UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE CIENCIAS
ESCUELA PROFESIONAL DE FISICA

TESIS PARA OPTAR EL TITULO PROFESIONAL DE LICENCIADO EN FISICA

"ESTUDIO DEL MECANISMO DE DETECCION DE GASES EN LOS RECUBRIMIENTOS DE DIÓXIDO DE ESTAÑO SINTERIZADO"

PRESENTADO POR:

LUIS FERNANDO REYES HERNÁNDEZ

LIMA – PERU
2000
RESUMEN

El trabajo estudia experimentalmente y teóricamente los cambios de conductividad eléctrica de recubrimientos de dióxido de estaño sinterizado, ante la presencia de gases reductores (Ej.: etanol, butanol, amoníaco). Este cambio de conductividad permite usar el dióxido de estaño como sensor de gases.

El fundamento teórico que explica los cambios de conductividad superficial, se basa en la formación de carga espacial en la interfase sólido-gas. El oxígeno contenido en el aire es adsorbido inicialmente en la superficie del recubrimiento a unos 300 °C, fijando una conductividad inicial. Posteriormente bajo la presencia del gas reductor, esta capa es parcialmente desorbida originando cambios en la población superficial de portadores y por lo tanto en su conductividad. Se encuentra experimentalmente que el proceso es reversible y de alta sensibilidad para ser usado como dispositivo sensor.

Se obtuvo un buen dominio de la técnica de fabricación de los recubrimientos. Estos fueron tratados a diferentes temperaturas de sinterización y posteriormente analizados por Rayos X, encontrándose que a la temperatura de trabajo no se producirán cambios de fase en la estructura del dióxido de estaño.
ÍNDICE

RESUMEN
AGRADECIMIENTOS
INTRODUCCIÓN
ANTECEDENTES
OBJETIVOS

1. CONCEPTOS TEÓRICOS
 1.1 ESTRUCTURA CRISTALINA DEL DIÓXIDO DE ESTAÑO
 1.2 ESTRUCTURA ELECTRÓNICA DEL DIÓXIDO DE ESTAÑO
 1.3 SINTERIZACIÓN
 1.3.1 ETAPAS DEL PRE SINTERIZADO
 1.3.2 ETAPAS DE LA SINTERIZACIÓN
 1.3.2.1 ETAPA DE CRECIMIENTO DE LOS Puentes DE ENLACE
 1.3.2.2 ETAPA DE DENSIFICACIÓN Y CRECIMIENTO DE LAS PARTÍCULAS
 1.3.2.3 ETAPA FINAL CON ESPACIOS DE POROS
 CERRADOS
 1.4 ADSORCIÓN
 1.4.1 ADSORCIÓN FÍSICA
 1.4.2 ADSORCIÓN QUÍMICA
 1.4.3 IONADSORCIÓN
 1.5 EFECTO DE LA TRANSFERENCIA DE CARGA ELECTRÓNICA ENTRE ADSORBATO Y ADSORBANTE
 1.6 VARIACIÓN DE LA CONDUCTANCIA POR PRESENCIA DE OXÍGENO
 1.7 VARIACIÓN DE LA CONDUCTANCIA POR LA PRESENCIA DE OXÍGENO Y UN GAS REDUCTOR
 1.8 MECANISMO DE CONDUCCIÓN EN LOS RECUBRIMIENTOS GRUESOS DE POLVOS SINTERIZADO
 1.8.1 MODELO CON CUELLO DE ENLACE ABIERTO

1 2 4 5 7 10 12 13 13 14 14 15 16 18 22 24 26 40 44 44
1.8.2 MODELO CON CUELLO CERRADO

2 MÉTODOS EXPERIMENTALES

2.1 FABRICACIÓN

2.1.1 FABRICACIÓN DE LA PASTA

2.1.2 APLICACIÓN DE LA PASTA SOBRE EL SUSTRATO

2.1.3 SECADO DE LA PASTA

2.1.4 SINTERIZACIÓN

2.2 DIFRACCIÓN DE RAYOS X

2.3 Detección de vapores

2.3.1 CIRCUITO ASOCIADO AL DETECTOR

2.4 MÉTODO DE MEDIDA DE LA ENERGÍA DE ACTIVACIÓN

3 RESULTADOS EXPERIMENTALES

3.1 DIFRACCIÓN DE RAYOS X

3.2 INFLUENCIA DEL OXÍGENO EN LOS CAMBIOS DE CONDUCTANCIA DEL RECUBRIMIENTO DE DÍXIDO DE ESTAÑO SINTERIZADO

3.3 INFLUENCIA DEL OXÍGENO EN LA ENERGÍA DE ACTIVACIÓN

3.4 Detección de vapores mediante el recubrimiento sinterizado de SnO_2

3.4.1 REPRODUCIBILIDAD EN LOS CAMBIOS DE CONDUCTANCIA

3.4.2 INFLUENCIA DE LA CONCENTRACIÓN DE VAPORES EN LOS CAMBIOS DE CONDUCTANCIA

3.4.3 SENSIBILIDAD

3.4.4 INFLUENCIA DE LA TEMPERATURA EN LA DETECCIÓN DE VAPORES

3.4.5 TIEMPO DE RESPUESTA A LA DETECCIÓN DE VAPORES

4 DISCUSIÓN

5 CONCLUSIONES

APÉNDICE

REFERENCIAS
INTRODUCCIÓN

La creciente preocupación por los efectos nocivos de la contaminación ambiental, han impulsado la investigación básica y aplicada en sensores de gas. Según un reporte reciente de la Materials Research Society, [1] numerosas universidades y centros de investigación en el mundo se ocupan del desarrollo de sensores de gas. Sólo en Inglaterra se tienen registrados más de 40 proyectos universitarios sobre éste tema [1]. Además de los gases tóxicos producidos por las máquinas de combustión interna, se agregan aquellos producidos por el proceso de descomposición de materia orgánica, extendiendo la gama de aplicaciones a la industria alimentaria.

La técnica de detección de los sensores estudiados en éste trabajo, está basado en la medición del cambio de resistencia eléctrica del sensor ante la presencia de un gas reductor. El fundamento físico detrás de éste efecto, es la adsorción de gas sobre la superficie del óxido, produciendo variaciones de la densidad electrónica superficial, y por lo tanto de su conductividad. Si estos cambios son reversibles, podemos detectar la presencia del gas en el medio que rodea al óxido, midiendo los cambios de su conductividad eléctrica. Según se demuestra en éste trabajo, es posible correlacionar cuantitativamente el cambio de conductividad con la concentración del gas reductor.

Los óxidos metálicos usados como sensores de gas presentan una buena capacidad de adsorción. Tienen un ancho de banda prohibida (gap) tan grande como el de un aislante, sin embargo, debido a la presencia de defectos puntuales (vacancias de oxígeno), tienen una conductividad eléctrica tan alta como la de los semiconductores a temperatura ambiente.

El TiO₂ es uno de los materiales más usados comercialmente para estas aplicaciones, aunque tiene la desventaja de que su temperatura de operación es de aproximadamente 700°C. El otro óxido binario tipo n muy utilizado es el SnO₂. Sin embargo, éste no es usado para la detección de oxígeno. Este material es capaz de detectar la presencia de un gas a bajas temperaturas de operación (300-400°C) [2] debido a los cambios de conductancia superficial que produce la interacción del gas con la superficie.
En la actualidad, la investigación está orientada a la producción de nuevos materiales con mayor selectividad. Una de las alternativas que se viene desarrollando es el arreglo integrado de múltiples sensores, cada uno sensible a un gas particular. Evaluando la respuesta del conjunto, puede deducirse la presencia de un gas particular. Este dispositivo se conocen como "electronic nose". Se vienen ensayando también, materiales capaces de responder a la presencia de un gas en particular, en ambientes no convencionales. Por ejemplo los sensores de oxígeno tradicionales no pueden medir el nivel de oxígeno disuelto en el agua o en la sangre [3].

ANTECEDENTES

En el Laboratorio de Películas Delgadas se ha venido realizando estudios relacionados con la fabricación y caracterización de recubrimientos de dióxido de estaño, para la detección de gases, desde hace varios años. Como antecedentes podemos mencionar los trabajos realizados por:

- Marcelo Castillejo [4]. Evaluó cualitativamente las características de las películas delgadas de dióxido de estaño para la detección de CO₂, y O₂. Estas películas, homogéneas de aproximadamente 0.5 µm de espesor, fueron depositadas sobre vidrio por la técnica de spray-pirólisis. La temperatura de detección fue de 400 °C.
- José Solis [5]. Caracterizó el dióxido de estaño usando espectroscopia Mössbauer y difracción de rayos X. Utiliza el modelo de interacción entre gases (oxígeno y butano) y películas delgadas.
- José Solis [6]. Sintetizó un nuevo material, el α-SnWO₄ con aplicaciones en sensores de gas. Preparó películas gruesas usando la técnica de screen-printing, y películas delgadas producidas por la técnica de sputtering. Estudió las respuestas a ciertos gases como son H₂S, H₂, NO, CO₂, CH₄, y SO₂. Estas evaluaciones fueron realizadas en un ambiente de aire sintético, encontrándose una buena respuesta para el H₂S en el rango de temperaturas entre 150 y 300 °C.
- Fernando Huaman [7] Fue el primero, en el grupo, en estudiar el comportamiento del recubrimiento sinterizado de dióxido de estaño fabricado por la técnica de screen-printing, estos sensores fueron evaluados en una atmósfera de aire para diferentes concentraciones de vapor de etanol, en un rango 0-400 °C.
La contribución de este trabajo fue la verificación del modelo que establece la formación de carga espacial y barrera interpartícula para explicar el comportamiento de la conductancia frente a diferentes concentraciones de vapor de etanol.

Los trabajos mencionados anteriormente, suponían la existencia de una capa de oxígeno ionizado sobre la superficie del oxido antes de la presencia del gas reductor. Como se explicará en detalle en el texto principal, esta capa de oxígeno establece una condición inicial de conductividad, que será modificada por la presencia del gas reductor al reaccionar con la capa de oxígeno. En este trabajo, se pone en evidencia la existencia de esa capa previa de oxígeno. Además, aceptando el modelo de formación de carga espacial, determinamos experimentalmente la altura de la barrera de potencial superficial, producida por el agotamiento de la densidad de carga electrónica en la superficie.
OBJETIVOS

Los objetivos de la presente tesis son:

1. La fabricación de películas gruesas de dióxido de estaño sinterizadas, a partir de polvo, por la técnica de Screen-Printing.

2. Comprobar experimentalmente la existencia de una capa de oxígeno ionizado sobre la superficie antes de la presencia del gas reductor.

3. Determinar experimentalmente la energía de activación de la barrera superficial producida por la adsorción del oxígeno antes del proceso de detección del gas reductor.
1. CONCEPTOS TEÓRICOS

1.1 ESTRUCTURA CRISTALINA DEL DÍÓXIDO DE ESTAÑO

El dióxido de estano (SnO₂) es un oxido metálico semiconductor tipo n que se encuentra en tres fases.
- Ortorróbico, se obtiene a temperaturas elevadas.
- Cúbico, se obtiene a presiones altas.
- Tetragonal, se obtiene a condiciones normales [8].

El dióxido de estano utilizado en la presente tesis es el dióxido de estano con estructura rutilo, que posee una simetría tetragonal perteneciente al grupo espacial \(D_{4d}^{14}(P4_2/mnm)\). La celda unitaria del dióxido de estano posee dos átomos de estano y cuatro átomos de oxígeno, como se muestra en la figura 1.1.

La simetría tetragonal posee base cuadrada de lados \(a=b=4,737\ \text{Å}\) y una altura \(c=3,186\ \text{Å}\). Donde los radios iónicos de \(\text{O}^{2-}\) y \(\text{Sn}^{4+}\) son \(1,40\) y \(0,71\ \text{Å}\) respectivamente [2, 8-10].

![Figura 1.1 Celda unitaria de la estructura rutilo del SnO₂ con simetría tetragonal [2, 8-10].](image)

A temperatura ambiente el dióxido de estano es de color amarillo claro y tiene un punto de fusión de \(1930\ ^\circ\text{C}\).
Cada átomo de estaño está rodeado de un octaedro distorsionado de 6 átomos de oxígeno. La distancia interatómica Sn-O es de 0,205 nm y la distancia interatómica O-O es de 0,206 nm, hacen ángulos de 78,1° y 101,9° como se muestra en la figura 1.2a, los átomos de oxígeno tienen tres átomos de estaño vecinos próximos que forman un triángulo aproximadamente equilátero, como se indica en la figura 1.2b [2, 8-9].

![Diagrama de estructura rutile del SnO2](image)

Figura 1.2. Celda unitaria de la estructura rutile del SnO2 (a) muestra el octaedro en cuyos vértices se encuentran átomos de oxígeno, y éstos rodean al átomo de estaño, (b) muestra el triángulo aproximadamente equilátero en cuyos vértices se encuentran átomos de estaño, y éstos rodean al átomo de oxígeno [8].

A continuación se muestra, en la tabla 1, los datos cristalográficos para el dióxido de estaño y óxido de estaño.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>SnO2</th>
<th>SnO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo Espacial</td>
<td>(P4_2/mnm)</td>
<td>(P4_1/mnm)</td>
</tr>
<tr>
<td>a = b (Å)</td>
<td>4,737</td>
<td>3,804</td>
</tr>
<tr>
<td>c (Å)</td>
<td>3,186</td>
<td>4,826</td>
</tr>
<tr>
<td>Coordenadas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>((000), (\frac{1}{2} \frac{1}{2} \frac{1}{2}))</td>
<td>((\frac{1}{1} 0 u), (\frac{3}{4} 0 u))</td>
</tr>
<tr>
<td>O</td>
<td>(\pm (u, u, 0), \pm (\frac{1}{2} + u, \frac{1}{2} - u, \frac{1}{2}))</td>
<td>((000), (\frac{3}{4} \frac{1}{2} 0))</td>
</tr>
</tbody>
</table>

* \(u = 0,307\) \((\text{SnO2})\) \(u = 0,236\) \((\text{SnO})\)
1.2 ESTRUCTURA ELECTRÓNICA DEL DÍOXIDO DE ESTAÑO

La configuración electrónica de los elementos que constituyen el dióxido de estaño es:
- \(\text{Sn} : (\text{Kr}) 4d^{10} 5s^2 5p^2 \)
- \(\text{O} : 1s^2 2s^2 2p^4 \)

El enlace químico está gobernado por los orbitales \(2s \) y \(2p \) del oxígeno así como por los orbitales \(5s \) y \(5p \) del estaño.

La conductividad eléctrica del dióxido de estaño es atribuida a las vacancias de oxígeno y/o a los átomos de estaño intersticiales. Ambos defectos actúan como donadores [2, 11-12].

Robertson [13] usando el modelo de electrones fuertemente ligados determinó teóricamente la estructura de bandas para el \(\text{SnO}_2 \), empleando como funciones de Bloch las combinaciones lineales de los orbitales atómicos (CLOA). Para la construcción del Hamiltoniano consideró la interacción hasta los segundos vecinos, \(\text{Sn-O} \) y \(\text{O-O} \). La figura 1.3 muestra los resultados obtenidos por Robertson para la estructura de bandas del \(\text{SnO}_2 \) [2, 8, 9, 13].

![Figura 1.3 Estructura de bandas del \(\text{SnO}_2 \). El cero de la escala de energía es la energía del nivel de Fermi [8].](image-url)
Y la figura 1.4 muestra la densidad de estados total del SnO₂, así también muestra las densidad de estados parciales de Sn y O obtenidas por la técnica de U.P.S (Espectroscopía de fotoemisión ultravioleta) [9].

![Diagrama de densidad de estados](image)

Figura 1.4 Densidad de estados (D.O.S) del SnO₂. La primera columna muestra la densidad de estados totales. Las columnas siguientes muestran las densidades parciales, la D.O.S parciales s, p, y d, del estaño, y la D.O.S parciales de s, y p, del oxígeno obtenidas por UPS (Espectroscopía de Fotoemisión Ultravioleta) [8].

De las figuras 1.3 y 1.4 se observa en la parte inferior de la banda de valencia aproximadamente en -17 eV respecto del borde de la banda de valencia, una banda localizada compuesta por estados s del oxígeno, con un gap de 7 eV. Estos estados del oxígeno no juegan un rol importante en las propiedades electrónicas del SnO₂.

La banda de valencia principal tiene un ancho de 9 eV. Este valor concuerda con las medidas experimentales realizadas por Goby usando la técnica de U.P.S [9].

Esta banda principal está conformada por tres zonas:

- La primera entre -9 y -5 eV, resulta del acoplamiento de los orbitales s del estaño y p del oxígeno. Estos orbitales están dirigidos a lo largo del eje Sn-O con los vecinos...
más próximos y su acoplamiento contribuye apreciablemente al enlace químico, la interacción fuerte s-p produce una alta dispersión de estas bandas.

- Entre -5 y -2 eV, esta región resulta del acoplamiento de los orbitales p del oxígeno mezclados con una pequeña fracción de los orbitales p del estaño generando enlaces (p-p).
- Entre -2 y 0 (borde de la banda de valencia), esta región está constituida principalmente por la interacción de orbitales p de oxígeno-oxígeno (p-p), los cuales están direccionados perpendicularmente a los planos Sn-O-Sn y contribuyen poco a las ligaduras químicas, causando débil acoplamiento con orbitales de átomos vecinos de estaño y los segundos más próximos átomos de oxígeno.

El ancho de la banda prohibida es de 3.6 eV, que está de acuerdo con las medidas experimentales [9].

Entre 3.6 y 8 eV que representa la región inferior de la banda de conducción, esta compuesta por un 90% de orbitales s del estaño con una fuerte dispersión de electrones libres que originan una disminución de la densidad de estados.

La parte superior de la banda de conducción tiene un comportamiento dominante de estados p del estaño, también se tiene que los estados en la banda de conducción contienen una pequeña mezcla de orbitales p de oxígeno.

La estructura de bandas del volumen sirvió de punto de partida para que Munix y Schmeits determinen la estructura de estados superficiales del SnO₂, usando el método de dispersión teórica (STM: scattering theoretical method) [9].
Se entiende por sinterización el tratamiento térmico de partículas individuales o de cuerpos porosos que se compactan por debajo del punto de fusión, la sinterización envuelve transporte de material por difusión. La difusión puede consistir en el movimiento de átomos o vacancias a lo largo de la superficie o del borde de grano o en el volumen del material; la difusión en el volumen, ya sea a lo largo del borde de grano o a lo largo de dislocaciones de la red, da como resultado una contracción.

Las fuerzas que manejan la sinterización son la diferencia entre la energía libre o potencial químico de la superficie libre de las partículas y el punto de contacto entre partículas adyacentes. Las fuerzas que aparecen en los cuellos de los granos son simplemente una tendencia natural a reducir la energía superficial total del sistema.

La técnica de sinterización produce normalmente materiales policristalinos. De cualquier forma, si se evita un crecimiento de grano demasiado rápido se podrá obtener en ciertos casos, un aglomerado que si bien es policristalino, se encuentra prácticamente exento de porosidades [14-17].

Figura 1.5 (a) muestra las partículas de polvo sin compactar tocándose en pocos puntos (b) muestra las partículas de polvo compactadas aumentando los puntos de contacto.

Las partículas de polvo sueltas sólo se tocan en unos pocos puntos, de tal forma que la cohesión entre ellas es muy pequeña. Por efecto de altas presiones se aumenta la
superficie de contacto entre las partículas de polvo, y con ello su cohesión como se indica en la figura 1.5.

Calentando las piezas presadas hasta las proximidades de la temperatura de fusión, aparece una fluencia plástica. En los límites de los granos de polvo, los átomos de las substancias se desplazan y forman nuevos partículas. La formación de estas partículas se realiza en diferentes direcciones, reduciendo los poros que existen. Las partículas se bloquean y forman una textura de sinterización igual a 1/7 aproximadamente del volumen primitivo como se muestra en la figura 1.6. De esta forma las fuerzas de adherencia entre las partículas son totalmente efectivas; así la pieza se ha vuelto sólida y dura [17].

![Formación de nuevas partículas](image1)

Figura 1.6 Muestra la fluencia plástica y formación de nuevas partículas, debido al tratamiento térmico

Una característica importante de los cuerpos sinterizados es que se disminuye el volumen de poros existentes después del sinterizado. Dicho volumen depende de la compresión.

A continuación se muestra un cuadro donde se clasifica la sinterización según el porcentaje de volumen poroso.
Tabla 2

<table>
<thead>
<tr>
<th>Clase</th>
<th>% de volumen poroso</th>
<th>Ejemplos de Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINT-A</td>
<td>Hasta 60%</td>
<td>Filtros</td>
</tr>
<tr>
<td>SINT-B</td>
<td>Hasta 30%</td>
<td>Cojinetes de fricción, Forros</td>
</tr>
<tr>
<td>SINT-C</td>
<td>Hasta 20%</td>
<td>Piezas para máquinas de Coser y oficina</td>
</tr>
<tr>
<td>SINT-D</td>
<td>Hasta 15%</td>
<td>Piezas para máquina soldables</td>
</tr>
<tr>
<td>SINT-E</td>
<td>Hasta 10%</td>
<td>Piezas para relés</td>
</tr>
<tr>
<td>SINT-F</td>
<td>Hasta 7%</td>
<td>Cremalleras, contactos</td>
</tr>
</tbody>
</table>

1.3.1 ETAPAS DEL PRE SINTERIZADO

Cuando un material es sinterizado éste pasa por una serie de etapas de pre-sinterizado, que a continuación describiremos en forma resumida.

- **FABRICACIÓN DEL POLVO**
 Esta puede obtenerse por pulverización o trituración por medios mecánicos de la sustancia de partida hasta convertirla en polvo.

- **TRATAMIENTO DEL POLVO**
 Para eliminar los óxidos y la humedad, el polvo se recuece. A continuación se mezcla de acuerdo con la composición deseada, añadiendo un producto deslizante para homogeneizar el polvo.

- **PRENSADO DEL POLVO**
 Para la compresión se emplean prensas mecánicas o hidráulicas. La densidad deseada depende de la presión. Con las prensas de doble efecto se consigue una compresión uniforme.

- **SINTERIZADO DE LAS PIEZAS PRENSADAS**
 En hornos cerrados, las sustancias en polvo comprimidas, se calientan hasta los 4/5 de la temperatura de fusión. Las partículas de polvo se aglutinan así uniendo sus retículas [14, 16].
1.3.2 ETAPAS DE LA SINTERIZACIÓN

Durante el transcurso de la sinterización de polvos pueden apreciarse tres etapas, que son [14, 16]:

- **Etapas de crecimiento de los puentes de enlace.**
- **Etapas de la densificación y crecimiento de las partículas.**
- **Etapas finales con espacios de poros cerrados.**

1.3.2.1 ETAPA DE CRECIMIENTO DE LOS PUENTES DE ENLACE

En esta etapa, el crecimiento de los puentes de enlaces dependen del tiempo en forma exponencial y de la geometría de las partículas. Durante esta etapa las partículas todavía conservan su tamaño original y no se produce la difusión de masa a lo largo de los cuellos de enlace como se indica en la figura 1.7. Es posible, sin embargo, que se formen ocasionalmente partículas más grandes originando que los puntos centrales de las partículas se approximen ligeramente, lo que corresponde a una pequeña contracción.

![Diagrama de partículas de polvo y perfil de dos partículas](image)

Figura 1.7 (a) Muestra la etapa de crecimiento de puente de enlace, donde las partículas no pierden su identidad (b) Muestra el perfil de dos partículas indicando la distancia que unen sus centros (L_1) en comparación con la distancia de dos partículas juntas (L_0) son aproximadamente iguales.
1.3.2.2 ETAPA DE DENSIFICACIÓN Y CRECIMIENTO DE LAS PARTÍCULAS

Al transcurrir el tiempo las partículas empiezan a crecer como consecuencia del transporte de masa por los cuellos de enlace de una partícula hacia la otra, empezando a perder las partículas su identidad. En esta etapa es donde se produce la mayor parte de la sinterización, donde se forma una red coherente de poros como se indica en la figura 1.8. Los límites de las partículas suelen ir, generalmente de un poro a otro.

Figura 1.8 (a) Muestra la etapa de crecimiento de las partículas con estructura porosa (b) muestra el perfil de dos partículas indicando que las distancias que unen sus centros se reduce \(L_2 \) en comparación con la distancia en la etapa de crecimiento del puente de enlace \(L_1 \).

1.3.2.3 ETAPA FINAL CON ESPACIOS DE POROS CERRADOS

Esta etapa se caracteriza por la formación de nuevas partículas y disminución de los poros como se muestra en la figura 1.9, donde se produce una fuerte densificación. Los poros aislados adquieren una esfericidad cada vez mayor y las partículas continuarán desarrollándose lentamente de tal forma que muchas veces es difícil distinguir el final del proceso de sinterización es decir si todavía quedan poros o no.

Conforme se aumente la presión externa en el aglomerado de partículas, la presión de los gases en el interior de los poros se va incrementando debido a la contracción de éstos. Cuando se igualan las presiones dentro y fuera de los poros, mecánicamente ya no es posible que continúe la contracción de poros.
Figura 1.9 (a) Muestra la etapa final de la sinterización con poros cerrados (b) muestra el perfil de dos partículas indicando que las distancias que unen sus centros se reduce (L_3) en comparación con la distancia en la etapa de crecimiento de partícula (L_2).

1.4 ADSORCIÓN

En este capítulo se describe de manera sucinta los procesos por los cuales el sólido retiene en forma más o menos permanente partículas en la superficie.

Recibe el nombre de adsorción la acumulación de sustancias ajenas que tiene lugar en la capa límite de una superficie interfacial. Por ejemplo, en la superficie de un sólido o de un líquido se produce una concentración de las sustancias del gas o de la solución que está en contacto con ella.

El concepto de sorción incluye tanto la retención superficial de la sustancia por un líquido o sólido (adsorción) como la penetración de la sustancia en un líquido o sólido (absorción). La sustancia adsorbida se llama adsorbato; el cuerpo cuya superficie adsorbe se dice que es el adsorbente. Desorción es el proceso inverso a la adsorción, es decir la separación de las sustancias que antes había retenido.

Las partículas son retenidas durante cierto tiempo, cuya retención depende de la naturaleza del adsorbato y del adsorbente, de la temperatura y de la presión. A medida que se desarrolla el proceso de la adsorción su intensidad disminuye y el papel que desempeña la desorción se hace más importante. Cuando los procesos de adsorción y desorción se realizan a una misma velocidad, se dice que se ha establecido el equilibrio en la adsorción.

Aquí se presentan tres clasificaciones para la adsorción como son...
- Adsorción física (Fisisorción)
- Adsorción Química (Quimisorción)
- Adsorción Ionica (Ionadsorción)

1.4.1 ADSORCIÓN FÍSICA (FISISORCIÓN)

Es el fenómeno por el cual una sustancia es atraída por fuerzas de naturaleza dipolar eléctrica (fuerzas de Van der Waals) y se deben a la dipolaridad de las moléculas. Se originan por la atracción de moléculas dipolares, o por la atracción entre moléculas cuya dipolaridad ha sido inducida por moléculas permanentemente dipolares, o por oscilaciones de carga internas en moléculas sin momento dipolar medible. Son fuerzas de acción a muy cortas distancias y disminuyen proporcionalmente a la 6^{th} potencia de la distancia. [18]

La energía de enlace está en el rango del calor de condensación, en este caso es de una magnitud del orden de 0,01-0,1 eV. La especie físicamente adsorbida no intercambia carga con el absorbente [19-20]. El equilibrio en la adsorción física se alcanza rápidamente y es reversible. El adsorbato puede ser removido por cambios de presión (bajando la presión) debido a que la energía de este tipo de adsorción es relativamente baja [21]. Es por ello el primero en ser observado en las pruebas de desorción térmica. Esto se produce generalmente a temperaturas menores que 300 K.

Unos de los modelos más usados para la interpretación de este tipo de adsorción es el de Lennard-Jones. El cual está constituido por un término de largo alcance (potencial atractivo) y otro de corto alcance (potencial repulsivo).

El término de largo alcance se origina de la interacción dipolar eléctrica entre las moléculas, en la figura 1.10 se representa la interacción de dos dipolos.

Figura 1.10 Muestra la interacción de dos dipolos de momentos dipolares P_1 y P_2.

16
Donde P_1 es el momento dipolar inicial y P_2 es el momento dipolar inducido. Sabemos de la teoría electromagnética que la deformación de la nube electrónica bajo la acción de un campo eléctrico local externo E en la posición 2 (creado por P_1) va acompañada por la creación de un momento dipolar P_2 colineal con E. En primera aproximación se admite que esta es una relación de la forma:

$$\vec{P}_2 = \alpha \vec{E},$$

1.1

donde α es la polarizabilidad. El campo creado por el dipolo P_1 en la posición 2 está dado por:

$$\vec{E}(R) = \frac{1}{4\pi\varepsilon} \left(\frac{1}{R^2} \left[\frac{3}{2} \left(\vec{P}_1 \cdot \vec{\mu}_R \right) \vec{\mu}_R - \vec{P}_1 \right] \right),$$

1.2

Donde R es la distancia entre los dipolos, y $\vec{\mu}_R$ es el vector unitario en la dirección que une a los dipolos. La energía de un dipolo inducido en un campo electrostático externo es:

$$U = \frac{\vec{P}_1 \cdot \vec{E}}{2}$$

1.3

Entonces en nuestro caso tendremos que la energía está dada por:

$$U(R) = -\frac{\alpha}{4\pi\varepsilon R^6} \left[\frac{3}{2} \left(\vec{P}_1 \cdot \vec{\mu}_R \right)^2 - \vec{P}_1^2 \right]$$

1.4

Donde P_1 fluctúa al azar, por tanto todas las orientaciones son igualmente probables para θ. Además, usando el producto interno tenemos que:

$$\left(\vec{P}_1 \cdot \vec{\mu}_R \right)^2 = P_1^2 \cos^2(\theta)$$

1.5

Tomando el valor medio a la ecuación 1.5 tenemos:

$$\langle \vec{P}_1 \cdot \vec{\mu}_R \rangle^2 = \frac{P_1^2}{2}$$

1.6

y reemplazando en la ecuación 1.4 de la energía es:

$$U(R) = \frac{5\alpha P_1^2}{16\pi\varepsilon R^6}$$

1.7

Donde la ecuación 1.7 corresponde al término de largo alcance en la ecuación de Lennard-Jones. El término de corto alcance (repulsivo) se hace igual a R^{-n}, donde n toma valores entre 8 y 14. El valor de $n=12$ es el más empleado, debido a que hay cierta ventaja matemática en que un exponente sea el doble del otro.
Entonces la energía total de Lennard-Jones es:

\[U(R) = 4\varepsilon \left[\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right] \]

Donde \(\varepsilon \) y \(\sigma \) dependen de la polarizabilidad y el momento dipolar [22].

En la figura 1.11 se muestra la variación de la energía producida al acercarse una molécula gaseosa al sólido.

Figura 1.11 Variación de la energía potencial al acercarse una molécula gaseosa a un sólido, para una adsorción física.

La abscisa representa la distancia entre la partícula A y el sólido S y la ordenada la energía total del sistema. Se observa una reducción de la energía a medida que la partícula se acerca a la superficie, el sistema libera energía, al alcanzar la distancia \(R_0 \), la energía liberada corresponde al calor de fisisorción [23].

1.4.2 ADSORCIÓN QUÍMICA (QUIMISORCIÓN)

Es el fenómeno por el cual una sustancia es atraída por fuerzas de intercambio, o fuerzas químicas, especialmente uniones covalentes de diferentes tipos [18]. Una especie quimiadsorbida puede interactuar más fuertemente con el sólido y la interacción es
mejor descrita como la formación inicial de una nueva fase, que puede ser vista como el punto donde los átomos de superficie del adsorbente cambian los enlaces del sólido remplazándolos por enlaces del adsorbato [19].

La energía del enlace puede llegar a valores de 1 eV. La quimisorción puede ser rápida o lenta, y puede ocurrir debajo o sobre la temperatura crítica del adsorbato. Esto lo diferencia cualitativamente de la adsorción física; el gas que es quimisorbido puede ser difícilmente removido y la desorción puede estar acompañado por cambios químicos en la superficie del adsorbente, por ejemplo oxígeno sobre carbono, cuando se calienta el adsorbente se produce desprendimiento de CO y CO₂ [21]. Como la energía de enlace es mayor que para el caso físico se producen en intervalos de temperaturas mayores (entre 500-600 K), dependiendo del tipo de gas y de la superficie del adsorbente.

Uno de los modelos que describe en forma aproximada la adsorción química es el modelo de Orbital Molecular (OM), ya que los electrones en el enlace entre el gas y el sólido experimentan un reordenamiento y los orbitales respectivos cambian de forma o grado de ocupación de modo semejante a una reacción química [20, 23].

Este método se basa en tomar como funciones de onda aproximadas \(\psi_i \), del electrón \(i \) en el enlace como una combinación lineal de funciones de ondas es decir

\[
\psi_i = \sum_k c_{ik} \phi_k
\]

Si \(\phi_k \) son funciones de orbitales atómicos, entonces la ecuación 1.9 se denomina Combinación Lineal de Orbitales Atómicos (CLOA), una vez definido el orbital molecular, el procedimiento consiste en resolver la ecuación de Schrödinger \(H \psi = E \psi \) por algún método de aproximación, para obtener el auto valor de energía y las constantes, ya que el cuadrado de estas constantes dan la densidad de probabilidad de encontrar el electrón en el espacio; el método generalmente usado es el basado en el principio variacional.

Cuando un átomo A se acerca a un átomo B formando un enlace AB, donde \(\psi_a \) y \(\psi_b \) son las funciones de onda de los átomos A y B respectivamente entonces la función de prueba es la CLOA dada por

\[
\psi = c_a \psi_a + c_b \psi_b
\]

la energía de un electrón descrita por una función de prueba es el valor esperado del operador de energía, usando el método de variaciones para una función de onda no normalizada de variable real tenemos:
\[E = \frac{\int \psi^* H \psi \, dt}{\int \psi^* \psi \, dt} \]

A continuación buscamos valores de los coeficientes en la función de prueba que minimicen el valor de E. Del cálculo se tiene que

\[\frac{\partial E}{\partial c_a} = 0 \quad \text{y} \quad \frac{\partial E}{\partial c_b} = 0. \]

El primer paso es expresar las dos integrales en función de los coeficientes, el denominador es:

\[\int \psi^* \psi = \int (c_a \psi_a + c_b \psi_b)^2 (c_a \psi_a + c_b \psi_b) \, dt \]
\[= c_a^2 \int \psi_a^2 \, dt + c_b^2 \int \psi_b^2 \, dt + 2c_ac_b \int \psi_a \psi_b \, dt. \]

Los orbitales atómicos están normalizados de modo que las primeras integrales son iguales a uno, la última integral es la de solapamiento y representa el grado en que los dos orbitales atómicos se han solapado u ocupan la misma región del espacio.

\[\int \psi^* \psi \, dt = c_a^2 + c_b^2 + 2c_ac_bS \]

donde

\[S = \int \psi_a \psi_b \, dt. \]

es la integral de solapamiento. El numerador se transforma en:

\[\int \psi^* H \psi \, dt = \int (c_a \psi_a + c_b \psi_b)^2 H (c_a \psi_a + c_b \psi_b) \, dt \]
\[= \int (c_a^2 \psi_a^2 H \psi_a + c_b^2 \psi_b^2 H \psi_b + 2c_ac_b \psi_a \psi_b H \psi_b) \, dt. \]

En esta expresión hay algunas integrales, que denotaremos como:

\[\alpha_a = \int \psi_a H \psi_a \, dt, \quad \alpha_b = \int \psi_b H \psi_b \, dt \quad \text{y} \quad \beta = \int \psi_a \psi_b \, dt \]

Entonces

\[\int \psi^* H \psi \, dt = \alpha_a c_a^2 + \alpha_b c_b^2 + 2\beta c_ac_b. \]

Donde \(\alpha_a \) y \(\alpha_b \) son de valores negativos y se les denominan integrales de Coulomb y se les puede interpretar como la energía que tiene el electrón cuando está en el orbital \(\alpha_a \) de A, lo mismo ocurre para \(\alpha_b \). A la integral \(\beta \) se la denomina integral de resonancia y se anula cuando los orbitales no se solapan, así se puede pensar que la fuerza de enlace depende de esta integral.

La expresión completa de energía es:
\[E = \frac{\alpha_c c_a^2 + \alpha_s c_b^2 + 2 \beta c_a c_b}{c_a^2 + c_b^2 + 2 c_a c_b S} \]

Su mínimo se encuentra diferenciando con respecto a los dos coeficientes, utilizando la ecuación 1.12, donde el resultado es:

\[(\alpha_a - E)c_a - (\beta - ES)c_b = 0 \]
\[(\beta - ES)c_a + (\alpha_b - E)c_b = 0 \]

Estas ecuaciones se les denomina ecuaciones seculares, debido a que es un sistema de ecuaciones homogéneas aparece una nueva condición y es que para que dicho sistema de ecuaciones tenga soluciones distintas de cero, el determinante de los coeficientes \(c_a \) y \(c_b \) ha de ser cero, es decir:

\[\begin{vmatrix} \alpha_a - E & \beta - ES \\ \beta - ES & \alpha_b - E \end{vmatrix} = 0 \]

Este determinante se expande a una ecuación cuadrática en \(E \), que se puede resolver. Sus raíces dan las energías de los OM enlazantes (menor energía, más estable) y antienlazante (mayor energía, menos estable).

Un gráfico típico de adsorción química se muestra en la figura 1.12

![Figura 1.12](image)

Figura 1.12 Muestra la variación de la energía potencial al acercarse una partícula gaseosa a un sólido, para una adsorción química.
la curva muestra la energía potencial de adsorción típica de una molécula A sobre un sólido B. En la posición I las especies se encuentran totalmente separadas y en la posición II se ha alcanzado una interacción física previa a la química. Antes de que la molécula alcance la posición de equilibrio por adsorción química, se establece una interacción de tipo físico que no afecta a los orbitales respectivos. En la posición II la molécula se activa hasta el nivel IV de energía y después toma la posición de equilibrio en III, en la cual los átomos se han disociado y quimiadsorbidos sobre el sólido B. La adsorción química es activada, el sistema necesita transponer el máximo correspondiente a la energía de activación, E_{a}, para alcanzar el estado de equilibrio. Por otra parte para que sea posible la desorción de los átomos A y se alcance el nivel de energía IV se precisa la energía de activación de desorción E_{d}. Si los átomos no se asocian para formar la molécula, deben adquirir aún más energía para alcanzar el nivel V, donde se encuentran muy separados alejados del sólido [20, 23].

1.4.3 ADSORCIÓN IÓNICA (IONADSORCIÓN)

Este tipo de adsorción se produce cuando electrones libres de la banda de conducción o huecos libres de la banda de valencia de un sólido son capturados o transferidos por una especie superficial. Este proceso de transferencia de electrones libera energía en el caso de ionadsorción [20, 24]. Aquí el electrón no es compartido como en el caso de enlace covalente. La figura 1.13 muestra la formación de O_2^- por ionadsorción. En los cálculos semicuantitativos de Green y Lee [20] en un ciclo de energía donde es examinado un electrón que es removido del sólido y colocado en un átomo externo, y donde al ion resultante se le permite aproximarse a la superficie. Los cálculos de cambios de energía muestran que en el caso de ionadsorción pura acontece raramente para adsorción de gas. Según estos cálculos aplicados a un típico semiconductor, solamente las moléculas de oxígeno tienen suficiente afinidad electrónica para capturar un electrón de la banda de conducción.
La modificación de Green y Lee a la teoría consiste en incluir un efecto electrostático (Madelung) mejorando la situación de algún modo. El efecto Madelung es un efecto puramente electrostático que ocurre en un sólido iónico. En el caso de ionadsorción donde el enlace adsorbato-átomo superficial no está localizado, es decir el nivel de energía del estado superficial puede estar en la región de la banda de conducción, en la región del gap de energía o en la región de la banda de valencia del sólido, dependiendo de las propiedades químicas o del sistema redox y del sólido. El adsorbato actúa como un estado superficial capturando electrones o huecos y se adsorbe en la superficie por fuerzas electrostáticas. La ionadsorción es de particular importancia en sensores de gas, particularmente en la ionadsorción de oxígeno en diversas formas como O_2^- y O^-.

El proceso de adsorción va acompañado de desprendimiento de calor (procesos exotérmicos). En la figura 1.13 se describe en forma gráfica cada una de las clases de adsorción.
1.5 EFECTO DE LA TRANSFERENCIA DE CARGA ELECTRÓNICA ENTRE ADSORBATO Y ADSORBENTE

Cuando la interacción entre las moléculas o átomos adsorbidos y la superficie sólida involucre transferencia de carga electrónica, los fenómenos de frontera pueden explicarse análogamente al estudio de contactos entre sólidos y la existencia de estados superficiales [2, 20, 25-30].

Cuando dos sólidos se ponen en contacto, las diferencias iniciales de energías libres de los electrones (niveles de Fermi) dan como resultado un flujo de electrones a través de los límites del contacto. La energía potencial asociada como resultado de la acumulación del exceso de carga aumenta la energía del sistemaceptor hasta que se iguala a la energía libre o nivel de Fermi del sistema donador [26]. El número de carga transferida para alcanzar el equilibrio depende de la diferencia inicial entre niveles de energía y del valor de energía potencial asociada como resultado de la acumulación progresiva de carga. Como la ionadsorción de moléculas está asociada con la transferencia de carga (es decir una carga electrónica por molécula ionadsorbida), tal proceso envuelve moléculas (A) sobre un sólido (B) el cual puede ser comparado con un contacto de materiales (A y B), la cantidad de especies ionadsorbidas está relacionada con las propiedades electrónicas de los materiales A y B.

En analogía con los procesos superficiales entre un contacto metal - semiconductor, la figura 1.14 muestra un típico diagrama de energías de los procesos que envuelven la ionadsorción de las moléculas de un gas sobre un semiconductor. La figura 1.14 (a) muestra un semiconductor tipo p que está caracterizado por una función trabajo χ y una densidad de niveles aceptores N_a localizados por encima de la banda de valencia llena, a un nivel E_g. Con el nivel de Fermi entre ellos, las moléculas adsorbidas tienen un potencial de ionización I.

La transferencia de un número N de electrones al sólido (debido a N moléculas ionadsorbidas) crea un espacio de carga negativa y por lo tanto un cambio de la energía total de los electrones de la superficie relativa a la energía de los electrones del volumen, desde el valor E_f hasta E_v, como se indica en la figura 1.14 (b). La interacción adsorbato-adsorbente es un proceso exotérmico, durante el cual se produce transferencia de carga hasta que el nivel de Fermi del sólido coincida con el del adsorbato, es decir
por una cantidad $E_a - \chi - I$. En este tiempo, por lo tanto son adsorbidos un número máximo N_a de moléculas (ionadsorbidas) como se muestra en la figura 1.14 (c).

Figura 1.14 Muestra diagramas de energía de semiconductores tipo p y n, (a) y (d) antes de la adsorción, (b) y (e) durante la adsorción, y (c) y (f) después de alcanzar el equilibrio sobre la superficie.

El diagrama de la figura 1.14 (d) sirve para la interpretación de un semiconductor tipo "n" que está caracterizado por una función trabajo χ y una densidad de niveles donadores N_d, localizados por debajo de la banda de conducción en un nivel $2Q$. Con el nivel de Fermi entre ellos, las moléculas adsorbidas tienen una afinidad electrónica α [26].

La transferencia de un número N de electrones del sólido al adsorbato (debido a N moléculas ionadsorbidas) crea un espacio de carga positiva en el sólido y por lo tanto un cambio de la energía total de los electrones de la superficie relativa a los electrones del volumen desde el valor E_f hasta E, como se indica en la figura 1.14 (e). La interacción adsorbato - adsorbente es un proceso exotérmico, durante el cual se produce transferencia de carga hasta que el nivel de Fermi del sólido coincida con el del adsorbato, es decir por una cantidad $E_a - \alpha - I$. En este tiempo, por lo tanto son adsorbidos
un número máximo \(N_s \) de moléculas (ionadsorbidas) como se muestra en la figura 1.14 (f).

La teoría de carga espacial tiene como objeto el cálculo de la variación del potencial eléctrico \(\phi(r) \) con la distancia desde la superficie del sólido hacia el interior del sólido, analizando posteriormente el flujo de corriente a través de la barrera de potencial.

Las teorías simples de carga espacial están basadas en el cálculo del potencial eléctrico como resultado de la acumulación de carga dentro del semiconductor. En el tratamiento de la carga espacial el efecto es que la superficie adquiere una carga superficial opuesta a la del adsorbato. Como conclusión de los gráficos mostrados en la figura 1.14 las diferencias de energías \(E_0 - \chi \cdot I \) (tipo p) o \(\alpha \cdot J \) (tipo n) quedan establecidas con claridad.

1.6 VARIACIÓN DE LA CONDUCTANCIA POR LA PRESENCIA DE OXÍGENO

En nuestro caso, al analizar la interfase \(\text{SnO}_2 - \text{O}_2 \), tenemos que los estados localizados superficiales, que producen los oxígenos al ser adsorbidos por el semiconductor están por debajo del nivel de Fermi como se muestra en la figura 1.15 (a), por lo que parte de los electrones del semiconductor (sistema donador) pasan a los niveles superficiales creados por la adsorción (sistema acceptor) hasta que se igualen al nivel de Fermi del sistema donador [2, 27-29, 31].

![Diagrama de bandas](image)

Figura 1.15 Diagrama de bandas (a) Antes de la presencia de oxígeno (b) Después de la presencia de oxígeno, produciéndose la deflección de las bandas en la superficie, formándose la región de carga espacial positiva.
 Esto trae como consecuencia que una parte se cargue negativamente (O₂⁻) y el semiconductor se cargue positivamente. En un diagrama de bandas de energía tenemos que estos iones (O₂⁻) producen un campo eléctrico en el semiconductor de tal forma que los electrones tienden a ser difundidos hacia el volumen, produciéndose una zona de empobrecimiento de electrones como se indica en la figura 1.15 (b)

Si analizamos electrostáticamente la interfase, tenemos una zona de carga negativa que podemos considerarla como un plano cargado debido a la alta afinidad electrónica del oxígeno y por el otro lado tenemos una región donde existe una densidad de carga positiva ρ y usando la hipótesis Schottky se puede considerar que ρ=cte [32].

Si representamos en forma esquemática la situación anterior como en la figura 1.16

![Diagrama de interfase semiconductor-oxígeno](image)

Figura 1.16 Muestra la representación esquemática del semiconductor tipo n y el gas adsorbido, definiendo dos regiones, región I que corresponde al espacio interfacial entre los átomos del sólido y el oxígeno adsorbido, región II que corresponde a la región de carga espacial positiva.

Encontramos dos regiones de importancia, que a continuación describiremos

Región I.

La región del espacio interfacial entre los átomos del sólido y el gas adsorbido, aplicando la ecuación de Poisson en la Región I es decir en la interfase.

\[
\frac{\delta^2 \phi}{\delta x^2} = -\frac{\rho}{\varepsilon_0}
\]

1.22
Donde \(\phi \) es la función potencial en la interfase, \(\varepsilon \) es la permitividad del vacío, \(\varepsilon \) es la función dielectrónica y \(\rho \) es la densidad de carga; pero en la región 1, \(\rho = 0 \) luego la ecuación (1.22) toma la siguiente forma:

\[
\frac{\partial^2 \phi}{\partial x^2} = 0,
\]

donde la solución para la función potencial es de la forma siguiente:

\[
\phi = ax + b
\]

Las constantes \(a \) y \(b \) se determinan por las condiciones de contorno

\[
\begin{align*}
 x = 0 & \quad \phi = \phi_s \quad \text{entonces} \quad b = \phi_s \\
 x = -d & \quad \phi = 0 \quad \text{entonces} \quad a = \phi_s / d,
\end{align*}
\]

donde \(\phi_s \) es el potencial en la superficie del semiconductor y \(d \) es la distancia interfasial, reemplazando los valores de las constantes \(a, b \) en la ecuación (1.23) tenemos:

\[
\phi = \frac{\phi_s}{d} (x + d).
\]

Para calcular \(\phi_s \) usamos el teorema de Gauss en el plano cargado,

\[
\iint E \cdot ds = \frac{Q}{\varepsilon \varepsilon_0},
\]

donde \(E \) es el campo eléctrico, \(Q \) es la carga eléctrica, y \(s \) es el área que encierra la carga. Encontrando que el campo eléctrico es:

\[
E = \frac{\sigma}{\varepsilon \varepsilon_0},
\]

donde \(\sigma \) es la densidad superficial de carga, sabiendo que \(E = -\nabla \phi \) entonces integrando tenemos:

\[
\int_{\phi_s}^0 d\phi = -\int_0^d \frac{\sigma}{\varepsilon \varepsilon_0} dx,
\]

donde se encuentra el valor del potencial en la superficie,

\[
\phi_s = \frac{\sigma d}{\varepsilon \varepsilon_0}.
\]

Reemplazando en la ecuación (1.26) tenemos el potencial en la interfase

\[
\phi = \frac{\sigma}{\varepsilon \varepsilon_0} (x + d)
\]

Este potencial es semejante al de un condensador de placas paralelas, depende linealmente de la posición en la interfase, por lo que el campo en esta región es constante.
Región II

Esta región pertenece al sólido, y es la región de carga espacial, si consideramos que la densidad de carga espacial en esta región es constante (\(\rho = \text{cte} \)) y considerando un semicondutor que tiene \(N_d \) átomos donadores por unidad de volumen completamente ionizados, con \(n_b \) electrones por unidad de volumen. Por la condición de neutralidad de la carga,

\[
N_d + P_b = N_a + n_b. \tag{1.32}
\]

En el cristal no existen átomos aceptores \((N_a) \), y considerando un semicondutor tipo n tenemos,

\[
n_b = N_d. \tag{1.33}
\]

Cerca de la superficie estos electrones son capturados por los estados superficiales, entonces la densidad de carga en la región de carga espacial y en el volumen es:

\[
\begin{align*}
\rho &= eN_d & & x < x_a \\
\rho &= 0 & & x > x_a,
\end{align*} \tag{1.34}
\]

donde \(\rho \) es la densidad de carga en la región, y \(x_a \) es la profundidad en el semicondutor de la región de carga espacial. Reemplazando la densidad de carga en la región de carga espacial en la ecuación de Poisson, en la región II:

\[
\frac{\partial^2 \phi}{\partial x^2} = \frac{\rho}{\varepsilon_0}. \tag{1.35}
\]

donde \(\phi \) es la función potencial en la región de carga espacial, reemplazando la densidad de carga en esta región, de la ecuación (1.34) tendremos:

\[
\frac{\partial^2 \phi}{\partial x^2} = -\frac{eN_d}{\varepsilon_0}. \tag{1.36}
\]

Considerando las siguientes condiciones de contorno:

\[
\begin{align*}
\phi_s & , \quad E = 0, & & 0 \leq x \leq x_a \\
\phi_b & , \quad E = 0, & & x > x_a,
\end{align*} \tag{1.37}
\]

Donde \(\phi_b \) es el potencial constante en el volumen del semicondutor, \(E \) es el campo eléctrico en el semicondutor. Integrando dos veces la ecuación (1.36), y teniendo en consideración las condiciones de contorno de la ecuación (1.37) obtenemos el potencial que es de la forma:
$$\phi = \phi_0 - \frac{eN_d}{2\varepsilon \varepsilon_0} (x - x_0)^2.$$ \hspace{1cm} 1.38

Definamos $V = \phi_0 - \phi$, como el potencial que tiene como referencia el potencial en el volumen, entonces el potencial en la superficie (V_s), es decir cuando $x = 0$ será:

$$V_s = \frac{eN_d}{2\varepsilon \varepsilon_0} x_0^2,$$ \hspace{1cm} 1.39

donde V_s es la altura de la barrera entre la banda de conducción del volumen y la superficie. El espesor de la región de carga espacial es dada por,

$$x_0 = \sqrt[3]{\frac{2V_s \varepsilon \varepsilon_0}{eN_d}}.$$ \hspace{1cm} 1.40

Si consideramos que el número de cargas por unidad de área sobre la superficie es N_m, podemos expresarla de la siguiente forma

$$N_m = N_d x_0.$$

Entonces el potencial en la superficie es:

$$V_s = \frac{eN_m^2}{2\varepsilon \varepsilon_0 N_d} \quad \text{o} \quad V_s = \frac{Q_s^2}{2\varepsilon \varepsilon_0 N_d},$$ \hspace{1cm} 1.41

donde $Q_s = eN_m$ es la carga superficial por unidad de área en el semiconductor.

La figura 1.17 muestra lo que está sucediendo con las bandas como consecuencia de la difusión de los electrones hacia el volumen del semiconductor.

Encontrándose teóricamente una longitud de carga espacial (x_0) de aproximadamente 10 nm ver apéndice.
1.17 Muestra la doble capa, así como la región de carga espacial de bandas, también se muestra el comportamiento de la función potencial (ϕ_1) del campo eléctrico (E).

Entonces si un electrón quiere llegar a la superficie tiene que tener una energía superior a eV_s de tal forma que venza la barrera de potencial.

Analicemos ahora el transporte de electrones en los contactos entre dos granos, tomando para ello la analogía del contacto metal- semiconductor como se indica en la figura 1.15 (b).

Aquí el proceso de transporte de electrones es frecuentemente propio a corrientes mayoritarias (flujo de electrones) en contraste con las junturas p-n donde las responsables son las corrientes minoritarias.

Podemos distinguir hasta cuatro procesos básicos de transporte de electrones:

- Transporte de electrones del semiconductor sobre la barrera de potencial hacia las moléculas del adsorbato (O_2), proceso denominado diodo Schottky, presente en semiconductores moderadamente dopados $N_d < 10^{17}$ cm$^{-3}$, operando a temperaturas moderadas [33].
- Transporte de electrones por efecto túnel. Este fenómeno se hace importante en semiconductores altamente dopados.
- Recombinación en la región de carga espacial (idéntica a la recombinación en los procesos p-n.
- Inyección de huecos desde la región del adsorbato (O₂) hacia el semiconductor (equivalente a la recombinación en la región de neutralidad).

Si nosotros consideramos que el proceso de transporte de electrones se da por la primera clase, es decir solo con electrones que remonten la barrera de potencial, este proceso puede ser descrito adecuadamente por la teoría de emisión termoiónica. Donde esta teoría propone las siguientes hipótesis.
- La energía de la barrera \(qV_s \) es mucho mayor que \(k_B T \).
- Que la existencia de un conjunto de flujos de corrientes no afecte el equilibrio térmico, es decir la superposición entre los flujos de corriente uno del adsorbato (O₂) al semiconductor y otro de semiconductor al adsorbato (O₂).

En la figura 1.18 se muestra un diagrama de bandas de energía de un semiconductor y la adsorción de oxígeno sobre la superficie, indicándose las densidades de corriente, es decir el transporte de electrones desde el semiconductor hacia el oxígeno \((J_{\text{o-x}}) \), así también el transporte de electrones desde el oxígeno hacia el semiconductor \((J_{\text{x-o}}) \).

![Figura 1.18 Muestra el diagrama de banda de un semiconductor y la adsorción de oxígeno sobre la superficie, que ilustra la operación semejante al de un contacto rectificador (oxígeno semiconductor) polarizado directamente.](image_url)
La densidad de corriente del semiconductor al O² \((\rho_{o,0}) \) es dada por la concentración de electrones con energía suficiente para superar la barrera y atravesarla en la dirección X:

\[
\rho_{o,0} = \int q v_x \, dn,
\]

donde \(q \) es la carga del electrón, \(v_x \) es la velocidad de los electrones en la dirección del transporte, que en este caso estamos suponiendo tiene una dirección preferencial, y \(n \) es la densidad de electrones. En un rango de energías el diferencial de la densidad de electrones es dada por:

\[
dn = N(E) F(E) \, dE,
\]

\[
dn = \frac{4 \pi (2 m^*)^{1/2}}{h^2} \sqrt{E - E_c} \, e^{\frac{(E - E_c)}{k T}} \, dE,
\]

donde \(N(E) \) y \(F(E) \) son la densidad de estados en la banda de conducción en el modelo de electrones libres y la función de distribución de Boltzmann respectivamente, \(m^* \) es la masa efectiva.

Además postulamos que toda la energía de los electrones en la banda de conducción es energía cinética donde:

\[
E - E_c = \frac{1}{2} m^* v^2,
\]

\[
dE = m^* \, dv,
\]

\[
\sqrt{E - E_c} = \sqrt{\frac{m^*}{2}} v.
\]

Sustituyendo la ecuación (1.44) en la ecuación (1.43) nos da:

\[
dn = \frac{2}{\pi} \left(\frac{m^*}{h} \right)^{3/2} e^{\frac{m^*}{2} \frac{v}{k T}} 4 \pi v^2 \, dv.
\]

La ecuación (1.45) nos da el número de electrones por unidad de volumen que tienen una rapidez entre \(v \) y \(v + dv \). La rapidez al cuadrado también se puede expresar de la siguiente forma:

\[
v^2 = v_x^2 + v_y^2 + v_z^2.
\]

Con una transformación de la forma \(4 \pi v^2 \, dv = dv_x \, dv_y \, dv_z \), entonces reemplazando la transformación y la ecuación (1.46) en la ecuación (1.45), y luego el resultado en la ecuación (1.42) obtenemos:

\[
\rho_{o,0} = 2 q \left(\frac{m^*}{h} \right)^{3/2} \int_0^\infty v_x \, e^{\frac{m^*}{k T} v_x} \, dv_x \int_0^\infty v_y \, e^{\frac{m^*}{k T} v_y} \, dv_y \int_0^\infty v_z \, e^{\frac{m^*}{k T} v_z} \, dv_z.
\]
\[J_{v_0} = \frac{4\eta m v_0^2}{h^3} \frac{k_B^2}{T^2} \frac{m^* v_0^2}{2k_B T} \]

Donde \(v_0 \) es la mínima velocidad requerida en la dirección X para vencer la barrera de potencial, usando la hipótesis anterior es decir, que toda la energía en la banda de conducción es cinética, obtenemos:

\[\frac{1}{2} m^* v_0^2 = q(V_s - V) \]

Donde \(V_s \) es el potencial en la superficie relativa al volumen (banda de conducción no curvada) y \(V \) es un voltaje externo aplicado entre semicondutor - adsorbato (O₂) sustituyendo la ecuación 1.48 en la ecuación 1.47 se obtiene:

\[J_{v_0} = \left(\frac{4\eta m v_0^2}{h^3} \right) \beta^2 \frac{qV_s}{k_B T} \frac{q}{k_B T} \]

\[J_{v_0} = \alpha^* T^2 \frac{qV_s}{k_B T} \frac{q}{k_B T} \]

Donde \(\alpha^* \) se le conoce como la constante efectiva de Richardson.

Analicemos ahora la densidad de corriente desde el adsorbato (O₂) hacia el semiconductor (ver figura 1.18). Donde en este caso el flujo de corriente se debe a que el adsorbato se encuentra a una temperatura dada y esto produce que los electrones se desprendan del adsorbato y se produzca el efecto Schottky (el efecto Schottky produce una fuerza imagen inducida que rebaja la energía potencial para la emisión de electrones cuando es aplicado un campo eléctrico externo) por el cual los electrones adquieren la energía necesaria para remontar la barrera de potencial. La altura del alto de barrera de potencial para la movilidad de los electrones del adsorbato (O₂) hacia el semiconductor es aproximadamente el mismo, el flujo de corriente hacia el semiconductor es inaparente por la aplicación de un voltaje externo \(V \), por que los electrones son térmicamente activados. Este debe ser entonces igual al flujo de corriente del semiconductor hacia el adsorbato (O₂) en equilibrio térmico, es decir cuando en la ecuación 1.49 se reemplaza \(V = 0 \) la correspondiente densidad de corriente es dada por la ecuación:

\[J_{v_0} = -\alpha^* T^2 \frac{qV_s}{k_B T} \]

Luego la densidad de corriente total es dada por la suma de ambos flujos \(J_{v_0} + J_{v_0} \) obteniéndose:
\[J = \left(\frac{4\pi m^* k_b^2}{\hbar^2} \right) T^2 e^{\frac{qV}{k_bT}} \left(e^{\frac{qV}{k_bT}} - 1 \right) \]

Donde el valor de \(A^* \) se puede expresar en función de la densidad de electrones libres

\[N_e = 2 \left(\frac{2\pi m^* k_b T}{\hbar^2} \right)^{3/2} \]

por lo que esta última ecuación 1.51 toma la forma:

\[J = qN_e \sqrt{\frac{k_b T}{2m^*}} e^{\frac{qV}{k_bT}} \left(e^{\frac{qV}{k_bT}} - 1 \right) \]

donde \(qV/k_bT \ll 1 \) entonces, realizando una expansión al término exponencial, la expresión de la densidad de corriente queda como,

\[J = q^2 N_e T \sqrt{\frac{1}{2m^* k_b T}} e^{\frac{qV}{k_bT}} \]

El potencial externo \(V \) puede ser expresado como el producto del campo eléctrico a través del borde de grano por la longitud del grano (L). Luego, usando la ley de Ohm microscópica \(J = \sigma E \), obtenemos el valor de la conductividad eléctrica \(\sigma \).

\[\sigma = L q^2 N_e \sqrt{\frac{1}{2m^* k_b T}} e^{\frac{qV}{k_bT}} \]

Entonces la corriente a través del borde de grano es

\[I = A_g \sigma \frac{V}{L} \]

Donde \(A_g \) es la sección transversal del borde de grano. Por lo tanto la resistencia del borde de grano es:

\[R = \frac{L}{A_g \sigma} = \sqrt{\frac{2\pi m^* k_b T}{A_g q^2 N_e}} e^{\frac{qV}{k_bT}} \]

Si definimos \(R_o = \sqrt{\frac{2\pi m^* k_b T}{A_g q^2 N_e}} \) en la última expresión tenemos:

\[R = R_o e^{\frac{qV}{k_bT}} \]

Además sabemos que la conductancia es la inversa de la resistencia, luego:

\[G = G_o e^{-\frac{qV}{k_bT}} \]
La adsorción de oxígeno sobre la superficie, se puede representar por la siguiente reacción [29]:

\[N' + \frac{m}{2} O_2 \rightarrow O_m \] \hspace{1cm} 1.60

Donde \(N' \) es la densidad de electrones transferidos a los estados superficiales producto de la adsorción del oxígeno, \(m \) es una constante que puede tomar los valores siguientes:
- El valor \(m = 1 \), corresponde a la adsorción de la especie \(O^+ \) en el rango de altas temperaturas.
- El valor \(m = 2 \), corresponde a la adsorción de la especie \(O_2^+ \) en el rango de bajas temperaturas.

Donde la constante de equilibrio para la reacción de oxígeno es dada por:

\[K = \frac{P_o^{m/2}}{N' P_o} \] \hspace{1cm} 1.61

Usando la teoría de Langmuir para la adsorción isotérmica, donde se consideran los siguientes postulados:
- Cada partícula al adsorberse sobre la superficie está unida a un sitio activo y cada sitio acepta sólo una partícula.
- La adsorción es un proceso dinámico, constituido por dos acciones opuestas: condensación de partículas sobre la superficie y evaporación de ellas hacia la fase gaseosa; cuando las velocidades de estos dos efectos se igualan, se alcanza el equilibrio de adsorción y la presión permanece invariable.
- La interacción del gas con el sólido es igual en todos los sitios de adsorción.
- No hay interacción entre partículas adsorbidas.
- El número de partículas gaseosas es proporcional a la presión.

De conformidad con estas ideas, las velocidades de desorción y adsorción del gas pueden expresarse por:

\[V_d = K_d S_0 \] \hspace{1cm} 1.62

\[V_a = K_a (S - S_0) P_o \]

Donde \(V_d \) es la velocidad de desorción, \(S_0 \) es el número de trampas de adsorción ocupadas, \(K_d \) es la constante de desorción, \(V_a \) es la velocidad de adsorción, \(S - S_0 \) es el número de trampas de adsorción desocupadas, \(S \) es el número total de trampas de adsorción y \(P_o \) es la presión parcial de oxígeno. En equilibrio, las velocidades de adsorción y desorción se igualan obteniéndose:
\[K_d S_o = K_a (S - S_o) P_o \]

Definiendo \(\theta = S_o / S \) como la fracción de recubrimiento, y luego reemplazándola en la ecuación 1.63 y despejando la presión parcial de oxígeno ionizado tenemos

\[P_{o_{2}} = \left(\frac{\theta}{1 - \theta} \right)^{b} \]

donde \(b = K_d / K_s \) y considerando que \(\theta \ll 1 \) para el rango de altas temperaturas, ya que el aumento de la energía cinética favorece la desorción. Bajo esta restricción entonces también la constante \(b = 1 \) por tanto,

\[P_{o_{2}} = \theta \]

Reemplazando la ecuación 1.65 en la ecuación 1.61 tenemos que la constante cinética es:

\[K = \frac{\theta}{N_{d} P_{o_{2}}^{\alpha / 2}} \]

Además tomando una distribución Boltzmann para \(N' \), y considerando que los electrones son proporcionados por los átomos donadores ionizados del sólido tenemos:

\[N' = N_d e^{-\frac{E_{d}}{k_{B}T}} \]

Reemplazando en la constante cinética la ecuación 1.67 tenemos:

\[K = \frac{\theta}{N_{d} P_{o_{2}}^{\alpha / 2}} e^{\frac{E_{d}}{k_{B}T}} \]

Sabemos de la termodinámica que la constante de equilibrio para fases gaseosa es:

\[Q = k_B T \ln(K) \]

Donde \(Q \) es el calor de formación de la especie adsorbida, \(T \) es la temperatura, \(k_B \) es la constante de Boltzmann y \(K \) es la constante cinética. Reemplazando \(Q \) por la energía de formación de la molécula adsorbida es decir la diferencia entre la energía del estado adsorbido y la energía del estado adsorbido la constante de equilibrio se transforma en

\[K = e^{-\frac{E_{d}}{k_{B}T}} \]

igualando las dos expresiones para la constante cinética (ecuaciones 1.68 y 1.70) y despejando la fracción de recubrimiento (\(\theta \)) tenemos:

\[\theta = N_d P_{o_{2}}^{\alpha / 2} e^{-\frac{E_{d}}{k_{B}T}} e^{\frac{E_{d}}{k_{B}T}} \]

donde podemos observar que la fracción de recubrimiento ahora depende de la densidad de átomos donadores, presión parcial de oxígeno, y la altura de la barrera de potencial.
Además la fracción de recubrimiento está relacionada con la cantidad de carga transferida a los niveles superficiales mediante la siguiente relación:

\[q_s = eS_0 = \frac{eS}{S} = eS_0 \theta, \]

\[q_a = \frac{Q_s}{A} = e\theta \frac{S}{A} = e\theta S_m, \]

\[Q_s = e\theta S_m, \]

donde \(S_m \) es también equivalente a decir, número de estados superficiales ocupados por unidad de área, reemplazando la densidad superficial de carga en la ecuación 1.41 obtenemos para el potencial superficial la expresión siguiente:

\[V_s = \frac{eS_m^2\theta^2}{2\varepsilon\varepsilon_0 N_d}, \]

en esta última ecuación se observa que el potencial superficial es proporcional al cuadrado de la fracción de recubrimiento, pero nos interesa obtener el potencial superficial en función de la presión parcial de oxígeno, por lo tanto en el potencial superficial (ecuación 1.73) será reemplazada la fracción de recubrimiento (ecuación 1.71) obteniéndose:

\[V_s = \frac{eS_m^2}{2\varepsilon\varepsilon_0 N_d} \rho_m \exp \left(\frac{2E_d - \varepsilon_0}{k_B T} \right) \exp \left(\frac{2\Delta_s}{k_B T} \right). \]

Si multiplicamos la ecuación 1.74 por \(e/k_B T \) para obtener el exponente de la conductancia:

\[\frac{eV_s}{k_B T} = \frac{e^2S_m^2}{2\varepsilon\varepsilon_0 k_B T} \rho_m \exp \left(\frac{2\varepsilon_0 - E_d}{k_B T} \right) \exp \left(\frac{2\Delta_s}{k_B T} \right). \]

Luego hacemos \(\beta = \frac{eV_s}{k_B T} \) y tomamos logaritmo a la ecuación 1.75 obteniéndose:

\[\ln(\beta) = \ln \left(\frac{e^2S_m^2 N_d}{2\varepsilon\varepsilon_0 k_B T} \right) + 2 \ln(\rho_m) + \frac{2(E_d - E_f)}{k_B T} - 2\beta, \]

\[\ln(\beta) + 2\beta = \ln \left(\frac{e^2S_m^2 N_d}{2\varepsilon\varepsilon_0 k_B T} \right) + 2(E_d - E_f) + 2 \ln(\rho_m). \]

Pero la evidencia experimental nos muestra valores de \(eV_s \) en el rango de 0.2 a 1eV para una temperatura de 800K [2, 20, 27, 34]; si graficamos la función \(Y = \ln(\beta) + 2\beta \) para estos valores de \(eV_s \), y tomando la temperatura de 800K, encontramos que esta
función se comporta de manera lineal cuya ecuación es $Y = 2.18\beta + 0.56$ para este rango de energía, como lo demuestra la figura 1.19.

Figura 1.19 Muestra la aproximación lineal de la función $Y = \ln(\beta) + 2\beta$ para el rango de eV_p entre 0.01 - 1 eV y a la temperatura de 808K.

Tomando esta aproximación lineal y reemplazándola en la ecuación 1.76 tenemos:

$$2.18\beta + 0.56 = \ln\left(\frac{e^2 S_e^2 N_d}{2\varepsilon \varepsilon_0 k_BT}\right) + \frac{2(E_s - E_d)}{k_BT} + m_l m_l(P_{\text{in}}); \quad \beta \geq 2$$ \hspace{1cm} 1.77

Reemplazando el valor de β en la ecuación 1.77 tenemos:

$$2.18 \frac{eV_p}{k_BT} + 0.56 = \ln\left(\frac{e^2 S_e^2 N_d}{2\varepsilon \varepsilon_0 k_BT}\right) + \frac{2(E_s - E_d)}{k_BT} + m_l m_l(P_{\text{in}});$$ \hspace{1cm} 1.78

despejando eV_p/k_BT

$$\frac{eV_p}{k_BT} = \frac{1}{2.18} \left(\ln\left(\frac{e^2 S_e^2 N_d}{2\varepsilon \varepsilon_0 k_BT}\right) + \frac{2(E_s - E_d)}{2.18 k_BT} - 0.56 + \frac{m_l m_l(P_{\text{in}})}{2.18}\right).$$ \hspace{1cm} 1.79

Luego esta ecuación es reemplazada en la conductancia ecuación 1.59 donde se obtiene finalmente la conductancia como función de la presión parcial de oxígeno,

$$G_s = G_s^{1.29}\left(\frac{2\varepsilon \varepsilon_0 k_BT}{e^2 S_e^2 N_d}\right)^{1.29} P_{\text{in}}^{1.29} e^{-\frac{3(E_s - E_d)}{k_BT}}; \quad \beta \geq 2$$ \hspace{1cm} 1.80

en la cual observamos que la conductancia depende de manera inversamente proporcional con la presión parcial de oxígeno, lo cual concuerda con los datos.
experimentales, por lo que el exponente de la presión parcial de oxígeno \(m = i \) es de 0,458 en la temperatura de sensado \((320 \, ^\circ C) \).

Podemos considerar otra aproximación para la ecuación 1.75 la cual consiste en asumir que \(Ln(\beta) \ll 2\beta \) esto se cumple para altos valores de barrera de potencial entre partículas, aplicando esta aproximación tenemos:

\[
2\beta = Ln \left(\frac{e^2S_m^2N_d}{2\varepsilon \varepsilon_0k_BT} \right) \frac{2(E_a - E_d)}{k_BT} + mLN(P_o). \tag{1.81}
\]

Luego \(eV_x/k_BT \) toma la siguiente forma:

\[
\frac{eV_x}{k_BT} = \frac{1}{2} \ln \left(\frac{e^2S_m^2N_d}{2\varepsilon \varepsilon_0k_BT} \right) - \frac{m}{2} LN(P_o). \tag{1.82}
\]

Entonces la conductancia se reduce a la siguiente expresión:

\[
G_x = G_0 \left(\frac{2\varepsilon \varepsilon_0k_BT}{e^2S_m^2N_d} \right)^{\frac{i}{2}} \left(\frac{E_a - E_d}{k_BT} \right)^{-\frac{m}{2}} e^{-\frac{(E_a - E_d)}{k_BT}}. \tag{1.83}
\]

Si se considera que a la temperatura de sensado solo existe oxígeno ionizado como \(O^\cdot \), entonces la constante \(m = 1 \), por lo que el exponente de la presión parcial de oxígeno es de 0.5 a la temperatura de sensado \((320 \, ^\circ C) \).

1.7 VARIACIÓN DE LA CONDUCTANCIA POR LA PRESENCIA DE OXÍGENO Y UN GAS REDUCTOR

Si el mecanismo de reacción entre el oxígeno adsorbido y un gas reductor \(R \) se da en la forma siguiente:

a) El oxígeno es ionadsorbido sobre la superficie del oxido como \(O^\cdot \), entonces la reacción cinética será [29]:

\[
m + \frac{1}{2} O_2 \xleftrightarrow{}^\cdot O_2 \tag{1.84}
\]

Donde \(K_r \) y \(K_i \) son las constantes de las velocidades cinéticas directa e inversa respectivamente, \(n \) es la densidad de electrones transferidos a los estados superficiales producto de la adsorción de oxígeno.

b) luego al ingresar el gas reductor reaccionando con estas moléculas de oxígeno ionadsorbidas originando un producto \(RO \), luego estas moléculas \((RO) \) son desorbidas. Con esta idea del posible mecanismo de interacción se plantea la siguiente reacción:
\[R + O^\cdot \xrightarrow{k_2} RO + n, \]
donde \(k_2 \) es la constante cinética de la reacción, planteando las constantes cinéticas para las reacciones de las ecuaciones 1.84 y 1.85 tenemos:

\[\frac{K_1}{K_{-1}} = \frac{P_0}{n^4 P_{O_2}^{1/2}} \]

\[y \]

\[K_2 = \frac{P_{O_2} n^4}{P_k P_O} \]

Aplicando la teoría de Langmuir para la adsorción de oxígeno, tenemos que las velocidades de desorción y adsorción son,

\[V_{ad} = k_{ad} S_1, \]
\[V_{a} = k_a P_O \left(S - S_1 - S_2 \right) \]

Donde \(V_{ad} \) y \(V_{a} \) son las velocidades de desorción y adsorción del oxígeno respectivamente, \(k_{ad} \) y \(k_a \) son las constantes de desorción y adsorción del oxígeno respectivamente, \(S \) es el número de trampas de adsorción, \(S_1 \) el número de trampas de adsorción ocupadas por oxígeno ionadsorbido y \(S_2 \) el número de trampas de adsorción ocupadas por RO. En el equilibrio estas velocidades se igualan obteniéndose:

\[P_O = \frac{S_1}{S - S_1 - S_2} = \frac{\theta_1}{1 - \theta_1 - \theta_2} \]

Donde \(\theta_1 = S_1 / S \) y \(\theta_2 = S_2 / S \) son las fracciones de recubrimiento del oxígeno ionadsorbido y del gas resultante (RO) respectivamente. Reemplazando la ecuación 1.89 en la ecuación cinética 1.86 tenemos:

\[\frac{K_1}{K_{-1}} = \frac{\theta_1}{n^4 P_{O_2}^{1/2} (1 - \theta_1 - \theta_2)} \]

Aplicando la misma teoría a la desorción de RO encontramos que

\[P_{RO} = \frac{\theta_2}{1 - \theta_1 - \theta_2} \]

Donde \(P_{RO} \) es la presión del gas resultante (RO). Esta última ecuación es reemplazada en la ecuación cinética 1.87 obteniéndose:

\[K_2 = \frac{\theta_2 n^4}{P_k P_{O_2} (1 - \theta_1 - \theta_2)} \]

Combinando las ecuaciones 1.90 y 1.92 para eliminar \(\theta_2 \) encontrándose [27, 29]
\[\theta_1 = \frac{K_1 P_{\text{O}_2}^{1/2}}{K_2 + K_1 P_{\text{O}_2}^{1/2} + K_2 P_R} \] 1.93

Unas condiciones para la sensibilidad de los gases combustibles es \(K_1 \ll K_2 P_R \), \(K_1 P_{\text{O}_2}^{1/2} \ll K_2 P_R \), es decir, que las velocidades de adsorción y desorción de oxígeno son muy lentas en comparación con la velocidad de combustión del gas a detectar, bajo estas condiciones la fracción de recubrimiento toma la forma siguiente:

\[\theta_1 = \left(\frac{K_1}{K_2} \right) P_{\text{O}_2}^{1/2} P_R^{-1} \] 1.94

Reemplazando el cuadrado de la ecuación 1.94 en la ecuación que nos relaciona con la barrera de potencial, es decir, la ecuación 1.73 tendremos:

\[V_s = \frac{e S_{\text{ms}}^2}{2 e \varepsilon_0 N_d} \left(\frac{K_1}{K_2} \right)^2 P_{\text{O}_2} P_R^{-2} \] 1.95

Si calculamos las constantes cinéticas antes y después de exponer el sensor al gas reductor, usando la ecuación 1.70 tenemos:

\[K_1 = e^{\frac{eV_{\text{fr}}}{k_B T}} \quad y \quad K_2 = e^{\frac{eV_{\text{fr}}}{k_B T}} \] 1.96

donde \(K_1 \) y \(K_2 \) son las constantes cinéticas antes y después de exponer al sensor al gas reductor respectivamente. Realizando el cociente y elevando al cuadrado la razón \(K_1/K_2 \) y luego reemplazada en la ecuación 1.95 tendremos:

\[V_s = \frac{e S_{\text{ms}}^2}{2 e \varepsilon_0 N_d} P_{\text{O}_2} P_R^{-2} e^{\left(\frac{eV_{\text{fr}}}{k_B T} \right)} e^{-\left(\frac{eV_{\text{fr}}}{k_B T} \right)} \] 1.97

Donde \(V_s \) fue reemplazado por \(V_{x2} \) ya que estamos ante la presencia de oxígeno y el gas reductor.

Si realizamos el cambio de variable \(\beta = \frac{eV_x}{k_B T} \), suponemos que las barreras de potencial \(V_{\text{fr}} \) y \(V_{x2} \) están relacionadas por \(eV_{x2} = \eta eV_{x2} \) como se muestra en la figura 1.20, y tomamos el logaritmo, la ecuación 1.97 toma la forma siguiente:

\[\ln(\beta) + 2(\eta - 1)\beta = \ln \left(\frac{e^2 S_{\text{ms}}^2}{2 e \varepsilon_0 N_d k_B T} \right) + \ln \left(P_{\text{O}_2} P_R^{-2} \right) + 2 \left(\frac{E_{\text{fr}} - E_{x2}}{k_B T} \right) \] 1.98

42
Figura 1.20 Se muestra los diagramas de bandas en dos situaciones (a) cuando hay adsorción de oxígeno sobre el semiconductor (b) cuando hay adsorción de oxígeno e interacción con el gas reductor sobre el semiconductor.

Además considerando que $\text{Ln}(\beta) << 2(\eta - 1)\beta$ y reemplazando su valor original de β en la ecuación 1.98 obtenemos

$$-rac{e}{k_BT}v_{s_2} = \text{Ln} \left(\frac{e^2 S_{se}^2}{2eN_d k_BT} \right) \left(\frac{I}{2(\eta - 1)} \right) + \text{Ln} \left(P_{O_2} P_R^{-2} \right) \left(\frac{I}{2(\eta - 1)} \right) - \left(\frac{I}{\eta - 1} \right) \left(\frac{E_g - E_s}{k_BT} \right) \tag{1.99}$$

Si reemplazamos la ecuación 1.99 en la ecuación de conductancia ecuación 1.59 tendremos:

$$G = G_0 \left(\frac{e^2 S_{se}^2}{2eN_d k_BT} \right) \left(\frac{I}{2(\eta - 1)} \right) P_{O_2}^{-2} P_R^{-2} \left(\frac{I}{\eta - 1} \right) e^{-\frac{E_g - E_s}{k_BT}} \tag{1.100}$$

La última expresión nos da la dependencia de la conductividad eléctrica en función de las presiones parciales de oxígeno y del gas reductor a sensar, donde se observa que la conductividad es inversamente proporcional a la presión parcial de oxígeno y directamente proporcional a la presión parcial del gas reductor, corroborando esta dependencia con la parte experimental,

$$G \propto P_{O_2}^{-2(\eta - 1)} P_R^{-1} \tag{1.101}$$

Donde se nota que la presión parcial de oxígeno aumenta la altura de la barrera de potencial y el gas reductor disminuye la altura de la barrera de potencial.
1.8 MECANISMO DE CONDUCCIÓN EN LOS RECUBRIMIENTOS GRUESOS DE POLVO SINTERIZADO

Los conceptos usados en los capítulos anteriores nos dan una idea de los posibles mecanismos de conducción eléctrica en los sensores hechos de polvo sinterizados. La resistencia depende fuertemente de los gases adsorbidos, notándose que la resistencia se eleva fuertemente en los contactos entre granos en comparación con la resistencia en el bulk [24].

Dependiendo del grado de coalescencia de las partículas en la etapa de sinterización podemos distinguir dos mecanismos que a continuación serán descritos:

- Modelo con cuello de enlace abierto (coalescencia incompleta y completa) ver figura 1.8
- Modelo con cuello cerrado (crecimiento de los cuellos de enlace) ver figura 1.7

1.8.1 MODELO CON CUELLO DE ENLACE ABIERTO

En este modelo se considera que las partículas están unidas por un cuello de enlace amplio como se indica en la figura 1.21(b)

![Diagrama de cuello de enlace](image)

Figura 1.21 Muestra la coalescencia de dos partículas (a) cuello de enlace angosto, la región de carga espacial impide la movilidad de los electrones a través del cuello de enlace (b) cuello de enlace amplio, la región de carga espacial no impide la movilidad de electrones en el bulk por el cuello de enlace.

Cuando las partículas se encuentran unidas por un amplio cuello de enlace, la región de carga espacial en los bordes entre partículas se extiende hasta una profundidad tal que no logra cerrar el cuello de enlace, es decir, la zona de carga espacial hace que disminuya la sección transversal por donde fluyen los electrones de una partícula a otra.
En este caso, la conductancia está gobernada por la conductancia del bulk y depende de la energía de activación de los electrones de los estados donadores a la banda de conducción.

Cuando estas partículas son expuestas a un gas reductor la región de carga espacial disminuye facilitando así la conducción de los electrones de una partícula a otra. En la figura 1.22 se muestra el efecto que produce el oxígeno adsorbido así como el gas reductor.

![Diagrama de densidad de electrones y diagrama de bandas de energía](image)

Figura 1.22 Muestra dos partículas en el modelo de cuello de enlace abierto, diagrama de la densidad de electrones y el diagrama de bandas de energía, la conductancia está controlada por un contacto ohmico.

Se puede apreciar el cambio de conductividad en el borde de grano por medio de dos esquemas simultáneos: uno representa dos partículas en contacto, diagrama de la densidad de electrones y su respectivo diagrama de bandas después de la quimisorción, el efecto del oxígeno es denotado por la línea (+++), y el efecto del gas reductor denotado por la línea (----).

Cuando el tamaño de grano es mayor que la longitud de Debye, los cambios de energía entre la banda de conducción y el nivel de Fermi en el bulk son casi nulos.
\(\Delta (E_c - E_f) \approx 0 \), así como los cambios en la densidad electrónica en el bulk \(\Delta n_e = 0 \). Los cambios en la \(E_c \) solo se dan en los cuellos de enlace, por lo que la conductividad está controlada por estas zonas.

1.8.2 MODELO CON CUELLO CERRADO

En este modelo las partículas están unidas por un cuello angosto como se indica en la figura 1.21(a), casi en contacto. La región de carga espacial o de empobrecimiento de electrones, producto de la adsorción de oxígeno abarca todo el cuello, haciendo que los electrones no puedan moverse de una partícula a otra produciéndose una barrera de potencial tipo Schottky en el cuello de enlace entre dos partículas, esta barrera de potencial es la que controla la conducción eléctrica, ya que los electrones deben remontar la barrera de potencial para pasar de una partícula a otra, aquí la conductancia es activada por un valor de energía igual a \(eV_s \), donde \(V_s \) depende de la cantidad de oxígeno adsorbido, y de la presión parcial de oxígeno, el valor de conductancia es dada por la ecuación 1.59, donde en \(G_o \) se incluyen los factores del bulk y factores geométricos. En la figura 1.23 se muestra la representación esquemática de dos partícula y su respectivo diagrama de banda de energía, el efecto del oxígeno denotado por (++) después de la adsorción, y el efecto del gas reductor denotado por (---)

Cuando el tamaño de grano es mayor que la longitud de Debye, en este caso los cambios de energía entre la banda de conducción y el nivel de Fermi en el bulk son casi nulos \(\Delta (E_c - E_f) \approx 0 \) así como los cambios en la densidad electrónica en el bulk \(\Delta n_e = 0 \), donde los cambios de \(E_c \) solo se dan entre los contactos de dos partículas, donde aparece la barrera Schottky.
Figura 1.23 Muestra dos partículas en el modelo de cuello de enlace cerrado, diagrama de la densidad de electrones y el diagrama de bandas de energía, la conductancia está controlada por la barrera de potencial.

En este modelo la conductividad está controlada por estas barreras de potencial. También se observa cómo disminuye la región de carga espacial como consecuencia de ingresar un gas reductor, por ende disminuye también la barrera de potencial en los contactos entre partículas facilitando de esta forma la conducción eléctrica.
2. MÉtodos Experimentales

2.1 FABRICACIÓN

La tecnología de películas gruesas está basada en la técnica de screen printing como una vía económica para la producción de sensores de dióxido de estaño, con una alta área superficial con relación al volumen del sensor.

En este tópico desarrollaremos los procedimientos para la obtención del sensor de dióxido de estaño sinterizado, como son:

- Fabricación de la pasta de dióxido de estaño
- Aplicación de la pasta de dióxido de estaño sobre el sustrato
- Secado de la pasta de dióxido de estaño
- Sinterización

2.1.1 FABRICACIÓN DE LA PASTA

Para la obtención de la pasta se requieren las siguientes componentes:

a) Polvo de dióxido de estaño (Merck & Co. Inc)
 - 99 % de pureza
 - Tamaño de partículas < 5 µm
 - Temperatura de fusión 1630 °C

b) Etil - celulosa (Aldrich Chemical Company, Inc)
 - Ethoxyl 49%
 - Aglutinante orgánico

c) α - terpinol (Aldrich Chemical Company, Inc)
 - Solvente viscoso
 - Volátil
 - Temperatura de vaporización 220 °C
 - Densidad 0,9337 gr/cm³
Estas componentes fueron utilizadas en las siguientes proporciones:

- 4,062 g de dióxido de estano en polvo.
- 0,063 g de etil – celulosa.
- 3 ml de α - terpinol.

Las componentes en estas proporciones fueron depositadas en un vaso de vidrio y luego mezcladas, durante unos 15 minutos resultando una pasta homogénea y viscosa. A continuación se resume la preparación de la pasta en el siguiente diagrama de flujo, como se muestra en la figura 2.1.

![Diagrama de flujo de la preparación de la pasta de SnO₂](image)

Figura 2.1 Diagrama de flujo de la preparación de la pasta de SnO₂

2.1.2 APLICACIÓN DE LA PASTA SOBRE EL SUSTRATO

Luego de preparar la pasta es depositada sobre un sustrato de alúmina (Al₂O₃), el cual presenta las siguientes características:

- Posee dos caras, una superior, la cual tiene dos electrodos de oro, y es la cara donde se deposita la pasta de dióxido de estano, como se indica en la figura 2.2.a.
- Una cara posterior la cual posee una resistencia eléctrica de dióxido de rutenio (RuO₂) de aproximadamente 10 Ω. El objetivo de esta resistencia eléctrica es que actúe como calentador del sustrato, como se indica en la figura 2.2.b.

Cuando se aplica una diferencia de potencial de un voltio en los extremos de la resistencia eléctrica del calentador del sustrato, éste eleva su temperatura en 40 °C.

Figura 2.2 (a) cara superior, electrodos de oro sobre el sustrato de alúmina
(b) cara posterior, calentador de RuO₂ del sustrato de alúmina

La aplicación de la pasta se realizó de la siguiente forma:
- Se colocó el sustrato sobre un soporte horizontal y luego es asegurado por un fijador como se indica en la figura 2.3

Figura 2.3 Sustrato sobre el soporte horizontal y fijado
- Se coloca una mascarilla por encima del fijador
- Luego se coloca un poco de pasta de dióxido de estaño sobre la mascarilla, con una paleta se esparce la pasta por todo el orificio de la mascarilla cuya área coincide con el área del sensor como se indica en la figura 2.4.
- Se retira la mascarilla quedando depositado la pasta sobre el sustrato

![Diagrama de mascarilla con pasta y fijador](image)

Figura 2.4 Muestra la mascarailla y el deposito de la pasta sobre el sustrato

2.1.3 SECADO DE LA PASTA

Una vez depositada la pasta sobre el sustrato se procede al secado de la pasta. El secado de la pasta se realizó teniendo en consideración las propiedades físicas de los componentes que constituyen la pasta. El α-terpinol es un solvente que se evapora a 220 °C, y a temperaturas aproximadamente de 300 °C el etil celulosa combustiona dejando las partículas de SnO₂ en contacto entre sí.

Según estas consideraciones la pasta se hizo secar por 30 minutos a la temperatura de 300 °C. Una vez secada la pasta se retira del horno para luego ser compactada y de esta forma aumentar la relación área - volumen.
2.1.4 SINTERIZACION

Es la última parte de la elaboración del sensor de dióxido de estano, una vez secada y compactada la pasta se procede a colocar alambre de micrón en los terminales de los electrodos que servirán para montar el sensor sobre un porta sensor que se encuentra en la campana como se indica en la figura 2.8, la etapa de sinterización se realizó a 750 °C por treinta minutos, la temperatura final (750 °C) es alcanzada a 2,5 °C por minuto, la figura 2.5 muestra el sensor terminado visto por dos frentes del sustrato.

![Diagram](image)

Figura 2.5 (a) vista superior del sensor de SnO₂ (b) vista de perfil del sensor de SnO₂

El siguiente diagrama de flujo figura 2.6, resume los pasos a seguir para la fabricación del sensor de dióxido de estano sinterizado.
2.2 DIFRACCION DE RAYOS X

La difracción de rayos X es una técnica que se usa para obtener información de la estructura del cristal, parámetro de red y tensiones residuales. Con la determinación del patrón de difracción de un cristal, se puede en principio conocer su estructura, la
distribución de sus átomos, la concentración atómica de los electrones y el factor atómico de forma.

Cuando un haz de rayos X incide sobre un átomo éste dispersa la radiación de forma coherente de tal manera que la radiación dispersada puede interferir de forma destructiva o constructiva con las radiaciones provenientes de los átomos circundantes. Este método implica el estudio espacial de la onda dispersada total. Si consideramos un cristal perfecto y un haz incidente perfectamente monocromático, bajo ciertas condiciones se originará una dispersión de línea intensa.

Las condiciones de máxima difracción está descrita por la ley de Bragg:

$$2d \sin \theta = n \lambda$$ \hspace{1cm} (2.1)

Donde λ es la longitud de onda de los rayos X, n es el orden de difracción y se considera la diferencia de camino que recorren dos haces que interfieren constructivamente como $2d \sin \theta$, donde θ es el ángulo de incidencia y d es la distancia interplanar.

Con la obtención de los ángulos de Bragg es posible determinar el tamaño promedio de grano y algunas características de la red cristalina: como tipo de celda, parámetro de red, orientación preferencial del crecimiento, etc.

Como se sabe las condiciones ideales nunca se presentan y debemos considerar los factores que nos alejan de ese caso para entender los resultados obtenidos, cuando se tiene cristales pequeños (menores a 0,1 μm) se presenta un ensanchamiento de la señal.

El tratamiento de este ensanchamiento puede realizarse por medio de la ecuación de Scherrer dada por la expresión [35]:

$$D = \frac{0.9 \lambda}{B \cos \theta}$$ \hspace{1cm} (2.2)

Esta ecuación es usada para calcular el tamaño promedio de grano cristalino D a partir de la medida en radianes, a mitad de altura, de la intensidad del ensanchamiento de la señal B como se indica en la figura 2.7.
Figura 2.7 Muestra de un pico del patrón de difracción y los parámetros utilizados en la ecuación de Scherrer

En este trabajo las medidas de rayos X fueron realizadas en un difractómetro Philips X’Pert, configuración 3072, usando ánodo de Cu, y $\lambda = 1,5406 \ \AA$. Según el espesor de las películas, se usó el montaje convencional $\theta - 2\theta$ para películas de espesor mayores a 1 µm, y la ecuación de Scherrer se empleó para determinar el tamaño de grano cristalino.

2.3 DETECCIÓN DE VAPORES

A continuación pasamos a describir el sistema utilizado para la detección de vapores y la medida del cambio de conductancia del detector de dióxido de estaño sinterizado cuando es expuesto a diferentes vapores.

En la figura 2.8 se muestra el esquema del sistema de detección, indicándose cada una de sus componentes
Figura 2.8 sistema utilizado para la detección de vapores

El sistema consta de las siguientes componentes:

- Una cámara de vacío con una capacidad de 4 l.
- Dos fuentes de poder, una para alimentar un ventilador el cual se encarga de homogeneizar la mezcla aire-vapor en el interior de la cámara y otra para el circuito asociado al detector (como se indica en la figura 2.9).
- Un amplificador de potencia, utilizado para activar el calentador del sustrato.
- Un variac, que es utilizado para calentar la plancha del vaporizador, la cual nos permite vaporizar las soluciones a detectar.
- Una década, que fijada en un valor se asocia al circuito del detector (figura 2.9).
- Una tarjeta de adquisición de datos (interfase) previamente programada, la cual nos permite enviar y recibir señales analógicas.
- Una computadora, que asociada a la interfase, nos permite programar la información que será enviada, recibida y almacenada para posteriormente ser analizada.
- Uso del Software SENSOR, este software nos permite programar entradas y salidas vía una computadora.
2.3.1 CIRCUITO ASOCIADO AL DETECTOR

Para poder medir los cambios de conductancia en el detector cuando es expuesto a diferentes vapores, se realizó el siguiente circuito.

![Circuito eléctrico asociado al detector de vapores](image)

Figura 2.9 circuito eléctrico asociado al detector de vapores

Donde:
- Rp = Resistencia del detector
- Rf = Resistencia fija (decada)
- V = Diferencia de potencial en la resistencia fija
- Vf = Voltaje de alimentación del circuito
- Cf = Condensador para filtrar señales de ruidos
- i = Corriente del circuito

El voltaje proporcionado por la fuente en el circuito está dado por.

$$Vf = I(Rp - Rf)$$ \text{2.3}$$

Donde la resistencia del detector cambia por la presencia de vapores y el voltaje aplicado por la fuente Vf es constante, entonces la corriente cambia.

Se observa de la figura 2.9 que la caída de potencial en la resistencia fija es dada por.

$$V = IRf$$ \text{2.4}$$
Igualando las corrientes de las expresiones 2.3 y 2.4, luego despejando R_p tenemos

$$R_p = R_f \left(\frac{V_f}{V} - 1 \right).$$ \hspace{1cm} 2.5

Además considerando que la conductancia se define como la inversa de la resistencia,

$$G = \frac{1}{R_p}.$$ \hspace{1cm} 2.6

Aplicando la definición a la ecuación 2.6, obtenemos la conductancia en función de los parámetros del circuito,

$$G = \frac{1}{R_f} \left(\frac{V}{V_f - V} \right).$$ \hspace{1cm} 2.7

2.4 MÉTODO DE MEDIDA DE LA ENERGIA DE ACTIVACIÓN

La determinación de la energía de activación de conductancia es posible por el uso de temperaturas que estimulen la conducción eléctrica. Aquí la conductancia es medida como función del tiempo, los cambios de voltaje en el calentador del sensor se traducen en cambios de temperaturas del sensor, estos cambios se realizan en tiempos cortos (algunos segundos), pero los cambios en la energía de activación (E_{act}) que se producen como consecuencia del cambio de temperatura del sensor. Ver figura 2.10
Figura 2.10 Conductancia en función del tiempo. En el instante t_0, se produce un Desequilibrio, consecuencia del cambio de temperatura

En el instante t_0, se produce el cambio en el voltaje del calentador, luego en la conductancia se registra un desequilibrio producto del cambio de temperatura, unos minutos más tarde alcanza el equilibrio como se muestra en figura 2.10.

En el instante t_0, los cambios de conductancia se deben solamente al cambio de la temperatura y no a la modificación de la energía de activación. Extrapolando el máximo de la curva hasta el punto de abscisa t_0, encontramos el valor de conductancia G_p en el instante t_0.

De esta forma podemos obtener,

$$G_i = G_e e^{E_{ac} \over kT_i},$$ \hspace{1cm} (2.8)

a la temperatura T_i.

Y

$$G_f = G_e e^{E_{ac} \over kT_f},$$ \hspace{1cm} (2.9)

a la temperatura T_f.

Luego realizando el cociente de las ecuaciones (2.9)/(2.8) y Tomando logaritmo al cociente tenemos:

$$\ln(G_f \over G_i) = E_{ac} \left(\frac{1}{kT_i} - \frac{1}{kT_f} \right)$$ \hspace{1cm} (2.10)
Esta expresión nos permite calcular la energía de activación graficando \(\ln(G_f/G_i) \) vs \(1/T \).

En la figura 2.11 se muestra un gráfico de conductancia en función del tiempo. Este gráfico se obtiene fijando la temperatura inicial \((T_i) \) por un intervalo de cinco minutos, luego de los cuales se realiza el cambio en la temperatura a \((T_f) \), por un intervalo de cinco minutos. Las demás curvas se obtienen repitiendo el procedimiento anterior.

![Gráfico de conductancia en función del tiempo](image)

Figura 2.11 conductancia en función del tiempo, a partir del instante \(t_0 \) para diferentes cambios de temperaturas

En la figura 2.12 se muestra el correspondiente gráfico \(\ln(G_p/G_i) \) vs \(1/T \), del cual se obtiene la energía de activación a la temperatura inicial \((T_i) \), tomando la pendiente de la recta. Este gráfico se obtuvo tomando los valores de conductancia extrapolados de la figura 2.11.
Figura 2.12 Logaritmo del cociente de conductancia en función de la inversa de la Temperatura. La pendiente de la recta nos proporciona la energía de activación a la temperatura T_i.
3. RESULTADOS EXPERIMENTALES

3.1 DIFRACCIÓN DE RAYOS X

Las películas gruesas de dióxido de estaño sinterizadas fueron analizadas por la técnica de DRX. Esta técnica y el equipo fueron descritos en la sección 2.2.

La figura 3.1 muestra los datos de DRX correspondientes a una serie de películas gruesas de espesor ~1 μm y sinterizadas a diferentes temperaturas.

![Difratograma de Rayos X](image.png)

Figura 3.1 Difratogramas de rayos X para películas de dióxido de estaño depositadas por screen-printing sobre sustratos de alúmina para diferentes temperaturas de sinterización, los picos de difracción son asignados a la estructura cäsiterita.

Se observa de la figura 3.1 que no hay cambios de fase en la estructura cristalina pero sí un crecimiento paulatino del tamaño de grano conforme se aumenta la temperatura de sinterización.
3.2 INFLUENCIA DEL OXÍGENO EN LA CONDUCTANCIA DEL RECUBRIMIENTO DE DÍXIDO DE ESTÁN SINTERIZADO

Para determinar la influencia del oxígeno en los cambios de conductancia del recubrimiento se usó el arreglo experimental mostrado en la figura 2.8.

En la figura 3.2 se muestra los cambios de conductancia del recubrimiento en función de la temperatura para diferentes valores de presión de oxígeno.

Estas medidas fueron realizadas, haciendo previamente vacío hasta 10⁻³ mbar, una vez alcanzada la presión indicada se cerró la cámara (campana), luego se hizo ingresar oxígeno hasta que retorne a la presión atmosférica, este procedimiento se repitió 10 veces. Esto se realizó con el objetivo de desalojar el aire de la cámara que se encontraba inicialmente para progresivamente ser reemplazado por oxígeno. La décima vez se hizo ingresar oxígeno hasta que retorne a la presión atmosférica y luego se realizó vacío hasta 0.06 mbar, una vez alcanzada la presión indicada se cierra la cámara. Luego se programa la computadora para que realice incrementos lineales de temperatura y lea el voltaje en la resistencia en serie, con incrementos de temperatura programadas en intervalos de 0.11 °C/s, por una hora.

Figura 3.2 Conductancia del recubrimiento de SnO₂ sinterizado a 750 °C en función de la temperatura, a razón de 0.11 °C/s para diferentes presiones de oxígeno.
Se observa en la figura 3.2 que los cambios de conductancia en el recubrimiento se ven afectados cuando se disminuye la presión de oxígeno en la cámara. En el rango de presión desde 1 bar hasta 1 mbar no se registran cambios en la conductancia para temperaturas menores que 130 °C, los cambios de conductancia son notorios en el rango de presión de oxígeno de 0.30 - 0.06 mbar. También se observa que los incrementos de conductancia con la temperatura son pequeños en el rango de presión atmosférica - 1 mbar para temperaturas mayores que 280 °C, mientras que para el rango de presión 0.30 - 0.06 mbar los incrementos de conductancia con la temperatura son significativos.

3.3 INFLUENCIA DEL OXÍGENO EN LA ENERGÍA DE ACTIVACIÓN

Para determinar la influencia del oxígeno en la energía de activación del recubrimiento de SnO₂ sinterizado, se utilizó la técnica descrita en el capítulo 2.5 (método de medida de la energía de activación).

En la figura 3.3 se muestra los cambios de energía de activación para un recubrimiento de SnO₂ sinterizado a 750 °C en función de la temperatura para diferentes presiones de oxígeno.

![Gráfica de energía de activación de SnO₂](image)

Figura 3.3 Energía de activación de conductancia para un recubrimiento de SnO₂ sinterizado a 750 °C en función de la temperatura, para diferentes presiones de oxígeno.
Los resultados de la figura 3.3 nos muestran que la energía de activación presenta tres características que distinguiremos según los rangos de temperatura. Entre 120 - 175 °C la energía de activación permanece aproximadamente constante independiente de la temperatura, luego entre 200 - 360 °C la energía de activación tiene un crecimiento aproximadamente lineal, alcanzando su máximo valor de energía de activación a la temperatura de 360 °C, y en el rango de 360 - 400 °C presenta un decrecimiento en la energía de activación.

3.4 DETECCIÓN DE VAPORES MEDIANTE EL RECUBRIMIENTO SINTERIZADO DE SNO$_2$

La detección de vapores mediante el recubrimiento sinterizado de SnO$_2$ se realiza en el arreglo experimental mostrado en la figura 2.8.

Para caracterizar los recubrimientos como detectores de vapores se tuvieron en cuenta los siguientes aspectos:

- Reproducibilidad en los cambios de conductancia
- Influencia de la concentración de vapor en los cambios de conductancia
- Sensibilidad
- Influencia de la temperatura en la detección de vapores
- Tiempo de respuesta del sensor

A continuación se detallan cada uno de estos aspectos.

3.4.1 REPRODUCIBILIDAD EN LOS CAMBIOS DE CONDUCTANCIA

El objetivo de esta prueba es mostrar la reproducibilidad de los cambios de conductancia bajo una concentración fija de vapor de etanol.

En la figura 3.4 se muestra el gráfico de cambios de conductancia en función del tiempo a la temperatura de 320 °C para una concentración fija de 10 ppm de vapor de etanol.
Figura 3.4 Cambios de conductancia en función del tiempo, a 320 °C, para una concentración fija de 10 ppm de vapor de etanol.

Los resultados de la figura 3.4 fueron obtenidos fijando la temperatura de detección en 320 °C, luego de dos minutos se hizo ingresar una gota de etanol, la cual es vaporizada, exponiéndose al recubrimiento al vapor de etanol por dos minutos siguientes, luego del cual es liberado el vapor (levantando la campana), este procedimiento se repite periódicamente.

De la figura 3.4 se observa que la conductancia cambia una vez vaporizado el etanol, alcanzando un máximo de conductancia, el cual se repite para los demás picos siendo aproximadamente iguales, y luego de liberado el vapor retorna a la conductancia inicial, observándose un proceso reversible.

3.4.2 INFLUENCIA DE LA CONCENTRACIÓN DE VAPOR EN LOS CAMBIOS DE CONDUCTANCIA

Nos interesa saber si los cambios de conductancia del sensor tienen alguna relación con las concentraciones de vapor que se ingresa en la cámara y si estas son independientes del vapor a detectar.

En la figura 3.5 se muestra cambios de conductancia en función del tiempo, a la temperatura de 320 °C, para diferentes concentraciones de vapor de etanol (10-60 ppm) respectivamente.
Figura 3.5 Cambios de conductancia en función del tiempo, a 320 °C, para diferentes concentraciones de vapor de etanol (10-60 ppm) respectivamente.

Los resultados fueron obtenidos fijando la temperatura de detección en 320 °C, luego de dos minutos con la cámara cerrada se ingresa una gota de etanol la cual es vaporizada inmediatamente, exponiendo al recubrimiento a este vapor por dos minutos siguientes, para luego ser liberado. Este procedimiento se repite sucesivamente para las demás concentraciones.

En la figura 3.5 se puede observar que los cambios de conductancia no son los mismos para diferentes concentraciones, se observa un incremento progresivo conforme se aumenta la concentración. Sin embargo una vez evacuado el vapor, el sensor retorna a la conductancia inicial independientemente de la concentración de vapor de etanol a detectar.

3.4.3 SENSIBILIDAD

Definamos sensibilidad como $S = G / G_0$. Donde G es la conductancia del recubrimiento expuesto al vapor a detectar, y G_0 es la conductancia del recubrimiento expuesto solo al aire, que se toma como unidad.

La sensibilidad nos da la razón de cambio de la conductancia respecto al aire.
Realizando un gráfico de conductancia en función del tiempo para diferentes vapores reductores (Butanol, Amoniaco, Etanol) y aplicando esta definición a los datos obtenidos siguiendo el procedimiento anterior (3.4.2) obtenemos la figura 3.6.

![Gráfico de conductancia](image)

Figura 3.6 Cambios de sensibilidad en función del tiempo, a 320 °C, para diferentes concentraciones de vapores 10-70 ppm de butanol, amoniaco y etanol respectivamente.

En la figura 3.6 se puede apreciar que los cambios de sensibilidad para una temperatura de sensado de 320 °C, mostrando tener mayor sensibilidad al vapor de butanol, notándose cambios de conductancia hasta de 80 veces con respecto a la conductancia en aire.

También responde satisfactoriamente al etanol donde los cambios de conductancia son 64 veces respecto a la del aire.

Se observa que la detección de amoniaco es menos favorable, ya que los cambios de conductancia sólo varían en 6 veces con relación a la del aire y es independiente de la concentración de vapor de amoniaco.
3.4.4 INFLUENCIA DE LA TEMPERATURA EN LA DETECCIÓN DE VAPORES

Como establecimos en el capítulo 1, la temperatura influye en la reacción vapor-oxígeno, y esta reacción favorece a los cambios de conductancia.

En la figura 3.7 se muestra los cambios de conductancia en función de la temperatura, a presión atmosférica, para diferentes concentraciones de vapor de etanol.

![Gráfico de conductancia con diferentes concentraciones de SnO₂](image)

Figura 3.7 Conductancia del recubrimiento de SnO₂ sinterizado a 750 °C en función de la temperatura, a razón de 0,11 °C/s, a presión atmosférica, para diferentes concentraciones de vapor de etanol.

Los resultados de la figura 3.7 fueron obtenidos aislando el recubrimiento en el volumen fijo (volumen de la cámara), luego se ingreso una gota de etanol la cual es vaporizada quedando el recubrimiento expuesto al vapor de etanol, una vez establecidas estas condiciones se programó la computadora para realizar incrementos lineales de temperatura a razón de 0.11 °C/s, tomando datos en intervalos de un segundo por una hora.

En la figura 3.7 se observa que el recubrimiento no registra cambios de la conductancia en el intervalo de temperatura 0 - 280 °C. En este rango, la temperatura no activa la reacción vapor - oxígeno, por lo que el recubrimiento no puede ser utilizado para
detectar vapor de etanol. Cuando se supera este rango de temperatura los cambios de conductancia se ven afectados en forma aproximadamente lineal, a pesar de mantener fija la concentración de vapor de etanol.

Otra forma de ver la influencia de la temperatura en la detección de vapores es aislando el sensor en el volumen fijo (volumen de la cámara), luego se ingresa una gota de etanol la cual es vaporizada quedando el sensor expuesto al vapor de etanol, una vez establecidas estas condiciones se programa la computadora para realizar un calentamiento constante a 320 °C, tomando datos en el intervalo de un segundo por media hora, se obtuvo la figura 3.8.

![Figura 3.8 Cambios de conductancia en función del tiempo para diferentes temperaturas, medidas a presión atmosféricas, bajo una misma concentración (10 ppm) de vapor de etanol.](image)

En la figura 3.8 se puede apreciar notoriamente la influencia de la temperatura en la detección de vapor de etanol, a 200 °C el detector no manifiesta cambios de conductancia notorios a pesar de estar en una atmósfera de vapor de etanol, en cambio a 400 °C el detector rápidamente registra cambios de conductancia esto pone en evidencia que la temperatura es un parámetro importante en la detección de vapores.
3.4.5 TIEMPO DE RESPUESTA A LA DETECCION DE VAPORES

El tiempo de respuesta a la detección de vapores está relacionado con la rapidez de cambio de conductancia en presencia de vapores. Y se ve fuertemente afectado por la temperatura, ya que esta influye en la velocidad de reacción vapor - oxígeno.

En la figura 3.9 se muestra los cambios de conductancia en función del tiempo, para diferentes temperaturas de sensado de vapor de etanol, medidos a presión atmosférica.

![Diagrama de conductancia en función del tiempo para diferentes temperaturas](image)

Figura 3.9 Cambios de conductancia en función del tiempo para diferentes temperaturas, medidas a presión atmosférica, bajo una misma concentración (10 ppm) de vapor de etanol.

En el figura 3.9 se observa que la velocidad de respuesta al vapor de etanol es muy lenta a 200 °C, ya que la razón del cambio de conductancia en el tiempo es pequeño, conforme aumenta la temperatura la velocidad de respuesta aumenta, en la figura 3.8 se observa que a 400 °C los cambios de conductancia son muy rápidos casi instantáneos al detectar la presencia de vapor de etanol.
4. DISCUSION

4.1 Estructura.
Los difractogramas de rayos X (Figura 3.1) de las muestras fabricadas a diferentes temperaturas de sinterización, muestran que en éste proceso no se producen cambios de fase en la estructura cristalina del dióxido de estaño, tan solo se incrementa el tamaño de grano por efecto de la temperatura, usando la ecuación de Scherrer (ecuación 2.2) se encontró un incremento del tamaño de grano de hasta un 55 % manteniéndose estable la estructura Rutilo.

4.2 Variación de la conductancia con la temperatura.
Las medidas experimentales del capítulo 3 (Fig. 3.2) muestran que la disminución de la concentración de oxígeno, produce una reducción de la altura de la barrera de potencial \(\phi \) interpartícula. Este se explica porque al haber menos moléculas de oxígeno, hay menos estados superficiales ocupados por ellos. Por esto, a bajas temperaturas (30-150 °C) se observa un incremento en la conductancia, cuando se disminuye la presión de oxígeno. En la región de altas temperaturas (150 - 400 °C) la conductancia aumenta debido a la ganancia de energía que adquieren los electrones por influencia de la temperatura.

En el rango de altas temperaturas, siguiendo con la Figura 3.2, se produce la disociación de \(\text{O}_2 \) a \(\text{O} \) (ecuación 1.84), para luego ser adsorbido como \(\text{O}^+ \). Esta disociación duplica el número de estados superficiales ocupados producto de la adsorción de \(\text{O} \), por lo que se esperaría la disminución de la conductancia. Sin embargo, este efecto es despreciable frente al aumento de conductancia debido a la temperatura.

4.3 Medición de la Energía de Activación.
En la Figura 3.3 observamos que la energía de activación \(V \) aumenta con la presión de oxígeno debido a la mayor densidad de estados superficiales ocupados. En el rango de altas temperaturas, la energía de activación crece progresivamente en cada una de las curvas, debido a la duplicación (idealmente) de especies adsorbidas como \(\text{O}^+ \).
El decolamiento de la energía de activación que se observa en el rango de temperaturas mayores entre 380-400 °C, es producto de la desorción de O. Aunque no tenemos mediciones directas que lo confirmen, el argumento anterior se apoya en los valores de temperatura de desorción de la especie O̅ reportados por McAleer [29].

Este último fenómeno también puede ser atribuido al aumento de la estequiometría del óxido, reduciendo la densidad de vacancias, es decir, centros de absorción.

4.4 Sensibilidad para diferentes vapores reductores

Como se explicó anteriormente, el enfoque de éste trabajo es el planteamiento del modelo de formación de carga espacial para obtener una ecuación general que relacione los cambios de conductancia del sensor con la concentración del vapor reductor. Como resultado final del modelo se obtuvo una ecuación de la forma: \(G = G_0(c)^m \). La validez de éste resultado se comprobó experimentalmente en tres vapores reductores: butanol, etanol y amoníaco. Los resultados de la representación logarítmica se muestra en la figura 4.1., dando los siguientes valores de los exponentes característicos:

\[
\begin{align*}
m_{\text{butanol}} &= 0.624 \pm 0.029 \\
m_{\text{etanol}} &= 0.467 \pm 0.030 \\
m_{\text{amoníaco}} &= 0.175 \pm 0.033
\end{align*}
\]

![Figura 4.1](image)

Figura 4.1 Gráfico logarítmico de la sensibilidad en función del logaritmo de la concentración para tres vapores reductores, etanol, butanol y amoníaco, sensados a 320 °C.
4.5 Influencia de la temperatura sobre la velocidad de respuesta
La temperatura de sensado determina la velocidad de respuesta del sensor.
La figura 3.8 muestra la influencia de la temperatura sobre la conductancia. A 200 °C el sensor no muestra cambios apreciables de conductancia por la presencia del vapor reductor, debido a que a esta temperatura predomina la especie \(O_2^- \), especie menos reactiva. Por lo tanto cuando ingresa el vapor reductor y al encontrarse a baja temperatura la reacción es muy lenta. A medida que aumentamos la temperatura va aumentando la población \(O^- \) respecto de \(O_2^- \). En la figura 3.9 se aprecia como cambia la velocidad de reacción con la temperatura. A 200 °C hay un incremento lento en la conductancia debido a que la población de \(O^- \) es muy baja y se encuentran a baja temperatura, en cambio a 400 °C, se produce un cambio drástico en la conductancia debido a que, además de la mayor temperatura, la población de \(O^- \) es predominante.

4.6 Influencia del circuito de medición sobre la conductividad.
Podría pensarse que la corriente eléctrica que circula por el sensor modifica la conductancia \(G \) debido al efecto Joule que podría generar, y por lo tanto modificar el exponente característico \(m \). Esta posibilidad la descartamos experimentalmente al notar que cambiando la resistencia fija, \(R_f \) (figura 2.9), y realizando las mediciones que determinan el exponente característico(\(m \)), no cambia. En la figura 4.2 se observa claramente que las pendientes de las rectas que determinan el exponente \(m \) permanecen sin variación a pesar de haberse medido la conductividad con diferentes valores de \(R_f \).
Figura 4.2. Determinación de las pendientes características para vapor de etanol, medidas a diferentes valores de Rf.
APENDICE

ESTIMACIÓN DE LA FRACCIÓN DE RECUBRIMIENTO (θ) Y LA LONGITUD DE CARGA ESPACIAL

De las aproximaciones hechas en el presente modelo encontramos que el alto de barrera de potencial entre KT es dado por la ecuación 1.82.

$$
\frac{eV_c}{KT} = \frac{1}{2} \ln \left(\frac{e^2 S^2 a_0 N_d}{2e\varepsilon_0 KT} \right) + \frac{(E_s - E_d)}{KT} + \frac{m}{2} \ln(P_\omega) \tag{A.1}
$$

Además la fracción de recubrimiento es dada por la ecuación 1.71

$$
\theta = N_d P^{\nu/2}_a \, e^{-\frac{E_s}{K T}} e^{\frac{E_s - E_d}{K T}} \tag{A.2}
$$

Reemplazando la ecuación (A.1) en (A.2) encontramos que la fracción de recubrimiento es dada por:

$$
\theta = N_d \left(\frac{2e\varepsilon_0 KT}{e^2 S a_0 N_d} \right)^{1/2} \tag{A.3}
$$

Encontrando típicos valores para $N_d \approx 10^{-18}$ cm$^{-3}$, $N_m \approx 10^{13}$ cm$^{-2}$, $e\varepsilon_0 \approx 10^{-12}$ Fcm$^{-1}$ y a la temperatura de 800 K encontramos que la fracción de recubrimiento es aproximadamente de $\theta \approx 10^{-3}$.

La longitud de carga espacial puede ser determinada por la hipótesis de densidad de carga constante en esta región es entonces:

$$
x_o N_d e = Q \tag{A.4}
$$

Donde

$$
Q_o = S a_0 \theta e \tag{A.5}
$$

Reemplazando A.4 en A.5 tenemos:

$$
x_o = \frac{S a_0 \theta}{N_d} \tag{A.6}
$$

Luego reemplazando A.3 en A.6 obtenemos la expresión para la longitud de carga espacial.

$$
x_o = \left(\frac{2e\varepsilon_0 KT}{e^2 N_d} \right)^{1/2} \tag{A.7}
$$
Usando los mismos valores de permitividades y densidad de donadores como en el caso anterior, tenemos que $x_0 \approx 10$ nm. Comparando la longitud de carga espacial (x_0) con el tamaño de partícula (0.25 μm) podemos decir que el fenómeno ocurre superficialmente.
REFERENCIAS

