.

Figura 25



c) Tablero y circuitos alimentadores

El modelo BIM de los componentes de este tramo de la instalación eléctrica parte del suministro, modelado con las características eléctricas del tipo de conexión estrella 380/220 V que es provista por la distribuidora Hidrandina.

Figura 26

Modelo BIM y características eléctricas del suministro eléctrico tipo estrella 380/220 V

Fuente: Elaboración propia

En el modelado de los tubos se emplearán las familias del fabricante Pavco Wavin como se realizó en el circuito de tomacorrientes. Por último, se consideraron 2 modelos BIM para los tableros eléctricos, el primero preparado para el sistema de distribución trifásico 380/220 V y el segundo para el sistema de distribución monofásico 220V.

Figura 27

Modelo BIM del tablero de distribución

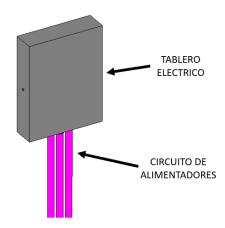
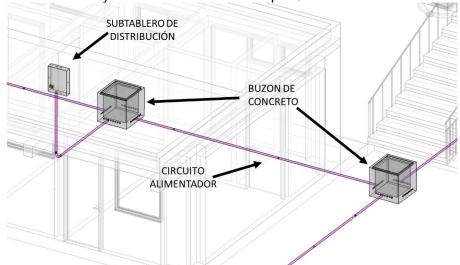


Figura 28

Características eléctricas del tablero de distribución monofásico 220 V(izquierda) y el tablero de distribución trifásico 380/220 V (derecha)


Eléctrico - Cargas			Eléctrico - Cargas	
Tipo de sistema	Potencia - Equilibrada		Tipo de sistema	Potencia - Desequilibrada
Número de polos	1		Número de polos	3
Estado del factor de potencia	Retardo de fase		Estado del factor de potencia	Retardo de fase
Clasificación de carga	Otros		Clasificación de carga	Otros
Cargar motor de subclasificación			Cargar motor de subclasificación	
Voltaje	220.00 V		Voltaje	381.05 V
Factor de potencia	0.900000		Factor de potencia	0.900000

Fuente: Elaboración propia

Haciendo uso del modelo BIM de componentes eléctricos se puede lograr un modelo del tablero y circuitos alimentadores como se muestra en la Figura.

Figura 29

Modelo BIM del alimentador y tablero eléctrico del Bloque 5 del centro educativo

Fuente: Elaboración propia

5.6.2 Cálculo de circuitos eléctricos

Los softwares de la metodología BIM como Revit proporcionan herramientas de cálculo automático de conductores en función de la caída de tensión y de factores de corrección.

La caída de tensión está definida en Revit con la siguiente fórmula (Autodesk, 2019):

$$Vd = (L * R * I)/1000$$

Donde:

Vd= Caída de voltaje

L= Longitud unidireccional del circuito

R= Resistencia del conductor en ohmios

I= Corriente de carga en amperios

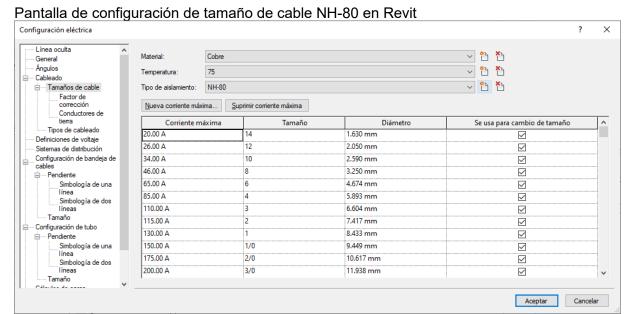
La variable R es determinada automáticamente por Revit en función del calibre del conductor y el sistema monofásico o trifásico, haciendo que la ecuación coincida con la utilizada en la metodología tradicional.

Por otro lado, una correcta configuración de los parámetros de cálculo basado en el CNE – Utilización y datos del fabricante nos permitirá obtener tablas de planificación de cada circuito en nuestra instalación eléctrica.

Estos parámetros se configuran desde la pantalla "configuración eléctrica", empezando por la caída de tensión definida en 2.5% para circuitos derivados y alimentadores y temperatura ambiente 27°C.

Figura 30

Pantalla de configuración de cableado en Revit Configuración eléctrica × Parámetro Valor General Temperatura ambiente Parámetro de temperatura Angulos 0.002 Cableado


Tamaños de cable Separación de cruce de cableado ambiente Marca de cable activo M Marca de cable largo Factor de corrección Conductores de Marca de cable de tierra M_Marca de cable largo Marca de cable neutro M_Marca de cable largo Tipos de cableado Definiciones de voltaje Sistemas de distribución Mostrar marcas Caída de voltaje máxima para tamaño de cableado de circuito de ramificación 2.50% Parámetro de caída de Configuración de bandeja de cables Caída de voltaje máxima para tamaño de cableado del circuito de alimentación 2.50% tensión Flecha de retorno de varios circuitos Varias flechas Simbología de una línea Estilo de flecha de retorno MEP - Flecha rellena de 1.. Simbología de dos Configuración de tubo Pendiente Simbología de una línea Simbología de dos Tamaño Aceptar Cancelar

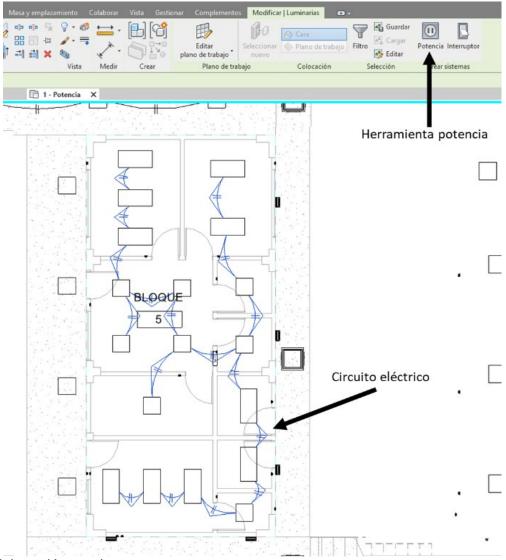
Fuente: Elaboración propia

El factor de corrección empleado será el resultado de los factores de corrección por temperatura y agrupamiento, para este caso será de 1.04 para 27°C.

También es necesario ingresar las características eléctricas de nuestro conductor, en nuestro caso será para el conductor NH-80 y N2XOH, esto se realiza en la pantalla "configuración eléctrica" seleccionando "tamaño de cable"

Figura 31

Fuente: Elaboración propia

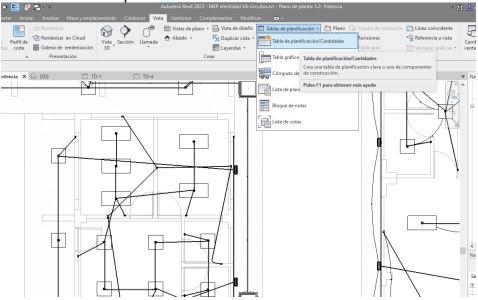

5.6.2.1 Modelado de circuitos eléctricos

El modelado de los circuitos eléctricos se hará en función de los componentes eléctricos modelados previamente, es decir, en función del modelo del circuito de tomacorriente, iluminación y de tableros y alimentadores.

Para realizar el modelado del circuito eléctrico de iluminación se debe seleccionar todas las luminarias que serán parte de nuestro circuito de iluminación y seleccionamos la herramienta potencia, esta creara automática la mejor ruta de alambrado y mostrara el circuito eléctrico creado.

Figura 32

Circuito eléctrico de iluminación del tablero TD4 en el bloque 5

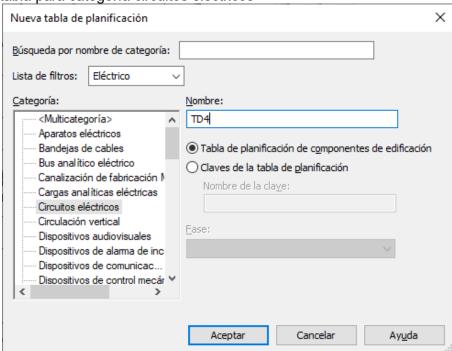


Adicionalmente se debe editar el recorrido desde el subtablero de alimentación hasta la salida más lejana a fin de calcular la caída de tensión con precisión.

Para visualizar los resultados se deberá crear una tabla de planificación con la categoría "circuito eléctrico", nos dirigimos a la pestaña "Vista" y seleccionamos "Tabla de planificación /cantidades".

Figura 33

Comando para crear tablas de planificación



Fuente: Elaboración propia

Posterior a esto, seleccionamos la categoría circuitos eléctrico

Figura 34

Selección de tabla para categoría circuitos eléctricos

Fuente: Elaboración propia

Así, finalmente obtenemos la tabla de planificación con el nombre del circuito, longitud, tensión, caída de tensión y conductor calculado.

Figura 35

Tabla de planificación del circuito del tablero TD4 en el bloque 5

1.2- Potencia	€ {3D}	□ TD-1		■ TD-4	X		
				<td-4></td-4>			
Α	В	С	D	E	F	G	Н
Circuito	Carga activa	Longitud	FDP	Voltaje	Caída de voltaje	% V	Tamaño de cable
TD4-C1	✓ 1036 W	14.760	0.9	220.00 V	1.43 V	0.648453	1-#14, 1-#14, 1-#14
TD4-C2	284 W	28.061	0.9	220.00 V	0.74 V	0.337959	1-#14, 1-#14, 1-#14
TD4-C3	1980 W	19.427	0.9	220.00 V	2.32 V	1.056567	1-#12, 1-#12, 1-#12

Fuente: Elaboración propia

Aplicando procedimientos similares a este, podemos calcular el conductor para cada circuito y tablero tal como se muestra a continuación:

Tabla 44

Cálculo de conductores según circuito

Circuito derivado	MD (W)	Voltaje (V)	FDP	L (m)	Fase	Neutro	ΔV(V)	ΔV(%)
TD1-C1	1096 W	220.00 V	0.9	18.279	1-#14	1-#14	1.87 V	0.85
TD1-C2	472 W	220.00 V	0.9	35.107	1-#14	1-#14	1.55 V	0.70
TD1-C3	1260 W	220.00 V	0.9	40.302	1-#12	1-#12	3.07 V	1.39
TD1-C4	1260 W	220.00 V	0.9	38.883	1-#12	1-#12	2.96 V	1.35
TD2-C1	1096 W	220.00 V	0.9	18.849	1-#14	1-#14	1.93 V	0.88
TD2-C2	576 W	220.00 V	0.9	35.096	1-#14	1-#14	1.89 V	0.86
TD2-C3	1260 W	220.00 V	0.9	42.071	1-#12	1-#12	3.20 V	1.46
TD2-C4	1260 W	220.00 V	0.9	40.325	1-#12	1-#12	3.07 V	1.40
TD3-C1	1200 W	220.00 V	0.9	27.477	1-#14	1-#14	3.08 V	1.40
TD3-C2	452 W	220.00 V	0.9	31.894	1-#14	1-#14	1.34 V	0.61
TD3-C3	1260 W	220.00 V	0.9	41.516	1-#12	1-#12	3.16 V	1.44
TD3-C4	1260 W	220.00 V	0.9	44.577	1-#12	1-#12	3.39 V	1.54
TD4-C1	1036 W	220.00 V	0.9	14.760	1-#14	1-#14	1.43 V	0.65
TD4-C2	284 W	220.00 V	0.9	28.061	1-#14	1-#14	0.74 V	0.34
TD4-C3	1980 W	220.00 V	0.9	19.427	1-#14	1-#14	3.59 V	1.63
TD5-C1	752 W	220.00 V	0.9	14.766	1-#14	1-#14	1.04 V	0.47
TD5-C2	440 W	220.00 V	0.9	32.052	1-#14	1-#14	1.32 V	0.60
TD5-C3	1620 W	220.00 V	0.9	43.542	1-#12	1-#12	4.26 V	1.94
TD5-C4	1260 W	220.00 V	0.9	10.707	1-#14	1-#14	1.26 V	0.57
TDAL-C1	1807 W	220.00 V	1	45.052	1-#12	1-#12	4.86 V	2.21
TDAL-C2	904 W	220.00 V	1	57.055	1-#14	1-#14	4.77 V	2.17
TDAL-C3	468 W	220.00 V	0.9	52.729	1-#14	1-#14	2.30 V	1.05
TDAL-C4	624 W	220.00 V	0.9	49.231	1-#14	1-#14	2.87 V	1.30

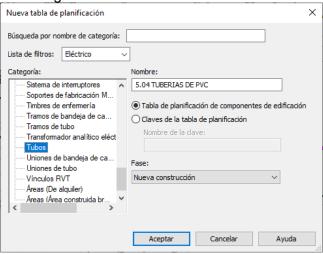
Tabla 45

Cálculo de conductores TG

Circuito derivado	MD (W)	Voltaje (V)	FDP	L (m)	Fase	Neutro	ΔV(V)	ΔV(%)
TG-TD1	4711 W	220.00 V	0.9	31.351	1-#8	1-#8	3.55 V	1.61
TG-TD2	4711 W	220.00 V	0.9	47.525	1-#8	1-#8	5.38 V	2.44
TG-TD3	3097 W	220.00 V	0.9	21.577	1-#10	1-#10	2.44 v	1.11
TG-TD4	698 W	220.00 V	0.9	25.156	1-#10	1-#10	0.64 V	0.29
TG-TD5	1091 W	220.00 V	0.9	40.824	1-#10	1-#10	1.63 V	0.74
TG-TDAL	3803 W	220.00 V	0.9	3.982	1-#10	1-#10	0.55 V	0.25
TG-TBO	745 W	220.00 V	0.9	30.314	1-#10	1-#10	0.91 V	0.41
TG-SUM	18856 W	381.05 V	0.9	16.584	3-#12	1-#12	7.07 V	1.86

5.6.3 Metrado BIM

Los softwares de la metodología BIM proporcionan calculo automático de metrados, esto debido a la implementación de objetos inteligentes llamados familias, que reúne las características físicas y eléctricas del componente real sea luminarias, interruptores, tubos, etc.


Cuando el modelado BIM se desarrolla de manera óptima y correcta, se puede crear tablas de planificación de cantidades como longitud, área, volúmenes, recuentos, etc.

Para realizar el metrado de una partida en Revit, se debe dirigir a la pestaña "vista" y seleccionar "Tablas de planificación/cantidades", similar al paso realizado para el cálculo de circuitos eléctricos.

Para el caso del metrado de los tubos conduit, seleccionaremos la categoría Tubos que automáticamente arrojara una tabla ordenada de todos los elementos de la familiar Tubo presentes en el proyecto

Figura 36

Selección de tabla para categoría tubos

Fuente: Elaboración propia

Así, finalmente obtenemos la tabla de planificación con el metrado de los tubos conduit que empleamos en nuestro proyecto.

Figura 37

Tabla de planificación de tubos

	5.04 TUBERIA DE PVC X									
<5.04 TUBERIA DE PVC>										
Α	В	С	D	E	F					
ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO S/.	PARCIAL S/.					
05.04.01	TUBERIA PVC-SAP ELECTRICA DE 15 mm	M	142.888	3.1	442.952394					
05.04.02	TUBERIA PVC-SAP ELECTRICA DE 20 mm	M	33.149	4.03	133.589067					
05.04.03	TUBERIA PVC-SAP ELECTRICA DE 35 mm	M	137.920	4.6	634.432838					
05.04.04	TUBERIA PVC-SEL ELECTRICA DE 20 mm	М	1095.119	1.6	1752.190029					
Total general: 1098 1409.075 2963.164327										

Fuente: Elaboración propia

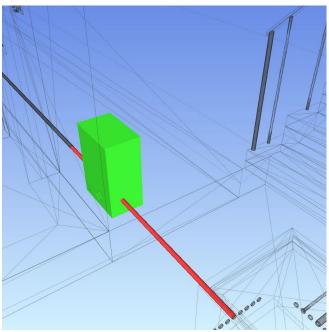
Aplicando procedimientos similares a este, podemos obtener el metrado de cada una de las partidas exigidas tal como se muestra a continuación:

Tabla 46

Planilla Revit de metrado de instalaciones eléctricas

	donovinaión	السنطية	Comtided	Precio S/.	Dowei-LO/
	descripción	Unidad	Cantidad	Precio S/.	Parcial S/.
	para alumbrado tomacorrientes fuerza	T .	100		7405.05
	Salida para centro de luz p/eq. adosado	pto	123	60.45	7435.35
	Salida para tomacorriente doble c/toma a tierra	pto	63	62.01	3906.63
	Salida para tomacorriente doble a prueba de agua	pto	5	64.74	323.70
	Salida para tomacorriente bipolar simple para proyector	pto	1	71.95	71.95
	Salida para interruptor simple unipolar 10 A	pto	35	60.56	2119.60
	Salida para interruptor doble 10 A	pto	7	49.98	349.86
	Salida para interruptor triple	pto	1	49.98	49.98
	Salida para interruptor conmutación simple	pto	22	49.98	1099.56
	Salida para interruptor conmutación doble	pto	1	49.98	49.98
05.01.12	Salida para braquete	pto	51	51.01	2601.51
05.01.18	Cajas de paso octogonal de 100 x 100 x 30 mm.	und	6	56.73	340.38
05.01.20	Cajas de paso cuadradas de 100 x 100 x 30 mm.	und	4	56.73	226.92
05.01.21	Cajas de paso cuadradas de 100 x 100 x 55 mm.	und	1	56.73	56.73
5.02 Alimenta	adores eléctricos	1	1		ı
05.02.01	Cable n2xoh 1x16mm²	m	66.32	12.76	846.24
05.02.02	Cable n2xoh 1x10mm²	m	59.912	8.30	497.27
05.02.03	Cable n2xoh 1x6mm²	m	367.87	5.53	2034.32
05.02.04	Cable n2xoh 1x4mm²	m	58.015	4.04	234.38
05.02.05	Cable n2xoh 1x2.5mm²	m	29.83	2.94	87.70
05.02.06	Cable nh-80 1x4mm²	m	862.87	2.70	2329.75
05.02.07	Cable nh-80 1x2.5mm²	m	1271.155	2.43	3088.91
5.03 Salidas e	especiales				
05.03.01	Salida para electrobomba	pto	1	176.5	176.5
5.04 Tubería	de pvc				
05.04.01	Tubería pvc-sap eléctrica de 15 mm	m	142.89	3.10	442.96
05.04.02	Tubería pvc-sap eléctrica de 20 mm	m	33.15	4.03	133.59
05.04.03	Tubería pvc-sap eléctrica de 35 mm	m	137.92	4.60	634.43
05.04.04	Tubería pvc-sel eléctrica de 20 mm	m	1095.12	1.60	1752.19
5.05 Artefacto	os				
05.05.01 I	Luminaria tipo josfel ras-3x36 w con rejilla metálica	und	54	218.32	11789.28
05.05.02	Luminaria tipo josfel ras-4x18 w con rejilla metálica	und	51	158.8	8098.8
05.05.03	Luminaria tipo josfel rsp-2x26 w	und	51	129.47	6602.97
05.05.04	Sistema high bay	und	18	276.08	4969.44
5.06 Accesor	rios	•	•		
05.06.01	Tomacorriente doble c/toma a tierra	und	63	23.10	1455.30
05.06.02	Tomacorriente doble a prueba de agua	und	5	40.26	201.30
05.06.04	Tomacorriente bipolar simple para proyector	und	1	36.23	36.23
	Interruptor simple unipolar 10 A	und	35	12.22	427.70
05.06.05	interruptor simple unipolar 10 A				

05.06.07	Interruptor triple	und	1	27.16	27.16
05.06.08	Interruptor conmutación simple	und	22	18.42	405.24
05.06.09	Interruptor conmutación doble	und	1	18.42	18.42
5.07 Tabler	ros				
05.07.01	Tablero general tg	und	1	1239.93	1239.93
05.07.02	Subtablero std-1	und	1	1389.93	1389.93
05.07.03	Subtablero std-2	und	1	1193.93	1193.93
05.07.04	Subtablero std-3	und	1	1193.93	1193.93
05.07.05	Subtablero std-4	und	1	1193.93	1193.93
05.07.06	Subtablero std-5	und	1	1193.93	1193.93
05.07.07	Subtablero t-al	und	1	1193.93	1193.93
5.09 Sisten	nas de conductos				
05.09.01	Buzón de concreto 0.80 x 0.80 x 0.70 m. para redes eléctricas	und	10	170.93	1709.3


5.6.4 Detección de interferencias mediante Autodesk Navisworks Manage

Al finalizar el proceso de modelado por cada disciplina, estos se visualizan e integran en un modelo BIM único que contiene los datos de diseño y construcción, para que mediante las herramientas que brindan los softwares BIM sea posible identificar los problemas y conflictos que se presentan antes de comenzar la construcción, ahorrando tiempo en obra y rectificación.

Para este fin se usa el software Autodesk Navisworks Manage, dotado de la herramienta "Cash detective", al ejecutar esta herramienta se nos muestra un panel con 4 pestañas, la primera pestaña "Reglas" nos permite definir las interferencias que no queremos que se detecten, en la segunda pestaña se define las disciplinas a analizar, una vez obtenidos los resultados, la última pestaña genera un reporte para compartir con el equipo de modelado.

Para definir que conflictos existen en nuestro modelo, es necesario ejecutar una prueba que nos mostrará todas las interferencias existentes y seleccionar las interferencias importantes y las menores.

Figura 38
Interferencia entre la disciplina sanitaria (caja de registro) y eléctrica (alimentador)

Figura 39Interferencias Instalaciones eléctricas y arquitectura

Floatuino Vo Averrito etrus	Tolerancia	Conflictos	Nuevo	Activo	Revisado	Aprobado	Resuelto	Tipo	Estado
Electrico Vs Arquitectura	0.001m	2	0	2	0	0	0	Estático	Aceptar

						Elemento	1		Elemento 2
Imagen	Nombre de conflicto	Estado	Distancia	Descripción	Punto de conflicto	Flamento Nombre		Elemento Nombre	Elemento Tipo
	1	Activo	-0.055	Estanco		Familia de medidor eléctrico	Equipos eléctricos	Muro basico	Muros: Muro básico: Muro perimetrico
	2	Activo	-0.012	ESTATICO		Tomacorriente doble 0.4m	Aparatos eléctricos	Acero, pulido	Sólido

Figura 40Interferencias Instalaciones eléctricas y sanitaria

Electrico Vs Sanitario	Tolerancia	Conflictos	Nuevo	Activo	Revisado	Aprobado	Resuelto	Tipo	Estado
Electrico vs Sanitario	0.001m	3	0	3	0	0	0	Estático	Aceptar

							Elemento 1	Elemento	2
Imagen	Nombre de conflicto	Estado	Distancia	Descripción	Punto de conflicto	Elemento Nombre	Elemento Tipo	Elemento Nombre	Elemento Tipo
1	Conflicto1	Activo	-0.109	Estático	x:3.977, y:-0.851, z:-0.750	buzon	Aparatos eléctricos	Arqueta saneamiento 200 x 200 mm	Aparatos sanitarios
	Conflicto2	Activo	-0.070	Estático	x:3.673, y:2.055, z:-0.643	Tubo con	Tubos: Tubo con uniones: PavcoWavin_Tuberías_Línea EléctricaSAP 1/2"-4" (3 mts)	Arqueta saneamiento21	Aparatos sanitarios
	Conflicto3	Activo	-0.068	Estático	x:3.705, y:8.504, z:-0.641	Tubo con	Tubos: Tubo con uniones: PavcoWavin_Tuberías_Línea EléctricaSAP 1/2"-4" (3 mts)	Arqueta saneamiento21	Aparatos sanitarios

Figura 41

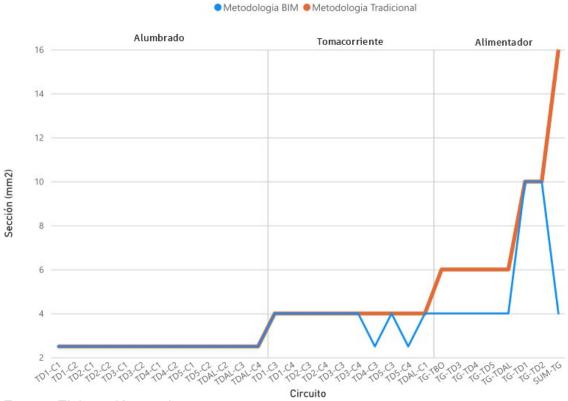
Interferencias entre Instalaciones eléctricas

Electrice Vs Electrice	Tolerancia	Conflictos	Nuevo	Activo	Revisado	Aprobado	Resuelto	Tipo	Estado
Electrico Vs Electrico	0.001m	6	0	6	0	0	0	Estático	Antiguo

							Elemento 1		Elemento 2
Imagen	Nombre de conflicto	Estado	Distancia	Descripción	Punto de conflicto	Elemento Nombre		Elemento Nombre	Elemento Tipo
	Conflicto136	Activo	-0.008	Estático	x:36.963, y:-2.748, z:5.152	Tubo con uniones	PaycoWayin Tuberias Linea	Tubo con uniones	Tubos: Tubo con uniones: PavcoWavin_Tuberías_Línea EléctricaSEL 1/2"-2" (3 mts)
	Conflicto160	Activo	-0.003	Estático	x:-10.414, y:19.011, z:3.262	Tubo con uniones	PaycoWayin Tuherias Linea	Tubo con uniones	Tubos: Tubo con uniones: PavcoWavin_Tuberías_Línea EléctricaSEL 1/2"-2" (3 mts)
	Conflicto148	Activo	-0.006	Estático	x:1.429, y:12.739, z:3.252	Tubo con uniones	PaycoWayin Tuberias Linea	Tubo con uniones	Tubos: Tubo con uniones: PavcoWavin_Tuberías_Línea EléctricaSEL 1/2"-2" (3 mts)
	Conflicto147	Activo	-0.006	Estático	x:14.579, y:7.608, z:5.148	Tubo con uniones	Tubos: Tubo con uniones: PavcoWavin_Tuberías_Línea EléctricaSEL 1/2"-2" (3 mts)	Tubo con uniones	Tubos: Tubo con uniones: PavcoWavin_Tuberías_Línea EléctricaSEL 1/2"-2" (3 mts)
155	Conflicto143	Activo	-0.007	Estático	x:-1.896, y:13.011, z:3.247	Tubo con uniones	PaycoWayin Tuberias Linea	Tubo con uniones	Tubos: Tubo con uniones: PavcoWavin_Tuberías_Línea EléctricaSEL 1/2"-2" (3 mts)
	Conflicto21	Activo	-0.025	Estático	x:0.985, y:7.268, z:1.219	125 A	Equipos eléctricos	1 TIEMPO	Aparatos eléctricos

Capítulo VI. Análisis y discusión de resultados

6.1 Análisis de los resultados


6.1.1 Análisis en el diseño de circuitos derivados y alimentadores.

La sección del conductor determinado para circuitos derivados mediante la metodología tradicional y BIM coincidió en el 91% de los casos, los circuitos que no obtuvieron el mismo resultado fue el circuito 3 del subtablero 4 (TD4-C3) y el circuito 4 del subtablero 5 (TD5-C4).

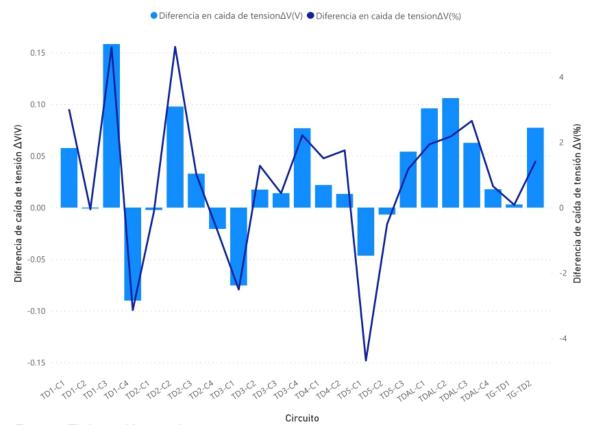
Para entender esta diferencia hay que tener en cuenta que el cálculo realizado mediante la metodología BIM solo se ajusta a lo exigido por el CNE-utilización (capacidad del conductor y caída de tensión) y la metodología tradicional adicionalmente tiene en cuenta el criterio técnico de profesional encargado y la naturaleza de la carga (tomacorrientes).

Por otro lado, en los circuitos alimentadores, solo existe coincidencia en dos circuitos TG-TD1 y TG-TD2, tal como mencionábamos líneas arriba, la metodología BIM se ajusta a lo exigido por el CNE-utilización (capacidad del conductor y caída de tensión) y la metodología tradicional adicionalmente tiene en cuenta que la capacidad de los alimentadores se mayor que los circuitos derivados y permita coordinación y selectividad de los dispositivos de protección contra sobrecorrientes.

Figura 42Sección de conductor seleccionado mediante metodología BIM y tradicional

En los circuitos en los que se encontró coincidencia de selección de conductor, la caída de tensión es similar aplicando ambas metodologías, con una diferencia media de 0.84% y máxima de 4.68%, esto se debe a la diferencia de longitud del circuito empleado en la metodología tradicional y BIM

Tabla 47


Diferencia en la caída de tensión calculada mediante la metodología tradicional y metodología BIM

Circuito derivado	Metodología tradicional	metodología BIM	ΔV(V)	ΔV(%)
TD1-C1	1.93	1.87	0.0576	2.9898
TD1-C2	1.68	1.68	-0.0009	-0.0562
TD1-C3	3.23	3.07	0.1583	4.9039
TD1-C4	2.87	2.96	-0.0901	-3.1380
TD2-C1	1.93	1.93	-0.0024	-0.1229
TD2-C2	1.99	1.89	0.0977	4.9176
TD2-C3	3.23	3.2	0.0328	1.0141
TD2-C4	2.89	2.91	-0.0207	-0.7160

TD3-C1	3.00	3.08	-0.0754	-2.5086
TD3-C2	1.36	1.34	0.0173	1.2781
TD3-C3	3.17	3.16	0.0139	0.4387
TD3-C4	3.47	3.39	0.0767	2.2133
TD4-C1	1.45	1.43	0.0219	1.5064
TD4-C2	0.75	0.74	0.0132	1.7501
TD5-C1	0.99	1.04	-0.0465	-4.6821
TD5-C2	1.31	1.32	-0.0067	-0.5103
TD5-C3	4.59	4.54	0.0541	1.1781
TDAL-C1	4.96	4.86	0.0960	1.9372
TDAL-C2	4.88	4.77	0.1060	2.1730
TDAL-C3	2.36	2.3	0.0627	2.6519
TDAL-C4	2.72	2.7	0.0177	0.6516
TG-TD1	3.57	3.57	0.0030	0.0839
TG-TD2	5.50	5.42	0.0773	1.4058

Figura 43

Diferencia en la caída de tensión calculada mediante la metodología tradicional y metodología BIM

6.1.2 Análisis de metrado

6.1.2.1 Comparación de metrados

Para el metrado es necesario diferenciar el metrado por conteo y por medición, para el primer caso se obtuvieron los mismos resultados aplicando la metodología tradicional y BIM, estas partidas son las siguientes:

Tabla 48Partidas con metrados igual aplicando la metodología tradicional y BIM

Item	Unidad
5.01 Salidas para alumbrado tomacorrientes fuerza	pto
5.03 Salidas especiales	pto
5.05 Artefactos	und
5.06 Accesorios	und
5.07 Tableros	und
5.09 Sistemas de conductos	und

Fuente: Elaboración propia

Por otro lado, en el metrado por medición se obtuvo una reducción significativa de hasta 349.59 m de conductor a usar y hasta 140.66 m de tubo con el metrado BIM respecto al metrado tradicional.

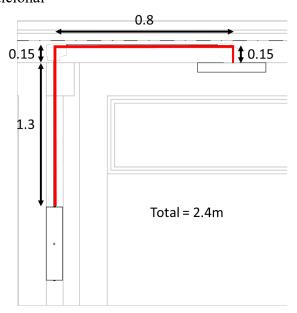
Tabla 49

Comparación de metrados de alimentadores eléctricos

5.02 Alimentadores eléctricos

	5.02 Alimentadores elect	ricos				
Item	descripción	und	Metrado Trad (m)	Metrado BIM (m)	∆ (m)	Δ (%)
05.02.01	Cable N2XOH 1x16mm²	m	77.56	66.32	-11.24	-14.49
05.02.02	Cable N2XOH 1x10mm²	m	116.59	59.912	-56.678	-48.61
05.02.03	Cable N2XOH 1x6mm²	m	401.19	367.87	-33.32	-8.31
05.02.04	Cable N2XOH 1x4mm²	m	88.55	58.015	-30.535	-34.48
05.02.05	Cable N2XOH 1x2.5mm²	m	32.08	29.83	-2.25	-7.01
05.02.06	Cable NH -80 1x4mm²	m	947.26	862.87	-84.39	-8.91
05.02.07	Cable NH-80 1x2.5mm²	m	1402.34	1271.155	-131.185	-9.35

Tabla 50


Comparación de metrados de tuberías de PVC
5.04 Tubería de PVC

Item	descripción	und	Metrado Trad (m)	Metrado BIM (m)	∆ (m)	∆ (%)
05.04.01	Tubería PVC-SAP eléctrica de 15 mm	m	157.44	142.89	-14.55	-10.18
05.04.02	Tubería PVC-SAP eléctrica de 20 mm	m	36.40	33.15	-3.25	-9.80
05.04.03	Tubería PVC-SAP eléctrica de 35 mm	m	151.93	137.92	-14.01	-10.16
05.04.04	Tubería PVC-SEL eléctrica de 20 mm	m	1 203.97	1095.12	-108.85	-9.94

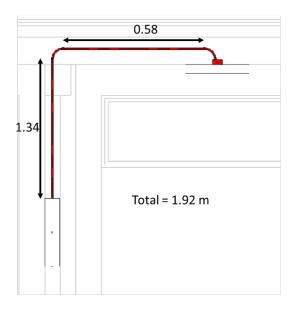

Esta reducción se debe al procedimiento de medición, la metodología tradicional mide de punto a punto sin tener en cuenta los accesorios como curvas o cajas debido a que de este modo seria complejo y lento, en cambio en la metodología BIM, el software toma en cuenta cada elemento de la tubería y solo mide el tubo de PVC como se muestra en el ejemplo siguiente:

Figura 44

Medición con metrado tradicional

Figura 45Medición con metrado BIM

6.1.2.2 Comparación de presupuestos

Tabla 51

Comparación de presupuesto mediante metodología BIM vs Tradicional

Item	Metrado Trad (S/.)	Metrado BIM (S/.)	∆(S/.)	∆ (%)
5.01 Salidas para alumbrado tomacorrientes fuerza	18 632.15	18 632.15	0	0
5.02 Alimentadores eléctricos	10 593.29	9 118.57	-1 474.58	-13.92
5.03 Salidas especiales	176.50	176.50	0	0.00
5.04 Tubería de PVC	3 259.99	2 963.18	-296.66	-9.1
5.05 Artefactos	31 460.49	31 460.49	0	0.00
5.06 Accesorios	6 850.55	6 850.55	0	0.00
5.07 Tableros	8 599.51	8 599.51	0	0.00
5.09 Sistemas de conductos	1 709.30	1 709.30	0	0.00
Total	81 281.78	79 510.25	-1 771.23	-2.17

Fuente: Elaboración propia

Se puede observar una reducción significativa en el presupuesto mediante la metodología BIM respecto a la metodología tradicional, en el item 5.02 se reducen en 13.92% y en el item 5.04 se reduce en 9.1%.

6.1.3 Análisis de detección de interferencias

En las tablas 40, 41 y 42 se muestran tabuladas y por disciplinas, 11 interferencias importantes identificadas a través del software Autodesk Navisworks, impidiendo que estos conflictos no se materialicen en la etapa de construcción.

 Tabla 52

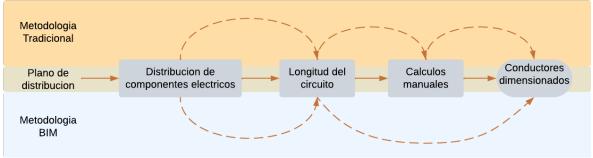
 Interferencias identificadas con el software Autodesk Navisworks

METODOLOGÍA BIM						
DESCRIPCIÓN	INTERFERENCIAS	INTERFERENCIAS				
DESCRIPCION	(und)	(%)				
Eléctrico vs arquitectura	2	18.18				
Eléctrico vs sanitario	3	27.27				
Eléctrico vs eléctrico	6	54.55				
Total	11	100				

Fuente: Elaboración propia

Se puede visualizar que la mayor cantidad de interferencias ocurre en la misma disciplina eléctrica, estas se solucionan al modificar la posición de los elementos, esto mismo ocurre con la disciplina eléctrica con arquitectura; Finalmente en la interferencia de las disciplinas eléctricas con sanitaria implica una modificación importante del recorrido de tuberías eléctricas alimentadoras y buzón de concreto para solventar estos 3 conflictos, que en obra significaría tiempo y dinero en rectificar estos recorridos.

6.2 Contrastación de la hipótesis


- a) Hipótesis general: La aplicación de la metodología BIM optimiza significativamente el diseño de las instalaciones eléctricas de centros educativos, es aceptada al presentar ventaja respecto a la metodología tradicional en el diseño de las instalaciones eléctricas de un centro educativo, esto se demuestra en el ágil y seguro dimensionado de conductores, el ahorro del costo de obra y la detección temprana de interferencias.
- b) Hipótesis especifica 1: La aplicación de la metodología BIM optimiza significativamente el proceso de dimensionamiento de los conductores eléctricos de las instalaciones eléctricas de centros educativos bajo los estándares normativos

del CNE-Utilización, es aceptada en la medida que aplicando la metodología BIM se logró:

 Mejora del rendimiento, como se desarrolló en el capítulo V, con la metodología tradicional es necesario realizar cálculos y operaciones con el voltaje, la carga, factor de potencia y metrado para poder obtener el calibre de conductor a utilizar, sin embargo, con la metodología BIM, este paso queda totalmente automatizado como se muestra en la representación del proceso:

Figura 46

Comparación del proceso tradicional y BIM para el dimensionado de conductores.

- Garantiza la seguridad del dimensionado, al configurar el entorno BIM con los parámetros exigidos por el CNE-Utilización (capacidad del conductor y caída de tensión) se garantizó que los resultados del dimensionado de conductores cumplen con la normativa, no siendo afectado por el factor humano.
- c) Hipótesis especifica 2: La aplicación de la metodología BIM optimiza significativamente el costo de las instalaciones eléctricas de centros educativos, lo que fue demostrado mediante la comparación de presupuestos, logrando un ahorro de S/.1 478.58 (13.92%) en conductores eléctricos y S/.296.66 (9.1%) en tubería de PVC.
- d) Hipótesis especifica 3: La aplicación de la metodología BIM optimiza significativamente la detección de interferencias de las instalaciones eléctricas de

centros educativos, también se valida al logra identificar de manera ágil y temprana 11 interferencias importantes que de otro modo hubieran representado tiempo y dinero para rectificar estas interferencias al seguir una metodología tradicional.

Conclusiones

- Un adecuado estudio de la normativa peruana permitió diseñar las instalaciones eléctricas del centro educativo de manera segura y apto para la pedagogía para niños en etapa escolar de nivel inicial.
- 2. Mediante la aplicación de la metodología BIM, se pasó del plano en 2D a representaciones tridimensionales que contienen información de la construcción, dando una visión clara e integral de proyecto de construcción, permitiendo tomar mejores y oportunas decisiones en el proceso de diseño de las instalaciones eléctricas.
- 3. La tecnología MEP de Revit logra el cálculo automático de conductores basado en la capacidad del conductor y la caída de tensión, sin embargo, esta no es una solución definitiva, como se pudo observar tanto el cálculo aplicando la metodología tradicional y BIM obtienen resultados diferentes e igual de validos en la medida que la caída de tensión y capacidad del conductor cumplen con el CNE-Utilización, será entonces el ingeniero especialista el encargado de elegir la solución que mejor se adecue a su criterio técnico y normativa aplicada.
- 4. El modelado en BIM reduce significativamente el error de cuantificación en partidas de la cantidad de obra a ejecutar respecto a la metodología tradicional, gracias a la herramienta de generación automática de tablas de planificación que filtra y mide la partida de interés, se logró reducir hasta en 349.59 m la cantidad de conductor a utilizar y hasta 140.66 m de tubo, esto lleva a un ahorro de S/.1 771.53, adicionalmente, al aplicar esta metodología cualquier cambio que se realice en el modelo se puede ver reflejado automáticamente en las tablas de planificación.
- 5. Se identificaron 11 interferencias entre las disciplinas de arquitectura, sanitaria y eléctrica, al encontrarlas en la etapa de planificación es posible corregirlas y que estas no pasen a la etapa de ejecución, evitando trabajos de rectificación y tiempos muertos en obra.

- 6. Los softwares BIM aun no logran el grado de madurez suficiente para cubrir todas las actividades que conlleva el diseño de instalaciones eléctricas, con ausencia de herramientas para la generación automática de diagramas unifilares, el cálculo de pozos a tierra y la libertad de elegir unidades de mm² sobre el sistema americano AWG para la sección de conductores, esto lleva muchas veces a salir del entorno BIM para realizar cálculos manuales.
- 7. Los softwares BIM utilizados muestran una configuración preparada para ser empleada con normativa y mecanismos de cálculo americano, esto tiene sentido al ser ese su principal mercado; preparar el software a nuestra normativa y mecanismos muchas veces toma tiempo valioso que podría ser utilizado de otro modo, afortunadamente esto se tiene que realizar solo una.

Dicho esto, es razonable concluir que la metodología BIM debe convivir con la metodología tradicional para el diseño de instalaciones eléctricas. Sus ventajas respecto al tiempo, el diseño y la gestión de los resultados obtenidos resulta evidente.

Recomendaciones

- Para lograr un diseño ágil y seguro de instalaciones eléctricas, el profesional encargado debe ser capaz de interoperar la metodología tradicional y BIM, tratando de siempre obtener el mejor rendimiento en cada etapa de la construcción; esto reducirá el tiempo y mejorará la calidad del diseño.
- 2. Se requiere de profesionales capacitados que cuenten con conocimiento técnico de diseño de instalaciones eléctricas y en software BIM, para que sean capaces de entender a profundidad los datos que se están entregando al software, y que los resultados obtenidos sean los esperados y correctos.
- 3. Los resultados obtenidos al aplicar la metodología BIM provienen de automatización de procesos que deben aceptarse como resultados preliminares. Se recomienda que un profesional encargado, aplicando su criterio técnico y normativa, valide los resultados obtenidos
- 4. Una correcta configuración inicial hará la diferencia para obtener el mejor rendimiento al aplicar la metodología BIM. Por esto, se recomienda siempre mantener actualizados los softwares BIM, ya que están en constante desarrollo e implementando nuevas herramientas. Asimismo, se recomienda tener vigente el conocimiento técnico, a fin de plasmar en el software la configuración del que se obtendrán resultados válidos.

Referencias bibliográficas

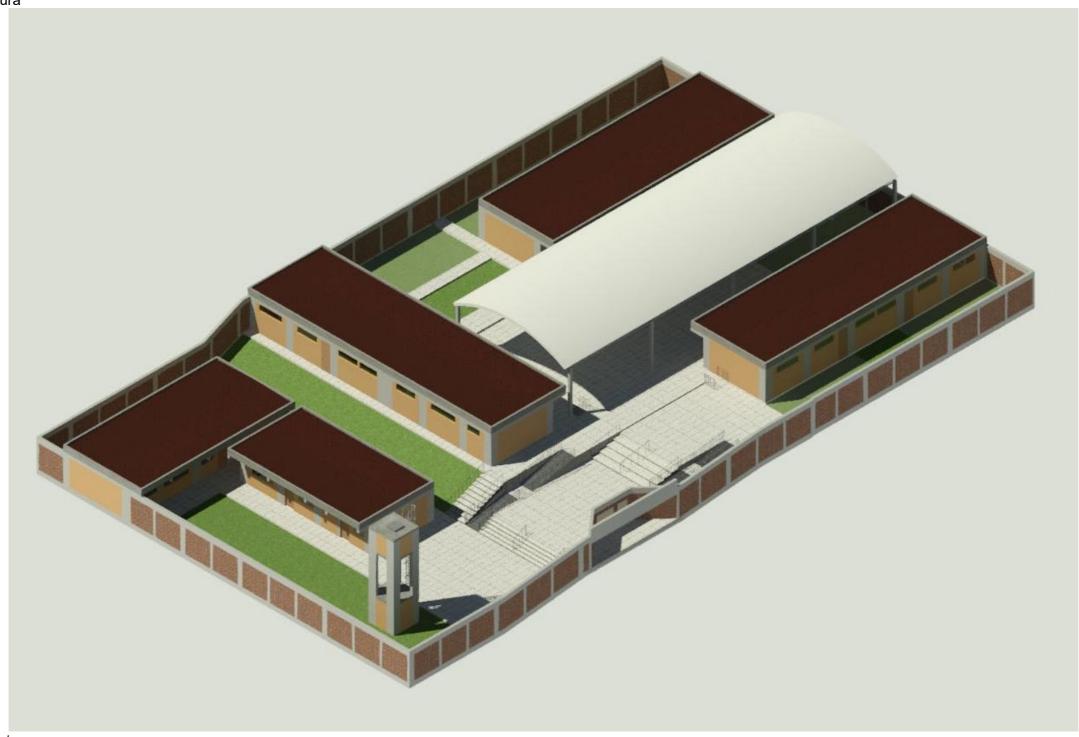
- Autodesk. (2019). *About Wire Sizing*. Obtenido de https://help.autodesk.com/view/RVT/2019/ENU/?guid=GUID-C6B1E289-BC35-486A-BC11-A212858C17E8
- Bartosz Jankowskia, J. P. (3 de Febrero de 2023). Functional assessment of BIM methodology based on. Obtenido de Procedia Engineering:

 http://www.sciencedirect.com/science/article/pii/S1877705815013491
- BibLus. (2022). ¿Cuál es la diferencia entre BIM y MEP? Obtenido de https://biblus.accasoftware.com/es/cual-es-la-diferencia-entre-bim-y-mep/#:~:text=Te%20comento%20enseguida%20que%20el,formar%C3%A1n%20parte%20 del%20modelo%20BIM.
- Centelsa. (2005). *Boletín Técnico Marzo 2005*. Obtenido de https://centelsa.com/boletines/colombia/boletin-retie-regulacion-de-tension-en-instalaciones-electricas.pdf
- Comisión Nacional para el Uso Eficiente de la Energía de Mexico. (2016). Herramienta para el ajuste del factor de potencia. Obtenido de https://www.gob.mx/conuee/acciones-y-programas/herramienta-para-el-ajuste-del-factor-de-potencia#:~:text=%C2%BFQu%C3%A9%20es%20el%20factor%20de,ha%20sido%20transformada%20en%20trabajo.
- condumex. (2007). Manual técnico de instalaciones eléctricas en baja tensión. condumex.
- Departamento de Ingeniería PUCP. (2021). Segundo estudio de adopción BIM en proyectos de edificación en Lima y Callao. Obtenido de https://repositorio.pucp.edu.pe/index/bitstream/handle/123456789/176216/SEGUNDO% 20ESTUDIO%20DE%20ADOPCI%C3%93N%20BIM%20EN%20PROYECTOS%20DE%20EDIFIC ACI%C3%93N%20EN%20LIMA%20Y%20CALLAO.pdf?sequence=1&isAllowed=y
- División de ingeniería de electricidad. (2019). *Alimentadores y demanda de una instalacion*.

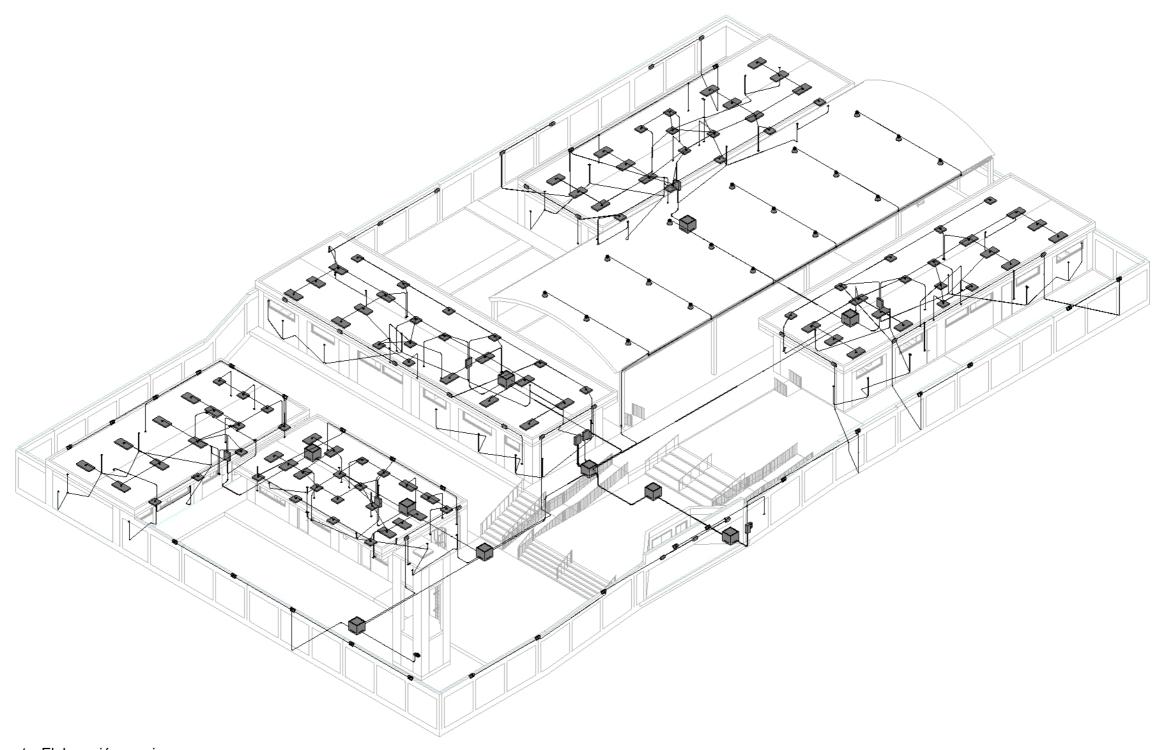
 Obtenido de https://www.seital.cl/data/documents/RIC-N03-Alimentadores-y-demandade-una-instalacion-V1.1-1.pdf
- Eaton. (2018). Fundamentos acerca de la protección contra sobrecorriente. Obtenido de https://euroelectrica.com.mx/wp-content/uploads/2019/04/Fuseolog%C3%ADa-Fundamentos-de-la-protecci%C3%B3n-contra-sobrecorriente.pdf
- es.bim. (2016). BIM en 8 puntos. Valencia.
- HM Goverment. (2013). Construction 2025.
- i-bim. (2021). *Manual de usuario Revit MEP 2021*. Obtenido de https://ibim-la.com/wp-content/uploads/2020/09/Manual-Ravit-MEP.pdf
- Institute of Electrical and Electronics Engineers. (2022). Style IEEE. 1(1), 1-33.

- Instituto Nacional de Seguridad e Higiene en el Trabajo. (2019). *Instituto Nacional de Seguridad e Higiene en el Trabajo*. Obtenido de https://www.insst.es/documents/94886/326853/ntp_267.pdf/f29c13f7-8e69-44a3-9a03-bddfd510c7db?version=2.0&t=1638267373776
- Lebrato, J. H. (2016). Análisis de aplicación de la metodología BIM al modelado y cálculo de eléctricas. Valladolid.
- Lucena, F. G. (2020). Aplicación de la tecnología BIM para el cálculo y diseño de instalaciones en una nave industrial. Sevilla.
- Ministerio de Economia y Finanzas. (s.f.). *Plan BIM Peru*. Obtenido de https://www.mef.gob.pe/planbimperu/planbim.html
- Ministerio de Educacion. (2018). *Criterios de diseño de locales eduactivos de nivel de educacion inical.* Lima.
- Ministerio de energía española. (2020). *Ministerio de energía española*. Obtenido de https://www.seital.cl/data/documents/RIC-N03-Alimentadores-y-demanda-de-una-instalacion-V1.1-1.pdf
- Ministerio de Energía y Minas. (2001). MANUAL DE INTERPRETACIÓN DEL CÓDIGO NACIONAL DE ELECTRICIDAD SUMINISTRO 2001. Recuperado el 17 de 01 de 2023, de minem: https://www.minem.gob.pe/minem/archivos/file/Electricidad/normatividad/ManualCNES uministro.pdf
- Ministerio de Energía y Minas. (2004). Norma DGE "Conexiones eléctricas en baja tensión en zonas de concesión de distribución".
- Ministerio de Energia y Minas. (2005). Manual de Sustentación del CNE.
- Ministerio de Energía y Minas. (2006). Código nacional de electricidad Utilización.
- Ministerio de Energía y Minas. (2010). Norma Técnica de Calidad de Los Servicios Eléctricos. Lima.
- Ministerio de Vivienda, C. y. (2019). NORMA TÉCNICA EM.010. En C. y. Ministerio de Vivienda, NORMA TÉCNICA EM.010 (pág. 20). Lima.
- Ministerio de Vivienda, Contruccion y Saneamiento. (2011). *Norma tecnica: Metrados para obras de edificaciones y habilitaciones urbanas*. Obtenido de https://spij.minjus.gob.pe/Graficos/Peru/2011/Mayo/18/RD-073-2010-VIVIENDA-VMCS-DNC.pdf
- Ministro de trabajo, Empleo y Seguridad Social. (2016). *Guia practica de iluminacion en el ambiente laboral*. Obtenido de https://www.srt.gob.ar/wp-content/uploads/2016/08/Guia practica 1 Iluminacion 2016.pdf
- NTP-IEC 60669-1. (2004). Interruptores para instalaciones eléctricas fijas domésticas y similares.
- Presidencia del Consejo de Ministros. (2011). Decreto Supremo que aprueba el Reglamento de la Ley № 29664. Lima.

- Revista Electrica. (2019). NOM-001 Diagrama unifilar. Obtenido de https://electrica.mx/diagrama-unifilar/#:~:text=El%20prop%C3%B3sito%20de%20un%20diagrama,para%20el%20que%2 0se%20realiza.
- Rodriguez, A. (2013). *Instrumentos para tableros*. Obtenido de https://unac.edu.pe/documentos/organizacion/vri/cdcitra/Informes_Finales_Investigacio n/IF_DICIEMBRE_2012/IF_RODRIGUEZ%20ABURTO_FIEE/LIBRO%20INSTRUMENTOS%20P ARA%20TABLEROS.pdf
- Sampieri, R. H. (2014). Metodologia de la investigación. En R. H. Sampie, *Metodologia de la investigación* (pág. 4). Mexico DF.
- Sarda, J. R. (1979). Iluminacion externa. En J. R. Sarda, *luminacion externa* (págs. 54-55). Barcelona: Marcombo.
- Schneider Electric. (2018). ¿Qué son las curvas de disparo en interruptores Riel Din? Obtenido de https://www.se.com/pe/es/faqs/FA363567/#:~:text=Las%20curvas%20de%20disparo%20 muestran,intensidad%20de%20defecto%20en%20amperios.
- Suárez, J. E. (2020). Diseño de instalaciones eléctricas usando metodología BIM y software Revit.

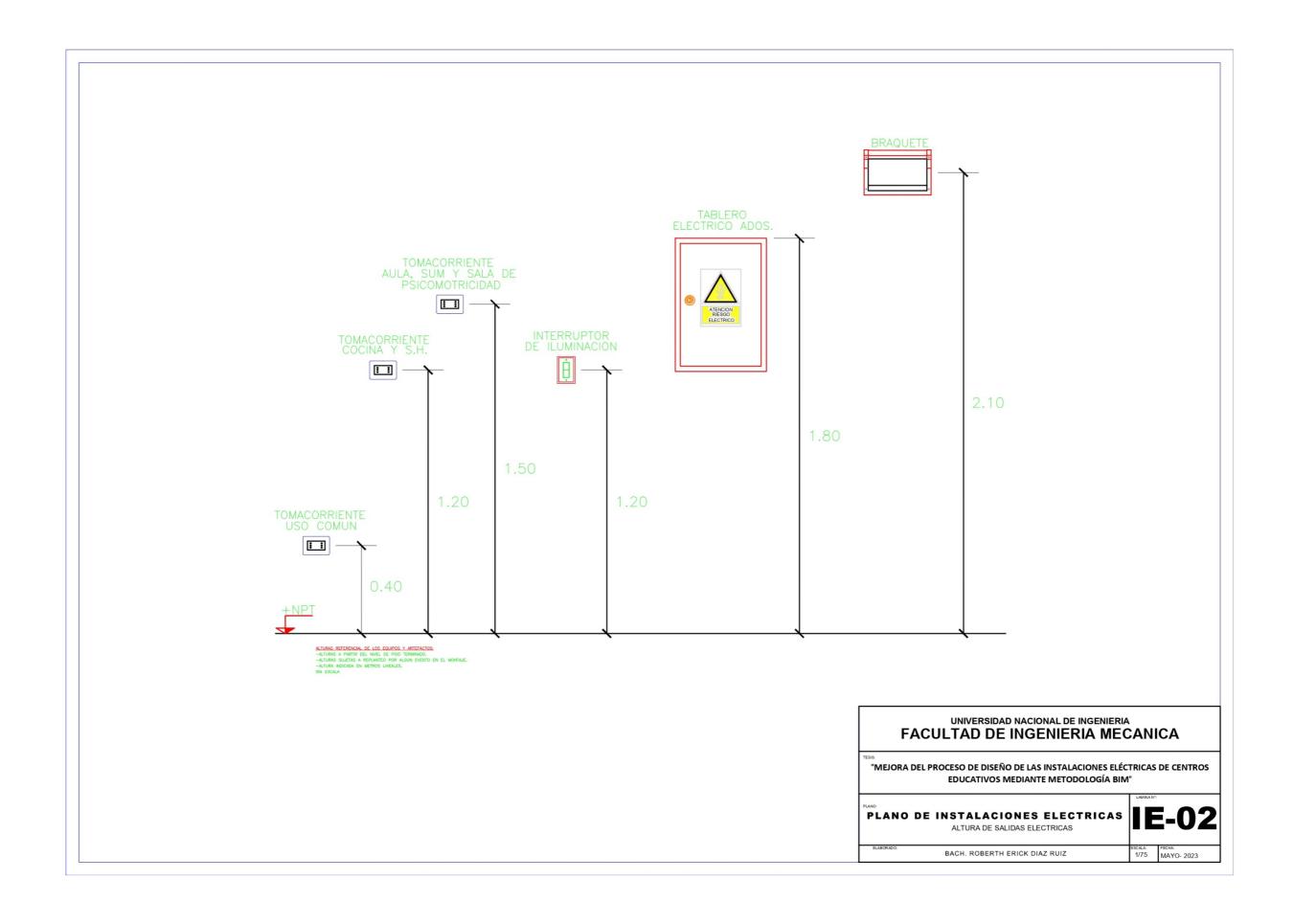

 Medellin.
- Tecnologico de Monterrey. (2016). *Energía eléctrica: conceptos y principios básicos*. Obtenido de https://repositorio.tec.mx/bitstream/handle/11285/631229/4_t6s1_c5_html_contex_1.p df?sequence=1&isAllowed=y

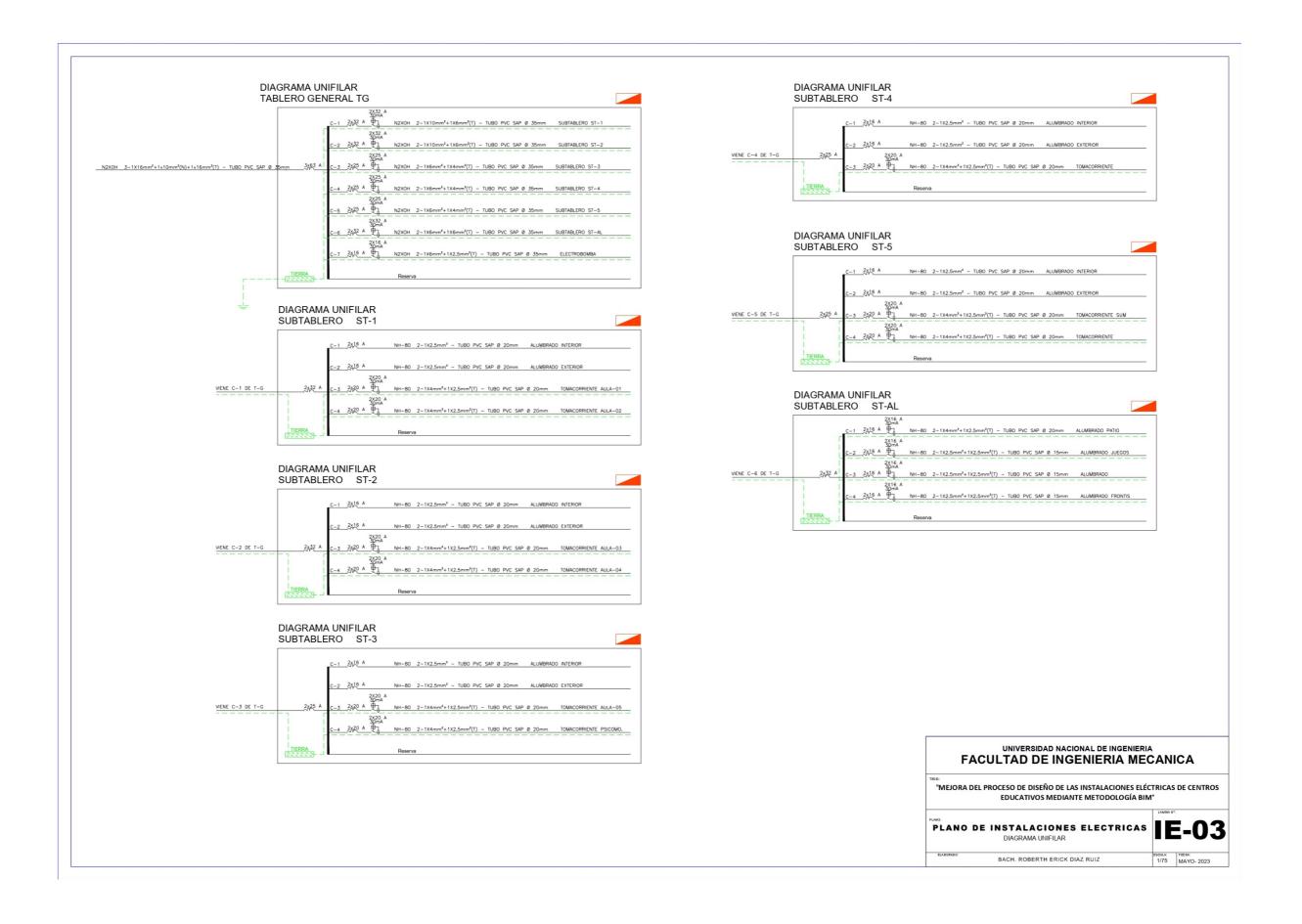
Apéndice


Apéndice 1	Modelos BIM de arquitectura e instalaciones eléctricas	122
Apéndice 2	Planos	124
Apéndice 3	Cálculo de circuitos eléctrico en Revit	127
Apéndice 4	Metrados en Revit	129
Apéndice 5	Interferencias en Navisworks	132

Apéndice 1 Modelos BIM de arquitectura e instalaciones eléctricas

Figura 47Modelo BIM de arquitectura


Figura 48Modelo BIM de instalaciones eléctricas



Apéndice 2

Planos

Apéndice 3

Cálculo de circuitos eléctrico en Revit

Tabla 53Subtableros de distribución

			<	TD-1>			
Α	В	С	D	E	F	G	н
lombre de carga	Longitud	Factor de potencia	Voltaje	Caída de voltaje	%V	Carga activa	Tamaño de cabl
D1-C1	18.279	0.9	220.00 V	1.87 V	0.849549	1096 W	1-#14, 1-#14, 1-#1
D1-C2	38.189	0.9	220.00 V	1.68 V	0.764394	472 W	1-#14, 1-#14, 1-#1
D1-C3	40.302	0.9	220.00 V	3.07 V	1.39485	1260 W	1-#12, 1-#12, 1-#1
D1-C4	38.883	0.9	220.00 V	2.96 V	1.345761	1260 W	1-#12, 1-#12, 1-#1
			<	<td-2></td-2>			
Α	В	С	D	E	F	G	Н
Nombre de carga	Longitud	Factor de potencia	Voltaje	Caída de voltaje	%V	Carga activa	Tamaño de cabl
	·		•		*		*
02-C1	18.849	0.9	220.00 V	1.93 V	0.876031	1096 W	1-#14, 1-#14, 1-#14
)2-C2	35.096	0.9	220.00 V	1.89 V	0.85726	576 W	1-#14, 1-#14, 1-#14
D2-C3	42.257	0.9	220.00 V	3.22 V	1.462528	1260 W	1-#12, 1-#12, 1-#12
D2-C4	38.256	0.9	220.00 V	2.91 V	1.324053	1260 W	1-#12, 1-#12, 1-#12
			<	TD-3>			•
A	В	С	D	E	F	G	н
Nombre de carga	Longitud	Factor de potencia	Voltaje	Caída de voltaje	%V	Carga activa	Tamaño de cabl
		· · · · · · · · · · · · · · · · · · ·			•		·
D3-C1	27.477	0.9	220.00 V	3.08 V	1.398221	1200 W	1-#14, 1-#14, 1-#1
D3-C2	31.894	0.9	220.00 V	1.34 V	0.611335	452 W	1-#14, 1-#14, 1-#1
D3-C3	41.516	0.9	220.00 V	3.16 V	1.436868	1260 W	1-#12, 1-#12, 1-#1
D3-C4	44.577	0.9	220.00 V	3.39 V	1.542809	1260 W	1-#12, 1-#12, 1-#1
A	В	С	D	<td-4></td-4>	F	G	н
Nombre de carga		Factor de potencia	Voltaje	Caída de voltaje	%V	Carga activa	Tamaño de cable
torribre de carga	Lorigitad	r deter de potencia	Voltajo	odida de voltaje	,,,,	ourgu ucuvu	Tarriano de cabi
D4-C1	14.760	0.9	220.00 V	1.43 V	0.648453	1036 W	1-#14, 1-#14, 1-#14
D4-C2	28.061	0.9	220.00 V	0.74 V	0.337959	284 W	1-#14, 1-#14, 1-#14
D4-C3	19.427	0.9	220.00 V	3.59 V	1.631059	1980 W	1-#14, 1-#14, 1-#14
		·	:	- TD-5>	5.	:	
Α	В	С	D	E	F	G	Н
Nombre de carga	Longitud	Factor de potencia	Voltaje	Caída de voltaje	%V	Carga activa	Tamaño de cabl
25.04	14.700	10.0	000 001	1.0.11	In 47007:	750.14	
D5-C1	14.766	0.9	220.00 V	1.04 V	0.470871	752 W	1-#14, 1-#14, 1-#14
D5-C2	32.052	0.9	220.00 V	1.32 V	0.598057	440 W	1-#14, 1-#14, 1-#14
D5-C3	46.370	0.9	220.00 V	4.54 V	2.063422	1620 W	1-#12, 1-#12, 1-#12
D5-C4	10.707	0.9	220.00 V	1.26 V	0.572076	1260 W	1-#14, 1-#14, 1-#14
			<	TD-AL>			
Α	В	С	D	E	F	G	Н
Nombre de carga	Longitud	Factor de potencia	Voltaje	Caída de voltaje	%V	Carga activa	Tamaño de cabl
	45.052	1	220.00 V	4.86 V	2.207578	1807 W	1-#12, 1-#12, 1-#1
DAL-C1							
	57.055	1	220.00 V	4.77 V	2.166709	904 W	1-#14, 1-#14, 1-#1
FDAL-C1 FDAL-C2 FDAL-C3	57.055 52.729		220.00 V 220.00 V	4.77 V 2.30 V	2.166709 1.046448	904 W 468 W	1-#14, 1-#14, 1-#1 1-#14, 1-#14, 1-#1

Tabla 54

Tablero general

<tg></tg>							
Α	В	С	D	E	F	G	Н
Nombre de carga	Carga activa	Voltaje	Factor de potencia	Longitud	Tamaño de cable	Caída de voltaje	%V
SUM-TG	18856 W	381.05 V	0.9	16.584	3-#12, 1-#12, 1-#14	7.07 V	1.856679
TG-BO	745 W	220.00 V	0.9	30.314	1-#12, 1-#12, 1-#14	1.37 V	0.622556
TG-TD1	4711 W	220.00 V	0.9	31.351	1-#8, 1-#8, 1-#10	3.57 V	1.624166
TG-TD2	4711 W	220.00 V	0.9	47.525	1-#8, 1-#8, 1-#10	5.42 V	2.462039
TG-TD3	3097 W	220.00 V	0.9	21.577	1-#12, 1-#12, 1-#14	4.05 V	1.841448
TG-TD4	698 W	220.00 V	0.9	25.156	1-#12, 1-#12, 1-#14	1.06 V	0.48392
TG-TD5	1091 W	220.00 V	0.9	40.824	1-#12, 1-#12, 1-#14	2.70 V	1.227167
TG-TDAL	3803 W	220.00 V	0.9	3.982	1-#12, 1-#12, 1-#14	0.92 V	0.417336

Apéndice 4

Metrados en Revit

Tabla 55Metrado de salidas para alumbrado, tomacorrientes y fuerza

Α	В	С	D	E	F
ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO S/.	PARCIAL S
05.01.01	SALIDA PARA CENTRO DE LUZ P/EQ. ADOSADO	PTO	123	60.45	7435.35
05.01.03	SALIDA PARA TOMACORRIENTE DOBLE C/TOMA A TIERRA	PTO	63	62.01	3906.63
05.01.04	SALIDA PARA TOMACORRIENTE DOBLE A PRUEBA DE AGUA	PTO	5	64.74	323.7
05.01.06	SALIDA PARA TOMACORRIENTE BIPOLAR SIMPLE PARA PROYECTOR	PTO	1	71.95	71.95
05.01.07	SALIDA PARA INTERRUPTOR SIMPLE UNIPOLAR 10 A	PTO	35	60.56	2119.6
05.01.08	SALIDA PARA INTERRUPTOR DOBLE 10 A	PTO	7	49.98	349.86
05.01.09	SALIDA PARA INTERRUPTOR TRIPLE	PTO	1	49.98	49.98
05.01.10	SALIDA PARA INTERRUPTOR CONMUTACION SIMPLE	PTO	22	49.98	1099.56
05.01.11	SALIDA PARA INTERRUPTOR CONMUTACION DOBLE	PTO	1	49.98	49.98
05.01.12	SALIDA PARA BRAQUETE	PTO	51	51.01	2601.51
05.01.18	CAJAS DE PASO OCTOGONAL DE 100 X 100 X 30 MM.	UND	6	56.73	340.38
05.01.20	CAJAS DE PASO CUADRADAS DE 100 X 100 X 30 MM.	UND	4	56.73	226.92
05.01.21	CAJAS DE PASO CUADRADAS DE 100 X 100 X 55 MM.	UND	1	56.73	56.73
Total genera	320	·	320	.	18632.15

Fuente: Elaboración propia

Tabla 56

Metrado de salidas para alumbrado, tomacorrientes y fuerza

<5.02 ALIMENTADORES ELECTRICOS A>							
Α	В	С	D	E	F		
ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO S/.	PARCIAL S/.		
05.02.03	CABLE N2XOH 1x6mm²	M	367.86852	5.53	2034.312915		
05.02.01	CABLE N2XOH 1x16mm²	М	66.322948	12.76	846.280822		
05.02.06	CABLE NH-80 1X4mm²	M	862.868475	2.7	2329.744883		
05.02.05	CABLE N2XOH 1x2.5mm²	M	30.828208	2.94	90.634932		
05.02.04	CABLE N2XOH 1x4mm²	M	58.015	4.04	337.179798		
05.02.02	CABLE N2XOH 1x10mm²	M	59.912	8.3	908.37468		
05.02.07	CABLE NH-80 1x2.5mm ²	M	1271.155	2.43	7372.677564		

Fuente: Elaboración propia

Tabla 57

Metrado de salidas especiales

inetiado de salidas especiales					
<5.03 SALIDAS ESPECIALES>					
Α	В	С	D	E	F
ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO	PARCIAL S/.
05.03.01	SALIDA PARA ELECTROBOMBA	PTO	1	176.5	176.5
Total general: 1					176.5

Tabla 58

Metrado de tuberías de PVC

menage c	io taboliao ao i vo										
<5.04 TUBERIA DE PVC>											
A B C D E F											
ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO S/.	PARCIAL S/.						
05.04.01	TUBERIA PVC-SAP ELECTRICA DE 15 mm	M	142.888	3.1	442.952394						
05.04.02	TUBERIA PVC-SAP ELECTRICA DE 20 mm	M	33.149	4.03	133.589067						
05.04.03	TUBERIA PVC-SAP ELECTRICA DE 35 mm	M	137.920	4.6	634.432838						
05.04.04	TUBERIA PVC-SEL ELECTRICA DE 20 mm	M	1095.119	1.6	1752.190029						
Total general: 1	otal general: 1098 1409.075 2963.164327										

Fuente: Elaboración propia

Tabla 59

Metrado de artefactos

	<5.05 ARTEFACTOS>										
A B C D E F											
ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO S/.	PARCIAL S/.						
05.05.01	SUM. E INSTAL. EQUIPO FLUORESCENTE ADOSADO, LUMINARIA TIPO JOSFEL RAS-3X36 W	UND	54	218.32	11789.28						
05.05.02	SUM. E INSTAL. EQUIPO FLUORESCENTE ADOSADO, LUMINARIA TIPO JOSFEL RAS-4X18 W	UND	51	158.8	8098.8						
05.05.03	SUM. E INSTAL. ARTEFACTO BRAQUETE, LUMINARIA TIPO JOSFEL RSP-2X26 W	UND	51	129.47	6602.97						
05.05.04	SUM. E INSTAL. LUMINARIA TIPO JOSFEL O SIMILAR, SISTEMA HIGH BAY, MOD. MER H-150	UND	18	276.08	4969.44						
Total general:	174		174		31460.49						

Fuente: Elaboración propia

Tabla 60

Metrado de accesorios

<5.06 ACCESORIOS>											
Α	A B C D E										
ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO S/.	PARCIAL S/.						
	<u> </u>										
05.06.01	TOMACORRIENTE DOBLE C/TOMA A TIERRA	UND	63	23.1	1455.3						
05.06.02	TOMACORRIENTE DOBLE A PRUEBA DE AGUA	UND	5	40.26	201.3						
05.06.04	TOMACORRIENTE BIPOLAR SIMPLE PARA PROYECTOR	UND	1	36.23	36.23						
05.06.05	INTERRUPTOR SIMPLE UNIPOLAR 10 A	UND	35	12.22	427.7						
05.06.06	INTERRUPTOR DOBLE 10 A	UND	7	15.93	111.51						
05.06.07	INTERRUPTOR TRIPLE	UND	1	27.16	27.16						
05.06.08	INTERRUPTOR CONMUTACION SIMPLE	UND	22	18.42	405.24						
05.06.09	INTERRUPTOR CONMUTACION DOBLE	UND	1	18.42	18.42						
Total general: 135		•			2682.86						

Tabla 61

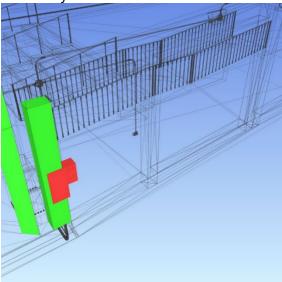
Metrado de tableros

	<5.07 TABLEROS>										
Α	A B C D E F										
ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO	PARCIAL S/.						
05.07.01	TABLERO GENERAL TG	UND	1	1239.93	1239.93						
05.07.02	SUBTABLERO STD-1	UND	1	1389.93	1389.93						
05.07.03	SUBTABLERO STD-2	UND	1	1193.93	1193.93						
05.07.04	SUBTABLERO STD-3	UND	1	1193.93	1193.93						
05.07.05	SUBTABLERO STD-4	UND	1	1193.93	1193.93						
05.07.06	SUBTABLERO STD-5	UND	1	1193.93	1193.93						
05.07.07	SUBTABLERO T-AL	UND	1	1193.93	1193.93						

Fuente: Elaboración propia

Tabla 62

Metrado de sistemas de conductos


<5.09 SISTEMAS DE CONDUCTOS>											
Α	A B C D E F										
ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO S/.	PARCIAL S/.						
05.09.01	05.09.01 BUZON DE CONCRETO 0.80 X 0.80 X 0.70 M. UND 10 170.93 1709.3										
Total general: 10			•	•	1709.3						

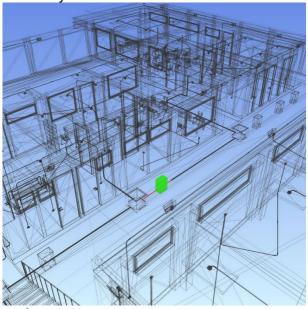
Apéndice 5

Interferencias en Navisworks

Figura 49

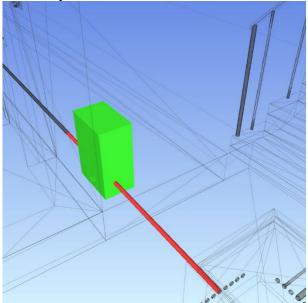
Interferencias entre arquitectura y eléctricas 1

Fuente: Elaboración propia


Figura 50

Interferencias entre arquitectura y eléctricas 2

Figura 51


Interferencias entre sanitarias y eléctricas 1

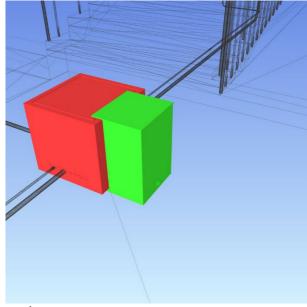

Fuente: Elaboración propia

Figura 52

Interferencias entre sanitarias y eléctricas 2

Figura 53Interferencias entre sanitarias y eléctricas 3

Fuente: Elaboración propia

Figura 54Interferencias entre eléctricas y eléctricas 1

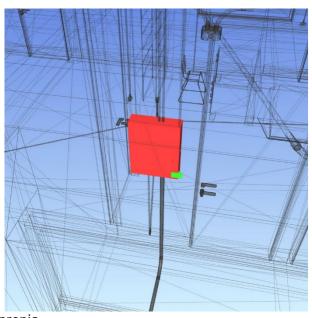
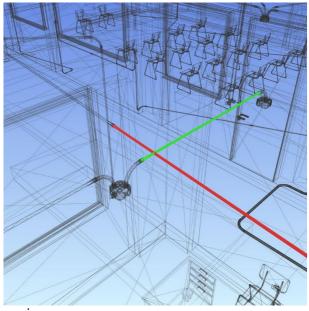



Figura 55
Interferencias entre eléctricas y eléctricas2

Fuente: Elaboración propia

Figura 56

Interferencias entre eléctricas y eléctricas 3

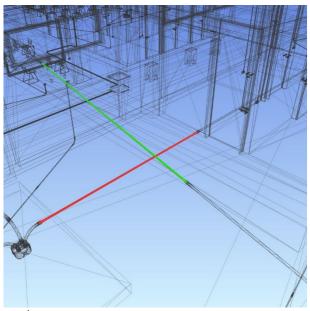
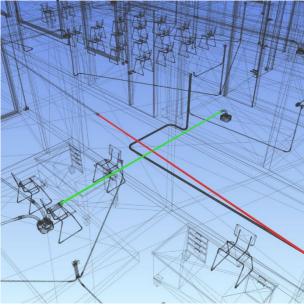
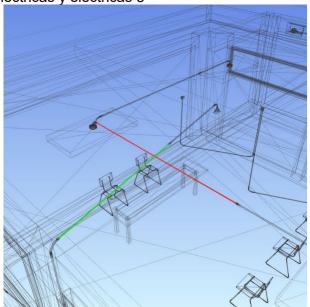



Figura 57


Interferencias entre eléctricas y eléctricas 4

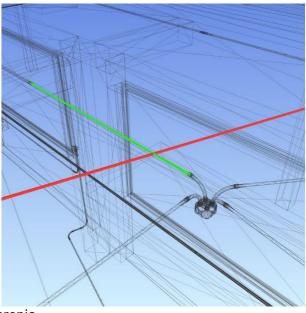

Fuente: Elaboración propia

Figura 58

Interferencias entre eléctricas y eléctricas 5

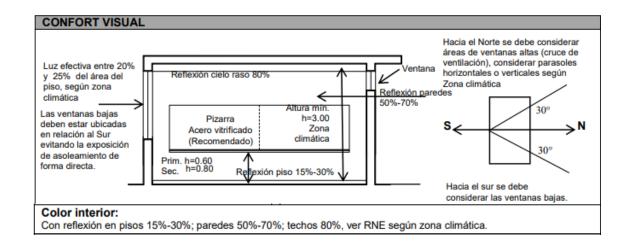


Figura 59Interferencias entre eléctricas y eléctricas 6

Anexo 1 Ficha técnica sobre el ambiente Aula – GDE 002-2015 MINEDU139
Anexo 2 Requisitos mínimos de iluminación - Norma Técnica EM.010140
Anexo 3 Ficha técnica de las luminarias
Anexo 4 Ficha Técnica de las lámparas145
Anexo 5 Coeficientes de utilización de las luminarias
Anexo 6 Factores de corrección de temperatura y reducción para grupos de más de un
circuito
Anexo 7 Factores de corrección para conductores enterrados
Anexo 8 Capacidad nominal o ajuste de los dispositivos de sobrecorriente que protegen
conductores
Anexo 9 Mínima sección de conductores para enlaces equipotenciales de canalizaciones
y equipos

Ficha técnica sobre el ambiente Aula - GDE 002-2015 MINEDU

Anexo 2

Requisitos mínimos de iluminación - Norma Técnica EM.010

1.	VIVIENDA					
Nº ref.	Tipo de interior, tarea o actividad	Em lux	UGR _L	Uo	R _a	Requisitos específicos
1.1	Zona privada					
	Dormitorio	50				
	Baño	100				
	Baño (zona de espejo)	500				
	Cocina	300				
	Sala, Sala de estar	100				
	Comedor	100				
	Estudios, almacenes, depósitos, walking closet, cuartos de trabajo doméstico (planchado, lavandería y similares)	500				
	Patios, zonas abiertas	20				
	Estacionamientos bajo techo	50				
1.2	Zonas comunes (aplicable a zonas comunes de cualquier tipo de edificación)					
	Vestíbulos de entrada	100	22		60	
	Salas de estar (pública)	200	22		80	
	Áreas de circulación y pasillos	100	28	0,40	40	Iluminancia al nivel del suelo Ra y UGR similares a áreas adyacentes 150 lux si hay vehículos en el recorrido El alumbrado de salidas y entradas debe proporcionar una zona de transición para evitar cambios repentinos en iluminancia entre interior y exterior de día o de noche Debe evitarse el deslumbramiento de conductor y peatones
	Escaleras, escaleras mecánicas y transportadores (de personas)	150	25	0,40	40	Requiere contraste mejorado sobre los escalones
	Ascensores, montacargas	100	25	0,40	40	El nivel de iluminación en frente del montacargas debe ser al menos Em = 200 lx
	Rampas/andenes/patios de carga	150	25	0,40	40	

2.	EDUCACIÓN					
Nº ref.	Tipo de interior, tarea o actividad	Em lux	UGR	Uo	R _a	Requisitos específicos
	Sala de juegos	300	22	0,40	80	Debe evitarse altas luminancias en las direcciones de visión desde abajo mediante la utilización de coberturas difusas

2.	EDUCACIÓN					
Nº ref.	Tipo de interior, tarea o actividad	Em lux	UGR	Uo	R,	Requisitos específicos
	Guarderías	300	22	0,40	80	Debe evitarse altas luminancias en las direcciones de visión desde abajo mediante la utilización de coberturas difusas
	Sala de manualidades	300	19	0,60	80	
	Aulas de profesores	300	19	0,60	80	La iluminación debe ser controlable
	Aulas para clases nocturnas y de educación de adultos	500	19	0,60	80	La iluminación debe ser controlable
	Salas de lectura	500	19	0,60	80	La iluminación debe ser controlable para colocal varias A/V necesarias
	Zona de pizarra	500	19	0,70	80	Deben evitarse las reflexiones especulares El presentador/profesor debe iluminarse con la iluminancia vertical adecuada
	Mesa de demostraciones	500	19	0,70	80	En salas de lectura 750 lx
	Locales de artes y oficios	500	19	0,60	80	
	Locales de artes (en escuelas de arte)	750	19	0,70	90	5 000 K ≤ T _{CP} < 6 500 K
	Salas de dibujo técnico	750	16	0,70	80	
	Locales de prácticas y laboratorios	500	19	0,60	80	
	Aulas de manualidades	500	19	0,60	80	
	Taller de enseñanza	500	19	0,60	80	
	Locales de prácticas de música	300	19	0,60	80	
	Locales de prácticas de computación	300	19	0,60	80	
	Laboratorio de idiomas	300	19	0,60	80	
	Locales y talleres de preparación	500	22	0,60	80	
	Vestíbulo de entrada	200	22	0,40	80	
	Áreas de circulación, pasillos	100	25	0,40	80	
	Escaleras	150	25	0,40	80	
	Locales comunes de estudiantes y salas de reuniones	200	22	0,40	80	
	Locales de maestros	300	19	0,60	80	
	Biblioteca: estanterías	200	19	0,60	80	
	Biblioteca: áreas de lectura	500	19	0,60	80	
	Almacenes de material de profesores	100	25	0,40	80	
	Salas deportivas, gimnasios y piscinas	300	22	0,60	80	En caso de no existir norma internacional véase la Norma EN 12193 para las condiciones de entrenamiento
	Cocina	500	22	0,60	80	
6.	OFICINAS					
Nº ref.	Tipo de interior, tarea o actividad	Em lux	UGR	Uo	R _a	Requisitos específicos
	Archivo, copia, circulación, etc.	300	19	0,40	80	
	Escritura, mecanografía, lectura, procesamiento de datos	500	19	0,60	80	
	Estación de trabajo CAD	500	19	0,60	80	
	Salas de conferencias y reuniones	500	19	0,60	80	
	Archivos	200	25	0,40	80	

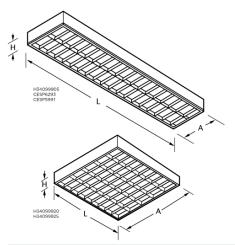
Ficha técnica de las luminarias

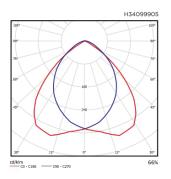
RAS REJILLAS ADOSABLES

DESCRIPCIÓN

Luminaria de interiores para adosar de luz directa, fabricada con reflector de aluminio especular de alta pureza

Fácil acceso a las lámparas y equipo para un adecuado mantenimiento


Las características mecánicas y eléctricas cumplen las especificaciones de las Normas IEC-60598, IEC-61347, IEC-60929.


APLICACIONES

Ideal para oficinas, aulas de estudio, bibliotecas, entidades financieras, entre otras aplicaciones en ambientes interiores que necesiten priorizar una iluminación directa en el plano de trabajo.

VERSIONES

Disponible con rejilla metálica pintada en blanco. Puede solicitarse con balasto dimable y/o kit de emergencia.

CÓDIGO	LÁMPARA	SOCKET	POTENCIA (W)	EQUIPO	DIMENSIONES (mm)			PESO (kg)
					L	Α	Н	
CESP6293	T5	G5	2x28	EE	1225	298	86	4.0
CESP5991	T5	G5	2x54	EE	1225	298	86	4.0
H34099900	T8	G13	2x18	EE	616	298	86	3.8
H34099910	T8	G13	3×18	EE	616	605	86	4.3
H34099920	T8	G13	4x18	EE	616	605	86	4.5
H34099905	T8	G13	2x36	EE	1225	298	86	4.1
H34099915	T8	G13	3x36	EE	1225	605	86	4.5
H34099925	T8	G13	4x36	EE	1225	605	86	4.8

Nos reservamos el derecho de hacer modificaciones, por mejora del producto, sin previa notificación.

RAS - REJILLAS - ADOSABLES

INDUSTRIAL MER H

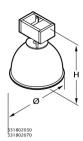
CESP5349 Óptica de Alumi CESP5334 CESP5428

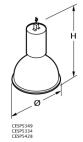
DESCRIPCIÓN

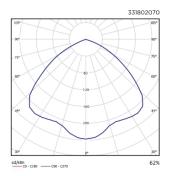
Luminaria hermética para suspender tipo High Bay, de iluminación directa.

Sistema óptico fabricado en aluminio de alta pureza que permite una mayor eficiencia y distribución uniforme de la luz. Caja portaequipo fabricada en aluminio embutido o perfil de aluminio extruido altamente resistente a la corrosión. El cierre es a través de 3 ganchos de acero inoxidable para brindarle mayor seguridad y facilitar el mantenimiento de las lámparas y equipo sin necesidad de desmontar la luminaria.

Las características mecánicas y eléctricas cumplen las especificaciones de las Normas IEC-60598, IEC-61347, IEC-60929.


APLICACIONES


Ideal para naves industriales, supermercados, almacenes, hangares, tiendas por departamento y cualquier otro ambiente donde se requiera una óptima iluminación para alturas mayores a 4m.


VERSIONES

Disponible con block óptico prismático sin cubierta MER P. No incluye suspensión.

Consultar por su versión con caja portaequipo de aluminio fundido IP65.

CÓDIGO	LÁMPARA	SOCKET	POTENCIA (W)	EQUIPO	DIMENSIO	NES (mm)	PESO (kg)
					Ø	Н	
CESP5349	HIT-CE	G12	1x35	EMPT	350	440	6.0
CESP5334	HIT-DE-CE	RX7s	1x70	EMPT	350	440	6.0
CESP5428	HIT-DE-CE	RX7s-24	1x150	EMPT	350	440	6.1
331802030	HIE	E40	1x250	*EM	350	385	5.2
331802070	HIE	E40	1x400	EM	460	465	7.7

. Nos reservamos el derecho de hacer modificaciones, por mejora del producto, sin previa notificación. 'Se suministrará equipo con protección térmica cuando la lámpara tenga guemador cerámico.

MER H - INDUSTRIAL

381250010 381250020 381250000

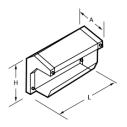
CESP5464 CESP6079

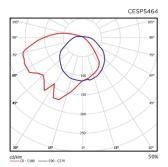
DESCRIPCIÓN

Luminaria decorativa adosable para exteriores de luz directa asimétrica.

Sistema óptico fabricado en aluminio martillado 99.8% puro, que brinda un alto rendimiento lumínico. Cubierta óptica de policarbonato moldeable e irrompible, estabilizado contra los rayos ultravioletas, sellado con silicona, el cual permite un alto grado de protección y hermeticidad.

Su diseño permite un fácil acceso a las lámparas y al equipo para lograr un adecuado mantenimiento.


Las características mecánicas y eléctricas cumplen las especificaciones de las Normas IEC-60598, IEC-61347.


APLICACIONES

Ideal para alumbrado de fachadas, iluminación perimétrica y de seguridad y cualquier otro ambiente donde se requiera una iluminación suave y general.

VERSIONES

Disponible en color negro y titanio.

CÓDIGO	LÁMPARA	SOCKET	POTENCIA (W)	EQUIPO	DIMENSIONES (mm)		COLOR	PESO (kg)	
					L	А	н		
CESP5464	TC-DEL	G24q-2	2x18	EE	305	140	205	TITANIO	1.6
CESP6079	TC-DEL	G24q-2	2x26	EE	305	140	205	TITANIO	1.7
381250010	HSE-I	E27	1x70	EM	315	182	297	NEGRO	3.6
381250020	HME	E27	1x80	EM	315	182	297	NEGRO	3.4
381250000	HME	E27	1x125	EM	315	182	297	NEGRO	3.1

Nos reservamos el derecho de hacer modificaciones, por mejora del producto, sin previa notificación.

RSP - ORNAMENTAL - EXTERIOR

Ficha Técnica de las lámparas

LEDtube Mains T5

MAS LEDtube 1200mm HO 26W 830 G5 VWV BR

El nuevo tubo LEDtube Mains Philips Master T5 le aporta simplicidad a su proyecto de iluminación. No es necesario que continúe prestándole atención a la tecnología de controladores. Gracias a su diseño único, el tubo LEDtube Mains Philips Master T5 se instala directamente en las luminarias que funcionan con conexión de tensión de red. Son fáciles de usar y no es necesario que use el doble de productos. El tubo LEDtube Mains Philips MASTER T5 es la alternativa ideal a los tubos fluorescentes estándares para maximizar la vida útil y el valor gracias al ahorro de energía y los costos más bajos de mantenimiento.

Datos del producto

Funcionamiento de emergencia	
-	
Tapa y base	G5 [G5]
Cumple con el reglamento RoHS de la UE	Sí
Vida útil nominal (nominal)	25000 h
Ciclo de alternado	200000
Rendimiento inicial (conforme con IEC)	
Código de color	830 [CCT de 3.000 K]
Ángulo de haz (nominal)	200°
Flujo luminoso (nominal)	3700 lm
Designación de color	Blanco (WH)
Temperatura de color correlacionada (nominal)	3000 K
Eficacia lumínica (promedio) (nominal)	142,00 lm/W
Consistencia de color	<6
Índice de reproducción de color (Nom)	80
LLMF al final de la vida útil nominal (nominal)	70 %
Mecánicos y de carcasa	
Frecuencia de entrada	50 a 60 Hz

Potencia (nominal)	26 W					
Corriente de la lámpara (máx.)	230 mA					
Corriente de la lámpara (mín.)	140 mA					
Tiempo de inicio (nominal)	0,5 s					
Tiempo de calentamiento para 60 % de luz	0.5 s					
(nominal)						
Factor de potencia (nominal)	0.92					
Voltaje (nominal)	100-277 V					
Temperatura						
T° ambiente (máx.)	45 °C					
T° ambiente (mín.)	-20 °C					
Almacenamiento en T (rango)	-40 °C a 65 °C					
T° almacenamiento (máx.)	65 °C					
T° almacenamiento (mín.)	-40 °C					
T° estuche máxima (nominal)	50 °C					

Datasheet, 2023, Marzo 25 Datos sujetos a cambios

Tubos LED Ecofit T8

Ecofit Mains LEDtube 600mm 8W 740 G

Actualizá tus tubos LED con los tubos LED Ecofit, que son eficientes y de larga duración. Los tubos LED Ecofit son una forma fácil y rápida de reemplazar tus antiguos tubos fluorescentes con la tecnología LED eficiente y moderna. Buena calidad de luz con un efecto de iluminación natural para uso en aplicaciones de iluminación general con una inversión inicial baja. Es una solución ecológica.

Datos del producto

G13 [Medium Bi-Pin Fluorescent]
Sí
15000 h
50000
740 [CCT de 4.000 K]
240 °
800 lm
Blanco frío (CW)
4000 K
100,00 lm/W
<7
73
70 %
50 a 60 Hz
8 W
0.5 s

Tiempo de calentamiento para 60 % de luz	0.5 s	
(nominal)		
Factor de potencia (nominal)	0.5	
Voltaje (nominal)	220-240 V	
Temperatura		
T° ambiente (máx.)	45 ℃	
T° ambiente (mín.)	-20 °C	
Almacenamiento en T (rango)	-40 °C a 65 °C	
T° almacenamiento (máx.)	65 °C	
T° almacenamiento (mín.)	-40 °C	
T° estuche máxima (nominal)	60 ℃	
Controles y regulación		
Con regulación de intensidad	No	
Datos técnicos de la luz		
Longitud del producto	600 mm	
Forma del foco	Tubo, terminal doble	

Datasheet, 2023, Marzo 25 Datos sujetos a cambios

Ceramalux ALTO

SON 150W E39 ED75 CL SL/12

Estas lámparas cumplen con la prueba TCLP de EPA de materiales no peligrosos. Ideal para aplicaciones industriales, depósitos, aplicaciones en punta de postes y estacionamientos.

Datos del producto

Funcionamiento de emergencia

Tapa y base	E39 [Single Contact Mogul Screw]
Aplicación principal	Iluminación vial y general
Código ANSI de HID	S55
Funciones	ALTO® (ALTO)
Rendimiento inicial (conforme con IEC)	
Flujo luminoso (promedio) (mín.)	14400 lm
Flujo luminoso (promedio) (nominal)	16000 lm
Lúmenes promedio del diseño	14220 lm
Coordenada de cromaticidad X (nominal)	514
Coordenada de cromaticidad Y (nominal)	424
Temperatura de color correlacionada (nominal)	2100 K
Eficacia lumínica (promedio) (mín.)	96 lm/W
Eficacia lumínica (promedio) (nominal)	106 lm/W
Índice de reproducción de color (Nom)	17
Mecánicos y de carcasa	
Potencia (nominal)	150,6 W
Corriente de la lámpara (nominal)	3,2 A
Voltaje del suministro de arranque (máx.)	110 V
Tiempo de rearranque (mín.) (máx.)	2 min
Tiempo de arranque (máx.)	5 s
Voltaje (máx.)	62 V

Voltaje (mín.)	48 V					
Voltaje (nominal)	55 V					
Datos técnicos de la luz						
Acabado del foco	Transparente					
Información de tapa y base	Tapa de latón					
Material del foco	Cristal duro					
Forma del foco	ED-23 1/2					
Aprobación y aplicación						
Contenido de mercurio (Hg) (máx.)	17 mg					
Requisitos de diseño de luminaria						
Temperatura del foco (máx.)	400 ℃					
Temperatura de tapa y base (máx.)	210 °C					
Temperatura de tapa y base (máx.)	410 °F					
Datos de producto						
Nombre del producto del pedido	SON 150W E39 ED75 CL SL/12					
EAN/UPC: producto	046677467234					
Código del pedido	928601139790					
Numerador SAP: cantidad por paquete	1					
Numerador: paquetes por caja externa	12					
Material de SAP	928601139790					

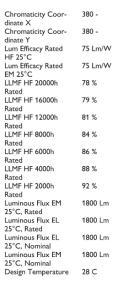
Datasheet, 2022, Septiembre 10 Datos sujetos a cambios

MASTER PL-C Xtra 4 Pin

MASTER PL-C Xtra 26W/840/4P 1CT

Energy-saving compact fluorescent lamps Compact long-arc lowpressure mercury discharge lamp Envelope consists of 4 parallel narrow fluorescent tubes

Product data


• General Characteristics

Cap-Base	G24q-3
Cap-Base Information	4P
Life to 50% failures	16000 hr
EM	
Life to 50% fail	33000 hr
Preheat EL,3h	
Life to 50% fail	9000 hr
Nonpreh EL,3h	
Life to 10% fail	6000 hr
Nonpreh EL,3h	
Life to 10% fail	20000 hr
Preheat EL,3h	
Life to 10% failures	12000 hr
EM	
LSF HF Preheat	90 %
20000h Rated,3h	
LSF HF Preheat	94 %
16000h Rated,3h	
LSF HF Preheat	95 %
12000h Rated,3h	
LSF HF Preheat	96 %
8000h Rated,3h	
LSF HF Preheat	97 %
6000h Rated,3h	
LSF HF Preheat	98 %
4000h Rated,3h	
LSF HF Preheat	99 %
2000h Rated,3h	

• Light Technical Characteristics

Colour Code 840 [CCT of 4000K]
Colour Rendering 82 Ra8
Index Colour Designation
Colour Temperature 4000 K

• Electrical Characteristics

Lamp Wattage 26 W Lamp Voltage EL 80 V 25°C

Anexo 5

Coeficientes de utilización de las luminarias

Tipo de	Índice		Factor de utilización (η)											
aparato	del		Factor de reflexión del techo											
de	local		0.8			0.7			0.5		0.3		0	
alumbrado	k			Fa	ctor	de re	flexió	in de	las p	oarec	les			
alambi dao	"	0.5	0.3	0.1	0.5	0.3	0.1	0.5	0.3	0.1	0.3	0.1	0	
А	0.6	.37	.32	.29	.37	.32	.29	.37	.32	.29	.32	.29	.28	
Δ	0.8	.47	.42	.38	.46	.42	.38	.46	.41	.38	.41	.38	.37	
	1.0	.54	.48	.45	.54	.48	.45	.53	.48	.45	.48	.45	.43	
0,%	1.25	.60	.56	.52	.60	.55	.52	.60	.55	.52	.54	.52	.50	
0//0	1.5	.66	.61	.57	.65	.60	.57	.64	.60	.57	.59	.56	.55	
	2.0	.72	.67	.64	.71	.67	.64	.70	.66	.63	.66	.63	.62	
	2.5	.76	.71	.68	.75	.71	.68	.73	.71	.68	.70	.67	.65	
85 %	3.0	.79	.75	.72	.78	.75	.71	.77	.73	.71	.72	.71	.69	
D _{max} = 1.1 H _m	4.0	.82	.79	.77	.81	.79	.76	.80	.77	.75	.76	.75	.73	
fm .55 .60 .65	5.0	.84	.82	.79	.83	.81	.78	.82	.79	.77	.78	.77	.75	

Luminaria 3. Industrial suspendida.

Tipo de	Índice	Factor de utilización (η)											
aparato	del		Factor de reflexión del techo										
de	local		0.8			0.7			0.5		0	0	
alumbrado	k			Fa	ctor	de re	flexió	in de	las	oared	les		
Granibi GGO	"	0.5	0.3	0.1	0.5	0.3	0.1	0.5	0.3	0.1	0.3	0.1	0
	0.6	.30	.26	.25	.29	.26	.23	.29	.26	.23	.25	.23	.22
	0.8	.36	.32	.29	.35	.32	.29	.35	.31	.29	.31	.29	.27
- Fil	1.0	.43	.40	.37	.43	.40	.37	.42	.39	.37	.39	.37	.36
0,%	1.25	.47	.44	.42	.47	.44	.41	.46	.43	.41	.43	.41	.40
	1.5	.50	.47	.44	.50	.47	.44	.49	.46	.44	.46	.44	.43
	2.0	.53	.50	.49	53	.50	.48	.51	.50	.48	.49	.47	.46
60 %	2.5	.55	.53	.51	.55	.53	.51	.54	.52	.50	.51	.50	.49
	3.0	.57	.54	.53	.56	.54	.52	.55	.53	.51	.52	.51	.50
$D_{\text{max}} = 0.8 \text{ H}_{\text{m}}$	4.0	.59	.57	.55	.58	.56	.55	.56	.55	.54	.54	.53	.52
fm .65 .70 .75	5.0	.60	.58	.57	.59	.57	.56	.57	.56	.56	.56	.54	.53

Luminaria 4. Fluorescente directo con rejilla

Factores de corrección de temperatura y reducción para grupos de más de un circuito

Tabla 63Factores de corrección para temperatura ambiente diferente a 30°c a ser aplicados a la capacidad de corriente nominal

		Aisla	miento				
Tommonotuno			Mineral *				
Temperatura ambiente °C	PVC	XLPE o EPR	Cubierta de PVC o desnudo y expuesto al contacto 70°C	Desnudo no expuesto al contacto 105°C			
10	1,22	1,15	1,26	1,14			
15	1,17	1,12	1,20	1,11			
20	1,12	1,08	1,14	1,07			
25	1,06	1,04	1,07	1,04			
35	0,94	0,96	0,93	0,96			
40	0,87	0,91	0,85	0,92			
45	0,79	0,87	0,87	0,88			
50	0,71	0,82	0,67	0,84			
55	0,61	0,76	0,57	0,80			
60	0,50	0,71	0,45	0,75			
65	-	0,65	-	0,70			
70	-	0,58	-	0,65			
75	-	0,50	-	0,60			
80	-	0,41	-	0,54			
85	-	-	-	0,47			
90	-	-	-	0,40			
95	-	-	-	0,32			
* Para temperaturas a	mbiente mayores, co	nsulte el fabricante.					

Tabla 64

Factores de reducción para grupos de más de un circuito o cable multipolar a ser usados con las capacidades de corriente nominales

Item	Disposición (en cuanto a cables)	Número de circuitos o cables multipolar										A usarse con capacidades de corriente nominal, referencia		
	cablesy	1	2	3	4	5	6	7	8	9	12	16	20	
1	Agrupados en el aire, sobre una superficie empotrados o encerrados	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	4 a 8 métodos A a F
2	En una capa sobre una pared, piso o bandeja no perforada	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70				4 a 7
3	En una capa fijado directamente bajo un techo de madera	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61	No más factores de reducción para más de nueve circuitos o cables multipolares			Método C
4	En una capa sobre una bandeja perforada horizontal o vertical	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72				8 a 9
5	En una capa sobre un soporte de bandeja de escaleras, o listones, etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78				Métodos E y F

Nota 1- Estos factores se aplican a grupos uniformes de cables, igualmente cargados.

Nota 2- Cuando la separación horizontal entre cables adyacentes excede el doble de su diámetro total, no es necesario aplicar factores de reducción.

Nota 3- El mismo factor es aplicado a:

- grupos de dos o tres cables unipolares

Nota 4- Si un sistema consiste de cables de dos o tres conductores, el número total de cables será considerado como el número de circuitos, y es aplicado al factor correspondiente de las tablas para dos conductores de carga para los cables de dos conductores, y de las tablas para tres conductores de carga para cables de tres conductores.

Nota 5 - Si un grupo consiste de n cables unipolar debe ser considerado de n/2 circuitos de dos conductores de carga o n/3 circuitos de tres conductores de carga.

Nota 6- El valor dado ha sido promediado sobre el rango de dimensiones de conductor y tipos de instalación incluidos en las tablas 4 a 42 la

precisión total de los valores tabulados esta dentro de ±5%. Nota 7- Para algunas instalaciones y para otros métodos no provistos en la tabla de arriba puede ser apropiado usar factores calculados para casos específicos, ver por ejemplo las tablas 16 y 17

Factores de corrección para conductores enterrados

Tabla 65

Factores de corrección para temperatura ambiente distinta de 30 °C para cables al aire y distinta a 20 °C para cables en ductos enterrados

	P۱	/C	XLPE	o EPR	MI - Mineral * (al aire)			
Temperatura ambiente [°C]	Cables al aire Cables en ductos enterrados		Cables al aire	Cables en ductos enterrados	Cubierta de PVC o desnudo y expuesto al contacto 70°C	Desnudo no expuesto al contacto 105 °C		
10	1,22	1,10	1,15	1,07	1,26	1,14		
15	1,17	1,05	1,12	1,04	1,20	1,11		
20	1,12	1,00	1,08	1,00	1,14	1,07		
25	1,06	0,95	1,04	0,96	1,07	1,04		
30	1,00	0,89	1,00	0,93	1,00	1,00		
35	0,94	0,84	0,96	0,89	0,93	0,96		
40	0,87	0,77	0,91	0,85	0,85	0,92		
45	0,79	0,71	0,87	0,80	0,87	0,88		
50	0,71	0,63	0,85	0,76	0,67	0,84		
55	0,61	0,55	0,76	0,71	0,57	0,80		
60	0,50	0,45	0,71	0,65	0,45	0,75		
65	-	-	0,65	0,60	-	0,70		
70	-	-	0,58	0,53	-	0,65		
75	-	-	0,50	0,46	-	0,60		
80	-	-	0,41	0,38	-	0,54		
85	-	-	-	-	-	0,47		
90	-	-	-	-	-	0,40		
95	-	-	-	-	-	0,32		

Fuente: Código Nacional de Electricidad – Utilización

Tabla 66

Factores de corrección para cables embutidos en ductos para resistividades térmicas de suelo distintas de 2,5 K.m/W

Resistividad térmica [K.m/W]	1	1,5	2	2,5	3
Factor de corrección	1,18	1,1	1,05	1	0,96

Tabla 67Factores de reducción para más de un circuito en ductos enterrados

Separación entre ductos (a) *					
Ninguna (ductos en contacto)	0,25 m	0,5 m	1,0 m		
0,85	0,90	0,95	0,95		
0,75	0,85	0,90	0,95		
0,70	0,80	0,85	0,90		
0,65	0,80	0,85	0,90		
0,60	0,80	0,80	0,90		
	Ninguna (ductos en contacto) 0,85 0,75 0,70 0,65	Ninguna (ductos en contacto) 0,25 m 0,85 0,75 0,70 0,65 0,90 0,85 0,85 0,80 0,80	Ninguna (ductos en contacto) 0,25 m 0,5 m 0,85 0,75 0,75 0,70 0,65 0,90 0,85 0,85 0,80 0,95 0,90 0,85 0,85 0,85		

Capacidad nominal o ajuste de los dispositivos de sobrecorriente que protegen conductores

Máxima capacidad o ajuste del dispositivo de sobrecorriente de los circuitos protegidos [A]	Mínima sección nominal del conductor requerido [mm²]		
20	2,5		
30	4		
40	6		
60	6		
100	10		
200	16		
300	25		
400	25		
500	35		
600	50		
800	50		
1000	70		
1200	95		
1600	120		
2000	150		
2500	185		

Anexo 9

Mínima sección de conductores para enlaces equipotenciales de canalizaciones y equipos

Capacidad de corriente del conductor [A]	Capacidad nominal o ajuste del dispositivo de sobrecorriente [A]	Capacidad de corriente del conductor [A]	Capacidad nominal o ajuste del dispositivo de sobrecorriente [A]
0-15	15	126-150	150
16-20	20	151-175	175
21-25	25	176-200	200
26-30	30	201-225	225
31-35	35	226-250	250
36-40	40	251-275	300
41-45	45	276-300	300
46-50	50	301-325	350
51-60	60	326-350	350
61-70	70	351-400	400
71-80	80	401-450	450
81-90	90	451-500	500
91-100	100	501-525	600
101-110	110	526-550	600
111-125	125	551-600	600