UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERIA MECANICA

DISEÑO DEL CUARTO PROTOTIPO DEL BRAZO ROBOTICO SVC422B CON CONTROL ADAPTATIVO CON ENFOQUE A PROCESOS DE SOLDADURA INDUSTRIAL

TESIS

PARA OPTAR EL TITULO PROFESIONAL DE: INGENIERO MECATRONICO

WILBERT LEON CALLUCO ESPINOZA

PROMOCION 2008-II

LIMA-PERU

2015

Digitalizado por:

Consorcio Digital del Conocimiento MebLatam, Hemisferio y Dalse "Por la fuerza y la voluntad que nos da día a día recordándonos que para el que tiene fe todo le es posible, porque los milagros, su misericordia y poder son suyos por siempre y para siempre ".

A mis padres

Santos y Beatriz por su amor, dedicación y fortaleza,

A mis hermanos

José, Franklin y Beatriz por su ejemplo.

Contenido

Lista	de figuras	vi
Lista	de Tablas	xiv
Prolo	go	1
Capít	tulo 1	
Intro	ducción	4
1.1	Antecedentes	5
1.2	Planteamiento del problema	7
1.3	Objetivos	7
	1.3.1 Objetivo general	7
	1.3.2 Objetivos específicos	7
1.4	Alcances y limitaciones	8

Capítulo 2

2.1	Introducción	9
-----	--------------	---

i

Capítulo 3

Cine	mática del brazo robótico SVC422B	15
3.1	Introducción	15
3.2	Modelado de la cinemática de robots	16
	3.2.1 Algoritmo de Denavit – Hartenberg para la obtención del	
	modelo cinemático directo.	16
	3.2.2 Parámetros de Denavit-Hartenberg (D-H)	17
3.3	Descripción del brazo robótico SVC422B.	18
	3.3.1 Descripción del SVC422B	18
	3.3.2 Espacio de trabajo	20
3.4	Puntos y trayectorias singulares del espacio de trabajo.	22
3.5.	Cinemática directa del SVC422B	25
3.6.	Cinemática inversa del SVC422B	32
3.7	Generación de trayectorias del SVC422B	35
	3.7.1 Primera trayectoria (TLR1)	36
	3.7.2 Segunda trayectoria (TLR2)	38
	3.7.3 Tercera trayectoria (TLR3)	40

Capítulo 4

Dinámica del brazo robótico SVC422B 42		
4.1	Dinámica del robot manipulador.	.42
4.2	Formulación de Newton-Euler	.43

	4.2.1 Algori	itmo computacional para determinar el modelo dinámico	
	por Newton	Euler.	43
4.3	Modelo dinár	mico del brazo robótico del SVC422B.	46

Capítulo 5

<u>а</u> – 1

Enfoq	lue al p	roceso de soldadura del brazo robótico SVC422B	55
5.1	Introdu	ıcción	55
5.2	Enfoqu	ue para procesos de soldadura	56
	5.2.1	Fundamento del proceso MIG-MAG	56
	5.2.2	Consideraciones para procesos de soldadura	63
	5.2.3	Modelamiento de las fuerzas perturbadoras en el proceso de	
	soldad	lura	64
	5.2.4	Consideraciones del SVC422B en el proceso de soldadura para u	na
	trayec	toria en Línea Recta	66
5.3	Consic	deraciones para el diseño del controlador del brazo robótico	
	SVC42	22B	67
	5.3.1	Control por Torque Computado.	67
	5.3.2	Control Adaptativo por planificación de Ganancias	68
	5.3.3	Diseño del sistema de control del SVC422B	69
	5.3.4	Dimensionamiento y descripción de los actuadores del brazo robóti	ico
	SVC4	22B	7 0
5.4	Procee	dimiento de sintonización de los parámetros del controlador	
	del SV	VC422B	72

Capitulo 6

Simu	mulaciones y resultados92		
6.1	Result	ados de la Simulación de la Trayectorias del Efector final	93
	6.1.1	Simulación de la trayectoria en Línea Recta (TLR1) del	
	efecto	or final	93
	6.1.2	Simulación de la trayectoria en Línea Recta (TLR2) del	
	efecto	or final	102
	6.1.3	Simulación de la trayectoria en Línea Recta (TLR3) del	
	efecto	or final	110

Conclusiones	
grafía120	
os122	
Otra configuración del SVC422B123	
Cinemática directa del SVC422B124	
Cálculo de la cinemática inversa del SVC422B125	
Ploteo de las curvas con los datos que se obtienen en la cinemática inversa	
para todos los puntos que pertenecen a una determinada trayectoria127	
Ajuste de curvas obtenidas mediante el programa CISVC.m para cada	
trayectoria	
Programas utilizados para la generación de trayectorias en simulink138	
Programa DinSVC.m	

B.2.	Resultado de las matrices de inercia (H), matriz de Coriolis (C) y	
	la matriz de gravedad (G)	150
C.1	Características relevantes de las 7 perturbaciones aplicadas al brazo	robótico
	SVC422B	155
C.2	Ajustes de los parámetros del control adaptativo del SVC322B	160
C.3	Diagrama de bloques que conforman el sistema de control	
	del SVC422B	163
C4.	Diversos tipos de motores para el eslabón 1	168
C5.	Planos del diseño mecánico de los eslabones del brazo robótico SV	C422B
	Plano 1 Diseño del eslabón 1_1	
	Plano 2 Diseño del eslabón 1_2	171
	Plano 3 Diseño del eslabón 1_3	172
	Plano 4 Diseño del eslabón 2_1	173
	Plano 5 Diseño del eslabón 2_2	174
	Plano 6 Diseño del eslabón 2_3	
	Plano 7 Diseño del eslabón 2_4	176
	Plano 8 Diseño del eslabón 3_1	
	Plano 9 Diseño del eslabón 3_2	178
	Plano 10 Diseño del eslabón 4_1	179
	Plano 11 Diseño del eslabón 4_2	
	Plano 12 Diseño del eslabón 4_3	181
	Plano 13 Diseño del eslabón 4_4	182
	Plano 14 Vistas principales y vistas de detalle del SVC422B	

Lista de Figuras

,

Figura 2.1	Péndulo Físico
Figura 3.1	Relaciones entre la Cinemática directa e inversa
Figura 3.2	Brazo Robótico SVC422B18
Figura 3.3	Vistas del SVC422B19
Figura 3.4	Espacio de trabajo real del SVC422B20
Figura 3.5	Vistas del espacio de trabajo del SVC42221
Figura 3.6	Vista de perfil del SVC422B21
Figura 3.7	Vistas Horizontal del espacio de trabajo del SVC422B22
Figura 3.8	Circunferencia límite de los eslabones del SVC422B23
Figura 3.9	Puntos de la trayectoria del SVC422B23
Figura 3.10	Puntos isométricos de la trayectoria del SVC422B24
Figura 3.11	Trayectorias singulares del SVC422B24
Figura 3.12	Diferentes vistas para una misma trayectoria plana del SVC422B
Figura 3.13	Sistemas de Referencia del SVC422B26

Figura 3.14	Ángulos del SVC422B26
Figura 3.15	Resultados de las ecuaciones cinemáticas del SVC42230
Figura 3.16	Enfoque en el plano XY
Figura 3.17	Enfoque en el plano YZ31
Figura 3.18	Tres últimos grados de libertad contenidos en el plano 1
Figura 3.19	Diferentes ángulos para un mismo punto P
Figura 3.20	Posiciones angulares obtenidas de q1 para TLR1
Figura 3.21	Posiciones angulares obtenidas de q2 para TLR1
Figura 3.22	Posiciones angulares obtenidas de q3 para TLR1
Figura 3.23	Posiciones angulares obtenidas de q1 para TLR2
Figura 3.24	Posiciones angulares obtenidas de q2 para TLR2
Figura 3.25	Posiciones angulares obtenidas de q3 para TLR239
Figura 3.26	Posiciones angulares obtenidas de q1 para TLR341
Figura 3.27	Posiciones angulares obtenidas de q2 para TLR341
Figura 3.28	Posiciones angulares obtenidas de q1 para TLR341
Figura 4.1	Modelo Dinámico
Figura 4.2	Diagrama del bloque de la Dinámica Directa del SVC422B53
Figura 5.1	Sistema total con el controlador del SVC422B69
Figura 5.2	Respuesta del sistema en el espacio XYZ con la sintonización 172

Figura 5.3 Errores de las posiciones angulares con la sintonización 1
Figura 5.4 Error total en el espacio XYZ con la sintonización 173
Figura 5.5 Respuesta del sistema en el espacio XYZ con la sintonización 274
Figura 5.6 Errores de las posiciones angulares con la sintonización 275
Figura 5.7 Error total en el espacio XYZ con la sintonización 275
Figura 5.8 Respuesta del sistema en el espacio XYZ con la sintonización 376
Figura 5.9 Errores de las posiciones angulares con la sintonización 376
Figura 5.10 Error total en el espacio XYZ con la sintonización 377
Figura 5.11 Respuesta del sistema en el espacio XYZ con la sintonización 478
Figura 5.12 Errores de las posiciones angulares con la sintonización 478
Figura 5.13 Error total en el espacio XYZ con la sintonización 479
Figura 5.14 Respuesta del sistema en el espacio XYZ con la sintonización 580
Figura 5.15 Errores de las posiciones angulares con la sintonización 5
Figura 5.16 Error total en el espacio XYZ con la sintonización 5
Figura 5.17 Torques con saturador aplicados al robot con la sintonización 581
Figura 5.18 Respuesta del sistema en el espacio XYZ debido al control de
posición
Figura 5.19 Error de las posiciones angulares

•

Figura 5.20	Error total (espacio XYZ) debido al control de	
	posición	84
Figura 5.21	Respuesta del sistema en el espacio XYZ debido al control de	
	movimiento	86
Figura 5.22	Errores de las posiciones angulares	6
Figura 5.23	Error total en el espacio XYZ con la sintonización 5	87
Figura 5.24	Respuesta del sistema en el espacio XYZ debido al control de	
	movimiento	87
Figura 5.25	Proyección de la trayectoria en el planoX-Y	88
Figura 5.26	Proyección de la trayectoria en el planoX-Z	88
Figura 5.27	Proyección de la trayectoria en el planoY-Z	89
Figura 5.28	Torques saturados aplicados al robot debido al control de posición.	
		.89
Figura 5.29	Torques sin saturador aplicados al robot debido al control de	
	posición	.90
Figura 5.30	Errores de las posiciones angulares con la sintonización 6	90
Figura 5.31	Error total en el espacio XYZ con la sintonización 6	.91
Figura 6.1	Respuesta del sistema debido al control de posición para el inicio	

.

TLR195
Figura 6.2 Error total (espacio XYZ) debido al control de posición para el inicio
TLR195
Figura 6.3 Torques saturados debido al control de posición para el inicio de la
TLR196
Figura 6.4 Error total (espacio XYZ) para TLR1 debido a la perturbación
TPP1
Figura 6.5 Error total (espacio XYZ) para TLR1 debido a la perturbación
TPP2
Figura 6.6 Error total (espacio XYZ) para TLR1 debido a la perturbación
TPP3
Figura 6.7 Error total (espacio XYZ) para TLR1 debido a la perturbación
ТРР4
Figura 6.8 Error total (espacio XYZ) para TLR1 debido a la perturbación
TPP5100
Figura 6.9 Error total (espacio XYZ) para TLR1 debido a la perturbación
TPP6100

Figura 6.10 Error total (espacio XYZ) para TLR1 debido a la perturbación

TPP7101
Figura 6.11 Respuesta del sistema debido al control de posición para el inicio
TLR2
Figura 6.12 Error total (espacio XYZ) debido al control de posición para
el inicio TLR2103
Figura 6.13 Torques saturados debido al control de posición para el
inicio de la TLR2104
Figura 6.14 Error total (espacio XYZ) para TLR2 debido a la perturbación
TPP1106
Figura 6.15 Error total (espacio XYZ) para TLR2 debido a la perturbación
TPP2106
Figura 6.16 Error total (espacio XYZ) para TLR2 debido a la perturbación
TPP3107
Figura 6.17 Error total (espacio XYZ) para TLR2 debido a la perturbación
TPP4107
Figura 6.18 Error total (espacio XYZ) para TLR2 debido a la perturbación
TPP5
Figura 6.19 Error total (espacio XYZ) para TLR2 debido a la perturbación

ТРР6108
Figura 6.20 Error total (espacio XYZ) para TLR2 debido a la perturbación
TPP7109
Figura 6.21 Respuesta del sistema debido al control de posición para el inicio
TLR3
Figura 6.22 Error total (espacio XYZ) debido al control de posición para
el inicio TLR3111
Figura 6.23 Torques saturados debido al control de posición para el inicio
de la TLR3112
Figura 6.24 Error total (espacio XYZ) para TLR3 debido a la perturbación
TPP1114
Figura 6.25 Error total (espacio XYZ) para TLR3 debido a la perturbación
TPP2114
Figura 6.26 Error total (espacio XYZ) para TLR3 debido a la perturbación
ТРР3115
Figura 6.27 Error total (espacio XYZ) para TLR3 debido a la perturbación
TPP4115

Figura 6.28 Error total (espacio XYZ) para TLR3 debido a la perturbación

	ГРР5115
Figura 6.29	Error total (espacio XYZ) para TLR3 debido a la perturbación
	ГРР6115
Figura 6.30	Error total (espacio XYZ) para TLR3 debido a la perturbación

,

TPP7	

Lista de Tablas

Tabla 3.1 Parámetros Denavit-Hartemberg para el SVC422B
Tabla 3.2 Resultados de la cinemática inversa para diversas posiciones
del robot
Tabla 3.3 Datos de simulación para la generación de trayectoria
para TLR1
Tabla 3.4 Datos de simulación para la generación de trayectoria
para TLR2
Tabla 3.5 Datos de simulación para la generación de trayectoria
Para TLR3
Tabla 4.1 Parámetros dinámicos del SVC422B
Tabla 4.2 Hardwares utilizados
Tabla 5.1 Tipos de unión de soldaduras [14]
Tabla 5.2 Características y principales aplicaciones de desplazamiento y movimiento
[14]
Tabla 5.3 Condiciones para la transferencia de metal en la soldadura de arco metálico
con protección de gas y sus aplicación [13]60
Tabla 5.4 Solución de problemas de la soldadura de arco metálico con protección de
gas [13]61

Tabla 5.5	Parámetros de soldeo para cada trayectoria del SVC422B63
Tabla 5.6	Características cualitativas de las perturbaciones que
	afectan al sistema
Tabla 5.7	Parámetros de soldeo para cada trayectoria del SVC422B66
Tabla 5.8	Características cualitativas de las perturbaciones que afectan
	al sistema71
Tabla 5.9	Datos iniciales para el control de posición
Tabla 5.10	Datos de simulación para el seguimiento de trayectoria
Tabla 6.1	Datos de simulación para el control de posición para el
	inicio TLR194
Tabla 6.2	Datos de simulación para el seguimiento de trayectoria
	para TLR1
Tabla 6.3	Planificación de ganancias para cada tipo de perturbación
	para TLR1101
Tabla 6.4	Respuesta del sistema debido al control de posición para el
	inicio TLR2102
Tabla 6.5	Datos de simulación para el seguimiento de trayectoria
	para TLR2

.

Tabla 6.6	Planificación de ganancias para cada tipo de perturbación	
	para TLR2109	
Tabla 6.7	Respuesta del sistema debido al control de posición para el	
	inicio TLR3110	
Tabla 6.8	Datos de simulación para el seguimiento de trayectoria	
	para TLR2113	
Tabla 6.9	Planificación de ganancias para cada tipo de perturbación	
	para TLR3117	

PROLOGO

La construcción de un brazo robótico implica una serie de procesos de diseño es así que el desarrollo de los prototipos justifica la solidez en su implementación y funcionamiento, tal es el caso de los prototipos netamente experimentales.

El diseño de un brazo robótico integra una serie de elementos como son: Los eslabones mecánicos, actuadores con reductores, sensores de alta precisión, electrónica de potencia, el computador que lo gobierna, etc lo convierten en un sistema altamente no lineal en lo que se refiere a su modelo matemático.

Por este motivo muchas veces bajo ciertas consideraciones aceptables, no se modelan todos los elementos que lo conforman y a pesar de esto no se pierden los criterios de ingeniería, necesarios para su construcción.

Una vez culminado el diseño mecatrónico del prototipo, la siguiente fase es evaluar el desempeño del modelo, sometiéndolo a pruebas experimentales de funcionamiento que para el caso del brazo robótico, su efector final debe realizar una trayectoria deseada y compararla con la trayectoria obtenida de tal manera que el grado de error tienda a cero.

Igualmente, este es el caso del brazo robótico SVC422B que es un prototipo experimental de cuatro grados de libertad, cuyo enfoque está dirigido al diseño del

algoritmo de control considerando los efectos que producen perturbaciones aleatorias durante el proceso de soldadura y el tiempo que dura este.

Finalmente, en la presente tesis se desarrolló la ley de control de par computado con PID-Adaptativo por planificación de ganancias, con la finalidad de resolver el problema de control de movimiento del efector final del SVC422B.

La presente tesis está constituida por los siguientes capítulos:

Capítulo 1. Introducción. En el primer capítulo está conformado por el planteamiento del problema, objetivos, los antecedentes, alcances y limitaciones.

Capítulo 2. Teoría de Modelos y Prototipos. Se presentan los conceptos y tipos de prototipos así como el modelado matemático de los mismos.

Capítulo 3. Cinemática del SVC422B. Se realiza el cálculo de las ecuaciones Cinemáticas del SVC422B aplicando el algoritmo Denavit-Hartemberg.

Capítulo 4. Dinámica del SVC422B. Se realiza el cálculo de las ecuaciones dinámicas del SVC422B utilizando el algoritmo computacional de Newton-Euler.

Capítulo 5. Enfoque al proceso de soldadura del SVC422B. Se muestran las consideraciones necesarias para el diseño del algoritmo de control teniendo en cuenta las perturbaciones y el tiempo que duran los procesos de soldadura industrial.

Capítulo 6. Conclusiones y resultados. Se presentan las conclusiones a las que se llegaron realizando diversas simulaciones en el recorrido del efector final para una trayectoria determinada.

CAPITULO 1

INTRODUCCION

En el presente proyecto de tesis está orientada a controlar los movimientos de las articulaciones de un prototipo de brazo robótico de cuatro grados de libertad, para esto utilizamos técnicas de control del tipo adaptativo. Por ello la presente tesis está dirigida al diseño del cuarto prototipo para la implementación del brazo robótico SVC422B con control adaptativo enfocado a procesos de soldadura industrial por este motivo el fin del diseño de todo el prototipo es sentar las bases para su nueva implementación.

La mayoría de las empresas entre ellas las del rubro de mecánica realizan diversos procesos industriales, siendo uno de ellos la soldadura de forma manual. Automatizar este proceso disminuye el riesgo por accidentes, fallas humanas, tiempos y aumenta la precisión en el proceso de soldadura.

El desarrollo de un prototipo de máquina para automatizar este proceso tiene como buen candidato a un brazo robótico.

La lluvia de ideas es impresionante, tal es el caso que el aporte de ingenieros, técnicos, estudiantes e incluso profesionales de otros campos dan un gran aporte para el desarrollo de un prototipo. Si bien es cierto los prototipos no son productos finales pero en muchos casos son como una especie de "inspiraciones" que nos dan una gama de enfoques para encontrar diversas soluciones en la industria y también en otros campos. Dar solución a un problema utilizando diversas técnicas se anida muy bien en la definición de palabra ingeniería y con más razón en la ingeniería Mecatrónica por su gran gama de disciplinas que la integran. Por este motivo, el diseño del SVC422B se ha realizado teniendo en cuenta todos estos criterios de ingeniería anteriormente mencionados tanto en los anteriores prototipos (diseño e implementación) como en el actual que se viene desarrollando.

1.1 ANTECEDENTES

Los brazos robóticos soldadores tienen su origen aproximadamente por la década del 60, entre las empresas que se dedican a la producción de este tipo de robots están la empresa ABB, Mitsubishi, etc.

En 1973 la firma sueca ASEA construyo el primer robot con accionamiento totalmente eléctrico, el robot IRB6, seguido un año más tarde del robot IRB60. Posteriormente, ya como ABB, se convertiría en una de las empresas más importantes del mundo en la fabricación de robots industriales, y Suecia uno de los países con más robots per capita. En este sentido, en 1980 se fundó la Federación Internacional de Robótica con sede en Estocolmo [1].

A partir de 1980, el fuerte impulso en la investigación, por parte de las empresas fabricantes de robots, otras auxiliares y diversos departamentos de Universidades de todo el mundo, sobre la informática aplicada y la experimentación de sensores cada vez más perfeccionados, potencian la configuración del robot inteligente capaz de adaptarse al ambiente y tomar decisiones en tiempo real, adecuadas para cada situación. En 1995 el parque mundial de robots rondaba las 700000 unidades [5].

En su aplicación industrial, los robots manipuladores son comúnmente empleados en tareas repetitivas y de precisión, así como en actividades peligrosas para operadores humanos. Las principales ventajas argumentadas para el uso de robots manipuladores en la industria son la reducción de los costes de producción, el incremento de la precisión, la calidad y la productividad, y una mayor flexibilidad comparada con la de las maquinas especializadas[4].

Según las estadísticas en el año 2000, el 37% de los robots operativos en Japón se destinaban a tareas de ensamble y solo el 15% a soldadura [4]

En 2007 se presentó el IRB 6620. Este robot especial para la soldadura por puntos, es ligero y compacto; es tan pequeño que dos unidades ocupan el mismo espacio que una sola de su modelo predecesor, el IRB 6600 [11].

Si bien es cierto el avance tecnológico en el campo de la robótica se sigue dando es tarea de los futuros profesionales contribuir a este desarrollo de una veraz y ética requisitos necesarios e indispensables en el campo de la investigación.

En el caso del brazo robótico SVC422B viene a ser la versión del cuarto prototipo de desarrollo, en donde los primeros prototipos fueron expuestos y presentados en concursos como Coneimera 2009 (Congreso Nacional de estudiantes de Ingeniería Mecánica, Eléctrica Ramas Afines) [8] y Fointec 2009 (Foro Internacional de Innovación Tecnológica). Ambos proyectos alcanzaron el reconocimiento por parte del jurado calificador logrando obtener el primer puesto tanto en la categoría de pre-grado como en la categoría de postgrado. Posteriormente se continuo el desarrollo del prototipo que fue presentado en el concurso de Coneimera 2014 [16] que también alcanzó reconocimiento por parte del jurado.

1.2 PLANTEAMIENTO DEL PROBLEMA

En el presente proyecto se plantea controlar los movimientos de las articulaciones del brazo robótico SVC422B de tal manera que realice el seguimiento de una trayectoria , teniendo en consideración los efectos que producen las perturbaciones en el proceso de soldadura, para esto utilizaremos técnicas de control del tipo adaptativo ya que el requerimiento de la soldadura industrial así lo exige. Por consiguiente se diseñó una la ley de control de par computado con PID-Adaptativo por planificación de ganancias y su respectivo diseño mecanico de sus eslabones.

1.3 OBJETIVOS

1.1.1 Objetivo general

Diseñar el cuarto prototipo del brazo robótico SVC422B con control adaptativo con enfoque a procesos de soldadura industrial.

1.1.2 Objetivo específicos

- Obtener las ecuaciones Cinemáticas y Dinámicas del brazo robótico
 SVC422B
- Diseñar el algoritmo de control PID-Adaptativo por planificación de ganancias (Gain- Scheduling) del brazo robótico SVC422B
- Simular las trayectorias realizadas por efector final del brazo robótico
 SVC422B menores a 1.1 m.

Calcular el torque de los actuadores para la implementación del quinto prototipo.

 Dar un enfoque a procesos de soldadura mediante consideraciones en el proceso de simulación y obtener un error permisible menores a 3.4 mm debido a las perturbaciones que pudieran intervenir.

1.4 Alcances y limitaciones

El brazo robótico SVC422B y su algoritmo de control son parte de un proyecto de investigación en continuo desarrollo. Por consiguiente el SVC422B es un prototipo diseñado para el seguimiento de una trayectoria específica el cual es afectado por perturbaciones de tipo aleatoria computacionalmente que simula el proceso de soldeo. Cabe resaltar que los planos del diseño mecánico de los eslabones están incluidos en la tesis y los parámetros necesarios para el diseño del algoritmo de control fueron calculados para cada etapa del proyecto y gracias a esto se logró conseguir en la simulación una trayectoria de longitud de 1012.1 mm que representa el recorrido del efector final del brazo robótico en el proceso de soldadura.

Sin embargo el SVC422B puede recorrer trayectorias de mayor longitud lo cual depende única y exclusivamente de la longitud de sus eslabones que pueden ser desarrollados en posteriores prototipos. En lo que concierne a las limitaciones el modelo del robot no incluye las fuerzas de fricción viscosa en los actuadores, la inexactitud en las juntas de los eslabones y varios de los parámetros que intervienen en el proceso de soldeo. A pesar de esto el diseño del SVC422B nos da una buena estimación de las características de los actuadores que se integraran en el robot para su posterior implementación en el prototipo 5 así como la sintonización inductiva de su controlador.

CAPITULO 2 TEORIA DE MODELOS Y PROTOTIPOS

2.1. INTRODUCCION

La teoría en todo sentido no puede ser validada si no va de la mano con la posterior experimentación; es así que en el transcurso de la historia diversos científicos han podido corroborar sus teorías y encontrado muchos errores y aciertos gracias a la experimentación. El método científico ha sido sin lugar a duda el punto de inicio de cualquier experimento.

Si bien es cierto mirar no es lo mismo que observar, y escuchar no es lo mismo que oír, las personas pueden estar mirando un acontecimiento pero no necesariamente observando, así como también pueden escuchar un sonido pero no necesariamente oírlo.

Modelar en Ingeniería es sinónimo de representación de una ecuación, interpretación o abstracción matemática, siendo ella descrita por muchos autores con las siguientes frases:

- "La matemática es la llave que abre todas las puertas" (Duruy).

- "Las matemáticas son el alfabeto con el cual Dios ha escrito el Universo". (Galileo Galilei)

Los fenómenos físico-químicos de nuestro entorno también son modelados. Estos abarcan desde simples ecuaciones lineales hasta complejas ecuaciones diferenciales.

Un robot no es la excepción de un modelamiento, sino todo lo contrario, llegando incluso a ser muy complejo en caso de robots de muchos grados de libertad, debido a la gran extensión de sus ecuaciones dinámicas; pero gracias a los modelamientos mecánicos, electrónicos, etc., se puede reducir en gran manera estas ecuaciones tomando ciertas restricciones, y en muchos casos pruebas experimentales que hacen del modelamiento una herramienta muy buena y versátil.

Asimismo el modelamiento de las perturbaciones juega un papel muy importante al momento de su simulación; así que, durante la experimentación podemos notar cualidades interesantes de las perturbaciones. En algunos casos existen disturbios favorables en donde la pregunta clave seria: "¿Cómo una perturbación podría ayudar a controlar mi sistema?". Esto corresponde a una respuesta que no es sencilla de obtener en sistemas complejos. Un ejemplo sencillo que podemos citar seria la fuerza de fricción que está en la misma dirección del movimiento de un móvil con ruedas.

En los cursos de pregrado hay muchos modelos que el alumno aprende a lo largo de su carrera; tal es así que en el curso de física, la fórmula del péndulo simple cuyo modelo es

$$\ddot{\theta} + \left(\frac{g}{L}\sin(\theta)\right) = 0 \tag{1}$$

Siendo: $\omega = \sqrt{\frac{g}{L}}$, $T = 2\pi \sqrt{\frac{g}{L}}$ ω : velocidad angular T: periodo

Que en su forma abstracta parece restringida, pero es utilizado para el desarrollo de diversos prototipos de varios grados de libertad, como es el caso del curso de Robótica, en el cual se profundiza este modelamiento.

Figura 2.1 Péndulo Físico

Pero pasar por alto esta ecuación seria perderse de un análisis muy interesante debido a las siguientes preguntas:

- 1. ¿Qué ocurriría si...?
- 2. ¿Cómo calcularía los...?
- 3. Cuáles son los efectos de...?
- 4. ¿Cuál es la conclusión de...?

La resolución de estas preguntas añadidas al respectivo análisis y sumados a la posterior experimentación, convierte a la ecuación dada en (1) en una poderosa herramienta de cálculo.

Posteriormente, una vez conocidos los modelos que necesitamos, pasamos a la etapa de implementación. Es aquí donde los prototipos han sido objeto de desarrollo en la historia.

En la resolución de problemas de Ingeniería, de acuerdo a la clasificación en [12] se usan tres tipos de modelos:

- Modelos Analíticos o matemáticos

Consiste en una ecuación o conjunto de ecuaciones que representan a un sistema físico.

- Modelos de simulación

Cuando se trata de sistemas complejos se utilizan el modelo simulados por computador.

Modelos Físicos

Estos modelos permiten estudiar un dispositivo con muy poco o ningún conocimiento previo de su comportamiento.

Una aplicación interesante de todos estos tipos de modelos podemos aplicarlo en un péndulo simple cuyo modelo matemático viene dado por la ecuación dado en (1).

Ahora, este modelo está restringido en cuanto a la descripción de un modelo real ,algunas de estas restricciones son:

- Masa concentrada en el centro de gravedad
- Cuerpo homogéneo.
- Geometría simétrica.
- Ausencia de rozamiento en la articulación.
- Movimiento restringido en un plano.

Posteriormente, consideradas todas estas restricciones pasamos a la simulación por computador, que nos permite obtener resultados complejos en cuanto al modelo matemático.

Por ejemplo las aceleraciones y velocidades instantáneas para un punto situado en el péndulo. Estas herramientas son muy buenas, ya que se acercan bastante en muchos casos a la implementación del modelo real.

Ahora, después de haber obtenido su modelo matemático y su respectiva simulación por computadora pasamos a su implementación. Ésta puede tener muchos enfoques, como: preparar un módulo de desarrollo para los estudiantes, adaptarlo para desarrollar un péndulo doble, un péndulo giroscópico u otro caso, dependiendo del diseñador.

En esta etapa la implementación de un prototipo juega un papel muy importante debido a su experimentación en el mundo real. Las consideraciones hipotéticas ya no son suficientes para describir, a si tenemos como ejemplo, el movimiento del péndulo físico.

Si la implementación considera la masa no homogénea a lo largo de la barra, el desgaste en la articulación, los efectos térmicos del ambiente, etc., los resultados serán en muchas ocasiones distan del modelo matemático. En la actualidad existen programas que calculan todos estos efectos y otros sín problemas, pero es en la implementación donde se validan todas las consideraciones que uno puede considerar.

CAPITULO 3

CINEMATICA DEL BRAZO ROBOTICO SVC422B

3.1 Introducción

En robótica la cinemática estudia el movimiento del brazo robótico sin considerar las fuerzas que las generan [1]. Es por ello que la cinemática de un robot abarca dos problemas esenciales, que son: La cinemática directa y la cinemática inversa. El problema cinemático directo tiene como objetivo calcular la posición y orientación del efector final con respecto a un sistema de coordenadas base a partir del conocimiento de los valores de las coordenadas articulares y parámetros geométricos característicos del robot; el problema cinemático inverso tiene como objetivo calcular las coordenadas articulares para una posición y orientación especifica del robot.

Figura 3.1 Relaciones entre la Cinemática directa e inversa.

3.2 Modelado de la cinemática de robots.

3.2.1 Algoritmo de Denavit – Hartenberg para la obtención del modelo cinemático directo.

Denavit-Hartenberg (D-H) [DENAVIT-55] propusieron en 1955 un método matricial que establece la localización que debe tomar cada sistema de coordenadas { S_i } ligado a cada eslabón i de una cadena artículada para poder sistematizar la obtención de las ecuaciones cinemáticas de la cadena completa [1]. Mediante este método podemos conocer la relación que existe entre dos eslabones contiguos por medio de sus sistemas de referencia; esto consiste en una serie de transformaciones básicas: Dos de rotación y dos de traslación; es decir, el paso del sistema S_{i-1} al S_i .

$$i^{-1}\mathbf{A}_{i} = \begin{bmatrix} C\Theta_{i} & -S\Theta_{i} & 0 & 0\\ C\Theta_{i} & -S\Theta_{i} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & ai\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1\\ 0 & C\alpha_{i} & -S\alpha_{i} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} C\Theta_{i} & -C\alpha_{i} & S\Theta_{i} & C\alpha_{i} & S\Theta_{i} \\ C\Theta_{i} & -C\alpha_{i} & C\Theta_{i} & S\alpha_{i} & C\Theta_{i} \\ 0 & C\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.1)

Donde Oi, di, ai, ai vienen a ser los parámetros característicos Denavit-Hartenberg, con los cuales se podrán obtener las matrices de transformación homogénea.

Un análisis más detallado de este algoritmo puede ser encontrado en [1] y [2].

3.2.2 Parámetros de Denavit-Hartenberg (D-H)

La relación que existe entre dos eslabones consecutivos se da mediante los cuatro parámetros de D-H, que dependen de sus características geométricas y de las articulaciones que los unen. Estos parámetros están representados por:

Oi : Es el ángulo que forman los ejes Xi-1 y Xi medido en un plano perpendicular aleje Zi-1 utilizando la regla de la mano derecha. Se trata de un parámetro variable en articulaciones giratorias.

di : Es la distancia a lo largo del eje Zi-1 desde el origen del sistema de coordenadas (i-1)-ésimo hasta la intersección del eje Zi-1 con el eje X. Se trata de un parámetro variable en articulaciones prismáticas.

ai : Es la distancia a lo largo del eje Xi que va desde la intersección del eje Zi-1 con el eje Xi hasta el origen del sistema i-ésimo, en el caso de articulaciones giratorias. En el caso de las articulaciones prismáticas se calcula como la distancia más corta entre los ejes Zi-1 y Zi.

ai : Es el ángulo de separación del eje Zi-1 y el eje Zi, medido en un plano perpendicular al eje Xi, utilizando la regla de la mano derecha.

3.3 Descripción del brazo robótico SVC422B.

El prototipo mostrado a continuación corresponde al diseño del prototipo número 4, que actualmente se encuentra en proceso de desarrollo. Este prototipo de brazo robótico corresponde a la configuración de robots seriales antropomórfico invertido los planos del diseño mecánico se encuentran en el anexo C5.

3.3.1 Descripción del SVC422B

El brazo robótico antropomórfico de cuatro grados de libertad, que en adelante lo llaimaremos **SVC422B**, es mostrado en la Figura 3.2, y en la figura 3.3 se muestran las vistas principales. A continuación se describen de manera sucinta los cuatro eslabones pertenecientes al SVC422B.

Figura 3.2 Brazo Robótico SVC422B
- a. Primer Eslabón: Integrado por el motor 1, el eslabón 1 y el diseño mecánico de una pieza (DM1) que sirve de transición entre el eslabón 1 y el eslabón 2.
- b. Segundo Eslabón: Integrado por el motor 2, el eslabón 2 y el diseño mecánico de una pieza (DM2) que sirve de transición entre el eslabón 2 y el eslabón 3.
- c. Tercer Eslabón: Integrado por el motor 3, el eslabón 3 y el diseño mecánico de una pieza (DM3) que sirve de transición entre el eslabón 3 y el eslabón 4.
- d. Cuarto Eslabón: Integrado por el motor 4, el eslabón 4 y el diseño mecánico de una pieza (DM4) que sirve de plataforma para la herramienta de trabajo.

Figura 3.3 Vistas del SVC422B

3.3.2 Espacio de trabajo

Debido a que el robot pertenece a la clasificación de antropomorfo invertido, el SVC422B fue diseñado para cubrir una región limitada por el segundo, tercer y cuarto grado de libertad.

- El ángulo que forma el segundo grado de libertad con su línea base está acotado entre 0° y 30° en sentido horario, y en sentido anti horario entre 0° y 210°.
- El ángulo que forma el tercer grado de libertad con su línea base está acotado entre 0° y 180°.
- El ángulo que forma el cuarto grado de libertad con su línea base está acotado entre 0° y 180°.

El resultado de estas restricciones se puede apreciar mejor en la figura 3.4.

Figura 3.4 Espacio de trabajo real del SVC422B

Figura 3.5 Vistas del espacio de trabajo del SVC422

Figura 3.6 Vista de perfil del SVC422B

Figura 3.7 Vistas Horizontal del espacio de trabajo del SVC422B

En el anexo A1 se muestra otra configuración del SVC422B con la cual se genera otro espacio de trabajo opuesto al que se muestra en la figura 3.4

3.4 Puntos y trayectorias singulares del espacio de trabajo.

Como el espacio de trabajo cubre solamente el mostrado en la Figura 3.4, las trayectorias que puede describir el SVC422B están fuera del espacio en forma de cilindro que encierra al primer eslabon del robot. Si enfocamos al robot desde la vista superior, el espacio de trabajo está encerrado entre los límites de las circunferencias C0 y C3, tal como se muestra en la Figura 3.9.

Figura 3.8 Circunferencia límite de los eslabones del SVC422B

Como ejemplo se muestra la trayectoria en linea recta descrita por el SVC422B. Los puntos A, B, C, D están en el segmento de recta XY, pero los puntos A y D están dentro de los límites del espacio de trabajo. No es conveniente que el robot trabaje entre sus límites, ya que ésto causaría resultados no deseados debido precisamente a sus límites mecánicos de extensión.

Figura 3.9 Puntos de la trayectoria del SVC422B

Figura 3.10 Vista isométrica de la trayectoria del SVC422B

En esta sección tambien describimos las trayectorias singulares que puede realizar el efector final del SVC422B. Los aspectos cualitativos se pueden ver en la figura 3.11, tales como la trayectoria plana correspondiente a la circunferencia N1 y la trayectoria no plana coorrespondiente a la linea N2. En el capitulo 6 se realizará la simulacion de otras trayectorias planas y no planas, en las cuales muchas de éstas produciran resultados no deseados y sobreesfuerzos respecto a la simulación en el desempeño del controlador, requiriendo muchas veces su rediseño para la estabilidad del sistema.

Figura 3.11 Trayectorias singulares del SVC422B

Figura 3.12 Diferentes vistas para una misma trayectoria plana del SVC422B

3.5. Cinemática directa del SVC422B

Es necesario establecer primeramente los sistemas de referencia pertenecientes a cada una de las cuatro articulaciones del SVC422B, los cuales se muestran en las figuras 3.13, y además se puede observar la simbología utilizada para designar los cuatro grados de libertad en la figura 3.14; luego se procede a aplicar al algoritmo D-H [1] para la obtención de los parámetros cinemáticos del SVC422B, los cuales se muestran en la Tabla 3.1.

Figura 3.13 Sistemas de Referencia del SVC422B

Figura 3.14. Ángulos del SVC422B

ARTICULACION	θ (°)	d (mm)	a (<i>mm</i>)	α (°)
1	q1+ π/2	d1 = -59	a1 = 0	π/2
2	q2	d2 = -54	a2 = 214	0
3	q3	d3 = 54	a3 = 236	0
4	q4	d4 = 0	a4 = 127	0

Tabla 3.1 Parámetros Denavit-Hartemberg para el SVC422B

Con los parámetros cinemáticos de la tabla anterior se obtienen las matrices de transformación homogénea.

Reemplazando en la expresión [3.1], vista en la sección 3, se tomará como convención $\Theta 1 = q1$, $\Theta 2 = q2$, $\Theta 3 = q3$, $\Theta 4 = q4$. Todos los resultados que se presentan a continuación se han obtenido reemplazando los parámetros característicos para cada articulación.

Matriz de Transformación Homogénea usando parámetros D-H del primer eslabón.

$${}^{0}A_{1} = \begin{bmatrix} \cos(\pi/2 + q1) & 0 & \sin(\pi/2 + q1) & a1 * \cos(\pi/2 + q1) \\ \sin(\pi/2 + q1) & 0 & -\cos(\pi/2 + q1) & a1 * \sin(\pi/2 + q1) \\ 0 & 1 & 0 & d1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
(3.2)

Matriz de Transformación Homogénea usando parámetros D-H del segundo eslabón.

$${}^{1}A_{2} = \begin{bmatrix} \cos(q^{2}) & -\sin(q^{2}) & 0 & a^{2} * \cos(q^{2}) \\ \sin(q^{2}) & \cos(q^{2}) & 0 & a^{2} * \sin(q^{2}) \\ 0 & 0 & 1 & d^{2} \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
(3.3)

Matriz de Transformación Homogénea usando parámetros D-H del tercer eslabón.

$${}^{2}\mathbf{A}_{3} = \begin{bmatrix} \cos(q3) & -\sin(q3) & 0 & a3 * \cos(q3) \\ \sin(q3) & \cos(q3) & 0 & a3 * \sin(q3) \\ 0 & 0 & 1 & d3 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
(3.4)

Matriz de Transformación Homogénea usando parámetros D-H del cuarto eslabón.

$${}^{3}A_{4} = \begin{bmatrix} \cos(q4) & -\sin(q4) & 0 & a4 * \cos(q4) \\ \sin(q4) & \cos(q4) & 0 & a4 * \sin(q4) \\ 0 & 0 & 1 & d4 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
(3.5)

Con estas cuatro matrices se procede a calcular la matriz **T**, que indica la localización del sistema final con respecto al sistema de referencia de la base del robot.

$$\mathbf{T} = {}^{0}\mathbf{A}_{1} * {}^{1}\mathbf{A}_{2} * {}^{2}\mathbf{A}_{3} * {}^{3}\mathbf{A}_{4} = \begin{bmatrix} \mathbf{n}_{x} & \mathbf{o}_{x} & \mathbf{a}_{x} & \mathbf{p}_{x} \\ \mathbf{n}_{y} & \mathbf{o}_{y} & \mathbf{a}_{y} & \mathbf{p}_{y} \\ \mathbf{n}_{z} & \mathbf{o}_{z} & \mathbf{a}_{z} & \mathbf{p}_{z} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$
(3.6)

A continuación se detalla los términos de la matriz T.

$$\mathbf{n}\mathbf{x} = -\cos(q^2 + q^3 + q^4)^* \sin(q^1) \tag{3.7}$$

$$\mathbf{n}_{y} = \cos(q^{2} + q^{3} + q^{4})^{*}\cos(q^{1})$$
(3.8)

$$n_z = \sin(q_2 + q_3 + q_4)$$
 (3.9)

$$\mathbf{0x} = \sin(q^2 + q^3 + q^4)^* \sin(q^1) \tag{3.10}$$

$$\mathbf{0}_{y} = -\sin(q^2 + q^3 + q^4) * \cos(q^1) \tag{3.11}$$

$$\mathbf{0}_{\mathbf{z}} = \cos(q^2 + q^3 + q^4) \tag{3.12}$$

La última columna de la matriz T contiene las ecuaciones que definen la posición del efector final. Estas ecuaciones tienen relevancia, ya que más adelante en el capítulo 6 serán utilizadas para la respectiva simulación del algoritmo de control y poder evaluar su desempeño. A continuación se detallan cada uno de los elementos que están contenidos en la última columna de la matriz T (px, py, pz).

 $p_x = d2^* \cos(q1) + d3^* \cos(q1) + d4^* \cos(q1) - a1^* \sin(q1) - a2^* \cos(q2)^* \sin(q1) - a4^* \cos(q2 + q3)^* \cos(q4)^* \sin(q1) + a4^* \sin(q2 + q3)^* \sin(q1)^* \sin(q4) - a3^* \cos(q2)^* \cos(q3)^* \sin(q1) + a3^* \sin(q1)^* \sin(q2)^* \sin(q3)$

 $p_y = a1^*\cos(q1) + d2^*\sin(q1) + d3^*\sin(q1) + d4^*\sin(q1) + a2^*\cos(q1)^*\cos(q2) + a4^*\cos(q2 + q3)^*\cos(q1)^*\cos(q4) - a4^*\sin(q2 + q3)^*\cos(q1)^*\sin(q4) + a3^*\cos(q1)^*\cos(q2)^*\cos(q3) - a3^*\cos(q1)^*\sin(q2)^*\sin(q3)$

$$p_z = d1 + a3^*sin(q2 + q3) + a2^*sin(q2) + a4^*sin(q2 + q3 + q4)$$
 (3.15)

Con estas ecuaciones se realizó un programa en *Matlab* en el que se ingresan los ángulos de cada articulación y se obtiene las posiciones correspondientes para cada cuaterna de ángulos (anexo A2). A continuación, en la figura 3.15 se muestra los resultados obtenidos para tres cuaternas de ángulos.

Primera Cuaterna.	Segunda Cuaterna.	Tercera Cuaterna.
q1=0	q1=30*(pi/2)	q1= 360*(pi/2)
q2=0	q2=60*(pi/2)	q2= 30*(pi/2)
q3=0	q3=53*(pi/2)	q3=-180*(pi/2)
q4=0	q4=24*(pi/2)	q4=-180*(pi/2)
x=0	x=0	x=0
y=577	<u>y=-214</u>	3=-577
z=-59	z=-304	z=-59

Figura 3.15 Resultados de las ecuaciones cinemáticas del SVC422

- La primera cuaterna corresponde a la posición inicial del SVC422B.
- La segunda cuaterna corresponde a una posición aleatoria del SVC422B; cabe recalcar que esta posición está contenida dentro del espacio de trabajo.
- La tercera cuaterna corresponde a una posición dentro de las fronteras del espacio de trabajo del SVC422B.

Es de notarse que hay puntos dentro del espacio de trabajo en los cuales los actuadores requerirán de mayor energía para posicionar el efector final debido a la posición en donde se encuentre el robot. Es así que el primer grado de libertad tiene la prioridad de dirigir la posición del efector final siempre y cuando lo enfoquemos desde el plano XY, como se muestra en la figura 3.16, y para completar su posición en el espacio, es decir, en el eje Z, ésto corresponde a la terna de ángulos q2, q3 y q4, que para un mayor detalle, en la figura 3.17 se muestra un enfoque de la posición del efector final.

Figura 3.16 Enfoque en el plano XY

Figura 3.17 Enfoque en el plano YZ

3.6. Cinemática inversa del SVC422B

A medida que aumenta el número de grados de libertad, las soluciones en la cinemática inversa en muchos casos también aumentan. Este es el caso del SVC422B, en donde los tres últimos grados de libertad están contenidos en el plano 1, como se ve en la Figura 3.18. Estos ángulos dan origen a múltiples configuraciones de ángulos para una misma posición.

Figura 3.18 Tres últimos grados de libertad contenidos en el plano 1

De esta manera existen infinitas ternas de ángulos que posicionan al efector final, tal como se ve en la Figura 3.19. La cadena cinemática compuesta por los eslabones 1, 2 y 3 adoptan múltiples configuraciones de ángulos para un mismo punto en el espacio; es así que para futuros desarrollos del prototipo se ha de implementar un algoritmo para determinar la mejor configuración de los ángulos, para poder así reducir los costos computacionales, con el consecuente ahorro energético de los actuadores.

Figura 3.19 Diferentes ángulos para un mismo punto P.

Para poder dar solución al cálculo de la cinemática inversa del SVC422B, se tiene las siguientes consideraciones:

 El cuarto grado de libertad fue diseñado para trabajos específicos, por lo que solo entrará en operación a menos que el trabajo lo requiera.

De esta manera quedan en operación los tres primeros grados de libertad; y si bien es cierto las soluciones en la cinemática inversa no son infinitas,

equivale a decir que los ángulos requeridos que llevarán al efector final a la posición deseada están bien especificados, que en nuestro caso, la cinemática inversa fue hallada por métodos geométricos.

- Se debe especificar la trayectoria que debe seguir el efector final solo cuando se requiera el uso del cuarto grado de libertad.
- 3. Se debe especificar el ángulo del último grado de libertad (q4), de acuerdo a las consideraciones de operación. En este caso se podría considerar el ángulo de inclinación de la antorcha de soldadura.

Con estas consideraciones se elaboró el programa CISVC.m, que realiza el cálculo de la cinemática inversa del SVC422B, este programa se encuentra en el anexo A3. Los resultados del programa CISVC.m, se muestran a continuación:

Posici	ón en	(x,y,z)	q1(°)	q2(°)	q3(°)	q4(°)
0.5000 0	0.0040	0.0590	270.4584	40.1618	-53.7668	0
0.4167 0	0.0602	0.0459	278.2242	55.1183	-82.2565	0
0.3333 0).1164	0.0328	289.2560	65.2714	-101.4019	0
0.2500 0).1727	0.0197	304.6315	71.4995	-113.9671	0
0.1667 0).2289	0.0066	323.9396	72.7336	-119.3951	0
0.0833 0).2851	-0.0066	343.7072	68.4340	-116,8424	0
0.0000 0).3413	-0.0197	360	59.9528	-106.7587	0
-0.0833	0.3976	-0.0328	371.8386	48.7291	-90.0710	0
-0.1667	0.4538	-0.0459	380.1676	34.4584	-65.8096	0

Tabla 3.2 Resultados de la cinemática inversa para diversas posiciones del robot.

Todos estos resultados pertenecen a la trayectoria que seguirá el efector final sobre una línea recta, cuya ecuación en forma vectorial está dada por el vector dirección (a1, b1, c1) y un punto de paso (x0, y0, z0). Los ángulos obtenidos guardan coherencia computacional, debido a que todos los puntos pertenecen a la recta:

Vector dirección: (a1, b1, c1) = (-1.4822, 1, -0.2332)

Punto de paso: (x0.y0.z0) = (0.5, 0.004, 0.059)

3.7 Generación de trayectorias del SVC422B

Una vez obtenida la cinemática inversa del robot el siguiente paso es la generación de trayectorias deseadas, para esto se diseñó el programa GTSVC.m que realiza el ploteo de las curvas con los datos que se obtienen en la cinemática inversa para todos los puntos que pertenecen a una determinada trayectoria que realiza el robot, este programa se encuentra en el anexo A4. Posteriormente se realiza el ajuste de curvas mediante el comando *Basic Fitting* de *Matlab*, las ecuaciones para cada curva se encuentran en el anexo A5. Como ejemplo aplicativo se realizó la generación de tres trayectorias en línea recta que realizó el SVC422B.

Los resultados de los ángulos requeridos por cada articulación para cada trayectoria se muestran a continuación:

2

Parámetros	Datos	de simulac	ción	
Tiempo de simulación	70 segundos.			
Posición inicial del robot	x0= 0.5 m y0= 0.004 m z0= 0.059 m			
Posición inicial de la tarea	x0=0.5 m y0= 0.004 m z0= 0.059 m			
Posición final de la tarea	x0= -0.25 m y0= 0.51 m z0= -0.059 m			
Ecuación trayectoria real	Ecuación Vectorial x1=x0+ t*a;	x0= 0.5	a= -1.4822	
	y1=y0+ t*b	y0= 0.004	b = 1	
	Z1=z0+ t*c	z0= 0.059	c = -0.2332	

Tabla 3.3 Datos de simulación para la generación de trayectoria para TLR1

Figura 3.20 Posiciones angulares obtenidas de q1 para TLR1

Figura 3.21 Posiciones angulares obtenidas de q2 para TLR1

Figura 3.22 Posiciones angulares obtenidas de q3 para TLR1

3.7.2 Segunda trayectoria (TLR2)

.

Parámetros	Datos de simulación			
Tiempo de simulación	70 segundos.			
Posición inicial del robot	xd=0 m; yd=0.214 m; zd=-0.059 m;			
Posición inicial de la tarea	xd=0 m; yd=0.214 m; zd=-0.059 m;			
Posición final de la tarea	x0= 0 m y0= 0.575 m z0= -0.059 m			
Ecuación trayectoria real		· · · · · · · · · · · · · · · · · · ·	·····	
	Ecuación Vectorial			
	x1=x0+ t*a;	x0= 0	a= 0	
	y1=y0+ t*b	y0= 0.214	b = 1	
	$\boxed{Z1=z0+t^*c}$	z0=-0.059	c = 0	

Tabla 3.4	Datos de	simulación	nara la	generación	de travector	ria para	TLR2
1 40/4 5. 1	Datos av	011111111111111111	paraia	Sourceston	40 449 00101	na para	

Figura 3.23 Posiciones angulares obtenidas de q1 para TLR2

Figura 3.24 Posiciones angulares obtenidas de q2 para TLR2

Figura 3.25 Posiciones angulares obtenidas de q3 para TLR2

Parámetros	Datos de simulación
Tiempo de simulación	70 segundos.
Posición inicial del robot	xd= 0.52 m; yd= -0.19 m; zd= -0.049 m;
Posición inicial de la tarea	xd= 0.52 m; yd= -0.19 m; zd= -0.049 m;
Posición final de la tarea	x0=-0.24 m y0= 0.35 m z0= -0.329 m
Ecuación trayectoria real	Ecuación Vectorial $x1=x0+t^*a;$ $x0=0.52$ $a=-1.4074$ $y1=y0+t^*b$ $y0=-0.19$ $b=1$ $Z1=z0+t^*c$ $z0=-0.049$ $c=0.7$

Tabla 3.5 Datos de simulación para la generación de trayectoria para TLR3

Figura 3.26 Posiciones angulares obtenidas de q1 para TLR3

Figura 3.27 Posiciones angulares obtenidas de q2 para TLR3

Figura 3.28 Posiciones angulares obtenidas de q1 para TLR3

CAPITULO 4

DINAMICA DEL BRAZO ROBOTICO SVC422B

4.1 Dinámica del robot manipulador.

La Dinámica se ocupa de la relación entre las fuerzas que actúan sobre un cuerpo y el movimiento que en él se origina [1], [2]. Por tanto, el modelo dinámico de un robot tiene por objetivo conocer la relación entre el movimiento del robot y las fuerzas que intervienen en el mismo. Esta relación se obtiene mediante el modelo dinámico. Calcular el modelo dinámico del brazo robótico implica las siguientes metas como son: la simulación de las trayectorias del robot, cálculo de los actuadores, diseño del sistema de control, etc.[1]. Además obtener el modelo dinámico exacto y su respectiva simulación implica en algunos casos demasiado esfuerzo computacional tal es así que bajo ciertas condiciones de diseño no se modelan todos sus elementos que lo conforman.

Figura 4.1. Modelo Dinámico

Existen varios métodos para la obtención del modelo dinámico. Entre estos tenemos Lagrange Euler (Uicker 1964) y Newton-Euler (Lu, 1980). La ecuación del modelo dinámico del robot tiene la siguiente forma:

$$T = M(q)\ddot{q} + V(q,\dot{q}) + G(q) + F(q,\dot{q})$$
(4.1)

q : Vector de coordenadas articulares

q : Vector de derivadas de las coordenadas articulares

ÿ : Vector de segundas derivadas de las coordenadas articulares

T: Vector de las fuerzas o pares que se aplica a cada articulación

M: Matriz de inercias

V : Matriz de Coriolis

G : Matriz de fuerzas de Gravedad.

F: Fuerzas de Perturbación.

4.2 FORMULACION DE NEWTON-EULER

4.2.1 Algoritmo computacional para determinar el modelo dinámico por Newton Euler.

Las ecuaciones que se muestran a continuación están basadas en [1] las cuales son:

N-E 1 Asignar a cada eslabón un sistema de referencia de acuerdo con las normas D-H :

N-E 2 Establecer las condiciones iniciales :

⁰W0 =
$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$$
 : velocidad angular.
⁰W0 = $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$: aceleración angular.
⁰V0 = $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$: velocidad lineal.
⁰V0 = $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$: aceleración lineal.
²0 = $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$: aceleración lineal.
20 = $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$

$$i pi = Vector que une el origen {Si-1} con el de {Si} expresadas en{Si} = [ai, di * sin(α i), di * cos(α i)]$$

ⁱSi = Coordenadas del centro de masas del eslabón i respecto del sistema Si.

 i Ii = Matriz de inercia del eslabón i expresado en un sistema paralelo al

{Si} y con origen en el centro de Masas del eslabón.

N-E 3. Obtención de las matrices de rotación y su inversa :

$${}^{i}\mathrm{Si} = \begin{bmatrix} \mathrm{C}\Theta\mathrm{i} - \mathrm{C}\alpha\mathrm{i} \ \mathrm{S}\Theta\mathrm{i} & \mathrm{S}\alpha\mathrm{i} \ \mathrm{S}\Theta\mathrm{i} \\ \mathrm{S}\Theta\mathrm{i} & \mathrm{C}\alpha\mathrm{i} \ \mathrm{C}\Theta\mathrm{i} - \mathrm{S}\alpha\mathrm{i} \ \mathrm{C}\Theta\mathrm{i} \\ \mathbf{0} & \mathrm{S}\alpha\mathrm{i} & \mathrm{C}\alpha\mathrm{i} \end{bmatrix}$$
(4.2)

N-E 4. Obtención de la velocidad angular del sistema ⁱSi:

$${}^{i}Wi = {}^{i}Ri-1({}^{i}Wi-1 + Z0 \dot{q}i)$$
 (4.3)

N-E 5. Obtención de la aceleración angular del sistema ⁱSi :

$${}^{i}\dot{W}_{i} = {}^{i}R_{i}-1\left({}^{i-1}W_{i}-1 + Z_{0}\ddot{q}_{i}\right) + {}^{i-1}W_{i}-1 \times Z_{0}\dot{q}_{I}$$
 (4.4)

$${}^{i}\dot{V}i = {}^{i}\dot{W}i X {}^{i}pi + {}^{i}\dot{W}i X ({}^{i}\dot{W}i X {}^{i}pi) + {}^{i}Ri \cdot 1 {}^{i-1}Wi \cdot 1$$
 (4.5)

N-E 7. Obtención de la aceleración lineal del centro de gravedad del eslabón i

$${}^{i}ai = {}^{i}\dot{W}i X {}^{i}si + {}^{i}\dot{W}i X ({}^{i}\dot{W}i X {}^{i}si) + {}^{i}\dot{V}l$$

$$(4.6)$$

N-E 8. Obtención de la fuerza ejercida sobre el eslabón i:

$${}^{i}fi = {}^{i}Ri + 1 {}^{i+1}fi + 1 + mi {}^{i}ai$$
 (4.7)

N-E 9. Obtención del par ejercido sobre el eslabón i :

$$i_{ni} = i_{Ri+1} [i_{+1}n_{i+1} + (i_{-1}Ri_{}^{i}p_{i})x_{i+1}f_{i+1}] + (i_{pi} + i_{si})x_{mi}i_{ai} - i_{Ii}i_{Wi} + i_{Wi}x(i_{Ii}i_{Wi})$$
(4.8)

N-E 10. Obtención del par aplicado a la articulación i :

$$Ti = {}^{i}ni^{T} {}^{i}Ri-1 Z0$$

$$(4.9)$$

4.3 Modelo dinámico del brazo robótico del SVC422B.

Al aplicar el algoritmo de N-E podemos notar que es necesario conocer las matrices de inercia y las distancias de los centros de gravedad a los sistemas de referencia; todo esto es posible obtenerlo mediante el programa *Solidworks* que tiene la capacidad de realizar todos estos cálculos debido a que ya no se está calculando simplemente eslabones de geometría sencilla, sino piezas mecánicas de geometría más elaborada.

A continuación, en la tabla 4.1 se muestran los parámetros dinámicos correspondientes al SVC422B, como son las masas, los centros de gravedad y las matrices de inercia correspondientes a cada eslabón que conforma los cuatro grados de libertad del robot.

Es de resaltar que todos estos parámetros serán utilizados posteriormente para obtener las ecuaciones dinámicas que gobernaran al SVC422B los cuales son fundamentales en el momento del diseño del controlador ya que en capítulo 6 se llegaran a resultandos interesantes al momento de sintonizar el controlador. Entre estas experiencias podemos adelantar que al realizar una pequeña variación en la masa del efector final podría llevar a la inestabilidad absoluta en el movimiento del robot. También podemos adelantar que al someter a perturbaciones del tipo *random* (perturbaciones en proceso de soldeo) durante el movimiento del SVC422B incrementan el error en forma de picos de interferencia, que pueden ser aceptables dentro de un rango de tolerancia en lo que respecta a un determinado proceso de soldadura.

	Eslabón 1	Eslabón 2	Eslabón 3	Eslabón 4
Parámetros dinámicos				
	11xxc =24400000.0	11xxc =6330000.0	11xxc =4000000.0	11xxc =333000.0
	11yyc =21100000.0	11yyc =45500000.0	l1yyc =12200000.0	11yyc =4000000.0
	1122c = 16600000.0	11zzc = 41100000.0	11zzc = 9880000.0	l1zzc = 4110000.0
Momentos	11xyc =26.0	11xyc =0	11xyc =0	11xyc =-58800.0
de inercia	l1yxc=26.0	11yxc=0	l1yxc=0	l1yxc=-58800.0
(N.M)X10	11xzc=0.09	11xzc=9220000.0	l1xzc=1110000.0	11xzc=-333.0
	l1zxc=0.09	11zxc=9220000.0	l1zxc=1110000.0	11zxc=-333.0
	l1zyc=3330000.0	l1zyc=0	i1zyc=0	11zyc=0
	11yzc=3330000.0	f1yzc=0	l1yzc=0	11yzc=0
	X1c=0.00	X2c=-50.81	X3c= -18.29	X4c=-97.65
Centroides (mm)	Y1c=6.11	Y2c=0.00	Y3c= 0.00	Y4c=18.86
	Z1c=-69.47	Z2c= 83.48	Z3c=73.56	Z4c=0.00
Masas (kg)	m1=8.018	m2=3.994	m3=3.131	m4=1.308

Tabla 4.1 Parámetros dinámicos del SVC422B

A partir del procedimiento del algoritmo N-E visto en la subsección 4.1.1 compuesto de los pasos que van desde N.E1 hasta N.E10 son calculados y procesados los torques del modelo dinámico del robot mediante el programa DinSVC.m que puede observarse con más detalle en el anexo B1. Gracias a este programa se obtuvieron los resultados correspondientes a los torques T1, T2, T3, T4, debido a la extensión de los resultados. Estos tuvieron que redondearse en sus cifras decimales para poder ser mostrados. Es por esto que se utilizó el comando vpa (número, dígitos) de Matlab para la simplificación de las ecuaciones de los torques obtenidos con 3 decimales de aproximación.

A continuación se dan a conocer las ecuaciones de los torques aplicados :

T1 =

 $0.0346*ddq1 + 0.000554*dq2^{2}sin(q2) + 0.0197*ddq1*cos(2.0*q2 + q3) 0.000000000128*dq1^2*cos(q2 + 3.0*q3 - 1.0*q4) - 0.000000000128*dq1^2*cos(3.0*q3 - 1.0*q2)$ + q4) + 0.00582*ddq1*cos(2.0*q2 + 2.0*q3 + q4) + 0.0168*ddq1*cos(2.0*q2) - $0.000000000128*dq1^2*cos(3.0*q3 - 1.0*q2 - 1.0*q4) + 0.000000000128*dq1^2*cos(q2 - 3.0*q3)$ $0.000614*ddq1*sin(2.0*q2) + 0.000000000128*dq1^2*cos(q2 - 3.0*q3 - 1.0*q4) +$ $0.000000000128*dq1^2 \cos(q4 - 3.0*q3 - 1.0*q2) - 0.000000000511*dq1^2 \cos(q2 + q3 - 1.0*q4)$ $+ 0.000000000256*dq1^2*cos(q2 - 1.0*q3 + q4) - 0.000000000256*dq1^2*cos(q3 - 1.0*q2 + q4)$ $0.000000000256*dq1^2*cos(q2 - 1.0*q3 - 1.0*q4) - 0.000000000256*dq1^2*cos(q3 - 1.0*q2 - 1.0*q2 - 1.0*q2)$ 1.0*q4 + 0.0000000000511*dq1^2*cos(q4 - 1.0*q3 - 1.0*q2) - 0.000597*ddq2*sin(q2 + q3) -0.000597*ddq3*sin(q2 + q3) + 0.00528*ddq1*cos(2.0*q2 + q3 + q4) + $0.000000000511*dq1^2*cos(-1.0*q2 - 1.0*q3 - 1.0*q4) - 0.000554*ddq2*cos(q2) + 0.000000000511*dq1^2*cos(-1.0*q2 - 1.0*q3 - 1.0*q4) - 0.000554*ddq2*cos(-1.0*q2 - 1.0*q3 - 1.0*q3 - 1.0*q4) - 0.000554*ddq2*cos(-1.0*q2 - 1.0*q3 - 1.0*q3 - 1.0*q4) - 0.000554*ddq2*cos(-1.0*q2 - 1.0*q3 - 1.0*q3 - 1.0*q3 - 1.0*q4) - 0.000554*ddq2*cos(-1.0*q2 - 1.0*q3 - 1.0*q3 - 1.0*q4) - 0.000554*ddq2*cos(-1.0*q2 - 1.0*q3 - 1.0*q3 - 1.0*q3 - 1.0*q3) - 0.000554*ddq2*cos(-1.0*q2 - 1.0*q3 - 1.0*q3 - 1.0*q3 - 1.0*q3) - 0.000554*ddq2*cos(-1.0*q2 - 1.0*q3 - 1.0*q3 - 1.0*q3) - 0.000554*ddq2*cos(-1.0*q3 - 1.0*q3 - 1.0*q3 - 1.0*q3) - 0.000554*ddq2*cos(-1.0*q3 - 1.0*q3) - 0.000554*ddq2*cos(-1.0*q3) - 0.000554*ddq2*cos(-1.0*q3) - 0.000554*ddq2*cos(-1.0*q3) - 0.000554*ddq2*cos(-1.0*q3) - 0.0*q3) - 0.0*q3 - 0.0*q3) - 0.0*q3 - 0.0*q3 - 0.0*q3) - 0.0*q3 - 0.0*q3) - 0.0*q3 - 0.0*q3 - 0.0*q3) - 0.0*q3 - 0.0*q3 - 0.0*q3 - 0.0*q3) - 0.0*q3 - 0.0*q3 - 0.0*q3) - 0.0*q3) - 0.0*q3 - 0.0*q3) - 0.0*q3) - 0.0*q3) - 0.0*q3) - 0.0*q3$ 0.0197*ddq1*cos(q3) + 0.00582*ddq1*cos(q4) + 0.0106*ddq1*cos(2.0*q2 + 2.0*q3) + 0.0197*ddq1*cos(2.0*q2 + 2.0*q3) + 0.005*ddq1*cos(2.0*q2 + 2.0*q2) + 0.0*q2 + 0.0*q2 + 0.0*q2 + 0.0*q2 + 0.0*q2) + 0.0*q2 + $0.00213*ddq2*sin(q2) + 0.00111*ddq1*cos(2.0*q2 + 2.0*q3 + 2.0*q4) - 0.000597*dq2^2*cos(q2 + 2.0*q4) - 0.0*q4) - 0.0*q4$ 0.0000000164*ddq3*sin(q2 + q3 + q4) - 0.00000000164*ddq4*sin(q2 + q3 + q4) +0.0155*dq1*dq2*sin(q2) + 0.00316*dq1*dq3*sin(q3) - 0.00264*dq1*dq4*sin(q3) -0.00264*dq1*dq3*sin(q4) - 0.00177*dq1*dq4*sin(q4) - 0.0106*dq1*dq2*sin(2.0*q2 + 2.0*q3) - 0.00264*dq1*dq2*sin(q4) - 0.00177*dq1*dq4*sin(q4) - 0.0016*dq1*dq2*sin(q4) - 0.00177*dq1*dq4*sin(q4) - 0.0016*dq1*dq2*sin(q4) - 0.0016*dq1*dq4*sin(q4) - 0.0016*dq4*sin(q4) - 0.0016*dq1*dq4*sin(q4) - 0.0016*dq1*dq4*sin(q4) - 0.0010.0106*dq1*dq3*sin(2.0*q2 + 2.0*q3) - 0.00291*dq1*dq4*sin(2.0*q2 + 2.0*q3) - 0.002*q2*sin(2.0*q2 + 2.0*q3) - 0.002*q2*sin(2.0*q2 + 2.0*q3) - 0.002*q2*sin(2.0*q2 + 2.0*q2) - 0.0*q2*sin(2.0*q2 + 2.0*q2) - 0.0*q2*sin(2.0*q2) - 0.0*q2*sin(0.00111*dq1*dq2*sin(2.0*q2 + 2.0*q3 + 2.0*q4) - 0.00111*dq1*dq3*sin(2.0*q2 + 2.0*q3 + 2.0*q3) - 0.00111*dq1*dq3*sin(2.0*q2 + 2.0*q3) + 0.00111*dq1*siq3*sin(2.0*q2 + 2.0*q3) + 0.0011*dq3*sin(2.0*q2 + 2.0*q3) + 0.0011*dq3*sin(2.0*q3) + 0.0011*dq3*sin(2.0*q+ q4) - 0.0000000327*dq2*dq4*cos(q2 + q3 + q4) - 0.0000000327*dq3*dq4*cos(q2 + q3 + q4) -0.00264*dq1*dq2*sin(q2 + q3 + q4) - 0.0106*dq1*dq2*sin(q2 + 2.0*q3) -

 $\begin{array}{l} 0.0197^*dq1^*dq2^*sin(2.0^*q2+q3)-0.0204^*dq1^*dq3^*sin(2.0^*q2+q3)-\\ 0.00264^*dq1^*dq4^*sin(2.0^*q2+q3)-0.00264^*dq1^*dq3^*sin(2.0^*q2+q4)+\\ 0.00264^*dq1^*dq2^*sin(q2-1.0^*q3-1.0^*q4)-0.00111^*dq1^*dq2^*sin(q2+2.0^*q3+2.0^*q4)-\\ 0.00582^*dq1^*dq2^*sin(2.0^*q2+2.0^*q3+q4)-0.00111^*dq1^*dq3^*sin(2.0^*q2+q3+2.0^*q4)-\\ 0.00582^*dq1^*dq3^*sin(2.0^*q2+2.0^*q3+q4)-0.00402^*dq1^*dq4^*sin(2.0^*q2+2.0^*q3+q4)+\\ 0.000614^*dq1^*dq2^*cos(2.0^*q2)-0.0168^*dq1^*dq2^*sin(2.0^*q2)-0.00984^*dq1^*dq3^*sin(2.0^*q2)-\\ 0.00119^*dq2^*dq3^*cos(q2+q3)-0.00984^*dq1^*dq2^*sin(q2+q3)+0.00291^*dq1^*dq2^*sin(q2+q4)+\\ +0.000271^*dq1^*dq3^*sin(q3+q4)-0.00264^*dq1^*dq4^*sin(q3+q4)-0.00582^*dq1^*dq2^*sin(q2+q4)+\\ 2.0^*q3+q4)-0.00528^*dq1^*dq2^*sin(2.0^*q2+q3+q4)-0.00846^*dq1^*dq3^*sin(2.0^*q2+q3+q4)-\\ 0.00264^*dq1^*dq4^*sin(2.0^*q2+q3+q4)+0.000614^*dq1^*dq2^*cos(q2)+0.00984^*dq1^*dq2^*sin(q2+1.0^*q3)+0.00291^*dq1^*dq2^*sin(q2-1.0^*q4)+0.00291^*dq1^*dq3^*sin(q3-1.0^*q4)\\ \end{array}$

(4.10)

T2 =

0.0575*ddq2 + 0.0235*ddq3 + 0.00225*ddq4 - 0.0197*dq3^2*sin(q3) - 0.00582*dq4^2*sin(q4) - $0.00403*dq1^2*sin(-2.0*q2 - 1.0*q3) + 0.0106*dq1^2*sin(2.0*q2 + 2.0*q3) + 0.0106*dq1^2*sin(-2.0*q2 + 2.0*q3) + 0.010*dq1^2*sin(-2.0*q2 + 2.0*q3) + 0.0*q3) +$ $0.00111*dq1^{2}sin(2.0*q2 + 2.0*q3 + 2.0*q4) + 0.00213*dq1*dq2 + 0.0106*ddq2*cos(q3 + q4) + 0.00111*dq1^{2}sin(2.0*q2 + 2.0*q3 + 2.0*q4) + 0.00213*dq1*dq2 + 0.0106*ddq2*cos(q3 + q4) + 0.00213*dq1*cos(q3 + q4) + 0.00213*cos(q3 + q4) + 0.002*cos(q3 + q4) + 0.002*cos(q3 + q4) + 0.002*cos(q3 + q4)$ 0.00528*ddq3*cos(q3 + q4) + 0.00528*ddq4*cos(q3 + q4) + 0.092*g*cos(q2 + q3) + 0.00528*ddq4*cos(q3 + q4) + 0.092*g*cos(q3 + q4) + 0.092*g*cos(q3 + q4) + 0.00528*ddq4*cos(q3 + q4) + 0.092*g*cos(q3 + q4) + 0.00528*ddq4*cos(q3 + q4) + 0.00528*ddq4*cos(q3 + q4) + 0.092*g*cos(q3 + q4) + 0.00528*ddq4*cos(q3 + q4) + 0.0052*g*cos(q3 + q4) + 0.00528*ddq4*cos(q3 + q4) + 0.00528*ddq4*cos(q3 + q4) + 0.0052*g*cos(q3 + q4) + 0.0052*g* $0.0157*dq1^2*sin(2.0*q2 + q3) - 0.000597*ddq1*sin(q2 + q3) + 0.00582*dq1^2*sin(2.0*q2 + q3)$ 2.0*q3 + q4 - $0.000614*dq1^2*cos(2.0*q2) - 0.000554*ddq1*cos(q2) + 0.0394*ddq2*cos(q3) + 0.039*cos(q3) + 0.039*cos(q3) + 0.039*cos(q3) + 0.039*cos(q3)$ $0.0197*ddq_3*cos(q_3) + 0.0116*ddq_2*cos(q_4) + 0.0116*ddq_3*cos(q_4) + 0.00582*ddq_4*cos(q_4) + 0.0116*ddq_3*cos(q_4) + 0.0116*ddq_3*cos(q_4) + 0.00582*ddq_4*cos(q_4) + 0.00582*ddq_4*cos(q_4) + 0.00582*ddq_4*cos(q_4) + 0.0116*ddq_3*cos(q_4) + 0.00582*ddq_4*cos(q_4) + 0.0116*ddq_3*cos(q_4) + 0.00582*ddq_4*cos(q_4) + 0.0058*ddq_4*cos(q_4) + 0.0058*ddq_4*cos(q_4) + 0.0058*ddq_4*cos(q_4) + 0.0058*ddq$ $0.162*g*cos(q2) + 0.0168*dq1^{2}sin(2.0*q2) + 0.00213*ddq1*sin(q2) + 0.00598*g*sin(q2) - 0.00598*g*sin(q$ $0.00528*dq3^2*sin(q3 + q4) - 0.00528*dq4^2*sin(q3 + q4) + 0.0247*g*cos(q2 + q3 + q4) +$ 0.000554*dq1*dq2*sin(q2) - 0.0394*dq2*dq3*sin(q3) - 0.0116*dq2*dq4*sin(q4) -1.0*q4 + 0.000597*dq1*dq2*cos(q2 + q3) + 0.00556*dq1*dq3*cos(q2 + q3) -0.00000151*dq1*dq4*cos(q2 + q3) - 0.00133*dq1*dq3*cos(q2 + q4) -0.0000000164*dq1*dq2*cos(q3 + q4) - 0.0106*dq2*dq3*sin(q3 + q4) - 0.0106*dq2*dq4*sin(q3 + q4) - 0.0106*dq2*sin(q3 + q4) - 0.q4) - 0.0106*dq3*dq4*sin(q3 + q4) - 0.00856*dq1*dq3*cos(q2 - 1.0*q3) +0.00000137*dq1*dq4*cos(q2 - 1.0*q4) - 0.00213*dq1*dq2*cos(q2) + 0.00299*dq1*dq3*cos(q2) - 0.00299*dq1*dq3*cos(q2) - 0.00213*dq1*dq2*cos(q2) + 0.00299*dq1*dq3*cos(q2) - 0.00299*dq1*dq3*cos(q2) - 0.00213*dq1*dq3*cos(q2) - 0.00213*dq1*dq3*cos(q2) + 0.00299*dq1*dq3*cos(q2) - 0.00213*dq1*dq3*cos(q2) - 0.00213*dq1*dq3*cos(q2) + 0.00299*dq1*dq3*cos(q2) - 0.00213*dq1*dq3*cos(q2) - 0.00213*dq1*dq3*cos(q2) - 0.00213*dq1*dq3*cos(q2) - 0.00213*dq1*dq3*cos(q2) + 0.00299*dq1*dq3*cos(q2) - 0.00213*dq1*dq3*cos(q2) - 0.00213*dq1*dq3*cos(q2) + 0.0029*dq1*dq3*cos(q2) - 0.00213*dq1*dq3*cos(q2) + 0.00213*cos(q2) + 0.00213*dq1*cos(q2) + 0.00213*cos(q2) + 0.00213*cos(q2) + 0.00.00000137*dq1*dq4*cos(q2) - 0.000597*dq1*dq2*cos(q3)

(4.11)

T3 =

 $\begin{array}{l} 0.0235^*ddq2 + 0.0235^*ddq3 + 0.00225^*ddq4 + 0.00984^*dq1^2^*sin(q3) + 0.0197^*dq2^2^*sin(q3) - 0.00582^*dq4^2^*sin(q4) + 0.0106^*dq1^2^*sin(2.0^*q2 + 2.0^*q3) + 0.00111^*dq1^2^*sin(2.0^*q2 + 2.0^*q3) + 2.0^*q4) + 0.00528^*ddq2^*cos(q3 + q4) + 0.092^*g^*cos(q2 + q3) + 0.00984^*dq1^2^*sin(2.0^*q2 + q3) - 0.000597^*ddq1^*sin(q2 + q3) + 0.00582^*dq1^2^*sin(2.0^*q2 + 2.0^*q3 + q4) + 0.0197^*ddq2^*cos(q3) + 0.0116^*ddq2^*cos(q4) + 0.0116^*ddq3^*cos(q4) + 0.00582^*dq4^*cos(q4) + 0.00264^*dq1^2^*sin(q3 + q4) + 0.00528^*dq2^2^*sin(q3 + q4) + 0.00582^*dq2^*cos(q3 + q4) + 0.00582^*dq2^*cos(q3 + q4) + 0.00582^*dq2^*cos(q3 + q4) + 0.00582^*dq2^*cos(q4) + q4) + 0.00582^*dq2^*cos(q4) + 0.00582^*dq2^*cos(q3 + q4) + 0.00582^*cos(q3 + q4) + 0.00582^*c$

 $\begin{array}{l} 0.0247^*g^*\cos(q2+q3+q4)+0.00264^*dq1^2x^*\sin(2.0^*q2+q3+q4)-0.00000000164^*ddq1^*\sin(q2+q3+q4)-0.0116^*dq2^*dq4^*\sin(q4)-0.0116^*dq3^*dq4^*\sin(q4)+0.00000000164^*dq1^*dq2^*\cos(q2+q3+q4)+0.0000000164^*dq1^*dq4^*\cos(q2+q3+q4)+0.0000000164^*dq1^*dq4^*\cos(q2+q3+q4)+0.000000151^*dq1^*dq4^*\cos(q2+q3-1.0^*q4)+0.000597^*dq1^*dq2^*\cos(q2+q3)+0.00556^*dq1^*dq3^*\cos(q2+q3)-0.00000151^*dq1^*dq4^*\cos(q2+q3)-0.00133^*dq1^*dq3^*\cos(q2+q4)-0.00556^*dq1^*dq3^*\cos(q2+q3)-0.000597^*dq1^*dq3^*\cos(q2+q3)-0.000597^*dq1^*dq3^*\cos(q2+q3)-0.000597^*dq1^*dq3^*\cos(q2+q3)-0.000597^*dq1^*dq3^*\cos(q2+q3)-0.000597^*dq1^*dq3^*\cos(q2+q3)-0.000597^*dq1^*dq3^*\cos(q2)-0.000597^*dq1^*dq2^*\cos(q3)\end{array}$

T4 =

 $\begin{array}{l} 0.00225^*ddq2 + 0.00225^*ddq3 + 0.00225^*ddq4 + 0.00291^*dq1^{2}*sin(q4) + 0.00582^*dq2^{2}*sin(q4) \\ + 0.00582^*dq3^{2}*sin(q4) + 0.00111^*dq1^{2}*sin(2.0^*q2 + 2.0^*q3 + 2.0^*q4) + 0.00528^*ddq2^*cos(q3) \\ + q4) + 0.00291^*dq1^{2}*sin(2.0^*q2 + 2.0^*q3 + q4) + 0.00582^*ddq2^*cos(q4) \\ + 0.00582^*ddq3^*cos(q4) + 0.00264^*dq1^{2}*sin(q3 + q4) + 0.00528^*dq2^{2}*sin(q3 + q4) + \\ 0.0247^*g^*cos(q2 + q3 + q4) + 0.00264^*dq1^{2}*sin(2.0^*q2 + q3 + q4) - 0.00000000164^*dq1^*sin(q2) \\ + q3 + q4) + 0.0116^*dq2^*dq3^*sin(q4) + 0.00000000164^*dq1^*dq2^*cos(q2 + q3 + q4) + \\ 0.00133^*dq1^*dq3^*cos(q2 + q3 + q4) + 0.00000000164^*dq1^*dq4^*cos(q2 + q3 + q4) - \\ 0.00000000164^*dq1^*dq4^*cos(q2 + q3) - 0.00133^*dq1^*dq3^*cos(q2 + q4) - \\ 0.00000000164^*dq1^*dq2^*cos(q3 + q4). \end{array}$

(4.13)

Cabe resaltar que en el anexo B2 también se encuentran en forma independiente las matrices de inercia (H), matriz de Coriolis (C) y la matriz de gravedad (G), todas ellas presentadas en forma simbólica, ya que esto representa una gran ventaja para poder hacer modificaciones tanto en las masas, inercias, centros de gravedad, etc. para el desarrollo de los siguientes prototipos. A continuación se muestran las representaciones de las matrices H, C, G en las ecuaciones (4.14), (4.15), (4.16).

$\mathbf{H} = \begin{bmatrix} H21 & H22 & H23 & H24 \\ H31 & H32 & H23 & H24 \\ H41 & H42 & H43 & H44 \end{bmatrix} $ (4.1)	H =
---	-----

C =	CCC11 CCC12 CCC13 CCC21 CCC22 CCC23 CCC31 CCC32 CCC33	CCC14 CCC24 CCC34	(4.15)
	CCC41 CCC42 CCC43	CCC44	

$$\mathbf{G} = \begin{bmatrix} \mathbf{G1} \\ \mathbf{G2} \\ \mathbf{G3} \\ \mathbf{G4} \end{bmatrix}$$
(4.16)

El tiempo estimado de cómputo para el programa DinSVC.m es de 103.659928 segundos (*Elapsed time is 103.659928 seconds*). Para un mejor cálculo del tiempo estimado se hicieron 5 mediciones para calcular el tiempo promedio de cómputo que realiza el programa.

Elapsed time is 103.525745 seconds. Elapsed time is 103.338149 seconds. Elapsed time is 102.981781 seconds. Elapsed time is 103.399445 seconds. Elapsed time is 108.213470seconds.

Con estimaciones de los tiempos de ejecución se puede concluir que en menos de dos minutos podemos conocer las ecuaciones dinámicas simbólicas de cualquier prototipo de brazo robótico de cuatro grados de libertad que se desarrolle en adelante, posterior al SVC422B.

Justamente como se mencionó en la sección 4.2 existen otros algoritmos cuya poder de cómputo es aún mayor todo esto sumado a la capacidad del hardware de simulación cuyas características se muestran en la tabla 4, el tiempo de simulación que se obtuvo se puede reducirse aún más.

Tabla 4.2 Hardwares utilizados

Hardware	Procesador	Memoria RAM	Tipo de sistema
CPU 1	Intel(R)Corel TM i3 2330- M	4GB	Sistema operativo 32 bits
CPU 2	Intel(R)Corel [™] i3 2330- M	4GB	Sistema operativo 64 bits

Se debe hacer presente que en el modelo dinámico para el SVC422B no se consideró fuerzas de fricción viscosa, debido a que esto extendería más aun el resultado de las torques obtenidos, pero si se consideró los pesos de los motores del robot en forma aproximada debido a que se puede modificar en el programa DinSVC.m.

Con los resultados obtenidos en las ecuaciones (4.14), (4.15), (4.16) y los conocimientos adquiridos en el curso de robótica 2 de la FIM-UNI [15] se procedió a implementar en *Simulink* el modelo dinámico directo del SVC422B dado por la ecuación por:

$$\ddot{q} = M(q)^{-1} [T - V(q, \dot{q}) + G(q)]$$
(4.17)

Adicionalmente también se implementó como entrada, las fuerzas de perturbación al modelo dinámico directo, en la figura 4.2 se muestra el diseño del bloque que contiene del modelo dinámico directo del SVC422B de cuatro grados de libertad.

CAPITULO 5

ENFOQUE A PROCESOS DE SOLDADURA DEL BRAZO ROBOTICO SVC422B

5.1 Introducción

En este capítulo se sientan las bases para el diseño del SVC422B en lo que respecta al algoritmo de control, por lo cual nos enfocaremos en el efecto que producen las perturbaciones en el proceso de soldadura, tales efectos estarán dirigidos al desempeño del algoritmo de control.

En los cursos de resistencia de materiales, ingeniería de control, electrónica, etc. las perturbaciones toman un papel preponderante al momento de la simulación . Tal es así que en algunos casos los resultados obtenidos se alejan demasiado de los resultados esperados. Es por eso que el diseño del algoritmo de control debe realizarse de modo que la respuesta del sistema (robot SVC422B) sea capaz de anidarse con las perturbaciones a la que es sometida de tal manera que las suprima, esta capacidad del sistema asegurará su estabilidad.

Es interesante resaltar que muchas veces las perturbaciones generaran resultados no deseados y también resultados no esperados, esto último para el diseñador podría ser nuevas formas de afrontar el problema, así como también entender conceptos
físicos de estabilidad e inestabilidad y en algunas ocasiones dar una mejor visión de eficacia al momento del diseño. Es así que se propuso diseñar la ley de control de par computado con PID-Adaptativo por planificación de ganancias por lo que su diseño implica conocer las parámetros características Kp, Ki, Kd, además de otros conceptos que se detallaran en este capítulo, de tal manera que los parámetros característicos llevados a una tabla de operación adoptan diferentes valores en el momento que el SVC422B es sometido a diferentes tipos de perturbaciones para determinados tipos de trayectorias.

En lo que respecta al modelamiento de perturbaciones se trabajó con el diseño preliminar del SVC322B (prototipo 3), debido a que su masa es menor a comparación del SVC422B y fueron en total 26 perturbaciones a los que fue sometido el sistema estableciendo previamente el modelo del torque perturbador más representativo. así como también los parámetros del controlador junto con los límites del saturador de torques. Con este modelo y criterios de experimentación se rediseño el robot SVC322B aumentado la masa de los motores y la masa del robot así como las dimensiones mecánicas, obteniendo como resultado final el brazo robótico SVC422B. Por este motivo se continuo desarrollando el modelo del torque perturbador en base a la experiencia anterior y la nueva sintonización de los parámetros del controlador así como también se minimizo los límites del saturador de torques, entre todas las novedades más resaltantes durante la experimentación es el aumento de masa del robot lo que ayudó a su estabilidad con bajos parámetros (Kp, Ki, Kv) al momento de la sintonización del controlador en comparación con el SVC322B.

5.2 Enfoque para procesos de soldadura.

5.2.1 Fundamento del proceso MIG-MAG.

En el proceso MIG-MAG la fusión se produce por el calor generado por el arco eléctrico entre la pieza y el metal de aporte continuo donde la protección de la fusión se da mediante un gas que para el caso del proceso MIG son gases inactivos (helio, argón, mezcla de ellos) y para el caso MAG se utiliza gases activos (CO2, mezclas de dióxido de carbono).

Ventajas de los procesos MIG-MAG.

Entre las ventajas más importantes tenemos:

- Buenas características mecánicas y gran penetración.
- Disminución de los defectos.
- Gran velocidad de soldadura.
- Reducción de costes.

-

Tipos de unión o junta y tipos de soldadura

Existen diferentes tipos de unión y de soldadura que se pueden realizar en el proceso Mig-Mag, en la tabla 5.1 se muestran los principales tipos de unión y de soldaduras que se utilizan en este proceso.

Tabla 5.1 Tipos de unión de soldaduras [14]

- Desplazamiento y movimiento de la pistola de soldar.

En la tabla 5.2 se exponen las características y principales aplicaciones de cada desplazamiento y movimiento de la pistola de soldar, estas variables dependen del material y del espesor de la pieza, como ejemplo para soldar aluminio debe utilizarse el método ''a izquierda''

Tabla 5.2 Características y principales aplicaciones de desplazamiento y movimiento [14]

- Transferencia del metal aportado a la soldadura MIG o MAG

Los tres tipos básicos de transferencia del metal aportado a la soldadura MIG o MAG son:

a. Transporte por pulverización o spray.

Esta caracterizado por el transporte del material en partículas muy finas a altas velocidades a través del plasma del arco. La transferencia por spray se da al soldar metales no ferrosos, acero inoxidable, etc. además es recomendable realizar la soldadura en posición horizontal debido a que este tipo de transporte es recomendado para el soldeo de espesores gruesos.

b. Transporte globular.

La transferencia del metal se da en gotas de gran tamaño superior al diámetro del electrodo. La penetración es baja razón por la cual se emplea para el soldeo de espesores pequeños.

c. Transporte por cortocircuito.

La varilla comienza a fundirse y forma una gota que va aumentando hasta que entra en contacto con el baño de fusión. El gas de protección debe ser CO2 o mezclas de argón y CO2 con este gas se consigue mayor penetración.

En la tabla 5.3 se muestra las condiciones para la transferencia de metal en la soldadura de arco.

		Modo de tr	ansferencia			
	Cortocircuito	Globular	Por rocio	Por rocio pulsado		
Condiciones para este modo Características	 Bajos niveles de corriente Electrodos de po- co diámetro Bajas tasas de de- 	 Nivetes de corriente justo por encima de la transferencia por cortocircuito Ocurre entre la transferencia por cortocircuito y por rocio Produce algunas 	 Ocurre por encima de la de transición Corriente continua, electrodo en posi- tivo Gas de protección rico en atgóa Altas tasas de depo- 	 Igual que por ro- cio, pero utiliza una fuente de po- der que produce pulsos elevados Igual que por ro- 		
	posición	satpicaduras Poca perietración	sición • Libre de salpicadu- tas • Excelente penetra- ción	cio, pero puede icalizarse en to- das la posiciones		
Aplicaciones	 Para piezas de calibre menor que 12 Pasada de ralz Vertical hacia arriba Vertical hacia abajo En posición ele- vada Plana horizontal 	 Para piezas de cali- bre mayor que 12 Vertical hacia abajo 	 Para piezas de más de l/s de pulgada Piana horizontal 	 Para piezas de más de l/a de pulgada Para todas las po- siciones 		

Tabla 5.3 Condiciones para la transferencia de metal en la soldadura de arcometálico con protección de gas y sus aplicación [13]

- Problemas de la soldadura de arco metálico con protección de gas.

Existen diversos problemas en la soldadura como son la porosidad, el rebajo, la fusión incompleta, las grietas en el metal de aporte ,etc asi también como las posibles causas en la tabla 5.4 se muestran las soluciones para cada uno de estos problemas.

Tabla 5.4	Solución de problemas de la soldadura de arco metálico con protección de
	gas [13]

Problema	Posible causa	Solución
Rebajo	1. Velocidad de avance demasíado	1. Disminuya la velocidad de avance de la soldadura
	rápida	2. Reduzca el voltaje
	2. Voltaje de soldar demasíado alto	3. Reduzca la velocidad de alimentación del
	3. Amperaje excesivo	alambre-electrodo
	4. Insuficiente tiempo de deposición	4. Aumente el tiempo de deposición en el borde del charco
	5. Insdecusdo ángulo del	S. Cambie el ángulo del portaelectrodo para que la
	portaelectrodo	fuerza del arco ayude a acomodar el metal en su lugar
Porosidad	1. Inadecuada cobertura del gas de	1. Aumente o disminuya el flujo de gas
	protección	Proteja la pieza de trabajo de las corrientes de aire
		Disminuya la distancia entre el soplete y la pieza de trabajo
		Mantenga la pistola al final de la soldadura hasta
	· · · ·	que se solidifique el metal
	2. El gas de protección está	2. Utilice gas de protección con la pureza requerida
	contamínado	por la soldadura.
	3. El electrodo está contaminado	3. Utilice electrodos limpios y secos
	4. La pieza de trabajo está	4. Remueva la suciedad, óxidos, pintura y humedad
	contaminada	de la superficie de la pieza de trabajo
	5. Demasiado alto el voltaje del arco	5. Reduzca el voltaje
	6. Excesiva distancia entre el tubo	6. Reduzca la protuberancia del electrodo
	de contacto y la pieza de trabajo	
Fusión	1. La superficie de la zona de la	1. Limpie las superficies de contacto
incompleta	soldadura no está limpia	cuidadosamente
	2. Insuficiente suministro de calor	2. Incremente la velocidad de alimentación del
•		electrodo y el voltaje
•	•	Reduzca la extensión del electrodo
	3. Charco de soldadura demasíado	3. Reduzca la oscilación de la pistola e incremente la
	grande	velocidad de avance
	4. Técnica de soldadura	4. Cuando haga oscilar la pistola, manténgala
	inapropiada	momentáricamente al borde de la ranura
· · ·	5. Inapropiado diseño de la unión	5. Use un diseño de unión con un ángulo
		suficientemente amplio para que se pueda acceder
· · ·	the section of the se	hasta el fondo de la rantura
	6. Velocidad de avance demasiado	6. Reduzca la velocidad de svance
	alta	

Problema	Posible causa	Solución
Penetración incompleta en la unión	 Diseño inapropiado de la unión Técnica de soldar inapropiada Corriente de soldar inadecuada 	 El diseño de la unión debe permitir acceder hasta el fondo de la ranura Reduzca la cara de la raíz Mantenga el electrodo perpendicular a la pieza de trabajo Mantenga el arco sobre el borde delantero del baño de soldadura Incremente la velocidad de alimentación del electrodo
Traspaso excesivo de soldadura	 Excesivo suministro de calor Inapropiada penetración de la soldadura en la unión 	 Reduzea la velocidad de alimentación de electrodo Reduzea la apertura de la raíz Reduzea la dimensión de la cara de la raíz
Grietas en el metal de aporte	 Diseño inapropiado de la unión Relación profundidad-anchara de la soldadura demasiado alta Cordón de soldadura demasiado pequeño (particularmente cordones de filete o de raiz) Fragilización en catiente 	 Modifique el diseño de la unión para depositar una adecuada cantidad de metal de aporte y asi poder contrarrestar las condiciones de restricción Disminuya el voltaje del arco, la velocidad de alimentación de electrodo, o ambos Disminuya la velocidad de avance Utilice un electrodo con mayor contenido de manganeso Aumenté el ángulo de la canura para incrementar la cantidad de metal de aporte en la soldadura Cambie de metal de aporte Presellanía la olica de trabajo
	de la unión	5. Precanente sa preza de tradajo Ajuste la secuencia de la soldadura
Grictas en la zona afectada por el calor	 Endurecimiento en la zona afectada por el calor Esfuerzos residuates demasiado elevados Fisuración por hidrógeno 	 Precaliente la piczo de trabajo para retardar la velocidad de enfriamiento Aplique un tratamiento térmico de relevado de esfuerzos Utilice un electrodo limpio Use gas de protección seco Mantenga la soldadura a una temperatura elevada durante varias horas, para permitir la difusión del hidrógeno atrapado en la soldadura

Tabla 6-6. (Continuación)

5.2.2 Consideraciones para procesos de soldadura

Debido a que el robot será sometido a perturbaciones se tendrá como consideración el efecto que producen las fuerzas de perturbación en el proceso de soldeo por este motivo se trabajó el proceso de soldadura de tipo Mig-Mag, debido a que se tendrá en consideración el proceso de autorregulación ya que el resultado de la soldadura es independiente de pequeñas variaciones de la distancia de la antorcha a la pieza , estas variaciones son producto de las perturbaciones aleatorias que se modelaron. Además se trabajó con la consideración de máximo escurrimiento de soldadura (3 mm) y teniendo en cuenta que las láminas metálicas de 0.13 mm a 4.8 mm se pueden soldar sin ninguna preparación [13].

En el caso del SVC422B los valores con los que se realizaron las simulaciones para cada trayectoria se encuentran dados en tabla 5.5.

Trayectoria	Longitud	Distancia de la	Proceso de			
	total	antorcha a la	soldadura			
	(mm)	pieza				
		(mm)				
TLR1	832.5	Menor a 3	Mig-Mag			
TLR2	812.5	Menor a 3	Mig-Mag			
TLR3	1012.1	Menor a 3	Mig-Mag			

Tabla 5.5 Parámetros de soldeo para cada trayectoria del SVC422B

5.2.3 Modelamiento de las fuerzas perturbadoras en el proceso de soldadura.

En la presente tesis también se buscó modelar las fuerzas perturbación en el proceso de soldeo partiendo del criterio de movimiento en avance del brazo robótico por esta razón se modelo cada par perturbador de cada articulación estableciendo que los límites máximos y mínimos vienen establecidos por el comando *random* de *matlab*. Los límites numéricos máximos y mínimos posibles del comando fueron preestablecidos con la consideración del mínimo error en el seguimiento de trayectoria del efector final del SVC422B todo esto teniendo en consideración la estabilidad del sistema. En la tabla 5.6 se muestra el modelamiento de 7 tipos de perturbación aleatoria a los que será sometido el sistema. En el anexo C1 se muestran las características cuantitativas más relevantes de las 7 perturbaciones y en la tabla 5.6 se muestra las características cualitativas.

Tabla 5.6 Características cualitativas de las perturbaciones que afectan al

sistema

Perturbación	Características cualitativas
TPP1	Perturbación representativa del tercer prototipo
TPP2	Mayor interferencia en el barrido del ángulo del primera articulación
TPP3	Mayor interferencia en el barrido del ángulo del primera y segunda articulación

TPP4	Mayor interferencia en el barrido del ángulo del tercera articulación
TPP5	Mayor interferencia en el barrido del ángulo del cuarta articulación
TPP6	Mayor interferencia en el barrido de los ángulos de todas las articulaciones.
TPP7	Mayor interferencia en el barrido de los ángulos de todas las articulaciones y disminuyendo el periodo (Sample Time).

Estos modelos finales se obtuvieron a partir de anteriores modelos de torques con los que fueron perturbados el sístema con el fin de entender la dinámica de reacción para suplir estas perturbaciones por parte del SVC322B, es así que se comenzó con modelos de funciones lineales hasta los modelos en forma aleatoria del comando *ramdon*. Fueron en total 26 tipos de perturbaciones a los que fue sometido el robot y en todas ellas se sintonizo el controlador para mantener la estabilidad y el mínimo error posible.

Cabe resaltar que durante la experimentación se notó que es recomendable establecer previamente los límites del saturador de torques. En el anexo C2 se muestran 14 de los 26 torques de perturbación que fueron modelados y las características más relevantes de los mismos.

5.2.4 Consideraciones del SVC422B en el proceso de soldadura para una trayectoria en Línea Recta.

Se trabajó con las consideraciones para el proceso de soldadura vistas anteriormente y seleccionadas en las tabla 5.7. No obstante el SVC422B también puede realizar cualquiera de las consideraciones que se seleccionen en las tabla 5.7 debido a que sus cuatro grados de libertad permiten adoptar diferentes soluciones en cuanto se refiere a su cinemática inversa, pero para propósitos de la siguiente tesis se trabajarà con los datos ya seleccionados en franja amarilla.

		Tipo o	de solo	ladur	A .	Pro	oceso de	soldadi	ura		Tipo) de j	unta	
Trayectoría	De cordón	ondeada	De filete	De tapón	De ranura	por Arco	Con gas combustible	Por resistencia	De estado solido	A traslape	A topee	De esquina	De brida	Junta en T
Paralela														
Perpendicular														
Tridimensional														
Línea Recta	x					X					Х			
Zigzag														
Circunferencial														

Tabla 5.7 Consideraciones para el proceso de soldadura

5.3 Consideraciones para el diseño del controlador del brazo robótico SVC422B

Como en los anteriores capítulos se obtuvo el modelo cinemático y dinámico del SVC422B ahora corresponde diseñar la ley de control de par computado con PID-Adaptativo por planificación de ganancias para esto usaremos la herramienta *simulink* de *matlab*. Previamente se sentaran las bases teóricas para el diseño del algoritmo de control.

5.3.1 Control por Torque Computado.

.

Para el seguimiento de trayectorias mediante el control de par calculado partiremos de la ecuación que representa un manipulador como un sistema dinámico:

$$T = M(\mathbf{q})\ddot{\mathbf{q}} + V(\mathbf{q},\dot{\mathbf{q}}) + G(\mathbf{q}) + F(\mathbf{q},\dot{\mathbf{q}})$$
(5.1)

$$T = \widetilde{M}(\mathbf{q})\ddot{\mathbf{q}} + \widetilde{V}(\mathbf{q},\dot{\mathbf{q}}) + \widetilde{G}(\mathbf{q}) + \widetilde{F}(\mathbf{q},\dot{\mathbf{q}})$$
(5.2)

$$T = \widetilde{M}(q) \cdot Tr(e) + Tc$$
(5.3)

$$Tc = \tilde{V}(q,\dot{q}) + \tilde{G}(q) + \tilde{F}(q,\dot{q})$$
(5.4)

$$Tr = \vec{q}\vec{d} + Kv \, \dot{e} + Kv \, e \tag{5.5}$$

$$e = qd - q \tag{5.6}$$

$$e = \dot{q}\dot{d} - \dot{q} \tag{5.7}$$

$$T = \widetilde{M}(\vec{q}\vec{d} + Kv \, \dot{e} + Kp \, e) + \widetilde{V}(q, \dot{q}) + \widetilde{G}(q) + \widetilde{F}(q, \dot{q}) = M(q)\ddot{q}$$
$$+ V(q, \dot{q}) + G(q) + F(q, \dot{q}) \qquad (5.10)$$

$$\ddot{e} + \operatorname{Kv} \dot{e} + \operatorname{Kp} e = \widetilde{M}^{-1}[(M - \widetilde{M})\ddot{q} + (V - \widetilde{V}) + (G - \widetilde{G}) + (F - \widetilde{F})] \quad (5.11)$$

$$\ddot{e} + \operatorname{Kv} \dot{e} + \operatorname{Kp} e = \widetilde{M}^{-1} \operatorname{Td}$$
(5.12)

$$\ddot{e} + Kv^*\dot{e} + Kp^*e = 0$$
 (5.13)

Para un controlador del tipo PID :

$$Tr = \ddot{q}d + Kv \,\dot{e} + Kp^* e + Ki^* \int_0^t e^* dt$$
(5.14)

$$\widetilde{M}^{-1} * Tr = \ddot{e} + Kv^* \dot{e} + Kp^* e + Ki^* \int_0^t e^* dt$$
(5.15)

5.3.2 Control Adaptativo por planificación de Ganancias.

Es un esquema de control de tipo adaptativo en el que se calculan previamente reguladores para distintas situaciones de funcionamiento. Generalmente las variables que originan este cálculo previo son la carga que manipula el robot y los valores de las coordenadas articulares [1],[3]. Para el caso del SVC422B la variable que origina el cálculo previo de los reguladores lo determina el tipo de perturbación a la que es sometida el robot las cuales están debidamente detalladas y en el anexo C3.

5.3.3 Diseño del sistema de control del SVC422B

Con el modelo dinámico del SVC422B obtenido en el capítulo 4 y las ecuaciones 1, 2,3 se procedió a implementar en *Simulink* el sistema total con el controlador del robot. A continuación en el anexo C3 se detallan cada uno de los bloques (sistemas) que lo conforman. En la figura 5.3.1 se muestra el sistema total con el controlador.

Figura 5.1. Sistema total con el controlador del SVC422B

Para todas las simulaciones se tendrá en consideración la respuesta subamortiguada por este motivo la relación de los parámetros PID tendrán la siguiente relación:

$$Kv=2^*(\sqrt{Kp}) \tag{5.16}$$

5.3.4 Dimensionamiento y descripción de los actuadores del brazo robótico SVC422B

El modelado de los actuadores del SVC422B depende única y exclusivamente de la precisión de las tareas a realizar; esto quiere decir que existen diversos actuadores que pueden ser integrados al robot gracias al diseño mecánico de acople, que es característico de sus eslabones. Para un mejor entendimiento se muestra en el anexo C4 la integración de diversos actuadores para un mismo eslabón.

Entre los motores que podemos integrar al SVC422B podemos mencionar:

D1: motor DC.

D2: Servomotor.

D3: motor brushless.

D4: Motor de pasos.

Entonces, de acuerdo al motor que seleccionemos será necesario modelarlo y obtener sus ecuaciones para incluirlo en el modelo del sistema a controlar.

Partiendo de los datos hallados en el prototipo 3 como son los límites del saturador de torques que vienen a ser los valores máximos de torque que pueden entregar los motores y el modelo de la perturbación los cuales el procedimiento de cálculo se encuentran en el anexo C2, se realizó la nueva sintonización de los parámetros del controlador para lo cual se tienen los siguientes datos iniciales que se muestran en la tabla 5.8 :

Tabla 5.8 Datos de simulación para el seguimiento de trayectoria desde la

Parámetros	Datos de simulación
Límites del Saturador de Torques	$[T1,T2,T3,T4] = \pm [70,40,25,10]$ (N.m)
Tiempo de simulación	70 segundos.
Posición inicial del robot	x0= 0 m y0= 0.576 m z0= -0.059 m
Posición inicial de la tarea	x0= 0.5 m y0= 0.004 m z0= 0.059 m
Posición final de la tarea	x0=-0.25 m y0=0.51 m z0=-0.059 m
Ecuación trayectoria real	Ecuación Vectorial $x1=x0+t^*a;$ $x0=0.5$ $a=-1.4822$ $y1=y0+t^*b$ $y0=0.004$ $b=1$ $Z1=z0+t^*c$ $z0=0.059$ $c=-0.2332$
Tipo de perturbación	TPP1

Posición inicial del robot

5.4 Procedimiento de sintonización de los parámetros del controlador del SVC422B.

Todas las gráficas que se muestran a continuación en lo que respecta al error total(Et) vienen dadas en Et(m) v.s. t(s).

Sintonización 1.

Partiendo de los datos iniciales de las ganancias del controlador Kp=[36;36;36;36] se puede observar en la figura 5.3 que el mayor error angular entre la señal obtenida y la señal generada se presenta en el cuarto y tercer grado de libertad y el error total en régimen estacionario es aproximadamente de 43 cm tal como lo muestra la figura 5.4.

Figura 5.2 Respuesta del sistema en el espacio XYZ con la sintonización 1

Figura 5.3 Errores de las posiciones angulares con la sintonización 1

Figura 5.4 Error total en el espacio XYZ con la sintonización 1

Sintonización 2.

Posteriormente se sintonizaron gradualmente los parámetros de las articulaciones con mayor error hasta Kp=[[36;36;121;900] con el objetivo de disminuir el error angular de cada grado de libertad, logrando obtener un error total en el espacio XYZ menor a 30cm tal como se puede observar en las figura 5.7.

Figura 5.5 Respuesta del sistema en el espacio XYZ con la sintonización 2

Figura 5.6 Errores de las posiciones angulares con la sintonización 2

Figura 5.7 Error total en el espacio XYZ con la sintonización 2

Sintonización 3.

Ahora en la figura 5.9 se puede observar que el mayor error angular se presenta en las tres últimas articulaciones, por consiguiente se siguieron incrementando los parámetros del controlador hasta Kp=[[36;169;400;1600] obteniéndose un error total en XYZ de menos de 3.2cm en régimen estacionario tal como se muestra en la figura 5.10.

Figura 5.8 Respuesta del sistema en el espacio XYZ con la sintonización 3

Figura 5.10 Error total en el espacio XYZ con la sintonización 3

Sintonización 4.

En la figura 5.12 se observa que los errores angulares de todas las articulaciones son menores a 0.15 radianes ,por consiguiente se siguieron incrementando los valores de los parámetros del controlador hasta Kp=[[100;400;1600;1600]consiguiendo un error total de menos de 3.5 cm tal como se muestra en la figura 5.13

Figura 5.11 Respuesta del sistema en el espacio XYZ con la sintonización 4

Figura 5.12 Errores de las posiciones angulares con la sintonización 4

Figura 5.13 Error total en el espacio XYZ con la sintonización 4

Sintonización 5.

En la figura 5.15 se puede observar que el mayor error angular se presenta en las dos últimas articulaciones y en la primera articulación consiguiente se siguieron incrementando los valores de los parámetros del controlador hasta Kp=[[400;900;2116;3249] consiguiendo un error total de menos de 1.1 cm aproximadamente durante el régimen permanente, tal como se muestra en la figura 5.16.

Figura 5.14 Respuesta del sistema en el espacio XYZ con la sintonización 5

Figura 5.15 Errores de las posiciones angulares con la sintonización 5

Figura 5.16 Error total en el espacio XYZ con la sintonización 5

Figura 5.17 Torques con saturador aplicados al robot con la sintonización 5

Así también puede notarse en la figura 5.16 que el error en el espacio XYZ durante los primeros 4s es demasiado grande aproximadamente mayor a 1m y además el seguimiento de la trayectoria no empieza en el punto inicial de la trayectoria deseada tal como se puede ver en la figura 5.14. Esto se debe a que el robot empieza su movimiento desde la posición inicial en donde se encontraba, por este motivo trasladarlo hasta la posición inicial de la trayectoria deseada conlleva un gran esfuerzo del sistema de control esto se puede notar en la figura 5.17 en donde los torques aplicados a las tres primeros articulaciones son demasiado elevados tal es así que alcanza los límites del saturador de torques.

La solución que se plantea para minimizar esto consiste en dividir la trayectoria deseada en dos fases: la primera consiste en el control de posición para ubicar al efector final en el punto de inicio de la trayectoria deseada y la siguiente fase es el control de movimiento para el seguimiento de la trayectoria desde la posición inicial de la trayectoria deseada hasta su posición final, cabe recalcar que la perturbación en la simulación del proceso de soldeo está presente en todo momento del seguimiento de la trayectoria.

Fase 1: Control de posición.

La primera fase consiste en ubicar al efector final en la posición deseada que viene a ser el punto de inicio de la tarea. Los datos iniciales con que se trabajaron se encuentran encuentra en la tabla 5.9.

En la figura 5.18 se puede ver la trayectoria seguida por el efector final desde la posición inicial del robot hasta la posición donde inicia la tarea. El tiempo requerido para lograr esto es de aproximadamente 7 segundos con un error total de

aproximadamente de menos de 0.5 mm con tendencia a disminuir tal como se muestra en la figura 5.20. Por otro lado en la figura 5.19 se muestra la evolución de los errores angulares de las articulaciones.

Límites del Saturador de Torques	$[T1,T2,T3,T4] = \pm [70,40,25,10]$ (N.m)
Ganancias del controlador	Kp=[[36;36;36]
Tiempo de simulación	15segundos.
Posición inicial del robot	x0= 0 m y0= 0.576 m z0= -0.059 m
Posición inicial de la tarea	x0= 0.5 m y0= 0.004 m
(punto deseado en el espacio XYZ)	z0=0.059 m
Ecuación de la perturbación	Ninguna.

Tabla 5.9 Datos iniciales para el control de posición

Figura 5.18 Respuesta del sistema en el espacio XYZ debido al control de posición

Figura 5.19 Error de las posciones angulares

Figura 5.20 Error total (espacio XYZ) debido al control de posición

Fase 2: Control de Movimiento.

Una vez ubicado el efector final en la posición de inicio de la tarea se da comienzo a la segunda fase que viene a ser el control de movimiento del brazo robótico para el seguimiento de la trayectoria *(tracking)*. En esta fase el sistema es afectado por la perturbación TP1. Los datos iniciales se encuentran en la tabla 5.10

Parámetros	Datos de simulación		
Límites del Saturador de Torques	$[T1,T2,T3,T4] = \pm [70,40,25,10]$ (N.m)		
Ganancias del controlador	Kp=[[400;900;2116;3249]		
Tiempo de simulación	70 segundos.		
Posición inicial del robot	x0= 0.5 m y0= 0.004 m z0= 0.059 m		
Posición inicial de la tarea	x0=0.5 m y0= 0.004 m z0= 0.059 m		
Posición final de la tarea	x0=-0.25 m y0= 0.51 m z0= -0.059 m		
Ecuación trayectoria real	Ecuación Vectorial $x1=x0+t^*a;$ $x0=0.5$ $y0=0.004$ $a=-1.4822$ $b=1$ $y1=y0+t^*b$ $y0=0.004$ $b=1$ $Z1=z0+t^*c$ $z0=0.059$ $c=-0.2332$		
Tipo de perturbación	TPP1		

Tabla 5.10 Datos de simulación para el seguimiento de trayectoria

Figura 5.21 Respuesta del sistema en el espacio XYZ debido al control de movimiento

Figura 5.22 Errores de las posiciones angulares

Figura 5.23 Error total en el espacio XYZ con la sintonización 5

En la figura 5.23 se puede observar que el máximo error total durante los primero 3 segundos es menor a 16 mm y durante los últimos 5 segundos de su trayectoria es menor a 11 mm , por consiguiente se siguieron incrementando los valores de los parámetros del controlador hasta Kp=[[400;900;2116;3249] consiguiendo un error total de menos de 3 mm aproximadamente en toda la trayectoria, tal como se muestra en la figura 5.31.

Figura 5.24 Respuesta del sistema en el espacio XYZ debido al control de movimiento

Figura 5.25 Proyección de la trayectoria en el planoX-Y

Figura 5.27 Proyección de la trayectoria en el planoY-Z

Figura 5.28 Torques saturados aplicados al robot debido al control de posición

Figura 5.29 Torques sin saturador aplicados al robot debido al control de posición

Figura 5.30 Errores de las posiciones angulares con la sintonización 6

Figura 5.31 Error total en el espacio XYZ con la sintonización 6

CAPITULO 6

SIMULACIONES Y RESULTADOS

En capítulos anteriores se desarrolló la cinemática, la dinámica y el enfoque a los procesos de soldadura todo esto se realizó de manera secuencial y analítica haciendo hincapié en detalles de ingeniería básica como aplicada. Todo esto contribuye a la robustez del prototipo ya que hablar de robustez no implica solamente el desarrollo del algoritmo de control sino también del sistema completo (SVC422B).

En este capítulo se muestran las simulaciones del desempeño del algoritmo de control del tipo PID-Adaptativo por planificación de ganancias del SVC422B con enfoque a procesos de soldadura industrial. Para comprobar el desempeño del algoritmo de control se simularon en total 3 trayectorias en cuyos resultados se obtuvieron el mínimo error permisible a pesar de las perturbaciones que fue sometido el sistema.

La base teórica para obtener las simulaciones está dado por :

- Las ecuaciones cinemáticas del SVC422B obtenida el capítulo 3.
- Las ecuaciones dinámicas del SVC422B obtenida el capítulo 4.

- Las consideraciones respectivas para el modelado de las perturbaciones producidas por los efectos de soldadura dadas en el capítulo 5.
- La programación del algoritmo de control realizada con la herramienta simulink de Matlab obtenido en el capítulo 5.

6.1 Resultados de la Simulación de la Trayectorias del Efector final

Para poder realizar una tabla de ganancias del controlador se simularan 3 trayectorias que realizará el efector final y cada trayectoria estará afectada por 7 tipos de perturbaciones. La regulación de los parámetros característicos del controlador se realizó en base al criterio de una respuesta sub-amortiguada ($Kv=\sqrt{Kp}$) y con la consideración de Ki=Kp, así como también criterios de sintonización vistos en la sub-sección 5.4. Además se trabajaron con las consideraciones en lo que respecta al proceso de soldadura visto en el capítulo 5. Todas las gráficas que se muestran a continuación en lo que respecta al error total(Et) vienen dadas en Et(m) v.s. t(s).

6.1.1 Primera trayectoria (TLR1)

Fase 1: Control de posición.

La primera fase consiste en ubicar al efector final en la posición deseada que viene a ser el punto de inicio de la tarea. Los datos iniciales con que se trabajaron se encuentran en la tabla 6.1. En la figura 6.1.1 se puede ver la trayectoria seguida por el efector final desde la posición inicial del robot hasta la posición donde inicia la tarea. El tiempo requerido para lograr esto es de aproximadamente 7 segundos con un error total de aproximadamente de menos de 0.5 mm con tendencia a disminuir tal como se muestra en la figura 6.2. Por otro lado en la figura 6.3 se muestra el esfuerzo del sistema de control por alcanzar la posición deseada, generando los torques necesarias para cada articulación. Con esta primera fase se asegura que el SVC422B empezara su tarea en el punto de inicio de la trayectoria en línea recta (TLR1).

Parámetros	Datos de simulación
Límites del Saturador de Torques	[T1,T2,T3,T4] = [70,40,25,10] (N.m)
Ganancias del controlador	[36;36;36]
Tiempo de simulación	15 segundos.
Posición inicial del robot	x0=0 m:
	v0=0.576 m:
	z0=-0.059 m;
Posición inicial de la tarea	xd=0.5 m;
	yd=0.004 m;
(punto deseado en el espacio XYZ)	zd=0.059 m;
Coordenadas del punto deseado	01=270.4584
r	Q2=40.1618
(espacio coordenadas articulares)	Q3 =-53.7668
	Q4= 0
Ecuación de la perturbación	Ninguna.

Tabla 6.1 Datos de simulación para el control de posición para el inicio TLR1

Figura 6.1 Respuesta del sistema debido al control de posición para el inicio TLR1

Figura 6.2 Error total (espacio XYZ) debido al control de posición para el inicio TLR1

Figura 6.3 Torques saturados debido al control de posición para el inicio de la TLR1

Fase 2: Control de Movimiento.

•

Una vez ubicado el efector final en la posición de inicio de la tarea se da comienzo a la segunda fase que viene a ser el control de movimiento del brazo robótico (*tracking*). Para TLR1 los datos iniciales se encuentra en la tabla 6.2.

Parámetros	Datos de simulación		
Límites del Saturador de Torques	$[T1,T2,T3,T4] = \pm [70,40,25,10]$ (N.m)		
Tiempo de simulación	70 segundos.		
Posición inicial del robot	x0=0.5 m y0=0.004 m z0=0.059 m		
Posición inicial de la tarea	x0=0.5 m y0= 0.004 m z0= 0.059 m		
Posición final de la tarea	x0=-0.25 m y0= 0.51 m z0= -0.059 m		
Ecuación trayectoria real			
	Ecuación Vectorial		
	$x_1=x_0+t^*a;$ $x_0=0.5$ $a=-1.4822$		
	y1=y0+ t*b y0= b= 1 0.004		
	Z1=z0+ t*c z0= c = -0.2332 0.059		
Tipo de perturbación	TPP1,TPP2,TPP3,TPP4,TPP5,TPP6,TPP7		

Tabla 6.2 Datos de simulación para el seguimiento de trayectoria para TLR1

Figura 6.4 Error total (espacio XYZ) para TLR1 debido a la perturbación TPP1

Figura 6.5 Error total (espacio XYZ) para TLR1 debido a la perturbación TPP2

Figura 6.6 Error total (espacio XYZ) para TLR1 debido a la perturbación TPP3

Figura 6.7 Error total (espacio XYZ) para TLR1 debido a la perturbación TPP4

Figura 6.8 Error total (espacio XYZ) para TLR1 debido a la perturbación TPP5

Figura 6.9 Error total (espacio XYZ) para TLR1 debido a la perturbación TPP6

Figura 6.10 Error total (espacio XYZ) para TLR1 debido a la perturbación TPP7

De acuerdo a los resultados obtenidos anteriormente se elaboró una tabla de ganancias del controlador junto con los errores totales máximos obtenidos para cada tipo de perturbación tal como se muestra el tabla 6.3.

Кр	Error Total (espació XYZ) (m)	Saturador (N.m)	Torque de Perturbación (N.m)
[2500;2500;3600;6400]	< 2.8	± [70,40,25,10]	PTT1
[2500;3600;6400;10000]	< 2.4	± [70,40,25,10]	PTT2
[2500;4900;6400;8100]	< 2.5	± [70,40,25,10]	PTT3
[3600;4900;8100;12100]	< 3.1	± [70,40,25,10]	PTT4
[3600;4900;8100;12100]	< 3.3	± [70,40,25,10]	PTT5
[3600;12100;40000;40000]	< 3.0	± [70,40,25,10]	PTT6
[3600;12100;40000;40000]	< 1.4	± [70,40,25,10]	РТТ7

Tabla 6.3 Planificación de ganancias para cada tipo de perturbación para TLR1

6.1.2 Segunda trayectoria (TLR2)

Fase 1 : Control de posición.

Los datos iniciales con que se trabajaron se encuentran en la tabla 6.4.

Límites del Saturador de Torques	[T1,T2,T3,T4] = [70,40,25,10] (N.m)
Ganancias del controlador	[36;36;36;36]
Tiempo de simulación	15 segundos.
Posición inicial del robot	x0= 0 m; y0= 0.576 m; z0=-0.059 m;
Posición inicial de la tarea (punto deseado en el espacio XYZ)	xd=0 m; yd=0.214 m; zd=-0.059 m;
Coordenadas del punto deseado (espacio coordenadas articulares)	Q1=360.0 Q2=68.1901 Q3 =-136.3803 Q4= 0
Ecuación de la perturbación	ninguna

Tabla 6.4 Respuesta del sistema debido al control de posición para el inicio TLR2

Figura 6.11 Respuesta del sistema debido al control de posición para el inicio TLR2

Figura 6.12 Error total (espacio XYZ) debido al control de posición para el inicio TLR2

Figura 6.13 Torques saturados debido al control de posición para el inicio de la TLR2

Parámetros	Datos de simulación		
Límites del Saturador de Torques	$[T1,T2,T3,T4] = \pm [70,40,25,10]$ (N.m)		
Tiempo de simulación	70 segundos.		
Posición inicial del robot	xd=0 m; yd=0.214 m; zd=-0.059 m;		
Posición inicial de la tarea	xd=0 m; yd=0.214 m; zd=-0.059 m;		
Posición final de la tarea	x0=0 m y0= 0.575 m z0= -0.059 m		
Ecuación trayectoria real	Ecuación Vectorial $x1=x0+t^*a;$ $x0=0$ $a=0$ $y1=y0+t^*b$ $y0=0.214$ $b=1$ $Z1=z0+t^*c$ $z0=-0.059$ $c=0$		
Tipo de perturbación	TPP1,TPP2,TPP3,TPP4,TPP5,TPP6,TPP7		

Tabla 6.5 Datos de simulación para el seguimiento de trayectoria para TLR2

Figura 6.14 Error total (espacio XYZ) para TLR2 debido a la perturbación TPP1

Figura 6.15 Error total (espacio XYZ) para TLR2 debido a la perturbación TPP2

Figura 6.16 Error total (espacio XYZ) para TLR2 debido a la perturbación TPP3

Figura 6.17 Error total (espacio XYZ) para TLR2 debido a la perturbación TPP4

Figura 6.18 Error total (espacio XYZ) para TLR2 debido a la perturbación TPP5

Figura 6.19 Error total (espacio XYZ) para TLR2 debido a la perturbación TPP6

Figura 6.20 Error total (espacio XYZ) para TLR2 debido a la perturbación TPP7

De acuerdo a los resultados obtenidos anteriormente se elaboró una tabla de ganancias del controlador junto con los errores totales máximos obtenidos para cada tipo de perturbación tal como se muestra el tabla 6.6.

	Error Total	Saturador	Torque de
Кр	(espacio XYZ)	(N.m)	Perturbación
	(mm)		(N.m)
[3025;2500;3600;6400]	< 2.72	± [70,40,25,10]	PTT1
[2500;3600;6400;10000]	< 2.57	± [70,40,25,10]	PTT2
[3600;4900;8100;12100]	< 2.05	± [70,40,25,10]	рттз
[3600;8100;12100;12100]	< 2.55	± [70,40,25,10]	PTT4
[3600;4900;12100;25600]	< 3.05	± [70,40,25,10]	PTT5
[3600;19600;62500;40000]	< 2.92	± [70,40,25,10]	ртт6
[3600;12100;40000;40000]	< 1.2	± [70,40,25,10]	ртт7

Tabla 6.6 Planificación de ganancias para cada tipo de perturbación para TLR2

6.1.3 Tercera trayectoria (TLR3)

Fase 1 : Control de posición.

.

Los datos iniciales con que se trabajaron se encuentran en la tabla 6.7

Límites del Saturador de Torques	[T1,T2,T3,T4] = [70,40,25,10] (N.m)
Ganancias del controlador	[36;36;36;36]
Tiempo de simulación	15 segundos.
Posición inicial del robot	x0= 0 m; y0= 0.576 m; z0=-0.059 m;
Posición inicial de la tarea	xd=0.52 m; yd=-0.19 m;
(punto deseado en el espacio XYZ)	zd = -0.049 m;
Coordenadas del punto deseado	Q1=249.9285 Q2=17.0247
(espacio coordenadas articulares)	Q3 =-31.9798 Q4= 0
Ecuación de la perturbación	ninguna

Tabla 6.7 Respuesta del sistema debido al control de posición para el inicio TLR3

Figura 6.21 Respuesta del sistema debido al control de posición para el inicio TLR3

Figura 6.22 Error total (espacio XYZ) debido al control de posición para el inicio TLR3

Figura 6.23 Torques saturados debido al control de posición para el inicio de la TLR3

Fase 2: Control de Movimiento.

Para TLR3 los datos iniciales se encuentra en la tabla 6.8

Tabla 6.8 Datos de simulación para el seguimiento de trayectoria para TLR3

Parámetros	Datos de simulación		
Límites del Saturador de Torques	$[T1, T2, T3, T4] = \pm [70, 40, 25, 10]$ (N.m)		
Tiempo de simulación	70 segundos.		
Posición inicial del robot	xd= 0.52 m; yd= -0.19 m; zd= -0.049 m;		
Posición inicial de la tarea	xd= 0.52 m; yd= -0.19 m; zd= -0.049 m;		
Posición final de la tarea	x0 = -0.24 m y0 = 0.35 m z0 = -0.329 m		
Ecuación trayectoria real	Ecuación Vectorial $x1=x0+t^*a;$ $x0=0.52$ $y0=-0.19$ $a=-1.4074$ $b=1$ $y1=y0+t^*b$ $y0=-0.19$ $b=1$ $Z1=z0+t^*c$ $z0=-0.049$ $c=0.7$		
Tipo de perturbación	TPP1,TPP2,TPP3,TPP4,TPP5,TPP6,TPP7		

Figura 6.24 Error total (espacio XYZ) para TLR3 debido a la perturbación TPP1

Figura 6.25 Error total (espacio XYZ) para TLR3 debido a la perturbación TPP2

Figura 6.26 Error total (espacio XYZ) para TLR3 debido a la perturbación TPP3

Figura 6.27 Error total (espacio XYZ) para TLR3 debido a la perturbación TPP4

Figura 6.28 Error total (espacio XYZ) para TLR3 debido a la perturbación TPP5

Figura 6.29 Error total (espacio XYZ) para TLR3 debido a la perturbación TPP6

Figura 6.30 Error total (espacio XYZ) para TLR3 debido a la perturbación TPP7

De acuerdo a los resultados obtenidos anteriormente se elaboró una tabla de ganancias del controlador junto con los errores totales máximos obtenidos para cada tipo de perturbación tal como se muestra el tabla 6.9

	Error Total	Saturador	Torque de
Кр	(espacio XYZ)	(N.m)	Perturbación
10	(mm)		(N.m)
[4900;3600;8100;40000]	1.06	± [70,40,25,10]	PTT1
[4900;6400;8100;8100]	2.56	± [70,40,25,10]	PTT2
[4900;6400;8100;8100]	2.52	± [70,40,25,10]	РТТЗ
[4900;6400;10000;12100]	2.43	± [70,40,25,10]	PTT4
[4900;6400;10000;16900]	1.99	± [70,40,25,10]	ртт5
[4900;6400;10000;16900]	2.79	± [70,40,25,10]	PTT6
[3600;12100;40000;40000]	1.44	± [70,40,25,10]	PTT7

Tabla 6.9 Planificación de ganancias para cada tipo de perturbación para TLR3

CONCLUSIONES

- Se concluye que el diseño del algoritmo de control PID-adaptativo por planificación de ganancias, permite controlar los movimientos de las articulaciones del SVC422B de manera satisfactoria a pesar de las perturbaciones de naturaleza aleatorias que intervienen en la simulación del proceso de soldadura.
- Para la trayectoria TLR1 El error máximo alcanzado es de 3.3mm correspondiente a la perturbación PTT5 y el error mínimo es de 1.4mm correspondiente PPTT7. Para la trayectoria TLR2 El error máximo alcanzado es de 3.05mm correspondiente a la perturbación PTT5 y el error mínimo es de 1.2mm correspondiente PPTT7. Para la trayectoria TLR3 El error máximo alcanzado es de 2.79mm correspondiente a la perturbación PTT6 y el error máximo alcanzado es de 2.79mm correspondiente a la perturbación PTT6 y el error mínimo es de 1.06mm correspondiente PPT1.
- Se concluye que la sintonización de los parámetros del controlador resuelve el problema de control de movimiento para el brazo robótico SVC422B con una alta performance debido a que se encuentra entre el rango de separación

de la antorcha del efector final y la pieza trabajo, logrando así de esta manera realizar una trayectoria de hasta 1012.1 mm.

- La ventaja del algoritmo de control PID-adaptativo por planificación de ganancias permiten comprender de manera intuitiva el comportamiento de la dinámica del sistema. Esto se puede notar en el proceso de sintonización de los parámetros del controlador, cuyo objetivo es obtener el mínimo error permisible dentro de los rangos permitidos en procesos de soldadura.
- La naturaleza aleatoria de la de torques perturbadores en la simulación del proceso de soldadura permiten al SVC422B dimensionar sus actuadores y prepararlo para su implementación en lo que respecta a su controlador y a su diseño mecánico, teniendo en consideración los límites de estos torques perturbadores y los límites del saturador de torques.

BIBLIOGRAFIA

 A. Barrientos, L. Peñin., Balaguer. *Fundamentos de robótica*. Mc Graw-Hill, 2007.

[2] K.S FU, RC. Gonzales, C.S.G Lee. Robótica, Control, Detección, Visión,

Inteligencia. Mc Graw-Hill, Noviembre 1990

[3] Anibal Ollero Baturone. *Robótica. Manipuladores y robots móviles.* Marcombo, Ediciones Técnicas 2007

[4] KELLY, R. y SANTIBAÑEZ, V. Control de Movimientos de Robots Manipuladores.Pearson Educacion, S.A. ,Madrid, 2003.

[5] Jose M. Angulo Usategui. *Robótica Practica Tecnología y Aplicaciones*. Editorial Paraninfo 2000.

[6] James M. Gere, Barry J. Goodno. *Mecánica de Materiales* . D.R. 2009 por Cengage Learning Editores , S.A. de C.V.

[7] Mott, Robert L. *Diseño de elementos de Máquinas*. Pearson Educación, México 2006.

[8] Wilbert L. Calluco E. Implementación de un brazo robotico para soldadura eléctrica y autógena. Proyecto presentado en el concurso de Coneimera 2009.

[9] Dorf, R.C; Bishop, R.H. *Sistemas de Control Moderno*. Pearson Educación , S.A, Madrid 2005.

[10] Robert F. Steidel, JR. Introducción al estudio de las vibraciones Mecánicas. Editorial Continental S.A, 1984.

[11] Página de Internet." Historia de un éxito: Una mirada retrospectiva a la aportación de ABB a la robótica industrial".

Dirección: http://dialnet.unirioja.es/servlet/articulo?codigo=2686955

[12] Wright, Pa. y otros. Introducción a la ingeniería. Wilmington: Addison-Wesley Iberoamericana, 1994

[13] Willian L. Galvery , Jr. *Guia de soldadura para el técnico profesional.* Editorial Limusa 2007.

[14] Página de Internet. ¿Cómo soldar con MIG/MAG?.

Dirección: http://www.demaquinasyherramientas.com/soldadura/soldadura-migmagcomo-soldar.

[15] Rolando Perez Ñ. Diseño de un robot de dos grados de libertad en Matlab y simulink . Apuntes de clase del curso de robótica 2. FIM-UNI 2008.

[16] Wilbert L. Calluco E. Diseño e implementación del Robot SVC522E para la generación de trayectorias singulares. Proyecto presentado en el concurso de Coneimera 2014.

·

. .

.

ANEXOS

.

ANEXO A1

Otra configuración del SVC422B

Figura A1.1. Segunda Configuración del SVC422B

Figura A1.2 Espacio de trabajo real del SVC422B

ANEXO A2

Cinemática directa del SVC422B

clear all close all clc q1 q2 q3 q4 q5 q6 q7 L L1 L2 L3 L4 L5 L6 syms Lc1 Lc2 Lc3 Lc4 Lc5 Lc6 I1 I2 I3 I4 syms syms dql dq2 dq3 dq4 dq5 dq6 syms ddq1 ddq2 ddq3 ddq4 ddq5 ddq6 syms m1 m2 m3 m4 m5 m6 syms 11 12 13 14 15 16 L m real g K K1 LC1 LC2 LC3 LC4 I11 I22 133 g 11x 11Y 11Z 12X 12Y 12Z 13X 13Y 13Z syms Lc1x Lc1y Lc1z Lc2x Lc2y Lc2z Lc3x Lc3y Lc3z Lc4x Lc4y Lc4z syms Ilxx Ilxy Ilxz Ilyx Ilyy Ilyz Ilzx Ilzy Ilzz syms I2xx I2xy I2xz I2yx I2yy I2yz I2zx I2zy I2zz syms I3xx I3xy I3xz I3yx I3yy I3yz I3zx I3zy I3zz syms I4xx I4xy I4xz I4yx I4yy I4yz I4zx I4zy I4zz syms al a2 a3 a4 d1 d2 d3 d4 al= 0; a2= 288*0.001; a3= 168*0.001; a4= 120*0.001; d1= -59*0.001; d2= -54*0.001; d3= 54*0.001; d4= 0; dh=[q1+pi/2 d1 al pi/2 d2 a2 0 q2 q3 d3 a3 0 q4 d4 a4 0]; N=4for n=1:1:N n R=MDH(dh(n, 1), dh(n, 2), dh(n, 3), dh(n, 4))ss(:,:,n)=R end j=1 sss(:,:,j)=(ss(:,:,j))*(ss(:,:,j+1))*(ss(:,:,j+2))*(ss(:,:,j+3)) function dh=MDH(teta,d,a,alfa) -cos(alfa)*sin(teta) sin(alfa)*sin(teta) a*cos(teta); dh=[cos(teta) cos(alfa)*cos(teta) -sin(alfa)*cos(teta) sin(teta) a*sin(teta); 0 sin(alfa) cos(alfa) d ; 0 0 0 1

1

ANEXO A3 Cálculo de la cinemática inversa del SVC422B

```
%% CISVC.m
```

tic clear all close all clc

% trayectoria de mas de 0.8325 m x0=500/1000; y0=4/1000; z0=59/1000; x2=-250/1000; y2=510/1000; z2=-59/1000; N=310; DTOTAL=(x0-x2)^2+(y0-y2)^2+(z0-z2)^2 % % trayectoria de mas de 812.5 mm % x0=0; % y0=214/1000; % z0=-59/1000; % x2=0; % y2=575/1000;%disminuir % z2=-59/1000; % N=10; 8 % % % trayectoria de mas de 1.0121 m % x0=520/1000; % y0=-190/1000; % z0=-49/1000; % x2=-240/1000; % y2=350/1000; 용 z2=329/1000; % N=310;% N=310 Q2,Q3 Y N=100 Q1 % DTOTAL=(x0-x2)^2+(y0-y2)^2+(z0-z2)^2 **%VECTOR DE LA RECTA** a1=x2-x0; b1=y2-y0; c1-z2-z0; ww=[a1 b1 c1]; ma=max(ww); a=a1/ma; b=b1/ma: c=c1/ma; for t=0:(ma/N):ma t; x1=x0: t*a; y1=y0+ t*b; Z1=z0+ t*c; % Con esta relaciones no cumple existencia de triangulos PARA ciertos % puntos en el espacio 꾱 L3-L2<M<L3+L2 esto tiene que cumplir 1.1=59/1000; L2=288/1000; bb=0; L3=(168+ 120)/1000; Z1>=-59/1000 if z1=(59/1000)+Z1; elseif Z1<-(59/1000)

z1=-(Z1+(59/1000));

end

ee=atan(sqrt((x1*x1)/(y1*y1))); eegrados=(180/pi)*ee;

if (x1<=0) && (y1>=0)

q11=(180/pi)*(ee+2*pi); % se le suma 2pi para darle %continuidad a la a la función de Q1 elseif (x1<=0) && (y1<0)

q11=(180/pi)*(pi-ee);

elseif x1>0 && y1<=0

q11=(180/pi)*(pi+ee);

elseif x1>0 && y1>0

q11=(180/pi)*(2*pi ~ee); % en el angulo end

```
r=sqrt(x1*x1+y1*y1);
M=sqrt(z1*z1+r*r);
n=atan((z1)/r);
alfa=acos((L2*L2-L3*L3+M*M)/(2*L2*M));
```

if Z1>(-((59/1000)+L3))

q2=alfa+n;

```
elseif Z1<=-((59/1000)+L3)
q2=-(n-alfa);
```

end

g22=(180/(pi))*g2 ;

beta=acos((L2*L2+L3*L3-M*M)/(2*L2*L3));

q3=-(pi-beta); q33=(180/pi)*q3; X={x1 y1 Z1]; Q=[q11 q22 q33];

Q1-[q11]; Q2=[q22]; Q3=[q33]

en
ANEXO A4.

Ploteo de las curvas con los datos que se obtienen en la cinemática inversa para todos los puntos que pertenecen a una determinada trayectoria

∜ GTSVC.m	285.6825	314.7608	350.2783
	286.0279	315.3304	350.7674
Travectoria TIRI	286.3768	315.9022	351.2527
N=310.	286.7293	316.4760	351.7341
(1)1 = (270.4584)	287.0853	317.0518	352.2117
270.6485	287.4450	317.6294	352.6853
270 8405	287.8082	318.2087	353.1551
271 0344	288.1752	318.7896	353.6210
271 2302	288.5458	319.3720	354.0829
271 4278	288.9201	319.9557	354.5408
271.6274	289.2982	320.5408	354.9949
271.8290	289.6800	321.1269	355.4449
272.0326	290.0656	321.7141	355.8911
272,2381	290.4550	322.3022	356.3332
272.4457	290.8482	322.8911	356.7714
272.6554	291.2453	323.4807	357.2057
272,8671	291.6462	324.0707	357.6360
273.0809	292.0510	324.6612	358.0623
273.2969	292.4596	325.2520	358.4847
273.5150	292.8722	325.8429	358,9032
273.7354	293.2887	326.4338	359.3177
273.9579	293.7091	327.0247	359.7284
274.1826	294.1334	327.6153	350,1352
274.4097	239.3017	328.2036	360.5380
274.6390	294.9939	3/8./300	.360.9370
274.8706	293.4301	327.3847	301.3322
275.1046	200.0702	329+9/32 330 5600	301./230
275.3410	290.3143	330,3009	302.1111
275.5797	200.1024	331 7330	362.4340
275.8209	297 6703	112.1177	363 2511
276.0646	298.1302	332,9008	363,6236
276.3107	298,5941	333.4824	363,9924
276 9106	299.0618	334.0626	364.3575
277 0643	299.5335	334.6410	364.7190
277.3207	300.0091	335.2177	365.0769
277.5797	300.4686	335.7926	365.4312
277.8414	300.9719	336.3654	365.7819
278.1058	301.4590	336.9361	366.1291
278.3729	301.9500	337.5047	366.4728
278.6428	302.4447	338.0/10	365.8129
278.9155	302.2436	330.1963	367 4830
279.1909	303.9514	339.7551	367 8129
279.4693	304.4609	340.3113	368,1394
279.7505	304.9740	340.8647	368.4626
280.0346	305.4907	341.4153	368.7825
280.5217	306.0109	341.9630	369.0992
280.9048	306.5346	342.5077	369.4126
281,2008	307.0617	343.0494	369.7227
281.5000	307.5921	343.5880	370.0297
281.8023	308.1258	344.1233	370.3336
282.1076	308.6627	344.6554	370.6343
282.4162	309.2028	345.1842	370.9320
282.7279	307./460	343.1096	3/1.2266
283.0429	310 GA13	340-2310 346 7501	371.5181
283.3612	311 3033	340.1301 287 3661	372.0007
283.6827	311 0421	341+2031	272.0324 272 275A
284.0075	312,5056	348,2842	372.85/8
284.3357	313.0657	348.7883	372,9318
284.6673	313.6283	349.2887	373.2059
283.UUZZ	314.1934	349.7054	373.4772
203.3401			

373 7457	AR. 3747	70 9628	66 5034
374 0114	48 7989	71 0976	66 3691
374.2745	49.2178	71.2203	66,1397
374.5349	49.6318	71.3427	65.9083
374.7926	50.0408	. 71.4610	65.6740
375.0477	50.4451	71.5751	65.4368
375.3002	50.8447	71.6849	65.1968
375.5502	51.2397	71.7904	64.9539
375.7976	51.6304	71.8916	64.7083
376.0425	52.0167	71.9884	64.4600
376.2850	52.3988	72.0807	64.2089
376.5250	52.7768	72.1687	63.9553
376 0077	53.1507	72.2021	63.6990
377 2306	53.5205	72.3310	63.4402
377 4611	53.0000	70 4753	63.1786
377.6893	54 6072	77.5405	62.9149
377,9152	54.9619	72.6011	62 3798
378.1388	55.3129	72.6570	62.1086
378.3603	55,6604	72.7083	61 8351
378,5795	56.0043	72.7548	61 5592
378.7966	56.3447	72.7966	61.2810
379.0115	56.6816	72,8337	61.0005
379.2243	57.0151	72.8660	60.7177
379.4350	57.3453	72.8935	60.4327
379.6437	57.6721	72.9161	60.1455
379.8503	57.9956	72.9340	59.8561
380.0548	58.3158	72.9470	59.5645
380.2574	58.6327	72.9552	59.2707
380.4580	58.9465	72.9585	58,9748
380.6567	59.2570	72.9569	58.6768
380.8534	59.5643	72.9504	58.3767
381.0483	59.8685	72.9391	58.0744
381.2412	60.1695	72.9229	57.7701
381.4323	60.4674	72.9018	57.4637
381.6216	60.7621	72.8758	57.1552
381.8090	61.0537	72.8449	56.8447
381.9947	61.3423	72.8091	56.5321
382.1786	61.6277	72.7685	56.2175
382.3808	61.9100	72.7231	55.9008
382.3412	62.1893	72.6727	55.5821
382 8970	62.4034 62 7395	12.01/0	55.2613
383 0724	63 0085	72.0070	54.9365
383.2461	63.2753	12.4720 72 8233	54.0137
383.4182	63.5391	72.3490	53 9578
383,5887	63.7998	72.2700	53.6268
383.7577	64.0574	72.1862	53.2937
383.9250	64.3118	72.0978	52,9586
384.0908	64.5631	72.0047	52.6214
384.2551	64.8113	71.9070	52.2820
384.4179	65.0563	71.8047	51.9406
384.5792	65.2981	71.6979	51.5970
384.7390	65.5368	71.5865	51.2513
384.8974	65.7722	71.4707	50.9034
385.0543	65.0044 66.00234	/1.3504	50.5533
385-3639	66.4591	71.0967	10.2011 JU.2011
385.5166	66.6816	70,9633	49.4898
385.6680	66.9007	70.8257	49,1308
365.8179	67.1165	70.6839	48.7694
385.9666	67.3290	70.5378	48.4057
386.1139	67.5381	70.3877	48.0397
}	67.7437	70.2334	47.6712
	67.9460	70.0752	47.3003
Q22=[40.1618	68.1447	69.9129	46.9269
40.7112	68.3400	69.7467	46.5509
41.2502	68.5318 26. 5546	69.5766	46.1724
41.7793	60.1200 60.0016	69.4UZ6	45.7913
42.2992	68.9046 60.0056	69.2249 CD 0435	45.4075
42.0102	69.2629	UF.V4JJ KR 8583	43.0210
43.3140	69.4366	1995 - 1997-5 68 6696	44.0310
44.2941	69.6065	68 4772	44.2333
44.7735	69.7727	68.2813	43.0440
45.2458	69.9351	68.0820	43.0455
45.7114	70.0937	67,8792	42,6413
46.1703	70.2484	67.6731	42.2340
46.6230	70.3993	67.4636	41.8235
47.0696	70.5461	67.2508	41.4096
47.5103	70.6891	67.0349	40.9923
47.9453	70.8280	66.8157	40.5714

40.1469 -81.2927 -116.6635 39.7187 -81.9615 -116.8550 39.2867 -82.6232 -117.0401 38.8507 -83.2779 -117.2188 38.4107 -83.2779 -117.2188 38.4107 -83.29256 -117.3910 37.9664 -84.56666 -117.5568 37.5179 -85.2009 -117.8668 36.6071 -86.4498 -118.0149 36.1446 -87.0646 -118.1545 35.6771 -87.6731 -118.2875 35.2044 -88.2753 -118.4138 34.7264 -88.8713 -118.5334 34.2427 -90.6231 -118.9450 32.2579 -90.6231 -118.9450 32.2477 -91.7612 -119.0311 31.733 -92.3760 -119.103 31.2099 -92.8760 -119.103 31.2099 -92.8760 -119.3073 29.5954 -94.5055 -119.3073 29.5954 -94.5055 -119.3073 29.5954 -96.5996 -119.4428 27.9011 -96.0844 -119.4743 27.3161 -96.5996 -119.4999 26.7200 -97.1034 -119.5274 26.4725 -98.6059 -119.5285 26.4912 -99.0938 -119.5187	-110.2825 -109.9421 -109.5960 -109.2444 -108.8672 -108.5244 -108.1561 -107.7823 -107.4030 -107.0183 -106.6280 -106.2324 -105.8313 -105.4248 -105.0129 -104.5956 -104.1729 -103.3114 -102.8726 -101.5241 -101.0639 -100.5983 -100.5983 -100.1274 -99.6510 -99.1693
40.1409 -81.927 -116.685 39.2867 -81.9615 -116.8550 39.2867 -82.6232 -117.0401 38.8507 -83.2779 -117.2188 38.4107 -83.9256 -117.3910 37.9664 -84.5666 -117.5568 37.5179 -85.2009 -117.7161 37.0648 -95.8286 -117.6688 36.6071 -96.4498 -118.0149 36.1446 -87.0646 -118.1545 35.6771 -87.6731 -118.2875 35.2044 -88.2753 -118.4138 34.2264 -88.6713 -118.6334 34.2267 -89.4613 -118.6522 33.7533 -90.0452 -118.7527 33.2579 -90.6231 -118.9450 32.2477 -91.7612 -119.0311 31.2099 -92.8760 -119.1033 31.2099 -92.8760 -119.3073 29.5954 -94.5055 -119.3073 29.5954 -94.5055 -119.4045 27.9011 -96.0844 -119.4743 27.3161 -96.5996 -119.5214 27.9011 -96.0944 -119.5274 27.9112 -98.1125 -119.5314 24.8569 -98.6059 -119.5314 24.8569 -99.0938 -119.53147	-110.2825 -109.9421 -109.5960 -109.2444 -108.8672 -108.5244 -108.1561 -107.7823 -107.4030 -107.0183 -106.62800 -106.2324 -105.8313 -105.4248 -105.0129 -104.5956 -104.1729 -103.7448 -103.3114 -102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
39.7187 -81.9615 -116.8550 39.2867 -82.6232 -117.0401 38.8507 -83.2779 -117.2188 38.4107 -83.9256 -117.3910 37.9664 -84.5666 -117.5568 37.5179 -85.2009 -117.7161 37.6640 -95.8286 -118.0149 36.6071 -86.4498 -118.0149 36.5771 -87.6731 -118.2875 35.2044 -88.2753 -118.4138 34.7264 -88.8713 -118.5334 34.2227 -89.4613 -118.6464 33.7533 -90.0452 -118.7527 32.2579 -90.6231 -118.9450 32.2477 -91.1951 -119.0311 31.2099 -92.3215 -119.103 31.2099 -92.8760 -119.3073 29.5954 -94.5055 -119.3393 29.0401 -95.5637 -119.4428 27.9011 -96.0844 -119.4743 27.3161 -95.5637 -119.4428 27.9011 -96.0844 -119.5274 28.4755 -95.5637 -119.4285 27.9011 -96.0844 -119.5274 28.4755 -95.5637 -119.5274 24.8569 -98.6059 -119.5285 24.2078 -99.0938 -119.5285	-109.9421 -109.5960 -109.2444 -108.8672 -108.5244 -108.1561 -107.7823 -107.0183 -106.6280 -106.2324 -105.8313 -105.4248 -105.0129 -104.5956 -104.1729 -103.7448 -103.3114 -102.8726 -101.5241 -101.0639 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-109.5960 -109.2444 -108.8672 -108.5244 -108.1561 -107.7823 -107.4030 -107.0183 -106.6280 -106.2324 -105.8313 -105.4248 -105.0129 -104.5956 -104.1729 -103.7448 -103.3114 -102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
39.2007 -92.0232 -117.0401 38.6507 -83.2779 -117.2188 38.4107 -83.9256 -117.3910 37.9664 -84.5666 -117.5568 37.5179 -85.2009 -117.7161 37.0648 -95.62266 -118.0149 36.1446 -87.0646 -118.0149 36.1446 -87.0646 -118.1545 35.6771 -87.6731 -118.2875 35.2044 -88.2753 -118.4138 34.7264 -88.4613 -118.6464 33.7533 -90.0452 -118.7527 32.27561 -91.1951 -118.9450 32.2477 -91.7612 -119.0311 31.2099 -92.8760 -119.103 31.2099 -93.4249 -119.2485 30.4116 -93.9680 -119.3073 29.5954 -94.5055 -119.4045 28.4755 -95.5637 -119.4045 28.4755 -95.5637 -119.428 27.9011 -96.0844 -119.4743 27.3161 -96.5996 -119.5146 26.7200 -97.6137 -119.5314 24.8569 -98.6059 -119.5187	$\begin{array}{r} -109.5960\\ -109.2944\\ -108.8872\\ -108.5244\\ -108.1561\\ -107.7823\\ -107.0183\\ -107.0183\\ -106.6280\\ -106.2324\\ -105.8313\\ -105.4248\\ -105.0129\\ -104.5956\\ -104.1729\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-109.2444 -108.8872 -108.5244 -108.1561 -107.7823 -107.4030 -107.4030 -107.0183 -106.6280 -106.2324 -105.8313 -105.4248 -105.0129 -104.5956 -104.1729 -103.7448 -103.3114 -102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
38,4107 $-83,9256$ $-117,3910$ $37,9664$ $-84,5666$ $-117,5568$ $37,5179$ $-85,2009$ $-117,7161$ $37,0648$ $-95,8286$ $-117,8688$ $36,6071$ $-86,4498$ $-118,0149$ $36,1446$ $-87,0646$ $-118,1545$ $35,6771$ $-87,6731$ $-118,2875$ $35,2044$ $-88,2753$ $-118,6464$ $34,7264$ $-89,4613$ $-118,6464$ $33,7533$ $-90,0452$ $-118,8522$ $32,27561$ $-91,1951$ $-118,9450$ $32,2477$ $-91,7612$ $-119,0311$ $31,2099$ $-92,8760$ $-119,2485$ $30,6799$ $-93,4249$ $-119,2485$ $30,1418$ $-93,9680$ $-119,3073$ $29,5954$ $-94,5055$ $-119,4045$ $28,4755$ $-95,5637$ $-119,4428$ $27,9011$ $-96,0844$ $-119,4743$ $27,3161$ $-96,5996$ $-119,5146$ $26,7200$ $-97,1094$ $-119,5146$ $26,7200$ $-97,6137$ $-119,5147$ $24,8569$ $-98,6059$ $-119,5187$	-108.244 -108.8872 -108.5244 -108.1561 -107.7823 -107.0183 -106.62800 -106.2324 -105.8313 -105.4248 -105.0129 -104.59566 -104.1729 -103.7448 -103.3114 -102.8726 -101.5241 -101.0639 -100.5983 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} -108.8872\\ -108.5244\\ -108.1561\\ -107.7823\\ -107.4030\\ -107.0183\\ -106.6280\\ -106.2324\\ -105.8313\\ -105.4248\\ -105.0129\\ -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} -108.5244\\ -108.1561\\ -107.7823\\ -107.4030\\ -107.0183\\ -106.62800\\ -106.2324\\ -105.8313\\ -105.4248\\ -105.0129\\ -104.5956\\ -104.1729\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
37.5179 -85.2009 -117.7161 37.0648 -95.8286 -117.8688 36.6071 -96.4498 -118.0149 36.1446 -87.0646 -118.1545 35.6771 -87.6731 -118.2875 35.2044 -88.2753 -118.4138 34.7264 -88.8713 -118.5334 34.2427 -89.4613 -118.64644 33.7533 -90.0452 -118.7527 33.2579 -90.6231 -118.9450 32.2477 -91.7612 -119.0311 31.2099 -92.8760 -119.103 31.2099 -92.8760 -119.3073 30.6799 -93.4249 -119.2485 30.1416 -93.9680 -119.3073 29.5954 -94.5055 -119.4025 27.3161 -96.5996 -119.4286 27.3161 -96.5996 -119.4928 27.9011 -96.0844 -119.4743 27.3161 -96.5996 -119.4928 26.7200 -97.1094 -119.5274 25.4912 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	-108.524 -108.1561 -107.7823 -107.70183 -106.6280 -106.2324 -105.8313 -105.4248 -105.0129 -104.5956 -104.1729 -103.7448 -103.3114 -102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-108.1561 -107.7823 -107.4030 -107.0183 -106.6280 -106.2324 -105.8313 -105.4248 -105.0129 -104.5956 -104.1729 -103.3114 -102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -107.7823\\ -107.4030\\ -107.0183\\ -106.6280\\ -106.2324\\ -105.8313\\ -105.4248\\ -105.0129\\ -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
36.6071 -36.4498 -118.0149 36.1446 -87.0646 -118.1545 35.6771 -87.6731 -118.2875 35.2044 -88.2753 -118.4138 34.7264 -88.8713 -118.5334 34.2427 -89.4613 -118.6464 33.7533 -90.0452 -118.8522 32.2579 -90.6231 -118.8522 32.7561 -91.1951 -119.0311 31.7324 -92.3215 -119.1031 31.2099 -92.8760 -119.1285 30.6799 -93.4249 -119.2485 30.1416 -93.9680 -119.3573 29.5954 -94.5055 -119.3593 29.0401 -95.0374 -119.4045 28.4755 -95.5637 -119.4989 27.9011 -96.0844 -119.4743 27.3161 -96.5996 -119.5274 25.4912 -98.1125 -119.5274 24.8569 -98.6059 -119.5187	-107.7623 -107.4030 -107.0183 -106.62800 -106.2324 -105.8313 -105.4248 -105.0129 -104.5956 -104.1729 -103.7448 -103.3114 -102.8726 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
36.6071 -86.4498 -118.0149 36.1446 -87.0646 -118.1545 35.6771 -87.6731 -118.2875 35.2044 -88.2753 -118.4138 34.7264 -88.8713 -118.5334 34.2427 -89.4613 -118.64644 33.7533 -90.0452 -118.7527 3.2579 -90.6231 -118.9450 32.2477 -91.1951 -119.0311 31.7324 -92.3215 -119.103 31.2099 -92.8760 -119.1828 30.6799 -93.4249 -119.2485 30.1416 -93.9680 -119.3073 29.5954 -94.5055 -119.3073 29.0401 -95.0374 -119.4428 27.9011 -96.0844 -119.4989 26.7200 -97.1094 -119.5274 27.3161 -96.5996 -119.5314 24.8569 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	$\begin{array}{r} -107.4030\\ -107.0183\\ -106.6280\\ -106.2324\\ -105.8313\\ -105.4248\\ -105.0129\\ -104.5956\\ -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} -107.0183\\ -106.6280\\ -106.2324\\ -105.8313\\ -105.4248\\ -105.0129\\ -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
30.1430 -07.0340 -118.1343 35.6771 -87.6731 -118.2875 35.2044 -88.2753 -118.4138 34.7264 -88.8713 -118.5334 34.2427 -89.4613 -118.6464 33.7533 -90.0452 -118.7527 3.2579 -90.6231 -118.9450 32.2477 -91.1951 -119.0311 31.7324 -92.3215 -119.1103 31.2099 -92.8760 -119.1828 30.6799 -93.4249 -119.2485 30.1416 -93.9680 -119.3073 29.5954 -94.5055 -119.4045 28.4755 -95.6377 -119.4028 27.9011 -96.0844 -119.4428 27.3161 -96.5996 -119.4989 26.7200 -97.1094 -119.5274 25.4912 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	$\begin{array}{c} -107.0183\\ -106.6280\\ -106.2324\\ -105.8313\\ -105.4248\\ -105.0129\\ -104.5956\\ -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
35.6771 -87.6731 -118.2875 35.2044 -88.2753 -118.4138 34.7264 -88.8713 -118.5334 34.2427 -89.4613 -118.6464 33.7533 -90.0452 -118.7527 32.2579 -90.6231 -118.8522 32.7561 -91.1951 -118.9450 32.2477 -91.7612 -119.0311 31.7324 -92.3215 -119.103 31.2099 -92.8760 -119.1285 30.6799 -93.4249 -119.2485 30.1416 -93.9680 -119.3073 29.5954 -94.5055 -119.3593 29.0401 -95.0374 -119.4045 28.4755 -95.5637 -119.4428 27.9011 -96.0844 -119.4743 27.3161 -96.5996 -119.5274 26.7200 -97.1094 -119.5314 26.7200 -97.6137 -119.5314 24.8569 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	$\begin{array}{r} -106.6280\\ -106.2324\\ -105.8313\\ -105.4248\\ -105.0129\\ -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-106.2324 -105.8313 -105.4248 -105.0129 -104.5956 -104.1729 -103.7448 -103.3114 -102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
33.2044-68.2733-118.4138 34.7264 -88.8713-118.5334 34.2427 -89.4613-118.6464 33.7533 -90.0452-118.7527 32.2579 -90.6231-118.8522 32.7561 -91.1951-118.9450 32.2477 -91.7612-119.0311 31.7324 -92.3215-119.103 31.2099 -92.8760-119.2485 30.6799 -93.4249-119.2485 30.1416 -93.9680-119.3073 29.5954 -94.5055-119.3593 29.0401 -95.0374-119.4045 28.4755 -95.5637-119.4428 27.9011 -96.0844-119.4743 27.3161 -96.5996-119.5166 26.7200 -97.1094-119.5166 26.1120 -97.6137-119.5274 24.8569 -98.6059-119.5187	$\begin{array}{c} -106.2324\\ -105.8313\\ -105.4248\\ -105.0129\\ -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} -105.8313\\ -105.4248\\ -105.0129\\ -104.5956\\ -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -105.4248\\ -105.0129\\ -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
34.2427 -69.4613 -118.6464 33.7533 -90.0452 -118.7527 32.2579 -90.6231 -118.8522 32.7561 -91.1951 -119.9450 32.2477 -91.7612 -119.0311 31.7324 -92.3215 -119.1103 31.2099 -92.8760 -119.2485 30.6799 -93.4249 -119.2485 30.1418 -93.9680 -119.3073 29.5954 -94.5055 -119.3593 29.0401 -95.0374 -119.4045 28.4755 -95.5637 -119.4428 27.9011 -96.5996 -119.4989 26.7200 -97.1094 -119.5166 26.1120 -97.6137 -119.5314 24.8569 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	$\begin{array}{r} -105.4248\\ -105.0129\\ -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} -105.0129\\ -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
33.2579 -90.6231 -118.8522 32.7561 -91.1951 -118.950 32.2477 -91.7612 -119.0311 31.7324 -92.3215 -119.103 31.2099 -92.8760 -119.1288 30.6799 -93.4249 -119.2485 30.1418 -93.9680 -119.3073 29.5954 -94.5055 -119.4045 28.4755 -95.5637 -119.4428 27.9011 -96.5996 -119.4989 26.7200 -97.1094 -119.5166 26.1120 -97.6137 -119.5274 25.4912 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	-104.5956 -104.1729 -103.7448 -102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
33.2579 -90.6231 -118.8522 32.7561 -91.1951 -119.9450 32.2477 -91.7612 -119.0311 31.7324 -92.3215 -119.103 31.2099 -92.8760 -119.1828 30.6799 -93.4249 -119.2485 30.1418 -93.9680 -119.3073 29.5954 -94.5055 -119.3593 29.0401 -95.0374 -119.4045 28.4755 -95.5637 -119.4428 27.9011 -96.0844 -119.4743 27.3161 -96.5996 -119.5166 26.7200 -97.1094 -119.5166 26.1120 -97.6137 -119.5274 24.8569 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	$\begin{array}{r} -104.5956\\ -104.1729\\ -103.7448\\ -103.3114\\ -102.8726\\ -102.4285\\ -101.9790\\ -101.5241\\ -101.0639\\ -100.5983\\ -100.5983\\ -100.1274\\ -99.6510\\ -99.1693\end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-104.1729 -103.7448 -103.3114 -102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
32.2477 -91.7612 -119.0311 31.7324 -92.3215 -119.103 31.2099 -92.8760 -119.1628 30.6799 -93.4249 -119.2485 30.1416 -93.9680 -119.3073 29.5954 -94.5055 -119.3593 29.0401 -95.0374 -119.4045 28.4755 -95.5637 -119.4428 27.9011 -96.0844 -119.4743 27.3161 -96.5966 -119.5166 26.7200 -97.1094 -119.5274 25.4912 -98.1125 -119.5314 24.8569 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	-103.7448 -103.3114 -102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-103.7448 -103.3114 -102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-103.3114 -102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-102.8726 -102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-102.87265 -102.42855 -101.97900 -101.5241 -101.0639 -100.5983 -100.1274 -99.65100 -99.1693
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-102.4285 -101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-101.9790 -101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-101.5241 -101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-101.0639 -100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-100.5983 -100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-100.1274 -99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-99.6510 -99.1693
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-99.6510 -99.1693
26.7200 -97.1094 -119.5166 26.1120 -97.6137 -119.5274 25.4912 -98.1125 -119.5314 24.8569 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	-99.1693
26.1120 -97.6137 -119.5274 25.4912 -98.1125 -119.5314 24.8569 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	-22.1023
26.1120 -97.6137 -119.5274 25.4912 -98.1125 -119.5314 24.8569 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	
25.4912 -98.1125 -119.5314 24.8569 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	-98.6821
24.2078 -99.0938 -119.5187	-00 1006
24.8569 -98.6059 -119.5285 24.2078 -99.0938 -119.5187	-30.1030
24.2078 -99.0938 -119.5187	-97.6916
24,2070 -33,0330 -115,3107	07 1000
	-97.1002
23.5429 -99.5764 -119.5021	-96.6793
00 0409 100 055c 110 470c	00 1000
22.8608 -100.0336 -119.4786	-90.1649
22,1600 -100,5254 -119,4482	-95.6450
	00 1100
21.4386 -100.9918 -119.4109	-95.1196
20.6946 -101.4529 -119.3668	-94 5886
	2410000
19.9255 -101.9086 -119.3159	-94.0520
19,1284 -102,3589 -119,2591	-03 5007
	23.0037
18.2998 -102.8039 -119.1935	-92.9618
17 4352103 2435110 1221	-02 1085
11.4352 -103.2435 -119.1221	-92.4002
16.5291 -103.6778 -119.0438	-91.8488
15 5746104 1067110 050n	01 0000
15.5746 -104.1067 -116.9389	-91.2035
14.5623 -104.5302 -118.8671	-90.7125
	00 4055
13.4796 -104.9483 -118.7686	-90.1355
12,3084 -105,3610 -118,6634	-89.5525
	0010020
11.0213 -105.7684 -118.5515	-88.9635
9,57301 -106,1703 -118,4328	-88 3684
	00.0004
100 5669 110 2020	-87.7672
-100.3000 -118.3076	
-100.0000 -110.000 -110.000	-97 1597
Q33={-53.7668 -106.9579 -118.1756	-87.1597
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459
-106.5566 -118.3076 Q33={-53.7668 -106.9579 -118.1756 -54.8248 -107.3435 -118.0371 -55.8620 -107.7237 -117.8920	-87.1597 -86.5459 -85.9257
-106.5566 -118.3076 Q33=[-53.7668 -106.9579 -118.1756 -54.8248 -107.3435 -118.0371 -55.8620 -107.7237 -117.6920 -56.8795 -108.0983 -117.7403	-87.1597 -86.5459 -85.9257 -85.2990
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990
-106.5566 -118.3076 Q33=[-53.7668 -106.9579 -118.1756 -54.8248 -107.3435 -118.0371 -55.8620 -107.7237 -117.8920 -56.8795 -108.0983 -117.7403 -57.8782 -108.4675 -117.5820	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0256 -83.3791 -82.7255
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.2990 -84.657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.7400
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.7223 -80.0400 -79.3502
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0256 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9341
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0256 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -76.5126 -75.7827 -75.0443
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -76.5126 -75.7827 -75.0443 -74.2972
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.7223 -80.7223 -80.7223 -80.7223 -73.5502 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756 -72.007
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7050 -72.7007 -71.2161
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827 -73.5410 -72.7756 -72.0007 -71.2161 -70.4215
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756 -72.0007 -71.2161 -70.4215
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756 -72.0007 -71.2161 -70.4215 -69.6166
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756 -72.0007 -71.2161 -70.4215 -69.6166
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6572 -77.65474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756 -72.0007 -71.2161 -70.4215 -69.6166 -68.8010
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -79.3502 -78.6527 -77.9474 -77.2341 -76.51266 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756 -72.0007 -71.2161 -70.4215 -69.6166 -68.8010 -67.9744
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6572 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756 -72.0007 -71.2161 -70.4215 -69.6166 -68.8010 -67.974 -67.1365
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.706 -72.7007 -71.2161 -70.4215 -69.6166 -68.8010 -67.9744 -67.1365
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756 -72.0007 -71.2161 -70.4215 -69.6166 -68.8010 -67.9744 -67.1365 -66.2869
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756 -72.0007 -71.2161 -70.4215 -69.6166 -68.8010 -67.9744 -67.1365 -66.2869 -65.2869
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756 -72.0007 -71.2161 -70.4215 -69.6166 -68.8010 -67.9744 -67.1365 -66.2869 -65.4251
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-87.1597 -86.5459 -85.9257 -85.2990 -84.6657 -84.0258 -83.3791 -82.7255 -82.0650 -81.3973 -80.7223 -80.0400 -79.3502 -78.6527 -77.9474 -77.2341 -76.5126 -75.7827 -75.0443 -74.2972 -73.5410 -72.7756 -72.7007 -71.2161 -70.4215 -69.6166 -68.8010 -67.9744 -67.1365 -68.2869 -65.4251 -64.2507

```
-54.9875
                                                      -45.8525
                                                                                -34.3156
  ~62,7621
                            -53.9328
                                                      -44.5758
                                                                                -32.5849
  -61.8469
                            -52.8563
                                                      -43.2609
                                                                                -30.7565
  -60.9170
  -59.9716
                            -51.7566
                                                      -41.9041
                                                                                -28.8118
  -59.0102
                            -50.6322
                                                      -40.5013
                                                                                -26.7256
  -58.0320
                            -49.4816
                                                      -39.0476
                                                                                -24.4618
  -57.0361
                            -48.3028
                                                      -37.5371
                                                                                -21.9655
                                                      -35.9626
  -56.0216
                            -47.0939
                                                                                -19.1461
figure(1)
t2=0:(70/N):70;
plot(t2,Q11,'.')
xlabel('t(s)')
```

```
figure(2)
t2=0:(70/N):70;
plot(t2,Q22,'.')
xlabel('t(s)')
ylabel('q(°)')
title(['Posiciones angulares obtenidas q2'])
figure(3)
t2=0:(70/N):70;
plot(t2,Q33,'.')
xlabel('t(s)')
```

title(['Posiciones angulares obtenidas q1'])

ylabel('q(°)')

```
ylabel('q(°)')
title(['Posiciones angulares obtenidas q3'])
```

```
51.5214
Trayectoria TLR2
                                                      46.7726
                                                      41.6197
                                                      35.8803
N≈10;
                                                      29.2006
Q11=[ 360
                                                      20.6763
  360
                                                       3.37671
  360
   360
   360
                                                   Q33=[ -136.3803
   360
                                                    -128.5310
  360
                                                    -120.4131
   360
                                                    -111.9508
  360
                                                    -103.0428
   360
                                                     -93.5452
   360
                                                     -83.2395
1
                                                     -71.7606
                                                     -58.4013
Q22=[ 68.1901
                                                     -41.3526
   64.2655
                                                      -6.7533]
   60.2065
  55.9754
 figure(1)
t2=0:(70/N):70;
plot(t2,Q11,'.')
xlabel('t(s)')
ylabel('q(°)')
title(['Posiciones angulares obtenidas q1'])
figure(2)
t2=0:(70/N):70;
plot(t2,Q22,'.')
xlabel('t(s)')
ylabel('q(°)')
title(['Posiciones angulares obtenidas q2'])
figure(3)
t2=0:(70/N):70;
plot(t2,Q33,'.')
xlabel('t(s)')
ylabel('q(°)')
```

title(['Posiciones angulares obtenidas q3'])

Marcan - A i -	260 4255	303 7425	377 1301
Trayectoria	200.4233	204 7770	277 6620
TLR3	200,0300	202 0260	777 0070
	200.0131	303.0203	377.3070
	261.1124	306.8892	378.4019
N=310:	261.3489	307.9642	378.8088
011 = 12499285	261.5894	309.0514	379.2079
250 0112	261.8339	310-1502	379.5992
250.0112	262.0826	311.2599	379.9831
250.0947	262.3354	312.3800	380.3597
200.1772 950 9645	262.5926	313.5096	380.7291
250.2040	262.0542	314.6401	301.0916
250.5506	263.1203	315.7945	381.4473
250.4380	263.3911	316.9481	381.7963
250.5261	263.6666	318.1080	382.1389
250.6152	263.9469	319.2732	382.4752
250.7053	264.2322	320.4429	382.8052
250.7964	264.5226	321.6160	383.1293
250.8885	264.8182	322.7917	383.4475
250.9816	265,1192	323,9689	383.7599
251.0757	265.4256	325,1467	384.0668
251.1710	265.7376	326.3239	384.3681
251.2672	266.0553	327-4998	384 6642
251.3646	266. 3789	328, 6732	38/ 9550
251.4631	266 7084	329.8432	385 2407
251.5627	260.1004	331 0088	202.2407
251.6635	201.0442	222 1601	305.3214
251.7654	207.3003	332.1031	365.7575
251.8686	201.1340	333.3233	386.0684
251.9729	200.0099	334.4703	386.3349
252.0784	200.4010	333.6094	366.5969
252.1853	268.8207	336.7398	386.8544
252,2933	209.1907	337.8606	387.1076
252,4027	269.5800	338.9713	387.3566
252.5134	269.9708	340.0710	387.6015
252,6255	270.3692	341.1591	387.8423
252.7389	270.7754	342.2351	388.0791
252 8536	271.1897	343.2985	388.3121
252 0500	271.6123	344.3486	388.5414
252.7070	272.0432	345.3851	388.7669
200,0070	272.4828	346.4075	388.9888
2203.2000	272.9313	347.4156	389.2072
203.3272	273.3888	348.4090	389.4222
203.4493	273.8555	349.3874	389.6337
203.0729	274.3318	350.3506	389.8420
203.6981	274.8178	351.2985	390.0471
253.8250	275.3138	352.2308	390.2489
203,9534	275.8199	353.1475	390.4477
254.0835	276.3365	354.0486	390,6435
254.2153	276.8637	354.9339	390,8363
254.3489	277.4018	355.8035	391.0262
254.4842	277.9511	356.6574	391,2132
254.6212	278.5117	357,4957	391, 3975
254.7602	279.0840	358.3184	391,5790
254.9009	279,6681	359.1256	391,7579
255.0436	280.2644	359.9175	391,9342
255.1882	280.8731	360.6942	392,1079
255.3347	281.4944	361.4558	392,2791
255.4833	282.1286	362.2026	392.4478
255.6339	282.7759	362,9347	392.6141
255.7866	283.4366	363,6522	392.7781
255.9415	284.1108	364.3555	392,9398
256.0985	284.7989	365.0447	393.0992
256.2577	285.5010	365.7201	393.2564
256.4192	286.2174	366.3818	393.4114
256.5830	286.9483	367,0302	393.5643
256.7491	287.6939	367.6654	393,7151
256,9177	288.4543	368.2877	393.8638
257.0887	289.2298	368.8974	394.0105
257.2622	290.0204	369.4947	394,1553
257.4382	290.8264	370.0798	394.2981
257.6169	291.6479	370.6530	394.4390
257,7982	292.4849	371.2146	1
257.9823	293.3375	371.7648	·
258.1691	294.2059	372.3038	022=1 17 0247
258.3587	295,0899	372,8319	. 18 1646
258.5513	295,9897	373.3493	19.2497
258.7468	296,9052	373.4562	20 2884
258.9453	297,8363	374, 3530	21 2874
259.1470	298,7829	374, 8398	21.20/4
259.3518	299.7449	375, 3169	22.2311
259.5598	300.7991	371, 7248	20+1001
259.7711	301 7142	376.9496	24.0727
259.9857	302 7211	376 6010 376 6010	24.7/3/ 95 0320
260.2039		⇒ x to x to > ± (b)	2.3.0303

•

26 6705	70 6675	110 0254	07 (543
20.0/05	78.6625	119.0354	91.6543
27.5023	19.2167	119.1103	91.1167
28.3098	79.8918	119.1689	90.5759
29.1024	80.5079	119.2111	90.0318
29.8812	81.1249	119.2370	89.4844
30.6473	81.7428	119.2468	88,9334
31.4017	82.3615	119 2407	88 3789
30 1450	02 0011	110 0107	0040700
20.0705	02.5011	119.2107	87.8206
32.0103	0.3.0014	119.1010	87.2585
33.6024	84.2224	119.1280	86.6926
34.3175	84.8441	119.0596	86.1225
35.0243	85.4665	118.9763	85.5483
35.7234	86.0893	118.8782	84.9697
36.4153	86.7127	118.7657	84.3866
37.1004	87. 3364	118 6389	83 7988
37 7702	97 0604	110.0303	03.7900
20 4520	07.3094 DD CD47	110.470.3	8.3.2061
38.4320	88.5847	118.3441	82.6084
39.1191	89.2091	118.1765	82.0053
39.7810	89.8334	117.9961	81.3967
40.4379	90.4577	117.8029	80.7824
41.0901	91.0817	117,5975	80.1619
41.7378	91.7054	117 3901	70 5251
42 3815	92 3295	117 1511	72.00017
42.0010	00 0512		78.9017
43.0212	92.9311	116.9108	78.2612
43.6572	93.5728	116.6596	77.6134
44.2897	94.1935	116.3977	76.9578
44.9190	94.8132	116.1256	76.2940
45.5452	95.4315	115.8436	75,6215
46.1686	96,0483	115,5519	74 9398
46 7892	96 6634	116 2610	74.9390
47 4072	20.0034 D7 0766	113.4314	14.2483
47.4073	97.2700	114.9411	13.5463
48.0230	97.8877	114.6225	72.8333
48.6366	98.4964	114.2956	72.1083
49.2480	99.1025	113.9607	71.3706
49.8575	99.7058	113.6180	70,6192
50.4652	100.3060	113.2679	69.8530
51.0712	100,9028	112,9106	69 0707
51 6757	101 4961	110 5463	60 2710
52 2700	102.0054	110 1301	68.2710
52.2700	102.0034	112.1754	67.4522
52.8805	102.6705	111.7981	66.6126
53.4811	103.2512	111.4146	65.7498
54.0806	103.8270	111.0252	64.8615
54.6791	104.3978	110.6300	63.9444
55.2767	104.9631	110.2294	62,9950
55.8736	105.5226	109.8234	62 0088
56 4697	106 0761	100 4123	60 0000
57 0053	100.0701	103-4123	60.9800
57.0032	100.0231	108.9963	59.9016
57.6603	107.1632	108.5755	58.7642
58.2549	107.6963	108.1502	57.5548
58.8491	108.2218	107.7204	56.2556
59.4431	108.7394	107.2864	54.8394
60.0369	109.2488	106.8482	53.2622
60.6306	109.7496	106,4060	51 4431
61.2243	110.2414	105 9600	49 1972
61.8180	110 7237	105 5102	45.1572
62 1117	111 1064	105.5102	40.7044]
62.4117	111.1904	105.0566	
63 50007	111.0000	104.3770	-
61 1010	112-11U0	104.1394	Q33=[-31.9798
64.1943	112.5519	103.6756	-33.9951
64.7890	112.9817	103.2086	-35.8979
65.3842	113.3999	102.7383	-37.7053
65.9799	113.8061	102.2649	-39.4303
66.5760	114.1999	101.7885	-41.0832
67.1727	114.5810	101.3090	-42.6724
67.7700	114.9491	100.8266	-44 2047
68, 3679	115,3038	100 3419	_AR CORO
68 9666	115 6440	00 0600 TAA*AYS	0000.CPT
60 5650	LLU.0440	33.0323 AA 353A	-47.1205
09.0009 36 1774	110.7/18	77.3018	-48.5128
10.1000	116.2845	98.8679	-49.8664
/0.7670	116.5826	98.3711	-51.1841
71.3687	116.8658	97.8715	-52,4688
71.9713	117.1340	97.3691	-53.7226
72.5748	117.3868	96.8639	-54.9478
73.1793	117.6240	96.3559	-56.1461
73.7846	117.8456	95_8451	-57, 3191
74.3909	118 0512	95.3215	- 21.2121
74 9982	118 2/07	04 Q160	-00.4004
75 2024	110-24V/ 310 / 144	24.010V	-27.222
10.0004	110.4141	94.2956	-60.7010
10.215/	118.5/12	93.//34	-61.7866
/6.8259	118.7119	93.2481	-62.8531
//.4371	118.8362	92.7199	-63.9014
78.0493	118.9440	92.1886	-64.9323

figure(1)
t2=0:(70/N):70;
plot(t2,Q11,'.')
xlabel('t(s)')
ylabel('q(°)')
title(['Posiciones angulares obtenidas q1'])

-

-65 9467	-114 7145	-125 8424	-95 4395
-66.9453	-115,1463	-125.6794	-90.4395
-67.9286	-115.5715	-125.5078	-94.1154
-68.8973	-115.9901	-125.3276	-93.4433
-69.8520	-116.4022	-125.1389	-92.7644
-70.7932	-116.8075	-124.9418	-92.0787
-71.7214	-117.2061	-124.7363	-91.3859
-72.6370	-117.5980	-124.5225	-90.6860
-73.5405	-117.9830	-124.3005	-89.9790
-74.4322	-118.3611	-124.0702	-89.2647
-76 1919	-110.7.322	-123,0310 -192 5054	-88.54.50
-77.0405	-119 4535	-123.3304	-07.8139
-77.8888	-119,8035	-123.0685	-86 3324
-78.7269	-120.1463	-122.7982	-85.5799
-79.5552	-120.4819	-122.5201	-84.8193
-80.3739	-120.8101	-122.2343	-84.0505
-81.1833	-121.1310	-121.9408	-83.2732
-81.9836	-121.4444	-121.6396	-82.4874
-82.7750	-121.7503	-121.3310	-81.6928
-83.53/6	-122.0487	-121.0148	-80.8893
-04.3310	-122.3394	-120.6913	-80.0765
-85 8552	-122.0224	-120.3003	-79.2543
-86.6048	-123.1651	-119 6767	-77 5906
-87.3466	-123.4246	-119.3241	-76 7286
-88.0806	-123.6762	-118.9644	-75,8661
-88,8071	-123.9197	-118.5977	-74.9928
-89.5260	-124.1551	-118.2240	-74.1084
-90.2377	-124.3824	-117.8434	-73.2124
-90.9421	-124.6015	-117.4559	-72.3045
-91.6393	-124.8122	-117.0615	-71.3844
-92,3293	-125.0147	-116.6605	-70.4515
-93 6892	-125.2087	-116.2527	-69.5055
~94.3588	-125.5713	-115 /172	-67 5717
-95.0217	-125.7398	-114,9896	-66 5829
-95.6780	-125.8997	-114.5555	-65.5787
-96.3277	-126.0509	-114.1149	-64.5584
-96.9709	-126.1933	-113.6678	-63.5212
-97.6077	-126.3270	-113.2144	-62.4664
-98.2380	-126.4519	-112.7547	-61.3930
-98.8620	-126.5679	-112.2886	-60.3002
-100 0911	-126.0730	-111.0102	-59.1869
-100.6962	-126.8624	-110 8527	-38.0320
-101.2952	-126.9426	-110.3616	-55.7121
-101.8879	-127.0138	-109.8643	-54.5043
-102.4745	-127.0760	-109.3609	-53.2689
-103.0550	-127.1290	-108.8514	-52.0040
-103.6294	-127.1730	-108.3357	-50.7076
-104,1976	-127.2079	-107.8139	-49.3771
-105.3158	~127.2502	-106 7521	-48.0098
-105.8658	-127.2577	-106.2121	-45.1513
-106.4097	-127.2560	-105.6660	-43.6521
-106.9475	-127.2452	-105.1138	-42.0998
-107.4793	-127.2253	-104.5555	-40.4882
-108.0049	-127.1962	-103.9911	-30.0101
-108.5245	-127.1580	-103.4206	-37.0564
-109.0379	-127.0544	-102.8440	-35.2159
-110.0464	-126.9889	-101.6725	-33.2743
-110.5414	-126.9144	-101.0775	-29.0056
-111.0302	-126.8309	-100.4763	-26.6169
-111.5128	-126.7384	-99.8688	-23.9925
-111.9891	-126.6370	-99.2552	-21.0443
-112.4592	-126.5266	-98.6352	-17.6108
-112.9230	-126.40/4	-98.0089	-13.3218
-113,8316	-120.2/33 -126 1424	-96,7371	-0.09/3]
-114.2763	-125.9967	-96.0916	

figure(2)
t2=0:(70/N):70;
plot(t2,Q22,'.')
xlabel('t(s)')
ylabel('q(°)')
title(['Posiciones angulares obtenidas q2'])

÷

figure(3)
t2=0:(70/N):70;
plot(t2,Q33,'.')
xlabel('t(s)')
ylabel('q(°)')
title(['Posiciones angulares obtenidas q3'])

ANEXO A5.

Ajuste de curvas obtenidas mediante el programa CISVC.m para cada

trayectoria.

% CISVC.m % clear all % close all % clc % x0=500/1000; % y0=4/1000; % z0=59/1000; % x2=-250/1000; % y2=520/1000; % z2=-59/1000; % N=40; % clear all % close all % clc \$ 385.6768 0.6965 -1.1071 data7 - [] data8 = [] data9 = [] % N=61 x1=(ss-1)*(61/40)N=11 for ss=1:1:N+1 ą 88 x1=ss-1 ŝ x1=(ss-1)*(70/11) % t=0+(t1-1)*(ma/N); x1=x0+ t*a; 용 y1=y0+ t*b; 8 % Z1=z0+ t*c; % q1=(pi/180)*Q11(ss) % q2=(pi/180) *Q22(ss)
% q3=(pi/180) *Q33(ss)
q4=0*(pi/180) % % TLR1 (Trayectoria 0.6325 m) % %TRAYECTORIA Q1 % p1 = 4.5671e-012 % p2 = -1.5238e-009 $p_2 = -1.5238e-009$ $p_3 = 2.0145e-007$ $p_4 = -1.3214e-005$ $p_5 = 0.00043791$ $p_6 = -0.0070013$ $p_7 = 0.077985$ $p_8 = 0.62067$ B ÷ £ 웃 ÷ $p_{1}^{0} = 0.07790.$ $p_{2}^{0} = 0.63987$ $p_{2}^{0} = 270.61$ 8 8 £ % q1=(p1*x.^8 + p2*x.^7 + p3*x.^6 + p4*x.^5 +p5*x.^4 + p6*x.^3 +p7*x.^2 + p8*x +p9)*(pi/130) 욯 % %TRAYECTORIA Q2 % p1 = -5.8337e-012 % p2 = 1.5732e-009 % p3 = -1.833e-007 % -1.1072-005 p4 = 1.1887e-005p5 = -0.00045083÷ 8

```
8
          p6 = 0.0095773
          p7 = -0.1385
p8 = 2.6078
£
8
           p9 = 40.022
8
뜡
8
g^2 = (p_1 \times .^8 + p_2 \times .^7 + p_3 \times .^6 + p_4 \times .^5 + p_5 \times .^4 + p_6 \times .^3 + p_7 \times .^2 + p_8 \times .^p_9) \times (p_1/180)
 8
      %TRAYECTORIA Q3
ક
         p1 = 1.4425e-011
p2 = -3.7264e-009
 8
 9
            p3 = 4.0383e-007
 8
            p4 = -2.3885e-005
 욖
            p5 = 0.00083486
 융
            p6 = -0.017236
8
            p7 = 0.25564
8
            p8 = -4.944
÷
          p9 = -53.567
융
% q3= (p1*x.^8 + p2*x.^7 + p3*x.^6 + p4*x.^5 +p5*x.^4 + p6*x.^3 +p7*x.^2 + p8*x +p9)*(pi/180)
泉
윰
ፄ % TLR2 (Trayectoria 0.8325 m)
8 STRAYECTORIA Q1
          p1 = -4.9895e - 025
8
          p2 = 1.0692e-022
욖
            p3 = -7.7143e-021
8
           p4 = 1.4682e-019
 용
 8
            p5 = 6.7361e-018
            p6 = -3.2832e-016
8
            p7 = 3.8543e-015
શ્વ
용
            p8 = 0
9.
            p9 = 360
8
9
% q1=(p1*x.^8 + p2*x.^7 + p3*x.^6 + p4*x.^5 +p5*x.^4 + p6*x.^3 +p7*x.^2 + p8*x +p9)*(pi/180)
욯
% %TRAYECTORIA Q2
         p1 = -5.598e-012
           p2 = 1.3742e - 009
£
           p3 = -1.3805e-007
            p4 = 7.2784e-006
¥
8
            p5 = -0.00021524
            p_6 = 0.0034969
9;
          p7 = -0.029716
p8 = -0.46491
ક્ર
윢
            p9 = 68.19
옾
윰
g = (p_1 \times ... + p_2 \times ... + p_3 \times ... + p_4 \times ... + p_5 \times ... +
<del>9</del>
% %TRAYECTORIA Q3
         p1 = -3.4215e-012
p2 = 1.1151e-009
8
용
            p3 = -1.4204e-007
 8
            p4 = 8.8801e-006
 ક્ષ
           p5 = -0.00028194
            p6 = 0.0045256
ę,
            p7 = -0.013745
£
           p8 = -2.3021
용
            p9 = -90.403
용
% q3= (p1*x.^8 + p2*x.^7 + p3*x.^6 + p4*x.^5 +p5*x.^4 + p6*x.^3 +p7*x.^2 + p8*x +p9)*(pi/180)
   % TLR3 (trayectoria de 1.0121 m)
   STRAYECTORIA Q1
    p1 = 4.5671e-012
p2 = -1.5238e-009
     p3 = 2.0145e-007
     p4 = -1.3214e-005
     p5 = 0.00043791
     p6 = -0.0070013
      p7 = 0.077985
     p8 = 0.63987
      p9 = 270.61
      q1=(p1*x1.^8 + p2*x1.^7 + p3*x1.^6 + p4*x1.^5 +p5*x1.^4 + p6*x1.^3 +p7*x1.^2 + p8*x1
+p9)*(pi/180)
```

%TRAYECTORIA Q2 p1 = -5.8337e-012 p2 = 1.5732e-009 p3 = -1.833e-007 p4 = 1.1887e-005 p5 = -0.00045083 p6 = 0.0095773 p7 = -0.1385 p8 = 2.6078 p9 = 40.022

. q2 = (p1*x1.^8 + p2*x1.^7 + p3*x1.^6 + p4*x1.^5 +p5*x1.^4 + p6*x1.^3 +p7*x1.^2 + p8*x1 +p9)*(pi/180)

- N. M.

 $\begin{array}{l} \$TRAYECTORIA Q3\\ p1 = 1.4425e-011\\ p2 = -3.7264e-009\\ p3 = 4.0383e-007\\ p4 = -2.3885e-005\\ p5 = 0.00083486\\ p6 = -0.017236\\ p7 = 0.25564\\ p8 = -4.944\\ p9 = -53.567\\ \end{array}$

q3= (p1*x1.^8 + p2*x1.^/ + p3*x1.^6 + p4*x1.^5 +p5*x1.^4 + p6*x1.^3 +p/*x1.^2 + p8*x1 +p9)*(pi/180)

%PARAMETROS DENAVIT-HARTEMBERG

 $x = d2*\cos(q1) + d3*\cos(q1) + d4*\cos(q1) - a1*\sin(q1) - a2*\cos(q2)*\sin(q1) - a4*\cos(q2 + q3)*\cos(q4)*\sin(q1) + a4*\sin(q2 + q3)*\sin(q1)*\sin(q4) - a3*\cos(q2)*\cos(q3)*\sin(q1) + a3*\sin(q1)*\sin(q2)*\sin(q3)$

 $y = a1^{\circ}\cos(q1) + d2^{\circ}\sin(q1) + d3^{\circ}\sin(q1) + d4^{\circ}\sin(q1) + a2^{\circ}\cos(q1)^{\circ}\cos(q2) + a4^{\circ}\cos(q2 + q3)^{\circ}\cos(q1)^{\circ}\cos(q1)^{\circ}\cos(q2) - a4^{\circ}\sin(q2 + q3)^{\circ}\cos(q1)^{\circ}\sin(q4) + a3^{\circ}\cos(q1)^{\circ}\cos(q2)^{\circ}\cos(q3) - a3^{\circ}\cos(q1)^{\circ}\sin(q2)^{\circ}\sin(q3)$

z = d1 + a3*sin(q2 + q3) + a2*sin(q2) + a4*sin(q2 + q3 + q4)

data10(ss) = q1; q111=data10' data11(ss) = q2; q222=data11' data12(ss) = q3; q333=data12'

data7(ss) = x; Xx=data7' data8(ss) = y; Yy=data8' data9(ss) = 2; Zz=data9'

end

figure(20) plot(Xx,Yy) axis equal figure(21) plot(Xx,Zz) axis equal figure(22) plot(Yy,Zz) axis equal

ANEXO A6

Programas utilizados para la generación de trayectorias en simulink

```
function TQ1=taxQ1(q)
  q1=q(1);
  x=q1
 % Trayectoria 0.8325 m
  p1 = 4.5671e-012
p2 = -1.5238e-009
  p_3 = 2.0145e-007
p_4 = -1.3214e-005
  p5 = 0.00043791
  p6 = -0.0070013
  p7 = 0.077985
  p8 = 0.63987
  p9 = 270.61
       % trayectoria de mas de 812.5 mm
윣
    p1 = -4.9895e-025
p2 = 1.0692e-022
€
સ
    p3 = -7.7143e-021
8
    p_4 = 1.4682e-019
p_5 = 6.7361e-018
p_6 = -3.2832e-016
ક
8
8
    p7 = 3.8543e-015
8
    p8 = 0
÷
    p9 = 360
ß
88
8
    % trayectoria de 1.0121 m
    p1 = -7.01e-011
p2 = 1.8505e-008
8
욹
     p3 = -1.9213e-006
÷
    p_{3} = -1.9213e-000
p_{4} = 9.9256e-005
p_{5} = -0.0026933
p_{6} = 0.038491
p_{7} = -0.25127
융
8
옹
f
    p8 = 1.0309
p9 = 249.62
8
₽
% % % trayectoria de mas de 0.4377 m
    p1 = -2.6491e-011
ક્ર
    p2 = 6.7892e-009
ક્ર
f
    p3 = -6.7335e-007
용
    p4 = 3.2384e-005
    p5 = -0.00079312
8
    p6 = 0.010238
p7 = -0.046809
8
9:
    p8 = 0.59646
8
    p9 = 270.55
돵
  TQ1=(p1*x.^8 + p2*x.^7 + p3*x.^6 + p4*x.^5 + p5*x.^4 + p6*x.^3 + p7*x.^2 + p8*x + p9)*(pi/180)
function TdQ1=taxdQ1(q)
  q1=q(1);
  x=q1
욯
  % Trayectoria 0.8325 m
  p1 = 4.5671e-012
  p_2 = -1.5238e-009
p_3 = 2.0145e-007
p_4 = -1.3214e-005
  p5 = 0.00043791
  p6 = -0.0070013
  p7 = 0.077985
  p8 = 0.63987
```

```
p9 = 270.61
```

p8)*(pi/180)

q1=q(1); x=q1

욯

영왕왕 왕왕

8

8

888

8 9;

8 8 8

8

8 8

8 8

욯

8

8

function TddQ1=taxddQ1(q)

% % Trayectoria 0.8325 m
p1 = 4.5671e-012
p2 = -1.5238e-009
p3 = 2.0145e-007
p4 = -1.3214e-005
p5 = 0.00043791
p6 = -0.0070013
p7 = 0.077985
p8 = 0.63987
p9 = 270.61

p1 = -4.9895e-025 p2 = 1.0692e-022p3 = -7.7143e-021

p4 = 1.4682e-019

p5 = 6.7361e-018

p6 = -3.2832e-016p7 = 3.8543e-015

p2 = 1.8505e-008

p5 = -0.0026933p6 = 0.038491p7 = -0.25127

p1 = -2.6491e-011

p8 = 1.0309

 $p_3 = -1.9213e-006$ $p_4 = 9.9256e-005$

p8 = 0p9 = 360

% trayectoria de mas de 812.5 mm

% % trayectoria de 1.0121 m p1 = -7.01e-011

p9 = 249.62 %N=100 PUNTOS

% % % trayectoria de mas de 0.4377 m

```
8
    % trayectoria de mas de 812.5 mm
    p1 = -4.9895e - 025
욯
    p2 = 1.0692e-022
8
    p3 = -7.7143e-021
8
    p4 = 1.4682e-019
8
    p5 = 6.7361e-018
p6 = -3.2832e-016
욠
8
    p7 = 3.8543e-015
8
    p8 = 0
8
    p9 = 360
8
용
   % % trayectoria de 1.0121 m
   p1 = -7.01e-011
p2 = 1.8505e-008
ß
욯
    p3 = -1.9213e-006
8
    p4 = 9.9256e-005
용
    p5 = -0.0026933
8
    p6 = 0.038491
욯
    p7 = -0.25127
8
8
    p8 = 1.0309
웡
    p9 = 249.62
9
% % % % trayectoria de mas de 0.4377 m
   p1 = -2.6491e-011
p2 = 6.7892e-009
유
8
    p3 = -6.7335e-007
શ્વ
    p4 = 3.2384e-005
શ્વ
    p5 = -0.00079312
8
    p_6 = 0.010238
욯
ક
    p7 = -0.046809
    p8 = 0.59646
p9 = 270.55
8
9:
```

TdQl= (p1*8*x.^/ + p2*/*x.^6 + p3*6*x.^5 + p4*5*x.^4 +p5*4*x.^3 + p6*3*x.^2 +p/*2*x.^1 +

.

务 p2 = 6.7892e - 009£ p3 = -6.7335e-007 8 p4 = 3.2384e - 005p5 = -0.00079312 8 p6 = 0.010238 ેક્ટ p7 = -0.0468098 p8 = 0.59646 8 p9 = 270.55

.

욯

x=q1 8

8 8

> 융 ÷

8

8 8

-8

ક્ર -8

TddQl= (p1*8*7*x.^6 + p2*7*6*x.^5 + p3*6*5*x.^4 + p4*5*4*x.^3 +p5*4*3*x.^2 + p6*3*2*x.^1 +p7*2)*(pi/180) function TQ2=taxQ2(q) q1=q(1); % Trayctoria 0.8325 m p1 = -5.8337e - 012p2 = 1.5732e-009p3 = -1.833e-007p4 = 1.1887e-005 p5 = -0.00045083p6 = 0.0095773p7 = -0.1385p8 = 2.6078p9 = 40.022% trayectoria de mas de 812.5 mm
p1 = -5.598e-012 $p_2 = 1.3742e-009$ $p_3 = -1.3805e-007$ p4 = 7.2784e-006 p5 = -0.00021524p6 = 0.0034969

% % trayectoria de 1.0121 m p1 = 9.8463e-012 p2 = -3.873e-009 융 8 € 8 p3 = 5.4462e-0078 p4 = -3.5631e-005 8 p5 = 0.0011149 p6 = -0.0147518 $p_0 = -0.01475$ $p_7 = 0.018845$ $p_8 = 3.7157$ 9 뫇 p9 = 17.94%N=310 PUNTOS; ક 용 % trayectoria de mas de 0.4377 m p1 = 1.0459e-011 p2 = -3.3226e-009 8 8

p7 = -0.029716p8 = -0.46491p9 = 68.19

```
p_{2} = -3.3226e^{-005}
p_{3} = 4.1858e^{-007}
p_{4} = -2.6469e^{-005}
p_{5} = 0.00088081
윩
욯
8
8
        p6 = -0.015257
윢
         p7 = 0.12317
        p8 = 0.93505
p9 = 55.573
욯
윣
```

 $TQ2 = (p1*x.^8 + p2*x.^7 + p3*x.^6 + p4*x.^5 + p5*x.^4 + p6*x.^3 + p7*x.^2 + p8*x + p9)*(pi/180)$

function TdQ2=taxdQ2(q)

q1=q(1);x=q1

% Trayctoria 0.8325 m pl = -5.8337e-012 p2 = 1.5732e-009 $p_3 = -1.833e-007$ $p_4 = 1.1887e-005$ p5 = -0.00045083 p6 = 0.0095773 p7 = -0.1385p8 = 2.6078p9 = 40.022

```
% trayectoria de mas de 812.5 mm
           p1 = -5.598e-012
p2 = 1.3742e-009
 8
 ß
            p_3 = -1.3805e-007
p_4 = 7.2784e-006
 윰
 8
            p5 = -0.00021524
 8
            p6 = 0.0034969
 8
            p7 = -0.029716
 ક્ર
            p8 = -0.46491
 ġ,
 뭉
            p9 = 68.19
            % % trayectoria de 1.0121 m
p1 = 9.8463e-012
 윢
 8
            p2 = -3.873e-009
용
            p_3 = 5.4462e-007
p_4 = -3.5631e-005
 8
 8
            p5 = 0.0011149
 8
            p6 = -0.014751
 8
 f
            p7 = 0.018845
 8
            p8 = 3.7157
            p9 = 17.94%N=310 PUNTOS;
 8
8
         % trayectoria de mas de 0.4377 m
p1 = 1.0459e-011
p2 = -3.3226e-009

 g.
 윢
용
            p3 = 4.1858e-007
 8
            p4 = -2.6469e-005
p5 = 0.00088081
 8
 8
 ક્ર
            p6 = -0.015257
 8
            p7 = 0.12317
            p8 = 0.93505
 8
 8
            p9 = 55.573
   TdQ2 = (p1*8*x.^7 + p2*7*x.^6 + p3*6*x.^5 + p4*5*x.^4 + p5*4*x.^3 + p6*3*x.^2 + p7*2*x.^1 + p5*4*x.^2 + p7*2*x.^2 + p7*2*x.^
p8)*(pi/180)
function TddQ2=taxddQ2(q)
   q1-q(1);
   x=q1
     % Trayctoria 0.8325 m
p1 = -5.8337e-012
p2 = 1.5732e-009
용
      p3 = -1.833e-007
      p4 = 1.1887e-005
      p5 = -0.00045083
      p6 = 0.0095773
      p7 = -0.1385
p8 = 2.6078
      p9 = 40.022
                   % trayectoria de mas de 812.5 mm
 ŧ
           p1 = -5.598e-012
p2 = 1.3742e-009
 ક્ર
 ę.
            p3 = -1.3805e-007
p4 = 7.2784e-006
p5 = -0.00021524
 æ
 8
 ÷
 용
            p6 = 0.0034969
            p7 = -0.029716
융
           p8 = -0.46491
p9 = 68.19
 ୫
8
 ક્ષ
            % % trayectoria de 1.0121 m
            p1 = 9.8463e-012
ę
            p2 = -3.873e-009
 윰
            p3 = 5.4462e-007
 융
 ક
            p4 = -3.5631e-005
            p5 = 0.0011149
욯
*
            p6 = -0.014751
            p7 = 0.018845
p8 = 3.7157
*
윰
            p9 = 17.94%N=310 PUNTOS;
 8
 8
          % trayectoria de mas de 0.4377 m
           p1 = 1.0459e-011
p2 = -3.3226e-009
p3 = 4.1858e-007
```

8

8 윢 8

p4 = -2.6469e-005

.

```
q_{1=q(1)};
 x=q1
%% Trayectoria 0.8325 m
 p1 = 1.4425e-011
p2 = -3.7264e-009
  p3 = 4.0383e-007
  p4 = -2.3885e-005
  p5 = 0.00083486
  p6 = -0.017236
  p7 = 0.25564
  p8 = -4.944
p9 = -53.567
% % trayectoria de mas de 812.5 mm
   p1 = 1.1196e-011
p2 = -2.7484e-009
p3 = 2.7609e-007
용
옧
8
    p4 = -1.4557e-005
8
ą,
    p5 = 0.00043048
    p_6 = -0.0069937
용
8
    p7 = 0.059433
8
    p8 = 0.92982
윦
    p9 = -136.38
용
    % % trayectoria de 1.0121 m
9
    p1 = 3.3284e-011
p2 = -8.8453e-009
£
웅
    p3 = 9.8562e - 007
욯
    p4 = -6.0001e-005
8
    p5 = 0.0021692
£
8
    p6 = -0.046947
    p7 = 0.64913
8
    p8 = -8.5355
p9 = -32.051%N=310;
8
욯
% % trayectoria de mas de 0.4377 m
    p1 = -3.4215e-012
윢
    p2 = 1.1151e-009
£
શ્ક
    p3 = -1.4204e-007
    p4 = 8.8801e-006
*
    p5 = -0.00028194
£
    p6 = 0.0045256
융
    p7 = -0.013745
8
    p8 = -2.3021
옿
    p9 = -90.403
용
 TQ3= (p1*x.^8 + p2*x.^7 + p3*x.^6 + p4*x.^5 + p5*x.^4 + p6*x.^3 + p7*x.^2 + p8*x + p9)*(p1/180)
function TdQ3=taxdQ3(q)
  q1=q(1);
  x-q1
% % Trayectoria 0.8325 m
  p1 = 1.4425e-011
p2 = -3.7264e-009
  p3 = 4.0383e-007
  p4 = -2.3885e-005
  p5 = 0.00083486
  p6 = -0.017236
  p7 = 0.25564
  p8 = -4.944
p9 = -53.567
% % trayectoría de mas de 812.5 mm
    p1 = 1.1196e-011

p2 = -2.7484e-009
용
4
    p3 = 2.7609e-007
욯
    p4 = -1.4557e - 005
8
```

p5 = 0.00088081

p6 = -0.015257

 $TddQ2 = (p1*8*7*x.^{6} + p2*7*6*x.^{5} + p3*6*5*x.^{4} + p4*5*4*x.^{3} + p5*4*3*x.^{2} + p6*3*2*x.^{1}$

p7 = 0.12317

p8 = 0.93505

p9 = 55.573

+p7*2)*(pi/180) function TQ3=taxQ3(q)

용

용

8

욯

욯

```
p5 = 0.00043048
8
ŧ
         p6 = -0.0069937
욯
         p7 = 0.059433
         p8 = 0.92982
9:
         p9 = -136.38
8
         % % trayectoria de 1.0121 m
p1 = 3.3284e-011
p2 = -8.8453e-009
8
응
융
         p3 = 9.8562e-007
ę,
8
         p4 = -6.0001e-005
         p5 = 0.0021692
용
용
         p6 = -0.046947
         p7 = 0.64913
용
         p8 = -8.5355
움
         p9 = -32.051
8
% % trayectoria de mas de 0.4377 m
         p1 = -3.4215e-012
€
8
         p2 = 1.1151e-009
용
         p3 = -1.4204e-007
융
         p4 = 8.8801e-006
         p5 = -0.00028194
욯
         p6 = 0.0045256
옾
         p7 = -0.013745
욯
         p8 = -2.3021
융
윰
         p9 = -90.403
    TdQ3 = (p1*8*x.^7 + p2*7*x.^6 + p3*6*x.^5 + p4*5*x.^4 + p5*4*x.^3 + p6*3*x.^2 + p7*2*x.^1 + p5*4*x.^3 + p5*4*x.^
p8)*(pi/180)
function TddQ3=taxddQ3(q)
    ql=q(1);
    x≖ql
% Trayectoria 0.8325 m
    p1 = 1.4425e-011
    p2 = -3.7264e-009
    p3 = 4.0383e-007
    p4 = -2.3885e-005
    p5 = 0.00083486
    p6 = -0.017236
    p7 = 0.25564
    p8 = -4.944
    p9 = -53.567
    % trayectoria de mas de 812.5 mm
윣
8
       p1 = 1.1196e-011
         p_2 = -2.7484e-009
욯
         p3 = 2.7609e-007
8
         p4 = -1.4557e-005
8
         p5 = 0.00043048
8
         p6 = ~0.0069937
Ð
         p7 = 0.059433
웊
         p8 = 0.92982
p9 = -136.38
8
8
         % % % trayectoria de 1.0121 m
p1 = 3.3284e-011
융
8
8
         p2 = -8.8453e-009
융
         p_3 = 9.8562e - 007
8
         p4 = -6.0001e-005
         p5 = 0.0021692
8
         p6 = -0.046947
용
         p7 = 0.64913
8
         p8 = -8.5355
용
         p9 = -32.051
8
% % trayectoria de mas de 0.4377 m
         p1 = -3.4215e-012
p2 = 1.1151e-009
¥
8
         p3 = -1.4204e-007
ዩ
         p4 = 8.8801e-006
욯
         p5 = -0.00028194
¥
         p6 = 0.0045256
€
         p7 = -0.013745
¥
융
         p8 = -2.3021
윢
         p9 = -90.403
 TddQ3 = (p1*8*7*x.^6 + p2*7*6*x.^5 + p3*6*5*x.^4 + p4*5*4*x.^3 + p5*4*3*x.^2 + p6*3*2*x.^1)
```

+p7*2)*(pi/180) % y0=214;

ANEXO B1 Programa DinSVC.m

clear all close all clc

tic

 syms
 q1
 q2
 q3
 q4
 q5
 q6
 q7
 L
 L1
 L2
 L3
 L4
 L5
 L6

 syms
 Lc1
 Lc2
 Lc3
 Lc4
 Lc5
 Lc6
 I1
 I2
 I3
 I4

 syms
 dq1
 dq2
 dq3
 dq4
 dq5
 dq6

 syms
 ddq1
 ddq2
 ddq3
 ddq4
 ddq5
 ddq6
 syms m1 m2 m3 m4 m5 m6 syms I1 I2 I3 I4 I5 I6 L m real g K K1 LC1 LC2 LC3 LC4 I11 I22 133 g 11X 11Y 11Z 12X 12Y 12Z 13X 13Y 13Z 124124134134132symsLc1xLc1yLc1zLc2xLc2yLc2zLc3xLc3yLc3zLc4xLc4yLc4zsymsI1xxI1xxI1xxI1yxI1yyI1yzI1zxI1zzI1zzsymsI2xxI2xyI2xyI2yyI2zzI2zzI2zzsymsI3xxI3xyI3xzI3yyI3yzI3zxI3zysymsI4xxI4xyI4xzI4yyI4zzI4zzsymsa1 a2 a3 a4 d1 d2 d3 d4 K2 K3 syms FE1 FE2 FE3 FE4 % Matrices de Inercia (Kg-m2) I1xx=63215483.41; I1yy=59399039.06; T1zz=16361675.66; I1xy=26.04; I1xz= 0.09; I1yz=-77997.79; X1c=0.00 Y1c=6.11 Z1c=-69.47 %m1=8018.16 Ilxxc= Ilxx - ml*(Zlc*Zlc+Ylc*Ylc)
Ilyyc= Ilyy - ml*(Zlc*Zlc+Xlc*Xlc)
Ilzzc- Ilzz - ml*(Xlc*Xlc+Ylc*Ylc) Ilxyc= Ilxy - ml*X1c*Y1c
Ilxzc= Ilxz - ml*X1c*Z1c Ilyzc= Ilyz - m1*Y1c*Z1c ilyxc-ilxyc Ilzxc=Ilxzc Ilzyc=Ilyzc III=(10^-9)*[Iixxc ~Iixyc ~Iixzc ; -Iiyxc Iiyyc -Iiyzc ; -Iizxc -Iizyc Iizzc] I2xx=34105466.32; 12yy-82656059.71; 12zz-51097191.88; I2xy=0.00; I2xz=-7756985.38; I2yz=0.00; X2c=-50.81 Y2c=0.00 Z2c= 83.48 \$m2=3994.59

12xxc= 12xx - m2*(22c*Z2c+Y2c*Y2c) 12yyc- 12yy - m2*(22c*Z2c+X2c*X2c) 12zzc= 12zz - m2*(X2c*X2c+Y2c*Y2c) I2xyc= I2xy - m2*X2c*Y2c I2xzc= I2xz - m2*X2c*Z2c I2yzc= I2yz - m2*Y2c*Z2c

12yxc=12xyc I2zxc=I2xzc I2zyc=I2yzc

II2=(10^-9)*{ I2xxc -I2xyc -I2xyc ; -I2yxc I2yyc -I2yyc ; -I2zxc -I2zyc I2zyc }

13xx= 20968204.38; 13yy-29712888.65; I3zz=10805476.18;

I3xy=0.00; I3xz= -3118981.62; I3yz=0.00;

X3c = -18.29Y3c= 0.00 23c=73.56 &m3=3131,55

13xxc= 13xx - m3*(Z3c+Z3c+Y3c+Y3c) 13yyc= 13yy - m3*(Z3c+Z3c+X3c+X3c) 13zzc- 13zz - m3*(X3c+X3c+Y3c+Y3c)

I3xyc= I3xy - m3*X3c*Y3c I3xzc= I3xz - m3*X3c*Z3c I3yzc= I3yz - m3*Y3c*Z3c

13ухс-13хус I3zxc=I3xzc I3zyc=I3yzc

113-(10^-9)*[13xxc -13xyc -13xzc ; -13yxc 13yyc -13yzc ; -13zxc -13zyc 13zzc]

£\$\$\$\$£\$

I4xx-790879.38 I4yy=16476070.46; I4zz=17082421.39;

I4xy=-2468717.99; I4xz=-330.37; I4yz=0.00;

X4c=-97.65 Y4c=18.86 Z4c-0.00 % m4=1308.94

I4xxc= I4xx - m4*(Z4c*Z4c+Y4c*Y4c) I4yyc= I4yy - m4*(Z4c*Z4c+X4c*X4c) I4zzc- I4zz - m4*(X4c*X4c+Y4c*Y4c)

I4xyc= I4xy - m4*X4c*Y4c I4xzc= I4xz - m4*X4c*Z4c I4yzc= I4yz - m4*Y4c*Z4c

14yxc-14xyc I4zxc=I4xzc I4zyc=I4yzc

114-(10^-9)*[i4xxc -i4xyc -i4xzc ; -I4yxc I4yyc -I4yzc ; -I4zxc -I4zyc I4zzc]

al= 0;

```
a2= 288*0.001;
a3- 168*0.001;
a4= 120*0.001;
d1= -59*0.001;
d2= -54*0.001;
d3= 54+0.001;
d4-
      0;
             q2
             qЗ
             q4
 %Paso 2
R01=mr(dh(1,4),dh(1,1))
R12=mr(dh(2,4),dh(2,1))
R21=simple(inv(R12))
R23=mr(dh(3,4),dh(3,1))
R32=simple(inv(R23))
R34=mr(dh(4,4),dh(4,1))
R43=simple(inv(R34))
```

dh=[q1+pi/2 d1 a1 pi/2 d2 a2 0 d3 a3 0 d4 0]; a4

R10=simple(inv(R01))

R03=simple(R02*R23) R04=simple(R03*R34)

R02-simple(R01*R12)

R45=K2 R54=K3

```
*Paso 3
Wo=[0 0 0]'
divio=[0 0 0]'
Vo-[0 0 0]'
dVo=transpose([0 0 g ])
Zo=[0 0 1]'
```

f5=[0 0 0]' nt7=0 n5=0

```
 p1=[dh(1,2);dh(1,4)*sin(dh(1,1));dh(1,4)*cos(dh(1,1))] \\ p2=[dh(2,2);dh(2,4)*sin(dh(2,1));dh(2,4)*cos(dh(2,1))] 
9
```

 $p1-[dh(1,3);dh(1,2)*sin(dh(1,4));dh(1,2)*cos(dh(1,4))] & OBSERVACION 10_02_10 \\ p2=[dh(2,3);dh(2,2)*sin(dh(2,4));dh(2,2)*cos(dh(2,4))] \\ p3-[dh(3,3);dh(3,2)*sin(dh(3,4));dh(3,2)*cos(dh(3,4))]$ p4=[dh(4,3);dh(4,2)*sin(dh(4,4));dh(4,2)*cos(dh(4,4))]

s1-(0.001)*[X1c ; Y1c ; Z1c] %Coordenadas del centro de masas del eslabon i respecto del sistema Si

s2=(0.001)*{X2c ; Y2c ; Z2c} s3=(0.001)*[X3c ; Y3c ; Z3c] s4=(0.001)*[X4c ; Y4c ; Z4c]

&Paso 4 &Velocidades angulares

W1=simplify(R10*(Wo+Zo*dq1))

W2=simplify(R21*(W1+Zo*dq2))

W3=simplify(R32*(W2+Zo*dq3))

W4=simplify(R43*(W3+Zo*dq4))

%aveñaraciones angulares

%Paso5

dW1-simplify(R10*(dWo+Zo*ddq1)+cross(Wo,(Zo*dq1)))

dW2=simplify(R21*(dW1+Zo*ddq2)+cross(W1,(Zo*dq2)))

dW3=simplify(R32*(dW2+Zo*ddq3)+cross(W2,(Zo*dq3)))

dW4-simplify(R43*(dW3+Zo*ddq4)+cross(W3,(Zo*dq4)))

%paso 6

\$Obtener la acelaracion lineal del sistema
dV1=cross(dW1,p1)+cross(W1,cross(W1,p1))+R10*dVo;
dV1=simplify(dV1)

dV2-cross(dW2,p2)+cross(W2,cross(W2,p2))+R21*dV1; dV2=simplify(dV2)

dV3=cross(dW3,p3)+cross(W3,cross(W3,p3))+R32*dV2; dV3=simplify(dV3)

dV4=cross(dW4,p4)+cross(W4,cross(W4,p4))+R43*dV3; dV4=simplify(dV4)

%Paso 7
%Calculo de las acelraciones lineales
al=cross(dW1,s1)+cross(W1,cross(W1,s1))+dV1;
al≈simplify(a1)

a2=cross(dW2,s2)(cross(W2,cross(W2,s2))(dV2; a2=simplify(a2)

a3=cross(dW3,s3)+cross(W3,cross(W3,s3))+dV3; a3=simplify(a3)

a4=cross(dW4,s4)+cross(W4,cross(W4,s4))+dV4; a4=simplify(a4)

%Paso 8

f4=simplify(R45*f5+m4*a4) f3-simplify(R34*f4+m3*a3) f2=simplify(R23*f3+m2*a2) f1=simplify(R12*f2+m1*a1)

&Paso 9 F1=m1*a1; F2=m2*a2; F3-m3*a3; F4-m4*a4;

 $\label{eq:N4=II4*dW4+cross(W4,(II4*W4)) n4=R45*[n5+cross((R45*p4),f5)]+cross((p4+s4),F4)+N4$

N3=113*dW3+cross(W3,(113*W3)) n3-R34*[n4+cross((R34*p3),f4)]+cross((p3+s3),F3)+N3

N2=II2*dW2+cross(W2,(II2*W2)) n2=R23*[n3+cross((R23*p2),f3)]+cross((p2+s2),F2)+N2

N1=II1*dW1+cross(W1,(II1*W1)); n1=R12*[n2+cross((R12*p1),f2)]+cross((p1+s1),F1)+N1

% Paso 10 T1=transpose (n1) *R10*Zo T2=transpose (n2) *R21*Zo T3=transpose (n3) *R32*Zo T4-transpose (n4) *R43*Zo

h11=subs(T1,{ddq2,ddq3,ddq4,dq1,dq2,dq3,dq4,g},{0,0,0,0,0,0,0,0}); H11-collect(h11,ddq1)/ddq1

 $\label{eq:h12-subs} \begin{array}{l} h12-subs (\texttt{T1, \{ddq1, ddq3, ddq4, dq1, dq2, dq3, dq4, g\}, \{0, 0, 0, 0, 0, 0, 0, 0\}) \\ H12-collect (h12, ddq2) / ddq2 \end{array}$

h13=subs(T1,{ddq2,ddq1,ddq4,dq1,dq2,dq3,dq4,g},{0,0,0,0,0,0,0,0}); H13=collect(h13,ddq3)/ddq3

 $\begin{array}{l} h14=& subs\,(T1,\,\{ddq2,\,ddq1,\,ddq3,\,dq1,\,dq2,\,dq3,\,dq4,\,g\},\,\{0,0,0,0,0,0,0,0\}\}\ ;\\ H14=& collect\,(h14,\,ddq4)\,/ddq4 \end{array}$

COR11=subs(T1,{ddq1,ddq2,ddq3,ddq4,g},{0,0,0,0,0}) C11=collect(COR11,dq1) COR12=subs(C11,(dq1},{0}) C12=collect(COR12,dq2) COR13=subs(C12,{dq2},(0)) C13=collect(COR13,dq3) COR14=subs(C13,{dq3},d0)) C14=collect(COR14,dq4)

CC14= C14 CC13= simplify((C13-CC14)) CC12= simplify((C12-CC13-CC14)) CC11= simplify((C11-CC12-CC13-CC14))

CCC14= simplify(CC14/dq4) CCC13= simplify(CC13/dq3) CCC12= simplify(CC12/dq2) CCC11= simplify(CC11/dq1)

gl=subs(T1,{ddq1,ddq2,ddq3,ddq4,dq1,dq2,dq3,dq4},{0,0,0,0,0,0,0,0}} ; Gl=collect(g1,g)

 $\label{eq:h22=subs} \end{tabular} h22= \mbox{subs} \end{tabular} \end{tabular} h22= \mbox{subs} \end{tabular} \end{tabular} \end{tabular} \end{tabular} h22= \mbox{collect} \end{tabular} \end{tabul$

h23=subs(T2,{ddq2,ddq1,ddq4,dq1,dq2,dq3,dq4,g},{0,0,0,0,0,0,0,0}) ; H23=collect(h23,ddq3)/ddq3

 $\label{eq:h24=subs} \begin{array}{l} h24=subs\,(\texttt{T2},\,\{ddq2,\,ddq1,\,ddq3,\,dq1,\,dq2,\,dq3,\,dq4,\,g\},\,[0,0,0,0,0,0,0,0,0\}) \ ; \\ H24=collect\,(h24,\,ddq4)\,/ddq4 \end{array}$

COR21=subs(T2, [ddq1, ddq2, ddq3, ddq4, g}, {0,0,0,0,0}) C21=collect(COR11, dq1) COR22=subs(C21, [dq1}, {0}) C22=collect(COR22, dq2) COR23=subs(C22, {dq2}, {0}) C23=collect(COR23, dq3) COR24=subs(C23, {dq3}, {0}) C24=collect(COR24, dq4)

CC24= C24 CC23= simplify((C23-CC24)) CC22= simplify((C22-CC23-CC24)) CC21- simplify((C21-CC22-CC23-CC24))

CCC24= simplify(CC24/dq4) CCC23= simplify(CC23/dq3) CCC22= simplify(CC22/dq2) CCC21= simplify(CC21/dq1)

h34-subs(T3,{ddq2,ddq1,ddq3,dq1,dq2,dq3,dq4,g},{0,0,0,0,0,0,0,0}) ; H34=collect(h34,ddq4)/ddq4

COR31=subs(T3,{ddq1,ddq2,ddq3,ddq4,g},{0,0,0,0,0}) C31=collect(COR31,dq1) COR32=subs(C31,dq1},10}) C32=collect(COR32,dq2) COR33=subs(C32,dq2,dq2) COR33=subs(C32,dq3) COR34=subs(C33,dq3) COR34=subs(C33,dq3,{0}) COR34=subs(C33,dq3,dq3)

CC34= C34 CC33= simplify((C33-CC34)) CC32= simplify((C32-CC33-CC34)) CC31= simplify((C31-CC32-CC33-CC34))

CCC34= simplify(CC34/dq4)

CCC33= simplify(CC33/dq3) CCC32- simplify(CC32/dq2) CCC31= simplify(CC31/dq1)

g3=subs(T3,{ddq2,ddq1,ddq4,ddq3,dq1,dq2,dq3,dq4},{0,0,0,0,0,0,0,0}) ; G3≕collect(g3,g)

h42=subs(T4,{ddq1,ddq3,ddq4,dq1,dq2,dq3,dq4,g},{0,0,0,0,0,0,0,0}); H42=collect(h42,ddq2)/ddq2

h43=subs(T4,{ddq2,ddq1,ddg4,dq1,dq2,dq3,dq4,g},{0,0,0,0,0,0,0,0}); H43=collect(h43,ddq3)/ddq3

 $\begin{array}{l} h44 = subs\left(T4, \left[ddq2, ddq1, ddq3, dq1, dq2, dq3, dq4, q\right\}, \left\{0, 0, 0, 0, 0, 0, 0, 0\right\}\right) \ ; \\ H44 = collect\left(h44, ddq4\right)/ddq4 \end{array}$

COR41-subs(T4, {ddq1, ddq2, ddq3, ddq4, g}, {0,0,0,0,0}) C41=collect(COR41, dq1) COR42=subs(C41, {dq1}, {0}) C42=collect(COR42, dq2) COR43=subs(C42, {dq2}, {0}) C43=collect(COR43, dq3) COR44=subs(C43, {dq3}, {0}) C44=collect(COR44, dq4)

CC44= C44 CC43= simplify((C43-CC44)) CC42= simplify((C42-CC43-CC44)) CC41= simplify((C41-CC42-CC43-CC44))

CCC44=simplify(CC44/dq4) CCC43=simplify(CC43/dq3) CCC42=simplify(CC42/dq2) CCC41=simplify(CC41/dq1)

g4=subs(T4,{ddq2,ddq1,ddq4,ddq3,dq1,dq2,dq3,dq4},{0,0,0,0,0,0,0,0}) ; G4=collect(g4,g)

H= | H11 H12 H13 H14; H21 H22 H23 H24; H31 H32 H23 H24; H41 H42 H43 H44 |

c= [ccc11 ccc12 ccc13 ccc14; ccc21 ccc22 ccc23 ccc24 ; ccc31 ccc32 ccc33 ccc34; ccc41 ccc42 ccc43 ccc44]

G= [G1 ; G2 ; G3 ; G4]

ANEXO B2

Resultado de las matrices de inercia (H), matriz de Coriolis (C) y la matriz de gravedad (G)

Matriz de inercia.

function HH=H4(q) m=1 m1-8.01816*m m2=3.99459*m m3=3.13155*m m4=1.30894*m q=9.81 q1=q(1); q2=q(2); q3=q(3); q4=q(4); $H11 = (26505128670357627077 \pm 1)/54975581388800000000000 +$ (39844045620933103189*m2)/137438953472000000000 + (638640744153028919029*m3)/10995116277760000000000 + (9852796781293720968283*m4)/17592186044416000000000 + (6516350337857617*cos(2*q2))/268435456000000000 + (134734765440221847*cos(2*q2 + 2*q3 + $\begin{array}{l} (347395) (3717) (3573) (3717) (3573)$ $\begin{array}{l} (123215393845668313303^{m}3^{*}\cos(2^{*}q2 + 2^{*}q3))/1099511627776000000000 + (441^{*}m4^{*}\cos(2^{*}q2 + 2^{*}q3))/31250 + (4023^{*}m4^{*}\cos(2^{*}q2 + q3 + q4))/625000 - (8487^{*}m4^{*}\sin(2^{*}q2 + q3 + q4))/1562500 + (4023^{*}m4^{*}\cos(q3 + q4))/625000 - (8487^{*}m4^{*}\sin(q3 + q4))/1562500 + (134739^{*}m3^{*}\cos(q3))/312500 + (756^{*}m4^{*}\cos(q3))/15625 + (9387^{*}m4^{*}\cos(q4))/2500000 + (9387^{*}m4^{*}\cos(2^{*}q2 + 2^{*}q3 + q4))/2500000 - (8487^{*}m4^{*}\cos(2^{*}q2 + 2^{*}q3 + q4))/2500000 - (8487^{*}m4^{*}\cos(2^{*}q2 + 2^{*}q3 + q4))/2500000 - (8487^{*}m4^{*}\cos(2^{*}q2 + 2^{*}q3 + q4))/250000 - (8487^{*}m4^{*}\cos(2^{*}q2 + 2^{*}q3 + q4))/2500000 - (8487^{*}m4^{*}m4^{*}m4^{*}m4)/2500000 - (8487^{*}m4^{*}m4^{*}m4)/2500000 - (8487^{*}m4^{*}m4^{*}m4)/2500000 - (8487^{*}m4^{*}m4^{*}m4)/2500000 - (8487^{*}m4^{*}m4)/2500000 - (8487^{*}m4)/2500000 - (8487^{*}m4^{*}m4)/2500000 - (8487^{*}m4^{*}m4)/2500000 - (8487^{*}m4^{*}m4)/2500000 - (8487^{*}m4)/2500000 - (8487^{*}m4)/2500000 - (8487^{*}m4)/2500000) - (8487^{*}m4)/2500000 - (8487^{*}m4)/2500000) - (8487^{*}m4)/2500000) - (8487^{*}m4)/2500000) - (8487^{*}m4)/250$ q3))/3125000 + (756+m4*cos(2*q2 + q3))/15625 + 2607110836073623689/1717986918400000000 (8328999630662533*sin(q2))/107374182400000000 - (27535032531*m3*sin(q2 + q3))/250000000000 -(17491507047*m2*sin(q2))/250000000000 - (16551*m3*sin(q2))/781250

 $H14 = (33037 + \sin(q2 + q3 + q4))/10000000000$

 $\begin{array}{l} H21 = (33037*\sin(q2 + q3 + q4))/10000000000 + (133959240547251*\sin(q2 + q3))/42949672960000000 + (8328999630662533*\sin(q2))/107374182400000000 - (27535032531*m3*\sin(q2 + q3))/2500000000000 - (17491507047*m2*\sin(q2))/250000000000 - (16551*m3*\sin(q2))/781250 \end{array}$

H22 = (38659182355760340271*m2)/68719476736000000000 + (4633638848935448266409*m3)/43980465111040000000000 + (307899899415428780259*m4)/27487790694400000000 + (4023*m4*cos(q3 + q4))/312500 -(8487*m4*sin(q3 + q4))/781250 + (134739*m3*cos(q3))/1562500 + (1512*m4*cos(q3))/15625 + (9387*m4*cos(q4))/1250000 - (19803*m4*sin(q4))/3125000 + 1060119925185577/13421772800000000

 $\begin{array}{l} H23 = (985723150765346506409*m3)/43980465111040000000000 + \\ (79905168279797420259*m4)/274877906944000000000 + (4023*m4*cos(q3 + q4))/625000 - \\ (8487*m4*sin(q3 + q4))/1562500 + (134739*m3*cos(q3))/3125000 + (756*m4*cos(q3))/15625 + \\ (9387*m4*cos(q4))/1250000 - (19803*m4*sin(q4))/3125000 + 3743050250542121/134217728000000000 \\ \end{array}$

 $\label{eq:H31} \begin{array}{l} \texttt{H31} = (33037^* \texttt{sin}(\texttt{q2} + \texttt{q3} + \texttt{q4}))/100000000000 + (133959240547251^* \texttt{sin}(\texttt{q2} + \texttt{q3}))/42949672960000000 - (27535032531^* \texttt{m3}^* \texttt{sin}(\texttt{q2} + \texttt{q3}))/2500000000000 \end{array}$

HH=[H11 H12 H13 H14 ;H21 H22 H23 H24; H31 H32 H33 H34 ; H41 H42 H43 H44]

Inversa de la Matriz de Inercia.

function iH=invH4(H)
iH=inv(H);

Matriz de coriolis

function C-mCoriolis(v)

```
m=1
  m1-8.01816+m
  m2=3.99459*m
   m3=3.13155*m
   m4=1.30894*m
    g=9.81
    dq=[v(1);v(2);v(3);v(4)];
   q=[v(5);v(6);v(7);v(8)];
          q1=q(1);
          q^{2=q(2)};
          q3-q(3);
          q4=q(4);
          dq1=dq(1);
          dq2=dq(2);
         dq3=dq(3);
         dq4=dq(4);
 \frac{dq^{4}=dq(4);}{CCC11} = (33037^{*}dq^{1}^{*}cos(q^{2} + q^{3} - q^{4}))/1280000000000 - (134734765440221847^{*}dq^{2}^{*}sin(2^{*}q^{2} + 2^{*}q^{3} + 2^{*}q^{4}))/1717986918400000000 - (134734765440221847^{*}dq^{3}^{*}sin(2^{*}q^{2} + 2^{*}q^{3} + 2^{*}q^{4}))/1717986918400000000 - (134734765440221847^{*}dq^{4}^{*}sin(2^{*}q^{2} + 2^{*}q^{3} + 2^{*}q^{4}))/1717986918400000000 - (13803^{*}dq^{4}^{*}a^{4})/12500000 - (2347383309593477^{*}dq^{2}^{*}sin(2^{*}q^{2} + 2^{*}q^{3} + 2^{*}q^{3}))/536870912000000000 - (13803^{*}dq^{4}^{*}a^{4})/12500000 - (2347383309593477^{*}dq^{2}^{*}sin(2^{*}q^{2} + 2^{*}q^{3}))/536870912000000000 - (2347383309593477^{*}dq^{3}^{*}sin(2^{*}q^{2} + 2^{*}q^{3}))/536870912000000000 - (2347383309593477^{*}dq^{3}^{*}sin(2^{*}q^{2} + 2^{*}q^{3}))/536870912000000000 - (33037^{*}dq^{1}^{*}cos(q^{3} - q^{2} + q^{4}))/12800000000000 - (33037^{*}dq^{1}^{*}cos(q^{3} - q^{2} + q^{4}))/12800000000000 - (33037^{*}dq^{1}^{*}cos(q^{2} - q^{3} - q^{4})/12800000000000 - (33037^{*}dq^{1}^{*}cos(q^{2} - q^{3} - q^{4}))/12800000000000 - (33037^{*}dq^{2}^{*}cos(q^{2} - q^{3} - q^{4}))/12800000000000 - (33037^{
    + 2*q3 + 2*q4))/53687091200000000 + (1325382878762107*dq3*cos(2*q2 + q3 +
    2*q4))/536870912000000000 + (1325382878762107*dq4*cos(2*q2 + 2*q3 + q4))/536870912000000000 +
     (1169596693744629833*dq2*sin(q2))/17179869184000000000 +
  \begin{array}{l} -q_3 - q_4) //1280000000000 + (33037*dq1*cos(-3*q2 - q3 - q4)) //30000000000 + \\ (1325382878762107*dq2*cos(2*q2 + 2*q3 + 2*q4)) //53687091200000000 + \\ (1325382878762107*dq3*cos(2*q2 + 2*q3 + 2*q4)) //53687091200000000 + \\ (1325382878762107*dq3*cos(2*q2 + 2*q3 + 2*q4)) //53687091200000000 - (8487*dq4*m4*cos(q3)) / 3125000 \\ - (8487*dq3*m4*cos(q4)) / 3125000 - (19803*dq4*m4*cos(q4)) / 12500000 - (423362679*dq2*m4*cos(q2 + 2*q3 + 2*q4)) / 100000000000 - (19803*dq2*m4*cos(2*q2 + 2*q3 + q4)) / 6250000 - \\ (423362679*dq3*m4*cos(2*q2 + q3 + 2*q4)) / 100000000000 - (19803*dq3*m4*cos(2*q2 + 2*q3 + q4)) / 6250000 - \\ (423362679*dq3*m4*cos(2*q2 + q3 + 2*q4)) / 100000000000 - (19803*dq3*m4*cos(2*q2 + 2*q3 + q4)) / 6250000 - \\ (423362679*dq3*m4*cos(2*q2 + q3 + 2*q4)) / 100000000000 - (19803*dq3*m4*cos(2*q2 + 2*q3 + q4)) / 6250000 - \\ (423362679*dq3*m4*cos(2*q2 + (2*q3 + (2*q4)) / 10000000000 - (19803*dq3*m4*cos(2*q2 + 2*q3 + (2*q3 +
    q4) ) / 6250000 - (2007602679*dq4*m4*cos(2*q2 + 2*q3 + q4) ) / 100000000000 +
```

```
 \frac{1}{1070832979921160971*dq3*m3*sin(q3)}{1099511627776000000000} - \frac{4023*dq4*m4*sin(q3)}{17592186044416000000000} - \frac{4023*dq4*m4*sin(q3)}{17592186044416000000000} - \frac{4023*dq4*m4*sin(q3)}{17592186044416000000000} - \frac{4023*dq4*m4*sin(q3)}{17592186044416000000000} - \frac{4023*dq2*m4*sin(q2 - q3 - q4)}{17592186044416000000000} - \frac{1184330309679237477*dq2*m4*sin(q2 + 2*q3 + 2*q4)}{17592186044416000000000} - \frac{9387*dq2*m4*sin(2*q2 + q3 + 2*q4)}{1759218604441600000000} - \frac{9387*dq3*m4*sin(2*q2 + 2*q3 + q4)}{250000} - \frac{11843330309679237477*dq3*m4*sin(2*q2 + q3 + 2*q4)}{17592186044416000000000} - \frac{9387*dq3*m4*sin(2*q2 + 2*q3 + q4)}{17592186044416000000000} - \frac{11843330309679237477*dq3*m4*sin(2*q2 + 2*q3 + q4)}{17592186044416000000000} - \frac{13847dq4*m4*sin(2*q2 + 2*q3 + q4)}{17592186044416000000000} - \frac{1384333107545221477*dq4*m4*sin(2*q2 + 2*q3 + q4)}{17592186044416000000000} - \frac{1384739*dq2*m4*sin(2*q2 + q3)}{1250000} - \frac{19803*dq2*m4*sin(2*q2 + 2*q3 + q4)}{1250000} - \frac{138433303*dq2*m3*sin(2*q2 + q3)}{1250000} - \frac{138433*m4*cos(q4 - q3)}{1250000} - \frac{138433*m4*cos(q4 - q3)}{1250000} - \frac{132215393845668313303*dq2*m3*sin(q2 + 2*q3)}{1250000} - \frac{134739*dq2*m3*sin(2*q2 + q3)}{125000} - \frac{13843}{12500} - \frac{13843}{12500} - \frac{13843}{12500} - \frac{13843}{12500} - \frac{13843}{12500} - \frac{13843}{12500} - \frac{13843}{125000} - \frac{13843}{125000} - \frac{13843}{125000} - \frac{13843}{125000} - \frac{13843}{1250000} - \frac{13843}{1250000} - \frac{13843}{125000} - \frac{13843}{1250000} - \frac{13843}{125000} - \frac{13843}{125000} - \frac{1384}{1250000} - \frac{1384}{12}{12500000} - \frac{13843}{125000} - \frac{13843}{125000} - \frac{13843}{125000} - \frac{13843}{1250000} + \frac{138}{12}{1250000} - \frac{1383}{1250000} - \frac{1383}{1250000} - \frac{1383}{1250000} - \frac{1383}{1250000} - \frac{1383}{1250000} - \frac{1383}{12}{12500000} - \frac{1383}{1250000} - \frac{1383}{12}{12500000} - \frac{1383}{12}{12500000} - \frac{1383}{12}{12}{1000000000000} - \frac{1383}{12}{12}{100000000
  \frac{2^{+}q_{4}}{100000000} = \frac{42}{2} \frac{36}{2} \frac{67}{2} \frac{4}{q_{4}} \frac{m_{4}^{+}cos}{cos} \frac{2^{+}q_{2}^{+}}{2^{+}q_{4}} \frac{1}{10000000000} = \frac{42}{2} \frac{6}{q_{2}} \frac{1}{q_{2}} \frac{1}{13743953472000000000} = \frac{648^{+}d_{2}^{+}m_{3}^{+}sin(2^{+}q_{2})}{15625} = \frac{1373^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2})}{15625} = \frac{1373^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2})}{15625} = \frac{11843330309679237477^{+}d_{2}^{+}m_{4}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+}+2^{+}q_{4})}{17592186044416000000000} = \frac{11843330309679237477^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+}+2^{+}q_{4})}{17592186044416000000000} = \frac{1184330309679237477^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+}+2^{+}q_{4})}{17592186044416000000000} = \frac{1184330309679237477^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+})}{17592186044416000000000} = \frac{1184330309679237477^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+})}{1250000} = \frac{123215393845668313303^{+}d_{3}^{+}m_{3}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+})}{10995116277760000000000} = \frac{123215393845668313303^{+}d_{3}^{+}m_{3}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+})}{10995116277760000000000} = \frac{123215393845668313303^{+}d_{3}^{+}m_{3}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+})}{10995116277760000000000} = \frac{141^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+})}{10995116277760000000000} = \frac{141^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+})}{10995116277760000000000} = \frac{141^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+})}{1090000} = \frac{18487^{+}d_{3}^{+}m_{4}^{+}sos(2^{+}q_{3}^{+}+q_{4})}{1000000} = \frac{123215393845668313303^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+}+q_{3}^{+})}{1000000} = \frac{123215393845668313303^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2}^{+}+2^{+}q_{3}^{+}+q_{3}}}{112500} = \frac{123215393845668313303^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{2}^{+}+q_{3}^{+}+q_{3}}}{1125000} = \frac{123215393845668313303^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{3}^{+}+q_{3}}}{1125000} = \frac{123215393845668313303^{+}d_{3}^{+}m_{4}^{+}sin(2^{+}q_{3}^{+}+q_{3}}}{1125000} = \frac{123215393845668313303^{+}d_{4
    q4))/1250000
  q4))/50000000000
    \frac{116733648781542389*d673*sin(q3)}{343597383660000000 - (134734765440221847*dq2*sin(q2 + 2*q3 + (148321969728944873*dq4*sin(q4))/1717986918400000000 - (134734765440221847*dq2*sin(q2 + 2*q3 + (148321969728944873*dq4*sin(q2 + 2*q3 + (1491))/1717986918400000000 - (134734765440221847*dq2*sin(q2 + 2*q3 + (1491))/1717986918400000000 - (134734765440221847*dq2*sin(q2 + 2*q3 + (1491))/1717986918400000000 - (134734765440221847*dq2*sin(q2 + 2*q3 + (1491))/1717986918400000000 - (2347383309593477*dq3*sin(2*q2 + (1324786309593477*dq3*sin(2*q2 + (1294147*dq1*cos(q2 + (1325382878762107*dq2*cos(2*q2 + 2*q3 + (12*q4)))/5368709120000000000 + (1024147*dq1*cos(- (1325382878762107*dq3*cos(2*q2 + 2*q3 + (12*q4)))/5368709120000000000 + (1325382878762107*dq3*cos(2*q2 + 2*q3 + 2*q4))/536870912000000000 - (8487*dq4*m4*cos(q3))/3125000 - (8487*dq3*m4*cos(q4))/3125000 - (19803*dq4*m4*cos(q4))/12500000 - (23362679*dq2*m4*cos(q2 + (19803*dq4*m4*cos(2*q2 + 2*q3 + q4)))/6250000 - (23362679*dq2*m4*cos(2*q2 + 2*q3 + (19803*dq4*m4*cos(2*q2 + 2*q3 + q4))/6250000 - (23362679*dq2*m4*cos(2*q2 + 2*q3 + (19803*dq3*m4*cos(2*q2 + 2*q3 + (19803)))) 10995116277760000000000 + (25569538455517448283*dq2*m4*sin(q3))/10995116277760000000000 - (10708832978921160971*dq3*m3*sin(q3))) 10995116277760000000000 - (10708832978921160971*dq3
       (10708832978921160971*dq3*m3*sin(q3))/1099511627776000000000 -
```

(592431632586381459*dq2*m2*sin(q2))/68719476736000000000 + (182651281881766199029*dq2*m3*sin(q2))/1099511627776000000000

(10708832978921160971*dq3*m3*sin(q3))/1099511627776000000000 -

 $- (4023 + dq3^{+}m4 + sin(q2) / 1250000 - (2559196104323345571^{+}dq4^{+}m4 + sin(q4) / 17592186044416000000000 + (4023^{+}m4^{+}sin(q2 - q3 - q4)) / 17592186044416000000000 - (9387^{+}dq2^{+}m4^{+}sin(2^{+}q2 + 2^{+}q3 + q4)) / 2500000 - (11843330309679237477^{+}dq3^{+}m4^{+}sin(2^{+}q2 + q3 + 2^{+}q3) / 17592186044416000000000 - (9387^{+}dq2^{+}m4^{+}sin(2^{+}q2 + q3) / 17592186044416000000000 - (34219031107545221477^{+}dq3^{+}m4^{+}cos(q2 - q4)) / 175921860444160000000000 - (8487^{+}dq4^{+}m4^{+}cos(2^{+}q2 + q3)) / 3125000 - (19803^{+}dq2^{+}m4^{+}cos(q2 - q4)) / 12500000 - (8487^{+}dq3^{+}m4^{+}cos(2^{+}q2 + q3)) / 3125000 - (19803^{+}dq2^{+}m4^{+}cos(q2 - q4)) / 12500000 - (34219031107545221477^{+}dq3^{+}m4^{+}cos(q2 + q3)) / 12500000 + (3373^{+}dq2^{+}m3^{+}sin(2^{+}q2 + q3)) / 3125000 - (13803^{+}dq2^{+}m4^{+}sin(q2 + 2^{+}q3)) / 10951162777600000000000 + (3373^{+}dq2^{+}m3^{+}sin(2^{+}q2 + q3)) / 1325000 - (36250743)8952505703^{+}dq3^{+}m4^{+}sin(2^{+}q2 + q3)) / 1095116277760000000000 + (3378^{+}dq2^{+}m4^{+}sin(q2 - q3)) / 155000 - (4023^{+}dq^{+}m4^{+}sin(2^{+}q2 + q3)) / 1250000 + (9387^{+}dq2^{+}m4^{+}sin(q2 - q4)) / 500000 - (4023^{+}dq^{+}m4^{+}sin(q2 + q3 + q4)) / 1250000 - (423362679^{+}dq3^{+}m4^{+}sin(q2 + q3 + q4)) / 1250000 - (3669^{+}gd3^{+}m4^{+}sin(2^{+}q2 + 2^{+}q3 + 2^{+}q4)) / 100000000000 - (378^{+}dq3^{+}m4^{+}sin(2^{+}q2 + 2^{+}q3 + 2^{+}q4)) / 10000000000 - (32362579^{+}dq3^{+}m4^{+}sin(2^{+}q2 + 2^{+}q3 + 2^{+}q4)) / 1560000 - (3669^{+}gd3^{+}m4^{+}sin(2^{+}q2 + 2^{+}q3 + 2^{+}q4)) / 1050000000 - (3336^{+}q2^{+}m4^{+}sin(2^{+}q2 + 2^{+}q3 + 2^{+}q4)) / 10000000000 - (378^{+}q3^{+}m4^{+}sin(2^{+}q2 + 2^{+}q3 + 2^{+}q4)) / 15625 - (1184333039679237477^{+}dq3^{+}m4^{+}sin(2^{+}q2 + 2^{+}q3 + 2^{+}q4)) / 15521604416000000000 - (13836^{+}m4^{+}sin(2^{+}q2 + 2^{+}q3 + 2^{+}q3)) / 312500 - (138^{+}dq3^{+}m4^{+}s$

CCC24 = (33037*dq4*cos(q2 + q3 + q4))/100000000000

 $\begin{array}{l} CCC31 & -(134734765440221847*dq1*sin(2*q2 + 2*q3 + 2*q4))/1717986918400000000 + ... \\ (2347383309593477*dq1*sin(2*q2 + 2*q3))/53687091200000000 - (133959240547251*dq2*cos(q2 + q3))/4294967296000000 + (133959240547251*dq3*cos(q2 + q3))/4294967296000000 + (133037*dq4*cos(q2 + q3))/10000000000 + (133037*dq3*cos(q2 + q4))/1000000000 + (133037*dq3*cos(q2 + q4))/1000000000 + (133959240547251*dq3*cos(q2))/4294967296000000 + (133959240547251*dq3*cos(q2))/4294967296000000 + (133959240547251*dq2*cos(q3))/4294967296000000 - (33037*dq2*cos(q2 + q3 + q4))/100000000000 - (1325382878762107*dq1*cos(2*q2 + 2*q3 + 2*q4))/53687091200000000 - (1325382878762107*dq1*cos(2*q2 + 2*q3 + 2*q4))/53087000000 - (25535032531*dq2*m3*cos(q3))/25000000000 - (567*dq3*m4*cos(q2))/62500 + (19803*dq1*m4*cos(2*q2 + 2*q3 + q4))/6250000 + (134739*dq1*m3*sin(q3))/6250000 + (378*dq1*m4*sin(2*q2 + q3))/15625 + (12669*dq3*m4*cos(q2 + q3 + q4))/1000000000 - (25461*dq3*m4*sin(q3))/15625 + (1387*dq1*m4*sin(2*q2 + 2*q3 + 2*q4))/100000000 - (25461*dq3*m4*sin(q2 + q3 + q4))/2500000 + (11843330309679237477*dq1*m4*sin(2*q2 + 2*q3 + 2*q3))/159218604441600000000 - (123215393845668313303*dq1*m3*sin(2*q2 + 2*q3 + q4))/2500000 + (47745882531*dq3*m3*cos(q2 + q3 + q4))/2500000 + (123215393845668313303*dq1*m3*sin(2*q2 + 2*q3 + 2*q3))/1592186044416000000000 + (123215393845668313303*dq1*m3*sin(2*q2 + 2*q3 + q4))/312500 + (4023*dq1*m4*sin(2*q2 + 2*q3))/31250 + (4023*dq1*m4*sin(2*q2 + 2*q3))/31250 + (4023*dq1*m4*sin(2*q2 + 2*q3))/31250 + (4023*dq1*m4*sin(2*q2 + 2*q3))/31250 + (1269*dq3*m4*cos(q2 + q3))/25000000000 + (12321539384568313303*dq1*m3*sin(2*q2 + q3))/2500000000 + (27535032531*dq2*m3*cos(q2 + q3))/312500 + (4023*dq1*m4*sin(2*q2 + 2*q3))/312500 + (567*dq3*m3*cos(q2 + q3))/250000000000 + (567*dq3*m3*cos(q2 + q3))/250000000000 + (27635032531*dq2*m3*cos(q2 + q3))/250000000000 + (27635032531*dq2*m3*cos(q2 + q3))/250000000000 + (27635032531*dq2*m3*cos(q2 + q3))/250000000000 + (27635032531*dq2*m3*cos(q2 + q3))/250000000000 + (26461*dq3*m4*cos(q3 + q4))/3125000 + ($

 $\begin{aligned} CCC32 &= (134739*dq2*m3*sin(q3))/3125000 ~ (19803*dq4*m4*cos(q4))/3125000 + \\ (756*dq2*m4*sin(q3))/15625 - (9387*dq4*m4*sin(q4))/1250000 + (8487*dq2*m4*cos(q3 + q4))/1562500 + \\ (4023*dq2*m4*sin(q3 + q4))/625000 \end{aligned}$

CCC33 = -(21*dq4*m4*(1886*cos(q4) + 2235*sin(q4)))/6250000

CCC34 -- (21*dq4*m4*(1886*cos(q4) + 2235*sin(q4)))/12500000

 $\begin{aligned} & CCC42 = (3*m4*(22632*dq2*cos(q3+q4)+26820*dq2*sin(q3+q4)+13202*dq2*cos(q4)+26404*dq3*cos(q4)+15645*dq2*sin(q4)+31290*dq3*sin(q4)))/12500000 \end{aligned}$

CCC43 =(21*dq3*m4*(1886*cos(q4) + 2235*sin(q4)))/12500000

CCC44 =0

CCC441;

 $C = [CCC11 \ CCC12 \ CCC14; CCC21 \ CCC22 \ CCC23 \ CCC24; \ CCC31 \ CCC32 \ CCC33 \ CCC34; \ CCC41 \ CCC42 \ CCC43 \ CCC44; \ CCC44 \ CC44 \ CC44 \ CCC44 \ CCC44 \ CCC44 \ CCC44 \ CCC44 \ CCC44 \$

Matriz de Gravedad

function g=gravedad(q)

```
 \begin{array}{l} m=1 \\ m=1 \\ m=1 \\ m=3 \\ m=3 \\ m=3 \\ m=3 \\ m=1 \\ m=1
```

g4 = ((447*m4*cos(q2 + q3 + q4))/20000 - (943*m4*sin(q2 + q3 + q4))/50000)*g

g=[g1;g2;g3;g4];

function P=cin_dir(q)

%Parametros Denavit_Hartemberg del SVC422B al= 0; a2= 286*0.001; a3= 168*0.001; a4- 120*0.001; d1= -59*0.001; d2= -54*0.001; d3= 54*0.001; d4= 0; q1=q(1); q2=q(2); q3=q(3); q4=q(4);

 $x = a1*\cos(pi/2 + q1) + d2*\sin(pi/2 + q1) + d3*\sin(pi/2 + q1) + d4*\sin(pi/2 + q1) + a2*\cos(q2)*\cos(pi/2 + q1) - a4*\cos(q4)*(\cos(pi/2 + q1)*\sin(q2)*\sin(q3) - \cos(q2)*\cos(q3)*\cos(pi/2 + q1)) - a4*\sin(q4)*(\cos(q2)*\cos(pi/2 + q1)*\sin(q3) + \cos(q3)*\cos(pi/2 + q1)*\sin(q2)) + a3*\cos(q2)*\cos(q3)*\cos(pi/2 + q1) - a3*\cos(pi/2 + q1)*\sin(q3) + q1)*\sin(q2)*\sin(q3)$

 $y = a1*\sin(pi/2 + q1) - d3*\cos(pi/2 + q1) - d4*\cos(pi/2 + q1) - d2*\cos(pi/2 + q1) - a4*\cos(q4)*(sin(q2)*sin(q3)*sin(pi/2 + q1) - cos(q2)*cos(q3)*sin(pi/2 + q1)) - a4*sin(q4)*(cos(q2)*sin(q3)*sin(pi/2 + q1) + cos(q3)*sin(q2)*sin(pi/2 + q1)) + a2*cos(q2)*sin(pi/2 + q1) + a3*cos(q2)*cos(q3)*sin(pi/2 + q1) - a3*sin(q2)*sin(q3)*sin(pi/2 + q1) + q1)$

z = d1 + a2*sin(q2) + a4*cos(q4)*(cos(q2)*sin(q3) + cos(q3)*sin(q2)) + a4*sin(q4)*(cos(q2)*cos(q3) - sin(q2)*sin(q3)) + a3*cos(q2)*sin(q3) + a3*cos(q3)*sin(q2)

P-{x y z};

ANEXO C1

Características relevantes de las 7 perturbaciones aplicadas al brazo robótico SVC422B

Todas las gráficas que se muestran a continuación vienen dadas en T(N.m) v.s. t(s) además cada perturbación esta conformada por cuatro sub-perturbaciones pertenecientes a cada articulación.

Perturbación 1 (TPP1)

Articulación		Parameters					
	Uniform Random ·	+ función	Minimum	Maximum	Seed	Sample Time	
1	Random 1	15-sqrt(u)	-2.54	1.5	0	2.1	
2	Random 2	2.51	-2.5	2.5	0	1	
3	Random 3	1.42	-2.5	2.5	0	1.6	
4	Random 4	3.38	-2.5	2.5	0	1.1	

Figura C1.1. Perturbación 1 y las cuatro sub-perturbaciones que la conforman.

Perturbación 2 (TPP2)

Articulacion		Parameters					
	Uniform Random	+ función	Minimum	Maximum	Seed	Sample Time	
1	Random 1	15-sqrt(u)	-2.54*3	1.5*3	0	2.1	
2	Random 2	2.51	-2.5	2.5	0	1	
3	Random 3	1.42	-2.5	2.5	0	1.6	
4	Random 4	3.38	-2.5	2.5	0	1.1	

Figura C1.2. Perturbación 2 y las cuatro sub-perturbaciones que la conforman.

W CONTRACTOR OF BUILDING CONTRACTOR	Parameters						
Articulación	Uniform Random +	función	Minimum	Maximum	Seed	Sample Time	
1	Random 1	15-sqrt(u)	-2.54*2	1.5*2	0	2.1	
2	Random 2	2.51	-2.5*2	2.5*2	0	1	
3	Random 3	1.42	-2.5	2.5	0	1.6	
4	Random 4	3.38	-2.5	2.5	0	1.1	

Perturbación 3 (TPP3)

Figura C1.3. Perturbación 3 y las cuatro sub-perturbaciones que la conforman.

Perturbación 4 (TPP4)

		Parameters					
Articulación	Uniform Random + f	unción	Minimum	Maximum	Seed	Sample Time	
1	Random 1	15-sqrt(u)	-2.54	1.5	0	2.1	
2	Random 2	2.51	-2.5	2.5	0	1	
3	Random 3	1.42	-2.5*4	2.5*4	0	1.6	
4	Random 4	3.38	-2.5	2.5	0	1.1	

Figura C1.4. Perturbación 4 y las cuatro sub-perturbaciones que la conforman.

Perturbación 5 (TPP5)

	Parameters						
Articulación	Uniform Random + función		Minimum	Maximum	Seed	Sample Time	
1	Random 1	15-sqrt(u)	-2.54	1.5	0	2.1	
2	Random 2	2.51	-2.5	2.5	0	1	
3	Random 3	1.42	-2.5	2.5	0	1.6	
4	Random 4	3.38	-2.5*2	2.5*2	0	1.1	

Figura C1.5. Perturbación 5 y las cuatro sub-perturbaciones que la conforman.

Perturbación 6 (TPP6)

Articulación		Parameters					
	Uniform Random + función		Minimum	Maximum	Seed	Sample Time	
1	Random 1	15-sqrt(u)	-2.54*2	1.5*2	0	2.1	
2	Random 2	2.51	-2.5*2	2.5*2	0	1	
3	Random 3	1.42	-2.5*4	2.5*4	0	1.6	
4	Random 4	3.38	-2.5*2	2.5*2	0	1.1	

Figura C1.6. Perturbación 6 y las cuatro sub-perturbaciones que la conforman.

Perturbación 7 (TPP7)

Articulación		Parameters					
	Uniform Random + función		Minimum	Maximum	Seed	Sample Time	
1	Random 1	15-sqrt(u)	-2.54*2	1.5*2	0	0.5	
2	Random 2	2.51	-2.5*2	2.5*2	0	0.5	
3	Random 3	1.42	-2.5*4	2.5*4	0	0.5	
4	Random 4	3.38	-2.5*2	2.5*2	0	0.5	

Figura C1.7. Perturbación 7 y las cuatro sub-perturbaciones que la conforman.

ANEXO C2

Torques de perturbación aplicados al SVC322B

Figura C2.1. Perturbación PTN1

Figura C2.5. Perturbación PTN5

Figura C2.2. Perturbación PTN2

Figura C2.4. Perturbación PTN4

Figura C2.3. Perturbación PTN3

Figura C2.6. Perturbación PTN6

Figura C2.7. Perturbación PTN7

Figura C2.9. Perturbación PTN9

Figura C2.8. Perturbación PTN8

Figura C2.11. Perturbación PTN11

Figura C2.10. Perturbación PTN10

Figura C2.12. Perturbación PTN12

Figura C2.13. Perturbación PTN13

Figura C2.14. Perturbación PTN14

Perturbación	Características cualitativas y cuantitaivas	Ecuaciones					
		Articulación 1	Articulación 2	Articulación 3	Articulación 4		
PTN1	KP=[400; 400;900;10000] senoidal 1cm ondeada	5+(0.2)*sin(u*(pi/1))	S+(0.2)*sin(u*(pi/1))	5+(0.2)*sin(u*(pi/1))	5+(0.2)*sin(u*(pi/1))		
PTN2	[400; 400;900;10000] senoidal 1.5cm ondeada	5+(0.2)*sin(u*(pi/2))	5+(0.2)*sin(u*(pi/2))	5+{0.2}*sin(u*(pi/2))	5+(0.2)*sin(u*(pi/2))		
PTN3	[400; 400;900;10000] Senoidal 3cm ondeada	5+(0.5)*sin(u*(pi/2))	5+(0.5)*sin(u*(pi/2))	5+(0.5)*sin(u*(pi/2))	5+(0.5)*sin(u*(pi/2))		
PTN4	[400; 400;900;10000] senoidal 3cm_2	5-{0.5}*sin{u*(pi/10)}	5-(0.5)*sin(u*(pi/10))	5-{0.5}*sin(u*(pi/10))	5-{0.5}*sin{u*(pi/10)}		
PTN5	[400; 400;900;10000] senoidal 3cm	5-(0.5)*sin(u*(pi/5))	5-{0.5}*sin(u*(pi/5))	5-{0.5}*sin{u*(pi/5)}	5-{0.5}*sin(u*(pi/5))		
PTN6	[400; 400;900;10000] Pertubacion sqrt[2	5-sqrt(1.5*v)	5-sqrt(1.5*u)	5-sqrt(1.5*u)	5-sqrt(1.5*u)		
PTN7	[400; 400;900;10000] perturbación constante	5	5	5	5		
PTN8	[400; 400;900;10000] perturbación sert negativa	5-sqrt(u)	5-sqrt(u)	5-sqrt(u)	5-sqrt(u)		
PTN9	(400; 900;2025;10000) perturbación sube baja error cero	0.2*u	sqrt(5*u)-(u/3)	sqrt(5*u)-(u/3)	sqrt(5*u)-(u/3)		
PTN10	[400; 900;2025;10000] perturbación sube baja error cero	0.2*u	sqrt(S*v)	sqrt(5*u)	sqrt(5*u)-(u/3)		
PTN11	(900; 900;2500;40000)	0.2*u	2*sin(u*(pi/10))	2*sin(u*(pi/10))	2*sin(u*(pi/10))		
PTN12	[400; 900;2025;10000] perturbaciones oscilantes error 3cm	0.2*u	2*sin(u*(pi/10))	2*sin(u*(pi/10))	2*sin(u*(pi/10))		
PTN13	[400; 900;2025;10000] perturbación sube baja	0.2*u	sqrt(5*u)	2*sqrt(2*u)	sqrt(5*u)-(v/3)		
PTN14	[400; 900;2025;10000] Perturbaciones oscilantes	2*sin(u*(pi/10))	2*sin(u*(pi/10))	2*sin(u*(pi/10))	2*sin(u*(pi/10))		

Tabla C.2 Características cualitativas y cuantitativas de las 14 perturbaciones

Diagrama de bloques que conforman el sistema de control del SVC422B

Figura C3.1. Sistema total con el controlador del SVC422B

Figura C3.2. Bloque del Generador de trayectorias de deseadas

Figura C3.3. Bloque de Errores

Figura C3.4. Bloque del Sistema de control

Figura C3.5. Controladores para cada perturbación

Figura C3.8. Bloque del Brazo robótico SVC422B

.

Figura C3.9. Bloque del Trayectorias obtenidas

Figura C3.10. Bloque de los errores en el espacio de coordenadas cartesianas

Figura C3.11. Bloque perturbaciones que afectan al sistema

Figura C3.12. Estructura interna de cada bloque de perturbación

Figura C3.13. Perturbaciones para cada articulación.

Figura C4. Diversos tipos de motores para el eslabón 1

ANEXO C4

ANEXO C5

Planos del diseño mecánico de los eslabones del brazo robótico SVC422B

