UNIVERSIDAD NACI ONAL DE INGENIERÍA FACULTAD DE CIENCIAS

TESIS

"Diseño e implementación del procedimiento técnico para el aseguramiento de la validez de los resultados bajo la norma NTP-ISO/ IEC 17025:2017 en laboratorios de calibración para el procedimiento PC-001 de INACAL -DM"

"PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO FÍSICO"

ELABORADO POR

Juan Enrique Valerin Reyes

ASESOR

Dr. Luis Alberto Sánchez Rodas

LIMA - PERÚ

2023

Citar/How to cite

Valerin Reyes [1]

[1]

Referencia/Reference

Estilo/Style: IEEE (2020)

J.E. Valerin Reyes, "Diseño e implementación del procedimiento técnico para el aseguramiento de la validez de los resultados bajo la norma NTP-ISO/IEC 17025:2017 en laboratorios de calibración para el procedimiento PC-001 de INACAL-DM" [Tesis de pregrado]. Lima (Perú): Universidad Nacional de Ingeniería, 2023.

Citar/How to cite

(Valerin, 2023)

Referencia/Reference

Estilo/Style: APA (7ma ed.)

Valerin, J.E. (2023). Diseño e implementación del procedimiento técnico para el aseguramiento de la validez de los resultados bajo la norma NTP-ISO/IEC 17025:2017 en laboratorios de calibración para el procedimiento PC-001 de INACAL-DM. [Tesis de pregrado, Universidad Nacional de Ingeniería]. Repositorio institucional Cybertesis UNI.

DEDICATORIA:

Esta tesis está dedicada y dirigida a cada una de las personas que hicieron parte de este proceso ya que sin cada uno de ellos no hubiese sido posible culminar esta parte de nuestra formación, siendo un soporte en cada una de las etapas buenas y otras no tanto a lo largo de esta carrera. Un especial reconocimiento a mi familia esposa e hijo que estuvieron conmigo con los ánimos para lograr cumplir esta meta.

AGRADECIMIENTOS

Gracias a mí familia por ser los principales promotores de mis sueños, gracias por confiar y creer en mí y en mis expectativas, gracias a mi esposa por desear y anhelar siempre lo mejor para mi vida, a la universidad gracias por haberme permitido formarme en ella, gracias a mi madre por estar dispuesta a acompañarme cada día de estudio, gracias por cada consejo y por cada una de sus palabras que me guiaron durante mi vida, a mis compañeros que ya sea de manera directa o indirecta, fueron los responsables de realizar su pequeño aporte, que el día de hoy se ve reflejado en la culminación de mi paso por la universidad, todos aquellos que estuvieron presentes durante toda o la mayor parte de la realización y el desarrollo de este trabajo de grado, gracias a aquellos que con respeto y decencia realizaron aportes a esta, gracias a todos.

Esta tesis ha sido financiada mediante el proyecto titulado "Desarrollo de un dispositivo portátil para el tratamiento de agua eficiente para el consumo humano en zonas rurales", con contrato N°120-2018-FONDECYT.

RESUMEN

Cuando un laboratorio se encuentra acreditado bajo ISO/ IEC 17025 2017 o está buscando la implementación de dicho sistema de gestión, se encuentra en la necesidad de contar con personal, instalaciones y condiciones ambientales, equipamiento y requisitos del proceso que se encuentran detallados en dicha norma. Por tal motivo el laboratorio debe contar con procedimientos de gestión y técnicos que pueda garantizar el cumplimiento de todos los requisitos de la norma ISO/ IEC 17025 2017 (Requisitos generales para la competencia de los laboratorios de ensayo y calibración). La presente tesis analiza y documenta el numeral 7.7 "aseguramiento de la validez de los resultados" en específico a los numerales de la a) a la k) detallado en el punto 7.7.1 de la norma para implementarlo como un procedimiento técnico donde se establecerán los métodos estadísticos y criterios de aceptación apropiados para su aplicación con el procedimiento de calibración PC-001 "Procedimiento para la calibración de balanzas de funcionamiento no automático clase III y IIII".

Palabras clave: Calibración, Aseguramiento metrológico, balanzas, PC-001 2019, NTP ISO/IEC 17025 2017.

ABSTRACT

When a laboratory is accredited under ISO/IEC 17025 2017 or is looking for the implementation of said management system, it is in need of having personnel, facilities and environmental conditions, equipment and process requirements that are detailed in said standard. For this reason, the laboratory must have management and technical procedures that can guarantee compliance with all the requirements of the ISO/IEC 17025 2017 standard (General requirements for the competence of testing and calibration laboratories). The present work thesis analyzes and documents the numeral 7.7 "assurance of the validity of the results" specifically to the numerals from a) to k) detailed in point 7.7.1 of the standard to implement it as a technical procedure where they will be established the statistical methods and appropriate acceptance criteria for its application with the calibration procedure PC-001 "Procedure for the calibration of scales with non-automatic operation class III and IIII".

Keywords: Calibration, metrological assurance, scales, PC-001 2019, NTP ISO/IEC 17025 2017.

ÍNDICE GENERAL

RESUM	MEN	V
ABSTR	ACT	v i
CAPÍTU	JLO I: INTRODUCCIÓN	1
1.1.	GENERALIDADES	1
1.2.	DESCRIPCIÓN DEL PROBLEMA DE INVESTIGACIÓN	1
1.3.	OBJETIVOS DEL ESTUDIO	2
1.4.	ANTECEDENTES INVESTIGATIVOS	3
1.5.	DESARROLLO DE LA TESIS	4
1.6.	EXPERIENCIA PROFESIONAL Y ANTECEDENTES DE LA EMPRESA	5
CAPÍTU	JLO II: MARCO TEÓRICO Y CONCEPTUAL	9
2.1. N	MARCO TEÓRICO	9
2.2. N	MARCO CONCEPTUAL	10
2.3.	TEST ESTADISTICOS	11
2.3	.1. Test de Dixon	11
2.3	.2. Test de Shapiro-Wilk y Shapiro-Francia	12
2.3	.3. Pruebas paramétricas y no paramétricas	14
2.3	.4. Test F – Igualdad de varianzas	15
2.3	5.5. Prueba T-Student – Igualdad de medias	16
2.3	.6. Prueba de Levene	17
2.3	.7. Prueba de Mann Whitney	17
2.3	.8. Resultados de calibración de una balanza bajo el PC-001	18
CAPÍTU	JLO III: DESARROLLO DEL PROCEDIMIENTO TÉCNICO	19
3.1	OBJETIVO	19
3.2	ALCANCE	19
3.3	DEFINICIONES	19
3.4	CONTENIDO	19
CAPÍTU	JLO IV: PRESENTACIÓN Y DISCUSIÓN DE LOS RESULTADOS	26
CAPÍTU	JLO V: VALIDACIÓN DE LAS HOJAS DE CÁLCULO	44

5.1	DETERMINACIÓN DE DATOS ATÍPICOS	44
5.2	EVALUACIÓN DE LA NORMALIDAD DE LOS RESULTADOS	45
CONCL	USIONES	48
RECOM	MENDACIONES	50
REFER	ENCIAS BIBLIOGRAFICAS	51
ANEXC	os	55

INDICE DE TABLAS

Tabla 1:	Evolución de la cantidad de los laboratorios de calibración acreditados por	· la
	DA- INACAL del 2010 al 2022 fuente- boletín estadístico N° 11-2020 [2]	2
Tabla 2	Clasificación de los instrumentos de pesaje de funcionamiento no	
	automático según su clase de exactitud. Extraído de la NMP 003:2009.[13] 7
Tabla 3:	Errores máximos permisibles de las pesas según sus clases de exactitud.	
	Extraído de la NMP 004:2007 [14]	8
Tabla 4:	Pruebas paramétricas y sus equivalentes no paramétricos en función de la	38
	relaciones entre las muestras y su cantidad [20]	15
Tabla 5:	Resultados de las calibraciones de las (uso de instrumentos alternativos).	
	1era calibración: Patrón 1; 2da calibración: Patrón 2 (alternativo)	20
Tabla 6:	Ítem bajo calibración usado para el aseguramiento	26
Tabla 7:	Coeficientes obtenidos de los resultados de las calibraciones realizadas el	I
	metrólogo	26
Tabla 8:	Evaluación de los resultados de medición según el criterio de aceptación.	27
Tabla 9:	Datos de la calibración de los patrones de masa desde 100 mg a 20 g	27
Tabla 10:	Calculo del intervalo máximo de calibración y periodo de vigencia de los	
	patrones de trabajo	34
Tabla 11:	Patrones utilizados para realizar la verificación intermedia	36
Tabla 12:	Resultados de las verificaciones intermedias de los patrones	36
Tabla 13:	Ítem bajo calibración utilizado para fines del aseguramiento	37
Tabla 14:	Coeficientes obtenidos de los resultados de las calibraciones los dos	
	metrólogos	37
Tabla 15:	Evaluación de los resultados de medición para los dos metrólogos	37
Tabla 16:	Datos de las calibraciones del referente en la evaluación Intralaboratorio	38
Tabla 17:	Datos de las calibraciones del participante 1 en la evaluación	
	Intralaboratorio	38

Tabla 18:	Datos de las calibraciones del participante 2 en la evaluación
	Intralaboratorio
Tabla 19:	Datos de las calibraciones del participante 3 en la evaluación
	Intralaboratorio
Tabla 20:	Datos de las calibraciones del participante 4 en la evaluación
	Intralaboratorio
Tabla 21:	Datos de las calibraciones del participante 5 en la evaluación
	Intralaboratorio
Tabla 22:	Evaluación de los datos atípicos utilizando el test de Dixon40
Tabla 23:	Evaluación de la normalidad de los resultados del referente y participantes 1
	y 241
Tabla 24:	Evaluación de igualdad de varianzas y medias para el participante 1 y 2 42
Tabla 25:	Evaluación de igualdad de varianzas y medias para el participante 3, 4
	y 543
Tabla 26:	Resultados de la prueba Q Dixon en Minitab para los resultados44
Tabla 27:	Resultados de la evaluación de la normalidad utilizando MATLAB y
	SHAPIRO WILKS
Tabla 28:	Resultados de la igualdad de varianzas en Minitab valor-p46
Tabla 29:	Evaluación de igualdad de medidas de tendencia central

INDICE DE GRÁFICOS

Gráfico 1:	Tipos de distribución según el valor del coeficiente de curtosis calculado	. 13
Gráfico 2:	Diagrama de flujo para el proceso de determinación de los test estadísticos	. 14
Gráfico 3:	Carta de control para la pesa de 100 mg clase M2	. 29
Gráfico 4:	Carta de control para la pesa de 200 mg clase M2	. 29
Gráfico 5:	Carta de control para la pesa de 200 mg(.) clase M2	. 30
Gráfico 6:	Carta de control para la pesa de 500 mg clase M2	. 30
Gráfico 7:	Carta de control para la pesa de 1 g clase M2	. 31
Gráfico 8:	Carta de control para la pesa de 2 g clase M2	. 31
Gráfico 9:	Carta de control para la pesa de 2 g. (.) M2	. 32
Gráfico 10:	Carta de control para la pesa de 5 g M2	. 32
Gráfico 11:	Carta de control para la pesa de 10 g clase M2	. 33
Gráfico 12:	Carta de control para la pesa de 20 g M2	. 33
Gráfico 13:	Carta de control para la pesa de 20 g (.) M2	. 34

LISTA DE SÍMBOLOS Y SIGLAS

INACAL: Instituto nacional de calidad

DA INACAL: dirección de acreditación del instituto nacional de calidad

DM INACAL: dirección de metrología del instituto nacional de calidad

OEC: Organismos de evaluación de la conformidad

PC: Procedimiento de calibración

EMP: Error máximo permitido

LC: Laboratorio de calibración

CAPÍTULO I: INTRODUCCIÓN

1.1. GENERALIDADES

En Perú existe una gran demanda de laboratorios de calibración, sin embargo, solo contamos con 70 laboratorios acreditados bajo la norma NTP-ISO/IEC 17025:2017 [1] por la DA INACAL. Estos laboratorios se encuentran en la página web oficial de INACAL dentro del directorio de laboratorios de calibración acreditados. Dichos laboratorios tienen un sistema de gestión que garantiza el cumplimiento de los mecanismos para el aseguramiento de la validez de los resultados de acuerdo con la norma. Sumado a ello la directriz para la acreditación de laboratorios de ensayo y calibración DA-acr-06D expresa lo siguiente respecto ese punto de la norma:

"7.7.1. El laboratorio debe declarar y sustentar los literales desde a) hasta k) que aplica, de la norma u otros, para asegurar la validez de los resultados de cada método de ensayo o procedimiento de calibración." [2]

Además, existen laboratorios que no están acreditados y están en proceso de implementación de la norma con el objetivo de demostrar competencia técnica y garantizar la calidad y confianza de sus servicios. En tal sentido los laboratorios deben implementar un procedimiento técnico que garantice el cumplimiento del aseguramiento de la validez de los resultados.

Actualmente en Perú se carece de literatura relacionada a la implementación y aplicación de dichos mecanismos en OEC en específico "laboratorios de calibración" de acuerdo con las búsquedas realizadas en los principales repositorios de tesis de las principales universidades a nivel nacional e internacional.

1.2. DESCRIPCIÓN DEL PROBLEMA DE INVESTIGACIÓN

Actualmente existe una tendencia de crecimiento de OEC, en específico laboratorios de calibración como se muestra en la tabla N° 1 esto se debe al incremento constante de la demanda de los servicios de calibración por los

principales sectores económicos como agropecuario y pesca, minería e hidrocarburos, manufactura, construcción, comercio y servicios.

Tabla 1: Evolución de la cantidad de los laboratorios de calibración acreditados por la DA- INACAL del 2010 al 2022 fuente- boletín estadístico N° 11-2020 [2]

Lab. 13 12 13 18 21 29 40 47 60 calibración

Obtener un procedimiento técnico que garantiza el cumplimiento del requisito establecido en el numeral 7.7.1 de la norma NTP ISO/IEC 17025 permitirá servir de referencia a los 60 laboratorios de calibración acreditados a nivel nacional y a los que se encuentran en proceso de implementación de la norma NTP ISO/ IEC 17025 2017 con la finalidad de mejorar la calidad de los servicios brindados.

Por ello, el presente estudio de investigación se estudió:

Los métodos estadísticos y criterios de aceptación que se deben utilizar para garantizar la correcta implementación de los mecanismos de aseguramiento de la validez de los resultados para dar cumplimiento a la NTP-ISO/ IEC 17025 aplicado en un laboratorio de calibración en el procedimiento de calibración PC-001 "Procedimiento para la calibración de balanzas de funcionamiento no automático clase III y IIII".

1.3. OBJETIVOS DEL ESTUDIO

1.3.1. Objetivo general

Desarrollar y ejecutar el procedimiento técnico que sustente el aseguramiento de la valides de los resultados en los laboratorios de calibración usando métodos estadísticos y criterios de aceptación apropiados para garantizar el cumplimiento de los mecanismos descritos en el numeral 7.7.1 de la NTP ISO/IEC 17025 2017.

1.3.2. Objetivos específicos

- Evaluar los mecanismos de la a) a la k) del 7.7 de la NTP ISO/ IEC 17025 aplicables al procedimiento de calibración PC-001 "Procedimiento de calibración de balanzas clase III y IIII".
- Desarrollar el procedimiento técnico describiendo los métodos estadísticos y criterios de aceptación aplicables a cada mecánico de aseguramiento.
- Ejecutar el procedimiento técnico para la obtención de datos por parte del laboratorio
- Validar las hojas de cálculo desarrolladas en Excel mediante software estadístico MINITAB 19.1. y MATLAB R2014A.

1.4. ANTECEDENTES INVESTIGATIVOS

Jhosep Esthip Gamonal Requez (2022) [3] se encargó de realizar una aplicación de la norma NTP-ISO/IEC 17025:2017, en su trabajo realizó una implementación del aseguramiento de la validez de los resultados aplicados a un método de ensayo: Suelos. Métodos de ensayo para determinar el contenido de humedad de un suelo NTP 339.127:2019 a partir de la generación de procedimientos para el sistema de gestión.

Gonzáles Yapo, C. A. (2016) [4], realizo el mejoramiento de una metodología para el aseguramiento de la validez de los resultados en la norma ISO/ IEC 17025:2005. Esta metodología la dividio en cuatro etapas, la primera evalúa la normalidad de los resultados de las mediciones, la segunda determina la igualdad de varianzas, la tercera determina el valor asignado y la cuarta etapa puntúa los resultados mediante el cálculo del Z score.

Luz Marina Carbajal Capia (2022) [5], tuvo como objetivo "realizar la evaluación de los riesgos asociados al aseguramiento de la validez de los resultados con la norma ISO/ IEC 17025 v2017, en su trabajo obtuvo que los requisitos del numeral 7.7.1

con riesgo alto de materializarse son específicamente d) y f) para lo cual recomienda acciones correctivas y seguimiento adecuado"

- d) Uso de patrones de verificación o patrones de trabajo con gráficos de control
- f) Repetición del ensayo o calibración utilizando los mismos métodos o métodos diferentes

Diana Elena Loor Díaz (2021) [6], su trabajo tuvo como objetivo crear las bases técnicas para asegurar la confianza y la validez de resultados emitidos para ensayos de viscosidad a 40 °C y 100 °C y TBN (Número básico total) mediante la evaluación de la norma establece la línea base planteando objetivos e incluye bases teóricas que permitirán realizar el diseño de los mecanismos de control de calidad como producto final se tendrán cartas de control estadístico.

Fonseca, Y. P. O., Soto, J. J. E., & Benavides, J. D. G. (2017) [7]. En su trabajo determinan los intervalos de calibración de patrones del laboratorio de masa del instituto nacional de metrología de Colombia usando como referencia la OIML D-10 mediante el uso de las cartas de control y la herramienta estadística Z-score. Rodríguez Sabogal, H., & Rodríguez Acevedo, H. S. (2019) [8]. Desarrolla una cámara generadora de humedad con la cual puede controlar la humedad dentro del volumen interno de la cámara y así poder garantizar las comprobaciones intermedias en los higrómetros para dar cumplimiento a la NTC-ISO/IEC 17025:2017.

Ruiz Wong, O. (2014) [9]. Documenta un método para realizar las verificaciones de desempeño para una balanza analítica según la NMP003:2009 donde aplica los ensayos de repetibilidad, excentricidad y pesaje para garantizar la confiabilidad en las mediciones que realiza.

1.5. DESARROLLO DE LA TESIS

La presente tesis fue desarrollada mientras me encontraba laborando el laboratorio de masa de la empresa TEST & CONTROL S.A.C., en esta área de la empresa se realizan los servicios de calibración de instrumentos como pesas de clases de

exactitud M2 según el PC-008 de DM-INACAL, también se encuentran los patrones que se utilizan para brindar el servicio de calibración de balanzas de clase III y IIII. El desarrollo de la presente tesis se realizó en el año 2021 y se encuentra detallada por trimestre:

Primer trimestre:

Desarrollo del procedimiento técnico del aseguramiento de la validez de los resultados del 7.7 de la ISO/IEC 17025:2017.

Segundo trimestre:

Ejecución del procedimiento técnico y registro de todas las mediciones.

Ejecución de la Intralaboratorio del PC-001 de INACAL DM.

Tercer trimestre:

Desarrollo de las hojas de cálculo y formatos para la evaluación de los resultados, así como la implementación de los estadísticos en dichas hojas.

Cuarto trimestre:

Validación de dichas hojas de cálculo utilizando Software estadístico MINITAB, MATLAB.

1.6. EXPERIENCIA PROFESIONAL Y ANTECEDENTES DE LA EMPRESA

1.6.1. Experiencia profesional

En el periodo en el que se desarrolló el presente proyecto (2021-2022) se tenía una experiencia profesional de 3 años trabajando en el uso de sistemas de gestión según la NTP-ISO/IEC 17025:2017. Los dos primeros años se estuvo laborando en la empresa TECHNICAL SERVICE GROUP S.A.C. desempeñándome como metrólogo de laboratorio de masa, presión y volumen realizando calibraciones, haciendo hojas de cálculo y actualizando los documentos técnicos para mantener el sistema de gestión.

En el tercer año de esta experiencia me desempeñé como coordinador del laboratorio de masa en la empresa TEST & CONTROL S.A.C. en la cual tuve las principales funciones garantizar el cumplimiento en base los requisitos técnicos y

de gestión según la NTP-ISO/IEC 17025 en los procedimientos PC-001, PC-008 y PC-011 para garantizar la calidad de los servicios que se brindan al cliente.

En esta experiencia participe en las auditorias de seguimiento, intercomparaciones y testificaciones organizadas por la DM INACAL, en los procedimientos de la magnitud masa, brinde soporte a las demás áreas de la empresa. Además de realizar charlas de capacitación a los clientes y personal a cargo.

1.6.2. Antecedentes de la empresa TEST & CONTROL S.A.C.

TEST & CONTROL S.A.C. es una empresa fundada el 4 de diciembre del 2008 que ofrece a la industria minera, pesquera, alimentaria, farmacéutica, construcción, entre otras, el servicio de calibración y patrones trazables a patrones nacionales (DM INACAL) e internacionales.

Esta empresa tiene como visión "ser la empresa líder del país por el excelente servicio en calibraciones, logrando convertirnos en socios estratégicos de nuestros clientes" y como misión "garantizar la precisión y exactitud de las mediciones realizadas, permitiendo a nuestros socios estratégicos cumplir con sus objetivos empresariales."

La empresa cuenta con la acreditación bajo la NTP-ISO/IEC 17025:2017 en siete procedimientos de calibración los cuales le permiten realizar la calibración de balanzas de clase I, II, III y IIII, manómetros, pie de rey, micrómetros, reloj comparador, torquímetros y además como unidad de verificación metrológica en balanzas de mercado clase III.

1.6.3. Laboratorio de masa de TEST & CONTROL S.A.C.

El laboratorio cuenta con la infraestructura apropiada para cumplir con los requisitos exigidos según la norma NTP-ISO/IEC 17025, esto garantiza el cumplimiento de las condiciones ambientales apropiadas para resguardar nuestros patrones y realizar los servicios de calibración de instrumentos de medición. Nuestros patrones de medición cuentan con las exactitudes e incertidumbres apropiadas para realizar los servicios de acuerdo a los procedimientos de calibración.

El servicio de calibración de balanzas es un servicio realizado "in situ" debido a que los pesajes realizados dependen de las condiciones ambientales en las inmediaciones del instrumento según la guía SIM MWG7/cg-01/v.00 [10], por ello debe ser realizado en las instalaciones donde se encuentra ubicada la balanza, existen dos procedimientos de calibración publicados en la página de la DM INACAL los cuales son el PC-001 "procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático de clase III y IIII" [11] y PC-011 "Procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático de clase de pesaje de funcionamiento no automático clase I y II" [12], las clases de exactitud existentes de balanzas se muestran en la tabla 2.

Tabla 2 Clasificación de los instrumentos de pesaje de funcionamiento no automático según su clase de exactitud. Extraído de la NMP 003:2009.[13]

Clase de exactitud	División de escala de verificación, e	Número de divisiones de escala de verificación, n = Max/e		Capacidad mínima, Min (Limite inferior)
	THE LABORATOR SHOW AND ADDRESS OF THE PARTY	mínimo	máximo	
Especial (I)	0,001 g < e*	50 000**	-	100 e
Alta	0,001 g < e < 0 ,05 g	100	100 000	20 e
(II)	0,1 g < e	5 000	100 000	50 e
Media	0,1 g < e < 2 g	100	10 000	20 e
(III)	5 g < e	500	10 000	20 e
Ordinaria (IIII)	5 g < e	100	1 000	10 e

^{*} Normalmente, no es posible ensayar y verificar un instrumento con e < 1 mg, debido a la incertidumbre de las cargas de ensayo.

Los patrones utilizados para la calibración de estos instrumentos son llamados pesas patrón, los cuales deben contar con certificados de calibración vigentes al momento de realizar el servicio lo cual da garantía de la trazabilidad metrológica.

^{**} Para un instrumento de la clase I con d < 0,1 mg, n puede ser inferior a 50 000.

Los valores nominales de las pesas, así como las clases de exactitud serán escogidas en función de la balanza que se desea calibrar, estas deben cumplir los requisitos establecidos en la NMP-004-2007 y sus errores no deben superar el 1/3 del error máximo permitido para la carga aplicada [13].

La tabla 3 muestra las pesas de valores nominales de las pesas desde 1 mg hasta 5 000 kg de las clases de exactitud E₁, E₂, F₁, F₂, M₁, M₁₋₂, M₂, M₂₋₃ y M₃.

Tabla 3: Errores máximos permisibles de las pesas según sus clases de exactitud. Extraído de la NMP 004:2007 [14]

Valor nominal	Clase E ₁	Clase E ₂	Clase F ₁	Clase F ₂	Clase M ₁	Clase M ₁₋₂	Clase M ₂	Clase M ₂₋₃	Clase M ₃
5 000 kg	Service 1		25000	80000	250000	500000	800000	1 600 000	2 500 000
2 000 kg	· 漫画,		10000	30000	100000	200000	300000	600 000	1 000 000
1 000 kg		1600	5000	16000	50000	100000	160000	300000	500000
500 kg	Title kant	800	2500	8000	25000	50000	80000	160000	250000
200 kg		300	1000	3000	10000	20000	30000	60000	100000
100 kg		160	500	1600	5000	10000	16000	30000	50000
50 kg	25	80	250	800	2500	5000	8000	16000	25000
20 kg	10	30	100	300	1000		3000	De Fra	10000
10 kg	5,0	16	50	160	500		1600	JE LANE	5000
5 kg	2,5	8,0	25	80	250	4	800	10)	2500
2 kg	1,0	3,0	10	30	100		300	STAKE.	1000
1 kg	0,5	1,6	5,0	16	50		160		500
500 g	0,25	0,8	2,5	8,0	25		80		250
200 g	0,10	0,3	1,0	3,0	10		30		100
100 g	0,05	0,16	0,5	1,6	5,0	WILLSAY T	16	Marine - 1	50
50 g	0,03	0,10	0,3	1,0	3,0	ACTION S	10		30
20 g	25	0,08	0,25	0,8	2,5	The St	8,0	100	25
10 g	20	0,06	0,20	0,6	2,0		6,0		20
5 g	16	0,05	0,16	0,5	1,6	7 4 3 1	5,0		16
2 g	12	0,04	0,12	0,4	1,2		4,0		12
1 g	10	0,03	0,10	0,3	1,0	TIME A	3,0		10
500 mg	8	25	0,08	0,25	0,8	1000	2,5		ST LOVE
200 mg	6	20	0,06	0,20	0,6	2417	2,0		
100 mg	5	16	0,05	0,16	0,5		1,6		Manual T
50 mg	4	12	0,04	0,12	0,4	10 00 31	CHARLES.	14	
20 mg	3	10	0,03	0,10	0,3	Water Land	Valla War	ALTER.	
10 mg	3	8	25	0,08	0,25		112		No. 1 Sec
5 mg	3	6	20	0,06	0,20	STATE OF THE PARTY OF	T dading		
2 mg	3	6	20	0,06	0,20			DAY)	
1 mg	3	6	20	0,06	0,20	A 17/11			

CAPÍTULO II: MARCO TEÓRICO Y CONCEPTUAL

2.1. MARCO TEÓRICO

Los criterios para el desarrollo del procedimiento técnico para garantizar el cumplimiento aseguramiento de la validez de los resultados se encuentra detallado en el 7.7.1, de la NTP ISO/IEC 17025:2017.

7.7.1 El laboratorio debe contar con un procedimiento para hacer el seguimiento de la validez de los resultados. Los datos resultantes se deben registrar de manera que las tendencias sean detectables y cuando sea posible, se deben aplicar técnicas estadísticas para la revisión de los resultados. Este seguimiento se debe planificar y revisar y debe incluir, cuando sea apropiado, pero sin limitarse a:

- a) uso de materiales de referencia o materiales de control de calidad;
- b) uso de instrumentos alternativos que han sido calibrados para obtener resultados trazables;
- c) comprobaciones funcionales del equipamiento de ensayo y de medición;
- d) uso de patrones de verificación o patrones de trabajo con gráficos de control, cuando sea aplicable;
- e) comprobaciones intermedias en los equipos de medición;
- f) repetición del ensayo o calibración utilizando los mismos métodos o métodos diferentes;
- g) reensayo o recalibración de los ítems retenidos;
- h) correlación de resultados para diferentes características de un ítem;
- i) revisión de los resultados informados;
- j) comparaciones intralaboratorio;
- k) ensayos de muestras ciegas.

...[2]

Otro de los criterios que también exige la norma, es la validación de los sistemas de gestión implementados para recopilar y procesar la información tales como hojas

de cálculo empleadas en el presente estudio esto se encuentra establecido en el 7.11.2 de la NTP ISO/IEC 17025:2017.

2.1.1. PC-001 Procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático clase III y IIII.

Este procedimiento establece las acciones que deberá cumplir el especialista en metrología para efectuar la calibración de instrumentos de pesaje de funcionamiento no automático clase III y IIII. Este documento se encuentra basado en la EURAMET/cg/18 versión 4.0 (11/2015) y la Norma metrológica peruana NMP 003:2009.

Este documento servirá como referencia por los técnicos metrólogos para llevar a cabo las calibraciones y con ello obtener los resultados para evaluar el cumplimiento del aseguramiento de la validez de los resultados.

2.2. MARCO CONCEPTUAL

2.2.1. Material de referencia 5.13

Material homogéneo y estable con respecto a propiedades especificadas establecido para su uso previsto en una medición o en un examen de propiedades cualitativas. [15]

2.2.1. Material de referencia certificado 5.14

Es un material acompañado por un certificado emitido por una entidad autorizada (por ejemplo, contar con la acreditación con la norma ISO 17034:2016) que proporciona valores, incertidumbres y trazabilidad asociadas usando procedimientos validados. [15]

2.2.2. Trazabilidad metrológica 2.41

Es la propiedad de un resultado de medición de poder relacionarse con un valor de una unidad de medida mediante una cadena ininterrumpida y documentada de calibraciones a un patrón de medición nacional o internacional las cuales contribuyen a la incertidumbre de medición. [15]

2.2.3. Cadena de trazabilidad metrológica 2.42

Es la sucesión de patrones y calibraciones que permiten establecer las relaciones entre un resultado de medición con una unidad de medida asociada a una incertidumbre de medición la cual aumenta con cada calibración. [15]

2.2.4. Calibración 2.39

Es la operación que bajo condiciones especificadas establece una relación entre los valores y su incertidumbre de medición asociadas a partir de la comparación entre las indicaciones del instrumento bajo calibración y patrones de medición obteniendo con ello un resultado de medición a partir de una indicación. [15]

2.2.5. Verificación [2.44]

Es la aportación de evidencia objetiva que se satisfacen los requisitos especificados el cual puede ser alguna especificación definida por el fabricante, norma o entidad reconocida.

2.2.6. Verificación o comprobación intermedia

Es una verificación realizada a ciertos intervalos con el fin de establecer mediante evidencia objetiva de que los equipos cumplen los requisitos especificados los cuales servirán para definir los criterios de aceptación.

En otras palabras, es un chequeo que se hace a los equipos de medición para determinar si cumplen con los requisitos metrológicos entre calibraciones.

2.3. TEST ESTADISTICOS

2.3.1. Test de Dixon

La prueba Q de Dixon o simplemente prueba Q, en estadística es utilizada para la identificación y el rechazo de valores atípicos. Se debe usar bajo el supuesto de que la muestra proviene de una distribución normal y, según Robert Dean y Wilfrid Dixon, y otros, esta prueba debe usarse con moderación y nunca más de una vez en un conjunto de datos [16].

En la notación de Dixon r_{ij} , el primer digito en el subíndice representa el número de valores atípicos sospechosos en el mismo final de los datos como el valor que se esta probando, mientras que el segundo digito indica el número de posibles valores atípicos en el extremo opuesto de los datos del valor sospechoso. También recomendó (basado en una combinación del desempeño relativo de cada razón y su grado de independencia de otros valores atípicos) que, como como regla general utilizar r_{10} para $3 \le n \le 7$, r_{11} para $8 \le n \le 10$, r_{21} para $11 \le n \le 13$, r_{22} para $n \ge 14$ donde "n" representa la cantidad de datos de la muestra. [17]

Los valores de los datos están ordenados de manera que $x_1 < x_2 < \cdots < x_{n-1} < x_n$, a partir de ello se calcula el valor de la prueba Q (r_{ij}) [17], para los objetivos de esta tesis se empleara r_{10} ya que se trabajara con muestra de tamaño en el intervalo de 3 a 7.

• Para un solo valor atípico x_1 (para $3 \le n \le 7$)

$$r_{10} = \frac{x_2 - x_1}{x_n - x_1} \left(\acute{o} \frac{x_n - x_{n-1}}{x_n - x_1} \right) \qquad \dots (1)$$

Este valor r_{10} será comparado con el valor critico a dos colas de la prueba de Dixon Q mostrado en la tabla del anexo 1 considerando para propósitos de este estudio un nivel de confianza del 95 %, el criterio de aceptación para encontrar un valor atípico es el siguiente [17]

$$r_{10} > Q_{95\%}$$
; $x_1 \circ x_n$ es un valor atipico ...(2)
 $r_{10} \le Q_{95\%}$; $x_1 \circ x_n$ no es un valor atipico

2.3.2. Test de Shapiro-Wilk y Shapiro-Francia

El test de Shapiro-Wilk permite determinar si la muestra proviene de una distribución normal, se define a la hipótesis nula cuando la muestra proviene de una distribución normal con media μ y desviación estándar σ , para un nivel de significancia alfa en nuestro caso es de 0,05 lo que es lo mismo a decir un nivel de confianza del 95 %.

$$\begin{cases} H_0: X_i = N(\mu, \sigma^2) \\ H_1: X_i \neq N(\mu, \sigma^2) \end{cases} \dots (3)$$

La hipótesis Nula será aceptada si el valor de parámetro p_{Value} es mayor o igual que α =0,05.

Para la determinación del estadístico utilizado debemos calcular el coeficiente de curtosis de los datos analizados mediante la ecuación (1). [18]

$$kurt = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{j=1}^{n} \frac{(X_j - \bar{X})^4}{\sigma_X^4}$$
 ...(4)

Donde n es la cantidad de datos, X_j son los valores, \overline{X} es la media de los datos y σ_x es la desviación estándar de los datos. La figura 1 muestra el comportamiento de los tipos de distribuciones según el valor del coeficiente de curtosis.

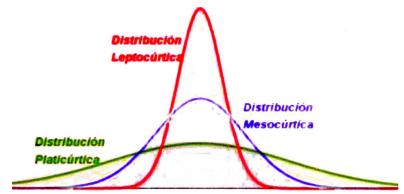


Gráfico 1 Tipos de distribución según el valor del coeficiente de curtosis calculado.

Fuente: https://www.lifeder.com/curtosis/

- Leptocúrtica: Un coeficiente de curtosis positivo indica que la distribución es más elevada que la distribución normal (curtosis>0).
- Platicúrtica: Un coeficiente de curtosis negativo indica que la distribución es más plana que la distribución normal (curtosis ≤0).
- Mesocúrtica: Un coeficiente de curtosis igual a cero indica que la distribución no es ni demasiado plana ni demasiado elevada (curtosis = 0).

La prueba de Shapiro-Wilk es mejor que la prueba de Shapiro-Francia para la muestra de Platicúrtica y Mesocúrtica. Por el contrario, la prueba de Shapiro-Francia es mejor que la prueba de Shapiro-Wilk para muestras de Leptocúrtica.

La evaluación de la normalidad será utilizada según el código "Shapiro-Wilk and Shapiro-Francia normality tests" de la referencia [19].

2.3.3. Pruebas paramétricas y no paramétricas

Estas pruebas son herramientas estadísticas que permiten al usuario la toma de decisiones en base a pruebas de hipótesis mediante estadística inferencial donde podemos llegar a conclusiones a partir de una muestra de una población.

Las pruebas de contraste consisten en probar que se puede aceptar la hipótesis nula (H0), en caso contrario se aceptaría la hipótesis alterna (H1). Se aceptan con un nivel de confianza del 95 % con un nivel de significancia (a nivel p-value < 0.05). [20]

En la figura 2 se muestra un esquema que servirá como guía para la elección de la prueba estadística.

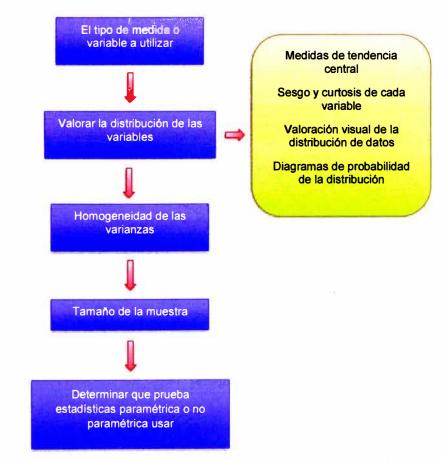


Gráfico 2_| Diagrama de flujo para el proceso de determinación de los test estadísticos **[14] Fuente:** elaboración propia.

En la tabla 4 se colocan las pruebas paramétricas y sus equivalentes no paramétricas según la relación de las muestras y la cantidad de ellas.

Tabla 4: Pruebas paramétricas y sus equivalentes no paramétricos en función de las relaciones entre las muestras y su cantidad [20]

Tipo de relación	N de muestras	Prueba paramétrica	Prueba no paramétrica
Muestras dependientes	2 muestras	t-Student pareada	Wilcoxon
widestras dependientes	>2 muestras	ANOVA	Friedman
Muestras independientes	2 muestras	t-Student independiente	U de Mann-Whitney
	>2 muestras	ANOVA de un factor	Kruskal-Wallis

2.3.4. Test F – Igualdad de varianzas

Prueba F para probar si las varianzas de dos muestras poblacionales son iguales. Esta prueba puede ser una prueba de dos colas o una prueba de una cola. La de dos colas contrasta con la alternativa de que las varianzas no son iguales, la de una cola solo prueba en una dirección, es decir, la varianza de la primera población es mayor o menor que (pero no ambas) la varianza de la segunda población. La elección es determinada por la naturaleza de las muestras y lo que se desea determinar. La prueba F para 2 colas se define en la ecuación (5).

$$\begin{cases}
H_0: \sigma_1^2 = \sigma_2^2 \\
H_1: \sigma_1^2 \neq \sigma_2^2
\end{cases} \dots (5)$$

El valor del estadístico de la prueba F esta detallado en la ecuación (6).

$$F = \frac{m\acute{a}x\{\sigma_1^2; \sigma_2^2\}}{min\{\sigma_1^2; \sigma_2^2\}}$$
 ...(6)

Se considera aceptar la hipótesis nula cuando (p-valor>0.05) entonces se considera que las dos muestran poseen varianzas iguales (homogéneas) con un nivel de confianza del 95 %.[21]

2.3.5. Prueba T-Student - Igualdad de medias

Esta prueba es utilizada para determinar si dos medias poblaciones son iguales bajo el supuesto que ambas muestras provienen de la distribución normal y que son muestras independientes. Tenemos dos medias muéstrales \bar{x}_1 y \bar{x}_2 , si las medias no difieren significativamente, entonces $\bar{x}_1 - \bar{x}_2$ no difieren significativamente de cero.

La prueba t de dos muestras utiliza las siguientes hipótesis:

$$\mu_1 = \mu_2 \qquad ...(7)$$
 $\mu_1 \neq \mu_2$

El test estadístico **suponiendo igualdad de varianzas** poblacionales $\sigma_1^2 = \sigma_2^2$.

$$t = \frac{\mu_1 - \mu_2}{EE(\mu_1 - \mu_2)} = \frac{\mu_1 - \mu_2}{\sqrt{\sigma^2 \left(\frac{1}{n_1} - \frac{1}{n_2}\right)}}$$
...(8)

que bajo la hipótesis nula sigue una distribución t -Student con grados de libertad

$$gl = (n_1 - 1) + (n_2 - 1) = (n_1 + n_2 - 2)$$
 ...(9)

Donde:

 n_1 y n_2 son la cantidad de datos la muestra 1 y 2 respectivamente μ_1 y μ_2 son los promedios de la muestra 1 y 2 respectivamente

 σ^2 es la varianza de la muestra 1 y 2

El test estadístico suponiendo no igualdad de varianzas poblacionales $\sigma_1^2 \neq \sigma_2^2$.

$$t = \frac{\mu_1 - \mu_2}{EE(\mu_1 - \mu_2)} = \frac{\mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma}{n_2}}}$$
...(10)

que bajo la hipótesis nula sigue una distribución t -Student con grados de libertad mostrados en la ecuación (11) también llamada grados de libertad de Sattherthwaite.

$$gl = \frac{[EE(\mu_1 - \mu_2)]^4}{\frac{1}{n_1 - 1} [EE(\mu_1)]^4 + \frac{1}{n_2 - 1} [EE(\mu_2)]^4}$$
...(11)

Donde:

 n_1 y n_2 son la cantidad de datos la muestra 1 y 2 respectivamente

 $\mu_1 \; y \; \mu_2$ son los promedios de la muestra 1 y 2 respectivamente

 $\sigma_1^2 \ y \ \sigma_2^2$ es la varianza de la muestra 1 y 2 respectivamente

Se considera aceptar la hipótesis nula cuando (p-valor>0.05) entonces se considera que las dos muestran poseen medias iguales con un nivel de confianza del 95 %.[20]

2.3.6. Prueba de Levene

Esta prueba es utilizada para evaluar si dos muestras tienen varianzas iguales. Las variaciones iguales entre las muestras se llaman homogeneidad de variación. Para ello suponemos la siguiente hipótesis.

$$\begin{cases} H_0: & \sigma_1^2 = \sigma_2^2 \\ H_a: & \sigma_1^2 \neq \sigma_2^2 \end{cases} \dots (12)$$

El nivel de confianza de la prueba es de $1-\alpha$

P-valor: Probabilidad asociada a los datos experimentales, bajo la condición de que Ho es verdadera. Regla de Decisión:

H _o : Hipotesis Nula	H _a : Hipotesis Alterna
1− α	α
Si: $P_{value} > \propto$, H_o es aceptado	Caso contrario: H _o es rechazado

2.3.7. Prueba de Mann Whitney

Esta prueba se utiliza para evaluar la igualdad de medianas cuando no se cumpla que la distribución sea normal y como una alternativa a la prueba t-Student para muestras independientes la hipótesis que asume para este estadístico es la siguiente:

$$\overline{M}_{e1} = \overline{M}_{e2}
\overline{M}_{e1} \neq \overline{M}_{e2}$$
(13)

El nivel de confianza de la prueba es de $1-\alpha$

Pvalue: Probabilidad asociada a los datos experimentales, bajo la condición de que Ho es verdadera. Regla de Decisión:

H₀ : Hipotesis Nula	H _a : Hipotesis Alterna		
1− ∝	α		
Si: $P_{value} > \alpha$, H_o es aceptado	Caso contrario: H _o es rechazado		

2.3.8. Resultados de calibración de una balanza bajo el PC-001

En la calibración de las balanzas se realizan 3 ensayos, el primero es el ensayo de repetibilidad el cual evalúa la dispersión de los valores de las indicaciones de la balanza frente a pesajes de una misma carga, el segundo es el ensayo de excentricidad el cual evalúa la diferencia entre las indicaciones de los pesajes en el centro del receptor de carga con respecto a las esquinas del receptor de carga y en tercer lugar el ensayo de pesaje donde se determinan los errores corregidos de la balanza para 10 cargas en el intervalo desde la capacidad mínima de la balanza hasta la capacidad máxima, con estos resultados se construyen las ecuaciones para el cálculo del error corregido e incertidumbre expandida.

La nomenclatura a utilizar se muestra a continuación.

Lectura corregida (LC)

$$LC = R + k * R \qquad \dots (14)$$

Incertidumbre Expandida (U)

$$U = 2\sqrt{k_1 + k_2 * R^2}$$
 ... (15)

Donde:

R: cualquier indicación de la balanza después de la calibración

k: coeficiente para el cálculo del error de indicación

k₁: primer coeficiente para el cálculo la incertidumbre expandida

k2: segundo coeficiente para el cálculo de la incertidumbre expandida

CAPÍTULO III: DESARROLLO DEL PROCEDIMIENTO TÉCNICO

En este capítulo se desarrollará el procedimiento técnico que se llevará a cabo por los técnicos metrólogos y el supervisor para ejecutar el aseguramiento de la validez de los resultados aplicado a la calibración de balanzas clase III y III según el PC-001 de DM INACAL.

3.1 OBJETIVO

Asegurar que los resultados emitidos de las calibraciones sean confiables y satisfagan los requisitos del cliente.

3.2 ALCANCE

Aplicable a las calibraciones que realiza el laboratorio para el procedimiento de calibración PC-001 "Procedimiento de calibración de instrumentos de pesaje de funcionamiento no automático clase III y III.

3.3 **DEFINICIONES**

Las definiciones que no se encuentren descritas en el presente documento, se definen en las normas ISO 9000 (2015), ISO 9001 (2015), NTP ISO/IEC 17025 (2017), ISO 5725 y/o las directrices publicadas por INACAL.

3.1.1 MÉTODO DE MEDIDA:

Descripción genérica de la secuencia lógica de operaciones utilizadas en una medición.

3.4 CONTENIDO

El Laboratorio de Metrología garantiza el cumplimiento del aseguramiento de la validez de los resultados de las calibraciones que realiza a través del "programa de Aseguramiento de la Validez de los Resultados".

Este programa es desarrollado en función al apartado 7.7.1. desde a) hasta k) de la norma ISO/IEC 17025:2017 considerando su aplicación para cada procedimiento de calibración.

a) Uso de materiales de referencia o materiales de control

Los instrumentos de medición y/o equipos relacionados para la ejecución del PC-001 no mencionan el uso de Materiales de Referencia (MRC), por tanto, este tipo de control no es aplicable.

b) <u>Uso de instrumentos alternativos que han sido calibrados para obtener resultados</u> <u>trazables</u>

El uso de instrumentos alternativos será realizado una vez cada año por un metrólogo utilizando un patrón alternativo el cuál puede ser el de referencia (aplica cuando existen dos o más patrones). Esta prueba tiene la finalidad de asegurar las mediciones de nuestros patrones de trabajo.

Ejecución: El metrólogo autorizado a realizar las calibraciones volverá a repetir la calibración de la balanza, utilizando otro juego de pesas patrón (pudiendo utilizarse el juego patrón de referencia) ambos deben tener certificados de calibración con antigüedad no mayor a un año. Los resultados de las calibraciones obtenidas por los dos patrones se detallan en la tabla N° 5.

Tabla 5: Resultados de las calibraciones de las (uso de instrumentos alternativos). 1era calibración: Patrón 1; 2da calibración: Patrón 2 (alternativo)

Parámetro	Resultado de la 1era calibración Patrón 1	Incertidumbre Expandida de la 1era calibración	Resultado de la 2da calibración Patrón 2
R corregido (20% Max)	R _{1,1}	U _{1,1}	R _{2,1}
R _{corregido} (50% Max)	R _{1,2}	U _{1,2}	R _{2,2}
R corregido (100% Max)	R _{1,3}	U _{1,3}	R _{2.3}

El criterio de aceptación para el resultado será el siguiente:

$$|R_{primera\ calibración} - R_{segunda\ calibración}| \le U_{primera\ calibración}$$
 (16)

Así tendremos lo siguiente:

$$\left| R_{1,1} - R_{2,1} \right| \le U_{1,1} \tag{17}$$

$$\left| R_{1,2} - R_{2,2} \right| \le U_{1,2} \tag{18}$$

$$\left| R_{1,3} - R_{2,3} \right| \le U_{1,3} \tag{19}$$

De no cumplirse lo establecido en las ecuaciones (15), (16) y (17) se deberá proceder conforme lo establecido en el punto 7.3.

c) Comprobaciones funcionales del equipamiento de ensayo y de medición

Se realizará las siguientes comprobaciones funcionales para la calibración de balanzas según la PC-001 DM INACAL. Las comprobaciones realizadas al instrumento de trabajo serán realizadas en cada mantenimiento realizado, y las realizadas al instrumento bajo calibración serán consignadas en el registro de calibración que se obtiene al calibrar cada balanza.

- c1) Instrumentación de trabajo:
- Comprobar que las pesas se encuentran limpias.
- Comprobar que el medidor de las condiciones ambientales funciona correctamente.
 - c2) Instrumento en calibración:
- Comprobar el funcionamiento del botón Zero.
- Comprobar si la balanza cuenta con todas las patas de nivelación.
- Comprobar el encendido y apagado de la balanza.
- Comprobar que la balanza muestre indicación al colocarle la capacidad máxima.

d) <u>Uso de patrones de trabajo con gráficos de control</u>

Se realizará un análisis del comportamiento de los resultados de las calibraciones de los patrones de trabajo que tengan tres o más certificados de calibración (los cuales pueden ser error, corrección o desviación). También se tendrán en consideración las comprobaciones intermedias realizadas.

Esta prueba tiene la finalidad asegurar las mediciones de nuestros patrones en el tiempo, los limites del gráfico de control están definidos por el error máximo permisible o tolerancia de los equipos.

Cuando un equipo y/o instrumento experimenta variaciones en el tiempo, su rendimiento empieza a decaer, esto se le denomina deriva instrumental y es calculado según la ecuación (22).

$$Deriva = \frac{R_n - R_{n-1}}{T_n - T_{n-1}} \tag{20}$$

Donde; R_{n-1} y R_n : representa la penúltima y ultima calibración respectivamente; T_{n-1} y T_n son los tiempos en los que se realizaron la penúltima y ultima calibración respectivamente.

La existencia de la deriva exige que los instrumentos se calibren en determinados intervalos de tiempo según la tolerancia de cada instrumento.

$$PC = \frac{Tolerancia}{|Deriva_{m\acute{a}x}|} = \frac{EMP - U}{|Deriva_{m\acute{a}x}|}$$
(21)

Donde; *EMP*: representa el error máximo permitido del instrumento, U: representa la incertidumbre expandida de calibración, PC: Periodo de calibración.

El periodo de calibración determinado en la ecuación (21) nos permite establecer un intervalo de tiempo para la siguiente calibración de acuerdo al histórico de calibraciones, pero es importante señalar que se deben considerar otros efectos como el tiempo de vida de los instrumentos, desgaste, etc. La existencia de la deriva instrumental exige que los instrumentos se evalúen constantemente entre calibraciones.

Para evaluar el periodo de vigencia de los resultados de calibración se deberá considerar la ecuación (22) que nos permite estimar en que tiempo el instrumento sale de tolerancia considerando su tendencia.

$$PV = \frac{Tolerancia - R_n}{|Deriva_{m\acute{a}x}|} \tag{22}$$

Donde; PV: Periodo de vigencia, R_n : Resultado de la última calibración

e) Comprobaciones intermedias de los equipos de medición

El mecanismo de aseguramiento para mantener la confianza del estado de calibración de los patrones del laboratorio se realiza de acuerdo con lo establecido en procedimiento "Comprobaciones intermedias" ANEXO 4. La sistemática que describe este proceso, sus criterios de aceptación y las acciones planificadas en caso no se satisfagan estos criterios se encuentran en dicho procedimiento.

f) Repetición de la calibración utilizando los mismos métodos o métodos diferentes. Se realizará repetición de la calibración una vez al año bajo el mismo procedimiento de calibración por metrólogos diferentes en dos días seguidos (uno en cada día) el error hallado del segundo metrólogo (segundo día) se debe encontrar dentro del rango generado por error y la incertidumbre del primero en el mismo punto de calibración. Esta prueba tiene como finalidad el grado afinidad de los resultados entre dos metrólogos. El criterio de aceptación

$$|R_{Primer\ Metrologo} - R_{Segundo\ Metrologo}| \le U_{Primer\ Metrologo} \qquad(23)$$

Donde:

R_(Primer Metrólogo): Resultado Obtenido del primer metrólogo

R_(Segundo Metrólogo): Resultado Obtenido del segundo metrólogo

U_(Primer Metrologo): Incertidumbre Obtenido del primer metrólogo

g) Reensayo o recalibración de los ítems retenidos

Este mecanismo de aseguramiento es aplicado cuando se trabaja con muestras y es posible tener una contramuestra en el laboratorio como ítem retenido para poder reevaluar los resultados luego de un tiempo prudente y comprobar que hay compatibilidad entre las mediciones realizadas esto es de utilidad en los laboratorios de ensayo que realizan análisis con muestras del cliente.

Debido a que la ejecución del PC-001 no permite tener un ítem retenido ya que la balanza se encuentra en las instalaciones del cliente no es aplicable dicho aseguramiento.

h) Correlación de resultados para diferentes características de un item

Este mecanismo de aseguramiento es aplicado cuando se trabaja con equipos que permiten realizar medidas en diferentes parámetros y revisar si existe alguna correlación, por ejemplo: la relación que existe entre la resistencia de un termómetro de platino con respecto a la temperatura medida. Debido a las características de los instrumentos utilizados para la ejecución del procedimiento PC-001 no es aplicable dicho aseguramiento.

i) Revisión de los resultados informados

Este mecanismo de aseguramiento es realizado por el supervisor revisando un porcentaje del total de certificados que fueron enviados al cliente con una frecuencia de cada 6 meses. Tiene como finalidad comprobar que los certificados de calibración emitidos y recibidos por el cliente cumplen con los requisitos de la NTP-ISO/IEC 17025:2017, directrices asociadas y procedimiento de calibración aplicable.

j) <u>Comparaciones Intralaboratorio</u>

Esta comparación es realizada una vez al año por el laboratorio donde se escogerá como referente a aquel metrólogo que tenga un ensayo de aptitud (organizado por DM - INACAL u otra institución competente) aprobado en el procedimiento a evaluar PC-001 y los que serán comparados serán los metrólogos que se encuentran autorizados o están en proceso de autorización para realizar dichas calibraciones. El referente y los participantes realizaran 3 a más mediciones de manera no consecutiva (no será realizado el mismo día) y entregaran los resultados al supervisor del laboratorio.

Este mecanismo tiene como objetivo evaluar la competencia técnica del personal que realiza las calibraciones, su desarrollo se encuentra en el anexo 3.

k) Ensayos de muestras ciegas

Este mecanismo de aseguramiento es aplicado por los laboratorios que realizan muestreo, se realiza con una muestra que ya ha sido analizada y sin informar al

analista se le pide que vuelva a realizar los ensayos, tiene como objetivo comprobar la competencia técnica del analista que realiza las mediciones considerando las condiciones cotidianas de trabajo. Debido a las características de ejecución del procedimiento PC-001 **no es aplicable** dicho aseguramiento.

CAPÍTULO IV: PRESENTACIÓN Y DISCUSIÓN DE LOS RESULTADOS

Después de describir el procedimiento técnico para el aseguramiento de la validez de los resultados, se procedió a su ejecución en el laboratorio. En el presente capitulo se mostrará el análisis efectuado para cada aseguramiento aplicable al PC-001.

a) <u>Uso de instrumentos alternativos que han sido calibrados para obtener resultados</u>

<u>trazables</u>

Se realizó la calibración de un mismo instrumento con 2 patrones distintos A y B, en nuestro caso se cuentan con dos juegos de pesas clase M2 con valores nominales hasta el alcance máximo de la balanza calibrada. Los datos del ítem de ensayo para esta prueba se encuentran en la tabla 6:

Tabla 6: Ítem bajo calibración usado para el aseguramiento.

Equipos o instrumento de medición	Código	Certificado de Calibración	Observaciones
Balanza 100 kg clase III	MAS-013	<u>-</u>	d = 0,05 kg

El metrólogo realiza las mediciones en dos días distintos, luego se recopilan los resultados obtenidos en los dos certificados de calibración en la tabla 7.

Tabla 7: Coeficientes obtenidos de los resultados de las calibraciones realizadas el metrólogo

	Primera	Segunda
	medición	medición
k	8,02E-05	2,88E-04
k1	4,35E-04	4,25E-04
k2	1,16E-08	3,43E-09

Con los coeficientes obtenidos en la tabla 5, y aplicando las ecuaciones (14) y (15) calculamos el valor de la lectura corregida e incertidumbre expandida. La

evaluación se realizará en el 20 %, 50 % y 100 % de la capacidad máxima de la balanza.

Tabla 8: Evaluación de los resultados de medición según el criterio de aceptación

	Pa	trón 1	Patrón 2	Intervalo de	aceptación	Market He	
Carga (kg)	Corrección C ₁	Incertidumbre U ₁	Corrección C ₂	C ₁ -U ₁	C ₁ +U ₁	Cumplimiento	
(kg)	(kg)	(kg)	(kg)	(kg)	(kg)		
20	0,006	0,041	0,002	-0,036	0,047	VERDADERO	
50	0,014	0,042	0,004	-0,027	0,056	VERDADERO	
100	0,029	0,043	0,008	-0,014	0,072	VERDADERO	

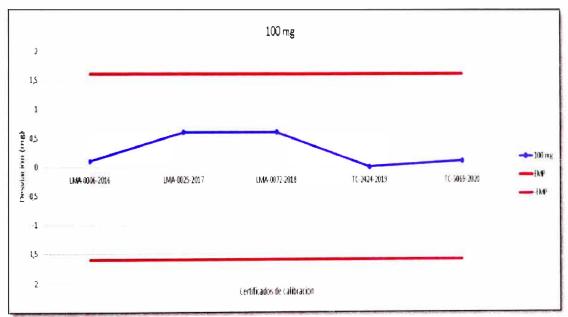
Según la tabla 8 se concluye que existe una compatibilidad de los resultados entre la primera medición con el patrón A y la segunda medición con el patrón B, se concluye que hay afinidad entre las calibraciones realizadas por ambos patrones de medición.

b) Uso de patrones de trabajo con gráficos de control

Los patrones utilizados para llevar a cabo las calibraciones tienen que cumplir con requisitos de trazabilidad metrológica lo cual se obtiene por medio de sus calibraciones el intervalo de recalibración se determina mediante gráficos de control que permiten asegurar la confianza de las mediciones.

El análisis con gráficos de control para comprobar la deriva será realizado para las pesas patrón que no tienen cavidad de ajuste, en la tabla 9 se muestran los resultados de las ultimas 5 calibraciones.

Tabla 9: Datos de la calibración de los patrones de masa desde 100 mg a 20 g


Valor Nominal	Error máximo permitido (mg)	incertidumbre (mg)	N° de Certificado	Fecha de calibración	Desviación (mg)
100 mg	1,6	0,5	LMA-0006-2016	2016-04-07	0,1
100 mg	1,6	0,5	LMA-0025-2017	2017-04-21	0,6
100 mg	1,6	0,5	LMA-0072-2018	2018-04-23	0,6
100 mg	1,6	0,5	TC-2424-2019	2019-04-30	0
100 mg	1,6	0,5	TC-5069-2020	2020-05-19	0,1
200 mg	2	0,6	LMA-0006-2016	2016-04-07	-0,01
200 mg	2	0,6	LMA-0025-2017	2017-04-21	0,6

200 mg	2	0,6	LMA-0072-2018	2018-04-23	0,6
200 mg	2	0,6	TC-2424-2019	2019-04-30	0,1
200 mg	2	0,6	TC-5069-2020	2020-05-19	-0,1
200 mg (.)	2	0,6	LMA-0006-2016	2016-04-07	0,09
200 mg (.)	2	0,6	LMA-0025-2017	2017-04-21	0,6
200 mg (.)	2	0,6	LMA-0072-2018	2018-04-23	0,6
200 mg (.)	2	0,6	TC-2424-2019	2019-04-30	0
200 mg (.)	2	0,6	TC-5069-2020	2020-05-19	-0,3
500 mg	2,5	0,8	LMA-0006-2016	2016-04-07	0,04
500 mg	2,5	0,8	LMA-0025-2017	2017-04-21	8,0
500 mg	2,5	0,8	LMA-0072-2018	2018-04-23	0,8
500 mg	2,5	0,8	TC-2424-2019	2019-04-30	0
500 mg	2,5	0,8	TC-5069-2020	2020-05-19	0,1
1 g	3	1	LMA-0006-2016	2016-04-07	-0,3
1 g	3	1	LMA-0025-2017	2017-04-21	0,6
1 g	3	1	LMA-0072-2018	2018-04-23	0,6
1 g	3	1	TC-2424-2019	2019-04-30	0,1
1 g	3	1	TC-5069-2020	2020-05-19	0,1
2 g	4	1,2	LMA-0006-2016	2016-04-07	0
2 g	4	1,2	LMA-0025-2017	2017-04-21	0,5
2 g	4	1,2	LMA-0072-2018	2018-04-23	0,5
2 g	4	1,2	TC-2424-2019	2019-04-30	0
2 g	4	1,2	TC-5069-2020	2020-05-19	0,6
2 g (.)	4	1,2	LMA-0006-2016	2016-04-07	-0,1
2 g (.)	4	1,2	LMA-0025-2017	2017-04-21	0,7
2 g (.)	4	1,2	LMA-0072-2018	2018-04-23	0,7
2 g (.)	4	1,2	TC-2424-2019	2019-04-30	-0,1
2 g (.)	4	1,2	TC-5069-2020	2020-05-19	0,5
5 g	5	1,6	LMA-0006-2016	2016-04-07	0,1
5 g	5	1,6	LMA-0025-2017	2017-04-21	0,7
5 g	5	1,6	LMA-0072-2018	2018-04-23	0,8
5 g	5	1,6	TC-2424-2019	2019-04-30	0,1
5 g	5	1,6	TC-5069-2020	2020-05-19	0,1
10 g	6	2	LMA-0006-2016	2016-04-07	-0,1
10 g	6	2	LMA-0025-2017	2017-04-21	0,8
10 g	6	2	LMA-0072-2018	2018-04-23	0,8
10 g	6	2	TC-2424-2019	2019-04-30	0,1
10 g	6	2	TC-5069-2020	2020-05-19	0,1
20 g	8	2,5	LMA-0006-2016	2016-04-07	-0,5
20 g	8	2,5	LMA-0025-2017 2017-04-21		0,6
20 g	8	2,5	LMA-0072-2018	2018-04-23	0,6
20 g	8	2,5	TC-2424-2019	2019-04-30	0,1
20 g	8	2,5	TC-5069-2020	2020-05-19	0,1

20 g (.)	8	2,5	LMA-0006-2016	2016-04-07	-0,5
20 g (.)	8	2,5	LMA-0025-2017	2017-04-21	0,6
20 g (.)	8	2,5	LMA-0072-2018	2018-04-23	0,6
20 g (.)	8	2,5	TC-2424-2019	2019-04-30	0,1
20 g (.)	8	2,5	TC-5069-2020	2020-05-19	0,1

Con los datos de las calibraciones se construyeron los siguientes gráficos del 3 al 13 de control, donde se observa la estabilidad metrológica de los patrones de medición.

Gráfico 3: Carta de control para la pesa de 100 mg clase M2

Fuente: Elaboración propia

Gráfico 4: Carta de control para la pesa de 200 mg clase M2

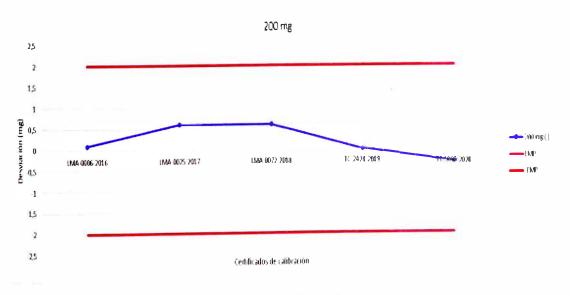


Gráfico 5: Carta de control para la pesa de 200 mg(.) clase M2

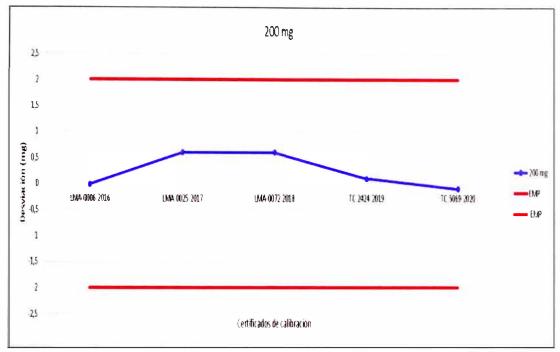


Gráfico 6: Carta de control para la pesa de 500 mg clase M2

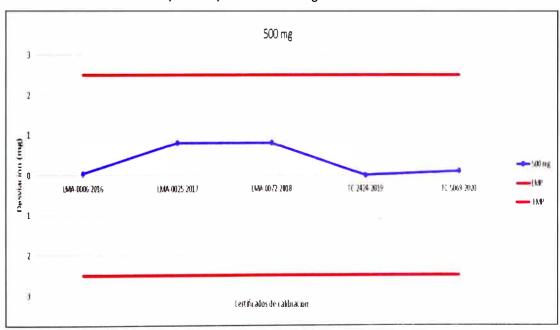


Gráfico 7: Carta de control para la pesa de 1 g clase M2

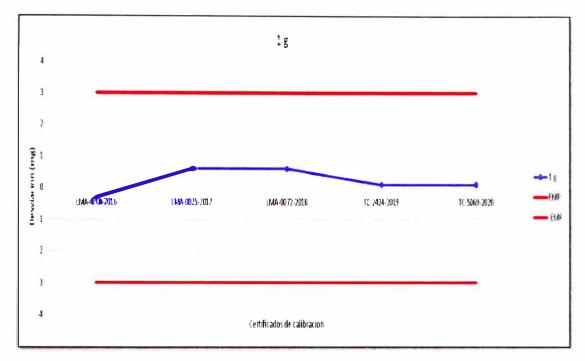


Gráfico 8: Carta de control para la pesa de 2 g clase M2

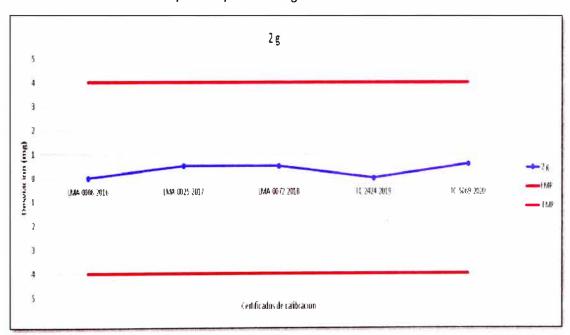


Gráfico 9: Carta de control para la pesa de 2 g. (.) M2

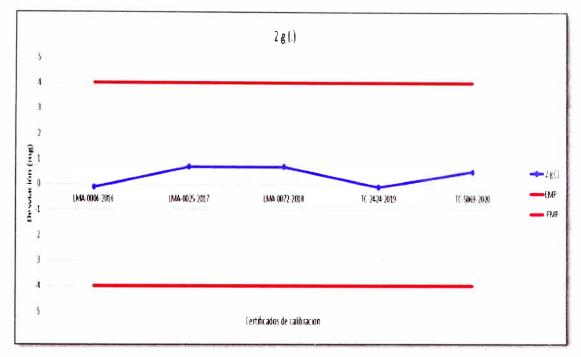


Gráfico 10: Carta de control para la pesa de 5 g M2

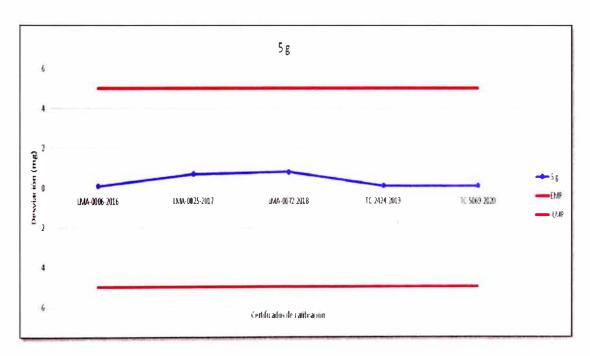


Gráfico 11: Carta de control para la pesa de 10 g clase M2

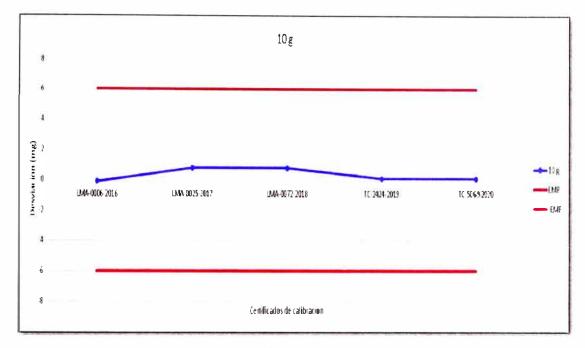


Gráfico 12: Carta de control para la pesa de 20 g M2

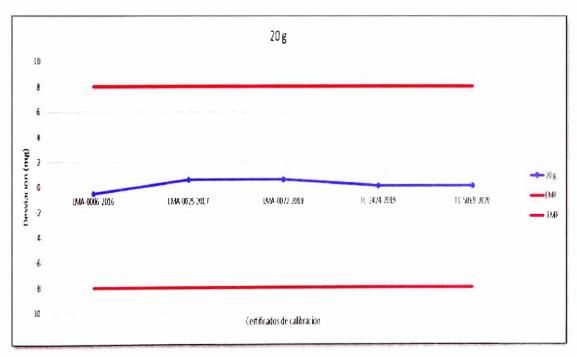
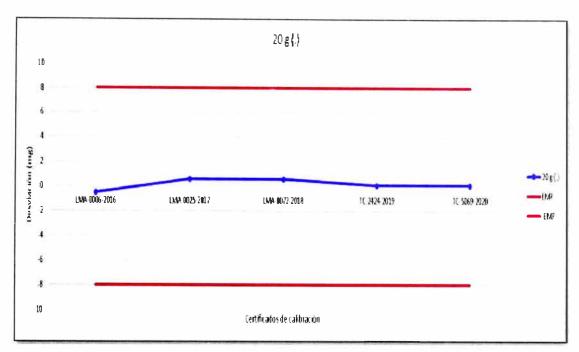



Gráfico 13: Carta de control para la pesa de 20 g (.) M2

Mediante las cartas de control y el cálculo de la deriva se determinan los intervalos de calibración de los patrones, se usaron las ecuaciones (20), (21) y (22).

Tabla 10: Calculo del intervalo máximo de calibración y periodo de vigencia de los patrones de trabajo

Valor Nominal	Desviación	Periodo	Tiempo (años)	Deriva (mg/año)	Deriva máxima (mg/año)	intervalo máximo de calibración (años)	Periodo de vigencia (años)
	0,1						
	0,6	2016-2017	1,0	0,48	1.00		
100 mg	0,6	2017-2018	1,0	0,00	0,59	<mark>1,8</mark>	1,6
	0	2018-2019	1,0	0,59			
	0,1	2019-2020	1,1	0,09			
	-0,01						
	0,6	2016-2017	1,0	0,59			
200 mg	0,6	2017-2018	1,0	0,00	0,59	2,3	2,4
	0,1	2018-2019	1,0	0,49			
	-0,1	2019-2020	1,1	0,19			
M. F. Berry	0,09		-		0,59	2,3	2,8
200 mg	0,6	2016-2017	1,0	0,49	0,59	۷,۵	2,0

	0,6	2017-2018	1,0	0,00	1		I
	0	2018-2019	1,0	0,59			
	-0,3	2019-2020	1,1	0,28			
	0,04						
	0,8	2016-2017	1,0	0,73	1		
500 mg	8,0	2017-2018	1,0	0,00	0,78	2,1	2,0
	0	2018-2019	1,0	0,78	1		
	0,1	2019-2020	1,1	0,09	1		1
	-0,3						
	0,6	2016-2017	1,0	0,87			
1 g	0,6	2017-2018	1,0	0,00	0,87	2,3	2,2
	0,1	2018-2019	1,0	0,49	1		
	0,1	2019-2020	1,1	0,00	1		
	0						1
	0,5	2016-2017	1,0	0,48			
2 g	0,5	2017-2018	1,0	0,00	0,57	4,7	3,6
	0	2018-2019	1,0	0,49	1		
	0,6	2019-2020	1,1	0,57	1		
	-0,1						
	0,7	2016-2017	1,0	0,77			1
2 g (.)	0,7	2017-2018	1,0	0,00	0,78	3,4	2,8
	-0,1	2018-2019	1,0	0,78			
	0,5	2019-2020	1,1	0,57	1		
	0,1						†
	0,7	2016-2017	1,0	0,58	1	4,9	4,7
5 g	0,8	2017-2018	1,0	0,10	0,69		
	0,1	2018-2019	1,0	0,69	1		
	0,1	2019-2020	1,1	0,00	1		
	-0,1	1					1
	0,8	2016-2017	1,0	0,87	1		
10 g	0,8	2017-2018	1,0	0,00	0,87	4,6	4,5
-	0,1	2018-2019	1,0	0,69			
	0,1	2019-2020	1,1	0,00	-		
	-0,5						
	0,6	2016-2017	1,0	1,06			
20 g	0,6	2017-2018	1,0	0,00	1,06	5,0	4,9
Ü	0,1	2018-2019	1,0	0,49	1		
	0,1	2019-2020	1,1	0,00			
	-0,5						
	0,6	2016-2017	1,0	1,059			
20 g (.)	0,6	2017-2018	1,0	0,000	1,06	5,0	4,9
20 g (·/	0,1	2018-2019	1,0	0,491			
	0,1	2019-2020	1,1	0,000	-		

El valor mínimo de los intervalos máximos de calibración de todas las pesas patrón es 1.8 años, además el periodo de vigencia es de 1.6 años. Por lo tanto, se recomienda un intervalo de recalibración de los patrones de 1 año y una verificación intermedia entre calibraciones.

c) Comprobaciones intermedias

Según el instructivo mostrado en el anexo 3, se ejecutaron las comprobaciones intermedias para un juego de pesas de 100 mg a 1 kg clase M2. En la siguiente tabla se muestran los resultados de dicha comprobación intermedia.

Tabla 11: Patrones utilizados para realizar la verificación intermedia

Trazabilidad	Patrón de Trabajo	Certificado de Calibración
Patrones de Referencia de METROIL	Juego de Pesas 1 mg a 1 kg Clase de exactitud M1	M-0349-2020 Marzo 2020

Tabla 12: Resultados de las verificaciones intermedias de los patrones

Identif.	Forma	Material	Cavidad de Ajuste	Masa Con	vencional	E.M.P. (M2)	Conclusión
	Laminar	Acero Inoxidable	No Tiene	100 mg +	0,2 mg	1,6 mg	CONFORME
	Laminar	Acero Inoxidable	No Tiene	200 mg -	0,2 mg	2 mg	CONFORME
(.)	Laminar	Acero Inoxidable	No Tiene	200 mg -	0,4 mg	2 mg	CONFORME
-	Laminar	Acero Inoxidable	No Tiene	500 mg -	0,1 mg	2,5 mg	CONFORME
_	Cilíndrica Con Botón	Acero Inoxidable	No Tiene	1 g +	0,1 mg	3 mg	CONFORME
	Cilíndrica Con Botón	Acero Inoxidable	No Tiene	2 g +	0,5 mg	4 mg	CONFORME
(.)	Cilíndrica Con Botón	Acero Inoxidable	No Tiene	2 g +	0,6 mg	4 mg	CONFORME
	Cilíndrica Con Botón	Acero Inoxidable	No Tiene	5g +	0,2 mg	5 mg	CONFORME
	Cilíndrica Con Botón	Acero Inoxidable	No Tiene	10 g +	0,0 mg	6 mg	CONFORME
	Cilíndrica Con Botón	Acero Inoxidable	No Tiene	20 g +	0,2 mg	8 mg	CONFORME
(.)	Cilíndrica Con Botón	Acero Inoxidable	No Tiene	20 g +	0,0 mg	8 mg	CONFORME
	Cilíndrica Con Botón	Acero Inoxidable	Tiene	50 g +	0,4 mg	10 mg	CONFORME
	Cilíndrica Con Botón	Acero inoxidable	Tiene	100 g +	0,6 mg	16 mg	CONFORME
	Cilíndrica Con Botón	Acero Inoxidable	Tiene	200 g +	0,5 mg	30 mg	CONFORME
(.)	Cilíndrica Con Botón	Acero Inoxidable	Tiene	200 g +	0,6 mg	30 mg	CONFORME
-	Cilíndrica Con Botón	Acero Inoxidable	Tiene	500 g +	0 mg	80 mg	CONFORME
	Cilíndrica Con Botón	Acero Inoxidable	Tiene	1 kg +	0 mg	160 mg	CONFORME

Con los resultados de la tabla 12 se concluye que todas las pesas de 100 mg a 1 kg cumplen el criterio establecido para las verificaciones intermedias ya que tienen errores que se encuentran dentro de los errores máximos permitidos.

d) Repetición de la calibración utilizando los mismos métodos o métodos diferentes. De acuerdo con lo descrito en el aseguramiento dos metrólogos repetirán las calibraciones de una balanza en dos días distintos. El ítem bajo comparación se describe en la tabla 13.

Tabla 13: Ítem bajo calibración utilizado para fines del aseguramiento

Equipos o Instrumento de medición	Código	Certificado de Calibración	Observaciones
Balanza 100 kg clase III	MAS-013	*	d = 0,05 kg

Tabla 14: Coeficientes obtenidos de los resultados de las calibraciones los dos metrólogos

	Primer	Segundo
	metrólogo	metrólogo
k	2,83E-04	1,56E-04
k1	6,42E-04	4,25E-04
k2	4,82E-09	1,13E-08

Con los coeficientes obtenidos en la tabla 14, y aplicando las ecuaciones (14) y (15) calculamos el valor de la lectura corregida e incertidumbre expandida. La evaluación se realizará en el 20 %, 50 % y 100 % de la capacidad máxima de la balanza y serán mostrados en la tabla 15.

Tabla 15: Evaluación de los resultados de medición para los dos metrólogos

	Pa	Patrón 1		Intervalo de aceptación	
Carga (kg)	Corrección C1	Incertidumbre U1	Corrección C2	C1-U1	C1+U1
(kg)	(kg)	(kg)	(kg)	(kg)	(kg)
20	0,006	0,051	0,003	-0,045	0,056
50	0,014	0,051	0,008	-0,037	0,065
100	0,028	0,053	0,016	-0,024	0,081

Según la tabla 15 se concluye que existe compatibilidad de los resultados entre las mediciones de los dos metrólogos, se concluye que hay afinidad entre las calibraciones realizadas por ambos metrólogos.

e) Comparaciones Intralaboratorio

Las evaluaciones Intralaboratorio serán realizadas mediante el diagrama de flujo del anexo 2, a continuación, se muestra la aplicación de dicho diagrama con los resultados de una evaluación intralaboratorio para el procedimiento PC-001 "procedimiento para la calibración de balanzas de funcionamiento no automático clase III y IIII".

En el anexo 9 se muestra el ejemplo de una calibración de balanzas clase III según el PC-001. Usando las ecuaciones para el error corregido se obtienen las tablas del 16 al 21 se muestran los resultados del referente y los participantes:

Tabla 16: Datos de las calibraciones del referente en la evaluación Intralaboratorio

	REFERENTE							
		PUNTO 1		PUNTO 2		PUNTO 3		
ITEM	k	Valor nominal	Error	Valor nominal	Error	Valor nominal	Error	
		kg	kg	kg	kg	kg	- kg	
1	8E-05		0,00168		0,0042	1 THE ST. 1	0,0084	
2	0,0002		0,00366		0,00915		0,0183	
3	0,0001	20	0,0024	50	0,006	100	0,012	
4	1E-04		0,001976		0,00494	1	0,00988	
5	7E-05		0,001372		0,00343		0,00686	

Tabla 17: Datos de las calibraciones del participante 1 en la evaluación Intralaboratorio

METROLOGO 1							1
		PUNTO 1		PUNTO 2		PUNTO 3	
ITEM	k	Valor nominal	Error	Valor nominal	Error	Valor nominal	Error
		kg	kg	kg	kg	kg	kg
1	8E-05	Comments	0,001614		0,004035		0,00807
2	0,0002		0,0046	1	0,0115	1 [0,023
3	0,0003	20	0,00544	50	0,0136	100	0,0272
4	1E-05		0,000286		0,000715	1 1	0,00143
5	0,0003		0,00544		0,0136		0,0272

Tabla 18: Datos de las calibraciones del participante 2 en la evaluación Intralaboratorio

METROLOGO 2							
		PUNTO 1		PUNTO 2		PUNTO 3	
ITEM	k	Valor nominal	Error	Valor nominal	Error	Valor nominal	Error
		kg	kg	kg	kg	kg	kg
1	1E-05		0,000286		0,000715		0,00143
2	0,0002		0,00544		0,0136	1	0,0272
3	4E-05	20	0,000772	50	0,00193	100	0,00386
4	1E-05		0,000286		0,000715	1	0,00143
5	8E-05		0,00168		0,0042		0,0084

Tabla 19: Datos de las calibraciones del participante 3 en la evaluación Intralaboratorio

METROLOGO 3							
		PUNTO 1		PUNTO 2		PUNTÓ 3	
ITEM	k	Valor nominal	Error	Valor nominal	Error	Valor nominal	Error
		kg	kg	kg	kg	kg	kg
1	0,0002		0,00318		0,00 795		0,0159
2	6E-05		0,001538		0,003845		0,00769
3	0,0002	20	0,00336	50	0,0084	100	0,0168
4	0,0002		0,00492		0,0123		0,0246
5	0,0001		0,00282		0,00705		0,0141

Tabla 20: Datos de las calibraciones del participante 4 en la evaluación Intralaboratorio

METROLOGO 4							4
		PUNTO 1		PUNTO 2		PUNTO 3	
ITEM	k	Valor nominal	Error	Valor nominal	Error	Valor nominal	Error
		kg	kg	kg	kg	kg	kg
1	0,0002		0,00446		0,01115		0,0223
2	0,0001		0,0025		0,00625		0,0125
3	0,0001	20	0,00246	50	0,00615	100	0,0123
4	0,0001		0,0024		0,006	1	0,012
5	0,0002	Court of the second	0,00478	50.545110	0,01195		0,0239

Tabla 21: Datos de las calibraciones del participante 5 en la evaluación Intralaboratorio

METROLOGO 5							5
		PUNTO 1		PUN	PUNTO 2		O 3
ITEM	k	Valor nominal	Error	Valor nominal	Error	Valor nominal	Error
		kg	kg	kg	kg	kg	kg
1	6E-05		0,000934		0,002335		0,00467
2	4E-05		0,000772		0,00193		0,00386
3	0,0002	20	0,00288	50	0,0072	100	0,0144
4	0,0001		0,00286		0,00715		0,0143
5	0,0002		0,00514		0,01285	1	0,0257

Siguiendo el proceso detallado en el anexo 2, se procede a evaluar los datos atípicos mediante el Test de Dixon, para ello se desarrolló una función "Dixon" en VBA Microsoft Excel donde se implementó algoritmo para determinar si los datos son atípicos el cual se detalla en el anexo 4. Los resultados son mostrados en la tabla 22.

Tabla 22: Evaluación de los datos atípicos utilizando el test de Dixon

			REFERENTE: Nomb			
	PUNTO 1: # rep	5	PUNTO 2: # rep	5	PUNTO 3: # rep	5
	D1	CALIF.	D2	CALIF.	D3	CALIF.
	0,001372	satisfactorio	0,00343	satisfactorio	0,00686	satisfactorio
	0,00168		0,0042		0,0084	
	0,001976		0.00494		0,00988	
	0.0024		0,006		0,012	
	0,00366	satisfactorio	0.00915	satisfactorio		a mala facebook
	# Datos atipicos	Sausiactorio	# Datos atipicos	Saustactorio	0,0183 # Datos atipicos	satisfactoric 0
	# Datos attpicos	Carried & Ford Arch	# Datos aupicos	Spirite 200 O Madarita 1	# Datos atipicos	
			METROLOGO 1: Nom			
_	PUNTO 1: # rep	5	PUNTO 2: # rep	5	PUNTO 3: # rep	5
	D1	CALIF.	D2	CALIF.	D3	CALIF.
	0,000286	satisfactorio	0,000715	satisfactorio	0,00143	satisfactoric
	0,001614		0,004035		0,00807	
	0,0046		0,0115		0,023	
	0.00544		0,0136		0.0272	
	0,00544	satisfactorio	0,0136	satisfactorio	0,0272	satisfactorio
	# Datos atipicos	O	# Datos atipicos	O	# Datos atipicos	O Sansiacionic
	W Dates da pices	76 S	w Dates dupices		W Dates dupices	
	DIMITO 1. #	_	METROLOGO 2: Nom		DUNTO 2. #	
	PUNTO 1: # rep	5	PUNTO 2: # rep	5	PUNTO 3: # rep	5
	D1	CALIF.	D2	CALIF.	D3	CALIF.
	0,000286	satisfactorio	0,000715	satisfactorio	0,00143	satisfactorio
	0,000286		0,000715		0,00143	
	0,000772		0,00193		0.00386	
	0.00168		0,0042		0,0084	
	0.00544	etipico	0,0136	atipico	0,0272	
		ampico	# Datos atipicos	aupico		
	# Datos atipicos		# Datos atipicos		# Datos atipicos	
			METROLOGO 3: Nom	Marie Company of the		
	PUNTO 1: # rep	5	PUNTO 2: # rep	5	PUNTO 3: # rep	5
	D1	CALIF.	D2	CALIF.	D3	CALIF.
	0,001538	satisfactorio	0,003845	satisfactorio	0,00769	satisfactorio
	0,00282		0,00705		0,0141	
	0,00318		0,00795		0,0159	
	0,00336		0,0084		0,0168	
	0,00492	satisfactorio	0,0123	Satisfactorio	0,0246	satisfactorio
1		0	# Datos atipicos	0	# Datos atipicos	0
-	# Datos atipicos	9	w Datos atipicos		w Datos atipicos	
			METROLOGO 4: Nom			
ļ		5	PUNTO 2: # rep	5	PUNTO 3: # rep	5
	PUNTO 1: # rep					CALIF.
	D1	CALIF.	D2	CALIF.		S
				CALIF. satisfactorio	0,012	satisfactorio
	D1	CALIF.	D2	the same of the sa		satisfactorio
	D1 0,0024 0,00246	CALIF.	D2 0,006	the same of the sa	0,012	satisfactorio
	D1 0,0024 0,00246 0,0025	CALIF.	0,006 0,00615 0,00625	the same of the sa	0,012 0,0123	satisfactoric
	0,0024 0,0024 0,00246 0,0025 0,00446	CALIF. satisfactorio	0,006 0,00615 0,00625 0,01115	satisfactorio	0,012 0,0123 0,0125 0,0223	
	0,0024 0,00246 0,0025 0,00446 0,00478	CALIF. satisfactorio satisfactorio	0,006 0,00615 0,00625 0,01115 0,01195	the same of the sa	0,012 0,0123 0,0125	satis factorio
	0,0024 0,0024 0,00246 0,0025 0,00446	CALIF. satisfactorio	D2 0,006 0,00615 0,00625 0,01115 0,01195 # Datos atipicos	satisfactorio satisfactorio 0	0,012 0,0123 0,0125 0,0223 0,0239	
	D1 0,0024 0,00246 0,0025 0,00446 0,00478 # Datos atipicos	CALIF. satisfactorio satisfactorio 0	02 0,006 0,00615 0,00625 0,01115 0,01195 # Datos atipicos	satisfactorio satisfactorio 0	0,012 0,0123 0,0125 0,0223 0,0239 # Datos atipicos	satisfactorio 0
	D1 0,0024 0,00246 0,0025 0,00446 0,00478 # Datos atipicos	CALIF. satisfactorio satisfactorio 0	02 0,006 0,00615 0,00625 0,00115 0,01195 # Datos atipicos METROLOGO 5: Nom PUNTO 2: # rep	satisfactorio satisfactorio 0 bre Sapellido 5	0,012 0,0123 0,0125 0,0223 0,0239 # Datos atipicos	satisfactorio
	D1 0,0024 0,00246 0,0025 0,00446 0,00478 # Datos atipicos	CALIF. satisfactorio satisfactorio control satisfactorio control satisfactorio control satisfactorio control satisfactorio	D2 0,006 0,00615 0,00625 0,01115 0,01195 # Datos atipicos METROLOGO 5: Nom PUNTO 2: # rep D2	satisfactorio satisfactorio 0 lòre Sapellido 5 CALIF.	0,012 0,0123 0,0125 0,0223 0,0239 # Datos atipicos	satis factorio 0 5 CALIF.
	D1 0,0024 0,00246 0,0025 0,00446 0,00478 # Datos atipicos PUNTO 1: # rep D1 0,000772	CALIF. satisfactorio satisfactorio 0	02 0,006 0,00615 0,00625 0,01115 0,01195 # Datos atipicos METROLOGO 5: Nom PUNTO 2: # rep D2 0,00193	satisfactorio satisfactorio 0 bre Sapellido 5	0,012 0,0123 0,0125 0,0223 0,0239 # Datos atipicos PUNTO 3: # rep D3 0,00386	satis factorio 0 5 CALIF.
	D1 0,0024 0,0024 0,0025 0,00446 0,00478 # Datos atipicos PUNTO 1: # rep D1 0,000772 0,000934	CALIF. satisfactorio satisfactorio control satisfactorio control satisfactorio control satisfactorio control satisfactorio	D2 0,006 0,00615 0,00625 0,01115 0,01195 # Datos atipicos METROLOGO 5: Nom PUNTO 2: # rep D2 0,00193 0,002335	satisfactorio satisfactorio 0 lòre Sapellido 5 CALIF.	0,012 0,0123 0,0125 0,0223 0,0239 # Datos atipicos PUNTO 3: # rep D3 0,00386 0,00467	satis factorio 0 5 CALIF.
	D1 0,0024 0,00246 0,0025 0,00446 0,00478 # Datos atlpicos PUNTO 1: # rep D1 0,000772 0,000934 0,00286	CALIF. satisfactorio satisfactorio control satisfactorio control satisfactorio control satisfactorio control satisfactorio	D2 0,006 0,00615 0,00625 0,01115 0,01195 # Datos atipicos METROLOGO 5: Nom PUNTO 2: # rep D2 0,00193 0,002335 0,00715	satisfactorio satisfactorio 0 lòre Sapellido 5 CALIF.	0,012 0,0123 0,0125 0,0223 0,0239 # Datos atipicos PUNTO 3: # rep D3 0,00386 0,00467 0,0143	satis factorio 0 5 CALIF.
	D1 0,0024 0,0024 0,0025 0,00446 0,00478 # Datos atipicos PUNTO 1: # rep D1 0,000772 0,000934	CALIF. satisfactorio satisfactorio control satisfactorio control satisfactorio control satisfactorio control satisfactorio	D2 0,006 0,00615 0,00625 0,01115 0,01195 # Datos atipicos METROLOGO 5: Nom PUNTO 2: # rep D2 0,00193 0,002335 0,00715 0,0072	satisfactorio satisfactorio 0 obre Sapellido 5 CALIF. satisfactorio	0,012 0,0123 0,0125 0,0223 0,0239 # Datos atipicos PUNTO 3: # rep D3 0,00386 0,00467 0,0143 0,0144	satisfactorio 0 5 CALIF, satisfactorio
	D1 0,0024 0,00246 0,0025 0,00446 0,00478 # Datos atlpicos PUNTO 1: # rep D1 0,000772 0,000934 0,00286	CALIF. satisfactorio satisfactorio control satisfactorio control satisfactorio control satisfactorio control satisfactorio	D2 0,006 0,00615 0,00625 0,01115 0,01195 # Datos atipicos METROLOGO 5: Nom PUNTO 2: # rep D2 0,00193 0,002335 0,00715	satisfactorio satisfactorio 0 lòre Sapellido 5 CALIF.	0,012 0,0123 0,0125 0,0223 0,0239 # Datos atipicos PUNTO 3: # rep D3 0,00386 0,00467 0,0143	5

Se retiran los datos atípicos de los participantes y se procede a realizar el análisis de normalidad utilizando el TEST DE SHAPIRO, para ello se desarrolló una función "swtest" en VBA Microsoft Excel mostrada en el anexo 5.

Tabla 23: Evaluación de la normalidad de los resultados del referente y participantes 1 y 2

	REFERENTE	: Nombre apellido	METROLOGO 1	: Nombre 1apellido	METROLOGO	2: Nombre Zapellido
	Evaluación	de la mormalidad	Ewaluación	de la monmatidad	Evolustion	de la manmalidad
	α =	0,05	α =	0,05	α =	0,05
200	Ref.	D0p1	Ref.	D1p1	Ref.	D2p1
	Test utilizado	SHAPIRO- WILKS	Test utilizado	5HAPIRO- WILKS	Test utilizado	SHAPIRO- WILKS
p1	Curtosis	2,442368783	Curtosis	1,435633828	Curtosis	1,968882102
bī	H0	VERDADERO	н0	VERDADERO	но	VERDADERO
1142	pvalue	0,432290786	pvalue	0,154454607	pvalue	0,175460334
1	w	0,903983203	w	0,836110534	w	0,83288878
造數	Conclusión	normal	Conclusión	normal	Conclusión	normal
N S		de la morthalidad	Ewitation	de la normalidad	Ewolwati Gii	de la marmalidad
L U	α =	0,05	α =	0,05	α=	0,05
	Ref.	D0p2	Ref.	D1p2	Ref.	D2p2
		SHAPIRO- WILKS	Test utilizado	SHAPIRO- WILKS	Test utilizado	SHAPIRO- WILKS
p2	Curtosis	2,442368783	Curtosis	1,435633828	Curtosis	1,968882102
	но	VERDADERO	Н0	VERDADERO	Н0	VERDADERO
10:53	pvalue	0,432290786	pvalue	0,154454607	pvalue	0,175460334
	W	0,903983203	w	0,836110534	w	0,83288878
	Conclusión	normal	Conclusión	normal	Conclusión	normal
1000	Quelling of 1 day	de la mornalidad	Kambu garifia	de la marimalidad	Euch language Chair	de la normalidad
	a =	0.05	α=	0.05	α=	0.05
	Ref.	D0p3	Ref.	D1p3	Ref.	D2p3
	Test utilizado	SHAPIRO- WILKS	Test utilizado		Test utilizado	SHAPIRO- WILKS
	Curtosis	2,442368783	Curtosis	1,435633828	Curtosis	1,968882102
р3	но	VERDADERO	но	VERDADERO	но	VERDADERO
	pvalue	0,432290786	pvalue	0,154454607	pvalue	0,175460334
	w	0,903983203	· w	0,836110534	l w	0,83288878
	Conclusión	normal	Conclusión	normal	Conclusión	normal

	METROLOGO	3: Nombre Bapellido	METROLOGO	4: Nombre 4apellido	METROLOGO	5: Nombre Sapellido
	Evaluación	de la normalidad	Evaluación	de la normalidad	Evaluación	ide la normalidad
	α =	0,05	α =	0,05	α=	0,05
	Ref.	D3p1	Ref.	D4p1	Ref.	D5p1
	Test utilizado	SHAPIRO- WILKS	Test utilizado	SHAPIRO- WILKS	Test utilizado	SHAPIRO- WILKS
1245	Curtosis	2,384812844	Curtosis	1,227652376	Curtosis	1,956289482
p1	HO	VERDADERO	H0	FALSO	Н0	VERDADERO
	pvalue	0,815687107	pvalue	0,029233565	pvalue	0,394212636
	w	0,961109417	w	0,749158817	w	0,897127338
bis o	Conclusión	normal	Conclusión	no normal	Conclusión	normal
	U-					
	Ewaluar on	de la nemalidad	Evolución	de la normalidad		de la normalidad
0.1	α =	0,05	α=	0,05	α=	0,05
100	Ref.	D3p2	Ref.	D4p2	Ref.	D5p2
	Test utilizado	SHAPIRO- WILKS	Test utilizado	SHAPIRO- WILKS		SHAPIRO- WILKS
p2	Curtosis	2,384812844	Curtosis	1,227652376	Curtosis	1,956289482
P2	Н0	VERDADERO	H0	FALSO	но	VERDADERO
	pvalue	0,815687107	pvalue	0,029233565	pvalue	0,394212636
	w	0,961109417	w	0,749158817	w	0,897127338
	Conclusión	normal	Conclusión	no normal	Conclusión	normal
1113	Pari hand at the	de la nomalidad	Éwis Lung Chi din	de la mormalidad	facilization	de la mentralidad.
	α =	0.05	α =	0.05	α =	0,05
	α – Ref.	D3p3	Ref.	D4p3	Ref.	D5p3
raite		SHAPIRO- WILKS		SHAPIRO- WILKS	Test utilizado	SHAPIRO- WILKS
	Curtosis	2.384812844	Curtosis	1,227652376	Curtosis	1,956289482
р3	HO	VERDADERO	HO	FALSO	Н0	VERDADERO
199	pvalue	0,815687107	pvalue	0,029233565	pvalue	0,394212636
23.6	W	0.961109417	w	0,749158817	w	0,897127338
	Conclusión	normat	Conclusión	no normal	Conclusión	normal
17/1000						

En la tabla 23 se muestran los resultados de la evaluación de la normalidad para los datos de los participantes en los puntos p1=20 kg, p2=50 kg y p3=100 kg.

De la tabla 23 se concluye que el participante 4 tiene resultados que no provienen de una distribución normal en los tres puntos de evaluación, mientras que el referente y el resto de participantes tienen resultados que provienen de una distribución normal.

Seguidamente se procede a evaluar la igualdad de varianzas e igualdad de medias utilizando los métodos estadísticos correspondientes. Los test paramétricos como Test F y T Student se encuentran definidos por la aplicación Microsoft Excel, el caso de los test no paramétricos test de Levene y test de Mann Witney se desarrollaron funciones en VBA para Microsoft Excel las cuales son "tlevene" y "tmaanw" las cuales se describen en los anexos 6 y 7 respectivamente.

Tabla 24: Evaluación de igualdad de varianzas y medias para el participante 1 y 2

1	METROLOGO 1: Nombre 1apellido	METROLOGO 2: Nombre 2apellido
	Igualdad de varianzas: Test Fisher	
	pvalue 0,08348818 H0 VERDADERO 2 Conclusión $\sigma_1^2 = \sigma_2^2$	pvalue 0,644301174 H0 VERDADERO 2 Conclusión $\sigma_1^2 = \sigma_2^2$
	Igualdad de medias: Test T-Student	Igualdad de medias: Test T-Student
p1	pvalue 0,300052288 H0 VERDADERO Conclusión μ _i = μ ₂	pvalue 0,029510699 H0 FALSO Conclusión μ(#μ₂
	Compatibilidad de resultados	Compatibilidad de resultados
	Conclusión COMPATIBLE	Conclusión NO COMPATIBLE
Est.	Igualdad de varianzas: Test Fisher	Igualdad de varianzas: Test Fisher
	pvalue 0,08348818 H0 VERDADERO 2 Conclusión G₁² = σ₂²	pvalue 0,644301174 H0 VERDADERO 2 Conclusión $\sigma_1^2 = \sigma_2^2$
	Igualdad de medias: Test T-Student	Igualdad de medias: Test T-Student
p2	pvalue 0,300052288 H0 VERDADERO Conclusión	pvalue 0,029510699 H0 FALSO Conclusión H1≠H1
	Compatibilidad de resultados	Compatibilidad de resultados
	Conclusión COMPATIBLE	Conclusión NO COMPATIBLE
	lgualdad de varianzas: Test Fisher	Igualdad de varianzas: Test Fisher
	pvalue 0,08348818 H0 VERDADERO 2 Conclusión <mark>σ₁² = σ₂²</mark>	pvalue 0,644301174 H0 VERDADERO 2 Conclusión $\sigma_1^2 = \sigma_2^2$
	Igualdad de medias: Test T-Student	Igualdad de medias: Test T-Student
рЗ	pvalue 0,300052288 HO VERDADERO Conclusión	pvalue 0,029510699 HO FALSO Conclusión μ₁₹μι
	Compatibilidad de resultados	Compatibilidad de resultados
	Conclusión COMPATIBLE	Conclusión NO COMPATIBLE

Tabla 25: Evaluación de igualdad de varianzas y medias para el participante 3, 4 y 5

	METROLOGO 3: Nombre 3apellido	METROLOGO 4: Nombre 4apellido	METROLOGO 5: Nombre 5apellido
	Igualdad de varianzas: Test Fisher	Igualdad de varianzas: Test - Levene	Igualdad de varianzas: Test Fisher
	pvalue 0,565004219 H0 VERDADERO 2 Conclusión σ₁² = σ₂²	pvalue 0,6522147 H0 VERDADERO 2 Conclusión $\sigma_1^2 = \sigma_2^2$	pvalue 0,208590846 H0 VERDADERO 2 Conclusión G ² = G ²
	Igualdad de medias: Test T-Student	Igualdad de medias: Test Mann Witney	Igualdad de medias: Test T-Student
p1	pvalue 0,197501792 H0 VERDADERO Conclusión μ ₁ = μ ₂	pvalue 0,074912899 H0 VERDADERO Conclusión μ₁ = μ₂	pvalue 0,74516992 H0 VERDADERO Conclusión µ₁ = µ₂
	Compatibilidad de resultados	Compatibilidad de resultados	Compatibilidad de resultados
	Conclusión COMPATIBLE	Conclusión COMPATIBLE	Conclusión COMPATIBLE
	Igualdad de varianzas: Test Fisher	Igualdad de varianzas: Test - Levene	Igualdad de varianzas: Test Fisher
	pvalue 0,565004219 H0 VERDADERO 2 Conclusión σ ₁ ² = σ ₂ ²	pvalue 0,6522147 H0 VERDADERO 2 Conclusión 6,2 = 6,2 0,2	pvalue 0,208590846 H0 VERDADERO 2 Conclusión 0,2 = 0,2
	Igualdad de medias: Test T-Student	gualdad de medias: Test Mann Witney	Igualdad de medias: Test T-Student
p2	pvalue 0,197501792 H0 VERDADERO Conclusión μ1 = μ2	pvalue 0,074912899 H0 VERDADERO Conclusión μ₁ = μ₂	pvalue 0,74516992 H0 VERDADERO Conclusión µ1 = µ2
	Compatibilidad de resultados	Compatibilidad de resultados	Compatibilidad de resultados
	Conclusión COMPATIBLE	Conclusión COMPATIBLE	Conclusión COMPATIBLE
	Igualdad de varianzas: Test Fisher	Igualdad de varianzas: Test - Levene	Igualdad de varianzas: Test Fisher
	pvalue 0,565004219 H0 VERDADERO 2 Conclusión σ₁² = σ₂²	pvalue0,6522147H0VERDADERO2Conclusión $\sigma_1^2 = \sigma_2^2$	pvalue 0,208590846 HO VERDADERO 2 Conclusión σ₁² = σ₂²
	Igualdad de medias: Test T-Student	gualdad de medias: Test Mann Witney	
рЗ	pvalue 0,197501792 H0 VERDADERO Conclusión μ₁ = μ₂	pvalue 0,074912899 H0 VERDADERO Conclusión μ ₁ = μ ₂	pvalue 0,74516992 H0 VERDADERO Conclusión μ1 = μ2
	Compatibilidad de resultados	Compatibilidad de resultados	Compatibilidad de resultados
	Conclusión COMPATIBLE	Conclusión COMPATIBLE	Conclusión COMPATIBLE

A partir de los resultados obtenidos en la tabla 24 y 25, el participante 2 y el referente tienen varianzas iguales pero distintas medias por lo tanto tienen mediciones que no son compatibles con las mediciones del referente.

Los participantes 1, 3, 4 y 5 tienen resultados que si son compatibles con el referente ya que poseen igualdad de varianzas y medias con respecto al referente.

CAPÍTULO V: VALIDACIÓN DE LAS HOJAS DE CÁLCULO

Para la comprobación de las implementaciones en VBA Microsoft Excel se utilizó Minitab y Matlab para la comprobación de los resultados.

5.1 DETERMINACIÓN DE DATOS ATÍPICOS

Se realizo la comprobación de los datos atípicos de los resultados del referente y participantes utilizando Minitab, se muestran los resultados a continuación:

Como podemos apreciar en la siguiente tabla se muestran los resultados de la prueba Q de Dixon realizada en Minitab, el valor p < 0.05 indica que el menor valor o mayor valor es un dato atípico. En la tabla 26 se evidencia que el participante 2 (metrólogo 2) tiene resultados atípicos en los tres puntos de evaluación los cuales son 0.00544, 0.0136 y 0.0272, lo cual coincide con los resultados obtenidos en la plantilla de Excel.

Tabla 26: Resultados de la prueba Q Dixon en Minitab para los resultados

Variable	N	M ín.	x[2]	x[N-1]	Máx.	r10	Р
REF: P1	5	0,001372	0,001680	0,002400	0,003660	0,55	0,211
REF: P2	5	0,003430	0,004200	0,006000	0,009150	0,55	0,211
REF P3	5	0,00686	0,00840	0,01200	0,01830	0,55	0,211
PAR_1 P1	5	0,00029	0,00161	0,00544	0,00544	0,26	0,974
PAR_1 P2	5	0,00072	0,00403	0,01360	0,01360	0,26	0,974
PAR_1: P3	5	0,00143	0,00807	0,02720	0,02720	0,26	0,974
PAR_2: P1	5	0,000286	0,000286	0,001680	0,005440	0,73	0,040
PAR_2: P2	5	0,00072	0,00072	0,00420	0,01360	0,73	0,040
PAR_2: P3	5	0,00143	0,00143	0,00840	0,02720	0,73	0,040
PAR_3 P1	5	0,001538	0,002820	0,003360	0,004920	0,46	0,377
PAR_3: P2	5	0,00384	0,00705	0,00840	0,01230	0,46	0,377
PAR_3 P3	5	0,00769	0,01410	0,01680	0,02460	0,46	0,377
PAR_4 P1	5	0,002400	0,002460	0,004460	0,004780	0,13	1,000
PAR_4 P2	5	0,00600	0,00615	0,01115	0,01195	0,13	1,000
PAR_4: P3	5	0,01200	0,01230	0,02230	0,02390	0,13	1,000

PAR_5: P1 5 0,000772 0,000934 0,002880 0,005140 0,52 0,266 PAR_5: P2 5 0,00193 0,00233 0,00720 0,01285 0,52 0,266 PAR_5: P3 5 0,00386 0,00467 0,01440 0,02570 0,52 0,266

5.2 EVALUACIÓN DE LA NORMALIDAD DE LOS RESULTADOS

Para la comprobación de la evaluación de la normalidad de los resultados se utilizó el software Matlab con una función desarrollada por Ahmed BenSaïda para calcular los datos atípicos [19].

Se calculo el p-value de las evaluaciones de normalidad en Matlab, los resultados obtenidos se muestran en la tabla 27.

Tabla 27: Resultados de la evaluación de la normalidad utilizando MATLAB y SHAPIRO WILKS

```
Referente
                                          Participante 1
>> [pValue] = swtest(DATA(:,1), 0.05)
                                         >> [pValue] = swtest(DATA(:,4), 0.05)
pValue =
                                         pValue =
                                             0.1545
   0.4323
                                         >> [pValue] = swtest(DATA(:,5), 0.05)
>> [pValue] = swtest(DATA(:,2), 0.05)
                                         pValue =
nValue =
                                             0.1545
   0.4323
                                         >> [pValue] = swtest(DATA(:,6), 0.05)
>> [pValue] = swtest(DATA(:,3), 0.05)
                                         pValue =
nValue =
                                             0.1545
   0.4323
```

Participante 2

Participante 3

```
>> [pValue] = swtest(DATA(1:4,7), 0.05) | >> [pValue] = swtest(DATA(:,10), 0.05)
                                          pValue =
pValue =
                                              0.8157
   0.1755
>> [pValue] = swtest(DATA(1:4,8), 0.05)
                                         >> [pValue] = swtest(DATA(:,11), 0.05)
                                         pValue =
pValue =
                                              0.8157
   0.1755
>> [pValue] = swtest(DATA(1:4,9), 0.05) >> [pValue] = swtest(DATA(:,12), 0.05)
                                          pValue =
pValue =
   0.1755
                                              0.8157
```

```
Participante 4
                                             Participante 5
>> [pValue] = swtest(DATA(1:4,13), 0.05)
                                            >> [pValue] = swtest(DATA(1:4,16), 0.05)
                                           pValue =
    0.0047
                                               0.0548
>> [pValue] = swtest(DATA(1:4,14), 0.05)
                                           >> [pValue] = swtest(DATA(1:4,17), 0.05)
pValue =
                                           pValue =
   0.0047
                                               0.0548
>> [pValue] = swtest(DATA(1:4,15), 0.05)
                                           >> [pValue] = swtest(DATA(1:4,18), 0.05)
pValue =
                                           pValue =
   0.0047
                                               0.0548
```

5 Evaluación de la igualdad de varianzas

Para la comprobación de los resultados de la igualdad de las varianzas se empleó el software Minitab, los resultados de p-valor se muestran en la tabla 28.

Tabla 28: Resultados de la igualdad de varianzas en Minitab valor-p

Hipótesis nula	H_0 : $\sigma_1 / \sigma_2 = 1$
Hipótesis alterna	$H_1: \sigma_1 / \sigma_2 \neq 1$
Nivel de significancia	α = 0,05

Participante		Estadística			
	Método	de prueba	GL1	GL2	Valor p
Metrólogo 1 – P1	F	0,14	4	4	0,083
Metrólogo 1 – P2	F	0,14	4	4	0,083
Metrólogo 1 – P3	F	0,14	4	4	0,083
Metrólogo 2 – P1	F	0,17	4	4	0,644
Metrólogo 2 – P2	F	0,17	4	4	0,644
Metrólogo 2 – P3	F	0,17	4	4	0,644
Metrólogo 3 – P1	F	0,54	4	4	0,565
Metrólogo 3 – P2	F	0,54	4	4	0,565
Metrólogo 3 – P3	F	0,54	4	4	0,565
Metrólogo 4 – P1	Levene	0,22	1	8	0,652
Metrólogo 4 – P2	Levene	0,22	1	8	0,652

Metrólogo 4 – P3	Levene	0,22	1	8	0,652
Metrólogo 5 – P1	F	0,25	4	4	0,209
Metrólogo 5 – P2	F	0,25	4	4	0,209
Metrólogo 5 – P3	F	0,25	4	4	0,209

6 Evaluación de la igualdad de medidas de tendencia central

Para la comprobación de los resultados de la igualdad de las medidas de tendencia central se empleó el software estadístico Minitab, los resultados del p-valor se muestran en la tabla 29.

Tabla 29: Evaluación de igualdad de medidas de tendencia central

Hipótesis nula	H_0 : $\mu_1 - \mu_2 = 0$
Hipótesis alterna	H_1 : $\mu_1 - \mu_2 \neq 0$
livel de significancia	a = 0.05

Participante	Prueba	Valor T	GL	Valor p
Metrólogo 1 – P1	T Student	-1,11	8	0,300
Metrólogo 1 – P2	T Student	-1,11	8	0,300
Metrólogo 1 – P3	T Student	-1,11	8	0,300
Metrólogo 2 – P1	T Student	2,73	7	0,03
Metrólogo 2 – P2	T Student	2,73	7	0,03
Metrólogo 2 – P3	T Student	2,73	7	0,03
Metrólogo 3 – P1	T Student	-1,41	8	0,198
Metrólogo 3 – P2	T Student	-1,41	8	0,198
Metrólogo 3 – P3	T Student	-1,41	8	0,198
Metrólogo 4 – P1	T Mann Witney	18,5 (W)	2	0,075
Metrólogo 4 – P2	T Mann Witney	18,5 (W)	3	0,075
Metrólogo 4 – P3	T Mann Witney	18,5 (W)		0,075
Metrólogo 5 – P1	T Student	-0,34	8	0,745
Metrólogo 5 – P2	T Student	-0,34	8	0,745
Metrólogo 5 – P3	T Student	-0,34	8	0,745

Según la tabla 29 todos los valores del p-valor son mayores o iguales a 0.05 por lo tanto se acepta la hipótesis nula.

CONCLUSIONES

De la evaluación de los mecanismos de aseguramiento aplicables al procedimiento PC-001 "Procedimiento para la calibración de balanzas de funcionamiento no automático clase III y III" de la DM- INACAL se concluye que solo es posible aplicar los incisos b), c), d), f), i) y j).

El mecanismo de aseguramiento del inciso b), podemos concluir que es aplicable siempre y cuando el laboratorio cuente con un segundo patrón alternativo con el cual podamos ejecutar la calibración, según los resultados de la **tabla 5** se concluye que hay compatibilidad de los resultados de las calibraciones de ambos metrólogos de acuerdo al criterio de aceptación establecido, con ello podemos garantizar la confiablidad en las mediciones de nuestro patrón de trabajo.

El mecanismo de aseguramiento del inciso d) nos permite realizar los gráficos de control para determinar el comportamiento metrológico del instrumento (error, corrección o desviación en el tiempo) y poder prevenir mediante el cálculo de la deriva que el instrumento se encuentre fuera de errores máximos permitidos. Según la **tabla 8** el intervalo de calibración encontrado es de 1,8 años correspondiente a la pesa de 100 mg por lo tanto podemos establecer un periodo de recalibración de 1 año para dichos patrones.

El mecanismo de aseguramiento del inciso f) es aplicable siempre y cuando el laboratorio tenga dos o más metrólogos autorizados en el procedimiento de estudio los cuales ejecutaran las calibraciones, según la tabla 12 se concluye que hay compatibilidad de los resultados de las calibraciones de ambos metrólogos de acuerdo al criterio establecido, con ello podemos garantizar la confiabilidad de las mediciones de nuestro personal autorizado.

El mecanismo de aseguramiento del inciso j) tiene por finalidad comprobar la competencia técnica de nuestro personal con la finalidad de obtener o mantener la autorización para realizar las calibraciones en dicho procedimiento. Según la **tabla**

25 y 26 podemos concluir que existe compatibilidad de resultados con respecto al referente de los metrólogos 1, 3, 4 y 5, mientras que el metrólogo 2 tiene resultados no compatibles.

Los resultados obtenidos de la validación hoja de cálculo desarrollada en Microsoft Excel:

Detección de datos atípicos Microsoft Excel vs Minitab, según las tablas 23 y 27 existe compatibilidad de los resultados en al menos 3 decimales.

Evaluación de la normalidad de los resultados Microsoft Excel vs Matlab, según las tablas 24 y 28 existe compatibilidad de los resultados en al menos 3 decimales en el p valor.

Evaluación de la igualdad de varianzas de los resultados Microsoft Excel vs Minitab, según las tablas 25 y 29 existe compatibilidad de los resultados en al menos 3 decimales en el p valor.

Evaluación de la igualdad de medidas de tendencia central de los resultados Microsoft Excel vs Minitab, según las tablas 25 y 30 existe compatibilidad de los resultados en al menos 3 decimales en el p valor.

Por lo tanto, se concluye que la herramienta desarrollada (hoja de cálculo en Microsoft Excel) para realizar el cálculo estadístico se encuentra correctamente validada para su uso.

Para los propósitos de esta tesis de investigación solo se realizó la aplicación de los mecanismos de aseguramiento a uno de los procedimientos de calibración (PC-001 "Procedimiento para la calibración de balanzas clase III y IIII") el cual es uno de los servicios de calibración más requeridos por la industria de nuestro país. Por tal motivo es necesario evaluar la aplicación de dichos mecanismos a otros procedimientos de calibración ya que cada procedimiento considera diferentes equipamientos y condiciones y además es decisión del laboratorio escoger cuales aplicara para garantizar la validez de sus resultados.

RECOMENDACIONES

Para la implementación de los aseguramientos de la validez de los resultados se recomienda realizar un análisis por procedimiento que se tiene implementado. Se recomienda llevar un programa de aseguramiento de la validez de los resultados con la finalidad de no exceder los tiempos solicitados por la NTP-ISO IEC 17025:2017 y directrices asociadas.

Es requisito evaluar las tendencias de los aseguramientos aplicados, este aspecto no forma parte de esta tesis, pero está contemplada en la norma NTP-ISO IEC 17025:2017.

REFERENCIAS BIBLIOGRAFICAS

- [1] Inacal. (2023, septiembre). Laboratorios de calibración acreditados por zona geográfica.
 - https://www.inacal.gob.pe/repositorioaps/data/1/1/4/jer/organismosacreditado sporregion/files/LC-Regi%C3%B3n%2F5%20Laboratorios-de-
 - Calibraci%C3%B3n-por-Regi%C3%B3n-(2023-09-07).pdf
- [2] Cómite técnico de Inacal, (2019, octubre). Directriz para la acreditación de laboratorios de ensayo y calibración. Inacal.
 - https://www.inacal.gob.pe/repositorioaps/data/1/1/4/jer/documentosespecificos/files/Directrices%2FDA-acr-
 - 06D%20V02%20Directriz%20Acreditaci%C3%B3n%20Laboratorio%20Ensay o%20y%20Calibraci%C3%B3n.pdf
- [3] Gamonal Requez, J. E. (2022). Aplicación de la Norma NTP-ISO/IEC 17025: 2017 para la acreditación del laboratorio de Mecánica de Suelos en la empresa TCINGE SAC [Tesis para obtener el Título Profesional de Ingeniero Civil, Universidad Peruana Unión]
- [4] Gonzáles Yapo, C. A. (2016). *Mejoramiento de la metodología de aseguramiento de la calidad de los resultados mediante evaluación intralaboratorio*. [Tesis para obtener el título de Ingeniero Petroquímico, Universidad Nacional de Ingeniería]
- [5] Carbajal Capia, L. M. (2022). Evaluación de riesgos asociados al aseguramiento de la validez de los resultados en laboratorios de ensayos ambientales acreditados con la norma ISO/IEC 17025 versión 2017. [Tesis para obtener el grado académico de Maestra en Ciencias: Gerencia en Seguridad, Calidad de Laboratorios Analíticos y Acreditación, Universidad Nacional de San Agustín de Arequipa]

- [6] Loor Diaz, D. E., & Moreira Villegas, F. (2021). Control estadístico en la calibración de equipos de un laboratorio de lubricantes [Tesis para obtener el grado académico de Magíster en Estadística con mención en Gestión de la calidad y productividad, Escuela superior Politécnica del litoral]
- [7] Fonseca, Y. P. O., Soto, J. J. E., & Benavides, J. D. G. (2017). Determinación de intervalos de calibración de patrones de masa en el laboratorio de masa del Instituto Nacional de Metrología (INM) de Colombia utilizando zeta-score (ζ). Sociedade brasileira de metrología, http://repostorio.bom.org.br:8080/jspui/bitstream/2050011876/463/1/2017_CB M_Articulo_V2_apXOFK1.pdf
- [8] Rodríguez Sabogal, H., & Rodríguez Acevedo, H. S. (2019). Verificación de medida por trazabilidad a higrómetros digitales en humedad relativa. [Monografía para optar al título de: Especialista en Instrumentación Industrial, Escuela Tecnológica Instituto Técnico Central Especialización en Instrumentación Industrial]
- [9] Ruiz Wong, O. M. (2014). Verificación de desempeño de instrumentos empleados en control de calidad. [Informe de prácticas pre-profesionales para optar el título profesional de Químico Farmacéutico, Universidad Nacional de Trujillo]
- [10] Sistema Interamericano de Metrología. (2009). Guía para la calibración de instrumentos para pesar de funcionamiento no automático SIM MWG7/cg-01/v.00:2009.
 - https://www.cenam.mx/myd/pdf/normasguias/SIM%20MWG7_cg-01_v00%20Spanish%20_Corrected_%209%20Feb.pdf
- [11] Inacal. (2019, mayo). PC001 Procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático clase III y IIII (1)

- [12] Indecopi. (2010, abril). PC011 Procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático clase I y II (4)
- [13] Indecopi. (2009, diciembre). Norma Metrológica Peruana NMP 003: Instrumentos de Pesaje de Funcionamiento No Automático. https://www.inacal.gob.pe/inacal/files/metrologia/normas-metrologicas-peruanas/NMP-003-2009.pdf
- [14] Indecopi. (2007, mayo). Norma Metrológica Peruana NMP 004: Instrumentos de Pesaje de Funcionamiento No Automático. https://www.inacal.gob.pe/repositorioaps/data/1/1/5/jer/normasmetrologicasp eruanas/files/NMP_004-2007-ok.pdf
- [15] Comité Conjunto para las Guías en Metrología. (2013). Vocabulario Internacional de Metrología Conceptos fundamentales y generales, y términos asociados (VIM) edición 2012. Inacal. https://transparencia.produce.gob.pe/images/stories/Repositorio/transparencia/proyectos-de-inversion/niveles-de-servicio/2021/INACAL/NS/VIM_2012_INACAL.pdf
- [16] Dixon, W. J. (1950). Analysis of extreme values. *The Annals of Mathematical Statistics*, *21(4)*, 488-506.
- [17] Rorabacher, D. B. (1991). Statistical treatment for rejection of deviant values: critical values of Dixon's" Q" parameter and related subrange ratios at the 95% confidence level. *Analytical Chemistry*, *63(2)*, 139-146.
- [18] Demir, S. (2022). Comparison of Normality Tests in Terms of Sample Sizes under Different Skewness and Kurtosis Coefficients. *International Journal of Assessment Tools in Education*, *9*(2), 397-409.
- [19] Ahmed BenSaïda. (2022, diciembre). Shapiro-Wilk and Shapiro-Francia normality tests.

- https://www.mathworks.com/matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-tests
- [20] Gómez-Gómez, M., Danglot-Banck, C., & Vega-Franco, L. (2003). Sinopsis de pruebas estadísticas no paramétricas. Cuándo usarlas. Revista mexicana de pediatría, 70(2), 91-99.
- [21] Gosset, S. W. (2015). *t-Student y F-Snedecor*. https://d1wqtxts1xzle7.cloudfront.net/37269695/tstudent-

libre.pdf?1428694189=&response-content-

disposition=inline%3B+filename%3Dt_student.pdf&Expires=1697958068&Sig nature=CVY-V~r-dKetTVspomjB-

u~NoppUHwx9qmWHdgx3g57LG5NO1na82S5fcJ0jbwuRm0nexT0dooBMV8 HFDVjJVYkPS3PS-323JfbOAl~v9ljlk6pa7ih4u-

eAwllxSD862Fj4Y3gpBxnNWlaGZyise428JjNbTlBfPl9gAQyC4V4xgaJilFfz1ik LeRcJD3EAwC3jenUtqMhyMGljlgMyVO7tR7NjQdLCTNbl9elPPU-

RxghVVgjYrisR8wpkN5ad0q9oPa7W8k~GaKz-

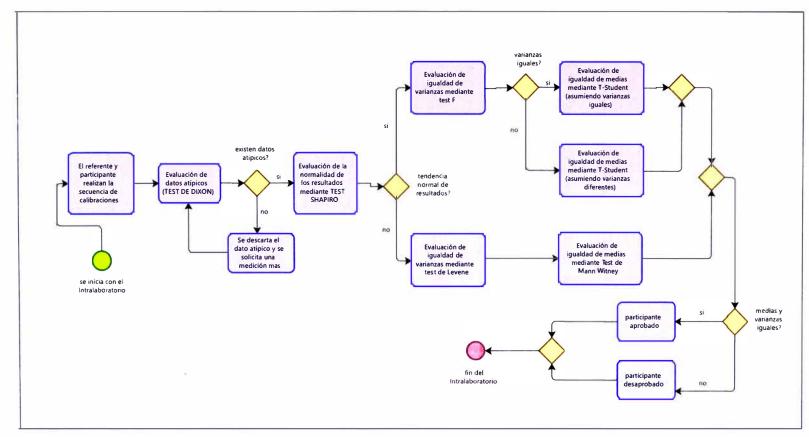
FMyahaxjSsJqxJz7e7n~ECdfBSRbt3GpdD-

vLQjb2oLLeuvUPXTPUlu0YX7ZXpR9qbFAHg__&Key-Pair-

Id=APKAJLOHF5GGSLRBV4ZA

ANEXOS

ANEXO 1: Valores críticos del Q de Dixon	1
ANEXO 2: Diagrama de flujo del Intralaboratorio	2
ANEXO 3: Instructivo de comprobaciones intermedias aplicado a PC-001	3
ANEXO 4: Test de Dixon VBA Microsoft Excel	4
ANEXO 5: Test de Shapiro Wilks VBA Microsoft excel	5
ANEXO 6: Test de Levene VBA Microsoft excel	6
ANEXO 7: Test de MannWitney VBA Microsoft Excel	7
ANEXO 8: Función swtest en Matlab de Ahmed BenSaïda	9
ANEXO 9. Fiemplo certificado de calibración de balanza clase III según PC-001	13


ANEXO 1: Valores críticos del Q de Dixon

Valores críticos del parámetro r10 (Q) de Dixon aplicados a una prueba de dos colas en varios niveles de confianza

副然 * 愈	- \$ ×		Nivel de d	onfianza		
Nb	80%	90%	95%	96%	98%	99%
	(a = 0.20)	(a = 0,10)	(a = 0.05)	(a = 0,04)	(a = 0.02)	(a 0,01)
3	0,886	0,941	0,970	0,976	0,988	0,994
4	0,679	0,765	0,829	0,846	0,889	0,926
5	0,557	0,642	0,710	0,729	0,780	0,821
6	0,482	0,560	0,625	0,644	0,698	0,740
7	0,434	0,507	0,568	0,586	0,637	0,680
8	0,399	0,468	0,526	0,543	0,590	0,634
9	0,370	0,437	0,493	0,510	0,555	0,598
10	0,349	0.412	0,466	0,483	0,527	0,568
11	0,332	0,392	0,444	0,460	0,502	0,542
12	0,318	0,376	0,426	0,441	0,482	0,522
13	0,305	0,361	0,410	0,425	0,465	0,503
14	0,294	0,349	0,396	0,411	0,450	0,488
15	0,285	0,338	0,384	0,399	0.438	0,475
16	0,277	0,329	0,374	0,388	0,426	0,463
17	0,269	0,320	0,365	0,379	0,416	0,452
18	0,263	0,313	0,356	0,370	0,407	0,442
19	0,258	0,306	349	0,363	0,398	0,433
20	0,252	0,300	0,342	0,356	0,391	0,425
21	0,247	0,295	0,337	0,350	0,384	0,418
22	0,242	0,290	0,331	0,344	0,378	0,411
23	0,238	0,285	0,326	0,338	0,372	0,404
24	0,234	0,281	0,321	0,333	0,367	0,399
25	0,230	0,277	0,317	0,329	0,362	0,393
29	0,227	0,273	0,312	0,324	0,357	0,388
27	0,224	0,269	0,308	0,320	0,353	0,384
28	0,220	0,266	0,305	0,316	0,349	0,380
29	0,218	0,263	0,301	0,312	0,345	0,376
30	215	0,260	0,298	0,309	0,341	0,372

Extraído de: Rorabacher, D. B. (1991). Statistical treatment for rejection of deviant values: critical values of Dixon's" Q" parameter and related subrange ratios at the 95% confidence level. Analytical Chemistry, 63(2), 139-146.

ANEXO 2: Diagrama de flujo del Intralaboratorio

ANEXO 3: Instructivo de comprobaciones intermedias aplicado a

PC-001

MAGNITUD: MASA

Objetivo

De acuerdo a ISO 17025, se deben llevar a cabo comprobaciones intermedias para mantener la confianza en el desempeño del equipo de acuerdo con un procedimiento.

El objetivo de este documento es declarar como realizar las comprobaciones intermedias de las pesas patrones de trabajo.

Alcance: Quedan afectadas los patrones de trabajo para la calibración de pesas y balanzas, i.e. las pesas clase M2, M1 del laboratorio.

Referencias

- PC-008, "Procedimiento para la calibración de pesas de trabajo clases M2, M23 y M3", 2da edición, 2009.
- PC-016, "Procedimiento para la calibración de pesas de precisión", 2da edición,
 2015.

Instrucciones

a) Juego de pesas de clase M1 (1 mg a 50 mg).

Este juego de pesas se utiliza en la calibración de balanzas Clase III. La comprobación intermedia se realiza conforme al PC-016 "Procedimiento para la calibración de pesas de precisión". Si el laboratorio Test & Control no contase con el equipamiento necesario para efectuar la comprobación intermedia, esta medición se encargará a un laboratorio externo acreditado bajo ISO 17025 en el PC-016.

b) Juego de pesas de clase M2.

Este juego de pesas se utiliza en la calibración de balanzas Clase III y IIII.

La comprobación intermedia se realiza conforme al PC-008 "Procedimiento para la calibración de pesas de trabajo clases M2, M23 y M3".

ANEXO 4: Test de Dixon VBA Microsoft Excel

```
Option Explicit
     Function dixon(x As Range, xi As Double) As String 'Dende pos 1 o pos
         Dim i, n As Integer
         Dim x_asc, Qtabla As Variant
         n = x.Rows.count
         Dim rango, Q As Double
         'Se debe utilizar llamando a la funcion "sort(x)" esta se encarga de order
         x asc sort(x)
         rango WorksheetFunction.Max(x) - WorksheetFunction.Min(x)
         'Valores criticos del test de dixon desde 3 a 10
         Qtabla = Array(0.941, 0.765, 0.642, 0.56, 0.507, 0.554, 0.512, 0.477)
         'Se realiza el calculo del Q para el dato seleccionado
         If xi = WorksheetFunction.Min(x) Then
             Q = (x_asc(2) - xi) / rango
         ElseIf xi = WorksheetFunction.Max(x) Then
            Q = (xi - x_asc(n - 1)) / rango
             MsgBox "solo se evaluan los datos x1 y xn dentro del intervalo"
             Exit Function
         End If
         'Evaluación del criterio del test de dixon
         If Q > Qtabla(n - 3) Then
             dixon "atipico"
         Else
                     "satisfactorio"
         End If
     End Function
'Esta funcion permite ordenar los valores de un rango
Function sort(x As Range) As Double()
    Dim i, j, n min, n As Integer
    n = x.Rows.count
   Dim x_asc() As Double
    Dim aux As Double
    ReDim x_asc(1 To n) As Double
    For i = 1 To n
       x_asc(i) x(i)
    Next i
    For i = 1 To n - 1
        n \min = i
        For j = i + 1 To n
            If x \ asc(j) < x_asc(n_min) Then
                n min = j
            End If
        Next j
        aux = x asc(i)
        x_asc(i) = x_asc(n_min)
       x_asc(n_min) = aux
   Next i
    sort = x asc
End Function
```

ANEXO 5: Test de Shapiro Wilks VBA Microsoft excel

```
Function swtest(x As Range, alpha As Single) As Variant()
     Diı
             phi = (WorksheetFunction.SumSq(mtilde) - 2 * mtilde(n) ^ 2)
     Dia
                     / (1 - 2 * weights(n) ^ 2)
     Di End If
     Din
     Di If n = 3 Then
             Poyston (1992, p. 117)
weights(1) = 1 / Sqr(2)
weights(n) = -weights(1)
     n
     Re End If
     Di For i = Cont To n - Cont + 1
            weights(i) = mtilde(i) / Sqr(phi)
     Diı
     Di Next i
        W = WorksheetFunction.SumProduct(weights, x asc) ^ 2 / WorksheetFunction.sum(x xme2)
     F_0 If n >= 4 And n <= 11 Then
             mu = polyval(PolyCoef_3, n)
             sigma = Exp(polyval(PolyCoef_4, n))
             gam = polyval(PolyCoef_7, n)
newSWstatistic = -Log(gam - Log(1 - W))
     cu ElseIf n > 11 Then
             mu = polyval(PolyCoef_5, newn)
             sigma = Exp(polyval(PolyCoef_6, newn))
             newSWstatistic = Log(1 - W)
         ElseIf n = 3 Then
             mu = 0
             sigma = 1
             newSWstatistic = 0
        End If
        NormalSWstatistic = (newSWstatistic - mu) / sigma
        ' NormalSW
statistic is referred to the upper tail of N\left(0\,,1\right) ,
         ' Royston (1992, p. 119).
        pvalue = 1 - WorksheetFunction.Norm S Dist(NormalSWstatistic, True)
          Special attention when n = 3 (this is a special case)
        If n = 3 Then
           pvalue = 6 / WorksheetFunction.Pi * (WorksheetFunction.Asin(Sqr(W)) - WorksheetFunction.Asin(Sqr(3 / 4)))
         ' Royston (1982a, p. 121)
    End If
    swtest = Array(curtosis, pvalue >= alpha, pvalue, W)
End Function
'Esta funcion permite ordenar los valores de un rango
                                                            Function polyval(Coef As Variant, u As Variant) As Double
Function sort(x As Range) As Double()
                                                                 Dim i, n As Integer
    Dim i, j, n_min, n As Integer
                                                                 n = UBound(Coef) - LBound(Coef) grado del polinomio
    n = x.Rows.count
                                                                 For i = 0 To n
    Dim x_asc() As Double
                                                                \label{eq:polyval} \text{polyval = polyval + Coef(i) * (u) ^ (n - 1)} \\ \text{Next i}
    Dim aux As Double
    ReDim x_asc(1 To n) As Double
                                                            End Function
    x_asc(i) = x(i)
Next i
    For i = 1 To n - 1
        n min = i
For j = i + 1 To n
            If x_asc(j) < x_asc(n_min) Then
    n_min = j</pre>
        Next j
        aux = x_asc(i)
x_asc(i) = x_asc(n_min)
x_asc(n_min) = aux
                                                              mtilde(n) ^2 2 - 2 * mtilde(n - 1) ^2 2
                                                              ts(n - 1) ^ 2)
    Next i
sort = x asc
End Function
```

ANEXO 6: Test de Levene VBA Microsoft excel

```
'Evaluación de la igualdad de varianzas
Function tlevene(x1 As Range, x2 As Range, alpha As Double) As Variant
    Dim n1, n2, i, Cont As Integer
    Dim x1 asc, x2 asc As Variant
    n1 = x1.Rows.count
    n2 = x2.Rows.count
    Cont = n1 + n2 - 2
    x1 asc = sort(x1)
    x2 asc = sort(x2)
    Dim z1(), z2(), IJ1 2(), JK2_2() As Double
    ReDim z1(1 To n1), z2(1 To n2), IJ1(1 To n1), IJ2(1 To n2) As Double
    Dim me1, me2, z12me, z1me, z2me, JK1, JK2 As Double
    Dim betgroup, witgroup, LevSta, LevCrit, pvalue As Double
        me1 = WorksheetFunction.Median(x1)
        me2 = WorksheetFunction.Median(x2)
    For i = 1 To n1
        z1(i) = Abs(x1(i) - me1)
    Next i
    For i = 1 To n2
       z2(i) = Abs(x2(i) - me2)
    Next i
        z1me = WorksheetFunction.Average(z1)
        z2me = WorksheetFunction.Average(z2)
        z12me = WorksheetFunction.Average(z1, z2)
        JK1 = (z1me - z12me) ^ 2
        JK2 = (z2me - z12me) ^ 2
    For i = 1 To n1
       IJ1(i) = (z1(i) - z1me) ^ 2
    Next i
    For i = 1 To n2
       IJ2(i) = (z2(i) - z2me) ^ 2
    Next i
    betgroup = JK1 * n1 + JK2 * n2
    witgroup = WorksheetFunction.sum(IJ1, IJ2)
    LevSta = (betgroup / 1) / (witgroup / Cont)
    LevCrit = WorksheetFunction.F_Inv_RT(alpha, 1, Cont)
    pvalue = WorksheetFunction.F_Dist_RT(LevSta, 1, Cont)
    tlevene = pvalue
End Function
```

ANEXO 7: Test de MannWitney VBA Microsoft Excel

```
'Igualdad de medianas TEST DE MANN WHITNEY x1 y x2 deben estar ordenados
Function tmaanw(x1 As Range, x2 As Range, alpha As Double) As Variant
    Dim n1, n2, i, j, Cont As Integer
    Dim x asc As Range
    Dim x1_asc, x2_asc As Variant
    Dim rank(), t(), TM() As Double
    Dim avrank1, avrank2, srank1, srank2, sum, Z, pvalue As Double
    Dim p1, p2, n, U1, U2, W, p, TMsum As Double
    n1 = x1.Rows.count
    n2 = x2.Rows.count
    \label{eq:redimension} \textbf{ReDim rank(1 To n1 + n2), t(1 To n1 + n2), TM(1 To n1 + n2) \  \, \textbf{As Double}}
    x1_asc = sort(x1)
    x2_asc = sort(x2)
    Set x_asc = Application.Union(x1, x2)
    For i = 1 To n1
       rank(i) = WorksheetFunction.Rank_Avg(x1_asc(i), x_asc, 1)
    For i = 1 To n2
       rank(n1 + i) = WorksheetFunction.Rank Avg(x2 asc(i), x asc, 1)
    For i = 1 To n1 + n2
        Cont = 0
        For j = 1 To n1 + n2
           If rank(i) = rank(j) Then Cont = Cont + 1
        Next j
        t(i) = Cont
        Cont = 0
        For j = 1 To n1 + n2
            If rank(i) = rank(j) Then
               Cont = Cont + 1
                If Cont > 1 Then t(j) = 0
           End If
       Next j
   Next i
    For i = 1 To n1 + n2
       TM(i) = t(i) ^ 3 - t(i)
       TMsum = TMsum + TM(i)
   Next i
   n = n1 + n2
   p1 = n1 * (n1 + 1) / 2
   p2 = n2 * (n2 + 1) / 2
   For i = 1 To n1 + n2
        If i <= n1 Then
            avrank1 = avrank1 + rank(i) / n1
            srank1 = srank1 + rank(i)
            avrank2 = avrank2 + rank(i) / n2
            srank2 = srank2 + rank(i)
       End If
   Next i
```

ANEXO 8: Función swtest en Matlab de Ahmed BenSaïda

```
function [H, pValue, W] = swtest(x, alpha)
%SWTEST Shapiro-Wilk parametric hypothesis test of composite normality.
% [H, pValue, SWstatistic] = SWTEST(X, ALPHA) performs the
% Shapiro-Wilk test to determine if the null hypothesis of
% composite normality is a reasonable assumption regarding the
   population distribution of a random sample X. The desired significance
   level, ALPHA, is an optional scalar input (default = 0.05).
% The Shapiro-Wilk and Shapiro-Francia null hypothesis is:
%
   "X is normal with unspecified mean and variance."
%
% This is an omnibus test, and is generally considered relatively
  powerful against a variety of alternatives.
   Shapiro-Wilk test is better than the Shapiro-Francia test for
%
   Platykurtic sample. Conversely, Shapiro-Francia test is better than the
   Shapiro-Wilk test for Leptokurtic samples.
%
%
   When the series 'X' is Leptokurtic, SWTEST performs the Shapiro-Francia
%
   test, else (series 'X' is Platykurtic) SWTEST performs the
   Shapiro-Wilk test
% [H, pValue, SWstatistic] = SWTEST(X, ALPHA)
%
% Inputs:
% X - a vector of deviates from an unknown distribution. The observation
   number must exceed 3 and less than 5000.
%
% Optional inputs:
% ALPHA - The significance level for the test (default = 0.05).
% Outputs:
% SWstatistic - The test statistic (non normalized).
% pValue - is the p-value, or the probability of observing the given
   result by chance given that the null hypothesis is true. Small values
%
   of pValue cast doubt on the validity of the null hypothesis
%
%
   H = 0 => Do not reject the null hypothesis at significance level ALPHA.
%
   H = 1 => Reject the null hypothesis at significance level ALPHA.
%
          Copyright (c) 17 March 2009 by Ahmed Ben Saïda
%
          Department of Finance, IHEC Sousse - Tunisia
                                                        %
%
              Email: ahmedbensaida@yahoo.com
            $ Revision 3.0 $ Date: 18 Juin 2014 $
                                                     %
%
% References:
%
% - Royston P. "Remark AS R94", Applied Statistics (1995), Vol. 44,
% No. 4, pp. 547-551.
  AS R94 - calculates Shapiro-Wilk normality test and P-value
% for sample sizes 3 <= n <= 5000. Handles censored or uncensored data.
   Corrects AS 181, which was found to be inaccurate for n > 50.
% Subroutine can be found at: http://lib.stat.cmu.edu/apstat/R94
% - Royston P. "A pocket-calculator algorithm for the Shapiro-Francia test
  for non-normality: An application to medicine", Statistics in Medecine
%
   (1993a), Vol. 12, pp. 181-184.
%
% - Royston P. "A Toolkit for Testing Non-Normality in Complete and
% Censored Samples", Journal of the Royal Statistical Society Series D
```

```
% (1993b), Vol. 42, No. 1, pp. 37-43.
% - Royston P. "Approximating the Shapiro-Wilk W-test for non-normality",
% Statistics and Computing (1992), Vol. 2, pp. 117-119.
%
% - Royston P. "An Extension of Shapiro and Wilk's W Test for Normality
% to Large Samples", Journal of the Royal Statistical Society Series C
% (1982a), Vol. 31, No. 2, pp. 115-124.
%
%
% Ensure the sample data is a VECTOR.
if numel(x) == length(x)
                    % Ensure a column vector.
  x = x(:);
else
  error(' input sample "X" must be a vector.');
end
% Remove missing observations indicated by NaN's and check sample size.
%
x = x(\sim isnan(x));
if length(x) < 3
 error(' Sample vector "X" must have at least 3 valid observations.');
if length(x) > 5000
  warning('Shapiro-Wilk test might be inaccurate due to large sample size ( > 5000).');
end
% Ensure the significance level, ALPHA, is a
% scalar, and set default if necessary.
if (nargin >= 2) && ~isempty(alpha)
 if ~isscalar(alpha)
   error(' Significance level "Alpha" must be a scalar.');
 end
 if (alpha <= 0 || alpha >= 1)
   error(' Significance level "Alpha" must be between 0 and 1 '),
 end
else
 alpha = 0.05;
end
% First, calculate the a's for weights as a function of the m's
% See Royston (1992, p. 117) and Royston (1993b, p. 38) for details
% in the approximation.
X
     = sort(x); % Sort the vector X in ascending order.
     = length(x);
mtilde = norminv(((1:n)' - 3/8) / (n + 1/4));
weights = zeros(n,1); % Preallocate the weights.
if kurtosis(x) > 3
  % The Shapiro-Francia test is better for leptokurtic samples.
  weights = 1/sqrt(mtilde'*mtilde) * mtilde;
  % The Shapiro-Francia statistic W is calculated to avoid excessive
  % rounding errors for W close to 1 (a potential problem in very
  % large samples).
  W = (weights' * x)^2 / ((x - mean(x))' * (x - mean(x)));
  % Royston (1993a, p. 183):
  nu = log(n);
  u1
       = log(nu) - nu;
  u2
        = log(nu) + 2/nu;
        = -1.2725 + (1.0521 * u1);
  sigma = 1.0308 - (0.26758 * u2);
  newSFstatistic = log(1 - W);
  %
```

```
% Compute the normalized Shapiro-Francia statistic and its p-value
  NormalSFstatistic = (newSFstatistic - mu) / sigma;
  % Computes the p-value, Royston (1993a, p. 183).
  pValue = 1 - normcdf(NormalSFstatistic, 0, 1);
else
  % The Shapiro-Wilk test is better for platykurtic samples.
  c = 1/sqrt(mtilde'*mtilde) * mtilde;
  u = 1/sqrt(n);
  % Royston (1992, p. 117) and Royston (1993b, p. 38):
  PolyCoef_1 = [-2.706056, 4.434685, -2.071190, -0.147981, 0.221157, c(n)];
  PolyCoef_2 = [-3.582633, 5.682633, -1.752461, -0.293762, 0.042981, c(n-1)];
  % Royston (1992, p. 118) and Royston (1993b, p. 40, Table 1)
  PolyCoef_3 = [-0.0006714, 0.0250540, -0.39978, 0.54400];
  PolyCoef_4 = [-0.0020322, 0.0627670, -0.77857, 1.38220];
  PolyCoef_5 = [0.00389150, -0.083751, -0.31082, -1.5861];
  PolyCoef_6 = [0.00303020, -0.082676, -0.48030];
  PolyCoef_7 = [0.459, -2.273];
  weights(n) = polyval(PolyCoef_1, u);
  weights(1) = -weights(n);
  if n > 5
     weights(n-1) = polyval(PolyCoef_2 , u);
    weights(2) = -weights(n-1),
    count = 3;
    phi = (mtilde'*mtilde - 2 * mtilde(n)^2 - 2 * mtilde(n-1)^2) / ...
         (1 - 2 * weights(n)^2 - 2 * weights(n-1)^2);
  else
    count = 2;
    phi = (mtilde'*mtilde - 2 * mtilde(n)^2) / ...
         (1 - 2 * weights(n)^2);
  end
  % Special attention when n = 3 (this is a special case).
  if n == 3
    % Royston (1992, p. 117)
    weights(1) = 1/sqrt(2);
    weights(n) = -weights(1);
    phi = 1;
  end
  %
  % The vector 'WEIGHTS' obtained next corresponds to the same coefficients
  % listed by Shapiro-Wilk in their original test for small samples.
  weights(count : n-count+1) = mtilde(count : n-count+1) / sqrt(phi);
  % The Shapiro-Wilk statistic W is calculated to avoid excessive rounding
  % errors for W close to 1 (a potential problem in very large samples).
  W = (weights' * x) ^2 / ((x - mean(x))' * (x - mean(x)));
  % Calculate the normalized W and its significance level (exact for
  % n = 3). Royston (1992, p. 118) and Royston (1993b, p. 40, Table 1).
  newn = log(n);
  if (n >= 4) && (n <= 11)
    mu = polyval(PolyCoef_3, n);
     sigma = exp(polyval(PolyCoef_4, n));
     gam = polyval(PolyCoef_7, n);
     newSWstatistic = -log(gam-log(1-W));
```

```
elseif n > 11
     mu = polyval(PolyCoef_5 , newn);
     sigma = exp(polyval(PolyCoef_6, newn));
     newSWstatistic = log(1 - W);
   elseif n == 3
     mu = 0;
     sigma = 1;
     newSWstatistic = 0;
   end
   % Compute the normalized Shapiro-Wilk statistic and its p-value.
   NormalSWstatistic = (newSWstatistic - mu) / sigma;
   % NormalSWstatistic is referred to the upper tail of N(0,1),
   % Royston (1992, p. 119).
   pValue = 1 - normcdf(NormalSWstatistic, 0, 1),
   % Special attention when n = 3 (this is a special case).
   if n == 3
     pValue = 6/pi * (asin(sqrt(W)) - asin(sqrt(3/4)));
     % Royston (1982a, p. 121)
  end
end
% To maintain consistency with existing Statistics Toolbox hypothesis
% tests, returning 'H = 0' implies that we 'Do not reject the null
% hypothesis at the significance level of alpha' and 'H = 1' implies
% that we 'Reject the null hypothesis at significance level of alpha.'
%
H = (alpha >= pValue);
```

ANEXO 9: Ejemplo certificado de calibración de balanza clase III

según PC-001

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACION INACAL DA CON REGISTRO Nº LC 016

CERTIFICADO DE CALIBRACION

TC - YV001 - 2021

PROFORMA 00000

Fecha de emisión

SOLICITANTE : TEST & CONTROL S.A.C.

CALLE CONDEZA DE LEMOS 117 SAN MIGUEL LIMA LIMA

INSTRUMENTO DE MEDICIÓN : BALANZA Tipo ELECTRONICA HANDFREE Marca Modeo TP9301 N° de Sene 2021000059 100 kg Capacidad Maxima Resolución 0.05 kg Division de Venficación 0.05 kg Clase de Exactitud Capacidad Minima 1 kg Procedencia No indica identificación No in dica LABORATORIO 1 Variación de AT Local

4 .C 2021-12-16 Fecha de Calibración

LUGAR DE CALIBRACIÓN Laborazorio de TEST & CONTROL S.A.C.

MÉTODO DE CALIBRACIÓN

La calibración se realizo por comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones según procedimiento PC-001 "Procedimiento para la Calibración de instrumentos de Pesaje de Funcionamiento No Automázco Clase III y IIII.º Primera Edición - Mayo

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Centificación de equipos de medición basado a la Norma Techica Peruana ISO/IEC 17025

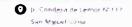
TEST & CONTROL S.A.C. brings los servicios de calibración de instrumentos de medición con los mas años estandares de calidad. garantizando la satisfacción de nuestros dientes

Este certificado de calibración documenta la trazabilidad a los sercrisc nacionases internacionales, de acuerdo con el Sistema internacional de Unidades

Con el fin de asegurar la calidat de sus mediciones se le recomienda al usuarlo recatorar sue instrumentos a intervaios aproprados

spiamente para el ttem sometido a calibration, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad atte in amduce

TEST & CONTROL SIAIC, no se responsabiliza de los perjuicios que puedan ocumir después de su calibración debido a la mala manipulación de este insalumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.


El presente documento cazede de valor sin firma y sello.

Lic. Nicolas Ramos Paucar

PGC-16-r09/Diclembre 2019/Rev.05

Pagna

Certificado de Calibración TC - YV001 - 2021

TRAZABE IDAD

Trazab@ded	Patron de Trabajo	Certificado de Calibración
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 100 mg a 1 kg Clase de Exactrud M2	TC-07157-2021 Mayo 2021
Patrones de Raferenda de TEST & CONTROL	Juego de Pesas 5 kg Clase de Exacthud M2	TC-09046-2021 Wayo 2021
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 10 tig Clase de Exactitud M2	TC-08047-2021 Mayo 2021
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 20 kg Clase de Exactitud M2	TC-06807-2021 Julio 2021

RESULTADOS DE MEDICIÓN

INSPECCION VISUAL

Apuste de Cero	Tiene
Oscillación Libre	Tiene
Potentia	Tiene
Statema de Traba	No Tiene

No Tiene
No Tiene
Tiene

ENSAYO DE REPETIBILIDAD

Magnitud	Inicial	Final
Temperatura	21.1 °C	21,2 °C
Humedad Relativa	72 %	73 %

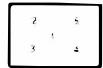
Modición	Carga	1	ΔL	E	
M*	(kg)	(19)	(9)	(2)	
1		50,00	35	-10	
2		5E,00	35	-10	
3	[50.00	30	-5	
4	ſ	50,00	35	-10	
5	50	50.00	35	-10	
•		50.00	30	-5	
7	[50,00	30	-5	
18		50.00	30	-5	
3		50,00	30	-5	
10		50.00	35	-10	
Em	ex - Emin	5			
-	.m.p. ± (g)	100			

Me@ción	Cargo	1	3L	Ε	
Nº	(19)	(kg)	(0)	121	
1		100.00	45	-20	
2		100,00	45	-20	
3	Ì	100,00	45	-20	
4	i	100,00	45	-20	
5	100	100,00	45	-20	
6		100	100,00	45	-20
7		100,00	± 5	-20	
•		100,00	45	-20	
9		100,00	45	-2:0	
10		100,00	45	-20	
Em	ez - Emin	(0)			
•	.m.D. ± (()	1	1	00	

PGC-16-r09/Diclembre 2019/Rev.05

Pagna 2 de 3

U Landesa de en la Notifi Sunt tou la trava PITT SHE HITTER


mirmes trestrantials um pe
 asswirest sedalt, im pe

LABORATORIO DE CALIBRACION ACREDITADO POR EL ORGANISMO PERLIANO DE ACREDITACION INACAL DA CON REGISTRO N° LC - 016

Certificado de Calibración TC - YV001 - 2021

ENSAYO DE EXCENTRICIDAD

Magnifud	inicial	Final
Temperatura	21.2 °C	21,5 °C
Humedad Relativa	73 %	74 %

N*	7	Determinación de Eo			Determinación del Error Corregido Ec					T
	Carga (kg)	(Ng)	AL (g)	Eo (g)	Carga (kg)	(kg)	ΔL (g)	(g)	Ec (g)	e.m.p. ±(g)
1		0,50	35	-10	30	30,00	35	-10	D	- 14/
2	D.5	0,50	30	-5		30,00	25	0	5	1
3		0.50	30	-5		30,00	45	-20	-15	190
4		2,50	25	D		30,00	35	-10	-10	i
5		0,50	25	С	1 1	30,00	15	10	10	1

ENSAYO DE PESAJE

	intclat	Fills
Temperatura	21,5 °C	21,4 °C
Humedad Relativa	75 %	76 %

Carpa (ag)	Carga Creciente				Caros Decreciente				T
	(kg)	(a) n	(g)	Ec (g)	(kg)	(8) 7	€ (9)	Ec (g)	±(a) 4.00 €
1.000	1,00	25	0	С	1.00	15	10	10	50
10,000	10,50	25	0	5	10,00	20	5		50
20,000	20.00	25	0	G	20.00	20	5	5	50
25,001	25,00	25	-1	-1	25,DC	20	4	4	5C
30.001	30.00	25	-1	-1	30.00	20	4	4	100
40,001	40,00	30	-6	-6	40,00	25	-1	-1	190
50,001	50.00	30	-6	-6	50,00	30	-ō	-6	100
70,002	70,50	30	-7	-7	70.00	3C	-7	-7	100
90,002	90,50	3-3	-7	-7	90,00	30	-7	-7	100
100.0C3	100.00	30	-8	-8	130,00	30	-3	-8	100

Donde

Indicación de la balanza e.m.p. Error máximo permitido

11 | Carga incrementada E | Error encontrado

Ed : Error en cero Ec : Error corregido

LECTURA CORREGIDA E INCERTIDUMBRE DE LA BALANZA Corregida = R + 5.40 x 10 -5 x R

Lectura Corregida Incertiturnore Expandida -2 x \(\squad 4.32 x 10 \rightarrow kg^2 + 2.46 x 10 \rightarrow x R^2

Lectura, cualquier indicación obtenida después de la calibración (kg)

Con fines de identificación de la calibración se corocó una efiqueta autoadhesiva con el número de certificado. La indecación de la ballanza fue de 100,00 kg para una carga de valor nominal 100 kg.

INCERTIDUMBRE

La moentidiumore expandida que resulta de multiplicar la incertidiumbre tipica combinada por el factor de cobertura k-2 que, para una distribución normal, corresponde a una probablidad de cobertura de aproximadamiente el 95%.

FIN DEL DOCUMENTO

PGC-16-r09/Dictembre 2019/Rev.05

Pagina 3 de 3

 Ir sundesa de emissió 117 San Manual Comme

Collection Park Continuous entros informes Dies Lantius, onche Asswirest, sotund numpe