UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERIA GEOLOGICA, MINERA Y METALURGICA

ÓPTIMIZACION DEL CONSUMO ENERGETICO DE UN MOLINO DE BOLAS VARIANDO LA VELOCIDAD DE ROTACION

TESIS

PARA OPTAR EL TITULO PROFESIONAL DE: INGENIERO METALURGISTA

ELABORADO POR: JUAN CARLOS GUERRERO VILLALBA

ASESOR:

ING. DAVID PEDRO MARTINEZ AGUILAR

LIMA – PERU

2016

Dedico el presente trabajo a mis padres a quienes les debo todo el esfuerzo dedicado en mi formación profesional y a mis hijos y esposa por ser la inspiración diaria.

Agradezco a los profesores y alumnos de la escuela de Metalurgia quienes contribuyeron en este trabajo.

INDICE

RESUMEN	

ABSTRACT	
ADSTRACT	

INTRODUCCION
CAPITULO I: FUNDAMENTO TEORICO DEL SISTEMA EN ESTUDIO26
1.1 Teorías sobre el consumo energético y la reducción de tamaños26
1.1.1 Postulados empíricos de Conminución27
1.1.2 Ecuación diferencial de la Conminucion
1.2 El molino de bolas y el consumo energético32
1.2.1 La tasa de quiebra en función de la energía32
1.2.2 Potencia del molino35
1.2.3 Ecuaciones para la potencia de un molino
1.3 Teorías sobre el consumo energético del motor eléctrico48
1.3.1 El motor eléctrico de inducción50
1.3.2 Funcionamiento del motor de inducción
1.3.3 Curvas características del motor de inducción
1.3.4 Tipos de carga
1.3.5 Control de la velocidad del motor
1.4 Los variadores de frecuencia y el ahorro de energía
1.4.1 El variador de frecuencia

1.4.2 Funcionamiento de un variador de frecuencia60
1.4.3 Selección del variador óptimo y recomendaciones
CAPITULO II: PRUEBAS DE LABORATORIO Y RESULTADOS65
2.1 Prueba Modificada de Bond para determinar el W.I
2.1.1 Prueba Modificada de Bond para determinar el W.I del sulfuro69
2.1.1.1 Prueba Modificada de Bond para el sulfuro a 52.92 RPM70
2.1.1.2 Prueba Modificada de Bond para el sulfuro a 62.92 RPM71
2.1.1.3 Prueba Modificada de Bond para el sulfuro a 68.76 RPM72
2.1.1.4 Prueba Modificada de Bond para el sulfuro a 73.72 RPM73
2.1.1.5 Prueba Modificada de Bond para el sulfuro a 84.47 RPM74
2.1.1.6 Realización de las curvas W.I Vs. RPM y Gr/Rev. Vs. RPM para el
sulfuro75
2.1.2 Prueba Modificada de Bond para determinar el W.I de sílice77
2.1.2.1 Prueba Modificada de Bond para sílice a 52.92 RPM
2.1.2.2 Prueba Modificada de Bond para sílice a 62.92 RPM
2.1.2.3 Prueba Modificada de Bond para sílice a 68.76 RPM80
2.1.2.4 Prueba Modificada de Bond para sílice a 73.72 RPM81
2.1.2.5 Prueba Modificada de Bond para sílice a 84.47 RPM82
-
2.1.2.6 Prueba Modificada de Bond para sílice a 92.00 RPM
2.1.2.6 Prueba Modificada de Bond para sílice a 92.00 RPM

2.1.3 Prueba Modificada de Bond para determinar el W.I de la caliza
2.1.3.1 Prueba Modificada de Bond para caliza a 42.18 RPM
2.1.3.2 Prueba Modificada de Bond para caliza a 52.92 RPM
2.1.3.3 Prueba Modificada de Bond para caliza a 62.92 RPM
2.1.3.4 Prueba Modificada de Bond para caliza a 68.76 RPM90
2.1.3.5 Prueba Modificada de Bond para caliza a 73.72 RPM91
2.1.3.6 Prueba Modificada de Bond para caliza a 84.47 RPM92
2.1.3.7 Realización de las curvas W.I Vs. RPM y Gr/Rev. Vs. RPM para la
caliza93
2.1.4 Relación de Gbr , Wi y P_{80} Vs RPM Sulfuro , Sílice y Caliza95
2.1.4.1 Wi Vs RPM Sulfuro, Sílice y Caliza95
2.1.4.2 Gr/Rev. Vs RPM Sulfuro, Sílice y Caliza96
2.2 Mediciones de consumo energético del Proceso de Molienda97
2.2.1 Consumo de energía para el sistema molino y carga de bolas
2.2.1.1 Consumo de energía - sistema molino y carga de bolas (52,92 RPM)99
2.2.1.2 Consumo de energía - sistema molino y carga de bolas (62,92 RPM)100
2.2.1.3 Consumo de energía - sistema molino y carga de bolas (68,76 RPM)101
2.2.1.4 Consumo de energía - sistema molino y carga de bolas (73,72 RPM)102
2.2.1.5 Consumo de energía - sistema molino y carga de bolas (84,47 RPM)103
2.2.2 Consumo de energía para moler el sulfuro104
2.2.2.1 Consumo de energía para moler el sulfuro (52,92 RPM)104
2.2.2.2 Consumo de energía para moler el sulfuro (62,92 RPM)105

2.2.2.3 Consumo de energía para moler el sulfuro (68,76 RPM)106
2.2.2.4 Consumo de energía para moler el sulfuro (73,72 RPM)107
2.2.2.5 Consumo de energía para moler el sulfuro (84,47 RPM)108
2.2.2.6 Potencia Vs. RPM para moler el sulfuro109
2.2.3 Consumo de energía para moler sílice110
2.2.3.1 Consumo de energía para moler sílice (52,92 RPM)110
2.2.3.2 Consumo de energía para moler sílice (62,92 RPM)111
2.2.3.3 Consumo de energía para moler sílice (68,76 RPM)112
2.2.3.4 Consumo de energía para moler sílice (73,72 RPM)113
2.2.3.5 Consumo de energía para moler sílice (84,47 RPM)114
2.2.3.6 Potencia Vs. RPM para moler sílice115
2.2.4 Consumo de energía para moler la caliza116
2.2.4.1 Consumo de energía para moler la caliza (52,92 RPM)116
2.2.4.2 Consumo de energía para moler la caliza (62,92 RPM)117
2.2.4.3 Consumo de energía para moler la caliza (68,76 RPM)118
2.2.4.4 Consumo de energía para moler la caliza (73,72 RPM)119
2.2.4.5 Consumo de energía para moler la caliza (84,47 RPM)120
2.2.4.6 Potencia Vs. RPM para moler la caliza
2.2.5 Comparación de la Potencia Vs las RPM para las diferentes muestras de
minerales122

CAPITULO III: DETERMINACIÓN DEL MODELO MATEMÁTICO PARA EL
MOLINO DE BOLAS 12" x 12" DE LABORATORIO123
3.1 Sistemas y Señales
3.1.1 Métodos de Representación y Análisis124
3.1.2 Sistemas Estáticos y Dinámicos125
3.1.3 Sistemas de control de lazo abierto y lazo cerrado127
3.2 Realización del modelo matemático para el molino de bolas 12" X 12" de
laboratorio130
3.2.1 La linealidad de la cinética de quiebra133
3.2.2 Derivación de un modelo matemático simplificado136
3.2.3 Determinación experimental del $S_{\rm i}~$ para el molino de bolas de 12" X 12" de
laboratorio138
3.2.3.1 Análisis Granulométrico del alimento
3.2.3.2 Calculo del Si (Función Selección) a 40RPM140
3.2.3.3 Calculo del Si (Función Selección) a 60RPM141
3.2.3.4 Calculo del Si (Función Selección) a 80RPM142
3.2.3.5 Calculo del Si (Función Selección) a 100RPM143
3.2.3.6 Si (Función Selección- evaluado en los 15 minutos) Vs RPM144
3.2.3.7 Si (Función Selección - evaluado en los 5 minutos)Vs RPM145
3.3 Simulación del proceso de molienda variando las RPM en el molino de bolas 12"
X 12" de laboratorio146
3.3.1 Determinación del S _{i (rev.)} a diferentes RPM148

3.2 Simulación del sistema de control de molienda para el molino de bolas

12" X	12" de laboratorio151
3.2.1 Simulac	ión del sistema a lazo abierto152
3.2.2 Simulac	ión del sistema de control para la malla 30153
3.2.3 Simulac	ión del sistema de control para la malla 50154
3.2.4 Simulac	ión del sistema de control para la malla 70155
3.2.5 Simulac	ión del sistema de control para la malla 100156
3.2.6 Simulac	ión del sistema de control para la malla 150157
3.2.7 Simulac	ión del sistema de control para la malla 200158
CONCLUSIO	NES
BIBLIOGRAI	FIA166
ANEXOS	
Anexo 1	Equipos utilizados para realizar las pruebas
Anexo 2	Hoja de registro de datos del medidor Multiparametros PM130 SATEC
Anexo 3	Ajuste de datos con Matlab
Anexo 4	Controlador PID
Anexo 5	Determinación de la gravedad específica y análisis mineralógico de las
	muestras

INDICE DE FIGURAS

Figura 1.1 Balance de energía26
Figura 1.2 El Consumo de Potencia en la Molienda
Figura 1.3 La Cinética de la Molienda en Función de la energía
Figura1.4 Movimiento de un molino de bolas a una velocidad normal de
operación36
Figura 1.5 Variación de la potencia del molino con variación de la velocidad crítica y
carga de bolas como parámetros: molino de laboratorio de 0.6 m de
diámetro
Figura 1.6 Coeficiente para la potencia del molino utilizando la ecuación de Beeck para
la molienda de cemento (datos U.S.A . Hackman D= 2.9 a 4.5 m ; L/D = 2.7 a
3.7; fc 0.7 a 0.8)41
Figura 1.7 Potencia neta como función de la carga de bolas y fracción de velocidad
critica para un molino de laboratorio ; D = 0.6 m , d= 26 mm42
Figura 1.8 Potencia neta por tonelada métrica de medios de molienda como función de
la carga de bolas a 70% de la velocidad critica para molinos de
laboratorio43
Figura 1.9 Potencia del molino por toneladas métricas de medios de molienda, como
una función del diámetro del molino (fc =0.7)44
Figura 1.10 Vista a través de la sección y dimensiones para lainas corrugadas , barras
levantadoras y lainas en espiral angular (ver figura 2.11)46

Figura 1.11 Potencia neta para un molino de bolas de 0.9m X 1.52 m con diferentes
lainas y operando con una carga de bolas del 35% (por volumen)46
Figura 1.12 Velocidades de fractura específica para cuarzo molido en un molino de
0.9m X 1.42 m con lainas; (C) corrugadas, (B) barras levantadoras y (A)
espiral – angular47
Figura 1.13 Variación de la potencia de n molino con la fracción de la velocidad critica
para un molino de laboratorio, con el tamaño de bola como parámetro (D =
0.6m, J = 0.35, fc = 0.14)
Figura 1.14 Tipos de motores eléctricos de inducción asíncronos49
Figura 1.15 Motor de inducción51
Figura 1.16 Placa característica de un motor de inducción52
Figura 1.17 Curva Corriente – Par Vs. Velocidad del motor eléctrico de inducción53
Figura 1.18 Relación Par-Velocidad cuando varía la frecuencia de alimentación del
motor eléctrico de inducción del motor eléctrico de inducción54
Figura 1.19 Par constante del motor eléctrico de inducción
Figura 1.20 Par lineal del motor eléctrico de inducción
Figura 1.21 Par cuadrático del motor eléctrico de inducción56
Figura 1.22 Par que disminuye con la velocidad del motor eléctrico de inducción57
Figura 1.23 Variador e frecuencia
Figura 1.24 Diagrama de bloques del variador de frecuencia61
Figura 1.25 Tipos de rectificadores61
Figura 1.26 Inversor de seis pasos

Figura 1.27 Inversor PWM	63
Figura 2.1 Método normalizado de Bond simulando un circuito cerrado de molienda c	on
una carga circulante de 350%; $F/Q = 3.5$	67
Figura 2.2 Análisis granulométrico del alimento del polimetálico	59
Figura 2.3 Análisis granulométrico del producto del polimetálico a 52.92 RPM	70
Figura 2.4 Análisis granulométrico del producto del polimetálico a 62.92 RPM	71
Figura 2.5 Análisis granulométrico del producto del polimetálico a 68.76 RPM	72
Figura 2.6 Análisis granulométrico del producto del polimetálico a 73.72 RPM	73
Figura 2.7 Análisis granulométrico del producto del polimetálico a 84.47 RPM	74
Figura 2.8 Work Índex Vs. RPM del polimetálico	75
Figura 2.9 Moliendabilidad Vs. RPM del polimetálico	76
Figura 2.10 Análisis granulométrico del alimento de la sílice	77
Figura 2.11 Análisis granulométrico del producto de la sílice a 52.92 RPM	78
Figura 2.12 Análisis granulométrico del producto de la sílice a 62.92 RPM	79
Figura 2.13 Análisis granulométrico del producto de la sílice a 68.76 RPM	80
Figura 2.14 Análisis granulométrico del producto de la sílice a 73.72 RPM	81
Figura 2.15 Análisis granulométrico del producto de la sílice a 84.47 RPM	82
Figura 2.16 Análisis granulométrico del producto de la sílice a 92.00 RPM	83
Figura 2.17 Work Índex Vs. RPM de la sílice	84
Figura 2.18 Moliendabilidad Vs. RPM de la sílice	85
Figura 2.19 Análisis granulométrico del alimento de la caliza	36
Figura 2.20 Análisis granulométrico del producto de la caliza a 42.18 RPM	87

Figura 2.21 Análisis granulométrico del producto de la caliza a 52.92 RPM
Figura 2.22 Análisis granulométrico del producto de la caliza a 62.92 RPM89
Figura 2.23 Análisis granulométrico del producto de la caliza a 68.76 RPM90
Figura 2.24 Análisis granulométrico del producto de la caliza a 73.72 RPM91
Figura 2.25 Análisis granulométrico del producto de la caliza a 84.47 RPM92
Figura 2.26 Work Índex Vs. RPM de la caliza93
Figura 2.27 Moliendabilidad Vs. RPM de la caliza94
Figura 2.28 Wi Vs. RPM Polimetálico, Sílice y Caliza95
Figura 2.29 Gr/Rev. Vs. RPM Polimetálico, Sílice y Caliza96
Figura 2.30 Consumo de energía molino + bolas a 50HZ (52,92 RPM)99
Figura 2.31 Consumo de energía molino + bolas a 60HZ (62,92 RPM)100
Figura 2.32 Consumo de energía molino + bolas a 65HZ (68,76 RPM)101
Figura 2.33 Consumo de energía molino + bolas a 70HZ (73,72 RPM)102
Figura 2.34 Consumo de energía molino + bolas a 80HZ (84,47 RPM)103
Figura 2.35 Consumo de energía a 50HZ (52,92 RPM) – polimetálico104
Figura 2.36 Consumo de energía a 60HZ (62,92 RPM) – polimetálico105
Figura 2.37 Consumo de energía a 65HZ (68,76 RPM) – polimetálico106
Figura 2.38 Consumo de energía a 70HZ (73,72 RPM) – polimetálico107
Figura 2.39 Consumo de energía a 80HZ (84,47 RPM) – polimetálico108
Figura 2.40A Potencia (Molino, Carga de bolas y Sulfuro) a diferentes RPM109
Figura 2.40B Moliendabilidad Vs. Potencia a diferentes RPM - sulfuro109
Figura 2.41 Consumo de energía a 50HZ (52,92 RPM) – sílice110

Figura 2.42 Consumo de energía a 60HZ (62,92 RPM) – sílice111
Figura 2.43 Consumo de energía a 65HZ (68,76 RPM) – sílice112
Figura 2.44 Consumo de energía a 70HZ (73,72 RPM) – sílice113
Figura 2.45 Consumo de energía a 80HZ (84,47 RPM) – sílice114
Figura 2.46A Potencia (Molino, Carga de bolas y Sulfuro) a diferentes RPM115
Figura 2.46B Moliendabilidad Vs. Potencia a diferentes RPM – sílice115
Figura 2.47 Consumo de energía a 50HZ (52,92 RPM) – caliza116
Figura 2.48 Consumo de energía a 60HZ (62,92 RPM) – caliza117
Figura 2.49 Consumo de energía a 65HZ (68,76 RPM) – caliza118
Figura 2.50 Consumo de energía a 70HZ (73,72 RPM) – caliza119
Figura 2.51 Consumo de energía a 80HZ (84,47 RPM) – caliza120
Figura 2.52A Potencia (Molino, Carga de bolas y Caliza) a diferentes RPM121
Figura 2.52B Moliendabilidad Vs. Potencia a diferentes RPM – caliza121
Figura 2.53 Potencia (Molino, Carga de bolas y minerales) a diferentes RPM122
Figura 2.54 Potencia (solo molienda del minerales) a diferentes RPM122
Figura 3.1 Descripción de la relación causa y efecto124
Figura 3.2 Sistema estático125
Figura 3.3 Sistema dinámico126
Figura 3.4 Sistemas SISO y MIMO127
Figura 3.5 Sistema de control de lazo abierto128
Figura 3.6 Sistema de control de lazo cerrado129

Figura 3.7 Representación de la tasa de quiebra y la acumulación de los productos de
fractura132
Figura 3.8 El efecto del porcentaje de solido en la molienda135
Figura 3.9 La cinética de molienda en función de la energía135
Figura 3.10 Análisis granulométrico del alimento - sulfuro139
Figura 3.11 Función Selección (Si) a 40RPM140
Figura 3.12 Función Selección (Si) a 60RPM141
Figura 3.13 Función Selección (Si) a 80RPM142
Figura 3.14 Función Selección (Si) a 100RPM143
Figura 3.15 Si (15min.) Vs RPM144
Figura 3.16 Si (5min.) Vs RPM145
Figura 3.17 Si (rev.) Vs RPM148
Figura 3.18 Análisis Granulométrico del Producto Vs RPM (a partir de 40RPM)150
Figura 3.19 Análisis Granulométrico del Producto Vs RPM (extrapolado desde 0 RPM
a 40 RPM)150
Figura 3.20 Sistema de control de lazo cerrado propuesto con los datos del molino de
bolas 12" X 12" de laboratorio151
Figura 3.21 Diagrama de bloques de la simulación del sistema a lazo abierto de los 6
tamaños (mallas: m30, m50, m70, m100, m150, m200)152
Figura 3.22 Simulación del sistema a lazo abierto de los 6 tamaños (mallas: m30, m50,
m70, m100, m150, m200) – visualizador de lazo abierto
Figura 3.23 Diagrama de bloques del sistema de control para la malla 30153

INDICE DE TABLAS

Tabla 2.1 Distribución de carga de bolas prueba normalizada de Bond
Tabla 2.2 Análisis granulométrico del alimento del polimetálico69
Tabla 2.3 A Moliendabilidad del polimetálico a 52.92 RPM70
Tabla 2.3 B Análisis granulométrico del producto del polimetálico a 52.92 RPM70
Tabla 2.4 A Moliendabilidad del polimetálico a 62.92 RPM71
Tabla 2.4 B Análisis granulométrico del producto del polimetálico a 62.92 RPM71
Tabla 2.5 A Moliendabilidad del polimetálico a 68.76 RPM72
Tabla 2.5 B Análisis granulométrico del producto del polimetálico a 68.76 RPM72
Tabla 2.6 A Moliendabilidad del polimetálico a 73.72 RPM73
Tabla 2.6 B Análisis granulométrico del producto del polimetálico a 73.72 RPM73
Tabla 2.7 A Moliendabilidad del polimetálico a 84.47 RPM74
Tabla 2.7 B Análisis granulométrico del producto del polimetálico a 84.47 RPM74
Tabla 2.8 Work Índex Vs. RPM del polimetálico
Tabla 2.9 Moliendabilidad Vs. RPM del polimetálico
Tabla 2.10 Análisis granulométrico del alimento de la sílice
Tabla 2.11 A Moliendabilidad de la sílice a 52.92 RPM
Tabla 2.11 B Análisis granulométrico del producto de la sílice a 52.92 RPM78
Tabla 2.12 A Moliendabilidad de la sílice a 62.92 RPM
Tabla 2.12 B Análisis granulométrico del producto de la sílice a 62.92 RPM
Tabla 2.13 A Moliendabilidad de la sílice a 68.76 RPM

Tabla 2.13 B Análisis granulométrico del producto del cuarzo a 68.76 RPM80
Tabla 2.14 A Moliendabilidad de la sílice a 73.72 RPM
Tabla 2.14 B Análisis granulométrico del producto de la sílice a 73.72 RPM81
Tabla 2.15 A Moliendabilidad de la sílice a 84.47 RPM
Tabla 2.15 B Análisis granulométrico del producto de la sílice a 84.47 RPM82
Tabla 2.16 A Moliendabilidad de la sílice a 92.00 RPM
Tabla 2.16 B Análisis granulométrico del producto de la sílice a 92.00 RPM83
Tabla 2.17 Work Índex Vs. RPM de la sílice
Tabla 2.18 Moliendabilidad Vs. RPM de la sílice
Tabla 2.19 Análisis granulométrico del alimento del caliza
Tabla 2.20 A Moliendabilidad del caliza a 42.18 RPM
Tabla 2.20 B Análisis granulométrico del producto de la caliza a 42.18 RPM
Tabla 2.21 A Moliendabilidad del caliza a 52.92 RPM
Tabla 2.21 B Análisis granulométrico del producto de la caliza a 52.92 RPM
Tabla 2.22 A Moliendabilidad de la caliza a 62.92 RPM
Tabla 2.22 B Análisis granulométrico del producto de la caliza a 62.92 RPM
Tabla 2.23 A Moliendabilidad de la caliza a 68.76 RPM90
Tabla 2.23 B Análisis granulométrico del producto de la caliza a 68.76 RPM90
Tabla 2.24 A Moliendabilidad de la caliza a 73.72 RPM91
Tabla 2.24 B Análisis granulométrico del producto de la caliza a 73.72 RPM91
Tabla 2.25 A Moliendabilidad de la caliza a 84.47 RPM92
Tabla 2.25 B Análisis granulométrico del producto de la caliza a 84.47 RPM92

Tabla 2.26 Work Índex Vs. RPM de la caliza
Tabla 2.27 Moliendabilidad Vs. RPM de la caliza94
Tabla 2.28 Wi Vs. RPM Polimetálico, Sílice y Caliza
Tabla 2.29 Gr/Rev. Vs. RPM Polimetálico, Sílice y Caliza
Tabla 2.30 Consumo de energía molino + bolas a 50HZ (52,92 RPM)99
Tabla 2.31 Consumo de energía molino + bolas a 60HZ (62,92 RPM)100
Tabla 2.32 Consumo de energía molino + bolas a 65HZ (68,76 RPM)101
Tabla 2.33 Consumo de energía molino + bolas a 70HZ (73,72 RPM)102
Tabla 2.34 Consumo de energía molino + bolas a 80HZ (84,47 RPM)103
Tabla 2.35 Consumo de energía a 50HZ (52,92 RPM) – polimetálico104
Tabla 2.36 Consumo de energía a 60HZ (62,92 RPM) – polimetálico105
Tabla 2.37 Consumo de energía a 65HZ (68,76 RPM) – polimetálico106
Tabla 2.38 Consumo de energía a 70HZ (73,72 RPM) – polimetálico107
Tabla 2.39 Consumo de energía a 80HZ (84,47 RPM) – polimetálico108
Tabla 2.40 Potencia (Molino, Carga de bolas y Sulfuro) a diferentes RPM109
Tabla 2.41 Consumo de energía a 50HZ (52,92 RPM) – sílice110
Tabla 2.42 Consumo de energía a 60HZ (62,92 RPM) – sílice111
Tabla 2.43 Consumo de energía a 65HZ (68,76 RPM) – sílice112
Tabla 2.44 Consumo de energía a 70HZ (73,72 RPM) – sílice113
Tabla 2.45 Consumo de energía a 80HZ (84,47 RPM) – sílice114
Tabla 2.46 Potencia (Molino, Carga de bolas y Sílice) a diferentes RPM115
Tabla 2.47 Consumo de energía a 50HZ (52,92 RPM) – caliza116

Tabla 2.48 Consumo de energía a 60HZ (62,92 RPM) – caliza117
Tabla 2.49 Consumo de energía a 65HZ (68,76 RPM) – caliza118
Tabla 2.50 Consumo de energía a 70HZ (73,72 RPM) – caliza119
Tabla 2.51 Consumo de energía a 80HZ (84,47 RPM) – caliza120
Tabla 2.52 Potencia (Molino, Carga de bolas y Caliza) a diferentes RPM – caliza121
Tabla 2.53 Potencia (Molino, Carga de bolas y minerales) a diferentes RPM122
Tabla 2.54 Potencia (solo molienda del minerales) a diferentes RPM122
Tabla 3.1 Análisis granulométrico del alimento - sulfuro
Tabla 3.2 Función Selección (Si) a 40RPM140
Tabla 3.3 Función Selección (Si) a 60RPM141
Tabla 3.4 Función Selección (Si) a 80RPM142
Tabla 3.5 Función Selección (Si) a 100RPM143
Tabla 3.6 Si (15 min.) Vs RPM144
Tabla 3.7 Si (5min.) Vs RPM145
Tabla 3.8 Si (rev.) Vs RPM148
Tabla 3.9 Ecuación de quiebra por cada malla (realizado en EXCEL)149
Tabla 3.10 Ecuación de quiebra por cada malla (realizado en MATLAB)149

RESUMEN

La presente tesis se realizó para demostrar que se puede optimizar el consumo de energía eléctrica (KW-h/tc) en la molienda de minerales. En la actualidad la mayoría de plantas de procesamiento de minerales cuentan con molinos de bolas los cuales representan la principal carga eléctrica. La etapa de molienda logra reducir el mineral a tamaños muy finos de manera que es en esta etapa donde se requiere mucha energía eléctrica ya que el motor del molino mueve toda la carga moledora con el mineral, pero del total de la energía utilizada la mayor cantidad se consume básicamente para mover los medios moledores y siendo menor la energía para moler el mineral.

En el presente estudio determinara la medición de energía eléctrica y se sustentan las afirmaciones al realizar pruebas de molienda a diferentes velocidades del molino.

En la actualidad los molinos se instalan por lo general con un sistema mecánico de trasmisión (catalina y piñón de ataque), estos sistemas son rígidos y de una sola

velocidad de rotación, esta velocidad será siempre la misma para todas las diversas condiciones que pueda presentar el mineral a ser molido (variación de las especies minerales de diferentes zonas de la mina); al considerar una sola velocidad del molino le estamos aplicando la misma energía al motor eléctrico tanto para minerales que presentan mayor índice de dureza como para minerales que presentan menor índice de dureza, el problema aquí es que en algunos casos moleremos en exceso (presencia de más finos) y en otros caso no moleremos adecuadamente (incremento de la carga circulante).

El tipo de control de la velocidad de rotación del molino no se puede realizar de manera manual ya que los cambios son muy rápidos; en la actualidad las nuevas tecnologías (con los avances en la electrónica de potencia, el control digital y la teoría de control) pueden hacer posibles estos cambios; ósea se podría mejorar los procesos de molienda ya instalados con la adecuación de equipos modernos. El alcance de este trabajo es para molinos de bolas convencionales; cabe destacar que la mayoría de empresas mineras posee este tipo de molinos y esperamos que este trabajo sea un aporte para las mismas.

ABSTRACT

The present thesis was performed to achieve optimization of energy consumption (KW-h / tc) in the grinding of minerals .In most mineral processing plants equipped with ball mills these represent the main electrical load .In the milling for reduce ore to very fine sizes much electricity is required because move the motor with the entire grinding mill loaded mineral, but the total energy used a lot of energy It is primarily used to move the grinding media and is little energy to grind the ore .This study determined by measuring power these statements and also to test grinding at different speeds.

Today the mills are installed usually with a mechanical transmission system (sprocket and pinion), these systems are rigid and single speed of rotation this speed will be the same for all the various conditions that can present the mineral to be ground (variation of mineral species from different areas of the mine); considering a single speed mill we are applying the same energy to the electric motor for minerals having greater hardness index as minerals having lower hardness index, the problem here is that in some cases will grind excess (presence of more fine) and in other cases not adequately will grind (increased circulating load).

The type of control of the speed of rotation of the mill cannot be done manually since the changes are very fast; now new technologies (with advances in power electronics, digital control and control theory) can make these changes possible ; bone could be improved milling processes already installed with the adequacy of moderns equipment. The scope of this work is for conventional ball mills; noteworthy that most mining companies have this type of mills and hope that this work is a contribution to the same.

INTRODUCCION

La presente tesis propone el mejoramiento de la operación unitaria de molienda mediante el control de la velocidad de giro de los molinos ya que en la actualidad se dispone de avances tecnológicos que pueden hacer posible que los motores eléctricos de inducción asíncronos (que son los más usados en los molinos) cambien su velocidad de giro estos dispositivos varían la frecuencia para lograr este cambio.

En la actualidad los sistemas automatizados en la etapa de molienda principalmente están logrando el control de variables para mantener un flujo constante del mineral a procesar, los lazos de control y las estrategias están referidos a variables que lograran estabilizar un flujo constante de material a procesar; pero muchas veces podemos observar problemas en la etapa de flotación por presencia de finos, o tal vez el aumento de carga circulante estos problemas ya no solamente tienen que ver con a la cantidad de mineral a procesar sino también por el cambio de características mineralógicas en el mineral a procesar.

El uso de energía eléctrica en una planta de procesamiento de minerales es muy importante y valiosa entonces hay que tratar de aprovechar al máximo esta energía (por eso que muchos trabajos de investigación están viendo el tema de ahorro de energía eléctrica con mucho interés).

Nuestro país cuenta con varias centrales hidroeléctricas que son el soporte de la energía eléctrica que utilizamos pero la demanda de la misma sigue en crecimiento, justamente los grandes proyectos mineros serán los consumidores principales y la motivación de este trabajo es contribuir al consumo racional de la energía eléctrica.

CAPITULO I

FUNDAMENTO TEORICO DEL SISTEMA EN ESTUDIO

1.1 Teorías sobre el consumo energético y la reducción de tamaños

El termino conminución es aquel con que se designa a la reducción de tamaño de rocas grandes en fragmento pequeños. Fred C. Bond el investigador que mayores aportes hizo en este aspecto durante los años sesenta, define la conminucion como: "El proceso en el cual la energía cinética mecánica de una maquina u objeto es transferida a un material produciendo en él fricciones internas y calor que originan su ruptura" [8] cap. III.

Figura 1.1 Balance de energía

La importancia de esta operación para el procesamiento de minerales, radica en que mediante ella es posible liberar los minerales valiosos de los estériles y preparar las superficies y el tamaño de las partículas para procesos posteriores de concentración.

La conminución requiere de un elevado consumo de energía que en muchos casos representa más del 60% de los costos operativos de las plantas concentradoras por lo que un conocimiento cabal de sus leyes y relaciones empíricas o fenomenológicas ayuda a optimizar los gastos de energía de plantas en operación ó dimensionar adecuadamente equipos para plantas que se encuentran en etapas de diseño.

1.1.1 Postulados empíricos de Conminucion

Mediante los siguientes postulados se trata de relacionar la energía consumida y el tamaño de material producido .De estas relaciones empíricas la que más se usa en molienda es la de Fred c. Bond que en la actualidad tiene aceptación en los procesos industriales [8] cap3.

• Postulado de Rittenger (1867)

"La energía requerida para reducir de tamaño es proporcional a la nueva superficie"

$$E_R = K_R(S_2 - S_1)....(1.1)$$

E_{R:} Energía entregada por unidad de volumen

K_{R:} Constante

S₂: Superficie especifica final

S₁: Superficie especifica inicial

• Postulado de Kick (1885)

"La energía para triturar un mineral es proporcional al grado de reducción en volumen de las partículas"

$$E_R = K_K \log \frac{V_2}{V_1}...(1.2)$$

E_{R:} Energía entregada en conminución

 $K_{K:}$ Constante

- V₂: Volumen final de la partícula
- V₁: Volumen inicial de la partícula
 - Postulado de Bond (1952)

Bond fundamenta su teoría en tres principios que se enuncian a continuación.

Primer principio: "Ya que se debe entregar energía para reducir de tamaño, todas las partículas de un tamaño finito tendrán un nivel de energía al cual se deberá añadir la energía entregada en la conminución para obtener el nivel de energía de los productos. Solo una partícula de tamaño infinito tendrá un nivel de energía cero"

Segundo principio: "El consumo de energía para la reducción de tamaño depende de la longitud de las nuevas grietas formadas. Como la longitud de la grieta es proporcional a la raíz cuadrada de la nueva superficie producida, la energía especifica requerida es inversamente proporcional a la raíz cuadrada del diámetro de la particular del producto menos el alimento" Tercer principio: "La falla más débil del material determinara el esfuerzo de ruptura pero no su W.I (work índex) el cual es determinado por la distribución de fallas en todo el rango de tamaño involucrado y correspondería al promedio de ellas"

$$W = W_i \left(\frac{10}{\sqrt{P_{80}}} - \frac{10}{\sqrt{F_{80}}} \right) \dots (1.3)$$

 $W_{:}$ Energía necesaria para reducir un material desde un tamaño original F_{80} hasta un tamaño final P_{80}

Wi: Constante propia del mineral (resistencia a la conminución)

 P_{80} : Tamaño de partículas correspondiente a un 80% acumulado pasante de la distribución granulométrica del producto

 F_{80} : Tamaño de partículas correspondiente a un 80% acumulado pasante de la distribución granulométrica del alimento.

1.1.2 Ecuación diferencial de la Conminucion

En 1937, Walker planteo una ecuación diferencial que tiene como soluciones particulares las relaciones de Kick, Rittinger y Bond. Esta ecuación es:

$$dE = -c \frac{dx}{x^n} \dots \dots (1.4)$$

dE: Cambio infinitesimal de energía entregada para la conminución

- c: constante
- x: tamaño de la particular
- n: constante

La ecuación establece que la energía requerida para lograr un cambio infinitesimal en el tamaño de un objeto es proporcional al cambio de tamaño e inversamente proporcional al tamaño de un objeto a una potencia n, que podría tener cualquier magnitud o signo.

Esta ecuación no es aceptable ya que físicamente no es posible romper de una partícula solo una cantidad diferencial. La expresión correcta seria:

$$dE = -c \frac{d\bar{x}}{\bar{x}^n} \dots (1.5)$$

dE: Cambio infinitesimal de energía entregada para la conminución

c: constante

 \bar{x} : tamaño medio de la muestra

n: constante

Como se indicó previamente los tres postulados de conminución se pueden deducir de esta ecuación diferencial:

a) Para deducir el postulado de Rittinger n=2 en la ecuación (1.5)

$$\int_0^{E_R} dE = -c \int_{X_1}^{X_2} \frac{dx}{x^2} \dots (a1)$$

Integrando:

$$E_R = K_R \left(\frac{1}{X_2} - \frac{1}{X_1}\right)$$
..... (a2)

Si la superficie: $A = \alpha X^2$ el volumen: $V = \alpha X^3$ definimos como superficie especifica: $S = \frac{A}{V}$ reemplazando en (a2)

$$E_R = K_R(S_2 - S_1)....(a3)$$

b) Para deducir el postulado de Kick n=1 en la ecuación (1.5)

$$\int_{0}^{E_{R}} dE = -c \int_{X_{1}}^{X_{2}} \frac{dx}{x} \dots (b1)$$

Integrando y cambiando de base al logaritmo:

$$E_R = K_K \log \frac{X_2}{X_1}$$
... (b2)

Si se considera que el volumen es proporcional al parámetro de longitud de la partícula elevado al cubo, se tendría $V = kX^3$ y:

$$E_R = K_r \log \frac{V_2}{V_1}$$
.... (b3)

c) Para deducir el postulado de Bond n=1.5 en la ecuación (1.5)

$$\int_0^{E_R} dE = -c \int_{X_1}^{X_2} \frac{dx}{x^{3/2}} \dots (c1)$$

Integrando:

$$E_R = K_R \left(\frac{1}{\sqrt{X_2}} - \frac{1}{\sqrt{X_1}}\right) \dots \dots (c2)$$

Si K_R = 10 W_i entonces (c2) sería igual:

$$E_R = W_i \left(\frac{10}{\sqrt{X_2}} - \frac{10}{\sqrt{X_1}}\right)...$$
 (c3)

1.2 El molino de bolas y el consumo energético

Desde el siglo pasado la noción de que la aplicación de energía es responsable para la quiebra de partículas en las máquinas de conminución domino las ideas para explicar el fenómeno. Las primeras tentativas para definir la quiebra fueron las "Leyes de Conminución" que correlacionan el insumo de energía especifica (KWh/tc) con el grado de reducción en un tamaño característico del material alimentador. De estas leyes la de Bond (1952) .Encontró utilidad en el dimensionamiento del molino de bolas. [5] pág. 7.

La ecuación 1.3 implica que solamente la energía determina el grado de quiebra y los efectos de las condiciones operacionales deben actuar atreves de alteraciones en la energía. Bond descubrió, con todo que la quiebra depende de la manera de aplicación de la energía y fue forzado a incluir varios factores de corrección en su ecuación energética.

1.2.1 La tasa de quiebra en función de la energía

Referido a la molienda de caliza (Kim, 1974). [5.] pág. 7 y 8. El molino de laboratorio usado para los ensayos fue instrumentado con un torquimetro que media el torque aplicado al eje del molino. El torque T medido en cada ensayo permitió el cálculo del consumo de potencia P atreves de la fórmula:

$$P = (1.183E - 5).RPM.T....(1.6)$$

P: Potencia KW.

RPM: Velocidad de rotación .rpm

T: Torque, Lb-in (libra-pulgada)

De la figura 1.2 muestra la molienda de caliza para tres series de test variando el porcentaje de sólidos. Entre las tres series, solamente el peso del mineral fue alterado, manteniendo las otras condiciones constantes.

El consumo de energía depende de porcentaje de solidos alcanzando el máximo en torno al 75%. Por lo tanto, con el mismo tiempo de molienda el consumo de energía por unidad de peso del mineral en el molino seria mayor para el 75% de solidos de que para 100% o 50%. Pero como mostramos en la figura 1.3 para el mismo consumo de energía, la molienda con 50% de solidos es más eficiente (mayor tasa de quiebra) en relación al consumo de energía. Este resultado para material de intervalo grueso (10 X 14 mallas) generalmente no se prueba en la molienda fina industrial donde la eficiencia máxima esta en torno de 75% de solidos

Figura 1.2 El Consumo de Potencia en la Molienda de caliza (ref. [5.] pág. 8)

Figura 1.3 La Cinética de la Molienda de caliza en Función de la Energía (ref. [5.] pág. 9)

1.2.2 Potencia del molino

Hay dos enfoques para la derivación de las ecuaciones que describen la potencia requerida para mover un molino rotatorio [4] pág. 175 -178. El primero trata el problema calculando la trayectoria de las bolas sobre todas las posibles trayectorias. El segundo enfoque considera el momento del centro de masa de la carga de bolas y polvo con respecto al centro del molino y considera que debe ser igual al momento de las "fuerzas de fricción" en las paredes del molino. Es instructivo observar el interior de un molino rotatorio de laboratorio acondicionado con una pared lateral transparente, de modo que se pueda estudiar el movimiento de la carga directamente por observación. Una descripción aproximada, como se ve en la Figura 1.4, muestra que una bola entra en la superficie de la carga bajo la marca de la mitad de la superficie y se mueve alrededor del eje hasta que llega a la superficie. Una vez que emerge, rueda hacia abajo por la superficie, de modo que aparece una corriente de bolas, formando una superficie libre que recibe el nombre de cascada. Sin embargo, hay algunas bolas que, junto a parte del polvo son proyectadas en el espacio interior del molino en una trayectoria parabólica que recibe el nombre de catarata. Las barras levantadoras previenen que la carga deslice como un todo por la superficie interior del molino.

Figura 1.4 Movimiento de un molino de bolas a una velocidad normal de operación (ref. [1] pág. 84)

En principio, un análisis correcto de las fuerzas en los dos enfoques descritos debiera dar el mismo resultado. Sin embargo, el cálculo mediante el torque del centro de la masa no toma en consideración que un cierto número de bolas está en vuelo, y que por lo menos parte de la energía cinética de estas bolas debe recuperarse al chocar éstas con las paredes del molino. Por otra parte, la descripción de las trayectorias de todas las bolas se torna muy difícil debido a la complejidad de las fuerzas de interacción entre las bolas y especialmente por el polvo atrapado entre ellas.

Debido a la complejidad en el análisis teórico del sistema descrito, frecuentemente se utiliza ecuaciones que se basan en experimentos y no en teoría. Aquí daremos un tratamiento elemental al problema de la potencia de un molino que involucra conceptos simples de mecánica y similitud geométrica.
Definamos la altura media de elevación de las bolas \bar{h} , a través de la energía potencial media de una bola. Si ρ_b es la densidad y d es el diámetro de la bola, la energía necesaria para levantar cada bola a la altura h es igual a su energía potencial a esa altura, más la energía cinética de rotación $\frac{m(\bar{r}\omega)^2}{2}$, donde la masa $m = \frac{\pi\rho_b d^3}{6}$, \bar{r} es el radio medio de la trayectoria de la bola y ω es la velocidad de rotación. Entonces, la energía media para levantar una bola será proporcional a ρ_b d³ [$\bar{h} + \frac{(\bar{r}\omega)^2}{2}$]. Se supone aquí que \bar{h} es independiente de las propiedades de la bola, tales como tamaño o densidad. Haremos la suposición que la forma del movimiento de una bola en molinos de diversos tamaños es similar e independiente del tamaño de éste para un tamaño de bola mucho menor al tamaño del molino y para una longitud del molino tal que haga despreciable los efectos de las paredes laterales. En estos casos es razonable suponer que la altura media de elevación de las bolas es proporcional al diámetro del molino, esto es $\bar{h} \alpha$ D y por lo tanto:

(Energía media para levantar una bola) $\alpha \rho_b d^3D$

Para un determinado porcentaje de llenado del molino, esto es para un valor prescrito de J (fracción de llenado de bolas), el número de bolas en el molino será proporcional al cociente entre el volumen del molino y el volumen de una bola:

(Número de bolas presentes en el molino) $\alpha D^2L/d^3$

Se puede suponer que el número de bolas levantadas por unidad de tiempo es proporcional al producto del número de bolas presentes y la velocidad del molino. Como la velocidad del molino es rpm $=\frac{\varphi_c 42.3}{D^{1/2}}$, donde φ_c es la fracción de la velocidad crítica del molino y la energía requerida por unidad de tiempo, esto es la potencia m_p para mover los medios de molienda, será:

$$m_p \ \alpha \ \frac{\varphi_c \ 42.3}{D^{1/2}} \frac{D^2 L}{d^3} \rho_b \ d^3 D$$

$$m_{\rm p} = K \rho_{\rm b} D^{2.5} \dots (1.7)$$

Donde el valor de K es constante solamente para determinadas condiciones en un molino.

Debido a que el modelo utilizado en la derivación de la ecuación (1.7) es sobre simplificado, es preferible introducir un coeficiente variable en el exponente de D, tal que (1.7) se exprese en la forma más general:

$$m_p = K \rho_b D^{2.0 + n^2} \dots (1.8)$$

Donde se puede esperar que n2 sea cercano a 0.5. Como se ha supuesto que no hay efecto de las paredes laterales del molino, al doblar el largo de éste se duplican los requerimientos de potencia. El valor de K variará con la magnitud de la carga de bolas en el molino. A pequeñas cargas de bolas en el molino se puede suponer que la potencia aumentará en forma proporcional a la carga, mientras que a mayores cargas la potencia disminuye debido a que a valores altos de J , las bolas que ruedan sobre la superficie forman un pie en la base de la superficie inclinada. Por ello, no son levantadas desde el punto de contacto con la carcasa del molino, sino desde la superficie del pie, con lo cual h disminuye. Se espera, entonces, que la potencia pase por un máximo a medida que la carga de bolas aumente, como se muestra en la Figura 1.5.

Figura 1.5 Variación de la potencia del molino de laboratorio de 0.6 m de diámetro con variación de la velocidad crítica y carga de bolas como parámetros: molino (ref. [1] pág. 176)

1.2.3 Ecuaciones para la potencia de un molino

Bond nos da una ecuación empírica para la potencia en el eje de un molino de bolas de rebalse [1] pág. 178 - 184:

$$\frac{m_p}{M} = 15.6D^{0.3} fc (1 - 0.937j)(1 - 0.1/2^{9-10fc}), KW/ton.....(1.9)$$

En que D es el diámetro interno en metros y M es la carga de bolas en toneladas.

El resultado debe ser multiplicado por 1.08 para la molienda seca en molinos de parrillas. También se da una corrección S_s . Que debe ser sustraída de la ecuación (1.9), para el caso en que las bolas tengan un diámetro máximo d_m menor que 45.7 mm (1.8 pulgadas) en un molino de diámetro mayor que D =2.4 m (8 pies).

$$S_s = 1.1(1.8d_m/25.4)/2$$
, KW/ton...(1.10)

En el que d_m está en milímetros. Por ejemplo, para bolas de 12.7 mm (0.5 pulgadas) la corrección es de 0.7 kW/ton. Rowland modificó esta relación para molinos mayores que 3.6 m (12 pies) dando:

$$S_{s.} = 1.1 \left[\frac{9.84 D}{20} - \frac{d_m}{25.4} \right], \text{ kW/ton....(1.11)}$$

En el que d_m está en milímetros y D en metros.

Beeck propuso una ecuación empírica para la molienda seca de cemento:

$$\frac{m_p}{M} = 42.3C_{Be}D^{0.5}fc$$
, kW/ton....(1.12)

Donde M es la carga de bolas en toneladas métricas y el valor de C_{Be} varía con J como se muestra en la Figura 1.6. En la misma figura se muestran valores de C_{Be} calculados de los valores de J, f_c y m_p en molinos finales de la industria norteamericana

de cemento coleccionada por Hackman. La práctica industrial del cemento en los Estados Unidos es bastante diferente que la alemana; por ejemplo, el nivel de llenado de bolas es consistentemente mayor, con un promedio de J = 0.36; el porcentaje de velocidad crítica está normalmente entre 70% y 80% con un promedio de 75%. La distribución de los datos norteamericanos para C_{Be} se muestra en función de J en la Figura 1.6. Se debe destacar que la medición de potencia en molinos grandes puede no ser muy precisa y que la potencia medida variará también con la eficiencia del motor y la transmisión.

Figura 1.6 Coeficiente para la potencia del molino utilizando la ecuación de Beeck para la molienda de cemento (datos U.S.A. Hackman D= 2.9 a 4.5 m ; L/D = 2.7 a 3.7; fc 0.7 a 0.8) (ref. [1] pág. 178)

La disposición de los datos originales muestra que los molinos de grandes diámetros tienen una potencia específica m_p/M significativamente mayor, sin embargo los datos están demasiado dispersos para obtener un valor preciso del exponente de D.

Figura 1.7 Potencia neta como función de la carga de bolas y fracción de velocidad critica para un molino de laboratorio ; D = 0.6 m , d= 26 mm (ref. [1] pág. 179)

La Figura 1.7 muestra la variación típica de la potencia con la carga de bolas, a varias fracciones de velocidad crítica. La potencia máxima resulta a fracciones de llenado de 45% para cada velocidad de rotación. Haciendo cálculos con la expresión $fc(1 - 0.1/2^{9-10f})$ en la ecuación (1.9) de Bond, se puede demostrar que ella no da la forma correcta de variación con la velocidad de rotación para este molino. Un ajuste empírico de los resultados da:

$$m_p \propto (f_c - 0.1) \frac{1}{1 + exp[15.7(\varphi_c - 0.94)]}$$
 Para 0.4< f_c < 0.9 ...(1.13)

Figura 1.8 Potencia neta por tonelada métrica de medios de molienda como función de la carga de bolas a 70% de la velocidad critica para molinos de laboratorio (ref. [1] pág. 180)

La Figura 1.8 muestra los resultados de potencia por tonelada de medio de molienda como función de J. El resultado no se ajusta a la relación de Bond de (1-0.937J). Como conclusión se propone que la ecuación de Bond sea usada para molinos grandes, D > 2 m y que para molinos más pequeños, usados en el modo discontinuo y en seco, se utilice la siguiente ecuación para la potencia neta:

$$\frac{m_p}{M} = 13D^{0.5} (fc - 0.1) \left(\frac{(\varphi_c - 0.1)}{1 + exp[15.7(\varphi_c - 0.94)]} \right) \left(\frac{1 - 0.937J}{1 + 5.95J^5} \right), \text{ KW/ton}....(1.14)$$

Donde D está dado en metros y M en toneladas métricas. Esta ecuación es válida para la potencia neta en la molienda discontinua seca, mientras que la ecuación de Bond es válida para la potencia en el eje, en molienda continua húmeda de molinos de rebalse. Se realizó una experiencia con un molino de 0.82 m de diámetro interior por 1.53 m de largo, provisto de rodamientos hidráulicos, que consistió en operar el molino en forma discontinua en seco y continua en circuito abierto y en húmedo, a los mismos valores de J y f_c . Se comprobó que la operación continua dio un valor de potencia 1.07 veces mayor a la operación discontinua y que debía agregarse otro factor de 1.10 para transformar la potencia neta en potencia en el eje. Entonces la razón de potencia para el molino en operación continua húmeda a discontinua seca es de 1.18. Esto da la intersección para molinos pequeños en la Figura 1.9 (línea sólida) con la ecuación de Bond a D=2.5 m (8 pies) para J=0.35.

Figura 1.9 Potencia del molino por toneladas métricas de medios de molienda, como una función del diámetro del molino (fc=0.7) (ref. [1] pág. 181)

Un aumento de la velocidad de rotación del molino hace que más bolas volteen por unidad de tiempo, y por lo tanto, que aumente la potencia requerida para mover el molino. Sin embargo, a velocidades de rotación superiores al 70 a 80% de la velocidad crítica, este aspecto es contrarrestado por el aumento del pie de la carga. Por lo tanto, la potencia requerida para operar un molino rotatorio de bolas es una función compleja de la frecuencia de las acciones de volteo y de la altura de éste, las que actúan en sentido contrario para dar una potencia máxima en la región de 0.4 < J < 0.5 y $0.7 < f_c < 0.8$.

Las ecuaciones de la potencia para molinos no incluyen el efecto del diseño de las barras levantadoras, aunque es seguro que algunos diseños dan mayor efecto de catarata que otros a la misma fracción de velocidad crítica y carga de bolas, y por lo tanto, deberían dar una potencia máxima a diferentes valores de J y f_c. Parece que en la literatura existen pocas relaciones cuantitativas sobre el efecto del diseño de barras levantadoras. Por ejemplo, Rowland muestra una potencia máxima a J =0.42 para un molino de 18 pies de diámetro interno, con bolas de 75 mm (3 pulgadas) en la recarga; lainas nuevas de onda simple dan 10% mayor potencia que la dada por la ecuación de Bond y lainas nuevas de doble onda dan 10% menos potencia que la dada por el cálculo de Bond. Rogers y colaboradores informaron sobre la diferencia en la ruptura normal (dominada por efecto de cascada) y ruptura anormal (dominada por catarata) producida por tres diferentes diseños de lainas en un molino de 0.9 m de diámetro, a un valor fijo de la fracción de velocidad crítica. Las Figuras 1.10, 1.11 y 1.12 dan sus resultados.

Figura 1.10 Vista a través de la sección y dimensiones para lainas corrugadas, barras levantadoras

y lainas en espiral angular (ver figura 1.11) (ref. [1] pág. 182)

Figura 1.11 Potencia neta para un molino de bolas de 0.9m X 1.52 m con diferentes lainas y

Figura 1.12 Velocidades de fractura específica para cuarzo molido en un molino de 0.9m X 1.42 m con lainas; (C) corrugadas , (B) barras levantadoras y (A) espiral - angular(ref. [1] pág. 183)

A valores de 70% de la velocidad crítica, las lainas corrugadas y las angulares requirieron casi la misma potencia, pero la laina corrugada dio mayores velocidades de ruptura normal (más cascada) y menores velocidades de ruptura de tamaños grandes (menor catarata). Las barras levantadoras dieron menores potencias pero una ruptura igualmente efectiva que las lainas en espiral, a la velocidad indicada.

La Figura 1.13 muestra un efecto equivalente en un molino de laboratorio (molienda seca). Las bolas de mayor diámetro son menos propensas a caer en catarata por efecto del levantador, de modo que el molino presenta más cascada y menos catarata. Con las bolas más pequeñas ocurre lo contrario. Las bolas de mayor diámetro consumen un poco más potencia a las velocidades bajas que favorecen la cascada, mientras que las bolas más pequeñas muestran un mayor consumo de potencia a las velocidades mayores que favorecen la catarata.

Figura 1.13 Variación de la potencia de n molino con la fracción de la velocidad critica para un molino de laboratorio, con el tamaño de bola como parámetro (D = 0.6m, J = 0.35, $f_c = 0.14$) (ref. [1] pág. 184)

1.3 Teorías sobre el consumo energético del motor eléctrico

Para poder hablar del consumo energético del proceso de molienda habría que hablar sobre el motor eléctrico de inducción que es el que consume la energía eléctrica [7] pág. 68 y 69.

El estudio del motor de inducción trifásico tiene gran importancia en nuestros días debido a sus características de construcción y robustez y a que gracias a su diseño se logra tener un campo magnético rotatorio el cual gira a una velocidad fija (velocidad de sincronía) que se define básicamente por el número de polos magnéticos que tiene el motor y por la frecuencia de las señales de alimentación que se inyecta al estator .La

teoría elemental para el diseño de este motor fue desarrollado por Nicola Tesla en el año de 1887 y desde entonces la parte básica de esta no presenta grandes modificaciones.

En este motor se tiene que considerar que la generación de par electromagnético se logra por la interacción de los conductores en los que circula corriente eléctrica y que se encuentran inmersos en un campo magnético rotatorio, dando lugar en la parte rotatoria a este fenómeno que se genera entre otras propiedades por la inducción magnética.

Se puede hacer una primera clasificación elemental de este tipo de máquinas trifásicas a partir del tipo de rotor (parte rotatoria del motor) el cual se tienen las siguientes clases:

- Rotor Jaula de ardilla: no presentan la posibilidad de tener acceso a ningún parámetro del rotor, ya que se encuentran completamente aislado del estator o de posibles terminales hacia la parte exterior del motor
- Rotor de anillos rozante: permite el acceso a las terminales del rotor empleando escobillas, por lo que se pueden modificar los parámetros de este y en especial la resistencia que modifica el valor de su velocidad en el cual el par máximo.

Figura 1.14 Tipos de motores eléctricos de inducción asíncronos

Los primeros usos industriales que se tienen registrados con este tipo de máquinas se encuentran en las aplicaciones de velocidad constante. Puesto que la velocidad de sincronía depende del número de polos y de la frecuencia de alimentación en el estator, como lo muestra la ecuación 1.15 para implementar aplicaciones de velocidad variable se requirió el desarrollo de sistemas de electrónica de potencia para lograr cambiar la velocidad del campo magnético rotatorio mediante la modificación de la frecuencia fundamental de las señales de alimentación del estator.

En la actualidad los motores de inducción se pueden encontrar en más del 70% de las aplicaciones de accionamientos eléctricos, incluyendo velocidad constante y variable, lo que se logra solo cuando se puede modificar la velocidad de sincronismo o el número de polos del motor; debido a esto los motores de inducción reciben el nombre bien ganado de caballos de batalla de la industria

A continuación veremos cómo es el comportamiento de las cargas a mover por un motor de inducción [6] pág.2-7.

1.3.1 El motor eléctrico de inducción

Es un tipo de motor de corriente alterna. Todos los motores de inducción están formados por un rotor y un estator. El rotor puede ser de dos tipos, jaula de ardilla o bobinado, y en el estator se encuentran las bobinas inductoras. Su principio de funcionamiento está basado en la inducción electromagnética y fue diseñado por el ingeniero Nicola Tesla.

Figura 1.15 Motor de inducción

1.3.2 Funcionamiento del motor de inducción

El funcionamiento de éste tipo de motores está basado en la interacción del rotor y el estator por medio de la inducción electromagnética. Se le aplica una corriente alterna trifásica a las bobinas inductoras del estator y se produce un campo magnético conocido como campo rotante, a la frecuencia de la corriente alterna que alimenta al motor. Este campo induce corrientes en el rotor, que a su vez producirá un campo magnético giratorio a la velocidad síncrona con respecto al estator. A consecuencia, y por el principio de inducción mutual, se produce un par motor que hace que el rotor gire. Para que se produzca el par que haga que gire el motor, la velocidad del rotor será ligeramente inferior a la del campo rotante (velocidad de sincronismo), de ahí el nombre de motores asíncronos. A esta diferencia de velocidades se denomina deslizamiento. La relación que sigue la velocidad de sincronismo es:

$$RPM = \frac{120 X Hz}{n.p} \dots (1.15)$$

RPM: velocidad de sincronismo en revoluciones por minuto (rpm)

Hz: frecuencia del sistema en hertzios (Hz)

n.p: número de polos del motor

Todos los motores eléctricos tienen una placa con los valores nominales para los que ha sido diseñado, aunque en la realidad estos valores tienen un margen de variación. Esta información es importante para describir el motor y posteriormente elegir un variador de frecuencia adecuado. La información típica suele ser:

Figura 1.16 Placa característica de un motor de inducción

1.3.3 Curvas características del motor de inducción

Para comprender mejor el funcionamiento de este tipo de motores necesitamos la relación corriente-par frente a velocidad:

Figura 1.17 Curva Corriente - Par Vs. Velocidad del motor eléctrico de inducción

Dónde:

1: corriente de arranque

2: corriente máxima: par máximo = 2.5 par nominal y par de arranque = 1.5 par nominal

3: velocidad de sincronismo

Podemos ver que el par entregado en el arranque, cuando la velocidad es nula, es alrededor de 1.5 veces el par nominal. A medida que la velocidad aumenta, este par llega a alcázar un máximo de 2.5 veces el par nominal para luego anularse a la velocidad de sincronismo.

Podemos ver que el par máximo se da al 80% de la velocidad nominal. Si nos interesara obtener este par desde el arranque hasta la velocidad máxima podemos hacerlo variando la frecuencia de alimentación, como podemos ver en la siguiente figura 1.18:

Figura 1.18 Relación Par-Velocidad cuando varía la frecuencia de alimentación del motor eléctrico de inducción

Vemos que esta característica podemos mantenerla hasta los 50Hz, momento en que el par disponible comienza a disminuir (debido a la reducción de la corriente magnetizante).

1.3.4 Tipos de carga

Este es un aspecto importante a la hora de elegir el motor y el variador de frecuencia adecuado. En concreto nos interesan las cargas activas (aquellas que producen una fuerza resistente a su movimiento).

En relación a la característica par-velocidad, tenemos varios tipos de funcionamiento.

a) Funcionamiento a par constante

En éste caso, las características de la carga en estado estacionario son tales que el par requerido es más o menos el mismo, independientemente de la velocidad como ejemplo, las cintas transportadoras funcionan de este modo. A veces es necesario que se aplique un gran par de arranque (1.5 veces el nominal) para superar la fricción y acelerar la máquina. La curva típica de este modo de funcionamiento la podemos ver en la siguiente figura:

Figura 1.19 Par constante del motor eléctrico de inducción

b) Funcionamiento a par variable (par que se incrementa con la velocidad)

Las características de la carga implican que el par requerido aumenta con la velocidad. Para arrancadores de este tipo no es necesario un par tan grande como en el caso anterior (1.2 veces el par nominal es suficiente).

Podemos distinguir varios casos en función de la forma de incrementar el par:

- Par aumenta linealmente con la velocidad (Figura 1.20)
- Par aumenta cuadráticamente con la velocidad (Figura 1.21)

Figura 1.20 Par lineal del motor eléctrico de inducción

Figura 1.21 Par cuadrático del motor eléctrico de inducción

Un ejemplo para este caso pueden ser las bombas y ventiladores.

c) Funcionamiento a par variable (par que se reduce con la velocidad)

Para algunas máquinas, el par requerido se reduce cuando la velocidad aumenta. Este modo se caracteriza por trabajar a potencia constante cuando el motor proporciona un par inversamente proporcional a la velocidad angular. El rango de funcionamiento está limitado, a bajas velocidades, por la corriente que puede recibir el motor, y a altas velocidades por el par que puede proporcionar (Figura 1.22).

Figura 1.22 Par que disminuye con la velocidad

1.3.5 Control de la velocidad del motor

Teniendo en cuenta la expresión de la velocidad síncrona del motor (Ecuación 1.15) vemos que tenemos la posibilidad de controlar la velocidad del motor variando la frecuencia de la tensión de alimentación, cambiando el número de polos o el deslizamiento. El método más sencillo y usado hasta ahora es el de variar la frecuencia de alimentación del motor y es en el que se centra este trabajo. Como ventajas dentro del control por variación de la frecuencia de alimentación podemos destacar el amplio rango de velocidades que podemos usar, con su máximo par, de este modo se obtiene un buen rendimiento. Además podemos usarlo para arrancar y frenar motores, el cual es un momento crítico para el motor debido a las altas corrientes que circulan por él. Además es muy beneficioso el uso de este método de cara al ahorro de energía, dado que solo usamos la potencia necesaria en cada momento. Por estos motivos, está totalmente

extendido el uso de variadores de frecuencia en la industria y es usada como primera opción a la hora de controlar un motor.

1.4 Los variadores de frecuencia y el ahorro de energía

El Variador de Velocidad (VSD, por sus siglas en inglés Variable Speed Drive) es en un sentido amplio un dispositivo o conjunto de dispositivos mecánicos, hidráulicos, eléctricos o electrónicos empleados para controlar la velocidad giratoria de maquinaria, especialmente de motores. También es conocido como Accionamiento de Velocidad Variable (ASD, también por sus siglas en inglés Adjustable -Speed Drive). De igual manera, en ocasiones es denominado mediante el anglicismo Drive, costumbre que se considera inadecuada. La maquinaria industrial generalmente es accionada a través de motores eléctricos, a velocidades constantes o variables, pero con valores precisos. No obstante, los motores eléctricos generalmente operan a velocidad constante o casi-constante, y con valores que dependen de la alimentación y de las características propias del motor, los cuales no se pueden modificar fácilmente. Para lograr regular la velocidad de los motores, se emplea un controlador especial que recibe el nombre de variador de velocidad. Los variadores de velocidad se emplean en una amplia gama de aplicaciones industriales, como en ventiladores y equipo de aire acondicionado, equipo de bombeo, bandas y transportadores industriales, elevadores, llenadoras, tornos y fresadoras, etc. Un variador de velocidad puede consistir en la combinación de un motor eléctrico y el controlador que se emplea para regular la velocidad del mismo. El control de procesos y el ahorro de la energía son dos de las principales razones para el empleo de variadores de velocidad. Históricamente, los variadores de velocidad fueron desarrollados originalmente para el control de procesos, pero el ahorro energético ha surgido como un objetivo tan importante como el primero.Velocidad como una forma de controlar un proceso

Entre las diversas ventajas en el control del proceso proporcionadas por el empleo de variadores de velocidad destacan:

- Operaciones más suaves.
- Control de la aceleración.
- Distintas velocidades de operación para cada fase del proceso.
- Compensación de variables en procesos variables.
- Permitir operaciones lentas para fines de ajuste o prueba.
- Ajuste de la tasa de producción.
- Permitir el posicionamiento de alta precisión.
- Control del Par motor (torque).
- Fomentar el ahorro de energía mediante el uso de variadores de velocidad

Un equipo accionado mediante un variador de velocidad emplea generalmente menor energía que si dicho equipo fuera activado a una velocidad fija constante. Los ventiladores y bombas representan las aplicaciones más llamativas. Por ejemplo, cuando una bomba es impulsada por un motor que opera a velocidad fija, el flujo producido puede ser mayor al necesario. Para ello, el flujo podría regularse mediante una válvula de control dejando estable la velocidad de la bomba, pero resulta mucho más eficiente regular dicho flujo controlando la velocidad del motor, en lugar de restringirlo por medio de la válvula, ya que el motor no tendrá que consumir una energía no aprovechada. A continuación veremos cómo se puede seleccionar un variador de frecuencia [6] pág.8-11.

1.4.1 El variador de frecuencia

Podemos definir un variador de frecuencia como un dispositivo electrónico capaz de controlar completamente motores eléctricos de inducción por medio del control de la frecuencia de alimentación suministrada.

Este equipo se centra en el control de la velocidad del motor variando la frecuencia de la tensión de alimentación (ver figura 1.23).

Figura 1.23 Variador de frecuencia

1.4.2 Funcionamiento de un variador de frecuencia

El diagrama de bloques de un variador de frecuencia es como se aprecia en la figura 1.24 donde podemos apreciar dos etapas importantes que son: rectificadora e inversora:

Figura 1.24 Diagrama de bloques del variador de frecuencia

Rectificador

La función del rectificador es convertir la señal de voltaje de alimentación de

CA a CD y controlar el voltaje que llega al inversor. Los más usados son:

Figura 1.25 Tipos de rectificadores

Vemos que cada tipo de rectificador tiene diferentes características y posibilidades a la hora de usar el inversor posteriormente. En la actualidad el rectificador más usado es el puente de diodos aunque también podemos encontrar los rectificadores controlados en algunos equipos más complejos.

Entre el rectificador y el inversor se usa un bus de continua, que no es más que un circuito LC, para almacenar y filtrar la señal rectificada y así obtener un valor de tensión continua estable.

Inversor

Transforma la tensión continua que recibe del bus de continua en otra tensión y frecuencia variables usando pulsos. Vamos a describir los dos inversores más usados.

a) Inversor de seis pasos

Para variar la frecuencia de la señal de alimentación al motor se ajusta el tiempo de conducción de los SCR's para cada uno de los seis pasos, modificando el tiempo de ciclo.

Figura 1.26 Inversor de seis pasos

Cuando se usan SCR's en el inversor, se utilizan circuitos complejos de conmutación que no se muestran en la figura y que incluye la lógica de disparo y componentes adicionales de potencia para apagarlos. Esta complejidad se reduce cuando se utilizan IGBT's (Transistor Bipolar de Puerta Aislada) como interruptores de potencia, como es el caso del siguiente inversor.

b) Inversor PWM

El inversor consiste de seis IGBT's que se encienden y apagan en una secuencia tal que producen un voltaje en forma de pulsos cuadrados que alimentan al motor.

Figura 1.27 Inversor PWM

Para variar la frecuencia del motor, el número de pulsos y su ancho se ajustan resultando en un tiempo de ciclo mayor para bajar la velocidad o tiempo de ciclo menor para subir la velocidad. Para cada frecuencia específica hay un número óptimo de pulsos y anchos que producen la menor distorsión armónica en la corriente que se aproxime a la señal senoidal.

Además existe una etapa de control que es la encargada de activar o desactivar los IGBTs para crear la señal de salida deseada. También tiene funciones de vigilancia de un correcto funcionamiento y monitorización de tensiones, corriente. La frecuencia portadora de los IGBT se encuentra entre 2 a 16 kHz. Una portadora con alta frecuencia reduce el ruido acústico del motor pero disminuye el rendimiento. Por otra parte, los IGBT's generan mayor calor. Las señales de control para arranque, parada y variación de velocidad están aisladas galvánicamente para evitar daños en sensores o controles y evitar ruidos en la etapa de control.

1.4.3 Selección del variador óptimo y recomendaciones

Tenemos a nuestra disposición una gran cantidad de modelos de variadores y debemos elegir el adecuado para cada proceso. Además de las características del motor, también debemos de tener en cuenta ciertos factores externos a la hora de la selección. Esto es importante para obtener el mejor rendimiento al realizar la tarea y no desaprovechar recursos.

Por tanto, debemos considerar al menos los siguientes factores:

- a) Características del motor: Corriente y potencia nominal, rango de tensiones, factor de potencia, velocidad máxima; etc.
- b) **Tipo de carga:** Par constante, Par variable, Potencia constante; etc.
- c) **Par en el arranque:** Asegurar que no supera lo permitido por el variador. A veces es necesario sobredimensionar el variador por esta circunstancia.
- d) Frenado regenerativo: Cargas de gran inercia, ciclos rápidos y movimientos verticales requieren de resistencia de frenado exterior.
- e) **Condiciones ambientales:** Temperatura ambiente, humedad, altura, tipo de gabinete y ventilación.
- f) Aplicación multimotor: Prever protección térmica individual para cada motor.
 La suma de las potencias de todos los motores será la nominal del variador.

CAPITULO II

PRUEBAS DE LABORATORIO Y RESULTADOS

En este capítulo se realizó las pruebas de laboratorio donde se demostró con datos experimentales la relación que hay entre la velocidad de rotación, el consumo energético del motor y el tamaño del producto de la molienda (P_{80}). Como en las pruebas realizadas se debieron cambiaron las velocidades de rotación del molino y se midieron la potencia consumida entonces acondicionamos el molino de bolas de Bond (las pruebas se realizaron en el molino de Bond del laboratorio 10 de la escuela de Ingeniería Metalúrgica – Universidad Nacional de Ingeniería) modificando el tablero eléctrico de control del molino al cual se le agrego un variador de frecuencia, un medidor de energía eléctrica multifuncional y un PLC (ver anexo 1). Las pruebas se realizaron para determinar el Work Índex, la medición de energía eléctrica se registró en la PC en hojas de base de datos (ver anexo 2).

2.1 Prueba Modificada de Bond para determinar el W.I

Se realizaron las pruebas para tres muestras minerales: sulfuro, sílice y caliza las pruebas se realizaron con el procedimiento normalizado para determinar el Work Índex pero la variable será la velocidad de rotación del molino en la prueba normalizada es de 70 RPM aquí modificaremos la velocidad de rotación.

Para la prueba normalizada [1] pág. 46 - 48; el material se prepara con un tamaño de 100% menor a 10 mallas (2.000 mm). Se miden 700 cm3 a granel de este material, lo que da un total de peso (W) en gramos, cuidando que la densidad aparente sea reproducible, y se carga en un molino de bolas de 305x305 mm (12x12 pulgadas), con bordes interiores redondeados. La carga de 285 bolas de acero de 20.125 kg tiene la distribución que sigue:

43 bolas de	36.83 mm	(1.45")
67 bolas de	29.72 mm	(1.17")
10 bolas de	25.40 mm	(1.00")
71 bolas de	19.05 mm	(0.75")
94 bolas de	15.49 mm	(0.61")

Tabla 2.1 Distribución de carga de bolas prueba normalizada de Bond

El material se muele por un corto período, generalmente 100 revoluciones, tamizando el producto por una malla p₁ (seleccionada) para eliminar el bajo tamaño y reemplazarlo por material fresco, simulando un circuito cerrado de moliendaclasificación. Esta nueva carga se vuelve a moler tratando de obtener una carga circulante de 350%. Como F/Q=3.5 (ver Figura 3.1), el porcentaje ψ 1 (p₁) de material menor a la malla p₁ en el producto del molino deberá ser 100/3.5.

Figura 2.1 Método normalizado de Bond simulando un circuito cerrado de molienda con una carga circulante de 350%; F/Q = 3.5

Suponiendo que la fracción de finos producida es proporcional al número de revoluciones del molino, el número de revoluciones para la nueva etapa de molienda r_2 se calcula de las revoluciones de la etapa anterior r_1 mediante

$$r_2 = r_1 \frac{\left(\frac{100}{3.5}\right)}{\Psi_1(p_1)} \dots (2.1)$$

Donde $\Psi_1(p_1)$ es el porcentaje del material en el molino que tiene un tamaño menor que p₁ después de r₁ revoluciones. Una vez alcanzada la carga circulante de 350%, se define como **moliendabilidad**, y se designa por Gbp, a los gramos netos de material menor al tamaño p₁, producidos por revolución del molino:

Gbp =
$$(\Psi_1(p_1) - \Psi_F(p_1)) \text{ W}/100r^*...(2.2)$$

Donde $\Psi_1(p_1)$ y $\Psi_F(p_1)$ son el porcentaje menor que la malla de separación p₁ en la alimentación fresca al molino y en la descarga respectivamente, W es la masa total de mineral cargada al molino y r^{*} es el número de revoluciones necesarias para obtener la carga circulante de 350%. Finalizado el ensayo, se efectúa un análisis granulométrico completo del producto (bajo tamaño p_1) y de la alimentación fresca (menor a 10 mallas).

Por comparación de ensayos realizados según lo anterior con resultados experimentales de molienda a escala piloto, Bond concluyó que el material se podía caracterizar mediante un parámetro que denominó Índice de Trabajo Wi (Work Índex) y que relacionó con la moliendabilidad del ensayo normalizado según la ecuación empírica:

$$Wi_{t} = \frac{(1.1)(44.5)}{Pi^{0.23}Gbp^{0.82} \left(\frac{10}{\sqrt{X_{QT}}} - \frac{10}{\sqrt{X_{GT}}}\right)} \text{ KWh/ton métrica...(2.3)}$$

Donde Wi_t es el índice de trabajo del ensayo expresado en kWh/ton métricas, p_1 es el tamaño en micrómetros de la malla de separación, Gbp es la moliendabilidad, X_{QT} es el tamaño del 80% en el producto y X_{GT} es el tamaño del 80% en la alimentación fresca (cercana a 2000 µm), todos determinados en el ensayo de Bond. Se debe destacar que el número 10 en la ecuación (2.3) corresponde a $\sqrt{100um}$, por lo que $10/\sqrt{X}$ es adimensional. El factor 1.1 convierte el Indice de Trabajo de Bond de kWh/tonelada corta a kWh/tonelada métrica.

El índice de trabajo obtenido de esta manera es algunas veces, una función débil del tamaño de la malla de separación p_1 , la que puede ser elegida entre 28 y 325 mallas dependiendo del tamaño de corte que se desea simular.

2.1.1 Prueba Modificada de Bond para determinar el W.I del sulfuro

Para estas pruebas se cuenta con el siguiente análisis granulométrico del alimento:

Tabla 2.2 Análisis granulométrico del alimento del sulfuro

Alimento 100% -10m Análisis granulométrico:

Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(x)	Log(aber)	Log(F(x))
m8	2362	244,85	16,689	16,689	83,311	3,373	1,921
m10	1700	138,5	9,440	26,129	73,871	3,230	1,868
m20	850	473,39	32,266	58,394	41,606	2,929	1,619
m30	589	104,7	7,136	65,531	34,469	2,770	1,537
m40	425	101,9	6,945	72,476	27,524	2,628	1,440
m50	300	68,75	4,686	77,162	22,838	2,477	1,359
m70	212	79,35	5,408	82,570	17,430	2,326	1,241
m100	150	50,71	3,456	86,027	13,973	2,176	1,145
m150	106	35,05	2,389	88,416	11,584	2,025	1,064
m200	75	64,2	4,376	92,792	7,208	1,875	0,858
m270	53	31,71	2,161	94,953	5,047	1,724	0,703
m400	38	52,15	3,554	98,507	1,493	1,580	0,174
m400		21,9	1,493	100,000			
Total		1467,16					
	tamaño pron	nedio F80 (um)		1952,389			

Figura 2.2 Análisis granulométrico del alimento del sulfuro

Ciclo	Rev.	Alimento Fresco		Producto		Molienda Neta		Calculo Rev.	
		Peso	Peso	Peso	Peso	Peso	Total		
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1472,40	1266,66	205,74	1042,55	429,85	224,11	2,24	160,91
2	161	429,85	369,79	60,06	1126,54	345,86	285,80	1,78	209,65
3	210	345,86	297,53	48,33	1073,94	398,46	350,13	1,67	218,56
4	219	398,46	342,78	55,68	1074,15	398,25	342,57	1,57	232,89
5	233	398,25	342,60	55,65	1059,10	413,30	357,65	1,54	236,33
								1,55	

2.1.1.1 Prueba Modificada de Bond para el sulfuro a 52.92 RPM

Tabla 2.3 A Moliendabilidad del sulfuro a 52.92 RPM

Tabla 2.3 B Análisis granulométrico del producto del sulfuro a 52.92 RPM

Alimento 1	00% -10m	Análisis gra	nulométrico:				
Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)=X	Log(F(x))
m70	212	0,50	0,06	0,06	99,94	2,33	2,00
m100	150	127,80	15,88	15,94	84,06	2,18	1,92
m150	106	230,30	28,62	44,56	55,44	2,03	1,74
m200	75	187,00	23,24	67,80	32,20	1,88	1,51
m270	53	70,60	8,77	76,58	23,42	1,72	1,37
m400	38	166,10	20,64	97,22	2,78	1,58	0,44
m400		22,40	2,78	100,00			
Total		804,7					
	tamaño promedio P80 (um)						
					1		

Work index(wi) kw-h/t 15,217

Figura 2.3 Análisis granulométrico del producto del sulfuro a 52.92 RPM

Ciclo	Rev.	Alimento Fresco		Producto		Molienda Neta		Calculo Rev.	
		Peso	Peso	Peso	Peso	Peso	Total		
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1472,4	1266,66	205,74	1065,50	406,90	201,16	2,01	180,87
2	181	406,9	350,04	56,86	1099,60	372,80	315,94	1,75	211,01
3	211	372,8	320,71	52,09	1039,30	433,10	381,01	1,81	199,47
4	199	433,1	372,58	60,52	1055,80	416,60	356,08	1,79	203,05
5	203	416,6	358,39	58,21	1059,10	413,30	355,09	1,75	207,53
								1,77	

2.1.1.2 Prueba Modificada de Bond para el sulfuro a 62.92 RPM

Tabla 2.4 A Moliendabilidad del sulfuro a 62.92 RPM

Tabla 2.4 B Análisis granulométrico del producto del sulfuro a 62.92 RPM

Alimento 100% -10m Análisis granulométrico:							
Malla	Abertura(um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)=X	Log(F(x))
m70	212	5,65	0,49	0,49	99,51	2,33	2,00
m100	150	462,55	40,12	40,61	59,39	2,18	1,77
m150	106	196,00	17,00	57,61	42,39	2,03	1,63
m200	75	232,59	20,17	77,78	22,22	1,88	1,35
m270	53	114,40	9,92	87,71	12,29	1,72	1,09
m400	38	127,65	11,07	98,78	1,22	1,58	0,09
m400		14,10	1,22	100,00			
Total		1152,94					
tamaño promedio P80 (um)				161,651			
Work index(wi) kw-h/t			14,529				

Figura 2.4 Análisis granulométrico del producto del sulfuro a 62.92 RPM

									Calculo
Ciclo	Rev.	Ali	mento Fres	500	Prod	Producto		Molienda Neta	
		Peso	Peso	Peso	Peso	Peso	Total		
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1472,40	1266,66	205,74	1019,35	453,05	247,31	2,47	144,51
2	145	453,05	389,74	63,31	1138,20	334,20	270,89	1,87	199,50
3	200	334,20	287,50	46,70	1081,19	391,21	344,51	1,73	211,96
4	212	391,21	336,55	54,66	1043,64	428,76	374,10	1,76	204,41
5	204	428,76	368,85	59,91	1055,70	416,70	356,79	1,75	207,66
								1,76	

2.1.1.3 Prueba Modificada de Bond para el sulfuro a 68.76 RPM

Tabla 2.5 A Moliendabilidad del sulfuro a 68.76 RPM

Tabla 2.5 B Análisis granulométrico del producto del sulfuro a 68.76 RPM

Alimento	100% -10m	Análisis gra	nulométrico:				
Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)=X	Log(F(x))
m70	212	7,00	0,84	0,84	99,16	2,33	2,00
m100	150	153,20	18,33	19,16	80,84	2,18	1,91
m150	106	213,60	25,55	44,71	55,29	2,03	1,74
m200	75	208,45	24,93	69,65	30,35	1,88	1,48
m270	53	129,65	15,51	85,16	14,84	1,72	1,17
m400	38	107,00	12,80	97,95	2,05	1,58	0,31
m400		17,10	2,05	100,00			
Total		836					
	tamaño promedio P80 (um)			150,206			
Work index(wi) kw-h/t			13,880				

Figura 2.5 Análisis granulométrico del producto del sulfuro a 68.76 RPM
r									
Ciclo	Rev.	Alimento Fresco		Producto		Molienda Neta		Calculo Rev.	
		Peso	Peso	Peso	Peso	Peso	Total		
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1472,40	1266,66	205,74	1024,35	448,05	242,31	2,42	147,78
2	148	448,05	385,44	62,61	1157,10	315,30	252,69	1,71	220,26
3	220	315,30	271,24	44,06	1064,00	408,40	364,34	1,65	219,82
4	220	408,40	351,33	57,07	1007,80	464,60	407,53	1,85	191,90
5	192	464,60	399,68	64,92	1046,75	425,65	360,73	1,88	192,15

2.1.1.4 Prueba Modificada de Bond para el sulfuro a 73.72 RPM

Tabla 2.6 B Análisis granulométrico del producto del sulfuro a 73.72 RPM

Aliment	o 100% -10m	Análisis g	ranulométrico:				
Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)=X	Log(F(x))
m70	212	6,50	0,74	0,74	99,26	2,33	2,00
m100	150	173,90	19,73	20,47	79,53	2,18	1,90
m150	106	205,90	23,36	43,83	56,17	2,03	1,75
m200	75	249,00	28,25	72,08	27,92	1,88	1,45
m270	53	92,50	10,49	82,57	17,43	1,72	1,24
m400	38	129,30	14,67	97,24	2,76	1,58	0,44
m400		24,30	2,76	100,00			
Total		881,4					
tamaño promedio P80 (um)			151,745				

13,289 ork index(wi) kw-h/

Figura 2.6 Análisis granulométrico del producto del sulfuro a 73.72 RPM

Ciclo	Rev.	Ali	Alimento Fresco		Prod	ucto	Molienda Neta		Calculo Rev.
		Peso total	Peso +100m	Peso -100m	Peso +100m	Peso -100m	Total -100m	Gr/Rev.	
1	100	1472,40	1266,66	205,74	991,20	481,20	275,46	2,75	128,31
2	128	481,20	413,96	67,24	1100,70	371,70	304,46	2,37	155,41
3	155	371,70	319,76	51,94	1125,90	346,50	294,56	1,90	196,40
4	196	346,50	298,08	48,42	1032,45	439,95	391,53	1,99	180,19
5	180	439,95	378,47	61,48	1093,30	379,10	317,62	1,76	208,60
6	209	379,10	326,13	52,97	1070,60	401,80	348,83	1,67	218,00
7	218	401,80	345,66	56,14	1050,20	422,20	366,06	1,68	215,40

2.1.1.5 Prueba Modificada de Bond para el sulfuro a 84.47 RPM

Tabla 2.7 A Moliendabilidad del sulfuro a 84.47 RPM

Tabla 2.7 B Análisis granulométrico del producto del sulfuro 84.47 RPM

Alimento	100% -10m	Anál	isis granulomét	rico:			
Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)=X	Log(F(x))
m70	212	4,90	0,59	0,59	99,41	2,33	2,00
m100	150	147,80	17,76	18,34	81,66	2,18	1,91
m150	106	223,70	26,87	45,22	54,78	2,03	1,74
m200	75	214,50	25,77	70,99	29,01	1,88	1,46
m270	53	129,30	15,53	86,52	13,48	1,72	1,13
m400	38	97,20	11,68	98,20	1,80	1,58	0,26
m400		15,00	1,80	100,00			
Total		832,4					
tamaño promedio P80 (um)			150,260				
		Work in	dex(wi) kw-h/t	1/ /21/125			

Figura 2.7 Análisis granulométrico del producto del sulfuro a 84.47 RPM

	Hz	RPM	Wi
	50	52,92	15,217
	60	62,92	14,529
	65	68,76	13,88
	70	73,72	13,289
	80	84,47	14,42
optimo		68,92	13,819872

2.1.1.6 Realización de las curvas W.I Vs. RPM y Gr/Rev. Vs. RPM para el sulfuro

Tabla 2.8 Work Índex Vs. RPM del sulfuro

	Hz	RPM	Gr/rev
	50	52,92	1,552
	60	62,92	1,767
	65	68,76	1,755
	70	73,72	1,867
	80	84,47	1,676
optimo		69,3125	1 <i>,</i> 692656

Tabla 2.9 Moliendabilidad Vs. RPM del sulfuro

2.1.2 Prueba Modificada de Bond para determinar el W.I de la sílice

Para estas pruebas se cuenta con el siguiente análisis granulométrico del alimento:

Aliment	to 100% -10m	Análisis granulor	nétrico:				
Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)	Log(F(x))
m20	850	603,200	42,238	42,238	57,762	2,929	1,762
m30	589	186,700	13,073	55,311	44,689	2,770	1,650
m40	425	183,500	12,849	68,160	31,840	2,628	1,503
m50	300	116,200	8,137	76,297	23,703	2,477	1,375
m70	212	110,100	7,710	84,007	15,993	2,326	1,204
m100	150	68,500	4,797	88 <i>,</i> 803	11,197	2,176	1,049
m150	106	4,000	0,280	89,083	10,917	2,025	1,038
m200	75	99,400	6,960	96,044	3,956	1,875	0,597
m270	53	28,500	1,996	98,039	1,961	1,724	0,292
m400	38	26,000	1,821	99,860	0,140	1,580	-0,854
m400		2,000	0,140	100,000			
Total		1428,1					
	tamaño pron	nedio F80 (um)		945,233			

Tabla 2.10 Análisis granulométrico del alimento de la sílice

Figura 2.10 Análisis granulométrico del alimento de la sílice

Ciclo	Rev.	Alimento Fresco			Producto		Molienda Neta		Calculo Rev.
		peso	Peso	Peso	Peso	Peso	Total	C = (D = 1)	
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1269,80	1031,08	238,72	923,00	346,80	108,08	1,08	275,36
2	275	346,80	281,60	65,20	784,20	485,60	420,40	1,53	177,60
3	178	485,60	394,31	91,29	874,10	395,70	304,41	1,71	168,64
4	169	395,70	321,31	74,39	906,90	362,90	288,51	1,71	172,55
		1,71							

2.1.2.1 Prueba Modificada de Bond para la sílice a 52.92 RPM

Tabla 2.11 A Moliendabilidad de la sílice a 52.92 RPM

Tabla 2.11 B Análisis granulométrico del producto de la sílice a 52.92 RPM

Produc	to Final (2 ultimation	as) Análisis granul	ométrico:				
Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)=X	Log(F(x))
m100	150	46,00	24,29	24,29	75,71	2,18	1,88
m150	106	0,40	0,21	24,50	75,50	2,03	1,88
m200	75	68,40	36,11	60,61	39,39	1,88	1,60
m270	53	14,80	7,81	68,43	31,57	1,72	1,50
m400	38	12,70	6,71	75,13	24,87	1,58	1,40
m400		47,10	24,87	100,00			
Total		189,4					
	tamaño	promedio P80 (um)	143,781				
		Work index(wi) kw-h/t	17,807				

Figura 2.11 Análisis granulométrico del producto de la sílice a 52.92 RPM

Ciclo	Rev.	Ali	mento Fres	sco	Producto		Molienda Neta		Calculo Rev.
		peso	Peso	Peso	Peso	Peso	Total		
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1269,80	1031,08	238,72	907,90	361,90	123,18	1,23	239,30
2	239	361,90	293,86	68 <i>,</i> 04	790,70	479,10	411,06	1,72	158,57
3	159	479,10	389,03	90,07	920,50	349,30	259,23	1,63	182,25
4	182	349,30	283,63	65,67	906,90	362,90	297,23	1,63	180,37
		1,63							

2.1.2.2 Prueba Modificada de Bond para la sílice a 62.92 RPM

Tabla 2.12 A Moliendabilidad de la sílice a 62.92 RPM

Tabla 2.12 B Análisis granulométrico del producto de la sílice a 62.92 RPM

Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)	Log(F(x))
m100	150	51,50	28,39	28,39	71,61	2,18	1,85
m150	106	4,50	2,48	30,87	69,13	2,03	1,84
m200	75	66,90	36,88	67,75	32,25	1,88	1,51
m270	53	15,50	8,54	76,30	23,70	1,72	1,37
m400	38	12,30	6,78	83,08	16,92	1,58	1,23
m400		30,70	16,92	100,00			
Total		181,4					
	tamaño prom	edio P80 (um)		148,977859			
		Work index(w	i) kw-h/t	19.0413433			

Figura 2.12 Análisis granulométrico del producto de la sílice a 62.92 RPM

Ciclo	Rev.	Alimento Fresco			Proc	lucto	Molieno	la Neta	Calculo Rev.
	_	Peso Peso Peso		Peso	Peso	Total			
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1269,80	1031,08	238,72	860,00	409,80	171,08	1,71	167,03
2	167	409,80	332,76	77,04	914,20	355,60	278,56	1,67	177,43
3	177	355,60	288,75	66,85	886,00	383,80	316,95	1,79	162,31
4	162	383,80	311,65	72,15	907 <i>,</i> 10	362,70	290,55	1,79	164,27

2.1.2.3 Prueba Modificada de Bond para la sílice a 68.76 RPM

Tabla 2.13 A Moliendabilidad de la sílice a 68.76 RPM

Tabla 2.13 B Análisis granulométrico del producto de la sílice a 68.76 RPM

Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)	Log(F(x))
m100	150	48 <i>,</i> 50	27,37	27,37	72,63	2,18	1,86
m150	106	6,20	3,50	30,87	69,13	2,03	1,84
m200	75	63,70	35,95	66,82	33,18	1,88	1,52
m270	53	14,90	8,41	75,23	24,77	1,72	1,39
m400	38	12,70	7,17	82,39	17,61	1,58	1,25
m400		31,20	17,61	100,00			
Total		177,2					
	tamaño promed	io P80 (um)	148,321				
		Work index(w	17,568				

Figura 2.13 Análisis granulométrico del producto de la sílice a 68.76 RPM

Ciclo	Rev.	Alimento Fresco			Producto		Molien	da Neta	Calculo Rev.
		Peso	Peso	Peso	Peso	Peso	Total		
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1269,80	1031,08	238,72	896,50	373,30	134,58	1,35	217,44
2	217	373,30	303,12	70,18	861,10	408,70	338,52	1,56	183,31
3	183	408,70	331,86	76,84	857,30	412,50	335,66	1,83	155,51
4	156	412,50	334,95	77,55	907 <i>,</i> 10	362,70	285,15	1,83	161,18
								1,83	

2.1.2.4 Prueba Modificada de Bond para de la sílice a 73.72 RPM

Tabla 2.14 A Moliendabilidad de la sílice a 73.72 RPM

Tabla 2.14 B Análisis granulométrico del producto de la sílice a 73.72 RPM

Malla	Abortura (um)		0/ Doco	0/ 1 011 1000	$0/A = rot = \Gamma(V)$	Log(abor)	
ivialla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	$\mathcal{P}_{\mathcal{A}}(\mathbf{u},\mathbf{ret}=\mathbf{F}(\mathbf{X}))$	rog(aper)	LOG(F(X))
m100	150	48	25,59	25,59	74,41	2,18	1,87
m150	106	2,3	1,23	26,81	73,19	2,03	1,86
m200	75	73,7	39,29	66,10	33,90	1,88	1,53
m270	53	16,7	8,90	75,00	25,00	1,72	1,40
m400	38	15,5	8,26	83,26	16,74	1,58	1,22
m400		31,4	16,74	100,00			
Total		187,6					
	tamaño pi	romedio P80 (um)		142,150			
		Work index(wi) kw-h/t	16,668				

Figura 2.14 Análisis granulométrico del producto de la sílice a 73.72 RPM

Ciclo	Rev.	Alimento Fresco		Prod	Producto		da Neta	Calculo Rev.	
		peso total	Peso +100m	Peso -100m	Peso +100m	Peso -100m	Total -100m	Gr/Rev.	
1	100	1269,80	1031,08	238,72	906,10	363,70	124,98	1,25	235,58
2	236	363,70	295,32	68,38	815,00	454,80	386,42	1,64	169,35
3	169	454,80	369,30	85,50	871,60	398,20	312,70	1,85	155,62
4	156	398,20	323,34	74,86	906,90	362,90	288,04	1,85	159,54

2.1.2.5 Prueba Modificada de Bond para la sílice a 84.47 RPM

Tabla 2.15 A Moliendabilidad de la sílice a 84.47 RPM

Tabla 2.15 B Análisis granulométrico del producto de la sílice a 84.47 RPM

Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)=X	Log(FX)
m100	150	45	24,44	24,44	75,56	2,18	1,88
m150	106	6,2	3,37	27,81	72,19	2,03	1,86
m200	75	70	38,02	65,83	34,17	1,88	1,53
m270	53	16,3	8,85	74,69	25,31	1,72	1,40
m400	38	15,3	8,31	83,00	17,00	1,58	1,23
m400		31,3	17,00	100,00			
Total		184,1					
	tamaño prome	dio P80 (um)		141,933			
		Work index(w	i) kw-h/t	16,520			

Figura 2.15 Análisis granulométrico del producto de la sílice a 84.47 RPM

r	1								
Ciclo	Rev.	Alimento Fresco			Producto		Molienc	la Neta	Calculo Rev.
		peso	Peso	Peso	Peso	Peso Peso			
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1269,80	1031,08	238,72	935,00	334,80	96,08	0,96	312,10
2	312	334,80	271,86	62,94	722,30	547,50	484,56	1,55	167,33
3	167	547,50	444,57	102,93	850,10	419,70	316,77	1,90	149,67
4	150	419,70	340,80	78,90	906,90	362,90	284,00	1,89	155,59
								1,90	

2.1.2.6 Prueba Modificada de Bond para la sílice a 92 RPM

Tabla 2.16 A Moliendabilidad de la sílice a 92 RPM

Tabla 2.16 B Análisis granulométrico del producto de la sílice a 92 RPM

Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)	Log(F(x))
m100	150	40,2	24,74	24,74	75,26	2,18	1,88
m150	106	3,9	2,40	27,14	72,86	2,03	1,86
m200	75	60,1	36,98	64,12	35,88	1,88	1,55
m270	53	14,3	8,80	72,92	27,08	1,72	1,43
m400	38	13,1	8,06	80,98	19,02	1,58	1,28
m400		30,9	19,02	100,00			
Total		162,5					
	tamaño promedio P80 (um)						
		Work index(w	vi) kw-h/t	16,270			

Figura 2.16 Análisis granulométrico del producto de la sílice a 92 RPM

2.1.2.7 Realización de las curvas W.I Vs. RPM y Gr/Rev. Vs. RPM de la sílice

	Hz	RPM	Wi
	60	62,92	19,04
	65	68,76	17,57
	70	73,72	16,67
	80	84,47	16,52
	90	92	16,26
optimo		86,16	16,10

Tabla 2.17 Work Índex Vs. RPM de la sílice

Figura 2.17 Work Índex Vs. RPM de la sílice

	Hz	RPM	Gr/rev
	60	62,92	1,6318
	65	68,76	1,7921
	70	73,72	1,8311
	80	84,47	1,8483
	90	92	1,8951
optimo		87,5348556	1,894523

 Tabla 2.18
 Moliendabilidad Vs. RPM de la sílice

			0/D	0/ 0			. (5())
Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)	Log(F(X))
m10	1700	0,80	0,06	0,06	99,94	3,23	2,00
m20	850	435,80	32,93	32,99	67,01	2,93	1,83
m30	589	154,40	11,67	44,66	55,34	2,77	1,74
m40	425	157,00	11,86	56,53	43,47	2,63	1,64
m50	300	101,30	7,66	64,18	35,82	2,48	1,55
m70	212	110,80	8,37	72,55	27,45	2,33	1,44
m100	150	74,80	5,65	78,21	21,79	2,18	1,34
m150	106	29,20	2,21	80,41	19,59	2,03	1,29
m200	75	142,90	10,80	91,21	8,79	1,88	0,94
m270	53	57 <i>,</i> 40	4,34	95,55	4,45	1,72	0,65
m400	38	54,10	4,09	99,64	0,36	1,58	-0,44
m400		4,80	0,36	100,00			
Total		1323,3					
	tamaño promed	io F80 (um)		955,095			

2.1.3 Prueba Modificada de Bond para determinar el W.I de la caliza

Tabla 2.19 Análisis granulométrico del alimento de la caliza

Figura 2.19 Análisis granulométrico del alimento de la caliza

Ciclo	Rev.	Alimento Fresco			Proc	lucto	Moliend	la Neta	Calculo Rev.
		Peso	Peso Peso Peso		Peso	Peso	Total		
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1309,50	836,38	473,12	613,10	696,40	223,28	2,23	54,88
2	55	696,40	444,79	251,61	835,00	474,50	222,89	4,05	50,02
3	50	474,50	303,06	171,44	927,40	382,10	210,66	4,21	56,03
4	56	382,10	244,05	138,05	935 <i>,</i> 40	374,10	236,05	4,22	56,70
								4,21	

2.1.3.1 Prueba Modificada de Bond para caliza a 42.18 RPM

Tabla 2.20 A Moliendabilidad de la caliza a 42.18 RPM

Tabla 2.20 B Análisis granulométrico del producto de la caliza a 42.18 RPM

Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)	Log(F(x))
m100	150	25,70	14,22	14,22	85,78	2,18	1,93
m150	106	0,40	0,22	14,44	85,56	2,03	1,93
m200	75	56,90	31,49	45,93	54,07	1,88	1,73
m270	53	16,70	9,24	55,17	44,83	1,72	1,65
m400	38	16,20	8,97	64,14	35,86	1,58	1,55
m400		64 <i>,</i> 80	35,86	100,00			
Total		180,7					
	tamaño promeo	dio P80 (um)		120,422			
		Work index(w	/i) kw-h/t	6,790			

Figura 2.20 Análisis granulométrico del producto de la caliza a 42.18 RPM

Ciclo	Rev.	Ali	mento Fres	sco	Producto		Molien	da Neta	Calculo Rev.
		peso total	Peso +100m	Peso -100m	Peso +100m	Peso -100m	Total -100m	Gr/Rev.	
1	100	1309 50	836.38	473 12	612.80	696 70	223 58	2.24	54 76
2	55	696 70	<i>111</i> 98	251 72	850 70	458.80	207.08	3 77	55 34
2	55	458.80	293.04	165 76	941 10	368.40	207,00	3.68	65.42
4	65	368 40	235,04	133 10	935 50	374 00	202,04	3 71	64 49
								3 70	0.,40

2.1.3.2 Prueba Modificada de Bond para caliza a 52.92 RPM

Tabla 2.21 A Moliendabilidad de la caliza a 52.92 RPM

Tabla 2.21 B Análisis granulométrico del producto de la caliza a 52.92 RPM

Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)	Log(F(x))
m100	150	24,60	13,28	13,28	86,72	2,18	1,94
m150	106	0,20	0,11	13,38	86,62	2,03	1,94
m200	75	61,90	33,41	46,79	53,21	1,88	1,73
m270	53	17,90	9,66	56,45	43,55	1,72	1,64
m400	38	17,30	9,34	65,79	34,21	1,58	1,53
m400		63 <i>,</i> 40	34,21	100,00			
Total		185,3					
	tamaño promeo	dio P80 (um)		119,812			
		Work index(w	vi) kw-h/t	7,533			

Figura 2.21 Análisis granulométrico del producto de la caliza a 52.92 RPM

		1							
Ciclo	Rev.	Ali	mento Fre	sco	Producto		Molienda Neta		Calculo Rev.
		Peso	eso Peso Peso		Peso	Peso Peso			
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1309,5	836,38	473,12	570 <i>,</i> 30	739,20	266,08	2,66	40,24
2	40	739,2	472,13	267,07	906,80	402,70	135,63	3,39	67,43
3	67	402,7	257,20	145,50	886,40	423,10	277,60	4,14	53,41
4	53	423,1	270,23	152,87	935 <i>,</i> 40	374,10	221,23	4,17	57,25
								4,16	

2.1.3.3 Prueba Modificada de Bond para caliza a 62.92 RPM

Tabla 2.22 A Moliendabilidad de la caliza a 62.92 RPM

Tabla 2.22 B Análisis granulométrico del producto de la caliza a 62.92 RPM

Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)	Log(F(x))
m100	150	30,50	16,07	16,07	83,93	2,18	1,92
m150	106	0,20	0,11	16,17	83,83	2,03	1,92
m200	75	60,00	31,61	47,79	52,21	1,88	1,72
m270	53	16,10	8,48	56,27	43,73	1,72	1,64
m400	38	15,50	8,17	64,44	35,56	1,58	1,55
m400		67 <i>,</i> 50	35,56	100,00			
Total		189,8					
	tamaño promeo	dio P80 (um)		125,594			
		Work index(w	vi) kw-h/t	7,093			

Figura 2.22 Análisis granulométrico del producto de la caliza a 62.92 RPM

Ciclo	Rev.	Alir	nento Fres	co	Produ	ucto	Molien	da Neta	Calculo Rev.
		Peso Peso Peso		Peso	Peso	Total			
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1309,50	836,38	473,12	659,90	649,60	176,48	1,76	79,01
2	79	649,60	414,90	234,70	789,20	520,30	285,60	3,62	51,49
3	52	520,30	332,32	187,98	910,50	399,00	211,02	4,06	56,67
4	57	399,00	254,84	144,16	935,30	374,20	230,04	4,04	59,21
		4,05							

2.1.3.4 Prueba Modificada de Bond para caliza a 68.76 RPM

Tabla 2.23 A Moliendabilidad de la caliza a 68.76 RPM

Tabla 2.23 B Análisis granulométrico del producto de la caliza a 68.76 RPM

Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)	Log(F(x))
m100	150	27	14,98	14,98	85,02	2,18	1,93
m150	106	0,3	0,17	15,15	84,85	2,03	1,93
m200	75	63,1	35,02	50,17	49,83	1,88	1,70
m270	53	18,5	10,27	60,43	39,57	1,72	1,60
m400	38	13,4	7,44	67,87	32,13	1,58	1,51
m400		57,9	32,13	100,00			
Total		180,2					
	tamaño promeo	dio P80 (um)		124,570			
		Work index(w	/i) kw-h/t	7,207			

Figura 2.23 Análisis granulométrico del producto de la caliza a 68.76 RPM

Ciclo	Rev.	Alir	nento Fre	sco	Proc	lucto	Molien	da Neta	Calculo Rev.
		Peso	Peso Peso		Peso	Peso	Total		
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1309,50	836,38	473,12	615,40	694,10	220,98	2,21	55,83
2	56	694,10	443,32	250,78	845,60	463,90	213,12	3,81	54,27
3	54	463,90	296,29	167,61	953,80	355,70	188,09	3,48	70,52
4	71	355,70	227,19	128,51	935 <i>,</i> 50	374,00	245,49	3,46	69,13
								3,47	

2.1.3.5 Prueba Modificada de Bond para caliza a 73.72 RPM

Tabla 2.24 A Moliendabilidad de la caliza a 73.72 RPM

Tabla 2.24 B Análisis granulométrico del producto de la caliza a 73.72 RPM

Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)	Log(F(x))
m100	150	17,9	9,44	9,44	90,56	2,18	1,96
m150	106	0,1	0,05	9,49	90,51	2,03	1,96
m200	75	61,4	32,37	41,86	58,14	1,88	1,76
m270	53	17,6	9,28	51,13	48,87	1,72	1,69
m400	38	15,6	8,22	59,36	40,64	1,58	1,61
m400		77,1	40,64	100,00			
Total		189,7					
	tamaño prome	dio P80 (um)		110,943			
		Work index(w	ri) kw-h/t	7,477			

Figura 2.24 Análisis granulométrico del producto de la caliza a 73.72 RPM

Ciclo	Rev.	Ali	mento Fre	sco	Producto		Molien	da Neta	Calculo Rev.
		Peso Peso Peso		Peso	Peso	Total			
		total	+100m	-100m	+100m	-100m	-100m	Gr/Rev.	
1	100	1309,50	836,38	473,12	594,80	714,70	241,58	2,42	47,99
2	48	714,70	456,48	258,22	946,50	363,00	104,78	2,18	111,32
3	111	363,00	231,85	131,15	834,40	475,10	343,95	3,10	65,35
4	65	475,10	303,45	171,65	935,50	374,00	202,35	3,11	76,78

2.1.3.6 Prueba Modificada de Bond para caliza a 84.47 RPM

Tabla 2.25 A Moliendabilidad de la caliza a 84.47 RPM

Tabla 2.25 B Análisis granulométrico del producto de la caliza a 84.47 RPM

Malla	Abertura (um)	Peso(g)	%Peso	%Acu.pas.	%Acu.ret=F(X)	Log(aber)	Log(F(x))
m100	150	19	10,60	10,60	89,40	2,18	1,95
m150	106	0,4	0,22	10,82	89,18	2,03	1,95
m200	75	65,2	36,36	47,18	52,82	1,88	1,72
m270	53	19,2	10,71	57 <i>,</i> 89	42,11	1,72	1,62
m400	38	12,3	6,86	64,75	35,25	1,58	1,55
m400		63 <i>,</i> 2	35,25	100,00			
Total		179,3					
	tamaño promeo	lio P80 (um)		117,120			
		Work index(w	ri) kw-h/t	8,536			

Figura 2.25 Análisis granulométrico del producto de la caliza a 84.47 RPM

2.1.3.7 Realización de las curvas W.I Vs. RPM y Gr/Rev. Vs. RPM de la caliza

	Hz	RPM	Wi
	40	42,18	6,80
	60	62,92	7,09
	65	68,76	7,21
	70	73,72	7,48
	80	84,47	8,54
optimo		49,10	6,79

Tabla 2.26 Work Índex Vs. RPM de la caliza

	Hz	RPM	Gr/rev
	40	42,18	4,21
	60	62,92	4,16
	65	68,76	4,05
	70	73,72	3,47
	80	84,47	3,11
optimo		51,70	4,38

Tabla 2.27 Moliendabilidad Vs. RPM de la caliza

Figura 2.27 Moliendabilidad Vs. RPM de la caliza

2.1.4 Relación de Wi , Gr/Rev. Vs RPM (Sulfuro, Sílice y Caliza)

2.1.4.1 Wi Vs RPM (Sulfuro, Sílice y Caliza)

Hz	RPM	Wi sulfuro	Wi silice	Wi caliza
40	42,18			6,79
50	52,92	15,217		
60	62,92	14,529	19,04	7,093
65	68,76	13,88	17,57	7,207
70	73,72	13,289	16,67	7,477
80	84,47	14,42	16,52	8,536
90	92		16,26	

Tabla 2.28 Wi Vs. RPM Sulfuro, Sílice y Caliza

Figura 2.28 Wi Vs. RPM (Sulfuro, Sílice y Caliza)

Hz	RPM	Gr/rev sulfuro	Gr/rev silice	Gr/rev caliza
40	42,18			4,214
50	52,92	1,552		
60	62,92	1,767	1,6318	4,159
65	68,76	1,755	1,7921	4,047
70	73,72	1,867	1,8311	3,47
80	84,47	1,676	1,8483	3,106
90	92		1,8951	

2.1.4.2 Gr/Rev. Vs RPM Sulfuro, Cuarzo y Caliza

Tabla 2.29 Gr/Rev. Vs. RPM (Sulfuro, Cuarzo y Caliza)

Figura 2.29 Gr/Rev. Vs. RPM (Sulfuro, Cuarzo y Caliza)

2.2 Mediciones de consumo energético del Proceso de Molienda

La energía suministrada a un molino se consume esencialmente en el movimiento de los medios (y en menor grado del mineral), pero también se utiliza algo de energía en hacer girar el casco (que es básicamente una volante) y en superar la fricción de la transmisión [3] pag168 y 169. Cinco parámetros determinan la potencia tomada por el molino: el diámetro, la longitud, el volumen de carga, la velocidad y el tipo de tambor.

Teóricamente la potencia tomada P es proporcional a la longitud L, a la masa de la carga (αD^2_M),a la longitud del brazo de torsión (αD_M) y a la velocidad angular ($\alpha l / (D_M)^{1/2}$); así:

$$P \propto LD^{2.5}M \dots (2.4)$$

En la práctica, los exponentes determinados para D_M varían de 2,3 a 3.0. Los bajos exponentes presentados por Bond y Rowland se han descrito con relativa amplitud como válidos para los molinos de barra y bolas y se han atribuido a eficiencias más bajas en los molinos más pequeños. Gow y sus asociados determinaron un exponente de 2.6 en su estudio relativo a los molinos de bolas y aunque Rowland cito 2.3 para molienda autógena, la mayoría de los investigadores sugieren que los molinos autógenos cortos ($D_M > 2L$) tienen los exponentes teóricos anteriores (2,6 a 2,85). Es probable que las cifras que exceden de 2.5 sean ocasionadas por un efecto de límite de pared que favorece el levantamiento de los medios, y en consecuencia incrementa la potencia consumida, de manera que una relación más realista es de la forma:

$P \propto [L + (KD_M)]D^{2.5}M....(2.5)$

Este exponente 2.5 esta de echo apoyado por los datos que aparecen en los catálogos de la mayoría de los fabricantes. La potencia consumida por un molino aumenta inicialmente en forma lineal con la velocidad pero a medida que aumenta el deslizamiento disminuye el régimen de incremento y después de pasar por un máximo, disminuye hacia cero al centrifugarse la carga. Vale la pena hacer notar que la velocidad crítica teórica es menor que el punto real al que se centrifuga la carga completa, a causa del deslizamiento y de la trayectoria circunferencial menor de los medios internos.

Las mediciones de la potencia eléctrica variando la velocidad de giro del molino se realizaron al momento de hacer las pruebas de Work Índex, esta mediciones se realizaron con el medidor de multiparametros eléctricos aproximadamente se tomaron los primeros 200 segundos por cada punto (ver anexo 2), en las tablas que presentamos a continuación se colocaran los 50 primeros segundos y luego se coloca los últimos 10 segundos pero las figuras nos muestran todos los 200 segundos donde se aprecian que los valores se estabilizan en un valor cuyo promedio colocamos al final de las tablas.

2.2.1.1 Consumo de energía - sistema molino y carga de bolas (52,92 RPM)

Tabla 2.30 Consumo de energía molino + bolas a 50HZ (52,92 RPM)

FRECUENCIA (Hz)		50	
Seg	Mol(watt)	Mol+Bol(watt)	
1	20	20	
2	11	9	
3	9	9	
4	11	11	
5	51	11	
6	344	406	
7	178	227	
8	165	222	
9	168	222	
10	170	222	
11	170	225	
12	168	215	
13	175	225	
14	160	230	
15	173	227	
16	165	227	
17	170	222	
18	160	225	
19	168	215	
20	163	220	

21	155	225
22	165	222
23	173	225
24	163	220
25	153	227
26	160	225
27	165	217
28	170	220
29	165	220
30	163	222
31	168	220
32	168	217
33	158	222
34	160	217
35	155	217
36	163	217
37	163	215
38	158	220
39	165	227
40	160	220
41	168	227
42	165	222

43	160	215
44	165	220
45	165	215
46	160	220
47	165	220
48	163	225
49	163	220
50	160	222
190	158	222
191	165	212
192	163	217
193	165	217
194	160	210
195	165	215
196	160	217
197	163	222
198	158	220
199	160	215
200	165	215
	161,807	217,157

Figura 2.30 Consumo de energía molino + bolas a 50HZ (52,92 RPM)

FREC	UENCIA (Hz)	60	21	
Seg	Mol(watt)	Mol+Bol(watt)	22	
1	9	20	23	
2	9	10	24	
3	11	11	25	
4	9	21	26	
5	43	21	27	
6	386	420	28	
7	277	262	29	
8	185	267	30	
9	185	257	31	
10	193	262	32	
11	183	265	33	
12	185	260	34	
13	195	260	35	
14	175	257	36	
15	178	255	37	
16	190	257	38	
17	185	252	39	
18	193	262	40	
19	180	257	41	
20	185	252	42	

2.2.1.2 Consumo de energía - sistema molino y carga de bolas (62,92 RPM)

Tabla 2.31 Consumo de energía molino + bolas a 60HZ (62,92 RPM)

		i i i i i i i i i i i i i i i i i i i
21	185	260
22	175	262
23	193	262
24	185	255
25	185	260
26	188	257
27	180	260
28	185	252
29	190	255
30	185	257
31	185	255
32	190	255
32	178	247
34	190	250
35	185	250
35	105	200
30	100	202
37	190	255
38	183	252
39	183	255
40	188	260
41	180	257
42	180	252

	1	
43	185	250
44	185	255
45	188	252
46	185	250
47	178	257
48	188	250
49	183	252
50	185	252
190	197	257
191	195	255
192	185	252
193	180	252
194	188	247
195	190	250
196	183	250
197	190	252
198	185	250
199	185	250
200	193	262
	184,096	252,766

Figura 2.31 Consumo de energía molino + bolas a 60HZ (62,92 RPM)

FRECUENCIA (Hz)		65
Seg	Mol(watt)	Mol+Bol(watt)
1	11	6
2	9	11
3	9	11
4	11	9
5	14	26
6	113	284
7	528	533
8	247	284
9	195	272
10	195	272
11	215	282
12	210	272
13	207	272
14	195	282
15	195	279
16	202	277
17	212	287
18	207	282
19	195	279
20	195	277

Tabla 2.32 Consumo de energía molino + bolas a 65HZ (68,76 RPM)

2.2.1.3 Consumo de energía - sistema molino y carga de bolas (68,76 RPM)

21	215	275
22	207	279
23	210	279
24	190	284
25	205	272
26	210	267
27	207	277
28	197	267
29	195	272
30	197	272
31	195	267
32	205	272
33	197	277
34	195	272
35	205	275
36	202	277
37	200	279
38	197	275
39	200	277
40	200	277
41	197	277
42	202	275

43	202	277
44	195	272
45	195	272
46	197	272
47	205	275
48	200	267
49	200	279
50	193	270
190	191	278
191	188	270
192	195	275
193	202	275
194	200	272
195	200	272
196	195	272
197	195	265
198	185	277
199	195	277
200	195	272
	197,609	271,122

Figura 2.32 Consumo de energía molino + bolas a 65HZ (68,76 RPM)

FREC	UENCIA (Hz)	70	21	
Seg	Mol(watt)	Mol+Bol(watt)	22	
1	9	9	23	
2	11	9	24	
3	9	9	25	
4	9	16	26	
5	51	133	27	
6	483	660	28	
7	369	334	29	
8	232	292	30	
9	222	289	31	
10	220	289	32	
11	212	297	33	
12	210	307	34	
13	210	317	35	
14	205	314	36	
15	202	307	37	
16	202	297	38	
17	207	287	39	
18	207	287	40	
19	207	287	41	
20	210	297	42	

2.2.1.4 Consumo de energía - sistema molino y carga de bolas (73,72 RPM)

Tabla 2.33 Consu	no de energía	molino + bolas	a 70HZ (73,72 I	RPM)
------------------	---------------	----------------	-----------------	------

21	215	297
22	230	304
23	232	302
24	235	312
25	235	312
26	237	309
27	225	292
28	212	287
29	220	289
30	217	284
31	207	284
32	207	289
33	197	297
34	205	297
35	202	302
36	202	314
37	205	314
38	205	314
39	202	307
40	200	312
41	205	297
42	210	292

		1
43	202	289
44	207	289
45	207	289
46	215	277
47	222	292
48	235	302
49	230	307
50	230	307
190	205	307
191	215	294
192	220	294
193	212	287
194	220	282
195	227	287
196	230	287
197	227	289
198	215	294
199	205	309
200	205	304
	215,391	294,701

Figura 2.33 Consumo de energía molino + bolas a 70HZ (73,72 RPM)

FREC	UENCIA (Hz)	80	2	1
Seg	Mol(watt)	Mol+Bol(watt)	2	2
1	9	9	2	3
2	9	11	2	4
3	9	11	2	5
4	26	14	2	6
5	324	91	2	7
6	568	809	2	8
7	275	466	2	9
8	265	369	3	0
9	255	352	3	1
10	267	354	3	2
11	262	352	3	3
12	262	349	3	4
13	262	347	3	5
14	270	349	3	6
15	257	356	3	7
16	262	356	3	8
17	252	349	3	9
18	247	349	4	0
19	257	364	4	1
20	255	359	4	2

2.2.1.5	Consumo	de energía ·	sistema mol	lino y carga	de bolas (84,47 RPM)

	ı ı	1	1
354	43	247	342
349	44	265	354
356	45	257	352
349	46	255	352
354	47	252	349
354	48	260	347
349	49	250	347
352	50	252	359
349			
352	190	247	334
354	191	257	344
349	192	257	347
339	193	250	339
344	194	257	347
344	195	252	337
334	196	255	339
347	197	257	349
342	198	257	344
344	199	247	349
344	200	260	339
347		253,909	345,330
354			

Tabla 2.34 Consumo de energía molino + bolas a 80HZ (84,47 RPM)

Figura 2.34 Consumo de energía molino + bolas a 80HZ (84,47 RPM)

2.2.2.1 Consumo de energía para moler el sulfuro (52,92 RPM)

Tabla 2.35 Consumo de energía a 50HZ (52,92 RPM) - sulfuro

FREC. (Hz)		50	
	Mol+Bol	Sulfuro	
Seg	(watt)	(watt)	
1	20	20	
2	9	9	
3	9	11	
4	11	9	
5	11	9	
6	406	406	
7	227	267	
8	222	235	
9	222	230	
10	222	237	
11	225	237	
12	215	230	
13	225	235	
14	230	225	
15	227	227	
16	227	232	
17	222	230	
18	225	237	
19	215	235	
20	220	232	

21	225	235
22	222	230
23	225	225
24	220	230
25	227	230
26	225	230
27	217	230
28	220	232
29	220	237
30	222	230
31	220	227
32	217	230
33	222	222
34	217	235
35	217	232
36	217	235
37	215	230
38	220	230
39	227	222
40	220	230
41	227	230
42	222	227

	I	1
43	215	232
44	220	232
45	215	230
46	220	225
47	220	227
48	225	220
49	220	227
50	222	222
190	222	232
191	212	225
192	217	222
193	217	222
194	210	227
195	215	225
196	217	225
197	222	230
198	220	225
199	215	227
200	215	222
	217,157	227,061

Figura 2.35 Consumo de energía a 50HZ (52,92 RPM) - sulfuro

		1	
FREC.	60Hz		
Sea	Mol+Bol (watt)	Sulfuro.	
JCB	(watt)	(watt)	
1	20	11	
2	10	20	
3	11	9	
4	21	9	
5	21	232	
6	420	468	
7	262	292	
8	267	287	
9	257	277	
10	262	279	
11	265	279	
12	260	277	
13	260	284	
14	257	279	
15	255	277	
16	257	287	
17	252	287	
18	262	277	
19	257	279	
20	252	287	

2.2.2.2 Consumo de energía para moler	el sulfuro (62,92 RPM)

252,766 272,858

Figura 2.36 Consumo de energía a 60HZ (62,92 RPM) - sulfuro

	65.11-	
FREC.	Mol+Bol	Sulfuro.
Seg	(watt)	(watt)
1	6	9
2	11	9
3	11	9
4	9	6
5	26	26
6	284	294
7	533	555
8	284	314
9	272	297
10	272	299
11	282	309
12	272	299
13	272	297
14	282	299
15	279	292
16	277	294
17	287	304
18	282	307
19	279	309
20	277	307

Tabl	a 2.37 Co	nsumo	o de ei	nergía a	65HZ (68,	,76 R	PM) -	sulfuro
5 Hz		_	21	275	292		43	277
ol+Bol watt)	Sulfuro. (watt)		22	279	302		44	272
6	9		23	279	302		45	272
11	9		24	284	299		46	272
11	9		25	272	307		47	275
9	6		26	267	299		48	267
26	26		27	277	299		49	279
284	294		28	267	297		50	270
533	555		29	272	299			
284	31/		30	272	304		190	265
204	207	_	31	267	302		191	270
272	200		32	272	302		192	275
292	309		33	277	302		193	275
202	200		34	272	302		194	272
272	205		35	275	299		195	272
272	297		36	277	299		196	272
202	200	_	37	279	302		197	265
275	292		38	275	292		198	277
2//	294		39	277	304		199	277
207	304	-	40	277	304		200	272
202	307	-	41	277	292			271,122
2/9	309	_	42	275	297			

Figura 2.37 Consumo de energía a 65HZ (68,76 RPM) - sulfuro

2.2.2.3 Consumo de energía para moler el sulfuro (68,76 RPM)

FREC	70 Hz	
Seg	Mol+Bol (watt)	Sulfuro. (watt)
1	9	9
2	9	9
3	9	9
4	16	14
5	133	93
6	660	712
7	334	391
8	292	342
9	289	349
10	289	352
11	297	347
12	307	334
13	317	319
14	314	317
15	307	317
16	297	319
17	287	314
18	287	324
19	287	334
20	297	339

2.2.2.4 Consumo de energía para moler el sulfuro (73,72 RPM)

Tabla 2.38 Consumo de energía a 70HZ (73,72 RPM) - sulfuro

21	297	347	
22	304	334	
23	302	327	
24	312	324	
25	312	319	
26	309	314	
27	292	312	
28	287	317	
29	289	324	
30	284	327	
31	284	342	
32	289	344	
33	297	337	
34	297	317	
35	302	309	
36	314	309	
37	314	312	
38	314	322	
39	307	324	
40	312	334	
41	297	339	
42	292	337	

	1	
43	289	337
44	289	337
45	289	317
46	277	317
47	292	309
48	302	307
49	307	312
50	307	319
190	307	307
191	294	317
192	294	329
193	287	329
194	282	329
195	287	327
196	287	327
197	289	332
198	294	329
199	309	312
200	304	304
	294,701	321,102

Figura 2.38 Consumo de energía a 70HZ (73,72 RPM) - sulfuro

FREC.	80	
~	Mol+Bol	Sulfuro
Seg	(watt)	(watt)
1	9	11
2	11	9
3	11	31
4	14	426
5	91	329
6	809	637
7	466	394
8	369	406
9	352	394
10	354	391
11	352	389
12	349	389
13	347	386
14	349	391
15	356	384
16	356	386
17	349	379
18	349	391
19	364	374
20	359	394

2.2.2.5 Consumo de energía para mo	oler el sulfuro (84,47 RPM)
------------------------------------	-----------------------------

				1	
21	354	401	43	342	371
22	349	381	44	354	384
23	356	391	45	352	384
24	349	379	46	352	389
25	354	374	47	349	386
26	354	384	48	347	381
27	349	381	49	347	386
28	352	391	50	359	374
29	349	394			
30	352	391	190	334	374
31	354	391	191	344	384
32	349	379	192	347	384
33	339	396	193	339	364
34	344	394	194	347	371
35	344	374	195	337	381
36	334	394	196	339	376
37	347	379	197	349	374
38	342	386	198	344	369
39	344	386	199	349	371
40	344	376	200	339	379
41	347	391		345,330	378,279
42	354	374			

Tabla 2.39 Consumo de energía a 80HZ (84,47 RPM) - sulfuro

Figura 2.39 Consumo de energía a 80HZ (84,47 RPM) - sulfuro
RPM	mol(watt)	mol+bol(watt)	mol+bol+min(watt)	min(watt)	Gr/rev
52,92	161,807	217,157	227,061	9,904	1,552
62,92	184,096	252,766	272,858	20,092	1,767
68,76	197,609	271,122	292,711	21,589	1,755
73,72	215,391	294,701	321,102	26,401	1,867
84,47	253,909	345,33	378,279	32,949	1,676

Tabla 2.40 Potencia (Molino, Carga de bolas y Sulfuro) a diferentes RPM

Figura 2.40A Potencia (Molino, Carga de bolas y Sulfuro) a diferentes RPM

Figura 2.40B Moliendabilidad Vs. Potencia a diferentes RPM – Sulfuro

2.2.3 Consumo de energía para moler sílice

2.2.3.1 Consumo de energía para moler sílice (52,92 RPM)

Tabla 2.41 Consumo de energía a 50HZ (52,92 RPM) - sílice

FREC.	50 Hz	
Sea	Mol+Bol	Sílice.
Jeg	(watt)	(watt)
1	20	20
2	9	9
3	9	9
4	11	16
5	11	138
6	406	364
7	227	235
8	222	230
9	222	230
10	222	222
11	225	230
12	215	222
13	225	230
14	230	235
15	227	232
16	227	235
17	222	227
18	225	225
19	215	222
20	220	230

	-		
21	225	230	
22	222	230	
23	225	225	
24	220	225	
25	227	220	
26	225	225	
27	217	227	
28	220	230	
29	220	227	
30	222	227	
31	220	225	
32	217	217	
33	222	222	
34	217	222	
35	217	225	
36	217	230	
37	215	225	
38	220	227	
39	227	215	
40	220	222	
41	227	227	
42	222	232	

43	215	227
44	220	225
45	215	222
46	220	217
47	220	225
48	225	220
49	220	227
50	222	230
190	222	235
191	212	230
192	217	227
193	217	222
194	210	225
195	215	220
196	217	222
197	222	222
198	220	227
199	215	222
200	215	222
	217,157	223,685

Figura 2.41 Consumo de energía a 50HZ (52,92 RPM) – sílice

FREC.	60 Hz	
	Mol+Bol	Sílice.
Seg	(watt)	(watt)
1	20	11
2	10	9
3	11	9
4	21	26
5	21	307
6	420	391
7	262	257
8	267	260
9	257	257
10	262	262
11	265	262
12	260	260
13	260	262
14	257	257
15	255	262
16	257	265
17	252	267
18	262	262
19	257	262
20	252	262

2.2.3.2 Consumo de energía para moler sílice (62,92 RPM)

Tabla 2.42 Consumo de energía a 60HZ (62,92 RPM) - sílice

21	260	267
22	262	267
23	262	262
24	255	267
25	260	272
26	257	265
27	260	257
28	252	257
29	255	257
30	257	257
31	255	262
32	255	257
33	247	252
34	250	257
35	260	262
36	262	260
37	255	257
38	252	255
39	255	257
40	260	257
41	257	265
42	252	262

	1	1
43	250	260
44	255	260
45	252	267
46	250	267
47	257	260
48	250	262
49	252	267
50	252	262
190	257	255
191	255	257
192	252	262
193	252	267
194	247	267
195	250	262
196	250	262
197	252	267
198	250	267
199	250	260
200	262	267
	252,766	260,071

Figura 2.42 Consumo de energía a 60HZ (62,92 RPM) - sílice

		7	
FREC	65 Hz		65 Hz
Sog	Mol+Bol	Sílice.	Aol+Bol Sílic
Jeg	(wall)	(watt)	
1 2	11	9	11 0
2	11	9	11 9
3	11	11	11 11
4	9	9	9 9
5	26	48	26 48
6	284	441	284 441
7	533	411	533 411
8	284	287	284 287
9	272	289	272 289
10	272	289	272 289
11	282	287	282 283
12	272	287	272 287
12	272	287	272 287
14	282	284	282 284
15	279	282	279 283
16	275	202	277 202
17	207	202	207 202
17	287	287	28/ 28/
18	282	292	282 292
19	279	287	279 287
20	277	287	277 287

2.2.3.3 Consumo de energía para moler sílice (68,76 RPM)

Tabla 2.43 Consumo de energía a 65HZ (68,76 RPM) - sílice

Figura 2.43 Consumo de energía a 65HZ (68,76 RPM) - sílice

FREC.	70 Hz		21	297	307	43	289	319
6	Mol+Bol	Sílice	22	304	302	44	289	302
Seg	(watt)	(watt)	23	302	319	45	289	304
1	9	9	24	312	317	46	277	294
2	9	9	27	212	222	40	202	217
3	9	11	25	312	322	47	292	312
4	16	24	26	309	302	48	302	314
5	133	190	27	292	294	49	307	324
6	660	625	28	287	302	50	307	309
7	334	334	29	289	314			
, 8	202	31/	30	284	304	190	307	299
0	292	227	31	284	319	191	294	304
10	205	277	32	289	317	192	294	307
10	205	222	33	297	324	193	287	312
12	207	307	34	297	299	194	282	322
12	307	307	35	302	309	195	287	304
13	317	304		002		100	207	
14	314	304	30	314	292	196	287	312
15	307	309	37	314	297	197	289	307
16	297	307	38	314	307	198	294	307
17	287	324	39	307	319	199	309	309
18	287	322	40	312	314	200	304	317
19	287	322	41	297	319		294,701	310,076
20	207	207	42	292	307			
20	<u> </u>	6.11						

2.2.3.4 Consumo de energía para moler sílice (73,72 RPM)

Tabla 2.44 Consumo de energía a 70HZ (73,72 RPM) - sílice

Figura 2.44 Consumo de energía a 70HZ (73,72 RPM) - sílice

FREC.	80 Hz		21	354	359	43	342	354
500	Mol+Bol	Sílice	22	349	361	44	354	361
Jeg	(watt)	(Wall)	23	356	354	45	352	361
1	9		24	349	366	46	352	361
2	11	9	25	354	359	47	349	359
3	11	9	20				0.15	
4	14	14	26	354	364	48	347	361
5	91	88	27	349	349	49	347	364
6	809	824	28	352	361	50	359	356
7	466	481	29	349	361			
, 0	260	294	30	352	371	190	334	359
0	303	264	31	354	364	191	344	369
9	352	304	32	349	359	192	347	354
10	354	369	33	339	356	193	339	359
11	352	364						
12	349	361	34	344	359	194	347	359
13	347	356	35	344	359	195	337	349
14	349	361	36	334	361	196	339	361
15	356	364	37	347	352	197	349	349
15	550	504	38	342	359	198	344	366
16	356	3/1	20			100		
17	349	366	39	344	354	199	349	354
18	349	369	40	344	366	200	339	371
19	364	364	41	347	366		345,330	359,223
20	350	360	42	354	369			
20								

2.2.3.5 Consumo de energía para moler sílice (84,47 RPM)

Tabla 2.45 Consumo de energía a 80HZ (84,47 RPM) - sílice

Figura 2.45 Consumo de energía a 80HZ (84,47 RPM) - sílice

RPM	mol(watt)	mol+bol(watt)	mol+bol+min(watt)	min(watt)	Gr/rev
62,92	184,096	252,766	260,071	7,305	1,6318
68,76	197,609	271,122	280,193	9,071	1,7921
73,72	215,391	294,701	310,076	15,375	1,8311
84,47	253,909	345,33	359,223	13,893	1,8483

Tabla 2.46 Potencia (Molino, Carga de bolas y Sílice) a diferentes RPM

Figura 2.46A Potencia (Molino, Carga de bolas y Sílice) a diferentes RPM

Figura 2.46B Moliendabilidad Vs. Potencia a diferentes RPM – sílice

2.2.4 Consumo de energía para moler la caliza

2.2.4.1 Consumo de energía para moler la caliza (52,92 RPM)

Tabla 2.47 Consumo de energía a 50HZ (52,92 RPM) - caliza

		1
FREC.	50 Hz	
	Mol+Bol	Caliza
Seg	(watt)	(watt)
L	20	9
2	9	9
;	9	9
4	11	9
5	11	11
6	406	58
,	227	416
	227	255
\$		255
)	222	247
0	222	240
	225	245
2	215	245
3	225	245
L4	230	235
15	227	235
6	227	237
17	227	237
./		235
18	225	232
19	215	235
20	220	242

Figura 2.47 Consumo de energía a 50HZ (52,92 RPM) - caliza

217,157 226,175

		1	1				1		1
FREC.	60 Hz		_	20	252	282	42	252	272
607	Mol+Bol	Caliza		21	260	277	43	250	277
Seg	(Wall)	(wall)		22	262	270	44	255	282
1	20	9		23	262	277	45	252	277
2	10	11		24	255	279	46	250	279
3	11	11			200			200	2/3
4	21	11		25	260	282	47	257	272
5	21	76		26	257	272	48	250	277
6	420	508		27	260	265	49	252	279
7	262	337		28	252	267	50	252	277
, 0	202	200		29	255	267	190	257	272
0	207	289		30	257	272	191	255	272
9	257	282		31	255	267	192	252	272
10	262	282					100		
11	265	282		32	255	275	193	252	267
12	260	282		33	247	272	194	247	275
13	260	289		34	250	267	195	250	279
14	257	292		35	260	267	196	250	272
15	257	270		36	262	272	197	252	267
15	255	279		37	255	277	198	250	267
16	257	279					100		
17	252	272		38	252	272	199	250	267
18	262	275		39	255	267	200	262	270
19	257	279		40	260	265		252,766	267,62
-	-			41	257	270			

2.2.4.2 Consumo de energía para moler la caliza (62,92 RPM)

Tabla 2.48 Consumo de energía a 60HZ (62,92 RPM) - caliza

Figura 2.48 Consumo de energía a 60HZ (62,92 RPM) - caliza

	1		1					1	
65 Hz			21	275	312		43	277	289
Mol+Bol	Caliza		22	279	302		44	272	289
(watt)	(watt)		23	279	299		45	272	294
6	9		23	275	200		40	272	204
11	9		24	284	302		46	272	289
11	9		25	272	292		47	275	299
9	21		26	267	297		48	267	297
26	230		27	277	302		49	279	292
284	570		28	267	297		50	270	284
	214		29	272	307				
333	514		30	272	304		190	265	284
284	304		31	267	299		191	270	299
272	299		32	272	297		192	275	284
272	304		52	272	257		152	275	204
282	307		33	277	299		193	275	282
272	307		34	272	292		194	272	299
272	307		35	275	299		195	272	294
282	307		36	277	299		196	272	297
270	204		37	279	297		197	265	302
273	207		38	275	302		198	277	299
277	297		39	277	304		199	277	292
287	297		40	277	200		200	272	202
282	302		40	2//	299		200	272	292
279	299		41	277	299			271,122	291,71
277	307		42	275	302				
	65 Hz Mol+Bol (watt) 6 11 11 9 26 284 533 284 272 272 282 272 282 272 282 272 282 272 282 272 282 279 277 287 287 287 287	65 Hz Mol+Bol (watt) Caliza (watt) 6 9 11 9 11 9 11 9 21 20 284 570 533 314 284 304 272 299 272 307 282 307 272 307 272 307 282 307 272 307 282 307 282 307 282 307 282 307 282 307 282 307 282 302 287 297 287 297 287 302 287 302 287 302 277 302 287 302 299 302	65 Hz Mol+Bol (watt) Caliza (watt) 6 9 11 9 11 9 21 2 26 230 284 570 533 314 284 304 272 299 272 307 282 307 282 307 282 307 282 307 282 307 282 307 282 307 282 307 282 307 282 307 282 307 282 307 282 307 282 307 283 304 277 297 282 302 282 302 282 302 275 299	65 Hz 21 Mol+Bol (watt) Caliza (watt) 22 6 9 23 11 9 24 11 9 24 11 9 24 11 9 25 26 230 26 284 570 28 533 314 29 284 570 30 284 304 30 272 299 31 272 304 32 282 307 34 272 307 36 272 307 36 272 307 36 282 307 36 275 304 37 282 307 36 284 304 37 38 39 34 39 34 37 307 38 39 282 302 30 283 302 40 284	65 Hz 21 275 Mol+Bol (watt) Caliza (watt) 22 279 6 9 23 279 11 9 24 284 11 9 24 284 9 21 26 267 26 230 267 272 284 570 28 267 533 314 29 272 284 304 30 272 272 299 31 267 272 304 33 277 272 307 34 272 272 307 34 272 272 307 34 275 272 307 35 275 282 307 36 277 273 304 37 279 282 307 38 275 287 297 38 275 287 297 39 277 287 302 277	65 Hz 21 275 312 Mol+Bol (watt) (watt) 22 279 302 26 9 23 279 299 11 9 24 284 302 9 21 25 272 292 9 21 26 267 297 26 230 26 267 297 284 570 28 267 297 533 314 29 272 307 284 304 30 272 304 272 299 31 267 299 272 304 31 267 299 272 307 33 277 299 272 307 35 275 299 282 307 36 277 299 282 307 36 277 299 282 304 37 279 304 287 297 36 277 309 <	65 Hz 21 275 312 MolHBol (watt) Caliza (watt) 22 279 302 6 9 23 279 299 11 9 24 284 302 9 21 26 267 297 9 21 26 267 297 9 21 27 302 26 230 27 302 284 570 28 267 297 533 314 29 272 304 284 304 20 272 304 284 304 30 272 304 284 304 30 272 299 272 304 31 267 299 272 307 34 272 292 272 307 35 275 299 272 307 36 277 299 282 307 38 275 302 287 297	65 Hz2127531243Mol+Bol (watt)Caliza (watt)2227930244692327929945119242843024611925272292479212626729748262302727730249284570282672974928430426267297191272304302723041902723073126729919127230731267299193272307352752991952823073627729919528430230392773042723073627729919528230736277302198287297304392753022872973043927730428729730439275302287302402772991982873024027729919828730240277299200282302412772993042833024027730419928430241 <td< td=""><td>65 Hz 21 275 312 43 277 $Mol+Bol$ $Caliza$ 22 279 302 44 272 6 9 23 279 299 45 272 11 9 24 284 302 46 272 9 21 25 272 292 47 275 9 21 26 267 297 49 279 26 230 277 302 270 307 50 270 284 570 29 272 307 304 29 272 307 190 265 272 299 32 272 297 191 270 272 307 34 272 297 194 272 272 307 34 272 292 194 272 272 307 36 277 299 196 272</td></td<>	65 Hz 21 275 312 43 277 $Mol+Bol$ $Caliza$ 22 279 302 44 272 6 9 23 279 299 45 272 11 9 24 284 302 46 272 9 21 25 272 292 47 275 9 21 26 267 297 49 279 26 230 277 302 270 307 50 270 284 570 29 272 307 304 29 272 307 190 265 272 299 32 272 297 191 270 272 307 34 272 297 194 272 272 307 34 272 292 194 272 272 307 36 277 299 196 272

2.2.4.3 Consumo de energía para moler la caliza (68,76 RPM)

Tabla 2.49 Consumo de energía a 65HZ (68,76 RPM) - caliza

Figura 2.49 Consumo de energía a 65HZ (68,76 RPM) - caliza

						-			
FREC.	70 Hz		_	21	297	302	43	289	309
6	Mol+Bol	Caliza		22	304	332	44	289	319
Seg	(wall)	(wall)		23	302	314	45	289	327
1	9	9		24	312	309	46	277	307
2	9	9		25	312	297	47	292	294
3	9	9		23	512	237		252	231
4	16	11		26	309	314	48	302	294
5	133	61		27	292	312	49	307	312
6	660	682		28	287	324	50	307	329
7	334	426		29	289	302			
,	202	212		30	284	302	190	307	332
0	292	312		31	284	307	191	294	302
9	289	299		32	289	324	192	294	299
10	289	324							
11	297	322		33	297	322	193	287	294
12	307	332		34	297	319	194	282	317
13	317	312		35	302	302	195	287	319
14	314	307		36	314	307	196	287	322
	007			37	314	302	197	289	307
15	307	304		20	214	274	100	204	202
16	297	322		50	514	524	190	294	502
17	287	324		39	307	324	199	309	312
18	287	324		40	312	314	200	304	329
19	287	302		41	297	307		294,701	306,82
20	297	294		42	292	302			

2.2.4.4 Consumo de energía para moler la caliza (73,72 RPM)

Tabla 2.50 Consumo de energía a 70HZ (73,72 RPM) - caliza

Figura 2.50 Consumo de energía a 70HZ (73,72 RPM) - caliza

		1				i	1		1
FREC.	70 Hz			21	354	381	43	342	371
607	Mol+Bol	Caliza		22	349	374	44	354	371
Jeg	(watt)	(watt)		23	356	381	45	352	374
1	9	9		24	349	376	46	352	369
2	11	9			0.5	070		0.02	
3	11	9		25	354	376	47	349	374
4	14	11		26	354	379	48	347	366
5	91	61		27	349	379	49	347	374
6	809	845		28	352	371	50	359	361
7	466	511		29	349	369			
8	369	406		30	352	369	190	334	364
0	365	201		31	354	366	191	344	364
9	352	201		32	349	369	192	347	366
10	354	381		33	339	366	193	339	361
11	352	381		34	344	369	194	347	366
12	349	379		51	511	505	131	517	500
13	347	369		35	344	369	195	337	359
14	349	374		36	334	364	196	339	366
15	356	374		37	347	369	197	349	371
16	356	379		38	342	361	198	344	369
17	240	271		39	344	369	199	349	376
10	249	270		40	344	359	200	339	369
18	349	379		41	347	364		345 330	364 9
19	364	366		71	577			3-3,330	50-,5
20	359	374	ļ	42	354	379			

2.2.4.5 Consumo de energía para moler la caliza (84,47 RPM)

Tabla 2.51 Consumo de energía a 80HZ (84,47 RPM) - caliza

Figura 2.51 Consumo de energía a 80HZ (84,47 RPM) - caliza

RPM	mol(watt)	mol+bol(watt)	mol+bol+min(watt)	min(watt)	Gr/rev
52,92	161,807	217,157	226,175	9,018	3,695
62,92	184,096	252,766	267,62	14,854	4,159
68,76	197,609	271,122	291,71	20,588	4,047
73,72	215,391	294,701	306,82	12,119	3,47
84,47	253,909	345,33	364,9	19,570	3,106

2.2.4.6 Potencia Vs. RPM para moler la caliza

Tabla 2.52 Potencia (Molino, Carga de bolas y Caliza) a diferentes RPM

Figura 2.52A Potencia (Molino, Carga de bolas y Caliza) a diferentes RPM

Figura 2.52B Moliendabilidad Vs. Potencia a diferentes RPM – caliza

2.2.5 Comparación de la Potencia Vs las RPM para las diferentes muestras de minerales

RPM	Caliza(watt) mol+bol+min	sulfuro(watt) mol+bol+min	Silice(watt) mol+bol+min
0	0	0	0
52,92	226,175	227,061	223,685
62,92	267,62	272,858	260,071
68,76	291,71	292,711	280,193
73,72	306,82	321,102	310,076
84,47	364,9	378,279	359,223

Tabla 2.53 Potencia (Molino, Carga de bolas y minerales) a diferentes RPM

Tabla 2.54 Potencia (solo molienda del minerales) a diferentes RPM

RPM	Caliza(watt) solo mineral	sulfuro(watt) solo mineral	Cuarzo(watt) solo mineral
0	0	0	0
52,92	9,018	9,904	6,528
62,92	14,854	20,092	7,305
68,76	20,588	21,589	9,071
73,72	12,119	26,401	15,375
84,47	19,57	32,949	13,893

Figura 2.54 Potencia (solo molienda del minerales) a diferentes RPM

CAPITULO III

DETERMINACIÓN DEL MODELO MATEMÁTICO PARA EL MOLINO DE BOLAS 12" x 12" DE LABORATORIO

Se realizó el modelo matemático para el molino (de bolas 12" X 12" de laboratorio 10 de la escuela de Metalurgia FIGMM - UNI) del sistema en estudio para lo cual consideramos que el **concepto de sistemas** implica el proceso de aislamiento conceptual de una parte del universo que sea de interés, al que llamaremos *el sistema*, y a las especificaciones de las interacciones entre este sistema y el resto del mundo, lo llamaremos, el entorno. Un **modelo físico** se construye aislando una parte del universo como el sistema de interés y luego se divide conceptualmente su comportamiento en componentes conocidos.

3.1 Sistemas y Señales

Conjunto de elementos, físicos o abstractos, relacionados entre sí, con un objetivo o función determinado.

• Señales de un Sistema:

Magnitudes que definen el comportamiento de un sistema. Su naturaleza define el carácter del sistema: mecánico, biológico, económico, etc.

•Actuación sobre un sistema:

Modificación desde el exterior del sistema de algunas señales del mismo para conseguir indirectamente la modificación de otras

•Análisis de un sistema:

Medida desde el exterior del sistema de algunas señales del mismo para conocer su comportamiento.

• Variables de estado:

Conjunto mínimo de variables del sistema, tal que, conocido su valor en un instante dado, permiten conocer la respuesta del sistema ante cualquier señal de entrada o perturbación.

Figura 3.1 Descripción de la relación causa y efecto

3.1.1 Métodos de Representación y Análisis

a) Representación Externa

- Comportamiento entrada-salida
- Causa-Efecto; Datos-Resultados

- Enfoque sistémico

- No requiere conocimiento exhaustivo de los elementos del sistema.

b) Representación Interna

- Requiere conocimiento exhaustivo de los elementos del sistema

- Las salidas son consecuencia del estado, por lo tanto basta conocer el estado del sistema para conocer su comportamiento.

3.1.2 Sistemas Estáticos y Dinámicos

• Sistemas Estáticos: Un sistema se llama estático si su salida en curso depende solamente de la entrada en curso; en un sistema estático la salida permanece constante si la entrada no cambia y cambia solo cuando la entrada cambia.

- Las salidas varían instantáneamente al variar las entradas

- Sistemas sin memoria

- No almacenan energía, ni información

Análisis estático: Conocimiento de la relación numérica entre entrada y salida.

Esta relación numérica, normalmente, tiene dimensiones (cm. de Hg/°C)

Figura 3.2 Sistema estático

•Sistemas Dinámicos: Un sistema se llama dinámico si su salida en el presente depende de una entrada en el pasado; en un sistema dinámico la salida cambia con el tiempo cuando no está en su estado de equilibrio.

 La variación de las señales de salida, al variar las entradas, se produce de forma progresiva durante un cierto tiempo.

- Sistemas rápidos y sistemas lentos.

- Comportamiento permanente o estático y comportamiento transitorio o dinámico

- Sistemas con memoria, capaces de almacenar energía o información.

La dinámica introduce un concepto nuevo: la estabilidad de un sistema.

- 1. Análisis de Estabilidad
- 2. Análisis Estático
- 3. Análisis Dinámico

El conocimiento del sistema se logra a través de sus señales.

Figura 3.3 Sistema dinámico

Los sistemas de acuerdo al número de entradas y salidas se pueden clasificar de la siguiente manera:

SISO (Single Input Single Output). Una entrada, una salida.

MIMO (Múltiple Input Múltiple Output). Múltiples entradas múltiples salidas

Figura 3.4 Sistemas SISO y MIMO

Un sistema dinámico es una combinación de componentes que actúan conjuntamente para alcanzar un objetivo específico. Un componente es una cantidad particular en su función en un sistema.

3.1.3 Sistemas de control de lazo abierto y lazo cerrado

Un sistema de acuerdo a la configuración de sus señales se pueden describir como:

a) El sistema de control de lazo abierto: Es aquel sistema en que solo actúa el proceso sobre la señal de entrada y da como resultado una señal de salida independiente a la señal de entrada, pero basada en la primera. Esto significa que no hay retroalimentación hacia el controlador para que éste pueda ajustar la acción de control. Es decir, la señal de salida no se convierte en señal de entrada para el controlador. Ejemplo 1: el llenado de un tanque usando una manguera de jardín. Mientras que la llave siga abierta, el agua fluirá. La altura del agua en el tanque no puede hacer que la llave se cierre y por tanto no nos sirve para un proceso que necesite de un control de contenido o concentración. Ejemplo 2: Al hacer una tostada, lo que hacemos es controlar el tiempo de tostado de ella misma entrando una variable (en este caso el grado de tostado que queremos). En definitiva, el que nosotros introducimos como parámetro es el tiempo.

Estos sistemas se caracterizan por:

- Ser sencillos y de fácil concepto.
- Nada asegura su estabilidad ante una perturbación.
- La salida no se compara con la entrada.
- Ser afectado por las perturbaciones. Éstas pueden ser tangibles o intangibles.
- La precisión depende de la previa calibración del sistema.

Figura 3.5 Sistema de control de lazo abierto

b) El sistema de control de lazo cerrado: Son los sistemas en los que la acción de control está en función de la señal de salida. Los sistemas de circuito cerrado usan la retroalimentación desde un resultado final para ajustar la acción de control en consecuencia. El control en lazo cerrado es imprescindible cuando se da alguna de las siguientes circunstancias:

• Cuando un proceso no es posible de regular por el hombre.

- Una producción a gran escala que exige grandes instalaciones y el hombre no es capaz de manejar.
- Vigilar un proceso es especialmente difícil en algunos casos y requiere una atención que el hombre puede perder fácilmente por cansancio o despiste, con los consiguientes riesgos que ello pueda ocasionar al trabajador y al proceso.

Sus características son:

- Ser complejos, pero amplios en cantidad de parámetros.
- La salida se compara con la entrada y le afecta para el control del sistema.
- Su propiedad de retroalimentación.
- Ser más estable a perturbaciones y variaciones internas.

Planta de Molienda Secundaria

Figura 3.6 Sistema de control de lazo cerrado

3.2 Realización del modelo matemático para el molino de bolas 12" X 12" de laboratorio

Realizamos el modelamiento matemático para el molino de bolas de 12" X 12" de laboratorio. Como observamos en el capítulo 2 notamos que el variar las RPM (velocidad de giro del molino) varía la potencia consumida por el molino y la granulometría del mineral molido cambia entonces estas observaciones las describimos mediante fórmulas matemáticas y relacionamos la variación de las RPM con la variación de la granulometría del mineral molido.

Cuando realizamos la formulación del modelo matemático para el molino de bolas de 12" X 12" de laboratorio se identificó las características de quiebra del material [5] pag. 2-10. Estas características son: la tasa de quiebra, la distribución de los productos de quiebra y como las variables de operación influyen.

Considere un conjunto de partículas de peso H. Caracterizado por una distribución granulométrica discreta. El i- esimo intervalo granulométrico contiene una fracción de peso H, m_i que se modifica durante el proceso de quiebra.

El balance poblacional conserva el número de partículas en todos los tamaños y por lo tanto el peso por intervalo granulométrico. Por este motivo el balance poblacional sirve para dar razón de la evolución de material en los intervalos granulométricos:

$$\frac{dHm_i}{dt} = B - D\dots(3.1)$$

Dónde: B representa la tasa de aparecimiento y D representa la tasa de desaparecimiento de partículas a través de la quiebra. El desaparecimiento corresponde a la acción de quiebra de las partículas del tamaño-"i" donde las partículas salen del intervalo "i" y al

mismo tiempo estos productos de quiebra del tamaño "i" aparecen en otros intervalos de tamaños menores.

La tasa de quiebra en aproximación, está considerada como un proceso de primer orden , donde la tasa de generación de las partículas quebradas es proporcional al peso del material contenido en el intervalo:

$$D = S_i H m_i \dots (3.2)$$

La constante S_i esta generalmente llamada (por motivos históricos) *la función selección* , pero debe ser reconocida como la tasa especifica de quiebra.

De otra manera la tasa de generación de material en el intervalo "i" a través de la entrada de productos de quiebra en los intervalos "j" de mayor tamaño (j = i-1, i-2, ...2,1) está representada por la siguiente expresión:

$$B = \sum_{i=1}^{i-1} b_{ii} S_i H m_j \dots (3.3)$$

Donde b_{ij} es la fracción de partículas originalmente del tamaño "j" que después de la quiebra aparecen en el tamaño "i".

Por lo tanto, la ecuación de quiebra (a veces llamada la ecuación de molienda intermitente) es:

$$\frac{dHm_i}{dt} = -S_i Hm_i + \sum_{j=1}^{i-1} b_{ij} S_j Hm_j \dots (3.4)$$

Esta ecuación acompaña el peso de partículas que entran y salen de cada intervalo como se ve en la figura 3.7 la tasa de quiebra para el i-esimo intervalo y la tasa de generación de los productos de quiebra son representadas por la i-esima columna. La tasa total de acumulación de material en el i-esimo intervalo (equivale a la ecuación 3.4) está representada por la i-esima línea de la figura 3.7.

La ecuación 3.4 define un sistema de n ecuaciones diferenciales que puede ser representado por una única ecuación matricial. Definiendo:

$$A = \begin{bmatrix} m_1 \\ m_2 \\ \vdots \\ m_{n-2} \\ m_{n-1} \\ m_n \end{bmatrix} \qquad S = \begin{bmatrix} S_1 \ 0 \ 0 & \cdots & 0 & 0 \\ 0 \ S_2 \ 0 & \cdots & 0 & 0 \\ \vdots \vdots \ddots & \cdots & \vdots & \vdots \\ 0 \ 0 \ 0 \ S_{n-2} & 0 & 0 \\ 0 \ 0 \ 0 & 0 & S_{n-1} \ 0 \\ 0 \ 0 \ 0 & 0 & 0 & S_n \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ b_{21} & 0 & 0 & \cdots & 0 & 0 \\ b_{31} & b_{32} & 0 & \cdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 \\ b_{(n-1)1} b_{(n-1)2} & \dots & b_{(n-1)(n-2)} & 0 & 0 \\ b_{n1} & b_{n2} & b_{n3} & b_{n(n-2)} & b_{n(n-1)} 0 \end{bmatrix}$$

La ecuación 3.4 puede ser reescrita de manera matricial como:

$$\frac{dHm}{dt} = -(I - B)Sm....(3.5)$$

Figura 3.7 Representación de la tasa de quiebra y la acumulación de los productos de fractura

Una solución analítica de la ecuación 3.5 es posible si S y B son constantes es decir formalmente invariantes con el tiempo:

$$m(t) = EXP(-(I - B) * S * t)m_0....(3.6)$$

Donde m_0 es el vector de la granulometría inicial (t = 0) la ecuación 3.5 puede ser resuelta mediante la transformación de similaridad utilizando diagonalizacion (la forma de Jordan) y los vectores propios de la siguiente manera:

$$m(t) = T J T^{-1}m_0....(3.7)$$

Donde:

$$T_{ij} = \begin{cases} 0 & i < j \\ 1 & i = j \\ \sum_{k=j}^{i-1} \frac{b_{ik}S_k}{S_i - S_j} T_{kj} & i > j \end{cases}$$

$$J_{ij} = \begin{cases} 0 & i \neq j \\ EXP(-S_i t) & i = j \end{cases}$$

Por lo tanto para la molienda intermitente dadas:

- 1) La granulometría inicial
- 2) La función selección S_i
- 3) La función de quiebra b_{ij}

Es posible predecir la granulometría del mineral en el molino después del tiempo t de molienda.

3.2.1 La linealidad de la cinética de quiebra

La solución de la ecuación de quiebra se basó en la condición de la invariancia en el tiempo de la tasa de quiebra y de la función de quiebra, es decir en la linealidad de la

cinética de quiebra, en la verdad el tiempo no tiene nada que ver con el asunto de la linealidad lo que influye en la cinética de quiebra es el ambiente dentro del molino es decir la distribución granulométrica de las partículas y la riologia de la pulpa en el molino que se modifican durante el proceso de molienda. El estado del ambiente en el molino tiene una cierta correspondencia con el tiempo.

La función de quiebra b_{ij} es casi invariante sobre una variación amplia de condiciones operacionales, pero la función selección S_i tiene una fuerte dependencia del ambiente del molino.

La ecuación de quiebra para un único intervalo de mineral, que inicialmente compone una fracción $m_1(0)$ del peso total del material, es:

$$\frac{dHm_1}{dt} = -SHm_1....(3.8)$$

Con la solución:

$$m_1(t) = m_1(0)EXP(-S_1t)....(3.9)$$

Por lo tanto si el logaritmo de la fracción del peso retenido en este tamaño esta ploteada versus el tiempo de molienda una línea recta debe resultar. La inclinación de la línea es la propia función selección o sea la tasa especifica de quiebra. En la figura 3.8 podemos ver la determinación de la función selección S_i de caliza en el tamaño <m10, m14> molienda en seco

Figura 3.8 El efecto del porcentaje de solido en la molienda

Además podemos ver que la función selección va a tener una relación con la energía consumida mediante:

$$S_i t = S_i^E E....(3.10)$$

Donde :

 S_i^E : Función selección normalizada con respecto a la energía

E: Energía especifica

En la figura 3.9 podemos ver esta relación:

Figura 3.9 La cinética de molienda en función de la energía

3.2.2 Derivación de un modelo matemático simplificado

En la práctica, dada la variabilidad que se observa a escala industrial tanto en las propiedades intrínsecas de los minerales como en las condiciones experimentales y resultados metalúrgicos de la operación resulta difícil evaluar la información experimental disponible, a objeto de controlar y lograr un mejor aprovechamiento de las instalaciones existentes la situación se torna aún más crítica si consideramos que generalmente no se dispone de toda la información requerida para una estimación confiable de cada uno de los parámetros involucrados en los distintos modelos descriptivos del proceso en cuestión. ver [11] pag.112-114.

Tales razones han conducido al desarrollo de ecuaciones más simples que requieren de menor cantidad de información experimental para su aplicación y que para el caso específico de la molienda efectuada en molino de bolas , han demostrado ser lo suficientemente precisas proporcionando un grado aceptable de detalle para la mayoría de las aplicaciones industriales, ello ha facilitado enormemente la estimación de parámetros claves del modelo prescindiendo de otros que en la práctica resultan difíciles de evaluar.

Así para el caso de las moliendas por lotes (batch) y continua en molinos de bolas se han propuesto las siguientes ecuaciones, cuya aplicabilidad general ha demostrado ser incluso exitosa para otra gran variedad de equipos de conminucion.

a) Molienda por lotes (batch):

 $[R_i(t)]_{batch} = [R_i(0)]_{batch} \exp(-S_i t) \dots (3.11)$

o su forma equivalente

$$[R_i(\bar{E})]_{batch} = [R_i(0)]_{batch} \exp(-S_i^E \bar{E})....(3.12)$$

Para los tamaños i = 1, 2, 3...n

b) Molienda continua:

$$R_{pi} = R_{Ai} \left[1 + {\binom{t}{N}} S_i \right]^{-N} \dots (3.13)$$

o su forma equivalente

$$R_{pi} = R_{Ai} \left[1 + \left(\frac{\bar{E}}{N} \right) S_i^E \right]^{-N} \dots (3.14)$$

Para los tamaños i = 1, 2, 3...n

Dónde:

 $[R_i(t)]_{batch}$: Fracción acumulada en peso de material retenido sobre la i-esima malla del producto molido durante un tiempo t :0/1

 $[R_i(0)]_{batch}$: Fracción acumulada en peso de material retenido sobre la i-esima malla de la alimentación al molido durante un tiempo (t=0) :0/1

 R_{pi} : Fracción en peso acumulada retenida sobre la i-esima malla del producto de molienda en el estado estacionario:0/1

 R_{Ai} : Fracción en peso acumulada retenida sobre la i-esima malla de la alimentación al molino en el estado estacionario:0/1

 $[R_i(\bar{E})]_{batch}$: Fracción acumulada en peso de material retenido sobre la i-esima malla del producto molido pero considerando \bar{E} como variable independiente (S_i^E considerando la función selección específica de fractura):0/1

 S_i : Función selección de la i-esima fracción de tamaño $[T^{-1}]$

 S_i : Función selección de la i-esima fracción de tamaño

^{ton}/_{Kwh}

 \overline{E} : Consumo especifico de energía en la molienda : Kwh/ton (para el caso de la molienda continua , son los kwh consumidos por tonelada de solidos alimentada al molino)

N: Numero de reactores perfectamente mezclados en serie (se puede aproximar por la razón Largo/ diámetro del molino cuando esta varía entre 1 y 2).

3.2.3 Determinación experimental del S_i para el molino de bolas de 12" X 12" de laboratorio

Para la determinación de la función selección se realizaron pruebas de moliendabilidad a diferentes tiempos 5, 10 y 15 minutos también se modificó la velocidad de giro del molino a 40, 60, 80 y 100 RPM la carga de bolas fue de 150 bolas de 1", las muestras de sulfuro se homogenizaron y cuartearon aproximadamente de ½ kilo y para el análisis granulométrico del alimento se utilizó 1 Kg de muestra los resultados se muestran a continuación:

3.2.3.1 Análisis Granulométrico del alimento

Tabla 3.1 Análisis granulométrico del alimento - sulfuro

Análisis Granulométrico :			Alimento		-()							
Análisis G	iranulométrico :		tresco		F(x)=	100(x/151	0.9)^0.6997					
malla	abertura(um)	peso(gr)	%peso	G(x)	F(x)	log (um)	log (F(x))	x^2	x.y	y^2	а	-0,22
m30	595,00	505,51	51,17	51,17	48,83	2,77	1,69	7,70	4,69	2,85	b	0,70
m50	297,00	146,57	14,84	66,00	34,00	2,47	1,53	6,11	3,79	2,35	r	1,00
m70	210,00	80,50	8,15	74,15	25,85	2,32	1,41	5,39	3,28	1,99	α	0,70
m100	150,00	52,51	5,32	79,47	20,53	2,18	1,31	4,74	2,86	1,72	1/α	1,43
m150	105,00	50,01	5 <i>,</i> 06	84,53	15,47	2,02	1,19	4,09	2,40	1,41	X0	1510,88
m200	74,00	39,59	4,01	88,54	11,46	1,87	1,06	3,49	1,98	1,12	X(80%)	1098,34
(-)m200	-74,00	113,25	11,46	100,00	0,00			0,00	0,00	0,00		
	Total	987,94	100,00			13,64	8,19	31,52	18,99	11,45		

Figura 3.10 Análisis granulométrico del alimento

40													
RPM	150bolas	N	Iolienda	a (peso)	ſ	Molienda	(% pesc)	Mo	lienda I	_og (% p	eso)
	Abertura	0	5	10	15	0	5	10	15	0	5	10	15
malla	(um)	min.	min.	min.	min.	min.	min.	min.	min.	min.	min.	min.	min.
m30	595	505,51	27,3	3,6	0,3	51,17	5,28	0,71	0,06	1,71	0,72	-0,15	- 1,23
m50	297	146,57	20	2,3	0,4	14,84	3,87	0,45	0,08	1,17	0,59	-0,35	1,10
m70	210	80,5	37,8	6,7	0,8	8,15	7,32	1,31	0,16	0,91	0,86	0,12	0,80
m100	150	52,51	65,3	25,7	4,3	5,32	12,64	5,04	0,85	0,73	1,10	0,70	0,07
m150	105	50,01	56,3	42,4	12,3	5,06	10,90	8,32	2,43	0,70	1,04	0,92	0,39
m200	74	39,59	58,6	64,8	38,4	4,01	11,34	12,71	7,59	0,60	1,05	1,10	0,88
(-)m200	-74	113,25	251,3	364,2	449,7	11,46	48,64	71,45	88,84	1,06	1,69	1,85	1,95
	Total	987,94	516,6	509,7	506,2	100,00	100,00	100,00	100,00	2,00	2,00	2,00	2,00

3.2.3.2 Calculo del Si (Función Selección) a 40RPM

Tabla 3.2 Función Selección (Si) a 40RPM

60				. ,	,	_		1					,	
RPM	150bolas		Molienda (peso)			N	/lolienda	(% peso)	Molienda Log (% peso)				
	Abertura	0	5	10	15	0	5	10	15	0	5	10	15	
malla	(um)	min.	min.	min.	min.	min.	min.	min.	min.	min.	min.	min.	min.	
m30	595	505,51	1,3	0,1	0,001	51,17	0,26	0,02	0,00	1,71	-0,59	-1,72	-3,71	
m50	297	146,57	1,9	0,2	0,001	14,84	0,38	0,04	0,00	1,17	-0,42	-1,42	-3,71	
m70	210	80,5	8,7	1	0,1	8,15	1,74	0,19	0,02	0,91	0,24	-0,72	-1,71	
m100	150	52,51	33	7,2	0,7	5,32	6,59	1,38	0,14	0,73	0,82	0,14	-0,86	
m150	105	50,01	48	18,9	2,5	5,06	9 <i>,</i> 58	3,63	0,49	0,70	0,98	0,56	-0,31	
m200	74	39,59	65,7	46,8	12,5	4,01	13,12	8,98	2,46	0,60	1,12	0,95	0,39	
(-)m200	-74	113,25	342,2	447	492,5	11,46	68,33	85,76	96,89	1,06	1,83	1 <i>,</i> 93	1,99	
	Total	987,94	500,8	521,2	508,30	100,00	100,00	100,00	100,00	2,00	2,00	2,00	2,00	

3.2.3.3 Calculo del Si (Función Selección) a 60RPM

Tabla 3.3 Función Selección (Si) a 60RPM

Figura 3.12 Función Selección (Si) a 60RPM

80										Malianda Log (0(page)			
RPM	150bolas		Moliend	a (peso)		1	Molienda)	Molienda Log (% peso)				
	Abertura	0	5	10	15								
malla	(um)	min.	min.	min.	min.	0	5	10	15	0	5	10	15
m30	595	505,51	0,64	0,001	0,001	51,17	0,13	0,00	0,00	1,71	-0,89	-3,70	-3,70
m50	297	146,57	0,3	0,1	0,001	14,84	0,06	0,02	0,00	1,17	-1,22	-1,70	-3,70
m70	210	80,5	2,2	0,4	0,3	8,15	0,44	0,08	0,06	0,91	-0,35	-1,10	-1,23
m100	150	52,51	13,4	1,6	0,5	5,32	2,71	0,32	0,10	0,73	0,43	-0,50	-1,01
m150	105	50,01	28,4	5,3	0,8	5 <i>,</i> 06	5,74	1,06	0,16	0,70	0,76	0,02	-0,80
m200	74	39,59	54,1	20	4,7	4,01	10,94	3,99	0,93	0,60	1,04	0,60	-0,03
(-)m200	-74	113,25	395 <i>,</i> 6	474,2	500,6	11,46	79,98	94,54	98,76	1,06	1,90	1,98	1,99
	Total	987,94	494,64	501,60	506,90	100,00	100,00	100,00	100,00	2,00	2,00	2,00	2,00

3.2.3.4 Calculo del Si (Función Selección) a 80RPM

Tabla 3.4 Función Selección (Si) a 80RPM

100													
RPM	150bolas	1	Moliend	a (peso)		1	Volienda	(% peso)	Molienda Log (% peso)			
	Abertura	0	5	10	15								
malla	(um)	min.	min.	min.	min.	0	5	10	15	0	5	10	15
m30	595	505,51	0,2	0,001	0,001	51,17	0,04	0,00	0,00	1,71	-1,42	-3,71	-3,70
m50	297	146,57	0,2	0,001	0,001	14,84	0,04	0,00	0,00	1,17	-1,42	-3,71	-3,70
m70	210	80,5	1,2	0,4	0 <i>,</i> 5	8,15	0,23	0,08	0,10	0,91	-0,64	-1,11	-1,01
m100	150	52,51	10	0,7	0,6	5,32	1,91	0,14	0,12	0,73	0,28	-0 <i>,</i> 87	-0,93
m150	105	50,01	25,7	1,6	0 <i>,</i> 5	5,06	4,91	0,31	0,10	0,70	0,69	-0,51	-1,01
m200	74	39,59	56,1	8,3	1	4,01	10,71	1,61	0,20	0,60	1,03	0,21	-0,70
(-)m200	-74	113,25	430,5	505,5	504	11,46	82,17	97,87	99,49	1,06	1,91	1,99	2,00
	Total	987,94	523,9	516,50	506,60	100,00	100,00	100,00	100,00	2,00	2,00	2,00	2,00

3.2.3.5 Calculo del Si (Función Selección) a 100RPM

Tabla 3.5 Función Selección (Si) a 100RPM

3.2.3.6 Si (Función Selección- evaluado en los 15 minutos) Vs RPM

-Si (Δt=15min)			
RPM	m30	m50	m70
40	-0,19	-0,15	-0,10
60	-0,36	-0,31	-0,16
80	-0,46	-0,33	-0,17
100	-0,43	-0,39	-0,16

Tabla 3.6 Si (15 min.) Vs RPM

Figura 3.15 Si (15min.) Vs RPM
3.2.3.7 Si (Función Selección – evaluado en los 5 minutos)Vs RPM

-Si (Δt=5min)								
RPM	m30 m50 m7							
40	-0,20	-0,12	-0,01					
60	-0,46	-0,32	-0,12					
80	-0,52	-0,48	-0,25					
100	-0,63	-0,52	-0,31					

Tabla 3.7 Si (5min.) Vs RPM

Figura 3.16 Si (5min.) Vs RPM

3.3 Simulación del proceso de molienda variando las RPM en el molino de bolas 12" X 12" de laboratorio

Para realizar la simulación definimos el modelo que utilizamos, relacionando las formulas tratadas anteriormente la ecuación diferencial de conminucion ecuación: (1.4); la ecuación de quiebra del mineral en un intervalo de tamaño $\langle i, i+1 \rangle$ ecuación: (3.8) además de las pruebas de laboratorio en la figura 2.53 se pudo determinar que el molino de bolas 12" X 12" de laboratorio es una carga donde la potencia consumida es proporcional a las RPM (carga lineal) y de la figura 3.15 también se observa que la función selección (S_i) es proporcional a las RPM.

Entonces decimos que : "La Reducción de tamaño en un intervalo de tamaño <i, i+1> se realiza de manera simultánea con la reducción del peso retenido en ese intervalo de tamaño <i, i+1> ambos cambios dependen del tiempo y la velocidad de giro del molino" esta afirmación la deducimos matemáticamente y la probamos con las pruebas de laboratorio.

De la ecuación 3.8 tenemos:

$$\frac{dHm_1}{dt} = -S_iHm_1 \quad \rightarrow \quad \frac{dHm_1}{Hm_1} = -S_idt \quad \rightarrow \quad \int_{M_0}^{M(t)} \frac{dHm_1}{Hm_1} = \int_0^t -S_idt \dots \dots \dots \dots (a)$$

Se tiene: P (Potencia Eléctrica) E (Energía Eléctrica)

$$P = \frac{dE}{dt} \dots \dots (b)$$

De la ecuación 1.4 tenemos:

$$dE = -c\frac{dx}{x^n} \to de(b) \to Pdt = -c\frac{dx}{x^n} \to \int_{x_a}^{x_p} -c\frac{dx}{x^n} = \int_0^t Pdt \dots (c)$$

Siendo x_a : tamaño del alimento y x_p : tamaño del producto

(a) + (c)

$$\int_{M_0}^{M_{(t)}} \frac{dHm_1}{Hm_1} + \int_{x_a}^{x_p} -c \frac{dx}{x^n} = \int_0^t -S_i dt + \int_0^t P dt$$

$$\left(\ln M_{(t)} - \ln M_{(0)}\right) + \frac{c}{n-1} \left(x_p^{-n+1} - x_a^{-n+1}\right) = (-S_i + P)t \dots \dots (3.15)$$

Se tiene que:

n=1.5 (según Bond); de la figura 2.53: $P = k_1 RPM$ y de la figura 3.15: $S_i = k_2 RPM$

$$\ln\left(\frac{M_{(t)}}{M_{(0)}}\right) + 2c\left(\frac{1}{\sqrt[2]{x_p}} - \frac{1}{\sqrt[2]{x_a}}\right) = (-k_2 + k_1) * RPM * t$$

$$\rightarrow M_{(t)} = M_{(0)} * e^{-2c\left(\frac{1}{\sqrt[2]{x_p}} - \frac{1}{\sqrt[2]{x_a}}\right)} * e^{(-k_2 + k_1) * RPM * t} \dots \dots (3.16)$$

Si consideramos:

t = cte. (tiempo de molienda).....(d)

$$M'_{(0)} = M_{(0)} * e^{-2c\left(\frac{1}{\sqrt{x_p}} - \frac{1}{\sqrt{x_a}}\right)} \dots \dots (e)$$
$$-S_{i(rev)} = (-k_2 + k_1) * t \dots \dots (f)$$

Reemplazando (d), (e) y (f) en (3.16)

$$M_{(RPM)} = M'_{(0)} * e^{-S_{i}(rev)*RPM} \dots \dots (3.17)$$

La ecuación 3.17 es semejante a las ecuaciones 3.11 y 3.12 donde

$$S_{i(rev)} * RPM = S_i t y \quad M'_{(0)} \neq M_{(0)}$$

Esta ecuación se utilizara con un tiempo de molienda constante; veamos las pruebas realizadas y la comprobación de esta fórmula.

	150															
5 min	bolas		Mol	ienda (p	oeso)			Molie	nda (%	peso)		Molienda Log (% peso)				
	Aber.	0	40	60	80	100	0	40	60	80	100	0	40	60	80	100
malla	(um)	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM
m30	595	505,51	27,3	1,3	0,64	0,2	51,17	5,28	0,26	0,13	0,04	1,71	0,72	-0,59	-0,89	-1,42
m50	297	146,57	20	1,9	0,3	0,2	14,84	3,87	0,38	0,06	0,04	1,17	0,59	-0,42	-1,22	-1,42
m70	210	80,5	37,8	8,7	2,2	1,2	8,15	7,32	1,74	0,44	0,23	0,91	0,86	0,24	-0,35	-0,64
m100	150	52,51	65,3	33	13,4	10	5,32	12,64	6,59	2,71	1,91	0,73	1,10	0,82	0,43	0,28
m150	105	50,01	56,3	48	28,4	25,7	5,06	10,90	9,58	5,74	4,91	0,70	1,04	0,98	0,76	0,69
m200	74	39,59	58,6	65,7	54,1	56,1	4,01	11,34	13,12	10,94	10,71	0,60	1,05	1,12	1,04	1,03
-m200	-74	113,25	251,3	342,2	395,6	430,5	11,46	48,64	68,33	79,98	82,17	1,06	1,69	1,83	1,90	1,91
	Total	987,94	516,6	500 <i>,</i> 8	494,64	523,9	100,0	100,0	100,0	100,0	100,0	2,00	2,00	2,00	2,00	2,00

3.3.1 Determinación del Si (rev.) a diferentes RPM

Tabla 3.8 Si (rev.) Vs RPM

Figura 3.8 Si (rev.) Vs RPM

Según la figura 3.8 podemos reemplazar en la ecuación 3.17 los valores que ajustan la ecuación de la recta y tenemos los siguientes modelos para cada malla:

$M_{(m30)} = 6.122 * e^{-0.0336 * RPM_{(t)}}$	$M_{(m100)} = 5.237 * e^{-0.0142 * RPM_{(t)}}$
$M_{(m50)} = 5.859 * e^{-0.0341 * RPM_{(t)}}$	$M_{(m150)} = 3.703 * e^{-0.0063 * RPM_{(t)}}$
$M_{(m70)} = 6.140 * e^{-0.0255 * RPM_{(t)}}$	$M_{(m200)} = 3.047 * e^{-0.0008 * RPM_{(t)}}$

Tabla 3.9 Ecuación de quiebra por cada malla (realizado en EXCEL)

Como podemos comprobar estos cálculos realizado en el software EXCEL no tienen un buen ajuste ahora realizaremos el ajuste en el software MATLAB para mejorar el modelo por cada malla aquí presentaremos la tabla con los valores calculados (ver apéndice 3)

Tabla 3.10 Ecuación de quiebra por cada malla (realizado en MATLAB)

$M_{(m30)} = 62.426 * e^{-0.077 * RPM_{(t)}}$	$M_{(m100)} = 45.235 * e^{-0.033 * RPM_{(t)}}$
$M_{(m50)} = 56.550 * e^{-0.078 * RPM_{(t)}}$	$M_{(m150)} = 20.357 * e^{-0.015 * RPM_{(t)}}$
$M_{(m70)} = 65.233 * e^{-0.059 * RPM_{(t)}}$	$M_{(m200)} = 13.002 * e^{-0.002 * RPM_{(t)}}$

Figura 3.18 Análisis Granulométrico del Producto Vs RPM (a partir de 40RPM)

Figura 3.19 Análisis Granulométrico del Producto Vs RPM (extrapolado desde 0 RPM a 40 RPM)

3.2 Simulación del sistema de control de molienda para el molino de bolas 12" X 12" de laboratorio

Para la simulación del sistema de control de molienda para el molino de bolas 12" X 12" de laboratorio se consideró el sistema en lazo cerrado mostrado en la figura 3.11 donde $M_{(t)}$ es el porcentaje de peso retenido en la malla i–esima la cual se puede medir en cualquier momento y esta medición es comparada con el punto de ajuste seleccionado M'(t) la diferencia de estos dos viene hacer el error que es una señal de entrada al controlador.

Se utilizó un controlador PID sintonizado para todas las mallas con los mismos parámetros (ver apéndice 4) la señal de salida de este controlador es la variación de RPM que es la señal de entrada al Molino y la señal de salida del molino es M_(t) que es el porcentaje de peso retenido en la malla i–esima esta señal es realimentada al sensor y otra vez comparada y el bucle de control sigue en el tiempo. Además hay que considerar que este sistema de control se aplicaría a un molino de 12" X 12" donde el flujo de material de ingreso y salida seria el mismo.

Figura 3.20 Sistema de control de lazo cerrado propuesto con los datos del molino de bolas 12" X 12" de laboratorio

3.2.1 Simulación del sistema a lazo abierto

Figura 3.21 Diagrama de bloques de la simulación del sistema a lazo abierto de los 6 tamaños

(mallas: m30, m50, m70, m100, m150, m200)

Figura 3.22 Simulación del sistema a lazo abien Tiempo (min.) nos (mallas: m30, m50, m70, m100, m150,

m200) - visualizador de lazo abierto

3.2.2 Simulación del sistema de control para la malla 30

Figura 3.23 Diagrama de bloques del sistema de control para la malla 30

Figura 3.24 Resultado de la simulación del sistema para la malla 30

3.2.3 Simulación del sistema de control para la malla 50

Figura 3.25 Diagrama de bloques del sistema de control para la malla 50

Figura 3.26 Resultado de la simulación del sistema para la malla 50

3.2.4 Simulación del sistema de control para la malla 70

Figura 3.27 Diagrama de bloques del sistema de control para la malla 70

Figura 3.28 Resultado de la simulación del sistema para la malla 70

3.2.5 Simulación del sistema de control para la malla 100

Figura 3.29 Diagrama de bloques del sistema de control para la malla 100

Figura 3.30 Resultado de la simulación del sistema para la malla 100

3.2.6 Simulación del sistema de control para la malla 150

3.2.7 Simulación del sistema de control para la malla 200

Figura 3.33 Diagrama de bloques del sistema de control para la malla 200

Figura 3.34 Resultado de la simulación del sistema para la malla 200

CONCLUSIONES

- 1. Las pruebas normalizadas para determinar el Índice de trabajo se realizan a 70 RPM si tenemos que el molino es de 12" = 1Pie y de la formula donde se determina la *velocidad critica* = $\frac{76,63}{\sqrt{D(pies)}}RPM$ podríamos decir que a 76,6 RPM este molino debería tener el efecto de centrifugación o sea toda la carga debería pegarse a las paredes del molino pero esto no ocurre. Si se considera el diámetro mayor de las bolas (1.45") la velocidad critica seria 82.5 RPM.
- 2. Si cambiamos la velocidad de giro a 80RPM, el molino seguía moliendo, estas observaciones se realizaron para los tres tipos de minerales y en los tres ocurrió lo mismo (las condiciones fueron las mismas en todos los casos) podemos concluir que la velocidad critica de la formula antes mencionada no es válida
- Para el cálculo de la velocidad crítica tenemos que tener otras consideraciones además de la fuerza centrífuga que es la principal.
- 4. La aplicación de más velocidad al molino hacia que el producto de la molienda fuera más fino. Se pudo apreciar esto hasta llegar a un punto máximo donde las

tres especies minerales consiguen a diferentes RPM su valor optimo (la caliza alrededor de 50 RPM, el sulfuro alrededor de 70 RPM y el silicato alrededor de 87 RPM) donde los gr-moli./rev. (gramos - molidos /revolución) alcanzaron su valor más alto. Luego fueron disminuyendo (ver fig. 2.29)

- El efecto observado en (4) está relacionado a la centrifugación de la carga que al seguir aumentando las RPM luego del valor óptimo disminuye los gr.moli./rev.
- No se realizaron pruebas a más velocidad pero la tendencia de esta curva (ver fig. 2.29) es a disminuir.
- Se recomendaría realizar más pruebas a mayor velocidad de giro para poder definir una velocidad crítica para estas tres especies minerales y poder comparar los tres resultados.
- 8. Si los resultados de (7) son de valores similares podríamos decir que el molino y su carga moledora determinan la velocidad critica pero si son diferentes entonces el tipo de mineral a moler tiene bastante influencia en determinar la velocidad critica (Podría plantearse este estudio para otros trabajos de investigación).
- 9. Al realizar las pruebas para determinar el W.I a diferentes RPM se observa que también el W.I varia .Valores bajos de RPM el W.I es alto y cuando vamos aumentando las RPM va disminuyendo hasta un valor mínimo (optimo) a partir de este punto otra vez comienza a aumentar (ver fig. 2.28).

- 10. De lo observado en (9) podemos decir que la prueba normalizada de Bond calcula un índice de trabajo para 70 RPM y a otras revoluciones este molino de laboratorio cambia el W.I el comportamiento fue similar para los tres tipos de minerales
- 11. Al comparar los resultados de los W.I de los tres tipos de minerales (ver fig.2.28) podemos observar que el silicato tiene valores muy altos de W.I en segundo lugar el sulfuro y el valor más bajo es de la caliza para los mismos RPM.
- 12. Si vemos la fig. 2.28 los valores más bajos de W.I para las tres especies minerales se consiguen a diferentes RPM, la caliza alrededor de 50 RPM, el sulfuro alrededor de 70 RPM y el silicato alrededor de 87 RPM.
- 13. Realizamos las pruebas para las tres especies con los mismos valores de RPM pero en el caso de la caliza tuvimos que realizar pruebas a 40RPM y también para el silicato tuvimos que realizar pruebas a 80 y 90 RPM estas pruebas se realizaron para mejorar la determinación de los W.I de estas tres especies.
- 14. Viendo los resultados se podría recomendar realizar las pruebas para la caliza (especie mineral de baja dureza) a bajas RPM y para el cuarzo(especie mineral de alta dureza) a altas RPM
- 15. En el caso de la comparación de los gr-moli./rev. La caliza logra los más altos valores de gr-moli./rev. En cambio el silicato y el sulfuro tienen valores bajos de gr-moli./rev. Esto se debe a que el sulfuro tiene bastante sílice que aumenta su consumo energético (ver anexo 5).

- 16. Revisando las figuras 2.28 y 2.29 podemos observar que variara las RPM en una especie mineral generan que el W.I cambie y los gr-moli./rev también si bien es cierto la relación por formulas nos indican que hay una relación inversamente proporcional (ecuación 2.3) experimentalmente comprobamos esto.
- 17. Podemos notar que en el caso de los minerales con mayor dureza se consume más energía eléctrica y los de menor dureza menos energía eléctrica, el sulfuro que se utilizó en esta tesis tiene bastante presencia de sílice y vemos que su consumo de energía eléctrica es cercano al de la sílice .Seria motivo de otros estudios relacionar el consumo energético de la combinación de diferentes minerales (con diferentes Work Índex)
- 18. Al realizar las mediciones de potencia eléctrica del molino, carga de bolas y mineral (ver figuras 2.40A, 2.46 y 2.52A) se puede determinar que el molino es una carga de tipo lineal donde la potencia y las RPM son proporcionales
- 19. Lo observado en (18) quiere decir que si aumentamos las RPM la potencia aumenta si observamos en los tres casos la demanda de más potencia lo tiene el molino y la carga de bolas
- 20. Para los tres minerales en estudio la potencia que demanda el proceso de molienda es muy pequeña en comparación a la potencia requerida para mover la carga moledora entonces podemos ver que la molienda representa menos del 3% de la potencia total , estos resultados nos indican que el molino es una maquina muy ineficiente donde el consumo de energía eléctrica más se utiliza en mover la carga moledora

- 21. Al revisar las figuras (2.40B, 2.46B y 2.52B) que es la relación de gr-moli./rev Vs. Watt notamos que las tres especies minerales tienen el mismo comportamiento y tiene un valor máximo de gr-moli./rev aplicando cierta potencia entonces podemos decir que se puede determinar un límite de potencia para lograr el mayor gr-moli./rev de manera que aumentar más potencia no mejorar los gr-moli./rev .
- 22. Al ver la figura 2.53 podemos ver que el molino es una carga línea para las tres especies minerales y que las tres se podría ver que tienen curvas de potencia Vs. RPM muy parecidas entonces el ahorro energético en este caso se logra al tratar de reducir las RPM del molino ya que la potencia estará disminuyendo si logramos un buen control de las RPM pero considerando llegar al tamaño adecuado en el producto (P(80) o la granulometría deseada)
- 23. Luego de realizar las pruebas para poder determinar la función selección (ver la figura 3.11, 3.12, 3.13 y 3.14) podemos decir que las mallas 30, 50 y 70 tienen un comportamiento lineal con pendiente negativa y buena correlación en cambio las otras mallas no tienen buena correlación
- 24. Lo observado en (23) se debe a que los tiempos tomados para determinar la función selección son muy altos debimos realizar las pruebas y mediciones cada medio minuto hasta los 5 minutos para poder definir mejor la función selección . Por eso para realizar el modelo se utilizó 5 minutos que sería de más precisión que los 15 minutos. En ambos casos los comportamientos son semejantes.

- 25. En la tabla 3.10 podemos ver la función de quiebra con buenas aproximaciones ya que este ajuste mediante MATLAB mejoro el modelo matemático y es con este modelo que realizaremos la simulación.
- 26. Se puede concluir que la hipótesis planteada (en el plan de tesis propuesto)

"El control de la velocidad de giro de los molinos es una alternativa para reducir el consumo de energía de los molinos y lograr un tamaño de producto (P80) (adecuado) a partir de un tamaño de alimento (F80)". Es valida.

- 27. Para probar (26) en la figura 3.10 podemos observar que el variar las RPM cambiamos la granulometría del producto; es así que si trabajamos a 70 RPM obtenemos una granulometría muy parecida que si trabajamos a 50 RPM entonces podríamos trabajar a 50 RPM en vez de 70 RPM logrando reducir en un 29% en consumo de energía eléctrica.
- 28. Cabe mencionar que la figura 3.10 es el resultado de la experiencia del laboratorio pero si observamos la ecuación 3.16 deducida matemáticamente (involucra a todas las variables anteriormente mencionada en la hipótesis) observamos que si en un molino mantenemos la alimentación estable F(80) constante; el flujo de material constante (el tiempo de residencia constante) para lograr un tamaño de producto deseado P(80) y el % de peso retenido en un tamaño deseado (un producto luego de la molienda deseada) la única variable que podemos modificar seria las RPM

- 29. Al cambiar las RPM se varia la potencia de manera lineal (la energía eléctrica consumida también se varía de acuerdo a esto) pero también se varían los gr-mol./rev. por lo tanto podemos moler más o menos en un mismo periodo de tiempo si aumentamos o disminuimos la velocidad.
- 30. En este caso para optimizar el consumo energético debemos controlar que las RPM sean las menores posibles para ahorrar energía eléctrica que en su mayoría sirve para mover la carga moledora y el molino.

BIBLIOGRAFIA

[1] AUSTIN LEONARD G.; CONCHA FERNANDO (1994). DISEÑO Y SIMULACION DE CIRCUITOS DE MOLIENDA Y CLASIFICACION. 1era Edición , Concepción Chile .EDITORIAL CYTED ,PP 392

- [2] GUGLIANDOLO FILIPPO; ISMODES ANIBAL (1989). COMO SELECCIONAR UN MOTOR ELECTRICO. 1era Edición , Lima Perú ,EDITORIAL MEGAPRINT , PP 134
- [3] KELLY ERROL; SPOTTISWOOD DAVID (1990). INTRODUCCION AL PROCESAMIENTO DE MINERALES, 1era Edición, Golden Colorado E.E.U.U, EDITORIAL LIMUSA, PP 530
- [4] LYNCH A. J. (1980). CIRCUITOS DE TRITURACION Y MOLIENDA DE MINERALES. SU SIMULACIÓN, OPTIMIZACIÓN, DISEÑO Y CONTROL, 1era Edición, Queenslanad Brisbone Australia. EDITORIAL ROCAS Y MINERALES, PP 342

- [5] OBLAD A. EDWARD (1994).LOS MODELOS MATEMATICOS DE LAS OPERACIONES DE CONMINUCION. 1era Edición , Lima Perú , EDITORIAL DEPARTAMENTO DE METALURGIA UNIVERSIDAD DE SAN MARCOS, PP 114
- [6] PIÑEROS RUEDA JOSE MANUEL (2015). CONTROL DE UN MOTOR
 DE INDUCCIÓN USANDO UN VARIADOR DE FRECUENCIA. TESIS
 DE GRADO DE INGENIERO, DEPARTAMENTO DE INGENIERÍA
 SISTEMAS Y AUTOMÁTICA ESCUELA TÉCNICA SUPERIOR DE
 INGENIERÍA UNIVERSIDAD DE SEVILLA(Fecha de acceso 21/10/2015)
 disponible en:

http://www.infoplc.net/files/descargas/siemens/infoPLC_net_proyecto.pdf

[7] PONCE C .PEDRO; SAMPE L. JAVIER (2008). MAQUINAS ELECTRICAS Y TÉCNICAS MODERNAS DE CONTROL, 1era Edición, México D.F México ,EDITORIAL ALFAOMEGA , PP 282

[8] QUIROZ NUÑEZ IVAN. (1986) INGENIERIA METALURGICA OPERACIONES UNITARIAS EN EL PROCESAMIENTO DE MINERALES 1era Edición, Lima Perú .EDITORIAL UNI, PP 280

[9] ROJAS ARTURO, MORENO (2001) CONTROL AVANZADO DISEÑO Y APLICACIONES EN TIEMPO REAL 1era Edición , Lima Perú , EDITORIAL MAGUIÑA , PP 459

[10] SANDOVAL MARMOLEJO RENATO NICOLÁS (2011). ANÁLISIS DE UTILIZACIÓN DE MOTORES DE INDUCCIÓN DE ROTOR

BOBINADO EN EL ACCIONAMIENTO DE UN MOLINO DE BOLAS. TESIS DE GRADO DE INGENIERO .UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERIA ELÉCTRICA (Fecha de acceso 05/11/2012) disponible en: <u>http://www.repositorio.uchile.cl/handle/2250/104032</u> [11] SEPULVEDA JAIME E.; **GUTIERREZ** LEONEL R. (1986)**DIMENSIONAMIENTO** Y **OPTIMIZACION** DE **PLANTAS** CONCENTRADORAS MEDIANTE TECNICAS DE MODELACION MATEMATICA 1era Edición ,Santiago de Chile, EDITORIAL CIMM, PP 319

ANEXOS

ANEXO 1: EQUIPOS UTILIZADOS PARA REALIZAR LAS PRUEBAS

ANEXO 2: HOJA DE REGISTRO DE DATOS DEL MEDIDOR

MULTIPARAMETROS PM130 SATEC

ANEXO 3: AJUSTE DE DATOS CON MATLAB

ANEXO 4: CONTROLADOR PID

ANEXO 5: DETERMINACION DE LA GRAVEDAD ESPECIFICA Y ANALISIS

MINERALOGICO DE LAS MUESTRAS

Image: Computador </t

ANEXO 1: EQUIPOS UTILIZADOS PARA REALIZAR LAS PRUEBAS

Figura anexo 1-1 : Equipos utilizados para realizar las pruebas

Para realizar las pruebas de molienda se tuvo que implementar un tablero de control para el molino de Bond de manera que se pueda controlar la velocidad de giro del motor se pueda medir en línea la energía eléctrica y ser registrada además de controlar el número de vueltas que debe girar el motor.

Inicialmente el molino contaba con un dispositivo de control de vueltas que en conjunto con un final de carrera realizaba la medición el número de vueltas y apagaba el motor del molino entonces el motor del molino y el final de carrera se desconectaron y se conectaron al tablero que se puede apreciar en la figura anexo1-1 y este tablero se conecta a la pc mediante una interface serial y durante cada prueba de molienda se puede medir y registrar el consumo de energía. A continuación describiremos cada equipo utilizado:

a) <u>El molino de 12" X 12" de laboratorio:</u> El molino que se utilizo fue el molino de laboratorio de 12" X 12" que utilizamos para realizar las pruebas para determinar el W.I de los minerales cabe mencionar que este molino tiene una carga normalizada de bolas (para la determinación del W.I), además de contar con parrilla para facilitar la descarga después de la prueba. Cuenta con un motor siemens de 1.8 HP a 220Vac 60Hz y $\cos \Phi = 0.84$

Figura anexo 1-2: Molino de laboratorio de 12" X 12" con carga normalizada

b) <u>El tablero de control</u>: El tablero de control como se mencionó anteriormente se modificó ya que tenía que cumplir varias funciones por esta razón el tablero tenia los siguientes componentes principales:

b1) Variador de Frecuencia AF-1500: marca EATON 220Vac, regulable de 0
120 Hz, este variador se programó para ser controlado de manera externa (encendido y apagado) además en el Keypad se puede regular la frecuencia de trabajo.

b2) Medidor multiparametros PM130: marca Satec 220Vac, puede medir muchos parámetros eléctricos (voltaje, corriente, potencia activa, potencia reactiva, $\cos\Phi$; etc.) de todos los parámetros medidos por este equipo seleccionamos la potencia activa en las tres fases .Además este medidor multiparametros tiene una interface RS232 que puede enviar la información de las mediciones eléctricas a una PC

b3) Controlador de Lógica Programable (PLC) 230RCL: marca Siemens 220Vac Este controlador se programó para que controlara todos los dispositivos y realizara una rutina según cada prueba realizada como fue el caso de contar el número de vueltas luego apagar el variador.

Además se colocaron pulsadores, selectores e interruptores termo magnéticos para poder facilitar la operación de este tablero así como su protección.

c) La Computadora: La computadora utilizada fue una laptop compaq armada Pentium III a la que se instaló el software PAS (Power Analysis Software) de Satec además de este software que podía ser instalado en el sistema operativo Windows XP debíamos instalar el software ACCES ya que los datos eran registrados en el software PAS y estos debía ser escritos en la base de datos (ACCES)

Figura anexo 1-3: Componentes del tablero de control

La operación de los equipos se realizó de la siguiente manera:

- Se alimentó el tablero con el interruptor principal 3X30A y luego verificar si el

variador de frecuencia esta energizado (ver que se enciende la luz del keypad)

- Se programa la frecuencia que utilizaremos en la prueba (para esto se debió antes calibrar la velocidad de giro con respecto a la frecuencia esto se realiza con un tacómetro digital)
- Para el caso de la determinación del índice de trabajo el número de vueltas de la prueba se programa en el PLC (se puede visualizar en la pantalla del PLC el número de vueltas) se ingresa al bloque funcional contador y se programa el número de vueltas.
- Una vez revisado el variador y el PLC ahora se verifica que el medidor multiparametros este energizado (se enciende los dígitos indicando el voltaje)
- Se conecta la interface RS232 a la computadora y se abre el programa PAS se abre un archivo nuevo y comienza el registro de los parámetros (muchos valores estarán en 0 ya que todavía el motor está apagado).
- Ahora se activa el motor con el selector del tablero y el motor comienza a funcionar.
- Una vez que se apaga el motor de manera automática se guarda el archivo creado en PAS y luego se puede abrir en ACCES y los datos se puede importara a otros programas.

ANEXO 2: HOJA DE REGISTRO DE DATOS DEL MEDIDOR MULTIPARAMETROS PM130 SATEC

A continuación se muestra uno de los registros de parámetros eléctricos que se obtuvieron en cada prueba como se mencionó anteriormente de todos estos parámetros solo trabajamos con la potencia activa (Kwatt)

A 6		Ø × (°i × ∓					Herramier	tas de tabla	RT D)ata Log #0_1 -	Microso	oft Acce	ss (Error de ac	tivaci 📼 🗟
Archi	vo	Inicio Crear D	atos externo	is Herramier	ntas de l	base de dat	tos Campos	Tabla						۵ 🕝 🗆 🗗 ۵
Ver	•	Cortar	Filtro	A Z ↓ Ascendente Z ↓ Descendente	∛g+ e 1⁄⊡*	Actualizat	📑 Nuevo	Σ P Buse	ab ⊶ac ⇒ -	Aiustar al Ca	mbiar	Calibri N <i>K</i>	<u>s</u> i i i i	
Vista	s	Copiar format Portapapeles	0 5 (A 20 Quitar order Drdenar y filtrar	Υ	todo *	Kegistros	B B	uscar	formulario ven Ventana	tanas *	A - ab	Formato de to	≣≣ ∰- exto ⊑
»	1	DoubleTime -	String	Time -	V1	2 -	V23 -	V31	.	11 -	12	-	13 -	kWL1 🗸
		0				7697	7953		8209	785		1041	1297	1553
		1.327613866163E+12	01/26/12 2	21:37:46.163		218	216		221	127		0	118	6
		1.327613867154E+12	01/26/12 2	21:37:47.154		218	216		221	113		0	121	6
		1.327613868156E+12	01/26/12 2	21:37:48.156		218	216		221	110		0	113	6
		1.327613869157E+12	01/26/12 2	21:37:49.157		218	216		221	121		0	114	6
		1.327613870159E+12	01/26/12 2	21:37:50.159		218	216		221	212		0	215	9
		1.32761387115E+12	01/26/12 2	21:37:51.150		218	216		220	1157		110	1167	71
		1.327613872162E+12	01/26/12 2	21:37:52.162		216	215		219	3531		2105	3147	289
		1.327613873173E+12	01/26/12 2	21:37:53.173		217	216		220	2170		769	2060	165
		1.327613874165E+12	01/26/12 2	21:37:54.165		217	216		220	2037		682	1949	150
=		1.327613875166E+12	01/26/12 2	21:37:55.166		217	216		220	2032		687	1926	148
<u>i</u>		1.327613876177E+12	01/26/12 2	21:37:56.177		217	216		220	2065		691	1944	148
ega		1.327613877159E+12	01/26/12 2	21:37:57.159		217	215		219	2114		726	1994	150
nav		1.32761387816E+12	01/26/12 2	21:37:58.160		217	216		220	2130		769	2017	155
-e		1.327613879172E+12	01/26/12 2	21:37:59.172		217	215		219	2176		789	2040	160
- e		1.327613880153E+12	01/26/12 2	21:38:00.153		217	215		220	2115		750	2008	160
Par		1.327613881165E+12	01/26/12 2	21:38:01.165		217	216		220	2092		714	1985	158
		1.327613882176E+12	01/26/12 2	21:38:02.176		217	216		220	2075		703	1985	153
		1.327613883157E+12	01/26/12 2	21:38:03.157		217	216		220	2056		672	1949	148
		1.327613884159E+12	01/26/12 2	21:38:04.159		217	216		220	2081		675	1961	148
		1.32761388515E+12	01/26/12 2	21:38:05.150		217	216		220	2060		694	1939	148
		1.327613886152E+12	01/26/12 2	21:38:06.152		217	216		220	2082		710	1959	153
		1.327613887163E+12	01/26/12 2	21:38:07.163		217	216		220	2092		719	1971	153
		1.327613888165E+12	01/26/12 2	21:38:08.165		217	216		220	2133		755	2026	155
		1.327613889166E+12	01/26/12 2	21:38:09.166		217	216		220	2122		758	2014	155
		1.327613890168E+12	01/26/12 2	21:38:10.168		217	216		220	2179		796	2026	158
	Re	gistro: 14 4 34 de 207	H H	🕅 Sin filtro 🛛 Bu	iscar					0445		750	0000	
Vista	Ној	a de datos											Blo	oq Num 🛅 🄀 🕮 🗄
-	Ini	cio 🔹 🔮 😻 😻	o 🗉	» 👩 P		🏂	P 🗀 o	W P	Ш в.	👿 T	🧇 D	A M	ES	🇞 🧊 🔘 12:06 p.m.

Tabla anexo 2-1: Parámetros eléctricos medidos por PM130 SATEC

ivo	Inicio Crear	Datos exter	nos Herramien	tas de base de dat	Herramienta	as de tabla RT	Data Log #0_1 -	Microsoft Acces	s (Error de activ	aci — 🖻
9 11	Pegar V Copiar for Portapapeles	prmato	Ascendente X ↓ Descendente Age Quitar orden Ordenar y filtrar	V Actualizar todo *	a Suardar Guardar X Eliminar ▼ Registros	Buscar	Ajustar al Cam formulario venta Ventana	biar anas * A * W	- 1 <u>S</u> 律 律 ⊨1 - <u>ふ</u> - ■ ■ Formato de text	1 ▼ ⊞ ∰ ▼ ■ ▼ ≣ ■ ⊞+
2	kW L2 🔹	kWL3 🔹	kvar L1 🔹	kvar L2 🔹	kvar L3 🔹	kVAL1 🔹	kVA L2 🔹	kVAL3 🔹	PFL1 ·	PFL2 •
	1809	2065	2321	2577	2833	3089	3345	3601	3857	4113
	0	4	1	0	-4	6	0	6	0.924	0
	0	4	1	0	-4	6	0	6	0.922	0
	0	4	1	0	-4	6	0	6	0.928	0
	0	4	1	0	-4	6	0	6	0.919	0
	0	9	4	0	-6	11	0	11	0.924	0
	6	56	26	4	-41	76	6	71	0.943	0.891
	160	210	0	21	-91	289	163	227	1	0.99
	56	111	24	16	-76	168	58	133	0.991	0.957
	41	101	26	16	-71	153	43	123	0.986	0.938
	41	101	26	16	-71	150	43	123	0.986	0.937
	41	103	26	14	-68	150	43	123	0.983	0.943
	41	103	26	16	-71	153	46	125	0.984	0.94
	46	106	26	16	-71	158	48	128	0.986	0.94
	48	108	26	16	-71	163	51	130	0.988	0.942
	48	106	24	16	-73	163	51	128	0.989	0.952
	46	106	26	16	-73	160	48	128	0.986	0.943
	43	103	26	16	-71	155	46	125	0.987	0.943
	39	101	29	16	-71	153	41	123	0.983	0.936
	39	101	26	14	-68	150	41	123	0.984	0.939
	41	101	29	16	-71	150	41	123	0.982	0.935
	41	103	26	16	-71	155	46	123	0.987	0.931
	41	103	26	16	-71	153	46	123	0.986	0.938
	43	103	26	16	-71	158	46	125	0.987	0.937
	41	103	26	16	-71	158	46	125	0.986	0.936
	46	108	26	16	-71	160	48	130	0.986	0.945
Re	gistro: I4 4 34 de 20	07 • • • •	K Sin filtro Bus	car (70			400	0.000	
Hoj	ja de datos								Blog	Num 🔟 🖽 🖞

Tabla anexo 2-2: Parámetros eléctricos medidos por PM130 SATEC

	ਮ7 × (2 × ∓	- Det				have de det	Herramie	ntas de tabla	RT Dat	a Log #0_1 - Micro	soft A	Access (Error de a	activaci 🗆 🖻	2
Archivo	Inicio Crea	ar Dat	os externo	A Herra	amientas de	base de dat	tos Campos	labla	e).				∾ () □	@ 23
	K Corta	r		2 ↓ Ascende	ente 🦻 🗸	a	📑 Nuevo	Σ	4ac		Calil	bri	* 11 * :=	3=
Ver	Pegar Copia	r	Filtro	A Descen	dente 🛅 🗧	Actualizar	🚽 Guardar	Busca	- →	Aiustar al Cambiar	N		► III - III -	
*	🗧 🛷 Copia	r formato		2 Quitar o	orden Y	todo *	X Eliminar *	*	k} ▼ f	ormulario ventanas *	A	• *** · 🖄 • 🔳	€ ≣ ≣ ⊞*	
Vistas	Portapapele	i Gi	(Ordenar y fi	ltrar		Registros	Bu	scar	Ventana		Formato de	texto	Fa .
» 📿	PFL3 👻	kW 👻	kvar 👻	kVA 👻	PF 👻	In 👻	FREQ -	kW IMP SD	MAX -	kW IMP ACC DME) -	kva SD Max 👻	kva acc DMD	• I 📥
	-0.805	16	0	16	-0.994	10	60.15		185		63	185		<u>63</u>
	-0.794	133	-16	133	-0.994	126	60.15		185		63	185		66 ₌
	-0.919	660	-61	662	-0.996	214	60.15		185		66	185		66
	-0.829	334	-36	334	-0.995	180	60.15		185		66	185		66
	-0.818	292	-31	292	-0.995	164	60.15		185		66	185		ő6
	-0.821	289	-29	292	-0.995	153	60.15		185		66	185		66
	-0.829	289	-26	292	-0.996	141	60.14		185		66	185		66
	-0.829	297	-29	299	-0.996	143	60.13		185		66	185		66
	-0.828	307	-31	309	-0.995	167	60.12		185		66	185		66
	-0.833	317	-31	319	-0.995	150	60.11		185		66	185		68
£	-0.824	314	-34	317	-0.994	167	60.09		185		68	185	(68
<u>ខ</u>	-0.821	307	-31	309	-0.995	162	60.09		185		68	185		68
- G	-0.821	297	-31	299	-0.995	157	60.1		185		68	185		68
nav	-0.819	287	-29	289	-0.995	159	60.1		185		68	185		68
8	-0.825	287	-29	289	-0.995	139	60.1		185		68	185	(68
<u>e</u>	-0.819	287	-29	289	-0.995	157	60.11		185		68	185		71
Pai	-0.819	297	-31	297	-0.995	169	60.12		185		71	185		71
	-0.824	297	-29	297	-0.995	167	60.12		185		71	185		71
	-0.822	304	-31	304	-0.995	162	60.12		185		71	185		71
	-0.827	302	-29	302	-0.995	164	60.13		185		71	185		71
	-0.835	312	-29	312	-0.996	141	60.13		185		71	185		71
	-0.82	312	-31	312	-0.995	173	60.13		185		71	185		71
	-0.822	309	-31	312	-0.995	162	60.15		185		71	185		71
	-0.811	292	-34	294	-0.994	160	60.15		185		71	185		71
	-0.817	287	-31	289	-0.995	157	60.15		185		71	185		73
	-0.816	289	-31	289	-0.995	150	60.15		185		73	185		73
Re	egistro: I4 4 31 de	207	H HE C	K Sin filtro	Buscar				4.05			4.05		-
ista Hoi	ia de datos											F	3log Num 🛛 🕅 🕮	AL M
	ja ac aatos				1	I.e.		1						ds
💾 Ini	icio 🚯 🚱	🕑 😽 🕻) 📖	~ O	P 🗀	С 🏂	P 🗀 o	W P	W B	🛛 🗑 T 🧼 D	. (A M ES	🛛 😼 🗾 🔘 12:09	p.m.

Tabla anexo 2-3: Parámetros eléctricos medidos por PM130 SATEC

	u) - (u - -				Herramientas (de tabla	RT Dat	ta Log #0_1 -	Microsoft	Access (Error	de activaci.	e	23
Archivo	Inicio Crear	Datos externos	Herramientas de	base de datos	Campos	Tabla					63		23
	🔏 Cortar		Ascendente 🦻 🗸	2 Strain 1997	ievo Σ		ap	2	Cali	bri	* 11	- i= i=	
Ver	Pegar Copiar	Filtro	🕹 Descendente 🦉 🗧	Actualizar	ardar 🍣	Buscz	⇒	Aiustar al Ca	mbiar N	<u>K</u> <u>S</u> ≦≡	運り相下	· ·	
*	💞 🛷 Copiar fo	ormato Z	🖉 Quitar orden 🍸	todo 🗸 🗙 Eli	minar - 📰 -		- & ™ 1	formulario ven	tanas 🖌 🔺	- 🕸 - 🖄 -		≣ ⊞-	
Vistas	Portapapeles	G 01	rdenar y filtrar	Regist	ros	Bu	iscar	Ventana		Forma	to de texto		ŝ.
» 📿	12 DMD MAX 👻	I3 DMD MAX 👻	kWh IMPORT 👻	kWh EXPORT	kvarh NE	T - \	/1THD •	V2 THD 🔹	V3 THD 🔹	I1 THD 🔹	I2 THD 👻	13 THD	
	1079	1335	23	27	9	1559	4625	4881	5137	5393	5649	5	9
	694	1109	373134		0 23	6443	C	0 0	0	0	0		=
	694	1109	373134		0 23	6443	C	0 0	0	0	0		
	694	1109	373134		0 23	6443	C	0 0	0	0	0		
	694	1109	373134		0 23	6443	C	0 0	0	0	0		
	694	1109	373134	1	0 23	6443	C	0 0	0	0	0		
	694	1109	373134		0 23	6443	0	0 0	0	0	0		
	694	1109	373135		0 23	6443	C	0 0	0	0	0		
	694	1109	373135		0 23	6443	C	0 0	0	0	0		
	694	1109	373135		0 23	6443	C	0 0	0	0	0		
5	694	1109	373135		0 23	6443	0	0	0	0	0		
aci	694	1109	373135		0 23	6443	C	0 0	0	0	0		
Veg	694	1109	373135		0 23	6443	C	0 0	0	0	0		
na	694	1109	373135		0 23	6443	0	0 0	0	0	0		
e e	694	1109	373135	1	0 23	6443	0	0	0	0	0		
lane	694	1109	373135		0 23	6443	(0 0	0	0	0		
č.	694	1109	3/3135		0 23	6443	(0 0	0	0	0		
	694	1109	3/3136		0 23	6443	(0 0	0	0	0		
	694	1109	3/3136		0 23	6443		0	0	0	0		
	694	1109	373136		0 23	6443	L L	0 0	0	0	0		
	694	1109	3/3136		0 23	6443	(0	0	0	0		
	694	1109	3/3136		0 23	6443	L L	0 0	0	0	0		
	694	1109	373136		0 23	6443		0	0	0	0		
	094	1109	373130		0 23	0443		0	0	0	0		
	694	1109	373130		U 23	6443			0	0	0		
	034	1105	373130			C + + 0			-	0		_	-
Re	egistro: 14 🚽 1 de 207	7 F H F	Sin filtro Buscar	4									•
/ista Ho	ja de datos						_		_	_	Blog Nur	n 🔲 🏼 🖞	1 2
-					~ 10	-		1 - 1		_			

Tabla anexo 2-4: Parámetros eléctricos medidos por PM130 SATEC

ANEXO 3: AJUSTE DE DATOS CON MATLAB

Regresión lineal

Abordaremos las distribuciones bidimensionales. Las observaciones se dispondrán en dos columnas, de modo que en cada fila figuren la abscisa x y su correspondiente ordenada y. La importancia de las distribuciones bidimensionales radica en investigar cómo influye una variable sobre la otra. Esta puede ser una dependencia causa efecto, por ejemplo, la cantidad de lluvia (causa), da lugar a un aumento de la producción agrícola (efecto). O bien, el aumento del precio de un bien, da lugar a una disminución de la cantidad demandada del mismo.

Si utilizamos un sistema de coordenadas cartesianas para representar la distribución bidimensional, obtendremos un conjunto de puntos conocido con el diagrama de dispersión, cuyo análisis permite estudiar cualitativamente, la relación entre ambas variables. El siguiente paso, es la determinación de la dependencia funcional entre las dos variables x e y que mejor ajusta a la distribución bidimensional. Se denomina regresión lineal cuando la función es lineal, es decir, requiere la determinación de dos parámetros: la pendiente y la ordenada en el origen de la recta de regresión, y=ax+b.

La regresión nos permite además, determinar el grado de dependencia de las series de valores X e Y, prediciendo el valor *y* estimado que se obtendría para un valor *x* que no esté en la distribución.

Vamos a determinar la ecuación de la recta que mejor ajusta a los datos representados en la figura. Se denomina error ε_i a la diferencia y_i -y, entre el valor observado y_i , y el valor ajustado $y = ax_i + b$, tal como se ve en la figura inferior. El criterio de ajuste se toma como aquél en el que la desviación cuadrática media sea mínima, es decir, debe de ser mínima la suma

$$E = \sum_{1}^{n} \varepsilon_{i}^{2} = \sum_{1}^{n} (y_{i} - (ax_{i} + b))^{2}$$

El extremo de una función: máximo o mínimo se obtiene cuando las derivadas de E respecto de a y de b sean nulas. Lo que da lugar a un sistema de dos ecuaciones con dos incógnitas del que se despeja a y b.

$$\begin{aligned} \frac{\partial E}{\partial a} &= 0 \qquad \frac{\partial E}{\partial b} = 0\\ a &= \frac{n\sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n\sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \qquad b = \frac{\sum_{i=1}^{n} y_i - a\sum_{i=1}^{n} x_i}{n} \end{aligned}$$

Expresiones más elaboradas nos permiten determinar el error de a, Δa y el error de b, Δb

$$\begin{split} \Delta a &= \frac{\sqrt{n}\sigma}{\sqrt{n\sum_{1}^{n} x_{i}^{2} - \left(\sum_{1}^{n} x_{i}\right)^{2}}} \qquad \sigma = \sqrt{\frac{\sum_{1}^{n} (y_{i} - ax_{i} - b)^{2}}{n - 2}}\\ \Delta b &= \Delta a \cdot \sqrt{\frac{\sum_{1}^{n} x_{i}^{2}}{n}} \end{split}$$

La pendiente de la recta se escribirá $a\pm\Delta a$, y la ordenada en el origen $b\pm\Delta b$. El coeficiente de correlación es otro parámetro para el estudio de una distribución bidimensional, que nos indica el grado de dependencia entre las variables X e Y. El coeficiente de correlación *r* es un número que se obtiene mediante la fórmula.

$$r = \frac{\sum_{1}^{n} (x_{i} - \langle x \rangle)(y_{i} - \langle y \rangle)}{\sqrt{\sum_{1}^{n} (x_{i} - \langle x \rangle)^{2}} \sqrt{\sum_{1}^{n} (y_{i} - \langle y \rangle)^{2}}}$$

El numerador es el producto de las desviaciones de los valores X e Y respecto de sus valores medios. En el denominador tenemos las desviaciones cuadráticas medias de X y de Y.El coeficiente de correlación puede valer cualquier número comprendido entre -1 y +1.

- Cuando r=1, la correlación lineal es perfecta, directa.
- Cuando r=-1, la correlación lineal es perfecta, inversa
- Cuando r=0, no existe correlación alguna, independencia total de los valores X e Y

Ejemplo

Un vehículo que se mueve supuestamente con velocidad constante. Los datos de las medidas del tiempo en cuatro posiciones separadas 900 m son las siguientes

Tiempo t (s)	Posición x (m)
17.6	0
40.4	900
67.7	1800
90.1	2700

Ajustar los datos a la línea recta

 $x = x_0 + vt$

y estimar el mejor valor de la velocidad v aplicando el procedimiento de mínimos cuadrados.Utilizando el aplicativo Regresión lineal, obtenemos los siguientes valores: la pendiente es a=36.71 y el error de la pendiente $\Delta a=1.001$. La velocidad se escribe

 $v=37\pm1$ m/s

```
function [a b]=regresion(x,y)
   n=length(x);
   a = zeros(2,1);
   b=zeros(2,1);
    %pendiente de la recta de regresión, a
   a(1) = (n*sum(x.*y) - sum(x)*sum(y)) / (n*sum(x.^2) - sum(x)*sum(x));
    %ordenada en el origen, b
   b(1) = (sum(y) - a(1) * sum(x)) / n;
    % errores de a y de b
   sd2=sum((y-a(1)*x-b(1)).^2);
   a(2)=sqrt(sd2/(n-2))/sqrt(sum(x.^2)-sum(x)*sum(x)/n);
   b(2) = sqrt(sum(x.^2)/n)*a(2);
```

```
end
```
- En el vector *a* de dimensión 2 hemos guardado la pendiente en *a*(1) y su error en *a*(2)
- En el vector b de dimensión 2 hemos guardado la ordenada en b(1) y su error en b(2)

Escribimos el script *datos*_1 para calcular la pendiente *a* de la recta de regresión, su error Δa , la ordenada en el origen *by* su error Δb .

```
t=[17.6 40.4 67.7 90.1];
x=[0 900 1800 2700];
[a b]=regresion(t,x);
fprintf('pendiente a= %2.3f, error %1.3f\n',a(1),a(2));
fprintf('ordenada b= %3.3f, error %3.3f\n',b(1),b(2));
%gráfica
plot(t,x,'ro','markersize',8,'markerfacecolor','r')
tmin=min(t);
xmin=a(1)*tmin+b(1);
tmax=max(t);
xmax=a(1)*tmax+b(1);
line([tmin tmax],[xmin xmax]); %recta
xlabel('t')
ylabel('x')
title('Regresión lineal')
```

En la ventana de comandos corremos el script datos_1

La función potencial

 $y = c \cdot x^a$

Se puede trasformar en

 $\log y = a \cdot \log x + \log c$

Si usamos las nuevas variables $X = \log x$ e $Y = \log y$, obtenemos la relación lineal

Y=aX+b.

Donde $b = \log c$

Ejemplo:

x	10	20	30	40	50	60	70	80
У	1.06	1.33	1.52	1.68	1.81	1.91	2.01	2.11

Representamos estos datos en un diagrama doblemente logarítmico mediante el comando *loglog*

```
x=[10 20 30 40 50 60 70 80];
y=[1.06 1.33 1.52 1.68 1.81 1.91 2.01 2.11];
loglog(x,y,'ro','markersize',2,'markerfacecolor','r')
xlabel('x')
ylabel('y')
title('Función potencial')
```


Para determinar la recta de regresión, se transforma esta tabla de datos en esta otra

X=log x	1.0	1.30	1.477	1.60	1.699	1.778	1.845	1.903
Y=log y	0.025	0.124	0.182	0.225	0.258	0.281	0.303	0.324

Calculamos mediante la función regresión los parámetros a y c.

Escribimos el script datos_2

```
x=[10 20 30 40 50 60 70 80];
y=[1.06 1.33 1.52 1.68 1.81 1.91 2.01 2.11];
[a b]=regresion(log10(x),log10(y));
fprintf('exponente a= %2.3f\n',a(1));
fprintf('coeficiente c= %3.3f\n',10^b(1));
%gráfica
hold on
plot(x,y,'ro','markersize',8,'markerfacecolor','r')
z=(10^b(1))*x.^a(1);
plot(x,z,'b')
xlabel('x')
ylabel('y')
title('Regresión potencial')
hold off
```

Corremos el script datos_2 en la ventana de comandos

>> datos_2
exponente a= 0.331
coeficiente c = 0.495

Función exponencial

 $y = c \cdot e^{ax}$

Tomando logaritmos neperianos en los dos miembros resulta

 $\ln y = ax + \ln c$

Si ponemos ahora X=x, e $Y=\ln y$, obtenemos la relación lineal

Y=aX+b

Donde $b = \ln c$.

Ejemplo:

x	12	41	93	147	204	264	373	509	773
у	930	815	632	487	370	265	147	76	17

Representamos estos datos en un diagrama semilogarítmico mediante el comando *semilogy*

```
x=[12 41 93 147 204 264 373 509 773];
y=[930 815 632 487 370 265 147 76 17];
semilogy(x,y,'ro','markersize',2,'markerfacecolor','r')
xlabel('x')
ylabel('y')
title('Función exponencial')
grid on
```


Para determinar la recta de regresión, se transforma esta tabla de datos en esta otra

X= x	12	41	93	147	204	264	373	509	773
Y=ln y	6.835	6.703	6.449	6.188	5.913	5.580	4.990	4.330	2.833

Escribimos el script datos_3

```
x=[12 41 93 147 204 264 373 509 773];
y=[930 815 632 487 370 265 147 76 17];
[a b]=regresion(x,log(y));
fprintf('exponente a= %2.3f\n',a(1));
fprintf('coeficiente c = %3.3f\n',exp(b(1)));
%gráficos
hold on
plot(x,y,'ro','markersize',8,'markerfacecolor','r')
x=linspace(min(x),max(x),100);
y=exp(b(1))*exp(x*a(1));
plot(x,y,'b')
xlabel('x')
ylabel('y')
title('Regresión exponencial')
hold off
```

Corremos el script datos_3 en la ventana de comandos

```
>> datos_3
exponente a= -0.005
coeficiente c = 1036.896
```


ANEXO 4: CONTROLADOR PID

Si se puede obtener el modelo matemático del proceso, entonces es posible aplicar varias técnicas para determinar los parámetros de este cumpliendo con las especificaciones transitorias y de estado estacionario del sistema de control de lazo cerrado. Sin embargo si el proceso es tan complicado no encontrando su modelo matemático, es imposible el método analítico de diseño de un controlador PID. Entonces se debe recurrir a modelos experimentales para el diseño de controladores PID. Este proceso se conoce como calibración o sintonía del controlador. Zieger y Nichols sugirieron reglas para afinar controladores PID.

3.4.4.1) REGLAS DE ZIEGER & NICHOLS

Zieger & Nichols propusieron reglas para determinar la ganancia proporcional, del tiempo integral Ti y del tiempo derivativo Td basados en las características de la respuesta transitoria de un proceso dado.

Diagrama de bloques de un sistema realimentado

A) Primer método

En este método se obtiene experimentalmente la respuesta del proceso a una perturbación cuya entrada es del tipo escalón unitario. Si el proceso no incluye integradores o polos dominantes complejos conjugados, la curva de respuesta al escalón unitario puede tener el aspecto de una curva en forma de S, si la respuesta no presenta la forma de S, no se puede aplicar el método. Estas curvas de respuesta al escalón se pueden generar experimentalmente o a partir de una simulación dinámica del proceso.

Primer método de Zieger & Nichols

La Curva en forma de S se caracteriza por dos parámetros, el tiempo de atraso L y la constante de tiempo T. Ambos se determinan trazando una línea tangente a la curva en forma de S en el punto de inflexión y se harán las intersecciones de esta línea tangente con el eje del tiempo y con la línea c(t)=K, como se muestra en la figura . Entonces la función de transferencia C(S)/U(S) se puede aproximar por un sistema de primer orden con atraso de transporte.

$$C(s) = Ke - Ls$$
 $U(s)$ $Ts + 1$

Respuesta del Sistema

Zieger & Nichols sugirieron fijar los valores de Kp, Ti y Td de acuerdo con la fórmula de la Tabla

Tabla 4.1	Valores	propuestos	por Zieger	& Nichols
-----------	---------	------------	------------	-----------

Tipo deControlador	Кр	Ti	Td
Р	$\frac{T}{L}$	∞	0
PI	0.07	L	0
	$\frac{0.9T}{L}$	0.3	
PID	$1.2\frac{T}{L}$	2L	0.5L

$$G(s) = Kp (1 + 1 / Tis + Tds)$$

$$=1,2 (T/L)(1 + 1/2Ls + 0.5Ls)$$

= 0,6 T (s+1 / L)2 / s

Así el controlador PID tiene un polo en el origen y un cero doble en s = -1/L

B) Segundo método

Primero se hace $Ti = \infty$ y usando solamente la acción de control proporcional incremente Kp desde 0 hasta un valor crítico Kcr en la cual exhiba por primera vez oscilaciones sostenidas. Si no se presentan oscilaciones sostenidas para cualquier valor, entonces no se puede aplicar este método. Así, se determina experimentalmente la ganancia crítica Kcr y el período correspondiente. Zieger y Nichols sugirieron fijar los valores de, Ti y Td de acuerdo a la fórmula de la Tabla 4.2.

Segundo método de Zieger Nichols

Respuesta al sistema

La sintonización del controlador PID mediante el segundo método de Zieger y Nichols es:

G(s) = Kp(1 + 1 / Tis + Tds)

Tal	ola 4	1.2	- V	alores	pro	puestos	por	Zieger	· N	Vicl	hol	ls
-----	-------	-----	-----	--------	-----	---------	-----	--------	-----	------	-----	----

Tipo de Controlador	Кр	Ti	Td
Р	0,5 Kcr	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0
PI	0,45 Kcr	Pcr / 1,2	0
PID	0,6 Kcr	0,5 Pcr	0,125 Pcr

= 0,6 Kcr (1 + 1 / 0,5 Pcrs + 0,125 Pcrs)

= 0,075 Kcr Pcr (s + 4 / Pcr)2 /s

ANEXO 5: DETERMINACION DE LA GRAVEDAD ESPECIFICA Y ANALISIS

MINERALOGICO DE LAS MUESTRAS

GRAVEDAD ESPECIFICA (Método de la Fiola)	SILICE	SULFURO	CALIZA
P1) PESO DEL MINERAL	50,00	50,00	50,00
P2) PESO DE LA FIOLA	65,30	66,20	59,20
P3) PESO DE LA FIOLA +AGUA	164,80	165,70	158,80
P4) PESO DE LA FIOLA +MINERAL +AGUA	196,30	202,80	190,60
P5) PESO DE LA FIOLA +MINERAL	115,30	116,20	109,20
GRAVEDAD ESPECIFICA (gr/cm ³)	2,70	3,88	2,75