UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA CIVIL

VARIACIÓN DEL MÓDULO DE FINURA DEL AGREGADO FINO DE 3.0 A 3.6 EN CONCRETOS DE MEDIANA A BAJA RESISTENCIA

TESIS

Para optar el Titulo Profesional de:

INGENIERO CIVIL

BURGOS PAURO EDWIN GALVAN

Lima- Perú

2012 | 2013 | 2014 | 2014 | 2015 | 20

Digitalizado por:

Consorcio Digital del Conocimiento MebLatam, Hemisferio y Dalse

DEDICATORIA

Ante todo dedico esta tesis a Dios mi maestro, guía y amigo; a mis ángeles que todo el tiempo están a mi lado protegiéndome y guiándome por la vida.

A mi padre Santos Burgos Rojas y a mi madre Julia Inés Pauro de Burgos y a toda mi familia por estar presente en cada momento de mi vida con sus consejos y enseñanzas.

A mi asesor el Ing. Carlos Barzola Gastelú, un profundo agradecimiento por confiar en mí para la realización de la tesis y dedicar parte de su tiempo para ser una mejor persona.

A mis amigos de la UNI, Gustavo Jeremías Rique Pérez, Fidel Castro, Miguel Vargas y todos los que estuvieron ahí para la realización de esta tesis.

INDICE

	Pág.
RESUMEN	05
LISTA DE CUADROS	06
LISTA DE GRAFICOS	08
LISTA DE FOTOS	09
INTRODUCCION	10
CAPITULO 1: CARACTERISTICAS DE LOS MATERIALES	
1.1 Introducción	13
1.2 Cemento Portland tipo I (sol)	13
1.2.1 Cemento Portland	13
1.2.2 Componentes Principales	13
1.2.3 Componentes Secundarios	15
1.2.4 Principales Propiedades Físicas del Cemento Portland tipo I "sol"	15
1.2.5 Principales Propiedades Químicas del Cemento Portland tipo I "sol"	16
1.3 Agregados	17
1.3.1 Definición	17
1.3.2 Agregado fino	17
1.3.2.1 Definición	17
1.3.2.2 Propiedades Físicas del Agregado Fino	17
1.3.2.3 Resumen de las Propiedades Físicas del Agregado Fino	23
1.3.3 Agregado grueso	24
1.3.3.1 Definición	24
1.3.3.2 Propiedades Físicas del Agregado Grueso	24

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERÍA CIVIL	INDIC
1.3.3.3 Resumen de las Propiedades Físicas del Agregado Grueso	29
1.4 Agua	30
1.4.1 Introducción	30
1.4.2 Agua de mezcla	30
1.4.3 Agua de curado	3′
CAPITULO 2: AGREGADO GLOBAL	
2.1 Generalidades	34
2.2 Determinación del máximo peso unitario compactado del	
agregado global	34
2.3 Determinación de la granulometría del agregado global	35
2.4 Contenido de humedad del agregado global	36
2.5 Concreto con agregado global	37
CAPITULO 3: MODULO DE FINURA	
3.1 Generalidades	39
3.2 Módulo de finura de agregados combinados	39
3.3 Limites del módulo de finura	40
3.4 Valores de módulo de finura globales obtenidos en laboratorio	41
CAPITULO 4: DISEÑO DE MEZCLAS	
4.1 Introducción	43
4.2 Métodos de diseño	44
4.3 Criterios básicos para el diseño	44
4.4 Procedimiento de diseño	45
4.5 Diseños de mezclas de prueba	48
4.6 Propiedades de los materiales	48

UNIVERSIDA	AD NACIONAL	DE INGENIERIA
FACULTAD	DE INGENIER	ÍA CIVIL

4.7 Diseño para determinar la cantidad de agua	49
4.8 Resultado de las mezclas de pruebas finales	58
4.9 Determinación de agua de diseño para A/P=50/50; a/c=0.60,0.65,0.70	60
4.10 Diseño de las mezclas de finales	61
CAPITULO 5: PROPIEDADES DEL CONCRETO FRESCO	
5.1 Introducción	65
5.2 Ensayo de consistencia	66
5.2.1 Medida de la consistencia	66
5.3 Ensayo del Peso unitario	67
5.3.1 Densidad	67
5.3.2 Peso Unitario	67
5.3.3 Importancia del peso unitario	67
5.4 Ensayo de fluidez	68
5.5 Ensayo de Exudación	68
5.6 Ensayo del Tiempo de fraguado	68
CAPITULO 6: PROPIEDADES DEL CONCRETO ENDURECIDO	
6.1 Introducción	71
6.2 Ensayo de Resistencia a la compresión	72
6.3 Ensayo de Resistencia a la tracción por compresión diametral	72
6.4 Ensayo del Módulo elástico estático	73
CAPITULO 7: ANALISIS DE LOS RESULTADOS	
7.1 Generalidades	75
7.2 Cuadros de resultados del concreto en estado fresco y endurecido	75
7.3 Análisis de ensayos del concreto en estado fresco	108

TAGETAD DE INGENIENA ONE	INDICE.
7.4 Análisis de ensayos del concreto en estado endurecido	113
CAPITULO 8: ANALISIS DE COSTOS	
8.1 Generalidades	119
8.2 Análisis de costos	119
CONCLUSIONES	121
RECOMENDACIONES	123
BIBLIOGRAFIA	124
ANEXOS	125
Anexo A	126
Anexo B	140
Anexo C	156
Anexo D	163
Anexo E	178
Anexo F	209
Panel Fotográfico	216

RESUMEN

La finalidad de la presente tesis "Variación del Módulo de Finura del Agregado Fino de 3.0 a 3.6 en Concretos de Mediana a Baja Resistencia" es investigar para que módulo de finura del agregado fino se da la máxima resistencia del concreto.

En esta investigación se trabajo con tres módulos de finura para el agregado fino los cuales son: 3.0, 3.4, 3.6 obtenidos en laboratorio y el módulo de finura del agregado grueso manteniéndose constante fue de 7,42. Se diseñaron muestras de concreto para las relaciones agua /cemento de 0.60, 0.65, 0.70

En tal sentido dedicaremos un estudio prioritario, de la variación que experimenta la resistencia del concreto, en el tema de tesis propuesto; para el desarrollo de la presente investigación se utilizó cemento Portland tipo I "Sol" y agregados provenientes de las canteras de "Trapiche" para el agregado fino y "La gloria" para el agregado grueso.

Se determinaron las propiedades físicas de los agregados y los ensayos del concreto en estado fresco y endurecido en el Laboratorio de Ensayo de Materiales "L.E.M.- U.N.I."

Según los resultados obtenidos en la presente tesis al incrementar el módulo de finura del agregado fino de 3.00 a 3.60 hay una disminución de la resistencia del concreto. Concluida la investigación se ha obtenido como resultado que para el módulo de finura 3.00 del agregado fino se da la máxima resistencia del concreto.

LISTA DE CUADROS	Pág.
Cuadro 1.0 - Porcentaje de variación de óxidos componentes del cemento	14
Cuadro 1.1- Compuestos principales del cemento portland tipo I	14
Cuadro 1.2 –Resumen de las propiedades físicas del agregado fino	23
Cuadro 1.3– Resumen de las propiedades físicas del agregado grueso	29
Cuadro 1.4-Límites permisibles para el agua de mezcla de concreto	31
Cuadro 2.1– Proporciones para la combinación de agregados	35
Cuadro 2.2 – Huso DIN 1045 –agregado global	36
Cuadro 4.1.0 – Requerimientos aprox. de agua y contenido de aire	45
Cuadro 4.1.1 – Contenido de aire atrapado por m3 de concreto	46
Cuadro 4.1.2 – Propiedades de los materiales empleados para diseño	48
Cuadro 4.1.3 – Mezcla de Prueba de concreto A/P=48/52	52
Cuadro 4.1.4 – Mezcla de Prueba de concreto A/P=50/50	54
Cuadro 4.1.5 – Mezcla de Prueba de concreto A/P=52/48	56
Cuadro 4.1.6 – Resultados de las Mezclas de Prueba Finales	58
Cuadro 4.1.7 – Agua requerida	59
Cuadro 4.1.8 – Resistencia a la compresión a los 7 días	59
Cuadro 4.2.1 – Cuadro resumen para determinar el agua requerida	60
Cuadro 4.2.2 - Cuadro diseño de Mezclas finales A/P=50/50, MFA1=3.00	61
Cuadro 4.2.3 - Cuadro diseño de Mezclas finales A/P=50/50, MFA1=3.40	62
Cuadro 4.2.4 – Cuadro diseño de Mezclas finales A/P=50/50, MFA1=3.60	63
Cuadro 7.1 – Cuadro resumen Ensayos de concreto fresco	76
Cuadro 7.2 - Cuadro resumen Ensayos de concreto endurecido	77
Cuadro 7.3 – Cuadro resumen Ensayos de resistencia a la compresión	78

Cuadro	7.4 – Cuadro comparativo Ensayo de consistencia	80
Cuadro	7.5 – Cuadro comparativo Ensayo de fluidez	81
Cuadro	7.6– Cuadro comparativo Ensayo de exudación	82
Cuadro	7.7 – Cuadro comparativo Ensayo de peso unitario	83
Cuadro	7.8- Cuadro comparativo Ensayo de tiempo de fraguado	84
Cuadro	7.9– Cuadro comparativo Ensayo de resistencia a la compresión	93
Cuadro	7.10 Cuadro comparativo Ensayo de resistencia a la tracción por	
	compresión diametral	94
Cuadro	7.11– Cuadro comparativo Ensayo de modulo elástico estático	95
Cuadro	7.12– Cuadro comparativo Ensayo de resistencia a la tracción por	
	compresión diametral teórico y experimental	96
Cuadro	7.13 Cuadro comparativo Ensayo de modulo elástico estático	
	teórico y experimental	97
Cuadro	8.1– Costo de concreto por metro cubico	119

LISTA DE GRAFICOS

	Pág.
Grafico 4.1.1 Determinación del agua de diseño A/P=48/52,	
M.F.A2=3.40, a/c=0.60	53
Grafico 4.1.2 Determinación del agua de diseño A/P=50/50	
M.F.A2=3.40, a/c=0.60	55
Grafico 4.1.3 Determinación del agua de diseño A/P=52/48	
M.F.A2=3.40, a/c=0.60	57
Grafico 4.1.4 Ensayo de resistencia a la compresión a los 7 días	59
Grafico 7.1 Asentamiento vs. Relación a/c	86
Grafico 7.2 Índice de fluidez vs. Relación a/c	87
Grafico 7.3 Exudación vs. Relación a/c	88
Grafico 7.4 Peso Unitario vs. Relación a/c	89
Grafico 7.5 Tiempo de Fraguado Inicial vs. Relación a/c	90
Grafico 7.6 Tiempo de Fraguado Final vs. Relación a/c	91
Grafico 7.7 Ensayo de resistencia a la compresión edad=7 días	99
Grafico 7.8 Ensayo de resistencia a la compresión edad=14 días	100
Grafico 7.9 Ensayo de resistencia a la compresión edad=28 días	101
Grafico 7.10 Ensayo de resistencia a la tracción por compresión	
diametral edad=28dias	102
Grafico 7.11 Ensayo de modulo elástico estático	103
Grafico 7.12 Comparación de tracción por compresión diametral	
teórico y laboratorio (%Error vs. M.F)	104
Grafico 7.13 Comparación de tracción por compresión diametral	
Teórico y laboratorio (%Error vs. Relación a/c)	105
Grafico 7.14 Comparación de modulo elástico estático	
teórico y laboratorio (%Error vs. M.F)	106
Grafico 7.15 Comparación de modulo elástico estático	
teórico y laboratorio (%Error vs. Relación a/c)	107

LISTA DE FOTOGRAFIAS

		Pág.
Foto	1 Almacenamiento de los agregados, exteriores L.E.M.	217
Foto	2 Instalaciones del laboratorio L.E.M.	217
Foto	3 Ensayo de consistencia	218
Foto	4 Ensayo de consistencia medida del slump	218
Foto	5 Ensayo de tiempo de fraguado primera etapa	219
Foto	6 Ensayo de tiempo de fraguado segunda etapa	219
Foto	7 Equipo utilizado para realizar la compresión en probetas	220
Foto	8 Partes del equipo para el ensayo de modulo elástico estático	220
Foto	9 Equipo para el ensayo de modulo elástico estático	221
Foto	10 Probeta con equipo para el ensayo de modulo elástico estático	221
Foto	11 - Ensayo de módulo de elástico estático	222

INTRODUCCION

En nuestro país debido al desarrollo que se viene presentando hay nuevas construcciones tanto en edificaciones y obras civiles de diferente tipo con el propósito de crecer como país y brindar una mejor calidad de vida a los ciudadanos este crecimiento en la construcción permite generar una evolución en diferentes aéreas y la ingeniería civil no es una excepción, en el campo de la tecnología del concreto hay nuevas soluciones que brinden mayor calidad en el concreto muy utilizado en las obras y bajando los costos de producción.

Actualmente con un mejor entendimiento practico y con la necesidad de mejorar la eficiencia de la mezcla que se refleje en la economía, ha motivado a plantear la, esta investigación, en la que fijando constante un módulo de finura del agregado grueso y variando el módulo de finura del agregado fino podamos determinar las variaciones físicas y mecánicas del concreto fresco y endurecido, de esta manera contribuir en la metodología del diseño teórico practico en la elaboración del concreto.

La presente tesis desarrolla el tema de "Variación del módulo de finura del agregado fino de 3.0 a 3.6 en concretos de mediana a baja resistencia" y consta de 8 capítulos, los cuales son los siguientes:

En el primer capítulo se presentan las características de los materiales empleados tales como: cemento portland tipo I "Sol", agregados tanto fino como grueso y el agua utilizada para la mezcla del concreto.

En el segundo capítulo se refiere al agregado global donde se obtienen las proporciones para la combinación de los agregados.

En el tercer capítulo se refiere al módulo de finura de los agregados combinados y de las diferentes muestras de agregado fino utilizados para la elaboración de los diferentes diseños.

En el cuarto capítulo se detalla el procedimiento del diseño de mezclas del concreto, este capítulo se determina las proporciones finales de los componentes de la mezcla (cemento, agua, arena, piedra y aire atrapado), empleando el método del agregado global.

En el quinto capítulo se describe los ensayos del concreto en estado fresco como son: consistencia, peso unitario, fluidez, exudación y tiempo de fraguado.

En el sexto capítulo se describe los ensayos del concreto en estado endurecido tales como; resistencia a la compresión, resistencia a la tracción por compresión diametral y modulo elástico estático.

En el séptimo capítulo se muestra todos los resultados obtenidos en la investigación, para lo cual presentamos cuadros y gráficos, para su correspondiente análisis de los resultados.

En el octavo capítulo se presenta el análisis de costos, de cada diseño de concreto.

Luego de presentar los capítulos continuamos con las conclusiones y recomendaciones obtenidas luego del análisis de cada uno de los resultados de los ensayos realizados para cada diseño de concreto.

Finalmente se presentan la bibliografía y los anexos A, B, C, D y F que contiene los cuadros y gráficos, donde se encuentran en forma detallada el cálculo para la obtención de los resultados de cada uno de los ensayos realizados; para la culminación del presente trabajo se muestra el panel fotográfico.

CAPITULO 1:

CARACTERISTICAS DE LOS MATERIALES

CAPITULO 1

CARACTERISTICAS DE LOS MATERIALES

1.1 INTRODUCCION:

Para la elaboración del concreto, que es un material hibrido compuesto por otros materiales (cemento, arena, piedra, agua, aditivos) los cuales influyen en mayor o menor medida la característica de los componentes, que adecuadamente proporcionados aportan una o varias propiedades individuales para constituir un material que manifiesta un comportamiento particular y original. En el presente capítulo se describe, determina y evalúa las principales características de cada uno de los materiales que intervienen en la preparación de mezclas de concreto, lo cual nos permite conseguir un producto final óptimo.

1.2 CEMENTO PORTLAND TIPO I (SOL) (NTP 334.009)

1.2.1 CEMENTO PORTLAND:

Es el producto obtenido por la pulverización del clinker con la adición eventual del sulfato de calcio. Excepcionalmente se admite adiciones, las cuales no deben exceder del 1% de los otros materiales.

El cemento portland normal se clasifica en cinco diferentes tipos, de acuerdo a las proporciones relativas de los cuatro compuestos principales y que responden a diferentes requerimientos constructivos.

1.2.2 COMPONENTES PRINCIPALES:

En la mayoría de los cementos del tipo I esta compuesto por los siguientes óxidos y tienen que estar relacionados entre si en proporciones definidas con antelación, dependiendo de estas proporciones los diferentes clinker de cemento.

A continuación en el cuadro Nº1.0 se muestra los óxidos componentes del cemento y su variación en porcentaje:

ÓXIDOS COMPONENTES DEL CEMENTO Y SU VARIACIÓN EN PORCENTAJE CUADRO №1.0

OXIDO	SIMBOLO	VARIACION (%)
Cal	CaO	60 - 66
Sílice	SiO₂	19 - 25
Alumina	Al₂O₃	3 - 8
Hierro	Fe₂O	1 - 5
Magnesio	MgO	0.5
Trióxido de Azufre	SO₃	1 - 3

En la práctica se considera que los cementos Portland están formados por 4 componentes mineralógicos principales en el clinker.

COMPUESTOS PRINCIPALES DEL CEMENTO PORTLAND TIPO I CUADRO Nº1.1

COMPUESTOS PRINCIPALES	FORMULA	ABREV	%
Silicato Tricalcico	3CaO.SiO₂	C₃S	40 - 65
Silicato Dicalcico	2CaO.SiO₂	C₂S	10 - 30
Aluminato Tricalcico	3CaO.Al₂O₃	C₃A	7 - 15
Aluminato-Ferrito Tetracalcico	4CaO.Al ₂ O ₃ .Fe ₂ O ₃	C₄AF	4 - 5

Los silicatos, C_3S y C_2S , del cuadro N°1.1 son los componentes más importantes y los causantes de la resistencia de la pasta hidratada de cemento. El componente C_3S (alita), define la resistencia inicial en la primera semana y tiene mucha importancia en el calor de hidratación; el componente C_2S (belita), define la resistencia a largo plazo y tiene incidencia menor en el calor de hidratación.

La presencia de C₃A en el cemento no es deseable, ya que contribuye poco o nada a la resistencia del mismo, excepto en las primeras etapas; es responsable de la resistencia del cemento a los sulfatos ya que al reaccionar con estos produce sulfoaluminatos con propiedades expansivas, por lo que hay que limitar su contenido.

1.2.3 COMPONENTES SECUNDARIOS:

Los cuatro compuestos principales del clinker suponen del 90% al 95% del total. El porcentaje restante corresponde a los llamados compuestos secundarios, los cuales pueden agruparse en:

Oxido de cal libre

Oxido de magnesia

Óxidos de sodio y potasio

Cantidades pequeñas de otros óxidos.

1.2.4 PRINCIPALES PROPIEDADES FISICAS DEL CEMENTO PORTLAND TIPO I "SOL"

Ensayos Físicos

Finura Malla 100 0.04%

Malla 200 4.14%

Malla 325 6.44%

Superficie Especifica Blaine 3477 cm2/gr

Contenido de Aire 9.99%

Autoclave 0.18%

Peso Específico 3.11 gr/cm3

Fraguado TFI = 1h 49 min.

TFF = 3h 29 min.

Resistencia a la compresión 3 días 254 Kg/cm2

7 días 301 Kg/cm2

28 días 357 Kg/cm2

Calor de hidratación 7 días 70.0 cal/gr

28 días 84.4 cal/gr

1.2.5 PRINCIPALES PROPIEDADES QUIMICAS DEL CEMENTO PORTITANDO TIPO I "SOL"

Del análisis químico se determina el porcentaje de cada uno de los componentes.

Componente	<u>%</u>
Si O ₂	19.79
Al ₂ O ₃	6.15
Fe₂ O₃	2.82
Ca O	53.20
Mg O	3.16
S O₃	2.58
K₂ O	0.96
Ma₂ O	0.28
PI	0.80
TOTAL	89.74
Ca O Libre (cal libre)	0.52 - 0.76
Alcalis (Na₂O)	0.91
Insolubles	0.62

1.3 AGREGADOS

1.3.1 DEFINICION:

Se definen los agregados como los elementos inertes del concreto que son aglomerados por la pasta de cemento para formar la estructura resistente. La denominación de inertes es relativa por que si bien no intervienen directamente en las reacciones químicas entre el cemento y el agua, para producir el aglomerante o pasta de cemento, sus características afectan notablemente el producto resultante, siendo en algunos casos tan importantes como el cemento para el logro de ciertas propiedades particulares de resistencia, conductibilidad, durabilidad, etc.

Están constituidos usualmente por partículas minerales de arenisca, granito, basalto, cuarzo o combinaciones de ellos, y sus características físicas y químicas tienen influencia prácticamente en todas las propiedades del concreto.

1.3.2 AGREGADO FINO:

1.3.2.1 DEFINICION:

Es el agregado proveniente de la desintegración natural y/o artificial de rocas, que pasa como mínimo el 95% por el tamiz N° 3/8" (9.51mm) y queda retenido en el tamiz N° 200 (0.074 mm) que cumple con los límites establecidos en la Norma NTP 400.037

1.3.2.2 PROPIEDADES FISICAS DEL AGREGADO FINO:

ANALISIS GRANULOMETRICO:

Normas

NTP 400.012

ASTM C - 136

Definición:

Se llama también análisis mecánico y consiste en la determinación de la distribución por tamaño de las partículas de los agregados.

De la granulometría se obtiene el modulo de finura y la superficie especifica, así como se verifica si el agregado cumple con las especificaciones técnicas del proyecto.

La granulometría influye en la trabajabilidad y economía del concreto ya que si el agregado tiene una gradación discontinua consumirá mayor pasta de cemento. En lo posible se debe trabajar con agregados de gradación uniforme o continua.

Determinación de la granulometría del agregado fino

A fin de obtener una granulometría representativa del agregado se realizó el siguiente procedimiento.

Procedimiento.

- a) Se selecciona el material por cuarteo.
- b) Se tomo seis muestras cada una de 500 gr., cada muestra es tamizada en la maquina de zarandeo que tiene la serie de tamices (Nº 4,
- 8, 16, 30, 50, 100 y fondo) colocados de mayor a menor abertura .Se zarandea el material por el lapso de 2 minutos.
- c) Luego se saca cada tamiz y se pesa el material retenido en cada malla. La diferencia entre la suma de pesos retenidos y el peso inicial de la muestra no debe ser mayor del 1%, caso contrario se repetirá el ensayo.
- Se realizaron seis ensayos de granulometría.

MODULO DE FINURA:

Normas NTP 400.012

ASTM C-136

Definición:

Es un índice de finura del agregado; es una constante adimensional que nos representa el tamaño promedio ponderado del agregado.

Determinación del Módulo de Finura del Agregado Fino:

Se determina en base al análisis granulométrico del agregado fino. Su valor se obtiene mediante la suma de porcentajes acumulados de los agregados retenidos en los tamices estándar dividiendo por 100 tal como se indica:

 $N^{\circ}4 + N^{\circ}8 + N^{\circ}16 + N^{\circ}30 + N^{\circ}50 + N^{\circ}100$

MF (Agregado Fino) =

100

CAPITULO 1: Características de los Materiales

Los resultados del módulo de finura se muestran en el cuadro Nº : 1.3.7–A del Anexo A.

La curva representativa del agregado fino se presenta en grafico Nº 1.3.0 -A del Anexo A.

Modulo de Finura = 3.42

SUPERFICIE ESPECÍFICA:

Normas

NTP 400.012

ASTM C-136

Definición:

Se define como la suma de áreas superficiales de las partículas del agregado por unidad de peso, se expresa en cm2/gr.

Determinación de la Superficie Específica del Agregado Fino:

Para su determinación se deben de tener en cuenta dos suposiciones:

- 1. Que todas las partículas son esféricas.
- 2. El tamaño medio de las partículas que pasan un tamiz y quedan retenidas en otro. Es igual al promedio de las dos aberturas.

La superficie específica se determina, en base al análisis granulométrico y es el resultado de la suma de porcentajes retenidos en los tamices estándar, divididos entre los diámetros promedio de cada uno.

Los resultados obtenidos se muestran en el cuadro Nº 1.3.2-A del Anexo A

Superficie Especifica = 43.03 cm²/gr

PESO ESPECÍFICO:

Normas

NTP 400.022

ASTM C - 128

Definición:

El peso específico viene dado por la relación del peso seco de las partículas del agregado, al peso de un volumen igual de agua, se expresa en (gr/cm3).

El peso específico de los agregados es expresado también como densidad, según el Sistema Internacional de Unidades (SIU).

Es un buen indicador de calidad de los agregados y se usa como medida de control y diseño en las mezclas de concreto.

Se realizaron tres ensayos, de los cuales se obtiene el promedio. Los resultados se muestran en el cuadro Nº 1.3.1-A del Anexo A.

Peso especifico = 2.52 gr/cc

PORCENTAJE DE ABSORCION:

ASTM C - 128

Normas NTP 400.022

•

Definición:

El porcentaje de absorción de un agregado es la cantidad de agua que tienen los poros libres (abiertos) de los agregados y esto se obtiene saturando el material.

La absorción total ocurre cuando el agregado alcanza el estado de saturado superficialmente seco.

Procedimiento:

- a) Se toma una muestra de 500 gr de material en estado s.s.s. (Ps.s.s.)
- b) Se resta Ps.s.s. menos Peso Seco (Ps), esta diferencia se divide entre Ps y el resultado se multiplica por 100.

Su determinación se realizó siguiendo la norma NTP mencionada.

Se realizó tres ensayos de porcentaje de absorción, tomando el promedio, los resultados se muestran en el cuadro Nº1.3.1-A del Anexo A.

Porcentaje de Absorción = 1.00%

PESO UNITARIO SUELTO Y COMPACTADO:

Normas

NTP 400.017

ASTM C-29

Definición:

El peso unitario esta determinado por la relación de peso por unidad de volumen; esta relación se expresa en Kg/m³.

El peso unitario varía por características tales como; forma y tamaño, absorción y contenido de humedad, granulometría del agregado; así como también de factores externos como el grado de compactación y el tamaño máximo.

Se distinguen dos tipos de peso unitario:

- Peso Unitario Suelto (P.U.S.)
- Peso Unitario Compactado (P.U.C.)

Se realizó tres ensayos para cada tipo de peso unitario tomando el promedio en ambos casos, los resultados se muestran en los cuadros Nº1.3.3-A y 1.3.4-A del Anexo A.

P.U.S. = 1546.43 Kg/m³

P.U.C. = 1760.38 Kg/m³

CONTENIDO DE HUMEDAD:

Normas

NTP 339.185

ASTM C - 566

Definición:

El contenido de humedad viene dado por la cantidad de agua que posee el agregado en estado natural, se expresa en porcentaje (%).

El contenido de humedad es de importancia por cuanto influye en la relación a/c en el diseño de mezclas y esta a su vez determina la trabajabilidad y compactación de la mezcla.

Determinación del Contenido de Humedad del Agregado Fino.

El contenido de humedad se determina mediante el siguiente procedimiento.

CAPITULO 1: Características de los Materiales

Procedimiento:

a) Se pesan 500 gr de material en estado natural; luego se lleva al

horno por un lapso de 24 horas para obtener el peso seco constante.

b) La diferencia de pesos de la muestra en estado natural y secada el

horno, dividido entre el peso seco y este resultado multiplicado por ciento

(100), nos da el contenido de humedad del agregado fino.

Se realizó tres ensayos de contenido de humedad tomándose el promedio,

los resultados se muestran en el cuadro Nº1.3.5-A del Anexo A.

Contenido de Humedad = 0.77%

CANTIDAD QUE PASA LA MALLA Nº 200:

Normas

NTP 400.018

ASTM C - 117

Definición:

Consiste en determinar la cantidad de materiales finos que se pueden

presentar en el agregado, en forma de revestimiento superficial o en forma

de partículas sueltas.

El material muy fino, constituido por arcilla y limo, se presenta recubriendo

el agregado grueso, o mezclando con la arena. En el primer caso, afecta la

adherencia del agregado y la pasta, en el segundo, incrementa los

requerimientos de agua de mezcla.

Se realizó tres ensayos de cantidad de material que pasa la malla Nº200

tomándose el promedio, los resultados se muestran en el cuadro №1.3.6-A

del Anexo A.

Material que pasa la malla nº 200 = 4.70 %

1.3.2.3 RESUMEN DE LAS PROPIEDADES FISICAS DEL AGREGADO FINO UTILIZADO:

CUADRO Nº 1.2

Tipo de agregado:

Agregado Fino

Procedencia del agregado:

Cantera "Trapiche"

MUESTRA "A"

PROPIEDADES FISICAS	AGREGADO FINO	UNIDAD
Peso Unitario Suelto (P.U.S.)	1546.43	kg/m³
Peso Unitario Compactado (P.U.C.)	1760.38	kg/m ³
Peso Específico de Masa	2.52	gr/cm ³
Peso Específico de Masa (S.S.S.)	2.54	gr/cm ³
Peso Específico Aparente	2.58	gr/cm ³
Absorción	1.00	%
Modulo de Finura	3.42	
Contenido de Humedad	0.77	%
Material que pasa la malla N° 200	4.70%	%
Superficie Específica	43.03	cm²/gr
Tamaño Máximo	-	Pulg.
Tamaño Nominal Máximo	-	Pulg.

FUENTE: ELABORACION PROPIA

1.3.3 AGREGADO GRUESO:

1.3.3.1 DEFINICION:

Se define como agregado grueso el material retenido como mínimo el 95% en el tamiz Nº 4 (4.75 mm), que proviene de la desintegración natural o mecánica de las rocas; y cumple con lo establecido en la Norma 400.037.

1.3.3.2 PROPIEDADES FISICAS DEL AGREGADO GRUESO

ANALISIS GRANULOMETRICO:

Normas

NTP 400.012

ASTM C - 136

Definición:

El mismo concepto que el agregado fino, con el empleo de tamices estándar correspondientes.

Determinación de la granulometría del agregado grueso.

El mismo criterio del agregado fino.

Procedimiento.

El mismo procedimiento del agregado fino, variando el peso de las muestras a ensayar (en este caso 8000 gr) y la serie de tamices 1 ½, 1, ¾", 1/2", 3/8", ¼" y Fondo), el proceso de zarandeo es de 3 minutos continuando con el mismo proceso empleado para el agregado fino.

MODULO DE FINURA:

Normas

NTP 400.012

ASTM C - 136

Definición:

El mismo concepto del agregado fino.

Determinación y procedimiento:

Empleando el mismo criterio y procedimiento del agregado fino, pero considerando los tamices y la expresión.

Los resultados del módulo de finura se muestran en el cuadro Nº 1.3.13--- P del Anexo A.

La curva representativa del agregado grueso se presenta en grafico Nº 1.3.1-P del Anexo A.

Modulo de Finura = 7.42

SUPERFICIE ESPECIFICA:

Normas

NTP 400.012

ASTM C - 136

Definición:

El mismo concepto del agregado fino.

Determinación y Procedimiento:

Se sigue el mismo criterio del agregado fino; considerando los tamices estándar para el agregado grueso.

Los resultados obtenidos se muestran en el cuadro Nº 1.3.9-P del Anexo A

Superficie Especifica = 1.31 cm²/gr

PESO ESPECIFICO:

Normas

NTP 400.021

ASTM C -127

Definición:

El peso especifico esta dado por la relación del peso de las partículas del agregado grueso, al peso de un volumen igual de agua.

El peso especifico es un indicador de calidad, cuando se tiene valores altos estamos frente a materiales de buena calidad; pero cuando el valor es bajo nos indica que los agregados son absorbentes y de mal comportamiento, ameritando realizar pruebas adicionales a fin de determinar el uso de dichos materiales.

Determinación del Peso Específico del Agregado Grueso

El peso específico del agregado grueso se determina siguiendo el procedimiento que se indica:

Procedimiento.

- a) Selección de la muestra por método de cuarteo
- b) Para determinar el peso especifico del agregado grueso se tiene dos métodos:
- Método de la balanza hidrostática.
- Método practico del desplazamiento de volumen.

Para la presente investigación se realiza mediante el método práctico.

- c) Del material seleccionado, se toma 5 kg. El mismo que previamente ha sido zarandeado por la malla Nº 4, al fin de eliminar el polvo e impurezas de las partículas.
 - Luego se sumerge la muestra en agua en un depósito apropiado durante 24 horas para que se sature.
- d) Después de saturado el material, se elimina el agua y la muestra se coloca sobre una franela; para que el material llegue al estado saturado superficialmente seco (s.s.s.)
 - Se pesa 1 Kg de material en estado s.s.s. y se introduce en una probeta graduada que contiene 500 ml. De agua y 1 litro de capacidad.
- e) Entonces se obtiene un volumen desplazado por la muestra (v.s.s.s.)

$$Vsss = Vf - 500$$

: Vf= volumen final.

f) Luego el material de 1 Kg es llevado al horno; por 24 horas para obtener el peso seco de la muestra.

Finalmente

 Se realizaron tres ensayos, de los cuales se obtiene el promedio. Los resultados se muestran en el cuadro Nº 1.3.8-P del Anexo A.

Peso especifico = 2.79 gr/cc

PORCENTAJE DE ABSORCION:

Normas

NTP 400.021

ASTM C - 127

Definición:

El mismo concepto del agregado fino.

Determinación del porcentaje de Absorción del Agregado Grueso Se sigue el mismo criterio del agregado fino.

Procedimiento.

Se emplea el mismo procedimiento del agregado fino.

- Su determinación de acuerdo a la norma ASTM C 127
- Se realizó tres ensayos de porcentaje de absorción, tomando el promedio, los resultados se muestran en el cuadro Nº1.3.8-P del Anexo A.

Porcentaje de Absorción = 0.68 %

PESO UNITARIO SUELTO Y COMPACTADO:

Normas

NTP 400.017

ASTM C - 29

Definición:

Es el mismo concepto que del agregado fino.

 Se distinguen dos tipos de peso unitario P.U.S. y P.U.C. del agregado grueso. Su determinación se realiza siguiendo el procedimiento análogo para el agregado fino, con la única diferencia que se emplea un balde de volumen = ½ pie 3.

Se realizó tres ensayos para cada tipo de peso unitario tomando el promedio en ambos casos, los resultados se muestran en los cuadros Nº1.3.10-P y 1.3.11-P del Anexo A.

P.U.S. = 1461.31 Kg/m³

P.U.C. = 1610.34 Kg/m³

CONTENIDO DE HUMEDAD:

Normas NTP 339.185

ASTM C - 566

Definición:

El mismo concepto del agregado fino.

Determinación del Contenido de Humedad del Agregado Grueso.

Lo mismo que en el agregado fino.

Procedimiento.

El mismo procedimiento del agregado fino.

 Se realizó tres ensayos de contenido de humedad tomándose el promedio, los resultados se muestran en el cuadro Nº1.3.5-P del Anexo A.

Contenido de Humedad = 0.36%

TAMAÑO MAXIMO NOMINAL Y EFECTIVO DEL AGREGADO:

Norma

NTP 400.027

ASTM C-33

Definición:

Es el que corresponde al menor tamiz de la serie utilizada que produce el primer retenido. Se determina del análisis granulométrico.

T.N.M.= 1"

TAMAÑO MAXIMO DEL AGREGADO GRUESO:

Norma

NTP 400.037

ASTM C-33

Definición:

El mayor tamaño de partículas de agregado grueso, presentes en cantidad suficiente para afectar las propiedades físicas del concreto es el que corresponde al menor tamiz por el que pasa toda la muestra del agregado grueso, su determinación es a partir del análisis granulométrico.

T.M.= 1"

1.3.3.3 RESUMEN DE LAS PROPIEDADES FISICAS DEL AGREGADO GRUESO:

CUADRO Nº 1.3

Tipo de agregado:

Agregado Grueso

Procedencia del agregado:

Cantera "La gloria"

MUESTRA "P"

PROPIEDADES FISICAS	AGREGADO GRUESO	UNIDAD
Peso Unitario Suelto (P.U.S.)	1461.31	kg/m³
Peso Unitario Compactado (P.U.C.)	1610.34	kg/m ³
Peso Específico de Masa	2.79	gr/cm ³
Peso Específico de Masa (S.S.S.)	2.81	gr/cm ³
Peso Específico Aparente	2.84	gr/cm ³
Absorción	0.68	%
Modulo de Finura	7.42	
Contenido de Humedad	0.36	%
Material que pasa la malla N° 200	-	%
Superficie Específica	1.31	cm ² /gr
Tamaño Máximo	1"	Pulg.
Tamaño Nominal Máximo	1"	Pulg.

FUENTE: ELABORACION PROPIA

1.4 AGUA EN EL CONCRETO

1.4.1 INTRODUCCION

El agua es el elemento indispensable para la hidratación del cemento y el desarrollo de sus propiedades, por lo tanto este componente debe cumplir ciertos requisitos para llevar a cabo su función en la combinación química, sin ocasionar problemas colaterales si tiene ciertas sustancias que pueden dañar al concreto; también el agua es usada para el curado del concreto lo cual debe cumplir algunas condiciones para poderse emplear en esta ultima etapa de hidratación del concreto.

1.4.2 EL AGUA DE MEZCLA

El agua a emplearse en la preparación del concreto, deberá ser limpia y estará libre de cantidades perjudiciales de aceites, ácidos, álcalis, sales, material orgánico y otras sustancias que pueden ser nocivas al concreto o al acero.

Una regla empírica que sirve para estimar si determinada agua sirve para emplearse en la producción de concreto, consiste en establecer su habilidad para el consumo humano.

El agua de mezcla tiene tres funciones principales:

- 1. Reaccionar con el cemento para hidratarlo
- 2. Actuar como lubricante para contribuir a la trabajabilidad del conjunto
- 3. Procurar la estructura de vacios necesaria en la pasta para que los productos de hidratación tengan espacio para desarrollarse.

El agua de mezclado (agua total) siempre es mayor que la requerida para la hidratación del cemento, esto es por razones de trabajabilidad de la mezcla. Normalmente el 28% en peso del mismo. Como consecuencia de lo antes expuesto se tiene: las mezclas con alta relación agua-cemento, contienen mas agua sin hidratar (agua libre) que aquellos que tienen baja relación agua-cemento. Esto también influye en la porosidad ya que el agua libre ocupa espacios que luego se transforman en poros capilares. Entonces las

mezclas de alta relación agua-cemento es más porosa que las mezclas de baja relación agua-cemento.

Los efectos perniciosos que pueden esperarse del agua de mezcla con impurezas son: retardo en el endurecimiento, reducción en la resistencia, manchas en el concreto endurecido, contribución a la corrosión del acero, cambios volumétricos, etc.

1.4.3 EL AGUA DE CURADO

Para el agua de curado se exigen los mismos requisitos validos para el agua de mezcla, y por otro lado en las obras es usual emplear la misma fuente de suministro de agua tanto para la preparación como para el curado del concreto. El agua adicional que puede contribuir a hidratar el concreto proviene del curado, representa una fracción solamente del agua total (alrededor de la quinta parte en volumen absoluto), por lo que las limitaciones para el caso del agua de curado pueden ser menos exigentes que en el caso del agua de mezcla, pudiéndose aceptarse reducidas a la mitad en la mayoría de los casos.

Un factor que incide en esta consideración es que el agua de curado permanece relativamente poco tiempo en contacto con el concreto, pues en la mayoría de las especificaciones el tiempo máximo exigido para el curado con agua no supera los 14 días.

El siguiente cuadro muestra los limites permisibles para el agua de mezcla y curado del concreto.

CUADRO 1.4

DESCRIPCION	LIMITE PERMISIBLE
Sólidos en suspensión	5000 ppm máximo
Materia Orgánica	3 ppm máximo
Carbonatos y bicarbonatos alcalinos	1000 ppm máximo
Sulfatos	600 ppm máximo
Cloruros	1000 ppm máximo
PH	entre 5 - 8 ppm

Existe evidencia experimental que el empleo de agua con contenidos individuales de cloruros, sulfatos y carbonatos sobre las 5000 ppm, ocasionan reducción de resistencias hasta del orden del 30% con relación a concretos con agua pura.

El agua empleada para la fabricación de concreto y para el curado, fue la distribuida por el servicio de agua potable que abastece al Laboratorio de Ensayo de Materiales (LEM – UNI).

CAPITULO 2:

AGREGADO GLOBAL

CAPITULO 2

AGREGADO GLOBAL

2.1 GENERALIDADES.

El agregado global está definido como aquel material conformado por agregado fino y agregado grueso proveniente de la desintegración mecánica o artificial de las rocas, el mismo que debe estar en proporciones adecuadas y cumplir las especificaciones para su uso en el diseño de mezclas de concreto.

Estos agregados se pueden utilizar en la elaboración de concreto tal como se encuentra en la naturaleza, siempre que cumplan los requisitos de la norma de agregados, caso de no cumplir se deberá procesar el material, hasta satisfacer las especificaciones. Su granulometría deberá estar comprendida entre el material retenido en la malla Nº 200 como mínimo y el que pase la malla de 2" como máximo.

La evaluación individual tanto de la arena como de la piedra no son suficientes, y más aún se da el caso de que estos elementos evaluados individualmente, no cumplan con los usos estipulados por la norma ASTM C-33. Es por ello logrando una participación porcentual podremos lograr una gradación de partículas, para ciertos requerimientos como por ejemplo trabajabilidad.

Esta combinación de agregados totales se puede evaluar usando curvas teóricas y usos totales como el HUSO DIN 1045 para el agregado global.

2.2 DETERMINACION DEL MAXIMO PESO UNITARIO COMPACTADO DEL AGREGADO GLOBAL

Normas

NTP 400.017

ASTM C - 29

El peso unitario máximo de la combinación de agregados es referencial, pero nos permite hallar intervalos de variación confiable dentro de los cuales se puede definir la proporción ideal para combinar los agregados.

Esta combinación de máxima densidad creara un volumen mínimo de vacíos necesitando menos cantidad de pasta de cemento (economía), cuando forme parte del concreto.

Para la determinación del máximo peso unitario compactado de la combinación de agregado se ha realizado el ensayo para 4 proporciones de mezcla y para cada relación se efectuó tres ensayos de P.U.C, de los cuales se toma el peso unitario promedio como valor representativo del ensayo para cada relación.

PROPORCIONES PARA LA COMBINACIÓN DE AGREGADOS CUADRO Nº 2.1

PORCENTAJE DE AGREGADOS							
% A. FINO 40 45 50 55							
% A. GRUESO 60 55 50 45							

Realizaremos diseños de mezclas de prueba para determinar, la proporción ideal de agregados, para tal fin, del intervalo de confianza.

El cálculo y los resultados del peso unitario compactado (P.U.C.) de las diferentes muestras realizadas en el laboratorio se presentan en los cuadros 2.2.1, 2.2.2, 2.2.3 y gráficos 2.2.A, 2.2.B, 2.2.C del anexo B.

2.3 DETERMINACION DE LA GRANULOMETRIA DEL AGREGADO GLOBAL.

Según la norma, se establecen requisitos mínimos para los agregados fino y grueso, con el objeto de considerarlos óptimos para emplearlo en mezclas de concreto, estas condiciones mínimas son controladas mediante los husos granulométricos que representan los rangos dentro de los cuales debe estar comprendida la granulometría del agregado de interés.

El control mediante los husos granulométricos para cada agregado (arena y piedra) no garantiza que la granulometría de la mezcla cumplirá los requisitos para la obtención de un buen concreto; por cuanto se ha comprobado que al evaluar individualmente la piedra y la arena con estos husos y obteniendo los denominados agregados bien graduados, sin

embargo cuando son mezclados, la granulometría del conjunto no cae dentro del rango establecido.

También se presenta el caso de agregados que no entran en los husos granulométricos cuando son evaluados separadamente, y que sin embargo cuando son mezclados adecuadamente nos proporcionan una distribución eficiente de partículas.

Para la evaluación granulométrica nos remitiremos a los husos DIM 1045 para el agregado global. En dicho Huso en el área comprendida entre el huso "A" y "B" nos proporciona un concreto de mejor trabajabilidad; cuando está entre el huso "B" y "C" se obtendría un concreto de trabajabilidad aceptable.

HUSO DIN 1045 - AGREGADO GLOBAL
CUADRO Nº 2.2

	ABERTURA	AGREGADO GLOBAL				
TAMIZ	(mm)	Α	В	С		
1 ½"	32.0	100	100	100		
3/3"	16.0	62.0	80.0	89.0		
1/2"	8.0	38.0	62.0	77.0		
Nº 4	4.0	23.0	47.0	65.0		
Nº 8	2.0	14.0	37.0	53.0		
Nº 16	1.0	8.0	28.0	42.0		
Nº 50	0.25	2.0	8.0	15.0		

El cálculo y los resultados de la granulometría de las diferentes muestras realizadas en el laboratorio se presentan en los cuadros 2.3.1, 2.3.2, 2.3.3 y gráficos 2.3.a, 2.3.b, 2.3.c del anexo B.

2.4 CONTENIDO DE HUMEDAD DEL AGREGADO GLOBAL

En los cálculos para el proporcionamiento del concreto se considera al agregado en condiciones de saturado superficialmente seco, es decir, con todos sus poros abiertos llenos de agua y libre de humedad superficial. Esta situación, que no es correcta en la práctica, conviene para fines de clasificación.

Como se sabe, el contenido de agua de la mezcla influye en la resistencia y otras propiedades del concreto. En consecuencia, es necesario controlar el dosaje de agua. Si los agregados están saturados y superficialmente secos no pueden absorber ni ceder agua durante el proceso de mezcla. Sin embargo, un agregado parcialmente seco resta agua, mientras que el agregado mojado, superficialmente húmedo, origina un exceso de agua en el concreto. En estos casos es necesario reajustar el contenido de agua, sea agregando o restando un porcentaje adicional al dosaje de agua especificado, a fin que el contenido de agua sea el correcto.

2.5 CONCRETO CON AGREGADO GLOBAL.

Tanto las propiedades del agregado como del cemento presentan marcados efectos en la resistencia y durabilidad del concreto, así como en el contenido de aqua necesario para colocarlo.

En principio se puede admitir que si las fuentes de suministro de los integrantes del concreto son uniformes y se mantienen constantes, pequeñas variaciones en la granulometría y en el tamaño máximo de los agregados, así como en el contenido de cemento y en la trabajabilidad del concreto; no afectan apreciablemente la resistencia siempre y cuando la calidad de la pasta de cemento definida por la relación agua/cemento se mantenga constante.

En cambio, si las fuentes de suministro varían, como en el caso de cambios de calidad en el cemento o cuando ocurren cambios en las fuentes de suministros de los agregados, pueden producirse alteraciones importantes en la resistencia aun cuando la relación agua/cemento sea mantenida constante.

CAPITULO 3:

MODULO DE FINURA

CAPITULO 3

MODULO DE FINURA

3.1 GENERALIDADES.

Se estudia al agregado para determinar la distribución del tamaño de sus partículas en toda su masa; y del cual se puede sacar constantes uno de ellos es el módulo de finura que nos servirá para comparar la calidad de los agregados. Como sabemos el módulo de finura es una constante adimensional, que nos representa un volumen promedio ponderado de nuestro agregado.

El sustento teórico reside en que es proporcional al promedio logarítmico del tamaño de las partículas para una cierta distribución granulométrica, y experimentalmente está demostrado que independientemente de la granulometría, los concretos con igual módulo de finura global, tienen dentro de ciertos límites los mismos requerimientos de agua, características resistentes y trabajabilidad.

Actualmente es uno de los métodos más usados en tecnología del concreto pues ha demostrado que permite un acercamiento técnico inmediato a los diseños con mayor probabilidad de satisfacer la mayoría de requisitos en el concreto, y por otro lado, tiene una utilidad primordial en el control de los diseños de mezcla en producción, pues haciendo los ajustes en las mezclas de modo que permanezcan constante el módulo de finura global del diseño se garantiza estabilidad y uniformidad en los requerimientos de agua y resistencias.

3.2 MODULO DE FINURA DE AGREGADOS COMBINADOS

Para encontrar de una manera simple la proporción de combinación de dos agregados conocidos para acercarnos al módulo de finura optimo, es muy útil la siguiente relación. El cual consideraremos como módulo de finura teórico.

$$M.F.aq = %P x (M.F.p) + %A x (M.F.a)$$

Donde:

M.F.ag = Modulo de finura del agregado global.

%P = % en peso que interviene el agregado grueso en la mezcla.

%A= % en peso que interviene el agregado fino en la mezcla.

M.F.p = Modulo de finura del agregado grueso (piedra)

M.F.a = Modulo de finura del agregado fino (arena)

3.3 LIMITES DEL MODULO DE FINURA

Como hemos mencionado anteriormente se han dado diversas curvas granulométricas que establecen zonas dentro de las cuales cualquier granulometría del agregado global es adecuada, y como cada curva granulométrica tiene su propio módulo de finura, entonces se generan límites entre los módulos de finura.

Los límites de la zona de referencia, consideran también otro aspecto importante, que es la heterogeneidad del agregado. El agregado por estar compuesto de partículas heterogéneas en cuanto a tamaño, está sujeto durante el manejo a segregación. Aunque este aspecto tiene que ser cuidado especialmente, de manera que a la mezcladora entre un agregado lo más homogéneo posible.

Este efecto hace que los límites de la zona de referencia tengan que ser un poco más reducidos que lo que se podría estimar teóricamente, para que en la práctica cualquier agregado con un control adecuado se mantenga siempre en una composición granulométrica apropiada.

Un estudio más específico de las posibilidades granulométricas de determinado agregado, solo es necesario en casos especiales. En estos casos para optimizar la granulometría de un agregado, se emplea el sistema de pruebas prácticas de laboratorio, haciendo concretos con distintas granulometrías de agregados, viendo en que sentido mejorar las propiedades del material y afinando cada vez más. El número de estas pruebas puede quedar muy reducido si previamente se consideran las características del agregado de que se dispone y se proclama el trabajo de acuerdo a ellas.

3.4 VALORES DE MODULO DE FINURA GLOBALES OBTENIDOS EN LABORATORIO

Para la presente tesis calcularemos el módulo de finura global como sigue, los datos los obtendremos de la granulometría realizada en el laboratorio.

En adelante para los módulos de finura de las arenas en estudio les llamaremos:

Muestra "A1" agregado fino con módulo de finura 3.0

Muestra "A2" agregado fino con módulo de finura 3.4

Muestra "A3" agregado fino con módulo de finura 3.6

Los resultados del módulo de finura se muestran en el cuadro № 1.3.7 – Anexo A.

La curva representativa del agregado fino se presenta en gráfico Nº 1.3.0 – Anexo A

CAPITULO 4:

DISEÑO DE MEZCLAS

CAPITULO 4

DISEÑO DE MEZCLAS

4.1 INTRODUCCION:

Cuando se habla de diseño de mezclas nos estamos refiriendo, a la necesidad de conocer y determinar la dosificación de cada uno de los materiales que intervienen en una mezcla de concreto.

Siendo el concreto un elemento que en su fase inicial es una mezcla plástica, que luego se transforma en una estructura sólida y resistente, cuyas características dependen de la dosificación de cada uno de sus componentes, entonces debemos determinar las cantidades relativas de materiales a ser usados en las mezclas de concreto; a fin de que dicha mezcla sea optima tanto en su fase sólida como en la fase endurecida y cumpla los requerimientos de cada proyecto.

Esta dosificación o proporcionamiento puede realizarse mediante dos tipos de diseño.

- 1. Diseños empíricos
- 2. Diseños técnicos

Los diseños empíricos están basados en la experiencia; generalmente se usan en obras pequeñas y son las más comunes en uso.

Los diseños técnicos están basados en métodos ya establecidos; en los cuales se debe de conocer y determinar en forma experimental en laboratorio cada una de las propiedades de los materiales a emplearse, se considera también el costo, requisitos de buen acabado y colocación del concreto y principalmente deben de cumplir con las propiedades en estado fresco(asentamiento, peso unitario, contenido de aire, fluidez, exudación y tiempo de fraguado) como también en estado endurecido(resistencia, durabilidad, etc).

Para la presente investigación se realizara este último tipo de diseño.

Un concreto es calificado de buena o mala calidad, de acuerdo a su resistencia en compresión (f'c) ya que este parámetro es de vital importancia ya que sobre el descansan teorías de diseño actual.

4.2 METODOS DE DISEÑO:

Existen varios métodos para el diseño de mezclas de concreto; pero todos se basan en los volúmenes absolutos de los componentes, con la condición primordial que la suma de todos ellos incluido el aire atrapado en el concreto sea la unidad cubica, cuyo uso general es 1m3.

Vol. Cemento+ Vol. Agua+ Vol. Arena+ Vol. Piedra+ Vol. Aire = 1m3

Para lo cual es necesario conocer cada una de las propiedades físicas de los materiales componentes, ya sea en estado seco o saturado superficialmente (s.s.s.)

El método más usado es el proporcionado por el ACI, pero en la presente investigación usaremos el METODO DEL AGREGADO GLOBAL; por ser el que nos da mejores resultados acorde con nuestra realidad y característica de los materiales disponibles en nuestro país.

4.3 CRITERIOS BASICOS PARA EL DISEÑO:

En todo diseño de mezclas de concreto se debe tener en cuenta los siguientes criterios y consideraciones:

- A la fecha ningún método teórico o empírico resulta ser exactamente preciso como para reemplazar a una comprobación experimental; por la diversidad de materiales disponibles en nuestro país.
- La selección de las proporciones de cada uno de los materiales a combinarse, para la obtención de las mezclas de concreto, es un paso previo sujeta a los resultados experimentales.
- Por tanto esta selección de los diferentes componentes que forman la mezcla de concreto y la proporción de cada uno de ellos, debe de ser el resultado de un balance del factor económico y el requisito de cumplimiento y satisfacción de cada una de las propiedades del concreto en estado fresco y endurecido.
- En la presente investigación se ha tomado como base el criterio de la mejor combinación de los agregados, la misma que se ha determinado mediante la obtención DEL MAXIMO PESO UNITARIO COMPACTADO de la mezcla de agregado (Agregado Global).

• El procedimiento y su determinación se presenta en el capítulo 2, y cuyos porcentajes de variación oscilan entre valores de (40% - 55%) del agregado fino y (45% - 60%) del agregado grueso.

4.4 PROCEDIMIENTO DE DISEÑO:

Para el diseño de mezclas de concreto, se ha seguido el siguiente procedimiento, efectuando la verificación y corrección mediante las mezclas de prueba.

1. SELECCIÓN DEL ASENTAMIENTO

Se considera un asentamiento de 3" – 4", correspondiente a mezclas de consistencia plástica.

- SELECCIÓN DEL TAMAÑO MAXIMO NOMINAL DEL AGREGADO
 Esto se determina por la granulometría del agregado grueso; de las características físicas de este y se obtuvo 1".
- 3. DETERMINACION DE LA CANTIDAD DE AGUA DE MEZCLA El agua de mezcla se determina mediante mezclas de prueba, se comienza con el valor dada en tablas para un determinado asentamiento y el Dnmax (diámetro nominal máximo del agregado). Este valor inicial se varía en cada relación a/c; hasta conseguir el asentamiento dentro del rango establecido

CUADRO Nº 4.1.0

en los requerimientos de diseño, ver cuadro Nº4.1.0.

Requerimientos aproximados de agua de mezclado y de contenido de aire para diferentes valores de asentamiento y tamaños máximos de agregados

	Agua,	en I/m	ı³, par	a los	Tamañ	os M	áximo	s de
Asentamiento	agrega	do grue	so y co	nsisten	cia indic	ados		
	3/8"	1/2"	3/4"	1"	1 1/2"	2"	3"	6"
	Co	ncreto s	sin aire	ncorpo	rado			
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	169	145	124
6" a 7"	243	228	216	202	190	178	160	
	Cor	ncreto c	on aire	incorpo	rado			
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119
6" a 7"	216	205	197	184	174	166	154	

4. DETERMINACION DEL CONTENIDO DE AIRE ATRAPADO

Se ha asumido un contenido de aire al 1.5%, ver cuadro Nº 4.1.1; aire atrapado y Dnmax (diámetro nominal máximo).

CUADRO Nº 4.1.1

Contenido de aire atrapado por m3 de concreto

CONTENIDO DE AIRE ATRAPADO						
Tamaño Nominal Máximo	Aire atrapado					
3/8"	3.0%					
1/2"	2.5%					
3/4"	2.0%					
1"	1.5%					
1 ½"	1.0%					
2"	0.5%					
3"	0.3%					
6"	0.2%					

5. SELECCIÓN DE LA RELACION AGUA/CEMENTO

Se ha establecido las relaciones agua – cemento: 0.60, 0.65 y 0.70 para la presente investigación.

- 6. DETERMINACION DEL CONTENIDO DE CEMENTO
 - Conocida la relación agua cemento del paso 5 y el agua de mezcla del paso 3 se determina el contenido de cemento.
- 7. DETERMINACION DE LA RELACION O PROPORCION DE AGREGADO FINO- AGREGADO GRUESO

Se determina mediante el máximo peso unitario compactado de la combinación de agregados (agregado global), para el diseño que se presenta como ejemplo tomamos 50% de agregado fino y 50% de agregado grueso (se tomó el valor central del rango de variación obtenido de la curva porcentaje de agregado vs. Máximo peso unitario compactado).

- 8. DETERMINACION DE LOS PESOS SECOS DE LOS AGREGADOS
 Estos pesos se obtienen luego de conocer el volumen absolutos de los
 agregados fino y grueso.
 - Los valores obtenidos del paso 1 al 8; corresponden al diseño seco (DS).

CORRECION POR CONTENIDO DE HUMEDAD DE LOS AGREGADOS
 Para trabajar con los pesos correctos en el diseño de mezclas de concreto
 debe considerarse el contenido de humedad de los agregados y la
 absorción.

10. NUMERO DE DISEÑOS

Se recomienda realizar como mínimo tres diseños para cada relación a/c; y con ello se obtiene el agua de diseño mediante la gráfica asentamiento vs. agua de mezcla.

11. AJUSTE DE LAS MEZCLAS DE PRUEBA

Este ajuste o corrección se realiza para verificar las proporciones calculadas de las mezclas; para ello se realiza mezclas de prueba, los mismos que son preparados y verificados siguiendo la norma ASTM C-192.

12. SELECCIÓN DE LAS PROPORCIONES FINALES

Esta selección o determinación se hará para una mezcladora estacionaria tipo trompo de capacidad 48 Kg, para ello se utiliza los porcentajes de arena y piedra obtenidos de la curva del porcentaje de agregados versus máximo peso unitario compactado. Se realizara el diseño de mezclas de prueba para las proporciones de agregados: A/P = 48/52, 50/50, 50/48; manteniendo constante la relación a/c.

13. DETERMINACION DEL AGUA DE DISEÑO PARA LAS MEZCLAS DE PRUEBA.

Para cada proporción de agregados del paso 12, y la relación a/c = 0.60, se determinara la cantidad de agua optima que nos permite obtener una mezcla cuyo asentamiento este comprendido entre 3" - 4".

El valor de agua optima se obtiene del grafico cantidad de agua versus asentamiento para lo cual se realizara mezclas de prueba con tres cantidades de agua, de tal manera de obtener asentamientos menores y mayores del valor establecido (3"- 4"), para cada diseño de prueba.

Puede darse el caso que los asentamientos buscados sean obtenidos en forma directa en una de las mezclas de prueba en cuyo caso se obtendrá directamente el agua óptima de dicho diseño.

Una vez determinado el agua optima en cada diseño de prueba y los asentamientos entre 3"- 4" se fabrica tres probetas para cada relación de agregados (A/P = 48/52, 50/50, 52/48) los mismos que serán curados según el procedimiento establecido en la norma ASTM C-192, y también serán ensayados por resistencia a la compresión después de 7 días, según norma ASTM C-39.

4.5 DISEÑO DE MEZCLAS DE PRUEBA

Presentamos a continuación el diseño de agregados de mezcla de prueba para la relación de A/P=50/50 y relación a/c= 0.60, se realiza el diseño utilizado como primer valor de aproximación la cantidad de 193lit/m3 de agua a fin de obtener el asentamiento requerido si no obtenemos el valor deseado, se seguirá diseñando mezclas de prueba adicionales variando la cantidad de agua tal como se indica en el paso 13 de la sección 4.4.

4.6 PROPIEDADES DE MATERIALES EMPLEADOS PARA EL DISEÑO DEL CONCRETO

CUADRO Nº 4.1.2

PROPIEDADES FISICAS	UNID.	AGREGADO FINO	AGREGADO GRUESO
Peso Unitario Suelto (P.U.S.)	kg/m ³	1546.43	1461.31
Peso Unitario Compactado (P.U.C.)	kg/m ³	1760.38	1610.34
Peso Específico de Masa	gr/cm ³	2.52	2.79
Peso Específico de Masa (S.S.S.)	gr/cm ³	2.54	2.81
Peso Específico Aparente	gr/cm ³	2.58	2.84
Absorción	%	1.00	0.68
Módulo de Finura		3.40	7.42
Contenido de Humedad	%	0.77	0.36
Material que pasa la malla N° 200	%	4.70%	-
Superficie Específica	cm ² /gr	43.03	1.31
Tamaño Máximo	Pulg.	-	1
Tamaño Nominal Máximo	Pulg.	-	1

CEMENTO PORTLANI	OTIPO I - "SOL"
Peso Especifico	3110 Kg./m ³

4.7 DISEÑO PARA DETERMINAR LA CANTIDAD DE AGUA

PROCEDIMIENTO DE DISEÑO:

- Selección de asentamiento y selección del T.M.N.
 - Asentamiento 3" 4" (mezclas plásticas)
 - Tamaño nominal máximo 1"

Determinación de la cantidad de agua

En base al cuadro Nº4.1.0 anterior (confeccionado por el comité 211 del ACI), para concreto sin aire incorporado, y en función del Tamaño Nominal Máximo del agregado grueso y para un asentamiento entre 3" y 4", se estima una cantidad de agua de diseño para agregados en estado seco de 193 l por m³ de concreto.

Determinación de contenido de aire atrapado

En base alcuadro Nº4.1.1 anterior que da el porcentaje aproximado de aire atrapado en mezclas sin aire incorporado, para diferentes Tamaños Nominales Máximos del agregado grueso adecuadamente graduado dentro de los requisitos de la Norma NTP 400.037 ó ASTM C-33.Para T.N.M. de 1" el contenido de aire es de 1.5% del volumen del concreto. Estimación de la cantidad de agua de diseño por metro cúbico de concreto, según la consistencia deseada.

• Selección de la relación a/c y de la cantidad de Cemento:

Cálculo de la cantidad de cemento en peso por metro cúbico de concreto. Conociendo la relación de agua/cemento y la cantidad de agua de diseño, se obtiene la cantidad de cemento:

Agua/cemento = 0.60 = 193 /cemento

Entonces: cemento = 321.67kg

Volúmenes absolutos:

- Cemento: 321.67/3110 = 0.103

-Agua : 193/1000 = 0.193

- Aire : 1.5% = 0.015

0.311 m³

Agregados : 1 - 0.311 = 0.689 m^3

• Peso Seco de los Agregados:

- Peso Seco arena:

2542 x V_{arena}

= 2542V_{arena}

- Peso Seco piedra: 2810 x (0.689-V_{arena})

= 1936.1 - 2810V_{arena}

J

Suma = $1936.1 - 268V_{arena}$

% Arena = 0.50 =

2542 x V_{arena}

1936.1 - 268V_{arena}

$$\rightarrow$$
 V_{arena} = 0.3621m³

$$\rightarrow$$
 $V_{piedra} = 0.3273 \text{ m}^3$

• Peso Seco:

- Peso Seco arena: 2542 kg/m³ x 0.3617 m³ = 919.44 kg

- Peso Seco piedra: 2810 kg/m³ x 0.3273m³

= 919.71 kg

• Peso Húmedo de los Agregados:

- Peso Húmedo arena: 919.44 x (1+0.0077) = 926.48 kg

- Peso Húmedo piedra: 919.71 x (1+0.0036) = 923.02 kg

• Aporte de Humedad:

- Agregado fino

919.44 x $(0.77\% - 1.00\%) \rightarrow -2.12$

- Agregado grueso:

 $919.71 \times (0.36\% - 0.68\%) \rightarrow -2.94$

-5.06lt/m³

Agua efectiva:

193 + 5.06 = 198.06lt/m³

Peso de Materiales Corregidos:

Material	Peso Corregido		
Cemento	321.67 Kg./m ³		
Agua Efectiva	198.06lt/m ³		
Arena	926.48 Kg./m ³		
Piedra	923.02 Kg./m ³		

Proporciones en peso:

1:2.88:2.87/0.60

Diseño Unitario en Obra:

El diseño unitario en obra se calcula dividiendo cada componente de la mezcla entre el peso por metro cúbico de cemento, por lo cual se obtiene:

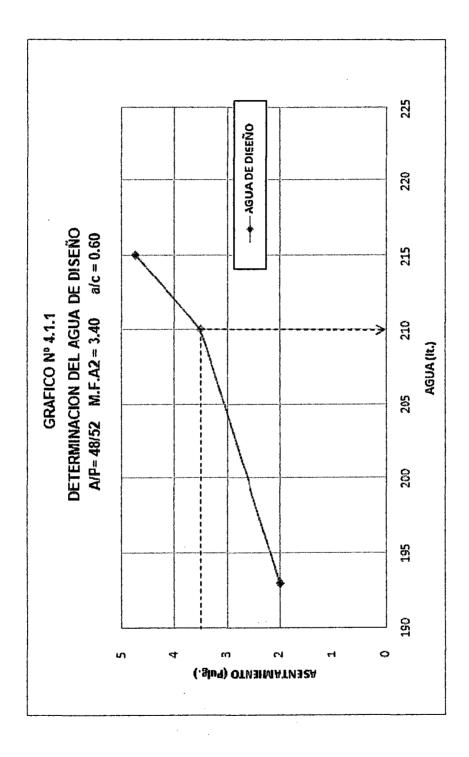
Material	Diseño Unitario
Cemento	1.00
Agua	0.61
Arena	2.88
Piedra	2.87
Suma	7.36

La suma hallada nos sirve para dividir a la capacidad de mezcla que deseamos fabricar; para este caso es de 48 Kg., que por cierto es la capacidad de la mezcladora del Laboratorio. La constante "K" hallada nos sirve para multiplicar a los valores del diseño unitario y así finalmente obtener la tanda o pesos de cada componente de la mezcla.

$$K = 48 / 7.36$$
 \rightarrow $K = 6.52$

Material	Tanda
Cemento	6.52
Agua	4.00
Arena	18.78
Piedra	18.70
Suma	48.00

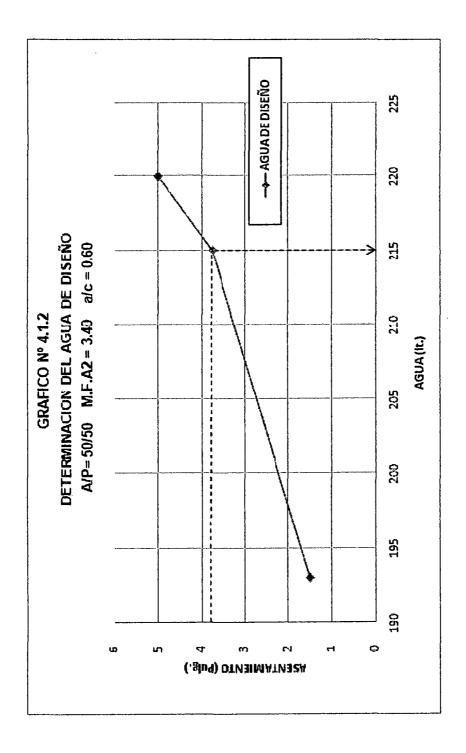
El **Asentamiento** (asentamiento mediante el cono de Abrams) obtenido con este diseño fue de 1 1/2", por lo que es una mezcla seca.


Por lo tanto será necesario determinar experimentalmente la cantidad de agua neta (agua de diseño) de mezclado. Para poder hallar el agua de diseño óptima se registra las diversas consistencias con las diversas cantidades de agua de diseño de las mezclas de prueba y se dibuja una línea de tendencia, para que por interpolación o extrapolación se logre determinar más rápidamente la cantidad de agua de diseño, que nos permite obtener la consistencia deseada.

A continuación se presenta las mezclas de prueba para determinar el agua neta (agua de diseño) para las proporciones de agregado; A/P = 48/52, 50/50, 52/48 y la relación a/c=0.60

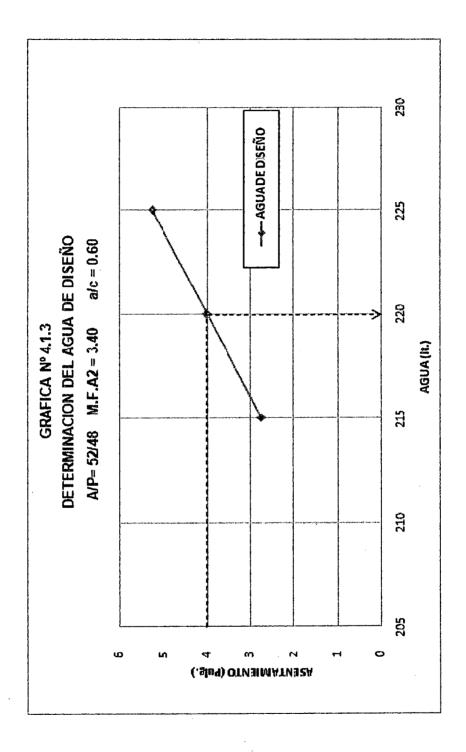
CUADRO Nº 4.1.3

MEZCLAS DE PRUEBA DE CONCRETO


	Deteri	minación d	ها Δα	nua de	Diseño				
A/P= 48 52				0.60	Agu	ıa=	193	3	lit/m3
	Dosificació	ón por m³ d	le Co	oncrete					r tanda
Material	Peso seco (kg)	Volume Absolut (m3)	en	D.U.S	DO		D.U.		Tanda (48kg)
cemento	321.67	0.103		1.00	321.6	7_	1.0	0	6.51
agua	193.00	0.193		0.60	198.1	0	0.6	2	4.01
arena: 48 %	884.01	0.348		2.75	890.8	1	2.7	7	18.03
piedra: 52 %	957.67	0.341		2.98	961.1	2	2.9	9	19.45
aire atrap. (%)	1.50	0.015							
total:	<u> </u>	0.311					7.3	7	48.00
					Ase	enta	miento) =	2"
	Deterr	ninación d	el Ag	jua de	Diseño				
A/P= 48 52		a/	c= C	0.60	Agua		210		lit/m3
	Dosificación	n por m ³ de Concreto Dosificación po		por	tanda				
Material	Peso seco (kg)	Volumen Absoluto (m3)		D.U.S.	D.O. (kg/m3)	D.U.O.		Tanda (48kg)
cemento	350.00	0.113		1.00	350.00		1.00		7.16
agua	210.00	0.210		0.60	214.90	214.90			4.40
arena: 48 %	850.49	0.335		2.43	857.03	; T	2.45	;	17.53
piedra: 52 %	921.36	0.328		2.63	924.68		2.64	. T	18.91
aire atrap. (%)	1.50	0.015							
total:		0.338				T	6.70)]	48.00
					Aser	ntan	niento	=	3 1/2"
	Deterr	ninación d	el Ag	ua de	Diseño			_	
A/P= 48 52		a/c=	_		Agua=	2	215	lit/i	m3
		ción por m oncreto	³ de		Dosi	fica	ción p	or t	anda
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U	J.S.	D.O. (kg/m3)		U.O.		Tanda (48kg)
cemento	358.33	0.115	1.	00	358.33	1	.00		7.35
agua	215.00	0.215	 	60	219.85	,	.61		4.51
arena: 48 %	840.63	0.331	2.	35	847.10	2	.36		17.38
piedra: 52 %	910.68	0.324	2.	54	913.96		.55		18.75
aire atrap. (%)	1.50	0.015							
total:		0.345				6	5.53		48.00
· · · · · · · · · · · · · · · · · · ·					Asenta				4 3/4"

CUADRO Nº 4.1.4

MEZCLAS DE PRUEBA DE CONCRETO


	Dota	rminación del	Vario de	Disoño		
A/P= 50 50	Dete	erminación del	0.60	Agua=	193	lit/m3
71 - 50 50	Dooificasi f	n por m³ de Co				
)			oncreto	Dosific	ación por	tanda
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)
cemento	321.67	0.103	1.00	321.67	1.00	6.52
agua	193.00	0.193	0.60	198.05	0.62	4.01
arena: 50 %	919.00	0.362	2.86	926.07	2.88	18.77
piedra: 50 %	919.00	0.327	2.86	922.31	2.87	18.69
aire atrap. (%)	1.50	0.015				
total:		0.311			7.36	48.00
			-	Asenta	miento =	1 1/2"
	Dete	erminación del	Agua de			
A/P= 50 50			0.60	Agua=	215	lit/m3
	Dosificació	n por m³ de Co	oncreto	T	ación por	tanda
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)
cemento	358.33	0.115	1.00	358.33	1.00	7.36
agua	215.00	0.215	0.60	219.81	0.61	4.52
arena: 50 %	873.90	0.344	2.44	880.63	2.46	18.10
piedra: 50 %	873.90	0.311	2.44	877.05	2.45	18.02
aire atrap. (%)	1.50	0.015				
total:		0.345			6.52	48.00
		· · · · · · · · · · · · · · · · · · ·		Asenta	amiento =	3 3/4"
	Dete	erminación del	Agua de			
A/P= 50 50			0.60	Agua=	220	lit/m3
	Dosificació	n por m³ de Co	oncreto	Dosific	ación por	tanda
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)
cemento	366.67	0.118	1.00	366.67	1.00	7.56
agua	220.00	0.220	0.60	224.75	0.61	4.63
arena: 50 %	863.65	0.340	2.36	870.30	2.37	17.94
piedra: 50 %	863.65	0.307	2.36	866.76	2.36	17.87
aire atrap. (%)	1.50	0.015				
total:		0.353			6.35	48.00
<u> </u>				Asenta	amiento =	5"
JENTE: ELABORACIO	N DDODIA					

CUADRO Nº 4.1.5

MEZCLAS DE PRUEBA DE CONCRETO

A/D 50		terminación del	•		.	****
A/P= 52 4			c= 0.60	Agua		lit/m3
]	Dosifica	nción por m³ de	Concreto) Dosi	ficación po	r tanda
Material	Peso seco (kg)	Volumen Absoluto (m3)		S. D.O. (kg/m3)	D.U.O	Tanda (48kg)
cemento	358.33	0.115	1.00	358.33	1.00	7.37
agua	215.00	0.215	0.60	219.77	0.61	4.52
arena: 52 %	6 907.04	0.357	2.53	914.02	2.55	18.81
piedra: 48 %	6 837.27	0.298	2.34	4 840.28	2.34	17.29
aire atrap. (%)	1.50	0.015				
total:		0.345			6.51	48.00
				Ase	ntamiento	= 23/4"
	Det	erminación del	Agua de			
A/P= 52 48			= 0.60	Agua	= 220	lit/m3
	Dosificac	ión por m³ de C			icación por	tanda
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S	D.O.	D.U.O.	Tanda (48kg)
cemento	366.67	0.118	1.00	366.67	1.00	7.57
agua	220.00	0.220	0.60	224.71	0.61	4.64
arena: 52 %	896.40	0.353	2.44	903.30	2.46	18.65
piedra: 48 %	827.45	0.294	2.26	830.43	2.26	17.14
aire atrap. (%)	1.50	0.015	1			
total:		0.353			6.34	48.00
			 	Asen	tamiento =	4"
	Def	erminación del	Agua de			<u>.</u> .
A/P= 52 48		a/c=	0.60	Agua=		lit/m3
	Dosificació	n por m ³ de Co	ncreto	Dosific	cación por	tanda
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)
cemento	375.00	0.121	1.00	375.00	1.00	7.77
agua	225.00	0.225	0.60	229.65	0.61	4.76
arena: 52 %	885.76	0.348	2.36	892.58	2.38	18.48
piedra: 48 %	817.63	0.291	2.18	820.57	2.19	16.99
aire atrap. (%)	1.50	0.015				
total:		0.361			6.18	48.00
<u> </u>	<u> </u>			Asenta	miento =	5 1/4"
THENTE: ELABORACION PROPIA						

4.8 RESULTADO DE LAS MEZCLAS DE PRUEBA FINALES

CUADRO Nº 4.1.6

cemento agua arena: 48 % piedra: 52 % aire atrap. (%) total: A/P= 50 50 Material cemento agua arena: 50 % piedra: 50 %	Peso seco (kg) 350.00 210.00 850.49 921.36 1.50	volumen Absoluto (m3) 0.113 0.210 0.335 0.328 0.015 0.338 terminación d a/c= n por m³ de Co Volumen Absoluto (m3)	D.U.S. 1.00 0.60 2.43 2.63 el Agua do 0.60	D.O. (kg/m3) 350.00 214.90 857.03 924.68 Asenta	210 ficación p D.U.O. 1.00 0.61 2.45 2.64 6.70 miento = 215 ficación p	Tanda (48kg) 7.16 4.40 17.53 18.91 48.00 3 1/2"
cemento agua arena: 48 % piedra: 52 % aire atrap. (%) total: A/P= 50 50 Material cemento agua arena: 50 % piedra: 50 %	Peso seco (kg) 350.00 210.00 850.49 921.36 1.50 De Dosificación Peso seco (kg)	Volumen Absoluto (m3) 0.113 0.210 0.335 0.328 0.015 0.338 eterminación d a/c= n por m³ de Co Volumen Absoluto (m3)	D.U.S. 1.00 0.60 2.43 2.63 el Agua c 0.60 concreto	D.O. (kg/m3) 350.00 214.90 857.03 924.68 Asenta de Diseño Agua= Dosi D.O.	D.U.O. 1.00 0.61 2.45 2.64 6.70 miento = 215 ficación p	Tanda (48kg) 7.16 4.40 17.53 18.91 48.00 3 1/2"
cemento agua arena: 48 % piedra: 52 % aire atrap. (%) total: A/P= 50 50 Material cemento agua arena: 50 % piedra: 50 %	seco (kg) 350.00 210.00 850.49 921.36 1.50 De Dosificación Peso seco (kg)	Absoluto (m3) 0.113 0.210 0.335 0.328 0.015 0.338 sterminación d a/c= n por m³ de Co Volumen Absoluto (m3)	1.00 0.60 2.43 2.63 el Agua d 0.60	(kg/m3) 350.00 214.90 857.03 924.68 Asenta de Diseño Agua= Dosi D.O.	1.00 0.61 2.45 2.64 6.70 miento =	(48kg) 7.16 4.40 17.53 18.91 48.00 3 1/2" lit/m3 or tanda Tanda
agua arena: 48 % piedra: 52 % aire atrap. (%) total: A/P= 50 50 Material cemento agua arena: 50 % piedra: 50 %	210.00 850.49 921.36 1.50 De Dosificación Peso seco (kg)	0.210 0.335 0.328 0.015 0.338 eterminación d a/c= n por m³ de Ce Volumen Absoluto (m3)	0.60 2.43 2.63 el Agua d 0.60 oncreto	214.90 857.03 924.68 Asenta de Diseño Agua= Dosi D.O.	0.61 2.45 2.64 6.70 miento =	4.40 17.53 18.91 48.00 3 1/2" lit/m3 or tanda Tanda
arena: 48 % piedra: 52 % aire atrap. (%) total: A/P= 50 50 Material cemento agua arena: 50 % piedra: 50 %	921.36 1.50 Description	0.335 0.328 0.015 0.338 terminación d a/c= n por m³ de Co Volumen Absoluto (m3)	2.43 2.63 el Agua d 0.60 oncreto	857.03 924.68 Asenta de Diseño Agua= Dosi D.O.	2.45 2.64 6.70 miento = 215 ficación p	17.53 18.91 48.00 3 1/2" lit/m3 or tanda Tanda
piedra: 52 % aire atrap. (%) total: A/P= 50 50 Material cemento agua arena: 50 % piedra: 50 %	921.36 1.50 Description of the period of th	0.328 0.015 0.338 sterminación d a/c= n por m³ de Co Volumen Absoluto (m3)	el Agua o 0.60 oncreto	924.68 Asenta de Diseño Agua= Dosi D.O.	2.64 6.70 miento = 215 ficación p	18.91 48.00 3 1/2" lit/m3 or tanda Tanda
aire atrap. (%) total: A/P= 50 50 Material cemento agua arena: 50 % piedra: 50 %	Descoule (kg)	0.015 0.338 eterminación d a/c= n por m³ de Co Volumen Absoluto (m3)	el Agua d 0.60 oncreto	Asenta de Diseño Agua= Dosi D.O.	6.70 miento = 215 ficación p	48.00 3 1/2" lit/m3 or tanda Tanda
total: A/P= 50 50 Material cemento agua arena: 50 % piedra: 50 %	De Dosificación Peso seco (kg)	0.338 terminación d a/c= n por m³ de Co Volumen Absoluto (m3)	0.60 oncreto	de Diseño Agua= Dosi D.O.	miento = 215 ficación p	3 1/2" lit/m3 or tanda Tanda
A/P= 50 50 Material cemento agua arena: 50 % piedra: 50 %	Oosificación Peso seco (kg)	terminación d a/c= n por m³ de Co Volumen Absoluto (m3)	0.60 oncreto	de Diseño Agua= Dosi D.O.	miento = 215 ficación p	3 1/2" lit/m3 or tanda Tanda
Material cemento agua arena: 50 % piedra: 50 %	Oosificación Peso seco (kg)	a/c= n por m³ de Co Volumen Absoluto (m3)	0.60 oncreto	de Diseño Agua= Dosi D.O.	215 ficación p	lit/m3 or tanda Tanda
Material cemento agua arena: 50 % piedra: 50 %	Oosificación Peso seco (kg)	a/c= n por m³ de Co Volumen Absoluto (m3)	0.60 oncreto	de Diseño Agua= Dosi D.O.	215 ficación p	lit/m3 or tanda Tanda
Material cemento agua arena: 50 % piedra: 50 %	Oosificación Peso seco (kg)	a/c= n por m³ de Co Volumen Absoluto (m3)	0.60 oncreto	Agua= Dosi D.O.	ficación p	or tanda Tanda
Material cemento agua arena: 50 % piedra: 50 %	Peso seco (kg)	Volumen Absoluto (m3)		D.O.		Tanda
Material cemento agua arena: 50 % piedra: 50 %	Peso seco (kg)	Volumen Absoluto (m3)		D.O.		Tanda
agua : arena: 50 % piedra: 50 %		··		` •		(48kg)
agua : arena: 50 % piedra: 50 %	JJU.JJ	0.115	1.00	358.33	1.00	7.36
arena: 50 % piedra: 50 %	215.00	0.215	0.60	219.81	0.61	4.52
piedra: 50 %	873.90	0.344	2.44	880.63	2.46	18.10
	873.90	0.311	2.44	877.05	2.45	18.02
aire atrap. (%)	1.50	0.015				
total:		0.345			6.52	48.00
			<u> </u>	Asenta	miento =	3 3/4"
	De	terminación d	el Agua d			
A/P= 52 48			0.60	Agua=	220	lit/m3
D	Osificación	n por m³ de Co	oncreto	Dosi	ficación p	or tanda
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)
cemento	366.67	0.118	1.00	366.67	1.00	7.57
	220.00	0.220	0.60	224.71	0.61	4.64
	896.40	0.353	2.44	903.30	2.46	18.65
	827.45	0.294	2.26	830.43	2.26	17.14
aire atrap. (%)	1.50	0.015				
total:		0.353			6.34	48.00
	ı		miento =	4"		

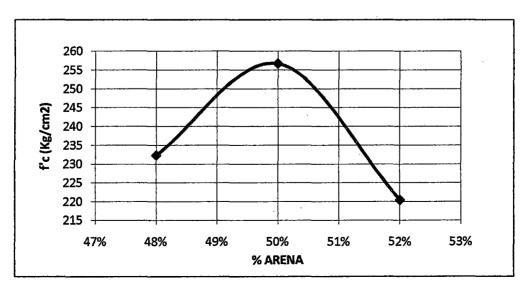
FUENTE: ELABORACION PROPIA

Los valores del asentamiento, proporción de agregados; valor de a/c y agua de diseño que se han obtenido de las mezclas de pruebas finales, se muestran en el cuadro Nº4.1.7

CUADRO Nº4.1.7
AGUA REQUERIDA

M.F.A2	a/c	A/P	Agua de Diseño (lt/m3)	Asentamiento (pulg.)
		48/52	210	3 1/2
3.4	0.60	50/50	215	3 3/4
		52/48	220	4

FUENTE: ELABORACION PROPIA


Obtenido el asentamiento deseado para mezclas plásticas (3"- 4"); con los diseños del cuadro Nº 4.1.6, se prepararon 3 probetas para cada diseño, los cuales se ensayaron a los 7 días (ensayo de resistencia a la compresión), para obtener su resistencia cuyos resultados se presentan en el siguiente cuadro.

CUADRO N°4.1.8

RESISTENCIA A LA COMPRESION A LOS 7 DIAS

M.F.A2	a/c	A/P		sistencia a la presión (Kg/cm2)		Promedio de Resistencia
			M1	M2	МЗ	(Kg/cm2)
		48/52	230.4	225.9	240.7	232.3
3.4	0.60	50/50	245.7	268.9	255.4	256.7
	}	52/48	235.4	210.4	215.4	220.4

GRAFICO N°4.1.4
ENSAYO DE RESISTENCIA A LA COMPRESION A LOS 7 DIAS

En el gráfico Nº 4.1.4se puede observar que el máximo valor de la resistencia en compresión a los 7 días se obtiene para la relación de agregados A/P= 50/50 (50% de arena y 50% de piedra).

Esta relación de agregados A/P= 50/50, se mantendrá constante para todos los diseños de mezclas de concreto para las relaciones a/c= 0.60, 0.65, 0.70.

4.9 DETERMINACION DE AGUA DE DISEÑO PARA A/P= 50/50 ; a/c = 0.60,0.65, 0.70

Se sigue el mismo procedimiento de cálculo, realizado en las mezclas de prueba y se determina el agua de diseño. Se determinó el agua de diseño para la relación de A/P= 50/50 y relaciones a/c= 0.60,0.65,0.70 presentando los valores en el cuadro Nº 4,2.1.

CUADRO Nº4.2.1
CUADRO RESUMEN PARA DETERMINAR EL AGUA REQUERIDA

M.F.A.	a/c	A/P	Agua de Diseño (lt/m3)	Asentamiento (pulg.)
	0.60	50/50	225	3 1/2
3.00	0.65	50/50	220	4
	0.70	50/50	220	4
	0.60	50/50	215	3 3/4
3.40	0.65	50/50	210	3 3/4
	0.70	50/50	210	4
	0.60	50/50	218	4
3.60	0.65	50/50	213	4
	0.70	50/50	208	3 3/4

4.10 DISEÑOS DE MEZCLAS FINALES

CUADRO Nº4.2.2

Tipo de Cemento: Sol tipo I

Módulo de Finura Arena 1 (M.F.A1):3.00

Agua: LEM - FIC UNI

Determinación del Agua de Diseño										
A/P= 50 50		a/c=	0.60	Agua=	225	lit/m3				
Dosificación por m ³ de Concreto			Dosifi	cación por	D. por m3 de Concreto					
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O. (en peso)	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)		
cemento	375.00	0.121	1.00	375.00	1.00	7.77	8.82	1.00		
agua	225.00	0.225	0.60	229.69	0.60	4.66	229.69	26.03		
arena: 50 %	853.40	0.336	2.28	859.97	2.29	17.82	19.64	2.23		
piedra: 50 %	853.40	0.304	2.28	856.47	2.28	17.75	20.70	2.35		
aire atrap. (%)	1.50	0.015								
total:		0.361			6.18	48.00				

Asentamiento = 3 1/2"

			- 100111				
Determ	ninación de	l Agua de	e Diseño				
	a/d	= 0.65	Agu	a= 220	lit/m3		
	-	า ³ de			D. por m3 de		
Concreto			Dosifi	icación po	Cond	reto.	
Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volume n (pie3)	D.U.O. (en vol.)
338.46	0.109	1.00	338.46	1.00	6.99	7.96	1.00
220.00	0.220	0.65	224.82	0.66	4.64	224.82	28.23
875.75	0.345	2.59	882.50	2.61	18.22	20.15	2.53
875.75	0.312	2.59	878.91	2.60	18.15	21.24	2.67
1.50	0.015						
	0.344			6.87	48.00		
	Peso seco (kg) 338.46 220.00 875.75	Alco Dosificación por ma Concreto Peso Volumen Absoluto (kg) (m3) 338.46 0.109 220.00 0.220 875.75 0.345 875.75 0.312 1.50 0.015	a/c= 0.65 Dosificación por m³ de Concreto Peso Seco (kg) Volumen Absoluto (m3) 338.46 0.109 1.00 220.00 0.220 0.65 875.75 0.345 2.59 875.75 0.312 2.59 1.50 0.015	Dosificación por m³ de Concreto Dosificación por m³ de Concreto Peso seco (kg) Volumen Absoluto (m3) D.U.S. (kg/m3) 338.46 0.109 1.00 338.46 220.00 0.220 0.65 224.82 875.75 0.345 2.59 882.50 875.75 0.312 2.59 878.91 1.50 0.015	a/c= 0.65 Agua= 220 Dosificación por m³ de Concreto Concreto Dosificación po Peso seco (kg) Volumen Absoluto (m3) D.U.S. (kg/m3) D.U.O. (kg/m3) 338.46 0.109 1.00 338.46 1.00 220.00 0.220 0.65 224.82 0.66 875.75 0.345 2.59 882.50 2.61 875.75 0.312 2.59 878.91 2.60 1.50 0.015	a/c= 0.65 Agua= 220 lit/m3 Dosificación por m³ de Concreto Dosificación por tanda Peso Seco (kg) Volumen Absoluto (m3) D.U.S. (kg/m3) D.U.O. (kg/m3) Tanda (48kg) 338.46 0.109 1.00 338.46 1.00 6.99 220.00 0.220 0.65 224.82 0.66 4.64 875.75 0.345 2.59 882.50 2.61 18.22 875.75 0.312 2.59 878.91 2.60 18.15 1.50 0.015	a/c= 0.65 Agua= 220 lit/m3 Dosificación por m³ de Concreto Dosificación por tanda D. por Concreto Peso seco (kg) Volumen Absoluto (m3) D.U.S. (kg/m3) D.U.O. (kg/m3) Tanda (48kg) Volume n (pie3) 338.46 0.109 1.00 338.46 1.00 6.99 7.96 220.00 0.220 0.65 224.82 0.66 4.64 224.82 875.75 0.345 2.59 882.50 2.61 18.22 20.15 875.75 0.312 2.59 878.91 2.60 18.15 21.24 1.50 0.015

Asentamiento = 4"

	Deter	minación de	el Agua de	e Diseño			_	
A/P= 50 50		a/c	= 0.70	Agua	= 220	lit/m3		
	Dosificación por m³ de Concreto			Dosif	icación po	D. por m3 de Concreto		
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volum en (pie3)	D.U.O. (en vol.)
cemento	314.29	0.101	1.00	314.29	1.00	6.50	7.39	1.00
agua	220.00	0.220	0.70	224.87	0.72	4.65	224.87	30.41
arena: 50 %	886.13	0.349	2.82	892.95	2.84	18.46	20.39	2.76
piedra: 50 %	886.13	0.315	2.82	889.32	2.83	18.39	21.49	2.91
aire atrap. (%)	1.50	0.015						
total:		0.336			7.39	48.00		
				Asenta	miento =	4"		

CUADRO Nº4.2.3

Tipo de Cemento: Sol tipo I

Módulo de Finura Arena 2 (M.F.A2):3.40

Agua: LEM - FIC UNI

Determinación del Agua de Diseño										
A/P= 50 50										
Dosificación por m³ de Concreto				Dosific	cación po	r tanda	D. por m3 de Concreto			
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)		
cemento	358.33	0.115	1.00	358.33	1.00	7.36	8.43	1.00		
agua	215.00	0.215	0.60	219.81	0.61	4.52	219.81	26.07		
arena: 50 %	873.90	0.344	2.44	880.63	2.46	18.10	20.11	2.38		
piedra: 50 %	873.90	0.311	2.44	877.05	2.45	18.02	21.19	2.51		
aire atrap. (%)	1.50	0.015								
total:		0.345			6.52	48.00				

Asentamiento = 3 3/4" Determinación del Agua de Diseño a/c= 0.65 Dosificación por m³ de A/P= 50 50 lit/m3 Agua= 210 D. por m3 de Concreto Concreto Dosificación por tanda Material Peso Volumen D.O. Tanda Volumen D.U.O. D.U.S. D.U.O. Absoluto seco (kg/m3) (48kg) (pie3) (en vol.) (kg) (m3)1.00 cemento 323.08 0.104 1.00 323.08 6.63 7.60 1.00 agua 210.00 0.210 0.65 214.93 0.67 4.41 214.93 28.27 arena: 50 % 895.70 0.352 2.77 902.60 2.79 18.52 20.61 2.71 piedra: 50 % 898.93 2.78 18.44 21.72 2.86 895.70 0.319 2.77 aire atrap. (%) 1.50 0.015 7.24 total: 0.329 48.00

3 3/4" Asentamiento = Determinación del Agua de Diseño A/P= 50 50 a/c = 0.70Agua= 210 lit/m3 Dosificación por m³ de D. por m3 de Concreto Concreto Dosificación por tanda Material Peso Volumen D.O. Tanda Volumen D.U.O. D.U.O. D.U.S. **Absoluto** seco (kg/m3) (48kg) (pie3) (en vol.) (kg) (m3)300.00 1.00 300.00 1.00 6.16 7.06 1.00 cemento 0.096 214.98 0.72 4.42 214.98 30.46 agua 210.00 0.210 0.70 3.04 18.75 20.84 2.95 arena: 50 % 905.61 0.356 3.02 912.58 piedra: 50 % 905.61 0.322 3.02 908.87 3.03 18.67 21.96 3.11 aire atrap. (%) 1.50 0.015 7.79 48.00 total: 0.321 4" Asentamiento =

CUADRO Nº4.2.4

Tipo de Cemento: Sol tipo I

Módulo de Finura Arena 3 (M.F.A3):3.60

Agua: LEM - FIC UNI

Determinación del Agua de Diseño											
A/P= 50 50			0.60	Agua=	218	lit/m3					
	Dosifi	cación por n Concreto	Dosific	ación por	D. por m3 de Concreto						
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)			
cemento	363.33	0.117	1.00	363.33	1.00	7.48	8.55	1.00			
agua	218.00	0.218	0.60	222.77	0.61	4.59	222.77	26.06			
arena: 50 %	867.75	0.341	2.39	874.43	2.41	18.00	19.97	2.34			
piedra: 50 %	867.75	0.309	2.39	870.87	2.40	17.93	21.04	2.46			
aire atrap. (%)	1.50	0.015									
total:		0.350			6.42	48.00					

Asentamiento = 4"

				ASCITO								
	Determinación del Agua de Diseño											
A/P= 50_50		a/c=	0.65	Agua=	213_	lit/m3						
Material	Dosificación por m³ de Concreto			Dosificación por tanda			D. por m3 de Concreto					
	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)				
cemento	327.69	0.105	1.00	327.69	1.00	6.74	7.71	1.00				
agua	213.00	0.213	0.65	217.89	0.66	4.48	217.89	28.26				
arena: 50 %	889.72	0.350	2.72	896.57	2.74	18.43	20.47	2.66				
piedra: 50 %	889.72	0.317	2.72	892.92	2.72	18.35	21.58	2.80				
aire atrap. (%)	1.50	0.015										
total:		0.333			7.13	48.00						

Asentamiento = 4"

	Determ	ninación del .	Agua de	Diseño				
A/P= 50 50		a/c=	0.70	Agua=	208	lit/m3		
	Dosificación por m ³ de						D. por m3 de	
i		Concreto		Dositica	ción por	Cone	creto	
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)
cemento	297.14	0.096	1.00	297.14	1.00	6.10	6.99	1.00
agua	208.00	0.208	0.70	213.00	0.72	4.37	213.00	30.47
arena: 50 %	909.50	0.358	3.06	916.50	3.08	18.80	20.93	2.99
piedra: 50 %	909.50	0.324	3.06	912.78	3.07	18.73	22.06	3.15
aire atrap. (%)	1.50	0.015						
total:		0.319			7.87	48.00		

Asentamiento = 3 3/4"

CAPITULO 5:

PROPIEDADES DEL CONCRETO FRESCO

CAPITULO 5

PROPIEDADES DEL CONCRETO FRESCO

5.1 INTRODUCCION

El estudio y evaluación de las propiedades del concreto, en estado fresco es de vital importancia; por cuanto nos permiten controlar las características y demás parámetros para la obtención del concreto endurecido; un buen estudio y una correcta evaluación nos conduce a la obtención de mezclas optimas y también nos permite visualizar la existencia de segregación; cuantificar el desplazamiento o flujo que se produce en el concreto fresco, como también su consistencia, para finalmente realizar las correcciones necesarias a fin de cumplir los requerimientos establecidos para cada proyecto.

Todas las propiedades del concreto en estado endurecido dependen de las propiedades del concreto en estado fresco.

Del mismo modo el tiempo de fraguado tiene una vital importancia en obra ya que conociendo el tiempo de fraguado inicial y final, nos permite conocer el tiempo que se dispone durante el proceso constructivo; para una buena colocación y acabados en obras de concreto.

En este capítulo se realizara la descripción y obtención detallada de cada uno de los ensayos, el procedimiento y normas que la rigen.

Presento a continuación las siguientes propiedades del concreto al estado fresco que se han realizado, a fin de cumplir mi tema de investigación.

- Ensayo de Consistencia por el método de asentamiento con el cono de Abrams (NTP 339.035 – 1999)
- Ensayo del Peso Unitario (NTP 339.046 1979)
- Ensayo de Fluidez (NTP 339.085 1981)
- Ensayo de Exudación (NTP 339.077 2003)
- Ensayo del Tiempo de fraguado (NTP 339.082 2001)

5.2 ENSAYO DE CONSISTENCIA

Norma

NTP 339.035

La consistencia es también llamada SLUMP o medida del asentamiento; es el primer ensayo que se realiza al concreto, mediante este ensayo se determina la aceptación o rechazo de un diseño de mezcla de concreto, para lo cual se considera los requerimientos de diseño, tales como:

- a. Mezclas secas: Asentamiento 0 2" (pavimentos).
- b. Mezclas plásticas: Asentamiento3" 4" (columnas y vigas)
- Mezclas fluidas : Asentamiento > 5 " (Zonas de gran concentración de acero)

Este ensayo nos da una medida indirecta de la trabajabilidad y la cohesividad de la mezcla.

En tecnología del concreto, se define la consistencia como la propiedad del concreto fresco que determina la humedad de la mezcla, por el grado de fluidez de la misma; significando esto que cuanto mas húmeda la mezcla mayor será la facilidad con que el concreto fluirá durante el proceso de colocación.

5.2.1 MEDIDA DE LA CONSISTENCIA

Para cuantificar la consistencia del concreto existen diferentes métodos de laboratorio, considerándose que de todos ellos EL ENSAYO DEL ASENTAMIENTO medido por el CONO DE ABRAMS es el que da mejores resultados en obra. Este método también es conocido como método del cono de Asentamiento o método del SLUMP y se define la consistencia de la mezcla de concreto por el asentamiento medido en pulgadas o milímetros de una masa de concreto que previamente ha sido colocada y compactada en un molde metálico de forma tronco-cónica con las siguientes dimensiones; diámetro de la base menor = 10 cm, diámetro de la base mayor = 20 cm, altura= 30 cm y una varilla compactadora de acero, lisa y sección circular cuyo diámetro es 5/8" de 60 cm de longitud terminada en punta semiesférica o de bola (punta roma)

5.3 ENSAYO DEL PESO UNITARIO

Norma

NTP 339.035

5.3.1 DENSIDAD

Se define como densidad del concreto a la relación del volumen de sólidos al volumen total de una unidad cubica. Puede igualmente entenderse como el porcentaje de un determinado volumen de concreto que es material sólido.

5.3.2 PESO UNITARIO

El peso unitario del concreto es el peso varillado de una muestra representativa del concreto. Se expresa en Kg/m³.

De las dos definiciones se aprecia que las variaciones en las propiedades de los componentes del concreto pueden afectar la densidad y el peso unitario en forma diferente.

Así por ejemplo, modificaciones en el peso específico del agregado, incrementaran o disminuirán el peso unitario sin modificar la densidad.

Por otra parte, incrementos en el contenido de aire disminuirá tanto el peso unitario como la densidad. Igualmente ambos se incrementan con la compactación al disminuir los poros de aire atrapado.

5.3.3 IMPORTANCIA DEL PESO UNITARIO

El peso unitario del concreto se emplea para determinar el rendimiento de las mezclas, el contenido de cemento, grado de compactación, así como el contenido de aire.

El peso unitario del concreto es importante en el diseño de mezclas para concretos livianos o pesados.

El peso unitario del concreto varía generalmente por el tipo de agregado empleado, lo que da lugar a que los concretos se clasifican en:

- Concreto de peso normal
- Concretos livianos
- Concretos pesados

5.4 ENSAYO DE FLUIDEZ (PORCENTAJE DE FLUJO)

Norma

NTP 339.035

El grado de fluidez de una mezcla de concreto se cuantifica mediante el porcentaje de flujo, que es uno de los métodos usados para determinar el índice de consistencia del concreto fresco.

El ensayo se realiza en la mesa de sacudidas; donde se determina el aumento del diámetro que experimenta la base inferior de un tronco de cono de masa de concreto fresco de una muestra representativa, la que es sometida a sacudidas sucesivas.

5.5 ENSAYO DE EXUDACION

Norma

NTP 339.035

La exudación viene ha ser el flujo de agua de la mezcla, es la propiedad por la cual una parte del agua de mezcla se separa de la masa de concreto y sube hacia la superficie.

La exudación empieza momentos después de que el concreto ha sido colocado y consolidado en los encofrados.

Es generado como consecuencia de la sedimentación de los sólidos dentro de la masa de concreto.

5.6 ENSAYO DEL TIEMPO DE FRAGUADO

Norma

NTP 339.035

Este ensayo se realiza para determinar la velocidad de endurecimiento que experimenta una muestra de concreto fresco.

La norma establece el método de ensayo para determinar el tiempo de fraguado del concreto fresco con asentamiento superior a cero, por medio de agujas metálicas de penetración, de diferentes diámetros sobre una muestra de concreto que ha sido previamente tamizada por la malla Nº4 (4.76 mm).

Se mide las cargas de penetración aplicadas y se hace un registro de ellos.

Se considera que la fragua inicial se produce cuando la presión de penetración es de 500 lib/pulg² y la fragua final cuando la presión de penetración es de 4000 lib/pulg².

CAPITULO 6:

PROPIEDADES DEL CONCRETO ENDURECIDO

CAPITULO 6

PROPIEDADES DEL CONCRETO ENDURECIDO

6.1 INTRODUCCION:

Para conocer el comportamiento del concreto en estado endurecido, se debe evaluar cada una de sus propiedades y la experiencia de anteriores investigaciones nos permiten afirmar que en general, todas las propiedades del concreto endurecido están íntimamente ligadas con la resistencia ya que este es el parámetro que permite cuantificar la calidad del concreto.

Los ensayos del concreto en estado endurecido, nos permiten evaluar la resistencia, la uniformidad del concreto así como el grado de control alcanzado, lo cual nos garantiza una buena calidad del concreto.

Debe tenerse presente que cuando se diseña mezclas de concreto, en muchos casos factores ajenos a la resistencia pueden afectar las otras propiedades. Este parámetro de resistencia se define como el máximo esfuerzo que soporta el material sin romperse, como el concreto está destinado a soportar esfuerzos de compresión, es la resistencia a dichos esfuerzos la que se utiliza como índice de calidad para aceptar que un concreto es bueno o malo.

Este valor de la resistencia depende directamente de la relación agua/cemento, del tiempo transcurrido del tipo de cemento, granulometría de los agregados, tiempo y método de curado y método de compactación.

En este capítulo se definen y cuantifican las propiedades del concreto en estado endurecido y mediante ellos se evalúa la resistencia, la plasticidad en el rango elástico y la flexibilidad para tal fin se realizara los métodos establecidos según normas.

- Ensayo de Resistencia a la Compresión (NTP 339.034).
- Ensayo de Resistencia a la Tracción por Compresión Diametral (NTP 339.084).
- Ensayo del Módulo de Elasticidad Estático (ASTM C- 469).

6.2 RESISTENCIA A LA COMPRESION

Norma NTP 339.034

Está definida como la capacidad de soportar las cargas y esfuerzos de compresión como el concreto es más resistente a la solicitación de dicha carga, entonces su calidad se establece por el valor de su resistencia a la compresión.

Para su evaluación se utilizara probetas moldeadas con concreto fresco, de las siguientes dimensiones: diámetro=10 cm, altura=20 cm.

Estas probetas moldeadas de concreto fresco serán curadas durante, 7, 14 y 28 días, luego son sometidas a la prueba de compresión en una maquina hidráulica a velocidad de carga constante comprendida entre 21 N/S (210 Kg/s) y 30 N/S (300 Kg/s).

Los resultados del ensayo de resistencia a la compresión se muestran en el anexo E, en los cuadros Nº6.1.1 al Nº6.1.9.

6.3 RESISTENCIA A LA TRACCION POR COMPRESION DIAMETRAL

Norma NTP 339.84

Generalmente las estructuras de concreto se diseñan asumiendo que el concreto carece de resistencia a la tracción y que solamente es capaz de resistir esfuerzos de compresión, lo que caracteriza al concreto.

En otras cosas la resistencia a la tracción del concreto es estimada en función de la resistencia en compresión.

Pero los esfuerzos de tracción se pueden medir en forma indirecta mediante el ensayo de compresión diametral, el cual se le conoce también como tracción indirecta.

Los resultados del ensayo de resistencia a la tracción por compresión diametral se muestran en el anexo E, en los cuadros Nº6.2.1 al Nº6.2.3.

6.4 MODULO DE ELASTICIDAD ESTATICO

Norma ASTM C - 469

La elasticidad del concreto se define como la capacidad de deformación bajo carga pero sin tener una deformación permanente.

El concreto no es un material perfectamente elástico, es decir que el diagrama de esfuerzo – deformación, no presenta ningún tramo recto, solo curvo, pero existe una zona donde esta curva se asemeja a un comportamiento elástico y es donde se define su módulo elástico para fines prácticos

Este módulo de elasticidad estático convencionalmente se acostumbra definir mediante una recta tangente a la parte inicial del diagrama o una recta secante que une el origen del diagrama con un punto establecido, que normalmente es un % de la tensión ultima.

El conocimiento del módulo elástico es de vital importancia, ya que nos permite evaluar las tensiones debido a cambios de temperatura, también se emplea para calcular las deformaciones en las estructuras y la repartición de cargas entre el acero y el concreto.

El módulo elástico varía entre 250 000 y 350 000 Kg/cm² y está en relación directa con la resistencia en compresión e inversamente proporcional con la relación agua-cemento.

Los resultados del ensayo de módulo de elasticidad estático se muestran en el anexo E, en los cuadros Nº6.3.1 al Nº6.3.9.

CAPITULO 7:

ANALISIS DE LOS RESULTADOS

CAPITULO 7

ANALISIS DE LOS RESULTADOS

7.1. GENERALIDADES

En el presente capítulo se mostraran y analizaran los resultados obtenidos en los ensayos realizados en el laboratorio, sobre la elaboración del concreto en el estado fresco y endurecido basándonos en los cuadros y gráficos realizados.

En todo estudio de investigación el análisis de los resultados constituye una parte esencial y de vital importancia ya que a partir del análisis e interpretación de los resultados obtenidos en cada uno de los ensayos realizados al concreto, nos permite, obtener las conclusiones y recomendaciones inherentes de la presente investigación.

Antes de realizar este análisis debemos indicar que se ha trabajado con tres tipos de relaciones a/c (0.60, 0.65 y 0.70), para la cual se utilizó un concreto normal, para la elaboración de las probetas o las muestras para los diferentes ensayos ; utilizando el cemento Portland Tipo I "Sol" fabricado por Cementos Lima. Los ensayos fueron realizados en el Laboratorio de Ensayos de Materiales de la facultad de ingeniería civil de la Universidad Nacional de Ingeniería (Lima).

7.2. CUADROS DE RESULTADOS DEL CONCRETO EN ESTADO FRESCO Y ENDURECIDO

Los cuadros de resultados de los ensayos de concreto en estado fresco y estado endurecido se presentan a continuación; estos cuadros fueron obtenidos a partir de los diseños de mezclas finales realizados en el capítulo 4, para mezclas plásticas (3"-4").

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERÍA CIVIL

CUADRO 7.1

ENSAYOS DE CONCRETO FRESCO CUADRO RESUMEN

MODULO DE	RELACION	ENSAYOS					
FINURA DEL	TEL TOTON	CONSISTENCIA	FLUIDEZ	EXUDACION	PESO	TIEMPO DE	FRAGUADO
AGREGADO FINO	A/C	CONSISTENCIA	FLUIDEZ	EXUDACION	UNITARIO	T.F.I.	T.F.F.
7 1110		(Pulg.)	(%)	(%)	(Kg/m3)	(h:m)	(h:m)
MUESTRA "A1" 0.60 0.65	0.60	3 1/2 "	74.0	1.276	2342.42	04:24	05:40
	0.65	3 3/4 "	78.0	1.098	2341.37	04:35	05:50
M.F.A1 = 3.00	0.70	3 1/2 "	80.0	1.148	2336.08	04:50	05:55
NAU IE OZDA IIA OU	0.60	3 1/2 "	85.7	1.102	2335.02	04:45	06:00
MUESTRA "A2"	0.65	4"	84.0	1.061	2337.14	04:35	06:00
M.F.A2 = 3.40	0.70	3 3/4 "	87.0	1.006	2332.90	04:20	05:50
141 IF CTD 4 II 4 CII	0.60	3 3/4 "	92.3	0.520	2333.96	04:50	06:18
MUESTRA "A3"	0.65	3 1/2 "	95.0	0.654	2331.84	04:48	06:36
M.F.A3 = 3.60	0.70	3 3/4 "	98.3	0.695	2330.78	04:51	06:14

LEYENDA FUENTE: ELABORACION PROPIA

Cemento : Sol tipo I

Agregado Fino : Cantera "Trapiche"
Agregado Grueso : Cantera " La Gloria "
M.F.A.1 : Módulo de finura Arena 1
M.F.A.2 : Módulo de finura Arena 2
M.F.A.3 : Módulo de finura Arena 3

CUADRO 7.2

ENSAYOS DE CONCRETO ENDURECIDO CUADRO RESUMEN

MODULO DE	RELACION	ENSAYOS EDAD: 28 DIAS						
FINURA DEL AGREGADO FINO	A/C	RESISTENCIA A LA COMPRESION (Kg/cm2)	RESISTENCIA A LA TRACCION (Kg/cm2)	MODULO DE ELASTICIDAD ESTATICO (Kg/cm2)				
	0.60	345.92	34.31	335048.15				
MUESTRA "A1"	0.65	294.22	32.38	333717.63				
M.F.A1 = 3.00	0.70	261.46	29.59	297808.40				
A MUEOTO A MAQU	0.60	304.39	29.64	274703.28				
MUESTRA "A2"	0.65	280.49	28.68	265363.43				
M.F.A2 = 3.40	0.70	250.84	27.56	261864.20				
A SULFOTO A UACU	0.60	233.39	28.77	277598.91				
MUESTRA "A3"	0.65	204.66	28.13	256517.98				
M.F.A3 = 3.60	0.70	195.79	26.91	253135.39				

LEYENDA FUENTE: ELABORACION PROPIA

Cemento : Sol tipo I

Agregado Fino : Cantera "Trapiche"
Agregado Grueso : Cantera " La Gloria "
M.F.A.1 : Módulo de finura Arena 1
M.F.A.2 : Módulo de finura Arena 2
M.F.A.3 : Módulo de finura Arena 3

CUADRO 7.3 ENSAYOS DE RESISTENCIA A LA COMPRESION CUADRO RESUMEN

MODULO DE FINURA DEL	RELACION	RESISTENCIA A LA COMPRESION (EDAD DIAS)				
AGREGADO FINO	A/C	7	14	28		
	0.60	247.61	289.41	345.92		
MUESTRA "A1" M.F.A1 = 3.00	0.65	227.14	266.91	294.22		
	0.70	220.29	241.44	261.46		
NAUTOTO A HAOH	0.60	257.30	281.88	304.39		
MUESTRA "A2" M.F.A2 = 3.40	0.65	236.98	256.91	280.49		
W.F.AZ = 3.40	0.70	205.31	231.74	250.84		
MUESTRA "A3" M.F.A3 = 3.60	0.60	189.89	212.42	233.39		
	0.65	136.78	181.44	204.66		
	0.70	129.76	148.61	195.79		

FUENTE: ELABORACION PROPIA

LEYENDA
Cemento : Sol tipo I

Agregado Fino : Cantera "Trapiche"
Agregado Grueso : Cantera " La Gloria "

M.F.A.1 : Módulo de finura Arena 1
M.F.A.2 : Módulo de finura Arena 2
M.F.A.3 : Módulo de finura Arena 3

CUADROS Y GRAFICOS COMPARATIVOS CONCRETO FRESCO

CUADRO 7.4

ANALISIS COMPARATIVO DEL CONCRETO FRESCO CON RESPECTO AL CONCRETO PATRON ENSAYO DE CONSISTENCIA

MODULO DE FINURA DEL AGREGADO FINO	RELACION A/C	CONSISTENCIA (Pulg.)	VARIACION (Pulg.)	CONSISTENCIA COMO % DEL CONCRETO PATRON
	0.60	3 2/4	0.00	100.00
MUESTRA "A1" M.F.A1 = 3.00	0.65	3 3/4	0.00	100.00
IVI.F.A 1 - 3.00	0.70	3 2/4	0.00	100.00
MALIECTE A MACH	0.60	3 2/4	0.00	100.00
MUESTRA "A2"	0.65	4	- 1/4	106.67
M.F.A2 = 3.40	0.70	3 3/4	- 1/4	107.14
AALIECTDA KAOK	0.60	3 3/4	- 1/4	107.14
MUESTRA "A3"	0.65	3 2/4	1/4	93.33
M.F.A3 = 3.60	0.70	3 3/4	- 1/4	107.14

LEYENDA FUENTE: ELABORACION PROPIA

Cemento : Sol tipo I

Agregado Fino : Cantera "Trapiche"

Agregado Grueso : Cantera " La Gloria "

M.F.A.1 : Módulo de finura Arena 1

M.F.A.2 : Módulo de finura Arena 2

M.F.A.3 : Módulo de finura Arena 3

CUADRO 7.5

ANALISIS COMPARATIVO DEL CONCRETO FRESCO CON RESPECTO AL CONCRETO PATRON ENSAYO DE FLUIDEZ

MODULO DE FINURA DEL	RELACION	INDICE DE FLUIDEZ	VARIACION	FLUIDEZ COMO % DEL CONCRETO
AGREGADO FINO	A/C	(%)	(%)	PATRON
MUESTRA "A1"	0.60	74.0	0.00	100.00
M.F.A1 = 3.00	0.65	78.0	0.00	100.00
IVI.F.A1 - 3.00	0.70	0.08	0.00	100.00
MUESTRA "A2"	0.60	85.7	-11.70	115.81
M.F.A2 = 3.40	0.65	84.0	-6.00	107.69
IVI.F.A2 - 3.40	0.70	87.0	-7.00	108.75
MULTICETO A MACH	0.60	92.3	-18.30	124.73
MUESTRA "A3"	0.65	95.0	-17.00	121.79
M.F.A3 = 3.60	0.70	98.3	-18.30	122.88

LEYENDA FUENTE: ELABORACION PROPIA

Cemento : Sol tipo I

Agregado Fino : Cantera "Trapiche"
Agregado Grueso : Cantera " La Gloria "
M.F.A.1 : Módulo de finura Arena 1
M.F.A.2 : Módulo de finura Arena 2
M.F.A.3 : Módulo de finura Arena 3

CUADRO 7.6

ANALISIS COMPARATIVO DEL CONCRETO FRESCO CON RESPECTO AL CONCRETO PATRON ENSAYO DE EXUDACION

MODULO DE FINURA DEL AGREGADO FINO	RELACION A/C	EXUDACION (%)	VARIACION (%)	EXUDACION COMO % DEL CONCRETO PATRON
MULCEDA "A4"	0.60	1.276	0.00	100.00
MUESTRA "A1" M.F.A1 = 3.00	0.65	1.098	0.00	100.00
IVI.F.A1 = 3.00	0.70	1.148	0.00	100.00
NAUTOTO A UAQU	0.60	1.102	0.17	86.36
MUESTRA "A2" M.F.A2 = 3.40	0.65	1.061	0.04	96.63
WI.F.AZ = 3.40	0.70	1.006	0.14	87.63
MULCOTO A MAGIL	0.60	0.520	0.76	40.75
MUESTRA "A3"	0.65	0.654	0.44	59.56
M.F.A3 = 3.60	0.70	0.695	0.45	60.54

LEYENDA FUENTE: ELABORACION PROPIA

Cemento : Sol tipo I

Agregado Fino : Cantera "Trapiche"
Agregado Grueso : Cantera " La Gloria "
M.F.A.1 : Módulo de finura Arena 1
M.F.A.2 : Módulo de finura Arena 2
M.F.A.3 : Módulo de finura Arena 3

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERÍA CIVIL

CUADRO 7.7

ANALISIS COMPARATIVO DEL CONCRETO FRESCO CON RESPECTO AL CONCRETO PATRON ENSAYO DE PESO UNITARIO

MODULO DE FINURA DEL AGREGADO FINO	RELACION A/C	PESO UNITARIO (Kg/m3)	VARIACION (Kg/m3)	PESO UNITARIO COMO % DEL CONCRETO PATRON
MUESTRA "A1"	0.60	2342.42	0.00	100.00
M.F.A1 = 3.00	0.65	2341.37	0.00	100.00
W.F.A1 - 3.00	0.70	2336.08	0.00	100.00
MULECTEA "AO"	0.60	2335.02	7.40	99.68
MUESTRA "A2" M.F.A2 = 3.40	0.65	2337.14	4.23	99.82
WI.F.AZ - 3.40	0.70	2332.90	3.18	99.86
MALICOTO A "A O"	0.60	2333.96	8.46	99.64
MUESTRA "A3" M.F.A3 = 3.60	0.65	2331.84	9.53	99.59
IVI.F.A3 ~ 3.00	0.70	2333.50	2.58	99.89

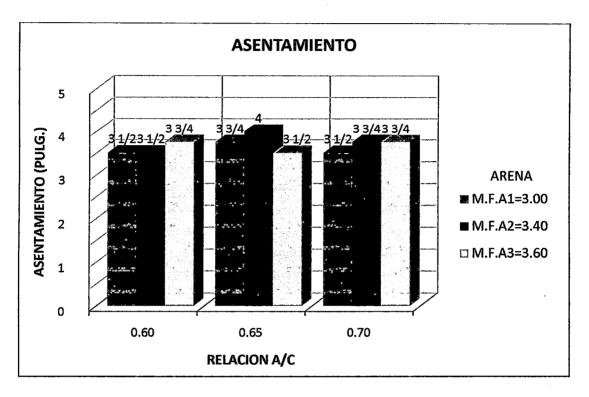
LEYENDA FUENTE: ELABORACION PROPIA

Cemento : Sol tipo I

Agregado Fino : Cantera "Trapiche"
Agregado Grueso : Cantera " La Gloria "
M.F.A.1 : Módulo de finura Arena 1
M.F.A.2 : Módulo de finura Arena 2
M.F.A.3 : Módulo de finura Arena 3

CUADRO 7.8

ANALISIS COMPARATIVO DEL CONCRETO FRESCO CON RESPECTO AL CONCRETO PATRON ENSAYO DE TIEMPO DE FRAGUADO


MODULO DE FINURA DEL AGREGADO	RELACION	TIEMPO DE FRAGUADO		VARIACION		TIEMPO DE FRAGUADO COMO % DEL CONCRETO PATRON	
FINO		T.F.I.	T.F.F.	T.F.I.	T.F.F.	T.F.I.	T.F.F.
	A/C	(h:m)	(h:m)	(h:m)	(h:m)	(%)	(%)
NAUTOTO A NASTI	0.60	04:24	05:40	0:00	0:00	100	100
MUESTRA "A1" M.F.A1 = 3.00	0.65	04:35	05:50	0:00	0:00	100	100
WI.F.A1 = 3.00	0.70	04:50	05:55	0:00	0:00	100	100
AALIECTDA IIA 211	0.60	04:45	06:00	0:21	0:20	107.95	105.88
MUESTRA "A2" M.F.A2 = 3.40	0.65	04:35	06:00	0:00	0:10	100.00	102.86
IVI.F.AZ = 3.4U	0.70	04:20	05:50	-0:30	-0:05	89.66	98.59
MUESTRA "A3"	0.60	04:50	06:18	0:26	0:38	109.85	111.18
M.F.A3 = 3.60	0.65	04:48	06:36	0:13	0:46	104.73	110.00
IVI.F.A3 = 3.00	0.70	04:51	06:14	0:01	0:19	100.34	105.35

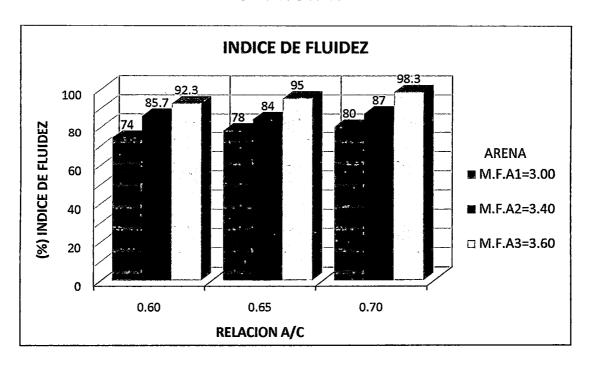
LEYENDA FUENTE: ELABORACION PROPIA

Cemento : Sol tipo I

Agregado Fino : Cantera "Trapiche"
Agregado Grueso : Cantera " La Gloria "
M.F.A.1 : Módulo de finura Arena 1
M.F.A.2 : Módulo de finura Arena 2
M.F.A.3 : Módulo de finura Arena 3

GRAFICOS COMPARATIVOS CONCRETO FRESCO

FUENTE: ELABORACION PROPIA


LEYENDA:

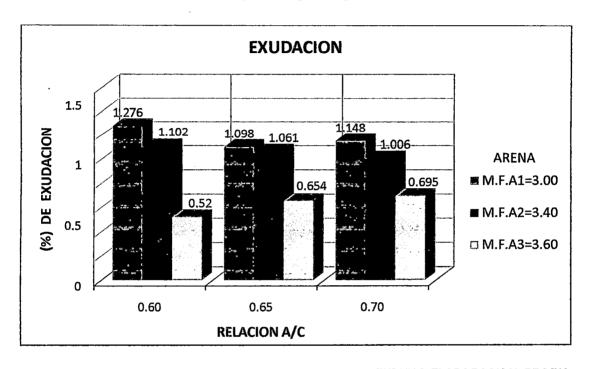
Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA


LEYENDA:

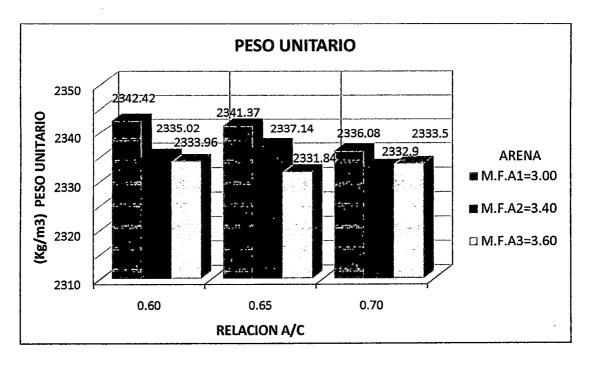
Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA


LEYENDA:

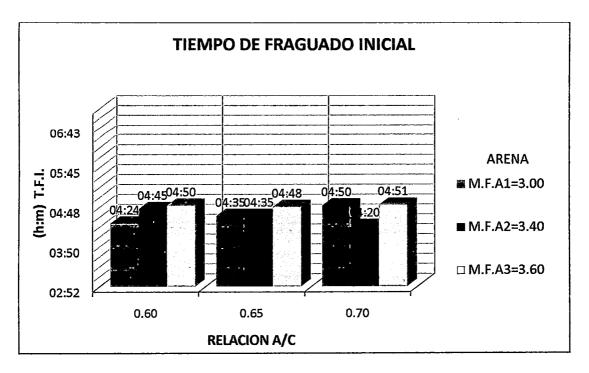
Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA


LEYENDA:

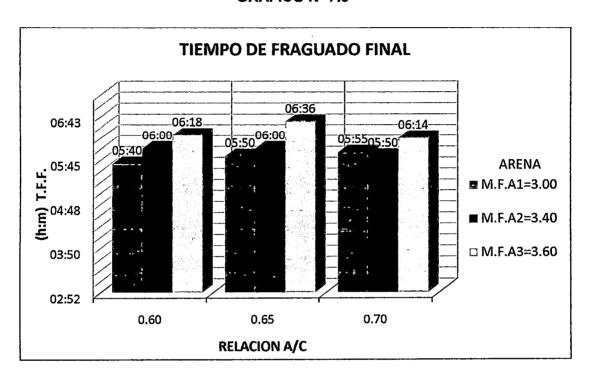
Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA


LEYENDA:

Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA

LEYENDA:

Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

CUADROS Y GRAFICOS COMPARATIVOS CONCRETO ENDURECIDO

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERÍA CIVIL

CUADRO 7.9

ANALISIS COMPARATIVO DEL CONCRETO ENDURECIDO CON RESPECTO AL CONCRETO PATRON ENSAYO DE RESISTENCIA A LA COMPRESION

EDAD	RELACION	MUESTRA A1		MUESTRA A2		MUESTRA A3	
(DIAS)	(DIAS) A/C	f'c (Kg/cm2)	(%)	fc (Kg/cm2)	(%)	fc (Kg/cm2)	(%)
	0.60	247.61	100.00	257.30	103.91	189.89	76.69
7	0.65	227.14	100.00	236.98	104.33	136.78	60.22
	0.70	220.29	100.00	205.31	93.20	129.76	58.90
· · · · · · · · · · · · · · · · · · ·	0.60	289.41	100.00	281.88	97.40	212.42	73.40
14	0.65	266.91	100.00	256.91	96.25	181.44	67.98
	0.70	241.44	100.00	231.74	95.98	148.61	61.55
	0.60	345.92	100.00	304.39	87.99	233.39	67.47
28	0.65	294.22	100.00	280.49	95.33	204.66	69.56
	0.70	261.46	100.00	250.84	95.94	195.79	74.88

LEYENDA FUENTE: ELABORACION PROPIA

Cemento

: Sol tipo I

Agregado Fino Agregado Grueso : Cantera "Trapiche" : Cantera " La Gloria "

M.F.A.1

: Módulo de finura Arena 1

M.F.A.2 M.F.A.3 : Módulo de finura Arena 2 : Módulo de finura Arena 3

Laboratorio

: LEM - FIC- UNI

CUADRO 7.10

ANALISIS COMPARATIVO DEL CONCRETO ENDURECIDO CON RESPECTO AL CONCRETO PATRON ENSAYO DE RESISTENCIA A LA TRACCION POR COMPRESION DIAMETRAL

MODULO DE FINURA DEL AGREGADO FINO	RELACION A/C	F't (Kg/cm2)	VARIACION (Kg/cm2)	F't COMO % DEL CONCRETO PATRON
MUESTRA "A1"	0.60	34.31	0.00	100.00
M.F.A1 = 3.00	0.65	32.38	0.00	100.00
IVI.P.A1 = 3.00	0.70	29.59	0.00	100.00
MALIECTE A MACH	0.60	29.64	4.67	86.39
MUESTRA "A2"	0.65	28.68	3.70	88.57
M.F.A2 = 3.40	0.70	27.56	2.03	93.14
AN ICCTOA NAON	0.60	28.77	5.54	83.85
MUESTRA "A3"	0.65	28.13	4.25	86.87
M.F.A3 = 3.60	0.70	26.91	2.68	90.94

LEYENDA FUENTE: ELABORACION PROPIA

Cemento : Sol tipo I

Agregado Fino : Cantera "Trapiche"

Agregado Grueso : Cantera " La Gloria "

M.F.A.1 : Módulo de finura Arena 1

M.F.A.2 : Módulo de finura Arena 2

M.F.A.3 : Módulo de finura Arena 3

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERÍA CIVIL

CUADRO 7.11

ANALISIS COMPARATIVO DEL CONCRETO ENDURECIDO CON RESPECTO AL CONCRETO PATRON
ENSAYO DE MODULO ELASTICO ESTATICO

MODULO DE FINURA DEL AGREGADO FINO	RELACION A/C	M.E.E. (Kg/cm2)	VARIACION (Kg/cm2)	M.E.E. COMO % DEL CONCRETO PATRON
MUESTRA "A1"	0.60	335048.15	0.00	100.00
M.F.A1 = 3.00	0.65	333717.63	0.00	100.00
WI.F.A1 - 3.00	0.70	297808.40	0.00	100.00
AALIECTDA HAOH	0.60	274703.28	60344.87	81.99
MUESTRA "A2" M.F.A1 = 3.40	0.65	265363.43	68354.20	79.52
WI.F.A1 = 3.40	0.70	261864.20	35944.20	87.93
	0.60	277598.91	57449.24	82.85
MUESTRA "A3"	0.65	256517.98	77199.65	76.87
M.F.A1 = 3.60	0.70	253135.39	44673.01	85.00

LEYENDA FUENTE: ELABORACION PROPIA

Cemento : Sol tipo !

Agregado Fino : Cantera "Trapiche"
Agregado Grueso : Cantera " La Gloria "
M.F.A.1 : Módulo de finura Arena 1
M.F.A.2 : Módulo de finura Arena 2
M.F.A.3 : Módulo de finura Arena 3

CUADRO 7.12

ENSAYOS DE CONCRETO ENDURECIDO CUADRO COMPARACION DE RESISTENCIA A LA TRACCION TEORICO Y EXPERIMENTAL

MODULO DE	RELACION		ENSAYOS EDAD: 28 DIAS		
MODULO DE FINURA DEL AGREGADO FINO	A/C	RESISTENCIA A LA COMPRESION (Kg/cm2)	RESISTENCIA A LA TRACCION (LABORATORIO) (Kg/cm2)	RESISTENCIA A LA TRACCION (TEORICO) (Kg/cm2)	% ERROR
AUEOTDA UAAU	0.60	345.92	34.31	31.62	8.51
MUESTRA "A1"	0.65	294.22	32.38	29.16	11.04
M.F.A1 = 3.00	0.70	261.46	29.59	27.49	7.64
A AL IE OT DA II A OII	0.60	304.39	29.64	29.66	-0.07
MUESTRA "A2"	0.65	280.49	28.68	28.47	0.73
M.F.A2 = 3.40	0.70	250.84	27.56	26.92	2.36
NALIECTE A HACK	0.60	233.39	28.77	25.97	10.78
MUESTRA "A3"	0.65	204.66	28.13	24.32	15.67
M.F.A3 = 3.60	0.70	195.79	26.91	23.79	13.13

LEYENDA FUENTE: ELABORACION PROPIA

Cemento

: Sol tipo I

Agregado Fino

: Cantera "Trapiche"

Agregado Grueso

: Cantera " La Gloria "

%E=(<u>LAB-TEO</u>) *100

M.F.A.1

: Módulo de finura Arena 1

TEO

M.F.A.2

: Módulo de finura Arena 2

M.F.A.3

: Módulo de finura Arena 3

 $f't = 1.7 * \sqrt{f'c}$ en Kg/cm2

ACI 318-89

Laboratorio

: LEM - FIC- UNI

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERÍA CIVIL

CUADRO 7.13

ENSAYOS DE CONCRETO ENDURECIDO CUADRO COMPARACION DE MODULO DE ELASTICIDAD ESTATICO TEORICO Y EXPERIMENTAL

MODULO DE FINURA DEL AGREGADO FINO	RELACION A/C	ENSAYOS EDAD: 28 DIAS			
		RESISTENCIA A LA COMPRESION (Kg/cm2)	MODULO DE ELASTICIDAD (LABORATORIO) (Kg/cm2)	MODULO DE ELASTICIDAD (TEORICO) (Kg/cm2)	% ERROR
MUESTRA "A1" M.F.A1 = 3.00	0.60	345.92	335048.15	278853.68	20.15
	0.65	294.22	333717.63	257172.57	29.76
	0.70	261.46	297808.40	242432.68	22.84
MUESTRA "A2" M.F.A2 = 3.40	0.60	304.39	274703.28	261579.52	5.02
	0.65	280.49	265363.43	251100.30	5.68
	0.70	250.84	261864.20	237458.07	10.28
MUESTRA "A3" M.F.A3 = 3.60	0.60	233.39	277598.91	229049.67	21.20
	0.65	204.66	256517.98	214489.00	19.59
	0.70	195.79	253135.39	209789.52	20.66

LEYENDA FUENTE: ELABORACION PROPIA

Cemento

: Sol tipo I

Agregado Fino

: Cantera "Trapiche"

Agregado Grueso

: Cantera " La Gloria "

%E=(LAB-TEO) *100

M.F.A.1

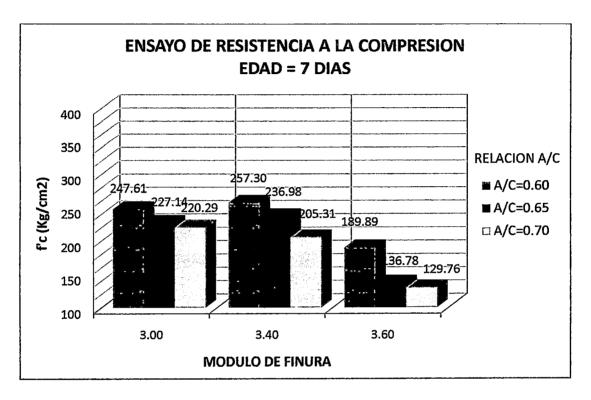
: Módulo de finura Arena 1

TEO

M.F.A.2

: Módulo de finura Arena 2

M.F.A.3


: Módulo de finura Arena 3

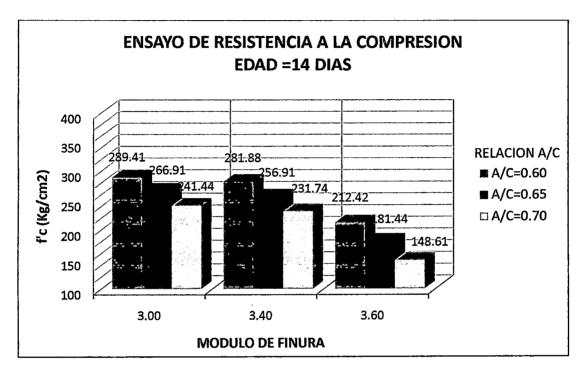
M.E.E.= 14993* $\sqrt{f'c}$ en Kg/cm2 Norma E-060 (R.N.E)

Laboratorio

: LEM - FIC- UNI

GRAFICOS COMPARATIVOS CONCRETO ENDURECIDO

FUENTE: ELABORACION PROPIA


LEYENDA:

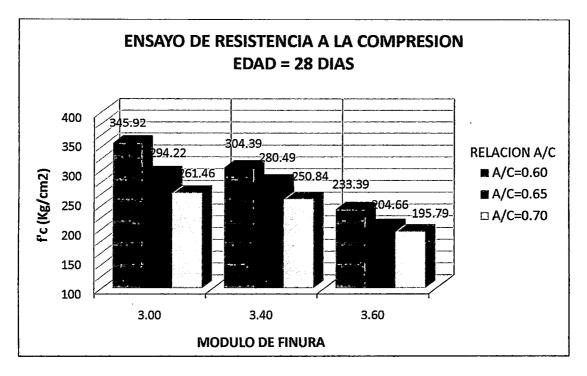
Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA


LEYENDA:

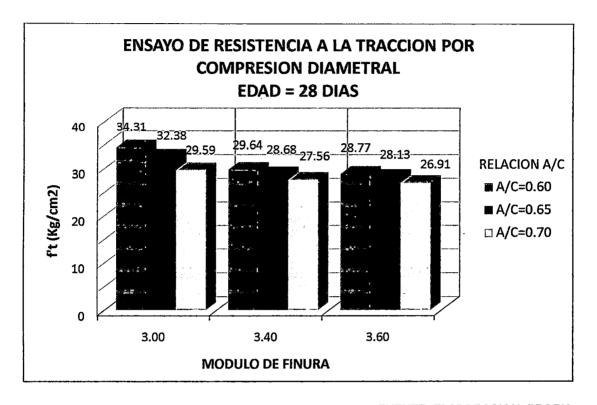
Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA


LEYENDA:

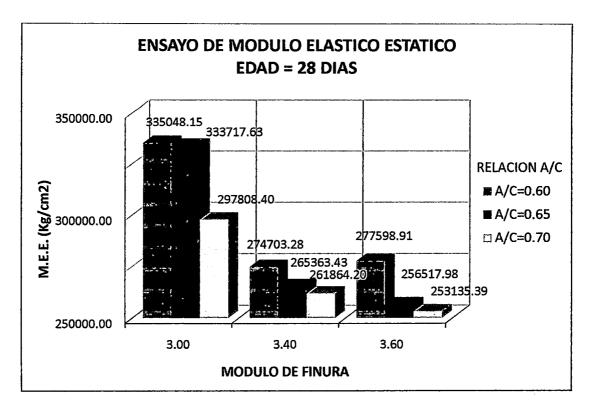
Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA


LEYENDA:

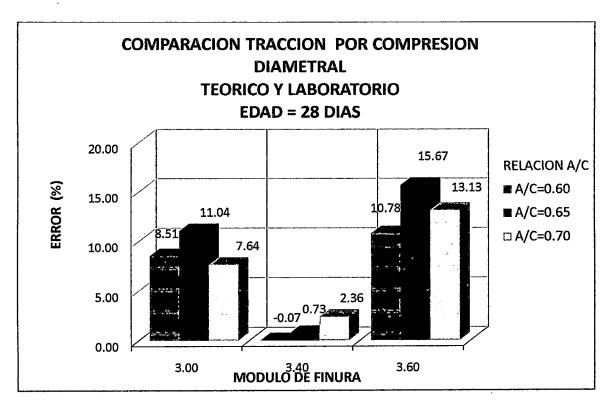
Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA


LEYENDA:

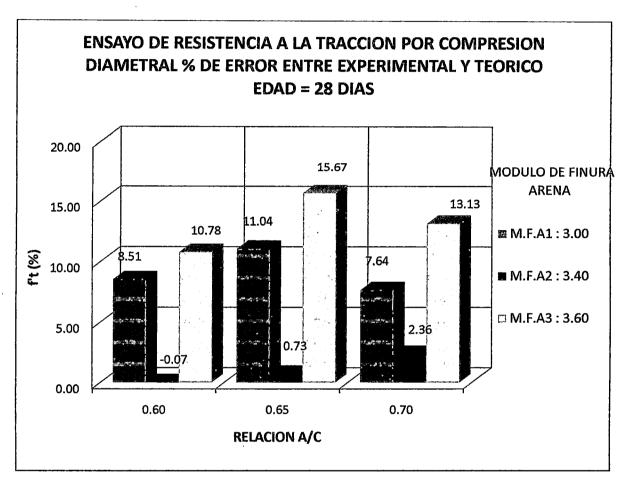
Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA


LEYENDA:

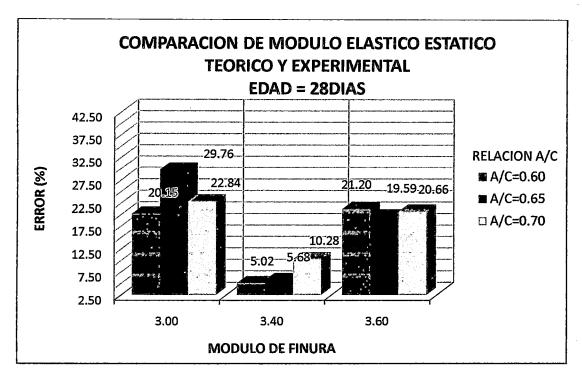
Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA


LEYENDA:

Agregado Fino : Cantera "Trapiche"

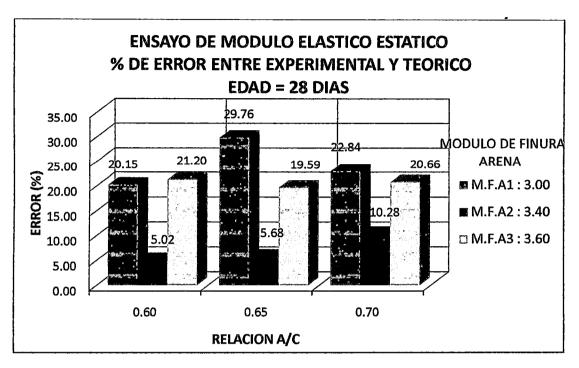
Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

FUENTE: ELABORACION PROPIA

LEYENDA:


Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

GRAFICO Nº 7.15

FUENTE: ELABORACION PROPIA

LEYENDA:

Agregado Fino : Cantera "Trapiche"

Agregado Grueso: Cantera "La Gloria"

M.F.A1 : Módulo de finura Arena1

M.F.A2 : Módulo de finura Arena2

M.F.A3 : Módulo de finura Arena3

7.3. ANALISIS DE ENSAYOS DEL CONCRETO EN ESTADO FRESCO:

CONSISTENCIA:

La consistencia se obtuvo mediante el método del asentamiento controlado usando el CONO DE ABRAMS tratando de obtener valores de 3" – 4" (para garantizar mezclas plásticas). En el cuadro 7.4 se presentan los diseños realizados para las diferentes relaciones agua/cemento (0.60, 0.65, 0.70) con los resultados obtenidos del ensayo de asentamiento variando además el módulo de finura de la arena.

En el grafico 7.1 se presentan en forma comparativa los diseños con las diferentes relaciones agua/cemento observándose lo siguiente:

Para la relación agua/cemento = 0.60 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un asentamiento de 3 ½ pulgadas (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el asentamiento se mantiene a 3 ½ pulgadas (100%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el asentamiento aumenta a 3 ¾ pulgadas (107.14%).

Para la relación agua/cemento = 0.65 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un asentamiento de 3 ¾ pulgadas (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el asentamiento aumenta a 4 pulgadas (106.67%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el asentamiento disminuye a 3 ½ pulgadas (93.33%).

Para la relación agua/cemento = 0.70 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un asentamiento de 3 ½ pulgadas (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el asentamiento aumenta a 3 ¾ pulgadas (107.14%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el asentamiento aumenta a 3 ¾ pulgadas (107.14%).

FLUIDEZ:

En el cuadro 7.5 se presentan los diseños realizados para las diferentes relaciones agua/cemento (0.60, 0.65, 0.70) con los resultados obtenidos del ensayo de fluidez variando además el módulo de finura de la arena.

En el grafico 7.2 se presentan en forma comparativa los diseños con las diferentes relaciones agua/cemento observándose lo siguiente:

Para la relación agua/cemento = 0.60 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Índice de Fluidez de 74% (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el índice de fluidez aumenta a 85.7% (115.81%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el Índice de Fluidez aumenta a 92.3% (124.73%).

Para la relación agua/cemento = 0.65 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Índice de Fluidez de 78% (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el índice de fluidez aumenta a 84% (107.69%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el índice de fluidez aumenta a 95% (121.79%).

Para la relación agua/cemento = 0.70 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Índice de Fluidez de 80% (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el índice de fluidez aumenta a 87% (108.75%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el índice de fluidez aumenta a 98.3% (122.88%).

EXUDACION:

En el cuadro 7.6 se presentan los diseños realizados para las diferentes relaciones agua/cemento (0.60, 0.65, 0.70) con los resultados obtenidos del ensayo de exudación variando además el módulo de finura de la arena.

En el grafico 7.3 se presentan en forma comparativa los diseños con las diferentes relaciones agua/cemento observándose lo siguiente:

Para la relación agua/cemento = 0.60 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo una exudación de 1.276% (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, la exudación disminuye a 1.102% (86.36%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, la exudación disminuye a 0.52% (40.75%).

Para la relación agua/cemento = 0.65 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo una exudación de 1.098% (100%).

Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, la exudación disminuye a 1.061% (96.63%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, la exudación disminuye a 0.654% (59.56%).

Para la relación agua/cemento = 0.70 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo una exudación de 1.148% (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, la exudación disminuye a 1.006% (87.63%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, la exudación disminuye a 0.695% (60.54%).

PESO UNITARIO:

En el cuadro 7.7 se presentan los diseños realizados para las diferentes relaciones agua/cemento (0.60, 0.65, 0.70) con los resultados obtenidos del ensayo de peso unitario variando además el módulo de finura de la arena.

En el grafico 7.4 se presentan en forma comparativa los diseños con las diferentes relaciones agua/cemento observándose lo siguiente:

Para la relación agua/cemento = 0.60 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Peso Unitario de 2342.42 Kg/m3 (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el Peso Unitario disminuye a 2335.02 Kg/m3 (99.68%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el Peso Unitario disminuye a 2333.96 Kg/m3 (99.64%).

Para la relación agua/cemento = 0.65 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Peso Unitario de 2341.37 Kg/m3 (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el Peso Unitario disminuye a 2337.14 Kg/m3 (99.82%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el Peso Unitario disminuye a 2331.84 Kg/m3 (99.59%).

Para la relación agua/cemento = 0.70 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Peso Unitario de 2336.08 Kg/m3 (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el Peso Unitario disminuye a 2332.90 Kg/m3 (99.86%).Al aumentar el módulo

de finura de la arena M.F.A3= 3.60 en el diseño, el Peso Unitario disminuye a 2333.50 Kg/m3 (99.89%).

TIEMPO DE FRAGUADO INICIAL:

En el cuadro 7.8 se presentan los diseños realizados para las diferentes relaciones agua/cemento (0.60, 0.65, 0.70) con los resultados obtenidos del ensayo de Tiempo de Fraguado Inicial variando además el módulo de finura de la arena.

En el grafico 7.5 se presentan en forma comparativa los diseños con las diferentes relaciones agua/cemento observándose lo siguiente:

Para la relación agua/cemento = 0.60 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Tiempo de Fraguado Inicial de 04:24 h: m (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el Tiempo de Fraguado Inicial aumenta a 04:45 h: m (107.95%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el Tiempo de Fraguado Inicial aumenta a 04:50 h: m (109.85%).

Para la relación agua/cemento = 0.65 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Tiempo de Fraguado Inicial de 04:35 h: m (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el Tiempo de Fraguado Inicial se mantiene en 04:35 h: m (100%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el Tiempo de Fraguado Inicial aumenta a 04:48 h: m (104.73%).

Para la relación agua/cemento = 0.70 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Tiempo de Fraguado Inicial de 04:50 h: m (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el Tiempo de Fraguado Inicial disminuye a 04:20 h: m (89.66%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el Tiempo de Fraguado Inicial aumenta a 04:51 h: m (100.34%).

TIEMPO DE FRAGUADO FINAL:

En el cuadro 7.8 se presentan los diseños realizados para las diferentes relaciones agua/cemento (0.60, 0.65, 0.70) con los resultados obtenidos del ensayo de tiempo de fraguado final variando además el módulo de finura de la arena.

En el grafico 7.6 se presentan en forma comparativa los diseños con las diferentes relaciones agua/cemento observándose lo siguiente:

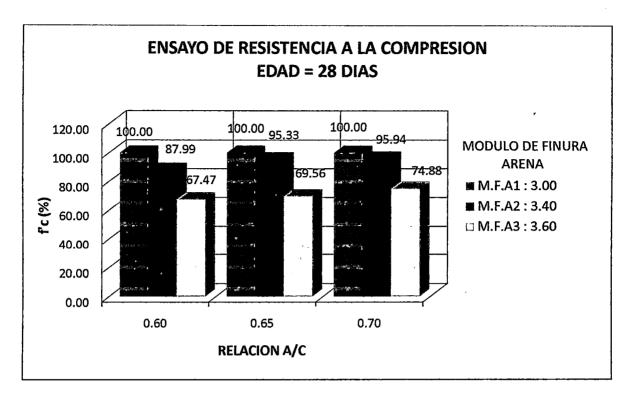
Para la relación agua/cemento = 0.60 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Tiempo de Fraguado Final de 05:40 h: m (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el Tiempo de Fraguado Final aumenta a 06:00 h: m (105.88%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el Tiempo de Fraguado Final aumenta a 06:18 h: m (111.18%).

Para la relación agua/cemento = 0.65 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Tiempo de Fraguado Final de 05:50 h: m (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el Tiempo de Fraguado Final aumenta a 06:00 h: m (102.86%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el Tiempo de Fraguado Final aumenta a 06:36 h: m (110.00%).

Para la relación agua/cemento = 0.70 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un Tiempo de Fraguado Final de 05:55 h: m (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el Tiempo de Fraguado Final disminuye a 05:50 h: m (98.59%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el Tiempo de Fraguado Final aumenta a 06:14 h: m (105.35%).

7.4. ANALISIS DE ENSAYOS DEL CONCRETO EN ESTADO ENDURECIDO:

RESISTENCIA A LA COMPRESION:


En el cuadro 7.9 se presentan los diseños realizados para las diferentes relaciones agua/cemento (0.60, 0.65, 0.70) con los resultados obtenidos del ensayo de resistencia a la compresión variando además el módulo de finura de la arena.

En el grafico 7.9 se presentan en forma comparativa los diseños del concreto endurecido edad 28 días, con las diferentes relaciones agua/cemento observándose lo siguiente:

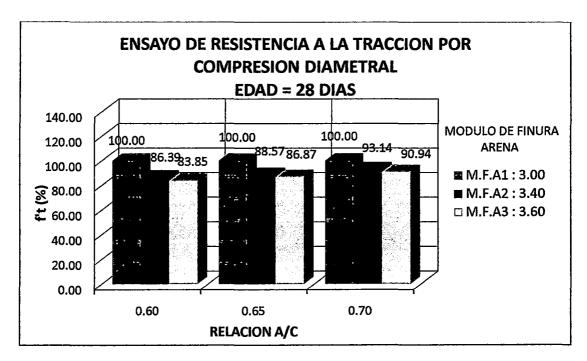
Para la relación agua/cemento = 0.60 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo una resistencia a la compresión de 345.92 kg/cm2 (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, la resistencia a la compresión disminuye a 304.39 kg/cm2 (87.99%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, la resistencia a la compresión disminuye a 233.39 kg/cm2 (67.47%).

Para la relación agua/cemento = 0.65 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo una resistencia a la compresión de 294.22 kg/cm2 (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, la resistencia a la compresión disminuye a 280.49 kg/cm2 (95.33%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, la resistencia a la compresión disminuye a 204.66 kg/cm2 (69.56%).

Para la relación agua/cemento = 0.70 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo una resistencia a la compresión de 261.46 kg/cm2 (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, la resistencia a la compresión disminuye a 250.84 kg/cm2 (95.94%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, la resistencia a la compresión disminuye a 195.79 kg/cm2 (74.88%).

RESISTENCIA A LA TRACCION POR COMPRESION DIAMETRAL:

En el cuadro 7.9 se presentan los diseños realizados para las diferentes relaciones agua/cemento (0.60, 0.65, 0.70) con los resultados obtenidos del ensayo de resistencia a la tracción por compresión diametral variando además el módulo de finura de la arena.


En el grafico 7.10 se presentan en forma comparativa los diseños del concreto endurecido edad 28 días, con las diferentes relaciones agua/cemento observándose lo siguiente:

Para la relación agua/cemento = 0.60 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo una resistencia a la tracción por compresión diametral de 34.31 kg/cm2 (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, la resistencia a la tracción por compresión diametral disminuye a 29.64 kg/cm2 (86.39%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, resistencia a la tracción por compresión diametral disminuye a 28.77 kg/cm2 (83.85%).

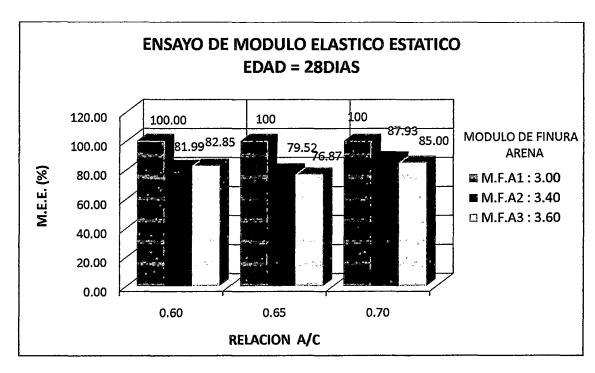
Para la relación agua/cemento = 0.65 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo una resistencia a la tracción por compresión diametral de 32.38 kg/cm2 (100%). Al aumentar el módulo de

finura de la arena M.F.A2=3.40 en el diseño, la resistencia a la tracción por compresión diametral disminuye a 28.68 kg/cm2 (88.57%).Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, resistencia a la tracción por compresión diametral disminuye a 28.13 kg/cm2 (86.87%).

Para la relación agua/cemento = 0.70 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo una resistencia a la tracción por compresión diametral de 29.59 kg/cm2 (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, la resistencia a la tracción por compresión diametral disminuye a 27.56 kg/cm2 (93.14%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, resistencia a la tracción por compresión diametral disminuye a 26.91 kg/cm2 (90.94%).

MODULO ELASTICO ESTATICO:

En el cuadro 7.10 se presentan los diseños realizados para las diferentes relaciones agua/cemento (0.60, 0.65, 0.70) con los resultados obtenidos del ensayo de modulo elástico estático variando además el módulo de finura de la arena.


En el grafico 7.11 se presentan en forma comparativa los diseños del concreto endurecido edad 28 días, con las diferentes relaciones agua/cemento observándose lo siguiente:

Para la relación agua/cemento = 0.60 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un módulo elástico estático

de 335048.15 kg/cm2 (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el modulo elástico estático disminuye a 274703.28 kg/cm2 (81.99%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el modulo elástico estático disminuye a 277598.91 kg/cm2 (82.85%).

Para la relación agua/cemento = 0.65 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un módulo elástico estático de 333717.63 kg/cm2 (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el modulo elástico estático disminuye a 265363.43 kg/cm2 (79.52%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el modulo elástico estático disminuye a 256517.98 kg/cm2 (76.87%).

Para la relación agua/cemento = 0.70 y el diseño patrón con Modulo de Finura de la Arena 1 (M.F.A1) de 3.00 se obtuvo un módulo elástico estático de 297808.40 kg/cm2 (100%). Al aumentar el módulo de finura de la arena M.F.A2=3.40 en el diseño, el modulo elástico estático disminuye a 261864.20 kg/cm2 (87.93%). Al aumentar el módulo de finura de la arena M.F.A3= 3.60 en el diseño, el modulo elástico estático disminuye a 253135.39 kg/cm2 (85.00%).

ANALISIS COMPARATIVOS ENTRE RESULTADOS DE LABORATORIO Y TEORICO:

RESISTENCIA A LA TRACCION POR COMPRESION DIAMETRAL:

En el grafico 7.12 se presentan porcentajes de error versus módulo de finura, con las diferentes relaciones agua/cemento observándose que para el caso del módulo finura 3.4 los porcentajes de error son menores bordeando 0.73% y para el caso del módulo finura 3.6 los porcentajes de error son mayores llegando al porcentaje de 15.67%

En el grafico 7.13 se presentan porcentajes de error versus relación a/c, con las diferentes módulos de finura observándose que para el caso de la relación de a/c=0.60 los porcentajes de error son menores para todos los casos de módulo de finura de la arena.

MODULO ELASTICO ESTATICO:

En el grafico 7.14 se presentan porcentajes de error versus módulo de finura, con las diferentes relaciones agua/cemento observándose que para el caso del módulo finura 3.4 los porcentajes de error son menores estando entre el rango de 5 % y 10% y para el caso del módulo finura 3.0 los porcentajes de error son mayores llegando al porcentaje de 29.76%

En el grafico 7.15 se presentan porcentajes de error versus relación a/c, con las diferentes módulos de finura observándose que para el caso de la relación de a/c=0.60 los porcentajes de error son menores para todos los casos de módulo de finura de la arena.

CAPITULO 8:

ANALISIS DE COSTOS

CAPITULO 8

ANALISIS DE COSTOS

8.1 GENERALIDADES:

En todo trabajo de investigación, es imprescindible conocer el costo que representa su ejecución y en base a los resultados obtenidos determinar si es posible o no su aplicación en los diferentes proyectos para los cuales es posible usarlo.

Para toda obra de ingeniería se realiza el análisis de costos por pequeña que esta sea; por lo tanto se hace necesario presentar el costo que representa: los diseños de mezcla de concreto empleados en esta tesis.

8.2 ANALISIS DE COSTOS:

En este capitulo presentaremos el análisis de costos por m3 de concreto para los diseños de mezcla con relaciones a/c= 0.60, 0.65, 070 dicho análisis se detalla en los cuadros del anexo F.

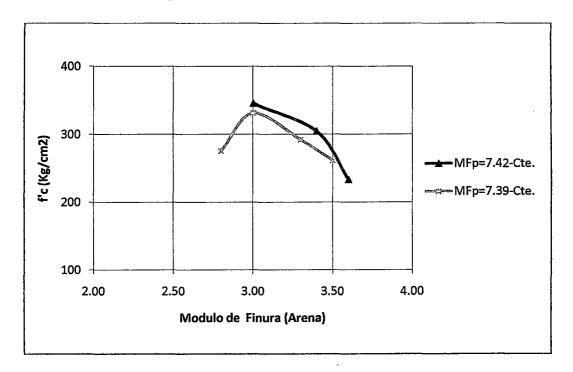
CUADRO Nº8.1

COSTO DE CONCRETO POR METRO CUBICO								
DISEÑO		CEMENTO	COSTO POR m3	fc Edad 28				
MODULO DE FINURA	Jaic		DE CONCRETO (S/.)	días (Kg/cm2)				
	0.60	8.82	308.22	345.92				
M.F.A1: 3.00	0.65	7.96	292.45	294.22				
	0.70	7.39	281.89	261.46				
	0.60	8.43	301.21	304.39				
M.F.A2: 3.40	0.65	7.60	285.98	280.49				
	0.70	7.06	275.91	250.84				
	0.60	8.55	303.29	233.39				
M.F.A3: 3.60	0.65	7.71	287.93	204.66				
	0.70	6.99	274.76	195.79				

FUENTE: ELABORACION PROPIA

PRECIOS CONSIDERADOS EN EL CALCULO DEL COSTO POR METRO CUBICO DE CONCRETO A JULIO 2012

DESCRIPCION	UNIDAD	PRECIO UNITARIO
Cemento Portland	Bls	19.00
Arena	m3	30.00
Piedra 1/2"	m3	43.00
Agua	m3	10.00


- Los precios no incluyen I.G.V.
- Moneda Nacional Nuevos Soles (S/.)

CONCLUSIONES

Se inicio la investigación acondicionando tres muestras de agregado fino, obteniendo específicamente los módulos de finura para la presente tesis denominando a las muestras de la siguiente manera: muestra A1 al agregado fino con modulo de finura 3.00 (M.F.A1= 3.00), muestra A2 al agregado fino con modulo de finura 3.40 (M.F.A2= 3.40), muestra A3 al agregado fino con modulo de finura 3.60 (M.F.A3= 3.60), y permaneciendo constante el modulo de finura del agregado grueso con modulo de finura 7.42, obteniendo diferentes diseños para las relaciones a/c= 0.60, 0.65, 0.70. Obteniéndose como conclusiones lo siguiente:

- 1.- Al aumentar el módulo de finura del agregado fino desde 3.00 a 3.60, la fluidez del concreto fresco aumenta, para el rango de la relación a/c =0.60, 0.65, 0.70.
- 2.- La exudación en el concreto fresco al aumentar el módulo de finura del agregado fino disminuye, para el rango de la relación a/c=0.60, 0.65, 0.70.
- 3.- El peso unitario del concreto presenta una variación mínima y sus valores están dentro del rango aceptable de los valores prácticos en obra (2300 2400 Kg/cm3).
- 4.- El tiempo de fraguado en el concreto no presenta un cambio representativo al variar el módulo de finura del agregado fino de 3.00 a 3.60 por que las variaciones están en el rango de 0% a 11.18%.
- 5.- La resistencia a la compresión del concreto a los 28 días, disminuye a medida que el módulo de finura aumenta desde 3.00 hasta 3.60, para todos los casos de relación a/c estudiados.
- 6.- La resistencia a la tracción por compresión diametral del concreto, disminuye a medida que el módulo de finura aumenta desde 3.00 hasta 3.60, para todos los casos de relación a/c estudiados.
- 7.- El módulo elástico estático, disminuye a medida que el módulo de finura aumenta desde 3.00 hasta 3.60, para todos los casos de relación a/c estudiados.
- 8.- En resumen se concluye que para todos los casos estudiados de relación a/c= 0.60, 0.65, 0.70 cuando se incrementa el módulo de finura del agregado fino, con valores superiores a 3.00, todas las propiedades del concreto endurecido estudiadas disminuyen.

- 9.- Al comparar los resultados de laboratorio con los teóricos obtenidos mediante las formulas de las normas ACI-82 los porcentajes de error varían para el caso del resistencia a la tracción por compresión diametral del concreto de 0.73% a 15.67%
- 10.- Al comparar los resultados de laboratorio con los teóricos obtenidos mediante las formulas de las normas E-060 del RNE los porcentajes de error varían para el caso del módulo elástico estático de 5.02% a 29.76%.
- 11.- Con los valores obtenidos en la presente tesis y adicionando los valores obtenidos en la tesis "Estudio del concreto de mediana baja resistencia variando el módulo de finura del agregado fino" del Ing. Gustavo Rique Pérez, obtenemos como resultado, la siguiente tendencia de la resistencia a la compresión.

RECOMENDACIONES

- Para la producción de agregado fino es muy importante tener precisión en los ensayos de granulometría para obtener los valores de módulo de finura mas representativos de las diferentes muestras.
- 2. El módulo de finura del agregado fino y modulo de finura del agregado grueso, forman un módulo de finura del agregado global y para obtener el optimo resultado global; con las diferentes arenas obtenidas con módulo de finura crecientes, se recomienda encontrar la mejor relación arena-piedra, verificada en los ensayos de Peso Unitario Compactado y resistencia a los 7 días para obtener un concreto de mejor calidad.
- 3. En nuestro país es necesario difundir métodos de diseño del concreto más eficientes y adaptados a nuestra realidad, uno de ellos es el utilizado en esta tesis, el cual permite verificar el comportamiento de los agregados tanto fino como grueso, para la obtención del concreto de mejor calidad.
- 4. La tesis corrobora los estudios realizados anteriormente y que se sintetiza como sigue: Para un modulo de finura de agregado grueso le corresponde un modulo de finura de agregado fino, para obtener la máxima eficiencia.
- El agregado fino debe ser estudiado para cada módulo de finura del agregado grueso y encontrar su correspondencia.
- Para módulos de finura mayores que 3.00 de agregado fino las resistencias disminuyen por lo que se recomienda no usar arenas con módulos de finura mayores a 3.00.
- 7. Realizar mas investigaciones en este campo del concreto analizando con otros módulos de finura del agregado grueso y ver su variación de las propiedades del concreto, para su posterior comparación.

BIBLIOGRAFIA

- Cachay Huaman, Rafael; Diseño de Mezclas Método del agregado global y módulo de finura para concretos de mediana a alta resistencia, Tesis FIC-UNI, Lima-Perú, 1995.
- Badillo Macazana, Pedro Graciano; Diseño de Mezclas Método del agregado global y módulo de finura para concretos de mediana a baja resistencia; Tesis FIC-UNI, Lima-Perú, 1998.
- Lapa Barzola, Ana María; Estudio del concreto de mediana a baja resistencia variando el tamaño máximo del agregado grueso de tipo canto rodado de rio, Tesis FIC-UNI, Lima- Perú 2003.
- Asto Vasquez, Juan Alberto; Estudio del concreto de mediana a baja resistencia variando el tamaño máximo del agregado grueso de tipo angular, con cpti, Tesis FIC-UNI, Lima-Perú 2001.
- 5. Zabalaga Camargo, Juan Carlos, Estudio del concreto de mediana a alta resistencia. Tesis FIC-UNI. Lima-Perú 2007.
- Vargas Enriquez, David; Estudio del concreto de mediana a alta resistencia variando el tamaño del agregado grueso de tipo canto rodado de rio, usando aditivo superplastificante de fraguado normal, Tesis FIC-UNI, Lima-Perú 2004.
- 7. Taype Amancay, Raúl, Estudio de las Propiedades del concreto, Tesis FIC-UNI, Lima-Perú, 2006.
- 8. Mamani Mamani, Germán Eloy; Estudio del concreto de mediana a baja resistencia, Tesis FIC-UNI, Lima-Perú, 2002
- 9. Riva López, Enrique; Naturaleza y materiales del concreto, Líbro FIC-UNI, Lima-Perú, 1992.
- 10. Riva López, Enrique; Diseño de Mezclas, Libro FIC-UNI, Lima-Perú, 1992.
- 11. Pasquel Carbajal, Enrique; Tópicos de tecnología del concreto en el Perú, Libro FIC-UNI, Lima-Peru,1998.

ANEXOS

ANEXO - A

PROPIEDADES FISICAS DE LOS AGREGADOS

- CUADROS DE RESULTADOS AGREGADO FINO
- CUADROS DE RESULTADOS AGREGADO GRUESO

CUADROS DE RESULTADOS AGREGADO FINO

CUADRO Nº1.3.1-A ENSAYO DE PESO ESPECÍFICO Y ABSORCION

Tipo de Agregado: Agregado fino

Norma: NTP 400.022

Procedencia: Cantera "Trapiche"

Elaborado por: E.G.B.P.

]		Muestra	Ī	
	Descripción	UND	M1	M2	М3	Prom.
_	Peso arena s.s.s.+ recipiente	gr	666.5	681.5	681.0	
-	Peso recipiente	gr	166.5	181.5	181.0	
	Peso arena s.s.s.	gr	500.0	500.0	500.0	
V	Volumen arena s.s.s.+agua	cc	695.0	698.0	697.0	
W	Volumen de agua	СС	500.0	500.0	500.0	
	Peso seco + recipiente	gr	662.0	676.5	675.5	
Α	Peso seco	gr	495.5	495.0	494.5	
	Peso Específico de Masa : A/(V-W)	gr/cc	2.54	2.50	2.51	2.52
	Peso Específico de Masa s.s.s. : 500/(V-W)	gr/cc	2.56	2.52	2.54	2.54
	Peso Específico Aparente : A/((V-W)-(500-A))	gr/cc	2.60	2.56	2.58	2.58
	Porcentaje de Absorción : (500-A)/Ax100	%	0.91%	1.01%	1.11%	1.00%

PESO ESPECÍFICO DE MASA

: 2.52 gr/cc

PORCENTAJE DE ABSORCION

: 1.00%

CUADRO Nº1.3.2-A ENSAYO DE SUPERFICIE ESPECÍFICA

Tipo de Agregado: Agregado fino

Norma: NTP 400.021

Procedencia: Cantera "Trapiche"

Elaborado por: E.G.B.P.

Tamiz	Tamaño de abertura (mm)	Tamaño Prom. de abertura (mm) (A)	%Retenido Parcial (B)	(B)/(A)
3/8"	9.526			
N°4	4.763	7.145	12.1	1.69
N°8	2.381	3.572	17.7	4.96
N°16	1.191	1.786	22.1	12.37
N°30	0.595	0.893	18.1	20.27
N°50	0.296	0.446	15.3	34.30
N°100	0.149	0.223	8.7	39.01
N°200	0.074	0.112	8.4	75.00
			TOTAL	187.61

SE =

43.03 cm2/gr

CUADRO Nº1.3.3-A ENSAYO DE PESO UNITARIO SUELTO (P.U.S.)

Tipo de Agregado: Agregado fino **Norma:** NTP 400.017

Procedencia: Cantera "Trapiche" Elaborado por: E.G.B.P.

	Descripción	UND		Prom.		
	Descripcion		M1	M2	M3	Piolii.
Α	Peso muestra suelta + balde	gr	7120.50	7135.50	7170.00	7142.00
В	Peso del balde	gr	2763.00	2763.00	2763.00	2763.00
C	Peso de la muestra suelta (A-B)	gr	4357.50	4372.50	4407.00	4379.00
D	Volumen del balde (1/10 pie3)	cc	2831.68	2831.68	2831.68	2831.68
	P.U. Suelto (C/D)	gr/cc	1.53884	1.54414	1.55632	1.54643
	P.U. Suelto	Kg/m3	1538.84	1544.14	1556.32	1546.43

PESO UNITARIO SUELTO: 1546.43 Kg/m3

CUADRO Nº1.3.4-A ENSAYO DE PESO UNITARIO COMPACTADO (P.U.C.)

Tipo de Agregado:Agregado finoNorma:NTP 400.017

Procedencia: Cantera "Trapiche" Elaborado por: E.G.B.P.

	Descripción	UND		Prom.		
	Descripcion	GIND	M1	M2	М3	Piolii.
Α	Peso muestra compac. + balde	gr	7745.00	7750.00	7748.50	7747.83
В	Peso del balde	gr	2763.00	2763.00	2763.00	2763.00
C	Peso de la muestra compactada	gr	4982.00	4987.00	4985.50	4984.83
D	Volumen del balde (1/10 pie3)	CC	2831.68	2831.68	2831.68	2831.68
	P.U. Compactado (C/D)	gr/cc	1.75938	1.76115	1.76062	1.76038
	P.U. Compactado	Kg/m3	1759.38	1761.15	1760.62	1760.38

PESO UNITARIO COMPACTADO: 1760.38 Kg/m3

CUADRO Nº1.3.5-A ENSAYO DE CONTENIDO DE HUMEDAD

Tipo de Agregado: Agregado fino

Norma: NTP 400.016

Procedencia: Cantera "Trapiche"

Elaborado por: E.G.B.P.

	Descripción	UND		Prom.		
	Descripcion	GND	M1	M2	М3	PiOIII.
Α	Peso muestra húmeda	gr	500.00	500.00	500.00	500.00
В	Peso muestra seca + molde	gr	676.50	765.50	678.00	706.67
С	Peso molde	gr	180.50	268.50	182.50	210.50
D	Peso muestra seca (B-C)	gr	496.00	497.00	495.50	496.17
	Contenido de Humedad (A-D)/Dx100	%	0.81	0.60	0.91	0.77

CONTENIDO DE HUMEDAD: 0.77%

CUADRO Nº1.3.6-A ENSAYO DE DETERMINACION DE MATERIAL QUE PASA LA MALLA Nº200

Tipo de Agregado: Agregado fino Norma: NTP 400.018

Procedencia: Cantera "Trapiche" Elaborado por: E.G.B.P.

	Descripción UND			Prom.		
	Descripcion	UND	M1	M2	M3	FIUIII.
Α	Peso seco	gr	500.00	500.00	500.00	500.0
С	Peso seco sin finos + molde	gr	657.50	659.50	655.00	657.3
D	W molde	gr	180.00	182.50	180.00	180.8
В	W seco sin finos (C-D)	gr	477.50	477.00	475.00	476.5
	% Finos (A-B)/A x100	%	4.5%	4.6%	5.0%	4.7%

MATERIAL QUE PASA LA MALLA #200: 4.7 %

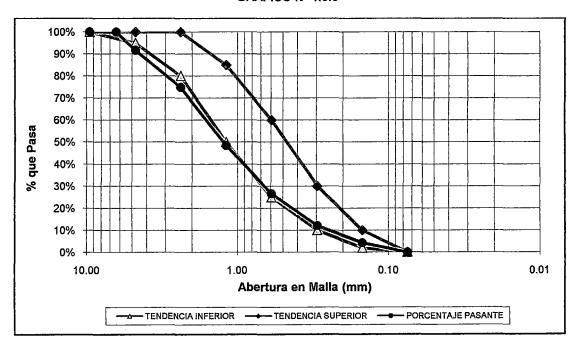
CUADRO № 1.3.7

ANALISIS GRANULOMETRICO POR TAMIZADO

 Proyecto
 TESIS

 Tesista
 E.G.B.P.

 Cantera
 TRAPICHE


 Muestra
 M-A

Descripción: MUESTRA PROMEDIO DE 6 GRANULOMETRIAS REALIZADAS

Peso Seco Total del Suelo Analizado	500 gr
Peso Seco Total del Suelo Pasante la Malla Nº 4	500 gr

Mallas	Abertura (mm)	Peso Retenido Parcial (gr)	% Retenido Parcial	% Retenido Acumulado	% que Pasa Acumulado	Especif. Límite Inferior	Especif. Límite Superior
6"	150.00	0.0	0.00%	0.00%	100		
3"	76.20	0.0	0.00%	0.00%	100.00%		
2 1/2"	63.50	0.0	0.00%	0.00%	100.00%	_	
2"	50.80	0.0	0.00%	0.00%	100.00%		
1 1/2"	38.00	0.0	0.00%	0.00%	100.00%	•	
1"	25,40	0.0	0.00%	0.00%	100.00%		
3/4"	19.50	0.0	0.00%	0.00%	100.00%		
1/2"	12.70	0.0	0.00%	0.00%	100.00%		
3/8"	9.525	0.0	0.00%	0.00%	100.00%	100%	100%
1/4"	6.350	0.0	0.00%	0.00%	100.00%		
No.4	4.750	41.5	8.30%	8.30%	91.70%	95%	100%
No.8	2.381	84.0	16.80%	25.10%	74.90%	80%	100%
No.16	1.191	132.0	26.40%	51.50%	48.50%	50%	85%
No.30	0.595	109.5	21.90%	73.40%	26.60%	25%	60%
No.50	0.296	72.9	14.58%	87.98%	12.02%	10%	30%
No.100	0.149	38.7	7.74%	95.72%	4.28%	2%	10%
No.200	0.075	21.4	4.28%	100.00%	0.00%	0%	0%
ondo (<200 ME	SH)	0.0	0.00%	100.00%	0.00%		
Total (%)							
RETEN.>Nº 04	8.30%	PASAN. < Nº 04	91.70%	PASAN. <nº 200<="" td=""><td>0.00%</td><td></td><td></td></nº>	0.00%		
MODULO DE FI	NURA	3.420%					

GRAFICO Nº 1.3.0

RESUMEN DE LAS PROPIEDADES FISICAS DEL AGREGADO FINO UTILIZADO:

CUADRO Nº 1.3-A

Tipo de agregado:

Agregado Fino

Procedencia del agregado:

Cantera "Trapiche"

MUESTRA "A"

PROPIEDADES FISICAS	AGREGADO FINO	UNIDAD
Peso Unitario Suelto (P.U.S.)	1546.43	kg/m³
Peso Unitario Compactado (P.U.C.)	1760.38	kg/m³
Peso Específico de Masa	2.52	gr/cm ³
Peso Específico de Masa (S.S.S.)	2.54	gr/cm ³
Peso Específico Aparente	2.58	gr/cm ³
Absorción	1.00	%
Módulo de Finura	3.42	
Contenido de Humedad	0.77	%
Material que pasa la malla N° 200	4.70%	%
Superficie Específica	43.03	cm ² /gr
Tamaño Máximo	-	Pulg.
Tamaño Nominal Máximo	-,	Pulg.

Fuente: Elaboración Propia

CUADROS DE RESULTADOS AGREGADO GRUESO

CUADRO Nº1.3.8-P ENSAYO DE PESO ESPECÍFICO Y ABSORCION

Tipo de Agregado: Agregado Grueso

Norma: NTP 400.022

Procedencia: Cantera "La Gloria"

Elaborado por: E.G.B.P.

				Muestra		
	Descripción	UND	M1	M2	M3	Prom.
Α	Peso muestra secada al horno	gr	2978	2980	2981	
В	Peso muestra s.s.s.	gr	3000	3000	3000	
	Peso muestra sat. en agua + peso canastilla	gr	3821.5	3817.5	3824	
	Peso de canastilla	gr	1890	1890	1890	
С	Peso muestra sat. en agua	gr	1931.5	1927.5	1934	
	Peso Específico de Masa : A/(B-C)	gr/cc	2.79	2.78	2.80	2.79
	Peso Específico de Masa s.s.s. : B/(B-C)	gr/cc	2.81	2.80	2.81	2.81
	Peso Específico Aparente : A/(A-C)	gr/cc	2.85	2.83	2.85	2.84
	Porcentaje de Absorción : (B-A)x100/A	%	0.74	0.67	0.64	0.68

PESO ESPECIFICO DE MASA

: 2.79gr/cc

PORCENTAJE DE ABSORCION

: 0.68%

CUADRO Nº1.3.9-P ENSAYO DE SUPERFICIE ESPECÍFICA

Tipo de Agregado: Agregado Grueso

Norma: NTP 400.021

Procedencia: Cantera "La Gloria"

Elaborado por: E.G.B.P.

Tamiz	Tamaño de abertura (mm)	Tamaño Prom. de abertura (mm) (A)	%Retenido Parcial (B)	(B)/(A)
1 ½"	38.10			
1"	25.00	31.550	4.86	0.15
3/4"	19.05	22.025	38.50	1.75
1/2"	12.70	15.875	45.20	2.85
3/8"	9.53	11.115	11.20	1.01
1/4"	6.35	7.94	2.65	0.33
N°4	4.76	5.55	0.10	0.02
		······································	TOTAL	6.11

SE =

1.31 cm2/gr

CUADRO Nº1.3.10-P ENSAYO DE PESO UNITARIO SUELTO (P.U.S.)

Tipo de Agregado: Agregado Grueso

Norma: NTP 400.017

Procedencia: Cantera "La Gloria"

Elaborado por: E.G.B.P.

	Descripción	UND	Muestra			Drom
	Descripcion	OND	M1	M2	М3	Prom.
Α	Peso muestra suelta + balde	gr	32200	32300	32100	32200
В	Peso del balde	gr	11500	11500	11500	11500
C	Peso de la muestra suelta (A-B)	gr	20700	20800	20600	20700
D	Volumen del balde (1/2 pie3)	CC	14158.42	14158.42	14158.42	14158.42
	P.U. Suelto (C/D)	gr/cc	1.46207	1.46691	1.45496	1.46131
	P.U. Suelto	Kg/m3	1462.07	1466.91	1454.96	1461.31

PESO UNITARIO SUELTO: 1461.31 Kg/m3

CUADRO N°1.3.11-P ENSAYO DE PESO UNITARIO COMPACTADO (P.U.C.)

Tipo de Agregado: Agregado Grueso

Norma: NTP 400.017

Procedencia: Cantera "La Gloria"

Elaborado por: E.G.B.P.

	Descripción	UND	Muestra			Prom.
	Descripcion	UND	M1	M2	МЗ	Pion.
Α	Peso muestra suelta + balde	gr	34100	34500	34300	34300
В	Peso del balde	gr	11500	11500	11500	11500
C	Peso de la muestra (A-B)	gr	22600	23000	22800	22800
D	Volumen del balde (1/2 pie3)	СС	14158.42	14158.42	14158.42	14158.42
	P.U. Compactado (C/D)	gr/cc	1.59622	1.62447	1.610349	1.61034
	P.U. Compactado	Kg/m3	1596.22	1624.47	1610.35	1610.34

PESO UNITARIO COMPACTADO: 1610.34 Kg/m3

CUADRO N°1.3.12-P ENSAYO DE CONTENIDO DE HUMEDAD

Tipo de Agregado: Agregado Grueso

Norma: NTP 400.016

Procedencia: Cantera "La Gloria"

Elaborado por: E.G.B.P.

	Deceriosión	UND		Decom		
	Descripción	UND	M1	M2	M3	Prom.
Α	Peso muestra húmeda	gr	1000	1000	1000	1000
В	Peso muestra seca + molde	gr	1273.5	1275.6	1274.8	1274.63
C	Peso molde	gr	277.2	279.1	278.5	278.27
D	Peso muestra seca (B-C)	gr	996.3	996.5	996.3	996.37
	Contenido de Humedad					
	(A-D)/Dx100	%	0.37	0.35	0.37	0.36

CONTENIDO DE HUMEDAD: 0.36 %

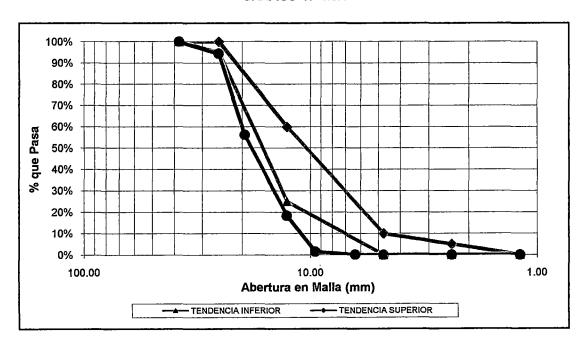
CUADRO Nº 1.3.13

ANALISIS GRANULOMETRICO POR TAMIZADO

 Proyecto
 TESIS

 Tesista
 E.G.B.P

 Cantera
 GLORIA


 Muestra
 M-P

Descripción: MUESTRA PROMEDIO DE 6 GRANULOMETRIAS REALIZADAS

Peso Seco Total del Suelo Analizado	8,000 gr

Mallas	Abertura (mm)	Peso Retenido Parcial (gr)	% Retenido Parcial	% Retenido Acumulado	% que Pasa Acumulado	Especif. Límite Inferior	Especif. Límite Superior
6"	150.00	0.0	0.00%	0.00%	100		
3"	76.20	0.0	0.00%	0.00%	100.00%		
2 1/2"	63.50	0.0	0.00%	0.00%	100.00%		
2" ;	50.80	0.0	0.00%	0.00%	100.00%		
1 1/2"	38.00	0.0	0.00%	0.00%	100.00%	100%	100%
1"	25.40	450.0	5.63%	5.63%	94.38%	95%	100%
3/4"	19.50	3052.5	38.16%	43.78%	56.22%		
1/2"	12.70	3029.0	37.86%	81.64%	18.36%	25%	60%
3/8"	9.525	1348,0	16.85%	98.49%	1.51%		
1/4"	6.350	109.0	1.36%	99.86%	0.14%		
No.4	4.750	11.3	0.14%	100.00%	0.00%	0%	10%
No.8	2.381	0.0	0.00%	100.00%	0.00%	0%	5%
No.16	1.191	0.0	0.00%	100.00%	0.00%	0%	0%
No.30	0.595	0.0	0.00%	100.00%	0.00%		
No.50	0.296	0.0	0.00%	100.00%	0.00%		
No.100	0.149	0.0	0.00%	100.00%	0.00%		
No.200	0.075	0.0	0.00%	100.00%	0.00%		
ondo (<200 M	ESH)	0.0	0.00%	100.00%	0.00%		
Total (%)							
RETEN.>Nº 04	100.00%	PASAN. < Nº 04	0.00%	PASAN. <nº 200<="" td=""><td>0.00%</td><td></td><td></td></nº>	0.00%		
MODULO DE F	INURA	7.42%					

GRAFICO Nº 1.3.1

RESUMEN DE LAS PROPIEDADES FISICAS DEL AGREGADO GRUESO:

CUADRO Nº 1.3-P

Tipo de agregado:

Agregado Grueso

Procedencia del agregado:

Cantera "La gloria"

MUESTRA "P"

PROPIEDADES FISICAS	AGREGADO GRUESO	UNIDAD
Peso Unitario Suelto (P.U.S.)	1461.31	kg/m³
Peso Unitario Compactado (P.U.C.)	1610.34	kg/m³
Peso Específico de Masa	2.79	gr/cm ³
Peso Específico de Masa (S.S.S.)	2.81	gr/cm ³
Peso Específico Aparente	2.84	gr/cm ³
Absorción	0.68	%
Módulo de Finura	7.42	
Contenido de Humedad	0.36	%
Material que pasa la malla N° 200	-	%
Superficie Específica	1.31	cm ² /gr
Tamaño Máximo	1"	Pulg.
Tamaño Nominal Máximo	1"	Pulg.

Fuente: Elaboración Propia

RESUMEN DE LAS PROPIEDADES FISICAS DE LOS AGREGADOS UTILIZADOS:

CUADRO Nº 1.3.R

PROCEDENCIA DE LOS AGREGADOS:

AGREGADO FINO : Cantera "Trapiche" AGREGADO GRUESO : Cantera "La gloria"

RESUMEN

PROPIEDADES FISICAS	UNID.	AGREGADO FINO	AGREGADO GRUESO
Peso Unitario Suelto (P.U.S.)	kg/m ³	1546.43	1461.31
Peso Unitario Compactado (P.U.C.)	kg/m ³	1760.38	1610.34
Peso Específico de Masa	gr/cm ³	2.52	2.79
Peso Específico de Masa (S.S.S.)	gr/cm ³	2.54	2.81
Peso Específico Aparente	gr/cm ³	2.58	2.84
Absorción	%	1.00	0.68
Módulo de Finura		3.42	7.42
Contenido de Humedad	%	0.77	0.36
Material que pasa la malla N° 200	%	4.70%	_
Superficie Específica	cm ² /gr	43.03	1.31
Tamaño Máximo	Pulg.	_	1
Tamaño Nominal Máximo	Pulg.	-	1

Fuente: Elaboración Propia

ANEXO - B

CUADROS Y GRAFICOS DEL AGREGADO GLOBAL

- DETERMINACION DEL MAXIMO PESO UNITARIO COMPACTADO DEL AGREGADO GLOBAL
- GRANULOMETRIAS DE LOS AGREGADOS FINOS OBTENIDOS EN LABORATORIO M.F.A1=3.0, M.F.A2=3.4, M.F.A3=3.6
- GRANULOMETRIAS DE LOS AGREGADOS GLOBALES

CUADROS DE RESULTADOS AGREGADO GLOBAL

CUADRO Nº2.2.1

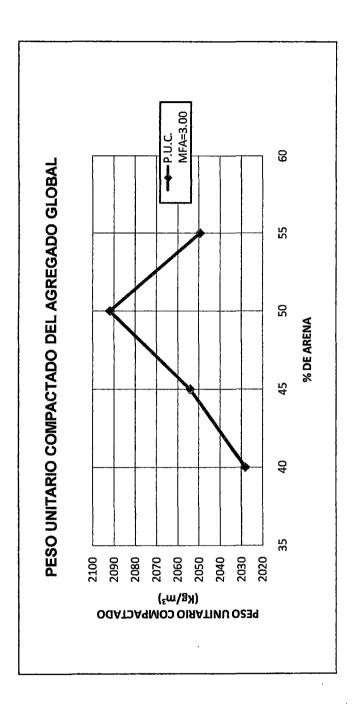
ENSAYO DE PESO UNITARIO COMPACTADO DEL AGREGADO GLOBAL

Tipo de Agregado: Agregado Global

Norma: NTP 400.017

Características: M.F.arena = 3.00

Elaborado por: E.G.B.P.


M.F.piedra = 7.42

ARENA (%)	40			
PIEDRA CHANCADA (%)	60			
DESCRIPCIÓN	E-1	E-2	E-3	
Peso de la muestra compactada+balde (kg)		40.15	40.20	40.30
Peso del balde	(kg)	11.50	11.50	11.50
Peso de la muestra compactada	(kg)	28.65	28.70	28.80
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842
Peso Unitario Compactado	(kg/m³)	2023.53	2027.06	2034.12
Peso Unitario Compactado Pron		2028.24		

ARENA (%)	45			
PIEDRA CHANCADA (%)	55			
DESCRIPCIÓN	E-1	E-2	E-3	
Peso de la muestra compactada+balde (kg)		40.70	40.65	40.40
Peso del balde	(kg)	11.50	11.50	11.50
Peso de la muestra compactada	(kg)	29.20	29.15	28.90
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842
Peso Unitario Compactado	(kg/m ³)	2062.38	2058.85	2041.19
Peso Unitario Compactado Prom		2054.14		

ARENA (%)	50			
PIEDRA CHANCADA (%)	50			
DESCRIPCIÓN	E-1	E-2	E-3	
Peso de la muestra compactada+balde (kg)		41.20	41.15	41.00
Peso del balde	(kg)	11.50	11.50	11.50
Peso de la muestra compactada	(kg)	29.70	29.65	29.50
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842
Peso Unitario Compactado	(kg/m³)	2097.69	2094.16	2083.57
Peso Unitario Compactado Prom		2091.81		

ARENA (%)	55				
PIEDRA CHANCADA (%)	45				
DESCRIPCIÓN	E-1	E-2	E-3		
Peso de la muestra compactada+b	oalde (kg)	40.60	40.45	40.50	
Peso del balde	(kg)	11.50	11.50	11.50	
Peso de la muestra compactada	(kg)	29.10	28.95	29.00	
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842	
Peso Unitario Compactado	(kg/m ³)	2055.31	2044.72	2048.25	
Peso Unitario Compactado Pron		2049.43			

EYENDA:

Procedencia

Agregado fino

Laboratorio de Ensayo de Materiales de la FIC LEM-UNI Cantera "Trapiche" Cantera " La gloria" Agregado grueso: -aboratorio

CUADRO Nº2.2.2

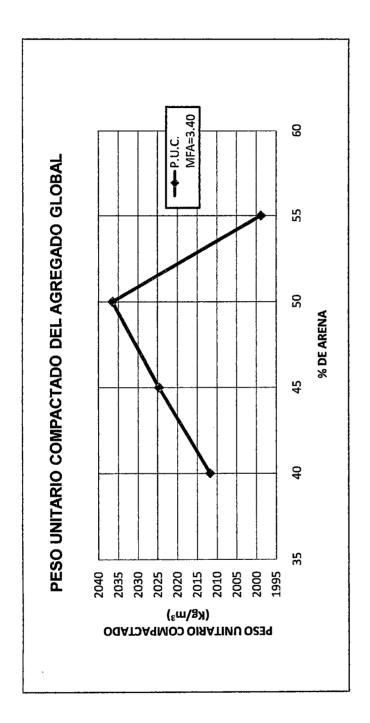
ENSAYO DE PESO UNITARIO COMPACTADO DEL AGREGADO GLOBAL

Tipo de Agregado: Agregado Global

Norma: NTP 400.017

Características: M.F.arena = 3.40

Elaborado por: E.G.B.P.


M.F.piedra = 7.42

ARENA (%)		40			
PIEDRA CHANCADA (%) 60					
DESCRIPCIÓN	E-1	E-2	E-3		
Peso de la muestra compactada+t	40.10	40.15	39.70		
Peso del balde	(kg)	11.50	11.50	11.50	
Peso de la muestra compactada	(kg)	28.60	28.65	28.20	
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842	
Peso Unitario Compactado (kg/m³)		2020.00	2023.53	1991.75	
Peso Unitario Compactado Promedio		2011.76			

ARENA (%)		45			
PIEDRA CHANCADA (%)		55			
DESCRIPCIÓN	E-1	E-2	E-3		
Peso de la muestra compactada+balde (kg)		40.10	40.25	40.15	
Peso del balde	(kg)	11.50	11.50	11.50	
Peso de la muestra compactada	(kg)	28.60	28.75	28.65	
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842	
Peso Unitario Compactado (kg/m³)		2020.00	2030.59	2023.53	
Peso Unitario Compactado Promedio			2024.71		

ARENA (%)		50			
PIEDRA CHANCADA (%)		50			
DESCRIPCIÓN	E-1	E-2	E-3		
Peso de la muestra compactada+b	40.25	40.30	40.45		
Peso del balde	(kg)	11.50	11.50	11.50	
Peso de la muestra compactada	(kg)	28.75	28.80	28.95	
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842	
Peso Unitario Compactado (kg/m³)		2030.59	2034.12	2044.72	
Peso Unitario Compactado Promedio		2036.48			

ARENA (%)	55				
PIEDRA CHANCADA (%)		45			
DESCRIPCIÓN	E-1	E-2	E-3		
Peso de la muestra compactada+balde (kg)		39.70	39.90	39.80	
Peso del balde (kg)		11.5	11.5	11.5	
Peso de la muestra compactada	(kg)	28.20	28.40	28.30	
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842	
Peso Unitario Compactado	1991.75	2005.87	1998.81		
Peso Unitario Compactado (kg/m³) Peso Unitario Compactado Promedio			1998.81		

LEYENDA: Procedencia

Cantera "Trapiche" Agregado grueso: Agregado fino

Laboratorio de Ensayo de Materiales de la FIC LEM-UNI Cantera " La gloria" aboratorio.

CUADRO N°2.2.3 ENSAYO DE PESO UNITARIO COMPACTADO DEL AGREGADO GLOBAL

Tipo de Agregado: Agregado Global

Agregado Global Norma: NTP 400.017

Características: M.F.arena = 3.60

Elaborado por: E.G.B.P.

M.F.piedra = 7.42

ARENA (%)			40			
PIEDRA CHANCADA (%)	A (%) 60					
DESCRIPCIÓN	E-1	E-2	E-3			
Peso de la muestra compactada+balde (kg)		40.25	40.20	40.35		
Peso del balde (kg)		11.50	11.50	11.50		
Peso de la muestra compactada	(kg)	28.75	28.70	28.85		
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842		
Peso Unitario Compactado (kg/m³)		2030.59	2027.06	2037.66		
Peso Unitario Compactado Promedio			2031.77			

ARENA (%)	45				
PIEDRA CHANCADA (%)		55			
DESCRIPCIÓN	E-1	E-2	E-3		
Peso de la muestra compactada+balde (kg)		40.73	40.65	40.80	
Peso del balde	(kg)	11.50	11.50	11.50	
Peso de la muestra compactada	(kg)	29.23	29.15	29.30	
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842	
Peso Unitario Compactado (kg/m³)		2064.50	2058.85	2069.44	
Peso Unitario Compactado Promedio			2064.26		

ARENA (%)		50			
PIEDRA CHANCADA (%)	50				
DESCRIPCIÓN	E-1	E-2	E-3		
Peso de la muestra compactada+b	40.98	40.90	41.00		
Peso del balde	(kg)	11.50	11.50	11.50	
Peso de la muestra compactada	(kg)	29.48	29.40	29.50	
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842	
Peso Unitario Compactado (kg/m³)		2082.15	2076.50	2083.57	
Peso Unitario Compactado Promedio			2080.74		

ARENA (%)	55				
PIEDRA CHANCADA (%)		45			
DESCRIPCIÓN	E-1	E-2	E-3		
Peso de la muestra compactada+balde (kg)		40.75	40.55	40.60	
Peso del balde (kg)		11.50	11.50	11.50	
Peso de la muestra compactada (kg)		29.25	29.05	29.10	
Volúmen del balde (1/2 pie ³)	(m ³)	0.01415842	0.01415842	0.01415842	
Peso Unitario Compactado (kg/m³)		2065.91	2051.78	2055.31	
Peso Unitario Compactado Promedio			2057.67		

LEYENDA : Procedencia

Cantera " La gloria" Cantera "Trapiche" Agregado grueso : Laboratorio : Agregado fino

Laboratorio de Ensayo de Materiales de la FIC LEM-UNI

GRANULOMETRIAS DE LOS AGREGADOS FINOS OBTENIDOS EN LABORATORIO M.F.A1=3.0, M.F.A2=3.4, M.F.A3=3.6

CUADRO № 2.3.A1

ANALISIS GRANULOMETRICO POR TAMIZADO

 Proyecto
 TESIS

 Tesista
 E.G.B.P

 Cantera
 TRAPICHE

 Muestra
 M-A1

Descripción: MUESTRA PROMEDIO DE 6 GRANULOMETRIAS REALIZADAS

Peso Seco Total del Suelo Analizado	500 gr	
Peso Seco Total del Suelo Pasante la Malla Nº 4	500 gr	

Mallas	Abertura (mm)	Peso Retenido Parcial (gr)	% Retenido Parcial	% Retenido Acumulado	% que Pasa Acumulado	Especif. Limite Inferior	Especif. Limite Superior
6"	150.00	0.0	0.00%	0.00%	100		<u> </u>
3"	76.20	0.0	0.00%	0.00%	100.00%		
2 1/2"	63.50	0.0	0.00%	0.00%	100.00%		
2"	50.80	0.0	0.00%	0.00%	100.00%		
1 1/2"	38.00	0.0	0.00%	0.00%	100.00%		
1"	25.40	0.0	0.00%	0.00%	100.00%		
3/4"	19.50	0.0	0.00%	0.00%	100.00%		
1/2"	12.70	0.0	0.00%	0.00%	100.00%		T .
3/8"	9.525	0.0	0.00%	0.00%	100.00%	100%	100%
1/4"	6.350	0.0	0.00%	0.00%	100.00%		
No.4	4.750	35.0	7.00%	7.00%	93.00%	95%	100%
No.8	2.381	60.0	12.00%	19.00%	81.00%	80%	100%
No.16	1.191	110.0	22.00%	41.00%	59.00%	50%	85%
No.30	0.595	102.5	20.50%	61.50%	38.50%	25%	60%
No.50	0.296	95,5	19.10%	80.60%	19.40%	10%	30%
No.100	0.149	62.0	12.40%	93.00%	7.00%	2%	10%
No.200	0.075	34.5	6.90%	99.90%	0.10%	0%	0%
ondo (<200 ME	SH)		0.00%	99.90%	0.10%		
Γotal (%)							
RETEN.>N° 04	7.00%	PASAN. < Nº 04	93.00%	PASAN. <nº 200<="" td=""><td>0.10%</td><td></td><td></td></nº>	0.10%		
MODULO DE FI	NURA	3.021%					

GRAFICO Nº 2.3.A1

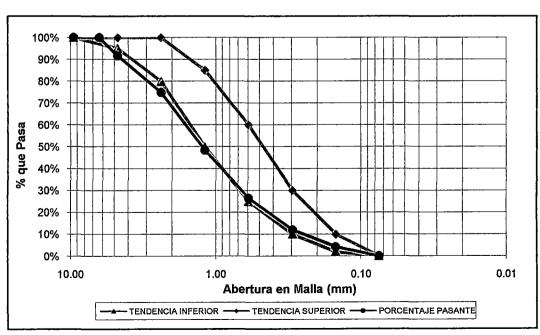
CUADRO Nº 2.3.A2

ANALISIS GRANULOMETRICO POR TAMIZADO

 Proyecto
 TESIS

 Tesista
 E.G.B.P

 Cantera
 TRAPICHE


 Muestra
 M-A2

Descripción: MUESTRA PROMEDIO DE 6 GRANULOMETRIAS REALIZADAS

Peso Seco Total del Suelo Analizado	500 gr
Peso Seco Total del Suelo Pasante la Malla Nº 4	500 gr

Mallas	Abertura (mm)	Peso Retenido Parcial (gr)	% Retenido Parcial	% Retenido Acumulado	% que Pasa Acumulado	Especif. Límite Inferior	Especif. Límite Superior
6"	150.00	0.0	0.00%	0.00%	100		
3"	76.20	0.0	0.00%	0.00%	100.00%		
2 1/2"	63,50	0.0	.0.00%	0.00%	100.00%		
2"	50.80	0.0	0.00%	0.00%	100.00%		T
1 1/2"	38.00	0.0	0.00%	0.00%	100.00%		
1"	25.40	0.0	0.00%	0.00%	100.00%		
3/4"	19.50	0.0	0.00%	0.00%	100.00%		
1/2"	12.70	0.0	0.00%	0.00%	100.00%		
3/8"	9.525	0.0	0.00%	0.00%	100.00%	100%	100%
1/4"	6.350	0.0	0.00%	0.00%	100.00%		I
No.4	4.750	41.5	8.30%	8.30%	91.70%	95%	100%
No.8	2.381	84.0	16.80%	25.10%	74.90%	80%	100%
No.16	1.191	132.0	26.40%	51.50%	48.50%	50%	85%
No.30	0.595	109.5	21.90%	73.40%	26.60%	25%	60%
No.50	0.296	72.9	14.58%	87.98%	12.02%	10%	30%
No.100	0.149	38.7	7.74%	95.72%	4.28%	2%	10%
No.200	0.075	21.4	4.28%	100.00%	0.00%	0%	0%
Fondo (<200 ME	SH)	0.0	0.00%	100.00%	0.00%		
Total (%)							
RETEN.>Nº 04	8.30%	PASAN. < Nº 04	91.70%	PASAN. <nº 200<="" td=""><td>0.00%</td><td></td><td></td></nº>	0.00%		
MODULO DE FI	NURA	3,420%					

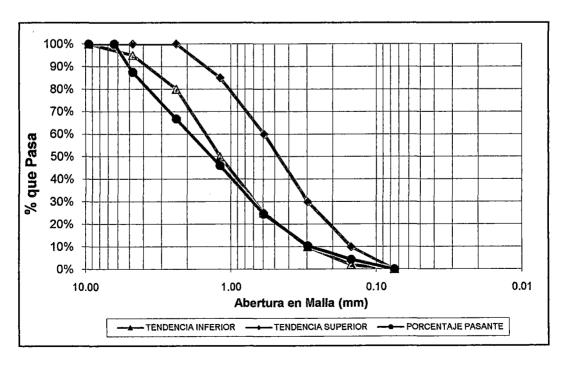
GRAFICO Nº 2.3.A2

ANALISIS GRANULOMETRICO POR TAMIZADO

 Proyecto
 TESIS

 Tesista
 E.G.B.P

 Cantera
 TRAPICHE

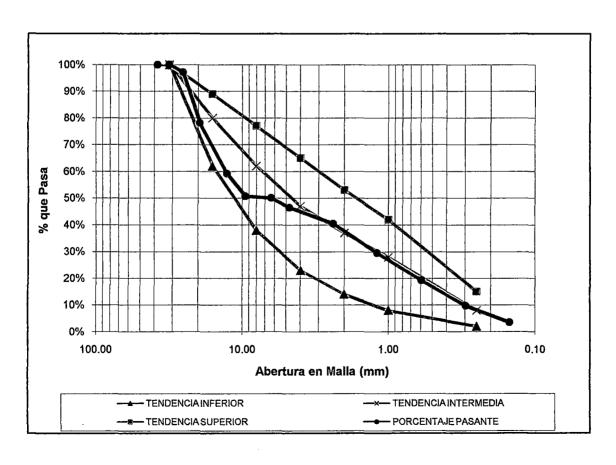

 Muestra
 M-A3

Descripción: MUESTRA PROMEDIO DE 6 GRANULOMETRIAS REALIZADAS

Peso Seco Total del Suelo Analizado	500 gr
Peso Seco Total del Suelo Pasante la Malla Nº 4	500 gr

Mallas	Abertura (mm)	Peso Retenido Parcial (gr)	% Retenido Parcial	% Retenido Acumulado	% que Pasa Acumulado	Especif. Limite Inferior	Especif. Limite Superior
6"	150.00	0,0	0.00%	0.00%	100		
3"	76.20	0.0	0.00%	0.00%	100.00%		
2 1/2"	63.50	0.0	0.00%	0.00%	100.00%		
2"	50.80	0.0	0.00%	0.00%	100.00%		
1 1/2"	38.00	0.0	0.00%	0.00%	100.00%	-	T
1"	25.40	0.0	0.00%	0.00%	100.00%		
3/4"	19.50	0.0	0.00%	0.00%	100.00%		
1/2"	12.70	0.0	0.00%	0.00%	100.00%		
3/8"	9.525	0.0	0.00%	0.00%	100.00%	100%	100%
1/4"	6.350	0,0	0.00%	0.00%	100.00%		
No.4	4.750	62.5	12.50%	12.50%	87,50%	95%	100%
No.8	2.381	104.0	20.80%	33.30%	66.70%	80%	100%
No.16	1.191	103.5	20.70%	54.00%	46.00%	50%	85%
No.30	0.595	107.5	21.50%	75.50%	24.50%	25%	60%
No.50	0.296	70.5	14.10%	89.60%	10.40%	10%	30%
No.100	0.149	30,5	6.10%	95.70%	4.30%	2%	10%
No.200	0.075	21.5	4.30%	100.00%	0.00%	0%	0%
Fondo (<200 ME	SH)	0.0	0.00%	100.00%	0.00%		
Total (%)							
RETEN.>Nº 04	12.50%	PASAN. < Nº 04	87.50%	PASAN. <nº 200<="" td=""><td>0.00%</td><td></td><td></td></nº>	0.00%		
MODULO DE FI	NURA	3.606%					

GRAFICO Nº 2.3.A3

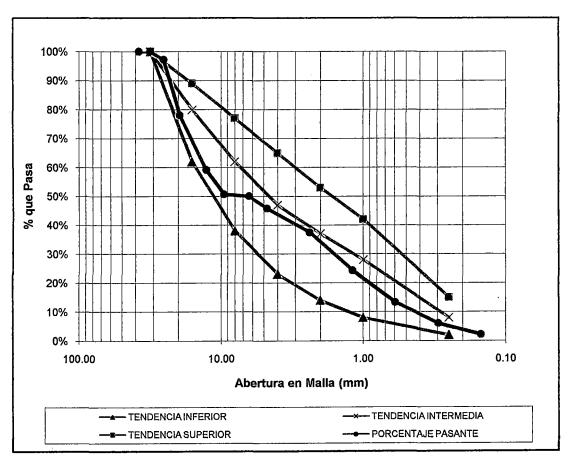

GRANULOMETRIAS DEL AGREGADO GLOBAL

CUADRO Nº 2.3.1 ANALISIS GRANULOMETRICO DEL AGREGADO GLOBAL M.F.A1= 3.0

PROYECTO:	TESIS	MUESTRA:	AGREGADO GLOBAL
RELACION A/P:	50/50	TESISTA:	E.G.B.P.

	A to	0/ D-4	0/ D. 4	۵, 5	NORMA DIN	1045, AGREGA	DO GLOBAL	
Mallas	Abertura (mm)	% Retenido Parcial	% Retenido Acumulado	% que Pasa Acumulado	PORCENTAJE QUE PASA			
	(111111)	raiciai	Acumulado	Acumulado	Α	В	С	
1 1/2"	38.00	0.00%	0.00%	100.00%				
1 1/4"	31.50	0.00%	0.00%	100.00%	100%	100%	100%	
1"	25.40	2.81%	2.81%	97.19%				
3/4"	19.50	19.08%	21.89%	78.11%	62%	80%	89%	
1/2"	12.70	18.93%	40.82%	59.18%_				
3/8"	9.525	8.43%	49.25%	50.75%	38%	62%	77%	
1/4"	6.350	0.68%	49.93%	50.07%				
No.4	4.750	3.57%	53.50%	46.50%	23%	47%	65%	
No.8	2.381	6.00%	59.50%	40,50%	14%	37%	53%	
No.16	1.191	11.00%	70.50%	29.50%	8%	28%	42%	
No.30	0.595	10.25%	80.75%	19.25%				
No.50	0.296	9.55%	90.30%	9.70%	2%	8%	15%	
No.100	0.149	6.25%	96.55%	3.45%				
Fondo (<20	0 MESH)							
MODULO D	E FINURA	5.22%			I		}	

GRAFICO Nº 2.3.a

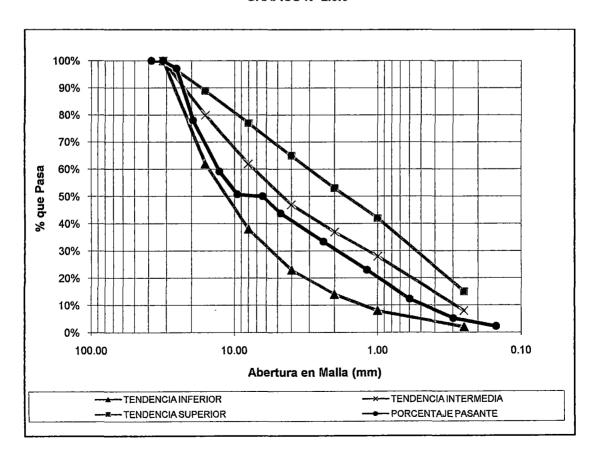


CUADRO Nº 2.3.2 ANALISIS GRANULOMETRICO DEL AGREGADO GLOBAL M.F.A2= 3.4

PROYECTO:	TESIS	MUESTRA:	AGREGADO GLOBAL
RELACION A/P:	50/50	TESISTA:	E.G.B.P.

	A1. /	0/ D /			NORMA DIN	1045, AGREGA	DO GLOBAL	
Mallas	Abertura (mm)	% Retenido Parcial	% Retenido Acumulado	% que Pasa Acumulado	PORCENTAJE QUE PASA			
ĺ	(italij	raiciai	Acumulado	Acumulado	Α	В	С	
1 1/2"	38.00	0.00%	0.00%	100.00%	5			
1 1/4"	31.50	0.00%	0.00%	100.00%	100%	100%	100%	
1"	25.40	2.81%	2.81%	97.19%				
3/4"	19.50	19.08%	21.89%	78.11%	62%	80%	89%	
1/2"	12.70	18.93%	40.82%	59.18%				
3/8"	9.525	8.43%	49.25%	50.75%	38%	62%	77%	
1/4"	6.350	0.68%	49.93%	50.07%				
No.4	4.750	4.22%	54.15%	45.85%	23%	47%	65%	
No.8	2.381	8.40%	62.55%	37.45%	14%	37%	53%	
No.16	<u>1</u> .191	13.20%	75.75%	24.25%	8%	28%	42%	
No.30	0.595	10.95%	86.70%	13.30%				
No.50	0.296	7.29%	93.99%	6.01%	2%	8%	15%	
No.100	0.149	3.87%	97.86%	2.14%				
Fondo (<20	00 MESH)							
MODULO D	E FINURA	5.42%						

GRAFICO Nº 2.3.b



CUADRO Nº 2.3.3 ANALISIS GRANULOMETRICO DEL AGREGADO GLOBAL M.F.A3= 3.6

PROYECTO:	TESIS	MUESTRA:	AGREGADO GLOBAL
RELACION A/P:	50/50	TESISTA:	EG.B.P.

	A1	° 5 4	0(1) 1		NORMA DIN	1045, AGREGA	DO GLOBAL	
Mallas	Abertura (mm)	% Retenido Parcial	% Retenido Acumulado	% que Pasa Acumulado	PORCENTAJE QUE PASA			
		raiciai	Acumulado	Acumulado	Α	В	С	
1 1/2"	38.00	0.00%	0.00%	100.00%				
1 1/4"	31.50	0.00%	0.00%	100.00%	100%	100%	100%	
1"	25.40	2.81%	2.81%	97.19%				
3/4"	19.50	19.08%	21.89%	78.11%	62%	80%	89%	
1/2"	12.70	18.93%	40.82%	59.18%				
3/8"	9.525	8.43%	49.25%	50.75%	38%	62%	77%	
1/4"	6.350	0.68%	49.93%	50.07%				
No.4	4.750	6.32%	56.25%	43.75%	23%	47%	65%	
No.8	2.381	10.40%	66.65%	33.35%	14%	37%	53%	
No.16	1.191	10.35%	77.00%	23.00%	8%	28%	42%	
No.30	0.595	10.75%	87.75%	12.25%				
No.50	0.296	7.05%	94.80%	5.20%	2%	8%	15%	
No.100	0.149	3.05%	97.85%	2.15%				
Fondo (<20	00 MESH)							
MODULO D	E FINURA	5.51%						

GRAFICO Nº 2.3.c

ANEXOS - C

CUADROS Y GRAFICOS DEL DISEÑO DE MEZCLAS

- RESUMEN OBTENCION DE AGUA DE DISEÑO
- RESUMEN RESISTENCIA A LA COMPRESION A LOS 7 DIAS
- DISEÑOS FINALES

CUADRO Nº4.1.1 **CUADRO RESUMEN PARA DETERMINAR EL AGUA REQUERIDA**

Tipo de Cemento: Sol tipo I

Elaborado por: E.G.B.P.

Módulo de Finura Arena 1 (M.F.A1):3.00

Agua: LEM - FIC UNI

M.F.A1	alc	A/P	Agua de Diseño (lt/m3)	Asentamiento (pulg.)	
		48/52	220	3 3/4	
	0.60	50/50	225	3 1/2	
		52/48	225	3 1/4	
		48/52	220	3 1/2	
3.0	0.65	50/50	220	4	
		52/48	225	3 3/4	
		48/52	215	3 1/4	
	0.70 50/50		220	4	
		52/48	220	3 3/4	

CUADRO Nº4.1.2 **CUADRO RESUMEN RESISTENCIA A LOS 7 DIAS**

Tipo de Cemento: Sol tipo I

Elaborado por: E.G.B.P.

Módulo de Finura Arena 1 (M.F.A1):3.00

Agua: LEM -- FIC UNI

M.F.A1	a/c	A/P		sistencia esión (K	Promedio de Resistencia (Kg/cm2)	
			M1	M2	M3	(Rg/Ciliz)
		48/52	210.3	205.1	224.5	213.3
	0.60	50/50	255.4	234.5	251.1	247.0
		52/48	236.7	210.4	245.5	230.9
		48/52	230.5	245.8	225.4	233.9
3.0	0.65	50/50	264.8	251.7	246.7	254.4
		52/48	212.7	226.2	218.4	219.1
		48/52	195.8	215.7	204.7	205.4
	0.70	50/50	217.8	229.4	215.4	220.9
		52/48	189.7	195.6	201.4	195.6

CUADRO Nº4.1.3 DISEÑOS DE MEZCLAS FINALES

Tipo de Cemento: Sol tipo I

Elaborado por: E.G.B.P.

Módulo de Finura Arena 1 (M.F.A1):3.00

Agua: LEM - FIC UNI

	Determinación del Agua de Diseño								
A/P= 50 50	A/P= 50 50 a/c= 0.60 Agua= 225 lit/m3								
	Dosifi	cación por r Concreto	n ³ de	Dosifi	cación por	tanda	D. por Cond		
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O. (en peso)	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)	
cemento	375.00	0.121	1.00	375.00	1.00	7.77	8.82	1.00	
agua	225.00	0.225	0.60	229.69	0.60	4.66	229.69	26.03	
arena: 50 %	853.40	0.336	2.28	859.97	2.29	17.82	19.64	2.23	
piedra: 50 %	853.40	0.304	2.28	856.47	2.28	17.75	20.70	2.35	
aire atrap. (%)	1.50	0.015							
total:		0.361			6.18	48.00			

Asentamiento = 3 1/2"

	Detern	ninación de	l Agua de	e Diseño				
A/P= 50 50			= 0.65	Agu	a= 220	lit/m3		
		ación por n Concreto	า ³ de	Dosifi	icación po	r tanda	D. por Cond	m3 de creto.
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volume n (pie3)	D.U.O. (en vol.)
cemento	338.46	0.109	1.00	338.46	1.00	6.99	7.96	1.00
agua	220.00	0.220	0.65	224.82	0.66	4.64	224.82	28.23
arena: 50 %	875.75	0.345	2.59	882.50	2.61	18.22	20.15	2.53
piedra: 50 %	875.75	0.312	2.59	878.91	2.60	18.15	21.24	2.67
aire atrap. (%)	1.50	0.015						
total:		0.344			6.87	48.00		

Asentamiento = 4"

	Deter	minación de	el Agua de	Diseño				
A/P= 50 50			= 0.70	Agua	= 220	lit/m3		
	Dosifi	cación por r Concreto	n ³ de	Dosif	icación po	or tanda	D. por m3 de Concreto	
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volum en (pie3)	D.U.O. (en vol.)
cemento	314.29	0.101	1.00	314.29	1.00	6.50	7.39	1.00
agua	220.00	0.220	0.70	224.87	0.72	4.65	224.87	30.41
arena: 50 %	886.13	0.349	2.82	892.95	2.84	18.46	20.39	2.76
piedra: 50 %	886.13	0.315	2.82	889.32	2.83	18.39	21.49	2.91
aire atrap. (%)	1.50	0.015						
total:		0.336			7.39	48.00		
				2			,	

Asentamiento = 4"

CUADRO Nº4.2.1 CUADRO RESUMEN PARA DETERMINAR EL AGUA REQUERIDA

Tipo de Cemento: Sol tipo I

Elaborado por: E.G.B.P.

Módulo de Finura Arena 2(M.F.A2) :3.40

Agua: LEM - FIC UNI

M.F.A2	a/c	A/P	Agua de Diseño (lt/m3)	Asentamiento (pulg.)
		48/52	210	3 1/2
	0.60	50/50	215	3 3/4
		52/48	220	4
		48/52	205	3 1/2
3.4	0.65	50/50	210	3 3/4
		52/48	215	3 1/2
Ì		48/52	210	3 3/4
	0.70	50/50	210	4
		52/48	205	3 1/4

CUADRO Nº4.2.2 CUADRO RESUMEN RESISTENCIA A LOS 7 DIAS

Tipo de Cemento: Sol tipo I

ipo I Elaborado por: E.G.B.P.

Módulo de Finura Arena 2 (M.F.A2):3.40

Agua: LEM - FIC UNI

M.F.A2 a/c		A/P		sistencia resión (K	Promedio de Resistencia	
			M1	M2	M3	(Kg/cm2)
		48/52	230.4	225.9	240.7	232.3
	0.60	50/50	245.7	268.9	255.4	256.7
		52/48	235.4	210.4	215.4	220.4
		48/52	224.2	205.7	201.9	210.6
3.4	0.65	50/50	246.9	219.7	225.4	230.7
		52/48	205.7	209.7	218.1	211.2
		48/52	194.7	189.4	193.5	192.5
	0.70	50/50	199.5	210.4	202.8	204.2
		52/48	167.4	177.4	158.6	167.8

CUADRO Nº4.2.3 DISEÑOS DE MEZCLAS FINALES

Tipo de Cemento: Sol tipo I

Elaborado por: E.G.B.P.

Módulo de Finura Arena 2 (M.F.A2):3.40

Agua: LEM - FIC UNI

Determinación del Agua de Diseño									
A/P= 50 50		a/c=	= 0.60	Agua=	215	lit/m3			
	Dosifi	cación por i Concreto	ación por m ³ de Concreto		Dosificación por tanda			D. por m3 de Concreto	
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)	
cemento	358.33	0.115	1.00	358.33	1.00	7.36	8.43	1.00	
agua	215.00	0.215	0.60	219.81	0.61	4.52	219.81	26.07	
arena: 50 %	873.90	0.344	2.44	880.63	2.46	18.10	20.11	2.38	
piedra: 50 %	873.90	0.311	2.44	877.05	2.45	18.02	21.19	2.51	
aire atrap. (%)	1.50	0.015							
total:		0.345			6.52	48.00			

Asentamiento = 3 3/4"

	Deter	minación de	el Agua de	e Diseño				
A/P= 50 50		a/	c= 0.65	Agua	a= 210	lit/m3		_
	Dosificación por m³ de Concreto			Dosific	Dosificación por tanda			m3 de creto
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)
cemento	323.08	0.104	1.00	323.08	1.00	6.63	7.60	1.00
agua	210.00	0.210	0.65	214.93	0.67	4.41	214.93	28.27
arena: 50 %	895.70	0.352	2.77	902.60	2.79	18.52	20.61	2.71
piedra: 50 %	895.70	0.319	2.77	898.93	2.78	18.44	21.72	2.86
aire atrap. (%)	1.50	0.015						
total:		0.329			7.24	48.00		

Asentamiento = 3 3/4"

	Deter	minación de	el Agua de	e Diseño				
A/P= 50 50			= 0.70	Agua	a= 210	lit/m3		
	Dosifi	Dosificación por m ³ de Concreto			cación por	tanda	D. por m3 de Concreto	
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)
cemento	300.00	0.096	1.00	300.00	1.00	6.16	7.06	1.00
agua	210.00	0.210	0.70	214.98	0.72	4.42	214.98	30.46
arena: 50 %	905.61	0.356	3.02	912.58	3.04	18.75	20.84	2.95
piedra: 50 %	905.61	0.322	3.02	908.87	3.03	18.67	21.96	3.11
aire atrap. (%)	1.50	0.015						
total:		0.321			7.79	48.00		
							1	

Asentamiento = 4"

CUADRO Nº4.3.1 CUADRO RESUMEN PARA DETERMINAR EL AGUA REQUERIDA

Tipo de Cemento: Sol tipo l Elaborado por: E.G.B.P.

Módulo de Finura Arena 3 (M.F.A3):3.60 Agua: LEM – FIC UNI

M.F.A3	a/c	A/P	Agua de Diseño (lt/m3)	Asentamiento (pulg.)
	<u>-</u>	48/52	210	3 1/4
	0.60	50/50	218	4
		52/48	220	3 3/4
		48/52	205	4
3.6	0.65	50/50	213	4
		52/48	215	3 1/2
		48/52	205	4
	0.70	50/50	208	3 3/4
		52/48	210	3 1/2

CUADRO N°4.3.2 CUADRO RESUMEN RESISTENCIA A LOS 7 DIAS

Tipo de Cemento: Sol tipo I Elaborado por: E.G.B.P.

Módulo de Finura Arena 3 (M.F.A3):3.60 Agua: LEM – FIC UNI

M.F.A3 a/c		A/P		istencia esión (K	Promedio de Resistencia (Kg/cm2)	
			M1	M2	M3	(Kg/ciiiz)
		48/52	150.0	165.0	173.4	162.8
	0.60	50/50	195.4	178.9	185.4	186.6
		52/48	155.4	167.9	148.9	157.4
		48/52	120.4	115.4	110.9	115.6
3.6	0.65	50/50	136.9	149.8	155.4	147.4
		52/48	116.7	110.8	111.5	113.0
	0.70	48/52	102.7	110.9	105.8	106.5
		50/50	125.4	129.7	134.1	129.7
		52/48	109.4	101.9	110.9	107.4

CUADRO Nº4.3.3 DISEÑOS DE MEZCLAS FINALES

Tipo de Cemento: Sol tipo I

Elaborado por: E.G.B.P.

Módulo de Finura Arena 3 (M.F.A3):3.60

Agua: LEM - FIC UNI

								
Determinación del Agua de Diseño								
	a/c=	0.60	Agua=	218	lit/m3			
Dosificación por m ³ de Concreto				Dosificación por tanda			D. por m3 de Concreto	
Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)	
363.33	0.117	1.00	363.33	1.00	7.48	8.55	1.00	
218.00	0.218	0.60	222.77	0.61	4.59	222.77	26.06	
867.75	0.341	2.39	874.43	2.41	18.00	19.97	2.34	
867.75	0.309	2.39	870.87	2.40	17.93	21.04	2.46	
1.50	0.015							
	0.350			6.42	48.00			
	Peso seco (kg) 363.33 218.00 867.75	a/c= Dosificación por n Concreto Peso Volumen Absoluto (kg) (m3) 363.33 0.117 218.00 0.218 867.75 0.341 867.75 0.309 1.50 0.015	a/c= 0.60 Dosificación por m³ de Concreto Peso seco (kg) (m3) Volumen Absoluto (m3) 363.33 0.117 1.00 1.00 218.00 0.218 0.60 0.60 867.75 0.341 2.39 2.39 1.50 0.015 0.015	Dosificación por m³ de Concreto Dosificación por m³ de Concreto Peso seco (kg) Volumen Absoluto (m3) D.U.S. (kg/m3) 363.33 0.117 1.00 363.33 218.00 0.218 0.60 222.77 867.75 0.341 2.39 874.43 867.75 0.309 2.39 870.87 1.50 0.015	a/c= 0.60 Agua= 218 Dosificación por m³ de Concreto Dosificación por Dosific	a/c= 0.60 Agua= 218 lit/m3 Dosificación por m³ de Concreto Dosificación por tanda Peso seco (kg) Volumen Absoluto (m3) D.U.S. (kg/m3) D.U.O. (kg/m3) Tanda (48kg) 363.33 0.117 1.00 363.33 1.00 7.48 218.00 0.218 0.60 222.77 0.61 4.59 867.75 0.341 2.39 874.43 2.41 18.00 867.75 0.309 2.39 870.87 2.40 17.93 1.50 0.015	a/c= 0.60 Agua= 218 lit/m3 Dosificación por m³ de Concreto Dosificación por tanda D. por Concreto Peso seco (kg) Volumen Absoluto (m3) D. O. (kg/m3) D. U.O. (kg/m3) Tanda (48kg) Volumen (pie3) 363.33 0.117 1.00 363.33 1.00 7.48 8.55 218.00 0.218 0.60 222.77 0.61 4.59 222.77 867.75 0.341 2.39 874.43 2.41 18.00 19.97 867.75 0.309 2.39 870.87 2.40 17.93 21.04 1.50 0.015	

Asentamiento = 4"

							L	
1	Detern	ninación del	Agua de	Diseño				
_A/P= 50_50		a/c=	0.65	Agua=	213	lit/m3		
	Dosificación por m ³ de Concreto			Dosificación por tanda			D. por m3 de Concreto	
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)
cemento	327.69	0.105	1.00	327.69	1.00	6.74	7.71	1.00
agua	213.00	0.213	0.65	217.89	0.66	4.48	217.89	28.26
arena: 50 %	889.72	0.350	2.72	896.57	2.74	18.43	20.47	2.66
piedra: 50 %	889.72	0.317	2.72	892.92	2.72	18.35	21.58	2.80
aire atrap. (%)	1.50	0.015						
total:		0.333			7.13	48.00		

Asentamiento = 4"

}	Determ	ninación del .	Agua de	Diseño				
A/P= 50 50		a/c=	0.70	Agua=	208	lit/m3		
Dosificación por m³ de Concreto			Dosifica	Dosificación por tanda			D. por m3 de Concreto	
Material	Peso seco (kg)	Volumen Absoluto (m3)	D.U.S.	D.O. (kg/m3)	D.U.O.	Tanda (48kg)	Volumen (pie3)	D.U.O. (en vol.)
cemento	297.14	0.096	1.00	297.14	1.00	6.10	6.99	1.00
agua	208.00	0.208	0.70	213.00	0.72	4.37	213.00	30.47
arena: 50 %	909.50	0.358	3.06	916.50	3.08	18.80	20.93	2.99
piedra: 50 %	909.50	0.324	3.06	912.78	3.07	18.73	22.06	3.15
aire atrap. (%)	1.50	0.015						
total:		0.319			7.87	48.00		

Asentamiento = 3 3/4"

ANEXO-D

CUADROS Y GRAFICOS DEL CONCRETO FRESCO

- ENSAYO DE CONSISTENCIA
- ENSAYO DE PESO UNITARIO
- ENSAYO DE EXUDACION
- ENSAYO DE FLUIDEZ
- ENSAYO DE TIEMPO DE FRAGUADO

CUADROS DE RESULTADOS CONCRETO FRESCO

CUADRO Nº 5.1 CONSISTENCIA DEL CONCRETO (METODO DEL CONO DE ABRAHAMS)

Norma: NTP 339.035 Elaborado por: E.G.B.P.

MODULO DE FINURA	RELACION A/C	ASENTAMIENTO (pulg.)	OBSERVACION	
Musetre A4	0.60	3 1/2"	Trabajable	
Muestra A1 M.F.A1=3.0	0.65	3 3/4"	Trabajable	
IVI.F.A1-3.0	0.70	3 1/2"	Trabajable	
Muestra A2	0.60	3 1/2"	Trabajable	
M.F.A2=3.4	0.65	4"	Trabajable	
IVI.F.A2-3.4	0.70	3 3/4"	Trabajable	
Muestra A3	0.60	3 3/4"	Trabajable	
M.F.A3=3.6	0.65	3 1/2"	Trabajable	
1VI.F.,M3=3.0	0.70	3 3/4"	Trabajable	

LEYENDA

Cemento

: Sol tipo I

Agregado Fino : Cantera "Trapiche"
Agregado Grueso : Cantera "La Gloria"

M.F.A.1

: Modulo de finura del Arena 1

M.F.A.2

: Modulo de finura del Arena 2

M.F.A.3

: Modulo de finura del Arena 3

Laboratorio

: LEM - FIC- UNI

CUADRO Nº 5.2

PESO UNITARIO DEL CONCRETO FRESCO

Norma: NTP 339.046 Elaborado por: E.G.B.P.

MUESTRA	A/C	BALDE (Kg)	PESO BRUTO C+ B (Kg.)	CONCRETO C (Kg)	PESO UNITARIO (Kg/m3)
	0.60	7.30	29.41	22.11	2342.43
M.F.A1=3.00	0.65	7.30	29.40	22.10	2341.37
	0.70	7.30	29.35	22.05	2336.08
	0.60	7.35	29.39	22.04	2335.02
M.F.A2=3.40	0.65	7.35	29.41	22.06	2337.14
	0.70	7.35	29.37	22.02	2332.90
	0.60	7.35	29.38	22.03	2333.96
M.F.A3=3.60	0.65	7.35	29.36	22.01	2331.84
	0.70	7.35	29.35	22.00	2330.78
VOL. DE BALDE =	1/3 pie3 =	0.0094389	m3		

LEYENDA

Cemento : Sol tipo I

Agregado Fino : Cantera "Trapiche"
Agregado Grueso : Cantera " La Gloria "

M.F.A.1 : Modulo de finura del Arena 1
M.F.A.2 : Modulo de finura del Arena 2
M.F.A.3 : Modulo de finura del Arena 3

Laboratorio : LEM - FIC- UNI

CUADRO 5.3 ENSAYO DE EXUDACION

Norma: NTP 339.077

Elaborado por: E.G.B.P.

		PESO	PESO	PESO			TIE	EMPO (hr)			VOLUMEN	EXUDACION
M.F.A	A/C	MAT.	AGUA	CONCRETO	00:10	00:20	00:30	00:40	01:10	02:10	03:10	TOTAL	l
		(Kg)	(It)	(Kg)		V	DLUME	N PAR	CIAL (r	nl)		IOIAL	(%)
	0.60	48.0	4.77	22.08	5.0	4.5	4.5	6.0	5.0	3.0	0.0	28.0	1.276
M.F.A1 = 3.00	0.65	48.0	4.66	22.05	4.5	4.0	5.0	3.5	4.0	2.5	0.0	23.5	1.098
	0.70	48.0	4.67	21.94	5.0	4.5	3.5	3.5	4.5	3.5	0.0	24.5	1.148
	0.60	48.0	4.54	22.06	5.0	3.5	3.5	5.0	4.0	2.0	0.0	23.0	1.102
M.F.A2 = 3.40	0.65	48.0	4.43	21.96	4.5	3.0	4.0	3.5	4.0	2.5	0.0	21.5	1.061
	0.70	48.0	4.45	21.97	4.5	3.5	3.5	4.0	3.0	2.0	0.0	20.5	1.006
								•	-				
-	0.60	48.0	4.60	22.09	4.0	3.5	2.5	1.0	0.0	0.0	0.0	11.0	0.520
M.F.A3 = 3.60	0.65	48.0	4.49	22.06	4.5	4.0	3.5	1.5_	0.0	0.0	0.0	13.5	0.654
	0.70	48.0	4.39	22.01	5.0	4.5	3.0	1.5	0.0	0.0	0.0	14.0	0.695

LEYENDACemento

: Sol tipo I

Agregado Fino : Cantera "Trapiche"
Agregado Grueso : Cantera "La Gloria"

M.F.A.1 : Modulo de finura del Arena 1 M.F.A.2 : Modulo de finura del Arena 2 M.F.A.3 : Modulo de finura del Arena 3

Laboratorio : Laboratorio de ensayo de materiales de la FIC LEM - UNI

EXUDACION (%) = Dx100/C

C=wxS/W

DONDE:

C: Masa de agua en la probeta de ensayo

W: Masa total de mezcla en Kg.S: Masa de la muestra en Kg.D: Volumen total de exudacionw: Masa del agua en la mezcla

ag. 168

CUADRO 5.4 ENSAYO DE FLUIDEZ

Norma: NTP 339.085 Elaborado por: E.G.B.P.

			MESA	DE SA	CUDID	AS (ME	SA DE	FLUJO)	INDICE DE
M.F.A	A/C				CONSISTENCIA				
		D1	D2	D3	D4_	D5	D6	PROMEDIO	(%)
	0.60	44.0	43.5	44.0	44.0	43.0	42.5	43,5	74.0
M.F.A1 =3.00	0.65	45.5	45.0	44.0	44.5	45.0	43.0	44.5	78.0
	0.7	45.0	46.0	44.0	44.5	45.5	45.0	45.0	80.0
	0.60	47.5	46.0	46.0	47.0	45.0	47.0	46.4	85.7
M.F.A2 =3.40	0.65	46.0	47.0	46.5	45.5	45.0	46.0	46.0	84.0
	0.7	48.0	46.0	46.0	47.0	47.5	46.0	46.8	87.0
	0.60	47.5	48.0	48.0	49.0	48.5	47.5	48.1	92.3
M.F.A3 =3.60	0.65	49.0	49.5	50.0	47.5	48.5	48.0	48.8	95.0
1	0.7	50.0	49.0	49.5	48.0	50.0	51.0	49.6	98.3

LEYENDA

Cemento : Sol tipo I

f (%) = (D-25)*100/25
D: diametro de la muestra
f (%) : Indice de Fluidez

Agregados Fino : Cantera "Trapiche"
Agregado Grueso : Cantera " La Gloria "
M.F.A.1 : Modulo de finura del A

M.F.A.1 : Modulo de finura del Arena 1
M.F.A.2 : Modulo de finura del Arena 2
M.F.A.3 : Modulo de finura del Arena 3

Laboratorio : Lab. de ensayo de materiales de la FIC LEM - UNI

CUADRO N°5.5.1 ENSAYO DE TIEMPO DE FRAGUADO

Tipo de Agregado: Muestra "A1" (M.F.A=3.00)

Norma: NTP 339.082

Relación A/C: 0.60

Elaborado por: E.G.B.P.

Tipo de cemento: Hora de inicio :			SOL TIPO I 09:00 a.m.			
HORA DE APLICACIÓN (h:m)	TIEMPO (h:m)	DIAMETRO DE AGUJA (pulg.)	LONGITUD DIAMETRAL (pulg.)	FUERZA (lb)	AREA (pulg2)	PRESION (lb/pulg2)
09:00	00:00	1"	1	0	0.79	0
12:30	03:30	1"	1	170	0.79	215.2
13:00	04:00	13/16"	0.8125	155	0.52	298.1
13:30	04:30	9/16"	0.5625	160	0.25	640.0
14:00	05:00	5/16"	0.3125	105	0.08	1363.6
14:30	05:30	4/16"	0.2500	140	0.05	2800.0
15:00	06:00	3/16"	0.1875	165	0.03	5500.0

FRAGUADO INICIAL (F.I.)= 4: 24 HORAS FRAGUADO FINAL (F.F.)= 5: 40 HORAS

CUADRO Nº5.5.2 ENSAYO DE TIEMPO DE FRAGUADO

Tipo de Agregado: Muestra "A1" (M.F.A=3.00)

Norma: NTP 339,082

Relación A/C: 0.65

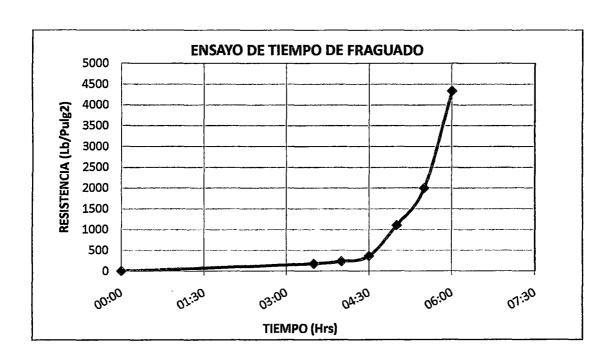
Elaborado por: E.G.B.P.

	Tipo de cen Hora de inic		SOL TIPO I 09:00 a.m.			
HORA DE APLICACIÓN (h:m)	TIEMPO (h:m)	DIAMETRO DE AGUJA (pulg.)	LONGITUD DIAMETRAL (pulg.)	FUERZA (lb)	AREA (pulg2)	PRESION (lb/pulg2)
09:00	00:00	1	1	0	0.79	0
12:30	03:30	1"	1	140	0.79	177.2
13:00	04:00	13/16"	0.8125	120	0.52	230.8
13:30	04:30	9/16"	0.5625	100	0.25	400.0
14:00	05:00	5/16"	0.3125	90	0.08	1168.8
14:30	05:30	4/16"	0.2500	100	0.05	2000.0
15:00	06:00	3/16"	0.1875	135	0.03	4500.0

FRAGUADO INICIAL (F.I.)= 4 : 35 HORAS FRAGUADO FINAL (F.F.)= 5 : 50 HORAS

CUADRO N°5.5.3 ENSAYO DE TIEMPO DE FRAGUADO

Tipo de Agregado: Muestra "A1" (M.F.A=3.00)


Norma: NTP 339.082

Relación A/C: 0.70

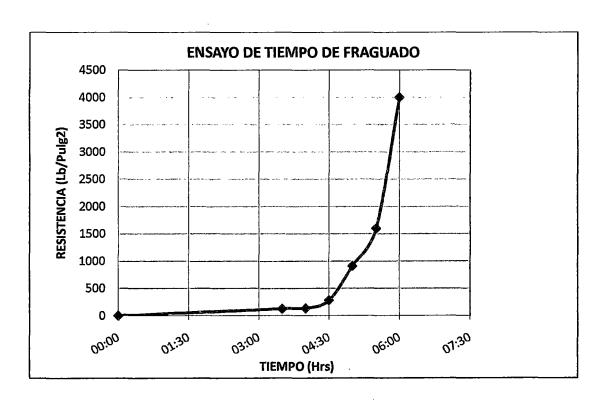
Elaborado por: E.G.B.P.

	Tipo de cemento: Hora de inicio:					
HORA DE APLICACIÓN (h:m)	TIEMPO (h:m)	DIAMETRO DE AGUJA (pulg.)	LONGITUD DIAMETRAL (pulg.)	FUERZA (lb)	AREA (pulg2)	PRESION (lb/pulg2)
10:00	00:00	1"	1	0	0.79	0
13:30	03:30	1"	1	140	0.79	177.2
14:00	04:00	13/16"	0.8125	120	0.52	230.8
14:30	04:30	9/16"	0.5625	90	0.25	360.0
15:00	05:00	5/16"	0.3125	85	0.08	1103.9
15:30	05:30	4/16"	0.2500	100	0.05	2000.0
16:00	06:00	3/16"	0.1875	130	0.03	4333.3

FRAGUADO INICIAL (F.I.)= 4:50 HORAS FRAGUADO FINAL (F.F.)=5:55 HORAS

CUADRO N°5.5.4 ENSAYO DE TIEMPO DE FRAGUADO

Tipo de Agregado: Muestra "A2" (M.F.A=3.40)


Norma: NTP 339.082

Relación A/C: 0.60

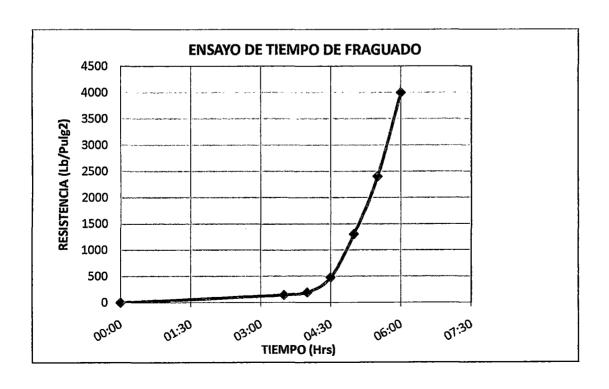
Elaborado por: E.G.B.P.

	Tipo de cen Hora de inic		SOL TIPO I 10:00 a.m.			
HORA DE APLICACIÓN (h:m)	TIEMPO (h:m)	DIAMETRO DE AGUJA (pulg.)	LONGITUD DIAMETRAL (pulg.)	FUERZA (lb)	AREA (pulg2)	PRESION (lb/pulg2)
10:00	00:00	1"	1	0	0.79	0
13:30	03:30	1"	1	100	0.79	126.6
14:00	04:00	13/16"	0.8125	70	0.52	134.6
14:30	04:30	9/16"	0.5625	70	0.25	280.0
15:00	05:00	5/16"	0.3125	70	0.08	909.1
15:30	05:30	4/16"	0.2500	80	0.05	1600.0
16:00	06:00	3/16"	0.1875	120	0.03	4000.0

FRAGUADO INICIAL (F.I.)= 4:45 FRAGUADO FINAL (F.F.)=6:00

CUADRO N°5.5.5 ENSAYO DE TIEMPO DE FRAGUADO

Tipo de Agregado: Muestra "A2" (M.F.A=3.40)


Norma: NTP 339.082

Relación A/C: 0.65

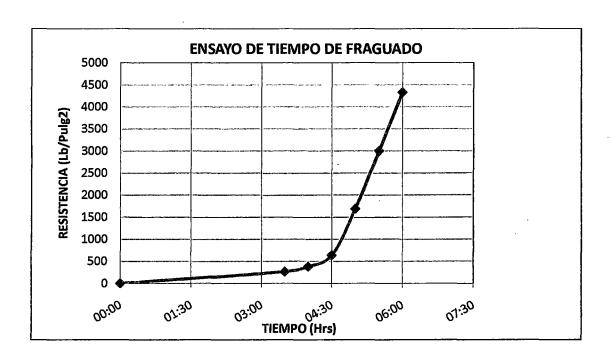
Elaborado por: E.G.B.P.

	Tipo de cemento: Hora de inicio :					
HORA DE APLICACIÓN (h:m)	TIEMPO (h:m)	DIAMETRO DE AGUJA (pulg.)	LONGITUD DIAMETRAL (pulg.)	FUERZA (lb)	AREA (pulg2)	PRESION (lb/pulg2)
10:00	00:00	1"	1	0	0.79	0
13:30	03:30	1"	1	110	0.79	139.2
14:00	04:00	13/16"	0.8125	100	0.52	192.3
14:30	04:30	9/16"	0.5625	120	0.25	480.0
15:00	05:00	5/16"	0.3125	100	0.08	1298.7
15:30	05:30	4/16"	0.2500	120	0.05	2400.0
16:00	06:00	3/16"	0.1875	120	0.03	4000.0

FRAGUADO INICIAL (F.I.) = 4:35 FRAGUADO FINAL (F.F.) = 6:00

CUADRO N°5.5.6 ENSAYO DE TIEMPO DE FRAGUADO

Tipo de Agregado: Muestra "A2" (M.F.A=3.40)


Norma: NTP 339.082

Relación A/C: 0.70

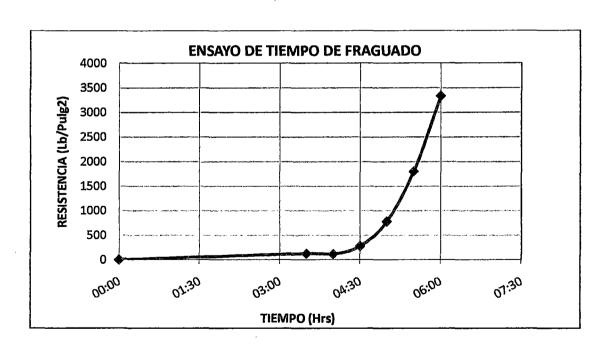
Elaborado por: E.G.B.P.

	Tipo de cen Hora de inic		SOL TIPO I 10:00 a.m.			
HORA DE APLICACIÓN (h:m)	TIEMPO (h:m)	DIAMETRO DE AGUJA (pulg.)	LONGITUD DIAMETRAL (pulg.)	FUERZA (lb)	AREA (pulg2)	PRESION (lb/pulg2)
10:00	00:00	1"	1	0	0.79	0
13:30	03:30	1"	1	210	0.79	265.8
14:00	04:00	13/16"	0.8125	200	0.52	384.6
14:30	04:30	9/16"	0.5625	160	0.25	640.0
15:00	05:00	5/16"	0.3125	130	0.08	1688.3
15:30	05:30	4/16"	0.2500	150	0.05	3000.0
16:00	06:00	3/16"	0.1875	130	0.03	4333.3

FRAGUADO INICIAL (F.I.) =4:20 FRAGUADO FINAL (F.F.)=5:50

CUADRO N°5.5.7 ENSAYO DE TIEMPO DE FRAGUADO

Tipo de Agregado: Muestra "A3" (M.F.A=3.60)

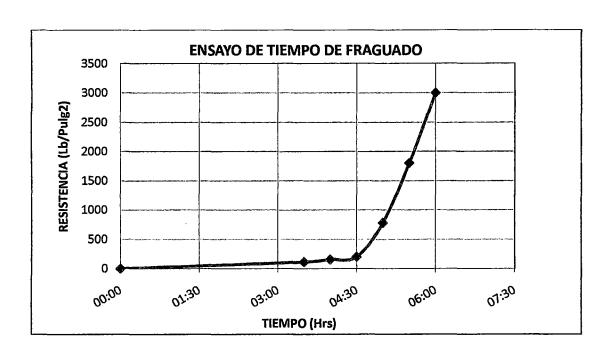

Norma: NTP 339.082

Relación A/C: 0.60

Elaborado por: E.G.B.P.

Tipo de cemento: Hora de inicio :			SOL TIPO I 09:00 a.m.			
HORA DE APLICACIÓN (h:m)	TIEMPO (h:m)	DIAMETRO DE AGUJA (pulg.)	LONGITUD DIAMETRAL (pulg.)	FUERZA (lb)	AREA (pulg2)	PRESION (lb/pulg2)
09:00	00:00	1"	1	0	0.79	0
12:30	03:30	1"	1	100	0.79	126.6
13:00	04:00	13/16"	0.8125	60	0.52	115.4
13:30	04:30	9/16"	0.5625	70	0.25	280.0
14:00	05:00	5/16"	0.3125	60	0.08	779.2
14:30	05:30	4/16"	0.2500	90	0.05	1800.0
15:00	06:00	3/16"	0.1875	100	0.03	3333.3

FRAGUADO INICIAL (F.I.) = 4:50 FRAGUADO FINAL (F.F.) = 6:18


CUADRO N°5.5.8 ENSAYO DE TIEMPO DE FRAGUADO

Tipo de Agregado: Muestra "A3" (M.F.A=3.60) Norma: NTP 339.082

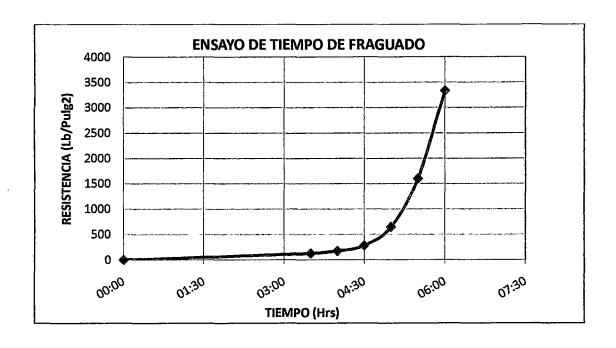
Relación A/C: 0.65 Elaborado por: E.G.B.P.

	Tipo de cemento: Hora de inicio :					
HORA DE APLICACIÓN (h:m)	TIEMPO (h:m)	DIAMETRO DE AGUJA (pulg.)	LONGITUD DIAMETRAL (pulg.)	FUERZA (lb)	AREA (pulg2)	PRESION (lb/pulg2)
09:00	00:00	1"	1	0	0.79	0
12:30	03:30	1"	1	90	0.79	113.9
13:00	04:00	13/16"	0.8125	80	0.52	153.8
13:30	04:30	9/16"	0.5625	50	0.25	200.0
14:00	05:00	5/16"	0.3125	60	0.08	779.2
14:30	05:30	4/16"	0.2500	90	0.05	1800.0
15:00	06:00	3/16"	0.1875	90	0.03	3000.0

FRAGUADO INICIAL (F.I.) = 4 : 48 FRAGUADO FINAL (F.F.) = 6 : 36

CUADRO N°5.5.9 ENSAYO DE TIEMPO DE FRAGUADO

Tipo de Agregado: Muestra "A3" (M.F.A=3.60)


Norma: NTP 339.082

Relación A/C: 0.70

Elaborado por: E.G.B.P.

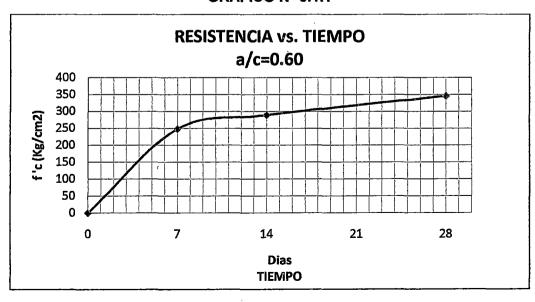
Tipo de cemento: Hora de inicio :			SOL TIPO I 10:00 a.m.			
HORA DE APLICACIÓN (h:m)	TIEMPO (h:m)	DIAMETRO DE AGUJA (pulg.)	LONGITUD DIAMETRAL (pulg.)	FUERZA (lb)	AREA (pulg2)	PRESION (lb/pulg2)
10:00	00:00	1"	1	0	0.79	0
13:30	03:30	1"	1	100	0.79	126.6
14:00	04:00	13/16"	0.8125	90	0.52	173.1
14:30	04:30	9/16"	0.5625	70	0.25	280.0
15:00	05:00	5/16"	0.3125	50	0.08	649.4
15:30	05:30	4/16"	0.2500	80	0.05	1600.0
16:00	06:00	3/16"	0.1875	100	0.03	3333.3

FRAGUADO INICIAL (F.I.)= 4:51 FRAGUADO FINAL (F.F.):6:14

ANEXO - E

CUADROS Y GRAFICOS DEL CONCRETO ENDURECIDO

- ENSAYO DE RESISTENCIA A LA COMPRESION AXIAL.
- ENSAYO DE RESISTENCIA A LA TRACCION POR COMPRESION DIAMETRAL.
- ENSAYO DE MODULO ELASTICO ESTATICO.

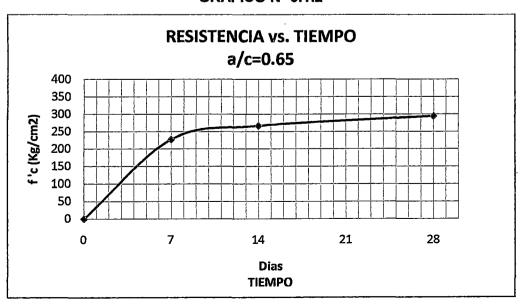

CUADROS DE RESULTADOS CONCRETO ENDURECIDO

CUADRO Nº 6.1.1 ENSAYO DE RESISTENCIA POR COMPRESION AXIAL

Tipo de Agregado: Muestra "A1" (M.F.A1=3.00) Norma: NTP 339.034

Relación A/C: 0.60 Elaborado por: E.G.B.P.

PROBETA Nº	EDAD días	DIAMETRO (cm)	AREA (cm2)	CARGA (Kgf)	f 'c (kg/cm2)	PROMEDIO (Kg/cm2)
1	7	10.2	81.71	20100	245.98	
2	7	10.2	81.71	20200	247.21	247.61
3	7	10.2	81.71	20400	249.65	
4	14	10.2	81.71	23800	291.26	
5	14	10.3	83.32	23500	282.03	289.41
6	14	10.2	81.71	24100	294.93	
7	28	10.3	83.32	29100	349.24	
8	28	10.3	83.32	28000	336.04	
9	28	10.2	81.71	27800	340.22	
10	28	10.1	80.12	29100	363.21	
11	28	10.2	81.71	27500	336.54	
12	28	10.3	83.32	28400	340.84	
13	28	10.1	80.12	28000	349.48	
14	28	10.2	81.71	27900	341.44	345.92
15	28	10.1	80.12	28500	355.72	
16	28	10.3	83.32	29000	348.04	
17	28	10.2	81.71	28300	346.33	
18	28	10.2	81.71	28900	353.68	
19	28	10.2	81.71	27800	340.22	
20	28	10.2	81.71	28700	351.23	
21	28	10.2	81.71	27500	336.54	

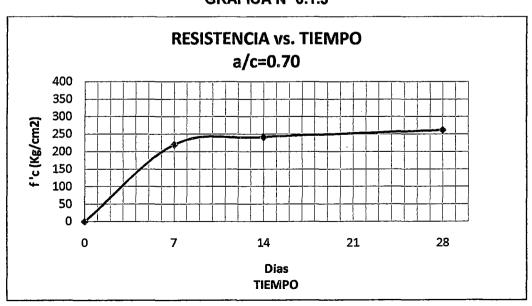


CUADRO Nº 6.1.2 ENSAYO DE RESISTENCIA POR COMPRESION AXIAL

Tipo de Agregado: Muestra "A1" (M.F.A1=3.00) Norma: NTP 339.034

Relación A/C: 0.65 Elaborado por: E.G.B.P

PROBETA Nº	EDAD días	DIAMETRO (cm)	AREA (cm2)	CARGA (Kgf)	f 'c (kg/cm2)	PROMEDIO (Kg/cm2)
1	7	10.1	80.12	19100	238.40	
2	7	10.2	81.71	17900	219.06	227.14
3	7	10.2	81.71	18300	223.95	
4	14	10.1	80.12	21600	269.60	
5	14	10.2	81.71	22500	275.35	266.91
6_	14	10.2	81.71	20900	255.77	
7	28	10.3	83.32	24000	288.04	·
8	28	10.1	80.12	23300	290.82	
9	28	10.2	81.71	25700	314.52	
10	28	10.2	81.71	23900	292.49	
11	28	10.1	80.12	24550	306.42	
12	28	10.2	81.71	23000	281.47	
13	28	10.3	83.32	25500	306.04	
14	28	10.2	81.71	23450	286.98	294.22
15	28	10.2	81.71	23100	282.70	
16	28	10.1	80.12	24150	301.43	
17	28	10.1	80.12	23500	293.31	
18	28	10.1	80.12	24100	300.80	
19	28	10.2	81.71	23800	291.26	
20	28	10.2	81.71	22500	275.35	
21	28	10.2	81.71	24650	301.67	

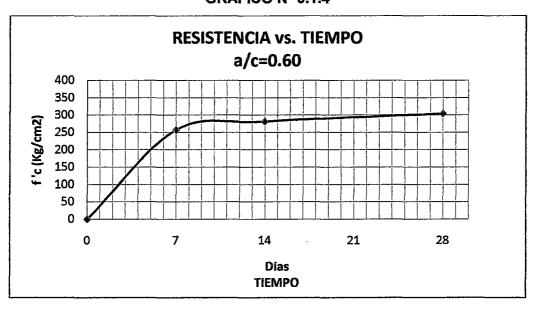

CUADRO Nº 6.1.3 ENSAYO DE RESISTENCIA POR COMPRESION AXIAL

Tipo de Agregado: Muestra "A1" (M.F.A1=3.00) Norma: NTP 339.034

Relación A/C: 0.70 Elaborado por: E.G.B.P.

PROBETA Nº	EDAD días	DIAMETRO (cm)	AREA (cm2)	CARGA (Kgf)	f 'c (kg/cm2)	PROMEDIO (Kg/cm2)
1	7	10.2	81.71	18100	221.51	
2	7	10.1	80.12	17300	215.93	220.29
3	7	10.1	80.12	17900	223.42	
4	14	10.1	80.12	19300	240.89	
5	14	10.1	80.12	19500	243.39	241.44
6	14	10.3	83.32	20000	240.03	
7	28	10.1	80.12	21000	262.11	
8	28	10.2	81.71	20700	253.33	
9	28	10.2	81.71	21500	263.12	
10	28	10.1	80.12	20900	260.86	
11	28	10.3	83.32	20600	247.23	
12	28	10.1	80.12	20750	258.99	
13	28	10.3	83.32	22000	264.03	
14	28	10.2	81.71	21300	260.67	261.46
15	28	10.1	80.12	21900	273.34	
16	28	10.2	81.71	21400	261.89	
17	28	10.2	81.71	20900	255.77	
18	28	10.2	81.71	22100	270.46	
19	28	10.1	80.12	21100	263.36	•
20	28	10.2	81.71	20700	253.33	
21	28	10.1	80.12	21900	273.34	

GRAFICA Nº 6.1.3

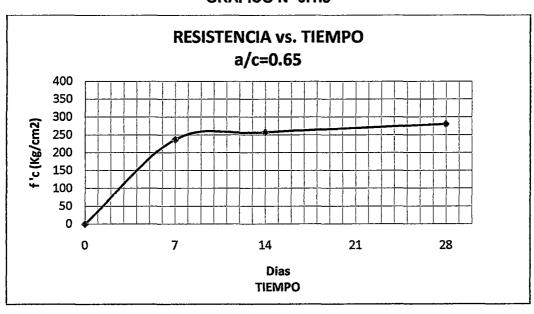


CUADRO Nº 6.1.4 ENSAYO DE RESISTENCIA POR COMPRESION AXIAL

Tipo de Agregado: Muestra "A2" (M.F.A2=3.40) **Norma:** NTP 339.034

Relación A/C: 0.60 Elaborado por: E.G.B.P

PROBETA N°	EDAD días	DIAMETRO (cm)	AREA (cm2)	CARGA (Kgf)	f 'c (kg/cm2)	PROMEDIO (Kg/cm2)
1	7	10.2	81.71	20900	255.77	
2	7	10.1	80.12	21300	265.86	257.30
3	7	10.2	81.71	20450	250.27	
4	14	10.2	81.71	23600	288.82	
5	14	10.2	81.71	23000	281.47	281.88
6	14	10.2	81.71	22500	275.35	
7	28	10.2	81.71	24000	293.71	
8	28	10.1	80.12	25900	323.27	
9	28	10.2	81.71	25100	307.17	
10	28	10.3	83.32	24600	295.24	
11	28	10.2	81.71	26200	320.63	
12	28	10.2	81.71	25500	312.07	
13	28	10.2	81.71	24300	297.38	
14	28	10.1	80.12	24250	302.68	304.39
15	28	10.1	80.12	23900	298.31	
16	28	10.2	81.71	25350	310.23	
17	28	10.1	80.12	24500	305.80	
18	28	10.2	81.71	24300	297.38	
19	28	10.2	81.71	24150	295.55	
20	28	10.2	81.71	24450	299.22	
21	28	10.2	81.71	25100	307.17	

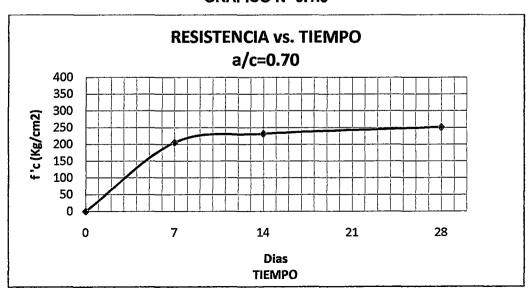

CUADRO Nº 6.1.5 ENSAYO DE RESISTENCIA POR COMPRESION AXIAL

Tipo de Agregado: Muestra "A2" (M.F.A2=3.40) Norma: NTP 339.034

Relación A/C: 0.65 Elaborado por: E.G.B.P

PROBETA Nº	EDAD días	DIAMETRO (cm)	AREA (cm2)	CARGA (Kgf)	f 'c (kg/cm2)	PROMEDIO (Kg/cm2)
1	7	10.2	81.71	19100	233.74	
2	7	10.1	80.12	19800	247.13	236.98
3	7	10.2	81.71	18800	230.07	
4	14	10.1	80.12	21000	262.11	
5	14	10.1	80.12	20650	257.74	256.91
6	14	10.2	81.71	20500	250.88	
7	28	10.2	81.71	22700	277.80	
8	28	10.2	81.71	21700	265.56	
9	28	10.2	81.71	22000	269.23	
10	28	10.1	80.12	24000	299.56	
11	28	10.1	80.12	23500	293.31	
12	28	10.2	81.71	22300	272.91	•
13	28	10.1	80.12	21500	268.35	
14	28	10.2	81.71	22100	270.46	280.49
15	28	10.2	81.71	23400	286.37	
16	28	10.1	80.12	24100	300.80	,
17	28	10.1	80.12	21300	265.86	
18	28	10.2	81.71	21450	262.50	
19	28	10.3	83.32	23500	282.03	
20	28	10.2	81.71	24150	295.55	
21	28	10.3	83.32	24750	297.04	

GRAFICO Nº 6.1.5

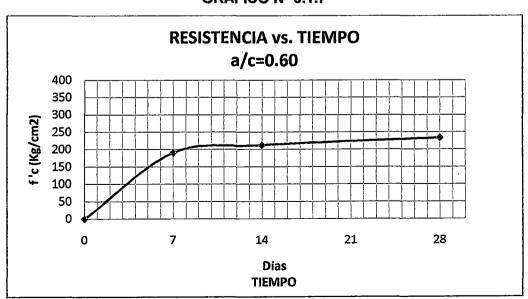


CUADRO Nº 6.1.6 ENSAYO DE RESISTENCIA POR COMPRESION AXIAL

Tipo de Agregado: Muestra "A2" (M.F.A2=3.40) Norma: NTP 339.034

Relación A/C: 0.70 Elaborado por: E.G.B.P

PROBETA N°	EDAD días	DIAMETRO (cm)	AREA (cm2)	CARGA (Kgf)	f 'c (kg/cm2)	PROMEDIO (Kg/cm2)
1	7	10.1	80.12	16600	207.19	
2	7	10.2	81.71	17400	212.94	205.31
3	7	10.2	81.71	16000	195.81	
4	14	10.1	80.12	19200	239.64	
5	14	10.1	80.12	18000	224.67	231.74
6	14	10.1	80.12	18500	230.91	
7	28	10.2	81.71	19600	239.86	
8	28	10.2	81.71	18800	230.07	
9	28	10.2	81.71	19600	239.86	
10	28	10.3	83.32	20600	247.23	
11	28	10.2	81.71	21100	258.22	
12	28	10.2	81.71	22000	269.23	
13	28	10.1	80.12	20150	251.50	
14	28	10.1	80.12	21250	265.23	250.84
15	28	10.2	81.71	20500	250.88	
16	28	10.2	81.71	19850	242.92	
17	28	10.2	81.71	21000	257.00	
18	28	10.2	81.71	20500	250.88	
19	28	10.3	83.32	21500	258.03	
20	28	10.2	81.71	20650	252.71	
21	28	10.1	80.12	19950	249.01	


CUADRO Nº 6.1.7 **ENSAYO DE RESISTENCIA POR COMPRESION AXIAL**

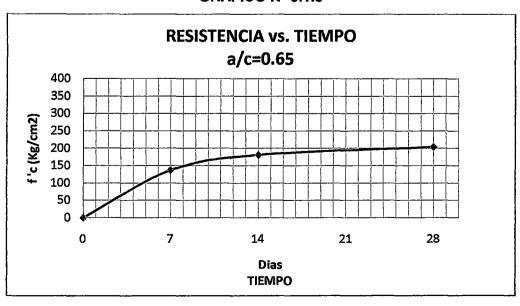
Tipo de Agregado: Muestra "A3" (M.F.A3=3.60)

Norma: NTP 339.034

Relación A/C: 0.60 Elaborado por: E.G.B.P

PROBETA N°	EDAD días	DIAMETRO (cm)	AREA (cm2)	CARGA (Kgf)	f 'c (kg/cm2)	PROMEDIO (Kg/cm2)
1	7	10.2	81.71	15200	186.02	
2	7	10.2	81.71	15000	183.57	189.89
3	7	10.2	81.71	16350	200.09	}
4	14	10.1	80.12	16600	207.19	
5	14	10.1	80.12	17250	215.31	212.42
6	14	10.2	81.71	17550	214.78	
7	28	10.2	81.71	19500	238.64	
8	28	10.3	83.32	19000	228.03	
9	28	10.2	81.71	17800	217.84	
10	28	10.1	80.12	18500	230.91	
11	28	10.1	80.12	19100	238.40	
12	28	10.2	81.71	20000	244.76	
13	28	10.2	81.71	18200	222.73	
14	28	10.3	83.32	18450	221.43	233.39
15	28	10.2	81.71	18250	223.34	
16	28	10.1	80.12	19500	243.39	
17	28	10.1	80.12	18800	234.65	
18	28	10.2	81.71	18900	231.30	
19	28	10.2	81.71	19600	239.86	
20	28	10.2	81.71	20100	245.98	
21	28	10.1	80.12	19200	239.64	

CUADRO Nº 6.1.8 ENSAYO DE RESISTENCIA POR COMPRESION AXIAL

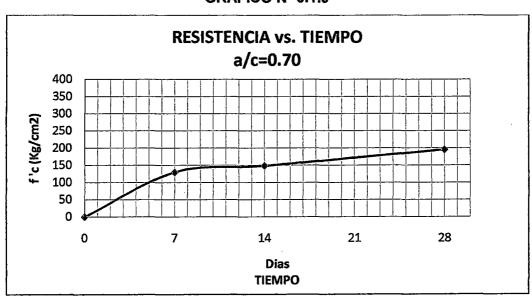

Tipo de Agregado: Muestra "A3" (M.F.A3=3.60)

Norma: NTP 339.034

Relación A/C: 0.65

Elaborado por: E.G.B.P

PROBETA Nº	EDAD días	DIAMETRO (cm)	AREA (cm2)	CARGA (Kgf)	f 'c (kg/cm2)	PROMEDIO (Kg/cm2)
1	7	10.1	80.12	12400	154.77	
2	7	10.2	81.71	11500	140.74	136.78
3	7	10.1	80.12	9200	114.83	
4	14	10.2	81.71	15750	192.75	
5	14	10.1	80.12	14000	174.74	181.44
6	14	10.2	81.71	14450	176.84	
7	28	10.2	81.71	15500	189.69	
8	28	10.2	81.71	16500	201.93	
9	28	10.2	81.71	17300	211.72	
10	28	10.3	83.32	16900	202.82	
11	28	10.1	80.12	15450	192.84	
12	28	10.1	80.12	17100	213.43	
13	28	10.2	81.71	15750	192.75	
14	28	10.1	80.12	16400	204.70	204.66
15	28	10.2	81.71	17500	214.16	
16	28	10.1	80.12	18100	225.91	
17	28	10.1	80.12	16300	203.45	
18	28	10.2	81.71	14800	181.12	
19	28	10.2	81.71	16400	200.70	
20	28	10.3	83.32	17500	210.03	
21	28	10.1	80.12	18000	224.67	



CUADRO Nº 6.1.9 ENSAYO DE RESISTENCIA POR COMPRESION AXIAL

Tipo de Agregado: Muestra "A3" (M.F.A3=3.60) Norma: NTP 400.017

Relación A/C: 0.70 Elaborado por: E.G.B.P

PROBETA N°	EDAD días	DIAMETRO (cm)	AREA (cm2)	CARGA (Kgf)	f 'c (kg/cm2)	PROMEDIO (Kg/cm2)
1	7	10.1	80.12	10550	131.68	
2	7	10.2	81.71	9700	118.71	129.76
3	7	10.2	81.71	11350	138.90	
4	14	10.2	81.71	12250	149.91	
5	14	10.3	83.32	11500	138.02	148.61
6	14	10.1	80.12	12650	157.89	
7	28	10.1	80.12	15750	196.58	
8	28	10.1	80.12	15200	189.72	
9	28	10.2	81.71	17100	209.27	
10	28	10.2	81.71	15800	193.36	
11	28	10.1	80.12	17250	215.31	
12	28	10.1	80.12	15650	195.34	
13	28	10.1	80.12	17000	212.19	
14	28	10.2	81.71	16500	201.93	195.79
15	28	10.2	81.71	15500	189.69	
16	28	10.3	83.32	14500	174.02	
17	28	10.2	81.71	16700	204.37	
18	28	10.1	80.12	14300	178.49	
19	28	10.2	81.71	13900	170.11	
20	28	10.2	81.71	17200	210.49	
21	28	10.1	80.12	15700	195.96	

CUADRO Nº 6.2.1 ENSAYO DE RESISTENCIA A LA TRACCION POR COMPRESION DIAMETRAL

Tipo de Agregado: Muestra "A1" (M.F.A1=3.00)

Norma: NTP 400.084

Cemento: Sol tipo 1

Elaborado por: E.G.B.P

PROBETA N°	EDAD días	RELACION A/C	Diámetro D(cm)	Longitud L(cm)	Carga P(Tn)	f 't (kg/cm2)	f 't Prom (kg/cm2)
1	28	0.60	10.2	20.5	11300	34.40	
2	28	0.60	10.1	20.6	11500	35.19	34.31
3	28	0.60	10.1	20.6	10900	33.35	
4	28	0.65	10.2	20.5	10700	32.58	
5	28	0.65	10.2	20.5	11200	34.10	32.38
6	28	0.65	10.2	20.7	10100	30.45	
7	28	0.70	10.2	20.5	9400	28.62	
8	28	0.70	10.2	20.7	9600	28.95	29.59
9	28	0.70	10.1	20.6	10200	31.21	

CUADRO Nº 6.2.2

ENSAYO DE RESISTENCIA A LA TRACCION POR COMPRESION DIAMETRAL

Tipo de Agregado: Muestra "A2" (M.F.A2=3.40)

Norma: NTP 400.084

Cemento: Sol tipo 1

Elaborado por: E.G.B.P

PROBETA Nº	EDAD días	RELACION A/C	Diámetro D(cm)	Longitud L(cm)	Carga P(Tn)	f 't (kg/cm2)	f 't Prom (kg/cm2)
1	28	0.60	10.1	20.5	9800	30.13	
2	28	0.60	10.1	20.5	9900	30.44	29.64
3	28	0.60	10.2	20.7	9400	28.34	
4	28	0.65	10.2	20.6	9500	28.78	
5	28	0.65	10.3	20.5	9600	28.94	28.68
6	28	0.65	10.2	20.5	9300	28.31	
7	28	0.70	10.2	20.5	9100	27.71	
8	28	0.70	10.2	20.6	9200	27.87	27.56
9	28	0.70	10.2	20.5	8900	27.10	

CUADRO Nº 6.2.3

ENSAYO DE RESISTENCIA A LA TRACCION POR COMPRESION DIAMETRAL

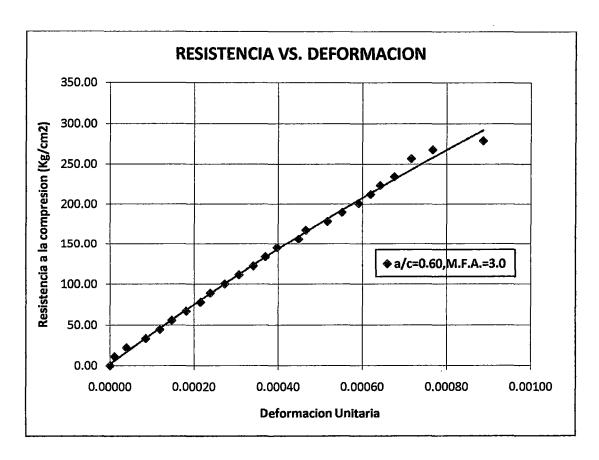
Tipo de Agregado: Muestra "A3" (M.F.A3=3.60)

Norma: NTP 400.084

Cemento: Sol tipo I

Elaborado por: E.G.B.P

PROBETA N°	EDAD días	RELACION A/C	Diámetro D(cm)	Longitud L(cm)	Carga P(Tn)	f 't (kg/cm2)	f 't Prom (kg/cm2)
1	28	0.60	10.1	20.1	9000	28.22	
2	28	0.60	10.2	20.2	9500	29.35	28.77
3	_ 28	0.60	10.2	20.2	9300	28.73	
4	28	0.65	10.1	20.2	9100	28.40	
5	28	0.65	10.1	20.2	8300	25.90	28.13
6	28	0.65	10.1	20.1	9600	30.10	
7	28	0.70	10.2	20.2	8100	25.03	
8	28	0.70	10.2	20.2	9400	29.04	26.91
9	28	0.70	10.1	20.1	8500	26.66	


CUADRO Nº 6.3.1 ENSAYO DE MODULO ELASTICO

Tipo de Agregado: Muestra "A1" (M.F.A1=3.00) Norma: ASTM C-469

Relación A/C: 0.60 Elaborado por: E.G.B.P

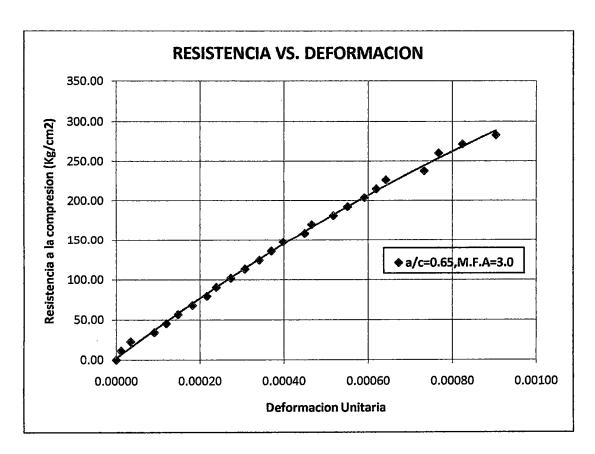
		DEFORMACION			
[LECTURA			
CARGA	ESFUERZO	N 1	LECTURA	LECTURA	DEFORMACION
(Kg)	(Kg/cm2)	(pulgx10E-	(pulg.)	(cm)	UNITARIA
		3)			
0	0.00	0.0	0.0000	0.000000	0.00000
2000	11.17	0.2	0.0002	0.000254	0.00001
4000	22.34	0.7	0.0007	0.000889	0.00004
6000	33.50	1.5	0.0015	0.001905	0.00009
8000	44.67	2.1	0.0021	0.002667	0.00012
10000	55.84	2.6	0.0026	0.003302	0.00015
12000	67.01	3.2	0.0032	0.004064	0.00018
14000	78.18	3.8	0.0038	0.004826	0.00022
16000	89.35	4.2	0.0042	0.005334	0.00024
18000	100.51	4.8	0.0048	0.006096	0.00027
20000	111.68	5.4	0.0054	0.006858	0.00031
22000	122.85	6.0	0.0060	0.007620	0.00034
24000	134.02	6.5	0.0065	0.008255	0.00037
26000	145.19	7.0	0.0070	0.008890	0.00040
28000	156.36	7.9	0.0079	0.010033	0.00045
30000	167.52	8.2	0.0082	0.010414	0.00047
32000	178.69	9.1	0.0091	0.011557	0.00052
34000	189.86	9.7	0.0097	0.012319	0.00055
36000	201.03	10.4	0.0104	0.013208	0.00059
38000	212.20	10.9	0.0109	0.013843	0.00062
40000	223.37	11.3	0.0113	0.014351	0.00064
42000	234.53	11.9	0.0119	0.015113	0.00068
46000	256.87	12.6	0.0126	0.016002	0.00072
48000	268.04	13.5	0.0135	0.017145	0.00077
50000	279.21	15.6	0.0156	0.019812	0.00089

Diámetro (cm)=	15.10	E1 (Kg/cm2)=	24.57
Área (cm2)=	179.08	e1=	0.00005
Carga Máxima (Kg)=	50000	E2 (Kg/cm2)=	111.68
Max. f'cr (Kg/cm2)=	279.21	e2=	0.00031
E2=0.4 f'cr (Kg/cm2)=	111.68	M.E.E (Kg/cm2)=	335048.1532

LEYENDA:
Procedencia

Agregado fino : Cantera "Trapiche"
Agregado grueso: Cantera " La gloria"

Cemento : Sol tipo I


CUADRO Nº 6.3.2 ENSAYO DE MODULO ELASTICO

Tipo de Agregado: Muestra "A1" (M.F.A1=3.00) Norma: ASTM C-469

Relación A/C: 0.65 Elaborado por: E.G.B.P

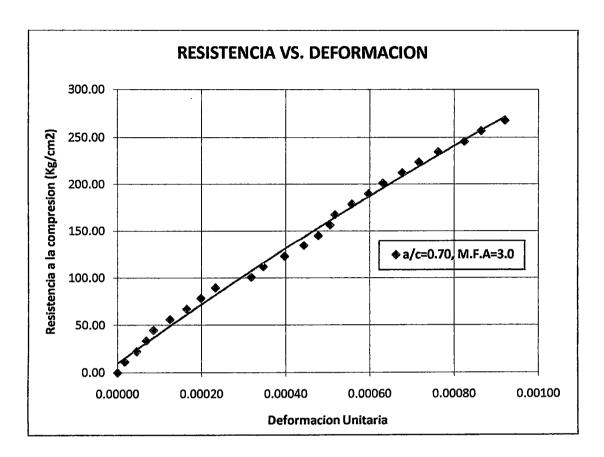
		DE			
CARGA (Kg)	ESFUERZO (Kg/cm2)	LECTURA N 1 (pulgx10E- 3)	LECTURA (pulg.)	LECTURA (cm)	DEFORMACION UNITARIA
0	0.00	0.0	0.0000	0.000000	0.00000
2000	11.32	0.2	0.0002	0.000254	0.00001
4000	22.64	0.6	0.0006	0.000762	0.00003
6000	33.95	1.6	0.0016	0.002032	0.00009
8000	45.27	2.1	0.0021	0.002667	0.00012
10000	56.59	2.6	0.0026	0.003302	0.00015
12000	67.91	3.2	0.0032	0.004064	0.00018
14000	79.22	3.8	0.0038	0.004826	0.00022
16000	90.54	4.2	0.0042	0.005334	0.00024
18000	101.86	4.8	0.0048	0.006096	0.00027
20000	113.18	5.4	0.0054	0.006858	0.00031
22000	124.49	6.0	0.0060	0.007620	0.00034
24000	135.81	6.5	0.0065	0.008255	0.00037
26000	147.13	7.0	0.0070	0.008890	0.00040
28000	158.45	7.9	0.0079	0.010033	0.00045
30000	169.76	8.2	0.0082	0.010414	0.00047
32000	181.08	9.1	0.0091	0.011557	0.00052
34000	192.40	9.7	0.0097	0.012319	0.00055
36000	203.72	10.4	0.0104	0.013208	0.00059
38000	215.04	10.9	0.0109	0.013843	0.00062
40000	226.35	11.3	0.0113	0.014351	0.00064
42000	237.67	12.9	0.0129	0.016383	0.00073
46000	260.31	13.5	0.0135	0.017145	0.00077
48000	271.62	14.5	0.0145	0.018415	0.00082
50000	282.94	15.9	0.0159	0.020193	0.00090

Diámetro (cm)=	15.00	E1 (Kg/cm2)=	26.41
Área (cm2)=	176.72	e1=	0.00005
Carga Máxima (Kg)=	50000	E2 (Kg/cm2)=	113.18
Max. f'cr (Kg/cm2)=	282.94	e2=	0.000310
E2=0.4 f'cr (Kg/cm2)=	113.18	M.E.E (Kg/cm2)=	333717.6299

LEYENDA: Procedencia

Agregado fino : Cantera "Trapiche"
Agregado grueso: Cantera " La gloria"

Cemento : Sol tipo i


CUADRO Nº 6.3.3 ENSAYO DE MODULO ELASTICO

Tipo de Agregado: Muestra "A1" (M.F.A1=3.00) Norma: ASTM C-469

Relación A/C: 0.70 Elaborado por: E.G.B.P

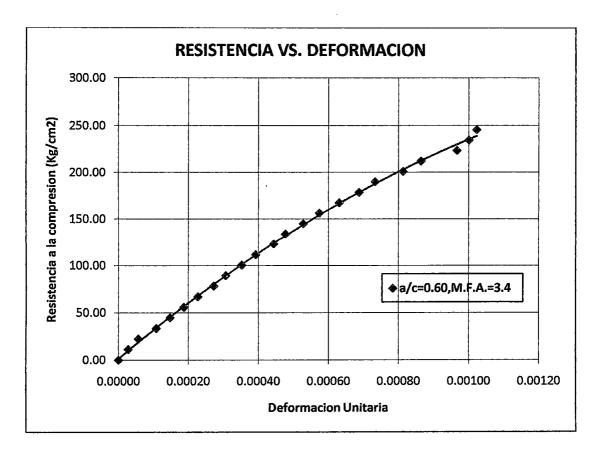
		D	<u> </u>		
CARGA (Kg)	ESFUERZO (Kg/cm2)	LECTURA N 1 (pulgx10E- 3)	LECTURA (pulg.)	LECTURA (cm)	DEFORMACION UNITARIA
0	0.00	0.0	0.0000	0.000000	0.00000
2000	11.17	0.3	0.0003	0.000381	0.00002
4000	22.34	0.8	0.0008	0.001016	0.00005
6000	33.50	1.2	0.0012	0.001524	0.00007
8000	44.67	1.5	0.0015	0.001905	0.00009
10000	55.84	2.2	0.0022	0.002794	0.00013
12000	67.01	2.9	0.0029	0.003683	0.00016
14000	78.18	3.5	0.0035	0.004445	0.00020
16000	89.35	4.1	0.0041	0.005207	0.00023
18000	100.51	5.6	0.0056	0.007112	0.00032
20000	111.68	6.1	0.0061	0.007747	0.00035
22000	122.85	7.0	0.0070	0.008890	0.00040
24000	134.02	7.8	0.0078	0.009906	0.00044
26000	145.19	8.4	0.0084	0.010668	0.00048
28000	156.36	8.9	0.0089	0.011303	0.00051
30000	167.52	9.1	0.0091	0.011557	0.00052
32000	178.69	9.8	0.0098	0.012446	0.00056
34000	189.86	10.5	0.0105	0.013335	0.00060
36000	201.03	11.1	0.0111	0.014097	0.00063
38000	212.20	11.9	0.0119	0.015113	0.00068
40000	223.37	12.6	0.0126	0.016002	0.00072
42000	234.53	13.4	0.0134	0.017018	0.00076
46000	256.87	14.5	0.0145	0.018415	0.00082
48000	268.04	15.2	0.0152	0.019304	0.00086
50000	279.21	16.2	0.0162	0.020574	0.00092

Diámetro (cm)=	15.10	E1 (Kg/cm2)=	22.34
Área (cm2)=	179.08	e1=	0.00005
Carga Máxima (Kg)=	50000	E2 (Kg/cm2)=	111.68
Max. f'cr (Kg/cm2)=	279.21	e2=	0.000350
E2=0.4 f'cr (Kg/cm2)=	111.68	M.E.E (Kg/cm2)=	297808.40

LEYENDA: Procedencia

Agregado fino : Cantera "Trapiche"
Agregado grueso: Cantera " La gloria"

Cemento : Sol tipo I


CUADRO Nº 6.3.4 ENSAYO DE MODULO ELASTICO

Tipo de Agregado: Muestra "A2" (M.F.A2=3.40) Norma: ASTM C-469

Relación A/C: 0.60 Elaborado por: E.G.B.P

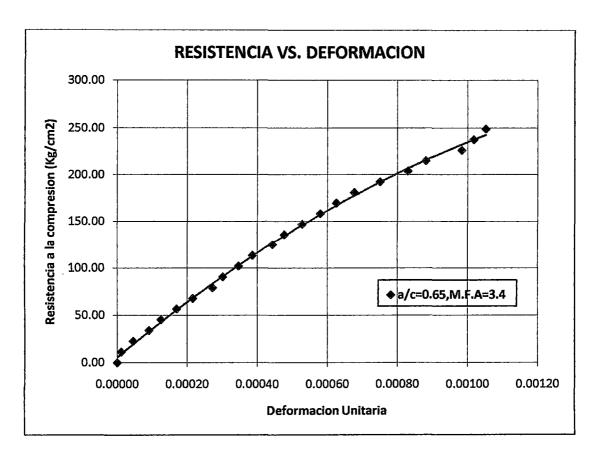
		DEFORMACION			
Ì	Ì	LECTURA			
CARGA	ESFUERZO	N 1	LECTURA	LECTURA	DEFORMACION
(Kg)	(Kg/cm2)	(pulgx10E-	(pulg.)	(cm)	UNITARIA
		3)			
0	0.00	0.0	0.0000	0.000000	0.00000
2000	11.17	0.5	0.0005	0.000635	0.00003
4000	22.34	1.0	0.0010	0.001270	0.00006
6000	33.50	1.9	0.0019	0.002413	0.00011
8000	44.67	2.6	0.0026	0.003302	0.00015
10000	55.84	3.3	0.0033	0.004191	0.00019
12000	67.01	4.0	0.0040	0.005080	0.00023
14000	78.18	4.8	0.0048	0.006096	0.00027
16000	89.35	5.4	0.0054	0.006858	0.00031
18000	100.51	6.2	0.0062	0.007874	0.00035
20000	111.68	6.9	0.0069	0.008763	0.00039
22000	122.85	7.8	0.0078	0.009906	0.00044
24000	134.02	8.4	0.0084	0.010668	0.00048
26000	145.19	9.3	0.0093	0.011811	0.00053
28000	156.36	10.1	0.0101	0.012827	0.00057
30000	167.52	11.1	0.0111	0.014097	0.00063
32000	178.69	12.1	0.0121	0.015367	0.00069
34000	189.86	12.9	0.0129	0.016383	0.00073
36000	201.03	14.3	0.0143	0.018161	0.00081
38000	212.20	15.2	0.0152	0.019304	0.00086
40000	223.37	17.0	0.0170	0.021590	0.00097
42000	234.53	17.6	0.0176	0.022352	0.00100
44000	245.70	18.0	0.0180	0.022860	0.00102

Diámetro (cm)=	15.10	E1 (Kg/cm2)=	18.62
Área (cm2)=	179.08	e1=	0.00005
Carga Máxima (Kg)=	44000	E2 (Kg/cm2)=	98.28
Max. f'cr (Kg/cm2)=	245.70	e2=	0.00034
E2=0.4 f'cr (Kg/cm2)=	98.28	M.E.E (Kg/cm2)=	274703.28

LEYENDA: Procedencia

Agregado fino : Cantera "Trapiche"
Agregado grueso: Cantera " La gloria"

Cemento : Sol tipo I


CUADRO Nº 6.3.5 ENSAYO DE MODULO ELASTICO

Tipo de Agregado: Muestra "A2" (M.F.A2=3.40) Norma: ASTM C-469

Relación A/C: 0.65 Elaborado por: E.G.B.P

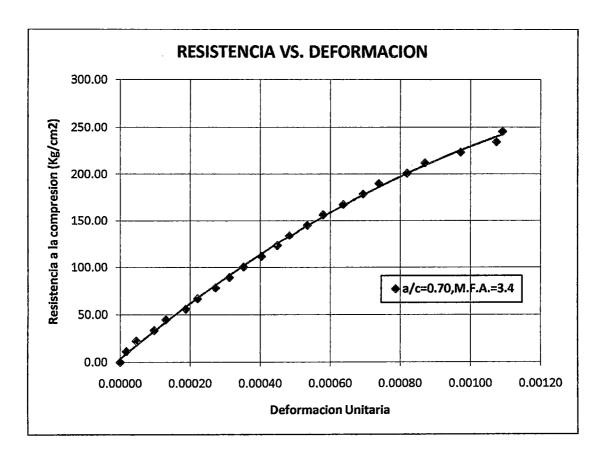
	<u> </u>	Dr			
		LECTURA	DEFORMACION		
CARGA	ESFUERZO	N 1	LECTURA	LECTURA	DEFORMACION
(Kg)	(Kg/cm2)	(pulgx10E-	(pulg.)	(cm)	UNITARIA
(**3/	(1.9.5)	3)	(19-7	(=,	
0	0.00	0.0	0.0000	0.000000	0.00000
2000	11.32	0.2	0.0002	0.000254	0.00001
4000	22.64	0.8	0.0008	0.001016	0.00005
6000	33.95	1.6	0.0016	0.002032	0.00009
8000	45.27	2.2	0.0022	0.002794	0.00013
10000	56.59	3.0	0.0030	0.003810	0.00017
12000	67.91	3.8	0.0038	0.004826	0.00022
14000	79.22	4.8	0.0048	0.006096	0.00027
16000	90.54	5.3	0.0053	0.006731	0.00030
18000	101.86	6.1	0.0061	0.007747	0.00035
20000	113.18	6.8	0.0068	0.008636	0.00039
22000	124.49	7.8	0.0078	0.009906	0.00044
24000	135.81	8.4	0.0084	0.010668	0.00048
26000	147.13	9.3	0.0093	0.011811	0.00053
28000	158.45	10.2	0.0102	0.012954	0.00058
30000	169.76	11.0	0.0110	0.013970	0.00063
32000	181.08	11.9	0.0119	0.015113	0.00068
34000	192.40	13.2	0.0132	0.016764	0.00075
36000	203.72	14.6	0.0146	0.018542	0.00083
38000	215.04	15.5	0.0155	0.019685	0.00088
40000	226.35	17.3	0.0173	0.021971	0.00098
42000	237.67	17.9	0.0179	0.022733	0.00102
44000	248.99	18.5	0.0185	0.023495	0.00105

Diámetro (cm)=	15.00	E1 (Kg/cm2)=	22.64
Área (cm2)=	176.72	e1=	0.00005
Carga Máxima (Kg)=	44000	E2 (Kg/cm2)=	99.60
Max. f'cr (Kg/cm2)=	248.99	e2=	0.00034
E2=0.4 f'cr (Kg/cm2)=	99.60	M.E.E (Kg/cm2)=	265363.43

LEYENDA: Procedencia

Agregado fino : Cantera "Trapiche"
Agregado grueso: Cantera " La gloria"

Cemento : Sol tipo I


CUADRO Nº 6.3.6 ENSAYO DE MODULO ELASTICO

Tipo de Agregado: Muestra "A2" (M.F.A2=3.40) Norma: ASTM C-469

Relación A/C: 0.70 Elaborado por: E.G.B.P

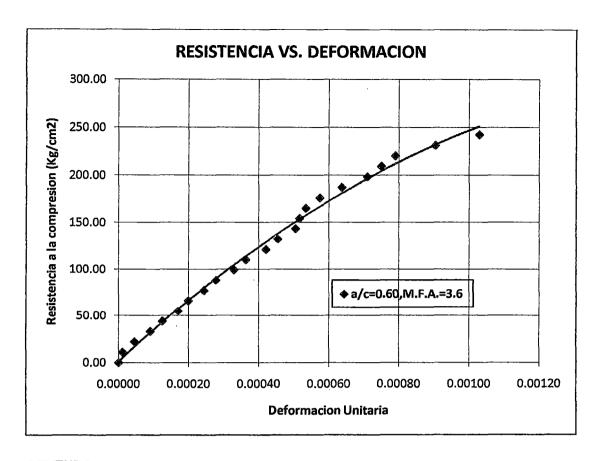
	· · · · · · · · · · · · · · · · · · ·	DE			
		LECTURA	FORMACIÓ		
CARGA	ESFUERZO	N 1	LECTURA	LECTURA	DEFORMACIÓN
(Kg)	(Kg/cm2)	(pulgx10E-	(pulg.)	(cm)	UNITARIA
		3)			
0	0.00	0	0.0000	0.000000	0.00000
2000	11.17	0.3	0.0003	0.000381	0.00002
4000	22.34	0.8	0.0008	0.001016	0.00005
6000	33.50	1.7	0.0017	0.002159	0.00010
8000	44.67	2.3	0.0023	0.002921	0.00013
10000	55.84	3.3	0.0033	0.004191	0.00019
12000	67.01	3.9	0.0039	0.004953	0.00022
14000	78.18	4.8	0.0048	0.006096	0.00027
16000	89.35	5.5	0.0055	0.006985	0.00031
18000	100.51	6.2	0.0062	0.007874	0.00035
20000	111.68	7.1	0.0071	0.009017	0.00040
22000	122.85	7.9	0.0079	0.010033	0.00045
24000	134.02	8.5	0.0085	0.010795	0.00048
26000	145.19	9.4	0.0094	0.011938	0.00053
28000	156.36	10.2	0.0102	0.012954	0.00058
30000	167.52	11.2	0.0112	0.014224	0.00064
32000	178.69	12.2	0.0122	0.015494	0.00069
34000	189.86	13	0.0130	0.016510	0.00074
36000	201.03	14.4	0.0144	0.018288	0.00082
38000	212.20	15.3	0.0153	0.019431	0.00087
40000	223.37	17.1	0.0171	0.021717	0.00097
42000	234.53	18.9	0.0189	0.024003	0.00107
44000	245.70	19.2	0.0192	0.024384	0.00109

Diámetro (cm)=	15.10	E1 (Kg/cm2)=	22.34
Área (cm2)=	179.08	e1=	0.00005
Carga Máxima (Kg)=	44000	E2 (Kg/cm2)=	98.28
Max. f'cr (Kg/cm2)=	245.70	e2=	0.00034
E2=0.4 f'cr (Kg/cm2)=	98.28	M.E.E (Kg/cm2)=	261864.20

LEYENDA: Procedencia

Agregado fino : Cantera "Trapiche" Agregado grueso: Cantera " La gloria"

Cemento : Sol tipo I


CUADRO Nº 6.3.7 ENSAYO DE MODULO ELASTICO

Tipo de Agregado: Muestra "A3" (M.F.A3=3.60) Norma: ASTM C-469

Relación A/C: 0.60 Elaborado por: E.G.B.P

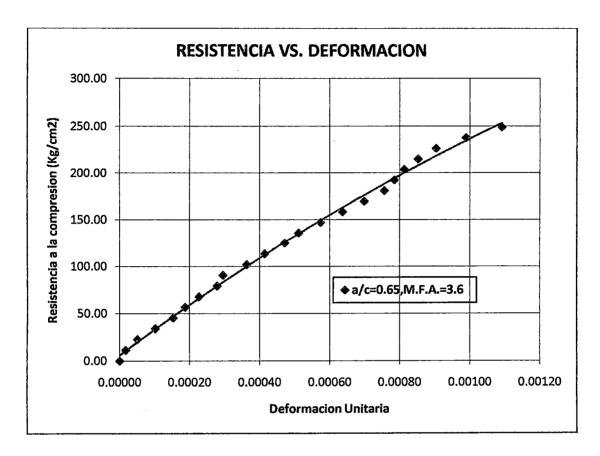
	<u> </u>	DE	DEFORMACION				
CARGA (Kg)	ESFUERZO (Kg/cm2)	LECTURA N 1 (pulgx10E- 3)	LECTURA (pulg.)	LECTURA (cm)	DEFORMACION UNITARIA		
0	0.00	0.0	0.0000	0.000000	0.00000		
2000	11.02	0.2	0.0002	0.000254	0.00001		
4000	22.04	8.0	0.0008	0.001016	0.00005		
6000	33.07	1.6	0.0016	0.002032	0.00009		
8000	44.09	2.2	0.0022	0.002794	0.00013		
10000	55.11	3.0	0.0030	0.003810	0.00017		
12000	66.13	3.5	0.0035	0.004445	0.00020		
14000	77.15	4.3	0.0043	0.005461	0.00024		
16000	88.17	4.9	0.0049	0.006223	0.00028		
18000	99.20	5.8	0.0058	0.007366	0.00033		
20000	110.22	6.4	0.0064	0.008128	0.00036		
22000	121.24	7.4	0.0074	0.009398	0.00042		
24000	132.26	8.0	0.0080	0.010160	0.00045		
26000	143.28	8.9	0.0089	0.011303	0.00051		
28000	154.30	9.1	0.0091	0.011557	0.00052		
30000	165.33	9.4	0.0094	0.011938	0.00053		
32000	176.35	10.1	0.0101	0.012827	0.00057		
34000	187.37	11.2	0.0112	0.014224	0.00064		
36000	198.39	12.5	0.0125	0.015875	0.00071		
38000	209.41	13.2	0.0132	0.016764	0.00075		
40000	220.44	13.9	0.0139	0.017653	0.00079		
42000	231.46	15.9	0.0159	0.020193	0.00090		
44000	242.48	18.1	0.0181	0.022987	0.00103		

Diámetro (cm)=	15.20	E1 (Kg/cm2)=	22.04
Área (cm2)=	181.46	e1=	0.00005
Carga Máxima (Kg)=	44000	E2 (Kg/cm2)=	96.99
Max. f'cr (Kg/cm2)=	242.48	e2=	0.00032
E2=0.4 f'cr (Kg/cm2)=	96.99	M.E.E (Ka/cm2)=	277598.91

LEYENDA: Procedencia

Agregado fino : Cantera "Trapiche"
Agregado grueso: Cantera " La gloria"

Cemento : Sol tipo I


CUADRO Nº 6.3.8 ENSAYO DE MODULO ELASTICO

Tipo de Agregado: Muestra "A3" (M.F.A3=3.60) Norma: ASTM C-469

Relación A/C: 0.65 Elaborado por: E.G.B.P

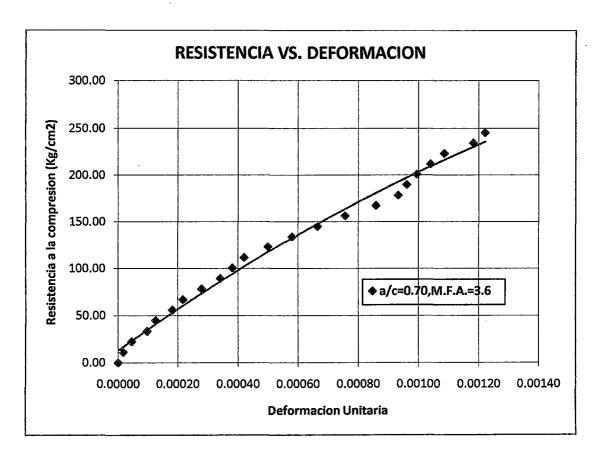
		LECTURA	FORMACIO		
CARGA	ESFUERZO	N 1	LECTURA	LECTURA	DEFORMACION
(Kg)	(Kg/cm2)	(pulgx10E-	(pulg.)	(cm)	UNITARIA
		" 3)	" "		
0	0.00	0.0	0.0000	0.000000	0.00000
2000	11.32	0.3	0.0003	0.000381	0.00002
4000	22.64	0.9	0.0009	0.001143	0.00005
6000	33.95	1.8	0.0018	0.002286	0.00010
8000	45.27	2.7	0.0027	0.003429	0.00015
10000	56.59	3.3	0.0033	0.004191	0.00019
12000	67.91	4.0	0.0040	0.005080	0.00023
14000	79.22	4.9	0.0049	0.006223	0.00028
16000	90.54	5.2	0.0052	0.006604	0.00030
18000	101.86	6.4	0.0064	0.008128	0.00036
20000	113.18	7.3	0.0073	0.009271	0.00041
22000	124.49	8.3	0.0083	0.010541	0.00047
24000	135.81	9.0	0.0090	0.011430	0.00051
26000	147.13	10.1	0.0101	0.012827	0.00057
28000	158.45	11.2	0.0112	0.014224	0.00064
30000	169.80	12.3	0.0123	0.015621	0.00070
32000	181.10	13.3	0.0133	0.016891	0.00076
34000	192.40	13.8	0.0138	0.017526	0.00078
36000	203.72	14.3	0.0143	0.018161	0.00081
38000	215.04	15.0	0.0150	0.019050	0.00085
40000	226.35	15.9	0.0159	0.020193	0.00090
42000	237.67	17.4	0.0174	0.022098	0.00099
44000	248.99	19.2	0.0192	0.024384	0.00109

Diámetro (cm)=	15.00	E1 (Kg/cm2)=	22.64
Área (cm2)=	176.72	e1=	0.00005
Carga Máxima (Kg)=	44000	E2 (Kg/cm2)=	99.60
Max. f'cr (Kg/cm2)=	248.99	e2=	0.00035
E2=0.4 f'cr (Kg/cm2)=	99.60	M.E.E (Kg/cm2)=	256517.98

LEYENDA: Procedencia

Agregado fino : Cantera "Trapiche"
Agregado grueso: Cantera " La gloria"

Cemento : Sol tipo I


CUADRO Nº 6.3.9 ENSAYO DE MODULO ELASTICO

Tipo de Agregado: Muestra "A3" (M.F.A3=3.60) Norma: ASTM C-469

Relación A/C: 0.70 Elaborado por: E.G.B.P

		DE	N	<u> </u>	
i		LECTURA		-	
CARGA	ESFUERZO	N 1	LECTURA	LECTURA	DEFORMACION
(Kg)	(Kg/cm2)	(pulgx10E-	(pulg.)	(cm)	UNITARIA
		3)			
0	0.00	0.0	0.0000	0.000000	0.00000
2000	11.17	0.3	0.0003	0.000381	0.00002
4000	22.34	0.8	0.0008	0.001016	0.00005
6000	33.50	1.7	0.0017	0.002159	0.00010
8000	44.67	2.2	0.0022	0.002794	0.00013
10000	55.84	3.2	0.0032	0.004064	0.00018
12000	67.01	3.8	0.0038	0.004826	0.00022
14000	78.18	4.9	0.0049	0.006223	0.00028
16000	89.35	6.0	0.0060	0.007620	0.00034
18000	100.51	6.7	0.0067	0.008509	0.00038
20000	111.68	7.4	0.0074	0.009398	0.00042
22000	122.85	8.8	0.0088	0.011176	0.00050
24000	134.02	10.2	0.0102	0.012954	0.00058
26000	145.19	11.7	0.0117	0.014859	0.00066
28000	156.36	13.3	0.0133	0.016891	0.00076
30000	167.52	15.1	0.0151	0.019177	0.00086
32000	178.69	16.4	0.0164	0.020828	0.00093
34000	189.86	16.9	0.0169	0.021463	0.00096
36000	201.03	17.5	0.0175	0.022225	0.00099
38000	212.20	18.3	0.0183	0.023241	0.00104
40000	223.37	19.1	0.0191	0.024257	0.00109
42000	234.53	20.8	0.0208	0.026416	0.00118
44000	245.70	21.5	0.0215	0.027305	0.00122

Diámetro (cm)=	15.10	E1 (Kg/cm2)=	22.34
Área (cm2)=	179.08	e1=	0.00005
Carga Máxima (Kg)=	44000	E2 (Kg/cm2)=	98.28
Max. f'cr (Kg/cm2)=	245.70	e2=	0.00035
E2=0.4 f'cr (Kg/cm2)=	98.28	M.E.E (Kg/cm2)=	253135.3915

LEYENDA: Procedencia

Agregado fino : Cantera "Trapiche"
Agregado grueso: Cantera " La gloria"

Cemento : Sol tipo I

ANEXO - F

ANALISIS DE COSTOS
POR METRO CUBICO DE CONCRETO

CUADRO 8.1.1

ANALISIS DE COSTOS

DISEÑO

M.F.A1: 3.00

a/c: 0.60

225.00 Agua: lit/m3

A/P: 50/50

Rendimiento: : 14 m3/dia

DESCRIPCION	UND.	CANTIDAD	PRECIO UNITARIO (S./)	PARCIAL	SUB TOTAL
MATERIALES					
Cemento Portland	Bls.	8.824	19.00	167.65	
Arena	m3	0.336	30.00	10.08	
Piedra	m3	0.304	43.00	13.07	
Agua	m3	0.225	10.00	2.25	193.05
Mano de Obra			 		
1 capataz	hh	0.571	19.50	11.13	
3 operarios	hh	1.714	15.12	25.92	
3 oficiales	hh	1.714	13.14	22.52	
6 peones	hh	3,429	11.84	40.60	100.17
Equipo			 	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,
1 mezcladora	hm	0.571	14.00	7.99	
1 vibrador	hm	0.571	7.00	4.00	
Herramientas (3%M.O.)	%	0.030	100.17	3.01	15.00
			COSTO UNITAR	RIO TOTAL S./	308.22

ELABORADO POR: E.G.B.P

CUADRO 8.1.2

ANALISIS DE COSTOS

DISEÑO.

M.F.A1:

Agua:

3.00

a/c:

0.65

220.00 lit/m3

A/P: 50/50

Rendimiento: : 14 m3/dia

DESCRIPCION	UND.	CANTIDAD	PRECIO UNITARIO (S./)	PARCIAL	SUB TOTAL
MATERIALES					
Cemento Portland	Bls.	7.964	19.00	151.31	
Arena	m3	0.345	30.00	10.35	
Piedra	m3	0.312	43.00	13.42	
Agua	m3	0.220	10.00	2.20	177.28
Mano de Obra					
1 capataz	hh	0.571	19.50	11.13	
3 operarios	hh	1.714	15.12	25.92	
3 oficiales	hh	1.714	13.14	22.52	
6 peones	hh	3.429	11.84	40.60	100.17
Equipo					
1 mezcladora	hm	0.571	14.00	7.99	
1 vibrador	hm	0.571	7.00	4.00	
Herramientas (3%М.О.)	%	0.030	100.17	3.01	15.00
			COSTO UNITAR	NO TOTAL S./	292.45

CUADRO 8.1.3

ANALISIS DE COSTOS

DISEÑO

M.F.A1: 3.00

a/c: 0.70

Agua: 220.00 lit/m3

A/P: 50/50

Rendimiento:: 14 m3/dia

DESCRIPCION	UND.	CANTIDAD	PRECIO UNITARIO (S./)	PARCIAL	SUB TOTAL
MATERIALES			 		
Cemento Portland	Bls.	7.395	19.00	140.51	
Arena	m3	0.349	30.00	10.47	
Piedra	m3	0.315	43.00	13.55	
Agua	m3	0.220	10.00	2.20	166.72
Mano de Obra			 		···
1 capataz	hh	0.571	19.50	11.13	
3 operarios	hh	1.714	15.12	25.92	
3 oficiales	hh	1.714	13.14	22.52	
6 peones	hh	3.429	11.84	40.60	100.17
Equipo		 			
1 mezcladora	hm	0.571	14.00	7.99	
1 vibrador	hm	0.571	7.00	4.00	
Herramientas (3%M.O.)	%	0.030	100.17	3.01	15.00
			COSTO UNITAR	NO TOTAL S./	281.89

CUADRO 8.2.1

ANALISIS DE COSTOS

lit/m3

DISEÑO

M.F.A2: 3.40

a/c: 0.60

Agua: 215.00

A/P: 50/50

Rendimiento: : 14 m3/dia

DESCRIPCION	UND.	CANTIDAD	PRECIO UNITARIO (S./)	PARCIAL	SUB TOTAL
MATERIALES					
Cemento Portland	Bls.	8.431	19.00	160.19	
Arena	m3	0.344	30.00	10.32	
Piedra	m3	0.311	43.00	13.37	
Agua	m3	0.215	10.00	2.15	186.04
Mano de Obra					
1 capataz	hh	0.571	19.50	11.13	
3 operarios	hh	1.714	15.12	25.92	
3 oficiales	hh	1.714	13.14	22.52	
6 peones	hh	3.429	11.84	40.60	100.17
Equipo			 		
1 mezcladora	hm	0.571	14.00	7.99	
1 vibrador	hm	0.571	7.00	4.00	
Herramientas (3%M.O.)	%	0.030	100.17	3.01	15.00
		_	COSTO UNITAR	NO TOTAL S./	301.21

ELABORADO POR: E.G.B.P

CUADRO 8.2.2

ANALISIS DE COSTOS

DISEÑO

M.F.A2: 3.40

a/c: 0.65

Agua: 210.00 lit/m3

A/P: 50/50

Rendimiento: : 14 m3/dia

DESCRIPCION	UND.	CANTIDAD	PRECIO UNITARIO (S./)	PARCIAL	SUB TOTAL
MATERIALES					
Cemento Portland	Bls.	7.602	19.00	144.44	
Arena	m3	0.352	30.00	10.56	
Piedra	m3	0.319	43.00	13.72	
Agua	m3	0.210	10.00	2.10	170.81
Mano de Obra		<u> </u>			
1 capataz	hh	0.571	19.50	11.13	
3 operarios	hh	1.714	15.12	25.92	
3 oficiales	hh	1.714	13,14	22.52	
6 peones	hh	3.429	11.84	40.60	100.17
Equipo					
1 mezcladora	hm	0.571	14.00	7.99	
1 vibrador	hm	0.571	7.00	4.00	
Herramientas (3%M.O.)	%	0.030	100.17	3.01	15.00
			COSTO UNITAR	NO TOTAL S./	285.98

CUADRO 8.2.3

ANALISIS DE COSTOS

DISEÑO

M.F.A2: 3.40

a/c: 0.70

Agua: 210.00

lit/m3

A/P: 50/50

Rendimiento: : 14 m3/dia

DESCRIPCION	UND.	CANTIDAD	PRECIO UNITARIO (S./)	PARCIAL	SUB TOTAL
MATERIALES					
Cemento Portland	Bis.	7.059	19.00	134.12	
Arena	m3	0.356	30.00	10.68	
Piedra	m3	0.322	43.00	13.85	
Agua	m3	0.210	10.00	2.10	160.74
Mano de Obra			<u> </u>		
1 capataz	hh	0.571	19.50	11.13	
3 operarios	hh	1.714	15.12	25.92	
3 oficiales	hh	1.714	13.14	22.52	
6 peones	hh	3.429	11.84	40.60	100.17
Equipo		 	 		
1 mezcladora	hm	0.571	14.00	7.99	
1 vibrador	hm	0.571	7.00	4.00	
Herramientas (3%M.O.)	%	0.030	100.17	3.01	15.00
			COSTO UNITAR	RIO TOTAL S./	275.91

CUADRO 8.3.1

ANALISIS DE COSTOS

DISEÑO

M.F.A3: 3.60

a/c: 0.60

Agua: 218.00 lit/m3

A/P: 50/50

Rendimiento: : 14 m3/dia

DESCRIPCION	UND.	CANTIDAD	PRECIO UNITARIO (S./)	PARCIAL	SUB TOTAL
MATERIALES					
Cemento Portland	Bls.	8.549	19.00	162.43	
Arena	m3	0.341	30.00	10.23	
Piedra	m3	0.309	43.00	13.29	
Agua	m3	0.218	10.00	2.18	188.13
Mano de Obra					
1 capataz	hh	0.571	19.50	11.13	
3 operarios	hh	1.714	15.12	25.92	
3 oficiales	hh	1.714	13.14	22.52	
6 peones	hh	3.429	11.84	40.60	100.17
Equipo					
1 mezcladora	hm	0.571	14.00	7.99	
1 vibrador	hm	0.571	7.00	4.00	
Herramientas (3%M.O.)	%	0.030	100.17	3.01	15.00
	COSTO UNIT			NO TOTAL S./	303.29

ELABORADO POR: E.G.B.P

CUADRO 8.3.2

ANALISIS DE COSTOS

DISEÑO

M.F.A3; 3.60

a/c: 0.65

Agua: 213.00 lit/m3

A/P: 50/50

Rendimiento: : 14 m3/dia

DESCRIPCION	UND.	CANTIDAD	PRECIO UNITARIO (S./)	PARCIAL	SUB TOTAL
MATERIALES					
Cemento Portland	Bls.	7.710	19.00	146.50	
Arena	m3	0.350	30.00	10.50	
Piedra	m3	0.317	43.00	13.63	
Agua	m3	0.213	10.00	2.13	172.76
Mano de Obra		 	 		
1 capataz	hh	0.571	19.50	11.13	
3 operarios	hh	1.714	15.12	25.92	
3 oficiales	hh	1.714	13.14	22.52	
6 peones	hh	3.429	11.84	40.60	100.17
Equipo		 	 		
1 mezcladora	hm	0.571	14.00	7.99	
1 vibrador	hm	0.571	7.00	4.00	
Herramientas (3%M.O.)	%	0.030	100.17	3.01	15.00
			COSTO UNITARIO TOTAL S./		287.93

CUADRO 8.3.3

ANALISIS DE COSTOS

DISEÑO

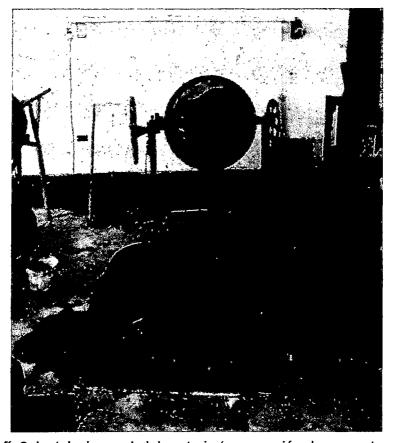
M.F.A3: 3.60

a/c: 0.70

Agua: 208.00 lit/m3

A/P: 50/50

Rendimiento: : 14 m3/dia


DESCRIPCION	UND.	CANTIDAD	PRECIO UNITARIO (S./)	PARCIAL	SUB TOTAL
MATERIALES					
Cemento Portland	Bls.	6.992	19.00	132.84	
Arena	m3	0.358	30.00	10.74	
Piedra	m3	0.324	43.00	13.93	
Agua	m3	0.208	10.00	2.08	159.59
Mano de Obra					
1 capataz	hh	0.571	19.50	11.13	
3 operarios	hh	1.714	15.12	25.92	
3 oficiales	hh	1.714	13.14	22.52	
6 peones	hh	3.429	11.84	40.60	100.17
Equipo					
1 mezcladora	hm	0.571	14.00	7.99	
1 vibrador	hm	0.571	7.00	4.00	
Herramientas (3%M.O.)	%	0.030	100.17	3.01	15.00
			COSTO UNITARIO TOTAL S./		274.76

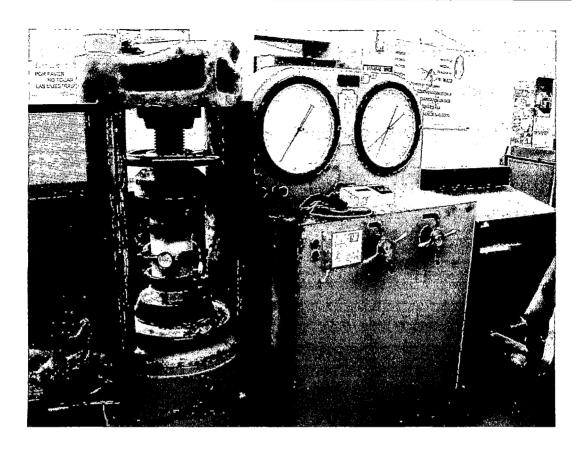
PANEL FOTOGRAFICO

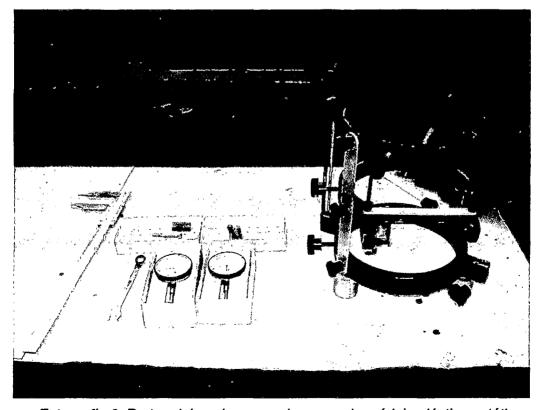
PANEL FOTOGRAFICO

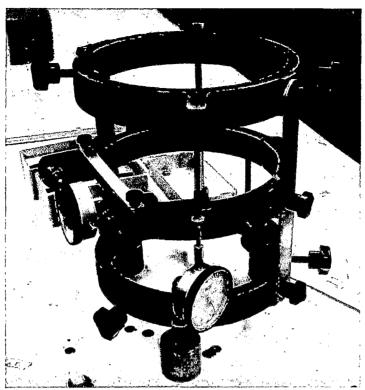
Fotografía 1: Almacenamiento de los agregados (exteriores L.E.M)

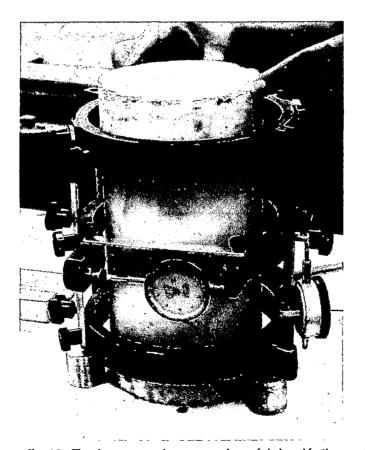
Fotografía2: Instalaciones de laboratorio (preparación de concreto – L.E.M.)

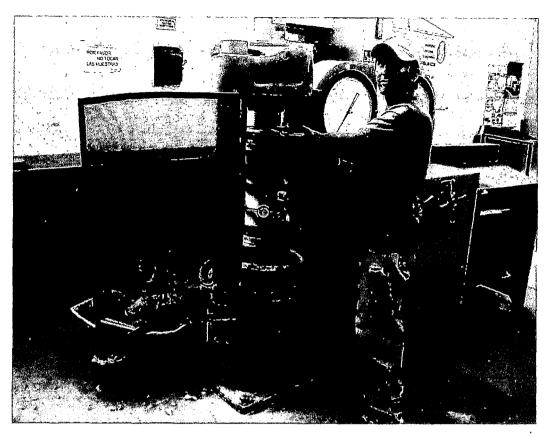
Fotografía3: Ensayo de Consistencia NTP 339.035


Fotografía 4: Ensayo de Consistencia - medida del slump NTP 339.035


Fotografía 5: Ensayo de tiempo de fraguado - primera etapa


Fotografía 6: Ensayo de tiempo de fraguado - segunda etapa


Fotografía 7: Equipo utilizado para realizar la compresión de probetas


Fotografía 8: Partes del equipo para el ensayo de módulo elástico estático

Fotografía 9: Equipo para el ensayo de módulo elástico estático

Fotografía 10: Equipo para el ensayo de módulo elástico estático

Fotografía 11: Ensayo de módulo elástico estático