Universidad Nacional de Ingenieria

FACULTAD DE INGENIERIA MECANICA

Pequeño Sistema Eléctrico No. 2 Diseño de la Linea de Transmisión a 20 KV. Pallasca – Lacabamba – Pampas.

TESIS

PARA OPTAR EL TITULO PROFESIONAL DE:

INGENIERO MECANICO ELECTRICISTA

OSCAR FERNANDO VELARDE VILLAR

PROMOCION: 1982 - 1

LIMA . PERU . 1986

INTRODUCCION

		Ио
1.0	GENERALIDADES	2
1.1	Area de Influencia del Estudio	2
	1.1.1 Ubicación	2
	1.1.2 Geografía	2
	1.1.3 Altitud	3
	1.1.4 Características climáticas	3
	1.1.5 Vías de Acceso	3
1.2	Descripción del Proyecto	4
1.3	Localización de las instalaciones	4
	1.3.1 Patio de Llaves 20 kV	4
	1.3.2 Lineas de 20 kV	4
1.4	Nivel de Tensión	4
1.5	Nivel de Aislamiento	5
1.6	Nivel de Cortocircuito	5
1.7	Selección de Ruta	5
1.8	Descripción de las rutas elegidas	6
	1.8.1 Troncal Pallasca-Lacabamba=Pampas	6
	1.8.2 Ramal Pampas-Puyali	7
	1.8.4 Ramal a Chora	8
	1.8.5 Derivación a Pallasca	8
٥.٠	ESTUDIO DE LA OFERTA Y LA DEMANDA	ò
2.1	Consideraciones Generales	O
	2.1.1 Localidades consideradas	Ò
	2.1.2 Pronóstico de la Población	10
	2.1.3 Pronóstico de la Máxima Demanda Potencial	11
	2.1.4 Resultados	11
3.0	SELECCION DEL NIVEL DE TENSION	13
3.1	Criterios Técnicos de Selección de Nivel de	
	Tensión de Distribución Primaria	13
	3.1.1 Selección de la Tensión de Distribución	
	Primaria aérea	1.3
	3.1.2 Por caída de tensión	1.1
	3.1.3 Incremento de la Potencia de Transmisión	1 -7
	3.1.4 Incremento de la longitud de la línea	1 -

		No.
	3.1.5 Incremento de la longitud de la línea par	2
	distribución lineal de la carga	16
	3.1.6 Incremento de la longitud de la linea par	a
	una distribución superior de la carga	16
	3.1.7 Mejora de la caída de tensión	17
3.2	Por Capacidad Térmica	17
	3.2.1 Disminución del Calibre del Conductor	17
	3.2.2 Incremento de la potencia de transmisión	18
3.3	Por la Disminución de la longitud de líneas y el	
	número de 5.E. de Transmisión	20
3.4	Por pérdidas de potencia	20
	3.4.1 Incremento de la pérdida de potencia por-	
	centual	20
	3.4.2 Disminución de la pérdida de potencia	
	porcentual	21
3.5	Por incremento de la capacidad de transporte en	
	condiciones de menor libre	22
3.6	Análisis Económico	
	Evaluación de costos promedio de redes de distri	
	bución primaria	23
	3.6.1 Conductores	23
	3.6.2 Postes	24
	3.6.3 Aisladores	24
	3.6.4 Costo promedio de un km de linea de 1 kV	24
4.0	NATERIALES UTILIZADOS	26
4.1	4.1.1 Estructuras	26
	4.1.2 Conductor	26
	4.1.3 Aisladores	26
	4.1.4 Puesta a Tierra	27
	4.1.5 Ferretería y Accesorios	27
4.2	Denominación de Estructuras	27
4.3	Cimentación de las Estructuras	20
4.4	Operación de las líneas 20 kV	50
4.5	Protección de las lineas	20
4.6	Tabla de localización	20

			K .		
5.0	CALCULOS ELECTRICOS				
5.1	Cálculo de Aislamiento				
5.2	Selección de los Aisladores				
	5.2.1	Valor mínimo de la tensión descriptiva			
		bajo lluvia a la frecuencia de servicio	31		
	5.2.2	Tensión descriptiva en seco	32		
	5.2.3	Linea de Fuga	32		
	5.2.4	Conclusiones	32		
5.3	Dista	ncia de los conductores entre los apoyos	34		
5.4	Distar	ncia de los conductores entre sí	34		
5.5	Cálcu	los eléctricos para la selección del con-			
	ductor	r	34		
	5.5.1	Selección del conductor teniendo en cuenta			
		la radio interferencia y protección de Lí-			
		neas de Telecomuniación	35		
	5.5.2	Cálculo de Pérdidas por efecto corona	36		
	5.5.3	Cálculo de caída de tensión	36		
5.6	Cálcu]	lo de Cortocircuito	38		
	5.6.1	Generalidades	38		
	5.6.2	Información Básica	38		
	5.6.3	Metodología Empleada	39		
	5.6.4	Resultados	40		
5.7	Coordi	inación de la Protección contra sobre			
	corrie	ente	41		
	5.7.1	Cortocircuito Fusible	- \$1		
	5.7.2	Diagramas de Protección	42		
5.8	Puesta	as a Tierra			
	5.8.1	Generalidades	43		
	-	Nedida de la Resistividad del terreno	43		
	5.8.3	Selección de las Configuraciones del Sis-			
		tema de Puesta a Tierra	13		
	•	Materiales del Sistema de Puesta a Tierra	-1 -1		
5.9	_	os Mecánicos	13		
		limitaciones Básicas del Cálculo	18		
	5.9.2	Hipótesis de Cálculo	48		

		5.9.2.1 Consideración del CREEP	48
		5.9.2.2 Consideraciones de Ampacitancia	4 0
5.10	Cálculo	Mecánico de Postes	63
	5.10.1	Criterios Adoptados en la selección del	
		tipo de estructura	63
	5.10.2	Ramales de Linea	63
	5.10.3	Cálculos Justificativos de Postes de	
		Fierro de Doble Terna	65
	5.10.4	Cálculos Justificativos de Postes de	
		Madera	68
5.11	Dimensi	onamiento de Crucetas	78
	5.11.1	Cruceta de Fierro Monoposte	78
	5.11.2	Cruceta de Fierro en Biposte	79
	5.11.3	Cruceta de Madera	79
5.12	Dimensi	onamiento de Pines	80
	5.12.1	Pines en Crucetas de Fierro	83
	5.12.2	Pines en Crucetas de Madera	83
5.13	Dimensi	onamiento de Retenidas	85
5.14	Dimensi	onamiento del Bloque de Andaje	S 7
5.15	Cálculo	de las Fundaciones con el Método Sulzberger	òO
	5.15.1	Descripción del Método	òO
	5.15.2	Implementación del Método	90
	5.15.3	Selección de los Coeficienes "Ct" y Cb"	93
	5.15.4	Tipos de Fundaciones	04
5.16	Amortigu	aadores de Vibraciones	ດດ
	5.16.1	Generalidades	9.0
	5.16.2	Selección de Amortiguadores de Vibración	0.0
6.0	ESPECIF	ICACIONES TECNICAS PARA EL SUMINISTRO DE	
	EQUIPO 3	Y MATERIALES	102
6.1	Consider	raciones Generales	102
	6.1.1	Objeto	102
	6.1.2	Alcance	105
	6.1.3	Planos y Esquemas	103
		Ubicación	103
		Condiciones de Servicio	103
		Definiciones	103
	6.1.7	Normas Aplicables	101

	6.1.8	Idiomas	104
	6.1.9	Unidades de Medida	105
	6.1.10	Información Técnica	105
	6.1.11	Inspección y Pruebas	105
	6.1.12	Acabado de los Equipos	105
	6.1.13	Instrucciones para Embalaje	106
	6.1.14	Transporte y Entrega	106
	6.1.15	Garantía	106
6.2	Especif	icaciones Técnicas para el Suministro de	
	Postes	de Acero	107
	6.2.1	Normas Aplicables	107
	6.2.2	Características Generales	107
	6.2.3	Materiales	107
	6.2.4	Inspección	108
	6.2.5	Prueba de Postes	108
	6.2.6	Crucetas de Perfil Angular y Accesorios	108
6.3	Especif	icaciones Técnicas para el Suministro de	
	Postes	de Madera y Crucetas	108
	6.3.1	Normas Aplicables	108
	6.3.2	Características Generales	109
	6.3.3	Crucetas	110
	6.3.4	Inspección y Pruebas	110
6.4	Especif	ficaciones Técnicas para el Suministro del	
	Conduct	cor de Aleación de Aluminio	112
	6.4.1	Alcance	112
	6.4.2	Características Generales	112
	6.4.3	Descripción del Material	112
	6.4.4	Normas Aplicables	113
	6.4.5	Fabricación	113
	6.4.6	Muestreo	114
	6.4.7	Inspección y Pruebas	115
	6.4.8	Aceptación o Rechazo	115
	6.4.9	Embalaje	115
	6 4 10	Canactanisticas Panticulance	116

6.5	Especi	ficaciones Técnicas para el Suministro de					
	Accesorios del Conductor						
	6.5.1	Alcance	118				
	6.5.2	Normas Aplicables	118				
	6.5.3	Descripción de los Materiales	118				
		6.5.3.1 Varillas de Armar	118				
		6.5.3.2 Juntas de Empalme	119				
		6.5.3.3 Manguitos de Reparación	119				
		6.5.3.4 Pasta para Aplicación de Emplames	119				
		6.5.3.5 Herramientas	119				
		6.5.3.6 Grampas de Doble Vía	120				
	6.5.4	Amortiguadores de Vibración	120				
6.6	Especi	ficaciones Técnicas para el Suministro de					
	Aislad	lores	121				
	6.6.1	Alcance	121				
	6.6.2	Normas Aplicables					
	6.6.3	Consideraciones Constructivas 12					
	6.6.4	Pruebas	121				
	6.6.5	Embalaje	121				
	6.6.6	Características del Aislador tipo Pin	122				
	6.6.7	Aislador de Suspensión tipo Bola y Casqui					
		11o	122				
6.7	Especi	ficaciones Técnicas para el Suministro de					
	Acc. p	eara el Aislador	123				
	6.7.1	Alcance	123				
	6.7.2	Normas Aplicables	123				
	6.7.3	Descripción de los Materiales	123				
		6.7.3.1 Espiga o Pin	123				
		6.7.3.2 Para cadena de Aisladores	124				
6.8	Dimens	sión de Retenidas	126				
	6.8.1	Descripción de los Materiales	127				
		6.8.1.1 Cable de Retenida	127				
		6.8.1.2 Mordaza Preformada	127				
		6.8.1.3 Varilla de Anclaje	127				
		6.8.1.4 Abrazadera					

И о
127
127
128
128
128
stro de
128
128
128
stro de
129
e Para-
131
131
131
131
132
e elemen
132
132
132
132
132
ierro 132
132
132
adera 133
133
133
e 134
134
134
135
135
135

6.15	Replanteo	136
	6.15.1 Mantenimiento de Caminos	136
6.16	Franja de Servidumbre	136
6.17	Transporte y Manipuleo de Materiales	137
6.18	Cimentación para los Postes	137
6.19	Instalación de Estructura de Fierro	138
6.20	Inst. de las Estructuras de Madera	139
6.21	Inst. de los Aisladores	139
	6.21.1 Aisladores tipo Pin	139
	6.21.2 Ensamble de Cadena de Aisladores	141
6.22	Inst. de REtenidas o Dientes de Anclaje	142
6.23	Puesta a Tierra	142
6.24	Tendido de los Conductores	143
	6.24.1 Tendido	144
	6.24.2 Empalmes y Manguitos de Reparación	144
	6.24.3 Puesta en Flecha	145
	6.24.4 Estructuras Terminales	145
6.25	Distancia de Seguridad	146
6.26	Pruebas de Línea Terminada	146
	6.26.1 Pruebas de Conductibilidad Eléctrica de	
	la Línea	146
	6.26.2 Det. de la Secuencia de Fases	146
	6.26.3 Pruebas de Aislamineto	147
	6.26.4 Aplicación de Tensión	147
6.27	Marcas	147
6.28	Puesta en Serv. de la Línea	148
7.0	METRADOS Y PRESUPUESTOS =	
7.1	Troncal Pallasca-Lacabamba-Pampas	1 51
7.2	Ramal Pampas-Puyalli	160
7.3	Ramal Laoabamba-Conchucos	164
7.4	Ramal Chora	169
7.5	Derivación Pallasca	173
7.6	Resúmen de Presupuestos	177
7.7	Fórmulas Polinómicas de reajuste	183
	CONCLUSIONES	
	BIBLIOGRAFIA	
	ANEXOS	
	PIANOS	

INTRODUCCION

Dentro del Plan de Electrificación Provincial, Distrital y Rural, Electroperú S.A., se encuentra empeñado en la expansión del radio de acción de sus Centrales Hidroeléctricas con el objeto de servir a la Mayoría de la Población.

Para el período 1983-1985 por intermedio de la zonal de Huaraz, ha previsto realizar el estudio de la electrificación de las zonas de Santiago de Chuco, Pallasca y Cabana a fin de satisfacer la demanda hasta el año 2006, con energía proveniente de la Central del Cañón del Pato, a través de una línea de transmisión en 66 kV Huallanca - Pallasca.

El presente estudio, es parte del proyecto PSE-2 Pequeño Sistema Eléctrico N°2, Santiago de Chuco - Pallasca - Cabana, el que comprende desde la alimentación en 66 kV desde Huallanca hasta Pallasca, la Subestación de Transformación de 7 M.V.A., Líneas de Cistribución Primaria en 20 kV, materia del presente estudio y por último las redes de distribución a 17 localidades.

Para tal efecto se realizó el estudio de la demanda que nosdeterminan las cargas de diseño de la línea, así com el estu dio técnico-económico para la selección del Nivel de Tensión consta también de la Ingeniería del Proyecto, Especificaciones Tácnicas, Planos, Metrados, Presupuesto a la fecha indicada y sus respectivas fórmulas de reajuste.

1.0 GENERALIDADES

1.1 CONSIDERACIONES GENERALES

1.1.1 <u>Ubicación.-</u> El área de Estudio de la Línea de Subtrans misión 20 kV del PSE N°2, está situada en las provin - cias de Santiago de Chuco y Pallasca en los departamentos de la Libertad y Ancash respectivamente.

En el plano Nº 1001 se muestra la ubicación del área - de influencia del estudio y su ubicación relativa con respecto a los departamentos de Ancash y la Libertad.

La localidades que se beneficiarán con este proyecto son: Pu yallí, Pallasca, Pampas, Chora, Lacabamba, Conchucos, Tilaco Cochaconchucos.

Las cargas más importantes a suministrar energía eléctricason las minas cuya ubicación se muestran en el Plano referi do.

1.1.2 Geografía. - La zono del Estudio comprende el área ru - ral y urbana localizadas en las provincias de Santiago de Chuco y Pallasca.

La topografía del terreno es bastante accidentada, propia de nuestra serranía, con presencia de quebradas profundas, desniveles pronunciados y geología inestable. Por tal motivo - el trazo de la línea se ha planteado por las zonas que pre - sentarían menores problemas de montaje y mantenimiento.

- 1.1.3 Altitud. La altitud de la zona como ya hemos dicho presenta muchos desniveles y quebradas profundas lo que varía entre 2000 y 4500 m.s.n.m.
- 1.1.4 <u>Características Climáticas</u> Las condiciones climatoló gicas son típicas de zonas altas presentado las siguien tes características:

Temperatura Ambiente : Máxima 27° C
Mínima 0° C
Media anual 12° C

Humedad relativa promedio :

Contaminación ambiental : No hay

Presión del viento : 23.63 kg/m2

Altitud promedio : 3000 m.s.n.m.

Precipitación : 1000 mm

Nivel Isoceraúnico : No se han registra presencia

de rayos con frecuencia por lo que se considera igual a

cero.

1.1.5 <u>Vías de Acceso.-</u> La zona donde se ubica el estudio tie ne acceso por las siguientes carreteras afirmadas:

Chimbote - Chuquicará - Quiroz - Cabana - Pallasca Trujillo - Otuzco - Stgo. de Chuco.

Las vías de acceso se pueden observar en el plano. Nº 1002

1.2 DESCRIPCION DEL PROYECTO

Las líneas de subtransmisión a 20 kV del PSE N°2 serán alimentas desde el patio de llaves de la Subestación de Pallasca - 66/20 kV, lugar donde llega la línea de transmisión 66 kV proveniente de la Central Hidroeléctrica Cañón del Pato.

1.3 LOCALIZACION DE LAS INSTALACIONES

- 1.3.1 Patio de Llaves 20 kV.- En el plano Nº 1003 se observa la ubicación del Patio de Llaves de 20 kV dentro de la Subestación 66/20 kV la misma que está situada en la ciudad de Pallasca, cuyas coordenadas geográficas son:
 - ° Latitud Sur 8° 15'
 - Latitud Oeste 78 03'
- 1.3.2 <u>Líneas de</u> 20 kV.- El recorrido de las líneas se mues tra en el Plano Nº 1004 y consta de una longi tud total aproximada de kilómetros.

El sistema empieza en la Subestación Pallasca con la salidade tres troncales y seis ramales que se derivan de éstas.

1.4 NIVEL DE TENSION

El nivel de tensión para las líneas de subtransmisión adopta do es el de 20 kV, en virtud a lo dispuesto por el Ministe rio de Energía y Minas para la utilización de este nivel de tensión en distribución primaria y los cálculos realizados que demuestran ser la tensión óptima para el PSE-2.

Otros de los aspectos que se tuvieron en cuenta para las localidades que tienen suministro eléctrico, es que aprovechan do al máximo sus instalaciones existentes se mejoraba el ser vicio con el nivel de tensión adoptado.

1.5 NIVEL DE AISLAMIENTO

Los niveles de aislamiento que tendrán los equipos serán los siguientes:

Tensión nominal : 20 kV

Máxima tensión de Servicio ; 24 kV

Máxima sobretensión a la frecuencia industrial durante 1

minuto : 50 kV efect.

Tensión de impulso a onda com

pleta, (1.2/50 us) : 125 kV pico

1.6 NIVEL DE CORTOCIRCUITO

Para los niveles de cortocircuito se tuvo en cuenta los nive les normalizados y, después de haber hecho un análisis del mismo, se adoptó que los equipos deberán estar aptos para so portar la potencia de cortocircuito del sistema.

1.7 SELECCION DE RUTA

La topografía del terreno es bastante accidentada con grandes desniveles y quebradas profundas, por lo que se ha trata do que los troncales efectúen el menor número de ángulos posibles, con la finalidad de tener una longitud mínima de líneas y, que las estructuras diseñadas permiten superar grandes vanos. Se han elegido para el recorrido de los ramales, zonas que permitan desarrollar vanos cortos en la medida de lo posible y zonas que ofrezcan mayor seguridad a las instalaciones y personas. También se han tenido en cuenta la utilización de las carreteras afirmadas y de los caminos de herradura para mayor facilidad de transporte y montaje.

El paso de las líneas por las localidades a electrificar se hará por lugares apropiados para evitar atravesarlas, tenien do especial cuidado con las localidades que cuentan con servicio eléctrico - indicadas en el acápite 3.5 más príximo.

1.8 <u>DESCRIPCION DE LAS RUTAS ELEGIDAS</u>

En el plano Nº 1004 se indica el recorrido de las tron cales y ramales de las Líneas de Subtransmisión 20 kV, las mismas que se describen a continuación:

1.8.1 Troncal Pallasca - Lacabamba - Pampas. - Esta línea es de doble terna y tiene que realizar un recorrido por zonas completamente accidentadas, por lo que se decidió efectuar lo más recta posible a sacrificio de grandes vanos y di seño de estructuras especiales.

Parte de la S.E. de Pallasca de los circuitos Nos. 3 y 4 para dirigirse en dirección Nor-Este aprovechando la existen - cia de caminos de herradura hasta llegar a la estructura N° 24 donde cambia de dirección para dirigirse a Lacabamba, pasando por la parte alta de Chora, localidad que será alimentada y seccionada desde la estructura N° 34. La estructura - N° 45 nos sirve para alimentar y seccionar a Lacabamba. Luego, continuando por terrenos eriazos se llega hasta la estructura N° 47 donde se realiza la derivación a Conchucos. Para poder realizar la operación anterior, la línea se separan dos ternas independientes, tal como se indica en el tipode estructura PD65.

Efectuando un pequeño cambio de dirección, enrumbamos hacia Cochaconchucos, atravesando el río Conchucos con las estructuras N°54 y 55, teniendo esta última estructura un diseño - especial por el cambio de dirección que experimenta la línea en este punto. La estructura Nº00 sirve para alimentar y seccionar a Cochaconchuces.

La línea continúa su recorrido por terrenos agrícolas sin realizar cambios de dirección, pasando cerca por la locali - dad de Tilaco, la misma que será alimentada y seccionada des de la estrucutra Nº65. Se sigue en la misma dirección pasan do por terrenos eriazos hasta llegar a la estructura Nº78 donde termina la línea. Esta estructura tiene un diseño escial porque sirve para derivar la línea hacia Pampas y, además, en el futura servirá para alimentar a las minas de la zona.

- 1.8.2 Ramal Pampas Puyalli. Esta línea es de simple terna en estructuras de madera y se deriva de la estructura Nº 78 terminal de la doble terna, Troncal Pallasca Lacabamba-Pampas, que sirvi a su vez para hacer la derivación a las minas. Se inicia en la estructura Nº 1 que nos servirá para alimentar y seccionar a Pampas y Puyalli. La línea continúacruzando zonas de cultivo, quebradas y terrenos eriazos hasta la estructura Nº 10 donde se realizará la derivación a Pampas, se avanza hasta la estructura Nº 12 donde cambia de diracción para dirigirse a Puyalli, lo que se logra con un quie bre simple en la estructura Nº 22, para llegar a la estructura Nº 31 donde termina la línea.
- 1.8.3 Ramal Lacabamba Conchucos. Esta línea es de simpleterna en estructuras de madera y se deriva en la estruc ra Nº47 de doble terna, Troncal Pallasca - Lacabamba - Pam pas.

La estructura Nº1 se ubica muy cerca a la derivación por lo accidentado del terreno y nos servirá para alimentar y seccionar a Conchucos. Continúa su recorrido en la misma dirección hasta la estructura Nº4, donde cambia de dirección y atraviesa terrenos eriazados, para continuar su recorrido.

Se llega a Conchucos efectuando un cambio de dirección en la estructura N^{o} 18 y cruzando zonas de culti o, terrenos ería - zos, quebradas, etc., para lo cual se avanza en grandes va - nos que no se pueden evitar. La línea termina en la estructura N^{o} 29.

En este ramal se usa estructuras especiales por la topografía accidentada que presenta el recorrido de la línea.

- 1.8.4 Ramal a Chora. Esta línea es de simple terna en es tructuras de maderas y se deriva en la estructura N°34 de la doble terna Troncal Pallasca Lacabamba Pampas. La estructura anterior sirve para limentar y seccionar a Chora. Se continúa en la misma dirección y se llega a la localidadmencionada, cruzando terrenos eriazos y zonas agrícolas con la estructura N°5, donde termina este ramal.
- 1.8.5 Derivación a Pallasca. La derivación a Pallasca se realizará en la primera estructura de la terna en 35 mm2 de la línea de subtransmisión en 20 kV que parte de la Salida Nº1. En esta estructura se efectuará la alimentación y seccionamiento a esta localidad, que tendrá un diseño especial para cumplir la función indicada.

2.1 CONSIDERACIONES GENERALES

Para la estimación de la demanda de pequeñas localidades se ha utilizado la metodología descrita en el informe del Estudio de Mercado Eléctrico preparado por MONENCO, para el Ministerio de Energía y Minas. Esta metodología ha sido modificada por la Gerencia de Coordinación Empresarial y de Electrificación Provincial, Distrital y Rural de Electroperú S.A, para introducir algunos cambios, fruto de la experiencia de su aplicación.

Está metodología se basa principalmente en la proyección de la población y en la determinación de los índices de incre ~ mento de población y de habitantes por vivienda para luego ~ proyectarse en base al índice.

Estudios estadísticos han permitido establecer unos consumos típicos por usuario y para cada una de las localidades, la demanda se calcula asumiendo un coeficiente de electrifica - ción a lo largo del período de estudios; para lo cual se han utilizado los datos de los últimos censos así como comparacio nes con otras poblaciones similares para las que si cuentancen información.

2.1.1 Localidades Consideradas. En el presente estudio de estimación de la demanda eléctrica, se ha tomado comoreferencia la población y su proyección, las poblaciones se han clasificado en:

Α

LOCALTDAD TEPO	HABITANTES URBANOS AL AÑO 15				
Α	más de 3000				
В	de 1000 a 3000				
С	menos de 1000				

A continuación se detallan las localidades consideradas:

LOCALIDAD	CATEGORI
Pallasca	В
Conchucos	В
Pampas	Α
Puyallí	С
Lacabamba	С
Chora	С
Tilaco	С
Cochaconchucos	С

2.1.2 Pronóstico de la Poblacion.- Tomando como base la información de los censos de los años 1972 y 1981, se han determinado las tasas de crecimiento poblacional medio a nual, con las que se ha efectuado el pronóstico del crecimiento poblacional, que se muestra en el cuadro 2.1.2.1

CUADRO 2.1.2.1

PROYECTO DE LA POBLACION

AND	1986	1988	1990	1994	1998	2002	2006	
LOACALIDAD								
PAMPAS	4179	4348	4524	4896	5300	5737	6210	2.
PUYALL3	504	514	524	346	568	591	615	1.1
CONCHUCOS	2503	2553	2604	2710	2820	2934	3053	1:1
LACABAMBA	376	384	391	407	424	441	459	
TILACO	295	301	307	319	332	346	360	
COCHACONCHUCOS	176	180	163	191	199	207	216	
CHDRA	331	337	344	358	373	388	404	
PALLASCA	1457	1486	1516	1578	1642	1708	1777	13
POBLACION TOTAL DE LA INTEGRACION	9821	10103	10393	11005	11659	12352	13095	

2.1.3 Pronóstico de de la Máxima Demanda Potencial. La máxima demanda de Potencial de cada localidad resultará de relacionar los respectivos consumos brutos totales de Energía con las horas de utilización de la máxima demanda.

La horas Utilización de la Máxima Demanda tendrán un rango - de variación, y como simplificación al problema, en el período de proyección se supone que las horas varían inicialmente hacia el fin del período.

2.1.4 <u>Resultados.-</u> En los cuadros 2.1.4.1 se indican los resultados de la aplicación de la metodología para las poblaciones.

2.2 INSTALACIONES EXISTENTES

En la actualidad varias de las localidades comprendidas en el estudio cuentan con energía eléctrica producida por generación térmica o hidráulica pero en forma restringida y deficiente ya sea por falta de agua, baja de potencia instaladade la central o mal estado de los grupos electrógenos.

En el cuadro N° 2.2.1 se muestra un resúmen de las localidades que cuentan con servicios eléctricos.

En tal sentido se ha efectuado un análisis exahustivo con la finalidad de aprovechar al máximo dichas instalaciones especialmente en lo que respecta a la línea de subtransmisión en estudio.

Este aspecto ha influído en una adecuada selección de ruta - de la línea y la ubicación de las estructuras de derivaciónpara la distribución primaria de cada localidad.

CUADRO 2.1.4.1

MAXIMA DENANDA DE LA INTEGRACION (KW)

ANO	1986	1986	1990	1994	1998	2002	2006
LOACALIDAD							
PAMPAS	186	211	237	301	359	405	464
PUYALLI	0	0	38	44	47	51	52
CONCHUCOS	162	170	181	201	217	235	251
LACABANBA	0	36	38	4 2	47	50	53
TILACD	0	0	18	21	24	25	26
COCHACONCHUCOS	0	0	17	20	22	23	24
CHURA	0	21	22	26	30	33	36
PALLASCA	118	123	127	138	149	158	166
MINAS	2300	3050	3800	3900	4000	4100	4200
MAXIMA DEMANDA							
TOTAL DIVERSIFICADA	2766	3611	4478	4693	4895	5080	5272

C U A D R O Nº2.2.1.

LOCALIDADES QUE CUENTAN CON SERVICTO

TIPO DE GENERACION ESTADO

Pallasca Térmica Restringido Conchucos Hidráulica Restringido

Uno de los aspectos más résaltantes y que influyen en la fac tibilidad del presente estudio es la zona, la cual es muy ac cidentada y propensa a los fenómenos de la naturaleza tales como lluvias y huaicos, lo que provoca la clausura de las vías de acceso a las ciudades desde la costa y la comunica - ción entre ellas.

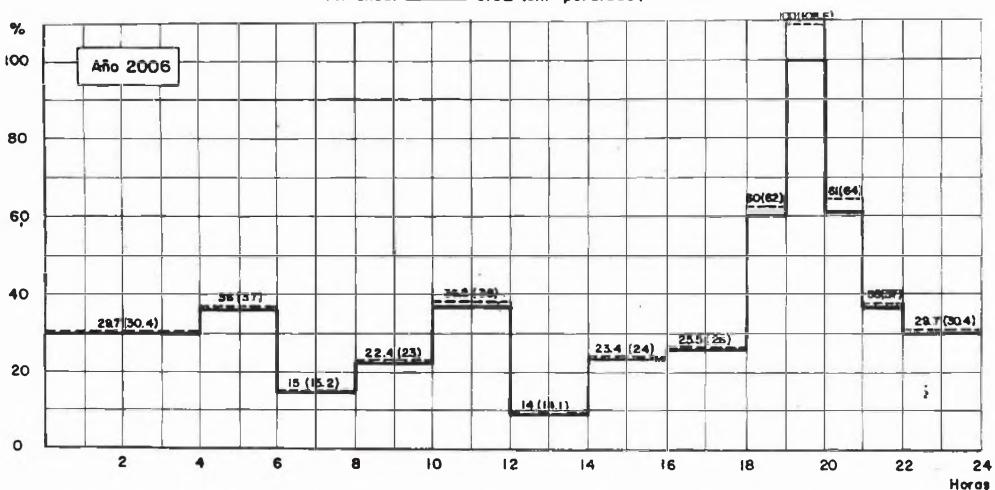

Este factor es preponderante pues se ha palpado la no disponibilidad de combustible para las centrales térmicas actua les y futuras posibles.

DIAGRAMA DE CARGA PROMEDIO ANUAL DEL CONJUNTO DE LOCALIDADES (Sin Las Minas)

M.D. _____ 1076 Kw.

fc. anual____ 0.31 (con perdidas)

fc. anual _____ 0.32 (sin perdidas)

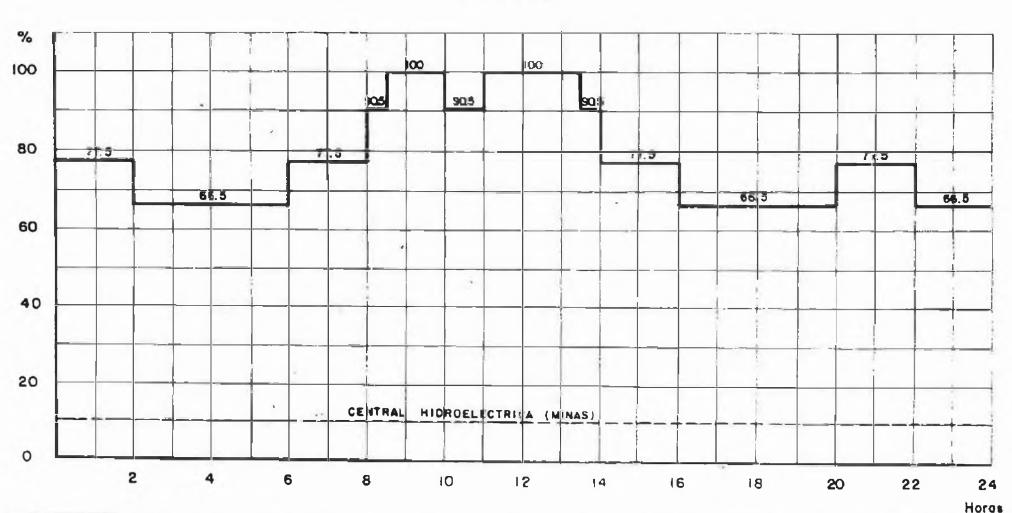
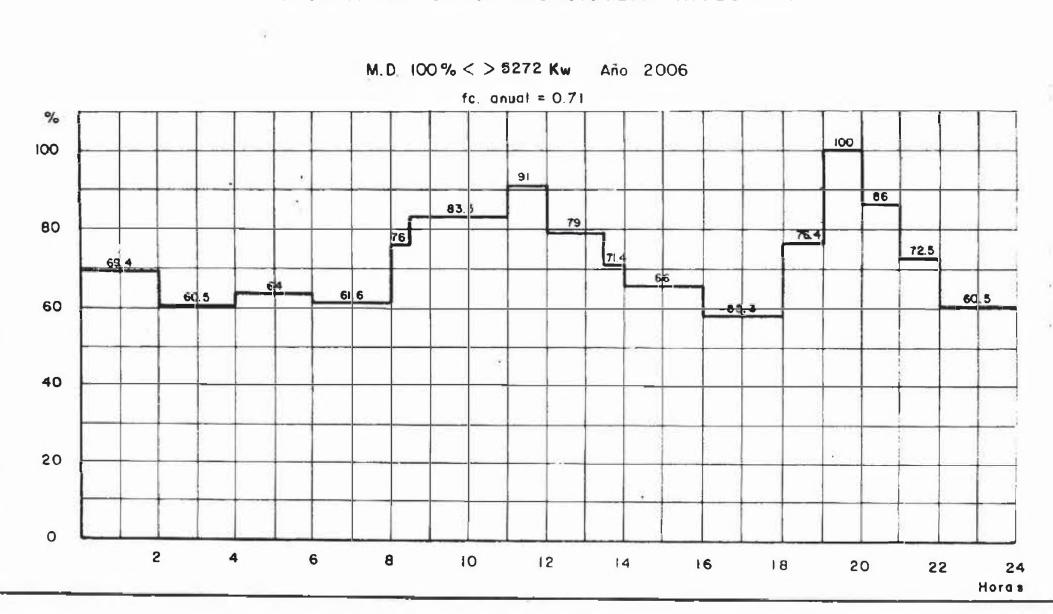


GRAFICO Nº 2.4.1.2


DIAGRAMA DE CARGA DE LAS MINAS

M.D.: 100% 4200 Kw Año 2006

fc. anual = 0.78

DIAGRAMA DE CARGA DEL SISTEMA INTEGRADO

3.0 SELECCION DEL NIVEL DE TENSION

2.1 CRITERIOS TECNICOS DE SELECCION DEL NIVEL DE TENSION DE DISTRIBUCION PRIMARIA

Se determina el nivel de tensión de acuerdo a su tipo de carga y densidad.

3.1.1 Selección de la Tensión de Distribución Primaria Aérrea. - Esta tensión es la comprendida entre la tensión de transmisión, subestación de transformación y la tensión-de distribución secundaria.

El sistema de distribución primaria comprende la red de distribución primaria y las subestaciones de distribución se - cundaria.

Los niveles de tensión que se han venido desarrollando con un criterio de normalización son los de 10 kV, y en menor - proporción los de 13.2 kV, existiendo además de estos los - de 5, 5.2, 6.6, 11, 11.5, 15 y 25 kV.

El nivel de tensión primaria es uno de los parámetros que mayor influencia tienen en el diseño, costo de operación e instalación del sistema. Además tiene un efecto directo en la longitud y carga de la red primaria, número y capacidadde subestaciones de subtransmisión y la cantidad de líneasde subtransmisión.

Las redes primarias están limitadas por la longitud y carga principalmente por la caída de tensión que por las limita - ción térmicas.

3.1.2 <u>Por Caída de Tensión.~</u> Disminución del calibre del conductor.

Sea: % V = Caída de tensión admisible en %

P = Potencia a transmitirse

V = Tensión en fase

 $z = Impedancia de la línea en <math>\Omega$ /km

L = Longitud de la línea

I = Corriente que circula por la línea

En caso de no requerirse un incremento de la potencia ni de la longitud del circuito, el incremento de la tensión tiene efecto directo en la disminución del calibre y/o la instala ción de líneas monofásicas en lugar de líneas trifásicas do de sea posible de acuerdo a lo siguiente:

$$\% \quad V = \frac{I Z}{V} = \frac{I L z}{V} \qquad ... (1)$$

$$P = V.I. \cos \emptyset \quad I = \frac{P}{V.\cos \emptyset} \quad ... (2)$$

(2) en (1)

$$\% \quad V = \frac{P.L.z}{v^2 Cos \emptyset}$$
 $\% \quad V_1 = \% \quad AV_2$

$$\frac{P_1 \cdot L_1 \cdot z_1}{v_1 Cos \emptyset_2} = \frac{P_2 \cdot L_2 \cdot z_2}{v_2 Cos \emptyset_2}$$

$$P_1 = P_2, L_1 = L_2, Cos \emptyset_1 = Cos \emptyset_2$$

$$\vdots \quad z_2 = (\frac{v_2}{v_1}) z_1, \ldots, z_2 = (z_1)$$

$$v_2 = 22.9 \text{ kV} \qquad v_1 = 10 \text{ kV}$$

Esto muestra que la impedancia puede aumentarse en " λ " ve ces aproximadamente disminuyendo su sección.

3.1.3 <u>Incremento de la Potencia de Transmisión.</u> Suponiendo una línea de "x" km. de longitud, con la misma impedancia, mismo conductor, el incremento de la potencia es el siguiente:

Sea:

$$L_1 = L_2$$
, $z_1 = z_2$
 $P_2 = (\frac{V_2}{V_1})^2 P_1$
 $V_2 = 22.9 \text{ kV}$ $V_1 = 10 \text{ kV}$
 $P_2 = 5.42 P_1$

En la misma forma que el acápite anterior, el incremento de la potencia será aproximadamente de " " veces.

3.1.4 <u>Incremento de la Longitud de la Línea</u>. Una carga con centrada se puede alimentar desde una distancia ma - yor con el incremento de Tensión.

Sea:

$$P_2 = P_1$$
 $z_2 = z_1$
 $L_2 = (\frac{V_2}{V_1})^2 L_1$
 $L_2 = 5.24 L_1$

Lo que equivale decir que con 10 kV podemos llegar a 10 km, en regiones donde se desea integrar localidades con una baja tensión de carga, con 22.9 kV se podrá llegar en casos extremos hasta 50 km aproximadamente.

3.1.5 <u>Incremento de la Longitud de la Línea, para una Distribución Lineal de la Carga.</u> En este caso el incre to de la longitud de la línea por la elevación de tensión , produce la conexión de nuevas cargas.

Para el mismo conductor en la línea se tiene que:

Sea:

$$z_2 = z_1$$
 , $P_2 = kP_1$, $L_2 = kL_1$

De donde se obtiene que:

$$k^{2} = \frac{V_{2}}{V_{1}}^{2}$$
 de donde $k = \frac{V_{2}}{V_{1}}$
 $P_{2} = k P_{1}$ $L_{2} = k L_{1}$
 $V_{2} = 22.9 kV$ $V_{1} = 10 kV$
 $P_{2} = 2.29 P_{1}$ y $L_{2} = 2.29 L_{1}$

3.1.6 <u>Incremento de la Longitud de la Línea, para una Distribución Superficial de la Carga</u>.- En ciudades, el incremento de la línea primaria a través de un área, implica el incremento de ramales y subramales de la línea troncal

Considerando que se mantiene el conductor de la línea parauna densidad de carga constante, la carga se incrementa con un factor cuadrático, con respecto al factor con que se incrementa la longitud de la línea.

$$z_2 = z_1$$
, $P_2 = k P_1$, $L_2 = \frac{1}{2} L_1$, $L_2 = k L_1$

Donde:

$$k^3 = (\frac{v_2}{v_1})^2 \qquad k = (\frac{v_2}{v_1})^{2/3}$$

$$P_2 = (\frac{V_1}{V_2})^{4/3}$$
 $P_1, L_2 = (\frac{V_2}{V_1})^{4/3}$ L_1 $P_2 = 2.29 P_1, L_2 = 2.29 L_1$

La longitud de la línea se podrá incrementar en 1.73 veces, y por lo tanto el radio de la subestación.

3.1.7 Mejora de la Caída de Tensión. Donde por razones de sección mínima no se puede disminuir el calibre del conductor y por el tipo de carga no se puede dar una alimentación monofásica, el incremento de la tensión, mejora la caída de tensión de la línea.

$$\mathbf{z}_{2} = \mathbf{z}_{1}$$
, $\mathbf{L}_{2} = \mathbf{L}_{1}$, $\mathbf{P}_{2} = \mathbf{P}_{1}$

$$\frac{\mathcal{Z} \quad \mathbf{AV}_{2}}{\mathcal{Z} \quad \mathbf{AV}_{1}} = \frac{\frac{\mathbf{P}_{2} \cdot \mathbf{L}_{2} \cdot \mathbf{z}_{2}}{\mathbf{V}_{2}^{2} \cdot \mathbf{Cos} \, \emptyset}}{\frac{\mathbf{P}_{1} \cdot \mathbf{L}_{1} \cdot \mathbf{z}_{1}}{\mathbf{V}_{1}^{2} \cdot \mathbf{Cos} \, \emptyset}} = (\frac{\mathbf{V}_{1}}{\mathbf{V}_{2}})^{2}$$

$$\mathbf{V}_{2} = 22.9 \, \text{kV} \qquad \mathbf{V}_{1} = 10 \, \text{kV}$$

% AV₂ = 0.19 (%AV₁), la caída de tensión porcentual para 22.9 kV es del orden del 19% de la caída de tensión porcentual para 10 kV.

3.2 POR CAPACIDAD TERMICA

En áreas de alta densidad de carga, las líneas se diseñan por la capacidad térmica de los conductores o cables, los cuales pueden transportar la corriente máxima permisible.

3.2.1 <u>Disminución del Calibre del Conductor.</u> En una línea cargada térmicamente que tenga una tensión más eleva da, manteniendo la misma potencia de transmisión, se obtic-

ne una disminución de la corriente y por lo tanto una dismi nución del calibre del conductor.

$$P_{2} = P_{1}$$

$$P = V_{2}I_{2} = V_{1}I_{1}$$

$$I_{2} = (\frac{V_{1}}{V_{2}}) I_{1}$$

Luego:

$$V_1 = 10 \text{ kV}$$
 $V_2 = 22.9 \text{ kV}$

De donde:

$$I_2 = 0.44 I_1$$

3.2.2 <u>Incremento de la Potencia de Transmisión.</u> Para una línea que mantenga el mismo conductor, la elevaciónde la tensión implica un incremento de la potencia de transmisión.

$$I_2 = I_1$$

$$\frac{P_2}{P_1} = \frac{V_2 I_2}{V_1 I_1}$$

$$P_2 = \frac{V_2}{V_1} P_1$$

$$V_2 = 22.9 \text{ kV} \qquad V_1 = 10 \text{ kV}$$

$$P_2 = 2.29 P_1$$

Tabla con compendio de los casos que se presentan con la elevación de tensión como en la capacidad térmica.

	Por Gaida de	tensión		
Características de la línea y de la Resultadás cargo		Reloción paro V2 = 22.9 kV V1 = 10 kV	Observaciones	
P2 = P1 . L2 = L1 %	$Z_2 = \left(\frac{V_2}{V_1}\right)^2 Z_1$	$Z_2 = 5.24 Z_1$	Disminución de calibre del condu tor	
Z2 = Z1 L2 = L1 % 4 V 2 = % 4 V 1	$P_2 = (\frac{V_2}{V_1})^2 P_1$	P2 = 5.24 P1	potencia de tron misión	
Z2 = Z1 P2 = P1	$t_2 = (\frac{V_2}{V_1})^2 t_1$	L2 - 5.24 L1	Incremento de la longitud de la l	
Z2 = Z1	P2 = (\frac{\fin}}}}{\fint}}}}}}}{\frac}}}}}}{\frac{\f	P2 - 2.29 P1	Incremento de la	
6∆ v 2 = 96∆v 1		t2 = 2.29 tı	nea donde la cara està distribuido I nealmente	
Z ₂ = Z ₁	$P_2 = (\frac{V_2}{V_1})^{4/3} P_1$	P2 = 3 P1	incremento de la	
	$L_2 = (\frac{V_2}{V_1})^{2/3} L_1$	եշ = 1.73 ել		
Z ₂ = Z ₁ L ₂ = L ₁ P ₂ = P ₁	% ^{ΔV} 2=(V1) ² % ^{ΔV} 1	% 4 × 2 = 0.19 % 4 × 1	Mejora de la caf da de tensión	
	Por capacidad	térmica		
P2 = P1	$l_2 = \frac{V_1}{V_2}$	l ₂ = 0.44 h	Disminución del ca libre del conductor	
t2 = h	$P2 = \begin{pmatrix} V_2 \\ (\nabla_1) \end{pmatrix} P_1$	P ₂ = 2.29 P ₁	incremento de la potencia de trans	

1

3.3 <u>POR LA DISMINUCION DE LA LONGITUD DE LINEAS Y EL NUMERO</u> DE <u>SUBESTACIONES</u> DE SUBTRANSMISION

Con el incremento de la longirud de las líneas de distribución primaria como consecuencia de la elevación del nivel de tensión de 10 kV a 22.9 kV, el radio de acción se elevade 10 km a 15 km y de 30 km a 50 km aproximadamente lo que influye directamente en la disminución del número de subestaciones de subtransmisión y a potencia nominales más económicas en S/./kW; de los estudios de electrificación integral efectuados en diferentes regiones del País, se obtiene que la elevación del número de subestaciones varía de $\frac{1}{2}$ a 1/3 obteniéndose un ahorro considerable para este rubro.

3.4 POR PERDIDAS DE POTENCIA

Las pérdidas de potencia porcentuales de una línea están di rectamente relacionadas con la caída de tensión porcentual-y la impedancia de la línea, por lo que la elevación de tensión ha de influir.

Sea:

% p = Pérdida de potencia porcnetual
r = Resistencia unitaria del conductor

$$% p = \frac{I^2.L.r}{V.I.\cos \emptyset} = \frac{I.L.r}{V.\cos \emptyset} = \frac{I.L.z}{V.\cos \emptyset} = \frac{r}{V.\cos \emptyset} = \frac{r}{v}$$

$$% p = \frac{\mathbf{r}}{z} % \mathbf{v}.$$

3.4.1 <u>Incremento de las Pérdidas de Potencia Porcentual</u>. Para una misma caída de tensión, porcentual la impedancia del conductor, sólo varía en esto:

Sí :

$$% p = \frac{r}{z}$$
 $% v$

$$\frac{\overset{\mathbf{r}_{2}}{\text{\% P}_{2}}}{\overset{\mathbf{r}_{2}}{\text{\% P}_{1}}} = \frac{\overset{\mathbf{r}_{2}}{\mathbf{z}_{2}}}{\overset{\mathbf{r}_{1}}{\mathbf{z}_{1}}} \overset{\mathbf{v}_{1}}{\text{\% P}_{1}}$$

$$\overset{\text{\% P}_{2}}{\text{\% P}_{2}} = \frac{\overset{\mathbf{r}_{2}}{\mathbf{z}_{1}}}{\overset{\mathbf{r}_{1}}{\mathbf{r}_{1}} \overset{\mathbf{z}_{2}}{\mathbf{z}_{2}}} \overset{\text{\% P}_{1}}{\text{\% P}_{1}}$$

La elevación de la tensión puede conducir a la disminución del calibre del conductor y por consecuencia aumentar su im pedencia y resistencia.

A menor calibre la resistencia se incrementa más rápido que la impedancia, por lo que se puede concluir que las pérdidas de potencia porcentual van a ser algo mayores en el caso de que se eleve la tensión.

3.4.2 Disminución de las Pérdidas de Potencia Porcentual.Si las características de la línea y la carga no se
varían, las pérdidas de potencia porcnetual disminuyen en
forma cuadrática con la elevación de tensión.

Del acápite anterior podemos decir:

$$^{\%} P_{2} = (\frac{\% V_{2}}{\% V_{1}}) \% P_{1}$$

con lo que deducimos:

3.5 POR INCREMENTO DE LA CAPACIDAD DE TRANSPORTE EN CONDUCTORES DE MENOR CALIBRE

De la tabla que se muestra a continuación se deduce que la densidad de corriente, en conductores y cables, se va ele - vando a medida que disminuye su sección.

DENSIDAD	DE CORRIE	NTE CON	LIMITE	TERMICO
SECCION NOMINAL	COBR A/mm2	E %	ALUM A/mm2	MINIO %
10	10.1	100	-	-
16	8.56	85	6.37	100
25	7.46	74	5.52	87
35	6.60	65	4.86	76
50	5.84	58	4.32	68
70	5.16	51	3.83	60
95	4.69	46	3.48	55
120	4.37	43	3.24	51
150	3.97	39	2.95	46
185	3.65	36	2.79	44
240			2.53	40

3.6 ANALISIS ECONOMICO

3.6 EVALUACION DE COSTOS PROMEDIO DE REDES DE DISTRIBUCION PRI-

3.6.1 <u>Conductores.-</u> Se han analizado los costos de conductores y cables de aluminio desnudos que son los que se analizan.

Costos unitarios de conductores desnudos de Aleación de Al \underline{u} minio para Redes Aéreas.

	COSTO DI	E CONDU	CTOR		
CALIBRE DEL CONDUCTOR	16	25	355	70	95
MATERIAL SZm	1394	2580	3650	3500	4746
INSTAL. S/m	255	296	294	385	450
TRANSP. S/m	13	20	28	56	76
D.f.+ 6.6.	183	319	370	434	580
COSTO TOTAL	1845	3215	3732	4375	5852
	1.00	1.74	2,02	2.37	3.17
		1,00	1.16	1.36	1.82
			1.00	1.17	1.57
				1.00	1.34

3.6.2 Postes.- En redes primarias de distribución cs común el uso de postes de concreto de 12 m. de largo y 200 kg de esfuerzo en la punta para alineamiento y de 300 kg para cambios de dirección.

Postes de fierro tubular de 12 m de largo y de 200 kg de es fuerzo en la punta para alineamiento y de 300 kg para postes en cambio de dirección.

De igual modo con los postes de madera tratada de 12 m de largo Clase 7, Grupo D.

Para la determinación de los costos se ha asumido el promedio de los costos, en cuenta la ventaja de tener conducto - res de menor calibre.

3.6.3 Aisladores.— Los aisladores tipo PIN para 22.9 kV utilizados son los correspondientes a ANSI Clase 23 kV que se puedan utilizar para altitudes mayores a los 1000 msnm, para 10 kV son ANSI Clase 15 kV.

	PRECIO FOB	CIF	INCIDENCIA
15 kV	12,910	14,905	100
23 kV	15,466	17,900	120

Donde vemos que el incremento del costo es del orden del 20% con respecto del de 15 kV.

Para el caso del aislador tipo Casquillo - Bola que se usan en postes terminales o en ángulos, son los mismos para 10kV que para 22.9 KV, ya que el aislamiento de 2 aisladores ANSI 52-5 utilizados para kV, es suficiente para 22.9 kV hasta - los 4000 msnm.

3.6.4 Costo Promedio de un km de Línea de 1 kV.- Tomandoen consideración lo indicado anteriormente para con ductores, postes y aisladores; se ha determinado el costopromedio en S//km de una línea primaria trifásica, con un va no promedio de 250 m.

COSTO PROMEDIO DE UN KILOMETRO DE RED DE DISTRIBUCION PRIMARIA A 10 kV

DESCRIPCION	UNIDAD	CANT.	P. UNIT.	P. TOTAL
POSTE DE FIERRO TUBULAR 12 m 300 KG	F'za	3	300.000	900,000
PUSIE DE FIERRO TUBULAR 12 m 500 KG	Fza	2	350,000	700,000
CRUCETA	Pza	4	23,000	92,000
CONDUCTOR DE AL-AL 95 mm2	m	3,000	4.746	14,238,000
AISLADOR TIPO PIN 15 KV C/ACCESORIOS	Jao	9	43,500	391,500
AISLADOR CASQUILLO BOLA C/ACCESORIOS	Jqo	6	,168,400	1,010,400
CONDUCTOR TW 10 AWG FARA AMARRE	m	9	900	8,100
RETENIDA CZACCESCRIOS	Jac	2	174,650	349,300
CQT-QUT 15 kV . 100 A	Pza	3	280,000	840,000
CRUCETA PARA SECCIONADOR	Pza		23,000	23,000
SUMINISTRO DE MATERIALES				18,552,300
MAND DE OBRA				1,484,184
FRANSPORTE				371,046
DIRECCION TECNICA Y GASTOS GENERALES				2,040,753
		TOTAL S	3/.	22,448,283

COSTO PROMEDIO DE UN KILOMETRO DE RED DE DISTRIBUCION PRIMARIA A 22.9 kV

DESCRIPCION	UNIDAD	CANT.	P. UNIT.	P. TOTAL
POSTE DE FIERRO TUBULAR 12 m 200 KG	fza	3	265,000	795,000
POSTE DE FIERRO TUBULAR 12 m 300 KG	Pza	2	300,000	600,000
CRUCETA	Pza	4	23,000	92,000
CONDUCTOR DE AL-AL 25 mm2	m	3,000	2,580	7,740,000
AISLADOR TIPO PIN 15 kV C/ACCESORIOS	Jgo	9	43,500	391,500
Alstador Casobillo Bola C/ACCESORIOS	Jao	6	168.400	1,010,400
CONDUCTOR TW 10 AWG PARA AMARRE	m	9	900	8,100
RETENIDA C/ACCESORIOS	Jac	2	174,650	349,300
CUT-OUT 15 kV . 100 A	Fza	3	280,000	840,000
CRUCETA PARA SECCIONADOR	Pza	1	23,000	23.000
SISTEMA DE PUESTA A TIERRA	Jac	3	127,500	382,500
SUMINISTRO DE MATERIALES				12,231,800
MANO DE OBRA				978,544
TRANSPORTE				244,636
DIRECCION TECNICA Y GASTOS GENERALES				1.345.498
		TOTAL S	1.	14,800,478

4.0 MATERIALES UTILIZADOS

4.1.1 Estructuras: En las troncales se usarán postes de fierro tubular de 11 y 12 m debido a la topo grafía del terreno que es bastante accidentado, lo que obliga a tener diseños especiales para avanzar en grandes vanos. Lo anterior se consigue con postes de fierro. En los ramales se usarán postes de madera de 11 m dado las característica rural de las localidades del proyecto.

Las crucetas serán de fierro angular y de madera tratada según el caso.

4.1.2 <u>Conductor</u>: En base a los análisis técnicos y económicos y teniendo en cuenta las normas vigentes, se selecciona conductor de aleación de aluminio como material idóneo para las instalaciones proyectadas.

Los calibres que se usaran son los siguientes :

- Troncal Pallasca-Lacabamba-Pampas : 95 mm²
 Ramales : 25 mm²
- 4.1.3 Aisladores: Se usarán aisladores de porcelana vidriada tipo pin en las estructuras de alineamiento y ángulos de cambio de dirección pequeños. Serán de la clase 56-2 y 56-3.

En las estructuras terminales y de cambio de dirección = con ángulos mayores, se utilizarán cadenas con 2 aisladores de suspensión clase 52-3 y conexión bola- casquillo.

- 4.1.4 <u>Puesta a Tierra</u>: La puesta a tierra de las tructuras de acero y madera serán del tipo contrapeso a lo largo de la línea, la cual irá combinada con un anillo con el fin de distribuir mejor los gradientes de tensión alrededor del poste y se realizarán de acuerdo a los diseños y planos respectivos.
- 4.1.5 <u>Ferretería y Accesorios</u>: Todos los elementos de ferretería, tales como pernos, abrazaderas, tuer cas, arandelas, accesorios de aisladores, etc. serán de acero galvanizado en caliente, con la finalidad de contra rrestar el efecto corrosivo del medio ambiente.

4.2 <u>DENOMINACION</u> DE ESTRUCTURAS

TIPO

La línea estará soportada por diferentes disposiciones constructivas, de acuerdo a la función que desempeñan. Se han considerado las siguientes disposiciones típicas:

° Salidas N° 3 y 4 : Pallasca - Lacabamba - Pampa

FUNCION

Estructuras de fierro - Doble terna

	1011011
SD	Suspensión simple
SD1	Suspensión simple
SDH	Suspensión - Biposte
SDH1	Suspensión - Biposte
ADO	Angulo 0°
ADO1	Angulo 0°
PDI	Estructura inicial
ADHO	Angulo 0° - Biposte
ADH01	Angulo 0° - Biposte
RDH	Anclaje - Biposte
ADH60	Estructura especial - Biposte
PDDS	Derivación y seccionamiento en
	suspensión
PDDA	Derivación y seccionamiento en
	Angulo
PDOS	Estructura especial simple
PD1	Estructura Final

Bamal Pampas - Puyalli

Estructuras de madera - Simple terna

TIPO	FUNCION
MPD	Derivación y seccionamiento
MS	Suspensión simple
MAO	Angulo - 0°
MA 25	Angulo - 25°
MA 60	Angulo - 60°
MR	Retención
MPT	Estructura final

Ramal Lacabamba - Conchucos

Estructuras de madera - Simple terna

TPO	FUNCION
. MP D	Derivación y seccionamiento
MP 3	Estructura especial en 3 postes
MAO	Angulo - 0°
MA60	Angulo - 60°
MS	Suspensión simple
MPT	Estructura final

• Ramal a Chora

Estructura de madera - Simple terna

TIPO	<u>FUNCION</u>
MP I	Estructura inicial
MAO	Angulo - 0°
MPT	Estructura final

° Derivación a Pallasca

TIPO	FUNCION	
MP D	Derivación y seccionamiento en un	
	sale poste	

4.3 CIMENTACION DE LAS ESTRUCTURAS

En el montaje se deberá efectuar pruebas de resistencia me cánica del terreno con el fin de diseñar las fundaciones - de acuerdo a la capacidad portante del terreno. El cálculo de las fundaciones se realiza mediante el método Sulber ger, y éstos dependen de los distintos tipos de suelo por la que recorre la línea de 20 kV obteniéndose 5 tipos de terreno según el informe geológico.

4.4 OPERACION DE LAS LINEAS 20 kV

Estas líneas han sido diseñadas para ejecutarse por eta - pas, las mismas que ELECTROPERU priorizará de acuerdo a sus necesidades.

Por tal motivo, se tiene tres troncales independientes que salen de la S.E. Pallasca y su operación dependerá de la misma.

La operación de los ramales está supeditada a la construcción de las troncales. Para mayor operatividad se han di señado a lo largo de las líneas, postes de derivación y seccionamiento para cada localidad comprendida en el PSE2, de tal forma que se interconecten en la medida que avance la construcción de las troncales y ramales mencionados.

4.5 PROTECCION DE LAS LINEAS

A lo largo de la Linea de Subransmisión, se han diseñado postes de derivación y seccionamiento, los cuales operarán de acuerdo a la coordinación y selectividad de los fu sibles, de tal forma que las troncales se encuentren siem pre protegidas.

5.0 CALCULOS ELECTRICOS

5.1 CALCULO DEL AISLAMIENTO

Para el cálculo del aislamiento se ha adoptado los criterios establecidos en el Código Nacional de Electricidad (C.N.E.) así como las recomendaciones del IEC.

El IEC establece rangos de las más altas tensiones para equipos, las que están divididas del siguiente modo:

RANGO A: superior a 1 kV y menor que 52 kV

RANGO B : desde 52 kV a menos de 300 kV

RANGO C: superior a 300 kV

Los niveles de aislamiento son dados en la tabla siguiente :

	TE	NSION			NIV	/EL
MAS	ELEVADA	PARA	EQUIPOS	BASICO	DE	AISLAMIENTO
	(kV	r.m.s	s.)	()	(V)	.m.s.)

17.5 24.0 125 36.0

La tensión máxima para 20 kV es 24 kV según la norma DGF 009-TD-2/82

De acuerdo al CNE - Tomo IV, la tensión máxima de servicio para efectos de aislamiento, se calculará afectando a la tensión nominal (kV nom) de los siguientes factores de corrección:

- Factor de corrección por temperatura (F_t)

$$F_t = \frac{273 + t}{313}$$

si consideramos temperatura máxima de conductor igual a 50°C tendremos :

$$F_{t} = 1.032$$

- Factor de corrección por altitud (F_h)

$$F_h = 1 + 1.25 (H-1000) \times 10^{-4}$$

Considerando una altura de 3500 msnm, tendremos :

$$F_h = 1.3125$$

Luego la tensión nominal equivalente a dichas condiciones de presión y temperatura será :

$$kV_{n} = F_{h} \times F_{t} \times kV_{nom} = 27.08 kV$$

5.2 <u>SELECCION DE LOS AISLADORES</u>

Para la presente línea de subtransmisión de 20 kV, se requerirá de aisladores tipo Pin como aisladores tipo cas quillo-bola para su uso en anclajes intermedios, ángulos de la línea, inicio y terminal de línea y, además, donde la línea tenga ángulos verticales mayores que 20° positivos y negativos.

Estos aisladores deberán cumplir con ciertas características, tales como las que se establecen a continuación:

5.2.1 Valor minimo de la tensión disruptiva bajo lluvia a la frecuencia de servicio:

De acuerdo al CNE - Tomo IV

$$kV_C = 2.1 (kV_{nom}+5) = 2.1 (27+5)=67.37kV$$

Luego, la tensión desruptiva será :

$$kV_c = 67.37 kV$$

- 5.2.2 Tensión disruptiva en seco: Los aisladores serán diseñados de forma tal que su tensión disruptiva en seco no sea mayor que el 75% de su tensión de perforación a la frecuencia de servicio.
- 5.2.3 Línea de fuga: Considerando la zona en estudio como un ambiente poco contaminado y teniendo en cuenta que la mayoría de troncales y ramales de la línea van próximas a carreteras, vamos a tomar como un factor de seguridad una zona equivalente de polución de tipo "A", según la clasificación que nos da la Guía Técnica del NGK.

De acuerdo a lo anterior, calcularemos la distancia de fuga (df) para cada tipo de aislador.

- Para cada aislador tipo casquillo - bola

$$d_f = 27.08 \times 16.5 = 447 \text{ mm}$$

donde 16.5 mm/kV_{1-1} es la distancia de fuga por 1 kV de acuerdo a la Tabla IV-8 de la Guía Técnica del NGK.

Luego, utilizando el aislador de Clase 52-3, tendremos una distancia de fuga total (2 aisladores) mucho mayor que la requerida.

- Para el aislador tipo Pin necesario, utilizaremos la Fi gura IV-22 de la Guía Técnica del NGK, donde

$$d_f = 27.08 \times 16.5 = 447 \text{ must}$$

6.2.4 Conclusiones: El aislador tipo PIN seleccionado es el de Clase 50-2; teniendo en cuenta que los aisladores no serán limpiados normalmente. Se eligió el de cla se 56-3 para altitudes mayores de 3400 msnm (troncal 3 y 4) En cuanto a la cadena, ésta estará conformada por aisladores tipo casquillo-bola, clase 52-3.

° Tipo : PIN PIN

° Clase : ANSI-56-2 ANSI-56-3 ° Resistencia en voladizo : 3000 1b 3000 1b

° Tensión de descarga en

seco 60 Hz : 110 kV 125 kV

° Tensión de descarga

bajo lluvia 60 Hz : 70 kV 80 kV

° Tensión de perforación

60 Hz : 145 kV 165 kV

° Linea de fuga : 432 mm 533 mm

Para el caso de cadena de aisladores, estarán compuestas de 2 unidades del siguiente tipo :

° Tipo : Casquillo-bola

° Clase : ANSI-52-3

° Diámetro : 254 mm

^a Paso : 146 mm

° Linea de fuga : 292 mm

° Tensión de descarga en

seco 60 Hz : 80 kV

° Tensión de descarga

bajo lluvia 60 Hz : 50 kV

° Tensión de descarga al

impulso

- onda positiva : 125 kV

- onda negativa : 130 kV

° Tensión de perforación : 110 kV

° Carga de rotura electro

mecánica : 7000 kg

5.3 DISTANCIA DE LOS CONDUCTORES ENTRE LOS APOYOS

La separación mínima entre los conductores y sus acceso rios en tensión y los apoyos no será inferior a : (0.1 + U/150) m. donde U es la tensión máxima del sistema, al que se tiene que afectar del coeficiente $\sqrt{\mathcal{S}}$, debido a las condiciones climatológicas.

Esta separación no debe ser menor que 0.2 metros.

5.4 <u>DISTANCIA DE LOS CONDUCTORES ENTRE SI</u>

Para el cálculo de esta distancia las normas recomiendan que la separación mínima (D) en metros a la mitad del va no debe ser el valor dado por las siguientes expresiones:

Para conductores menores de 35 mm²

$$D = 0.0076U + 0.65 \times \sqrt{f - 0.60}$$

Para conductores mayores de 35 mm²

$$D = 0.0076 U + 0.37 \times \sqrt{f}$$

donde :

f = flecha máxima en metros, sin viento y

U = tensión de la línea en kV

5.5 CALCULOS ELECTRICOS PARA LA SELECCION DEL CONDUCTOR

Teniendo en cuenta la máxima carga a transmitir por las líneas al año horizonte (20 años) y las longitudes de las mismas por separación de cargas, se ha tenido que tener - en cuenta diversos fenómenos eléctricos que permitieron hacer comparaciones de selección.

5.5.1 Selección del Conductor teniendo en cuenta la radio interferencia y protección de Líneas de Telecomunicación: De acuerdo al nivel de tensión que se tiene en las salidas N°s. 1, 2, 3 y 4 del PSE N° 2 (20 kV), la radio interferencia no tiene efectos de consideración en la selección de los conductores. Es más, en el Perú no existen códigos que regulen el ruido producido por las 11 neas de transmisión.

El Comité Consultivo de la I.T.T., por el contrario, proporciona una guía concerniente a la protección de líneas de telecomunicación contra los efectos perjudiciales de una línea eléctrica. En síntesis, recomienda distancias mínimas entre ambos durante un tramo, también mínimo, para evitar tensiones inducidas en los circuitos de telecomunicación por líneas eléctricas con falla fase-tierra.

El siguiente cuadro muestra las distancias mínimas :

DISTANCIA ENTR	E LINEAS ELECTRICA Y	TELEGRAFICA = 10 m.
L (km)	I _{falla} (kA)	L (km)
5	0.910065	1.423
10	0.744162	1.741

DISTANCIA ENTR	E LINEAS ELECTRICA	Y TELEGRAFICA = 100 r
L (km)	I _{fall} (kA)	L _{max} (km)
5	.910065	2.7472
10	. 744 162	3.3597

5.5.2 Cálculo de Pérdidas por efecto Corona: El efecto corona es un fenómeno que va ligado con la tensión del conductor, su diámetro, la altitud (msnm) en que se encuentra la línea y las condiciones ambientales tales como la humedad, la polución, etc. En nuestro caso, las pérdidas corona son muy despreciables. Se recomienda que las pérdidas por este efecto no supere 0.8 kW/km por cada fase.

Bajo lluvia, neblina o con los conductores cubiertos de hielo habrá un incremento sustancial en las pérdidas por corona, pero el número de horas para los cuales se dan tales condiciones no justificaron que estas circunstan cias fueran tomadas en cuenta en la selección del conductor.

Los diámetros mínimos de los conductores han sido calculados teniendo en cuenta las circunstancias de pérdida arriba mencionadas.

5.5.3 Cálculo de Caída de Tensión: La caída de tensión es uno de los mas importantes aspectos que se han tenido en cuenta para la selección del conductor. La ma yor cantidad de cargas alimentadas son claramentes las que se tipifican como rurales, por lo tanto tienen un dia grama de carga parecido y que su máxima demanda es practicamente a la misma hora; para quienes se ha calculado la caída de tensión teniendo en cuenta sus máximas demandas en esas horas.

Sin embargo para el caso de la doble terna de 20 kV, y - como es sabido se prevee la alimentación de las minas, se consideró la máxima caída de tensión a las 11 a.m.

Se aplicó la siguiente ecuación para caída de tensión :

$$\%$$
 V = F_{ct} x P x L
para un cos \emptyset = 0.85 y kV = 21 kV

Los cálculos que se muestran en los Cuadros Nos. 5.5.3.1, 5.5.3.2 y 5.5.3.3, fueron realizados teniendo en cuenta - los siguientes parámetros:

Salidas N° 3 y 4 Pallasca - Lacabamba - Pampas

Conductor aleación de aluminio de 95 mm²

F.C.T. = 0.000118

Las potencias de los poblados para caída de tensión representan el 38% de la M.D. de cada uno de ellos para con frontar con la de las minas (Ver Gráficos 5.5.3.2 y 5.5.3.3)

Ramales de Linea

Conductor de aleación de aluminio de 25 mm²
F.C.T. = 0.000395

DESCRIPCION SALIDA Nº 3 y 4 PALLASCA - LACABAMBA -

		PAMPAS		
	LOCALIDAD	DISTANCIA	POTENCIA	
N °	NOMBRE	PROG. (Km)	(kW)	
1	D. Chora	8.597		
1.1	Chora	9.248	50.54	
2	Lacabamba	10.998	51.00	
3	D. Conchucos	11.335	_	
3.1	Conchucos	16.888	266.72	
4	Cochaconchucos	13.889	41.72	
5	Tilaco	14.730	27.20	
6	D. Minas	17.287		
6.1	Pampas	19,450	419,00	
6.2	Puyalli	23.061	61,80	
7	Minas	22.717	410.00	

CARACTERISTICAS FISICAS, MECANICAS Y ELECTRICAS DE CONDUCTORES

DE ALEACION DE ALUMINIO

CUADRO 5.5.3.1

N O R M A	DIN 48201	DIN 48201	DIN 48201	
DESCRIPCION	UNIDAD			
Sección Nominal	mm ²	25	70	95
Sección Real	· mm 2	25	70	95
Número de hilos		7	19	19
Diámetro del hilo	mm	2.10	2.10	2.50
Diámetro exterior	mm	6.26	10.50	12.50
Carga de rotura	kg	690	18 75	2660
Peso lineal aproximado Resistencia eléctrica a 20°C	kg/m	0.069	0.190	0.260
C.C.	oHM/km	1.372	0.5078	0.3578
Módulo elasticidad inicial	kg/mm ²	5600	5400	5400
Módulo elasticidad final Coeficiente de dilatación	kg/mm ²	6400	6300	6300
lineal (x 10 ⁻⁶)	1/°C	23.0	23.0	23.0

CUADRO 5.5.3.2

CAIDA DE TENSION SALIDA Nº 3 : PALLASCA-LACABAMBA-PAMPAS

TRAMO	P (kW)	∑P (kw)	L (km)	P x L (kW x km)	AV (%)	∑AV (%)
6 - 5	2050	2050	7.98	16359.00	1.930	5.711
5 - 4	10	2060	0.85	1751.00	0.206	3.781
4 - 3	15	2075	2.55	5291.25	0.624	3.575
3.1 - 3	101	101	5.53	558.53	0.220	0.220
3 - 2	101	2 1 76	0.34	739.84	0.087	2.951
2 - 1	19	2195	2.40	5268.00	0.620	2.864
1.1 - 1	19	19	0.65	12.35	0,005	0.005
1 - 0	19	2214	8.59	190 18.26	2.244	2.244

Conductor: AAAC 95 mm² (Linea Principal)

F.C.T. = 0.000118

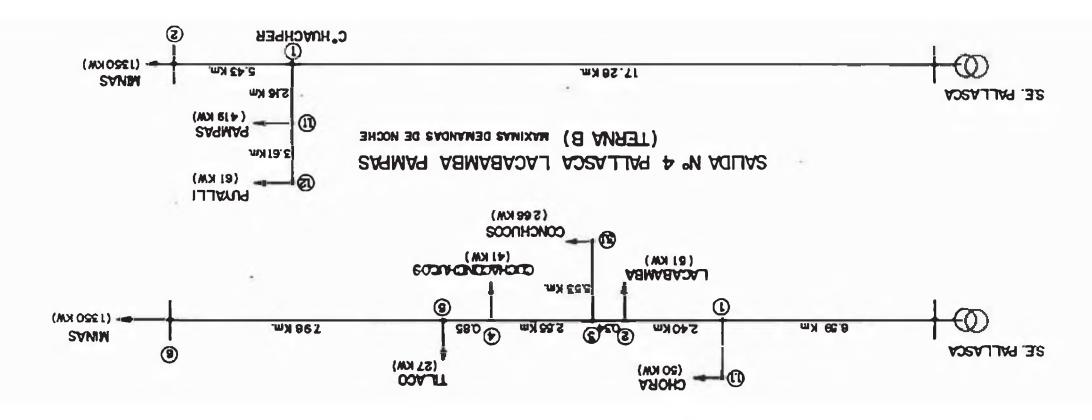
AAAC 25 mm² (Ramal de Linea)

F.C.T. - 0.000395

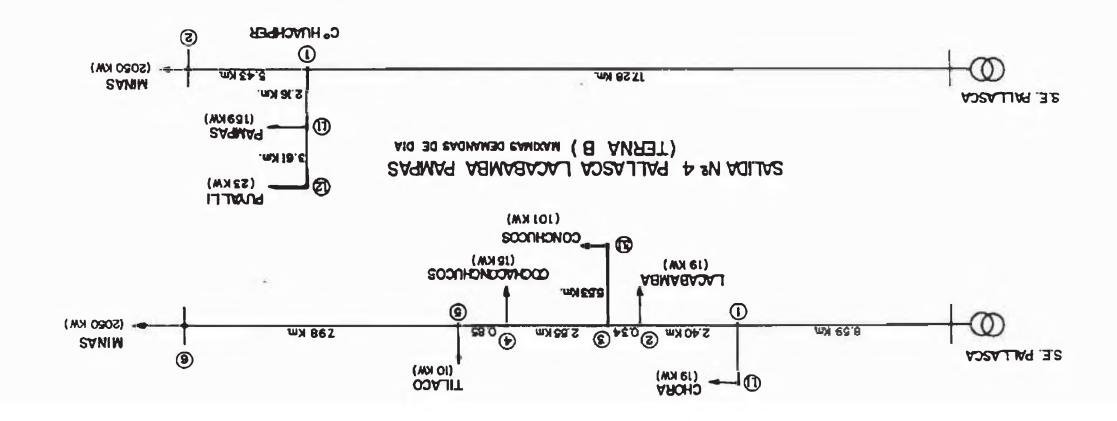
CUADRO 5.5.3.3

CAIDA DE TENSION SALIDA Nº 4 : PALLASCA-LACABAMBA-PAMPAS

TRAMO	P (kW)	∑P (kW)	L (km)	P x L (kW x km)	AV %	∑AV %
2-1	2050	2050	5.43	11131.50	1.313	5.864
1.2-1.1	23	23	3.61	83.03	0.032	0.187
1.1-1	159	182	2.16	393.12	0.155	0.155
1-0	182	2232	17.28	38568.96	4.551	4.551


Conductor. AAAC 95 mm² (Linea Principal)

F.C.T. = 0.000118


AAA 25 mm² (Ramal de **Li**nea)

F.C.T. = 0.000395

SALIDA N. 3 PALLASCA LACABAMBA PAMPAS (TERNA A) MAXMAS DE MOCHE

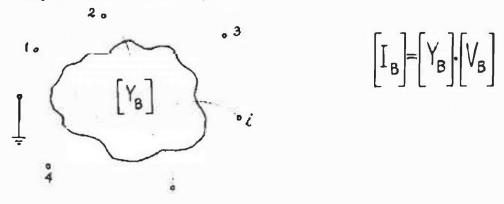
SALIDA Nº 3 PALLASCA LACABAMBA PAMPAS (TERNA A) MARAS DE DIA

Las salidas de las líneas de sub-transmisión tienen una tensión, en la Sub-Estación de Pallasca, de 21 kV, la mis ma que permite otorgar confiabilidad de servicio en cuanto a regulación se refiere; permitiendo además tener un margen adecuado de caída de tensión sin perjudicar a lascargas que requieren de una tensión regular. Los taps de los transformadores de las Redes Primarias han tenido se lección adecuada para obtener en el secundario la tensión requerida y planteada (380/220); consiguiendo tener los rangos que fijan los transformadores con 20 kV ±2x2.5% en el Primario.

.6 CALCULO DE CORTOCIRCUITO

5.6.1 <u>Generalidades</u>: Para el dimensionamiento básico - de los equipos de protección y la calibración de fusibles, se ha realizado un estudio de Cortocircuito para el PSE-2 Santiago de Chuco-Pallasca-Cabana.

Para efectuar el estudio, se ha realizado una simplificación que ha consistido en encontrar la impedancia equivalente de falla vista desde la barra de 138kV de la Central Cañón del Pato, para de esta manera tomar en cuenta la influencia del sistema interconectado.


Para efectuar los cálculos se ha empleado un programa de cómputo especial que determina los valores de potencia y corriente de cortocircuitos monofásicos y trifásicos.

5.6.2 <u>Información Básica</u>: La información básica han si do los parámetros eléctricos de secuencia positiva y secuencia homopolar para las Líneas de 20 y 66 kV en sus diferentes calibres, calculadas por el método de Carson.

En el Gráfico 5.6.1 se indica el diagrama unifilar emplea

do y en el Cuadro 5.6.2 se indican los valores de las impedancias de secuencia para cada uno de los tramos de linea.

5.6.3 Metodología empleada: Un sistema de potencia pue de ser representado por su matríz de admitancia de barras. Las relaciones de corrientes y tensiones nodales quedan expresadas como sigue:

Si se desprecian las condiciones previas a la falla y se asume que el sistema es totalmente balanceado, no circula rán corrientes de carga. La condición de falla se presenta cuando uno de los nodos (digamos el i) se pone a tie-rra.

En esas condiciones todas las corrientes, excepto i, se rán cero. Con el objeto de conocer la distribución de corrientes es por tanto necesario conocer los valores $\begin{bmatrix} V_B \end{bmatrix}$, para lo cual hay que invertir la matríz.

Los métodos tradicionales de invertir $\begin{bmatrix} Y_B \end{bmatrix}$ no son satisfactorios si se trata de sistemas prácticos de potencia. Por el contrario, los métodos de matrices esparsas permiten un reducido uso de memoria de computadoras y se pue den obtener soluciones repetitivas, sin necesidad de invertir explícitamente la matríz.

En el presente programa se emplea un método de renumera -

ción óptima ordenada y la inversión factorizada descritaen el artículo de Tinney-Walker "Director solution of Sparse network equations by optimally ordered triangular factorization".

El progama permite calcular

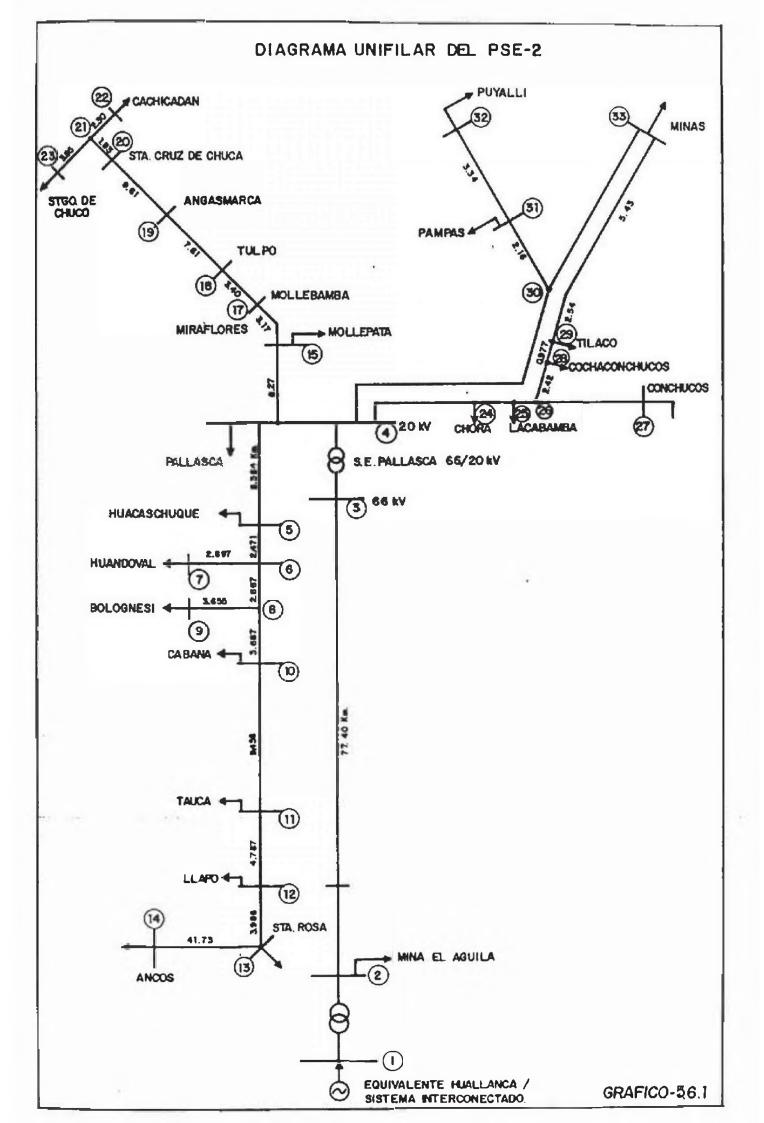
- Corrientes de cortocircuito trifásico y su distribución por la fase R.
- Corrientes de cortocircuito monofásico y su distribu ción por la fase R, la corriente a tierra y su distribu ción en la red de secuencia homopolar.
- Cortocircuito bifásico a tierra, para el cual se calcula la corriente a tierra y su distribución a la red de secuencia homopolar.
- 5.6.4 <u>Resultados</u> En la Tabla 1.6.2 C se indican los resultados de los cálculos y potencias de cortocir cuitos para el caso de máxima generación en el año hori zonte.

En la Tabla 1.6.3 D se indica una estimación de los valores de cortocircuito para el caso de mínima generación ba jo la asunción que el sistema de potencia equivalente en Cañón del Pato funciona solamente a la mitad de genera ción.

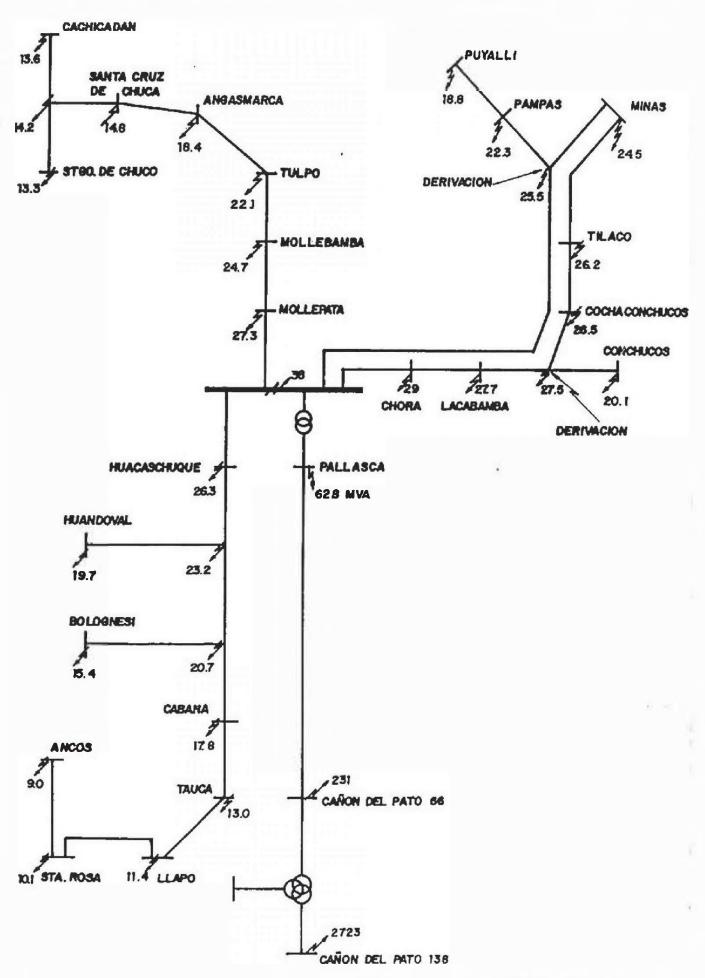
Un resumen de los resultados se indican en el gráfico 5.6.2

5.7 COORDINACION DE LA PROTECCION CONTRA SOBRE CORRIENTE

Con la finalidad de proteger los equipos de las Redes Eléctricas, se ha seleccionado la protección más simple y menos costosa. Aunque su puesta en funcionamiento requiera de un operador, ésta será con facilidad relativa, uno por su ubicación estratégica en el armado respectivo y otro, por su ubicación adecuada y óptima en la línea de subtransmisión.


El tipo de seccionamiento, en todos los casos, será median te el seccionador fusible tipo CUT-OUT, cuyo nivel básico de aislamiento sea igual a 125 kV para una tensión nominal de 20 kV.

La parte más importantes es la que corresponde al análisis de operación (fundición) del cortacircuito fusible.

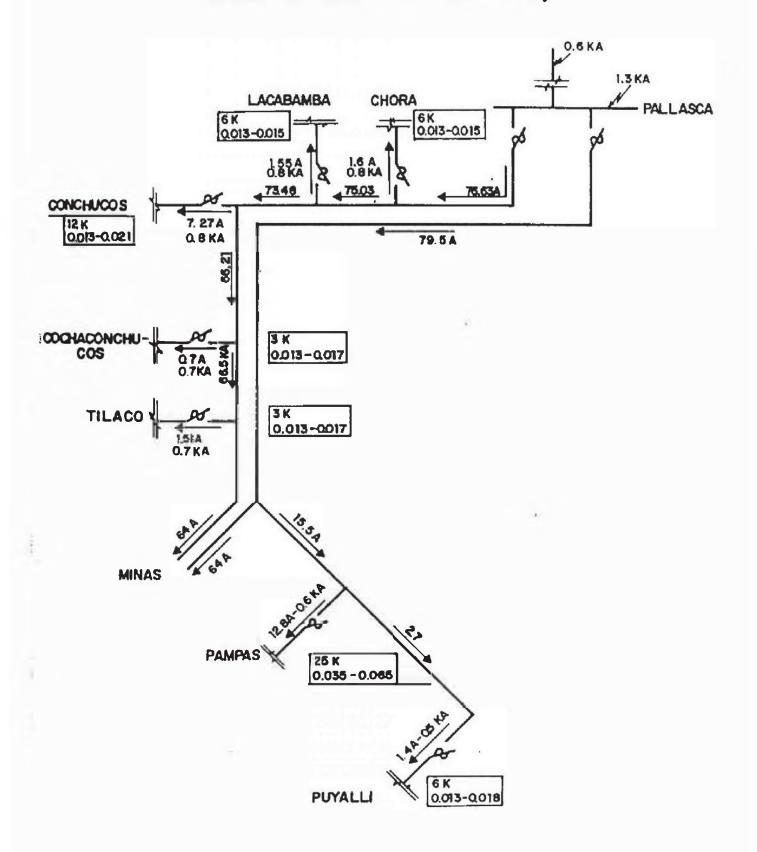

5.7.1 Cortacircuito Fusible: Los cortacircuitos fusibles han sido diseñados, no solamente para cortar automá ticamente el circuito eléctrico en el que se encuentra in tercalado cuando la corriente que lo atraviesa sea excesiva respecto de cierto valor (consiguiendo este corte por fusión del alambre fusible en un tiempo inversamente proporcional a la magnitud de las corrientes de falla), sino también para servir de elemento de conexión y desconexión de circuitos eléctricos, convirtiéndose en un punto de sec cionamiento.

Para su selección se han utilizado como referencia dos cur vas características (las mismas que se presentan a continua ción) que representan

- La de mínimo tiempo de fusión
- La de máximo tiempo de despeje

DIAGRAMA DE POTENCIAS MAXIMAS DE CORTO CIRCUITO P.S.E. Nº 2

Además, como es sabido, ésta selección también ha obedeci do a criterios que logran, entre otras, las siguientes ven tajas:


- Continuidad de servicio
- Selectividad
- Rapidez
- Economía

Es así que fue necesario

- Contar con un diagrama unifilar de carga, mostrando las salidas principales y ramales de línea todos en 20 kV.
- Calcular las corrientes de corto circuito máxima y mínima en algunos puntos notables del sistema, los mismos que son lugares de instalación de un equipo de protec ción.
- 5.7.2 <u>Diagramas de Protección</u>: A continuación se presentan los gráficos indicando los fusibles selectionados, los mismos que mostrarán tipo de fusible, tiempos mínimos y máximos de fusión y la corriente de corto circuito. Así también se indican las intensidades nomina les de cada una de las cargas.

En hojas siguientes se muestran las características de apertura de los fusibles, las mismas que varían, no sus -tancialmente de acuerdo al fabricante, pero que en este -caso ha servido para hacer la selección. Cuando se quieran adquirir de otras marcas, deberán garantizar su equivalencia.

ESQUEMA DE PROTECCION SALIDAS Nº 3 y 4

5.8 PUESTAS A TIERRA

5.8.1 Generalidades Las puestas a tierra de los postes de acero y madera serán del tipo contrapeso a lo largo de la línea, la cual irá combinada con un anillo con el fin de distribuir mejor los gradientes de tensión alre dedor del poste.

En estas líneas solamente se aterrarán los postes de acero en los cuales exista una derivación con seccionamiento. Con respecto a los postes de madera, también se aterrarán los que sirvan para derivación, además se aterrará uno por cada tres postes de madera.

- 5.8.2 Medida de la Resistividad del terreno: De acuerdo con el Informe N° 2 del PSE-2 "Resultados de Estu dios de Campo", se tomaron mediciones en la mayoría de las localidades y también en las derivaciones a las localida des de la línea de 20 kV que va junto con la línea de 66kV, obteniendo como resultado resistividades que van desde 100 α.m. hasta cerca de 400 α.m., teniendo en algunos puntos suelos de tipo rocoso para los cuales se diseñará una pues ta a tierra especial.
- 5.8.3 Selección de las Configuraciones del Sistema de Puesta a Tierra: Esta selección se realizó tomando como criterio la ubicación del poste, es decir, si dicho poste se encuentra en una zona transitada o no transitada.

La resistencia de puesta a tierra en zonas transitadas, se tomó igual a 20 Ω y en zonas no transitadas igual a 25 Ω (este último valor de acuerdo al Código Nacional de Electricidad - Tomo IV).

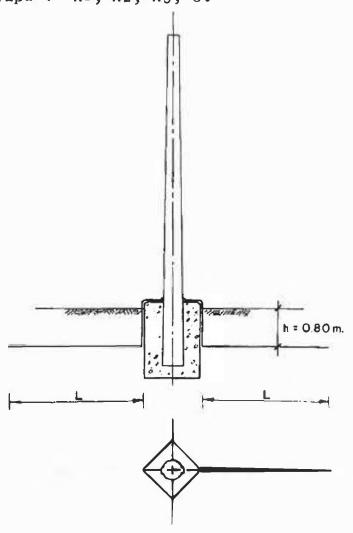
Tomando como base lo mencionado arriba y también las fórmulas de las distintas configuraciones de puesta a tierra más usadas obtenemos esencialmente dos tipos de puestas a tie rra :

- a. Puesta a tierra en zona no transitada, compuesto por dos contrapesos (de diferentes longitudes, según resistividad del terreno) a lo largo de la línea, uno a cada lado del poste y enterrado a una profundidad de 0.8 m. Ver gráfico 5.8.1
- b. Puesta a tierra en zona transitada, compuesto por dos contrapesos semejante al del punto a., además añadien do un anillo que rodea a la cimentación del poste, to dos estos enterrados a una profundida de 0.8 m. Ver gráfico 5.8.2

Además, para las zonas que posean un suelo rocoso se toma rá la puesta a tierra de configuración similar al del punto a., pero con una longitud del contrapeso igual a 50 m., a cada lado del poste; la profundidad de enterramiento se rá de 0.4 m.

Si es posible se tratará de llevar la puesta a tierra ha cia terrenos de baja resistividad.

Esta puesta a tierra corresponde al Tipo C y se usarán en zona transitada o no transitada.


En las hojas de localización se detallan tipos de puestaa tierra que corresponden a cada poste de derivación y de madera para cada una de las troncales y ramales de las lí neas de subtransmisión de 20 kV.

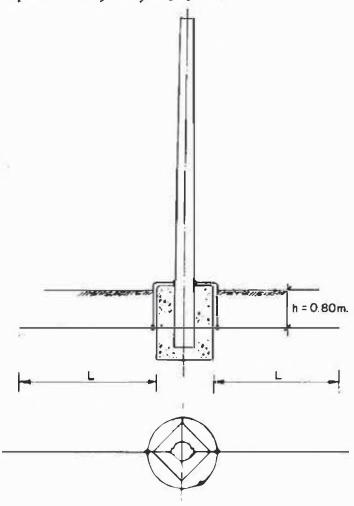
5.8.4 Materiales del Sistema de Puesta a Tierra El ma terial del conductor del contrapeso será de cobre sólido N° 4 AWG (sección nominal igual a 25 mm²), el cual es suficiente para una corriente de cortocircuito de 1900

Amp. con un tiempo de eliminación de falla de 4 segundos. Para unir entre sí los contrapesos se usarán conectores — de bronce estañado.

GRAFICO Nº 5.8.1

PUESTA A TIERRA EN ZONA NO TRANSITADA Tipo: A1, A2, A3, C.

R = 25 Ohmios, para todos los casos


TIPO DE PUESTA A TIERRA	RESISTIVIDAD DEL TERRENO (OHM-m)	(m)	1.ONGITUD TOTAL DI'L CONDUCTOR Aprox (m)
A1	100 a 170	5	12.40
A 2	171 a 290	10	22.40
A3	291 a 400	15	32.40

Nota: Para el Tipo C en suelo rocoso; 1 50 m enterrado a 0.40 m

GRAFICO 5.8.2

PUESTA A TIERRA EN ZONA TRANSITADA

Tipo: B1, B2, B3 y B4

TIPO DE PUES- TA A TIERRA	RESISTIVIDAD DEL TERRENO (OHM.m)	L (m)	LONGITUD TOTAL DEL CONDUCTOR Aprox.(m)
В1	100 a 170	5	16.2
B 2	171 a 275	10	26.2
В3	276 a 370	15	36 - 2
В4	371 a 460	20	46.2

R = 20 , para todos los casos

Materiales :

- Conductor de cobre sólido Nº 4 AWG
- Conectores de bronce estañado : cabo a cabo (1) en T (2)

5.9 CALCULOS MECANICOS

5.9 CALCULOS MECANICOS DEL CONDUCTOR

- 5.9.1 Limitaciones Básicas de Cálculo Las limitacio nes que a continuación se presentan como hipótesis,
 son las que permiten mantener los coeficientes de seguridad y además evitan las posibles vibraciones del conduc tor por acción del viento, de acuerdo con las prácticas usuales de montaje y cálculos.
- 5.9.2 Hipótesis de Cálculo: De acuerdo con la selección realizada en 5.5 respecto de los conductores y a las condiciones climatológicas del área geográfica que co rresponde al P.S.E. Nº 2, se han establecido distintas hipótesis de cálculo para observar el comportamiento mecánico de los distintos conductores que han sido selecciona dos.

Las condiciones críticas de elongación incluyen fenómenos tales como la Ampacitancia y CREEP, los mismos que han si do calculados con programas de Lenguaje Basic.

5.9.2.1 <u>Consideración del CREEP</u> <u>Teniendo</u> en cuenta que el CREEP es un fenómeno irreversible que cuya consecuencia práctica es un aumento de flecha en cualquier

estado, es posible calcular una temperatura adicionalequivalente por CREEP, esto permitirá corregir la flecha máxima para la localización de los postes.

Las unidades del CREEP están dadas en strains o strains. Así el incremento de temperatura estará dado por :

$$At_{CREEP} = \frac{E_f - E_i}{23}$$

5.9.2.2 <u>Consideraciones por Capacidad</u>: Además del efecto CREEP, se considerará un aumento de temperatura en el conductor debido a la radiación solar, la cual se da en W/cm². Con este incremento de temperatura se chequeó la máxima capacidad de carga de los conductores, tanto en condiciones normalers como de emergencia.

El Cuadro 5.9.2 presenta los valores de temperatura equivalente con las dos consideraciones anteriores, las que incrementarán a una temperatura mayor, la que servirá para el cálculo del cambio de estado para la condición de máxima temperatura.

Las temperaturas obtenidas en el párrafo anterior nos permiten, entonces, tener las siguientes hipótesis de cálculo:

- Hipótesis de Cálculo Conductor AAAC 95 mm²

Hipótesis I

Temperatura ambiente 12°C

Velocidad del viento 0 km/H

Esfuerzo E.D.S. 4.5 kg/mm

Hipótesis II

Temperatura minima -5 °C

Velocidad del viento 0 km/H

Espesor de la costra

de hielo 0 mm

Hipótesis III

Temperatura 0 °C

Velocidad del viento 0 km/H

Espesor de la costra

de hielo 2.5 mm

Hipótesis IV

Temperatura ambiente 12°C

Velocidad del viento 75 km/H

Espesor de hielo 0 mm

Hipótesis V

Temperatura máxima 60°C

Velocidad del viento 0 km/H

Espesor de hielo 0 mm

- Hipótesis de Cálculo Conductor AAAC 70 mm

Hipótesis I

Temperatura ambiente 12°C

Velocidad del viento 0 km/H

Esfuerzo E.D.S. 4.5 kg/mm²

Hipótesis II

Temperatura minima -5°C

Velocidad del viento 0 km/H

Espesor de hielo 0 mm

Hipótesis III

Temperatura	$0 \circ C$
Velocidad del viento	0 km/H
Espesor de la costra	
de hielo	2.5 mm

Hipótesis IV

Temperatura ambiente	12	°C
Velocidad del viento	75	km/H
Espesor de hielo	0	ınım

Hipótesis V

Temperatura máxima	55	°C
Velocidad del viento	0	km/H
Espesor de hielo	0	mm

- Hipótesis de Cálculo Conductor AAAC $25~\mathrm{mm}^2$

Hipótesis I

Temperatura ambiente	12°C
Velocidad del viento	O km/H
Esfuerzo E.D.S.	4.5 kg/mm ²

Hipótesis II

Temperatura minima	-5	°C
Velocidad del viento	O	km/H
Espesor de hielo	0	, mm

Ripótesis III

Temperatura	Oac		
Velocidad del viento	0	km/H	
Espesor de la costra			
de hielo	2.5	nım	

Hipótesis IV

Temperatura ambiente 12°C Velocidad del viento 75 km/HEspesor de la costra hielo 0 mm

Hipótesis V

Temperatura máxima 50°C

Velocidad del viento 0 km/H

Espesor de costra de hielo 0 mm

Mediante la ecuación de truxa generalizado y considerando las características físicas y mecánicas del conductor establecidas en el Cuadro 5.5.3.1, se ha obtenido solu ción a la ecuación mencionada.

En los Cuadros 9.2.2.1; 9.2.2.2; se muestran para distintos vanos los valores de esfuerzos, tiros mecánicos y flechas.

En todos los conductores la Hipótesis III en la que se con sidera espesor de hielo; para efectos de cálculo no se ha considerado, habiéndose ubicado en los cuadros sólo para tener una referencia de dicha condición.

LINEAS 20 KV

RESULTADOS DEL CALCULO DE CAPACIDAD

CUADRO Nº: 5.9.2.1

	SALIDA STGO. DI 70 I	N° 2 E CHUCO	SALID DERIV. COM 25 m	SALIDA 3-4 MINAS 95 mm ²		
HORA DE MD	DIA	NOCHE	DIA	NOCHE	DIA	
MD (kw)	MD 448		88	250	1986	
I (Amp)	15.20	43.43	2.98	8.52	67. 45	
R 20°C	0.495	0.495	1. 370	1.370	0.3578	
ws	0.1150	0	0.1150	0	0.1150	
d (cm)	1.075	1.075	0.63	0.63	1.25	
(°c)	27°	5°	27°	5°,	27°	
θ = Δ θ 1	6.41	0.91	5.0°	0.6°	8.5°	
Tfc (°c)	33.41	5.91	32°	6°	36°	
T(creep)	20°	20°	15°	15°	20°	
T MAX.	53.4	25.9	47°	21°	56°	

EN CONCLUSION SE ADOPTARA:

CONDUCTORES DE 25 mm² ; 50°C CONDUCTORES DE 70 mm² ; 55°C CONDUCTORES DE 95 mm² ; 60°C

CUADRO 9.2.2.1

CALCULO MECANICO DEL CONDUCTOR

SEL CONSULTORES ASOCIADOS

CALCULO FARA CONDUCTOR DE 95 ma2

CONDUCTOR AAAC

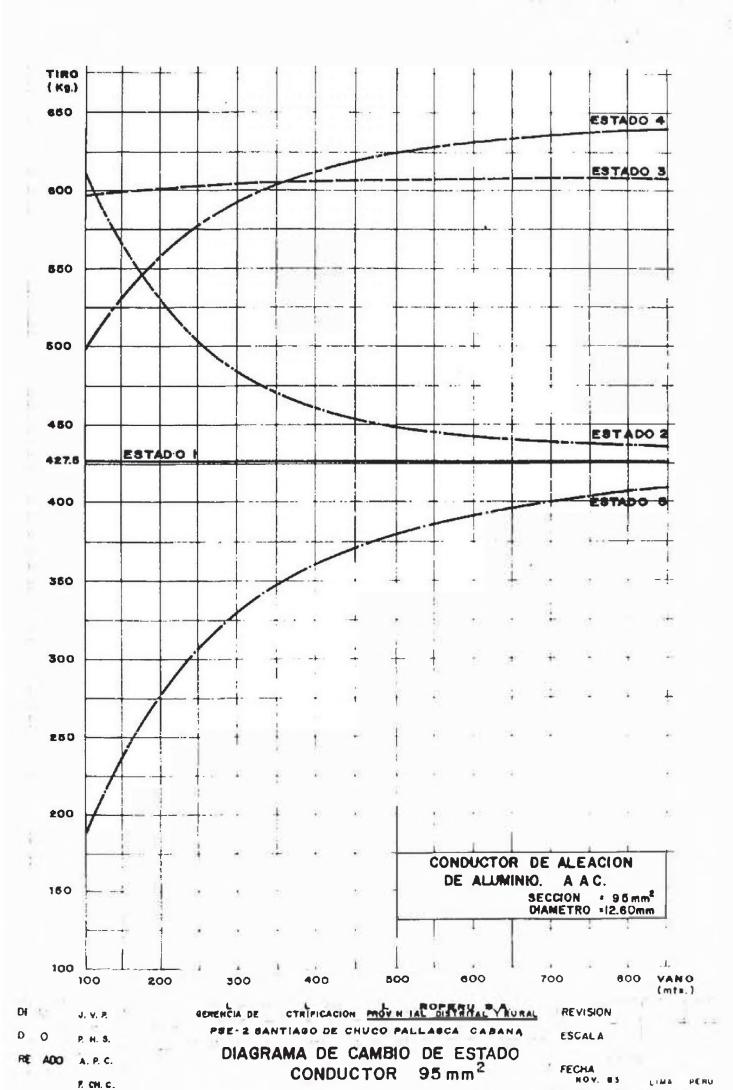
CDEF. DILAT. LINEAL(1/oC)= .000023 MOSULD ELAST.(kg/ma2) = 6300

SECCION(ma2) = 95 DIAMETRO(ma) = 12.6 PESO(kg/a) = .26

COVARD 1 TOURS WAY 1 (2-2)- A F CONDUCTION AND

ESTADO 1 TENSION MAX($k_0/an2$) = 4.5 FEMP(oC) = 12 VELOCIDAD DEL VIENTO(x_0/h) = 0

FPTARO 1	TOMO/-CL- E	UELDC N	UTENTO/L-/LL- A	CCD LITTL O (no.) O
ESTADO 2			VIENTO(km/h) = 0	
(m) CHAV	ESFUERZI	(Kg/ma2)	TIRO(Kg)	FLECHA(e)
100	6.	16305	613.989	. 529345
200	5.5	9333	531.367	2.44701
200	5.	8 40 80	482.645	6.06365
400	4.1	14264	460.051	11.3151
500	4.	72321	448.705	18.1393
500	4.6	5628	442.347	26.5184
700	4.	51533	438.456	36.451
900	4.5	8853	435.71	47.9426
600	4.	57007	434.157	61.0017
1000	4,5	5682	432.899	75.5395
1109	4.	547	431.965	91.8688
1200	4.5	3952	431.254	109.794
1300	4.	53369	430.7	129.161
1460	4.3	2906	470.261	150.257


ESTADO 3 TEMP(eC)= 0 VELOS. DE VIENTO(ka/b)= 0 ESP.HIELD(eb)= 2.5 VANO(s) ESFUERIO(Kg/em2) | IIRO(kg) 100 6.27592 576.213 . 774691 200 6.32498 3.07545 600.873 300 6.35329 603.562 6.39163 400 6.36828 504, 986 12, 2295 500 6.37668 505.724 19.6967 600 6.38173 606.264 27.5007 790 606.571 5.38498 37, 4499 800 605,779 6.38714 48,9538 900 5.3865B 5-16, 974 62,023 1000 6.3898 667.651 76.5597 1100 6.39023 92,9071 667.11 1200 6.39128 607.171 110.75 1500 5.39172 507.219 130.215 1400 5.39219 A07.258 151.319

(continúa)

CUADRO 9.2.2.1

Continuación

********	**=====================================		
ESTADO 4			
YANG(a)	ESFUERZO (Kg/am2)	FIRO(Kg)	FLECHA(*)
100	5.20567	494.539	. 999131
200	5.87736	558.35	3.54079
300	6.24531	593.304	7.50052
400	6.44822	612.581	12.9218
500	6.56676	623.842	19.8398
600	5.64033	630.831	28.2769
700	6.6885	635.407	38.2491
800	6. 72151	638.544	49.7699
900	6.74501	640.776	62.8525
1000	6.76228	642.416	77.5103
1100	6.77531	643.654	93.7575
1200	6.78537	644.61	111.609
1300	6.7933	645.363	131.083
1400	6.79964	645.966	152.195
ESTADO 5	TEMP(OC) = 60 VELOC. DE		
(a) ONAV	ESFUERZD(Kg/as2)	TIRO(Kg)	FLECHACE
100	1.9101	182.719	1.79432
200	2.91523	276.947	4.69749
266	3, 47344	329.977	
400			3,97459
466	3.79964	360.966	14.4307
500		360.966 37 9. 957	14.4307 21.4361
	3.79964	360.966 37 9. 957 392.163	14.4307 21.4361 25.9329
500	3.79964 3.99955	360.966 379.957 392.163 400.358	14.4307 21.4361 29.9329 39.9431
500 600	3.79964 3.99955 4.12803	360.966 37 9. 957 392.163	14.4307 21.4361 29.9329 39.9431 51.5018
500 600 700	3.79964 3.99955 4.12803 4.2143 4.27449 4.31791	360.966 379.957 392.163 400.358 406.077 410.202	14.4307 21.4361 25.9329 39.9491 51.5018 64.6109
500 600 700 800	3.79964 3.99955 4.12803 4.2143 4.27449 4.31791 4.35014	360.966 379.957 392.163 406.359 406.077 410.202 413.263	14.4307 21.4361 25.9329 39.9491 51.5018 64.6108 79.2909
500 600 700 800 900	3.79964 3.99955 4.12803 4.2143 4.27449 4.31791 4.35014 4.37464	360.966 379.957 392.163 406.359 406.077 410.202 413.263 415.591	14.4307 21.4361 29.9329 39.9491 51.5018 64.6108 79.2909 95.5579
500 600 700 800 900 1000	3.79964 3.99955 4.12803 4.2143 4.27449 4.31791 4.35014 4.37464 4.39368	360.966 379.957 392.163 499.358 406.077 410.202 413.263 415.591 417.399	14.4307 21.4361 25.9329 39.9431 51.5018 64.6105 79.2909 95.5579 113.428
500 600 700 800 900 1000	3.79964 3.99955 4.12803 4.2143 4.27449 4.31791 4.35014 4.37464	360.966 379.957 392.163 406.359 406.077 410.202 413.263 415.591	14.4307 21.4361 29.9329 39.9491 51.5018 64.6108 79.2909 95.5579

TABLA DE TENSADO

CONDUCTOR : ALEACION DE ALUMINIO

95 mm2

TABLE DE TENSADO: COMPONENTE	REGIZINIAL DE	EL TIRO COM	301JD6V4_ 28	E LA CATEMARIA(cp)
efeetien be	ALUMINIO SS	ruji Turk		

DE	331	135	174N	3. 1
11-2		∦ [_ ·_	1.00	2.4

	0 - 6		f-i	ENTIEN OF THE	LIV10 .5 .50		40					
TEMPERATURA (ol)	4,50	8.00	9,50	10.00	12.00	14, 30	18, 39	18.00	29.00	25.00	30.99	35.00
VAND(e)	1640		****	*****			****		2.17.	63177	201 80	00.00
20.0	534.29	535.97	481.73	454.5)	427, 50	400, 48	373,59	345.32	320.25	255, 21	173,75	141.03
45.0	571,65	504.21	478,78	452,59	427.56	462,37	377.69	757.51	330.04	275.01	727.15	186.39
70.0	172.00	199.13	474.11	450,53	427,50	435, 13	383, 43	362, 35	342,57	296, 97	258.31	226.59
95.0	112, 34	450.77	468,60	447,40	227.50	408.08	365.46	371.75	354.51	216.84	264.47	257.35
170.6	301,37	491,37	462,99	414,37	421.50	410.71	375.11	380.10	365.83	333,70	205.05	232.43
145.0	190, 21	475, 25	452,77	441.29	127,56	4:7,4:	400.01	387.27	375.20	347.72	323.76	302.99
170.0	451,74	433, 75	453, 13	410.05	427,39	415.53	404,54	393.28	392,96	357,25	539,45	320,00
195.0	172,19	461,70	449,33	438,17	427,50	417.32	407.67	358,67	389.37	348.84	756.54	334.14
220.0	400.34	455.01	445.05	435.84	427,33	413,76	410.39	402.37	394.67	375,77	350,50	345.75
245.0	450.60	451.91	443.45	475, 32	427,80	415,57	412.73	465.76	399.05	383.34	369.00	395.89
270.0	456,08	449.34	441,29	434,25	427, 50	420,97	414,55	409,57	402,59	388.82	375.05	364.28
295.0	155,11	145,75	419,47	437.05	477.50	421,80	418.27	410.92	405.70	393.43	382.61	371.39
320.0	429,1)	445,45	457,78	432.60	427, 50	422,49	417.61	412.88	409.28	397.31	387.05	377.47
345.0	144,47	441.53	474,73	477,65	477,50	427,67	418.74	414,53	416,43	466.61	251.37	382.47
776.0	444.27	439,92	435.53	431, 54	427, 50	423,55	419,70	415,94	412.25	403,43	395,07	387.15
395.0	117,47	408,56	474,79	451,11	417.50	420.97	420.52	417,14	413.83	465.85	398, 26	391.05
426.6	440,35	477,41	434.54	\$30,74	427,50	424.33	421,22	418, 17	415.17	407.74	401.03	394.43
445.0	474,59	456.45	453.39	476.42	427,50	474,63	421.82	419.05	416.34	409.75	463,44	397.38
470,0	173,72	435.57	452.83	430.14	427,50	424, 90	422.34	419.83	417.35	411,33	405,54	399.98
495.0	427.75	404,50	432,35	1,6,6,	427,50	425,17	422.80	420,50	418.24	412.72	407,40	402.26
520.0	136,43	174,17	401.93	427,70	427,50	425, 33	423, 20	421.09	419.01	413,94	409,04	404.29
545,0	175.77	117.52	431.55	410,51	427.50	722.04	427,55	421.61	419.70	415.02	410.49	406.09
576.4	473,35	427.12	431.23	429,35	427, 30	425.57	423, 85	422.07	420,31	415.79	411.73	407,59
555.6	474.46	477.49	450,54	125,21	427,50	175.51	1,1,1	422,48	420.85	416.84	412.93	409.13
021,0	477,87	-71.77	479.55	429,05	427,50	425,73	424, 39	422, 35	421, 33	417,50	47.44	410.42
545.0	477.44	471,95	470,45	478.97	427, 30	426.65	424.61	423, 18	421.77	418,29	414,90	411.59
876.6	473, 14	455,54	570.IT	429,95	427,3)	425.15	424.30	423,41	422.15	418.71	415.74	412.51
695.0	-51.ce	401.01	476.68	418.77	422,50	424.24	474,58	427.74	422.51	415,47	414.50	413,58
725,8	472,71 472,01	****	429,89	413.57	\$27,5)	123, 32	425.14	423.73	422.83	417.73	417.19	414,45
745,0	432,02	400.EP	\$25,74	428,82	427,50	426.39	425.29	424.20	423.12	420.44	417.81	415.23
779.9	451.74	470, 12	407.50	429.55	427,3)	425, 45	425,43	424,4)	423,38	420.85	413.39	415,95
115.6	471,48	400,45	425,48	428,45	427.50	426.52	425.85	424.58	423, 82	421,25	418.91	416.61
317,0	471.03	45(4, 5)	427.35	428.43	427, 33	426.58	425.56	424.75	423,84	421,40	419.39	417.22
85.9	\$71,64	400,45	419.16	428.38	427,50	426.63	425.76	424.90	474,04	521,92	419.83	417.77
874.0	450,95	430.00	429.15	429.33	427,50	425.58	425.Bb	425.04	424,23	422.22	420, 24	418, 29

CUADRO 9.2.2.3

CALCULO MECANICO DEL CONDUCTOR SEZ CONSULTORES ASOCIADOS

CALCULO PARA CONDUCTOR DE 25 an2 CONDUCTOR ARAC COEF. DIEAT. LINEAL(1/oC)= .000023 MODULO ELAST.(kg/mm2)= 6400 SECCION(ea2)= 25 DIAMETRO(aa)= 6.26 PESO(Kg/a)= .059

ESTADO 1 TENSION MAXIKq/mm2) = 4.5 TENP(oC) = 12 VELOCIDAD DEL VIENTO(Ke/h)= 0

ESTADO 2	TEMP(OC)=-5 VELOC. DE	VIENTO(km/h)= 0 ES	P. HIELO(as) = 0
VAND(#)	ESFUERZO(Kg/mm2)	TIRO(Kg)	FLECHA(m)
100	6,48263	162.066	. 532211
200	5.59007	139.752	2.46915
300	5.07434	126.858	6.12242
400	4.83801	120.95	11.422
500	4.71991	117.798	18,3062
600	4.65387	115.347	26.7579
700	4.61351	115.338	36.7763
800	4.59711	114.678	48,3670
900	4.56894	114.223	61.5396
1000	4.5559	113.897	76. 795
1100	4.54623	113.655	92.6764
1200	4,53887	113.472	110.669
1300	4.53313	113.328	130.299
1400	4,52B5B	113, 214	151.593

ESTADO 3	TEMP (of) = 0 VELOC. DE	VIENTOUS office 0	ESP. HIELDIAM := 2.5
VAMD (E)	ESFUERTO (Vg/am2)	TIROthgi	FLECHALO
100	5.85675	171.419	.905374
260	7,53373	188.543	3,51923
30¢	7.93819	198, 455	7.51891
400	8.1702	264, 27	17,9927
5(4)	2. 3:	207,75	19,9745
590	8, 1977	209.943	16.4576
780	8.4557	211.393	38,5431
890	6.49571	212,393	56.1207
900	8.50433	213.108	63, 3277
1000	9, 54547	243.036	78.1541
1100	2.5514	214.075	94,5447
1200	8,57776	214,344	11 - 554
1300	3, 5835	214.587	133.1
1400	5,59131	214.783	153,500

(Continúa)

CUADRO 9.2.2.3

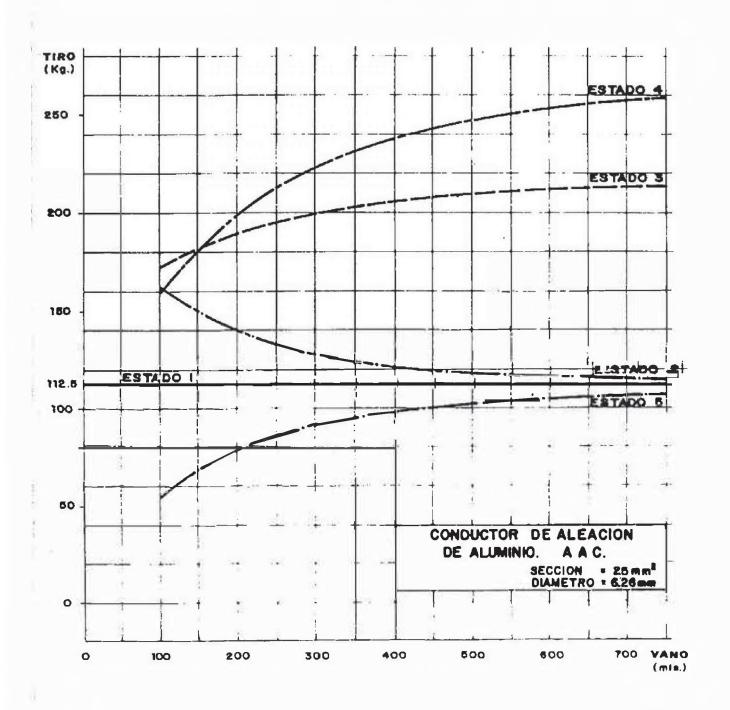
Continuación

1500

14 10

			22222222222
ESTADO 4	TEMP(oC)= 12 VELOC. DE	VIENTO(ka/h)= 75	ESP. HIELD(na) = 0
VANO (m)	ESFUER 10 (Kg/ma2)	T1RD(Kg)	FLECHA (a)
100	6.3315	158, 288	1.28905
200	7.85474	196.368	4,15775
300	8.7697	219.243	8.38283
400	9.33117	233.279	14.0144
500	9.69821	242.205	21.1059
40ú	9.92405	248.101	29.6963
700	10.0856	252.141	39.8132
80¢	10.2001	255.00 2	51.4781
900	10.2836	257.089	64.7091
1000	10.3461	25 8. 652	79.5231
1100	10.3939	259.848	95.9368
1200	10.4313	260.782	113,967
1300	10.4609	261.524	133.432
1400	10.4849	262.122	154.951
ESTADO 5	TEMP (OC) = 50 VELOC. DE		
UANGIE	ESFUERZO(tg/mn2)	T3RD(Kg)	FLECHA (A)
100	2,179\$2	54,4991	1.58344
300	3.1392	72.4799	4.39886
300	3.64426	91.1064	B.52942
400	3.92743	96.1857	14,0761
560	4.0961	102,402	21.1054
500	4.2024	105.06	29.6501
766	4.2729	106.82	39.7327
866	4, 32144	108.036	51.3719
944	4.35628	108.907	64.5833
1000	4.38199	109.55	79.382
1150	4.40147	110.037	75.7834
1260	4.41655	110.414	143,894

4.42846


4.438

133.48

154.772

110.711

110.95

RE

P. H. S.
A. P. C.
F. CH. C

PRE-2 SANTIAGO DE CHUGO PALLASCA CABANA

DIAGRAMA DE CAMBIO DE ESTADO CONDUCTOR 25 mm²

REVISION

ESCALA

FECHA

LIMA - PERU

TABLA DE TENSADO

CONDUCTOR : ALEACION DE ALUMINIO

25 mm2

OFFICATION TO THE PROPERTY OFFI	FIRD LONGIFUDINAL DE LA CATEMARIAKRA	DESNIVEL / WAND:

-		- 6		-								
TEMPERATURA (ac)	4.00	8,00	8.00	10,00	12.00	14.00	15.00	18.00	20.09	25.00	30.00	35.00
VANCIO												
5.0	141,92	134,56	127.21	113.85	112,50	105.15	97.80	90.45	83.11	64.79	46.36	28.75
30.0	141.12	155.57	128.74	115.60	112.50	105.45	98.47	91.57	84.78	48.49	53.65	41.89
55.0	139.30	132.47	125.71	117.05	112.50	198.09	99.83	93.76	87.90	74.41	62.92	53.64
80.0	136.75	130.46	124,31	118,32	112,50	166.87	101.46	96.28	91.35	60.19	70.77	62.97
105.0	133.83	128.72	122.78	117.54	112,50	107.57	103.07	98.69	94.55	85.21	77.25	70.45
130.0	130.88	125.99	121.36	116.80	112, 50	108.40	104.51	190.81	97.32	89.40	82.61	76.68
155.0	128.14	123.75	117.75	115.14	112.50	109.03	105.73	102.50	99,63	92.85	86.92	91.73
180.9	125.74	122.20	118.87	115.58	112.50	109.56	108.76	104.09	191.67	95.70	90.51	E5.91
205.0	123.71	130,72	117.50	115.12	112.51	110,50	107.62	195.31	103.11	98.03	93.49	39.39
230.0	122.63	112.44	117.07	114,74	112.50	110.35	108.29	106.31	194.41	99.97	95.95	92.29
255.0	120.68	118.30	115.42	114,42	112.50	110.65	108.95	107.14	105.48	101.58	98.01	94.73
280.0	119.57	117.68	115.89	114,17	112.50	110.89	109.33	107.82	106.37	102.92	99.74	96.79
305.0	118, 60	117,00	115,45	113.95	112.50	111.09	107.72	100.40	197.11	104.05	101,20	98.54
530,6	117,83	118.44	115.69	113.78	112.50	111.26	110.05	108.88	107.73	165.00	102,44	160,64
755.0	117,15	115.97	151,79	117.87	112, 50	111.40	110.33	109.28	108.25	105.81	103,50	101.32
380.0	116.00	115.58	114,50	113.50	112.50	111.52	110.56	109.62	108.71	104,50	104,41	102.43
405,0	116.20	115, 25	114, 31	115,40	112.50	111.02	110.76	109.72	109.09	107.10	105.20	103.37
400.0	115.81	114,97	114,17	113.31	112.50	111.71	110.93	110.17	109.42	167.61	105,66	104,72
455.0	115,42	114,32	113, 97	11 5, 25	112.50	111.79	111.08	110.39	109.71	108.96	106,48	104.75
480.0	.15.21	11.21	117,57	117,18	111.50	111.85	111.23	110.58	109.96	:08.45	107.00	105.60
395.0	114.75	112.00	115/31	117.15	110.50	111.71	111.32	110.75	110.18	199,79	197.46	104.15
176 2274 :	114.75	21 44	117.41	115.65	111,50	111.56	111.42	110.89	110.37	109.10	107.B6	106.47
555.0	114.55	534.55	115.51	113,3)	112 50	\$12.00	111.51	111.02	110,54	109.37	108.22	197.11
E20.4	124.75		117,44	112,54	112/20	112.54	111.59	111.14	110, 89	109.60	109.54	107.51
805.0	114.25	117.50	113.32	112.97	112.50	86.211	111.65	111.24	110.83	107,82	108,83	107.37
AW. B	114.12	115.71	112.21	112.50	112.50	112.11	111,72	111.33	110.95	110.01	160,69	168, 19
655. 4	111,00	413.52	113.24	112,97	112,50	112, 13	111,77	111.4;	111.05	110.18	109.32	103, 43
686.4	117.70	117,54	117.19	117.64	117.50	117.15	111.82	111.48	111.15	110.33	109.53	106.74
705.0	113.60	417,47	113,38	112,82	112.50	112.13	111.88	111.55	111.24	110, 17	199,72	108.93
776.0	117.74	110,41	117.10	112.80	112.50	112,70	111.91	111.61	111.32	110.40	105.89	169, 20
755.0	110.84	113.35	113.07	112,78	112.50	112.22	111.94	111.57	111.39	110.72	110.05	109.40
780.6	100.57	143.35	113.63	112.77	112.50	112.24	111.98	111.72	111.46	110.82	110.19	109.58
865.0	115.51	115.25	113,00	112.75	112,50	112,25	112.01	111.76	111.52	110.92	110.32	109.74
836.0	113,45	113,21	117.97	112.74	112.50	112.27	112.03	111.89	111.57	111.01	110.45	109,89

5.10 CALCULO MECANICO DE POSTES

5.10.1 Criterios Adoptados en la selección del tipo de estructura Con la finalidad de determinar el ti po de poste básico a utilizar así como los vanos permisibles, se ha calculado la combinación altura-poste-vano más adecuada para las líneas de simple terna así como para las líneas de doble terna.

En el presente estudio se ha hecho diferenciación entre - las líneas principales y los ramales que alimentan a las localidades del PSE 2 correspondiendo el uso de postes de fierro a los primeros y postes de madera a los segundos.

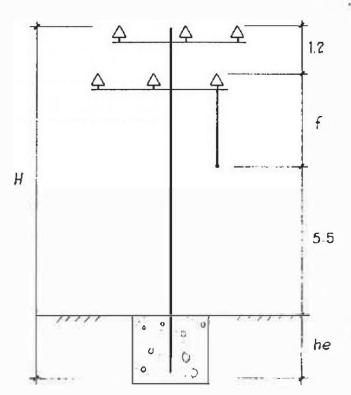
5.10.1.1 <u>Doble Terna</u> La selección para este ca so se hizo fundamentalmente con criterios de distancia mí nima entre conductores y distancias de seguridad de acuer do a los requerimientos topográficos de la ruta de las sa lidas principales 3 y 4.

El procedimiento al igual que antes, ha permitido utilizar postes de 12 m de 300 kg de esfuerzo en la punta.

También se han realizado diseños especiales para la utilización en vanos grandes no contemplados en los cálculos - mencionados.

5.10.2 Ramales de Linea En este aspecto se considera el uso de postes de madera nacional con el criterio - de disminuir los costos en el presente estudio.

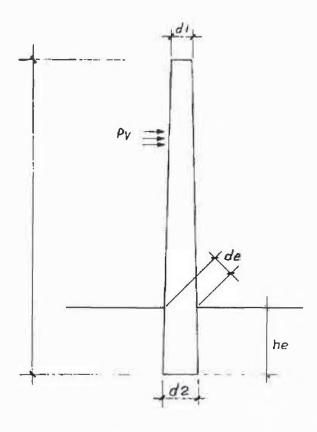
Las distintas configuraciones presentadas en láminas apar te, han sido calculadas en base a distancias mínimas—en tre conductores y distancias de seguridad. Se utilizará por consiguiente postes de 11 mt - clase 6. grupo D, que satisfacen los requerimientos mecánicos. En ambos casos cabe mencionar que el método utilizado es aplicado generalmente en terrenos platos o ligeramente on dulados, sin embargo para el tipo de terrenos que atravie san las líneas y dado que los conductores siguen práctica mente paralelos al perfil del terreno, el método permite seleccionar el tipo de poste cuyas prestaciones pueden afinarse durante la fase de distribución de estructuras. Para las condiciones normales, se consideró los esfuerzos debido al viento sobre el poste, conductores y aisladores, así como el debido al ángulo topográfico (en estas condiciones se adopta un factor de seguridad de 1.5) Para la condición de falla se consideró el tiro unilateral equiva lente al 75% del tiro horizontal en las condiciones E.D.S. producido por la rotura de un conductor (en esta condición se adoptó un factor de seguridad de 1.1).


En todos los casos, los postes seleccionados han sido calculados considerando las siguientes limitaciones :

- por esfuerzos transversales
- por vano máximo permisible debido a la separación en tre fases
- por flecha máxima

Las estructuras: angulares, derivación, anclaje.s, termina les, etc. han sido conformadas en base al tipo básico de suspensión, utilizándose retenidas cuando han sido requeridas.

5.10.3 <u>Cálculos Justificativos de Postes de Fierro de Do-</u> ble Terna :


Postes de Alineamiento tipo SD 12/300: En el caso de doble terna, los cálculos se harán teniendo en cuenta el uso de conductores de aleación de aluminio de 95 mm².

f = H - He - 5.5 - 1.2

CONDUCTOR AAAC SECCION	Н 12 п	(+ H +
(mm2)	he (m)	1.80
95	f (m)	3.50
/5	V max(m)	160
	To max(m)	600

- Efecto del viento sobre el poste

Al igual que en los postes de 11 m, la participación del viento como fuerza será obtenida de la siguiente manera :

$$F_{\nu p} = \frac{d_1 + de}{200} \quad (H - he) \times P\nu$$

ALTURA (m)	POSTE DE FIERRO 12/300		FACTOR FORMA 1.4	DE
	Altura de aplicación de la presión del - viento (m)	4.28		
12.0	Fuerza del viento so bre el poste F _{vp} (kg)	51.05	72.31	
	Momento del viento - en el poste Mup (kg.m)	221.06	309,50	

RESULTADOS DE CALCULOS JUSTIFICATIVOS

CUADRO Nº 2.2.5.1

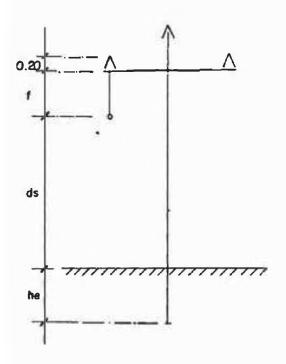
CONDUCTOR: HIPOTESIS: TIPO DE POSTE: NORMAL AAAC – 95 mm² SD

DBSERVACIONES:

12/300

VANO GRAVANTE VANO MEDIO:

ANGULO TOPOGRAFICO:


150 m 00

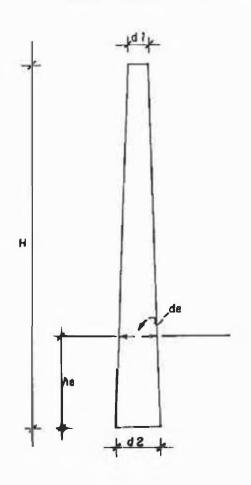
270 m

RETEN	IDAS	CARGAS L	ANIGUTIDINO.	LES	CARGAS V	ERTI	CALE	ES	CARGAS T	RAN	SVER	SAL	ES	
ANGULO CON EL POSTE,	FUERZA EN LA RETENIDA.	ESFUERZO DE TRABAJO EN EL APOYO DE LA RETENIDA.	DIFERENCIA DE VANOS.	ROTURA DE CONDUCTOR.	ESFLERZO DE TRABAJO EN EL EMPOTRAMIENTO.	PESO DE MONTAJE.	PESO DE CONDUCTOR Y ACCESORIOS.	FUERZA DE COMPRESION DE RETENIDA.	ESFUERZO DE TRABAJO EN EL APOYO DE LA RETENIDA.	VIENTO SOBRE POSTE.	VIENTO SOBRE AISLADORES.	VIENTO SOBRE CONDUCTOR.	ANGULO TOPOGRAFICO.	DESCRIPCION
GRADOS	K q.	Kg/mm²	Χ.Ω.	Kg.	Kg/mm ²	XQ.	Kg.	Xg.	Kg/mm ²	. кд.	XQ.	Kg.	Kg.	UNIDADES
1	1	; ;	t.	1	1.10	339.00	439.20	1	1	33.00	12.00	45.36	0.00	VALORES
1	Ĭ													

5.10.4 Cálculos Justificativos de Postes de Madera:

Dimensionamiento de Postes de Madera para Ramales de Línea de 20 kV.

f = H - ds - he - 1.37
(Se considerará para este caso, una ds = 5.5)


SECCION DE CONDUCTOR	H (m)	11.00	
	he	1.70	
25 mm ²	f	2.40	
	V max	135	
	T max	190	

V max = vano máximo equivalente en terreno plano

To max= tiro horizontal máximo en condiciones desfavorables.

Postes de Alineamiento tipo MS:

- Efecto del viento sobre el poste

Profundidad de enterramiento

he = 0.1 H + 0.60

LARGO	LARGO DE	LARGO	LARGO
	ENTERRA-	UTIL	ACTIVO
	MIENTO (m)	(m)	(m)
11	1.7	9.30	9.00

DIMENSIONES DE POSTES DE MADERA

ALTURA H	Clase	6
(m)	Grupo	D
	Circunferencia Mínima en la cabeza (cm)	40
n	Diámetro mínimo en- la cabeza (cm) (di)	12.73
	Circunferencia mínima en el terreno (cm)	73
	Diámetro mínimo en - el terreno (cm) (de)	23.23

- Cálculo de la presión y acción del viento (C.N.E.)

$$Pv = 0.0042 \ v^2$$
 $Z = \frac{(H-he)}{3} \ x \frac{(de+2d_1)}{de+d_1}$ $Pv = 24 \ kg/m^2$ $Fvp = \frac{d_1 + de}{200} \ x (H-he) \ x Pv$

	Clase	7	FACTOR DE FORMA
ALTURA (m)	Grupo	D	1.4
	Altura de aplic <u>a</u> ción de la pre sión del viento (m)	4.21	
11.0	Fuerza del viento sobre el poste F _{vp} (kg)	37.64	52.69
	Momento del vien- to/poste M _{vp} (kg.m)	158.47	'221.86

El efecto del viento para este tipo de postes será de un promedio de 25 kg a 30 cm de la punta y un momento de 222 kg.m.

- Tracción de los conductores y viento sobre ellos

Condiciones Normales

Predominan las cargas transversales

Fvc = fuerza del viento/conductor

 F_{vp} = fuerza del viento/poste

To = fuerza por ángulo topográfico

factor de seguridad = 3

Condiciones de Falla

Predomina rotura de conductor

 F_t = tiro unilateral : 75% de tiro E.D.S. (To)

factor de seguridad = 2

$$F_{vc} = Pv \times \frac{\phi_c}{1000} \times L \times COS \propto \frac{\alpha}{2}$$

F = fuerza del viento sobre cl conductor; kg

 $P_{v} = \text{presión del viento; kg/m}^2$

Te = 2 To sen
$$\frac{\alpha}{2}$$

 T_c = tiro de los conductores; kg

To = tiro de los conductores en las condiciones - que se deseen, kg.

$$F_c = F_{vc} + Tc$$

 $F_c = fuerza$ total de los conductores

Momento debido al viento y tiro de conductores

M_c = mommento de los conductores

$$M_c = 3 F_c \times (\Sigma h)$$

M = momento debido al viento y tiro de conductores

$$M = M_{vp} + M_{c}$$

<u>Esfuerzo en la Línea de Tierra (debido a la acción</u> del viento) y tiro de los conductores

$$Rv = \frac{M}{3.13 \times 10^{-5} \times C^3}$$

c = circumferencia a nivel de tierra (cm)

^e <u>Esfuerzo debido a cargas verticales</u>

$$R_c = \frac{P}{S} (2 + k \frac{h^2 S}{\mu_x I})$$

P = suma de cargas verticales
 peso del poste + peso de accesorios + peso de
 operario + peso de conductores

K = coeficiente que depende del material, 2 para la madera

/ = coeficiente para poste empotrado; 0.25

S = sección en el empotramiento, cm²

I = momento de inercia de la sección, cm⁴

h = altura libro del poste; m

ALTURA (m)	CLASE	GRUPO	CARGA DE ROTURA (Kg)	ESFUERZO MAXIMO FLEXION Kg/cm ²	DIAMETRO CABEZA (cm)	DIAMETRO TERRENO (cm)
11	6	D	680	550	12.73	23.32

De acuerdo con estas características y el diagrama de utilización, tendremos los siguientes valores de :

-	Esfuerzos	en	Condiciones	Normales
_	D97 0C1 503	CII	COMMITTER	MOI WOTES

α.	м	(*) F _p	R _v	R _c	Rarot
grados	Kg - m	Kg	Kg/cm ²	Kg/cm ²	Kg/cm ²
0°	1646.78	180.96	135.24	24,11	159.35
2 °	1863.84	204.81	153.07	24.11	177.18
3 °	1972.52	216.76	161.99	24.11	186.10
4°	2080.92	228.67	160.90	24.11	195.01
5°	2189.05	240.55	179.78	24.11	203.89

(*) Fuerza aplicada a 30 cm de la punta.

En estas condiciones el poste de madera ofrece un esfuerzo de trabajo considerando un coeficiente de seguridad =3, como parte del esfuerzo de rotura.

$$R_r = \frac{600}{3} = 200 \text{ Kg/cm}^2$$

- Esfuerzos en Condiciones de Falla (rotura de un conductor).

×	М	R _v	R _C	Rf	Rrot
grados	Kg. m	Kg/cm ²	Kg/cm ²	Kg/cm ²	Kg/cm ²
0 °	0	0	24.11	64.73	88.84
2 °	70.13	5.76	24.11	64.73	94.60
3°	105.19	8.65	24.11	64.73	97.49
4 °	140.26	11.52	24.11	64.73	100.36
5 °	175.33	14.39	24,11	64.73	100.23

En estas condiciones el poste de madera ofrece un esfuerzo de trabajo tal como:

$$R_{t} = \frac{R_{rot}}{2} = 300 \text{ Kg/cm}^2$$

- Los cálculos anteriores asegurar la utilización de los postes de 11 m de clase 6 como soportes de suspensión en no más de 4° de ángulo de cambio de dirección para vanos de 340.
- e En condiciones de falla se ha estimado el tiro mecánico del conductor como el 75% del tiro E.D.S.
 - Para efectos de comprobación por compresión, se ha asu mido un peso total de 480 kg verticales incluidos: pe so del poste, peso de accesorios, peso de operario, pe so de conductores.
- Cálculo de vano máximo por distancia entre fasés

Para cruceta de 3.65 m (121) de longitud se tiene una separación entre fases de 2.20 m, colocada a 1.37 del vérti ce del poste.

La flecha máxima para este caso será :

$$f \max = \left(\frac{d \min - 0.0076 \text{ V}}{0.65}\right)^2 + 0.60$$

f max = 10.6 m

 $V \max = 340 \text{ m}$

O sea para conductores de 25 mm² los vanos máximos por separación entre fases, utilizando la cruceta mencionada, serán de aproximadamente de 340 m.

Para crucetas de 6.00 m de longitud se tiene una separa - ción entre fases de 2.90 m cuando se usa una disposición horizontal en H.

$$f \max = \frac{\left(\dim - 0.0076 \text{ V}\right)^2}{0.65} + 0.60$$

$$f = 18.47 \text{ m}$$

V max = 460 m

Postes de Alineamiento tipo MAO: Este poste es análogo al anterior, diferenciándose en que los conductores son anclados con cadenas.

LISTA DE POSTES DE MADERA UTILIZADOS

- 1. Poste de Alineamiento tipo MS
- 2. Poste de Anclaje tipo MAO
- 3. Poste de Anclaje tipo MP3
- 4. Poste para Angulo hasta 25° tipo MA25
- 5. Poste para Angulo hasta 60° tipo MA60
- 6. Poste de Retención tipo MR
- 7. Poste Terminal tipo MPT
- 8. Postes de Derivación tipo MHD

NOTA No se incluyen los resultados de los cálculos para los postes de armado tipo MHD, ya que éste tuvo como origen lograr una mejor disposición de los pararrayos de óxido de zinc.

RESULTADOS DE CALCULOS JUSTIFICATIVOS

CUADRO Nº 2.2.6.1

TIPO DE POSTE: CONDUCTOR: **OBSERVACIONES:** AAAC NORMAL MS 25 4 DE FALLA

> ANGULO TOPOGRAFICO: VANO GRAVANTE : VANO MEDIO

340 m 170 m 00

CARGAS LON	SITUDINALES	CARGAS	VERTICA	ALES	CARGAS TRANS	SVERSALES	
ESFUERZO DE TRABAJO EN EL APOYO DE LA RETENIDA.	DIFERENCIA DE VANOS.	ESPUERZO DE TRABAJO EN EL EMPOTRAMIENTO.	DE MONTAJE.	E COMPRESION D	ESFUERZO ACTUANTE EN EL EMPOTRAMIEN- TO ESFUERZO DE TRABAJO EN EL APOYO DE LA RETENIDA.	S S	
Kg/mm²	Xq.	Kg/c m²		Xg.	Kg/cm ²	X 9 9	UNIDADES
* 1	1 1	24.11	430	50	135.24	52.58	VALORES
	ESFUERZO DE TRABAJO EN EL APOYO DE LA Kg/mm²	DIFERENCIA DE VANOS. ESFUERZO DE TRABAJO EN EL APOYO DE LA Kg/mm² RETENIDA. Kg	ESFUERZO DE TRABAJO EN EL EMPOTRAMIENTO. Kg/cm² 24. ROTURA DE CONDUCTOR. Kg DIFERENCIA DE VANOS. Kg ESFUERZO DE TRABAJO EN EL APOYO DE LA Kg/mm²	PESO DE MONTAJE. Kg. 430 ESPLERZO DE TRABAJO EN EL EMPOTRAMIENTO. ROTURA DE CONDUCTOR. DIFERENCIA DE VANOS. Kg Kg Kg	PESO DE COMPRESION DE RETENIDA. PESO DE CONDUCTOR Y ACCESORIOS. PESO DE MONTAJE. ESPUERZO DE TRABAJO EN EL EMPOTRAMIENTO. ROTURA DE CONDUCTOR. ESFUERZO DE TRABAJO EN EL APOYO DE LA RETENIDA. Kg. Kg/mm²	VIENTO SOBRE POSTE. ESPUERZO ACTUANTE EN EL EMPOTRAMIEN- Kg/cm² 135 ESFUERZO DE TRABAJO EN EL APOYO DE LA Kg/cm² 135 ESFUERZO DE TRABAJO EN EL APOYO DE LA Kg/mm²	VIENTO SOBRE CONDUCTOR. VIENTO SOBRE AISLADORES. VIENTO SOBRE AISLADORES. Kg. 6 VIENTO SOBRE POSTE. ESPUERZO ACTUANTE EN EL EMPOTRAMIEN- Kg/cm² 135 ESFUERZO DE TRABAJO EN EL APOYO DE LA Kg/mm² - PESO DE COMPRESION DE RETENDA. FUERZA DE COMPRESION DE RETENDA. PESO DE MONTAJE. Kg. 50 PESO DE MONTAJE. Kg. 430 PESPUERZO DE TRABAJO EN EL EMPOTRAMIENTO. Kg. 430 ROTURA DE CONDUCTOR. CSPUERZO DE TRABAJO EN EL APOYO DE LA Kg/mm² 24 ESPUERZO DE TRABAJO EN EL APOYO DE LA Kg/mm² 24 RETENDA.

5.11 DIMENSIONAMIENTO DE CRUCETAS

5.11.1 Cruceta de fierro en Monopostes Han sido diseña das para soportar las cargas verticales tal como el peso de los conductores relacionados a un vano gravante estimado que ofrezca condiciones desfavorables, el peso del conjunto de aisladores y accesorios y el peso even tual de un operario.

El coeficiente de seguridad que se considerará para el di seño de las crucetas será igual a 2 según el C.N.E.

Los análisis previos han tenido en cuenta su disposición y tipo de ensamble con el poste, llegando a clasificarse esencialmente en :

cruceta simple en poste de alineamiento cruceta doble en poste de alineamiento cruceta doble en poste terminal

las mismas que serán utilizadas tanto en la línea de simple terna (a las minas) como en la línea de doble terna (Salidas Nos. 3 y 4).

Estas crucetas de acero serán ángulos de lados iguales, - con esfuerzo de rotura de 4100 kg/mm^2 .

Los cuadros que presentan a continuación representan en unos casos comparaciones entre momentos actuantes y resistentes; y en otros, comparaciones entre esfuerzos actuantes y resistentes.

Los coeficientes de seguridad, en el caso de crucetas simples en condiciones de falla no incluye el 27% de sobre - carga permitido por el C.N.E., por lo que podemos disminuir hasta 1.3 como coeficiente permitido.

- han sido calculadas teniendo en cuenta esencial mente su disposición como pórtico y una parte como una viga CANTILEVER. Las consideraciones mecánicas tenidas
 en cuenta permitieron obtener resultados más o menos fa
 vorables; pero fueron las ubicaciones adecuadas de los
 brazos de soporte (ángulos de acero) los que optimizaron
 el uso de un determinado ángulo de acero. La necesidad
 de utilizar esta cruceta obedece simplemente a que en las
 rutas de líneas los vanos sobrepasan los requerimientosde distancias mínimas a medio vano.
- 5.11.3 <u>Crucetas de madera</u>: Estas también serán diseñadas para soportar las mismas cargas verticales mencionadas en los puntos anteriores.

La restricción existente es que la cruceta de madera no debe ser menor que 3 pulgadas por lado.

En el presente estudio se ha considerado la utilización del eucalipto como madera fuerte, la misma que debe ser tratada con sales hidrosolubles y tener un esfuerzo máximo de 400 kg/cm^2 .

Estas serán utilizadas en postes de madera en los Ramales de Línea.

Los resultados de cálculos se muestran en los Cuadros mostrados a continuación:

DISEÑO DE CRUCETAS DE MADERA

- Cálculo de Cruceta Simple en poste de alineamiento Condiciones Normales

DIMENSIONES DE	MOMENTO	MOMENTO	C.S.
CRUCETA DE MA-	RESTSTENTE	ACTUANTE	
DERA	kg. cm.	kg. cm.	
$3\frac{1}{2}$ " x $4\frac{1}{2}$ "	77428.0	22710.14	3.40

Condiciones de Falla : Rotura de un conductor

DIMENSIONES DE CRUCETAS DE MADERA	MOMENTO RESISTENTE kg. cm.	MOMENTO ACTUANTE kg. cm.	C.S.
$3\frac{1}{2}$ " x $4\frac{1}{2}$ "	60222-5	16010.15	3.76

- Cálculo de cruceta doble en poste terminal Condiciones Normales

DIMENSIONES DE CRUCETAS DE MADERA	MOMENTO RESISTENTE kg. cm.	MOMENTO ACTUANTE kg. cm.	c.s.
$3\frac{1}{2}$ " x $4\frac{1}{2}$ "	638732.0	36225.0	17.63

5.1 DIMENSIONAMIENTO DE PINES

Los pines son accesorios que unen a los conductores con el aislador tipo pin adosados a las crucetas o a los postes; y que son instalados en estructuras de alineamiento y en los de cambio de dirección hasta ciertos ángulos de la línea.

Por su disposición y su tipo de funcionamiento en el conjunto de dicha unión serán diseñados para soportar fuer ~ zas afectadas por un coeficiente de seguridad igual a 3.

DISERD DE CRUCETAS DE ACERO

SWI CONSULTORES ASOCIADOS S.A.

CALCULO DE CRUCETA SIMPLE EN POSTE DE ALINEAMIENTO D.T.

CONDICIONES NORMALES

DIMENSIONES(pulg) = 3 * 3 ESPESOR(PULG) = .5

MOMENTO RESISTENTE MOMENTO ACTUANTE C.S.

(kg-ca) (kg-ca)

80638 25233.1 3.19572

CONDICIONES DE FALLA: ROTURA DE UN CONDUCTOR

DIMENSIONES (pulg) = 3 * 3 ESPESOR (PUL6) = .5

ESFUERZO RESISTENTE ESFUERZO ACTUANTE C.S.

(kg/cn2)

4600 2569.88 1.78997

CALCULO DE CRUCETA DOBLE EN POSTE DE ALINEANIENTO D.T.

CONDICIONES HORMALES

DIMENSIONES(pulg) = 3 € 3 ESPESOR(FUL6) = .25

MOMENTO RESISTENTE NOMENTO ACTUANTE C.S.

(kg-cm) (kg-cm)

86966 27197.7 3.19828

EGNDICIONES DE FALLA: ROTURA DE UN CONDUCTOR

DIMENSIONES(pulg)= 3 # 3 ESPESOR(PUL6)= .25

ESFUERZO RESISTENTE ESFUERZO ACTUANTE C.S.

 (kg/ce2)
 (kg/ce2)

 9200
 756.04

CALCULO DE CRUCETA DOBLE EN POSTE TERMINAL D.T.

COMDICIONES NORMALES

ESFIO.RSTIE. ESFIO.ACTIE. TOT. L.S.

(kg/cm2)

9200 999.5 9.20461

DISENO DE CRUCETAS DE ACERO

S&Z CONSULTORES ASSCIADOS S.A.

CALCULO DE CRUCETA SIMPLE EN POSTE DE ALINEANIERTO S.T.

CONDICIONES NORMALES

DIMENSIONES(pulg) = 3 * 3 ESPESOR(PULG) = .375

MOMENTO RESISTENTE

NOMENTO ACTUANTE

C.S.

(kq-cm)

(kg-ca)

62790

24074.3 2.60818

CONDICIONES DE FALLA: ROTURA DE UN CONDUCTOR

DIMENSIONES(pulg) = 3 * 3

ESPESOR(PULG) = .375

ESFUERZO RESISTENTE ESFUERZO ACTUANTE

C.S.

(kg/ce2) 4600

(kg/cg2)

2758.61

1.6675!

CALCULO DE CRUCETA DOBLE EN FOSTE DE ALINEAMIENTO . S.T.

CONDICIONES NORMALES

DIMENSIONES (pule) = 3 + 3 ESPESOR (PULS) = .25

MOMENTO RESISTENTE

MORENIO ACTUARTE

. . . .

Hig-chl

(Borgai)

36985

24550.2

1,52773

CONSISIONES DE FALLA: ROTURA DE UN CONDUCTOR

ESPUERZO RESISTENTE ESPUERZO ACTUANTE

(kg/cm2)

the child

9200

523.218

14, 500

5.3.

CALCULD SE ERUCET- DOBLE EN POSTE TERRINAL S.T.

CONDICIONES NIRMALES

DIMENSIONES (pulg) = T + 7 ESPESOR(pulg) = .25

ESPID.RSTIE. 1202 28:

ESFZO.ACTIE.TOT. (Ag/chile

524.611

11.....

2.3.

9200

5.12.1 Pines en crucetas de fierro:

Pines en postes de alineamiento y cambio de dirección en una cruceta.

En este caso, el pin estará afectado por la fuerza - que ejerce el viento sobre los conductores. Esta fuerza za será ;

$$F_t = 2 \text{ Tc Sen } \frac{\infty}{2} + F_{VC} \times \text{Cos } \frac{\infty}{2}$$

 $F_{VC} = P_V \times \emptyset_C \cdot L \cdot \text{Kg}$

 $P_v = \text{presion del viento } Kg/cm^2$

Ø = diámetro del conductor mm

L = vano viento (representa la longitud del conduc tor expuesto al viento) m. = 250

 $F \min pin = 3 \times F_t$

5.12.2 <u>Pines en crucetas de madera</u>: Al igual que la parte anterior, los pines solamente estarán afectados por la fuerza del viento que ejerce sobre los conductores.

Por consiguiente, en ambos casos se ha tenido en cuenta - el ángulo topográfico en el pin cuando se aplique sobre él una fuerza igual a la de rotura del mismo.

A continuación se muestran resultados de las fuerzas actuantes en el pin y las fuerzas mínimas resistentes de - los mismos, teniendo en cuenta variaciones de ángulos pequeños que siempre se debe considerar, ya sea por topografía o por montaje, para la selección y el uso de los pines.

PINES EN CRUCETAS DE MADERA (CONDUCTOR 25 mm²)

a	F _t	Fmin.pin	F _{min.pin}
GRADOS	kg.	kg.	16.
0	52.28	156.84	345.77
5	72.48	217.44	479.37
10	92.54	277.62	612.04
15	112.45	377.35	743.72
20	132.13	396.39	873.89

Donde : ∝ angulo topográfico

F_{t.} = fuerza total actuante

Fmin.pin= fuerza mínima requerida en el pin Se selecciona pines de 680 kg de fuerza mecánica de rotura (1M-30467 AU CATG:NGK-15C).

PINES EN CRUCETAS DE FIERRO (CONDUCTOR 95 mm²)

×	F ₍	F _{min.pin}	F min.pin
GRADOS	kg.	kg.	16.
0	75.60	226.80	500.00
5	80.74	242.22	533-90
10	181.66	544.98	1201.46
1 5	234.22	702.00	1549.08

Se selecciona pines de 680 kg de fuerza mecánica de rotura (1M-30407 At — CATIG: NGE 15e $^{-}$

5.13 DIMENSION AMIENTO DE RETENIDAS

Las retenidas han sido diseñadas considerando la utilización de material preformado, tal como se muestra en el Plano Nº 1022 y adecuándolas para resistir las fuerzas laterales y para reducir la deflexión de los postes en posiciones de ángulo, terminales y en los cambios posibles de sección.

Según el C.N.E. las retenidas tendrán una carga de rotura mínima de 1750 kg. y la absorción de las cargas serán como sigue:

- 50% de su carga de rotura en postes de cambio de dirección y en postes terminales
- 80% de su carga de rotura en postes de retención o an claje.

En el presente proyecto se ha considerado la utilización de preformado de acero galvanizado, con características - que se muestran en el Cuadro 5.5.1 y sus utilizaciones en la línea de subtransmisión se indican en el Cuadro 5.5.2.

CUADRO 5.5.1

CARACTERISTICAS MECANICAS DE GUY-GRIP DEAD-END

(GALVANIZED STEEL)

C 0 D	I G O	SM	115	EIIS
CATA LOG	DIMENSION DIAMETRO	SIEMENS MARTIN	HIGH STRENGTH	EXTRA HIGH STRENGTH
191.44	Pulg.	kg.	kg.	kg.
GDE- 2106	5/16 "	2426.71	3625.74	5050.23
GDE-2107	3/8"	31 52 . 46	4898.70	0055.32
GDE-2108	7/16"	4241.00	6577.05	9434.72
	4.			

CUADRO 5.5.2

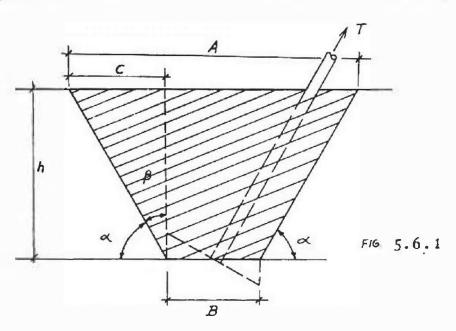
DOBLE	TERNA	95	mm ²

Tipo de Poste	kg.	Retenida	Tipo Retenida
PDDS	2732.34	3806.68	3/8" IIS
PD65	3313.25	5464.50	7/16" HS
ADH60	1562.63	31 25.26	3/8" SM
RDH	777.28	971.60	5/16" SM
PDT	2556.92	5112.00	7/16" HS
PDDA	1903.34	3806.68	3/8" HS
RAMALES 25 m	_p ²		
Tipo de Poste	kg	Retenida	Tipo Retenida

Tipo de Poste	kg	Retenida	Tipo Retenida
MP 3	441.73	883.46	5/16" SM
MA 2 5	715.47	1430.94	5/16" SM
MA 60	1204.55	2409.10	5/16" SM
MIR	535.11**	668.88	5/16" SM
MPT	1094.14	2188.28	5/16 ! SM
MPT	1094.14	2188.28	

Se considera el 80% del tiro de rotura.

CONCLUSION


Para uniformizar y realizar el montaje de la forma más _ práctica se considera; los siguientes criterios :

- Para las troncales se usarán retenidas con cable de __acero de 3/3" Ø SM y 7/16" Ø HS respectivamente.
- 2. Para los ramales se usarán retenidas con cable de acero de 3/8" \emptyset SM.

5.14 DIMENSIONAMIENTO DE BLOQUE DE ANCLAJE

Con el criterio de uniformizar las dimensiones del bloque de anclaje, elegáremos una loza de 0.5 x 0.5 x 0.15 m de concreto, cuya resistencia al arranque estará determinada por la profundidad de enterramiento de la loza, ya que la fuerza que actúa sobre el cable de retenida será soportado por el peso de la tierra contenida en un tronco de pirámide.

La disposición esquemática se muestra en la Figura 5.6.1

Como se puede apreciar la base superior del tronco depende del ángulo " \propto " del deslizamiento del suelo y de la profundidad h. Las vistas y cortes relacionados a la disposición se muestran en la Figura anterior.

La comparación de fuerzas, como se ha manifestado, se realizará según:

$$V = \frac{1}{3} h \cdot \left[(B + 2C)^2 + B^2 + \sqrt{(B + 2C)^2 \cdot (B^2)} \right]$$

donde :

V = volumen de tierra que representa el tronco de cono

B = lado de la base inferior

A = lado de la base superior

C = proyección en el lado de la base superior

h = profundidad de enterramiento

Las consideraciones que sobre el suelo se tienen, son ún \underline{i} camente el ángulo de deslizamiento y la densidad del \underline{te} rreno, las mismas que se muestran en el Cuadro N° 5.6.1

CUADRO Nº 5.6.1

CLASE DE TERRENO	ANGULO DE DESLIZAMIENTO	DENSIDAD DEL TERRENO (kg/m ³)
arena gruesa	30°	1500 ,
tierra fuerte	55°	1800
tierra vegetal	36°	1700
roca	85°	2600

Al igual que en la parte correspondiente a fundaciones, - los datos mostrados son para una profundidad aproximada de 2 metros.

Mostrando solamente el caso más desfavorable; esto es, terreno de baja densidad con un ángulo de inclinación - ∞ = 55 (ángulo entre la retenida y el poste), se ha seleccionado varillas de acuerdo a los esfuerzos requeridos por las retenidas, considerando una varilla de 2.40 m de longitud, sobresaliendo 20 cm se tiene:

$$h = 1.76$$
, $c = 1.23$ $B = 0.40$ $y \beta = 35^{\circ}$

$$B = 0.40$$
 y $B = 35^{\circ}$

V = 5.56 m3, la fuerza en la varilla de 8,340 kg.

En el Cuadro 5.6.2 se muestra las características de las varillas, y en el cuadro adjunto se muestra la distribu ción de éstas para las troncales y ramales.

CUADRO Nº 5.6.2 CARACTERISTICAS VARILLAS DE ANCLAJE

TIPO DE VARILLA	DIAM. NOM. (pulg).	TIRO ROTURA	TIRO TRABAJO (kg)
A	5/8" Ø	72.57	36 2 9
В	3/4" Ø	10433	5216
С	1 " Ø	16329	\$105

Por consigniente, tendremos la signiente distribución :

SALIDA N°	Fza. REQUERIDA (kg)	TIPO DE VARILLA
2	5080.62	АуВ
3 y 4	6626.50	АуВ
Ramales	2409.10	A

5.15 CALCULO DE LAS FUNDACIONES CON EL METODO SULZBERGER

5.15.1 DESCRIPCION DEL METODO

El método se basa sobre un principio verificado experimentalmente, que para las inclinaciones limitadas tales que $tg \ll 0.01$, el terreno se comporta de manera elástica. En consecuencia se obtiene reacción de las paredes verticales de excavación y normales a la fuerza actuante sobre el poste.

En este método se usa el "coeficiente de compresibilidad del suelo", el cual depende de sus características y se - define así

Si se ejerce cierta presión p (T/m2) sobre un cilindro rígido éste penetra en el suelo una distancia d (m). El coeficiente de compresibilidad es la relación

$$C (T/m3) = \frac{P (T/m2)}{d (m)}$$

En base a este coeficiente que se determina tanto para el fondo de la fundación como para sus paredes, se puede de cir que la resistencia que se opone a la inclinación de la fundación se debe a dos efectos principales : 1) encas tramiento de la fundación en el terreno como también fricción entre el concreto y el terreno a lo largo de las paredes verticales normales a la fuerza actuante y 2) Reacción del fondo de la excavación provocada por las cargas verticales.

Las fuerzas mencionadas en 1) dan lugar a un "momento estabilizante lateral" $\rm M_S$ y las del 2) a un "momento estabilizante del fondo " $\rm M_b$, cuya suma debe igualar o superar al momento volcador $\rm M_v$ provocado por las fuerzas exteriores.

En el caso que sea $M_b > M_s$ (es el caso de fundaciones de poca profundidad y dimensiones transversales relativamente grandes) se requiere una seguridad adicional, es decir:

$$\frac{M_{s} + M_{b}}{M_{v}} = S_{real} \qquad S_{real} > S_{exigida}$$

Donde S_{ex} es un coeficiente de seguridad que depende del cociente $\frac{M_s}{M_h}$ y varía desde 1 a 1.5, de acuerdo a :

$$M_s/M_b$$
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 M_s/M_b 1.5 1.383 1.317 1.26 1.208 1.15 1.115 1.075

$$\frac{M_s/M_b}{S_{ex}}$$
 0.8 0.9 1.0

El método es de carácter general y se puede aplicar a las fundaciones de cualquier forma.

5.15.2 IMPLEMENTACION DEL METODO

El método Sulzberger se implementó mediante un programa - de computación, en la cual se tomó un modelo de fundación de base romboidal, y que además tuvo en cuenta los siguien tes parámetros:

```
C_t = coeficiente de compresibilidad de las paredes a una profundidad de 2 m (T/m3).
```

 C_b = Coeficiente de compresibilidad en el fondo de la excavación (a 2 m) (T/m3)

 γ_s = Peso específico del terreno (T/m3)

u = Coeficiente de fricción entre el terreno y concre to

 γ_c = Peso específico del concreto = 2.2 T/m3

L = Longitud total de la estructura (m)

 \emptyset_c = Diámetro del poste a nivel del terreno (m)

F = Fuerza aplicada en la punta de la estructura (T)

G_{se} = Peso del poste, accesorios, conductores y montaje más componente vertical de la retenida (T)

V = Volúmen de concreto (m3)

 V_{s} = Volúmen de tierra gravante (m3)

 β = Angulo de tierra gravante ($\approx 5^{\circ}$)

 G_{t} = Carga vertical total (T)

t = Altura de la fundación (m)

b = Longitud del lado de la base romboidal (m)

 M_s = Momento estabilizante lateral (T-m)

M_b - Momento estabilizante de fondo (T-m)

M_v Momento de vuelco, debido a fuerzas exteriores (T-m)

S = Coeficiente de seguridad real

S_{ex} = Coeficiente de seguridad exigida

El cálculo de las dimensiones de la fundación "b" y "t" - se efectúa en la medida que cumpla con el requisito de seguridad, o sea $S_{\rm real} > S_{\rm exigida}$. En el caso de no cum plir esta exigencia el programa automáticamente incrementa la profundidad de la cimentación "t", con incrementos de 10 cm hasta alcanzar el tope límite de $t_{\rm max} = 1.5e$; si aún no se cumple con la exigencia arriba establecida, a partir de aquí empieza a incrementar también en 10 cm ca da vez, el lado de la base romboidal "b" y así hasta lo - grar $S_{\rm real} > S_{\rm ex}$.

5.15.3 <u>SELECCION DE LOS COEFICIENTES "Ct" y "Cb"</u>

De acuerdo a los estudios geológicos del PSE-2 , sobre los distintos tipos de suelos por los cuales atrave sará la línea de 20 kV; se obtuvo la siguiente tabla :

			- 4
TIPOS DE TERRENO	COEFICIENTE DE COMPRESIBILIDAD (±) Ct2 (T/m3)	PESO ESPEC. s(T/m3)	COEFICIENTE DE FRICCION ENTRE CONCRETO Y TE RRENO u
R1,R2b,R4			
R5 y Rú	25,000	2.6	0.5
D1	14,000	1.5	0.5
D2	10,000	1.7	0.5
D3	3,000	1.7	0.4

TABLA I

(*) Estos datos son para una profundidad de 2 m, cuando \sim su profundidad es t, el Ct varía de acuerdo a Ct Ct2 x $\frac{t}{2}$

Para el fondo de la excavación se toma Ch = 1.2 Ct

NOTA : Los datos de la Tabla I fueron aproximados de acuer do al Libro Redes Eléctricas de Zoppetti, al artículo del Ingº Tadeo Maciejewski donde transcribe la Tabla Nº 80 de la Asociación Austriaca de Electrotécnicos.

5.15.4 TIPOS DE FUNDACIONES

Según el método empleado y teniendo en cuenta al plano de momentos paralelo a la diagonal de la base cuadrada del macizo, se han determinado cinco (5) tipos de fundaciones.

TIPO I

- Altura del macizo	1.9 m
- Lado de la base del macizo	0.9 m
- Longitud de empotramiento del poste	1.7 m
- Volúmen de excavación (+ 5%)	1.616 m3

Este tipo de fundación se usará en los postes de la salida N° 2 Pallasca-Santiago de Chuco y en tipos de suelo D1 y D2; D3 con algunas excepciones, tales como : PDS 11/300, AG5 11/300, PDA 11/300 y A20 11/300.

TIPO II

- Altura del macizo	2.0 m
- Lado de la base del macizo	0.9 m
- Longitud de empotramiento del p	oste 1.8 m
- Volúmen de excavación (+ 5%)	1.701 m3

Este tipo de fundación se usará en los postes de las salidas N° 3 y 4 Pallasca-Lacabamba-Pampas en los tipos de suelos D1 y D2.

TIPO III

- Altura del macizo	1.90 m
Lado de la base del macizo	I.15 m
- Longitud de empotramiento del poste	1.70 m
- Volúmen de excavación (+ 5%)	2.638 m3

Este tipo se usará en los postes de las excepciones del -Tipo I y suelo tipo D3 (PDS 11/300, AG5 11/300, PDA 11/300 y A20 11/300).

TIPO IV

- Altura del macizo	2.0 m
- Lado de la base del macizo	1.15 m
- Longitud de empotramiento del posto	1.80 m
- Volúmen de excavación (+ 5%)	2.777 m3

Este tipo de fundación se usará en los postes de las sali das N° 3 y 4 Pallasca-Lacabamba-Pampas en suelos tipo D3.

TIPO V

- Altura del macizo	1.9 m
- Diámetro de la base del macizo	0.8 m
- Volúmen de excavación (+ 5%)	1.0028 m3

Este tipo es de forma cilíndrica.

Se adoptará sólo para el caso del suelo tipo roca, por tener un alto coeficiente de seguridad. Es decir en RI, R2b, R4, R5 y R6.

5.15.5 CLASIFICACION DE FUNDACIONES POR TIPO DE POSTE

A continuación se muestran los resultados obtenidos por - la aplicación del método y la clasificación de las funda-ciones.

SALIDAS : PALLASCA-LACABAMBA-PAMPAS
TIPO DE SUELO : D1

TIPOS DE POSTES	TIPO DE FUNDACION	CANTIDAD APROXIMADA
SD 12/300	II	1
ADO 12/300	II	1
SD1 12/500	II	1
AD01 12/500	II	2
$SDH 2 \times 12/400$	II	4
ADHO 2 \times 12/400	II	1
$SDH1 2 \times 12/500$	II	2
ADH01 2 x 12/500	II	1
RDH 2 \times 12/500	II	1

SALIDAS : PALLASCA-LACABAMBA-PAMPAS

TIPO DE SUELO : D2

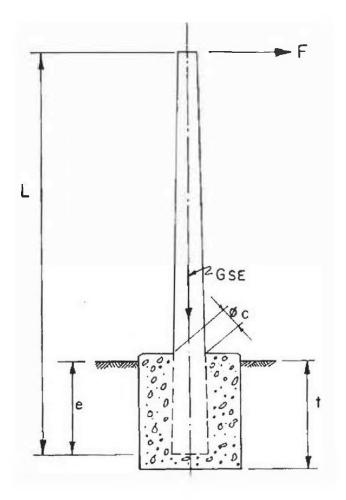
TIPOS DE POSTES	TIPO DE FUNDACION	CANTIDAD APROXIMADA
SD 12/300	II	12
ADO 12/300	II	1
SD1 12/500	II	1
ADO1 12/500	II	1
SDH 2 x 12/400	II	6
ADHO 2 x 12/400	II	10
PD65 2 x 12/300	II	1
ADH60 2 x 12/400	I J.	1
RDH 2 x 12/500	II	1
PDDA 12/300	II	1
PDI 12/300	11	1
PDDS 12/300	Tl	2

SALIDAS : PALLASCA-LACABAMBA-PAMPAS

TIPO DE SUELO : D3

TIPOS DE POSTES	TIPO DE FUNDACION	CANTIDAD APROXIMADA
SD 12/300	IV	2
ADO 12/300	IV	1
SD1 12/500	IV	1
ADO1 12/500	IV	1
ADHO 2 x 12/400	IV	1

SALIDAS N° 3 y 4 : PALLASCA-LACABAMBA-PAMPAS


TIPOS DE SUELOS : R1, R4, R5

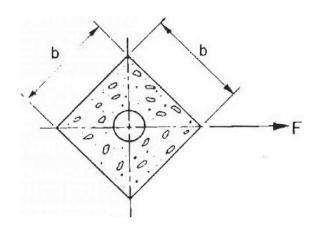
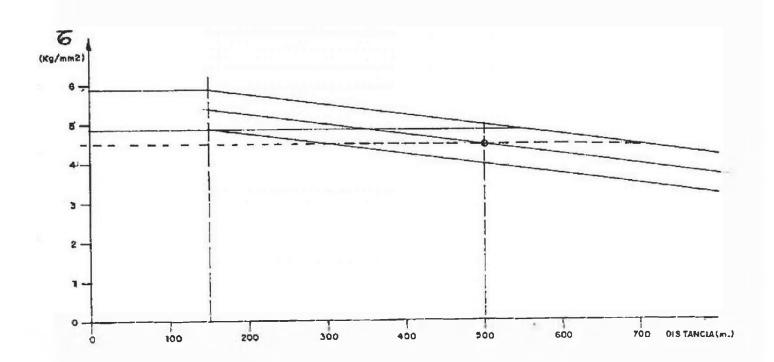

TIPOS DE POSTES	TIPO DE FUNDACION	CANTIDAD APROXIMADA
SD 12/300	v	4.
ADO 12/300	ν	4
SD1 12/500	ν	1
SDH 2 x 12/400	ν	3
ADHO 2 x 12/400	v	2
SDH1 2 x 12/500	ν	2
PDD5 12/300	v	1
ADH60 2 x 12/400	v	I
RDH 2 x 12/500	v	1
PDT 12/300	v	1

GRAFICO N° 5. 15

DISPOSICION DE LA FUNDACION PRISMATICA

CASO : FUERZA APLICADA EN PLANO DIAGONAL

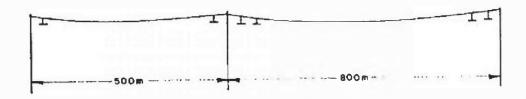
5.16 AMORTIGUADORES DE VIBRACIONES


5.16.1 GENERALIDADES

Según las Normas VDE 210/69 se requiere poner un buen sistema de protección eólica en el Conductor de Aleación de Aluminio, cuando ellos se tensen en 4 x 1.25 kg/mm² hasta un vano de 500 m.

5.16.2 SELECCION DE AMORTIGUADORES DE VIBRACION

La condición de diseño que se tiene es de 4.5 kg/mm2, lue go con este valor se elabora el gráfico que se muestra, de la cual se obtiene el Número de Amortiguadores por vano, que se indican en las hojas de localización.


UTILIZACION DE AMORTIGUADORES

< 500 O AMORTIGUADOR

> 500 1 AMORTIGUADOR, POR CADA LADO

> 700 2 AMORTIGUADOR. POR CADA LADO

ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO

Y MONTAJE DE EQUIPOS Y MATERIALES

6.0 <u>ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO DE EQ</u>UIPOS Y MATERIALES

6.1 CONDICIONES GENERALES

- 6.1.1 Objeto En este capítulo se proporcionan los as pectos y condiciones generales que deberán tenerse en cuenta para el suministro de los diferentes materiales y/o equipo electromecánico, que serán utilizados en las Líneas de Subtransmisión 20 kV del P.S.E. Nº 2
- 6.1.2 Alcance: Las Especificacions Técnicas comprendenla fabricación, pruebas en fábrica y entrega de
 los equipos y materiales para las instalaciones mencionadas en el acápite 6.1.1. El Contratista podrá presentaruna propuesta con materiales diferentes a los aquí pro
 puestos, siempre y cuando cumplan los requerimientos indicados y se demuestre que dichos cambios son más ventajo
 sos. ELECTROPERU en este caso se reserva el derecho de
 aceptar dicha propuesta.

En la preparación de las presentes especificaciones no se han considerado los detalles de construcción, pero el Proveedor si tendrá que incluir en su propuesta la garantía de que todos los materiales y equipos necesarios cumplan con las normas técnicas que más adelante se detallan.

6.1.3 <u>Planos y Esquemas</u>: Forman parte de las Especificaciones Técnicas, los planos de disposición y de talle de los equipos y materiales a suministrarse.

En el caso que el Contratista presente una alternativa di ferente a las de esta propuesta base, deberá presentar a consideración de ELECTROPERU S.A. todos los planos nuevos correspondientes así como las normas de fabricación e instalación a tener en cuenta.

- 6.1.4 <u>Ubicación</u>: El Plano Nº 1001 muestra el re corrido de las líneas desde Pallasca hasta los puntos que se quieren alimentar.
- 6.1.5 Condiciones de Servicio: Los equipos y acceso rios que serán utilizados en esta línea operarán en un medio ambiente típico de nuestra serranía (terrenos de cultivo, quebradas, cerros y cruces de ríos) ubicada entre los 2,000 3,800 msnm.

Las condiciones generales a tenerse en cuenta para el su ministro y ejecución de la obra, se encuentran detalladas en la Memoria Descriptiva.

Los equipos deberán ser diseñados para soportar fuerzas sísmicas de las siguientes características :

- Aceleración en cualquier dirección horizontal 0.5 g - Aceleración en dirección vertical 0.2 g - Frecuencia 10 c/s
- 6.1.6 <u>Definiciones</u>: Con la finalidad de agilizar el entendimiento de estas Especificaciones Técnicas designaremos a ELECTROPERU como el Propietario y como Postor, Proveedor o Fabricante a la Empresa ofertante.

6.1.7 Normas Aplicables: Los materiales y/o equipos electromecánicos a suministrar, en lo que se refie re a su fabricación, deberán cumplir con las normas señaladas y las disposiciones del Código Nacional de Electricidad.

Deberán tenerse en cuenta las recomendaciones de los si guientes Organismos:

- ELECTROPERU S. A.
- Instituto de Investigaciones Tecnológicas Industriales y de Normas Técnicas (ITINTEC)
- Comisión Electrotécnica Internacional (C.E.I.)
- American Society for Testing and Materials (ASTM)
- American National Standards Institute (ANSI)
- Verban Deutscher Elektrotechniker (VDE)
- Union Technique de L'Electricité (UTE)

Queda entendido que si existen normas ITINTEC que cubran el equipo o material que se especifica, dichas normas se rán de aplicación obligatoria, aún cuando no se mencione explícitamente.

Serán igualmente aceptables otras normas o diseños típi cos, siempre y cuando no signifiquen una reducción de la calidad, seguridad y operabilidad de los elementos suministrados.

Cuando el postor ofrezca diseños alternativos, deberán ser claramente enunciados, de modo que se pueda analizar claramente la alternativa propuesta.

6.1.8 <u>Idiomas</u>: El idioma oficial será el Castellano. Si el Postor quisiera anexar información o cualquier otro documento en otro idioma, serán considerados si se

acompaña con su traducción oficial, teniendo validez ésta.

- 6.1.9 <u>Unidades de Medida</u>: Las dimensiones y medidas del equipo ofertado serán dados en unidades del Sistema Internacional de Medida. Si estuvieran en otras unidadesdeberá indicarse su equivalente en unidades métricas.
- 6.1.10 Información Técnica: El Postor deberá adjuntar con su oferta toda la información solicitada en las presentes Especificaciones Técnicas así como planos, catálogos, folletos descriptivos, esquemas y cualquier otra información que se considere necesario para demostrar que lo ofertado cumple con lo solicitado.
- 6.1.11 <u>Inspección y Pruebas</u>: El Fabricante deberá efec tuar todas las pruebas normales durante la etapa de fabricación de los materiales ofertados.

Estas pruebas se realizarán cumpliendo con las normas esta blecidas en las Especificaciones Técnicas tanto para los materiales como para el equipo terminado. Todas las prue bas se realizarán hasta la puesta en operación y recepción en los talleres o laboratorios del Proveedor.

ELECTROPERU se reserva el derecho de estar presente en cualquiera de las pruebas a realizar, por tal motivo el Proveedor deberá anticipar la fecha en que se realizarán - debiendo indicar en detalle el tipo y extensión de la mis ma.

Todos los gastos para estas pruebas deberán estar incluí - dos en la oferta y en el contrato.

6.1.12 Acabado de los Equipos: Debido al hecho de que los equipos a suminstrarse operarán a la intempe - rie, se deberá dar un tratamiento especial contra la corro sión.

- 6.1.13 <u>Instrucciones para Embalaje</u>: Todos los equiposy materiales deberán ser cuidadosamente embalados en cajas o jabas u otra protección adecuada como para so portar el largo tiempo de transporte por mar y por tierra.
- 6.1.14 <u>Transporte y Entrega</u>: Todos los despachos de ma teriales y equipos de procedencia extranjera se rán por vía marítima con destino al puerto de Chimbote.

ELECTROPERU se encargará del transporte de los equipos y materiales después de que sean desembarcados en el puerto de destino.

Cuando los equipos y materiales sean fabricados en el Pe rú, el Froveedor podrá elegir el método de transporte que considere más conveniente, debiendo entregar los equipos-y/o materiales a ELECTROPERU en los puntos de destino que se señala en las Bases de Licitación.

La entrega de materiales se hará en el lugar designado por ELECTROPERU para lo cual el Proveedor elaborará un programa de entrega de acuerdo a los requerimientos de ELECTROPERU.

ELECTROPERU no recepcionará materiales o equipos electromecánicos que hayan sufrido deterioro ya sea por transporte o manipuleo.

6.1.15 Garantía: El Proveedor deberá garantizar la ca lidad y eficiencia de los materiales y/o equipos-electromecánicos ofertados, para operar bajo las condicio nes y exigencias establecidas en las presentes Especifica ciones Técnicas.

El tiempo de garantía mínima será de l año contado la partir de la entrega del material y/o equipo electromecánico, correspondiendo al Proveedor el reemplazo en caso de falla durante este período.

6.2 <u>ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO DE POSTES DE</u> ACERO

6.2.1 Normas aplicables: Las siguientes normas según la versión vigente en la fecha de la convocatoria-a concurso forma parte de esta Especificación.

ASTM	A	36	Structural Steel
ASTM	A	233	Mild Steel Arc. Welding Electrodes
ASTM	A	235	Carbon Steel Forgings for General Indus
			trial Use
ASTM	A	307	Low Carbon Steel Externally and Interna-
			11y Threaded Standard Fasteners
ASTM	A	394	Galvanized Steel Transmissión Tower Bolts
			and Nuts

6.2.2 <u>Características Generales</u>: Los postes a utilizarse tendrán las siguientes características

. Longitud : 11 y 12 mt.

. Tipo : tubular

. material : acero

. Esfuerzo en la

punta : 200, 300, 400 y 500 Kg.

6.2.3 Materiales: El material a emplearse será el poste de acero tubular con un esfuerzo de rotura a la tracción de 37kg/mm² o similar siempre que resistan las car gas de diseño que figuran en el Plano. El Contratista podrá proponer alternativas que cumplan con lo aquí especificado, lo cual será examinado por ELECTROPERT para determinar su conveniencia.

- 6.2.4 Inspección: El Proveedor notificará al Propieta rio con suficiente anticipación el período de fabricación para permitir que el Propietario (si éste así -, lo desea), envíe un inspector a la Planta de Fabricación-para inspeccionar los materiales y la mano de obra.
 - 6.2.5 Pruebas de Postes: Si el Propietario así lo de sea y solicita, se probará un poste completo so bre cimientos firmes. Dicha prueba se efectuará en la fábrica o en cualquier ubicación que sea aceptada por las partes. Las pruebas serán realizadas en presencia de un representante autorizado del Propietario.
 - 6.2.6 Crucetas de Perfil Angular y Accesorios : Las crucetas se fabricarán de acuerdo a los planos sus características generales son :

Longitud : 3 y 6 mt.

• Espesor : $\frac{1}{4}$, 3/8" y $\frac{1}{2}$ "

Perfil angular 3" x 3"

. Material : fierro acerado

Estará provisto de abrazaderas y pernos de $\frac{1}{2}$ " \emptyset x 2" para la sujeción al poste de acero.

6.3 ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO DE POSTES DE MADERA Y CRUCETAS

6.3.1 Normas Aplicables : Los postes de madera deberánfabricarse según las siguientes Normas :

Norma ITINTEC 251.022 Poste de madera para tineas reas de conducción de energia.

Norma ITINTEC 251.023 Ensayos de rotura.

Norma ITINTEC 251.024 Poste de eucalipto.

Norma ITINTEC 251.025 Extracción de muestras.

Norma ITINTEC 251.026 Penetración de los preservantes

Norma ITINTEC 251.027 Valor tóxico y permanencia del preservante.

Todos los postes deberán traer la marca del fabricante im presa.

6.3.2 <u>Características Generales</u>: Los postes a utilizar se tendrán las siguientes características:

Longitud : 11

Clase : 6

Grupo : D

Ø min punta (cm) : 12.7

Ø min linea de tierra (cm) : 23

Carga de rotura (kg) : 680

El fabricante suministrará los valores que garantiza referente a :

- Longitud (m)
- Diámetro en el vértice (mm)
- Diámetro en la base (mm)
- Carga de trabajo (kg)
- Carga de rotura aplicada a 30 cm de la punta
- Coeficiente de seguridad
- Flechas previstas para 25%, 50%, 75% y 100% de la carga de trabajo
- Pesos (kg)
 Máxima desviación del eje

6.3.3 Crucetas Las crucetas serán fabricadas de acuer do a los planos respectivos, empleando madera de $3\frac{1}{2} \times 4 \frac{1}{2}$ " x 3 mt.

Las crucetas serán cortadas del mismo tipo de madera que el poste y en forma similar se les someterá al mismo tra tamiento de preservación.

Se utilizará dos tipos de crucetas, tal como se muestra - en los planos respectivos

- a) Cruceta simétrica de 3.65 m de longitud
- b) Cruceta simétrica de 3.00 de longitud

(Ver planos para dimensiones totales)

El fabricante suministrará los siguientes datos garantiza dos :

- Tiro horizontal (kg) (carga de trabajo)

 Tiro vertical (kg) ("")

 Tiro transversal (kg) ("")
- Coeficiente de seguridad
- Dimensiones
- Peso
- 6.3.4 <u>Inspección y Pruebas</u> Se prestará mayor importancia a lo siguiente:
- a) Inspección visual

- b) Verificación de las dimensiones según la longitud, clase y grupo de madera
- c) Ensayo de rotura
- d) Una carga correspondiente al 50% de la rotura no dará lugar a deformación permanente

En la inspección visual se controlará que no existan raja duras que más tarde pudieran originar la falla de la cru ceta.

Las técnicas de muestreo serán las recomendadas por ITIN TEC.

Se rechazará todo el lote si el 20% o más de las mues tras no satisfacen las exigencias de dimensiones, conicidad y flexión natural.

Se rechazará todo un lote si uno solo de los probados no cumple con las exigencias mecánicas.

6.4 ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO DEL CONDUC TOR DE ALEACION DE ALUMINIO

- 6.4.1 Alcance: Estas Especificaciones Técnicas cubrenlas condiciones requeridas para el suministro de
 los conductores de aleación de aluminio, engrasado interna y externamente que serán utilizados en las líneas de
 subtransmisión 20 kV del P.S.E. N° 2. Además describen su calidad mínima aceptable, fabricación, inspección, prue
 bas y entrega.
- 6.4.2 <u>Características Generales</u>: Los conductores serán de aleación de aluminio, con una conductibilidad de 52.5 %, IACS cableados y con las características principales siguientes:

DESCRIPCION

° Carga de rotura unitaria mínima del alambre del conductor (antes o des pués del cableado).

$$28.5 \text{ Kg/mm}^2$$

 Módulo de elasticidad mínima final de los conductores

° Coeficiente de dilatación lineal

$$23 \times 10^{-6} / ^{\circ} \text{C}$$

° Alargamiento máximo de los alambres a la rotura con muestra de 250 mm.

6.4.3 <u>Descripción del Material</u> El conductor será de aleación de aluminio del tipo Aluminio, Magnesio y Silicio, engrasado interna y externamente. Estará com puesto de hilos cableados concéntricamente y de único hi lo central.

Los hilos de la última capa o capa exterior serán cableados a la mano derecha, estando las capas interiores en sentido contrario entre sí.

La grasa presentará características compatibles con la operación termoeléctrica del conductor y de las condiciones climáticas.

6.4.4 Normas Aplicables: Las normas aplicables para el suministro de lingotes de aleación de aluminio, fa bricación de alambres, cableados del conductor, pruebas e inspección, serán las siguientes, según la versión vigente a la fecha de convocatoria a licitación

"Alambres de aluminio de sección ITINTEC P-370-224 : circular para uso eléctrico". "Alambres de aleación de aluminio" ITINTEC P-370-225 : para lineas aéreas". ITINTEC P-370-227: "Cables desnudos de aleación de aluminio con o sin alma de acero para líneas aéreas". IEC 208 "Aluminium Alloy Stranded Conduc -: tors (Aluminium-Magnesium-Silicon Type)" ASTM B398-63T :"Wire for Electrical Purposes, Alu minium-Alloy". ASTM "Concentric-lay-Stranded Conduc -B399-63T : tors, Aluminium-Alloy".

6.4.5 <u>Fabricación</u>: La fabricación de los conductores se realizará de acuerdo a las normas establecidas-en estas específicaciones. Durante la fabricación y el

almacenaje se deberán tomar precauciones para evitar la contaminación de la aleación de aluminio por el cobre u - otros materiales que puedan causar efectos adversos a la aleación de aluminio.

Los conductores serán fabricados de manera que en cada - bobina no haya ninguna junta o unión, en caso contrario - éste será rechazado.

El fabricante preparará cuadros de control de avance de fabricación, con longitudes y pesos de los tramos de cada carrete, presentándolos a ELECTROPERU para su verificación antes de su entrega.

6.4.6 Muestreo: Para el muestreo de los alambres,antes de cablear, se podrá aplicar el criterio indicado-en las Normas ITINTEC 370.224 y 370.226 o según lo esta -blecido en la sección 5 de la especificación ASTM B-398 -63T.

Para el muestreo de los alambres de los conductores ca bleados terminados, se aplicará el criterio siguiente

- Número total de alambres del lote. Es igual al número de rollos, carretes o bobinas del lote multiplicado por el número de alambres de cada rollo, carrete o bobina.
- n_2 : Número de alambres que constituye la muestra de n_1 y que se obtiene de la Tabla I.
- Número de alambres que constituye la muestra de cada rollo, carrete o bobina y que se obtiene en la Tabla II.

Número de rollos, carretes o bobinas que constituye la muestra del lote y es igual a n_2/n_3 (si n_4 fuera número entero se tomará el número entero inmediatamente superior).

- 6.4.7 Inspección y Pruebas: En los alambres antes de cablear, aparte de las pruebas de rutina indicadas
 en las Normas, específicamento las indicadas en la Norma
 ASTM B 398-63T señaladas en las secciones 6, 7, 8 y 10, el Postor indicará en su oferta la frecuencia con que
 propone efectuar la prueba descrita en la sección 7 de di
 cha norma. Se deberán hacer las pruebas físicas despuésdel cableado, tal como se indican en 7b y 7c. Esta prueba se hará sobre el 20% de los carretes a suministrarse.
- 6.4.8 Aceptación o Rechazo : El lote será aceptado cuan do el número de alambres defectuosos correspondien tes a no no supere a Ac, indicado en la Tabla I.

Si la probeta extraída de un alambre (especímen) no cum ple con cualquiera de los ensayos especificados se deberá efectuar el ensayo en dos probetas adicionales extraídasdel mismo alambre. Si los dos valores son satisfactorios, se considerará el alambre no fallado en este ensayo.

6.4.9 Embalaje: El conductor de aleación de aluminio - será embalado en forma apropiada en carretes de ma dera, provistos de bujes de acero para los cubos, suficientemente fuertes para el transporte y para su uso en la operación de tensado, los cuales serán de construcción robusta, de modo que el conductor esté totalmente protegido contra daños durante el transporte, manipuleo y almace namiento prolongado.

En cada carrete en un lugar visible, deberá estar impresa la siguiente información :

⁻ ELECTROPERU

⁻ Nombre del Proyecto

- Tipo y Formación del Conductor
- Sección del Conductor en AWG. y mm²
- Longitud del Conductor en el Carrete en metros
- Peso bruto y neto, en kilogramos
- Número de Identificación del Carrete
- Nombre del Fabricante y Fecha de Manufactura
- Tipo y Dimenesiones del Carrete
- Datos del Certificado de Prueba del Conductor
- Una Flecha Indicadora del sentido en el que debe ser rodado el carrete durante su desplazamiento.

6.4.10 Características Particulares

25 70 95

SECCION (mm²)

- ° N° de hilos
- ° Diámetro exterior (mm)
- Peso lineal (Kg/km)
- º Resistencia eléctrica de c.c. a 20° C (Ohm/km)

Las cantidades a suministrarse se indica en los metrados respectivos.

Información requerida en la Oferta

En el Anexo Nº 1 se indica la información que el postor - deberá proporcionar obligatoriamente con su propuesta.

TABLA I

PLAN DE MUESTREO DEL LOTE

		de Ala <u>m</u> Lote	N° de Alambres de la Muestra	N° Máximo de Alam- bres defectuosos - tolerados
1	n ₁		ⁿ 2	Ac
6	a	49	5	0
50	а	199	15	
200	a	299	20	2
300	а	399	30	3
500	а	7 99	40	3
800	а	1299	55	4
1300	а	3199	75	6
3200	a	7999	115	8
8000	a	21999	150	10
22000	a	109999	225	14

TABLA II

PLAN DE MUESTREO DE LA UNIDAD DE EMBALAJE

N° de Ala o Bobina			Nº de Alambres de la muestra de cada Rollo, Bobina ο Carrete
			n _{.3}
6	а	49	5
50	а	99	1()
100	a	190	15
200	a	290	20

6.5 ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO DE ACCESO RIOS DEL CONDUCTOR DE ALEACION DE ALUMINIO

- 6.5.1 Alcance: Estas Especificaciones cubren el suminis tro de los accesorios para los conductores de aleación de aluminio, tales como juntas de empalme y herra mientas para su aplicación, varillas de armar, amortiguadores, etc. Describen su calidad mínima aceptable, fabricación, inspección, pruebas y entrega.
- 6.5.2 Normas Aplicables: El material cubierto por estas Especificaciones Técnicas cumplirá con las prescripciones de las siguientes normas, en donde sea aplicable, según la versión siguiente en la fecha de convocatoria a licitación:
- ASTM A 153 Zinc Coating (hot dip) on Iron and Steel Hardware.
- ASTM B 230 Hard Drawn Aluminium EC-H19 for Electrical Purposes.
- ASTM B 399 Concentric Lay Stranded 6201-T81 Alumi nium Alloy Conductors (Non Compact Stranding).

6.5.3 Descripción de los Materiales

6.5.3.1 <u>Varillas de Armar</u>: Para todos los con - ductores de fase en todos los soportes cuyos armados es tén compuestos por aisladores tipo PIN, se utilizarán va rillas de armar preformadas de aluminio del tipo WRAP LOCK TIE u otro metal que no ataque galvánicamente al conduc - tor de aleación de aluminio (se puede ofertar otro tipo de accesorios de uso normalizado y que satisfaga los re - querimientos que luego se solicitan).

Las varillas mecánicamente serán diseñadas para distribuir y reducir los esfuerzos de abrasión, compresión radial y de flexión del conductor en el aislador tipo PIN y eléc tricamente protegerá al conductor de descargas eléctricas.

Las varillas serán suficientemente largas para prever una cobertura satisfactoria y su instalación será fácil y deberá realizarse sin la aplicación de cinturas metálicas en los extremos de las varillas.

Referencia PREFORMED

6.5.3.2 Juntas de Empalme: Serán del tipo com presión, con resistencia a la tracción no menor del 100% de la carga de rotura del conductor. La conductibilidadeléctrica y la capacidad de corriente del empalme realiza do no deben ser menores a los de la misma longitud del conductor.

Referencia Catálogo de IME

- 6.5.3.3 <u>Manguitos de Reparación</u>: Serán del tipo compresión, con idénticas características al del párrafoanterior.
- 6.5.3.4 <u>Pasta para Aplicación de Empalmes</u>: El suministro indicado en los párrafos 6.5.3.2 y 6.5.3.3 in cluirá la cantidad de pasta necesaria para su aplicación al ejecutar el empalme, la misma que preferiblemente de berá venir envasada.
- 6.5.3.5 <u>Herramientas</u>: Las herramientas necesa rias para los accesorios mencionados deberán estar com puestas por un juego de dados y una prensa hidráulica o bomba hidráulica manual.

Las herramientas o las alternativas ofertadas estarán provistas de los accesorios necesarios para realizar una correcta operación.

- 6.5.3.6 Grampas de Doble Vía Será adecuadas para empalmar conductores de aleación de aluminio, de los calibres indicados en los metrados respectivos y se suministrarán con pernos, tuercas, arandelas, pasadores, etc. de forma que garanticen la continuidad eléctrica de la conexión efectuada.
- 6.5.47 Amortiguadores de Vibraciones : Serán del tipo Stockbridge; con dispositivo de amarre al conduc tor compatible con el aluminio. El Postor puede proponer como alternativas otros tipos con dispositivos de amorti guamiento comprobados.

Las partes en contacto con los conductores, las longitudes roscadas de los pernos de las grapas y otras partes ferrosas de los amortiguadores serán galvanizadas de acuer do a las normas ASTM A153.

La grapa de unión entre el amortiguador y el conductor se rá diseñada de modo que se evite daños sobre el conductor y sobre cada uno de los hilos, además será adecuada para sujetarse al conductor.

Las grapas no poseerán dimensiones menores que 3 veces el diámetro del conductor.

Cuando se instalen dos amortiguadores por lado, estos de ben de tener frecuencias de amortiguación diferentes.

Los amortiguadores serán aptos para los conductores des - critos en el funto 5.4

6.6 <u>ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO DE AISLADO-</u> RES

- 6.6.1 Alcance: Esta Especificación cubre el suministro de aisladores tipo PIN y de aisladores de suspen sión tipo bola y casquillo, describen su calidad mínima aceptable, fabricación, pruebas y entrega.
- 6.6.2 Normas Aplicables: El material cubierto por es tas Especificaciones cumplirán con las prescripciones de las siguientes normas, según la versión vigente en la fecha de la convocatoria a licitación.
- IEC 383 Pruebas de aisladores de material cerámico o vidrio para líneas con tensión superior a 1000 V.
- IEC 437 Pruebas de radio interferencia en aisladores para alta tensión.
- IEC 506 Pruebas de sobretensión por maniobra.
- IEC 507 Prueba de contaminación artificial sobre ais ladores de alta tensión.
- 6.6.3 Consideraciones Constructivas El material del dieléctrico aislante podrá ser porcelana procesada en húmedo, de comprobada calidad o similar. La superficie vidriada completa del aislador estará libre de defectos.

Los aisladores deberán llevar una indicación clara del mo delo, marca de fábrica y carga electromecánica de rotura.

- 6.6.4 <u>Pruebas</u> En general los materiales cubiertos por esta Especificación deberán satisfacer las prue bas eléctricas y mecánicas prescritas en las normas aplicables.
- 6.6.5 Embalaje El embalaje de aisladores será el adecuado, de modo que estén protegidos contra cual

quier agente externo y en concordancia con las condicio - nes generales descritas

6.6.6 <u>Características del Aislador tipo PIN :</u>

- Material	Porcelana vidriada		
- Clase	56-3 ANSI	56-	2 ANS
- Dimensiones aproximadas	$10\frac{1}{2}$ " Ø y 71" de altu	ra	
- Tensión nominal	34.5 kV		
- Tensión de servicio	20 kV		
- Longitud de la linea de f	Euga 21" (533.4 mm)	432	mm
- Diámetro de la espiga	1 3/8" (34.93 mm)		
- Altura minima de la espig	a 8" (203.2 mm)		
- Resistencia en voladizo	3000 lb (1363 Kg)	
- Tensión crítica de impuls	0		
Tensión positiva	200 kV		
Tensión negativa	265 kV		
- Tensión de flameo a baja			
frecuencia			
En seco :	125 kV	110	kV
En húmedo :	80 kV	70	kν
- Tensión de perforación a			
baja frecuencia	165 kV	145	kV
- Peso neto	17 lb (7.72 Kg)		
Referencia : NGK			
6.6.7 Aislador de Suspensi	ón tipo Bola y Casqui	<u>llo</u> :	
- Material	Porcelana vitrif	icada	
- Clase	52-3 ANSI		
- Conexión	Bola y Casquilla	(Ball	
	and socket)		
- Diámetro aproximado	10" (254 mm)		
- Altura aproximada	5 3/4" (146 mm)		
- Longitud de la linea de			
fuga aproximada	14 49 (282 num).		

15,000 lb (6,818 kg)

- Cargas mecánicas of impacto 55 lb pulg. (63.4 kg cm)

- Resistencia mecánica y

eléctrica combinada

6.7 ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO DE ACCESORIOS PARA AISLADORES

- 6.7.1 Alcance: Estas Especificaciones cubren las condiciones requeridas para el suministro de accesorios para los aisladores tipo PIN y cadena de aisladores (espigas, adaptadores, grapas y estribos), describen su calidad mínima aceptable, fabricación, inspección, pruebas y entrega.
- 6.7.2 Normas Aplicables: Los materiales cubiertos por estas Especificaciones cumplirán con las prescripciones de las normas siguientes, según la versión vigente a la fecha de convocatoria a licitación.

ASTM	A153	Zinc Coating (hot dip) on Iron and Steel Hardware.
IEC	120	Recomenaciones para los ensamblajes casquillo-bola.
IEC	305	Características de los elementos de cade nas de aisladores.
IEC	372	Dispositivos de fijación para elementos- de cadenas de aisladores.

6.7.3 Descripción de los Materiales :

la fijación del aislador tipo PIN.

6.7.3.1 Espiga o PIN: Las espigas a utilizarse serán rectas de acero galvanizado en caliente de 1" de diámetro con una longitud total de 8" para cruceta de fie rro, 12" cruceta de madera, 13" para estructura P3 y 18"-para punta de poste de madera, con esfuerzo mecánico de rotura de 680 Kg. Las espigas estarán provistas en un extremo de una funda de plomo de 1 3/8" de diámetro y 2 1/8" de longitud, para

La espiga en la parte intermedia estará provista de un to

pe para asentar en la cruceta de fierro angular o de made ra, tal como se indica en el plano PSE-1007.

La distancia entre el tope y la parte roscada inferior de be ser tal que permita su instalación en la cruceta de fierro angular o de madera, según sea el caso, mediante arandelas y tuercas respectivas que deben ser suministra das conjuntamente con las espigas.

Referencia: Catálogo NKG - 15C 1M - 30467

- 6.7.3.2 <u>Para Cadena de Aisladores</u> Los accesorios siguientes serán de hierro maleable, aleación de alu minio o de acero galvanizado en caliente por inmersión para usarse en cadena de aisladores, según lo siguiente:
- a) Adaptador horiquilla-bola de acero galvanizado en ca liente para unión del aislador con el perno de ojo, igual o similar al indicado en el catálogo N° C-501-0066 de A.B. CHANCE CO.
- b) Adaptador de casquillo-ojo de acero galvanizado en caliente para unión del aislador a la mordaza o grapa de anclaje, igual o similar al indicado en el Catálogo N° C 501-0062 de A.B. CHANCE CO.
- Mordaza de anclaje tipo pistola de acero galvanizado para conductor de aleación de aluminio de los calibres siguientes 25, 70 y 95 mm², el mismo que se especificará en el metrado correspondiente.

Los pasadores deberán ser de acero galvanizado.

Todos los elementos de fijación y de ensamble de la cade na de aisladores, serán capaces de soportar un esfuerzo a la rotura mínima de 8,500 Kg.

PINES EN CRUCETAS DE MADERA (CONDUCTOR 25 mm²)

α	F _t	Fmin.pin	F _{min.pin}	
GRADOS	kg.	kg.	1b.	
0	52.28	156.84	345.77	
5	72.48	217.44	479.37	
10	92.54	277.62	612.04	
15	112.45	377-35	743-72	
20	132.13	396.39	873.89	

Donde :

a ingulo topográfico

F_t = fuerza total actuante

Fmin.pin= fuerza minima requerida en el pin

Se selecciona pines de 680 kg de fuerza mecánica - de rotura (1M-30467 AU CATG:NGK-15C).

PINES EN CRUCETAS DE FIERRO

(CONDUCTOR 95 mm²)

×	Ft	F _{min.pin}	F _{min,pin}
GRADOS	kg.	kg.	1b.
0	75.60	226.80	500.00
5	80.74	242.22	533.99
10	181.66	544.98	1201.46
15	234.22	702.66	1549.08

Se selecciona pines de 680 kg de fuerza mecánica de rotura (1M-30467 AU - CATIG: NGK 15c)

6.8 DIMENSIONAMIENTO DE RETENIDAS

Las retenidas han sido diseñadas considerando la utilización de material preformado, tal como se muestra en el Plano Nº 1005 y adecuándolas para resistir las fuerzas laterales y para reducir la deflexión de los postes en posiciones de ángulo, terminales y en los cambios posibles de sección.

Según el C.N.E. las retenidas tendrán una carga de rotura mínima de 1750 kg. y la absorción de las cargas serán co mo sigue

- 50% de su carga de rotura en postes de cambio de dirección y en postes terminales
- 80% de su carga de rotura en postes de retención o an claje.

En el presente proyecto se ha considerado la utilización de preformado de acero galvanizado, con características - que se muestran en el Cuadro 6.8.1 y sus utilizaciones en la línea de subtransmisión se indican en el Cuadro 2.5.2.

CUADRO 6.8.1

CARACTERISTICAS MECANICAS DE GUY-GRIP DEAD-END

(GALVANIZED STEEL)

C 0 D	I G O	SM	HS	EHS	
CATALOG DIMENSION N° DIAMETRO		SIEMENS MARTIN			
	Pulg.	kg.	kg.	kg.	
GDE-2106	GDE-2106 5/16"		3625.74	5080.23	
GDE-2107	3/8"	31 52 .46	4898.79	6985.32	
GDE-2108	7/16"	4241.00	6577.08	9434.72	

6.8.1 <u>Descripción</u> de los Materiales :

6.8.1.1 <u>Cable de Retenida</u>: El cable de retenida a utilizar será de las siguientes características mínimas:

- Material : Acero galvanizado

- Tipo : Según Planos

- Diámetro Nominal : Según el tipo de retenida

- Tiro de Rotura Minima : Según el tipo de retenida

- Peso Lineal ; 0.3089 Kg/m.

6.8.1.2 <u>Mordaza Preformada</u>: Será del tipo alumo weld y servirá para sujetar el cable descrito en el párra fo anterior.

La mordaza será capaz de resistir una carga mínima de == 5,700 Kg.

6.8.1.3 <u>Varilla de Anclaje</u>: Será de acero galva nizado, de 5/8" 3/4" de diámetro por 8' de longitud, la car ga mínima será de 5,700 Kg.

La varilla en su parte anterior (ojal) estará provista de un canal de tal modo que evite el empleo de guardacabo, si milar al del catálogo N° 5358 de A.B. CHANCE.

- 6.8.1.4 Abrazadera: Son de acero galvanizado tipo partido de platino de $\frac{1}{4}$ " x 2" con 3 pernos de $\frac{1}{2}$ " x $2\frac{1}{2}$ " para el diámetro de 155 mm.
- 6.8.1.5 <u>Guardacabo</u> ; Será de acero galvanizado y de dimensiones adecuadas para el cable de retenida
- 6.8.1.6 <u>Placa de Refuerzo</u> : Será de plancha de acero galvanizado en caliente de 4º x 4º x 1 4º, vendeá provisto de un agujero central para la varilla de anclaje.

- 6.8.1.7 <u>Protector de Cable</u> Será de fierro ga<u>l</u> vanizado de forma de media caña de 1/16" de espesor por 2.0 m de longitud, incluyendo pernos de sujeción, se usará donde su utilización sea requerida.
- 6.8.1.8 Aislador de tracción : Será de clase 54-3 ANSI y de las siguientes características

- Material porcelana

- Dimensiones aprox. 5.1/2" x 3 3/8"

- Resistencia a la tracción 20,000 lbs. (9,089 kg)

- Tensión de flameo en seco : 35 kV

en húmedo : 18 kV

Sólo será necesario el suministro de este aislador para estructuras de madera.

6.8.1.9 Bloque de Anclaje : Consiste en un bloque de concreto armado de 0.50 m x 0.50 m x 0.150 m, provisto de un agujero central que permita el paso de la varilla de anclaje. El concreto utilizado tendrá una resistencia equivalente a f' = 210 Kg/cm² y las varillas de fierro una resistencia de F_y = 4200 Kg/cm².

6.9 ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO DE ACCESO-RIOS DEL SISTEMA DE PUESTA A TIERRA

- 6.9.1 Alcance: Estas especificaciones cubren el sumi nistro de los materiales requeridos para la puesta a tierra de las estructuras. Describen su calidad mínima aceptable, tratamiento, inspección, pruebas y entrega.
- 6.9.2 Normas Aplicables : El poster establecerá claramen te que normas o valores particulares adoptan en su oferta para la fabricación de los accesorios a que se refiere la presente especificación.

6.10: ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO DE SECCIONA-DORES -FUSIBLES (CUT-OUT)

El seccionamiento de las líneas de subtransmisión se realizará mediante seccionadores-fusibles (cut out).

La posición cerrada de los seccionadores estará asegurada mediante un dispositivo flexible tipo resorte que haga las funciones de enclavamiento mecánico. El conjunto se rá suficientemente confiable a prueba de aberturas accidentales.

El conjunto permitirá ser operado por pértiga como seccio nador y como elemento fusible.

Poseerán dispositivos de indicación visual que muestren claramente cuando un fusible ha operado. Vendrán provis - tos de accesorios para su montaje en la cruceta respectiva. Las características eléctricas del conjunto seccionador fusible a emplearse en la protección del sistema serán las siguientes :

CARACTERISTICAS

-	Tensión nominal	25	kV
-	Nivel básico de aislamiento	150	kV
-	Tensión de descarga a baja frecuencia		
	a) En seco	70	kV
	b) Bajo lluvia	60	kV
~	Distancia de fuga	432	mm
-	Intensidad del regimen de las		
	áreas de mayor contacto y gra <u>m</u>		
		Mayor	de 100 Amp.
-	Capacidad de interrupción	Mayor	de 6 kA

Portarán elementos fusibles rápidos NEMA tipo K, dimension nados eléctricamente en función de la potencia de cortocircuito del sistema.

Mecánicamente sus aisladores serán capaces de soportar una fuerza en voladizo superior a los 300 kg.

Se proveerán pértigas adecuadas para operar los fusibles suministrados. Serán construídas de madera recubierta con Maplac, de epoxiglas, plástico laminado u otro mate rial resistente a la humedad a prueba de condensación in terior capáz de soportar por cinco minutos una tensión de 75 kV por pie de longitud.

Estarán formadas por secciones fácilmente embonables, tal que logren longitudes de hasta 6 metros para permitir que un operador alcance los fusibles desde el nivel del piso.

El fabricante suministrará los siguientes datos garantiza dos:

- Tensión nominal (kV)
- Máxima corriente constante
- Poder de ruptura
 - a) Simétrico (kA)
 - b) Asimétrico (kA)
- Nivel básico de aislamiento (kV)
- Resistencia mecánica del aislador
 - a) En tracción
 - b) En compresión
 - c) En flexión

6.11 <u>ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO DE PARARRA-</u> YOS

6.11.1 Alcance : Estas especificaciones cubren el suministro de pararrayos tipo autoválvula y pararrayos tipo autoválvula con óxido de zinc. Describen su ca lidad mínima aceptable, tratamiento, inspección, pruebas y entrega.

6.11.2 Normas de Fabricación

CEI	99-1	1970
ANSI	C62.1	1971
NEMA	LA1	1 968

6.11.3 Características

° Para montaje a la intemperie

- Tensión nominal	19.5 kV
- Frecuencia en ciclos/segundo	60.
- Corriente de descarga con onda	
8/20 µs.	5 kA
- Altitud de utilización	3500 msnm

- Los terminales a los extremos serán resistentes a la corrosión del medio ambiente. Estarán fijados al cuerpo de porcelana empleando empaquetaduras resisten tes al ozono y al efecto del tiempo.

Permitirán el fijar conductores de cobre hasta 95 mm², sin ningún dispositivo adicional.

- Para casos de sobrecarga extrema deberá proveerse de dispositivos de liberación de presión que eviten la explosión del cuerpo de porcelana.
- Vendrán provistos de grampas que le permitan fijarse en posición vertical a una cruceta.
- Serán capaces de soportar en sus terminales una fuer za de tiro de hasta 75 kg.

- 6.11.4 <u>Instrucciones para el fabricante</u> : El fabricante suministrará los siguientes datos :
- Tensión nominal (kV)
- Tensión de cebado para onda de 1/50 μs (kV)
- Capacidad de descarga (kA)
- Voltaje máximo de descarga (kV)
- Clase de liberación
- Tensión residual máxima a la corriente nominal de des carga (kV de cresta) 8 x 20 μs
- Tensión mínima de descarga a frecuencia industrial (kV)
- Tipo de pararrayo

6.12 <u>ESPECIFICACIONES TECNICAS PARA EL SUMINISTRO DE ELEMENTOS DE FERRETERIA</u>

- 6.12.1 Alcance Estas especificaciones se refieren al su ministro de material de ferretería como pernos, per no-ojo, tuercas, arandelas, brazo diagonal, etc. y describen su calidad mínima aceptable, tratamiento, inspección pruebas y entrega.
- 6.12.2 <u>Descripción del Material</u>: El material de ferreteria será de acero galvanizado y forjado, tienen las dimensiones y características mostradas en los planos y metrados correspondientes.
- 6.12.3 Normas Aplicables: En lo que se refiere al galvanizado en caliente, el material cubierto por estasespecifiaciones cumplieron con las prescripciones de la si guiente norma.
- ASTM A 153 Zinc Coating (hot dip) on iron and steel(hard ware).

6.12.4 Características Generales :

6.12.4.1 Pernos para Postes de Fierro:

- $\frac{1}{2}$ " Ø 2" para sujeción de abrazaderas y crucetas de fierro. 1" Ø x 10" para sujeción al poste de acero.
- Perno de doble armado de : 5/8" Ø x 10"
- 6.12.4.2 Abrazaderas : Según se muestra en el plano 1008
- 6.12.4.3 Brazo Diagonal : Será de $\frac{1}{4}$ " de espesor por 2" de ancho y 1 metro de longitud.

6.12.4.4 Pernos para Postes de Madera :

- Perno de 5/8" Ø x 16"
- Perno de doble armado de 5/8" Ø x 18"
- Perno ojo de 5/8" Ø x 16"

6.13 ESPECIFICACIONES TECNICAS DE MONTAJE DE MATERIALES

OBJETO

Las presentes Especificaciones Técnicas de Montaje son para definir las características, calidad mínima aceptable y alcances de los trabajos a efectuar, así como algunos procedimientos a emplearse en ellos para la construcción de las líneas de 20 kV del "Pequeño Sistema Eléctrico N° 2 Santiago de Chuco-Pallasca-Cabana", que debe cumplir el Contratista.

6.14 DEL CONTRATISTA

- 6.14.1 Equipos y Herramientas de Montaje: Las herramientas y equipos serán de la mejor calidad, buen estado de conservación y número suficiente para efectuar el montaje de la línea de modo eficiente.
- El Postor presentará con su propuesta, una lista de los equipos y herramientas de montaje, que se propone utilizar en la ejecución de la obra, indicando las características principales.

El Propietario se reserva el derecho de exigir al Contratista, durante el montaje, el cambio o incremento de equipos y herramientas si a su criterio son necesarios para cumplir con los programas de avance previstos.

Todos los materiales, equipos y herramientas, serán mantenidos y operados por cuenta y riesgo del Contratista.

6.14.2 Responsabilidad del Contratista: El Contratista - encargado del montaje será responsable de todos los equipos y materiales electromecánicos suministrados incluyendo el transporte a las zonas del proyecto.

Igualmente será responsable de los materiales menudos su ministrados por él y finalmente del montaje integral de la línea en sus diferentes partes, en forma satisfactoria hasta su recepción por ELECTROPERU.

6.14.3 <u>Almacenamiento</u>: El Contratista será responsable - por el almacenamiento de los suministros dentro de las zonas de ejecución de las obras, verificando que és tos no sufran daños o deterioros por negligencia o inade cuada protección.

A la finalización de los trabajos, el Contratista entrega rá al Propietario, en la zona del Proyecto, todos los equi pos y materiales de repuesto que hayan sido considerados en su oferta.

6.14.4 Calificación del Personal Para la ejecución de las Obras Electromecánicas, cuyo alcance se deta - lla en estas Especificaciones Técnicas, el Contratista de berá emplear personal calificado y competente con experiencia en trabajos similares y cuya capacidad garantice la buena ejecución de la obra.

La cantidad de personal a emplearse será previsto por el Contratista a fin de cumplir con los plazos establecidos en los cronogramas. 6.14.5 <u>Leyes Sociales y Seguros</u>: El Contratista tendrá - responsabilidad plena sobre el cumplimiento de los pagos que corresponden por concepto de leyes sociales y beneficios sociales, de acuerdo a la legislación vigente.

El Contratista asegurará a su personal contra accidentes y en todo caso, se obligará a proporcionar por su cuenta y costo las prestaciones médicas, hospitalarias y/o prime ros auxilios.

En todo caso, será de responsabilidad del Contratista to mar las previsiones y seguridades a fin de evitar accidentes del personal que lleva a cabo operaciones peligrosas durante el montaje.

Asimismo será de su competencia asegurar contra todo ries go los equipos y materiales de su propiedad.

6.14.6 Coordinación de los Trabajos: Antes y durante la ejecución de la obra, el Contratista realizará la coordinación necesaria con otras entidades o contratistas que efectúen trabajos en la zona del Proyecto y que pue den interferir en la labor del montaje.

Las decisiones que se adoptan al respecto deberán en todo caso contar con la aprobación del Ingeniero designado para la supervisión de la obra.

6.15 REPLANTEO

El Contratista será responsable de efectuar todos los trabajos de campo necesarios para replantear la ubicación de las estructuras de las líneas de subtransmisión. El replanteo deberá ser efectuado por personal experimentado. Los métodos de trabajo a emplear en dicho replanteo deberán ser tales que aseguren que el error cometido al medir las distancias no superen uno en mil.

6.15.1 Mantenimiento de Caminos (limpieza de caminos)

El Contratista tendrá a su cargo las tareas de man tenimiento de todos los caminos que se utilicen para la giecución y montaje de la línea hasta la entrega de la Obra. Están comprendidos en el mantenimiento de caminos: Los caminos de acceso construídos por el Contratista; los caminos públicos existentes mejorados y los caminos particulares que son necesarios su uso durante la etapa de eje cución y montaje de la línea materia del presente Contrato.

6.16 FRANJA DE SERVIDUMBRE

La servidumbre de la línea, que será gestionada y obtenida por el Propietario, no extenderá a lo largo de las líneas de subtransmisión.

Donde la ruta no vaya por una zona despejada, será llevado a cabo el despeje de todos los árboles y arbustos.

Los árboles y arbustos serán cortados a una altura no mayor que un metro del nivel del suelo. Todos los árboles y arbustos caídos serán removidos del eje central de la línea según se muestra en el Plano Nº 1006.

Fuera de la superficie despejada, todos los árboles que están a una distancia de los conductores extremos menor - que 2 m serán talados por el Contratista después de obtener el permiso de los propietarios, para fines del tendido.

6.17 TRANSPORTE Y MANIPULEO DE MATERIALES

El Contratista transportará y manipulará todos los mate - riales con el mayor cuidado. Los materiales serán transportados hasta los frentes de trabajo sin arrastrarlos ni rodarlos por el suelo. Las pérdidas y roturas que puedan ocurrir durante el transporte serán por cuenta del Contratista.

6.18 <u>CIMENTACIONES PARA LOS POSTES</u>

Tomando en cuenta la conformación de la superficie a lo largo del trazo de las líneas. El Contratista deberá efectuar pruebas de la resistencia mecánica del terreno y con los resultados correspondientes aplicará a cada es tructura, uno de los tipos de fundación adecuado que se describen en el Plano Nº 1005.

El Contratista rellenará los espacios libres alrededor de todas las cimentaciones de las estructuras y excavaciones para retenidas según las instrucciones del Ingeniero, em pleando relleno normal o relleno seleccionado.

El material de relleno será colocado en capas de 15 cm me diante paleado a mano, en forma intermitente para que los obreros con pisones de operación mecánicas puedan compactar completamente el relleno antes de continuar con la operación de rellenado.

El relleno de agregado dará la resistencia necesaria inme diatamente después de instalar la estructura y se logrará en lo posible la solidación similar a la del terreno circundante.

El relleno de agregado tiene la ventaja adicional de proporcionar mejor estabilidad de basamentos en lugares don de podrían ser dudosas las condiciones del suelo.

6.19 <u>INSTALACION</u> DE ESTRUCTURA DE FIERRO

Las estructuras con sus respectivos armados se instalarán según la distribución indicada en los respectivos planos.

La colocación de las estructuras en los puntos de erección se hará utilizando equipos que permitan desplazantes. Sin riesgo de rotura o deterioro.

El Contratista será responsable por cualquier daño que las estructuras puedan sufrir durante la instalación.

En todo caso, el procedimiento de montaje deberá ser aprobado previamente por el Ingeniero, pero tal aprobación no libera al Contratista de su responsabilidad respecto a los daños que pueda sufrir la estructura durante el montaje.

6.20 INSTALACION DE LAS ESTRUCTURAS DE MADERA

Los postes empleados en las estructuras son de longitud - de 11 m de la clase 6, grupo D.

Las cantidades totales se encuentran en las Tablas de Lo calización y metrados.

Los postes deberán ser manejados con cuidado, de forma tal que no se dañe la madera o el tratamiento preservati-

Los postes no deberán arrastrarse por el suelo. No deben aplicarse ganchos ni tenazas en ningún punto por debajo de la línea que ha de quedar al nivel del terreno.

Durante el montaje, se tomarán todas las debidas precau - ciones para evitar perjuicios a la superficie de los pos tes. Se aconseja el empleo de sogas y/o escaleras para el escalamiento de los postes, tratando de evitar el empleo de espuelas.

Excepto cualquier otra indicación contraria, que figura - en los planos de estructuras, todos los postes serán instalados a una profundidad standard, de acuerdo con la table siguiente

LONGITUD POSTE PROFUNDIDAD EN TIERRA 11 1.70 12 1.80

Los postes, en las estructuras de ángulos y terminales y para otros puntos de esfuerzos no balanceados, serán enterrados conforme a lo especificado en los planos de las estructuras y cuando sea posible, se emplearán en dichos puntos los postes con los diámetros mayores.

Las crucetas y refuerzos serán de madera de longitudes $v_{\underline{a}}$ riables según el tipo de estructura.

Las longitudes de las crucetas y brazos de crucetas, dimensiones y ubicación de los huecos y las cantidades por estructura se muestran en los planos de detalles. La cantidad total de crucetas de cada tipo y dimensión se detallan en el metrado de estructuras.

Todas las crucetas serán seleccionadas, montadas e instaladas de acuerdo con los planos aprobados. Todas las tuercas serán ajustadas adecuadamente, más no excesivamente.

Para efectos del montaje de estructuras de madera se ten drá en cuenta todas las actividades afines descritas en - el acápite 5.11.

6.21 INSTALACION DE LOS AISLADORES

Antes de proceder al armado de los ensambles, el Contra - tista limpiará cada uno de los elementos cuidadosamente, practicando una detenida inspección para asegurarse que el material empleado está en perfectas condiciones.

Si durante la inspección detectara cualquier defecto en - el dieléctrico de los aisladores o en las superficies me tálicas lo notificará al Ingeniero Supervisor, quien de terminará si la unidad puede ser empleado o debe ser reem plazado.

6.21.1 <u>Aisladores Tipo PIN</u>: Los aisladores tipo PIN se instalarán de acuerdo al tipo de armado indicado en los planos, de preferencia después del izado y cimentación de las estructuras, se verificará el ajuste correcto de los elementos y la posición de la ranura del aislador en el sentido del trazo de la línea.

Antes de la instalación del aislador y sus accesorios se verificará el buen estado de los mismos, debiéndose tener especial cuidado en el manipuleo.

6.21.2 Ensamble de cadenas de aisladores : El armado de las cadenas de aisladores de suspensión se efectuará cuidadosamente presentando especial atención que los seguros queden debidamente instalados. Se verificará que antes de proceder al armado de la cadena, sus elementos no presenten defectos y se encuentren limpios.

La cadenas de aisladores se instalarán de acuerdo al tipo de armado indicado en los planos respectivos, poniendo es pecial cuidado en el manipuleo para no dañar los aisladores.

Después de completar el ensamble de los aisladores y an tes de colocarlos en su lugar en la estructura, el Contra tista comprobará que todos los pasadores hayan sido colocados correctamente.

Tratándose de estructuras de anclajes, las dos cadenas que van montadas en puntos adyacentes del brazo de la estructura se amarrarán juntas, insertándose algún elemento de protección entre ellas para evitar que se golpeen du rante el tiempo que permanezcan montados sin el conductor.

6.22 INSTALACION DE RETENIDAS O VIENTOS DE ANCLAJE

La instalación de las retenidas o vientos de anclaje, se efectuarán después de haber sido instaladas las estructuras con los respectivos armados y antes del tendido de los conductores.

Los detalles para las retenidas de las estructuras se muestran en los planos respectivos. Las Tablas de local<u>i</u> zación de las estructuras así como los planos respectivos indican las estructuras que llevan retenidas. Se emplearán bloques de anclaje de 0.50 x 0.50 x 0.15 m de concreto armado. Estos bloques de anclaje deberán enterrarse a la profundidad señalada en los planos respectivos de formatal que las varillas de anclaje sobresalgan 0.30 m sobre el nivel del terreno, haciendo un ángulo de 37° con la vertical.

El cable de retenida será del tipo acero galvanizado asegura do a la estructura mediante nordaza preformada adecuada.

6.23 PUESTA A TIERRA

Los sistemas de puesta a tierra tienen por finalidad facilitar un camino hacia tierra, de las corrientes de falla de orígen atmosférico o del tipo interno por maniobra. De be permitir también las reducciones de las tensiones de toque y paso.

Antes de efectuar las excavaciones para la fundación de la estructura el Contratista medirá la resistividad del terreno en el lugar de emplazamiento de cada estructura.

El poste de cada estructura que deberá ser puesta a tierra se indica en Tablas de Localización.

La puesta a tierra se realizará con conductor de cobre #4 AWG, fijándose a los postes de madera mediante grampas de acero cada 40 cm y a la varilla mediante grapa de do ble vía.

En las estructuras de acero no es necesario la utilización del conductor ya que la misma estructura cumple dicho fin.

Se instalará el sistema de puesta a tierra previsto en los planos y especificaciones técnicas correspondientes.

La resistencia de puesta a tierra será medida después de instalar cada unidad de contrapeso conformada por conductor que se muestra en el plano respectivo hasta alcanzar la resistencia asumida que es : Para terrenos no transitables de 25 ohms y para terrenos transitables de 20 ohms.

6.24 TENDIDO DE LOS CONDUCTORES

Los conductores a emplearse en la línea de transmisión son de aleación de aluminio. La instalación de estos conductores deberá ser hecho de acuerdo a las tablas de templado que el Contratista realizará en coordinación con el Ingeniero Supervisor y tomará en cuenta las características reales de los conductores y los criterios que se han tenido en cuenta en la fase del estudio definitivo, en cuanto a los parámetros, módulos de elasticidad de los diferentes tramos y partes de la línea y sus conexiones aéreas, tal como se indica en los planos.

6.24.1 Tendido: El Contratista ejercerá en todo momento el mayor cuidado para asegurar que el conductor - se dañe durante el almacenamiento, el transporte y el mon taje, pues la naturaleza del material empleado y las condiciones de operación de la línea hacen imprescindible que la superficie del conductor se conserve en la mejor - condición posible.

El Contratista empleará dispositivos de frenado adecuados para asegurar que el conductor se mantenga en todo momento con tensión suficiente para evitar que toquen'el suelo o se arrastren. La tensión de frenado se aplicará cuidadosamente en forma de asegurar que el conductor sufra tirones ni que en momento alguno de la operación del tendido quede sometido a esfuerzos unitarios superiores al 15% de la carga de rotura del conductor de aleación de aluminio.

En los casos de vanos cortos para derivación, se tendrá - especial cuidado en el tendido, a fin de no ocasionar es fuerzos que afecten la estabilidad de los soportes.

Los conductores deberán tenderse utilizando poleas, cuyo diámetro no debe ser inferior a 15", en las cuales permanecerán colgados por lo menos 48 horas antes de hacer los ajustes del templado. En los aisladores tipo PIN se fija

rá el conductor mediante los preformados tipo WRAPLOCKTIE y en las cadenas de anclaje, mediante las grampas respectivas.

En ningún caso el tendido del conductor se efectuará antes de haber ensamblado y ajustado definitivamente las estructuras.

6.24.2 Empalmes y Manguitos de Reparación : Si se produjeran daños o roturas de alguno de los hilos que forman el conductor, se procederá a la reparación. Si el daño es mayor, se cortará el cable y empalmará.

El Contratista utilizará el conductor en forma tal de ducir al mínimo posible el número de empalmes. Los empalmes y manguitos de reparación serán del tipo de compre sión.

Los empalmes serán ejecutados por personal debidamente experimentados y en presencia del Ingeniero Supervisor.

No se instalará ningún empalme a 10 m de distancia de una grapa de anclaje, ni a menos de 5 m aislador tipo PIN. No se permitirá más de un empalme por conductor de un vano, y no se instalarán empalmes en los vanos donde la línea cruza a otras líneas de transmisión o de comunicación, ca rreteras o ríos.

6.24.3 <u>Puesta en Flecha</u> La puesta en flecha del cond<u>uc</u> tor se efectuará en horas que la velocidad del viento sea nula o muy baja y en conformidad en las tablas de flechas y tensiones aprobadas.

Para poner en flecha los conductores se usará siempre que sea posible el método visual, empleando una niveleta y un anteojo largavista o teodolito asegurado firmemente a la estructura.

6.24.4 Estructuras Terminales: Al tiempo de efectuar - el tendido, el Contratista dejará suficiente lon gitud libre de cable, en coformidad con las instrucciones del Consultor en cada grapa de anclaje de la estructura - terminal para realizar la conexión entre dichas estructuras terminales y los pórticos de las subestaciones respectivas, o permitir su realización posterior.

6.25 DISTANCIAS DE SEGURIDAD

- Altura mínima sobre el suelo (espacios -		
no transitados por vehículos)	6	m
- Altura mínima sobre calles, callejones o		
caminos vecinales	6	m
- Altura mínima sobre carreteras	7	m
- Distancia mínima de conductores a otras		
lineas eléctricas :		
Menores o iguales a 20 kV	2	m
Mayores a 33 kV	4	m
- Distancia mínima a líneas de telecomuni-		
caciones	2	m
Distancia horizontal mínima entre el vér		
tice del conductor mencado y las partes		
constructivas de las líneas de telecomu-		
nicaciones	2	ш
- Laderas no accesibles	3	nı
Arboles debajo de la línea	2	m

6.26 PRUEBAS DE LINEA TERMINADA

Al concluir el trabajo de construcción de las líneas se - deberá realizar las pruebas que se detallen a continuación en presencia del Ingeniero y empleando instrumentos y mé todos de trabajo aprobados por éste. Se efectuarán las correcciones y reparaciones que sean necesarias hasta que los resultados de las pruebas sean satisfactorias, a jui cio del Ingeniero.

Previamente a la ejecución de estas pruebas, en presencia del Ingeniero, se limpiará cuidadosamente los aisladores, limpiará desmontes y efectuará toda otra labor que sea ne cesaria para dejar las líneas listas para ser energizadas.

6.26.1 Pruebas de Conductibilidad Eléctrica de la Línea:

Se efectuarán medidas de la resistencia eléctrica de las tres fases de las líneas, los resultados no debe - rán diferir en más del 5% del valor de la resistencia to tal calculada multiplicando la resistencia por km de con ductor "garantizada por el fabricante" por la longitud to tal de las líneas establecidas según el levantamiento to pográfico del perfil.

- 6.26.2 <u>Determinación de la Secuencia de Fases</u>: Se deberá efectuar mediciones para demostrar que la pos<u>i</u> ción relativa de los conductores de cada fase corresponde a lo prescrito.
- 6.26.3 <u>Pruebas de Aislamiento</u>: Las pruebas se realiza rán entre cada fase y tierra y entre cada par de fases.

Se repetirán las pruebas que den como resultado valores inferiores a los usuales o erráticos y el tramo en cues - tión será investigado para determinar la causa de dicho comportamiento.

6.26.4 Aplicación de Tensión : Una vez concluída satis - factoriamente las pruebas señaladas en los párra- fos anteriores, se procederá a aplicar tensión a la línea, empezando con la tensión más baja que las instalaciones - existentes permitan e incrementándola gradualmente hasta alcanzar la máxima tensión disponible de las Subestacio - nes.

Durante todo el tiempo que dure la prueba, se medirá con tínuamente la tensión, la corriente en las tres fases y las pérdidas anotando las lecturas cada 15 minutos si no se dispone de instrumentos registradores.

Mientras la línea está energizada, el Ejecutor en presencia del Ingeniero, recorrerá la ruta de la línea llevando un detector portátil de radio de interferencia, aprobado por el Ingeniero, para determinar posibles defectos localizados en el conductor, los aisladores y la ferretería.

6.27 MARCAS

Cada poste deberá llevar una marca estampada con el número que corresponda al número del poste respectivo y una marca de señalización de seguridad según planos y diseños de detalle.

6.28 PUESTA EN SERVICIO DE LA LINEA

El trabajo requerido para la puesta en servicio de la $1\underline{i}$ nea se llevará a cabo de acuerdo a un programa escrito que describa paso a paso las operaciones a realizarse.

Los trabajos de puesta en servicio tienen por objeto familiarizar al personal de líneas de transmisión con todo el equipo de operación.

El Contratista no conectará a las fuentes de consumo la línea sin la aprobación previa. 7.0 METRADOS Y PRESUPUESTOS

LINEA DE SUBTRANSMISION 20 kV

7.1 PALLASCA - LACABAMBA - PAMPAS

AR -		METR	ADOS	PRECIO UNI	TARIO	PRECIO	TOTAL	FORMULA DI
IDY	DESCRIPCION	UNID	CANT	SOLES	DOLARES	SOLES	DOLARES	REAJI STE
	I. SUMINISTRO DE MATERIALES Y EQUIPOS							
	A. POSTES Y CRUCETAS							
1	Poste de fierro tubular de 12 m de lor gitud, 300 Kg de esfuerzo en la punta, según diseños y especificaciones.	Pza	34	337,425		11'472,450		
2	Idem al ltem 1, pero de 400 kg. de es fuerzo en la punta	Pza	00	440,635		26,438,100		
Ĵ	Idem al Item 1, pero de 500 kg. de es fuerzo en la punta	Pza	24	516,819		121403,656		
4	Cruceta de fierro angularde 3.00 m de longitud según planos y espeficaciones tipo l		26	107,606		21797,756		
5	Idem al anterior, del tipo 2	Pza	26	107,606		21797,756		
6	Idem al anterior del tipo 3	Pza	05	56,077		3 8 1 3 , 2 3 6		
7	Cruceta de fierro angular de 6.00 m de longitud según planos y especifica ciones, tipo 4	Pza	36	112,137		4'036,932		
5	Idem al anterior, del tipo 5	Pza	72	112,137		81073,864		
ò	Idem al anterior, del tipo 6	Pza	4	112,137		448,548		
								152.

PAR-	DECCH INCION	METR	ADOS	PRECIO UNI	ITARIO	PRECIO	TOTAL	FORMULA DI
TIDA	DESCRIPCION	UNID	CANT	SOLES	DOLARES	SOLES	DOLARES	REAJUST
	B. CONDUCTORES							
1	Conductor de aleación de aluminio, des nudo, cableado de 95 mm según especi-ficaciones.	Kg.	28.3177	5,635		1591566,295		
	C. AISLADORES Y ACCESORIOS							
1	Aislador tipo pin, clase 50-2	Pza	140	29,125		41339,625		
2	Aislador tipo pin, clase 56-3	Pza	145	46,258		61846,184		İ
Ž	Aislador de suspensión tipo bola y cas quillo. Clase 52-3	Pza	564	28,460		24' 589,440		
4	Pin para cruceta de fierro angular de l' de diámetro y ^{9 d} de longitud, inclu ye arandela, tuerca y contratuerca.	Piza	207	6,000		1'782,000		
5	Adaptador horquilla-bola de F°G	Pza	432	5,580		2'410,560		\$
6	jAdaptador casquillo - ojo de F°G	Pza	432	7, 100		3'067,200		1
7	 Mordaza de anclaje tipo pistola	Pza	4,32	36,222		15'647,904		
ē	Varillas de armar preformadas de alumi nio tipo Wraplock - tie de 95 mm ²	Рха	204	15,500		4,092,000		1
								153.

PAR-	METE		ADOS	PRECIO UNITARIO		PRECIO	TOTAL	FORMUL A
TIDA	DESCRIF CION	UNID	CANT	SOLES	DOLARES	SOLES	DOLARES	REAJUST:
	D. FERRETERIA Y MATERIAL ACCESORIO							
1	Brazo de cruceta de fierro según diseño y especificaciones, incluye pernos de sujeción al poste y cruceta.	Pza	412	13,805		51687,660		
2	Abrazadera de fierro tipo Al, según di seño y especificaciones; incluye per - nos de sujeción a la cruceta.	Pza	63	12,000		756,000		
3	Idem al Item 2, del tipo A2.	Pza	01	14,980		913,780		
4	Perno de doble armado de 5/8"Ø x 10"de longitud; incluye tuercas y contratuer cas.	Pza	-302	4,375		1'321,250		
5	Tuerca ojo para perno de 5/8" de diáme	Pza	432	4,180		11805,760		
6	Seccionador tipo cut-out para 20 kV de tensión de servicio, 100 A. y 3500msnm de altura de trabajo con accesorios de fijación, según especificaciones.	Pza.	12	336,530		4'038,360		
7	Pararrayos tipo autoválvula para 20 kV de tensión de servicio y 3500 msnm de altura de trabajo; incluye accesorios							
	de fijación, según especificaciones.	Pza	12	264,686		31176,232		
(4)	Fusible para corriente nominal 5 A para el seccionador del Item 5.	Pza	24	7,500		180,000		154.

FAR- TIDA	WOODNII CION	METRADOS		PRECIO UNITARIO		PRECIO	TOTAL	FORM ±
		UNID	CANT	SOLES	DOLARES	SOLES	DOLARES	RLATIS
()	luntas de empalme	Pza.	24	20.235		485,640		
10	Manguitos de reparación	Pza.	50	6,310		315,500		
11	Grampas de doble vía para conductor de Aa de 95 mm2	Pza.	220	3,500		770,000		
12	Equipo de puesta a tierra, tipo B3 se gún planos y especificaciones	.lgo.	3	64,872		194,616	7	
13	Equipo de puesta a tierra, tipo B4 se gún planos y especificaciones		ī	80,472		80,472		
1.1	Equipo de puesta a tierra, tipo C se gún planos y especificaciones		ı	168,144		168,144		
15	Retenida lipo R1 para poste de fierro de 12 m de longitud, según especifica- ciones y planos	Jeo.	. 20	163,450		4'740,050	1	ii.
10	Retenida tipo R2 para poste de l'erro de 12 m de longitud, según especifica- ciones y planos	lgo.	. 10	179,100		11791,000	1	1
17	Amortiguadores de vibraciones tipo = Stockbridge	.lgo	. 84	40,880		31433,920	1	1
		2						155.

PAR- TIDA	DESCRIPCION	METRADOS		PRECIO UNITARIO		PRECIO	TOTAL	FORMULA
		UNID	CANT	SOLES	DOLARES	SOLES	DOLARES	REAJUST:
	II. MONTAJE							
1	Replanteo de la línea, incluye ubica- ción de estructuras y ubicación de re tenidas.	Glo- bal				7' 779,464		
2	Caminos de acceso; incluye límpieza, habilitación, construcción de accesos para el montaje de la línea, según el tipo de terreno se tiene para el:							
	- tipo 1	Km	3	11273,574		31820,722		
	tipo II	Km	3	21676, 795		81030,925		
	- tipo ITT	Km	0.5	5'013,431		21506,715		
	- tipo TV	Кm	ò	517,507		41657,563		
	- tipo VI	Кm	1	91662,883		91662,883		
	- tipo VIII	Km	3.5	1'557,750		5'452,125		
	Limpieza	Km	3	266,171		798,513		
3. 1	Excavación en terreno normal para la cimentación							
	no.	m3	155	16,020		2'483,100		
3.2	Excavación en roca	m3	3.7.	162,270		5'192,640		150.
3.3	Fundación de concreto para cimentación	m.3	169	320,120		54' 100, 280		4

TRONGAL PALLASCA - LACABAMBA - PAMPAS

 PAR=	DESCRIPCION	METRADOS		PRECIO UNI	ITAR IO	PRECIO	TOTAL	FORM LA
TIDA			CANT	SOLES	DOLARES	SOLES	DOLARES	REAJUST
4	Montaje de estructura tipo "SD"; in- cluye almacenaje, manipuleo y trans- porte de materiales, erección, alinea miento de la estructura, suministro, ensamblaje y pintado de la ferretería pintado de la numeración y señaliza - ción de peligro.	Pza.	18	114,000		21052,000		
5	Montaje de estructura tipo "SD1" idem al Item 4	Pza.	4	114,000		456,000		
ń	Montaje de estructura tipo "SDH" idem al Item 4	Pza	1.4	205,200		21872,800		1
2	Montaje de estructura tipo "SDHI" - idem al Item 4	Pza.	4	205,200		820,800		
8	Montaje de estructura tipo "ADO" idem al Item 4	Pzn	7	142,500		997,500		1
Q	Montaje de estructura tipo "ADGI" - idem al Item 4	Pza	4	142,500		570,000		
10	Montaje de estructura Lipo "ADHO" - idem al Item 4	Pza	14	256,500		31591,000		
11	Montage de estructura tipo "ADNU1" idem al Item 4	Pza	1	256,500		256,500		
1 2	Montaje de estructura tipo "RDH" idem al Item 4	Pza	3	235,980		707,940		157

TRONGAL PALLASCA - LACABAMBA - PAMPAS

PAR-	DESCRIPCION	METRADOS '	PRECIO UN	VITARIO	PRECIO	TOTAL	FORMULA
rida		UNID CANT	SOLES	DOLARES	SOLES	DOLARES	REAJUST
13	Montaje de estructuca tipo "ADH60" idem a Item 4.	c/11 2	256,500		513,000		
14	Montaje de estructura tipo "PDDS" idem a Item 4.	c/u 3	228,000		684,000		
15	Montaje de estructura tipo "PDDA" idem a Item 4.	c/u I	285,000	1	285,000		1
16	Montaje de estructura tipo "PDI" ide a [tem 4].	c/u l	131,100		131,100	į.	1
17	Montaje de estructura tipo "PDT" ide a Item 4.	m c/u l	131,100		131,100		1
15	Montage de estructura tipo "PD65" idem a Item 4.	c/u 1	142,500		142,500		
10	Conexión de la línea de Subtransmi sión a la 58.EE. de Pallusca	- Glo- bal	210,000		210,000		
20	Instalación y medición de la resiste cia del sistema de puesta a tierra c	<u>i</u>					
	ро В3	c/u 3	344,784		1'034,352	1	
2 1	Idem al Item 20 pero de tipo B4	c/u 1	439,614		439,614	1	1
2 7	ldem al Item 20 pero de tipo C	c/u I	995,715		995,715		
23	Instalación de bloque y varilla de a clase, incluye excavación y relleno	<u>n</u> c/u 39	51,760		21018,640		158,

PAR_	DESCRIPCION	METR	RADOS	PRECIO UN	NITARIO	PRECIO TO	OTAL	FORMULA
NIDA		עואט	CANT	SOLES	DOLARES	SOLES	DOLARES	REAJUST.
	Instalación de retenida; incluye instalación en su posición final de un cable para retenidas con sus accesorios y transporte de materiales.	c/u	30	5,600		218,400		
25	Limpieza de vía; incluye eliminación de árboles que se encuentran comprendidos en la franja de servidumbre de la línea.	Gl <u>o</u> bal	1	21200,000	1	21200,000		
20	Instalación de conductor para línea de subtransmisión doble terna: inclu de almacenaje, manípuleo, transporte de materiales, instalación de cadena de aisladores, instalación de aisla dores pin, tendido del conductor puesta en flecha, instalación de varillas de armar, manguitos de empalme, manguito de reparación según sea	Î					The state of the s	1
	requerido.	Km	17.287	21293,119	î	391641,148	1	
27	Pintado de estructuras de señaliza - ción	Glo bal		225,000	1	225,000		
23	Prueba de línea terminada, incluye r pruebas de continuidad, aislamiento y secuencia de fases	Km	17.2 > 7	78,399	į Į	11355,284		
					1			
		i.	¥					159

7.2 <u>LINEA DE SUBTRANSMISION 20 kV</u>

RAMAL PAMPAS-PUYALLI

I. SUMINISTRO DE MATERIALES Y EQUIPOS

A. POSTES Y CRUCETAS	unid	CANT.	COSTO UNIT.	TOTAL
1. Poste de madera de 11m., clase D, grupo 6, según diseños y especifi- caciones	i i Pza	i i 35t	99,000	131465,000
Cruceta de madera de 12º de largo 3 1/2" x 4 1/2"	i Pza	t t t t t 49:	32,000	1 11'568,00C
B. CONDUCTORES				1
 Conductor de aleación de aluminio, deshudo, cableado, de 25 mm2 según especificaciones 	t F Kg	1255	5,635	71071,925
C. AISLADORES Y ACCESORIOS	1	1 1		:
1. Aislador tipo pin clase 56-2	E Pza	1 54 1	29,125	:1'572,75C
2. Aislador de Suspensión tipo bola y casquillo clase 52-3	i Pza	252:	28,963	:71298,676
3. Pin para cruceta de madera de 1"de diámetro y 12" de longitud incluye arandela tuerca y contratuerca	t t Pza t	; 38! ; 1	7,960	302,48C
Pin para punta de poste según di- seños.	F Pza	16	12,170	194,720
Adaptador Horquilla-Bola de Fo Go	Pza	1261	5,580	703,080
6. Adaptador Casquillo-Ojo de Fo Go	Pza	1 1261	7,100	t 894,60C
7. Mordaza de Anclaje tipo pistola	: Pza	1 1261	22,795	21872,17C
8. Varillas de armar preformados de aluminio tipo Wraplock-Tle de 25mm2	r r Pza i	# 30# # 1	6,200	186,000
D. FERRETERIA Y MATERIAL ACCESORIO	ı I	t t		±
1. Brazo de cruceta de fierro según diseño y especificaciones, incluye perno y tirafondo de sujeción al poste y cruceta	t t i Pza	1 1 1 1 1 98:	13,805	1 1 11,352,890
2. Perno - maquinado de de 5/8"Ø x 10" de longitud incluye arandelas ;	1	1 1 1		1
tuercas y contratuercas	r Pza	1 32:	4,375	140,000
3. Perso de 5/8"Ø x 14" de longitud incluye tuerca y arandela	t : Pza	111	6,160	: 66,671
.1 Perno de doble armado de 5/8" & x 10"	Pan	6	7,530	45, 180

		I UNI	D & CAI	NT. I	COSTO	: TOTAL
. 4	Perno de doble armado de 5/8"Øx 18"	1	1	:	UNIT.	
7.	de longitud incluye arandelas .	i				
	tuercas y contratuercas	t Pza	- 4	57 :	7,530	429,210
	*		1		7,530	429,210
5.	Tuerca ojo para perno de 5/8" de	£	4	E		1
	diámetro	1 Pza	8 :	126:	4,180	526,680
		E		1		1
6.	Seccionador-Fusible, tipo CUT-OUT	1	•			4
	para 20 KV. de tensión de servicio 100A y 3500 m.s.n.m. de altura de	•				1
	trabajo con accesorios de fijación		-	1		
	según especificaciones	1 Pza		2:	336.530	1'009,590
	megali empecatamentones			1	330,330	. 1 009, J90
7.	Pararrayos tipo autoválvula para	1				t .
	15 kV de tensión de servicio y					E .
	3500 m.s.n.m. de altura de trabajo			1		:
	incluye accesorios de fijación	2:		6		ı
	según especificaciones.	1 Pza	E .	3:	264,686	794,058
_	Post 14	I		E		•
в.	Fusible para corriente nominal de	1	ľ	£		<u> </u>
	5 A para el Seccionador-Fusible del Item 6.	· Pza		31	7,500	22,500
	ONI ICEM O.			31	7,500	: 22,500
9.	Equipo de puesta de tierra, com-					r.
	pleto según planos y especifica-			1		:
	ciones, para el tipo:	E	1	1		t
			1			t
	- A3	ı Jgo	1	41	51,874	
	- B3	t Jga		41	65,852	
	- C	: Jgo	1	31	91,124	273,372
^	Debende manufacture and annual de	lt .				1
.0.	Retenida completa para poste de madera de 11 m. de longitud según	i		30		•
	especificaciones	i Jgo		22:	150.950	: 31320,900
				1	130,730	: 5 520 , 700
.1.	Manguito de reparación tipo com-	t				±
	presión para conductor de Aa					
	de 25 mm2.	1 Pza	t	12t	3,250	: 39,000
4	e i	2	E. e.	L		t
.2.	Grampas de doble via para conduc-	t	E	1	1 000	E
	tor de Aa de 25 mm2.	s Pza		70:	1,200	. 84,000
		E.				•
	II. MONTAJE ELECTROMECANICO					
	11. HOWHOL ELECTROMECHIVES		- 1			
1.	Replanteo de la linea.	: Gb1	1	1		21590,452
	• • • • • • • • • • • • • • • • • • • •	;		r		
2.	Caminos de acceso, según el tipo de	1	1	1		:
	terreno se tienes	E .	4			P .
		1	1			t.
	- Tipo I	ı Km	1	4		
	- Tipo II - Tipo III	ı Km		. 4		
	- Tipo IV	: Km	•	2.	517.507	11035,014
	- Tipo VIII	r Km	¥.	1	34/330/	1,1,7,-14
	- Limpieza	€ Km	1	1:	266.171	260,171
						, - , -

		: UNI		CANT.		TOTAL
-	Everyorida como la cicontación	7	1		UNIT.	1
٥.	Excavación para la cimentación.	t w2		901	16,020	961,200
A	Manhaia da ambawahwantinatuwa					I
14-	Montaje de estructura; incluye	1				5
	almacenaje, manipuleo, transporte de	1	I			t .
	materiales, erección, alineamiento	6		1		I
	de la estructura, etc. para los	E	2			z
	siguientes tipos:		*			
	- Tipo MS	: Pza		101	105,000	1'050,000
	- Tipo MR	Pza		21	405 000	
	- Tipo MAO	Pza	_			1'260,000
	- Tipo MA25	: Pza		_	4 5 6 6 6 6	
	-1' 116.16	: Pza	_		4 70 000	
			_		10/ 000	
		r Pza			040 500	
		= Pza	_	_		421,000
		r Pza				
		F Pza		1:	00-7	330,000
	- Tipo MHD	: Pza	_	1		1
_			*			1
5.	Empalme a la troncal principal.	: Gbl	E .		90,000	90,000
6.	Instalación y medición del sistema		- 9			
-	de puesta a tierra.		1			1
	de parte a crair ar	*	į.			
	- A3	: c/u		4 2	298.714	: 1' 194,856
		: c/u		4:		: 1,437,136
	- C	: c/u		3:		: 2'987, 139
				0.	773,723	. 2 ,0 / 3 23 9
7	Instalación de bloque y varilla de					
/ •	· · · · · · · · · · · · · · · · · · ·			22:	51,760	: 1 1 1 38,720
	de anclaje. Incluye excavación y relleno	: C/u		F.Z.	31,700	1 1303/20
8	Instalación de retenida.	1 c/u		22:	5,600	: 123,200
٥.	Anstalacion de l'étenioa.	7				:
0	Limpieza de via, incluye elimina-					
-	ción de árboles comprendidos en la					±
	franja de servidumbre.	: Gbl			902,630	902,630
	Tranja de Servidumbre.	. 001			,02,030	;
10	Instalación de conductos para					7
10.	Instalación de conductor para		1	1		
	linea de subtransmisión, simple					
	terna, incluye almacenaje, manipuleo		:	:		
	transporte de materiales, instala-					
	ción de cadena de aisladores, insta					:
	lación de aisladores pin, tendido	4				
	del conductor, puesta en flecha,	-				4
	instalación de varillas de armar	*				-
	manguitos de empalme, según sea	- V-	2	5 774-	1,501,949	. 81672 254
	requerido.	ı Km	I	3.774;	1.301,949	:8'672,254
	Develop de 1 (est facilité de la		-			
11.	Prueba de linea terminada, incluye		-	1		•
	pruebas de continuidad, aislamiento	· V-	1	5.774:	65,333	* + 277 222
	y secuencia de fases.	: Km	-	5.//4:	03,333	377,233
		Ĭ				•

7.3 <u>LINEA DE SUBTRANSMISION 20 kV</u>

RAMAL LACABAMBA-CONCHUCOS

I. SUMINISTRO DE MATERIALES Y EQUIPOS

	A. POSTES Y CRUCETAS	I UNI	ID	: CANT. :	COSTO UNIT.	\$	TOTAL
1 -	Poste de madera de 11m., clase D,				OIATI.		
	grupo 6, según diseños y especifi-						
	caciones	: Pza		t 55:	99,000	15	1445,000
		t		t t	,,,	1	4,43,000
2.	Cruceta de madera de 12º de largo			1 1		:	
	3 1/2" x 4 1/2"	# Pza	a	z 28:	32,000	4	896,000
		2		2 2			
В	. CONDUCTORES	4		: :			
		\$: :		1	
	Conductor de aleación de aluminio,			1 1		4	
	desnudo, cableado, de 25 mm2 según		_	1002	5 625	:	100 000
	especificaciones	ı Kç	9	1203:	5,635	:0	778,905
_	. AISLADORES Y ACCESORIOS						
	HISCHBONES T HOCESONIOS			: :		:	
1.	Aislador tipo pin clase 56-2	i Pza		1 64:	29,125	2.1	864,000
	The pin didd do I	:		1 1	-/,1-3		34,300
2.	Aislador de Suspensión tipo bola y	1		t t		4	
	casquillo clase 52-3	: Pza	2	: 288:	28,963	*8	341,344
		1		1 1		1	
	Pin para crucata de madera de 1"de	İ		1		:	
	diametro y 12" de longitud incluye	E .		1 :		1	
	arandela tuerca y contratuerca	t Pz	2	20:	7,960	1	159,200
	,	r.		1 1			
	Pin para punta de poste según di-	I D		1 1	10 150		# 0 # 4 O O
	seños.	: Pza	a	1 44:	12,170	:	535,480
5	Adaptador Horquilla-Bola de Fo Go	: Pza	5	144:	5,580		803,520
٠.	Adaptador Nordattia pora de 10 do				3,300		003,320
6.	Adaptador Casquillo-Djo de Fo Go	; Pza	a	144:	7,100	. 1	1022,400
		1		1 1		2	0
7.	Mordaza de Anclaje tipo pistola	1 Pza	a	1441	22,795	. 3	1282,480
		±		± ±		4	
	Varillas de armar preformados de			1 1		2	
а	luminio tipo Wraplock-Tle de 25mm2	: Pz	a	16:	6,200		99,200
_	######################################	Ξ		I I		1	
U	. FERRETERIA Y MATERIAL ACCESORIO			: :		:	
1	Brazo de cruceta de fierro según	*		1 1		4	
	diseño y especificaciones, incluye	-				4	
	perno y tirafondo de sujeción al	1				2	
	poste y cruceta.	. Pz		: 56:	13,805	2	773,080
	,	:		1 2	13,005		770,00
2.	Perno . maquinado de 5/8" Ø 10"	1		1 1		3	
	de longitud incluye arandelas ,			: :		=	
	tuercas y contratuercas	t Pza	a	88:	4,375	1	385,000
_		2		1 1		ŧ	
٥.	Perno de 5/8"Ø x 14" de longitud	r Pza		: t		1	26 262
12	incluye tuerca y arandela			6:	6,160	1	36,960
3.1	Perno de doble armado de 5/8" s x 10"	1 Pan		# frt #	7,530		293,670
							80

		:	UNID	CANT.	COSTO UNIT.	TOTAL
4.	Perno de doble armado de 5/8"Øx 18" de longitud incluye arandelas,	: E		: :		1
	tuercas y contratuercas	t :	Pza	t 33t	7,530	: 248,490
5.	Tuerca ojo para perno de 5/8" de diámetro	:	Pza	1 144:	4,180	601,920
6.	Seccionador-Fusible, tipo CUT-OUT para 20 KV. de tensión de servicio 100A y 3500 m.s.n.m. de altura de trabajo con accesorios de fijación según especificaciones	I I	Pza	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	226 520	:11009,590
-		=		1 1	330,330	1
/.	Pararrayos tipo autoválvula para 20 kV de tensión de servicio y 3500 m.s.n.m. de altura de trabajo incluye accesorios de fijación			1 1		:
	según especificaciones.	:	Pza	1 3:	264,686	794,058
8.	Fusible para corriente nominal de 5 A para el Seccionador-Fusible del Item 6.		Pza	t 3t	7,500	22,500
9.	Equipo de puesta de tierra, com- pleto según planos y especifica- ciones,para el tipo:	3		1 3		
	- B3		Jgo	31	65,852	
	- B4 - C		Jgo Jgo	: 1:	81,452 91,124	\$1,452 546,744
10.	Retenida completa para poste de madera de 11 m. de longitud según	1		1 1		:
	especificaciones	t =	Jgo	82:	150,950	: 12'377,900
11.	Manguito de reparación tipo compre sión para conductor de Aa de 25mm2		Pza	: 12:	3,250	39,000
12.	Grampas de doble via para conductor de Aa de 25 mm2.	1	Pza	1 ; 70:	1,200	84,000
13.	Amortiguadores de vibraciones		Pza	÷ 6 ÷	15,330	2
	II. MONTAJE ELECTROMECANICO					
1.	Replanteo de la linea.	:	Gb1	1 7		21488,079
2.	Caminos de acceso, según el tipo de terreno se tiene:	1 1		1 1		:
	- Tipo I		Km	1 1		1
	- Tipo II - Tipo III		Km Km	1 1		1
	- Tipo IV - Tipo VIII		Km Km	2:	517,507	: 1'035,014
	- Limpieza		K m	: 1:	266,171	266,171

		: UNII		CANT. :	COSTO	: TOTAL
		:	:	4	UNIT.	I
3.	Excavación para la cimentación.	:	:	4		1
		:		2		*
	- Material suelto	: m3	:	86:	16,020	1'377,720
	- Roca	Em :	:	8:	162,270	11298,160
			1	:		:
4.	Montaje de estructura; incluye					1
	almacenaje, manipuleo, transporte de	;	:			
	materiales, erección, alineamiento	:	:			1
	de la estructura, etc. para los	:	:	2		2
	siguientes tiposi	1	1			:
		:	:	:	7.	2
	- Tipo MS	t Pza	- 1	5:	105,000	: 525,000
	- Tipo MR	: Pza			- /	:
	- Tipo MAO	: Pza	1	8:	105,000	: 840,000
	- Tipo MA25	: Pza	1	:	- /	:
		: Pza	1	1:	150,000	150,000
	·	: Pza		1:		: 126,000
		: Pza	1			٤١736,500
	- Tipo MPI	: Pza			2,70,300	:
	- Tipo MPD	: Pza	2	1:	330,000	: 330,000
	- Tipo MHD	Pza	1		00-,	:
	tapo tino	1	1	1		4
5.	Empalme a la troncal principal.	: Gb1			90,000	90,000
	ampuante a la croncar principali				,,,,,,,,	1
6.	Instalación y medición del sistema	2				-
•	de puesta a tierra.	-				1
	oc paesea a creman			1		2
	- B3	: c/u	-	3:	250 284	1'077,852
	- B4	: c/u	-	1:	00//	: 454,114
	- C	: c/u	2			5'974,278
	-	:			773,743	5 //4,5/0
7.	Instalación de bloque y varilla de					
	de anclaje. Incluye excavación y relleno			82:	51,760	4'244,320
	distribute executation y refrence			:	ŕ	*
в.	Instalación de retenida.	: c/u	- 2	82:	5,600	: 459,200
		:	t	4		:
9.	Limpieza de via, incluye elimina-					
	ción de árboles comprendidos en la	:		:		
	franja de servidumbre.	: Gb1	1		902,630	; 902,630
		*	:			1
10.	Instalación de conductor para					1
	linea de subtransmisión, simple	1				\$
	terna, incluye almacenaje, manipuleo					±
	transporte de materiales, instala-	:	:			ž.
	ción de cadena de aisladores, insta	I	1	1		
	lación de aisladores pin, tendido	:				1
	del conductor, puesta en flecha,	1	1	1		1
	instalación de varillas de armar	:	:	:		:
	manguitos de empalme, según sea	:	:	:		1
	requerido.	: Km	:	5.533:	1 501,949	\$1310,284
		:	:			:
11.	Prueba de linea terminada, incluye	:	:			:
	pruebas de continuidad, aislamiento	:		#		:
	y secuencia de fases.	: Km	1	5.533:	65,333	: 361,487
		:	:	:		:

7.4 <u>LINEA DE SUBTRANSMISION 20 kV</u>

RAMAL CHORA

I. SUMINISTRO DE MATERIALES Y EQUIPOS

	A. POSTES Y CRUCETAS	: UN	ID	: C4	ANT.	COSTO UNIT.	2 4	TOTAL
	Poste de madera de 11m., clase D, grupo 6, según diseños y especifi-	1		Į			1	
	caciones.		a		5:	99,000	:	495,000
2.	Cruceta de madera de 12' de largo 3 1/2" x 4 1/2"	1 : Pz	a	: :	10:	32,000	± =	320,000
8	. CONDUCTORES	:		1	: t		1	
1.	Conductor de aleación de aluminio, desnudo, cableado, de 25 mm2 según			= =	:		=	
	especificaciones		(g	\$	141:	5,635	:	794,535
C	. AISLADORES Y ACCESORIOS	1		2	1		:	
1.	Aislador tipo pin clase 56-2	: Pz	a	z z	5:	29,125	2	145,625
	Aislador de Suspensión tipo bola y casquillo clase 52-3		a	I 1	60 =	28,963	:1	1737,780
3.	Pin para cruceta de madera de 1"de diámetro y 12" de longitud incluye arandela tuerca y contratuerca	:	a		5 =	7 060	:	20 900
4.	Adaptador Horquilla-Bola de Fo Go	4	. a	:	30 :	7,960 5,580		39,800 167,400
	Adaptador Casquillo-Ojo de Fo Go	:	a.	:	30 =	7,100	:	213,000
	Mordaza de Anclaje tipo pistola	0	a	:	30 =	22,795	1	683,850
Ε	. FERRETERIA Y MATERIAL ACCESORIO	1		:	7	,,,,,	:	- 0 , - 3 -
1.	Brazo de cruceta de fierro según	1		:	:		:	
	diseño y especificaciones, incluye perno y tirafondo de sujeción al	1		5	2	13,805		276,100
7	Poste y cruceta	; Fz	: a	:	20 :	13,003	:	2/0,100
4.	Perno de 5/8"Ø x ^{IS} " de longitud incluye tuerca y arandela. doble ar mado.	; Fz	a	1	15	7,530	:	112,950
3.	Tuerca ojo para perno de 5/8" de diámetro.	; Fz	: a	:	30 =	4,180	:	125,400
4.	Equipo de puesta de tierra, com- pleto según planos y especifica-	1		4	1		:	
	ciones, para el tipo:	1		;			:	
	- C	: Je	90	1	2:	91,124	:	182,248

			UNID	‡ C	ANT.	COSTO	:	TOTAL
		T			:	UNIT.	:	
5.	Retenida completa para poste de	:		:	ž.		2	
	madera de 11 m. de longitud según	ż		E	=		:	
	diseños y especificaciones.		Jgo		2:	150,950	:	301,900
		14	- 5 -	*	:	•		,,,
4	Grampas de doble via para conduc-			-				
٥.	tor de Aa de 25 mm2.		Fza		15:	1,200		18,000
	cor de Ha de 25 mm2.	ì	120		13.	1,200		10,000
	II. MONTAJE ELECTROMECANICO							
	*	-			5		:	
1	Poplantos de la linga		Gb1					292,292
1.	Replanteo de la linea.		001	-				-/-,-/-
_		Ξ		•	-			
2.	Caminos de acceso, según el tipo de	\$		-			F	
	terreno se tiene:	÷		1	4		1	
		:		5	1		2	
	- Tipo I	:	Km	4	2		3	
	- Tipo II	2	Km	4	2		2	
	- Tipo III		Km	2			:	
	- Tipo IV		Km					
	· ·		Km	-				
	- Tipo VIII				1.	266 171	*	266 171
	- Limpieza	4	Km	4	1:	266,171	Ŧ	266,171
		Ξ		+			F	
3.	Excavación para la cimentación.	2	mЗ		14:	16,020	ţ.	224,2 80
		2		=	2		Ę	
4.	Montaje de estructura; incluye			2			E	
	almacenaje, manipuleo, transporte de				2		5	
							4	
	materiales, erección, alineamiento							
	de la estructura, etc. para los	÷		-				
	siguientes tipos:	2		:	2		15	
		\$:			4	
	- Tipo MS	1	Fza	:	4		1	
	- Tipo MR	2	Pza	2	=		4	
	- Tipo MAO	7	Pza	14	3:	105,000	2	315,000
	- Tipo MA25	4	Fza	-	,1	103,000		313,000
			Fza		- :		į.	
	- Tipo MA60					126,000	4	126,000
	- Tipo MPT	i	Fza	=	1:	120,000		120,000
	- Tipo MP3	Ξ	Fza	1	4	105 000		.000
	- Tipo MFI	=	Fza		1:	105,000	:	105,000
	- Tipo MPD	-	Pza	1	7		:	
	- Tipo MHD	=	Fza	#	=		0	
		0		2	:			
5	. Empalme a la troncal principal.	-	Gb 1			90,000	2	90,000
٠.	Emparme a la croncal principal.			1		. ,	1	, ,
							÷	
6.	Instalación y medición del sistema	•		+				
	de puesta a tierra.			7	-		*	
		-		:	7		1	.00.
	- C	7	c/u	=	2:	995,715	: 1	1991,430
		1		=	:			
7.	. Instalación de bloque y varilla de	i		1	4		*	
	de anclaje. Incluye excavación y rellene	1 :	c/u	2	2:	51,760	0	103,520
	ac onerage, meraje extendental i retient	-	_			5-7,	7	
0	lockalasida da est-sida		c/u		2:	5,600	2	11,200
0	. Instalación de retenida.	+	C / C		4	3,000	1	11,200
		F						

		I	UNID	: 0	CANT.	2	COSTO	0	TOTAL
		2		1		3	UNIT.	2	
9.	Limpieza de vía, incluye elimina-	:		1				2	
	ción de árboles comprendidos en la	4		-				è	
	franja de servidumbre.	±	Gbl	1		2	100,000	-	100,000
		4		I		2			,
10.	Instalación de conductor para	:						-	
	linea de subtransmisión, simple							4	
	terna, incluye almacenaje, manipuleo	1						-	
	transporte de materiales, instala-	:						-	
	ción de cadena de aisladores, insta	- -							
	lación de aisladores pin, tendido			7		-			
	del conductor, puesta en flecha,	-		-					
	instalación de varillas de armar	-				-			
	manguitos de empalme, según sea	-				- 0		-	
	requerido.	-	Km		,	5.	11501 040		076 262
	requertud.	=	Pent	*	• 0	3:	11501,949	*	9/0,20/
		8		7		4		•	
11.	Prueba de linea terminada, incluye	E		1		2		:	
	pruebas de continuidad, aislamiento	\$:				3	
	y secuencia de fases.	Ξ	Km	:	. 6	5:	65,333	Ţ	42,466
		=		:		=	•		

7-5 LINEA DE SUBTRANSMISION 20 kV

DERIVACION A PALLASCA

I. SUMINISTRO DE MATERIALES Y EQUIPOS

A. POSTES Y CRUCETAS	; UNI	D : CANT -:	COSTO :	TOTAL
1. Posto de Madera de 11m., clase D, grupo 6, segun diseños y especifi-	1	: :	00 000	00 000
Caciones	: Fza	: 1:	99,000	99,000
2. Cruceta de madera de 12' de largo 3 1/2" x 4 1/2"	: P2 a	3:	32,000	96,000
B. CONDUCTORES	1	1 1	:	
 Conductor de aleación de aluminio, desnudo, cableado, de 35 mm2 según especificaciones 	: Kg	: : : : : : : : : : : : : : : : : : :	5,635	71,565
C. AISLADORES Y ACCESORIOS	:			
1. Aislador de Suspensión tipo bola y casquillo clase 52-3	: : Fza	12:	28,963	347,556
2. Adaptador Horquilla-Bola de Fo Go	: Pza	-	5,580	33,480
3. Adaptador Casquillo-Ojo de Fo Go	: Fza	: 6:	7,100	42,600
4. Mordaza de Anclaje tipo pistola	: Fza	: 6:	22,795	136,770
D. FERRETERIA Y MATERIAL ACCESORIO	*	: :		
 Brazo de cruceta de fierro según diseño y especificaciones, incluye perno y tirafondo de sujeción al 	1	1 1	12 805	69,025
poste y cruceta.	: Fza	: 5:	13,805	: 09,023
 Perno de 5/8"0 x 14" de longitud incluye tuerca y arandela 	: Fza		6,160	6,160
3. Perno de doble armado de 5/8"0x l'" de longitud incluye arandelas . tuercas y contratuercas.	i i Pza	: : :	7,530	22,590
4. Tuerca ojo para perno de 5/8" de	t t frza	: :	4, 180	25,080
diámetro. S. Seccionador-Fusible, tipo CUT-OUT	: F24	: :	4, 100	= 25,000
para 20 KV. de tensión de servicio 100A y 3500 m.s.n.m. de altura de trabajo con accesorios de fijación	: :	: :		:
según especificaciones	: P28	: 3a : :	336,530	1 1 009,590 ;
6. Pararrayos tipo autoválvula sin óxido de zinc para 19.5 IV de ten- sión de servicio , 7500 m.s.n.m		: :		:
de altura de trabajo,incluye acce- sorios de fijación según especifi caciones.	‡	: : : 7:	264,686	794,058

			UNID	: (CANT.:	COSTO		TOTAL
		1		:	:	UNIT.		
7	. Fusible para corriente nominal de				:		4	
	5 A para el Seccionador-Fusible			è			-	
	del Item 6.	į.	Pza		6:	7,500		45,000
	dar rem o.	-	, , ,		-	,,,,,,,		43,000
0	Couise de euseta de tienes	•					•	
0	Equipo de puesta de tierra, com-	7			-		-	
	pleto según planos y especifica-	1			*			
	ciones,para el tipo:			-			1	
	D.C.	-		2	4	50 252	Ŧ	50 252
	- B2	:	Jgo	1	1:	50,252	1	50,252
	*	4		:	:		2	
9	. Retenida completa para poste de	÷		=	:			
	madera de 11 m. de longitud según	1		1	4		:	
	especificaciones.	:	Jga	2	1:	150,950	2	150,950
		:			=		=	
10	Grampas de doble via para conduc-	:		:	2		=	
	tor de Aa de 35 mm2.	:	Pza	ŧ	6:	1,200	:	7,200
		:		:		•		
	II. MONTAJE ELECTROMECANICO							
		3	01.3	Ť	2		-	50 000
1	. Ubicación de la derivación.	ž	Gb1	2	=		-	50,000
_		ž	_	2			0	
2	. Excavación para la cimentación.	2	Σm	-	1.72:	16,020	:	27,554
		2		2			\$	
3.	. Montaje de estructura;incluye	Ş		9	Ξ			
	almacenaje, manipuleo, transporte de	\$		9	Y 2			
	materiales, erección, alineamiento	Ş		0	2			
	de la estructura, etc. para los	:		;	4		:	
	siguientes tipos:	2		3	4		:	
					z		:	
	- Tipo MPD	=	Pza	2	1:	330,000	4	330,000
						330,000		550,000
Δ	. Empalme a la troncal principal.		Gb1	·		90,000		90,000
-4	. Empaime a la croncal principal.		001			90,000		90,000
_	Yankalasida andisida dal sinkasa			-	ī		1	
3	. Instalación y medición del sistema	-		3	Ŧ.		1	
	de puesta a tierra.	:		÷	1		-	
		3		÷	2		Ŧ	
	- 82	1	c/u	1	1:	264,454	÷	264,454
		2		\$			2	
6	. Instalación de bloque y varilla de	:		2	=		#	
	de anclaje.	:	c/u	:	1:	51,760	=	51,760
		E		Ξ			4	
7	Instalación de retenida.	z	c/u		1:	5,600	=	5,600
		:		÷	1	-,	:	- ,

RESUMEN DE PRESUPUESTOS

7.6

LINEA DE SUBTRANSMISION DE 20 kV_TRONCAL PALLASCA-LACABAMBA PAMPAS

DENOMINACION	MONTO SOLES ORO
- POSTES Y CRUCETAS	721730,846
- CONDUCTOR	1591566,295
- AISLADORES, ACCESORIOS Y FERRETER	YA 921633,297
- MONTAJE ELECTROMECANICO	1791358,863
- TRANSPORTE	81044,469
- GASTOS GENERALES Y UTILIDADES	761850,065
T O T A L	5891183,835

LINEA DE SUBTRANSMISION DE 20 kV-RAMAL PAMPAS-PUYALLI

DENOMINACION	MONTO SOLES ORO
- POSTES Y CRUCETAS	5'033,000
- CONDUCTOR	7'071,925
- AISLADORES, ACCESORIOS Y FERRETERIA	221599,431
- MONTAJE ELECTROMECANICO	25'629,005
- TRANSPORTE	850,455
- GASTOS GENERALES Y UTILIDADES	9 177,572
TOTAL	70'361,388

LINEA DE SUBTRANSMISION DE 20 kV -RAMAL LACABAMBA-CONCHUCOS

DENOMINACION	MONTO SOLES ORO
- POSTES Y CRUCETAS	6 34 1,000
- CONDUCTOR	61778,905
- AISLADORES, ACCESORIOS Y FERRETERIA	33 ' 599 , 544
- MONTAJE ELECTROMECANICO	331046,809
- TRANSPORTE	21005,752
- GASTOS GENERALES Y UTILIDADES	12 265,801
TOTAL	94'037,811

LINEA DE SUBTRANSMISION DE 20 kV-RAMAL CHORA

DENOMINACION	MONTO SOLES ORO
- POSTES Y CRUCETAS	815,000
- CONDUCTOR	794,535
- AISLADORES, ACCESORIOS Y FERRETERIA	4'440,928
- MONTAJE ELECTROMECANICO	4 1 643,626
- TRANSPORTE	103,971
- GASTOS GENERALES Y UTILIDADES	1'619,709
T O T A L	12'417,769

LINEA DE SUBTRANSMISION DE 20 kV-DERIVACIONES(TAUCA, CABANA, PALLASCA)

DENOMINACION	MONTO SOLES ORO
- POSTES Y CRUCETAS	847,000
- CONDUCTOR	111,011
- AISLADORES, ACCESORIOS Y FERRETERIA	12'880,727
- MONTAJE ELECTROMECANICO	21739,856
- TRANSPORTE	273,938
- GASTOS GENERALES Y UTILIDADES	2 1 5 2 7 , 8 7 9
T O T A L	19'380,411

PROYECTO

PSE N° 2 SANTIAGO DE CHUCO - PALLASCA - CABANA LINEA DE SUBTRANSMISION DE 20 kV

TRONCAL PALLASCA-LACABAMBA-PAMPAS

FEGHA

Set. 1983

PRESUPUESTO BASE

54 589'183,835

LOCALIDAD	DISTRITO	PROVINCIA	DEPARTAMENTO
	PALLASCA-LACABAMBA-PAMPAS	PALLASCA	ANCASH

$$K = 0.123 \quad \frac{Pr}{Po} + 0.271 \cdot \frac{ALr}{ALo} + 0.157 \quad \frac{FEr}{FEo} + 0.304 \quad \frac{Jr}{Jo} + 0.144 \cdot \frac{TGUr}{TGUo}$$

En la formula les subindices "o" de auda simbolo representan el indice de precia (según CREPCO) a la fecha de ciatoración del presupuesta (presupuesta base) y los subindices "r" el indice del precia al momento de rea juste o fecha de valoración

81M'80 LO	ELEMENTO REPRESENTATIVO	INCIDENCIA	INDI GE UNIFICADO
P	Postes y crucetas de fierro	100	63
AL	Conductores de aleación de aluminio desnudo	100	52
F	Aisladores, pines y ferretería	91.81	02
E	Equipo de protección (seccionador y pararrayos)	8.19	06
.J.	Mano de Obra (incluye leyes sociales)	100	47
T.	Transporte de material a la obra (flete)	10.46	32
GE	Gastos Generales y Utilidades	89.54	39

PROYECTO

PSE N° 2 SANTIAGO DE CHUCO - PALLASCA - CABANA LINEA DE SUBTRANSMISION DE 20 kV

RAMAL PAMPAS-PUYALLI

FECHA
Set. 1983

PRESUPUESTO BASE

5/ 701361,388.00

LOCALIDAD

DISTRITO

PROVINCIA

DEPARTAMENTO

PAMPAS

PALLASCA

ANCASH

$$K = 0.$$
 $\frac{Pr}{Po} + 0.10$ $\frac{ALr}{ALo} + 0.321$ $\frac{FEr}{FEo} + 0.364$ $\frac{Jr}{Jo} + 0.142$ $\frac{TGUr}{TGUo}$

En la formula les subindices "o" de cada almboio representan el indice de precio (según CREPCO) a la fecha de riaboración del presupuesto (presupuesto base) y los subindices "r" el indice del precio al momento de recipiete o fecha de valoración

EIM.BOFO	ELEMENTO REPRESENTATIVO	INCIDENCIA	INDI CE UNIFICADO
Р	Postes y crucetas de madera nacional	100	43
AL	Conductores de aleación de aluminio desnudo	100	52
F	Aisladores, pines y ferretería	92.02	02
E	Equipo de protección (seccionador y pararrayos)	7.98	06
J	Mano de Obra (incluye leyes sociales)	100_	47
T	Transporte de material a la obra (flete)	8.49	32
GI.	Gastos Generales y <u>Utilidades</u>	91.51	39

PROYECTO

PSE N° 2 SANTIAGO DE CHUCO - PALLASCA - CABANA LINEA DE SUBTRANSMISION DE 20 kV

RAMAL LACABAMBA-CONCHUCOS

FECHA

Set. 1983

PRESUPUESTO BASI

54 94'037,811.00

OTINTELO	PROVINCIA	DEPARTAMENTO
LACABAMBA - CONCHUCOS	PALLASCA	ANCASH

$$K = 0.67 \frac{Pr}{Po} + 0.072 \frac{ALr}{ALo} + 0.357 \frac{FEr}{FEo} + 0.351 \frac{Jr}{Jo} + 0.151 \frac{TGUr}{TGUo}$$

En la formula les subindices "a" de cada simbolo representan el indice de precio (según CREPCO) a la fecha de «!aboración del presupuesto (presupuesto bass) y los subindices "r" el indice del precio di momento de recjuste o fecha de valoración

\$1 M'B 0 L O	ELEMENTO REPRESENTATIVO	INCIDENCIA	UNIFICADO
Р	Postes y crucetas de madera nacional	100	43
AL	Conductores de aleación de aluminio desnudo	100	52
F	Aisladores, pines y ferretería	94.63	02
E	Equipo de protección (seccionador y pararrayos)	5.37	06
J	Mano de Obra (incluye leyes sociales)	100	47
Τ	Transporte de material a la obra (flete)	14.05	32
GU	Gastos Generales y Utilidades	85.95	39

PACYECTO

PSE N° 2 SANTIAGO DE CHUCO - PALLASCA - CABANA LINEA DE SUBTRANSMISION DE 20 kV

RAMAL A CHORA

FECH A Set. 1983

PRESUPUESTO BASE

St 12'417,769.00

OCALIDAD 018	PROVINCIA	DEPARTAMENTO
LACABA	MBA PALLASCA	ANCASH

$$K = 0.065 \frac{Pr}{Po} + 0.064 \frac{ALr}{ALo} + 0.357 \frac{Fr}{Fo} + 0.374 \frac{Jr}{Jo} + 0.13 \frac{TGUr}{TGUo}$$

En la formula les subindices "o" de cada simbolo representan el indice de precio (según CREPCO) a la fecha de elaboración del presupuesto (presupuesto base) y los subindices "r" el indice del precio al momento de reajuste a fecha da valoración

BIM'BOLO	ELEMENTO REPRESENTATIVO	INCIDENCIA	UNIFICADO
Р	Postes y crucetas de madera nacional	100	43
AL	Conductores de aleación de aluminio desnudo	100	52
F	Aisladores, pines y ferretería	100	02
J	Mano de obra (incluye leyes sociales)		47
Т	Transporte de material a la obra (flete)		32
GU	Gastos Generales y Utilidades	94	39

CONCLUSIONES

- 1. La tensión elegida es la de 20 kV la cual está normada por el Código Nacional de Electricidad, es la que resulta del análisis realizado y que cumple con las solicitaciones de la Zona y distancia de Transmisión.
- 2. La alimentación de la demanda de energía de la zona, con la energía proveniente de la Central Hidroeléctrica del Cañón del Pato, resulta el sistema más seguro de servi cio, en vista de lo accidentado del terreno y que en tiempo de lluvia existe el inconveniente del cierre de las carreteras producidas por Huaicos y que impiden el normal abastecimiento de combustible a lazona.
- 3. El uso de la aleación de Aluminio para el conductor es el más apropiado dados los inconvenientes de la zona y de los vanos grandes en algunos casos, se necesita un material que no sea frágil.
- 4. Debido alas características geográficas del terreno y los altos costos de transporte y montaje se ha optado por el uso de postes de fierro tubular los que son fáciles de transportar y montar en el sitio.
- 5. La utilización de los postes de madera se justifican ya que en la zona existen bosques de eucaliptos que son los usados y que pueden ser tratados en el sitio con sales preservantes, este tratamiento se puede efectuar en el sitio mediante el sistema Boucherie.

6. Los aisladores a usarse son de clase 56-2 pero considerando que la línea está a más de 3,400 msnm. será difícil su mantenimiento y por lo tanto se elige los de clase 56-3.

BIBLIOGRAFIA

- (1) MONENCO Montreal Engineering (Overseas) Limited, "V Proyecto de Energia Eléctrica del Perú. Electrical Systems Studies, Final Report" Volumen 11.
- (2) ALUMINUM COMPANY of AMERICA, "Fundamental Heat Balance Equations", Paper.
- (3) GIOVANNI BARERA, "Líneas de Transmisión. Cálculo Mecánico"
- (4) R.D. FUCHS, M. TADEU DE ALMEIDA, "Projetos Mecánicos das Linhas Aéreas de Transmissao", Centrais Eléctricos Brasileiras S/A, Escola Federal de Engenharias de Itajubá. Editora Edgard Blucher Ltda.
- (5) E. MAURER, "Le calcul mécanique des lignes aériennes" Associa tion Suisse des Electriciens, Artículo Boletín, 1936.
- (6) A. MAUDUIT, "Installations Electriques a Haute et Basse Tension", Tomo 3, Ed. Dunod, Paris, 1959.
- (7) OLLE I. ELGERD, "Electric Energy Systems Theory: An Introduction", Mc Grow-Hill, 1971.
- (8) MINISTERIO DE ENERGIA Y MINAS, "Código Nacional de Electricidad", 1978.
- (9) L. M. CHECA, "Líneas de Transporte de Energía", Marcombo Boi xareu Editores, 1979.
- (10) EPRI, "Transmission Line Reference Book, 345 kV and Above" Electric Power Research Institute, 1979.
- (11) IÑAKI ROUSSE, "Diseño de Líneas de Transmisión", Universidad Simón Bolívar, Caracas, 1980.
- (12) V. BOURGSDORF, "Permanent elongation of conductors. Predictor equation and evaluation methods", Revista Electra N.º 75, CIGRE, Paris, 1981.

- (13) MEM, ELECTROPERU, ELECTROLIMA, EDF, SOFRELEC, "Estudio Tarifario para el Sistema Interconectado Centro Norte. Informe Final", Lima París, Junio de 1982.
- (14) BBC BROWN BOVERI, "Manual de las Instalaciones de Distribu -- ción de Energía Eléctrica", URMO, 1983.

* * * * *