UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA QUÍMICA Y TEXTIL Sección de Pos grado

"ESTUDIO FLUIDO DINÁMICO DEL AJI CHARAPITA (Capsicum frutescens)"

TESIS

PARA OPTAR EL GRADO ACADÉMICO DE MAESTRO EN INGENIERÍA DE PROCESOS

PRESENTADO POR:

JORGE LUIS CARRANZA GONZALES

LIMA – PERÚ

2013

Digitalizado por:

Consorcio Digital del Conocimiento MebLatam, Hemisferio y Dalse

DEDICATORIA

A Dios

A mis padres: Irma y Gilberto

A mi señora esposa Lizet

A mi querida hija: Cinthya Alessandra

AGRADECIMIENTOS

A Dios, por la vida prestada y por todas las bendiciones que me da día a día, a mis padres por su amor incondicional y por haberme formado con el buen ejemplo, a mis hermanos y mi esposa por su apoyo y confianza, a mi hijita por esa luz de esperanza.

A la Ing. MSc. Julia Victoria Salinas García por sus enseñanzas durante la dirección de esta tesis. También mi reconocimiento por su excelente predisposición y su desinteresada colaboración.

Al Dr. Fernando Huamán Pérez por todo el apoyo brindado durante el tiempo que duró mis estudios de maestría.

ESTUDIO FLUIDO DINÁMICO DEL AJI CHARAPITA (Capsicum frutescens)

.•

INDICE

	Página
RESUJMEN	
INTRODUCCIÓN	
CAPITULO I	
CARACTERISTICAS DE LA PLANTA DE AJÍ (Capsicum frutescens)	1
1.1 Materia prima	1
1.1.1 Origen y Distribución Geográfica	1
1.1.2 Descripción Botánica	1
1.1.3 Clasificación Científica	3
1.1.4 Consumo	3
1.1.5 Propiedades	3
1.1.6 Nombre común	3
1.1.7 Composición química	3
CAPITULO II	
MATERIALES Y EQUIPOS	5
2.1 Materiales y métodos	5
2.1.1 Materiales	5
2.1.1.1 Materia prima	5
2.1.1.2 Materiales de laboratorio	5
2.2 Descripción del equipo	5
2.2.1 Horno secador de lecho fluidizado	5
2.2.2 Otros equipos	5
2.3 Metodología	6
2.3.1 Caracterización de la materia prima	6

CAPITULO III			
DESCRIPCIÓN DE LA OPERACIÓN	9		
3.1 Descripción del proceso	9		
CAPITULO IV			
CARACTERIZACIÓN DEL AIRE	11		
4.1 Proceso de secado	11		
4.1.1 Carta psicrométrica	11		
4.1.1.1 Propiedades termodinámicas del aire húmedo	12		
4.1.1.1.1 Humedad relativa	12		
4.1.1.1.2 Ttemperatura de bulbo seco	12		
4.1.1.1.3 Temperatura de bulbo húmedo	12		
4.1.1.1.4 Presión de vapor	12		
4.1.1.1,5 Entalpía	12		
4.1.1.1.6 Volumen específico4.2 Cinética del proceso de secado4.2.1 Curvas de Secado			
		4.2.2 Determinación de Humedades	14
		4.2.3 Cálculo del tiempo de secado	15
4.3 Modelo matemático deducido para el cálculo del tiempo de secado	17		
4.3.1 Modelo cinético	19		
CAPITULO V			
DESCRIPCION DEL EQUIPO Y PROCESO EXPERIMENTAL	22		
5.1 Descripción del equipo fluidizador empleado	22		
5.1.1 Descripción general del equipo	22		
5.2 Componentes del equipo	23		
5.2.1 Cámara de combustión	23		
5.2.2 Cámara de acumulación de aire caliente	23		
5.2.3 Cámara de secado	24		
5.2.4 Chimenea de ciclón recolector	24		

5.2.5 Salida de la materia seca	25
5.2.6 Distribuidor de flujo	25
5.2.7 Visor	26
5.2.8 Dispositivos de medición	26
5.2.8.1 Termómetros	26
5.2.9 Motores	27
5.2.9.1 Ventilador	27
5.2.9.2 Extractor de humedad	28
5.3 Mejoras del equipo para la realización de las pruebas de secado	28
5.3.1 Medidor de presión diferencial	28
5.3.2 Distribuidor de flujo	29
5.3.3 Variador de velocidad	29
5.4 Principios de fluidinámica	30
5.4.1 Concepto de fluidización	30
5.4.2 Definición de lecho fluidizado	31
5.4.3 Característica de las partículas	31
5.4.3.1 Porosidad del lecho (c)	31
5.4.3.2 Esfericidad (Φ)	31
5.4.3.3 Diámetro de la partícula	32
5.4.3.4 Densidad de la partícula (ρ_P)	32
5.4.3.5 Área superficial (a)	32
5.4.3.6 Clasificación de las partículas	32
5.5 Velocidades relacionadas en un lecho fluidizado	33
5.5.1 Velocidad superficial del gas	34
5.5.2 Velocidad mínima de fluidización	34
5.5.3 Velocidad terminal.	36
5.5.4 Velocidad mínima de burbujeo	36
5.6 Transferencia de calor en el lecho fluidizado	37
5.6.1 Transferencia de calor entre el gas y las partículas	37
5.6.2 Transferencia de calor entre el lecho y la superficie	40
5.7 Balance de materia en el lecho fluidizado	41
5.8 Balance de energía en lecho fluidizado	42
5.9 Evaluación del coeficiente de difusión	42
	5.2.5 Salida de la materia seca 5.2.6 Distribuidor de flujo 5.2.7 Visor 5.2.8 Dispositivos de medición 5.2.8.1 Termómetros 5.2.9 Motores 5.2.9 Motores 5.2.9.1 Ventilador 5.2.9.2 Extractor de humedad 5.3 Mejoras del equipo para la realización de las pruebas de secado 5.3.1 Medidor de presión diferencial 5.3.2 Distribuidor de flujo 5.3.3 Variador de velocidad 5.4 Principios de fluidinámica 5.4.1 Concepto de fluidización 5.4.2 Definición de lecho fluidizado 5.4.3 Característica de las partículas 5.4.3.1 Porosidad del lecho (ε) 5.4.3.2 Esfericidad (Φ) 5.4.3.2 Esfericidad (Φ) 5.4.3.5 Área superficial (a) 5.4.3.6 Clasificación de las partículas 5.5 Velocidades relacionadas en un lecho fluidizado 5.5.1 Velocidad superficial del gas 5.5.2 Velocidad superficial del gas 5.5.2 Velocidad mínima de fluidización 5.5.3 Velocidad fumina. 5.5.4 Velocidad mínima de fluidización 5.6.1 Transferencia de calor en el lecho fluidizado 5.6.1 Transferencia de calor entre el gas y las partículas 5.6.2 Transferencia de calor entre el lecho y la superficie 5.7 Balance de materia en el lecho fluidizado 5.8 Balance de energía en lecho fluidizado 5.9 Evaluación del coeficiente de difusión

CAPITULO VI

CARA	CTERIZACION DE LAS PARTICULAS Y PRUEBAS EXPERIMENTALES	52
6.1 Ca	racterización de la materia prima	52
6.1.1 F	Propiedades de la partícula	52
6.1.1.1	. Densidad de las partículas (ρ)	52
6,1.1.2	Esfericidad de las partículas (Φ)	53
6.1.1.3	diámetro promedio de partícula (d _p)	55
6.2 Ci	urvas obtenidas del proceso de fluidización	56
6.2.1	Efecto de la temperatura de 50 °C sobre muestras obtenidas de	
	malla de 6 mm, 8 mm y 10 mm.	56
6.2.2	Efecto de la temperatura de 60 °C sobre muestras obtenidas de	
	malla de 6 mm, 8 mm y 10 mm.	58
6.2.3	Efecto de la temperatura de 60 °C sobre muestras obtenidas de	
	malla de 6 mm, 8 mm y 10 mm.	60
6.2.4	Efecto de la temperatura de 50 °C en la velocidad de secado en	
	muestras obtenidas de malla de 6 mm, 8 mm y 10 mm.	62
6.2.5	Efecto de la temperatura de 60 °C en la velocidad de secado en	
	muestras obtenidas de malla de 6 mm, 8 mm y 10 mm.	63
6.2.6	Efecto de la temperatura de 70 °C en la velocidad de secado en	
	muestras obtenidas de malla de 6 mm, 8 mm y 10 mm.	65
6.2.7	Efecto de las temperaturas de 50 °C, 60 °C y 70 °C. en muestras	
	obtenidas de la malla de 6 mm.	66
6.2.8	Efecto de las temperaturas de 50 °C, 60 °C y 70 °C. en muestras	
	obtenidas de la malla de 8 mm.	67
6.2.9	Efecto de las temperaturas de 50 °C, 60 °C y 70 °C. en muestras	
	obtenidas de la malla de 10 mm.	69
6.2.10	Efecto de la temperatura sobre el Nº Re	70
6 . 2 .11	Relación del N° Re con el diametro de la particula	71
6.2.12	Efecto de la temperatura sobre la velocidad mínima de fluidizació	72
6.2.13	Analisis del coeficiente de difusión	73
6.2.14	Analisis del agua presente en el interior de la partícula.	73
6.2.15	Analisis del flux másico de agua en el interior de la partícula versus el radio.	74

CAPITULO VII ANALISIS DE LOS RESULTADOS 7.1 Análisis físico-químico del ají obtenido de las muestras de mallas de 6 mm después del proceso de deshidratación. 7.2 Análisis físico-químico del ají obtenido de las muestras de mallas de 8 mm después del proceso de deshidratación. 7.3 Análisis físico-químico del ají obtenido de las muestras de mallas de 10 mm después del proceso de deshidratación. 7.4 Cálculo de las características físicas y fluido dinámicas del ají charapita para las muestras de la malla de 6 mm. 7.5 Cálculo de las características físicas y fluido dinámicas del ají charapita para las muestras de la malla de 8 mm. 7.6 Cálculo de las características físicas y fluido dinámicas del ají charapita para las muestras de la malla de 10 mm. 7.7 Cálculos del balance energético para las muestras malla de 6 mm 7.8 Cálculos del balance energético para las muestras malla de 8 mm 7.9 Cálculos del balance energético para las muestras malla de 10 mm 7.10 Balance de agua en el secador, para las muestras de malla de 6 mm 7.11 Balance de agua en el secador, para las muestras de malla de 8 mm 7.12 Balance de agua en el secador, para las muestras de malla de 10 mm 7.13 Balance del combustible consumido CONCLUSIONES RECOMENDACIONES **BIBLIOGRAFIAS** ANEXOS Anexo I : Demostración de las ecuaciones del Modelo Cinético Anexo II : Pruebas experimentales por tamaño de partícula

76

76

76

77

78

79

79

81

81

81

82

82

83

83

85

88

89

92

95

112

Anexo IV : Tablas y gráficas de las pruebas experimentales para muestras obtenidas de malla de 6 mm 133

Anexo III : Balance energético del proceso

Anexo V : Tablas y gráficas de las pruebas experimentales para	
muestras obtenidas de malla de 8 mm	147
Anexo VI : Tablas y gráficas de las pruebas experimentales para	
muestras obtenidas de malla de 10 mm	161
Anexo VII : Tabla de Excel para el cálculo de la difusividad	172

"ESTUDIO FLUIDO DINÁMICO DEL AJI CHARAPITA (Capsicum frutescens)"

RESUMEN

El desarrollo de la presente investigación se realizó en la Planta Piloto de la Facultad de Ingeniería en Industrias Alimentarias de la Universidad Nacional de la Amazonia Peruana, el equipo empleado para secar las muestras fue un horno secador de lecho fluidizado marca JARCON, modelo SLFT-240X con una temperatura de funcionamiento de 30 °C a 120 °C, al que se le implemento un variador de velocidad modelo VFD-E.

El presente trabajo tiene como objetivo principal realizar un estudio experimental del comportamiento fluidinámico del ají charapita *(Capsicum frutescens)*, realizando pruebas experimentales, analizando y correlacionando los valores obtenidos con un modelo cinético matemático apropiado para un lecho gas-sólido, empleando las ecuaciones termodinámicas para la determinación de la transferencia de calor y masa.

Para la deshidratación de ají charapita *(Capsicum frutescens)*, se empleo temperaturas de 50°C, 60°C y 70 °C conjugando cada temperatura con diferentes velocidades de aire: 3.8 m/s, 3.9 m/s, y 4.0 m/s con un espesor de lecho de 10 cm. Se trabajó con tres tamices para seleccionar las muestras que son de 6 mm, 8 mm y 10 mm. Los diámetros de partículas fueron de 6.46 mm, 8.06 mm y 10.11 mm respectivamente; las esfericidades fueron de 0.820, 0.864 y 0.937 respectivamente.

Las curvas generadas durante el periodo de secado a velocidad constante tienen un promedio de duración de 1.85 h retirando en ese tiempo aproximadamente el 78 % de la humedad total contenida en el interior del ají, el periodo de secado a velocidad decreciente tiene un promedio de duración de 2.45 h retirando en ese tiempo aproximadamente el 22 % restante de humedad.

A las muestras deshidratadas se les realizó un análisis físico - químico y se obtuvo los siguientes resultados: humedad 6.69 %, ceniza 5.08 %, grasa 1.48 %, proteína 11.73 %, carbohidratos 75.02 %.

"FLUID DYNAMIC STUDY OF THE RED PEPPER CHARAPITA (capsicum frutescens)"

SUMMARY

The development of the present investigation came true in the pilot plant of the Faculty of Ingeniería in Industrias Alimentary of the National University of the Peruvian Amazonia, the employed team to dry samples was a drying oven of fluidized bed mark JARCON, model SLFT 240X with a temperature of functioning of 30 C to 120 C, the one that implement it to him a variador of model velocity VFD-E.

The present I work fluidinámico of the red pepper has like main objective to accomplish an experimental study of the behavior charapita (*Capsicum frutescens*), accomplishing experimental tests, analyzing and correlating the values obtained with a kinetic mathematical model adapted for a bed solid gas, using the thermodynamic equations for the determination of the transference of heat and mass.

For the dehydration of red pepper charapita (*Capsicum frutescens*), himself I use temperatures of 50 C, 60 C and 70 C combining each temperature with different velocities of air: 3,8 m s, 3,9 m s, and 4,0 m s with a thickness of bed of 10 cm. He was worked up with three sifters to select the samples that belong to 6 mm, 8 mm and 10 mm. The diameters of particles belonged to 6,46 mm, 8,06 mm and 10,11 mm respectively; Sphericities belonged to 0,820, 0,864 and 0,937 respectively.

The curves generated in the course of drying at a steady rate average out at duration of 1,85 h withdrawing 78 % of the total humidity contained in the inside of the red pepper at that time approximately, the dry period to decreasing velocity averages out at duration of 2,45 h withdrawing the 22 remaining % of humidity at that time approximately.

To the dehydrated samples a physical analysis came true - chemist and the following results were obtained: Humidity 6,69 %, ash 5,08 %, grease 1,48 %, protein 11,73 %, carbohydrates 75,02 %.

INTRODUCCIÓN

El proceso de secado ha sido desde los tiempos más remotos, un medio de conservación de los alimentos. Su aplicación en la forma más sencilla se aprovechó sin duda mediante la observación de la naturaleza. En el campo se secan los granos y los tallos por medio de exposición al sol. A menudo se logra así un grado suficiente de seguridad en la conservación de los alimentos. Sin embargo, en la región amazónica existen pocas investigaciones sobre la cinética de secado de especies vegetales que contribuyan a mejorar la dieta nutricional del poblador amazónico (Carranza, 2001).

Geankoplis (1995), menciona que el secado significa la remoción de cantidades de agua relativamente pequeñas, de un cierto material. La evaporación se refiere a la eliminación de cantidades de agua bastante grandes. En la evaporación, el agua se elimina en forma de vapor a su punto de ebullición. En el secado el agua casi siempre se elimina en forma de vapor con aire. El secado de materiales biológicos en especial los alimentos, se usa también como una técnica de preservación.

Los microorganismos que provocan la descomposición de los alimentos no pueden crecer y multiplicarse en ausencia de agua. Además muchas de las enzimas que causan los cambios químicos en alimentos y otros materiales biológicos no pueden funcionar sin agua. Los microorganismos dejan de ser activos cuando el contenido de agua se reduce por debajo del 10% en peso.

Earle (1997), menciona que el secado de productos alimenticios es un proceso complejo que incluye calor y fenómenos de transferencia de masa que ocurre en los materiales que están siendo secados.

Durante el secado de diversos productos biológicos (sorgo, arroz, papa, zanahoria, nabo, chicharo, aceituna, achiote), se ha observado después del análisis de las cinéticas de secado, que el periodo que gobierna esta operación es el decreciente, el cual esta descrito principalmente por la difusión de la humedad dentro del producto (Aguirre et al, 1982; Bimbinet et al, 1984; Carbonell et al, 1985; citados por Carranza, 2001).

El ají charapita (*Capsicum frutescens*) es una especie salvaje de ají encontrada en la región de la selva peruana, es muy pequeño con una forma esférica que mide un 1/4 máximo en diámetro. Las vainas son muy finas y maduras, tienen un color rojo y amarillo. Esta variedad no crece comercialmente, sino se cosecha de las plantas salvajes, como propiedades y principios activos contiene compuestos picantes de naturaleza fenólica:

IX

capsaicina (0,5-1%), dihidrocapsaicina, norhidrocapsaicina, homocapsaicina. Carotenoides: capsantina, capsorrubina. Flavonoides: apiósido, luteína. Cobre, vitamina B1, B2, C.

Uno de los secadores que actualmente, se utiliza en la industria alimentaria es el secador de lecho fluidizado

El secado en lecho fluidizado va tomando mayor auge a nivel industrial para secar productos biológicos, que consiste en pasar aire caliente a una presión constante a través de un lecho de partículas. El aire al ponerse en contacto con el producto logra suspenderlas.

La transferencia de masa se da entre el producto y el aire caliente, este aire es el medio para eliminar el agua contenida en la materia a secar. El secado en este tipo se realiza a altas velocidades de transferencia de calor y masa lo que lo convierte en un equipo atractivo para el secado de productos sensibles.

JUSTIFICACIÓN

La producción actual de Aji Charapita (*Capsicum frutescens*) como fruto nativo y las favorables condiciones ecológicas para explotación agrícola en la zona, la justifican en primer término. La fluidización de partículas como medio físico para su uso en procesos industriales hace que cobre especial importancia su estudio.

Actualmente se está investigando este método de secado y su aplicación industrial, ofreciéndonos hoy en día el conocimiento acerca de fluidización que podemos utilizar para su desarrollo industrial.

Actualmente surge la necesidad de realizar amplios proyectos de investigación para el desarrollo de aplicaciones industriales en las que la fluidización supone una gran ventaja y hace necesario la adquisición de conocimiento sobre el tema.

OBJETIVOS

OBJETIVO GENERAL

Es realizar un estudio fluidinámico del comportamiento del aji charapita en un lecho fluidizado

OBJETIVOS ESPECÍFICOS

Evaluar cómo afectan la presión, temperatura y velocidad de aire al ají durante el proceso de secado Evaluar cómo afectan al proceso de fluidizado las características físicas del ají charapita como son su diámetro, densidad, esfericidad y volumen

ANTECEDENTES

Actualmente se está haciendo más común el uso de lechos fluidizados en las industrias de alimentos apartándose un poco de la industria minería y la industria química que fueron los campos de aplicación más comunes desde su invención.

Caracterizar los fenómenos de transferencia que ocurren dentro de un equipo de lecho fluidizado ayudara a la implementación ó a mejorar procesos ya existentes en diversos procesos ligados a la industria alimentaria.

De acuerdo a la revisión bibliográfica efectuada, existen varios trabajos de investigación que involucran el estudio fluidinámico de diversos materiales biológicos, los que a continuación presentamos para su mejor entendimiento.

Guarneros G (2005), realizó un estudio fluidinámico de granos de pimienta chica de 6.94 mm de diámetro promedio en un proceso de fluidización al vacio empleando como medio de deshidratación vapor sobrecalentado. Determino la influencia que tiene la temperatura y la presión de vacio sobre la humedad removida y la velocidad de secado, experimento con temperaturas de 120 °C, 110 °C y 101 °C secando al producto y conservando éste solo 3.2, 4.9 y 16.4 % de su humedad inicial.

Martínez J (2008), experimento con granos de pimienta grande con 7.55 mm de diámetro en un lecho fluidizado al vacio empleando aire y controlando diferentes variables como la temperatura, presión y velocidad del fluido. De sus experimentos concluye que comparando las temperaturas la más alta es la que seca más rápido y la que predomina. Así el 77 % de los experimentos muestra esta tendencia, a temperaturas de 60 °C, 45 °C Y 30 °C. Comparando las presiones de operación que son 60 kPa y 67 kPa la que seca más rápido es la que tiene menor presión.

Mazariegos D (2006), secó granos de arroz con cascara con vapor sobrecalentado a 67 kPa con velocidades de aire de 2.3 m/s y 2.5 m/s. Indica que el efecto de la presión en el secado de la partícula a menores temperaturas es mayor, y este efecto se reduce a temperaturas de operación mayores y que la influencia de la temperatura se hace notoria con un menor vacío pero este efecto disminuye mientras se disminuye la presión, es decir aumentado el vacío.

Suárez y Beatón (2001), Determinaron experimentalmente características físicas y

aerodinámicas de la cáscara de arroz con humedad de equilibrio entre 8 y 10 % a una temperatura de 30 °C demostrando que a medida que aumenta el diámetro medio de las partículas es necesario aumentar el flujo de aire a través de la parrilla, y que al disminuir el diámetro medio de las partículas, aumenta la densidad de bulto.

Así mismo las propiedades físicas y aerodinámicas de la cáscara de arroz pueden variar en dependencia de los métodos y técnicas utilizadas para su cosecha, recogida, manipulación, procesamiento y almacenaje.

Sanchez-Ramirez et al (2007), realizó un estudio de la fluidización del café tostado (*Coffea arabica L.*) a tres niveles diferentes de temperatura, tiempo y velocidad superficial del aire. Las temperaturas de tratamientos fueron de 220 °C y 240 °C. El tratamiento a 220 °C por 5 minutos resulto con un color café claro y cuando aumento el tiempo a 10 minutos el color fue café oscuro. El tratamiento a 240 °C por 5 minutos dio un color oscuro y con exudación de aceite y cuando se le aumento el tiempo de tratamiento a 10 minutos el café resulto totalmente negro y brillante por el aceite que se encontraba en la superficie del grano produciendo una carbonización drástica del café. Concluyendo que en el proceso de tostado en lecho fluidizado la temperatura y el tiempo tienen un efecto significativo en el color del grano, pérdida de peso, humedad, densidad y demás características, asi mismo las interacciones temperatura-tiempo y tiempo-velocidad del aire afectan significativamente estos parámetros, excepto a la humedad y densidad empacada.

CAPITULO I

CARACTERISTICAS DE LA PLANTA DE AJÍ (Capsicum frutescens)

1.1 Materia prima

1.1.1 Origen y Distribución Geográfica:

A diferencia de las otras especies domésticas de *Capsicum*, no se cuenta con evidencia fósil de *C. frutescens* en los yacimientos arqueológicos americanos, pero se supone que se domesticó en Centroamérica, probablemente en Panamá, difundiéndose paulatinamente por el área del Caribe y el norte de Sudamérica. Es endémica de Centro y Sudamérica, Guyana Francesa, Guyana Surinam, Venezuela, Brasil, Colombia, Ecuador y Perú.

Como sucede en general con las solanáceas, la frecuente hibridación de los ejemplares dio lugar a múltiples variedades sumamente diferenciadas. Las más extensamente cultivadas son la brasileña malagueta, el peri-peri africano, el Naga Jolokia o Bih Jolokia asiático y el tabasco, a partir del cual se produce la salsa del mismo nombre. Algunas de éstas rivalizan con el C. chinense en intensidad; de acuerdo a algunos informes, el Naga Jolokia superaría los 850.000 puntos en la escala de Scoville.

El ají charapita el que reina en todo el Amazonas, desde Iquitos hasta Puerto Maldonado, desde Pucallpa hasta Bagua, el compinche del ají de cocona, el novio de la patarashca, el músico de los patacones y del tacaco, la cerecita del juane. Todo eso y mucho más es el ají charapita. El ají de la selva del Perú.

1.1.2 Descripción Botánica:

Los frutos de ají son bayas de forma globosa, rectangular, cónica, alargada o redonda y de tamaño variable (Figura1); el cuerpo del fruto presenta una superficie suave, tienen un color amarillo.

C. frutescens alcanza el metro de altura, aunque su tamaño varía de acuerdo a la riqueza del suelo y a la temperatura, desarrollándose en mayor grado en climas más cálidos. Presenta un follaje más denso y compacto que otras especies de *Capsicum*. Las hojas son ovoides, lisas, de color verde claro y unos 8 cm de largo. Es habitualmente bianual, aunque puede sobrevivir hasta seis años; la producción de frutos disminuye abruptamente con la edad de la planta.

Figura Nº 1.1: "Ají charapita"

Las flores son de hábito vertical, y se presentan individualmente. La corola es lisa, de color blanquecino o verdoso; la ausencia del engrosamiento basal permite distinguirla fácilmente a simple vista. Los frutos son vallas amarillas o verdes, tornándose de color rojo intenso al madurar; de acuerdo a la variedad, miden entre 2 y 5 cm de largo. Se desprenden fácilmente del pedúnculo para facilitar su dispersión; las aves, que son insensibles a la capsaicina, son el vehículo más habitual para su reproducción. Una planta vigorosa puede producir más de 120 frutos.

Figura Nº 1.2: Capsicum frutescens, en floración.

El fruto de la *C. frutescens* resulta familiarmente parecido al guisante común *Lathyrus* odoratus, aunque se caracterice excepcionalmente por sus extrañas afloraciones si se tratan indebidamente, ya que puede ser altamente peligroso debido a las toxinas que se tratan fuera de su tiempo más productivo. En ocasiones, subproductos de la *C. frutescens* como salsas picantes y otras especies guarnimentativas, han provocado intoxicaciones alimentarias con heridos leves, pero con repercusiones intestinales graves.

1.1.3 Clasificación Científica

La C. frutescens presenta la siguiente clasificación científica:

Reino:	Plantae
Subreino:	Tracheobionta
División:	Magnoliophyta
Clase:	Magnoliopsida
Subclase:	Asteridae
Orden:	Solanales
Familia:	Solanaceae
Subfamilia:	Solanoideae
Tribu:	Capsiceae
Género:	Capsicum. L
Especie	C. frutescens

1.1.4 Consumo

El uso más frecuente de los frutos es en la elaboración de aderezos picantes. Se consumen molidos y secos, macerados en vinagre o fermentados en salmuera, o simplemente frescos. En la selva del Perú, se le prepara en una salsa con cocona.

1.1.5 Propiedades

Principios activos: contiene compuestos picantes de naturaleza fenólica: capsaicina (0,5-1%), dihidrocapsaicina, norhidrocapsaicina, homocapsaicina. Carotenoides: capsantina, capsorrubina. Flavonoides: apiósido, luteína. Cobre, vitamina B1, B2, C.

1.1.6 Nombre común

• Castellano: ají charapita, alegrías, chile, guindilla, miracielos, paprica, tabasco.

1.1.7 Composición química

El ají charapita presenta la siguiente composición química

Tabla Nº 1.1: Composición química del aji charapita fresco

Humedad (%)	85,23
Cenizas (%)	0.35
Grasas (%)	0.46
Proteínas (%)	1.20
Carbohidrato (%)s	12.76
Calorias (Kcal)	59.98
Fibra bruta (%)	2.35
Vitamina C (mg)	18.04
Calcio (mg)	31.50

Fuente: Elaborado por el investigador. Laboratorio fisico químico-UNAP

En la tabla N° 1.1 se muestran los resultados fisicoquímicos obtenidos de 100 gr de ají charapita (*Capsicum frutescens*) en estado fresco.

El análisis de humedad nos indica que el 85.23 % del total es agua, seguido de los carbohidratos con 12.76 %, las proteínas están presentes en poca cantidad con el 1.20 %, como es un vegetal su contenido graso es bajo con un aporte de 0.46 % y finalmente el contenido de cenizas es el más bajo con 0.35 %, la suma de todos estos porcentajes nos debe dar la suma total del 100 % correspondiente a la muestra de 100 gr de muestra inicial. Los valores obtenidos de calorías (Kcal), fibra bruta (%), vitamina C (mg) y el calcio (mg) son características propias del aji en su composición es decir no están relacionados con la masa de análisis.

CAPITULO Π

MATERIALES Y EQUIPOS

2.1 Materiales y métodos

El desarrollo del presente proyecto se llevó a cabo en el Laboratorio de Análisis Físico químico de alimentos y en las instalaciones de la Planta de Conservas de Palmito, ambos ambientes están ubicados en la Planta Piloto de la Facultad Industrias Alimentarias de la Universidad Nacional de la Amazonia Peruana;

2.1.1 MATERIALES

2.1.1.1.1 Materia Prima

- > Aji charapita (*Capsicum frutescens*)
- Se utilizó materia prima proveniente de los pueblos y caseríos cercanos a la ciudad de Iquitos, teniendo en cuenta que este fresco y en buenas condiciones para su proceso.

2.1.1.2 Materiales de Laboratorio

- Vasos de Precipitado.
- Balón de 250 ml
 - > Papel filtro
 - Probetas graduadas
 - Crisoles
 - Pinzas para crisoles
 - Agua tratada.

2.2 Descripción del equipo

2.2.1 Horno secador de lecho fluidizado

El secado de la materia prima se realizó en un horno secador de lecho fluidizado, por convección forzada, Marca "JARCON", año 2009, modelo SLFT-240X.

2.2.2 Otros equipos

* Mufla eléctrica.

Marca "TERRÍGENO", modelo BARNSTEAD / TERMOLINE, corriente 220 - 240, temperatura máxima 1125°C.

* Estufa.

Marca "SELECTA", modelo 209, corriente 220, temperatura máxima 220°C.

* Balanza analítica .

Marca "SARTORIUS", corriente 220, capacidad máxima 160g.

* Extractor de proteína.

Marca "BUCHI 425", compuesto por un digestor y un destilador de 04 fundas, temperatura máxima 120°C.

* Equipo soxhlet.

Marca "BUCHI", extractor de grasa de 04 fundas, temperatura máxima de funcionamiento 120°C.

* Equipo para medir el flujo de aire en el interior del horno.

Marca "ALNOR" registra de 0 - 10000 pies/min, a una temperatura máxima de 250°F, entrada máxima de presión 5 psi.

* Equipo para medir la temperatura y la humedad relativa dentro del horno. Marca "NEUTRONIC", temperatura máxima de funcionamiento 90°C, funcionamiento a baterías.

2.3 Metodología

2.3.1 Caracterización de la materia prima

Los análisis físico-químicos de la materia prima (ají charapita) se realizaran teniendo en cuenta el procedimiento para su deshidratación. El ají por presentar diferentes tamaños de partícula será necesario variar la velocidad de aire conjuntamente con la temperatura de operación.

Se determinaran las siguientes características:

a) <u>Humedad</u>

Para determinar la humedad se aplico el método de la A.O.A.C. Dicho método se basa en el contenido de agua de la muestra, que consiste en colocar la muestra en la Estufa a 110 °C hasta que el peso de la muestra sea constante (tiempo de operación 4 h aproximadamente).

Los resultados se expresan en porcentaje, y se obtiene aplicando la siguiente fórmula:

$$\%H = \frac{(P_1 - P_2)}{m} x \, 100 \tag{2.1}$$

Donde:

 $P_1 = placa + muestra fresca (gr)$ $P_2 = placa + muestra seca (gr)$ m = peso de la muestra seca (gr)

b) Cenizas

Para determinar las cenizas se aplico el método de la A.O.A.C. Este método se basa en la incineración de la muestra en un horno Mufla a una temperatura de 600 °C hasta obtener un peso constante (aproximadamente 6 h).

Los resultados se expresan en porcentaje, y se obtiene aplicando la siguiente fórmula:

$$\% C = \frac{(W_2 - W_1)}{P_m} x 100$$
 (2.2)

Donde:

$$W_2 = peso crisol + ceniza (gr)$$

 $W_1 = peso crisol vacio (gr)$
 $P_m = peso de la muestra (gr)$

c) Proteínas

Para la determinación de proteínas se utilizo el método Micro – Kjeldal. Dicho método consiste en calentar la muestra con ácido sulfúrico concentrado a elevada temperatura en presencia de un catalizador. Valorando con retroceso con base patrón se obtiene la cantidad de amonio y de ésta el contenido de la muestra.

Los resultados se expresan en porcentaje de Nitrógeno, a este resultado lo multiplicamos por un factor de 6.25; así obtenemos un resultado que se expresa en porcentaje de proteínas.

$$\% N = \frac{(V H_2 SO_4 x N) - (V N_a OH x N) x 0.14 x 100}{m}$$

% P = % N x 0.625 (2.3)

Donde:

d) Carbohidratos

Se determina por la diferencia del 100 % con los valores de humedad, cenizas, proteína, grasa. El resultado es expresado en porcentaje.

e) Calorías

Se determina sumando los valores de los componentes de grasa, proteínas y carbohidratos, primero multiplicamos a cada componente por sus respectivos factores. Los resultados son expresados en Kcal.

%
$$PC = G(9) + P(4) + CHO(4)$$
 (2.4)

Donde:

G = Grasas P = Proteínas CHO = Carbohidratos

CAPITULO III

DESCRIPCIÓN DE LA OPERACIÓN

3.1 DESCRIPCION DEL PROCESO

Actualmente el uso que se le da al ají charapita es en estado fresco como componente secundario de ensaladas y salsas picantes.

Las etapas para el secado se muestran en la figura N° 3, y están constituidas por la secuencia: cosecha, transporte, recepción y lavado, desinfección, lavado, selección y clasificación, secado, envasado y almacenado.

A continuación describiremos las etapas del proceso de secado.

a) Cosecha de la fruta

La fruta es cosechada cuando presenten un color amarillo que es un indicador de su madures.

b) Transporte

Los frutos serán colocados en cajas plásticas que pueden contener hasta 15 kg sin sufrir daño alguno durante el transporte por un tiempo de un día, considerando que el transporte se realiza en lancha desde los sitios de cosecha.

c) Recepción /lavado

Los frutos son recepcionados y pesados, luego se les retira el pedúnculo que viene adherido a ella, seguidamente son puestos en unas bandejas conteniendo agua para ser lavadas y eliminar las partículas de tierra y hojas que hayan venido con ellas en el transporte.

d) Selección / clasificación

Los ajíes son seleccionados por tamaños para que el proceso de secado sea en forma uniforme, en esta etapa también se eliminan los que presenten magulladuras o estén en proceso de deterioro avanzado.

e) Desinfección

El fruto limpio es remojado en una solución que contiene bisulfito de sodio al 0.5 % para disminuir los microorganismos adquiridos durante la cosecha y el transporte.

f) Lavado

Se realiza con abundante agua tratada con el objetivo de eliminar los residuos del desinfectante utilizado en la etapa anterior.

g) Secado

El proceso de secado se realizo a diferentes temperaturas de 50 °C, 60 °C y 70 °C, con velocidades de aire dadas para que la fluidización sea posible, el secado se hará por lotes empezando por los granos pequeños de malla 6 mm, seguido de los granos de 8 mm y finalmente con los granos de malla de 10 mm.

h) Envasado

El ají charapita seco será envasado en bolsas de polietileno de alta densidad y sellado al vacío para evitar el crecimiento de hongos por la presencia de aire.

i) Almacenado

Las muestras embolsadas se pondrán en un almacén a temperatura ambiente.

Figura Nº 3.1: Diagrama de flujo seguido para el secado del ají charapita Fuente: Elaborado por el investigador.

El análisis del producto se realizo siguiendo los métodos analíticos descritos en el capítulo 2.

CAPITULO IV

CARACTERIZACIÓN DEL AIRE

4.1 Proceso de secado

Antes de entrar en los estudios fluidinámicos propiamente dicho es necesario conocer los mecanismos en que se desenvuelve dicho proceso.

El aire es el fluido mediante el cual se va a retirar la humedad necesaria existente dentro del producto a secar para preservarlo, por lo tanto, es importante conocer sus características termodinámicas para que el proceso se lleve a cabo bajo condiciones controladas.

4.1.1 Carta psicrométrica

El aire atmosférico está constituido por una mezcla de aire seco y vapor de agua y se pueden presentar adecuadamente en forma de gráfico, con el nombre de carta psicrométrica, la cual está construida a una presión atmosférica determinada, aunque suele haber curvas de corrección para otras presiones. (Fig. N° 4.1).

Figura Nº 4.1: Carta psicrométrica elaborado a 1 atm. de presión.

4.1.1.1 Propiedades termodinámicas del aire húmedo

4.1.1.1.1 Humedad relativa

La humedad relativa del aire, se define como la relación entre la presión de vapor de agua en un momento dado (Pv) y la presión de vapor de agua cuando el aire está saturado de humedad (Pvs), a la misma temperatura. Aire absolutamente seco, sin vapor de agua en su interior, contiene una humedad relativa de 0%, mientras que el aire saturado de agua tiene una humedad relativa de 100%. La cantidad de vapor de agua que el aire puede absorber depende, en gran medida, de su temperatura. A medida que el aire se calienta, su humedad relativa decae y, por tanto, puede absorber más humedad. Al calentarse el aire alrededor del producto, éste se deshidrata más rápidamente

4.1.1.1.2 Temperatura de bulbo seco

La temperatura de bulbo seco, es la verdadera temperatura del aire húmedo y con frecuencia se le denomina sólo temperatura del aire. Es la temperatura del aire que marca un termómetro común.

4.1.1.1.3 Temperatura de bulbo húmedo

La temperatura termodinámica de bulbo húmedo, es la temperatura de equilibrio que se alcanza cuando la mezcla de aire seco y vapor de agua pasa por un proceso de enfriamiento adiabático hasta llegar a la saturación. Esta temperatura puede ser determinada de la carta psicrométrica para aire húmedo, para el período de secado constante.

4.1.1.1.4 Presión de vapor

La presión de vapor (Pv), es la presión parcial que ejercen las moléculas de vapor de agua presentes en el aire húmedo. Cuando el aire está totalmente saturado de vapor de agua, su presión de vapor se denomina presión de vapor saturado (Pvs).

4.1.1.1.5 Entalpía

La entalpía de aire seco y vapor de agua, es la energía del aire húmedo por unidad de masa de aire seco, por encima de una temperatura de referencia.

4.1.1.1.6 Volumen específico

El volumen específico del aire húmedo, se define como el volumen que ocupa la mezcla de aire seco y vapor de agua por unidad de masa de aire seco. La masa específica del aire húmedo no es igual al recíproco de su volumen específico. La

masa específica del aire húmedo es la relación entre la masa total de la mezcla y el volumen que ella ocupa.

4.2 Cinética del proceso de secado

4.2.1 Curvas de secado

Según Geankoplis (1995), los pasos a seguir son los siguientes:

Los datos que se obtienen del experimento de secado por lotes se expresan como peso total W del sólido húmedo (sólido seco más humedad) a diferentes tiempos de "t" horas en el periodo de secado. Estos valores pueden convertirse a datos de velocidad de secado con los siguientes procedimientos. Primero se calculan los datos. Si X es el peso del sólido húmedo en kg Totales de agua más sólido seco y Ws es el peso del sólido seco en kg

$$X_{t} = \frac{X - X_{s}}{X_{s}} \frac{\text{kg totales de agua}}{\text{kg de sólido seco}}$$
(4.1)

Habiendo establecido las condiciones de secado constante se determinan el contenido de humedad de equilibrio, X^* kg humedad de equilibrio/kg de sólido seco. Con esto se procede a calcular el valor del contenido de humedad libre X en kg de agua libre/kg de sólido seco para cada valor de X_t .

$$X = X_t - X^* \tag{4.2}$$

Usando los datos calculados con la ecuación (4.2), se traza una gráfica del contenido de humedad libre X en función del tiempo "t" en horas.

Figura N° 4.2: Curva típica de secado de humedad en función del tiempo.

Para obtener una curva de velocidad de secado, se miden las pendientes de la tangente de las curvas, lo cual proporciona valores de dx/dt para ciertos valores de t. Se calcula la velocidad de secado conforme a la siguiente ecuación:

$$W = \frac{L_s dX}{A dT} \tag{4.3}$$

Donde:

W = Velocidad de secado (kg agua/h m²).

 $L_{\rm g}$ = Masa del solido seco (kg).

A = Área de la superficie de secado (m^2)

Figura N° 4.3: Curva de velocidad de secado en función de la humedad libre.

4.2.2 Determinación de Humedades

El punto C de la figura N°4.3 corresponde al contenido crítico de humedad libre X_c . En este punto no hay suficiente agua en la superficie para mantener una película continua. La superficie ya no está totalmente mojada y la porción mojada comienza a disminuir durante este periodo de velocidad decreciente, hasta que la superficie queda seca en su totalidad en el punto D de la figura N° 4.3.

El segundo periodo de velocidad decreciente empieza en el punto D de la figura N° 4.3, cuando la superficie está seca en su totalidad. El plano de evaporación comienza a desplazarse con lentitud por debajo de la superficie.

En algunos casos no hay una discontinuidad definida en el punto D, y el cambio de condiciones de secado de una superficie con humedad parcial a una superficie completamente seca, es tan gradual que no se detecta un punto de inflexión (Geankoplis, 1995).

Ocon - Tojo (1982), presenta una serie de ecuaciones para el cálculo de humedades en el periodo de velocidad decreciente, estas son :

a) Humedad inicial $(X_0) = kg agua / kg sólido seco$

$$X_0 = \frac{\text{peso inicial del sólido humedo - peso del sólido seco}}{\text{peso del sólido seco}}$$
(4.4)

b) Humedad critica (X_c) = kg agua / kg sólido seco

$$X_{c} = \frac{(\text{peso inicial del sólido humedo - peso del agua evaporada) - L_{s}}{\text{peso del sólido seco}}$$
(4.5)

c) Humedad de equilibrio (X*) = kg agua / kg sólido seco

$$X^* = \frac{\text{peso humedad del sólido a la salida del horno}}{\text{peso del sólido seco}}$$
(4.6)

d) Humedad libre en el punto crítico (
$$X_L$$
) = kg agua/kg sólido seco
 X_L = humedad critica - humedad de equilibrio (4.7)

4.2.3 Calculo del Tiempo de Secado

Carvajal (2008) manifiesta que el periodo decreciente de secado es una función de X (o de X_f) y debe ser determinado experimentalmente por un material siendo secado en un determinado tipo de secador. Sin embargo, una vez que se conoce la función X, ya sea en el periodo constante o decreciente, es posible calcular el tiempo necesario para reducir la humedad desde un valor X₁ a X₂ con la siguiente fórmula:

$$t_d = \frac{M_s}{A} \int_{x_t}^{x_2} \frac{dX}{N}$$
(4.8)

Donde:

 M_s = peso del sólido seco (gr) A = Área de la superfície de secado (cm²) N = Tiempo de secado (h)

La tabla N° 4.1 muestra varias expresiones para el secado de partículas en el periodo constante, tasas decrecientes de secado lineales, y tasas decrecientes de secado controlado por la difusión del agua. Los subíndices c y f se refieren a los periodos constante y decreciente respectivamente. El tiempo total de secado se obtiene sumando todos los tiempos de secado en los dos periodos. Se obtienen expresiones analíticas diferentes para los tiempos de secado "t_f" dependiendo de la forma de la función de N (velocidad de secado, también es expresado con la letra W). La meta principal en el periodo decreciente de secado es el realizar una extrapolación confiable para los datos de cinética.

MODELO	TIEMPO DE SECADO
Modelo cinético $N = -\frac{M_s}{A} \frac{dX}{dt}$	t_d = Tiempo de secado para alcanzar una humedad final X ₂ de una inicial X ₁
N = N(X) (ecuación general)	$t_d = \frac{M_s}{A} \int_{X_i}^{X_i} \frac{dX}{N}$
N = N _C (periodo constante de secado)	$t_{d} = -\frac{M_{S}(X_{2} - X_{1})}{A N_{C}}$
N = aX + b (periodo decreciente de secado)	$t_f = \frac{M_s}{A} \frac{(X_1 - X_2)}{(N_1 - N_2)} \ln \frac{N_1}{N_2}$
$N = Ax (X \leq X_2 \leq X_{\alpha})$	$t_f = \frac{M_s X_c}{A N_c} \ln \frac{X_{\alpha}}{X_2}$
Modelo de difusión del líquido	$t_f = \frac{4a^2}{\pi D_1} \ln \frac{8X_1}{\pi^2 X_2}$
$D_L = constante, X_2 = X_{cr}$	

Tabla Nº 4.1: Tiempo de secado para varios modelos (Mujumdar, 1977)

-

Fuente: Carvajal (2008)

4.3 Modelo matemático deducido para el cálculo del tiempo de secado

Consiste en una ecuación que relaciona el tiempo de secado en función de las humedades absolutas y las velocidades de secado.

Análogamente se aplica para el caso de la inversa de la velocidad de secado 1/W en función de la humedad absoluta X

Si n = 30, entonces:

De la figura N° 4.5 se debe tener en cuenta que la humedad absoluta final X_f es menor que la humedad absoluta inicial X_0 , es decir: $X_f = X_1 < X_0 = X_{30}$

Por eso, para graficar la inversa de la velocidad de secado 1/W en función de la humedad absoluta X aplicando el método de trapecios, se debe de tener en cuenta lo siguiente: $X_1 = X_f$, $X_n = X_0$ Entonces, el tiempo de secado para reducir la humedad del sólido desde X_0 hasta x_f y considerando los 30 puntos, se calcularía mediante la siguiente fórmula:

$$\boldsymbol{\theta}_{\text{Secado}} = \frac{\boldsymbol{S}}{\boldsymbol{A}} \int_{X_{f}}^{X_{0}} \frac{d\boldsymbol{X}}{\boldsymbol{W}} = \frac{1}{2} \begin{bmatrix} (X_{2} - X_{1}) \left(\frac{1}{W_{1}} + \frac{1}{W_{2}} \right) + (X_{3} - X_{2}) \left(\frac{1}{W_{2}} + \frac{1}{W_{3}} \right) \\ + \dots + (X_{0} - X_{29}) \left(\frac{1}{W_{29}} + \frac{1}{W_{0}} \right) \end{bmatrix}$$
(4.11)

El criterio para aplicar este método numérico (método de trapecios) en deducir una ecuación que permita calcular el tiempo de secado y que esté en función de la humedad absoluta, es que como se puede observar en la figura N° 4.5, las diferencias $X_2 - X_1$, $X_3 - X_2$,, $X_n - X_{n-1}$ no son constantes, sin embargo para que este método sea exacto el valor de dichas diferencias deben ser muy pequeños. Esto indica que cuanto mayor sean las particiones que se haga, mayor será la exactitud del cálculo del tiempo de secado.

4.3.1 Modelo cinético

Consiste en realizar la representación gráfica de la velocidad de secado versus la humedad absoluta, a partir de las ecuaciones de la curva de evolución de la humedad absoluta. Cuando se hace la representación gráfica de x versus θ por cada periodo, las ecuaciones para cada uno de estos periodos son como se muestran en la figura 4.6. Periodo inicial: Función cúbica de x versus θ Periodo de velocidad constante: Función lineal de x versus θ Periodo de velocidad decreciente: Función cuadrática de x versus θ

Figura Nº 4.6. Curva de evolución para la humedad absoluta

Las ecuaciones en cada periodo se pueden obtener haciendo regresiones. El Excel permite realizar directamente estas regresiones mostrando automáticamente las ecuaciones para cada periodo.

Se sabe que en forma general: $W = -\frac{S}{A} \frac{dX}{d\theta}$

Entonces para cada periodo, se tendrá:

Periodo inicial: $W = -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(3A_1\theta^2 + 2B_1\theta + C_1)$ Periodo de velocidad constante: $W = W_C = -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(A_2)$ Periodo de velocidad decreciente: $W = -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(2A_3\theta + B_3)$

Seguidamente se grafica W versus X para cada periodo, de lo cual se debe obtener:

Figura Nº 4.7. Curvas típicas del secado por lotes
CAPITULO V

DESCRIPCIÓN DEL EQUIPO Y PROCESO EXPERIMENTAL

5.1 Descripción del equipo fluidizador empleado

5.1.1 Descripción general del equipo

El equipo de secado con el que se trabajó se encuentra en la planta piloto de la Facultad de Ingeniería en Industrias Alimentarias de la Universidad Nacional de la Amazonía Peruana. El equipo es un horno secador de lecho fluidizado, por convección forzada, Marca "JARCON", año 2009, modelo SLFT-240X, motor ventilador de 5 Hp, motor extractor de 1.5 Hp, ambos motores funcionan a 3450 rpm diseñado especialmente para secar diferentes tipos de productos tales como tubérculos, especies, frutas, etc.

El principio se basa en lo siguiente: El calor es suministrado por un intercambiador de calor, que quema gas propano calentando el aire, la corriente de aire caliente para el proceso se suministra por medio de un motor ventilador de alta velocidad y que atraviesa una plancha perforada ubicada en forma horizontal al flujo de aire manteniendo en suspensión a la materia a secar contra las fuerzas de gravedad. Este equipo también posee un extractor de humedad para eliminar la humedad y otros polvillos generados al secarse las partículas en la cámara de secado. El polvillo quemado es atrapado por el ciclón. En la figura N° 5.1, se puede observar el equipo completo que consta de un motor ventilador ubicado en su base, una cámara de combustión acoplada al ventilador, una cámara de combustión y una cámara de secado, un extractor de humedad ubicado en la parte superior del equipo, una chimenea conectada para la salida de gases calientes en la parte superior del equipo.

Figura Nº 5.1: Equipo secador de lecho fluidizado

5.2 Componentes del equipo

A continuación describiremos las partes que conforman el equipo que se encuentran internamente y externamente.

5.2.1 Cámara de combustión

La figura N° 5.2 muestra la cámara de combustión que está ubicada al lado izquierdo del equipo, consta de quemador de gas propano tipo soplete con un regulador para aumentar la intensidad de la llama que es la que genera el calor para calentar el aire a emplear durante el secado.

Figura Nº 5.2: Vista lateral de la cámara de combustión

5.2.2 Cámara de acumulación de aire caliente

La cámara de acumulación de aire caliente que está ubicada en la parte inferior del equipo (ver figura N° 5.3), es la zona donde se acumula el aire caliente proveniente de la cámara anterior y que es impulsada al interior del equipo por medio del motor ventilador que esta acoplado a la cámara de combustión.

Figura Nº 5.3: Cámara de acumulación de aire caliente

5.2.3 Cámara de secado

Ubicada en la parte intermedia del equipo, consta de 2 puertas para el ingreso de la materia prima a secar (como se muestra en la figura N° 6.4), la base de esta cámara es una placa perforada por donde ingresa el aire caliente para secar la materia prima puesta sobre su superficie.

Figura Nº 5.4: Cámara de secado

5.2.4 Chimenea de ciclón recolector

Está ubicada en la parte superior del equipo, es un tubo circular (como se aprecia en la figura N° 5.5) por donde sale el aire caliente humedecido conjuntamente con algunos polvillos generados durante el proceso de secado y cuenta con un regulador de salida de aire lo que permite aumentar la presión interna de trabajo, los polvillos son recepcionados en una tolva para su posterior recuperación de materia seca.

Figura Nº 5.5: Chimenea de ciclón recolector

5.2.5 Salida de la materia seca

Finalizado el proceso de secado el producto seco es retirado del equipo por la parte lateral derecha del mismo (ver figura N° 5.6), empujando el producto desde el interior usando unas palas de acero inoxidable.

Figura Nº 5.6: Salida de la materia seca.

5.2.6 Distribuidor de flujo

La plancha distribuidora de aire tiene un espesor de 1.5 mm, tiene un área de 50 cm X 240 cm con perforaciones de 1mm de diámetro, la distribución de las perforaciones es en forma de triangulo equilátero cuya lado mide 6 mm, como se puede apreciar en la figura N° 5.7.

Figura Nº 5.7: Distribuidor de flujo de aire caliente.

5.2.7 Visor

Durante el proceso de secado es necesario tener un control visual para saber si se lleva a cabo correctamente el proceso de secado.

El visor se encuentra ubicado en la parte central del equipo en medio de las dos puertas de ingreso de materia prima, desde este lugar se puede visualizar gran parte del interior del horno. El visor es de vidrio de 4 mm y tiene un diámetro de 20 cm, como se muestra en la figura N° 5.8.

Figura N° 5.8: Visor del equipo

5.2.8 Dispositivos de medición

5.2.8.1 Termómetros

Son 2 y están ubicados estratégicamente, uno en la parte inferior exactamente en la cámara de acumulación de aire caliente y el segundo en la parte intermedia del equipo en la cámara de secado (como se indica en la figura N° 5.9), ambos termómetros nos indicaran la temperatura exacta durante la realización de los experimentos.

Figura Nº 5.9: Ubicación de los termómetros

5.2.9 Motores

5.2.9.1 Ventilador

El motor ventilador es el que genera la fuerza necesaria para hacer ingresar el aire caliente a la cámara de secado con la fuerza necesaria para secar la materia prima.

Este motor ventilador es de alta velocidad se encuentra ubicado en la parte inferior del equipo, acoplado a la cámara de combustión. El motor es de 5 Hp con conexión trifásica 220 V, y funciona a una velocidad de 3450 rpm, como se muestra en la figura N ° 5.10.

Figura N° 5.10: Motor ventilador

5.2.9.2 Extractor de humedad

Este motor es el que absorbe la humedad del aire en la cámara de secado, normalmente se enciende a mitad del proceso para deshumidificar el aire presente en la zona de secado.

Este motor se encuentra ubicado en la parte superior del equipo, acoplado a la cámara de secado. El motor es de 1.5 Hp con conexión trifásica 220 V, y funciona a una velocidad de 3450 rpm, como se muestra en la figura N ° 5.11.

Figura Nº 5.11: Motor extractor de humedad

5.3 Mejoras del equipo para la realización de las pruebas de secado

5.3.1 Medidor de presión diferencial

Está ubicado en la parte central del equipo secador

Para medir la caída de presión del lecho cuando el equipo está trabajando se necesitó incorporar dos boquillas a 10 cm y 20 cm por encima de la plancha de perforada (ver figura N° 5.12), estas boquillas están conectadas a un manómetro tipo "U" para saber cómo varia la variación la presión a diferentes alturas.

Figura N° 5.12: Boquillas para conectar el manómetro tipo "U" instalado en el equipo.

5.3.2 Distribuidor de flujo

La plancha distribuidora de aire tiene un espesor de 1.5 mm, tiene un área de 57 cm X 244 cm con perforaciones de 2mm de diámetro, la distribución de las perforaciones es en forma de triangulo equilátero cuya lado mide 5 mm, como se puede ver en la figura N ° 5.13.

Figura N° 5.13: Distribuidor de flujo de aire caliente con perforaciones de diámetro mayor.

5.3.3 Variador de velocidad

Es un equipo Modelo VFD – E DELTA, que se adapta al motor ventilador de alta velocidad (ver figura N $^{\circ}$ 5.14), su función consiste en disminuir o aumentar la velocidad de giro de las aletas impulsoras del aire es decir aumenta o disminuye los rpm logrando así

aumentar o disminuir la velocidad del aire que ingresa a la cámara de secado. Estos equipos siempre deben de ser superiores en potencia al equipo al que son acoplados para poder soportar la tensión ejercida, en este caso como el motor ventilador es de 5 Hp el variador de velocidad es de una potencia de 7 Hp que es la que existe actualmente en el mercado.

Este equipo es muy importante porque cada materia presenta sus propias características físicas necesitando por ello mayor o menor velocidad de aire para su proceso de secado. Las características técnicas del equipo variador de velocidad se puede ver en el anexo VII.

Figura Nº 5.14: Variador de velocidad

5.4 Principios de fluidinámica.

5.4.1 Concepto de fluidización

El proceso de fluidización se aplica a sistemas gas-sólido, líquido-sólido. Entre las aplicaciones más importantes es el de intercambio de calor entre partículas y el fluido en el secado de granos; gasificación de carbón en lecho fluidizado rápido; reactores de catálisis, etc., en los cuales actúa la fuerza de gravedad y la fricción del fluido, (corriente gaseosa en forma ascendente). Básicamente, la fluidización es la levitación de una masa de partículas (lecho de sólidos), contenida en un recipiente (reactor), por la fricción de una corriente de

gas (o líquido) a presión, asemejándose a un líquido en ebullición, que tiende a establecer un nivel y un flujo en respuesta a un gradiente de presión.

5.4.2 Definición de lecho fluidizado

Si se hace circular en sentido ascendente una corriente fluida (gaseosa o liquida) a través de un lecho de partículas solidas, se produce un rozamiento del fluido con las partículas. Esta fuerza de rozamiento, que tiende a desplazar las partículas hacia arriba, de esta forma que si la velocidad es suficientemente elevada el rozamiento llega a compensar el peso de las partículas, por lo que estas quedan suspendidas en el seno de la corriente fluida. Cuando esto sucede se dice que el lecho se encuentra fluidizado. Un lecho fluidizado se caracteriza por un elevado grado de mezcla, comportándose el lecho de partículas sólidas como si fuera un fluido, (Rodríguez, *et al* 2002).

5.4.3 Característica de las partículas

5.4.3.1 Porosidad del lecho (c)

La porosidad del lecho depende de la relación existente entre el diámetro de la partícula, el diámetro del lecho, la rugosidad de las paredes de la columna, la presión y la temperatura de operación (Guaneros, 2005).

Para medir el porcentaje de poros en el lecho, se utiliza la siguiente ecuación:

$$\varepsilon = \frac{\text{volumen del lecho - volumen de las particulas}}{\text{volumen del lecho}}$$
(5.1)

5.4.3.2 Esfericidad (Φ)

Es el parámetro que se emplea para determinar la forma de las partículas, debemos considerar que todas las partículas no son esféricas teniendo por lo general de formas irregulares, es por esta razón que se establece una definición para obtener la esfericidad, el cual se basa en el área superficial de una esfera con el mismo volumen que el volumen de la partícula.

$$\phi = \frac{\text{Área superficial de una esfera con el mismo volumen que el de la particula}}{\text{Área superficial de la particula}}$$
(5.2)

El volumen de la partícula se determinara por la siguiente ecuación:

$$V_p = \frac{\pi \, \mathrm{dp}^3}{4} \tag{5.3}$$

Donde :

 V_p = volumen de la partícula (m³)

 $\pi = (-)$

d_p = diámetro de una esfera que tiene el mismo volumen de la partícula (m)

5.4.3.3 Diámetro de la partícula

Para obtener el diámetro, se medirán los diámetros correspondientes al grosor, ancho y largo, determinando de esta manera el diámetro promedio para cada partícula.

5.4.3.4 Densidad de la partícula (ρ_p)

La densidad de la partícula se puede determinar de la siguiente manera:

$$\rho_p = \frac{\text{masa de la partícula}}{\text{volumen de la partícula}}$$
(5.4)

Donde el volumen de la partícula incluye la porosidad de la partícula. Para las partículas compactas, $\rho_p = \rho_{abs}$ (densidad absoluta) y para las partículas porosas, $\rho_p < \rho_{abs}$

5.4.3.5 Área superficial (a)

Es el área en contacto entre el gas y el sólido. La siguiente ecuación muestra la obtención del área superficial cuando una partícula no es esférica:

$$a = \frac{\pi \,\mathrm{d}^2}{4} \tag{5.5}$$

Donde:

d = diámetro de la partícula

5.4.3.6 Clasificación de las partículas

Las partículas fueron clasificadas según (Geldart, 1973), en cuatro grupos por su diferencia de densidades y por su tamaño, que a continuación se describen.

Grupo A: El tamaño de la partícula es pequeño y una densidad baja

 $(\rho_p < 1.400 \text{ kg/m}^3)$. El lecho se expande antes de que ocurra el burbujeo $(U_{mb}/U_{mf} > 1)$.

Grupo B: El tamaño de las partículas y las densidades considerados como medianos. El burbujeo empieza a una naciente fluidización ($U_{mb}/U_{mf} = 1$). La mayoría de las burbujas ascienden más rápidamente que el gas intersticial. El tamaño de burbuja es independiente al tamaño de la partícula.

Grupo C: Las partículas son cohesivas, es decir dificiles de fluidizar.

Grupo D: Partículas largas y densas. Las partículas requieren de una velocidad de gas, mayores a las otras categorías para poder fluidizar el lecho.

Figura N° 5.15: Clasificación de las partículas de Geldart (Geldart, 1973)

5.5 Velocidades relacionadas en un lecho fluidizado

En un lecho fluidizado se relacionan cuatro diferentes tipos de velocidades que se presentan en diferentes fases o tipos de lecho que son: velocidad superficial del gas (U_0) , velocidad mínima de fluidización (U_{mf}) , velocidad terminal (U_r) , y la velocidad mínima de burbujeo (U_{mb}) .

5.5.1 Velocidad superficial del gas (U_0)

Se puede entender como la velocidad en función del área transversal del lecho, se determina cuando en el interior no existen partículas y solo fluye el gas (aire). Se obtiene con la siguiente fórmula:

$$U_0 = \frac{m}{\rho_g \varepsilon_m A_t} \tag{5.6}$$

Donde:

 U_0 = Velocidad superficial del gas (m/s).

 ε_m = Porosidad del lecho (-)

 ρ_g = Densidad del gas (kg/m³)

m = masa (kg)

 $A_t =$ Área transversal de la columna (m²)

Al no conocer la fracción vacía, se aplica la siguiente formula por Romero (2006).

$$U_0 = \frac{V}{A_t} \tag{5.7}$$

Donde:

 U_0 = Velocidad superficial del gas (m/s) V = Flujo volumétrico del gas (m³/s) A_i = Área transversal (m²)

5.5.2 Velocidad mínima de fluidización

Se presenta como un aumento del caudal en el lecho. Se llega a un punto donde las partículas solidas se encuentran en estado de suspensión causado por el flujo ascendente del gas.

Dicho flujo crea la fuerza de arrastre que equilibra la fuerza de gravedad haciendo que se muevan y se puedan levantar. La U_{mf} corresponde a una situación homogénea donde no se toman en cuenta las burbujas.

Para encontrar la velocidad mínima de fluidización del gas, se utiliza una extrapolación de la ecuación de Ergun (Ergun, 1952) para lechos fijos combinada con la ecuación de caída

de presión que se muestra a continuación. Ambas relacionan las variables que definen, y la combinación de estas cubre todos los factores que ayudan a encontrar toda la velocidad mínima de fluidización teórica.

Ecuación de la caída de presión.

$$\frac{\Delta P}{L} = \frac{g}{g_c} \left(1 - \varepsilon_{mf} \right) \left(\rho_s - \rho_g \right)$$
(5.8)

Donde:

 $\Delta P =$ caída de presión (kPa)

L = altura del lecho (m)

g = aceleración de la gravedad (m/s²)

 $g_c = constante adimencional$

 ε_{mf} = porosidad mínima de fluidización

 ρ_s = densidad del solido (kg/m³)

 ρ_g = densidad del fluido (kg/m³)

Combinando las dos ecuaciones:

$$\frac{1.75}{\varepsilon_{mf}^3 \phi_s} \left(\frac{d p U_{mf} \rho_g}{\mu}\right)^2 + 150 \frac{\left(1 - \varepsilon_{mf}\right)}{\varepsilon_{mf}^3 \phi_s^2} \left(\frac{d p U_{mf} \rho_g}{\mu}\right) = \frac{d p \rho_g (\rho_{\varsigma} - \rho_g)g}{\mu^2} \quad (5.9)$$

Donde:

$$\begin{split} \Phi_s &= esfericidad \ de \ la \ partícula \ (-) \\ d_p & diámetro \ de \ la \ partícula \ (cm) \\ \varepsilon_{mf} &= porosidad \ mínima \ de \ fluidización \ (-) \\ \mu &= viscosidad \ del \ gas \ (kg/ms) \\ U_{mf} &= velocidad \ mínima \ de \ fluidización \ (m/s) \\ \rho_s &= densidad \ del \ solido \ (kg/m^3) \\ \rho_g &= densidad \ del \ fluido \ (kg/m^3) \end{split}$$

La velocidad mínima de fluidización experimental se determina mediante el análisis de las graficas versus la caída de presión, velocidad versus altura del lecho y velocidad versus porosidad del lecho. El análisis consiste en ver la tendencia de la curva, donde hay un cambio ahí es donde se ubica la velocidad mínima de fluidización. Para considerar que la U_{mf} es la correcta las curvas generadas deben de estar cercanas entre sí.

5.5.3 Velocidad terminal (Ut).

Se le conoce así a la velocidad que está lejos de las paredes de columna, la cual tiende a aumentar hasta que se hace estable (Geldart, 1986). Así (Romero, 2006) propuso una ecuación para cuando una partícula de diámetro d_s cae a través de un fluido:

$$U_{t} = \left[\frac{4d_{s}(\rho_{s} - \rho_{g})g}{2\rho_{g}C_{d}}\right]^{\frac{1}{2}}$$
(5.10)

Donde:

d_s Diámetro del solido (cm) $\rho_g = Densidad del fluido (kg/m³)$ $\rho_s = Densidad del solido (kg/m³)$

g = Fuerza de gravedad (m/s^2)

cd = Coeficiente de arrastre del gas (-)

Nota: el c_d se relaciona con el número de Reynolds ya que varía de acuerdo con el régimen de flujo.

5.5.4 Velocidad mínima de burbujeo (Umb)

Se presenta en el momento que la expansión deja de ser homogénea y aparece la primera burbuja. La forma ideal del cálculo de velocidad es con el aislamiento de una sola burbuja que se comienza a suspender en un recipiente de diámetro grande para evitar que choque con las paredes de la columna.

Aunque esta velocidad es dificil de medir porque en condiciones normales el nacimiento de las burbujas es repentino y se elevan en grupo, las burbujas se pueden unir o partir, mientras que en la columna se ven afectadas y limitadas por las paredes de contacto.

Geldart (1986), realizo un trabajo experimental y propuso la siguiente ecuación para calcular la velocidad mínima de burbujeo:

$$U_{mb} = K_{mb}d_s \tag{5.11}$$

Donde:

 U_{mb} = Velocidad mínima de burbujeo (cm/s⁻¹)

 $K_{mb} = 100$, cuando el gas se encuentra a temperatura ambiente.

 d_s = diámetro de la superficie de la partícula.

$$d_s = \frac{1}{\sum i \begin{pmatrix} X_i \\ A_{si} \end{pmatrix}}$$

El estudio del burbujeo en el lecho es importante porque permite que las partículas se expandan y así puedan mezclarse. Experimentalmente es difícil medir la velocidad de burbujeo por lo que se emplea la formula semi-empirica que emplea el valor de la velocidad del fluido.

$$d_{s} = k \left(U - U_{ng} \right) + 0.71 \sqrt{g D_{b}}$$
(5.12)

Donde:

K = 1.0 (-); si: $D_b =$ volumen de la burbuja y $U = U_{mf}$

Si no cumple entonces K estaría en rango de 0.57 a 0.85

 $D_b = Tamaño de la burbuja (m)$

g = Fuerza de gravedad (m/s²)

U = Velocidad del gas (m/s)

5.6 Transferencia de calor en lecho fluidizado

5.6.1 Transferencia de calor entre el gas y las partículas

Existe alta transferencia de calor debido a la gran superficie de contacto entre las partículas sólidas y el medio que le rodea, al igual que por el grado de mezcla entre las partículas. La transferencia de calor será principalmente por convección. Sin embargo, existen resultados

experimentales desarrollados por Kunii y Levenspiel citados por Geldart (1986), donde se relaciona el número de Nusselt del gas a la partícula (Nugp) con el número de Reynolds de la partícula (Rep) y en cuya relación se obtienen números de Nusselt muy bajos.

$$Nu_{gp} = 0.03 \text{ Rep}^{1.3}$$
(5.13)

Este bajo número de Nusselt puede ser atribuido al hecho de que no toda el área de las superficies de las partículas está expuesta a la transferencia de calor con el gas. Zabrodsky citado por Geldart, propuso un modelo donde incluye micro rupturas, donde expone que el gas no necesariamente fluye uniformemente a través de la fase continua del lecho.

Littman y Sliva citados por Geldart mostraron que, particularmente en lechos estáticos existe fuerte dependencia en el número de Reynolds porque las regiones cercanas a los puntos de contacto entre las partículas no son completamente accesibles al flujo del fluido. Otros estudios (Botterill, citado por Geldart) muestran que los coeficientes más altos son obtenidos cuando los sistemas operan a altas presiones.

Para lechos de partículas con alta actividad de mezcla, si las partículas sólidas tienen un bajo número de Biot (Resistencias térmicas internas despreciables) y la temperatura de operación es estacionaria, un simple balance de calor relaciona el cambio de temperatura del gas fluidizante con la penetración en el lecho. De esta forma se obtiene la siguiente ecuación (29):

$$C_g U \rho_g \Delta T_g = h_{gp} S_B (T_g - T_p) dl$$
(5.14)

Donde

 C_g = capacidad de calor del gas [J/Kg K] dl = diferencial del fondo del lecho [m] S_B = la superficie del área de los sólidos por unidad de volumen del lecho ΔTg = el cambio de temperatura del gas que fluye a través del elemento del lecho T_g = la temperatura del gas T_s = la temperatura del sólido

De la ecuación (5.14) es posible obtener el coeficiente de transferencia de calor entre el gas y la partícula con la siguiente expresión:

$$\mathbf{h}_{gp} = \frac{N u_{gp} k_f}{d_p} \therefore \mathbf{h}_{gp} = \frac{0.03 d_p^{0.3} \, \rho_g^{1.3} \, U^{1.3} \, k_g}{\mu^{1.3}} \left[W_{mk} \right]$$
(5.15)

Ahora con la ecuación (5.15) es posible obtener una expresión para calcular la distancia l_n en la cual el gas es enfriado por un factor n definido como:

$$\eta = \frac{T_{g.in} - T_{p}}{T_{g} - T_{p}}$$
(5.16)

Y la distancia está dada por:

$$l_{n} = \frac{5.5 \ln \eta \mu^{1.3} d_{p}^{0.7} C_{g}}{\rho_{g}^{0.3} U^{0.3} k_{g} (1 - \varepsilon)}$$
(5.17)

Las fórmulas de transferencia de calor previamente mencionadas pueden ser utilizadas cuando el número de Biot es menor que 0.1. Esto significaría que no existen gradientes de temperatura dentro de las partículas sólidas. Esto comportamiento sería esperado ya que las partículas sólidas usadas en experimentos de fluidización son pequeñas.

Una vez obtenido el coeficiente de transferencia de calor entre la partícula sólida y el gas, es posible calcular la tasa de transferencia de calor entre el gas y las partículas sólidas. Para esto es necesario obtener el promedio logarítmico de diferencia de temperatura (LMTD) que se define con la siguiente expresión:

$$LMTD = \frac{T_1 - T_2}{\ln\left(\frac{T_1}{T_2}\right)}$$
(5.18)

Donde T_1 y T_2 se refieren a la diferencia de temperaturas entre el aire a la entrada y a una distancia determinada respectivamente.

La tasa de transferencia de calor entre el gas y las partículas sólidas puede calcularse con la siguiente expresión:

$$Q = h_{gp} A_p \left(LMTD \right) \tag{5.19}$$

Donde A_p es el área de la superficie de las partículas, h_{gp} es la transferencia de calor por convección entre el gas y la partícula. Otra forma de calcular la tasa de transferencia de calor entre el gas y las partículas sólidas es la siguiente:

$$\dot{Q} = mC_p(\Delta T) \tag{5.20}$$

Donde *m* representa el flujo másico alrededor de las partículas sólidas y Cp es el calor específico del aire a presión constante y ΔT es la variación de temperatura entre el gas y las partículas sólidas.

5.6.2 Transferencia de calor entre el lecho y la superficie

Bajo condiciones de operaciones burbujeantes usuales del lecho, el coeficiente de transferencia de calor convectivo "h" entre una superficie inmersa y el lecho de gas fluidizado puede depender aproximadamente de tres componentes (Botterill, citado por Geldart) que son:

- a) El coeficiente de transferencia de calor por convección de partícula h_p, el cual depende de la transferencia de calor a través del intercambio de partículas que se encuentran en el fondo del lecho y las que se encuentran en la región adyacente a la superficie de transferencia.
- b) El coeficiente de transferencia de calor por convección entre la fase del gas y la superficie h_g, por la cual la transferencia de calor entre las partículas y la superficie es aumentada por la interface del gas.
- c) El coeficiente de transferencia de calor por radiación h_r.

Por lo tanto el coeficiente de transferencia de calor entre el lecho y la superficie que le rodea está dada por:

$$h = h_p + h_g + h_r \tag{5.21}$$

El coeficiente de transferencia de calor por convección de partícula es particularmente dependiente del comportamiento del lecho burbujeante y, a velocidades de fluidización más altas, cuando las burbujas rodean la superficie de transferencia de calor en forma caótica, la transferencia de calor se reduce en esta forma.

La situación se espera que sea diferente cuando el rango operacional se extiende a los regímenes turbulentos y de rápida fluidización.

5.7 Balance de materia en el lecho fluidizado

Considerando un lecho de área de sección transversal uniforme A (m^2), por el cual penetra un flujo de gas G (kg gas seco / hr m^2) sección transversal, con humedad de Y₁. Con un balance de material del gas, en cualquier momento, dicho gas sale del lecho con humedad Y₂. La cantidad de agua que se elimina del lecho con el gas es igual a la velocidad de secado en ese tiempo.

Realizando el balance de materia:

$$\frac{1}{A} \frac{dm_{w}}{dt} = G_{2}Y_{2} - G_{1}Y_{1}$$
(5.22)
Donde
$$m_{W} = m_{SS} X$$
(5.23)

Sustituyendo ecuación (5.22) en la ecuación (5.23) y tomando en cuenta que la masa del sólido seco (m_{ss})y el flujo de aire seco es constante para todo el proceso.

$$\frac{m_{ss}}{A} \left(\frac{\mathrm{dX}}{\mathrm{dt}} \right) = \mathrm{G} \left(\mathrm{Y}_2 - \mathrm{Y}_1 \right) \tag{5.24}$$

por lo tanto se tiene con la ecuación (5.24),

$$N = G(Y_2 - Y_1)$$
(5.25)

donde N = kg w / hr . m^2 de sección transversal y G = kg de aire seco / hr . m^2 de sección transversal.

5.8 Balance de energía en lecho fluidizado

El balance de energía para el secador de lecho fluidizado es el siguiente:

$$G(Cp_{as} + Y_1Cp_{w(v)})(T_1 - T_2) = \frac{m_{ss}}{A} \left(-\frac{dX}{dt}\right)\lambda + m_{ss}(Cp_{ss} + XCp_{w(1)})\frac{dT}{dt} + Q \qquad (5.26)$$

Para quedar finalmente

$$G(Cp_{as} + Y_1Cp_{w(v)})(T_1 - T_2) = G(Y_2 - Y_1)\lambda + m_{ss}(Cp_{ss} + X Cp_{w(1)})\frac{dT}{dt} + Q$$
(5.27)

El lado izquierdo de la ecuación (5.27), es el cambio de entalpía del gas, y el lado derecho, el primer término se refiere al calor necesario para evaporar el agua contenida en el sólido, el segundo término al calentamiento del mismo sólido y Q es el calor que se disipa a los alrededores.

5.9 Evaluación del coeficiente de difusión

De la literatura revisada de varios modelos teóricos, semi-empíricos y predictivos, se puede encontrar una variedad de modelos que han sido propuestos para la evaluación del coeficiente de difusión.

Sin embargo, según la teoría cinética de los gases en las presiones comunes (mayores que 0 y menores que 10 atm), ha sido encontrado que el coeficiente de difusión es proporcional a la temperatura absoluta elevada al exponente 3/2 e inversamente proporcional a la presión ejercida.

Según (Reid, et al. (1988)), el coeficiente de difusión (cm^2/s) del vapor de agua en el aire puede ser calculado por la siguiente expresión:

$$D_{w,a} = \frac{0.00266 \mathrm{T}^{\frac{3}{2}}}{\mathrm{P}_0 M_{w,a}^{\frac{1}{2}} \sigma_{w,a}^2 \Omega_D}$$
(5.28)

La ecuación (5.23), es atribuido al trabajo de investigación realizado por Chapman y Enskog, donde P_0 (bares) es la presión absoluta y $M_{w,a}$ es la masa molecular de la mezcla del vapor de agua y el aire, la cual se puede calcular con la siguiente ecuación:

$$M_{w,a} = 2 \left(\frac{1}{M_w} + \frac{1}{M_A} \right)^{-1}$$
(5.29)

Donde $M_w(g/mol)$ y $M_A(g/mol)$, son las masas moleculares del vapor de agua y el aire, respetivamente.

El diámetro promedio de colisión $\sigma_{w,a}$ (A°), se determino utilizando la ecuación (45), en donde $\sigma_w = 2.641^{\circ}$ A y $\sigma_a = 3.711^{\circ}$ A, representan los diámetros de las secciones transversales del vapor de agua y aire, respectivamente Reid et al. (1988).

$$\sigma_{w,a} = \frac{\sigma_w + \sigma_a}{2} \tag{5.30}$$

La integral de colisión Ω_D (sin dimensiones) es una relación que proporciona la desviación de un gas con interacción al compararlo con un gas de esferas rígidas de comportamiento elástico. Este valor seria 1.0 para un gas sin interacciones. Los valores de Ω_D y la temperatura adimensional T^* , se calculan con las ecuaciones (5.31) y (5.32), respectivamente.

$$\Omega_{D} = \frac{C_{1}}{(T^{*})^{C_{2}}} + \frac{C_{3}}{\exp(C_{4}T^{*})} + \frac{C_{5}}{\exp(C_{6}T^{*})} + \frac{C_{7}}{\exp(C_{8}T^{*})}$$
(5.31)
$$T^{*} = \frac{k}{\varepsilon_{w,a}} T$$
(5.32)

Donde las constantes desde C_1 hasta C_8 tienen los siguientes valores numéricos $C_1 = 1.06036$, $C_2 = 0.15610$, $C_3 = 0.19300$, $C_4 = 0.47635$, $C_5 = 1.03587$, $C_6 = 1.52996$, $C_7 = 1.76474$ y $C_8 = 3.89411$, Reid et al. (1988).

El multiplicador fraccionado $\frac{k}{\varepsilon_{w,a}}$ (1/K), representa la proporción de constante de Boltzmann para la energía característica de Lennard Jones, para los dos componentes de la mezcla, que se calcula por la ecuación:

$$\frac{\varepsilon_{w,a}}{k} = \left(\frac{\varepsilon_w}{k}\frac{\varepsilon_a}{k}\right)^{1/2}$$
(5.33)

Donde Reid et al. (1988) establece los siguientes valores:

$$\frac{\varepsilon_w}{k}$$
 (K) = 809.1 K y $\frac{\varepsilon_a}{k}$ (K) = 78.6 K.

(Coulson y Richardson. (1997)), recomiendan que el coeficiente de difusión en (m^2/s) puede ser evaluado según Gilliard. (1934), con la ecuación (5.34), donde es la presión P₀ (Pascales) es la presión absoluta, V_w = 0.0189 m³/Kmol y V_a = 0.0299 m³/Kmol representan los volúmenes molares del vapor de agua y el aire, respectivamente.

$$D_{w,a} = \frac{4.357 \times 10^{-4} \sqrt{\frac{1}{M_w} + \frac{1}{M_a}}}{P_0 \left(V_w^{\frac{1}{3}} + V_a^{\frac{1}{3}} \right)^2} T^{\frac{3}{2}}$$
(5.34)

La evaluación del coeficiente de difusión también puede ser efectuada por los métodos empíricos como el recomendado por Wilke y Lee. (Reid et al. (1988))

$$D_{w,a} = \frac{\left[\frac{3.03 - \frac{0.98}{(M_{w,a})^{\frac{1}{2}}}\right] x 10^{-3}}{P_0 (M_{w,a})^{\frac{1}{2}} \sigma_{w,a}^2 \Omega_D} T^{\frac{3}{2}}$$
(5.35)

Mediante la ecuación (5.35), se calcula el coeficiente de difusión en (cm²/s), cuando la presión P_0 es expresada en bares. Las variables $M_{w,a}$ y $\sigma_{w,a}$ son calculados con las ecuaciones (5.29) y (5.30), respectivamente, mientras el diámetro de la superficie trasversal para el aire se recomienda ser tomado como $\sigma_a = 3.62 \,\text{A}^\circ$ Reid et al. (1988) y para el vapor de agua es calculado según la ecuación:

$$\sigma_{w} = 1.18 V_{hw}^{1/3} \tag{5.36}$$

Donde $V_{b,w} = 14.8 \text{ cm}^3/\text{mol}$, es el volumen molar del agua líquida. La evaluación de Ω_D se puede hacer mediante la ecuación (5.31), Reid et al. (1988) utilizo para el aire el siguiente valor $\frac{\varepsilon_a}{k} = 97 \text{ K}$, y para el agua se puede calcular con la siguiente ecuación:

$$\frac{\varepsilon_{w}}{k} = 1.15T_{b,w} \tag{5.37}$$

Donde $T_{b,w}(K)$ es la temperatura de ebullición del agua líquida a la presión de 1 bar. Para la evaluación del coeficiente de difusión en (cm²/s), la siguiente expresión empírica es recomendada por Fuller y (Reid, et al. (1988)).

$$D_{w,a} = \frac{0.00143 \mathrm{T}^{\frac{1}{4}}}{\mathrm{P}_{\mathrm{T}} \left(M_{w,a} \right)^{\frac{1}{2}} \left[(\Sigma \nu)_{w}^{\frac{1}{3}} + (\Sigma \nu)_{a}^{\frac{1}{3}} \right]^{\frac{1}{2}}}$$
(5.38)

Donde el valor de M_{w,a} se calcula usando la ecuación (54) y los parámetros $(\Sigma \nu)_{w} =$ 10.73 y $(\Sigma \nu)_{a} = 19.70$ representan la suma de los volúmenes atómicos que conforman las moléculas de agua y aire.

El manual de ingeniería térmica (CRC Handbook The Thermal Engineering) (Kreith. (2000)), recomienda para mezclas binarias de vapor de agua y aire, la siguiente expresión empírica, que ha sido ampliamente usada por largos años.

$$D_{w,a} = 1.97 \times 10^{-5} \left(\frac{P_R}{P}\right) \left(\frac{T}{T_R}\right)^{1.685}$$
(5.39)

La ecuación (5.39) evalúa el coeficiente de difusión en (m^2/s) y es válida para 273K < T < 373K.

Donde:

P_R es la presión de referencia igual a 1 atm

 T_R es la temperatura de referencia igual a 256 K.

Considere una esfera hipotética (Figura. N $^{\circ}$ 6.14) de radio r que representa a la partícula en estudio de radio R. Realizando un balance en estado estacionario en el punto P de la esfera hipotética de radio r y considerando además que el agua en el interior de la esfera se difunde en dirección radial.

Figura. N ° 5.17: Difusión interna del agua en la partícula

Sean $F_A|_r$ y $F_A|_{r+\Delta r}$ los flujos molares del agua que se difunde en el interior de la partícula, evaluados en las posiciones r y $r + \Delta r$, respectivamente. Al aplicar la ecuación de balance molar, se tiene en cuenta que no hay velocidad de generación ni velocidad de acumulación del agua, pues no ocurre ninguna reacción química y la difusión se da en régimen estacionario. Entonces la ecuación de balance molar es:

$$\begin{bmatrix} \mathbf{Velocidad} \\ \mathbf{de entrada} \end{bmatrix} - \begin{bmatrix} \mathbf{Velocidad} \\ \mathbf{de salida} \end{bmatrix} + \begin{bmatrix} \mathbf{Velocidad} \\ \mathbf{de generación} \end{bmatrix} = \begin{bmatrix} \mathbf{Velocidad} \\ \mathbf{de acumulación} \end{bmatrix}$$
$$F_A|_r - F_A|_{r+\Delta r} + 0 = 0$$

Aplicando el límite para $\Delta r \rightarrow 0$ y el criterio de la primera derivada.

$$\lim_{\Delta r \to 0} \left[\frac{F_A|_r - F_A|_{r+\Delta r}}{\Delta r} \right] = 0$$

$$-\lim_{\Delta r \to 0} \left[\frac{F_A|_{r+\Delta r} - F_A|_r}{\Delta r} \right] = 0$$

$$\lim_{\Delta r \to 0} \left[\frac{F_A|_{r+\Delta r} - F_A|_r}{\Delta r} \right] = 0$$

$$\frac{dF_A}{dr} = 0.$$
(5.40)

El flujo molar del agua en el interior de la partícula en estudio, para una posición r cualquiera también se puede expresar en función del área superficial de la partícula y del flux del agua, es decir:

$$\boldsymbol{F}_{\boldsymbol{A}} = \boldsymbol{A}_{\boldsymbol{s}\boldsymbol{r}} \boldsymbol{J}_{\boldsymbol{A}\boldsymbol{r}} = 4\pi \boldsymbol{r}^2 \boldsymbol{J}_{\boldsymbol{A}\boldsymbol{r}} \,. \tag{5.41}$$

Reemplazando (5.41) en (5.40)

$$\frac{d(A_{sr}J_{Ar})}{dr} = 0$$

$$\int d(A_{sr}J_{Ar}) = 0 \int dr$$

$$A_{sr}J_{Ar} = C_1. \qquad (5.42)$$

En $\mathbf{r} = \mathbf{R}$, $A_{sr} = 4\pi \mathbf{R}^2$ y $J_{Ar} = J_{AR}$. Entonces C_1 queda:

.

$$\boldsymbol{C}_1 = 4\pi \boldsymbol{R}^2 \boldsymbol{J}_{\boldsymbol{A}\boldsymbol{R}} \,. \tag{5.43}$$

Igualando (5.42) y (5.43)

$$4\pi r^2 J_{Ar} = 4\pi R^2 J_{AR}.$$

$$J_{Ar} = \frac{R^2}{r^2} J_{AR}.$$
 (5.44)

Donde J_{Ar} y J_{AR} son los fluxes molares del agua en r y R, respectivamente.

Por la ley de Fick, se tiene:

$$J_{Ar} = -D_A \frac{dCA_r}{dr} \,. \tag{5.45}$$

Donde:

 D_A : Coeficiente de difusión del agua en el interior de la partícula

 CA_r : Concentración de la partícula en la posición r (mol de agua/volumen de partícula)

Reemplazando (5.45) en (5.44)

$$-D_A \frac{dCA_r}{dr} = \frac{R^2}{r^2} J_{AR}$$

$$-\frac{D_A}{R^2 J_{AR}} \int_{CAr_1}^{CAr_2} dCA_r = \int_{r_1}^{r_2} \frac{dr}{r^2}$$

$$-\frac{D_A}{R^2 J_{AR}} (CA_{r_2} - CA_{r_1}) = -\frac{1}{r} \Big|_{r_1}^{r_2} = -\left(\frac{1}{r_2} - \frac{1}{r_1}\right)$$

$$\frac{\boldsymbol{D}_{\boldsymbol{A}}}{\boldsymbol{R}^{2}\boldsymbol{J}_{\boldsymbol{A}\boldsymbol{R}}}(\boldsymbol{C}\boldsymbol{A}_{\boldsymbol{r}_{2}}-\boldsymbol{C}\boldsymbol{A}_{\boldsymbol{r}_{1}})=\left(\frac{1}{\boldsymbol{r}_{2}}-\frac{1}{\boldsymbol{r}_{1}}\right)$$

$$CA_{r_2} - CA_{r_1} = \frac{R^2 J_{AR}}{D_A} \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$

$$CA_{r_2} = CA_{r_1} + \frac{\mathbf{R}^2 J_{AR}}{D_A} \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$$

$$CA_{r_2} = CA_{r_1} - \frac{R^2 J_{AR}}{D_A} \left(\frac{1}{r_1} - \frac{1}{r_2} \right).$$
 (5.46)

Mediante la ecuación (5.46), se puede construir el perfil de concentración del agua en el interior de la partícula, esto se muestra en la siguiente figura N° 5.18.

Figura N° 5.18. Perfil de concentración del agua en el interior de la partícula.

La ecuación (5.46), representa el modelo matemático mediante el cual se puede evaluar la concentración de agua en el interior de la partícula. Es más conveniente expresar la ecuación (5.46) en términos del porcentaje de humedad, para eso se realiza la siguiente transformación que se muestra a continuación.

El porcentaje de humedad de la partícula para cualquier posición r se puede expresar:

$$\% H = \frac{CA_r PM_A}{\rho_p} \times 100.$$
 (5.47)

Donde PM_A y ρ_p son el peso molecular del agua y la densidad promedio la partícula

Relacionando las ecuaciones (5.47) y (5.46)

$$\mathscr{H}_{r_{2}} = CA_{r_{1}} \frac{PM_{A}}{\rho_{p}} \times 100 - \left[\frac{R^{2}J_{AR}}{D_{A}}\left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right)\right] \frac{PM_{A}}{\rho_{p}} \times 100.$$
(5.48)

Pero % $H_{r_1} = CA_{r_1} \frac{PM_A}{\rho_p} \times 100 \text{ y } W_{AR} = J_{AR}PM_A$, entonces la ecuación (5.48) queda:

$$\mathscr{H}_{r_{2}} = \mathscr{H}_{r_{1}} - \left[\frac{R^{2}W_{AR}}{D_{A}}\left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right)\right] \times \frac{100}{\rho_{P}}.$$
(5.49)

Donde W_{AR} es el flux de masa de agua en la posición R de la partícula.

La ecuación (5.49) representa el modelo matemático para predecir la humedad absoluta puntual de la partícula.

La ecuación (5.44), también se puede expresar en términos de los fluxes másicos o velocidades de secado, para esto multiplicamos a ambos miembros de la ecuación (5.44) por el peso molecular del agua, es decir:

$$\boldsymbol{J}_{Ar}\boldsymbol{P}\boldsymbol{M}_{A} = \frac{\boldsymbol{R}^{2}}{r^{2}}\boldsymbol{J}_{AR}\boldsymbol{P}\boldsymbol{M}_{A}. \tag{5.50}$$

Como el flux másico es igual a la multiplicación del flujo molar por el peso molecular, entonces la ecuación (5.50) queda:

$$W_{Ar} = \frac{R^2}{r^2} W_{AR}. \qquad (5.51)$$

Con la ecuación (5.51) es el Modelo matemático para predecir el flux másico de agua en el interior de la partícula para cualquier distancia medida desde el centro hasta el radio de la partícula.

Para deducir la ecuación que permita calcular la humedad absoluta promedio de la partícula, se emplea la siguiente ecuación:

$$\mathcal{H}_{m} = \frac{\int_{\eta}^{r_{2}} \left\{ \mathcal{H}_{\eta} - \left[\frac{R^{2} W_{AR}}{D_{A}} \left(\frac{1}{r_{1}} - \frac{1}{r} \right) \right] \times \frac{100}{\rho_{p}} \right\} dr}{r_{2} - r_{1}}.$$
(5.52)

Desarrollando la ecuación (5.52)

$$\mathcal{H}_{m} = \frac{\mathcal{H}_{r_{1}} \int_{r_{1}}^{r_{2}} dr - \frac{R^{2} W_{AR}}{D_{A} r_{1}} \times \frac{100}{\rho_{p}} \int_{r_{1}}^{r_{2}} dr + \frac{R^{2} W_{AR}}{D_{A} r_{1}} \times \frac{100}{\rho_{p}} \int_{r_{1}}^{r_{2}} \frac{dr}{r}}{r_{2} - r_{1}}$$

$$\% H_{m} = \frac{\% H_{r_{1}}(r_{2} - r_{1}) - \frac{R^{2} W_{AR}}{D_{A} r_{1}} \times \frac{100}{\rho_{p}} (r_{2} - r_{1}) + \frac{R^{2} W_{AR}}{D_{A} r_{1}} \times \frac{100}{\rho_{p}} \operatorname{Ln}\left(\frac{r_{2}}{r_{1}}\right)}{r_{2} - r_{1}}$$

$$\% H_{m} = \% H_{r_{1}} - \frac{R^{2} W_{AR}}{D_{A} r_{1}} \times \frac{100}{\rho_{p}} + \frac{R^{2} W_{AR}}{D_{A} r_{1}} \times \frac{100}{\rho_{p} (r_{2} - r_{1})} \operatorname{Ln}\left(\frac{r_{2}}{r_{1}}\right)$$

$$\% H_{m} = \% H_{r_{1}} - \frac{R^{2} W_{AR}}{D_{A}} \times \frac{100}{\rho_{p}} \left[\frac{1}{r_{1}} - \frac{1}{(r_{2} - r_{1})} \operatorname{Ln} \left(\frac{r_{2}}{r_{1}} \right) \right]$$
(5.53)

La ecuación (5.53) representa el Modelo matemático mediante el cual se puede predecir la humedad absoluta promedio de la partícula.

CAPITULO VI

CARACTERIZACION DE LAS PARTICULAS Y PRUEBAS EXPERIMENTALES

6.1 Caracterización de la materia prima y equipo fluidizador

6.1.1 Propiedades de la partícula

Para estudiar el comportamiento fluidinámico del ají charapita y realizar un proceso de secado correcto es necesario conocer sus propiedades físicas tales como su densidad (ρ), esfericidad (Φ) y diámetro promedio de partícula (d_p).

6.1.1.1 Densidad de las partículas (p)

Se seguirá la metodología empleada por Flores (2006), que consiste en poner la muestra en previamente pesada dentro una probeta graduada de vidrio conteniendo 50 ml de agua, así de esta manera se obtuvo el promedio de la relación de la masa de las partículas con respecto al volumen que desplazan.

En nuestro caso se peso 10 gr de cada malla cernidora.

A continuación se muestran los resultados encontrados para 3 muestras de tamaño de ají obtenidas por 3 mallas diferentes: 6 mm, 8 mm y 10 mm.

Tabla N 0.1. Mana up 0 mm	Tabla	N°	6.1	:	Malla	de	6	mm.
---------------------------	-------	----	-----	---	-------	----	---	-----

Muestra	M (gr)	V (ml)	ρ (gr/ml)	ρ (kg/m ³)
1	10	12	0.8333	833

Tabla Nº 6.2: Malla de 8 mm.

Muestra	M (gr)	V (ml)	ρ (gr/ml)	ρ (kg/m ³)
1	10	12	0.8333	833

Tabla N° 6.3: Malla de 10 mm.

Muestra	M (gr)	V (ml)	ρ (gr/ml)	ρ (kg/m ³)
1	10	12	0.8333	833

Donde la densidad promedio de las tres mallas es de 833 kg/m³.

6.1.1.2 Esfericidad de las partículas (Φ)

El método empleado es el de Martines (2008) para materias casi esféricas y que se representa con al siguiente fórmula:

$$\phi = \left(\frac{bc}{a^2}\right)^{\frac{1}{3}} \tag{6.1}$$

Para obtener la esfericidad del ají se tomaron 10 muestras al azar de cada tamiz y se les midió los tres diámetros (a, b y c) perpendiculares entre sí donde "a" es el diámetro mayor. Para tener una medición exacta se empleo un micrómetro de precisión de 0.01 micras de pulgada.

Las tablas siguientes muestran los valores de los diámetros correspondientes para cada una de las 10 muestras en su tamiz correspondiente.

Muestra	a (mm)	b (ml)	c (mm)
1	7.140	5.812	5.915
2	7.120	5.810	5.816
3	8.050	5.800	5.713
4	8.170	5.795	5.911
5	7.490	5.776	5.835
6	7.550	5.912	5.815
7	7.580	5.700	5.899
8	8.130	5.894	5.821
9	8,190	5.870	5,880
10	8.00	5.800	5.850
PROMEDIO	7.742	5.817	5.846
Esfericidad promedio Φ		0.8280	

Tabla N° 6.4: Malla de 6 mm

Tabla N° 6.5: Malla de 8 mm

Muestra	a (mm)	b (mm)	c (mm)
1	8.880	7.120	7.150
2	10.020	7.350	7.230
3	9.250	7.250	7.610
4	9.130	7.460	7.590
5	8.900	7.420	7.260
6	8.380	7.890	7.660
7	9.250	7.260	7.190
8	9.760	7.340	7.560
9	10.150	7.250	7.880
10	9.090	7.730	7.820
PROMEDIO	9.281	7.407	7.495
Esfericidad promedio Φ		0.864	

Tabla N° 6.6: Malla de 10 mm

Muestra	a (mm)	b (mm)	c (mm)
1	10.528	8.850	9.873
2	11.467	9.330	9.470
3	11.429	8.550	8.583
4	10.369	8.690	8.643
5	11.295	8.290	8.375
6	11.243	9.350	9.471
7	10.149	8.650	8.584
8	10.321	8.750	8,736
9	10.145	9.360	9.479
10	10.524	8.590	8.567
PROMEDIO	10.747	8.841	10.747
Esfericidad	promedio	0.937	L

6.1.1.3 Diámetro promedio de partícula (d_p)

Para obtener los diámetros, se trabajo con los promedios de los valores de a, b y c de los tres tamices, determinando de esta manera el diámetro promedio para cada tamiz en particular.

Las tablas siguientes muestran los diámetros promedios encontrados.

	a (mm)	b (mm)	c (mm)	
Promedios	7.742	5.817	5.846	
Dp		6.468		

Tabla Nº 6.7: Obtención del diámetro promedio de la malla de 6 mm

Tabla Nº 6.8: Obtención del diámetro promedio de la malla de 8 mm

	a (mm)	b (mm)	c (mm)
Promedios	9.281	7.407	7.495
Dp		8.061	

Tabla Nº 6.9: Obtención del diámetro promedio de la malla de 10 mm

	a (mm)	b (mm)	c (mm)
Promedios	10.747	8.841	10.747
Dp	<u> </u>	10.111	

- 6.2 Curvas obtenidas del proceso de fluidización
- 6.2.1 Efecto de la temperatura de 50 °C sobre muestras obtenidas de malla de 6 mm,
 8 mm y 10 mm.

Figura Nº 6.1: Curva experimental de humedad en función del Tiempo.

En la figura N° 6.1 se muestran las curvas generadas por las partículas de las tres mallas en evaluación con sus respectivas velocidades de aire, estas fueron obtenidas tabulando los valores experimentales de humedad versus tiempo durante el proceso de secado, en la cual podemos apreciar la perdida de humedad contenida en la materia prima conforme se incrementa el tiempo de exposición de la misma a la corriente de aire caliente.

En las curvas generadas por los diferentes tamaños de partículas se aprecian los períodos de secado a velocidad constante, velocidad decreciente y también el contenido de humedad critica, los cuales se analiza seguidamente:

 En la curva generada por la malla de 6 mm el periodo de secado a velocidad constante (inicia a la primera hora y termina a las 5.30 h de iniciado el proceso de secado) tiene una duración de 4.30 h, retirando en ese lapso de tiempo 2.573

- 6.2 Curvas obtenidas del proceso de fluidización
- 6.2.1 Efecto de la temperatura de 50 °C sobre muestras obtenidas de malla de 6 mm,
 8 mm y 10 mm.

Figura Nº 6.1: Curva experimental de humedad en función del Tiempo.

En la figura N° 6.1 se muestran las curvas generadas por las partículas de las tres mallas en evaluación con sus respectivas velocidades de aire, estas fueron obtenidas tabulando los valores experimentales de humedad versus tiempo durante el proceso de secado, en la cual podemos apreciar la perdida de humedad contenida en la materia prima conforme se incrementa el tiempo de exposición de la misma a la corriente de aire caliente.

En las curvas generadas por los diferentes tamaños de partículas se aprecian los períodos de secado a velocidad constante, velocidad decreciente y también el contenido de humedad critica, los cuales se analiza seguidamente:

 En la curva generada por la malla de 6 mm el periodo de secado a velocidad constante (inicia a la primera hora y termina a las 5.30 h de iniciado el proceso de secado) tiene una duración de 4.30 h, retirando en ese lapso de tiempo 2.573
kg de agua /kg de sólido seco, en el segundo periodo de secado a velocidad decreciente tiene una duración de 3.0 h retirando de los granos de ají charapita un contenido de humedad de 0.529 kg de agua/ kg de sólido seco.

- En la curva generada por la malla de 8 mm el periodo de secado a velocidad constante se inicia a la 1.5 h y termina a las 5.00 h de iniciado el secado con una duración de 3.50 h, retirando en ese lapso de tiempo 2.2601 kg de agua /kg de sólido seco, en el segundo periodo de secado a velocidad decreciente tiene una duración de 5.0 h retirando de los granos de ají charapita un contenido de humedad de 0.9193 kg de agua/ kg de sólido seco.
- En la curva generada por la malla de 10 mm el periodo de secado a velocidad constante se inicia a la 1.5 h y termina a las 6.5 h de iniciado el secado, tiene una duración de 5 h; retirando en ese lapso de tiempo 3.4834 kg de agua /kg de sólido seco, en el segundo periodo de secado a velocidad decreciente tiene una duración de 1.5 h retirando de los granos de ají charapita un contenido de humedad de 0.266 kg de agua/ kg de sólido seco.

Comparando los tiempos de duración del periodo de secado a velocidad constante, para los tres tamaños de partícula de 6 mm, 8 mm y 10 mm estos presentan tiempos similares y esto se debe a que el agua ligada contenida en su interior no ofrece mayor resistencia frente a la presión de vapor ejercida por el aire circulante, siendo llevada hasta el exterior y eliminada por arrastre del aire caliente que circula por toda la superficie de la misma.

Durante el período de secado a velocidad decreciente se observa que el menor tiempo de duración y la mayor cantidad de humedad retirada lo presenta la curva generada por la muestra obtenida con la malla de 10 mm, esto se debe a que este tamaño de partícula es fluidizado con la mayor velocidad de aire que es de 4 m/s.

Comparando los tiempos totales de secado, los granos de la malla de 6mm tienen un tiempo de secado de 9.30 hr, el de malla 8mm un tiempo de 11 hr y la malla de 10mm u tiempo de 8 hr, esto nos indica que los granos más grandes liberan el agua de su interior con más facilidad

6.2.2 Efecto de la temperatura de 60 °C en muestras obtenidas de malla de 6 mm, 8 mm y 10 mm.

Figura Nº 6.2: Curva experimental de humedad en función del Tiempo

En la figura N° 6.2 las curvas representan a las partículas de las tres mallas en evaluación con sus respectivas velocidades de aire, estas fueron obtenidas tabulando los valores experimentales de humedad versus tiempo durante el proceso de secado, en la cual podemos apreciar la perdida de humedad contenida en la materia prima conforme se incrementa el tiempo de exposición de la misma a la corriente de aire caliente.

En las curvas generadas por los diferentes tamaños de partículas se aprecian los períodos de secado a velocidad constante, velocidad decreciente y también el contenido de humedad critica, los cuales se analiza seguidamente:

En la curva generada por la malla de 6 mm el periodo de secado a velocidad constante se inicia a 0.66 h y termina a 3.66 h y tiene una duración de 3.0 hr, retirando en ese lapso de tiempo 2.5977 kg de agua /kg de sólido seco; en el segundo periodo de secado a velocidad decreciente tiene una duración de 1.33 hr retirando de los granos de ají charapita un contenido de humedad de 0.2941 kg de agua/ kg de sólido seco.

- En la curva generada por la malla de 8 mm el periodo de secado a velocidad constante se inicia a 1.33 h y culmina a 3.66 h desde que se inicio el proceso de secado, este periodo tiene una duración de 3.0 h, retirando en ese lapso de tiempo 2.5387 kg de agua /kg de sólido seco; en el segundo periodo de secado a velocidad decreciente tiene una duración de 2.0 h retirando de los granos de ají charapita un contenido de humedad de 0.3715 kg de agua/ kg de sólido seco.
- En la curva generada por la malla de 10 mm el periodo de secado a velocidad constante se inicia a las 0.6 h de iniciado el proceso de secado y finaliza 2.4 h después y tiene una duración de 1.8 h, retirando en ese lapso de tiempo 3.3167 kg de agua /kg de sólido seco, en el segundo periodo de secado a velocidad decreciente tiene una duración de 1.0 h retirando de los granos de ají charapita un contenido de humedad de 0.4 kg de agua/ kg de sólido seco.

Durante el período de secado a velocidad constante y velocidad decreciente se observa que el menor tiempo de duración y la mayor cantidad de humedad retirada lo presenta la curva generada por la muestra obtenida con la malla de 10 mm, esto se debe a que este tamaño de partícula es fluidizado con la mayor velocidad de aire que es de 4 m/s.

Comparando los tiempos totales de secado, los granos de la malla de 6mm tienen un tiempo de secado de 5.0 h, el de malla 8 mm un tiempo de 6.33 h y la malla de 10 mm un tiempo de 3.7 h, esto nos indica que los granos más grandes liberan el agua de su interior con más facilidad

6.2.3 Efecto de la temperatura de 70 °C en muestras obtenidas de malla de 6 mm, 8 mm y 10 mm.

Figura Nº 6.3: Curva experimental de humedad en función del Tiempo

En la figura N° 6.3 las curvas representan a las partículas de las tres mallas en evaluación con sus respectivas velocidades de aire, estas fueron obtenidas tabulando los valores experimentales de humedad versus tiempo durante el proceso de secado, en la cual podemos apreciar la perdida de humedad contenida en la materia prima conforme se incrementa el tiempo de exposición de la misma a la corriente de aire caliente.

En las curvas generadas por los diferentes tamaños de partículas se aprecian los períodos de secado a velocidad constante, velocidad decreciente y también el contenido de humedad critica, los cuales se analiza seguidamente:

En la curva generada por la malla de 6 mm el periodo de secado a velocidad constante comienza a 0.33 h y termina a 1.83 h de iniciado la operación de secado y tiene una duración de 1.5 h, retirando en ese lapso de tiempo 3.06 kg de agua /kg de sólido seco; en el segundo periodo de secado a velocidad decreciente tiene una duración de 0.833 h retirando de los granos de ají charapita un contenido de humedad de 0.2059 kg de agua/ kg de sólido seco.

- En la curva generada por la malla de 8 mm el periodo de secado a velocidad constante tiene una duración de 2.17 h iniciándose a las 0.33 h y terminando a las 2.5 h de iniciado el proceso de secado retirando en ese lapso de tiempo 3.0496 kg de agua /kg de sólido seco, en el segundo periodo de secado a velocidad decreciente tiene una duración de 1.33 h retirando de los granos de ají charapita un contenido de humedad de 1.0681 kg de agua/ kg de sólido seco.
- En la curva generada por la malla de 10 mm el periodo de secado a velocidad constante tiene una duración de 1.8 h comenzando a los 0.6 h y terminando a las 2.4 h retirando en ese lapso de tiempo 3.2635 kg de agua /kg de sólido seco, en el segundo periodo de secado a velocidad decreciente tiene una duración de 1.20 h retirando de los granos de ají charapita un contenido de humedad de 0.6037 kg de agua/ kg de sólido seco.

Durante el período de secado a velocidad constante y velocidad decreciente se observa que el menor tiempo de duración y la mayor cantidad de humedad retirada lo presenta la curva generada por la muestra obtenida con la malla de 10 mm, esto se debe a que este tamaño de partícula es fluidizado con la mayor velocidad de aire que es de 4 m/s.

Comparando los tiempos totales de secado, los granos de la malla de 6mm tienen un tiempo de secado de 2.8 h, el de malla 8 mm un tiempo de 3.4 h y la malla de 10 mm un tiempo de 2.6 h, esto nos indica que los granos más grandes liberan el agua de su interior con más facilidad

6.2.4 Efecto de la temperatura de 50 °C en la velocidad de secado en muestras obtenidas de malla de 6 mm, 8 mm y 10 mm.

Figura Nº 6.4: Curva experimental de la velocidad de secado en función del Tiempo

En la figura N° 6.4, se ilustran las curvas obtenidas de la cinética de secado del ají charapita a 50 °C, para una malla de 6 mm, malla de 8 mm y malla de 10 mm, cada una con sus respectivas velocidades de aire.

Como se puede observar, se presentan las dos curvas clásicas que siguen los alimentos durante el secado (Geankoplis, 1995), esto es, existe un periodo de secado a velocidad constante (datos tomados formando una línea horizontal paralela al tiempo) y un periodo de secado a velocidad decreciente (parte final de la curva con tendencia al eje del tiempo) este último periodo es el que predomina durante el proceso por lo que es el más estudiado en el secado de alimentos.

Analizando las curvas obtenidas experimentalmente graficadas en la figura N° 6.4, tenemos:

 La curva correspondiente a la malla de 6 mm, presenta un valor de secado a velocidad constante de 4.968 kg/h.m²,la etapa está representada por la línea horizontal de la figura N° 25 con una duración de 4.5 h, al finalizar se inicia el periodo de velocidad decreciente representada por la curva descendiente y cuando finaliza el periodo de secado a velocidad decreciente el valor de la velocidad de secado a disminuido hasta un valor de 0.30 kg/h.m².

- La curva correspondiente a la malla de 8 mm, presenta un valor de secado a velocidad constante de 4.085 kg/h.m², durante un tiempo de 4.5 h, iniciando así el periodo de velocidad decreciente, cuando finaliza el periodo de secado a velocidad decreciente el valor de la velocidad de secado a disminuido hasta un valor de 0.34 kg/h.m².
- La curva correspondiente a la malla de 10 mm, presenta un valor de secado a velocidad constante de 5.989 kg/h.m², durante un tiempo de 5.5 h, iniciando así el periodo de velocidad decreciente, cuando finaliza el periodo de secado a velocidad decreciente el valor de la velocidad de secado a disminuido hasta un valor de 0.94 kg/h.m².

Los valores numéricos de las velocidades de secado para los tres tamaños de muestras son similares, donde se podría destacar que el valor más alto lo obtuvo la muestra de la malla de 10 mm y lo mantuvo constante por mayor tiempo que las otras dos, este comportamiento repercutió grandemente pues recorto hasta en casi un 50 % el tiempo de secado a velocidad decreciente.

6.2.5 Efecto de la temperatura de 60 °C en la velocidad de secado en muestras obtenidas de malla de 6 mm, 8 mm y 10 mm.

En la figura N° 6.5, se ilustran las curvas obtenidas de la cinética de secado del ají charapita a 60 °C, para una malla de 6 mm, malla de 8 mm y malla de 10 mm, cada una con sus respectivas velocidades de aire.

Como se puede observar, se presentan las dos curvas clásicas que siguen los alimentos durante el secado (Geankoplis, 1995), esto es, existe un periodo de secado a velocidad constante (línea horizontal paralela al tiempo) y un periodo de secado a velocidad decreciente (línea descendiente sobre el eje del tiempo), este último periodo es el que predomina durante el proceso por lo que es el más estudiado en el secado de alimentos.

Analizando las curvas obtenidas experimentalmente graficadas en la figura N° 6.5, tenemos:

- La curva correspondiente a la malla de 6 mm, presenta un valor de secado a velocidad constante de 8.132 kg/h.m², durante un tiempo de 2.85 hr, iniciando así el periodo de velocidad decreciente, cuando finaliza el periodo de secado a velocidad decreciente el valor de la velocidad de secado a disminuido hasta un valor de 0.918 kg/h.m².
- La curva correspondiente a la malla de 8 mm, presenta un valor de secado a velocidad constante de 7.207 kg/h.m², durante un tiempo de 3.0 hr, iniciando así el periodo de velocidad decreciente, cuando finaliza el periodo de secado a velocidad decreciente el valor de la velocidad de secado a disminuido hasta un valor de 0.470 kg/h.m².
- La curva correspondiente a la malla de 10 mm, presenta un valor de secado a velocidad constante de 13.851 kg/h.m², durante un tiempo de 1.80 hr, iniciando así el periodo de velocidad decreciente, cuando finaliza el periodo de secado a velocidad decreciente el valor de la velocidad de secado a disminuido hasta un valor de 0.418 kg/h.m².

Los valores calculados de las velocidades de secado para las muestras de 6 mm y 8 mm son similares, pero se destaca la muestra de la malla de 10 mm que presenta un valor superior que es de 13.851 kg/h.m2 y lo mantuvo por un periodo de tiempo menor lo que nos indica que elimino la mayor cantidad de agua del ají iniciando rápidamente el periodo de secado a velocidad decreciente.

6.2.6 Efecto de la temperatura de 70 °C en la velocidad de secado en muestras obtenidas de malla de 6 mm, 8 mm y 10 mm.

Figura Nº 6.6: Curva experimental de la velocidad de secado en función del Tiempo.

En la figura N° 6.6, se ilustran las curvas obtenidas de la cinética de secado del ají charapita a 70 °C, para una malla de 6 mm, malla de 8 mm y malla de 10 mm, cada una con sus respectivas velocidades de aire.

Como se puede observar, se presentan las dos curvas clásicas que siguen los alimentos durante el secado (Geankoplis, 1995), esto es, existe un periodo de secado a velocidad constante (curva paralela al eje del tiempo) y un periodo de secado a velocidad decreciente (línea descendiente sobre el eje del tiempo), este último periodo es el que predomina durante el proceso por lo que es el más estudiado en el secado de alimentos.

Analizando las curvas obtenidas experimentalmente graficadas en la figura N° 6.6, tenemos:

La curva correspondiente a la malla de 6 mm, presenta un valor de secado a velocidad constante de 15.890 kg/h.m², durante un tiempo de 1.33 h, iniciando así el periodo de velocidad decreciente, cuando finaliza el periodo de secado a velocidad decreciente el valor de la velocidad de secado a disminuido hasta un valor de 0.711 kg/h.m².

- La curva correspondiente a la malla de 8 mm, presenta un valor de secado a velocidad constante de 12.198 kg/h.m², durante un tiempo de 2.5 hr, iniciando así el periodo de velocidad decreciente, cuando finaliza el periodo de secado a velocidad decreciente el valor de la velocidad de secado a disminuido hasta un valor de 0.634 kg/h.m².
- La curva correspondiente a la malla de 10 mm, presenta un valor de secado a velocidad constante de 13.851 kg/h.m², durante un tiempo de 1.80 hr, iniciando así el periodo de velocidad decreciente, cuando finaliza el periodo de secado a velocidad decreciente el valor de la velocidad de secado a disminuido hasta un valor de 0.418 kg/h.m².

Los valores calculados de las velocidades de secado a velocidad constante para las muestras de 8 mm y 10 mm son similares, pero el valor más elevado lo registra la muestra de 6 mm, también esta muestra de 6 mm presenta una velocidad de secado de 100 kg/h m² que es muy superior al de las otras muestras indicando que el calor penetra y retira más agua cuando las partículas son más pequeñas.

6.2.7 Efecto de las temperaturas de 50 °C, 60 °C y 70 °C. en muestras obtenidas de la malla de 6 mm.

La figura N° 6.7 presenta la velocidad de secado versus la humedad para la muestra obtenida de la malla de 6 mm conjugandola con las temperaturas de operación de 50 °C, 60 °C y 70 °C.

La curva que representa la temperatura de 50 °C es la que presenta la velocidad de secado mas alta con valor de 128.06 kg/h m², le sigue la muestra con temperatura de 70 °C con un valor de 89.09 kg/h m² y finalmente la curva a 60 °C con una velocidad de scado de 36.84 kg/h m².

Las tres temperaturas presentan pendientes muy pronunciadas al inicio del secado indicando que retiran aproximadamente 1.6124 kg agua/kg solido seco en un periodo de tiempo corto que es 0.33 h, esta agua retirada es la que se encuentra en la parte mas cercana a la superficie del ají ofreciendo poca resistencia al arrastre para luego estabilizarce.

Durante el periodo de velocidad constante el valor mas bajo lo presenta la temperatura de 50 °C con un valor de 4.384 kg/h m², la temperatura de 60 °C casi duplica al anterior y presenta un valor de 7.176 kg/h m² y finalmente la de 70 °C presenta el valor mas alto con 14.02 kg/h m² duplicando al valor de obtenido de 60 °C.

Las curvas nos indican que la velocidad de secado esta directamente relacionada con la temperatura, ya que a un incremento de temperatura tambien hay un incremento en la velocidad de secado independientemente del tamaño de la particula que en este caso se mantuvo constante.

6.2.8 Efecto de las temperaturas de 50 °C, 60 °C y 70 °C. en muestras obtenidas de la malla de 8 mm.

La figura N° 6.8 presenta la velocidad de secado versus la humedad para la muestra obtenida de la malla de 8 mm conjugandola con las temperaturas de operación de 50 °C, 60 °C y 70 °C.

La curva que representa la temperatura de 70 °C es la que presenta la velocidad de secado mas alta con valor de 37.433 kg/ m² h, le sigue la muestra con temperatura de 60 °C con un valor de 29.0 kg/ m² h y finalmente la curva a 50 °C con una velocidad de scado de 15.364 kg/ m² h.

Las tres temperaturas presentan pendientes muy pronunciadas al inicio del secado indicando que retiran humedad del ají facilmente, esta agua retirada es la que se encuentra en la parte mas cercana a la superficie del ají ofreciendo poca resistencia al arrastre para luego estabilizarce.

Figura N° 6.8: Curva experimental de la velocidad de secado en función de la humedad.

Durante el periodo de velocidad constante el valor mas bajo lo presenta la temperatura de 50 °C con un valor de 4.085 kg/ m² h, la temperatura de 60 °C presenta un valor de 7.207 kg/ m² h y finalmente la de 70 °C presenta el valor mas alto con 16.667 kg/ m² h.

En el periodo de velocidad decreciente la temperatura de 50 °C retira una humedad de 1.317 kg agua/kg solido seco, la temperatura de 60 °C retira una humedad de 0.497 kg agua/kg solido seco y la temperatura de 70 °C retira una humedad de 0.378 kg agua/kg solido seco. Estos valores nos indican que a mayor temperatura durante el periodo de velocidad decreciente se retira menos humedad por que esta humedad ya ha sido removida en el periodo anterior.

Las curvas nos indican que la velocidad de secado esta directamente relacionada con la temperatura, ya que a un incremento de temperatura tambien hay un incremento en la velocidad de secado independientemente del tamaño de la particula que en este caso se mantuvo constante.

6.2.9 Efecto de las temperaturas de 50 °C, 60 °C y 70 °C. en muestras obtenidas de la malla de 10 mm.

Figura N° 6.9: Curva experimental de la velocidad de secado en función de la humedad.

La figura N° 6.9 presenta la velocidad de secado versus la humedad para la muestra obtenida de la malla de 10 mm conjugandola con las temperaturas de operación de 50 °C, 60 °C y 70 °C.

La curva que representa la temperatura de 70 °C es la que presenta la velocidad de secado mas alta con valor de 32.680 kg/ m² h, le sigue la muestra con temperatura de 60 °C con un valor de 13.115 kg/ m² h y finalmente la curva a 50 °C con una velocidad de scado de 3.330 kg/ m² h.

Las temperaturas de 60 °C y 70 °C presentan pendientes muy pronunciadas al inicio del secado indicando que retiran humedad del ají facilmente, esta agua retirada es la que se encuentra en la parte mas cercana a la superficie del ají ofreciendo poca resistencia al arrastre para luego estabilizarce, pero la temperatura de 50 °C presenta una curvatura al reves al inicio de secado, esta curvatura se presenta cuando eel alimento gana humedad del

aire y tarda un poco estabilizarse y posteriormente recien comienza a ceder su humedad al sistema.

Durante el periodo de secado a velocidad constante la temperatura de 50 °C retira una humedad 1.913 kg agua/kg solido seco, la temperatura de 60 °C retira una humedad de 3.528 kg agua/kg solido seco y la temperatura de 70 °C retira una humedad de 3.264 kg agua/kg solido seco,

En el periodo de velocidad decreciente la temperatura de 50 °C retira una humedad de 1.535 kg agua/kg solido seco, la temperatura de 60 °C retira una humedad de 0.123 kg agua/kg solido seco y la temperatura de 70 °C retira una humedad de 0.604 kg agua/kg solido seco. Estos valores nos indican que a mayor temperatura durante el periodo de velocidad decreciente se retira menos humedad por que esta humedad ya ha sido removida en el periodo anterior.

Las curvas nos indican que la velocidad de secado esta directamente relacionada con la temperatura, ya que a un incremento de temperatura tambien hay un incremento en la velocidad de secado independientemente del tamaño de la particula que en este caso se mantuvo constante.

6.2.10 Efecto de la temperatura sobre el Nº Re

Figura N° 6.10: Curva experimental del N° Re Vs T (°C)

La figura N° 6.10, nos muestra los valores obtenidos para el numero de Reynolds a las temperaturas de operación que son de 50 °C, 60 °C y 70 °C.

El diametro de 6 mm (linea azul) presenta el menor valor del N° Re a 50 °C que es de 1280.898 y este valor va disminuyendo conforme se incrementa la temperatura hasta 70 °C llegando a un valor de 1146.881.

El diametro de 8 mm (linea roja) presenta un valor del N° Re a 50 °C de 1752.809 y este valor va disminuyendo conforme se incrementa la temperatura a 70 °C llegando a un valor de 1569.416.

El diametro de 10 mm (linea verde) presenta un valor del N° Re a 50 °C de 2247.191 y este valor va disminuyendo conforme se incrementa la temperatura a 70 °C llegando a un valor de 2012.072.

El N° Re disminuye para todos los diametros de particulas por que la viscosidad del aire decae con el incremento de la temperatura, volviendose más pesado y por consiguiente mas difícil de fluir.

6.2.11 Relación del Nº Re con el diametro de la partícula

Figura Nº 6.11: Curva experimental del Nº Re Vs diametro de la particula

La figura N° 6.11 presenta el comportamiento de los diferentes diametros de particulas frente al N° Re.

Las particulas de diametro 6 mm presentan un valor bajo del N °Re pero el valor va incrementandose conforme se aumenta el diametro de la particula, esto se debe a que si la

particula es pequeña se necesitara una menor velocidad de aire para fluidizar que es de 3.8 m/s, si la particula aumenta de tamaño a 8mm se necesitara aumentar la velocidad de aire a 3.9 m/s para lograr fluidizarla y finalmente para la particula de 10 mm necesitara un a velocidad de 4 m/s, en consecuencia si aumentamos la velocidad de aire el N° Re aumentara de valor.

6.2.12 Efecto de la temperatura sobre la velocidad mínima de fluidización

Figura Nº 6.12: Velocidad minima de fluidización Vs temperatura

La figura N° 6.12 nos muestra el comportamiento de las particulas conforme aumenta la temperatura, la U_{mf} se incrementa al transcurrir el tiempo de secado esto se debe a que las particulas conforme estan expuestas a la corriente de aire caliente pierden humedad disminuyendo su peso facilitando la fluidización.

Al increnetar la fluidización la porosidad de las particulas aumentan ofreciendo una menor resistencia a la circulación del aire caliente entre las mismas aumentando de esta manera la velocidad minima de fluidización.

6.2.13 Analisis del coeficiente de difusión

Figura Nº 6.13: Coeficiente de difusión versus la temperatura de secado.

La figura N° 6.13 nos muestra el comportamiento del coeficiente de difusión en función de la temperatura, a medida que la temperatura aumenta también se incrementa el coeficiente de difusión; esto indica que la velocidad de transferencia de masa o velocidad de difusión del vapor de agua es directamente proporcional a la temperatura de operación, esta curva es similar a la presentada en un papers de la revista Elsevier por el Departamento de Energía y transferencia de calor – Grecia, donde la mejor curva y con menos porcentaje de error lo presenta el modelo presentado por Fuller.

6.2.14 Analisis del agua presente en el interior de la partícula.

Figura N° 6.14. Representación gráfica de la humedad interior de la partícula versus el radio.

Fuente: Resultados de la simulación usando la ecuación (5.49)

La representación gráfica de la ecuación (5.49) indica que el porcentaje de agua es mayor a medida que se acerca al centro de la partícula. Para verificación de esta ecuación se muestra en la figura N° 6.14, el resultado de la simulación.

Los datos usados en la simulación fueron:

%
$$H_{r_1} = 95\%$$
, $R = 0.005 \text{ m}$, $\rho_p = 550 \text{ kg/m}^3$, $D_A = 3.8 \times 10^{-7} \text{ m}^2/\text{s} = 1.368 \times 10^{-3} \text{ m}^2/\text{h}$.
 $r_1 = 0.001 \text{ m}$, $W_{AR} = 5.4 \text{ kg/m}^2\text{h}$.

Donde se aprecia que a un radio interior de 0.001 m el contenido de humedad es del 95%, a un radio de 0.003 m el contenido de agua es del 83.03 % y a 0.005 m el contenido de agua es del 80.64 %, es decir conforme el análisis se aleja del centro de la partícula disminuye su contenido de humedad. Esta tendencia lo presentan las otras dos partículas de estudio que tienen un diámetro diferente y que presentan la curva característica de la concentración de agua en los alimentos propuesto por Bird, (1980) y Carrasco (2005) y que lo representa el modelo matemático propuesto.

Figura N° 6.15. Representación gráfica del flux másico de agua en el interior de la partícula versus el radio. Fuente: Resultados de la simulación usando la ecuación (5.51)

La Figura N° 6.15 nos muestra la curva característica de difusión y los datos de la simulación fueron: $W_{AR} = 5.4 \text{ kg/m}^2 \text{h}$ y R = 0.005 m.

Se aprecia que el flux másico de agua W_{AR} o velocidad de secado que se difunde de la superficie de la partícula hacia el seno del fluido (aire) disminuye conforme se va alejando del centro geométrico de la partícula es decir conforme se acerca a la superficie de la misma. La figura presenta un flux másico de 135 kg/m²h a una distancia de 0.001 m del centro de la partícula, 15 kg/m²h a una distancia de 0.003 m y finalmente 5.4 kg/m²h en la superficie de la partícula, es decir la migración de la humedad disminuye conforme se aleja del centro geométrico de la partícula.

Este comportamiento lo presentan los tres diámetros de partícula estudiados comprobando que el modelo propuesto cumple con representar el fenómeno d migración del agua del interior al exterior de la partícula.

CAPITULO VII

ANALISIS DE LOS RESULTADOS

7.1 Análisis físico-químico del ají obtenido de las muestras de mallas de 6 mm después del proceso de deshidratación.

	50 °C	60 °C	70 °C
Humedad	10.54 %	8.61 %	6.69 %
Ceniza	5.17 %	6.46 %	5.08 %
Grasa	1.42 %	2.44 %	1.48 %
Proteína	13.91 %	14.00 %	11.73 %
Carbohidratos	68.96 %	68.49 %	75.02 %
Calorías	344.26 kcal	351.92 kcal	360.32 kcal

Tabla Nº 7.1: Resultados físico-químicos de la muestra de 6 mm a diferentes temperaturas

Análisis realizado en el Laboratorio de Análisis-físico químico de la UNAP.

La tabla N° 7.1 nos muestra los valores obtenidos para las muestras de 6 mm a las temperaturas de operación de 50 °C, 60 °C y 70 °C; se analizara el contenido de humedad porque este es el que determina su duración a través del tiempo (libre de hongos).

El valor del porcentaje de humedad disminuye conforme aumenta la temperatura de secado, esto se debe a que la temperatura es determinante para retirar la mayor cantidad de agua ya que la velocidad del aire es constante para las tres temperaturas.

A 50 °C se obtuvo el porcentaje de humedad más alto que es de 10.54 % y el más bajo a 70 °C con 6.69 % lo que garantiza que este último no será afectado por hongos que proliferan en contenidos de agua muy superiores.

Los porcentajes de humedad obtenidas para las tres temperaturas son buenas ya que están dentro de la humedad de las harinas que van hasta un 14 %.

7.2 Análisis físico-químico del ají obtenido de las muestras de mallas de 8 mm después del proceso de deshidratación.

La tabla N° 7.2 nos muestra los valores obtenidos para las muestras de 8 mm a las temperaturas de operación de 50 °C, 60 °C y 70 °C; se analizara el contenido de humedad porque este es el que determina su duración a través del tiempo (libre de hongos).

	50 °C	60 °C	70 °C
Humedad	10.77 %	8.78 %	8.61 %
Ceniza	5.25 %	6.43 %	5.53 %
Grasa	1.15 %	2.15 %	2.32 %
Proteína	14.07 %	14.0	13.13%
Carbohidratos	68.76 %	68.64 %	70.41 %
Calorías	341.67	349.91 kcal	355.04 kcal

Tabla Nº 7.2: Resultados físico-químicos de la muestra de 8 mm a diferentes temperaturas

Análisis realizado en el Laboratorio de Análisis-físico químico de la UNAP.

El valor del porcentaje de humedad disminuye conforme aumenta la temperatura de secado, esto se debe a que la temperatura es determinante para retirar la mayor cantidad de agua ya que la velocidad del aire es constante para las tres temperaturas.

A 50 °C se obtuvo el porcentaje de humedad más alto que es de 10.77 % y el más bajo a 70 °C con 8.61 % lo que garantiza que este último no será afectado por hongos que proliferan en contenidos de agua muy superiores.

El porcentaje de humedad a 70 °C se ve aumentado comparando con el de malla de 6 mm por que la partícula de ají es más grande y ofrece más resistencia a la transferencia de masa reteniendo una fracción de agua en su interior.

7.3 Análisis físico-químico del ají obtenido de las mallas de 10 mm después del proceso de deshidratación.

Tabla N° 7.3: Resultados físico-químicos de la muestra de 10 mm a diferentes

	50 °C	60 °C	70 °C
Humedad	12.62 %	8.80 %	8.09 %
Ceniza	6.21 %	6.40 %	7.05 %
Grasa	1.95 %	2.05 %	2.15 %
Proteína	8.07 %	10.15 %	10.05 %
Carbohidratos	71.15 %	72.60 %	72.66 %
Calorías	334.42 kcal	349.91 kcal	350.19 kcal

temperaturas

Análisis realizado en el Laboratorio de Análisis-físico químico de la UNAP.

La tabla N° 7.3 nos muestra los valores obtenidos para las muestras de 10 mm a las temperaturas de operación de 50 °C, 60 °C y 70 °C; se analizara el contenido de humedad porque este es el que determina su duración a través del tiempo (libre de hongos).

Al igual que en las tablas N° 7.2 y tabla N° 7.3 el valor del porcentaje de humedad disminuye conforme aumenta la temperatura de deshidratación, esto se debe a que la temperatura es determinante para retirar la mayor cantidad de agua ya que la velocidad del aire es constante para las tres temperaturas.

A 50 °C se obtuvo el porcentaje de humedad más alto que es de 12.62 % y el más bajo a 70 °C con 8.09 % lo que garantiza que este último no será afectado por hongos que proliferan en contenidos de agua muy superiores.

El porcentaje de humedad a 70 °C se ve aumentado comparando con el de malla de 6 mm y 8 mm por que la partícula de ají es más grande y ofrece más resistencia a la transferencia de masa reteniendo una fracción de agua en su interior.

7.4 Cálculo de las características físicas y fluido dinámicas del ají charapita para las muestras de la malla de 6 mm.

ρ	Φp	dp	V _l x	ρι	3	β aire	ρ aire	β aire	Emf
kg/m ³		(mm)	10 ⁻³	(kg/m ³)		50 °C	60 °C	70 °C	
	ĺ		(m ³)			(kg/m ³)	(kg/m ³)	(kg/m ³)	
833	0.828	6.468	3.141	127.324	0.847	1.094	1.062	1.031	0,388
			L	<u> </u>	L	L		<u> </u>	

Tabla Nº 7.4: Características físicas para las muestras de la malla de 6 mm.

P	P	P	Umf	Umf	Umf	N° Re	Nº Re	N° Re
60 °C	60 °C	70 °C	50 °C	60 °C	70 °C	50 °C	60 °C	70 °C
(atm)	(atm)	(atm)	(m/s)	(m/s)	(m/s)			
0.197	0.019	0.019	3.211	3.259	3.30	1280.898	1210.191	1146.881

7.5 Cálculo de las características físicas y fluido dinámicas del ají charapita para las muestras de la malla de 8 mm.

ρρ	Φp	dp	V _I x	ρι	3	ρ aire	ρ aire	ρ aire	Emf
kg/m ³		(mm)	10 ⁻³	(kg/m ³)		50 °C	60 °C	70 °C	
			(m ³)			(kg/m ³)	(kg/m ³)	(kg/m ³)	
833	0.864	8.061	2.748	138.2	0.834	1.094	1.062	1.031	0.419

Tabla Nº 7.5: Características físicas para las muestras de la malla de 8 mm.

Р	P	P	Umf	Umf	Umf	N° Re	N° Re	N° Re
60 °C	60 °C	70 °C	50 °C	60 °C	70 °C	50 °C	60 °C	70 °C
(atm)	(atm)	(atm)	(m/s)	(m/s)	(m/s)			
0.016	0.016	0.014	3.764	3.820	3.870	1752.809	1656.05	1569.416

7.6 Cálculo de las características físicas y fluido dinámicas del ají charapita para las muestras de la malla de 10 mm.

Tabla Nº 7.6: Características físicas para las muestras de la malla de 10 mm.

ρ _p	Фр	dp	V ₁ x	ρι	3	ρ aire	ρ aire	P aire	Emf
kg/m ³		(mm)	10 ⁻³	(kg/m ³)		50 °C	60 °C	70 °C	
			(m ³)			(kg/m ³)	(kg/m ³)	(kg/m ³)	
833	0.937	10.11	2.356	157.03	0.812	1.094	1.062	1.031	0.434

Р	P	P	Umf	Umf	Umf	N° Re	N° Re	N° Re
60 °C	60 °C	70 °C	50 °C	60 °C	70 °C	50 °C	60 °C	70 °C
(atm)	(atm)	(atm)	(m/s)	(m/s)	(m/s)			
0.013	0.013	0.013	4.291	4.355	4.420	2247.191	2123.142	2012.072

En las tablas N° 7.4, 7.5 y 7.6, se pueden analizar las siguientes características:

La densidad de la partícula (ρ_p) es la misma para las tres mallas que son de 6 mm, 8 mm y 10 mm por que como es sabido la densidad no depende de la cantidad de materia y es una característica propia de cada sustancia y esta es constante. Como es de esperarse el (d_p) aumenta conforme se incrementa el número de malla, estos valores son un poco mayores que las mallas con las que fueron tamizadas por que para el cálculo se tomo el diámetro promedio de sus tres medidas representativas (a,b y c) muchos de los cuales no presentan una forma esférica sino que son alargadas influyendo en el valor final del diámetro promedio.

La porosidad (ε), en estado estático está relacionada con la masa de las partículas, se aprecia que disminuye al aumentar el diámetro de la partícula esto se debe a que los experimentos se realizaron con un área y altura definidos por consiguiente a menor diámetro de las partículas se necesitan más de estas para ocupar todo el volumen establecido aumentando con ello su masa; ocurre lo opuesto con partículas de mayor diámetro que llenan el volumen con menos partículas y por lo tanto menos masa repercutiendo en un menor valor.

Ocurre lo contrario con la porosidad de mínima fluidización (ϵ_{mf}) ya que las partículas de 6 mm fluidizan con más facilidad por que tienen menos masa por partícula que las partículas de 10 mm, por lo tanto la fluidización de la partícula está directamente relacionado con la velocidad de aire. Esta afirmación es comprobada por que la velocidad de aire que es de 3.2 m/s para una partícula de 6 mm se incrementa hasta 4.2 m/s para las partículas de 10 mm.

Estos valores teóricos de velocidad de aire no son tan distantes de los valores obtenidos experimentalmente que son para la malla de 6 mm de 3.8 m/s, para la malla de 8 mm se registro una velocidad de aire de 3.9 m/s y para la malla de 10 mm se registro 4.0 m/s de velocidad de aire.

El numero de Reynolds (N° Re) obtenido para las mallas de 6 mm, 8 mm y 10 mm fueron de flujo turbulento, observándose que conforme aumenta la temperatura del experimento su valor disminuye, esto se explica porque la viscosidad del aire disminuye con el incremento de la temperatura, ocasionando que el aire sea más denso y por consiguiente ofrece mayor resistencia a deslizarse entre las partículas.

7.7 Cálculos del balance energético para las muestras de malla de 6 mm.

Tabla N° 7.7: Cálculo energético para diferentes temperaturas para las muestras de la malla de 6 mm

T °C	HG1 aire	HG2 aire	QE aire
	Kcal/kg aire	Kcal/kg aire	Kcal/h
50	18.809	27.783	581.205
60	18.809	26.271	845.613
70	18.809	28.758	1094.555

7.8 Cálculos del balance energético para las muestras de malla de 8 mm.

Tabla N° 7.8: Cálculo energético para diferentes temperaturas para las muestras de la malla de 8 mm

T °C	HG1 aire	HG2 aire	QE aire
	Kcal/kg aire	Kcal/kg aire	Kcal/h
50	18.809	27.783	596.498
60	18.809	26.271	890.113
70	18.809	28.758	1123.369

7.9 Cálculos del balance energético para las muestras de malla de 10 mm.

Tabla N° 7.9: Cálculo energético para diferentes temperaturas para las muestras de la malla de 10 mm

T°C	HG1 aire	HG2 aire	QE aire
	Kcal/kg aire	Kcal/kg aire	Kcal/h
50	18.809	27.783	611.795
60	18.809	26.271	890.113
70	18.809	28.758	1152.173

De las tablas N° 7.7, 7.8 y 7.9 se pueden analizar lo siguiente:

El menor valor del calor entregado ($Q_{E aire}$) es de 581.20 kcal/h para una partícula de malla de 6 mm a una temperatura de 50 °C y la más alta es para la temperatura de 70 °C para una malla de 10 mm con un valor de 152.17 kcal/h. Esto se debe a que para lograr que las partículas lleguen al contenido de humedad necesario para conservarlo a través del tiempo, las partículas de la malla de 6 mm liberan humedad más rápidamente que las de 10 mm.

El valor de $(Q_{E aire})$ será incrementado conforme se incremente la temperatura de operación.

7.10 Balance de agua en el secador para las muestras de malla de 6 mm.

Tabla N° 7.10: Balance de agua a las temperaturas de 50 °C, 60 °C y 70 °C. para las muestras de la malla de 6 mm

T ℃	G	QE	
	kg aire seco/h	Kcal/h	
50	4.924	60.072	
60	6.132	114.393	
70	8.833	219.522	

7.11 Balance de agua en el secador para la muestras de malla de 8 mm

Tabla N° 7.11: Balance de agua a las temperaturas de 50 °C, 60 °C y 70 °C. para las muestras de la malla de 8 mm

T °C	G	QE	
	kg aire seco/h	Kcal/h	
50	3.714	46.183	
60	4.539	84.677	
70	6.666	165.81	

7.12 Balance de agua en el secador para la muestra de 10 mm

Tabla N° 7.12: Balance de agua a las temperaturas de 50 °C, 60 °C y 70 °C. para las muestras de la malla de 10 mm

T°C	G	QE	
	kg aire seco/h	Kcal/h	
50	3.964	49.295	
60	4.162	77.652	
70	7.115	176.967	

De las tablas N° 7.10, 7.11 y 7.12 se puede interpretar lo siguiente:

Para el ($\mathbf{Q}_{\mathbf{E}}$) para la malla de 6 mm solo entrega el 60.07 kcal/h a una temperatura de 50 °C durante 9 h, este valor se incrementa a 219.52 kcal/h a la temperatura de 70 °C. Para las muestras de la malla de 10 mm a la temperatura de 50 °C se entrega 49.29 kcal/h por un tiempo de 12 h pero este valor se incrementa a 176.96 kcal/h a una temperatura de 70 °C por un tiempo de operación de 3.6 h.

Estos valores nos indican que conforme se incremente la temperatura de operación la transferencia de calor al agua también subirá siendo ambos directamente proporcionales.

7.13 Balance del combustible consumido.

Tabla N°78.13: Balance del combustible consumido para las temperaturas de 50 °C, 60 °C y 70 °C. para las muestras de las mallas de 6 mm, 8 mm y 10 mm.

T °C	m _{propano} 6 mm (kg)	M _{propano} 8 mm (kg)	M _{propano} 10 mm (kg)
50	5.63	5.016	5.842
60	5.987	5.268	6.134
70	6.134	5.403	6.292

La tabla N° 7.13 nos muestra que el combustible consumido (kg de propano) para las muestras de la malla de 6 mm a 50 °C es de 5.63 kg por un tiempo de operación de 9 h, y

se incrementa este consumo a 6.134 kg para la temperatura de 70 °C pero el tiempo de secado se reduce a 2.5 h que es menos de un tercio del tiempo anterior.

Para las muestras de la malla de 10 mm en un tiempo de secado de 12 h a 50 °C se gasto 5.84 kg y elevando la temperatura a 70 °C y con un tiempo de secado de 3 h solo se gasto 6.29 kg de propano.

Este análisis nos indica que trabajando a la temperatura de70 °C hay una diferencia de 0.504 kg de propano y disminuimos el tiempo en 6.5 h con las muestras de la malla de 6 mm. Trabajando a la temperatura de 70 °C con muestras de la malla de 10 mm hay una diferencia o ahorro de 0.45 kg de propano y el tiempo de secado se acorta a 3 h de las 12 h iniciales de secado a 50 °C.

CONCLUSIONES

En el presente trabajo se realizó un estudio de la fluidización y el modelo cinética de secado, se realizaron ambos estudios porque ambos temas están ligados y el proceso de secado se realizó en un lecho fluidizado.

- Actualmente se prefiere el proceso de secado en un lecho fluidizado más que en un lecho estático ya que en el primero, el secado de las partículas es más homogéneo y la velocidad de secado es mayor. Sin embargo, es necesario medir o calcular una velocidad mínima para que las partículas fluidicen.
- 2) El equipo de fluidización que se encuentra en la planta piloto de la Universidad Nacional de la Amazonia Peruana a pesar de tener algunas deficiencias se pudo implementar para mantener constantes las variables de operación como lo son la temperatura y velocidad de aire en las condiciones planteadas de esta tesis. La implementación consistió en instalarle un variador de velocidad que nos permite controlar la velocidad con que ingresa el aire al horno secador, se instalaron dos boquillas para la toma de presión dentro del horno para determinar la caída de presión necesaria para los cálculos de fluidinámica, se agrandaron las perforaciones de la plancha de ingreso de aire a la cámara de secado por que las que tenia eran muy pequeñas e impedían la libre circulación del aire de secado, y como accesorios externos se adquirieron un termohigrómetro para medir la temperatura del aire y su humedad relativa dentro del horno y un anemómetro para medir la velocidad de ingreso del aire dentro de la cámara de secado.
- 3) Para la experimentación fluidinámica se utilizó Capsicum frutescens o ají charapita como es conocido generalmente. Esta materia prima es ideal para la experimentación, ya que fluidiza fácilmente, no se aglomera y resiste altas temperaturas.
- 4) De los experimentos de fluidinámica podemos concluir que, la temperatura influye muy notablemente en el proceso de secado conjuntamente con la velocidad de aire como se puede ver en la figura N° 6.3 cuya presión de operación es atmosférica, aquí

el menor tiempo de secado fue de 2.6 h, lo obtuvo la velocidad de aire de 4 m/s con una temperatura de 70 °C esto quiere decir que al aumentar la velocidad de fluidización, aumentará también la velocidad de secado, sin embargo, la cantidad de humedad final eliminada dependerá solamente de la temperatura. A mayor temperatura será menor la cantidad de humedad final.

- 5) En la figura N° 6.6 también muestra que el tiempo total de secado final fue menor al aumentar la velocidad de fluidización y la temperatura (70 °C), también notamos que hay un gran efecto de la velocidad de fluidización durante el periodo de secado a velocidad constante y este efecto disminuye durante el periodo de velocidad decreciente teniendo incluso un tiempo mayor al del periodo anterior, esto nos indica que las resistencias a la transferencia de masa en la parte cercana a la superficie disminuyen al aumentar la fluidización y aumentan en el periodo decreciente; se puede concluir también que el tamaño de la partícula tiene una gran influencia en la velocidad de transferencia de masa.
- 6) El contenido de humedad final que mejor se obtuvo en los análisis físico químicos para la temperatura de 70 °C que es una temperatura que no afecta la composición química del ají fue el de la malla de 6 mm con 6.69 % como se muestra en la tabla N° 7.1, este valor se incrementa paulatinamente con el diámetro de la partícula a la malla de 8 mm en la tabla N° 8.2 que presenta una humedad final de 8.6 % y finalmente la tabla N° 14 una humedad final de 8.1 % con partículas de 10 mm, de lo mostrado se concluye que las partículas más pequeñas y de igual composición química son las que permiten retirar la mayor cantidad de agua en comparación con las de mayor diámetro.
- 7) De los análisis de humedad Vs tiempo de secado, velocidad de secado Vs tiempo de secado, velocidad de secado Vs humedad y comparando estos resultados con el combustible consumido para llegar a la humedad final el que menos combustible a consumido es la partícula obtenida de la malla de 6 mm con 6.13 kg de gas propano en un tiempo de 2.5 h, este consumo se incrementa con el diámetro de la partícula y el tiempo de secado pero también hay que considerar el consumo eléctrico por hora

de funcionamiento que sumado al combustible consumido nos da el consumo total en dinero para su elaboración.

- 8) Las humedades finales de los tres diámetros de partícula empleados en los experimentos son ideales para su industrialización ya sea convirtiéndolas en harinas o empacándolas al vacio para su posterior empleo.
- 9) También queda demostrado la aplicación del modelo cinético y sus ecuaciones para diferentes tiempos de secado citado por Carvajal en la tabla N° 4.1 haciendo confiable los resultados y la repetitividad de los experimentos.
- Los modelos matemáticos para predecir la humedad absoluta, la humedad absoluta promedio y los flux másicos de agua dentro de la partícula reprodujeron la curva característica mencionada por lo Bird y Carrasco

RECOMENDACIONES

- El equipo fluidizador está ubicado en la planta piloto que es un lugar muy amplio y bien ventilado pero este equipo pero debe de tener un área de trabajo independiente no muy grande para evitar arrastrar partículas contaminantes al proceso de secado.
- Es necesario elaborar un manual de operaciones para el correcto uso del equipo fluidizador ya que este ha sido modificado y mejorado de su versión original optimizando su producción y rendimiento.
- 3) Es recomendable no pasar la temperatura de secado de 70 °C por que de los análisis físico químicos se comprueba que hay una disminución de en el contenido de proteína hasta un 10%.
- 4) Realizar estudios fluidinamicos empleando diversas variedades de frutos y complementarlos con análisis de actividad de agua, higroscopicidad y velocidad de rehidratación, para su industrialización posterior.

BIBLIOGRAFIAS

- Bimbinet, J.J.; Daudin, J.D. y WILFF, E. 1984 "Air Drying Kinetics of Biological Particles". Proceedings Fourth Intern. Drying Symp, Kyoto.
- Bird, R.; Stewart, W. E. y Lightfoot, E. N. 1980. Transport Phenomena. Wisconsin– Madison: John Wiley & Sons, Inc. Segunda edición. 905p.
- Carbonel, J.V; Piñaga, F; Peña, J.L y Garcia, M.J. 1985 "Deshidratación de Frutas y Hortalizas con Aire Ambiente V. Ensayos con Nabos (*Brassica rapa*, L). Rev. Agroquim. tecnol. Aliment. Pag. 257 - 267.
- Carrasco, L. 2005. Transferencia de cantidad de movimiento, calor y masa. Editorial San Marcos. Primera edición. 631p.
- 5. Carvajal Valdez, L. I. 2008. Estudio experimental del secado de maíz precocido en un lecho fluidizado con aire operado en condiciones de vacío. Tesis Licenciatura. Ingeniería Mécanica. Departamento de Ingeniería Industrial y Mecánica, Escuela de Ingeniería y Ciencias, Universidad de las Américas Puebla.
- Chavez, W. 1993, Camu-camu, p. 139 146 en: C.W-Clay y C.R. Clement. Selected species and strategies to enhance income generation from amazonian forest. FO: Misc/93/ó Working paper. FAO.ROME.
- Earle, R.L. 1979 "Ingeniería de Alimentos" II Edición. Edit. Acribia. Zaragoza -España. 332 pág.
- 8. Ergun S. "Fluid flow throu paked columns" Chem. Eng. Prog. 48, 89, 1952.
- Flores, A .2006. Análisis y Estudio Experimental de la Fluidinámica y el Proceso de Secado de Partículas de Pimienta en un Lecho Fluidizado al Vacío Empleando Vapor Sobrecalentado. Tesis. Universidad de las Américas Puebla. Puebla, México.
- Geankoplis, C. 1982 "Procesos de Transporte y Operaciones unitarias" II Edición. Edit. Continental. México. 759 pág.
- 11. Geldart, D. Powder Technol., pp. 7,285, 1973.
- Guarneros, G 2005. Mejoras en la operación de un sistema de secado en lecho fluidizado al vacío con vapor sobrecalentado. Experimentación con pimienta en grano. Tesis. Universidad de las Américas Puebla. Puebla, México.
- Martínez, J 2008. Análisis experimental del secado de semillas de pimienta grande (dp=7.55mm) en un lecho fluidizado al vacio empleando aire. Tesis. Universidad de las Américas Puebla. Puebla, México.

- Mazariegos D. 2006. Secado de Arroz con Cáscara en un lecho fluidizado al vacío, empleando vapor sobrecalentado. Tesis. Universidad de las Américas Puebla. Puebla, México.
- Reid, R.C., Prausnitz, J.M., Poling, B.E., 1988. The Properties of Gases and Liquids. Mc Graw Hill International Edition, Singapore.
- Romero, L. 2006. "Estudio experimental del secado de semillas de cilantro en un lecho fluidizado al vacio utilizando aire". Tesis de licenciatura. Universidad de las Americas Puebla, Mexico..
- Suárez, J, Beatón, P. Propiedades físicas y aerodinámicas de la cascara de arroz. Revista TECNOLOGÍA QUÍMICA Vol. XXI, No. 2, 2001. Páginas 84 – 91.
- Sanchez Ramirez J, Anaya Sosa I, Vizcarra Mendoza M G, Gutierrez Lopez G, Santiago Pineda T. 2007. Estudio de la hidrodinámica del café tostado (*Coffea* arabica L) en lecho fluidizado. Revista Mexicana de Ingenieria Química. Vol. 6, N° 2. Paginas. 185-192

ANEXO

ANEXO I

Figura N° A1: Curva típica de la velocidad de secado Vs. humedad

 $t_a = \frac{S}{A} \int_{x_2}^{x_1} \frac{dX}{W_c} \quad ; \quad w = w_c$

$$t_a = \frac{S}{AW_c} \int_{x_2}^{x_1} dx$$

$$t_a = \frac{S}{AW_c} \left(x_1 - x_2 \right) \tag{1}$$

$$t_p = \frac{S}{A} \int_{x_2}^{x_1} \frac{dX}{ax+b} \quad ; \ w = ax+b$$
$$t_p = \frac{S}{A} \left(\frac{1}{a}\right) \int_{x_2}^{x_1} \frac{d(ax+b)}{ax+b}$$

$$t_p = \frac{S}{Aa} \ln(ax+b)|_{x_2}^{x_1}$$
$$t_{p} = \frac{S}{Aa} \left[\ln(ax_{1} + b) - \ln(ax_{2} + b) \right]$$
$$t_{p} = \frac{S}{Aa} \left[\frac{(ax_{1} + b)}{(ax_{2} + b)} \right] \qquad (x)$$
$$W = a x + b$$
Si : W = W_C
X = X_C
$$W_{a} = a x_{a} + b$$

 $W_C = a x_C + b$ $\Rightarrow b = W_C - a x_C$ (xx)

Pero "a" es la pendiente de la recta W = ax + b, entonces de la figura (....) se tiene:

$$a = \frac{W_c - W_2}{X_c - X_2} \qquad (XXX)$$

Reemplazando (xx) en(x)

$$t_{p} = \frac{S}{Aa} \ln \left[\frac{ax_{1} + w_{c} - ax_{c}}{ax_{2} + w_{c} - ax_{c}} \right]; \text{ con } x_{c} = x_{1}$$
$$t_{p} = \frac{S}{Aa} \ln \left[\frac{w_{c}}{a(x_{2} - x_{c}) + w_{c}} \right] \qquad (xxxx)$$

Reemplazando (xxx) en (xxxx)

$$t_{p} = \frac{S}{A} \frac{(x_{c} - x_{2})}{(w_{c} - w_{2})} \ln \left[\frac{w_{c}}{\left(\frac{w_{c} - w_{2}}{x_{c} - x_{2}}\right)(x_{2} - x_{c}) + w_{c}} \right]$$

$$t_{p} = \frac{S}{A} \frac{(x_{c} - x_{2})}{(w_{c} - w_{2})} ln \left[\frac{w_{c}}{-\left(\frac{w_{c} - w_{2}}{x_{c} - x_{2}}\right)(x_{2} - x_{c}) + w_{c}} \right]$$

$$t_{p} = \frac{S}{A} \frac{(x_{c} - x_{2})}{(w_{c} - w_{2})} \ln \left[\frac{w_{c}}{-(w_{c} - w_{2}) + w_{c}} \right] ; \text{ con } w_{c} = w_{1}$$

$$t_{p} = \frac{S}{A} \frac{(x_{1} - x_{2})}{(w_{1} - w_{2})} ln \left[\frac{w_{1}}{-w_{1} + w_{2} + w_{1}} \right]$$

$$t_{p} = \frac{S}{A} \frac{(x_{1} - x_{2})}{(w_{1} - w_{2})} ln \left[\frac{w_{1}}{w_{2}}\right] \qquad lqqd.$$

ΑΝΕΧΟ Π

PRUEBAS EXPERIMENTALES POR TAMAÑO DE PARTICULA

AII.1 Realización de los experimentos fluidinámicos para una partícula seleccionada de la malla de 6 mm.

En este capítulo se realizan los cálculos necesarios para tener una buena fluidización teniendo en cuenta las características físicas de la partícula determinadas en el capitulo anterior.

AII.1.1 Cálculo de la densidad de la partícula (ρ_p)

Para el cálculo de la densidad de la partícula se tomo como muestra lo obtenido de la malla de 6 mm.

Muestra	M (gr)	V (ml)	ρ (gr/ml)	ρ (kg/m ³)
1	10	12	0.8333	833

$$\rho_{p} = \frac{masa \ particula \ (gr)}{volumen \ desplazado \ (ml)}$$
$$\rho_{p} = 833 \frac{kg}{m^{3}}$$

AII.1.2 Calculo de la esfericidad de la partícula (Φ_p)

4

Calculo de la Esfericidad de las partículas (Φ_p) empleando las partículas de la malla de 6 mm.

	A	В	C
PROMEDIOS	7.742	5.817	5.846
Esfericidad promedio Φ		(0.828

$$\phi = \left(\frac{bc}{a^2}\right)^{\frac{1}{3}} \qquad \phi = \left(\frac{(5.817)(5.846)}{(7.742)^2}\right)^{\frac{1}{3}}$$

 $\phi = 0.828$

AII.1.3 Calculo del diámetro de la partícula (dP)

	a (mm)	b (mm)	c (mm)
Promedios	7.742	5.817	5.846
d _P		6.468	

$$d_p = \frac{7.742 + 5.817 + 5.846}{3}$$
$$d_p = 6.468 \,\mathrm{m} \,\mathrm{m}$$

AII.1.4 Calculo del volumen del lecho (V_i)

Aquí se considera el valor del diámetro del lecho y la altura del lecho al ser fluidizadas, en este caso la altura es de 40 cm.

$$V_{l} = \frac{\pi D^{2}}{4} x L$$
$$V_{l} = 3.14159 \times 10^{-3} m^{3}$$

AII.1.5 Calculo de la densidad del lecho (ρ_i)

Se toma el valor de la masa de ají contenida en el cilindro a la altura de operación que es de 10 cm y el volumen que ocupa.

,

$$\rho_l = \frac{0.40 \text{ kg}}{3.14159 \text{ x} 10^{-3} \text{ m}^3}$$
$$\rho_l = 127.324 \frac{\text{kg}}{\text{m}^3}$$

Calculo de la porosidad del lecho fluidizado (ε)

$$\varepsilon = 1 - \frac{\rho_{\text{lecho}}}{\rho_{\text{particula}}}$$
$$\varepsilon = 1 - \frac{127.324}{833}$$
$$\varepsilon = 0.847$$

AII.1.7 Determinación de la densidad del aire

Para ello el aire se comporta como un gas ideal primero se hará el cálculo para 50 °C = .323 K donde: P es la presión atmosférica, M es el peso molecular del aire, R la constante de los gases y T la temperatura del aire.

$$\rho_{aire} = \frac{P \times M}{R \times T}$$

$$\rho_{aire} = \frac{1 \times 29}{0.082 \times 323}$$

$$\rho_{aire} = \frac{29}{26.486}$$

$$\rho_{aire} = 1.094 \frac{\text{kg}}{\text{m}^3}$$

Siguiendo este proceso calculamos para 60 °C =.333 K

$$\rho_{aire} = \frac{1 \times 29}{0.082 \times 333}$$
$$\rho_{aire} = \frac{29}{27.306}$$
$$\rho_{aire} = 1.062 \frac{\text{kg}}{\text{m}^3}$$

Siguiendo este proceso calculamos para 70 °C = 343 K

$$\rho_{aire} = \frac{1 \times 29}{0.082 \times 343}$$
$$\rho_{aire} = \frac{29}{28.126}$$
$$\rho_{aire} = 1.0310 \frac{\text{kg}}{\text{m}^3}$$

AII.1.8 Calculo de la porosidad mínima de fluidización del lecho

Para el cálculo debemos considerar la altura del lecho antes de ser fluidizada, en nuestro experimento la altura es de 10 cm.

$$V_{I} = \frac{\pi}{4} d^{2} L$$

$$V_{I} = \frac{3.1416}{4} x (10 \text{ cm})^{2} x 10 \text{ cm}$$

$$V_{I} = 7.853 x 10^{4} \text{ m}^{3}$$

$$\rho_{l} = \frac{\text{masa}_{\text{particula}}}{V_{l}}$$

$$\rho_{l} = \frac{0.40 \text{ kg}}{7.853 \text{ x } 10^{-4} \text{ m}^{3}}$$

$$\rho_{l} = 509.295 \frac{\text{kg}}{\text{m}^{3}}$$

$$\varepsilon_{ngf} = 1 - \frac{\rho_{\text{lecho}}}{\rho_{\text{particula}}}$$

$$\varepsilon_{ngf} = 1 - \frac{509.295 \text{ kg}}{833 \text{ kg}} \frac{\text{m}^{3}}{\text{m}^{3}}$$

$$\varepsilon_{ngf} = 0.388$$

AII.1.9 Caída de presión dentro del cilindro

1

Como la presión dentro del cilindro es influenciada por la temperatura se procederá a realizar los cálculos para las tres temperaturas de trabajo seleccionadas.

Calculo para una temperatura de 50 °C.

$$\Delta P = L \cdot \left(\rho_{\text{partic}} - \rho_{\text{aire}} \right) \cdot \left(1 - \varepsilon_{mf} \right) \cdot \frac{g}{g_c}$$

$$\Delta P = 0.40 \cdot \left(833 - 1.094 \right) \cdot \left(1 - 0.388 \right) \cdot \frac{9.81}{9.81}$$

$$\Delta P = 0.40 \cdot \left(831.906 \right) \cdot \left(0.612 \right) \cdot$$

$$\Delta P = 203.428 \frac{\text{kgf}}{\text{m}^2} \cdot \frac{1\text{N}}{0.102 \text{ kgf}} \cdot \frac{1 \text{ atm}}{1.01 \times 10^5 \frac{\text{N}}{\text{m}^2}}$$

 $\Delta P = 0.197 \, \text{atm}$

Calculo para una temperatura de 60 °C.

$$\Delta P = L \cdot \left(\rho_{\text{partic}} - \rho_{\text{aire}} \right) \cdot \left(1 - \varepsilon_{mf} \right) \cdot \frac{g}{g_c}$$

$$\Delta P = 0.40 \cdot \left(833 - 1.062 \right) \cdot \left(1 - 0.388 \right) \cdot \frac{9.81}{9.81}$$

$$\Delta P = 0.40 \cdot \left(831.938 \right) \cdot \left(0.612 \right) \cdot$$

$$\Delta P = 203.658 \frac{\text{kgf}}{\text{m}^2} \cdot \frac{1\text{N}}{0.102 \text{ kgf}} \cdot \frac{1 \text{ atm}}{1.01 \text{ x } 10^5 \frac{\text{N}}{\text{m}^2}}$$

 $\Delta P = 0.0197 \, \text{atm}$

Calculo para una temperatura de 70 °C.

$$\Delta P = L \cdot \left(\rho_{\text{partic}} - \rho_{\text{aire}} \right) \cdot \left(1 - \varepsilon_{mf} \right) \cdot \frac{g}{g_c}$$

$$\Delta P = 0.40 \cdot \left(833 - 1.031 \right) \cdot \left(1 - 0.388 \right) \cdot \frac{9.81}{9.81}$$

$$\Delta P = 0.40 \cdot \left(831.969 \right) \cdot \left(0.612 \right) \cdot$$

$$\Delta P = 203.66 \frac{\text{kgf}}{\text{m}^2} \cdot \frac{1\text{N}}{0.102 \text{ kgf}} \cdot \frac{1 \text{ atm}}{1.01 \times 10^5 \frac{\text{N}}{\text{m}^2}}$$

$$\Delta P = 0.0197 \text{ atm}$$

AII.1.10 Calculo de la velocidad mínima de fluidización Calculo para una temperatura de 50 °C.

•

$$U_{mf} = 0.75 \sqrt{\left[\left(\frac{\rho_{\text{particula}} - \rho_{\text{aire}}}{\rho_{\text{aire}}}\right)\right]} \cdot g \cdot \varepsilon_{\text{mf}} \cdot d_{\text{p}}$$

$$U_{mf} = 0.75 \sqrt{\left[\left(\frac{833 - 1.094}{1.094}\right)\right]} \cdot (9.81) \cdot (0.38) \cdot (6.468 \times 10^{-3})$$

$$U_{mf} = 0.75 \sqrt{\left[(760.425)\right]} \cdot (9.81) \cdot (0.38) \cdot (6.468 \times 10^{-3})$$

$$U_{mf} = 0.75 \sqrt{\left[(18.3349)\right]}$$

$$U_{mf} = 0.75 \cdot (4.282)$$

$$U_{mf} = 3.2114 \frac{\text{m}}{\text{s}}$$

Calculo para una temperatura de 60 °C.

$$U_{mf} = 0.75 \sqrt{\left[\left(\frac{\rho_{\text{particula}} - \rho_{\text{aire}}}{\rho_{\text{aire}}}\right)\right]} \cdot g \cdot \mathcal{E}_{\text{mf}} \cdot d_{\text{p}}$$
$$U_{mf} = 0.75 \sqrt{\left[\left(\frac{833 - 1.062}{1.062}\right)\right]} \cdot (9.81) \cdot (0.38) \cdot (6.468 \times 10^{-3})$$
$$U_{mf} = 0.75 \sqrt{\left[(783.369)\right] \cdot (0.0241)}$$

$$U_{mf} = 0.75 \sqrt{(18.887)}$$
$$U_{mf} = 0.75 \cdot (4.346)$$
$$U_{mf} = 3.259 \frac{\text{m}}{\text{s}}$$

Calculo para una temperatura de 70 °C.

$$U_{nyf} = 0.75 \sqrt{\left[\left(\frac{\rho_{\text{particula}} - \rho_{\text{aire}}}{\rho_{\text{aire}}}\right)\right] \cdot g \cdot \varepsilon_{\text{mf}} \cdot d_{\text{p}}}$$

$$U_{nyf} = 0.75 \sqrt{\left[\left(\frac{833 - 1.031}{1.031}\right)\right] \cdot (9.81) \cdot (0.38) \cdot (6.468 \times 10^{-3})}$$

$$U_{nyf} = 0.75 \sqrt{\left[(806.953)\right] \cdot (0.0241)}$$

$$U_{nyf} = 0.75 \sqrt{(19.456)}$$

$$U_{nyf} = 0.75 \cdot (4.410)$$

$$U_{nyf} = 3.30 \frac{\text{m}}{\text{s}}$$

AII.2 Realización de los experimentos fluidinámicos para una partícula seleccionada de la malla de 8 mm.

AII.2.1 Cálculo de la densidad de la partícula (ρ_p)

Para el cálculo de la densidad de la partícula se tomo como muestra lo obtenido de la malla de 8 mm.

1	Muestra	M (gr)	V (ml)	ρ(gr/ml)	ρ (kg/m ³)
1	1	10	12	0.8333	833

$$\rho_{p} = \frac{masa \ particula(gr)}{volumen \ desplazado(ml)}$$
$$\rho_{p} = 833 \frac{kg}{m^{3}}$$

AII.2.2 Calculo de la esfericidad de la partícula (Φ_p)

Calculo de la Esfericidad de las partículas (Φ_p) empleando las partículas de la malla de 8 mm.

	A	b .	С
PROMEDIOS	9.281	7.407	7.495
Esfericidad pro	omedio Φ	0.	864

$$\phi = \left(\frac{bc}{a^2}\right)^{\frac{1}{3}} \qquad \phi = \left(\frac{(7.407)(7.495)}{(9.281)^2}\right)^{\frac{1}{3}}$$

 $\phi = 0.864$

AII.2.3 Calculo del	diámetro de la	partícula 🛛	(dp)
---------------------	----------------	-------------	------

	a (mm)	b (mm)	c (mm)
Promedios	9.281	7.407	7.495
d_p	<u>,</u>	8.	061

$$d_p = \frac{9.281 + 7.407 + 7.495}{3}$$
$$d_p = 8.061 \text{ m m} \qquad d_p = 8.061 \text{ x } 10^{-3} \text{ m}$$

AII.2.4 Calculo del volumen del lecho (V_i)

Aquí se considera el valor del diámetro del lecho y la altura del lecho al ser fluidizadas, en este caso la altura es de 35 cm.

$$V_{l} = \frac{\pi D^{2}}{4} x L$$

$$V_{l} = \frac{(3.1415) \cdot (0.10 \text{ m})^{2}}{4} x 0.35 \text{ m}$$

$$V_{l} = 2.748 \text{ x} 10^{-3} \text{ m}^{3}$$

AII.2.5 Calculo de la densidad del lecho (ρ_i)

Se toma el valor de la masa de ají contenida en el cilindro a la altura de operación que es de 10 cm y el volumen que ocupa.

$$\rho_l = \frac{0.38 \text{ kg}}{2.748 \text{ x } 10^{-3} \text{ m}^3}$$
$$\rho_l = 138.242 \frac{\text{kg}}{\text{m}^3}$$

AII.2.6 Calculo de la porosidad del lecho fluidizado (ε)

$$\varepsilon = 1 - \frac{\rho_{\text{lecho}}}{\rho_{\text{particula}}}$$
$$\varepsilon = 1 - \frac{138.242}{833}$$
$$\varepsilon = 0.834$$

AII.2.7 Determinación de la densidad del aire

Para ello el aire se comporta como un gas ideal primero se hará el cálculo para 50 °C =.323 K donde: P es la presión atmosférica, M es el peso molecular del aire, R la constante de los gases y T la temperatura del aire.

.

$$\rho_{aire} = \frac{P \times M}{R \times T}$$

$$\rho_{aire} = \frac{1 \times 29}{0.082 \times 323}$$

$$\rho_{aire} = \frac{29}{26.486}$$

$$\rho_{aire} = 1.094 \frac{\text{kg}}{\text{m}^3}$$

Siguiendo este proceso calculamos para 60 °C =.333 K

$$\rho_{aire} = \frac{1 \times 29}{0.082 \times 333}$$
$$\rho_{aire} = \frac{29}{27.306}$$
$$\rho_{aire} = 1.062 \frac{\text{kg}}{\text{m}^3}$$

Siguiendo este proceso calculamos para 70 °C = .343 K

$$\rho_{aire} = \frac{1 \ge 29}{0.082 \ge 343}$$

$$\rho_{aire} = \frac{29}{28.126}$$
$$\rho_{aire} = 1.0310 \,\frac{\text{kg}}{\text{m}^3}$$

AII.2.8 Calculo de la porosidad mínima de fluidización del lecho

Para el cálculo debemos considerar la altura del lecho antes de ser fluidizada, en nuestro experimento la altura es de 10 cm.

$$V_{l} = \frac{\pi}{4} d^{2} . L$$

$$V_{l} = \frac{3.1416}{4} x (10 \text{ cm})^{2} x 10 \text{ cm}$$

$$V_{l} = 7.853 x 10^{-4} \text{ m}^{3}$$

$$\rho_{l} = \frac{\text{masa}_{\text{particula}}}{V_{l}}$$

$$\rho_{l} = \frac{0.38 \text{ kg}}{7.853 x 10^{-4} \text{ m}^{3}}$$

$$\rho_{l} = 483.836 \frac{\text{kg}}{\text{m}^{3}}$$

$$\varepsilon_{mf} = 1 - \frac{\rho_{\text{lecho}}}{\rho_{\text{particula}}}$$

$$\varepsilon_{mf} = 1 - \frac{483.836 \text{ kg}}{833 \text{ kg}}$$

$$\varepsilon_{mf} = 0.419$$

AII.2.9 Caída de presión dentro del cilindro

Como la presión dentro del cilindro es influenciada por la temperatura se procederá a realizar los cálculos para las tres temperaturas de trabajo seleccionadas.

Calculo para una temperatura de 50 °C.

$$\Delta P = L \cdot \left(\rho_{\text{partic}} - \rho_{\text{aire}} \right) \cdot \left(1 - \varepsilon_{mf} \right) \cdot \frac{g}{g_c}$$
$$\Delta P = 0.35 \cdot \left(833 - 1.094 \right) \cdot \left(1 - 0.419 \right) \cdot \frac{9.81}{9.81}$$
$$\Delta P = 0.35 \cdot \left(831.906 \right) \cdot \left(0.581 \right) \cdot$$

$$\Delta P = 169.174 \ \frac{\text{kgf}}{\text{m}^2} \cdot \frac{1\text{N}}{0.102 \text{ kgf}} \cdot \frac{1 \text{ atm}}{1.01 \text{ x} 10^5 \frac{\text{N}}{\text{m}^2}}$$

 $\Delta P = 0.0164 \, \text{atm}$

Calculo para una temperatura de 60 °C.

$$\Delta P = L \cdot \left(\rho_{\text{partic}} - \rho_{\text{aire}} \right) \cdot \left(1 - \varepsilon_{mf} \right) \cdot \frac{g}{g_c}$$

$$\Delta P = 0.35 \cdot \left(833 - 1.062 \right) \cdot \left(1 - 0.419 \right) \cdot \frac{9.81}{9.81}$$

$$\Delta P = 0.35 \cdot \left(831.938 \right) \cdot \left(0.581 \right) \cdot$$

$$\Delta P = 169.174 \frac{\text{kgf}}{\text{m}^2} \cdot \frac{1\text{N}}{0.102 \text{ kgf}} \cdot \frac{1 \text{ atm}}{1.01 \text{ x } 10^5 \frac{\text{N}}{\text{m}^2}}$$

 $\Delta P = 0.0164$ atm

Calculo para una temperatura de 70 °C.

$$\Delta P = L \cdot \left(\rho_{\text{partic}} - \rho_{\text{aire}} \right) \cdot \left(1 - \varepsilon_{mf} \right) \cdot \frac{g}{g_c}$$

$$\Delta P = 0.35 \cdot \left(833 - 1.031 \right) \cdot \left(1 - 0.419 \right) \cdot \frac{9.81}{9.81}$$

$$\Delta P = 0.35 \cdot \left(831.969 \right) \cdot \left(0.581 \right) \cdot$$

$$\Delta P = 145.012 \frac{\text{kgf}}{\text{m}^2} \cdot \frac{1\text{N}}{0.102 \text{ kgf}} \cdot \frac{1 \text{ atm}}{1.01 \text{ x } 10^5 \frac{\text{N}}{\text{m}^2}}$$

$$\Delta P = 0.0140 \text{ atm}$$

AII.2.10 Calculo de la velocidad mínima de fluidización

Calculo para una temperatura de 50 °C.

$$U_{mf} = 0.75 \sqrt{\left[\left(\frac{\rho_{\text{particula}} - \rho_{\text{aire}}}{\rho_{\text{aire}}}\right)\right]} \cdot g \cdot \varepsilon_{\text{mf}} \cdot d_{\text{p}}$$
$$U_{mf} = 0.75 \sqrt{\left[\left(\frac{833 - 1.094}{1.094}\right)\right]} \cdot (9.81) \cdot (0.419) \cdot (8.061 \times 10^{-3})$$
$$U_{mf} = 0.75 \sqrt{\left[(760.425)\right] \cdot (0.0331)}$$

$$U_{mf} = 0.75 \sqrt{(25.1929)}$$
$$U_{mf} = 0.75 (5.0192)$$
$$U_{mf} = 3.764 \frac{\text{m}}{\text{s}}$$

Calculo para una temperatura de 60 °C.

$$U_{nf} = 0.75 \sqrt{\left[\left(\frac{\rho_{\text{particula}} - \rho_{\text{aire}}}{\rho_{\text{aire}}}\right)\right]} \cdot g \cdot \varepsilon_{\text{mf}} \cdot d_{\text{p}}$$

$$U_{nf} = 0.75 \sqrt{\left[\left(\frac{833 - 1.062}{1.062}\right)\right]} \cdot (9.81) \cdot (0.419) \cdot (8.061 \times 10^{-3})$$

$$U_{nf} = 0.75 \sqrt{\left[(783.369)\right] \cdot (0.0331)}$$

$$U_{nf} = 0.75 \sqrt{(25.953)}$$

$$U_{nf} = 0.75 \cdot (5.094)$$

$$U_{nf} = 3.82 \frac{\text{m}}{\text{s}}$$

Calculo para una temperatura de 70 °C.

$$U_{mf} = 0.75 \sqrt{\left[\left(\frac{\rho_{\text{particula}} - \rho_{\text{aire}}}{\rho_{\text{aire}}}\right)\right]} \cdot g \cdot \varepsilon_{\text{mf}} \cdot d_{\text{p}}$$

$$U_{mf} = 0.75 \sqrt{\left[\left(\frac{833 - 1.031}{1.031}\right)\right]} \cdot (9.81) \cdot (0.419) \cdot (8.061 \times 10^{-3})$$

$$U_{mf} = 0.75 \sqrt{\left[(806.953)\right]} \cdot (0.0331)$$

$$U_{mf} = 0.75 \sqrt{(26.7343)}$$

$$U_{mf} = 0.75 \cdot (5.170)$$

$$U_{mf} = 3.87 \frac{\text{m}}{\text{s}}$$

AII.3 Realización de los experimentos fluidinámicos para una partícula seleccionada de la malla de 10 mm

AII.3.1 Cálculo de la densidad de la partícula (ρ_p)

Para el cálculo de la densidad de la partícula se tomo como muestra lo obtenido de la malla de 10 mm.

Muestra	M (gr)	V (ml)	ρ (gr/ml)	ρ (kg/m ³)
1	10	12	0.8333	833

$$\rho_{p} = \frac{masa \ particula(gr)}{volumen \ desplazado(ml)}$$
$$\rho_{p} = 833 \frac{kg}{m^{3}}$$

AII.3.2 Calculo de la esfericidad de la partícula (Φ_p)

Calculo de la Esfericidad de las partículas (Φ_p) empleando las partículas de la malla de 10 mm.

	Α	b	C
PROMEDIOS	10.747	8.841	10.747
Esfericidad pr	omedio Φ	0	.937

$$\phi = \left(\frac{bc}{a^2}\right)^{\frac{1}{3}} \qquad \phi = \left(\frac{(8.841)(10.747)}{(10.747)^2}\right)^{\frac{1}{3}}$$

 $\phi = 0.937$

AII.3.3 Calculo del diámetro de la partícula (d_P)

dp		10	.111
Promedios	10.747	8.841	10.747
	a (mm)	b (mm)	c (mm)

$$d_p = \frac{10.747 + 8.841 + 10.747}{3}$$
$$d_p = 10.111 \text{ m m} \qquad d_p = 10.111 \text{ x } 10^{-3} \text{ m}$$

AII.3.4 Calculo del volumen del lecho (V_i)

Aquí se considera el valor del diámetro del lecho y la altura del lecho al ser fluidizadas, en este caso la altura es de 30 cm.

$$V_{l} = \frac{\pi D^{2}}{4} x L$$

$$V_{l} = \frac{(3.1415) \cdot (0.10 \text{ m})^{2}}{4} x 0.30 \text{ m}$$

$$V_{l} = 2.3561 \text{ x} 10^{-3} m^{3}$$

AII.3.5 Calculo de la densidad del lecho (ρ_i)

Se toma el valor de la masa de ají contenida en el cilindro a la altura de operación que es de 10 cm y el volumen que ocupa.

Calculo de la porosidad del lecho fluidizado (ε)

$$\rho_l = \frac{0.370 \text{ kg}}{2.3561 \text{ x } 10^{-3} \text{ m}^3}$$
$$\rho_l = 157.033 \frac{\text{kg}}{\text{m}^3}$$

АП.3.6

$$\varepsilon = 1 - \frac{\rho_{\text{lecho}}}{\rho_{\text{particula}}}$$
$$\varepsilon = 1 - \frac{157.033}{833}$$

$\varepsilon = 0.812$

AII.3.7 Determinación de la densidad del aire

Para ello el aire se comporta como un gas ideal primero se hará el cálculo para 50 °C =.323 K donde: P es la presión atmosférica, M es el peso molecular del aire, R la constante de los gases y T la temperatura del aire.

$$\rho_{aire} = \frac{P \times M}{R \times T}$$

$$\rho_{aire} = \frac{1 \times 29}{0.082 \times 323}$$
$$\rho_{aire} = \frac{29}{26.486}$$
$$\rho_{aire} = 1.094 \frac{\text{kg}}{\text{m}^3}$$

Siguiendo este proceso calculamos para 60 °C =.333 K

$$\rho_{aire} = \frac{1 \times 29}{0.082 \times 333}$$
$$\rho_{aire} = \frac{29}{27.306}$$
$$\rho_{aire} = 1.062 \frac{\text{kg}}{\text{m}^3}$$

Siguiendo este proceso calculamos para 70 °C =.343 K

$$\rho_{aire} = \frac{1 \times 29}{0.082 \times 343}$$
$$\rho_{aire} = \frac{29}{28.126}$$
$$\rho_{aire} = 1.0310 \frac{\text{kg}}{\text{m}^3}$$

AII.3.8 Calculo de la porosidad mínima de fluidización del lecho

Para el cálculo debemos considerar la altura del lecho antes de ser fluidizada, en nuestro experimento la altura es de 10 cm.

$$V_{l} = \frac{\pi}{4} d^{2} . L$$

$$V_{l} = \frac{3.1416}{4} x (10 \text{ cm})^{2} x 10 \text{ cm}$$

$$V_{l} = 7.853 x 10^{-4} \text{ m}^{3}$$

$$\rho_{l} = \frac{\text{masa}_{\text{particula}}}{V_{1}}$$

$$\rho_{l} = \frac{0.37 \text{ kg}}{7.853 x 10^{-4} \text{ m}^{3}}$$

$$\rho_{l} = 471.103 \frac{\text{kg}}{\text{m}^{3}}$$

$$\varepsilon_{mf} = 1 - \frac{\rho_{\text{lecho}}}{\rho_{\text{particula}}}$$
$$\varepsilon_{mf} = 1 - \frac{471.103 \text{ kg/m^3}}{833 \text{ kg/m^3}}$$
$$\varepsilon_{mf} = 0.434$$

AII.3.9 Caída de presión dentro del cilindro

Como la presión dentro del cilindro es influenciada por la temperatura se procederá a realizar los cálculos para las tres temperaturas de trabajo seleccionadas.

Calculo para una temperatura de 50 °C.

$$\Delta P = L \cdot (\rho_{\text{partic}} - \rho_{\text{aire}}) \cdot (1 - \varepsilon_{mf}) \cdot \frac{g}{g_{\text{c}}}$$

$$\Delta P = 0.30 \cdot (833 - 1.094) \cdot (1 - 0.434) \cdot \frac{9.81}{9.81}$$

$$\Delta P = 0.30 \cdot (831.906) \cdot (0.566).$$

$$\Delta P = 141.257 \frac{\text{kgf}}{\text{m}^2} \cdot \frac{1\text{N}}{0.102 \text{ kgf}} \cdot \frac{1 \text{ atm}}{1.01 \times 10^5 \frac{\text{N}}{\text{m}^2}}$$

 $\Delta P = 0.0137$ atm

Calculo para una temperatura de 60 °C.

$$\Delta P = L \cdot \left(\rho_{\text{partic}} - \rho_{\text{aire}} \right) \cdot \left(1 - \varepsilon_{mf} \right) \cdot \frac{g}{g_{\text{c}}}$$

$$\Delta P = 0.30 \cdot \left(833 - 1.062 \right) \cdot \left(1 - 0.434 \right) \cdot \frac{9.81}{9.81}$$

$$\Delta P = 0.30 \cdot \left(831.938 \right) \cdot \left(0.566 \right) \cdot$$

$$\Delta P = 141.263 \frac{\text{kgf}}{\text{m}^2} \cdot \frac{1\text{N}}{0.102 \text{ kgf}} \cdot \frac{1 \text{ atm}}{1.01 \times 10^5 \frac{\text{N}}{\text{m}^2}}$$

 $\Delta P = 0.0137$ atm

Calculo para una temperatura de 70 °C.

$$\Delta P = L \cdot (\rho_{\text{partic}} - \rho_{\text{aire}}) \cdot (1 - \varepsilon_{\text{mf}}) \cdot \frac{g}{g_{\text{c}}}$$
$$\Delta P = 0.30 \cdot (833 - 1.031) \cdot (1 - 0.434) \cdot \frac{9.81}{9.81}$$

$$\Delta P = 0.30.(831.969).(0.566).$$

$$\Delta P = 141.268 \frac{\text{kgf}}{\text{m}^2} \cdot \frac{1\text{N}}{0.102 \text{ kgf}} \cdot \frac{1 \text{ atm}}{1.01 \text{ x } 10^5 \frac{\text{N}}{\text{m}^2}}$$

$$\Delta P = 0.0137 \text{ atm}$$

AII.3.10Calculo de la velocidad mínima de fluidización

Calculo para una temperatura de 50 °C.

$$U_{nff} = 0.75 \sqrt{\left[\left(\frac{\rho_{\text{particula}} - \rho_{\text{nire}}}{\rho_{\text{aire}}}\right)\right]} \cdot g \cdot \varepsilon_{\text{mf}} \cdot d_{\text{p}}$$

$$U_{mf} = 0.75 \sqrt{\left[\left(\frac{833 - 1.094}{1.094}\right)\right]} \cdot (9.81) \cdot (0.434) \cdot (10.111 \times 10^{-3})$$

$$U_{mf} = 0.75 \sqrt{\left[(760.425)\right]} \cdot (0.0430)$$

$$U_{nff} = 0.75 \sqrt{(32.7340)}$$

$$U_{mf} = 0.75 \cdot (5.7213)$$

$$U_{mf} = 4.291 \frac{\text{m}}{\text{s}}$$

Calculo para una temperatura de 60 °C.

$$U_{nf} = 0.75 \sqrt{\left[\left(\frac{\rho_{\text{particula}} - \rho_{\text{aire}}}{\rho_{\text{aire}}}\right)\right]} \cdot g \cdot \varepsilon_{\text{mf}} \cdot d_{\text{p}}$$

$$U_{nf} = 0.75 \sqrt{\left[\left(\frac{833 - 1.062}{1.062}\right)\right]} \cdot (9.81) \cdot (0.434) \cdot (10.111 \times 10^{-3})$$

$$U_{nf} = 0.75 \sqrt{\left[(783.369)\right]} \cdot (0.043)$$

$$U_{nf} = 0.75 \sqrt{(33.721)}$$

$$U_{nf} = 0.75 \cdot (5.807)$$

$$U_{nf} = 4.355 \frac{\text{m}}{\text{s}}$$

Calculo para una temperatura de 70 °C.

$$U_{mf} = 0.75 \sqrt{\left[\left(\frac{\rho_{\text{particula}} - \rho_{\text{aire}}}{\rho_{\text{aire}}}\right)\right]} \cdot g \cdot \varepsilon_{\text{mf}} \cdot d_{\text{p}}$$

$$U_{mf} = 0.75 \sqrt{\left[\left(\frac{833 - 1.031}{1.031}\right)\right]} \cdot (9.81) \cdot (0.434) \cdot (10.111 \times 10^{-3})$$

$$U_{mf} = 0.75 \sqrt{\left[(806.953)\right] \cdot (0.043)}$$

$$U_{mf} = 0.75 \sqrt{\left(34.736\right)}$$

$$U_{mf} = 0.75 \cdot (5.893)$$

$$U_{mf} = 4.420 \frac{\text{m}}{\text{s}}$$

۰.

ANEXO III

BALANCE ENERGÉTICO DEL PROCESO

AIII.1 Balance de energía

Durante la realización de los experimentos se hizo un consumo de energía térmica por la combustión de gas propano que es la que va a ceder su calor al aire empleado en el secado y energía eléctrica necesaria para impulsar los motores de ventilación y extracción de aire. Este análisis es importante para determinar el rendimiento del equipo y los costos de operación del mismo para el secado de ají.

Figura Nº A3.1: Ubicación de 2 puntos en la carta psicrométrica.

A III .1.1 DATOS: Para el proceso de secado llevado a cabo a 50 °C, con muestras obtenidas de la malla de 6 mm.

T1 = 30 °C Hr1 = 72 % Y1 = 0.019 kg agua/ kg aire seco
T2 = 50 °C Hr2 = 25 % Y2 = 0.019 kg agua/ kg aire seco
T3 = 33 °C Hr3 = 80 % Y3 = 0.026 kg agua/ kg aire seco

$$H_{Glaire} = (0.24 + 0.46 Y1)T1 + 597.2 Y1$$

 $H_{Glaire} = [(0.24) + 0.46 . (0.019)]30 + (597.2). (0.019)$
 $H_{Glaire} = 7.4622 + 11.3468$

$$H_{G1aire} = 18.809 \frac{\text{kcal}}{\text{kg aire seco}}$$

$$H_{G2aire} = (0.24 + 0.46 \text{ Y2})T2 + 597.2 \text{ Y2}$$

$$H_{G2aire} = [(0.24) + 0.46 \cdot (0.019)]50 + (597.2) \cdot (0.019)$$

$$H_{G2aire} = 12.437 + 11.3468$$

$$H_{G2aire} = 23.7838 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.1.2 Calculo del calor entregado al aire

$$\rho_{aire} = \frac{P \times M}{R \times T}$$

$$\rho_{aire} = \frac{(1 \text{ atm}) \times 29 \frac{\text{kg}}{\text{mol}}}{0.082 \frac{\text{atm} \cdot \text{m}^3}{\text{kmol k}} \times 323 \text{ k}}$$

$$\rho_{aire} = 1.0949 \frac{\text{kg}}{\text{m}^3}$$

$$G_{aire} = V_{aire} \times A \times \rho_{aire}$$

$$G_{aire} = \left[\left(3.8 \frac{\text{m}}{\text{s}} \right) x \left(3600 \frac{s}{h} \right) \right] \times \left(0.0078 \text{ m}^2 \right) \times \left(1.0949 \frac{\text{kg}}{\text{m}^3} \right)$$

$$G_{aire} = 116.830 \frac{\text{kg}}{\text{h}}$$

$$Q_{EG} = G_{aire} (\text{H}_2 - \text{H}_1)$$

$$Q_{EG} = 116.830 \frac{\text{kg}}{\text{h}} \times (23.7838 - 18.809) \frac{\text{kcal}}{\text{kg aire seco}}$$

$$Q_{EG} = 581.205 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.2 DATOS: Para el proceso de secado llevado a cabo a 60 °C, con muestras obtenidas de la malla de 6 mm.

$$T1 = 30 \text{ °C}$$
 $Hr1 = 72 \text{ %}$ $Y1 = 0.019 \text{ kg agua/ kg aire seco}$

$$T2 = 60 \text{ °C} \quad \text{Hr2} = 15 \% \qquad Y2 = 0.019 \text{ kg agua/ kg aire seco}$$

$$T3 = 35.5 \text{ °CHr3} = 80 \% \qquad Y3 = 0.029 \text{ kg agua/ kg aire seco}$$

$$H_{Glaire} = (0.24 + 0.46 \text{ Y1})T1 + 597.2 \text{ Y1}$$

$$H_{Glaire} = [(0.24) + 0.46 \cdot (0.019)]30 + (597.2) \cdot (0.019)$$

$$H_{Glaire} = 7.4622 + 11.3468$$

$$H_{Glaire} = 18.809 \frac{\text{kcal}}{\text{kg aire seco}}$$

$$H_{G2aire} = (0.24 + 0.46 \text{ Y2})T2 + 597.2 \text{ Y2}$$

$$H_{G2aire} = [(0.24) + 0.46 \cdot (0.019)]60 + (597.2) \cdot (0.019)$$

$$H_{G2aire} = 14.9244 + 11.3468$$

$$H_{G2aire} = 26.2712 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.2.1 Calculo del calor entregado al aire

.

.

$$\begin{aligned}
\rho_{aire} &= \frac{P \times M}{R \times T} \\
\rho_{aire} &= \frac{(1 \text{ atm}) \times 29 \frac{\text{kg}}{\text{mol}}}{0.082 \frac{\text{atm} \cdot \text{m}^3}{\text{kmol} \text{ k}} \times 333 \text{ k}} \\
\rho_{aire} &= 1.062 \frac{\text{kg}}{\text{m}^3} \\
G_{aire} &= V_{aire} \times A \times \rho_{aire} \\
G_{aire} &= \left[\left(3.8 \frac{\text{m}}{\text{s}} \right) x \left(3600 \frac{s}{h} \right) \right] \times \left(0.0078 \text{ m}^2 \right) \times \left(1.062 \frac{\text{kg}}{\text{m}^3} \right) \\
G_{aire} &= 113.3196 \frac{\text{kg}}{\text{h}} \\
Q_{EG} &= G_{aire} \left(\text{H}_2 - \text{H}_1 \right) \\
Q_{EG} &= 113.3196 \frac{\text{kg}}{\text{h}} \times \left(26.2712 - 18.809 \right) \frac{\text{kcal}}{\text{kg aire seco}}
\end{aligned}$$

$$Q_{EG} = 845.6135 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.3DATOS: Para el proceso de secado llevado a cabo a 70 °C, con muestras

obtenidas de la malla de 6 mm.

.

T1 = 30 °C	Hr1 = 72 %	Y1 = 0.019 kg agua/ kg aire seco
T2 = 70 °C	Hr2 = 10 %	Y2 = 0.019 kg agua/ kg aire seco
T3 = 37 °C	Hr3 = 80 %	Y3 = 0.032 kg agua/ kg aire seco

$$H_{G1aire} = (0.24 + 0.46 \text{ Y1})T1 + 597.2 \text{ Y1}$$

$$H_{G1aire} = [(0.24) + 0.46 \cdot (0.019)]30 + (597.2) \cdot (0.019)$$

$$H_{G1aire} = 7.4622 + 11.3468$$

$$H_{G1aire} = 18.809 \frac{\text{kcal}}{\text{kg aire seco}}$$

$$H_{G2aire} = (0.24 + 0.46 \text{ Y2})T2 + 597.2 \text{ Y2}$$

$$H_{G2aire} = [(0.24) + 0.46 \cdot (0.019)]70 + (597.2) \cdot (0.019)$$

$$H_{G2aire} = 17.4118 + 11.3468$$

$$H_{G2aire} = 28.7586 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.3.1 Calculo del calor entregado al aire

$$\rho_{aire} = \frac{P \times M}{R \times T}$$

$$\rho_{aire} = \frac{(1 \text{ atm}) \times 29 \frac{\text{kg}}{\text{mol}}}{0.082 \frac{\text{atm} \cdot \text{m}^3}{\text{kmol k}} \times 343 \text{ k}}$$

$$\rho_{aire} = 1.0310 \frac{\text{kg}}{\text{m}^3}$$

$$G_{aire} = V_{aire} \times A \times \rho_{aire}$$

$$G_{aire} = \left[\left(3.8 \frac{\text{m}}{\text{s}} \right) x \left(3600 \frac{s}{h} \right) \right] \times \left(0.0078 \text{ m}^2 \right) \times \left(1.0310 \frac{\text{kg}}{\text{m}^3} \right)$$

$$G_{aire} = 110.01 \frac{\text{kg}}{\text{h}}$$

$$Q_{EG} = G_{aire} \left(\text{H}_2 - \text{H}_1 \right)$$

$$Q_{EG} = 110.01 \frac{\text{kg}}{\text{h}} \times \left(28.7586 - 18.809 \right) \frac{\text{kcal}}{\text{kg aire seco}}$$

$$Q_{EG} = 1094.555 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.4DATOS: Para el proceso de secado llevado a cabo a 50 °C, con muestras obtenidas de la malla de 8 mm.

T1 = 30 °C Hr1 = 72 % Y1 = 0.019 kg agua/ kg aire seco
T2 = 50 °C Hr2 = 25 % Y2 = 0.019 kg agua/ kg aire seco
T3 = 33 °C Hr3 = 80 % Y3 = 0.026 kg agua/ kg aire seco

$$H_{Glatre} = (0.24 + 0.46 \text{ Y1})T1 + 597.2 \text{ Y1}$$

 $H_{Glatre} = [(0.24) + 0.46 . (0.019)]30 + (597.2) . (0.019)$
 $H_{Glatre} = 7.4622 + 11.3468$
 $H_{Glatre} = 18.809 \frac{\text{kcal}}{\text{kg aire seco}}$
 $H_{G2atre} = (0.24 + 0.46 \text{ Y2})T2 + 597.2 \text{ Y2}$
 $H_{G2atre} = [(0.24) + 0.46 . (0.019)]50 + (597.2) . (0.019)$
 $H_{G2atre} = 12.437 + 11.3468$
 $H_{G2atre} = 23.7838 \frac{\text{kcal}}{\text{kg aire seco}}$

A III.4.1 Calculo del calor entregado al aire

$$\rho_{aire} = \frac{P \times M}{R \times T}$$

$$\rho_{aire} = \frac{(1 \text{ atm}) \times 29 \frac{\text{kg}}{\text{mol}}}{0.082 \frac{\text{atm} \cdot \text{m}^3}{\text{kmol } \text{k}} \times 323 \text{ k}}$$

$$\rho_{aire} = 1.0949 \frac{\text{kg}}{\text{m}^3}$$

$$G_{aire} = \text{V}_{aire} \times \text{A} \times \rho_{aire}$$

$$G_{aire} = \left[\left(3.9 \frac{\text{m}}{\text{s}} \right) x \left(3600 \frac{s}{h} \right) \right] \times \left(0.0078 \text{ m}^2 \right) x \left(1.0949 \frac{\text{kg}}{\text{m}^3} \right)$$

$$G_{aire} = 119.904 \frac{\text{kg}}{\text{h}}$$

$$Q_{EG} = \text{G}_{aire} \left(\text{H}_2 - \text{H}_1 \right)$$

$$Q_{EG} = 119.904 \frac{\text{kg}}{\text{h}} \times \left(23.7838 - 18.809 \right) \frac{\text{kcal}}{\text{kg aire seco}}$$

$$Q_{EG} = 596.498 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.5DATOS: Para el proceso de secado llevado a cabo a 60 °C, con muestras obtenidas de la malla de 8 mm.

$T1 = 30 \ ^{\circ}C$	Hr1 = 72 %	Y1 = 0.019 kg agua/ kg aire seco
$T2 = 60 \ ^{\circ}C$	Hr2 = 15 %	Y2 = 0.019 kg agua/ kg aire seco
T3 = 35.5 °C	Hr3 = 80 %	Y3 = 0.029 kg agua/ kg aire seco

$$H_{Glaire} = (0.24 + 0.46 \text{ Y1})T1 + 597.2 \text{ Y1}$$
$$H_{Glaire} = [(0.24) + 0.46 \cdot (0.019)]30 + (597.2) \cdot (0.019)$$
$$H_{Glaire} = 7.4622 + 11.3468$$

$$H_{G1aire} = 18.809 \frac{\text{kcal}}{\text{kg aire seco}}$$

$$H_{G2aire} = (0.24 + 0.46 \text{ Y2})T2 + 597.2 \text{ Y2}$$

$$H_{G2aire} = [(0.24) + 0.46 \cdot (0.019)]60 + (597.2) \cdot (0.019)$$

$$H_{G2aire} = 14.9244 + 11.3468$$

$$H_{G2aire} = 26.2712 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.5.1 Calculo del calor entregado al aire

$$\rho_{aire} = \frac{P \times M}{R \times T}$$

$$\rho_{aire} = \frac{(1 \text{ atm}) \times 29 \frac{\text{kg}}{\text{mol}}}{0.082 \frac{\text{atm} \cdot \text{m}^3}{\text{kmol } k} \times 333 \text{ k}}$$

$$\rho_{aire} = 1.062 \frac{\text{kg}}{\text{m}^3}$$

$$G_{aire} = \text{V}_{aire} \times \text{A x } \rho_{aire}$$

$$G_{aire} = \left[\left(4.0 \frac{\text{m}}{\text{s}} \right) x \left(3600 \frac{\text{s}}{h} \right) \right] \times \left(0.0078 \text{ m}^2 \right) \times \left(1.062 \frac{\text{kg}}{\text{m}^3} \right)$$

$$G_{aire} = 119.283 \frac{\text{kg}}{\text{h}}$$

$$Q_{EG} = G_{aire} \left(\text{H}_2 - \text{H}_1 \right)$$

$$Q_{EG} = 119.283 \frac{\text{kg}}{\text{h}} \times \left(26.2712 - 18.809 \right) \frac{\text{kcal}}{\text{kg aire seco}}$$

$$Q_{EG} = 890.113 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.6DATOS: Para el proceso de secado llevado a cabo a 70 °C, con muestras

obtenidas de la malla de 8 mm.

T1 = 30 °C	Hr1 = 72 %	Y1 = 0.019 kg agua/ kg aire seco
T2 = 7 0 °C	Hr2 = 10 %	Y2 = 0.019 kg agua/ kg aire seco
T3 = 37 °C	Hr3 = 80 %	Y3 = 0.032 kg agua/ kg aire seco

$$H_{Glaire} = (0.24 + 0.46 \text{ Y1})T1 + 597.2 \text{ Y1}$$

$$H_{Glaire} = [(0.24) + 0.46 \cdot (0.019)]30 + (597.2) \cdot (0.019)$$

$$H_{Glaire} = 7.4622 + 11.3468$$

$$H_{Glaire} = 18.809 \frac{\text{kcal}}{\text{kg aire seco}}$$

$$H_{G2aire} = (0.24 + 0.46 \text{ Y2})T2 + 597.2 \text{ Y2}$$

$$H_{G2aire} = [(0.24) + 0.46 \cdot (0.019)]70 + (597.2) \cdot (0.019)$$

$$H_{G2aire} = 17.4118 + 11.3468$$

$$H_{G2aire} = 28.7586 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.6.1 Calculo del calor entregado al aire

$$\rho_{aire} = \frac{P \times M}{R \times T}$$

$$\rho_{aire} = \frac{(1 \text{ atm}) \times 29 \frac{\text{kg}}{\text{mol}}}{0.082 \frac{\text{atm} \cdot \text{m}^3}{\text{kmol} \text{ k}} \times 343 \text{ k}}$$

$$\rho_{aire} = 1.0310 \frac{\text{kg}}{\text{m}^3}$$

$$G_{aire} = \text{V}_{aire} \times \text{A} \times \rho_{aire}$$

$$G_{aire} = \left[\left(3.9 \, \frac{\mathrm{m}}{\mathrm{s}} \right) x \left(3600 \, \frac{s}{h} \right) \right] x \left(0.0078 \, \mathrm{m}^2 \right) x \left(1.0310 \, \frac{\mathrm{kg}}{\mathrm{m}^3} \right)$$

$$G_{aire} = 112.906 \, \frac{\mathrm{kg}}{\mathrm{h}}$$

$$Q_{EG} = G_{aire} \left(\mathrm{H}_2 - \mathrm{H}_1 \right)$$

$$Q_{EG} = 112.906 \, \frac{\mathrm{kg}}{\mathrm{h}} x \left(28.7586 - 18.809 \right) \frac{\mathrm{kcal}}{\mathrm{kg \ aire \ seco}}$$

$$Q_{EG} = 1123.369 \, \frac{\mathrm{kcal}}{\mathrm{kg \ aire \ seco}}$$

A III.7 DATOS: Para el proceso de secado llevado a cabo a 50 °C, con muestras

obtenidas de la malla de 10 mm.

T1 = 30 °C Hr1 = 72 % Y1 = 0.019 kg agua/ kg aire seco
T2 = 50 °C Hr2 = 25 % Y2 = 0.019 kg agua/ kg aire seco
T3 = 33 °C Hr3 = 80 % Y3 = 0.026 kg agua/ kg aire seco

$$H_{Glaire} = (0.24 + 0.46 Y1)T1 + 597.2 Y1$$

 $H_{Glaire} = [(0.24) + 0.46 . (0.019)]30 + (597.2) . (0.019)$
 $H_{Glaire} = 7.4622 + 11.3468$
 $H_{Glaire} = 18.809 \frac{\text{kcal}}{\text{kg aire seco}}$
 $H_{G2aire} = (0.24 + 0.46 Y2)T2 + 597.2 Y2$
 $H_{G2aire} = [(0.24) + 0.46 . (0.019)]50 + (597.2) . (0.019)$
 $H_{G2aire} = 12.437 + 11.3468$
 $H_{G2aire} = 23.7838 \frac{\text{kcal}}{\text{kg aire seco}}$

A III.7.1 Calculo del calor entregado al aire

$$\rho_{aire} = \frac{P \times M}{R \times T}$$

$$\rho_{atre} = \frac{(1 \text{ atm}) \text{ x } 29 \frac{\text{kg}}{\text{mol}}}{0.082 \frac{\text{atm} \cdot \text{m}^3}{\text{kmol } \text{k}} \text{ x } 323 \text{ k}}$$

$$\rho_{aire} = 1.0949 \frac{\text{kg}}{\text{m}^3}$$

$$G_{aire} = \text{V}_{aire} \text{ x A x } \rho_{aire}$$

$$G_{aire} = \left[\left(4.0 \frac{\text{m}}{\text{s}} \right) x \left(3600 \frac{s}{h} \right) \right] x \left(0.0078 \text{ m}^2 \right) x \left(1.0949 \frac{\text{kg}}{\text{m}^3} \right)$$

$$G_{aire} = 122.979 \frac{\text{kg}}{\text{h}}$$

$$Q_{EG} = \text{G}_{aire} \left(\text{H}_2 - \text{H}_1 \right)$$

$$Q_{EG} = 122.979 \frac{\text{kg}}{\text{h}} \text{ x } \left(23.7838 - 18.809 \right) \frac{\text{kcal}}{\text{kg aire seco}}$$

$$Q_{EG} = 611.795 \frac{\text{kcal}}{\text{kg aire seco}}$$

,

A III.8DATOS: Para el proceso de secado llevado a cabo a 60 °C, con muestras obtenidas de la malla de 10 mm.

T1 = 30 °C	Hr1 = 72 %	Y1 = 0.019 kg agua/ kg aire seco	
T2 = 60 °C	Hr2 = 15 %	Y2 = 0.019 kg agua/ kg aire seco	
T3 = 35.5 °C	Hr3 = 80 %	Y3 = 0.029 kg agua/ kg aire seco	

$$H_{G1atre} = (0.24 + 0.46 \text{ Y1})T1 + 597.2 \text{ Y1}$$

$$H_{G1atre} = [(0.24) + 0.46 \cdot (0.019)]30 + (597.2) \cdot (0.019)$$

$$H_{G1atre} = 7.4622 + 11.3468$$

$$H_{G1atre} = 18.809 \frac{\text{kcal}}{\text{kg aire seco}}$$

$$H_{G2atre} = (0.24 + 0.46 \text{ Y2})T2 + 597.2 \text{ Y2}$$

$$H_{G2aire} = [(0.24) + 0.46 . (0.019)]60 + (597.2). (0.019)$$
$$H_{G2aire} = 14.9244 + 11.3468$$
$$H_{G2aire} = 26.2712 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.8.1 Calculo del calor entregado al aire

$$\rho_{aire} = \frac{P \times M}{R \times T}$$

$$\rho_{aire} = \frac{(1 \text{ atm}) \times 29 \frac{\text{kg}}{\text{mol}}}{0.082 \frac{\text{atm} \cdot \text{m}^3}{\text{kmol k}} \times 333 \text{ k}}$$

$$\rho_{aire} = 1.062 \frac{\text{kg}}{\text{m}^3}$$

$$G_{aire} = V_{aire} \times A \times \rho_{aire}$$

$$G_{aire} = \left[\left(4.0 \frac{\text{m}}{\text{s}} \right) x \left(3600 \frac{s}{h} \right) \right] \times \left(0.0078 \text{ m}^2 \right) x \left(1.062 \frac{\text{kg}}{\text{m}^3} \right)$$

$$G_{aire} = 119.283 \frac{\text{kg}}{\text{h}}$$

$$Q_{EG} = G_{aire} \left(\text{H}_2 - \text{H}_1 \right)$$

$$Q_{EG} = 119.283 \frac{\text{kg}}{\text{h}} \times \left(26.2712 - 18.809 \right) \frac{\text{kcal}}{\text{kg aire seco}}$$

$$Q_{EG} = 890.113 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.9DATOS: Para el proceso de secado llevado a cabo a 70 °C, con muestras obtenidas de la malla de 10 mm.

T1 = 30 °C	Hr1 = 72 %	Y1 = 0.019 kg agua/ kg aire seco
T2 = 70 °C	Hr2 = 10 %	Y2 = 0.019 kg agua/ kg aire seco
T3 = 37 °C	Hr3 = 80%	Y3 = 0.032 kg agua/ kg aire seco

122

$$H_{Glaire} = (0.24 + 0.46 \text{ Y1})T1 + 597.2 \text{ Y1}$$

$$H_{Glaire} = [(0.24) + 0.46 \cdot (0.019)]30 + (597.2) \cdot (0.019)$$

$$H_{Glaire} = 7.4622 + 11.3468$$

$$H_{Glaire} = 18.809 \frac{\text{kcal}}{\text{kg aire seco}}$$

$$H_{G2aire} = (0.24 + 0.46 \text{ Y2})T2 + 597.2 \text{ Y2}$$

$$H_{G2aire} = [(0.24) + 0.46 \cdot (0.019)]70 + (597.2) \cdot (0.019)$$

$$H_{G2aire} = 17.4118 + 11.3468$$

$$H_{G2aire} = 28.7586 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.9.1 Calculo del calor entregado al aire

.

.

$$\rho_{aire} = \frac{P \times M}{R \times T}$$

$$\rho_{aire} = \frac{(1 \text{ atm}) \times 29 \frac{\text{kg}}{\text{mol}}}{0.082 \frac{\text{atm} \cdot \text{m}^3}{\text{kmol k}} \times 343 \text{ k}}$$

$$\rho_{aire} = 1.0310 \frac{\text{kg}}{\text{m}^3}$$

$$G_{atre} = \text{V}_{aire} \times \text{A} \times \rho_{aire}$$

$$G_{atre} = \left[\left(4.0 \frac{\text{m}}{\text{s}} \right) x \left(3600 \frac{s}{h} \right) \right] \times \left(0.0078 \text{ m}^2 \right) \times \left(1.0310 \frac{\text{kg}}{\text{m}^3} \right)$$

$$G_{aire} = 115.801 \frac{\text{kg}}{\text{h}}$$

$$Q_{EG} = \text{G}_{aire} \left(\text{H}_2 \cdot \text{H}_1 \right)$$

$$Q_{EG} = 115.801 \frac{\text{kg}}{\text{h}} \times \left(28.7586 \cdot 18.809 \right) \frac{\text{kcal}}{\text{kg aire seco}}$$

$$Q_{EG} = 1152.173 \frac{\text{kcal}}{\text{kg aire seco}}$$

A III.10 Balance de agua en el secador

A III.10.1 Balance para el ají obtenido de la malla de 6 mm a una temperatura de funcionamiento de 50 °C

$$\begin{pmatrix} x_0 - x_f \end{pmatrix} \cdot s = \begin{pmatrix} Y_{2-3} - Y_2 \end{pmatrix} \cdot G \cdot t_{operc}$$

$$(4.882 - 0.102) \cdot (0.06) = (0.026 - 0.019) \cdot G \cdot (9.5)$$

$$G = \frac{(4.882 - 0.102)(0.06)}{(0.026 - 0.019)(9.5)}$$

$$G = 4.924 \frac{kg_{aireseco}}{hr}$$

A III.10.1.1 Calculo del calor entregado

$$\begin{aligned} \mathcal{Q}_{entregado} &= G \Big(H_{G2aire} - H_{G1aire} \Big) + \mathcal{Q}_{perdido} \\ \mathcal{Q}_{entregado} &= G \Big(H_{G2aire} - H_{G1aire} \Big) + 0.6 \, \mathcal{Q}_{perdido} \\ \mathcal{Q}_{entregado} &= 2.5 \, (G) \cdot \Big(H_{G2aire} - H_{G1aire} \Big) \\ \mathcal{Q}_{entregado} &= 2.5 \, (4.924) \cdot (23.783 - 18.809) \\ \mathcal{Q}_{entregado} &= 60.072 \, \frac{kcal}{hr} \end{aligned}$$

A III.10.1.2 Calculo de la masa del combustible consumido

$$m_{propano} = \frac{\left(\mathcal{Q}_{entregado}\right) \cdot \left(t_{operación}\right)}{\tau_{propano}}$$
$$m_{propano} = \frac{\left(60.072 \frac{kcal}{hr}\right) \cdot (9.5 hr)}{101.264 \frac{kcal}{hr}}$$
$$m_{propano} = 5.63 \ kg$$

A III.10.1.3 Balance para el ají obtenido de la malla de 6 mm a una temperatura de

funcionamiento de 60 °C

$$\begin{pmatrix} x_0 - x_f \end{pmatrix} \cdot s = \begin{pmatrix} Y_{2-3} - Y_2 \end{pmatrix} \cdot G \cdot t_{operc}$$

$$(4.882 - 0.102) \cdot (0.06) = (0.029 - 0.019) \cdot G \cdot (5.3)$$

$$G = \frac{(4.882 - 0.102)(0.06)}{(0.029 - 0.019)(5.3)}$$

$$G = 6.132 \frac{kg_{aireseco}}{hr}$$

A III.10.1.4 Calculo del calor entregado

 $\begin{aligned} & \mathcal{Q}_{entregado} = G \Big(H_{G2aire} - H_{G1aire} \Big) + \mathcal{Q}_{perdido} \\ & \mathcal{Q}_{entregado} = G \Big(H_{G2aire} - H_{G1aire} \Big) + 0.6 \mathcal{Q}_{perdido} \\ & \mathcal{Q}_{entregado} = 2.5 (G) \Big(H_{G2aire} - H_{G1aire} \Big) \\ & \mathcal{Q}_{entregado} = 2.5 (6.132) \Big(26.271 - 18.809 \Big) \\ & \mathcal{Q}_{entregado} = 114.393 \frac{kcal}{hr} \end{aligned}$

A III.10.1.5 Calculo de la masa del combustible consumido

$$m_{propano} = \frac{\left(\mathcal{Q}_{entregado}\right) \cdot \left(t_{operación}\right)}{\tau_{propano}}$$
$$m_{propano} = \frac{\left(114.393 \frac{kcal}{hr}\right) (5.3 hr)}{101.264 \frac{kcal}{hr}}$$

 $m_{propano} = 5.987 \ kg$

A III.10.1.6 Balance de agua para el ají obtenido de la malla de 6 mm a una

temperatura de funcionamiento de 70 °C

$$\begin{pmatrix} x_0 - x_f \end{pmatrix} \cdot s = \begin{pmatrix} Y_{2-3} - Y_2 \end{pmatrix} \cdot G \cdot t_{operc}$$

$$(4.882 - 0.102) \cdot (0.06) = (0.032 - 0.019) \cdot G \cdot (2.83)$$

$$G = \frac{(4.882 - 0.102)(0.06)}{(0.032 - 0.019)(2.83)}$$

$$G = 8.833 \frac{kg_{aireseco}}{hr}$$

A III.10.1.7 Calculo del calor entregado

$$Q_{entregado} = G(H_{G2aire} - H_{G1aire}) + Q_{perdido}$$

$$Q_{entregado} = G(H_{G2aire} - H_{G1aire}) + 0.6 Q_{perdido}$$

$$Q_{entregado} = 2.5 (G) (H_{G2aire} - H_{G1aire})$$

$$Q_{entregado} = 2.5 (8.833) (28.758 - 18.809)$$

$$Q_{entregado} = 219.522 \frac{kcal}{hr}$$

A III.10.1.8 Calculo de la masa del combustible consumido

$$m_{propano} = \frac{\left(Q_{entregado}\right) \cdot \left(t_{operación}\right)}{\tau_{propano}}$$
$$m_{propano} = \frac{\left(219.522 \frac{kcal}{hr}\right) (2.83 hr)}{101.264 \frac{kcal}{hr}}$$

 $m_{propano} = 6.134 \ kg$

A III.10.2 Balance de agua para el ají obtenido de la malla de 8 mm a una

temperatura de funcionamiento de 50 °C

$$\begin{pmatrix} x_0 - x_f \end{pmatrix} \cdot s = \begin{pmatrix} Y_{2-3} - Y_2 \end{pmatrix} \cdot G \cdot t_{operc}$$

$$(4.882 - 0.099) \cdot (0.06) = (0.026 - 0.019) \cdot G \cdot (11)$$

$$G = \frac{(4.882 - 0.099)(0.06)}{(0.026 - 0.019)(11)}$$

$$G = 3.714 \frac{kg_{aireseco}}{hr}$$

A III.10.2.1 Calculo del calor entregado

$$\begin{aligned} & \mathcal{Q}_{entregado} = G \Big(H_{G2aire} - H_{G1aire} \Big) + \mathcal{Q}_{perdido} \\ & \mathcal{Q}_{entregado} = G \Big(H_{G2aire} - H_{G1aire} \Big) + 0.6 \, \mathcal{Q}_{perdido} \\ & \mathcal{Q}_{entregado} = 2.5 \, (G) \cdot \Big(H_{G2aire} - H_{G1aire} \Big) \\ & \mathcal{Q}_{entregado} = 2.5 \, (3.714) \cdot (23,783 - 18.809) \\ & \mathcal{Q}_{entregado} = 46.183 \, \frac{kcal}{hr} \end{aligned}$$

A III.10.2.2 Calculo de la masa del combustible consumido

$$m_{propano} = \frac{\left(Q_{entregado}\right) \cdot \left(t_{operación}\right)}{\tau_{propano}}$$
$$m_{propano} = \frac{\left(46.183 \frac{kcal}{hr}\right) \cdot (11 hr)}{101.264 \frac{kcal}{hr}}$$

$$m_{propano} = 5.016 \ kg$$

A III.10.3.3 Balance de agua para el ají obtenido de la malla de 10 mm a una

temperatura de funcionamiento de 60 °C

$$\begin{pmatrix} x_0 - x_f \end{pmatrix} \cdot s = \begin{pmatrix} Y_{2-3} - Y_2 \end{pmatrix} \cdot G \cdot t_{operc}$$

$$(5.666 - 0.099) \cdot (0.06) = (0.029 - 0.019) \cdot G \cdot (8)$$

$$G = \frac{(5.666 - 0.099) \cdot (0.06)}{(0.029 - 0.019) \cdot (8)}$$

$$G = 4.162 \frac{kg_{aireseco}}{hr}$$

A III.10.3.4 Calculo del calor entregado

$$Q_{entregado} = G(H_{G2aire} - H_{G1aire}) + Q_{perdido}$$

$$Q_{entregado} = G(H_{G2aire} - H_{G1aire}) + 0.6 Q_{perdido}$$

$$Q_{entregado} = 2.5 (G) (H_{G2aire} - H_{G1aire})$$

$$Q_{entregado} = 2.5 (4.162) (26.271 - 18.809)$$

$$Q_{entregado} = 77.652 \frac{kcal}{hr}$$

A III.10.3.5 Calculo de la masa del combustible consumido

 $m_{propano} = \frac{\left(Q_{entregado}\right) \cdot \left(t_{operación}\right)}{\tau_{propano}}$ $m_{propano} = \frac{\left(77.652 \frac{kcal}{hr}\right) \cdot (8 hr)}{101.264 \frac{kcal}{hr}}$

 $m_{propano} = 6.134 \ kg$
A III.10.3.6 Balance de agua para el ají obtenido de la malla de 10 mm a una

temperatura de funcionamiento de 70 °C

$$\begin{pmatrix} x_0 - x_f \end{pmatrix} \cdot s = \begin{pmatrix} Y_{2-3} - Y_2 \end{pmatrix} \cdot G \cdot t_{operc}$$

$$(5.666 - 0.099) \cdot (0.06) = (0.032 - 0.019) \cdot G \cdot (3.6)$$

$$G = \frac{(5.666 - 0.099)(0.06)}{(0.032 - 0.019)(3.6)}$$

$$G = 7.115 \frac{kg_{aire\,sec\,o}}{hr}$$

A III.10.3.7 Calculo del calor entregado

$$Q_{entregado} = G(H_{G2aire} - H_{G1aire}) + Q_{perdido}$$

$$Q_{entregado} = G(H_{G2aire} - H_{G1aire}) + 0.6 Q_{perdido}$$

$$Q_{entregado} = 2.5 (G) (H_{G2aire} - H_{G1aire})$$

$$Q_{entregado} = 2.5 (7.115) (28.758 - 18.809)$$

$$Q_{entregado} = 176.967 \frac{kcal}{hr}$$

A III.10.3.8 Calculo de la masa del combustible consumido

$$m_{propano} = \frac{\left(Q_{entregado}\right) \cdot \left(t_{operación}\right)}{\tau_{propano}}$$
$$m_{propano} = \frac{\left(176.967 \frac{kcal}{hr}\right) \cdot (3.6 hr)}{101.264 \frac{kcal}{hr}}$$

$$m_{propano} = 6.292 \ kg$$

ANEXO IV

TABLAS Y GRAFICAS DE LAS PRUEBAS EXPERIMENTALES PARA MUESTRAS OBTENIDAS DE MALLA DE 6 mm

Tabla Nº A IV.1: Datos registrados durante el proceso de secado del ají charapita a 50 °C.

0	fx =SERIE	S(,'Malla de 6mm, 50 °C'I\$N\$9:\$	N\$21, 'Malla de (imm, 50 °C'	!\$0\$9:\$0\$21,1)
5	1	16	11	12	13
<u>, L</u>	M	N	0	P 1	a
-	:			í	• • • • • • • • • • • • • • • • • • •
د بلغی اللہ اللہ اللہ اللہ اللہ اللہ اللہ الل		$\left[X_{\underline{u},i}=\left(\frac{X_i+X_{i-1}}{2}\right)\right]$	$Y = \frac{S}{A} \left(\frac{\overline{X}_{i} - \overline{X}_{i}}{\Delta \theta} \right)$	<u>+-1</u>]	
A B B B R C B C B C B C B C	,				% Humedad
	i	X _{ma} (Kg agua/Kg sólido seco)	W(Kg/m².h)	1111	[(Kg agua Kg total)*100]
	1	0.1471	1.528	0.6545	12.82
	2	0.2132	0.764	1.309	17.58
	3	0.2574	0.764	1.309	20.47
	4	0.3162	1.2732	0.7854	24.02
	5	0.4118	2.0372	0.49087	29.17
	6	0.5515	2.8011	0.357	35.55
1 60 TET FL TL 40	7	0.7132	2.8011	0.357	41.63
	8	0.8971	3.5651	0.2805	47.29
2	9	1.1176	4.0744	0.24544	52.78
	10	1.3676	4.5837	0.21\$17	57.76
	11	1.6397	4.8383	0.20668	62.12
	12	1.9118	4.5837	0.21817	65,66
	13	2.2059	5.6023	0.1785	65.81
	14	2.5221	5.3476	0.187	71.61
	15	2.8456	5.857	0.17074	74.00
	16	3.1912	6.1116	0.16362	76.14
	17	3.5441	6.1116	0.16362	77.99
	18	3.9338	7.3848	0.13541	79.73
5 - F H AL 12 - F 1	19	4.5147	12,732	0.07854	81.87

Tabla Nº A IV.3: Interacción de la columna de velocidad de secado Vs área de particiones

Figura Nº A IV.3: Numero de particiones presentes durante el proceso de secado

	4	1 5	e l	7	5
	G	н		1	K ·
58 59		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • •	• -*
0			•• •• • • • • • • • •	% Humedad	Í.
52		θ (h)	X (Kg agua/Kg sólido seco)	[(Ke agua Kg total)*100]	W(Kgm ² h)
3	 	0	4.8824	\$3.00	16.765
4	· · · · · · · · · · · · · · · · · · ·	0.5	3.6030	78.27	28.223
s		1	3.1834	76.10	4.968
6		1.5	2.8965	74.34	4.968
7		2	2.6096	72.30	4.968
		2.5	2.3227	69.90	4.968
		3	2.0358	67.06	4.968
5		3.5	1.7489	63.62	4.968
	· · · [4	1.4620	59.38	4.968
2	Ī	4.5	1.1751	54.03	4.968
		5	1.1658	53.83	4.968
		5.5	0.9641	49.09	3.306
;	· · · · · ·	6	0.7840	43.95	2.930
,		6.5	0.6257	38.49	2.554
1	. 1	7	0.4890	32.84	2.178
	· · · · · · · · · · · · · · · · · · ·	7.5	0.3741	27.22	1.803
		8	0.2808	21.93	1.427
,		8 .5	0.2093	17.31	1.051
	ן ווייי	9	0.1594	13.75	0.675
	1	9.5	0.1313	11.61	0.300

Tabla Nº A IV.4: Interacción Idealizada de la columna de velocidad de secado Vs contenido de humedad

6		10	11		T
L	:M	· N ·	T	0	1
e	· · · · · ·				;
- 8.658	Kgm				
<u>.</u>					:
· = - 0.3	137 <i>0</i> ³ +1.08	32 0 - 1.9363 0 + 4	.8824		-
S &X	·	···· · ·		• • •	
Ado	$=-\frac{-}{A}(-0.941)$	10° + 2:17640 - 1.930	63) = 8.148 <i>0</i> ° -	18.84 <i>0</i> +1	6.7
-8 148	$A^2 = 18.84A$	16 764	· · · · · ·	••	• •
			•••••	•·• ·	• .
	1 mar 1 1 1 1 1 1 1 1	• • • •		· -	
2.3	7204-11-2-17			•••••	• •
	5997 V 2007	50 * 1			• - 4
S dX	S _ 0 5739	8) _ 4 068	• •		
A do	<u> </u>	59 - 4.900		•••	*
= 4.968					
. · ·		, , ,		-	
0.04346	- 0.8592 0 + 4	.3768			
- 1		• •	• • .		,
<u>S</u>		-0.8592) = -7.51516	+ 7.439		;
A . đ Ə	. A		• •		

Figura Nº A IV.4: Grafica Idealizada de la velocidad de secado Vs contenido de humedad

ANALISIS DE LOS DATOS TOMADOS CON MUESTRAS OBTENIDAS CON

MALLA DE 6 mm A 60 °C.

Tabla Nº A IV.5: Datos registrados durante el proceso de secado del ají charapita a 60 °C.

1	1	C 1	0	E	i f	6			1	ł
				1			• •			
	A(m [*])	S(Kgsinforeco)		1			• ·			
	0.0075.4	0.055	17	1			•	·	.	
	.'	·			۰			(x + x)	S(X, - X, 1)	
				• • •		•			·	••
	·				<u> </u>	, .		── └ ── <u>`</u> ╗┿┷╧┊─└╴		
		θ	Pes	o total	% Honester			·		<u>.</u>
	n <u>in</u> in	b	<u>.</u>	Σ.c.	[(Kg agon Kg mud)*100]	- í	I (Kg agen Kg soldo sezo)	X Her (Eg agua/K gabado secc)	DY(Kata²h)	
	í.	U U	+00	6.5	83.00	18	4,\$524	4.782	35,145	Ϊ
	5	10.0033333333	377	0.377	61.96	17	4341	4,394)	17,316	
	20	0.3333333333	343	6.343	£0.17	16	4 (044)	3,7279	15.425	
	40	0.666666657	300	0.3	77.33	15	3,4118	3 1691	12.605	
•	ť	1	367	0.267	74.53	14	2.9265	1.7059	11,459	
• • •	R	1.333399393	237	6.237	71.51	Ð	2,4853	2.2794	10,655	
•	100	1.666666657	209	6.209	67.45	12	2 0735	1.\$456	11,\$41	t
	129		178	6175	61.89	11	1,6175	1.4706	7,639	1
	10	2333323333	158	C.155	56.96	10	1.3235	12132	5.730	1
	160	2.666644457	143	145	2.45	9	1,1029	1.0221	4,392	1
	19	3	132	6.132	45.45	1	0.9412	0.\$575	3.6.0	
-	20	133311111	122	6.122	44,26	7	0,7941	0.6591	6,194	
	220	1.666666657	105	6.105	15.72	6	0.441	0.4559	4,584	1-
	30	+	<u>91</u>	0.095	15.58	3	0.3675	0.3015	3,438	
	20	433333333	\$4	0.084	19.05	4	9.2353	0.1955	1.910	1
	283	1.666666857	70	0.079	13.92	3	0,1518	0.1397	1_145	1
	3(0	1	76	0 075	10.53	1	0,1176	0.0956	1.145	
•	133	(3)333333	n	0.073	6.65	1	0 0735			_

Figura Nº: A IV.5. Relación de la perdida de humedad Vs el tiempo de secado

.

L '	M	11	0	· P	Q	R
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	*
	•• • • • • •	· · · · · · · · · · · · · · · · · · ·	· ··· · ··		Anna a sa ana ang sa	
	• •-		818-3	<u> </u>	a na an an an an an an anna. B	
	· •	$X_{1ud} = \begin{bmatrix} \underline{X_1 + X_{1-1}} \\ 0 \end{bmatrix}$	$V = \frac{3}{4} \left \frac{x_1 - x_2}{x_2} \right $	<u>-1</u>		£
	• • •		A (Δ0		2	1
· · ·				х. н. н	% Humedad	ĺ
៍	í	X Med (Kg agua/Kg solido seco)	$W(Kgm^2h)$	1/77	(Ke agua-Ke total)*100]	1.
· · · · ·	1	0.0956	1.146	0.872664	8.72	<u> </u> .
t	2	0.1397	1.146	0.872664	12.26	ł
· I	3	0.1985	1.9099	0.523599	16.56	1
	4	0.3015	3.4377	0.290888	23.16	i
··· 1	5	0.4559	4.5837	0.218166	31.31	1
	6	0.6691	6.4935	0.154	40.09	ľ
T T	7	0.8676	3.8197	0.261799	46.46	Γ
1	8	1.0221	4.2017	0.237999	\$0.55	Γ
1	9	1.2132	5.7296	0.174533	54.82	
	10	1.4706	7.6394	0.1309	59.52	l'
í í	11	1.8456	11.8411	0.084451	64.86]
	12	2.2794	10.6952	0.0935	69.51	ĺ
	13	2.7059	11.4592	0.087266	73.02	1
	14	3.1691	12.6051	0.079333	76.01	
Ţ	15	3.7279	16.4248	0.060884	78.85	
	16	4.2941	17.3161	0.05775	\$1.11	l
· · · 1	17	4.7132	35,1414	0.028456	82.50	ľ
						· · · ·

Tabla Nº A IV.6: Interacción de la columna de velocidad de secado Vs la humedad media

Figura Nº A IV.6: Relación de la velocidad de secado Vs el contenido de humedad

	T 9	- (f= =[1/2]*[N10-N9]*	(P9+P10)							
	1	M	IH	0	! <u>p</u>	·0	Î R	5	t	U	v
2			· • · · · · · · · · · · · · · · · · · ·	•	- . .	·	•				
3						:	' 1	1	/ 1		- F
4		• •• • • ••	$(X_{1}+X_{1})$	8 (X,-)	r.,)		. ($A_{\text{period}} = \frac{1}{2}$	$(X_{i+1} - X_i) \Big \frac{1}{m_i} + \frac{1}{m_i}$	<u>-</u> []a	
5			X ₁₁₄ = (# = <u>A</u>	J		[2	(¹⁷ i+1 -		A _x W
6 j			r herrigersten _ranna5.} •	· · · · · ·	المتيمينية. بالمراجع	;,,	, 1	· . ·	* **** * *		
4		·		¥	·	16 Humedad			<u> </u>	¥	
8		i	X _{Bed} (Kgagua/Kgsółdo seco)	W(Kga h)	1/17	(Kg 2502 Kg tot2)*100]		1 i	Area de parteiones	<u> </u>	.
9		1	0.0956	1.146	0.\$72664	\$.72		. 1	0.03\$499902		
10		2	0.1397	1.146	0.872664	12.26		2	0.041066562	I.,	•
11		3	0.1985	1.9099	0.523599	16.56		3	0.041922115	I	:
u]		4	0.3015	3.4377	0.290355	23.16		4	0.039301953] .	,
13		3	0.4559	4.5837	0.218166	31.31	<u> </u>	5	0.039679433	J	
14		6	0.6691	6,4935	0.154	40.09]	6	0.04127415		
15		7	0,8576	3.8197	0.261799	46.46	·	1	0.035587402]	•
16		8	1.0221	4.2017	0.237999	50,55		8	0.039433233	1	
17		9	1.2132	5.7296	0.174533	54.82	1	9	0.039301953	1	• • • •
18		10	1.4706	7,6394	0.1309	59.52	• •	10	0.040376325	f	
19		11	1.6455	11.8411	0.0\$4451	64.86	ſ	11	0.0385997	1	:
20	• •	12	2.2794	10.6952	0.0935	69.51		12	0.038545735	[·· · ·	
21	• •	15	1.7059	11.4592	0.0\$7266	73.02	·	13	0.038587402	1.	•
22		14	3,1691	12.6051	0.079333	76.01	-	14	0.039178195	1	• • • • •
23	• • • •	15	3.7279	16.4248	0.060584	78.85		15	0.033583725	1	• •
24		16	4.3441	17.3161	0.05775	\$1.11		16	0.015065291	1 · · · ·	* · · ·
25		17	4,7132	35.1414	0.028456	82.50		;		• • ••	
76	•						1	• ·			
77	• •		e e e e e e e e e e e e e e e e e e e	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ы. — торы		, ·	• •	, -		· · -
	· · ·	• •	·			· · · ·	r				· · ·
H 4-	4 H).Nz	il a 6 mm, 60	C/853 202						£		

Tabla Nº A IV.7: Interacción de la columna de velocidad de secado Vs área de particiones

Figura N° A IV.7: Numero de particiones presentes durante el proceso de secado

Tabla Nº A IV.8: Interacción Idealizada de la columna de velocidad de secado Vs contenido de humedad

; 1	н	II	1	K
				• •
		• • • • •	% Humedad	
ſ	O (b)	X (Kg agua/Kg sólido seco)	(Kg agua/Kg total)*100]	W(Kgm ² h
1	0	4.8824	\$3.00	41.762
1	0.083333333	4.5442	\$1.96	29.061
1	0.333333333	4.0442	\$0.18	10.440
1	0.666666667	3.4118	77.33	8.132
r	1	2.8179	73.81	\$,132
- T	1.333333333	2.5048	71.47	8,132
T	1.666666667	2.1917	68.67	8,132
· • 1	2	1.8786	65.26	8.132
	2.333333333	1.5655	61.02	8.132
· • •	2.666666667	1.2524	55.60	8,132
1	3	0.9393	48.44	8.132
r	3,333333333	0.6262	38.51	8,132
- T	3.666666667	0.5375	34,96	+.690
·*	4	0.3743	27.24	3.747
· · · •	4,333333333	0.2474	19.83	2.804
t	4,666666667	0.1567	13 54	1.861
- T	5	0.1022	9.27	0.918
· · · †	5.333333333	0.0840	7.75	-0.025
- 1	· · · · · · · · · · · ·	• • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · ·

Figura Nº A IV.8: Grafica Idealizada de la velocidad de secado Vs contenido de humedad

ANALISIS DE LOS DATOS TOMADOS CON MUESTRAS OBTENIDAS CON

MALLA DE 6 mm A 70 °C.

	6	(Ð		١ ۽	6	1 1	1	1
	4/m ² 1			٦-	• -		<i>i</i>	,	
	0.007774	ap.gsubuesca)	47	4		• •			. .
	UAU/SS	0.008		.		•	•••••	·	<u> </u>
		. •	• •	. • •			1. Sec. 1. Sec	$X_{i} = \begin{pmatrix} X_i + X_{i-1} \end{pmatrix} = W$	$S[X_i - X_{i-1}]$
•			-	· ·	• • • • • • •	•	• • •	· 1 2	A _ 10 _)
	[8	2:5	ම සැක්	li firmetat	-	· · ·		-]
	min	à	ſ	Ke	(Ke ma Ke toti)" 100)	1	X (Xg agua/Kg stilado seco)	Xyd (Kg agos/Kg soudo seco)	W(Kgz ¹ h)
	0	Û	£6	0.4	\$3.00	It	4.8824	4,2721	63.407
•	10	0.155655557	317	0,317	78.55	17	3.6618	3,4706	19,863
	20	6.333333333	SI	9.291	76.63	15	3.2794	1.0515	23.682
•	30	0.5	250	0.16	73.85	15	14235	2.6175	21,350
	#3	0,55666657	<u>11</u>]	0.112	70.69	14	2.4118	2,2152	39.626
	- i9	0.333333333	X 5	0.305	66.83	B	2.0147	1.\$309	19.059
•	60	1	126	0.1\$	62.22	12	1.6471	1.4555	16.857
	70	1,156666567	158	0.158	¥.¥	11	13235	1.1765	15,279
	60	1.333333333	135	0.13\$	50.72	tQ	1.0294	0.9344	12557
	90	15	421	0.121	43.50	ş	0,7794	0,659)	11.459
	100	1.655666567	166	0.106	35.85	ş	8366.0	0,4739	\$.433
	110	1.\$33333333	65	0.005	28.42	7	0.3971	0.3382	6.112
	120	2	87	0.057	21.8	5	0,2794	<u></u>	1.530
	130	2.166666667	£ 2	0.052	17.07	÷	0.3059	0,1755	3,055
	140	235555553	71	0.078	12.82	4	0.1171	6.1324	1.525
	150	25	ю	0.075	10.53	3	0.1176	6.15.9	1.523
_	160	2.655566667	74	0.074	\$.11	2	0.0522	90200	0.754
	170	2.53333333	73	0.073	6.85	1	0.0735		

Tabla Nº A IV.9: Datos registrados durante el proceso de secado del ají charapita a 70 °C.

Figura N°: A IV.9: Relación de la perdida de humedad Vs el tiempo de secado

	41 Gráfico	- (👎 🚽 =SERIES(, 'Malia 6r	nm, 70 °C'I\$N\$9:	\$N\$19,'Mal	la 6mm, 70 *C'I\$O\$9:\$O\$19
$-i^{\dagger}$	L	м	I N	0	P	0
2			e,	•		
4 5 6	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	$\left[X_{1+a} = \left(\frac{X_1 + X_{1-1}}{2}\right)\right]$	$W = \frac{S}{A} \left(\frac{X_i - \lambda}{\Delta \theta} \right)$	<u>(+1</u>)	
7				.	· /	% Humedad
8		i	X _{Med} (Kg agua/Kg sólido seco)	₩(Kg/m ² h)	1/ //	[(Kg agua/Kg total)*100]
51	,	1	0.0809	0.764	1.308997	7.4\$
õ		2	0.1029	1.528	0.654498	9.33
1	••••••••••••••••••••••••••••••••••••••	3	0.1324	1.5279	0.654498	11.69
2	•	4	0.1765	3.0558	0.327249	15.00
3		5	0_2426	3.8197	0.261799	19.53
4	··· · · · · ·	6	0.3382	6.1116	0.163625	25.27
5		7	0.4779	8.4034	0.119	32.34
6		8	0.6691	11.4592	0.087266	40.09
7		9	0.9044	12.9870	0.077	47,49
Ĩ	· -,. · ·	10	1.1765	15.2789	0.06545	54.05
1		11	1.4853	16.8068	0.0595	59.76
2		12	1.8309	19.0986	0.05236	64.68
Í		13	2.2132	20.6265	0.048481	68.88
2		14	2.6176	21.3904	0.04675	72.36
3		15	3.0515	23.6823	0.042226	75.32
		16	3.4706	19.8625	0.050346	77.63
5		17	4.2721	63.4073	0.015771	\$1.03
		ta in an an		a de la compansión de la c	·	
1	· · · · · ·	· ·		• • •	• •	n an

Tabla Nº A IV.10: Interacción de la columna de velocidad de secado Vs la humedad media

Figura Nº: A IV.10. Relación de la velocidad de secado Vs el contenido de humedad

Tabla N° A IV.11: Interacción de la columna de velocidad de secado Vs área de particiones

1		-SERIES, IVana on mi, 70 C 19903	1:51565, Walla 6mm, 70 °C 151	(203:28202,1)
-	Н	11	j	ĸ
1			1 i	
i		• · · · · · · · · · · · · · · · · · · ·		
			% Humedad	
	<i>e</i> (h)	X (Kg agua/Kg sólido seco)	[(Kg agua Kg total)*100]	W(Kgm [*] h)
	00	4.8824	\$3.00	100.970
	0.166666667	3.6618	78.55	33.743
	0.333333333	3.2794	76.63	15.890
	0.5	2.6664	72.72	15.890
. L	0.666666667	2.3605	70.24	15.890
·	0.833333333	2.0546	67.26	15.890
Ļ	1	1.7487	63.62	15.890
Ļ	1.166666667	1.4428	59.06	15.890
	1.333333333	1.1369	53.20	15.890
	1.5	0.8311	45_39	15.890
	1.66666667	0.5252	34.43	15.890
+	1.833333333	0.2193	17.98	15.890
	2	0.2897	22.46	4.640
	2.10000007	0.2098	17.34	3.658
	2.33333333	0.1459	12.96	2.676
. F	2.5	0.1068	9.65	1.694
·	2.00000007	0.0837	1.12	0.711
Ļ	2.83333333	0.0794	7.36	0
$\frac{S}{A}$	= 8.658 Kgm ²	i a construire de la const La construire de la constru La construire de la	19 19 19 19 19 19 19 19 19 19 19 19 19 1	
$\frac{S}{A}$	= 8.658 K g/m ² = -32.824 8³ + 31.5 8 ² -	- 11.662 0 + 4.8824		
$\frac{S}{A}$	$= 8.658 \text{ Kg/m}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-98.472)$	- 11.662 0 +4.8824 Ø + 630 - 11.662) = 852.57 Ø	- 5451,454 8 +100.97	
<u>S</u> A X =	$= 8.658 \text{ Kgm}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-98.472)$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-98.472)$	- 11.662 0 +4.8824 ð + 630 - 11.662) = 852.57 <i>ð</i> 9+100.97]	- 5451,454 8 +100.97	
S A X =	$= 8.658 \text{ Kgm}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-98.472)$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-98.472)$	- 11.662 0 +4.8824 0 ² + 630 - 11.662) = 852.57 <i>0</i> ² 9+100.97	- 5451,454 <i>6</i> +100.97	
<u>s</u> A X =	$= 8.658 \text{ Kgm}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-98.472)$ $= 852.57\theta^{2} - 545.454\theta$	- 11.662 0 +4.8824 0 ² + 630 - 11.662) = 852.57 <i>0</i> ² 9 +100.97	- 5451,454 <i>6</i> + 100.97	
S A X = V	$= 8.658 \text{ Kgm}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-98.472)$ $= 852.57\theta^{2} - 545.454\theta$ $= 1.5700 + 545.454\theta$	- 11.662 0 + 4.8824 0 ² + 630 - 11.662) = 852.570 ² 9 +100.97	- 5451,454 8 +100.97	
S A X =	$= 8.658 \text{ Kgm}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A \overline{u} \theta} = -\frac{S}{A}(-98.472)$ $= 852.57\theta^{2} - 545.454\theta$ $= 1.852.57\theta^{2} - 545.454\theta$	-11.662 <i>0</i> +4.8824 <i>ô</i> ² + 63 <i>0</i> -11.662) = 852.57 <i>0</i> ² <u>9+100.97</u>	- 5451,454 8 +100.97	
S Ā X = V	$= 8.658 \text{ K g/m}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A 10} = -\frac{S}{A} (-98.472)$ $= 852.57\theta^{2} - 545.454\theta$ $= 852.57\theta^{2} - 545.454\theta$ $= 852.57\theta^{2} - 545.454\theta$	$-11.662\theta + 4.8824$ $\theta^2 + 63\theta - 11.662) = 852.57\theta^2$ $\theta + 100.97$	- 5451,454 8 +100.97	
<i>S</i> <i>A</i> <i>X</i> = <i>V</i> =	$= 8.658 \text{ Kgm}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-98.472)^{2} + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-98.472)^{2} + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-1.835)^{2} + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{dX}{d\theta}$	$-11.662\theta + 4.8824$ $\theta^{2} + 63\theta - 11.662) = 852.57\theta^{2}$ $\theta + 100.97$ $\theta + 100.97$	- 5451,454 0 +100.97	
<u>S</u> A X = V =	$= 8.658 \text{ Kgm}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A il\theta} = -\frac{S}{A}(-98.472)$ $= -\frac{S}{A il\theta} = -\frac{S}{A}(-98.454)$ $= -\frac{S}{A il\theta} = -\frac{S}{A}(-1.835)$	$-11.662\theta + 4.8824$ $\theta^{2} + 63\theta - 11.662) = 852.57\theta^{2}$ $\theta + 100.97$	- 5451,454 0 +100.97	
<u>S</u> A X = V =	$= 8.658 \text{ Kgm}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-98.472) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-98.472) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-1.835) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{dX}{d\theta} + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{dX}{d\theta} + \frac{S}{A} \frac$	$-11.662\theta + 4.8824$ $\theta^2 + 63\theta - 11.662) = 852.57\theta^2$ $\theta + 100.97$ $\theta + 100.97$	- 5451,454 0 +100.97	
S A X = V V W =	$= 8.658 \text{ Kg/m}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-98.472) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-98.472) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-1.835) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{S}{A} \frac{dX}{d\theta} + \frac{S}{A} \frac{S}{A} \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{S}{A} \frac{S}{A$	$-11.662\theta + 4.8824$ $\theta^2 + 63\theta - 11.662) = 852.57\theta^2$ $\theta + 100.97$	- 5451,454 0 + 100.97	
S A X = V =	$= 8.658 \text{ Kg/m}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-98.472) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-98.472) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.835) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{dX}{d\theta} + \frac{S}{A} \frac{dX}{d\theta} + \frac$	- 11.662 <i>0</i> + 4.8824 <i>d</i> + 63 <i>0</i> - 11.662) = 852.57 <i>d</i> 9+100.97 3) = 15.89	- 5451,454Ø +100.97	
<i>S</i> <i>A</i> <i>X</i> = <i>V</i> = <i>X</i> <i>X</i>	$= 8.658 \text{ Kg/m}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-98.472) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-98.472) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.835) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} \frac{dX}{d\theta} + \frac{S}{A} \frac{dX}{d\theta} $	$-11.662\theta + 4.8824$ $\theta^{2} + 63\theta - 11.662) = 852.57\theta^{2}$ $\theta + 100.97$ $\theta^{2} + 100.97$	- 5451,454 <i>0</i> + 100.97	
<i>S</i> <i>A</i> <i>X</i> = <i>V</i> = <i>V</i> = <i>V</i> = <i>X</i> =	$= 8.658 \text{ Kg/m}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-98.472) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-98.472) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.835) + \frac$	$-11.662\theta + 4.8824$ $\theta^{2} + 63\theta - 11.662) = 852.57\theta^{2}$ $\theta + 100.97$ $\theta^{2} + 100.97$ $\theta^{2} + 100.97$	5 451,454 Ø +100.97	
S A X = V V W X	$= 8.658 \text{ Kg/m}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-98.472) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A}(-98.472) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A}(-1.835) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.835) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A} \frac{dY}{d\theta} + \frac{S}{A} \frac{dY}{d$	$-11.662\theta + 4.8824$ $\theta^{2} + 63\theta - 11.662) = 852.57\theta^{2}$ $\theta + 100.97$ $\theta^{2} + 100.97$ $\theta^{2} + 100.97$ $\theta^{2} + 100.97$	5451,454 <i>6</i> + 100.97	
<i>S</i> <i>A</i> <i>X</i> = <i>V</i> = <i>V</i> = <i>X</i>	$= 8.658 \text{ Kg/m}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-98.472) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A}(-98.472) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A}(-1.835) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.835) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A}(-1.835) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A}(-1.837) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A}(-1.897) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A}(-1.897) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A}(-1.897) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A}(-1.897) + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A} \frac{dY}{d\theta} + \frac{S}{A} \frac{dY}{d\theta} = -\frac{S}{A} \frac{dY}{d\theta} + \frac{S}{A} \frac{dY}{d\theta$	$-11.662\theta + 4.8824$ $\theta^{2} + 63\theta - 11.662) = 852.57\theta^{2}$ $\theta + 100.97$ $\theta + 100.97$ $\theta + 100.97$ $\theta + 100.97$	5451,454 <i>0</i> + 100.97	
	$= 8.658 \text{ Kg/m}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-98.472) + \frac{S}{A} \frac{d\theta}{d\theta} = -\frac{S}{A}(-1.835) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.835) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.835) + \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.897) + $	$-11.662\theta + 4.8824$ $\theta^{2} + 63\theta - 11.662) = 852.57\theta^{2}$ $\theta + 100.97$ $\theta + 100.97$ $\theta + 100.97$ $\theta + 100.97$ $\theta - 1.8971) = -5.8926\theta + 16.47$	- 5451,454 <i>0</i> + 100.97	
	$= 8.658 \text{ Kg/m}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-98.472)$ $= \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.835)$ $= \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.835)$ $= 15.89$ $= 0.3403\theta^{2} - 1.8971\theta - \frac{S}{A}(0.6806\theta)$	$-11.662\theta + 4.8824$ $\theta^{2} + 63\theta - 11.662) = 852.57\theta^{2}$ $\theta + 100.97$ $\theta + 100.97$ $\theta + 100.97$ $\theta + 100.97$ $\theta - 1.8971) = -5.8926\theta + 16.42$		
	$= 8.658 \text{ Kg/m}^{2}$ $= -32.824\theta^{3} + 31.5\theta^{2} - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-98.472)$ $= \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.835)$ $= \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(-1.835)$ $= 15.89$ $= 0.3403\theta^{2} - 1.8971\theta - \frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A}(0.6806\theta)$	$-11.662\theta + 4.8824$ $\theta^{2} + 63\theta - 11.662) = 852.57\theta^{2}$ $\theta + 100.97$ $\theta + 100.97$ $\theta + 100.97$ $\theta + 100.97$ $\theta - 1.8971) = -5.8926\theta + 1642$	5451.454 <i>#</i> +.100.97	

Tabla Nº A IV.12: Interacción Idealizada de la columna de velocidad de secado Vs contenido de humedad

•

Figura Nº A IV.12: Grafica Idealizada de la velocidad de secado Vs contenido de humedad

ANEXO V.

TABLAS Y GRAFICAS DE LAS PRUEBAS EXPERIMENTALES PARA MUESTRAS OBTENIDAS DE MALLA DE 8 mm

H	9	-6-	<u></u> =[E	9-\$C\$3]/\$C\$	53					
7	1	1	25			4		e T	7	4
1	9	C	2	£		e			· · · · · ·	τ τ
A	δĨ	S(Kg tôbdo peco)	ß	1	,			i		
1 0.0	:51	0.0645	22	· · ···		• • • • •		••••••••••	5H T A 14 1-	
ĺ			···· ·		· · · · · · · · · · · · · · · · · · ·			$= \left[\frac{X_{1} + X_{2}}{2} \right] W$	$=\frac{S}{A}\left(\frac{X_{1}-X_{1-1}}{\Delta\theta}\right)$	· · ·
<u> </u>		θ	Ptto	ालम	13 Humeford				<u> </u>	
) 1	ž.	Ł	1	ži	[the error he tetel?" 100]	i	X(Kg egos/Kg sóbin seco)	X. (Kgegus/Kgóbdorce)	HT(Kefm h)	11177
<u> </u>	<u> </u>	0	320	0.38	\$3.00	23	4 \$\$ \$24	4,5341	11,459	0.6573
3	û 🗌	05	335	0355	\$5.53	22	4.1559	3,9923	6.355	0.151
6	Ŷ	ł	310	031	79.16	21	3,758	3.6962	5,348	0.15,0
Ŷ	2	12	259	0.289	17.65	20	3,4737	1316	5.093	0.175
	3	2	33	6,255	1599	19	3,164)	5.0110	4,535	A.36
1.	9	12	253	0.25	74,15	15	21570	2,7307	4,52	0.215
11	80	;	232	0.232	72.16	1.	2.5915	2,4675	1.0.1	0.315
21	10	13	216	0,216	70.09	15	2345	2.2195	1671	02454
	10	1	25	Ŷ.	67.70	15	2.0959	2.0155	2,545	0.392
2	10	45	32	6.19	66.00	14	1,9412	1.7964	5.093	0.196
X	X	5	170	6.17	62.00	11	1.6316	1.5222	1.545	0.392
5	:0	55	155	0.155	55.53	12	1,4149	1362	3.310	0.302
30	60 T	6	143	6,143	34.63	11	1,2135	1.1130	5.31)	6,302
35	N I	63	135	0,15	5031	16	1.6124	09118	3.310	0.302
4	N I	-	11	ali -	44,79	9	0,511	0.351	2.545	4 .392
4	50	-1	ų.	0.10	39.63	Ę	0.5565	0.585	2.5%	0,436
- 45	۶۵	2	\$\$	6.255	3409	7	0,4170	0.4551	2,057	0.493
- 51	15	<u>8.5</u>	53	Q.09	21.22	é	0.3932	0.345	1.528	9.652
	12	Ş	\$2	0,031	23.10	5	0.3003	0.14:5	1273	0.785
	7	<u>9.5</u>	7	÷ 20	15.23	4	0.1110	0.2074	0.509	1,963
50	20	10	77	0.517	16.10	;	0.1920	0.165	0 751	1309
6	\$ T	10.5	1	0.074	12.70	2	0.1455	01233	0.754	130%
~	60	11	-1	0.01	9.01	1	0.0991			

Tabla N ° A V.1: Datos registrados durante el proceso de secado del ají charapita a 50 °C.

Figura Nº A V.1: Relación de la perdida de humedad Vs el tiempo de secado

		in a sin in				
Ŷ	<u></u>		10j (14 P	
	and the second second	111				
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		<u></u>	λ.
	ېد مېر د اسموند. د مېر و ور و وو	اليوم الميان ولا الالارموم	$= X_{\text{Mod}} = \left(\frac{X_i + X_{i-1}}{2}\right) = -W$	$V = \frac{S}{A} \left(\frac{X_{\pm} - X}{\Delta \theta} \right)$	<u>·</u>	n sheer an an san san sa
	· · · · · · · · · · · · · · · · · · ·	- 4			agaman di Angaman di Sangara Angaman di Sangara	% Humedad
	i i i i i i i i i i i i i i i i i i i	i	X. Kg agua/Kg sólido seco)	W(Ke/m'h)	1/17	I(Kg agua/Kg total)*10
		<u>.</u>	0 1223	0 764	1 305297	10.90
			0 1687	0 764	1 388007	11 34
	ł		0.2074	0.509	1.963495	17.18
		4	0.2616	1.2732	0.785398	20.74
		5	0.3467	1.5279	0.654498	25.75
		6	0,4551	2.0372	0.190574	31.28
			0.585	2.2918	0,436332	36.98
		8	0.7337	2 5465	0 392699	42.32
		9	0.9115	3,3104	0 302076	47.69
		10	1.1130	3,3104	0.302076	52.67
	• • • • • • • • •	11	1.3142	3,3104	0.302076	56,79
		12	1.5232	3.5651	0.280499	60.37
	· · · · · · · · · · · ·	13	1.7864	5.0930	0.19635	64.11
	· · · · · · · · · · · ·	14	2.0186	2,5465	0.392699	66.87
		15	2.2198	4.074	0.245437	68.91
		16	2.4675	4,0744	0.245457	71.16
	· · · 1	37	2.7307	4.5837	0.218166	73.20
		18	3.0170	4.8383	0.206684	75.11
		19	3.3189	5.093	0.19635	76.85
		20	3.6362	5.348	0.187	78.43
		21	3.9923	6.366	0.15708	79.97
		22	4,5341	11.46	0.087266	\$1.93
	<u>مر</u>		•		•	
1alla 8	mm, 50 °C ∕ H	ola3~6				
j						
=SERIE	S(,'Malla 8 mm, 50	D*C'ISN\$9:	\$N\$21,'Malla 8 mm, 50 °C'!\$O\$9:\$O\$.	21,1)		
E		2			10	[1]

Tabla Nº A V.2: Interacción de la columna de velocidad de secado Vs la humedad media

Figura Nº: A V.2. Relación de la velocidad de secado Vs el contenido de humedad

đ	1	57	11		1 1 11		1		14	
<u> </u>	1 <u>51</u>	u	0	P	0	1 8	i ș	7	U	Y
	· · ·	$X_{\text{max}} = \left(\frac{X_{1} + X_{-1}}{2}\right) \cdots \left(\frac{X_{n}}{2}\right)$	$Y = \frac{S}{A} \left(\frac{X_{1} - X_{2}}{\Delta \theta} \right)$			م		$(X_{\text{rel}} - X_{\text{r}}) \left(\frac{1}{H'_{\text{rel}}} + \frac{1}{H} \right)$	$\overline{a} = \frac{s}{A}$	
	+		•	÷	16 Humedad]				
I. T	;	X net (Kg egua/Kg sólido seco)	W(Kgha'h)	1111	[(Kg aroa Kg total)*100]]	i	Area de partciones	Q. (1)	
1	1	0.1223	0.754	1.303997	10.90]] .	i	0.060189319		
	2	8,1537	0,764	1.306997	14,44]	2	0.063322207		
1	3	0_70_1	0.509	1.963495	17,1\$]	;	0.074455915		
	4	0.2515	12732	0,785398	20.74]	4	0.061295597		
I T	5	8345	1.5279	0.654495	25.75		5	0.062055765		
	5	0.4551	20372	0.490874	31.28]	6	0.061000393		
	-	0.555	2,2918	0.436332	35.53		2	0.060958178		
· ·	8	0.1357	2.5455	0.392699	42.32		\$	0.061541442	··· ·	
1	9	03115	3.3194	0.302076	17.69	1 `	9	0.060769519		
1 .	19	1,1130	5.3104	0.502076	52,63	1	10	0.060789319		•
	11	13142	3,3104	0.302075	%. 77	1	11	0.050372821		ì
1	12	1.5252	3.5551	6.283459	6037	1	12	0.052743261		
1	15	1. \$54	5.0930	0.19535	64.11	1	B	0.06\$3\$79\$4		
!	[4	2.0196	2.5465	0.392699	65.\$7		1:	0.054205715		
1	15	2,2198	4,011	0,245437	12.23	1 '	15	0.060789519		
1	15	1.45"5	11-01	024545	71.16		16	0.061000393		
	1	2.56	4,5\$37	0.218156	73.20]	12	0.060\$33.55		
1	18	3.0170	4,\$385	0.205634	75.11	1	15	0.060829312		. ~
	19	53189	5.095	0.19655	75.55]	19	0.060325503		
1 .	20	3,6352	5345	0.187	75,43] ```	20	0.061252476		
l "'	21	3,9923	5.355	0.1570\$	79.97	<u>ן</u> ו	21	0.066192814		
·	n	45341	11,45	0.03"255	\$1.93]			; ,	•

Tabla Nº A V.3: Interacción de la columna de velocidad de secado Vs área de particiones

Figura N° A V.3: Numero de particiones presentes durante el proceso de secado

	<u></u>		7	2
G	H	4	J	K
	······································		المانية برية موضوعة مسالحًا	ti Si na an an
*			and the second second	} ₽
· •	والمعاد المطالب والمراجع	· · · · · · · · · · · · · ·	Ri II.	n Marine a lea la
· · · ·	<i>A</i> 12	V/V marking and		W/Value h)
· · · · · · ·	(n)	X(Kgaguargondosecu	[(Ke agua Ke total) - IVV]	W (Kgm II)
· · · ·	0	4.\$\$24	\$5.00	13.926
 	0.5	4.1 \$9	\$0.69	S. 96
	<u> </u>	3.7697	79.03	5.739
	1.5	3.3915	77.23	4.085
	2	3.1431	75.86	4.085
L	2.5	2.8948	74,32	4,0\$5
	3	2.6464	72.58	4.085
	3.5	2,39\$1	70.57	4.0\$5
	4	2.1497	68.25	4.085
· · · ·	4.5	1.9014	65.53	4.085
	5	1.6807	62.70	4,172
·· · · [5.5	1,4324	58,92	3.\$24
	6	1.2092	54,73	3,176
	6.5	1.0052	59.13	3.128
····		0.8223	45.12	2,790
	7.5	0.6606	39.78	2,432
· · · ·	8	0.5700	34.21	2 054
· · /	85	2002 0	28.60	1 736
· · ·	9	0 3073	23.21	1 398
· · · · -		0.2252	18.38	1.010
~ · •	10	0.160)	1920 1 1 97	0.693
· · •	10.5	0.1211	<u>19</u>	0.075
· · · · · ·	11	0.134-	10.77	0.00

Tabla Nº A V.4: Interacción Idealizada de la columna de velocidad de secado Vs

contenido de humedad

$\frac{S}{A} = 8.2251 \text{ Kg}$	/m .		ang	k z	n a constant seefin o
X = -0.3330	$2\theta^3 + 1.114$	6 0° -1.8679	Ø+ 4.884	i de la de la calencia. Portante entre la calencia	اریانی کار اسافیت اورجو ا
$W = -\frac{S}{A}\frac{dX}{d\theta} =$	$-\frac{S}{A}(-0.9906)$	5 0⁻ + 2.22920	-1.8679) = 8.1	478 0 2 -18.33	40+15.3637
₩ = 8.178 <i>0</i> ¹	-18.33546	9+15,3637) 	
: 		- • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	; ; ;
II CIUD	911.33	ан катараларын аларын Тан катараларын	, , , , , , , , , , , , , , , , , , ,		·····
$B' = -\frac{S}{A}\frac{dX}{d\theta} =$	- <u>\$</u> (-0,4967) = 4.085	• • •	· · · · · ·	· · · · ·
W = 4.085	· · · · · · · · · · · · · · · · · · ·		e de la composición d La composición de la c	∮ • : • • • • • • • • • • • • • •	• • • •
na na na na na seconda de seconda A consta de seconda de s	 	با با را با رسانه م مارد مار موم المارسان	ana a ana a ana ana ana ana ana ana ana	forman a constant General an actor	مرودیان در است. مراجع است
X = 0.0423	8 8° - 0,9361	80+5.3072			
$W = -\frac{S}{A}\frac{dX}{dA}$	$=-\frac{S}{A}(0.0846)$	6 - 0.9368) = -	0.69580+7.70	153	
				• · · · · · · · · · · · · · · · · · · ·	
W = -0.6	9580+7.7053	•. •·· •·		gerare erene ere e	

Figura Nº A V.4: Grafica Idealizada de la velocidad de secado Vs contenido de humedad

ANALISIS DE LOS DATOS TOMADOS CON MUESTRAS OBTENIDAS CON MALLA DE 8 mm A 60 °C.

	5 8	¢ (D	<u> </u>	1 f. j		<u> </u>	<u> </u>	1 1	<u>, </u>
	4/m1)			י ר		' -	4			
·	0.007851	21/21000000	10	4	· ·		• · · · ·	• • • •	• • •	
• • • •	0.007854	0.0040	£9	J.	× .		\$			-
••	,			•				$\left(X,+X,\cdot\right)$	$y = \frac{S(X_{}X_{1})}{X_{1}}$	
·	·	S (1)	•	- + -	•••••		s		A 18]-	••
	·	θ	Pr	10 1011	16 Homedad	.4	· ·· · · · · · · · · · · · · · · · · ·		·	• •
•	63	3	g	Ka	(Ke tru Ke tetz) 100]	ī	Xikgegunikgsöbdo seco	X (Kg agua/Kg solido set.d)	W(Kgm L)	11
	0	Ð	35	0.38	00.03	N	4.8824	4,4567	21.005	0.0
-	20	0.3333333333	32	0.325	E0.12	15	4.0310	3.0065	11.077	9.0
	+0	0.666656667	290	0.296	78.18	IE	3.5820	3,3731	16.313	0.0
	60	1	5	0.249	75.99	17	3.1641	2.0038	\$.403	0.
	20	133333333	247	0.247	73.\$5	18	2.8235	2,73\$4	4,262	0.
	100	1,666656667	236	0.236	72.63	15	2.6533	2,4675	9,167	0,
	120	2	212	0.212	69.53	14	2.2817	2.0805	9,921	0.1
	140	2.332333333	196	0,186	65.27	13	1.8793	1.7399	6.875	9.1
	160	2.666656667	291	0.165	61.55	12	1.6006	1.4536	1,257	0.1
	180	3	揺	0.149	56,64	1	1.3065	1.1749	6. 191	0.1
	200	3.333333333	132	0.132	51.06	16	1.0433	0.0272	5.720	0.1
	230	3.666656667	117	0.117	44,79	Ŷ	0.8111	0.7183	4,584	0.1
	249	4	105	0.165	34.48	1	0.6354	0.5450	3,620	01
	260	4.333333333	95	0.055	32.00	1	0.4706	0,4164	264	0
	252	1.666656667	88	0.025	26.59	¢	0.3622	Q.3158	2.302	0.4
	300	5	\$2	0.052	21,22	5	0.2693	0.2384	1.524	0.6
	320	533335333	78	0.078	17.18	4	0.2074	0.1910	0.764	13
-	340	5.666656667	75	0.076	15.00	3	0.1765	0.1657	0.382	2.0
	360	6	75	0.075	13.87		0.1610	0.1300	1.5.31	9.6
	380	6.337333333	Л	0.071	9.01	1	0.0991			

Tabla Nº A V.5: Datos registrados durante el proceso de secado del ají charapita a 60 °C.

Figura N° A V.5: Relación de la perdida de humedad Vs el tiempo de secado

				1 0		
<u></u>	M	iNi-	<u>0</u>	1 P	<u> </u>	1
•• • • • • •	ын	yaa waxaa ahaanaa kaa ka		i	ere en ere en ander	~
		na 1997 - Marina Marina, and The Araba Andrea. 1998 - Marina Marina, and Araba Andrea.	Electron de la composition de la compos		•	
		$- \left\{ x_{i} + X_{i} \right\}$	$w = \frac{S(X_i - \lambda)}{X_i - \lambda}$	(<u></u>)	د مربعہ او مربو اور اور اور اور اور اور اور اور اور او	
		2	<u>΄΄ Α(Δθ</u>	J]	ten a construction of the second s	
	,				% Humedad	
	í	X ₁₁₋₄ (Kg agua/Kg sólido seco)	$W(Kg(m^2.h))$	11W	[(Kg agua/Kg total)*100]	-
	1	0,1300	1.528	0.6545	11.51	
- • •	2	0.1687	0.382	2.61799	14.44	
· · · · · · · ·	3	0.1920	0.7639	1.309	16.10	
	4	0.2384	1.5279	0.6545	19.25	
I	5	0.3158	2.2918	0.43633	24.00	
	6	0.4164	2.6738	0.374	29.40	•
T T	7	0.5480	3.8197	0.2618	35.40	
	8	0.7183	4.5837	0.21817	41.80	
Ť	9	0.9272	5.7296	0.17453	48.11	
· · · · · ·	10	1_1749	6.4935	0.154	54.02	
- - T	11	1.4536	7.2575	0.13779	59,24	
1	12	1.7399	6.8755	0.14544	63.50	
Ĩ	13	2.0805	9,9313	0.10069	67.54	
	14	2.4675	9.1673	0.10908	71.16	
	15	2.7384	4.2017	0.238	73.25	
	16	2.9938	8.4034	0.119	74.96	
	17	3.3731	10.3132	0.09696	77.13	
	18	3.8065	11.08	0.09028	79.19	
	19	4.4567	21.008	0.0476	81.67	
· · · · · · · · · · · · · · · · · · ·		1		{		
					neri nun program de la composición de l Na composición de la c	

Tabla Nº A V.6: Interacción de la columna de velocidad de secado Vs la humedad media

Figura N° A V.6: Relación de la velocidad de secado Vs el contenido de humedad Tabla N° A V.7: Interacción de la columna de velocidad de secado Vs área de particiones

	T9	• (f _k =(1/2)*(N10-N9)*	(? 9+ P10)							
4	<u>ر</u>	, W		0	9	0	R	Ś	ī	U	<u>v</u>
2					1					_	!
3							. r	<u> </u>		<u></u>	
4			$\int (x + x)$	S (X X	1.1		A		$(X_{ij} - X_j) = \frac{1}{2} + \frac{1}{2}$	- a	$=\frac{S}{\Delta X}$
5			$X_{154} = \left[\frac{1}{2}\right]$					2	(W ₁₄₁)	0	A _X ,₩{
5			· Landa and		. .	! 4					
7			• •	Υ.		% Humedad					.
8		ť	X May (Kg agua/Kg solido seco)	W(Kga'h)	1/17	(Kg agma Kg total)*100)		1	Àrea de participoes	Q n	
9		1	0.1300	1.528	0.654498	11.51		i	0.063322207		
10		2	0.1657	0.382	2.617993	14.44		2	0.045591989	ľ	
11		3	0.1920	0.7639	1.305997	15.10		3	0.045591989		
12		4	0.2384	1.5279	0.654498	19.25		4	0.042214805	1	
13		5	0.3158	2.2918	0.436332	24.00		5	0_04076744		
14		6	0.4164	2.6738	0.373000	29,40		6	0.041828541		
15		7	0.5480	3.6197	0.261799	35.40		1	0.040\$63931	1	• •
15	••••	S	0,7183	4,5837	0.218166	41,80		s	0.04103279		
17		9	0.9272	5,7296	0.174533	45.11		9	0.040655139		
18		10	1.1749	6.4935	0.154	54.02		10	0.040651681	1 - '	
19		11	1.4536	7.2575	0.137789	59.24		11	0.040555837	1	
20		12	1.7399	6.8755	0.145444	63.50		12	0.041911724		,
21		13	2.0505	9,9313	0.100692	67.54		13	0.040591158		
22		14	2.4675	9.1673	0.109083	71.16		14	0.047011942		
23		15	2.7384	4.2017	0.237999	73,25		15	0.045591989		
24		16	2.9938	\$.4034	0.119	74.95	۱ [•]	16	0.040952625]	r
25		17	3 3731	10.3132	0.096963	77,13		17	0.04057797]	;
26		18	3 8065	11.06	0.090276	79_19		15	0.011820213]	
27.		19	4 4567	21.965	0.0476	\$1.67					
مىسىدەتر					-				···		

Figura N° A V.7: Numero de particiones presentes durante el proceso de secado Tabla N° A V.8: Interacción Idealizada de la columna de velocidad de secado Vs contenido de humedad

<u> </u>	1	н	1	<u>j</u>	<u>к</u>
60 51			· · · · · · · · · · · · · · · ·	? ?p Humedad	
62		<i>θ</i> (b)	X(Kg agua/Kg sólido seco)	[(Kg agua Kg total)*100]	W(Kg/m ² h)
53		0	4.8824	\$3.00	29.030
54		0.333333333	4.0310	\$0.12	14.515
is i	_	0.666666667	3.5821	78.18	9,167
6		1	3.1331	75.81	7.207
7		1.333333333	2.8410	73.97	7.207
8		1.666666667	2.5490	71.82	7.207
9		2	2.2569	69.30	7.207
ק		2.333333333	1.9648	66.27	7.207
1		2.666666667	1.6728	62.59	7.207
2		3	1,3807	58.00	7.207
3		3.333333333	1.0886	52.12	7.207
4		3.666666667	0.7595	43.17	7.207
5		4	0.6086	37.83	3.471
6		4.333333333	0.4778	32.33	2.971
7		4.666666667	0.3674	26.87	2.471
8		5	0.2772	21.70	1.971
9		5.333333333	0.2073	17.17	1.471
0]		5.666666667	0.1576	13.62	0.971
1,		6	0.1282	11.37	0.470
2		6.333333333	0.1191	10.64	0.0

$$X = -1.6718\theta^{3} + 3.483\theta^{2} - 3.5294\theta + 4.8824$$
$$W = -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-5.0154\theta^{2} + 6.966\theta - 3.5294) = 41.252\theta^{2} - 57.2967\theta + 29.0297$$
$$W = 41.252\theta^{2} - 57.2967\theta + 29.0297$$

. . .

$$W = -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.8762) = 7.2068$$
$$W = 7.2068$$

$$X = 0.0912\theta^{2} - 1.15216\theta + 3.758$$
$$W = -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(0.1824\theta - 1.1516) = -1.5\theta + 9.472$$

 $W = -1.5\theta + 9.472$

1

Figura Nº A V.8: Grafica Idealizada de la velocidad de secado Vs contenido de humedad

ANALISIS DE LOS DATOS TOMADOS CON MUESTRAS OBTENIDAS CON MALLA DE 8 mm A 70 °C.

_	H9		6 1	(13-\$(\$3)/	\$C\$3						
Π	A	F B	(()	D	1 E	ŧ.	G	۲	1 1	1	· · · ·
1				÷	. .		,	· ·	and the second second		
14	• • •	0.00725200	1 a(1.(19200 #10)		d		. •			s	
-		V.W. 6.171	0.000		J		• • •	البرز عجمجت الالال	· · · · · · · · · · · · · · · · · · ·		
5	•	•		• •			• • • •		$\frac{1}{2} = \left\{ \frac{X_i + X_{i+1}}{2} \right\} = \frac{1}{2}$		• · ·
6	• •	· · ·	· -		• •	· ·			1 1 <u>7 1</u> 7 1	A 40)	• * * *
1			0	Pe	50 TOTAL	to Eunedad					
3		min	h	<u> </u>	<u>Kr</u>	[Eg area Kg total)*136]	i	X(Kg agus/Kgsélidosecd)	X Kg agun/Kg Sizosecd	#(Kgfm h)	UF
2		0	0	310	0.51	G.00	л	4 8924	4,5805	29,394	80.55
10		10	0.15655655	अग	1454	1105	<u>_</u> 0	42785	40510	21,146	6.0-02
끡		<u> </u>	فدرددرود.۹		0339	7729	15	3. 135	35195	19.059	0221
뷥		- 24	6 4444445-	150	0.150	77.22	. 13	3.5195	2,2029	19.079	0.97_4
쁥		3	013333333	27	6237	77.24	15	7.655	2,4379	13.05	60.33
вÌ	•	50	1	225	0.22	70.61	15	2,425	22749	12.95	8.9***3
5		97	1.15655366	203	0.203	63.15	12	2,1424	2.0-11	9,931	0.1901
17		10	1.33333333	199	0.19	66.00	13	1.9412	1.5423	9,16"	0.1991
18		\$2	15	17	0.175	6.71	12	1,7554	1.6543	9.951	0 190"
12		100	1.6655566	165	0.165	60.85	11	1.55	L.4535	7.931	0,1007
2		110	1.\$55535553	152	0.152	5.9	10	13539	1235	9951	0.190
-1		120	1666666	132	V.1.57	10.12	×	1.121.	1.0355	¥.10.	0.1091
	• •	11)	111111111	115	0.127 0.118	+7.15 21 35		0.5%5	0.55	685	0.1/52
24		150	25	199	0.109	4173	6	0.6373	0.6175	6175	01454
5		165	2656656567	160	0.100	35,49	5	0,5480	0.1167	13.71	00"2"
×	· ,	179	1.55555555	\$2	0.052	21.22	1	8,2593	0.2152	543	0.11170
7		150	;	75	0.675	13.87	3	6,1512	0,1300	3,955	03272
2		192	3.15665566	۲۱	0.071	9.01	2	0.0791	0.0915	9,754	1.3499
2	. . . I	_ 200	11111111111	70,	0.0*	131		6.0535	.		9
ж. Н 1	9.4F.28	alla 8 mm, 1	70 °C / Hoja 3	7							
	V C.		* :1:#	-							
	A (A)	GeEns.v	vä toudo tec	(9)							
	6.00	99 2-		·		r				······································	- I
ŀ		Ŧ									
i i											
	5.66	oo									1
E	2.VV		¥. 07	12.05	1.060			0.0.1] [
		-1	X=2E-	128•⇒	1.930	p 67 - 3.94 /48	9÷4.2	\$824			
İ.			X I								{
ŀ	4.00	90 									1 1
			T,	1						1	
	3.60	00									4 1
I		- 1				X = -1. 483 G	÷3.9	775		1	1 1
		ł									{ 1
		~			-					1	
	2.99	νυ 1								1	1
			[and a second	do umo	
		1							•0.2400 <i>6</i> +-2.138	90÷4,4789	
l	1.00	00			<u></u>					· · · · · · · · · · · · · · · · · · ·	
								1		1	1 I

Tabla Nº A V.9: Datos registrados durante el proceso de secado del ají charapita a 70 °C.

ł.

1.5

0.0000

a

0.5

8(t.)

2

2.5

3

3.5

	41 Gráfi	60	- fr =SERIES(,'M	ialia 8 mm, 70	*C'1\$N\$9:	SN\$16,'Malla 8 mm, 70 *0	'ISO\$9	:\$0\$	16,1)
নি	L L	M	N	0	Т р	Q	R	1	5
1	· · · · · · · · ·		an a						
3	·• · · ·	1 - • ···	• • • • • • • • • • •	· · · · ·	1				
4			$(X_i + X_i)$	" S(X)					
5		4		Ύ ¯ <u>A</u> { <u>∧</u> θ	- J.				
5		• •		J –	••••••••••••••••••••••••••••••••••••••	% Humedad			
ε	•••	i	X Kg egus/Kg sólido seco)	W(Kg/m ² h)	1/17	[(Ke agua/Kg total)*100]			
9		1	0.0913	0.764	1.308997	8.37			
10		2	0.1300	3.056	0.327249	11.51			
11		3	0.2152	5.3476	0.187	17.71			
12		4	0.4087	13.7510	0.072722	29.01			
13		5	0.6176	6.8755	0.145444	38.19			
14		6	0.7570	6.8755	0.145444	43.08			
15	····		0.8963	6.8755	0.145444	47.27			
15		8	1.05\$\$	9.16"3	0.109083	51,43			
17	• • • •	9	1.2523	9.9313	0.100692	55.60			
19		10	1,4535	9.9313	0.100692	59.24			
19		11	1.6548	9.9313	0.100692	62.33			
20		12	1.848.	9.1573	0.109053	64.59			
21	••••••	13	2.0418	9.9313	0.100692	67.12			
22		14	2.2740	12.9870	0.077	69.46			
23	• • • • •	15	2,5372	12.95"0	0.077	71.73			
24	•••	16	2.8390	16.5065	0.0595	73.95			
25		17	3,2028	19.0935	0.05236	76.21			
25		15	3.5898	19.10	0.05236	78.21			
27		19	4.0310	24,446	0.040906	\$0.12			
28		20	4_\$\$05	29,794	0.033564	\$2.0\$			
29 30		÷	· · · · · · · · · · · · · · · · · · ·		· ····	· · · · · · · · · · · ·		1 4	
14 . 4	н н Ма	fla 8 mm,	70 °C / Hoja3 '92 /					_	

Tabla Nº A V.10: Interacción de la columna de velocidad de secado Vs la humedad media

Figura Nº: A V.10: Relación de la velocidad de secado Vs el contenido de humedad

Tabla Nº A V.11: Interacción de la columna de velocidad de secado Vs área de particiones

Figura Nº A V.11: Numero de particiones presentes durante el proceso de secado

	14		1 1	*
	F1			
	الالاستانييسيين الإستانية الالالا الالارينيين. 	<pre>inf press restriction to a state of the second s</pre>	······································	
			% Humedad	
1 1	<i>θ</i> (h)	X (Kg agua/Kg sólido seco)	((Kg agua Kg total)*100)	W(Kgm ² .h
1 · · /	0	4.8824	\$3.00	32.46\$
	0.166656667	4.7663	82.66	27.120
	0.333333333	2.9722	74.83	12.19\$
	0.5	2.6664	72.72	12.198
	0.666666667	2.3605	70.24	12.198
	0.833333333	2.0546	67.26	12.198
	1	1.7487	63.62	12.198
	1.166666667	1.4428	59.06	12.198
	1.333333333	1.1369	53.20	12.198
	1.5	0.8311	45.39	12.19\$
	1.666666667	0.5252	34.43	12.198
	1.833333333	0.2193	17.98	12,198
	2		0.00	12.198
	2.166666667		0.00	12.198
	2.333333333		0.00	12.198
	2.5		0.00	12.198
	2.666666667		0.00	12.198
	2.833333333		0.00	12.198
	3	0.2276	18.54	12.093
	3.166666667	0.1184	10.59	11.434
• H Ma	3.333333333 Ba 8 mm, 70 °C / Hoja3 /	0.0226	2.21	10.774
• +] Ma	3.333333333 ilia 8 mm, 70 °C / Hoja3 /	0.0226	2.21	10.774
• н) ма - 8.225	3.333333333 Ba B mm, 70.°C / Hoja3 /	<u>0.0226</u>	2.21	10.774
• H Ma	3.333333333 Ba 8 mm, 70.°C / Hojz3 /	0.0226	2.21	10.774
• н) ма = 8.225	3.333333333 Ba 8 mm, 70.°C / Hoja3 /	0.0226	2.21	10.774
→ H Ma = 8.225	3.333333333 Ba B mm, 70.°C / Hoje3 1Kg/m ² 0 ⁻¹² 0³ +1.950550³ -	0.0226	2.21	10.774
+ H Ma = 8.225 C = 2 × 11	$\frac{3.333333333}{168 \text{ B mm}, 70.°C} + \text{Hoje3}$	0.0226 $9) = -49.32$	2.21	10.774
$= 8.225$ $C = 2 \times 10^{10}$	$\frac{3.333333333}{168 \text{ B mm}, 70.°C} \xrightarrow{\text{Hoje3}}$	0.0226 $9) / \\ 3.9474 \theta + 4.8824 \\ + 3.901 \theta - 3.9474) = -49.33$	2.21	10.774
$= 8.225$ $C = 2 \times 10^{10}$ $= -\frac{S}{A} \frac{a}{A}$	$\frac{3.333333333}{168 \times 10^{-12} \text{e}^3}$	0.0226 $3.9474\theta + 4.8824$ $+ 3.901\theta - 3.9474) = -49.33$	2.21	10.774
$= 8.225$ $C = 2 \times 10^{-3}$ $C = -\frac{S}{A} \frac{a}{a}$ $= -\frac{49}{3} = -\frac{3}{4} \frac{a}{a}$	$\frac{3.333333333}{168 \text{ B mm}, 70.°C} + \text{Hoje3}$	0.0226 $3.9474\theta + 4.8824$ $+ 3.901\theta - 3.9474) = -49.32$ $6\theta + 32.468$	2.21	10.774
$= 8.225$ $C = 2 \times 10$ $= -\frac{S}{A} \frac{a}{c}$ $= -49.3$	$\frac{3.333333333}{168 \text{ B mm}, 70.°C} + \text{Hoje3}}$	0.0226 $3.9474\theta + 4.8824$ $+ 3.901\theta - 3.9474) = -49.335$ $6\theta + 32.468$	2.21	10.774
$ = 8.225 $ $ = -\frac{S}{4} \frac{a}{4} \frac{a}{2} $	$\frac{3.333333333}{168 \text{ B mm}, 70.°C} + \text{Hoje3}$	0.0226 $3.9474\theta + 4.8824$ $+ 3.901\theta - 3.9474) = -49.335$ $6\theta + 32.468$	2.21	10.774
$ = 8.225 $ $ = -\frac{S}{4} \frac{d}{4} \frac{d}{2} $ $ = -49.3 $ $ = -49.3 $	$\frac{3.33333333}{168 \text{ B mm}, 70.°C} + \text{Hoje3}$	0.0226 $3.9474\theta + 4.8824$ $+ 3.901\theta - 3.9474) = -49.32$ $6\theta + 32.468$	2.21	10.774
$ = 8.225$ $ = -\frac{S}{A} \frac{d}{d} $	$\frac{3.33333333}{160} = \frac{3.3333333}{160} = \frac{3.33333333}{160} = \frac{3.3333333}{160} = \frac{3.3333333}{160} = \frac{3.3333333}{160} = \frac{3.3333333}{160} = \frac{3.3333333}{160} = \frac{3.33333333}{160} = \frac{3.333333}{160} = \frac{3.33333}{160} = \frac{3.3333}{160} = \frac{3.333}{160} = \frac{3.333}{160} = \frac{3.333}{160} = \frac{3.333}{160} = \frac{3.333}{160} = 3$	0.0226 $3.9474\theta + 4.8824$ $+ 3.901\theta - 3.9474) = -49.32$ $6\theta + 32.468$	2.21	10.774
$ = 8.225 $ $ = -8.225 $ $ = -2 \times 110 $ $ = -49.3 $ $ = -49.3 $ $ = -49.3 $	$\frac{3.333333333}{160}$ Ha B mm, 70 °C / Hojz3 Kg/m² $\frac{1}{10} = -\frac{S}{A} (6 \times 10^{-12} ^{3} ^{-1} ^{3} $	0.0226 $3.9474\theta + 4.8824$ $+ 3.901\theta - 3.9474) = -49.335$ $6\theta + 32.468$	2.21	10.774
$ = 8.225 $ $ = -8.225 $ $ = -2 \times 11 $ $ = -\frac{S}{A} \frac{d}{c} $ $ = -49.3 $ $ = -49.3 $ $ = -49.3 $ $ = -49.3 $ $ = -49.3 $ $ = -49.3 $ $ = -49.3 $	$\frac{3.333333333}{160}$ Ha B mm, 70 °C / Hojz3 Kg/m² $\frac{1}{10} - \frac{5}{4} \cdot 1.95055\theta - \frac{1}{10}$ $\frac{1}{10} - \frac{5}{4} \cdot (6 \times 10^{-12} \theta^2 - 32.08\theta)$ $\frac{1}{10} - \frac{5}{4} \cdot (-1.483) = 12$ $\frac{1}{10} - \frac{5}{4} \cdot (-1.483) = 12$	0.0226 $3.9474\theta + 4.8824$ $+ 3.901\theta - 3.9474) = -49.33$ $6\theta + 32.468$	2.21	10.774
$+ H Ma$ $= 8.225$ $C = 2 \times 10$ $= -\frac{S}{A} \frac{d}{c}$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$	$\frac{3.333333333}{1600}$ Ha B mm, 70 °C / Hojz3 Kg/m² $\frac{1}{100} - \frac{1}{200} + 1.950550^{20} - \frac{1}{200}$ $\frac{1}{1000} - \frac{1}{200} + 1.950550^{20} - \frac{1}{2000}$ $\frac{1}{1000} - \frac{1}{200} + \frac{1}{2000} + \frac{1}{20$	(-0.0226) $(+)$	2.21	10.774
= 8.225 $ = -8.225 $ $ = -$	$\frac{3.333333333}{1600}$ Ha B mm, 70 °C / Hojz3 Kg/m² $\frac{1}{100} = -\frac{S}{A} (6 \times 10^{-12})^{2}$ $\frac{1}{100} = -\frac{S}{A} (6 \times 10^{-12})^{2}$ $\frac{1}{100} = -\frac{S}{A} (-1.483) = 12$ $\frac{1}{100} = -\frac{S}{A} (-1.483) = 12$	(-0.0226) $(+)$	2.21	10.774
= 8.225 $ = -8.225 $ $ = -8.25 $ $ = -8.25$	$\frac{3.333333333}{1600}$ Ha B mm, 70 °C / Hojz3 Kg/m² $\frac{1}{100} - \frac{1}{200} + 1.950550^{20} - \frac{1}{200}$ $\frac{1}{100} - \frac{5}{100} + 1.950550^{20} - \frac{1}{200}$ $\frac{1}{1000} - \frac{5}{1000} + \frac{1}{2000} + \frac{1}{200$	0.0226 $3.94740 + 4.8824$ $+ 3.9010 - 3.9474) = -49.32$ $60 + 32.468$	2.21	10.774
$= 8.225$ $= -\frac{S}{4}$ $= -49.3$ $= -49.3$ $= -\frac{S}{4}$ $= -\frac{S}{4}$	$\frac{3.33333333}{168 \text{ B mm}, 70.°C} + \text{Hoje3}$	0.0226 $3.94740 + 4.8824$ $+ 3.9010 - 3.9474) = -49.33$ $60 + 32.468$	2.21	10.774
$= 8.225$ $= -\frac{S}{4}$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$	3.33333333333333333333333333333333333	0.0226 $3.94740 + 4.8824$ $+ 3.9010 - 3.9474) = -49.32$ $60 + 32.468$ $2,197$ 789	2.21	10.774
$= 8.225$ $C = 2 \times 11$ $= -\frac{S}{A} \frac{d}{A}$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$ $= -49.3$	3.33333333333333333333333333333333333	0.0226 $3.94740 + 4.8824$ $+ 3.9010 - 3.9474) = -49.33$ $60 + 32.468$ 2.197 789	2.21	10.774
F = 0.24	$\frac{3.33333333}{160} = \frac{3.3333333}{160} = \frac{3.33333333}{160} = \frac{3.33333333}{160} = \frac{3.33333333}{160} = \frac{3.333333333}{160} = \frac{3.33333333}{160} = \frac{3.333333333}{160} = \frac{3.333333333}{160} = \frac{3.33333333}{160} = \frac{3.3333333}{160} = \frac{3.33333333}{160} = \frac{3.3333333}{160} = \frac{3.333333}{160} = \frac{3.33333}{160} = \frac{3.333333}{160} = \frac{3.33333}{160} = \frac{3.333333}{160} = \frac{3.333333}{160} = \frac{3.33333}{160} = \frac{3.3333}{160} = \frac{3.33333}{160} = \frac{3.3333}{160} = \frac{3.33333}{160} = \frac{3.3333}{160} = \frac{3.3333}{160} = \frac{3.3333}{160} = $	0.0226 $3.94740 + 4.8824$ $+ 3.9010 - 3.9474) = -49.33$ $60 + 32.468$ 2.197 789	2.21	10.774
$= 8.225$ $C = 2 \times 11$ $= -\frac{S}{4}$ $= -49.3$	$\frac{3.33333333}{160} = -\frac{S}{4}(0.48126 - \frac{S}{4}(0.48126 - \frac{S}{4}(0.48126 - \frac{S}{4}(0.48126 - \frac{S}{4})) = -\frac{S}{4}(0.48126 - \frac{S}{4})$	0.0226 $3.94740 + 4.8824$ $+ 3.9010 - 3.9474) = -49.33$ $60 + 32.468$ 2.197 789 $2.91389) = -3.9580 + 17.59$	2.21	10.774
$= 8.225$ $= 2 \times 10^{\circ}$ $= -\frac{S}{A} \frac{d}{d}$ $= -49.3$	$\frac{3.33333333}{848 \text{ B mm}, 70 \circ \text{C}} + \text{Hoje3}}$ $\frac{1}{10^{-12}} = -\frac{S}{A} (6 \times 10^{-12})^{-12})^{-12} (6 \times 10^{-12})^{-12} $	0.0226 $3.9474\theta + 4.8824$ $+ 3.901\theta - 3.9474) = -49.33$ $6\theta + 32.468$ 2.197 2.197 $2.91389) = -3.958\theta + 17.59$	2.21	10.774

Tabla Nº A V.12: Interacción Idealizada de la columna de velocidad de secado Vs contenido de humedad

Figura Nº A V.12: Grafica Idealizada de la velocidad de secado Vs contenido de humedad

ANEXO VI.

TABLAS Y GRAFICAS DE LAS PRUEBAS EXPERIMENTALES PARA

MUESTRAS OBTENIDAS DE MALLA DE 10 mm

Tabla Nº A VI.1: Datos registrados durante el proceso de secado del ají charapita a 50 °C.

A	8	(D	£	1	G	н	1	1	1
	- 4-1		<u>.</u>	1 · · ·		·- · ·				
		a(hgsodscseco)		4.	and a second second	• •			• •. • -	• •
	010765	1 0.00	10	.						
				2	, بد الد المنظر			(X.+X.) - W	S [X_j - X_{j-1}]	••••
•		·	• • • • •	in a a	والمتعاد المردة	• • • •	ан настиние.	······································	A 10)	, -
		9	Pes		Silumetad	•••	•••••	, <u>'' - 1</u> 784 -		. .
17. 1 .		h	E	Ke	(Ke ann Ke wiz)*100)	i	X(Kg agas/Kg sólido seco)	X na (Kg agaa/Kg solido seco)	W(Kdm,b)	ហាក
		0	430	0.4	85.60	17	5.6567	33167	10.695	6.093
·· ·	30	0.5	338	0.355	824	16	19557	4 795)	7,385	0.135
·	6	1	335	0.325	\$1.75	К	44333	4,2750	6366	0.1571
	<u>60</u>	15	30H	0.301	80.25	14	4,0567	3.5567	6.112	0.163
	120	1	236	0.28	78.57	13	3.6557	3,4739	5.\$57	6.170
	190	15	257	0.257	76.65	12	3.2833	3.0833	6.112	6.163
	180	3	233	0.233	14.25	- 11	2.8333	2,7000	5.602	0.1785
	210	35	211	0.211	71.55	10	2.5167	23083	6.366	0.1571
	243		155	0.165	67,74	ò	21000	1,9000	6.112	0.158
	270	45	19	0.162	62.95	\$	1,7500	1.4917	6.356	0.157
	300	ş	137	0.137	\$6.20	1	12593	1.0917	5.857	0.1767
	330	55	114	0.114	4757	6	0.9360	0.7417	4.\$3\$	0.206
	36)	6	95	0.095	K .KI	5	0.5533	0,4553	3.820	0.2618
	390	65	50	0.0	25.00	4	0.3333	0.2467	2.037	6.4909
	13	1	72	0.072	16.67	3	0.2008	0,1667	1.019	0.9517
a	49	15	<u> 6</u> \$	200	11.75	1	0.1533	0.1600	1.019	0.9517
	45)	\$	8	0.061	625	1	0,0567			.
• •) 		· • • • • • • • • •			
					•••					

Figura N° A VI.1: Relación de la perdida de humedad Vs el tiempo de secado

Gráfico) - (·		m, 50 °C'ISN\$9:\$1	v\$14,'Malla	10 mm, 50 °C'!\$O\$9:\$O\$14,1
L	4 M	N	0	l p	Q
v			· · · · · · · · · · · · · · · · · · ·		
		-			
, .		$\left(X_{1}+X_{1-1}\right)$	$S(X_i - X_i)$		r
	• • • • • •	$X_{\text{Med}} = \left(\begin{array}{c} 2 \end{array} \right)$	$r = \overline{A} \left(\frac{\Delta \theta}{\Delta \theta} \right)$		مربع در من ورد وروس و
• . •	**				% Humedad
•••••	1	X _{Wet} (Kg agua/Kg sólido seco)	$W(Ke/m^2h)$	1/1	(Kg agua/Kg total)*100]
• •••	1	0 1000	1 0186	0 981747	9 09
* 1 F	7	0 1667	1 0186	0 981 748	14.79
•		0.2667	2 0372	0 490874	21.05
· ·	4	0.4583	3.8197	0 261799	31.43
• =• •	5	0.7417	4.8383	0.206684	42.58
	6	1.0917	5.8569	0.170739	52.19
	7	1.4917	6.3662	0 15708	59.87
•••	8	1.9000	6.1116	0.163625	65.52
	9	2.3083	6.3662	0.15708	69.77
	10	2.7000	5.6023	0.1785	72.97
· · -	11	3.0833	6.1116	0.163625	75.51
• · • •	12	3.4750	5.8569	0.170739	77.65
•••	13	3.8667	6.1116	0.163625	79.45
	14	4:2750	6:3662	0.15708	\$1.04
	15	42250	73848	0.135413	82,53
	16	53167	10170	0.0935	S4.17
		· · · · · · · · · · · · · · · · · · ·		2	
		••••••••••••••••••••••••••••••••••••••	ka se e se e e		•
i Maft	a 10 mm. 50	oc Hotal Tom	<u> </u>	· · · · ·	<u> </u>

Tabla N ^o	' A `	VI.2:	Interacción	de la	a columna de	velocidad	l de s	secado	Vs la	humedad	media.
----------------------	-------	-------	-------------	-------	--------------	-----------	--------	--------	-------	---------	--------

Figura Nº: A VI.2: Relación de la velocidad de secado Vs el contenido de humedad

	B	4 =(1/2)*(NIG-N9)*(P3+P	10}							
1	1 <u>.</u> H	N	0] -	Q	. E . :	5.	ī	U	۷
3		۱ ۱	í .	, }			<u> </u>	. (.	<u> </u>	
4		(x+x)	s(x,-x			+	A	$\frac{1}{-(X_{ij}-X_{j})}$ +-	- 8	S AX
5		$X_{104} = \left[\frac{1}{2}\right]_{100}$	# = _		1]	2 " (W _H)	77	$A_{I_i}^{j}W$
6	والمعادية والمحافظ المراجع والمحاور	i hander in the second se		 						
5				4	% Humedad				. v	
8	i	X _{MM} (Rg zguz/Rg sólido seco)	W(Kgfm²h)	11117	(Kg agua Kg totzl)*100]		1	Área de partoiones		
9	1	0.1000	1.0186	0.981747	9.09		1	0.055449833	- 4 <u>8</u>	
10	2	0.1667	1.0186	0.981748	14.29		2	0.073631063		
<u>[1]</u>	3	0.2661	2.0372	0,490\$74	21.05		3	0.07213117		
12	4	0.4583	3.8197	0.261799	31.43		4	0.066368427		
<u>11</u>	5	0.7417	4,\$3\$3	0.2066\$4	42.58		4	0.066948916		
14]	6	1.0917	5.8569	0.170739	52.19		- 6	0.065563659		
15	1	1.4917	6.3662	0.1570\$	59.87		ī	0.065477104		
16	8	1.9000	6.1116	0.165625	65.52		. <u>s</u>	0.065477104		
17	9	23083	63662	0.1570\$	69.77	т.	9	0.065717583		
18	. 10	2.7000	5.6023	0.1785	1297		10	0.055573791		
19	11	3.0853	5.1116	0.165625	75.51		11	0.065479475		
20	12	3,4750	5 \$ \$ 69	0.170739	77.65		12	0.065479475		-
21	13	3.8667	6.1116	0.165625	79.45		13	0.055477104		L
2	14	4,2750	6.3662	0.15708	\$1,04		14	0.065\$10936		
23	В	(1,7150) (1,7150)	73518	0.135433	82.53		B	0.067720158		L
24	16	33167	10.70	0.0935	\$4.17				1	
2					;					
26				1						
<u> ii - i - i -</u>	*1, Hale 10 mm, 50 .	C/Hp3-792				Ŋ	,		بالمحجمة الحارط الما	A.W.C.S.M

Tabla Nº A VI.3: Interacción de la columna de velocidad de secado Vs área de particiones

Figura N° A VI.3: Numero de particiones presentes durante el proceso de secado

ŧ

	<u> </u>	<u>i</u>	ĸ
· · · · · ·		i •{ • · · · ·	
• • • • • • • • •	1 · · · · · · · · · · · · · · · · · · ·	% Humedad	-
Rn)	X(Kg agua/Kg sólido seco)	[(K g agua/K g tota])*100]	W(Kolm2)
0	5 6670	<u>85.00</u>	13 115
0.5	4.9670	83.24	8.659
1	4.4836	\$1.76	6.494
1.5	4.0669	\$0.26	5.989
1,5	4.0625	80.25	5.989
2	3.6705	78.59	5.989
2.5	3.2785	76.63	5.989
3	2.8865	74.27	5.989
3.5	2.4945	71.38	5.989
4	2.1025	67.77	5.989
4.5	1.7105	63.11	5.989
	1.3185	56.87	5.989
5.5	0.9265	48.09	5,989
6	0.5345	34.83	5.989
6	0.5716	36.37	5.989
6.5	0.3554	26.22	2.831
	0.2010	16.74	1.885
7.5	0.1085	9 /9	0.940
10 mm, 50 °C . Hoja3	· · · · · · · · · · · · · · · · · · ·		
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$			
$\frac{5}{4} = 7.6394 \text{Kg/m}^2$			
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$	-1.7167 9 +5.667]		
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$	-1.7167 9 +5.667]		
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$ $= -\frac{S}{4}\frac{dX}{42} = -\frac{S}{4}(-0.6)$	$-1.7167\theta + 5.667$ $6\theta^{2} + 1.4666\theta - 1.7167) = 4.$	584 <i>⊕</i> ² − 13.1146 <i>θ</i> + 43.	-2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.100)$	$-1.71679 + 5.667$ $66^{2} + 1.46669 - 1.7167) = 4.$	584 ∂ ² −13.1146 ∂ +43.	-2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ = $-0.2\theta^3 + 0.7333\theta^2$ = $-\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.6)$ = $4.584\theta^2 - 13.1146\theta$	$-1.71679 + 5.667$ $69^{2} + 1.46669 - 1.7167) = 4.$ $9 + 43.2925$	584 ∂ ² − 13.1146 ∂ + 43.	2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ = -0.2 θ^3 + 0.7333 θ^2 = $-\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.6)$ = 4.584 θ^2 - 13.1146 θ	$-1.71679 + 5.667$ $60^{2} + 1.46660 - 1.7167) = 4.$ $9 + 43.2925$	584 <i>⊕</i> ² − 13.1146 <i>θ</i> + 43.	2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ = -0.2 θ^3 + 0.7333 θ^2 = $-\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.6)$ = 4.584 θ^2 - 13.1146 θ	$-1.71679 + 5.667$ $60^{2} + 1.46660 - 1.7167) = 4.$ $9 + 43.2925$	584 <i>⊕</i> ² − 13.1146 <i>θ</i> + 43.	2925
$S_{4} = 7.6394 \text{ Kg/m}^{2}$ $= -0.2\theta^{3} + 0.7333\theta^{2}$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.600)$ $= 4.584\theta^{2} - 13.1146\theta^{2}$	$-1.71679 + 5.667$ $6\theta^{2} + 1.4666\theta - 1.7167) = 4.$ $9 + 43.2925$	584 <i>⊕</i> ² − 13.1146 <i>θ</i> + 43.	-2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ = $-0.2\theta^3 + 0.7333\theta^2$ = $-\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.6)$ = $4.584\theta^2 - 13.1146\theta$ = $-0.784\theta + 5.238$	$-1.71679 + 5.667$ $69^{2} + 1.46669 - 1.7167 = 4.$ $9 + 43.2925$	584 ∂ ² − 13.1146 ∂ + 43.	-2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ = $-0.2\theta^3 + 0.7333\theta^2$ = $-\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.4)$ = $4.584\theta^2 - 13.1146\theta$ = $-0.784\theta + 5.238$ S dX = S	$-1.7167\theta + 5.667$ $6\theta^{2} + 1.4666\theta - 1.7167) = 4.$ $9 + 43.2925$ [5]	584 <i>0</i> ² - 13.1146 <i>0</i> + 43.	-2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.100)$ $= 4.584\theta^2 - 13.1146\theta$ $= -0.784\theta + 5.238$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.100)$	$-1.71679 + 5.667$ $69^{2} + 1.46669 - 1.7167) = 4.$ $9 + 43.2925$ $784) = 5.9893$	584 <i>0</i> ² - 13:1146 <i>0</i> + 43.	-2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ = $-0.2\theta^3 + 0.7333\theta^2$ = $-\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.000)$ = $4.584\theta^2 - 13.1146\theta^2$ = $-0.784\theta + 5.238$ = $-\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.000)$	$-1.71679 + 5.667$ $69^{2} + 1.46669 - 1.7167) = 4.$ $9 + 43.2925$ $784) = 5.9893$	584 0 ² - 13:1146 0 + 43.	2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ = $-0.2\theta^3 + 0.7333\theta^2$ = $-\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.00)$ = $4.584\theta^2 - 13.1146\theta^2$ = $-0.784\theta + 5.238$ = $-\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.00)$	$-1.71679 + 5.667]$ $69^{2} + 1.46669 - 1.7167) = 4.$ $9 + 43.2925]$ $784) = 5.9893$	584 @ ² - 13.1146 0 + 43.	-2925
$S_{4} = 7.6394 \text{ Kg/m}^{2}$ $= -0.2\theta^{3} + 0.7333\theta^{2}$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.6)$ $= 4.584\theta^{2} - 13.1146\theta$ $= -0.784\theta + 5.238$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.6)$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.6)$	$-1.71679 + 5.667$ $69^{2} + 1.46669 - 1.7167) = 4.$ $9 + 43.2925$ $784) = 5.9893$	$584\theta^2 - 13.1146\theta + 43.$	2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.4)$ $= 4.584\theta^2 - 13.1146\theta$ $= -0.784\theta + 5.238$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.4)$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.4)$	$-1.71679 + 5.667$ $69^{2} + 1.46669 - 1.7167) = 4.$ $9 + 43.2925$ $784) = 5.9893$	$584\Theta^2 - 13.1146\Theta + 43.$	2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.6)$ $= 4.584\theta^2 - 13.1146\theta$ $= -0.784\theta + 5.238$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.6)$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.6)$	$-1.71679 + 5.667$ $60^{2} + 1.46660 - 1.7167) = 4.$ 743.2925 $784) = 5.9893$	584 <i>Ø</i> ² – 13.1146 <i>8</i> + 43.	2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$ $= -\frac{S}{A}\frac{dX}{d\theta} - \frac{S}{A}(-0.000)$ $= 4.584\theta^2 - 13.1146\theta$ $= -0.784\theta + 5.238$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.000)$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.000)$	$-1.71679 + 5.667$ $60^{2} + 1.46660 - 1.7167) = 4.$ $2 + 43.2925$ $784) = 5.9893$	$584\theta^2 - 13.1146\theta + 43.$	2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$ $= -\frac{S}{A}\frac{dX}{d\theta} - \frac{S}{A}(-0.000)$ $= 4.584\theta^2 - 13.1146\theta$ $= -0.784\theta + 5.238$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.000)$ $= -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-0.000)$	$-1.71679 + 5.667$ $6\theta^{2} + 1.4666\theta - 1.7167) = 4.$ $9 + 43.2925$ $784) = 5.9893$	584 <i>8</i> ² - 13.1146 <i>8</i> + 43.	-2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$ $= -\frac{S}{A} \frac{dX}{d\theta} - \frac{S}{A} (-0.0)$ $= 4.584\theta^2 - 13.1146\theta$ $= -0.784\theta + 5.238$ $= -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-0.0)$ $= -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-0.0)$ $= -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-0.0)$	$-1.71679 + 5.667$ $69^{2} + 1.46669 - 1.7167) = 4.$ $9 + 43.2925$ $784) = 5.9893$	$584\theta^2 - 13.1146\theta + 43.$	-2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$ $= -\frac{S}{A} \frac{dX}{d\theta} - \frac{S}{A} (-0.000)$ $= -0.784\theta + 5.238$ $= -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-0.000)$	$-1.71679 + 5.667$ $69^{2} + 1.46669 - 1.7167) = 4.$ $9 + 43.2925$ $784) = 5.9893$ 7.9948	584 <i>Ø</i> ² – 13.1146 <i>8</i> + 43.	-2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$ $= -\frac{S}{A} \frac{dX}{d\theta} - \frac{S}{A} (-0.4)^2$ $= -0.784\theta + 5.238$ $= -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-0.4)^2$ $= -0.784\theta + 5.238$ $= -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-0.4)^2$ $= -0.1238\theta^2 - 1.98\theta + \frac{S}{A} (-0.4)^2$	$-1.71679 + 5.667$ $6\theta^{2} + 1.4666\theta - 1.7167) = 4.$ $9 + 43.2925$ $784) = 5.9893$ 7.9948	584 <i>@</i> ² - 13.1146 <i>θ</i> + 43.	-2925
$\frac{S}{4} = 7.6394 \text{ Kg/m}^2$ $= -0.2\theta^3 + 0.7333\theta^2$ $= -\frac{S}{A} \frac{dX}{d\theta} - \frac{S}{A} (-0.4)^2$ $= -0.784\theta + 5.238$ $= -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-0.4)^2$ $= -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-0.4)^2$ $= -\frac{S}{A} \frac{dX}{d\theta} = -\frac{S}{A} (-0.4)^2$	$-1.71679 + 5.667$ $6\theta^{2} + 1.4666\theta - 1.7167) = 4.$ $9 + 43.2925$ $784) = 5.9893$ 7.9948 $476\theta - 1.98) = -1.8915\theta + 128$	584 <i>0</i> ² - 13.1146 <i>0</i> + 43.	-2925

Tabla Nº A VI.4: Interacción Idealizada de la columna de velocidad de secado Vs contenido de humedad

• •

.

Figura Nº A VI.4: Grafica Idealizada de la velocidad de secado Vs contenido de humedad

ANALISIS DE LOS DATOS TOMADOS CON MUESTRAS OBTENIDAS CON MALLA DE 10 mm A 60 °C.

Tabla N° .	A VI.5: Datos	s registrados	durante el	proceso d	le secado	del ají cha	rapita a 6	0 °C.
								_

	ð .	·	. D	÷ E	F	. 6	<u>, H</u>		1	
				ł			***			
	A(a ¹)	S(Kg stiento seco)	Ħ							
	6.007SH	0.05	18							
								<u>[(x + x - x)</u> [\$ (Si - Si)	
	•• ·				• 		•		A AO	
. ,										
		θ	Pes	e tata	% Burned ad			¥	<u> </u>	
	Ħ	B	Ę	Γ.	[(Ka arm Ka trul) 100]	i	A (Kg agas Kg sólido seco)	Y ^M (K ⁸ stan, K ⁸ source)	W(Xgm h)	
	0	Ę	400	0.4	\$5.00	17	1.5557	5,3005	28.011	
	12	02	356	03%	83.15	15	4.0233	4.6567	20.372	
	24	Q. 4	324	0.324	\$1,45	17	4.4%00	4,2005	15.279	
	19	0.6	300	03	\$9.66	15	4 000	1,6383	11.612	
	48	8,0	277	0.277	78.34	15	3.5167	3,4167	15,279	•
	60	1	253	0.253	76.28	14	3.2167	3,0250	14,642	1
	72	12	230	623	7391	13	2.5339	2.6417	14,642	
	84	1.4	307	0.377	71.01	12	2,4500	<u>1355</u>	<u>0.540</u>	
	96	1.6	167	0.192	63.75	11	2.300	24983	H.M.	
í I	1(3	1.5	18	0.169	64.50	1)	1.5157	1.633	14.006	
. [120	1	147	0,147	59.18	¢.	1.4500	1.259	14.642	
	132	22	N	0.134	51.51	8	1.0657	0.\$7%)	14.642	
	14	2.4	101	0,101	40.59	7	04033	0.5750	\$ 276	
	156	26	ជ	820.0	31.2	6	0.4567	03533	6.366	1
	165	23	艿	0.078	3.05	j	0.3000	0.2333	5.093	
]	150	3	70	6.07	1429	1	0.1667	0.1333	2.545	1
Ċ,	192	32	66	0.056	9.09	3	0.1000	0.0917	0.637	
	264	14	65	0.065	7.65	2	0.0633	0.0750	0.637	
1	216	3.6	64	0.064	6.5	1	0.9667			

.

Figura N° A VI.5: Relación de la pérdida de humedad Vs el tiempo de secado

41 Gráfico	- (•	f=] =SERIES(,'Malla 10 m	=SERIES(,'Malla 10 mm, 60 °C'!\$N\$9:\$N\$15,'Malla 10 mm, 60 °C'!\$O\$9:\$O\$15,						
L	м	N N	[0_	i p	0				
: 		$X_{\text{Med}} = \left(\frac{X_i + X_{i-1}}{2}\right)$	$W = \frac{S}{A} \left(\frac{\bar{X}_i - \bar{X}_i}{\Delta \theta} \right)$	<u></u>					
					% Humedad				
1	i	X _{Med} (Kg agua/Kg sóhdo seco)	W(Kgm ² h)	1/17	[(Kg agua/Kg total)*100]				
	1	0.0750	0.637	1.570796	6.98				
• • •	2.	0.0917	0.637	1.570796	8.40				
v 1.ar**	3	0.1333	2.5465	0.392699	11.76				
	4	0.2333	5.0930	0.19635	18.92				
	5	0.3833	6.3662	0.15708	27.71				
	6	0.5750	8.2761	0.12083	36.51				
· · · ·	7	0.\$750	14.6423	0.068295	46.67				
	8	1.2583	14.6423	0.068295	55.72				
• • • • • • • • • • •	9	1.6333	14.0056	0.0714	62.03				
,,, , <u>,</u> ,,,,,	10	2.0083	14.6423	0.068295	66.76				
	11	2.3250	9.5493	0.10472	69.92				
	12	2.6417	14.6423	0.068295	72.54				
	13	3.0250	14.6423	0.068295	75.16				
	14	3.4167	15.2789	0.06545	77.36				
	15	3.8083	14.6423	0.068295	79.20				
	16	4.2000	15.2789	0.06545	\$0.77				
	17	4.6667	20.3718	0.049087	82.35				
	18	5.3000	28.01	0.0357	\$4.13				

Tabla Nº A VI.6: Interacción de la columna de velocidad de secado Vs la humedad media.

Figura Nº A VI.6: Relación de la velocidad de secado Vs el contenido de humedad

Tabla N ^o	' A \	/ I.7:]	Interacción	de la	columna	de	velocidad	de	secado	V	s área	de	particiones
----------------------	-------	-----------------	-------------	-------	---------	----	-----------	----	--------	---	--------	----	-------------

	T 9	•(•	F =(1/2)*(N10-N9)*(P3	+910)						
	L	M	N	0	₽	Q	8	5 	T	U V
3 4 5			$X_{\text{Hel}} = \left(\frac{X_i + X_{i-1}}{2}\right)$	$W = \frac{S}{A} \left(\frac{X_i - X_i}{\Delta \theta} \right)$	(<u>+</u>)			Antician() =	$\frac{1}{2}(X_{i+1}-X_i)\left(\frac{1}{W_{i+1}}+\frac{1}{W$	$\frac{1}{W_1} \mathcal{B}_{\text{sends}} = \frac{S}{A} \int_{Y}^{Y} \frac{dX}{W}$
7				·		% Humedad] .			
8	•	i	X _{Med} (Kg agua/Kg súlido seco)	W(Kgm ² h)	₩.	[(Kg agua Kg total)*100]	1	1	Área de parteiones	
9		1	0.0259	0.637	1.5:0796	6.98]	1	0.626179933	
10		2	0.0917	0.637	1.570796	8.40		2	0.046906146	Ύ
11		3	0.1333	2.5465	0.392699	11.76]	3	0.029452425]
12		4	0.2?33	5,0930	0.19635	18.92]	4	0.026537183]
13		5	63833	6,3662	0.1570\$	27.71]	5	0.026633048	
14.		6	0.5750	S.2761	0.12083	36.51		6	0.028368891	
15 ⁱ		?	0.\$750	14.6423	0.068295	46.67		7	0.026179933	
16		8	1.58	14 6423	6.068295	55,72		8	0.026192868	
17		9	1.6333	14 (055	C.9714	62.03]	9	0.026192868	
18		10	2 % \$3	14 6423	0.068295	66,76]	10	0.027394075]
19		11	2.3259	9.5493	0.10472	69.92]	- 11	0,027394075]
20		12	2.6417	14,6423	0.068295	72.54		12	0.026179933]
21		13	3.0255	14 6423	0.068295	75.16		13	0.62619179	
22:	. .	14	3,4157	15,2789	0.06545	77.36		11	0.02619179	
23		15	3.5083	14 6423	0.368295	79 <i>.2</i> 0		15	0.02519179	
24		16	4,3000	15.2789	0.05545	\$9.77		16	0.016725349	
25		17	4.6667	20.3718	0.349087	£ 35		17	0.026849307	
26		18	5.3000	23.01	0.0357	84.13				
2		10 60	er /3-22 - 91 /		·		- 		·	

Figura Nº A VI.7: Numero de particiones presentes durante el proceso de secado
Tabla N° A VI.8: Interacción Idealizada de la columna de velocidad de secado Vs
contenido de humedad

G	<u>H</u>	<u> </u>	t	ĸ
	· · · · · · ·		• • • • • • • • • • • • • • • • • • •	·
· :			% Humedad	
	<i>f</i> (h)	X (Kg agua/Kg sóhdo seco)	[(Kg agua Kg total)*100]	$W(Kgm^2.h)$
	0	5.6667	85.00	32.680
· · · · -	0.2	4.9333	\$3.15	23.768
	0.4	4,4000	81.48	17.402
	0.6	3,9999	\$0.00	13.5\$3
	0.6	3.9651	79.86	13.851
	0.\$	3.6025	78.27	13.851
	1	3.2399	76.41	13.851
	1.2	2.8773	74.21	13.851
	1.4	2.5147	71.55	13.851
1	1.6	2.1520	6\$.27	13.851
	1.8	1.7894	64,15	13.851
	2	1.4268	58.79	13.851
	2.2	1.0642	51.55	13.851
	2.4	0.7016	41.23	13.851
	2.4	0.6804	40.49	8,982
	2.6	0.4677	31.87	7.269
	2.8	0.2998	23.07	5.556
· · · 	3	0.1768	15.02	3,843
	3.2	0.0986	\$.98	2.131
	3.4	0.0652	6.12	0.418
···· [3.6	0.0767	7.13	-1.295

$$\frac{S}{A} = 7.6394 \text{ Kg/m}^2$$

 $X = -1.3889\theta^3 + 3.333\theta^2 - 4.2778\theta + 5.6667$

 $W = -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-4.166\theta^2 + 6.666\theta - 4.2778) = 31.826\theta^2 - 50.9242\theta + 32.6798$

----- · · · ·

 $W = -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(-1.8131) = 13.851$

We=13/851

 $X = 0.5605\theta^2 - 3.8661\theta + 6.7306$

.

$$W = -\frac{S}{A}\frac{dX}{d\theta} = -\frac{S}{A}(1.121\theta - 3.8661) = -1.8915\theta + 29.535$$

W =-1.89150+29.535

Figura Nº A VI.8: Grafica Idealizada de la velocidad de secado Vs contenido de humedad

Figura N° A VI.10: Grafica con el flux másico dentro de la partícula

ANEXO VII

TABLA DE EXCEL PARA EL CÁLCULO DE LA DIFUSIVIDAD

Tabla Nº A VII.1: Calculo de la difusividad.

Taieda Taieda	r Conto di pigari Presi di pigari	Formal Salar	ni ang ng n	2spfn Ecorpten	ini tini kini Kati kini	alanda ito arranda ante interneti a s	na santa da Santana Andria (na ma 1991 - Santa Santa (na mangana (na mangana) Penganangan da Santa (nggana (nggana)	and the second
नेताः । इ.स.	Tatries filter, Fox - 12			tie traffe - General	N. L. St			E Antointe - 27
т m formate	N Z S · E-R		君 建 建 () ()	biyar y (1036 - 3)27 3.00-0-14 7.50-0-14		Folibelle - Dar forma ndicional - como tabi	ia Estilas de Charecter Unit an Itsida i Cili	ali Forneto Zi cran yferni Li cran yferni
	• 6 3 =0.0014	13*{(C6*{7/4)}/(S+51	**(\$I\$13^0.5)*{((\$G	\$134(1/3)}+(\$H\$134(1/	()]/2])		namer it. dannañ	
E)F	3. G. S.	长着用领	her des to	Serie Corre	to K		CRIMINE CONC
				FL	LLER et	al	n 1. 1946 - Die Die songen der Kommensenskers werden, werde	
	 			:			······································	· · · · · · · · · · · · · · · · · · ·
	former and the second	·		\$(4)#EP		[Section Section	0.00143774
	t Service en la service Service en la service en la		M	$= 2 \left(\frac{1}{M_{\star}} + \frac{1}{M_{\star}} \right)$	20 10 10 10		e =///	S. W. (S. W.
) 			*		· · · · ·	I (M. e,e)	<u> </u>
	а Аланын таурагаларын Алан Каласта Д	nter Markanan ana aray ina 1997 -	nda - auronay, mening sugar	14 - 141 -	NATION OF STREET	- - 	arendigity en eige an eine eine eine eine angest ang	a portan dependence i false at come the acte
	P	(C #)	(50)	MSS	<u>M</u>	M		
	1777 - 1 777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777 - 1777	3/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 FU 8, 4	414 H	114 6	24	
5 mg 1 / 2 40 M 4 11		Cm /m01		2/mol	<u>g/moi.</u>	e'moi	CIII /S	1 III /S
		10.173	19./	22.2128	18	; 29	0.254/98805	2.348E-00
	, ,	n				* 	0.313140002	3.131E-05
	te enere marca de		н Алгини, ни. Т	de la cara de las compositos			0.350086977	3.501E-05
	t en receivant i canad 1 2			in an		ale com		
	**************************************			ina man				
	- established - and - established -			demante continues - e pro-			· · · · · · · · · · · · · · · · · · ·	
eliciente o	e difusión d Rejnakos "	10 C	بر مارون مراجع می از این می اور این	ر الأسلامية المراجعة عمل المالي مراجع معرف ما مراجع معرفة المالي		Titler, New State		
1	1. Ann 1.	an a	i a gra	1997 - 1997 -	a Sun Castan - Su	and in the second second	and the second	1858 March

B 69.3 Drust adaptes - Microsoft Excel ĺ0 . X Diseño de página Aspen Complementos thore Magic Inicio : Intertar Formulas Datos Reviser Vista - ' Õ 蹖 A Consr Σ Autosuma i A 33 Times New Rom ajustar terto General <u><u></u></u> 🕹 Conar Pettenar Pegar Formato Dán formato: Estilos de Insertar Eliminar Formato Ordenar Buscarly 🔁 Combiner y centrar 🗉 N # (王) J Contar formáto Q Borran condicional como tabla * celda * y filtrar + selectionar+ Fostapapeles 4 American F. 1 NUME:0 Est los Celdin Max from Faith f= =0.00143"(C6^(7/4))/(SF\$13"(\$I\$13^0.5)"(((\$G\$13^(1/3))+(\$H\$13^(1/3)))^2)) **L13** - (+) ٣ C D E G н M Ò A. В r K. Ν - 1 FULLER et al Τ 4 ٩Ç K : 5 273 0 - 6 0.00143T 50 323 D. M. 7 ¥.8 🏛 <u>M.</u> M. $P_{f}(M_{r,q})^{V_{2}}[(\sum r)_{r}^{V_{3}}+$ 60 333 8 343 70 ģ 10 PI (Ev). $(\Sigma r)_{r}$ M M_{π} M_{\bullet} Dw, a 11 cra³/mol lom¹ mo cm²/s ព²/s g'moi g'mol 12 atra. g'mel 13 29 0.23479\$\$03 2.348E-05 10.173 19.7 22.2128 18 0.315148802 3.151E-05 : 14 0.332421155 3.324E-05 15 0.350086977 3.501E-05 16 17 18 19 20 21 22 23 24 - <u>35 |</u> |H ← F → H]. Coeficiente de difusión Remoids · 圖 山 松 100× ⊙ £ lisio ANDED B DISSUE 188 🗿 🌾 - and Qaz C (D at A (D Z K)) (0.06) ि सारवरनाः , CORRECTOR OF Distance all the bar lies GE a date 17 Been 600 O and a contract

Tabla Nº A VII.2: Calculo de la difusividad con la temperatura de operación.

<u></u>	S 56 E 189	E F	Net G m	₹/?Hb/???		1.1999	
n	and a substance of the	مى مەربىلىكى بىرىكى بىر	tilanskain gena gtapag annyn llynnige freinn o blodau synnige		ander an our daageter ender one water		
and the second sec	d 3 5 6 7 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	°C	a and all and an advance of a				
		50	60	70	and the second state of th		
			va(T=C)(m ² /S)	}			
		0.0000178	0.00001884	0.00001988			{
<i>d</i> _p (m)	<i>U</i> _a (m/s)	-					
0.006	3.8	1280_8989	1210.191083	1146.881288		U.A.	
0.008	3.9	1752.809	1656.050955	1569.416499		<u>}</u>	
0.01	4	2247.191	2123.142251	2012.072435		Y a(T)	
						an an a shar tablan a tablan a tablan a shara a	1 1
an a	e Second states and states and states and states	and a second	n anti statulita - Saraning sanya tina antifanya na dana kena	and parameters and an and an	na selike ange mganidijeti i termeni daris tekty	t b balantal o 19. generation operation (Pertra Mathematication)	

Tabla Nº A VII.3: Excel con los cálculos del Re Vs el tamaño de la partícula.

Tabla N° A VII.4: Excel con Modelo para predecir la humedad en un punto de la partícula

G12	* + (A Martin State	=\$C\$11-(((\$C\$12^2)*\$C\$13/\$	\$C\$17)*((1/\$C\$14}-(1/F12}))*(10	00/\$C\$15}
		C	I was a star D was shown		Mer Face	G G
11			The second se Second second s Second second seco	and the statement of the second	niger also collecterenteren commercial	l Anno a secondare
2	1	l		(A and a second) 	and the second s
831	Modelo n	natemático par	a predecir, la humedad abso	luta puntual de la j	articula	-
44	L. C.		<u> </u>		32	genta atanton aparata - managana
5	www.far.a.storespectroser.e.s		le - maniferent meneratur and annen series an annen de	and which all has a surround of the contraction of the statement of the stat	***	t
6	0. TT	1	$R^2 W_{AR} \begin{pmatrix} 1 & 1 \end{pmatrix} = 1$		(5.49)	
17	<i>∿0H</i> ,	$= \frac{9}{6}H_{5} -$			and the many second	the second barries of the second
8	a production of the second second	and a second second		P	the country and country	francisco anglassico de parto de
9	Non-	and the second s	· · · · · · · · · · · · · · · · · · ·	and commences our property to the first of		ter and the second second second second
[10]	6.4. 1665	ing and and and and and and and and	$\sum_{i=1}^{n} \sum_{j=1}^{n-1} (1 + i + 1) + (1$	and a state of the) 	ที่ เหมือนมากระบบสุดที่สุดเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นส
.11	%Hr1	95	kg agua kg particula)×100	nter a atraces and start many ma	F ₂	%Hr2
12	R	0.005	m		0.001	95
13	N AR	5.4	kg agua/m²h		0.002	86.028708
14	1 r 1	0.001		2	0.003	83.038278
15	ρ	550	kg/m ³		0.004	81.543062
16	D _A	0.00000038	m²/s		0.005	80.645933
17	D _A	0.001368	m²/h			
18.		hander an en belan, en der mit Unstagen i en }	ing bernandigariyanaldinggant antike karekatis tirren kagan oʻritda asoʻri mettir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ny consert and the consert of the co	aller i an	inter an an and the a

Tabla N° A VII.5: Excel con Modelo Matemático para predecir el flux másico del agua dentro de la partícula

	G28	• - 6	September 1.	=((\$C\$28/F28}^2)*\$C\$27				
1	STA SHA	In Brar	1	A DATE SALES	THE PARTY END	NOO-F HO	G	No. The second s
20		<u> </u>	[{	1 21	1
121					dit amount of factories			
22		Modelo in	atematico par	a blenecil, ei nur marico	det agna en et interiot.	oe ta partic	ura	1
23 [1			}
24			R^2					
25		$W_{Ar} = -$	F ² WAR	1				
26			{			[1	
27	÷	WAR	5.4	kg agua/m²h		T 2	BF _{AT}	
28		R	0.005	m		0.001	135	l
žė		1				0.002	33.75	Ī
30]	0.003	15]
31]	1]	0.004	8.4375	1
32	یر سی دورند و میرد و میرد و میرد و میرد بر میرون به ایناما و میرد و میر					0.005	5.4	1
33	، 		<u></u>			[

ે પાર

· · ·

Tabla Nº A VII.6: Excel con Modelo Matemático para predecir la humedad absoluta

promedio de la partícula

• •

1

	C53	- (148.436	=C43-(100*(C44^2)*C45/(C4	7*C49))*((1/C46)-(1,	/(C50-C46))*	'LN(C50/C46))
177	WethA man	AT TBHUS	1 · . C	THE PERMIT O METHON	An some E states	SET F MAX	Setter G 1 Set	125
129								
30						[
\$31					[
32				-				
33						ļ 		;
34	م بر المراجع ا مراجع المراجع ال			·	<u>i</u>			ί ŧ∽
135		lodelo mate	emático para 1	predecir la humedad absolut	a promedio de la pa	rticula) 	
36		- به معرفه محمود المورجة بالمراجعة . 			1			
131		<u> </u>				<u></u>		
200			1	00R ² W111		<u></u>		
20		% H _m .=	- % H.,	O D r r r - r	±Ln [.].[
41					/			
42	روار بور مالیات از میرد در در معرو به		f	لې د سر د بې وې د ور ور ور وې	ین در اور او بر او مواند بیا ۱۰ د مام استان ماه و ماند و موان میشود بین . 			
43	**********	%Hr1	95	(kg agua/kg particula)×100				
44	, , , , , , , , , , , , , , , , , , ,	R	0.005	m	αρίου από με τρηγοριατική το διατικό του που του δια διάδη στη 2014 ματαγραφική τη τη 	3		
45		∏' _{AR}	5.4	kg agua/m²h				
46		<i>r</i> 1	0.001	m				
47		ρ,	550	kg/m ²				
48		D _A	0.00000038	m²/s				
49		D_{A}	0.001368 -	m²/h				
50		<i>t</i> ₂	0.005	, m				
51								
52								
S 3		%H 🛌	84.27678489		}]		
54				1		}		

	***		······					-		
se de Tensión	[·	· · · · · · · · · · · · · · · · · · ·		23	OV				
mero del Modelo VFDE	002	004	007	015	022	037	055	075	110	150
ida Máxima Aplicable para el Motor (kW)	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	. 11	15
ida Máxima Aplicable para el Motor (hp)	0.25	0.5	1.0	2.0	3.0	5.0	7.5	10.0	15	20
Capacidad de Salida Nominai (kVA)	0.6	1.0	1.6	2.9	4.2	6.5	9.5	12.5	17.1	25
Corriente de Salida Nominal (A)	1.6	2.5	4.2	7.5	11.0	17	25	33	45	65
Tensió Máxima do Salida (V)		Trif	ásicopro	porcior	nal a dos	veces	la tensi	ón de er	ntrada	• • • • • • • •
Frecuencia de Salida (Hz)	0.1~600Hz									
Frecuencia del Transportador (kHz)	1-15									
	Monofásico Trifásico							:0		
	4.9/1.9	6.5/2.7	9.7/5.1	15.7/9	24/15	20.6	26	34	48	70
Tensión / Frecuencia Nominal	Trifás	ico/Mo	nolasico,	200-24	OV, 50/6	OHz A	lonofás	ico, 200	-240V, 5	0/60Hz
Tolerancia de Tensión	+10%(180-264V)									
Tolerancia de Frecuencia										
odo de Enfriamlento	Enfria	miento	Natural		E	nfriamie	into por l	Ventilado	Dr	
o (kg)	1.1	1.1	1.1	1.9	1.9	1.9	3.5	3.5	3 57	6.6
	se de Tensión mero del Modelo VFDE ida Máxima Aplicable para el Motor (kW) ida Máxima Aplicable para el Motor (hp) Cepacidad de Salida Nominal (kVA) Corriente de Salida Nominal (A) Tensió Máxima de Salida (V) Frecuencia de Salida (Hz) Frecuencia del Transportador (kHz) Corriente de Entrada Nominal (A) Tensión / Frecuencia Nominal Tolerancia de Tensión Tolerancia de Frecuencia todo de Enfriamiento to (kg)	se de Tensión 002 mero del Modelo VFDE 002 ida Máxima Aplicable para el Motor (kW) 0.2 ida Máxima Aplicable para el Motor (kW) 0.25 Cepacidad de Salida Nominal (kVA) 0.6 Corriente de Salida Nominal (kVA) 0.6 Corriente de Salida Nominal (A) 1.6 Tensió Máxima de Salida (V) Frecuencia de Salida (Hz) Frecuencia del Transportador (kHz) Corriente de Entrada Nominal (A) Corriente de Entrada Nominal (A) 4.9/1.9 Tensión / Frecuencia Nominal Trilás Tolerancia de Tensión Tolerancia de Frecuencia todo de Enfriamiento Enfria to (kg) 1.1	se de Tensión mero del Modelo VFDE 002 004 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 ida Máxima Aplicable para el Motor (hp) 0.25 0.5 Cepacidad de Salida Nominal (kVA) 0.6 1.0 Corriente de Salida Nominal (A) 1.6 2.5 Tensió Máxima de Salida (V) Triff Frecuencia del Salida (Hz) Frecuencia del Transportador (kHz) Corriente de Entrada Nominal (A) 4.9/1.9.6.5/2.7 Tensión / Frecuencia Nominal Trifásico/Mo Tolerancia de Tensión Tolerancia de Frecuencia todo de Enfriamiento Enfriamiento to (kg) 1.1 1.1	se de Tensión mero del Modelo VFDE 002 004 007 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 ida Máxima Aplicable para el Motor (hp) 0.25 0.5 1.0 Cepacidad de Salida Nominal (kVA) 0.6 1.0 i.6 Corriente de Salida Nominal (A) 1.6 2.5 4.2 Tensió Máxima de Salida (V) Trifásico pro Frecuencia del Transportador (kHz) Frecuencia del Transportador (kHz) Corriente de Entrada Nominal (A) Trifásico/Monofásico, Tolerancia de Tensión Tolerancia de Frecuencia codo de Enfriamiento (kg) 1.1 1.1 1.1	se de Tensión 002 004 007 015 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 ida Máxima Aplicable para el Motor (hp) 0.25 0.5 1.0 2.0 Capacidad de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 Corriente de Salida Nominal (kVA) 1.6 2.5 4.2 7.5 Tensió Máxima de Salida (V) Trifásico proporcior Frecuencia de Salida (Hz) 1.6 2.5 7.5 Corriente de Salida (Hz) Monofásico 7.5 15.7/9 Frecuencia del Transportador (kHz) Monofásico 200-244 Corriente de Entrada Nominal (A) Trifásico/Monofásico, 200-244 4.9/1.9.6.5/2.7 9.7/5.1 15.7/9 Tensión / Frecuencia Nominal Trifásico/Monofásico, 200-244 4.9/1.9.6.5/2.7 9.7/5.1 15.7/9 Tolerancia de Tensión + + 4.9/1.9.6.5/2.7 15.7/9 4.9/1.9.6.5/2.7 1.1 1.1 1.9 todo de Enfriamiento Enfriamiento Natural - <td< th=""><th>se de Tensión23mero del Modelo VFDE002004007015022ida Máxima Aplicable para el Motor (kW)0.20.40.751.52.2ida Máxima Aplicable para el Motor (hp)0.250.51.02.03.0Cepacidad de Salida Nominal (kVA)0.61.01.62.94.2Corriente do Salida Nominal (A)1.62.54.27.511.0Tensió Máxima de Salida (V)Trifásico proporcional a dosFrecuencia de Salida (Hz)0.1-6Frecuencia del Transportador (kHz)1-Corriente de Entrada Nominal (A)1.9.6.5/2.79.7/5.115.7/9Tensión / Frecuencia NominalTrifásico/Monofásico, 200-240V, 50/6Tolerancia de Tensión±10%(18Tolerancia de Frecuencia±5%(47)todo de EnfriamientoEnfriamiento NaturalEnfriamientoEnfriamiento Natural</th><th>se de Tensión 230V mero del Modelo VFDE 002 004 007 015 022 037 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 ida Máxima Aplicable para el Motor (hp) 0.25 0.5 1.0 2.0 3.0 5.0 Capacidad de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 Corriente de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 Corriente de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 Corriente de Salida Nominal (A) 1.6 2.5 4.2 7.5 11.0 17 Tensió Máxima de Salida (V) Trifásico proporcional a dos veces 0.1-600Hz 1-15 0.1-600Hz Frecuencia del Transportador (kHz) 1.9 1.9/1.9 6.5/2.7 9.7/5.1 15.7/9 24/15.2 20.6 Tensión / Frecuencia Nominal Trifásico/Monofásico. 200-240V.50/60Hz 4 10% (180-</th><th>se de Tensión 230V mero del Modelo VFDE 002 004 007 015 022 037 055 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 5.5 ida Máxima Aplicable para el Motor (hp) 0.25 0.5 1.0 2.0 3.0 5.0 7.5 Capacidad de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 9.5 Corriente de Salida Nominal (A) 1.6 2.5 4.2 7.5 11.0 17 25 Tensió Máxima de Salida (V) Trifásico proporcional a dos veces la tensi 0.1-600Hz 1-15 Frecuencia del Transportador (kHz) 1-15 1.15 1.15 20.6 26 Corriente de Entrada Nominal (A) 1.9(5.5/2.7 9.7/5.1 15.7/9 24/15 20.6 26 Tensión / Frecuencia Nominal Trifásico/Monofásico, 200-240V, 50/60Hz Monofásico 200-240V, 50/60Hz Monofásico Tolerancia de Tensión ±10%(180-264V) ±5%(47-63Hz)<th>se de Tensión 230V mero del Modelo VFDE 002 004 007 015 022 037 055 075 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 5.5 7.5 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 5.5 7.5 ida Máxima Aplicable para el Motor (kW) 0.25 0.5 1.0 2.0 3.0 5.0 7.5 10.0 Cepacidad de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 9.5 12.5 Corriente de Salida Nominal (A) 1.6 2.5 4.2 7.5 11.0 17 25 33 Tensió Máxima de Salida (V) Trifásico proporcional a dos veces la tensión de er Frecuencia del Transportador (KHz) 1.15 0.1-600Hz Frecuencia del Transportador (KHz) 1.5 1.5 20.6 26 34 Tensión / Frecuencia Nominal Trifásico/Monofásico, 200-240V, 50/60Hz Mo</th><th>se de Tensión 230V mero del Modelo VFDE 002 004 007 015 022 037 055 075 110 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 ida Máxima Aplicable para el Motor (hp) 0.25 0.5 1.0 2.0 3.0 5.0 7.5 10.0 15 Cepacidad de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 9.5 12.5 17.1 Corriente do Salida Nominal (A) 1.6 2.5 4.2 7.5 11.0 17 25 33 45 Tensió Máxima do Salida (V) Trifásico proporcional a dos veces la tensión de entrada Frecuencia de Salida (Hz) 0.1-600Hz Frecuencia del Transportador (kHz) 1.15 Corriente de Entrada Nominal (A) 1.6 5.7/9 7.7/5 1° 15.7/9 24/15 20.6 26 34 48 Tensión / Frecuencia Nominal (A) 11/4 sico/Monofásico, 200-240V, 50/60Hz Monofásico 200-240V, 50/60Hz Monofásico, 200-240V, 50/60Hz Monofásico, 200-240V, 50/60Hz Tolerancia de Tensión ± 5%(47-63Hz) Tolerancia de Frecuencia Enfriamiento por Ventilador ± 5%(47-63Hz) Enfriamiento por Ventilador</th></th></td<>	se de Tensión23mero del Modelo VFDE002004007015022ida Máxima Aplicable para el Motor (kW)0.20.40.751.52.2ida Máxima Aplicable para el Motor (hp)0.250.51.02.03.0Cepacidad de Salida Nominal (kVA)0.61.01.62.94.2Corriente do Salida Nominal (A)1.62.54.27.511.0Tensió Máxima de Salida (V)Trifásico proporcional a dosFrecuencia de Salida (Hz)0.1-6Frecuencia del Transportador (kHz)1-Corriente de Entrada Nominal (A)1.9.6.5/2.79.7/5.115.7/9Tensión / Frecuencia NominalTrifásico/Monofásico, 200-240V, 50/6Tolerancia de Tensión±10%(18Tolerancia de Frecuencia±5%(47)todo de EnfriamientoEnfriamiento NaturalEnfriamientoEnfriamiento Natural	se de Tensión 230V mero del Modelo VFDE 002 004 007 015 022 037 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 ida Máxima Aplicable para el Motor (hp) 0.25 0.5 1.0 2.0 3.0 5.0 Capacidad de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 Corriente de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 Corriente de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 Corriente de Salida Nominal (A) 1.6 2.5 4.2 7.5 11.0 17 Tensió Máxima de Salida (V) Trifásico proporcional a dos veces 0.1-600Hz 1-15 0.1-600Hz Frecuencia del Transportador (kHz) 1.9 1.9/1.9 6.5/2.7 9.7/5.1 15.7/9 24/15.2 20.6 Tensión / Frecuencia Nominal Trifásico/Monofásico. 200-240V.50/60Hz 4 10% (180-	se de Tensión 230V mero del Modelo VFDE 002 004 007 015 022 037 055 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 5.5 ida Máxima Aplicable para el Motor (hp) 0.25 0.5 1.0 2.0 3.0 5.0 7.5 Capacidad de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 9.5 Corriente de Salida Nominal (A) 1.6 2.5 4.2 7.5 11.0 17 25 Tensió Máxima de Salida (V) Trifásico proporcional a dos veces la tensi 0.1-600Hz 1-15 Frecuencia del Transportador (kHz) 1-15 1.15 1.15 20.6 26 Corriente de Entrada Nominal (A) 1.9(5.5/2.7 9.7/5.1 15.7/9 24/15 20.6 26 Tensión / Frecuencia Nominal Trifásico/Monofásico, 200-240V, 50/60Hz Monofásico 200-240V, 50/60Hz Monofásico Tolerancia de Tensión ±10%(180-264V) ±5%(47-63Hz) <th>se de Tensión 230V mero del Modelo VFDE 002 004 007 015 022 037 055 075 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 5.5 7.5 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 5.5 7.5 ida Máxima Aplicable para el Motor (kW) 0.25 0.5 1.0 2.0 3.0 5.0 7.5 10.0 Cepacidad de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 9.5 12.5 Corriente de Salida Nominal (A) 1.6 2.5 4.2 7.5 11.0 17 25 33 Tensió Máxima de Salida (V) Trifásico proporcional a dos veces la tensión de er Frecuencia del Transportador (KHz) 1.15 0.1-600Hz Frecuencia del Transportador (KHz) 1.5 1.5 20.6 26 34 Tensión / Frecuencia Nominal Trifásico/Monofásico, 200-240V, 50/60Hz Mo</th> <th>se de Tensión 230V mero del Modelo VFDE 002 004 007 015 022 037 055 075 110 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 ida Máxima Aplicable para el Motor (hp) 0.25 0.5 1.0 2.0 3.0 5.0 7.5 10.0 15 Cepacidad de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 9.5 12.5 17.1 Corriente do Salida Nominal (A) 1.6 2.5 4.2 7.5 11.0 17 25 33 45 Tensió Máxima do Salida (V) Trifásico proporcional a dos veces la tensión de entrada Frecuencia de Salida (Hz) 0.1-600Hz Frecuencia del Transportador (kHz) 1.15 Corriente de Entrada Nominal (A) 1.6 5.7/9 7.7/5 1° 15.7/9 24/15 20.6 26 34 48 Tensión / Frecuencia Nominal (A) 11/4 sico/Monofásico, 200-240V, 50/60Hz Monofásico 200-240V, 50/60Hz Monofásico, 200-240V, 50/60Hz Monofásico, 200-240V, 50/60Hz Tolerancia de Tensión ± 5%(47-63Hz) Tolerancia de Frecuencia Enfriamiento por Ventilador ± 5%(47-63Hz) Enfriamiento por Ventilador</th>	se de Tensión 230V mero del Modelo VFDE 002 004 007 015 022 037 055 075 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 5.5 7.5 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 5.5 7.5 ida Máxima Aplicable para el Motor (kW) 0.25 0.5 1.0 2.0 3.0 5.0 7.5 10.0 Cepacidad de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 9.5 12.5 Corriente de Salida Nominal (A) 1.6 2.5 4.2 7.5 11.0 17 25 33 Tensió Máxima de Salida (V) Trifásico proporcional a dos veces la tensión de er Frecuencia del Transportador (KHz) 1.15 0.1-600Hz Frecuencia del Transportador (KHz) 1.5 1.5 20.6 26 34 Tensión / Frecuencia Nominal Trifásico/Monofásico, 200-240V, 50/60Hz Mo	se de Tensión 230V mero del Modelo VFDE 002 004 007 015 022 037 055 075 110 ida Máxima Aplicable para el Motor (kW) 0.2 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 ida Máxima Aplicable para el Motor (hp) 0.25 0.5 1.0 2.0 3.0 5.0 7.5 10.0 15 Cepacidad de Salida Nominal (kVA) 0.6 1.0 1.6 2.9 4.2 6.5 9.5 12.5 17.1 Corriente do Salida Nominal (A) 1.6 2.5 4.2 7.5 11.0 17 25 33 45 Tensió Máxima do Salida (V) Trifásico proporcional a dos veces la tensión de entrada Frecuencia de Salida (Hz) 0.1-600Hz Frecuencia del Transportador (kHz) 1.15 Corriente de Entrada Nominal (A) 1.6 5.7/9 7.7/5 1° 15.7/9 24/15 20.6 26 34 48 Tensión / Frecuencia Nominal (A) 11/4 sico/Monofásico, 200-240V, 50/60Hz Monofásico 200-240V, 50/60Hz Monofásico, 200-240V, 50/60Hz Monofásico, 200-240V, 50/60Hz Tolerancia de Tensión ± 5%(47-63Hz) Tolerancia de Frecuencia Enfriamiento por Ventilador ± 5%(47-63Hz) Enfriamiento por Ventilador

÷

-

Figura A VII.7: Las características técnicas del equipo variador de velocidad.

_