UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERÍA GEOLÓGICA MINERA Y METALURGIA

REDUCCION DEL CONTENIDO DE COBRE EN EL PLOMO BULLION DE LA FUNDICIÓN DE PLOMO

INFORME DE COMPETENCIA PROFESIONAL

PARA OPTAR EL TÍTULO DE INGENIERO METALURGISTA

PRESENTADO POR:

ELEAR DALMIRO GÓMEZ GÓMEZ

Lima - Perú
2009
DEDICATORIA

A Dios por darme la vida.
A mis padres Moisés y Cirila por ser fuente de inspiración y motivación para superarme cada día más y terminar el gran esfuerzo que empezaron hace algunos años.
A mi Esposa Lorena y mis hijos Elear y Elian por creer en mí y ser el motor de mi vida.
AGRADECIMIENTOS

A la Empresa Doe Run Perú SRL. por permitir presentar el presente informe.
A los profesores de la Universidad Nacional de Ingeniería (UNI) que me brindaron su valioso apoyo en mi formación profesional.
INTRODUCCIÓN ... 1

Capítulo I : ASPECTOS AMBIENTALES .. 4
 1.1 Fisiología.. 4
 1.2 Normas Ambientales Generales en el Perú .. 7

Capítulo II : ASPECTOS GENERALES .. 11
 2.1 Antecedentes .. 11
 2.2 Participación en la Comunidad ... 11

Capítulo III : GENERALIDADES DEL PLOMO .. 20
 3.1 Propiedades .. 20
 3.2 Estado Natural .. 21
 3.3 Aplicaciones .. 22
 3.4 Producción ... 23
 3.5 Compuestos del plomo .. 31

Capítulo IV : PLANTA DE PLOMO ... 33
 4.1 SECCIÓN DE AGLOMERACIÓN Y ÁCIDO SULFÚRICO 33
 4.1.1 Sistema de alimentación ... 35
 4.1.2 Mezcla ... 37
 4.1.3 Peletización ... 38
 4.1.4 Humedad .. 38
 4.1.5 Proceso de aglomeración ... 39
 4.1.6 Química y termodinámica del proceso .. 42
 4.1.7 El efecto sinterizante ... 43
 4.2 FUNDICIÓN DE PLOMO ... 44
 4.2.1 HORNOS DE PLOMO .. 44
 4.2.1.1 Descripción del proceso empleado .. 47
 4.2.1.2 Combustible - Reductor ... 48
 4.2.1.3 Aire .. 51
 4.2.1.4 Chatarra de fierro .. 51
 4.2.1.5 Oxígeno .. 52
 4.2.1.6 Otros fundentes .. 53
 4.2.1.7 Química y termodinámica en el Horno de Plomo 53
 4.2.1.8 Escorias .. 57
4.2.1.9 Plomo de obra..57
4.2.1.10 Gases y polvos metálicos..58
4.2.2 PLANTA DE ESPUMAJE (Dross Plant).................................61
4.2.2.1 Sistema de control de emisiones fugitivas:.........................62
4.2.2.2 Descripción del proceso: ..64
4.2.2.3 El horno Reverbero de Dross Plant.................................64
 4.2.2.3.1 Consideraciones teóricas del proceso:64
 4.2.2.3.2 Las reacciones involucradas son:.................................65
4.2.2.4 Estructura ...66
 4.2.2.4.1 Salida de material posee tres puntos de:66
 4.2.2.4.2 Alimentación ..67
 4.2.2.4.3 Las fases del Horno Reverbero68
 4.2.2.4.4 Relación de Reactivos ...69
4.2.2.5 Parámetros operativos ..69
4.2.2.6 DESCRIPCION DE LOS PRODUCTOS............................70
 4.2.2.6.1 Mata ..70
 4.2.2.6.2 Speiss. ..71
4.2.2.7 Decoperizado ..72
4.2.3 PLANTA DE MOLDEO...74
 4.2.3.1 Calidad de los ánodos producidos.75
 4.2.3.2 Control de parámetros. ..76
 4.2.3.3 Principales Impurezas de los Ánodos..............................77
4.3 Refinación Electrolítica ...78
 4.3.1 Breve Historia de la Refinería de Plomo78
 4.3.2 Proceso Betts Modificado..83
 4.3.3 Etapa 1: RECEPCION Y REFINACION DE PLOMO..............85
 4.3.3.1 Descripción ...85
 4.3.3.2 Definición y Fundamentos ..87
 4.3.3.2.1 Ánodos ...87
 4.3.3.2.2 Cátodos ..88
 4.3.3.2.3 Electrolito ..89
 4.3.3.2.4 Electrólisis ..90
 4.3.3.2.5 Goulac (lignosulfonato de calcio)...........................90
 4.3.3.2.6 Acido flúor silícico (H2SiF6).....................................90
4.3.3.2.7 Ión..90
4.3.3.2.8 Reactivos orgánicos...91
4.3.4 Equipos..92
4.3.4.1 Máquina separadora..92
4.3.4.2 Máquina Juntadora..92
4.3.4.3 Celdas electrolíticas ...93
4.3.4.4 Máquinas lavadoras de ánodos corroídos (scrap)93
4.3.4.5 Máquina lavadora de varillas..94
4.3.4.6 Escurrideros de cátodos ..94
4.3.4.7 Rectificador R-5. ...94
4.3.4.8 Grúas puente: ...95
4.3.4.9 Tanques de preparación de reactivos orgánicos95
4.3.4.10 Sump. ..95
4.3.4.11 Block comercial. ...95
4.3.5 Etapa 2: FABRICACION DE LÁMINAS INICIALES95
4.3.6 Etapa 3: FUSIÓN Y MOLDEO...96
4.3.6.1 Descripción ..96
4.3.6.1.1 Fusión ..96
4.3.6.1.2 Moldeo ..97
4.3.6.1.3 Para el Moldeo de Barras...97
4.3.6.1.4 Para el Moldeo de Blocks...98
4.3.7 Etapa 4: LODOS ANODICOS ..99
4.3.7.1 Descripción ..99
4.3.7.2 Definición y Fundamento ...99
4.3.7.2.1 Lodo Anódico...99
4.3.8 Etapa 5: BALANZA Y DESPACHO ..100
4.3.8.1 Descripción ..100
4.3.8.2 Definición y Fundamento ...101
4.3.8.2.1 Enflejadora ..101
4.3.8.2.2 Paquete: ...101
4.3.8.2.3 Carga: ..101

Capítulo V :TRATAMIENTO DE LOS LODOS DE REFINACIÓN.102
5.1 Descripción del proceso..102
5.2 FUSIÓN..104
 5.2.1 Recepción de Slimes: ...104
 5.2.1.1 Slimes de Plomo. ...105
 5.2.1.2 Slime de Cobre. ...105
 5.2.2 Productos y materia prima ...106
5.3 CONVERSION..106
 5.3.1 Forma de Moldear el Coopel Feed ..107
 5.3.2 Reconocimiento de Oxidación ..107
 5.3.2.1 Oxidación de Antimonio ...108
 5.3.2.2 Oxidación de Bismuto ...109
 5.3.3 Copelación. ..110

Capítulo VI : REDUCCIÓN DEL CONTENIDO DE COBRE EN EL PLOMO

6.1 Definición y fundamento..113
6.2 Decoperizado ...115
 6.2.1 Equilibrio Químico..115
 6.2.2 Cinética ..116

CONCLUSIONES..124

BIBLIOGRAFÍA..125
INTRODUCCIÓN

En el presente informe de competencia profesional se presenta el desarrollo de un método para el tratamiento de concentrados de plomo con cantidades crecientes de cobre y como consecuencia el incremento del mismo en el plomo bullion en el complejo metalúrgico de la Oroya, de la empresa Doe Run Peru SRL.

En el Circuito de Plomo se encuentra la planta de Espumaje donde se realiza un preafino del plomo bullion el cual se denomina proceso de decoperizado. El proceso de decoperizado consiste en el control de 2 variables fundamentales, la temperatura y la agitación, para lograr la remoción secundaria del Cu; para esto se utilizan ollas de 120 TM de capacidad y agitadores de 100-160 RPM para hacer circular el Pb de la base hacia la superficie del metal líquido, actualmente el control de la temperatura se realiza mediante termocuplas electrónicas.

El Cu se separa del Pb haciendo uso de la solubilidad al disminuir la temperatura hasta 330 °C, a medida que el plomo líquido se enfrié se separa un tipo de eutéctico de solución sólida de Cu con una gravedad específica aproximada a 9 y la del Pb a 11; en la agitación de abajo hacia arriba se inicia a formar los primeros granos o cristales de Cu (Sn, Sb, As) que suben
a la superficie en forma de grumos (polvo negro) el % de Cu aumenta según se aproxima a la temperatura, óptima de 327 °C.

El Pb fundido se hace menos fluido, el porcentaje de Cu menos soluble, en el eutéctico contiene 0.04% de Cu. Este contenido de Cu en el plomo bullion nos genera un contenido mayor a 1% de Cu en el lodo anódico perjudicando la recuperación de plata en la planta de residuos anódicos.

Con la adición de azufre, controlando la temperatura y la agitación se obtiene un límite máximo de cobre en el plomo bullion de 0.002 – 0.004 % Cu.
OBJETIVOS

El objetivo de este estudio está enfocado en el proceso de decoperizado para reducir el contenido de cobre del plomo bullion a niveles mínimos de tal manera que este elemento no cause problemas de contaminación en la subsiguiente etapa de refinación electrolítica. El límite máximo de cobre en el plomo bullion es 0.002 – 0.004% y con esto se consigue disminuir el % de concentración de Cu en los lodos anódicos de plomo y facilitar su tratamiento en la planta de Residuos Anódicos de la empresa Doe Run Perú.
CAPÍTULO I
ASPECTOS AMBIENTALES

Es importante en el proceso de la obtención del plomo, considerar los aspectos ambientales, como una responsabilidad inherente al que hacer metalúrgico. Esto permitirá cuidar nuestro planeta tierra para las futuras generaciones.

1.1 Fisiología

El plomo en su extracción, refinería y su amplio uso industrial ha contribuido en el aumento de sus concentraciones en suelo, agua y aire, principalmente en los centros urbanos y las zonas mineras.

¿Cómo me puedo exponer al plomo?

Hay tres causas a través de las cuales nos podemos exponer al plomo: ocupacional, para ocupacional y ambiental.

La primera se da entre quienes trabajan en la minería, la refinería de metales, las diversas actividades en donde se emplea como Materia prima (baterías de autos, cables, soldadura); en los talleres de reparación de radiadores y producción de vitrales, la producción artesanal de barro vidriado.
La exposición para ocupacional se presenta cuando los trabajadores de las actividades antes mencionadas, llevan sus ropas y zapatos a casa, y/o no se bañan antes de salir del trabajo; así, llevan las partículas del metal hasta el suelo de la casa, exponiendo principalmente a los niños pequeños.

La exposición ambiental es factible en las personas que viven cerca de las refinerías de plomo, de una mina, de sus desechos (jales), o de los establecimientos que usan plomo como Materia prima.

Cabe mencionar que se utilizaba gasolina con tetra etilo de plomo, lo que causaba gran contaminación urbana, y contribuyó a la exposición de un gran número de individuos a dicho metal.

¿Cómo puede entrar el plomo en mi cuerpo?

Parte del plomo que entra a nuestro organismo a través de los pulmones e intestinos se absorbe y se distribuye a todos los órganos y tejidos del cuerpo; la otra parte es desechada, principalmente a través de la orina y las heces fecales. El que logra quedarse en el cuerpo, en un 95 por ciento se acumula durante años en los huesos; y durante días y minutos en los diversos órganos, y comportamientos (plasma).

En el caso de los trabajadores expuestos al plomo en alguna de las actividades antes mencionadas, las principales vías de entrada del metal son la inhalatoria (respiración), debido a las altas concentraciones de las partículas del plomo en el aire de trabajo; y la gastrointestinal, fundamentalmente por malos hábitos de higiene, fumar, y no lavarse adecuadamente las manos y la cara antes de comer.

Muchos de los desechos de las diversas actividades antes mencionadas se vuelven un riesgo a la salud al ser depositados de
manera clandestina e ilegal en lugares cercanos a poblaciones humanas o a fuentes naturales de agua para el consumo humano o animal.

¿Cómo puede afectar el plomo mi salud?

Afecta prácticamente a todos los órganos y sistemas del cuerpo humano. En el caso de las mujeres en edad reproductiva y las embarazadas, su exposición a altas concentraciones de plomo origina que se acumulen mayores cantidades en huesos, aumentando con ello el riesgo de que durante su embarazo y lactancia sea una fuente interna de plomo, con las conocidas repercusiones en los niños: bajo peso al nacer, deficiencias en el desarrollo neuroconductual y en su capacidad intelectual.

Entre los trabajadores expuestos se pueden presentar los síntomas de envenenamiento crónico, dependiendo del tiempo y características de la exposición, la concentración del plomo en sangre y la susceptibilidad del organismo. Estos síntomas incluyen: anemia, debilidad, estreñimiento, cólicos intestinales, diarrea y parálisis en muñecas y tobillos, entre otros. Los sistemas más sensibles al metal son el nervioso, el hematopoyético y el cardiovascular.

A largo plazo, el plomo puede ocasionar efectos neurológicos irreversibles, sobre todo en los niños: disminución de la inteligencia, retraso en el desarrollo motor, deterioro de la memoria y problemas de audición y el equilibrio. En adultos, aumenta la presión sanguínea y afectar el funcionamiento renal.

¿Qué concentraciones de plomo son dañinas para la salud?

Se recomienda que los niveles en sangre sean los más bajos, particularmente entre la población más vulnerable: niños y mujeres
embarazadas. En Estados Unidos, los Centers for Disease Control (CDC), establecen que esos niveles no deben rebasar los 10 µg/dL.

Los trabajadores deben contar con lugares adecuados para comer, aislados del proceso de trabajo y con baños para lavarse antes de ingerir sus alimentos. Además, deben recibir información constante y actualizada sobre la toxicidad del plomo, de tal manera que estén conscientes de que no deben ingerir alimentos ni fumar en el puesto de trabajo. Además, las autoridades deben hacer cumplir estrictamente a las empresas que manejan plomo las leyes, reglamentos y normas al respecto.

1.2 Normas Ambientales Generales en el Perú.

Constitución Política de 1993.

Legislación Ambiental:

- Código del Medio Ambiente y los Recursos Naturales
- Ley Marco para el Crecimiento de la Inversión Privada.
- Ley General de Aguas - Ley 17752.
- Ley 26842 – Ley General de Salud (20 de julio de 1997).
- Ley 28611 – Ley general del ambiente (13 de octubre 2005)
- Ley 28271 – Regula los pasivos ambientales de la actividad minera.
- Ley 28090 – Regula el cierre de minas.

Legislación Penal:

- Código Penal
- Ley No.26631 (21 de junio de 1996).
- Reglamento de Investigaciones Arqueológicas, R.S.004-2000-ED
Consejo Nacional del Ambiente –CONAM:
- Ley de Creación CONAM: Ley 26410 (22 de diciembre de 1994)
- Ley de Evaluación de Impacto Ambiental para Obras y Actividades.
- D.S. 044-98-PCM Reglamento Nacional para la Aprobación de ECA y LMP.

Instituto Nacional de Recursos Naturales – INRENA:
- Ley Orgánica del Ministerio de Agricultura, Decreto Ley 25902, Artículo 19°.
- Decreto Supremo 056-97-PCM.

Instituto Nacional de Cultura – INC:
- Ley de Amparo al Patrimonio Cultural de la Nación.

Normas Generales Ambientales del Sector Energía y Minas:
- Decreto Supremo 027-93- EM: Creación de la Dirección General de Asuntos Ambientales.
- Resolución Ministerial 580-98-EM/VMM: Procedimientos de calificación y vigencia de la inscripción en el Registro de entidades autorizadas a realizar Estudios de Impacto Ambiental en el Sector Energía y Minas.
- Resolución Ministerial 627-2003-MEM/DM: Crea Registro Empresas para Elaborar Cierre de Minas
- Decreto Supremo 009-2003 S.A. (24/06/03). Reglamento de los niveles de estado de alerta nacionales para contaminantes del aire.
- Decreto Supremo 046-2004- EM prorroga excepcional de plazos para cumplimiento PAMA.
Normas Sectoriales:

- Operaciones Nuevas ==> EIA
- Operaciones Antiguas ==> PAMA
- Plazo de 5 años para minas
- Plazo de 10 años para Fundiciones
- LMPs como objetivo al término del plazo
- Reglamento Ambiental de Exploración Minera: D.S. 038-98-EM

Evaluación Ambiental:

- Límites Máximos Permisibles
- Metas específicas y alcanzables
- Protección de la salud humana y del ambiente
- Líquidos: R.M. N° 011-96-EM/VMM,
- Gases y polvo: R.M. N° 315-96-EM/VMM
- ECA Aire: D.S. N° 074-01-PCM
- Adhesión
- Fija LMPs por 5 o 10 años (PAMA)
- Publicación de 15 Guías Ambientales Mineras
- Autoridad Encargada de Realizar Fiscalización Ambiental
- La Ley de Fiscalización de las Actividades Mineras – Ley N° 27474 establece al Ministerio de Energía y Minas como el organismo encargado de realizar la fiscalización ambiental en las actividades mineras a través de la Dirección General de Minería y participación de la Dirección de Asuntos Ambientales.
Participación de Fiscalizadores Externos:

- Se autoriza la participación de fiscalizadores externos para realizar la fiscalización ambiental que puede ser encargado a personas naturales o jurídicas.
- Mediante Resolución Ministerial N° 548-2001-EM/VMM, se aprueban los criterios de evaluación para los efectos de la Calificación y Clasificación de los fiscalizadores externos, que se detallan en los Anexos I, II y III de la presente Resolución.
- Mediante Resolución Directoral N° 238-2001-EM/DGM, se crea en la Dirección General de Minería el “Registro de Fiscalizadores Externos” autorizados a realizar la labor de fiscalización de las actividades mineras.

Facultades del Fiscalizador:

- Ingreso a los lugares materia de la fiscalización.
- Tomar muestras representativas y hacer las mediciones que consideren necesarias.
- Efectuar recomendaciones.
- Requerimiento de información.
- Determinar el incumplimiento.
CAPÍTULO II
ASPECTOS GENERALES

2.1 Antecedentes

En 1997 la Doe Run Company adquirió la empresa ahora llamada Doe Run Perú de la compañía estatal, Centromin, que operaba la planta desde el año 1974. Doe Run Perú opera un complejo metalúrgico en La Oroya, ubicado a 176 Km. al noreste de Lima a una altitud de 3700 msnm. El complejo La Oroya funciona como fundición de cobre desde 1922 como apoyo al imperio minero de Cerro de Pasco. La producción de plomo comenzó en 1928 y la producción de zinc en 1952. El complejo comenzó a recuperar metales preciosos como el oro y la plata en 1950. El complejo también produce más de una docena de subproductos. Hoy, Doe Run Perú está logrando progresos significativos - mejorando su eficiencia, reduciendo emisiones, y aumentando en forma notable la seguridad industrial - al tiempo que se aboca a iniciativas de desarrollo sustentable en la comunidad.

2.2 Participación en la Comunidad

Los antiguos operadores del complejo La Oroya dejaron un legado de contaminación que, tomado conjuntamente con el crecimiento
desestructurado de La Oroya, expuso a sus residentes a riesgos ambientales y de salud. Doe Run Perú se preocupa por el impacto de la contaminación sobre las comunidades aledañas, y por los temas relacionados con la salud de la población ocasionada por mala nutrición, falta de higiene y agua limpia, y la mala calidad del aire. La empresa está trabajando con las comunidades y el gobierno local para encontrar soluciones a estos temas y mejorar la calidad de vida de los habitantes del lugar. Para lograr estos objetivos, Doe Run Perú ofrece su apoyo a las comunidades cercanas para la implementación de proyectos de desarrollo sustentable. La empresa también trabaja extensamente en la comunidad para mejorar la educación pública y la infraestructura del cuidado de la salud.
Gráfico Nº 2-1. Historia del complejo metalúrgico de "La Oroya"

1950

CERRO DE PASCO CORPORATION
1922 – 1973 (52 años)

CENTROMIN PERÚ S.A. – CMPSA
1974 – 1997 (24 años)

DOE RUN PERU S.R.L.

1997: Inicio de operaciones (Oct. 24)
1998: Inicio de ejecución del PAMA
2006: Planta de ácido sulfúrico de zinc, tres plantas de aguas residuales, planta tratamiento aguas industriales, proyectos de ventilación y pavimentación.
2007: Inicio de Construcción de Plantas de ácido sulfúrico de plomo, cobre y modificación del circuito de cobre.
2008: Operación Planta de Ácido Sulfúrico del Circuito de Plomo (30set08).
 • Suspensión temporal de ejecución nuevo reactor Isasmelt y planta de ácido sulfúrico de cobre (15dic08).
Gráfico Nº 2-2. Productos del complejo metalúrgico de "La Oroya"
Gráfico N° 2-3. DOE RUN PERÚ, Venta: Mercados y Distribución, Periodo 2008
Cuadro Nº 2-1. PAMA original del complejo metalúrgico (RD Nº 334-97)
EM/DGM (16 Octubre, 1997)

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>1997</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acido Sulfuro</td>
<td>5,000</td>
<td>5,500</td>
<td>2,500</td>
<td>6,500</td>
<td>7,000</td>
<td>4,500</td>
<td>3,000</td>
<td>14,500</td>
</tr>
<tr>
<td>Tratamiento de Agua Madre Ref. Cu</td>
<td>2,500</td>
<td>3,000</td>
<td>2,000</td>
<td>4,000</td>
<td>5,000</td>
<td>3,000</td>
<td>2,000</td>
<td>14,000</td>
</tr>
<tr>
<td>Flujos Líquidos</td>
<td>2,500</td>
<td>3,000</td>
<td>2,000</td>
<td>4,000</td>
<td>5,000</td>
<td>3,000</td>
<td>2,000</td>
<td>14,000</td>
</tr>
<tr>
<td>Contención Lodos Pb en Zileret</td>
<td>5,000</td>
<td>6,000</td>
<td>3,000</td>
<td>5,000</td>
<td>7,000</td>
<td>4,000</td>
<td>3,000</td>
<td>16,000</td>
</tr>
<tr>
<td>Recirculación agua usada granulación speiss</td>
<td>5,000</td>
<td>6,000</td>
<td>3,000</td>
<td>5,000</td>
<td>7,000</td>
<td>4,000</td>
<td>3,000</td>
<td>16,000</td>
</tr>
<tr>
<td>Nuevos Anodos con Zinc</td>
<td>5,000</td>
<td>6,000</td>
<td>3,000</td>
<td>5,000</td>
<td>7,000</td>
<td>4,000</td>
<td>3,000</td>
<td>16,000</td>
</tr>
<tr>
<td>Manejo escorias de Cu / Pb</td>
<td>5,000</td>
<td>6,000</td>
<td>3,000</td>
<td>5,000</td>
<td>7,000</td>
<td>4,000</td>
<td>3,000</td>
<td>16,000</td>
</tr>
<tr>
<td>Depósitos trixiido de arsenico</td>
<td>5,000</td>
<td>6,000</td>
<td>3,000</td>
<td>5,000</td>
<td>7,000</td>
<td>4,000</td>
<td>3,000</td>
<td>16,000</td>
</tr>
<tr>
<td>Agua Servidas/tras</td>
<td>5,000</td>
<td>6,000</td>
<td>3,000</td>
<td>5,000</td>
<td>7,000</td>
<td>4,000</td>
<td>3,000</td>
<td>16,000</td>
</tr>
<tr>
<td>Total</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
</tr>
</tbody>
</table>
Cuadro Nº 2-2. Inversiones PAMA (millones US$)

<table>
<thead>
<tr>
<th>PROYECTOS</th>
<th>TOTAL</th>
<th>PENDIENTE</th>
<th>EJECUTADO (31JUL09)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proyectos PAMA concluidos</td>
<td>155.900</td>
<td>48.971</td>
<td>155.900</td>
<td>316.017</td>
</tr>
<tr>
<td>Planta Sulfúrico de Cobre</td>
<td>144.450</td>
<td>77.053</td>
<td>145.421</td>
<td>471.347</td>
</tr>
<tr>
<td>Reactor Isasmelt Fundición de Cobre</td>
<td>82.026</td>
<td>34.727</td>
<td>67.397</td>
<td>155.330</td>
</tr>
<tr>
<td>Infraestructura y servicios para el PAMA</td>
<td></td>
<td></td>
<td>47.299</td>
<td></td>
</tr>
</tbody>
</table>
Gráfico Nº 2-4. Se promueve el desarrollo sostenible de las comunidades de la región cercanas al complejo metalúrgico
CAPÍTULO III
GENERALIDADES DEL PLOMO

Plomo, de símbolo Pb (del latín plumbum, ‘plomo’), es un elemento metálico, denso, de color gris azulado. Es uno de los primeros metales conocidos. Su número atómico es 82, y se encuentra en el grupo 14 del sistema periódico. Hay referencias al plomo en el Antiguo Testamento, y ya lo empleaban los romanos para tuberías, aleado con estaño.

3.1 Propiedades

El plomo es un metal blando, maleable y dúctil. Si se calienta lentamente puede hacerse pasar a través de agujeros anulares o troqueles. Presenta una baja resistencia a la tracción y es un mal conductor de la electricidad. Al hacer un corte, su superficie presenta un lustre plateado brillante, que se vuelve rápidamente de color gris azulado y opaco, característico de este metal. Tiene un punto de fusión de 328 ºC, un punto de ebullición de 1,740 ºC y una densidad relativa de 11.34. Su masa atómica es 207.20.

El plomo reacciona con el ácido nítrico, pero a temperatura ambiente apenas le afectan los ácidos sulfúrico y clorhídrico. En presencia de aire, reacciona lentamente con el agua formando hidróxido de plomo, que es ligeramente soluble. Los compuestos solubles de plomo son venenosos. Aunque normalmente el agua contiene sales que forman una capa en las tuberías que impide la formación de hidróxido de
plomo soluble, no es aconsejable emplear plomo en las tuberías de agua potable.

El plomo se presenta en la naturaleza en ocho formas isotópicas: cuatro de ellas son estables y las otras cuatro son radiactivas. Los isótopos estables plomo 206, plomo 207 y plomo 208 son, respectivamente, los productos finales de las series de descomposición radiactiva del uranio, actinio y torio. El plomo 204, también estable, no tiene precursors radiactivos naturales.

3.2 **Estado Natural**

El plomo se encuentra ampliamente distribuido por todo el planeta en forma de galena, que es sulfuro de plomo. Ocupa el lugar 36 en abundancia entre los elementos de la corteza terrestre. La cerusita y la anglesita son sus menas más importantes después de la galena. La extracción del plomo de la galena se lleva a cabo por calcinación de la mena, convirtiéndola en óxido y reduciendo el óxido con coque en altos hornos. Otro método consiste en calcinar la mena en un horno de reverbero hasta que parte del sulfuro de plomo se transforma en óxido de plomo y sulfato de plomo. Se elimina el aporte de aire al horno y se eleva la temperatura, reaccionando el sulfuro de plomo original con el sulfato y el óxido de plomo, para formar plomo metálico y dióxido de azufre.

Una fuente importante de obtención de plomo son los materiales de desecho industriales, que se recuperan y funden. Debido a que la galena contiene normalmente otros metales, el plomo en bruto obtenido por procesos de fundición suele tener impurezas como cobre, antimonio, arsénico, bismuto, cinc, plata y oro. La recuperación de metales preciosos de las menas de plomo es a menudo tan importante como la extracción del plomo en sí. El oro y la plata se recuperan por el proceso de Parkes, en el cual al plomo fundido, junto
con sus impurezas, se le añade una pequeña cantidad de cinc. Esta aleación fundida aflora a la superficie del plomo en forma de una capa fácilmente separable, extrayendo el cinc del oro o de la plata por destilación. El plomo en bruto suele purificarse removiendo plomo fundido en presencia de aire. Los óxidos de las impurezas metálicas suben a la superficie y se eliminan. El plomo más puro se obtiene refinando electrolíticamente.

3.3 Aplicaciones

El plomo se emplea en grandes cantidades en la fabricación de baterías y en el revestimiento de cables eléctricos. También se utiliza industrialmente en las redes de tuberías, tanques y aparatos de rayos X. Debido a su elevada densidad y propiedades nucleares, se usa como blindaje protector de materiales radiactivos. Entre las numerosas aleaciones de plomo se encuentran las soldaduras, el metal tipográfico y diversos cojinetes metálicos. Una gran parte del plomo se emplea en forma de compuestos, sobre todo en pinturas y pigmentos.

Cuadro Nº 3-1. Usos del Plomo

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baterías</td>
<td>62.0</td>
</tr>
<tr>
<td>Pigmentos y compuestos</td>
<td>13.4</td>
</tr>
<tr>
<td>Fundas de cable</td>
<td>4.6</td>
</tr>
<tr>
<td>Láminas y tuberías</td>
<td>7.6</td>
</tr>
<tr>
<td>Tetraelito</td>
<td>2.3</td>
</tr>
<tr>
<td>Aleaciones</td>
<td>3.5</td>
</tr>
<tr>
<td>Municiones</td>
<td>2.5</td>
</tr>
<tr>
<td>Varios</td>
<td>4.0</td>
</tr>
</tbody>
</table>
3.4 **Producción**

Los principales depósitos de plomo se encuentran en la antigua URSS, Australia, Estados Unidos, Canadá, México, Perú y España, que ocupa el duodécimo lugar en cuanto a producción minera. Estados Unidos es el mayor consumidor (alrededor de la mitad de la producción de plomo) y en el pasado llegó a producir un tercio del total mundial. Desde el final de la II Guerra Mundial en 1945, las vetas más ricas de galena se han ido agotando, y los Estados Unidos han visto enormemente reducida su producción de plomo.

Cuadro N° 3–2. Índices de producción de los principales minerales.

<table>
<thead>
<tr>
<th>METAL</th>
<th>América Latina</th>
<th>Nivel Mundial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oro</td>
<td>1ro</td>
<td>8vo</td>
</tr>
<tr>
<td>Zinc</td>
<td>1ro</td>
<td>3ro</td>
</tr>
<tr>
<td>Estaño</td>
<td>1ro</td>
<td>3ro</td>
</tr>
<tr>
<td>Plomo</td>
<td>1ro</td>
<td>4to</td>
</tr>
<tr>
<td>Cobre</td>
<td>2do</td>
<td>4to</td>
</tr>
<tr>
<td>Plata</td>
<td>2do</td>
<td>2do</td>
</tr>
</tbody>
</table>

En el Perú en el año 2008, la producción nacional de plomo marcó un nuevo récord histórico al registrar 345,109 TMF, número que supera en 4.85% a la producción del año anterior. El mencionado incremento, se debió al buen desempeño de Compañía Minera Volcan S.A. la cual reportó un crecimiento anual en su producción en el orden del 6.43%. Asimismo, registraron incrementos la Compañía Minera Los Quenuales (11.82%), Compañía Minera Milpo S.A. (16.49%),
Compañía de Minas Buenaventura S.A. (12.76%) y Compañía Minera Santa Luisa S.A. (15.74%).

Gráfico N° 3–1. Producción de Plomo 2000-2008 (TMF)

Cuadro N° 3–3. Producción de plomo por país.Ranking Mundial (TMF)

<table>
<thead>
<tr>
<th>PAISES</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008 *</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>3,060</td>
<td>3,170</td>
<td>3,090</td>
<td>2,880</td>
<td>2,950</td>
<td>3,150</td>
<td>3,270</td>
<td>3,468</td>
<td>3,855</td>
<td>3,810</td>
</tr>
<tr>
<td>China</td>
<td>549</td>
<td>660</td>
<td>676</td>
<td>641</td>
<td>660</td>
<td>950</td>
<td>1,000</td>
<td>1,200</td>
<td>1,500</td>
<td>1,540</td>
</tr>
<tr>
<td>Australia</td>
<td>681</td>
<td>739</td>
<td>714</td>
<td>683</td>
<td>694</td>
<td>680</td>
<td>776</td>
<td>686</td>
<td>641</td>
<td>576</td>
</tr>
<tr>
<td>USA</td>
<td>520</td>
<td>465</td>
<td>466</td>
<td>451</td>
<td>460</td>
<td>440</td>
<td>426</td>
<td>429</td>
<td>444</td>
<td>440</td>
</tr>
<tr>
<td>Perú</td>
<td>272</td>
<td>271</td>
<td>290</td>
<td>306</td>
<td>309</td>
<td>306</td>
<td>319</td>
<td>313</td>
<td>329</td>
<td>345</td>
</tr>
<tr>
<td>México</td>
<td>126</td>
<td>138</td>
<td>118</td>
<td>139</td>
<td>140</td>
<td>150</td>
<td>130</td>
<td>120</td>
<td>120</td>
<td>145</td>
</tr>
<tr>
<td>Canadá</td>
<td>162</td>
<td>149</td>
<td>154</td>
<td>99</td>
<td>150</td>
<td>80</td>
<td>73</td>
<td>82</td>
<td>82</td>
<td>95</td>
</tr>
<tr>
<td>Suecia</td>
<td>116</td>
<td>107</td>
<td>86</td>
<td>43</td>
<td>50</td>
<td>61</td>
<td>61</td>
<td>77</td>
<td>62</td>
<td>69</td>
</tr>
<tr>
<td>Sudáfrica</td>
<td>80</td>
<td>75</td>
<td>51</td>
<td>49</td>
<td>40</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>45</td>
<td>48</td>
</tr>
<tr>
<td>Kazajstán</td>
<td>34</td>
<td>40</td>
<td>38</td>
<td>40</td>
<td>40</td>
<td>44</td>
<td>44</td>
<td>48</td>
<td>40</td>
<td>47</td>
</tr>
<tr>
<td>Marruecos</td>
<td>80</td>
<td>81</td>
<td>77</td>
<td>62</td>
<td>38</td>
<td>41</td>
<td>31</td>
<td>45</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td>Otros</td>
<td>440</td>
<td>446</td>
<td>421</td>
<td>367</td>
<td>369</td>
<td>362</td>
<td>368</td>
<td>420</td>
<td>547</td>
<td>470</td>
</tr>
</tbody>
</table>

* Datos Preliminares
Fuente: International Lead and Zinc Group, US Geological Survey, Min. de Energía y Minas
A nivel de empresas, la producción de plomo está liderada por Volcán Compañía Minera S.A.A. (26.4%), seguida en menor porcentaje por: Sociedad Minera El Brocal S.A. (9.1%), Empresa Administradora Chungar S.A.C. (7.6%) y Empresa Minera Los Quenuales (7.1%). El resto de la producción está dispersa en un gran número de empresas, que en conjunto abarcan casi el 50% del total.

Producción de plomo en el Perú a nivel de escala regional, Pasco concentra el 47.8% de la producción de plomo, teniendo a la mina “Cerro de Pasco” (propiedad de Volcán Compañía Minera S.A.A.) como principal productora del referido metal con 64,338 TMF. Esta es además, la mina de plomo más importante del país.

La región Lima abarca el 14.6% de la producción anual, mientras que Junín y Ancash alcanzan el 13% y 8% respectivamente.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLCÁN CHÁVEZ S.A.</td>
<td>VOLCÁN CHÁVEZ S.A.</td>
<td>13,992</td>
<td>14,693</td>
<td>14,416</td>
<td>13,680</td>
<td>14,234</td>
<td>13,967</td>
<td>14,027</td>
<td>13,820</td>
<td>14,030</td>
<td>13,760</td>
<td>13,465</td>
</tr>
<tr>
<td>SOCOMITA CHÁRQUEMOS S.A.</td>
<td>SOCOMITA CHÁRQUEMOS S.A.</td>
<td>1,080</td>
<td>1,064</td>
<td>1,072</td>
<td>1,068</td>
<td>1,080</td>
<td>1,068</td>
<td>1,064</td>
<td>1,072</td>
<td>1,068</td>
<td>1,080</td>
<td>1,068</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE QUEMADO S.A.</td>
<td>EMPRESA DE MINAS DE QUEMADO S.A.</td>
<td>2,980</td>
<td>3,010</td>
<td>3,000</td>
<td>2,990</td>
<td>3,000</td>
<td>2,990</td>
<td>3,000</td>
<td>2,990</td>
<td>3,000</td>
<td>2,990</td>
<td>3,000</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE RAPIDOS S.A.</td>
<td>EMPRESA DE MINAS DE RAPIDOS S.A.</td>
<td>1,890</td>
<td>1,910</td>
<td>1,900</td>
<td>1,890</td>
<td>1,900</td>
<td>1,890</td>
<td>1,900</td>
<td>1,890</td>
<td>1,900</td>
<td>1,890</td>
<td>1,900</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE CALMAZO S.A.</td>
<td>EMPRESA DE MINAS DE CALMAZO S.A.</td>
<td>1,360</td>
<td>1,350</td>
<td>1,340</td>
<td>1,330</td>
<td>1,340</td>
<td>1,330</td>
<td>1,340</td>
<td>1,330</td>
<td>1,340</td>
<td>1,330</td>
<td>1,340</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE EL CURRILLO S.A.</td>
<td>EMPRESA DE MINAS DE EL CURRILLO S.A.</td>
<td>1,200</td>
<td>1,210</td>
<td>1,200</td>
<td>1,190</td>
<td>1,200</td>
<td>1,190</td>
<td>1,200</td>
<td>1,190</td>
<td>1,200</td>
<td>1,190</td>
<td>1,200</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE PELÁEZ S.A.</td>
<td>EMPRESA DE MINAS DE PELÁEZ S.A.</td>
<td>1,100</td>
<td>1,110</td>
<td>1,100</td>
<td>1,090</td>
<td>1,100</td>
<td>1,090</td>
<td>1,100</td>
<td>1,090</td>
<td>1,100</td>
<td>1,090</td>
<td>1,100</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE RIO JUNCA S.A.</td>
<td>EMPRESA DE MINAS DE RIO JUNCA S.A.</td>
<td>1,000</td>
<td>1,010</td>
<td>1,000</td>
<td>990</td>
<td>1,000</td>
<td>990</td>
<td>1,000</td>
<td>990</td>
<td>1,000</td>
<td>990</td>
<td>1,000</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE MORILLO S.A.</td>
<td>EMPRESA DE MINAS DE MORILLO S.A.</td>
<td>900</td>
<td>910</td>
<td>900</td>
<td>890</td>
<td>900</td>
<td>890</td>
<td>900</td>
<td>890</td>
<td>900</td>
<td>890</td>
<td>900</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS S.A.</td>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS S.A.</td>
<td>800</td>
<td>810</td>
<td>800</td>
<td>790</td>
<td>800</td>
<td>790</td>
<td>800</td>
<td>790</td>
<td>800</td>
<td>790</td>
<td>800</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS DE RAPIDOS S.A.</td>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS DE RAPIDOS S.A.</td>
<td>700</td>
<td>710</td>
<td>700</td>
<td>690</td>
<td>700</td>
<td>690</td>
<td>700</td>
<td>690</td>
<td>700</td>
<td>690</td>
<td>700</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS DE EL CURRILLO S.A.</td>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS DE EL CURRILLO S.A.</td>
<td>600</td>
<td>610</td>
<td>600</td>
<td>590</td>
<td>600</td>
<td>590</td>
<td>600</td>
<td>590</td>
<td>600</td>
<td>590</td>
<td>600</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS DE PELÁEZ S.A.</td>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS DE PELÁEZ S.A.</td>
<td>500</td>
<td>510</td>
<td>500</td>
<td>490</td>
<td>500</td>
<td>490</td>
<td>500</td>
<td>490</td>
<td>500</td>
<td>490</td>
<td>500</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS DE RIO JUNCA S.A.</td>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS DE RIO JUNCA S.A.</td>
<td>400</td>
<td>410</td>
<td>400</td>
<td>390</td>
<td>400</td>
<td>390</td>
<td>400</td>
<td>390</td>
<td>400</td>
<td>390</td>
<td>400</td>
</tr>
<tr>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS DE MORILLO S.A.</td>
<td>EMPRESA DE MINAS DE CHÁRQUEMOS DE MORILLO S.A.</td>
<td>300</td>
<td>310</td>
<td>300</td>
<td>290</td>
<td>300</td>
<td>290</td>
<td>300</td>
<td>290</td>
<td>300</td>
<td>290</td>
<td>300</td>
</tr>
</tbody>
</table>

Cuadro N° 3-4. Producción de Plomo por empresa, 1998-2008 (TMF)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PASCO</td>
<td>125,328</td>
<td>128,538</td>
<td>121,240</td>
<td>143,030</td>
<td>169,844</td>
<td>168,478</td>
<td>162,150</td>
<td>167,473</td>
<td>167,781</td>
<td>180,717</td>
<td>164,843</td>
</tr>
<tr>
<td>LIMA</td>
<td>37,220</td>
<td>43,974</td>
<td>50,519</td>
<td>54,506</td>
<td>53,006</td>
<td>56,834</td>
<td>68,650</td>
<td>68,650</td>
<td>51,181</td>
<td>47,484</td>
<td>50,476</td>
</tr>
<tr>
<td>JULI</td>
<td>33,804</td>
<td>32,528</td>
<td>31,573</td>
<td>30,058</td>
<td>27,032</td>
<td>26,821</td>
<td>25,729</td>
<td>26,494</td>
<td>34,147</td>
<td>36,657</td>
<td>44,765</td>
</tr>
<tr>
<td>ANCASH</td>
<td>25,503</td>
<td>25,577</td>
<td>27,276</td>
<td>25,172</td>
<td>26,241</td>
<td>29,879</td>
<td>20,373</td>
<td>20,674</td>
<td>23,430</td>
<td>20,717</td>
<td>27,569</td>
</tr>
<tr>
<td>HUARI</td>
<td>9,991</td>
<td>10,083</td>
<td>10,397</td>
<td>9,947</td>
<td>5,575</td>
<td>12,203</td>
<td>10,868</td>
<td>16,017</td>
<td>11,956</td>
<td>12,920</td>
<td>13,864</td>
</tr>
<tr>
<td>HUANCAVELICA</td>
<td>8,083</td>
<td>10,714</td>
<td>9,066</td>
<td>6,188</td>
<td>5,377</td>
<td>5,809</td>
<td>8,940</td>
<td>9,241</td>
<td>12,315</td>
<td>10,930</td>
<td>13,228</td>
</tr>
<tr>
<td>ICA</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>3,246</td>
<td>9,497</td>
</tr>
<tr>
<td>AREQUIPA</td>
<td>603</td>
<td>520</td>
<td>422</td>
<td>552</td>
<td>379</td>
<td>397</td>
<td>832</td>
<td>806</td>
<td>1,040</td>
<td>4,754</td>
<td>8,771</td>
</tr>
<tr>
<td>AYACUCHO</td>
<td>3,419</td>
<td>3,061</td>
<td>2,993</td>
<td>4,559</td>
<td>4,650</td>
<td>2,406</td>
<td>2,849</td>
<td>5,242</td>
<td>6,164</td>
<td>5,880</td>
<td>6,972</td>
</tr>
<tr>
<td>LALIBERTAD</td>
<td>6,574</td>
<td>7,586</td>
<td>9,204</td>
<td>8,778</td>
<td>6,879</td>
<td>4,845</td>
<td>4,218</td>
<td>3,166</td>
<td>2,915</td>
<td>2,760</td>
<td>3,193</td>
</tr>
<tr>
<td>PUNO</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1,461</td>
<td>1,646</td>
<td>2,404</td>
</tr>
<tr>
<td>CAJAMARCA</td>
<td>7,190</td>
<td>8,791</td>
<td>7,587</td>
<td>6,758</td>
<td>6,066</td>
<td>1,892</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

TOTAL

2007-2008 Datos Preliminares

MINISTERIO DE ENERGÍA Y MINAS

Cuadro N° 3-5. Producción de Plomo por región, 1998-2008 (TMF)

Gráfico N° 3–4. Producción de Plomo y cotización, 1998-2008 (miles de TMF)
Cuadro N° 3–6. Reservas, 1996-2007 (miles de TMF)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>miles de TMF</td>
<td>4,639</td>
<td>3,808</td>
<td>3,630</td>
<td>3,472</td>
<td>4,915</td>
<td>5,429</td>
<td>5,195</td>
<td>3,936</td>
<td>4,945</td>
<td>6,295</td>
<td>6,020</td>
</tr>
</tbody>
</table>

FUENTE: MINISTERIO DE ENERGÍA Y MINAS

<table>
<thead>
<tr>
<th>REGIÓN</th>
<th>PROBABLE CANTIDAD TMF</th>
<th>PROBADA CANTIDAD TMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASCO</td>
<td>917,208</td>
<td>1,735,803</td>
</tr>
<tr>
<td>JUNIN</td>
<td>687,964</td>
<td>664,799</td>
</tr>
<tr>
<td>ANCASH</td>
<td>386,101</td>
<td>289,894</td>
</tr>
<tr>
<td>LIMA</td>
<td>234,624</td>
<td>261,463</td>
</tr>
<tr>
<td>HUANCAVELICA</td>
<td>65,431</td>
<td>72,539</td>
</tr>
<tr>
<td>HUANUCO</td>
<td>32,473</td>
<td>52,170</td>
</tr>
<tr>
<td>LA LIBERTAD</td>
<td>104,635</td>
<td>32,212</td>
</tr>
<tr>
<td>PUNO</td>
<td>6,869</td>
<td>22,825</td>
</tr>
<tr>
<td>AYACUCHO</td>
<td>27,068</td>
<td>20,964</td>
</tr>
<tr>
<td>AMAZONAS</td>
<td>168,020</td>
<td>20,020</td>
</tr>
<tr>
<td>AREQUIPA</td>
<td>28,297</td>
<td>17,284</td>
</tr>
<tr>
<td>CAJAMARCA</td>
<td>5,906</td>
<td>5,909</td>
</tr>
<tr>
<td>ICA</td>
<td>154,255</td>
<td>4,898</td>
</tr>
<tr>
<td>PIURA</td>
<td>0</td>
<td>240</td>
</tr>
<tr>
<td>APURIMAC</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

FUENTE: MINISTERIO DE ENERGÍA Y MINAS

Producción en la empresa Doe Run Perú

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TMF</td>
<td>107.4</td>
<td>109.3</td>
<td>119.1</td>
<td>120.9</td>
<td>121.0</td>
<td>112.0</td>
<td>119.2</td>
<td>120.8</td>
<td>120.8</td>
<td>117.5</td>
<td>115.8</td>
</tr>
</tbody>
</table>

La compra de concentrados de plomo, a las diferentes empresas mineras nacionales para su tratamiento, en el complejo metalúrgico, contribuye a darle valor agregado, generando fuente económica y laboral para la región central del país.
Gráfico N° 3.5. Proveedores de concentrados de Plomo - Doe Run Perú

CIRCUITO PLOMO 258,786 TMS (72%)

- **PAN AMERICAN SILVER 7,280 TMS**
 - ARGENTUM
 - JULCANI 2,400 TMS
 - UCHUCCHACUA 13,500 TMS

- **METALIMPÉX 2,255 TMS**
 - PB OXIDE 1,265 TMS
 - PB MINERAL 990 TMS

- **CASAPALCA 8,680 TMS**
 - CUAG CASAPALCA 4,000 TMS
 - PB CASAPALCA 4,680 TMS

- **BUENAVENTURA 15,900 TMS**
 - JULCANI 2,400 TMS
 - UCHUCCHACUA 13,500 TMS

- **VOLCAN 99,835 TMS**
 - ANDAYCHAGUA 8,592 TMS
 - CARAHUACRA 8,592 TMS
 - PARAGSHA 76,651 TMS
 - VINCOS 5,000 TMS

- **AYSSA 41,280 TMS**
 - SIMSA 4,800 TMS
 - ISCAICRUZ 10,800 TMS
 - YAULIYACU 25,000 TMS

- **CIEMSA 2,970 TMS**
 - PB CIEMSA 1,620 TMS
 - AG CIEMSA 1,350 TMS

- **Scrap 6,480 TMS**
 - ROMBO 3,240 TMS
 - ASOMIN 3,000 TMS
 - ROYAL MINES 3,600 TMS

Total Concentrados de plomo - Perú Producción (2009): 612,000 TMS

Planta de Flotación Polimetálica en Huáscar:
- Magistral Huancapet
- Mesapata Huamachuco
- Jangas Luncunca

(Trafigura)

CORMIN 19,400 TMS

CHUNGAR / MILPO / BROCAL / Otros

- **HUILALLA 3,000 TMS**
- **CONTONGA 3,250 TMS**
- **ARCATA 380 TMS**
- **ATACOCHA 4,320 TMS**
- **CORONA 4,200 TMS**
- **EL BROCAL 9,840 TMS**
- **MK METAL 2,260 TMS**
- **CAJAMARQUILLA 4,406 TMS**
- **OTHERS 1,210 TMS**

MITSUI 12,000 TMS

SANTA LUIS HUANZALA
3.5 **Compuestos del plomo**

El carbonato de plomo básico, \((\text{PbCO}_3)_{2}\cdot\text{Pb(OH)}_2\), llamado blanco de plomo o albayalde, ha sido utilizado como pigmento blanco desde hace 2.000 años. También se utiliza en otros pigmentos y barnices para cerámica. Últimamente, a causa del peligro de envenenamiento, la pintura a base de plomo ha dejado de usarse en espacios interiores. El llamado proceso holandés es el método en uso más antiguo para obtener blanco de plomo. En este proceso, se recubren ollas de barro, conteniendo rejillas de plomo y ácido etanoico, con cascas (pequeños trozos de cortezas ricas en taninos); la reacción de las cascas al fermentar y del ácido etanoico produce plomo al cabo de un periodo de unos 90 días. Hoy existen procesos industriales más rápidos, como la electrólisis o la introducción de aire y dióxido de carbono en grandes cilindros rotatorios llenos de plomo en polvo y ácido etanoico. El monóxido de plomo (\(\text{PbO}\)) o litargirio, un polvo cristalino amarillo formado al calentar plomo en presencia de aire, se usa para hacer cristal de roca, como desecante de aceites y barnices, y para elaborar insecticidas. El plomo rojo (\(\text{Pb}_3\text{O}_4\)), o minio, un polvo cristalino escarlata formado por oxidación del monóxido de plomo, se utiliza como capa protectora en estructuras de hierro y acero.

El cromato de plomo (\(\text{PbCrO}_4\)), o amarillo de plomo, un polvo cristalino empleado como pigmento amarillo, se prepara por reacción del acetato de plomo con dicromato de potasio. El cromo rojo, el cromo amarillo naranja y el cromo amarillo limón son algunos de los pigmentos obtenidos del cromato de plomo. El etanoató de plomo (II), \(\text{Pb(C}_2\text{H}_3\text{O}_2\text{)}_2\cdot3\text{H}_2\text{O}\), una sustancia cristalina blanca, llamada azúcar de plomo por su sabor dulce, se prepara comercialmente disolviendo litargirio en ácido etanoico. Se emplea como agente cáustico en tintes, como desecante de pinturas y barnices, y para elaborar otros compuestos de plomo. El tetraetilplomo, \(\text{Pb(C}_2\text{H}_5\text{)}_4\), es el principal
ingrediente del antidetonante que se añade a la gasolina para evitar detonaciones prematuras en los motores de combustión interna, y está considerado un agente contaminante del aire.
CAPÍTULO IV
PLANTA DE PLOMO

El Circuito de Plomo está constituido por 3 procesos:
- Sección de Aglomeración y Acido Sulfúrico
- Fundición de Plomo
- Refinería de Plomo

4.1 SECCIÓN DE AGLOMERACIÓN Y ÁCIDO SULFÚRICO

La planta de Aglomeración está localizada en el Complejo Metalúrgico de DOE RUN PERU, La Oroya División, está planta realiza sus operaciones piro metalúrgicas a partir de lechos de fusión de plomo para obtener sinter que se alimenta a los altos hornos de manga. Tiene por finalidad reducir al máximo posible la cantidad de azufre contenido en la alimentación (7 %) convirtiendo los sulfuros a óxidos y obtener un producto aglomerado con características apropiadas en dureza, tamaño y porosidad (con 2 % de azufre como máximo), denominado sinter, para su fusión en los hornos de manga.

El sinter es de una composición compleja por la variedad de los elementos que lo conforman y por la cantidad de compuestos en que están agrupados. El plomo se encuentra en forma de plomo metálico,
óxido, silicatos y sulfuros; el zinc como óxido y sulfuro; la cal como óxido de calcio y sulfato o en estado libre; la sílice como silicatos y en estado de óxidos; se encuentran también metales tales como: cobre, bismuto, plata, bismuto, antimonio, arsénico, zinc. En general predominan los óxidos.

Gráfico Nº 4-1 . Mapa de procesos

La planta dispone de una máquina de tiro ascendente (UP DRAFF) tipo LURGI de 3.0 m de ancho x 54.0 m de largo para producir sinter de dimensiones menores a 125 mm (5 pulg.) y mayores a 76 mm (3 pulg.) al 95 % del tiempo disponible.
4.1.1 Sistema de alimentación

La carga para el proceso de dimerización está compuesta de sinter fino, lechos de fusión (66 % de concentrados, 19 % de fundentes y 15 % de transferencias /recirculantes /misceláneos), coque fino y polvos de recuperación, ésta es transportada mediante fajas a un mezclador de doble eje, luego a un tambor peletizador y finalmente es descargada en las tolvas de ignición y principal de la máquina de sinterización.

Cuadro Nº 4-1. Constitución típica de un lecho de fusión (I)

<table>
<thead>
<tr>
<th></th>
<th>TM</th>
<th>Pb (gr/TM)</th>
<th>Ag (gr/TM)</th>
<th>Au (gr/TM)</th>
<th>Cu</th>
<th>Bi</th>
<th>As</th>
<th>Sb</th>
<th>S</th>
<th>Zn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>259 000</td>
<td>37.82</td>
<td>1 649.3</td>
<td>1.60</td>
<td>2.23</td>
<td>0.39</td>
<td>0.84</td>
<td>0.81</td>
<td>17.41</td>
<td>4.83</td>
<td>9.05</td>
</tr>
</tbody>
</table>
Cuadro Nº 4-2. Constitución típica de un lecho de fusión (II)

<table>
<thead>
<tr>
<th>ÍNDICES METALÚRGICOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe/Ins</td>
<td>1.11</td>
</tr>
<tr>
<td>CaO/Ins</td>
<td>0.89</td>
</tr>
<tr>
<td>Basicidad</td>
<td>1.36</td>
</tr>
</tbody>
</table>

La mezcla se realiza en dos grandes canchas de 106 m. X 20 m. Cuando una cama queda preparada toma la forma de un prisma triangular con un peso de ± 3 500 t. Mediante una máquina reclamadora se recoge el material para transportarlo hasta los tanques de cama, previamente pasa por un molino de martillos para romper el material compactado.

Foto Nº 4-2. Lechos de fusión

El circuito de alimentación (ver cuadro Nº 4-3) a la máquina de sinterización comienza con las siete tolvas de almacenamiento de las cuales dos son para mezcla de cama, cuatro para sinter fino y uno para coque fino. Las tolvas se designan de la siguiente manera:
Cuadro Nº 4-3. Circuito de alimentación

<table>
<thead>
<tr>
<th>DESCRIPCIÓN DE LA TOLVA</th>
<th>CAPACIDAD (TM)</th>
<th>SE DESCARGA POR MEDIO DE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mezcla de Cama</td>
<td>250</td>
<td>Alimentador de mandil</td>
</tr>
<tr>
<td>2 Mezcla de Cama</td>
<td>164</td>
<td>Alimentador de mandil</td>
</tr>
<tr>
<td>3 Sinter de retorno</td>
<td>356</td>
<td>Alimentador de faja</td>
</tr>
<tr>
<td>4 Sinter de retorno</td>
<td>356</td>
<td>Alimentador de faja</td>
</tr>
<tr>
<td>5 Sinter de retorno</td>
<td>356</td>
<td>Alimentador de faja</td>
</tr>
<tr>
<td>6 Sinter de retorno</td>
<td>356</td>
<td>Alimentador de faja</td>
</tr>
<tr>
<td>7 Coque Fino</td>
<td>97</td>
<td>Alimentador de faja</td>
</tr>
</tbody>
</table>

La humedad de la carga oscila entre 2,5 a 3 %, con un contenido de azufre entre 7 a 8 %. Actualmente el material tiene un tamaño entre +6 mm a +25 mm los tamaños mayores son de los fundentes (cal y sílice). La tolva de coque fino (7A) tiene un alimentador que opera en forma sincronizada con la compuerta de manera que se alimenta coque sólo a la tolva de ignición.

4.1.2 Mezcla

La carga de alimentación se homogeniza en el mezclador de doble eje, para luego proceder a la peletización. Para un buen mezclado de las camas deben tener las siguientes propiedades:

- Distribución uniforme de partículas.
- Densidad relativa cercana.

El mezclador tiene 120 paletas por eje, con el que se mezcla los materiales de cada una de las fases. Mientras mayor sea la diferencia de densidad más difícil es mezclar los materiales.
4.1.3 Peletización

Mediante un transportador de fajas se alimenta al tambor peletizador, en el que se agrega agua por medio de rociadores para obtener materiales esféricos (pellets) que tienen dimensiones entre 3 y 6 mm y 5 % de humedad. El tambor peletizador está equipado con una barra raspadora rotatoria que mantiene de manera uniforme el espesor de la carcasa.

Foto Nº 4-3. Vista del tambor pelitizador

4.1.4 Humedad

El proceso de sinterización requiere de un 6 % de humedad, esto se obtiene agregando agua en el mezclador hasta alcanzar aproximadamente 4 % de humedad y la diferencia en el tambor peletizador.
Los pellets formados en el tambor peletizador son descargados por una compuerta, ésta es accionada por un sistema hidráulico, que es activado por el temporizador que sincroniza la alimentación de coque a los pellets de la tolva de ignición, aproximadamente 7 minutos de carga a la tolva principal por 1.5 minutos de carga a la tolva de ignición.

Foto Nº 4-4. Maquina de sinterización

4.1.5 Proceso de aglomeración

La máquina de sinterización tiene un ancho de 3 metros y una longitud de 54 metros. La tostación se efectúa en una longitud que varía entre 22 a 26 metros (promedio 24 metros) los restantes 30 metros se usan para enfriamiento hasta un nivel de 160 a 220 grados centígrados de temperatura en los gases de combustión. La cuchilla de la tolva de ignición se regula para tener una altura de 3.5 a 4.0 cm de carga para el encendido. La longitud de la zona de ignición es de 7.30 metros que es la distancia entre las
tolvas de ignición y principal. La cuchilla de la tolva principal se regula para tener una altura total de 35 a 37 metros.

Cada zona tiene un ventilador de tiraje ascendente que insufla aire para la reacción y para el enfriamiento del sinter. Todos los gases son producto de la combustión y los gases que resultan de la reacción de oxidación de la máquina son recepcionados en un drop box, a una temperatura aproximadamente de 210 a 235 ºC; con una abertura de compuerta del 20 % al 40 % la presión estática a la entrada de la caja oscila entre -153 Pa y 215 Pa, la velocidad de flujo es de 15 a 20 m/s, el flujo de gases tomadas en condiciones de operación están en el rango de 10,000 a 14,000 m³/min., dependiendo de la generación y temperatura de gases durante el Proceso de Tostación, con una concentración de polvo entre 2.50 a 2.80 gr./m³.

Todos los gases son recepcionados por la nueva planta de acido sulfúrico, que entró en operación en setiembre del 2008, poniendo en su funcionamiento total en un tiempo de 7 semanas y es la única planta de acido sulfúrico de plomo a nivel de Sudamérica,

La empresa Doe Run Perú realizó una inversión de aproximadamente 50 millones de dólares, con la finalidad de cumplir con la emisión de LMP de SO₂ al ambiente.

El diseño de todos los equipos están para trabajar a 3,718 msnm (19.6 pulg. de Hg). La máquina de sinter es del tipo de tiraje superior de una sola línea, la remoción de azufre para convertirlo en SO₂ es el objeto de la TOSTACIÓN, lo mismo que la SINTERIZACIÓN de los concentrados de plomo.
El encendido de la carga de ignición es por medio de dos quemadores, utilizando como combustible el petróleo Bunker
(pesado), el cual es precalentado hasta una temperatura promedio de 110 ºC que corresponde a la temperatura de atomización.

Foto Nº 4-5. Planta de acido sulfúrico de plomo inaugurada Setiembre del 2008

La cinética de reacción del coque está gobernada por su granulometría, existiendo una cantidad de coque que no termina de reaccionar en la mufía, y lo hace a lo largo de la máquina sinterizadora. El sinter es descargado a un triturador de púas, que reduce el material de 354 mm (14”). Los residuos de la zona de tiraje inferior se recogen por medio de 2 transportadores helicoidales que descargan al transportador de faja. Cada caja de viento de la zona de tiraje superior tiene una tolva y 2 chutes, los residuos acumulados en los chutes se descargan a una faja transportadora.
4.1.6 Química y termodinámica del proceso

La tostación en metalurgia es esencialmente un proceso de oxidación. La sinterización consiste en calentar un material finamente dividido hasta que esté lo suficientemente blando y pastoso como para aglomerarse sin llegar a la fusión y por ende sin formar escorias. Cuando un concentrado es tostado en la máquina de sinterización, los sulfuros son quemados autógenamente y sinterizados por acción del aire que atraviesa la cama de material por inyección.

Las siguientes reacciones se llevan a cabo:

\[
\begin{align*}
2 \text{PbS} + 3 \text{O}_2 & = 2 \text{PbO} + 2 \text{SO}_2 \\
2 \text{ZnS} + 3 \text{O}_2 & = 2 \text{ZnO} + 2 \text{SO}_2 \\
4 \text{FeS}_2 + 11 \text{O}_2 & = 2 \text{Fe}_2\text{O}_3 + 8 \text{SO}_2
\end{align*}
\]

\[\Delta G = 210-235 ^\circ\text{C}\]
La mayor parte del calor generado durante la tostación proviene de la combustión del PbS, siendo muy pequeña la contribución que aportan los otros sulfuros presentes. Los sulfuros de antimonio, arsénico, cobre y plata son oxidados formando óxidos:

$$
\begin{align*}
2\text{Sb}_2\text{S}_3 + 9\text{O}_2 & = 2\text{Sb}_2\text{O}_3 + 6\text{SO}_2 \\
2\text{As}_2\text{S}_3 + 9\text{O}_2 & = 2\text{As}_2\text{O}_3 + 6\text{SO}_2 \\
2\text{Cu}_2\text{S} + 3\text{O}_2 & = 2\text{Cu}_2\text{O} + 2\text{SO}_2 \\
2\text{Ag}_2\text{S} + 3\text{O}_2 & = 2\text{Ag}_2\text{O} + 2\text{SO}_2
\end{align*}
$$

El anhídrido sulfuroso es parcialmente oxidado a anhídrido sulfúrico. Este último forma sulfatos con los óxidos metálicos.

$$
\begin{align*}
\text{PbO} + \text{SO}_3 & = \text{PbSO}_4 \\
\text{ZnO} + \text{SO}_3 & = \text{ZnSO}_4
\end{align*}
$$

Se forman de igual modo los sulfatos de cobre y plata. Los sulfatos de plomo y de zinc son más estables y sólo se descompondrán sobre 1000 ºC. Parte del trióxido de arsénico pasa junto con los gases de desecho y parte se oxida a penta óxido el cual es ligeramente volátil. El antimonio es oxidado por tostación a tri, tetra y penta óxidos, siendo el trióxido muy volátil. Los óxidos ácidos de los metales de la carga reaccionan con los óxidos básicos para formar silicatos, ferritas, arseniatos y antimoniatos de plomo, fierro, zinc, etc.

4.1.7 El efecto sinterizante

El efecto sinterizante es logrado debido a la formación de compuestos y aleaciones de baja fusión. Los silicatos de plomo y
sus aleaciones con óxido de plomo se funden entre 670 y 883 ºC. Los sulfuros y sus aleaciones se funden entre 800 ºC y 1000 ºC. Una sinterización prematura es indeseable porque los materiales con bajo punto de fusión pueden envolver partículas de sulfuro sin oxidar, cortando el aire y el sinter contendrá azufre sin quemar. Por otro lado es esencial que la tostación sea completada a 1,000 – 1,100 ºC para que los sulfuros sean completamente descompuestos y el sinter de buena calidad. Ambos requisitos son satisfechos por la adición de fundentes molídos para fundición y finos retornados al material a sinterizarse, estas adiciones abren la textura de la carga y separar a las partículas de concentrado unas a otras, además el carbonato de calcio (caliza) añadido como fundente se descompone durante la tostación en CaO y CO₂ y como su descomposición es endotérmica previene que la temperatura se eleve rápidamente. Efecto similar es alcanzado por adición a la carga de 4 a 5 % de agua antes del encendido. El agua añadida, al ser la carga sinterizada, lo hace poroso y reduce la formación de polvo al cargarse.

4.2 FUNDICIÓN DE PLOMO

4.2.1 HORNOS DE PLOMO

La fundición de plomo está conformada por tres hornos de manga, que operan en forma alternada y se diferencian en su tamaño y capacidad. Comenzaron a operar en La Oroya, el año 1928; inicialmente fueron diseñados para fundir concentrados de cobre, y luego fueron modificados y adaptados para fundir aglomerados de plomo (sinter). El horno Nº 1, fue transformado y acondicionado al método de extracción de descarga continua de plomo - escoria; esto fue
inventado por J.T. Roy de la American Smelting and Refining Company.

El horno Nº 2, fue modificado al año de 1957 en la zona de fusión del área de la chaqueta de agua, ampliado su capacidad en aproximadamente un 20%. En el año e 1970, fue transformado y acondicionado al mismo sistema del horno N°1.

El horno Nº 3, fue modificado y adaptado al sistema de descarga continua en el año 1990. En el año 1998 el horno fue modernizado y automatizado para operar con el sistema “Control de Tuyeres”.

La finalidad de los hornos de manga, es recuperar el plomo a partir del sinter producto; que proviene de la Planta de Aglomeración.

Gráfico Nº 4-2. Mapa del proceso general
Gráfico Nº 4-3. DIAGRAMA DE FLUJO DEL PLOMO Y SUS SUBPRODUCTOS
4.2.1.1 Descripción del proceso empleado

En los hornos de manga, actualmente se utiliza el proceso de fusión-reducción, ya que este proceso se adecua por la múltiple variedad de compuestos que tienen los concentrados en la zona central, que casi en su totalidad son concentrados sulfurados, usándose como combustible el coque grueso, y como comburente el aire.

4.2.1.2 Combustible - Reductor

En los hornos de plomo se utiliza el coque grueso como combustible, que es importado desde Colombia. La variación en el peso del coque depende del porcentaje de carbón fijo en el mismo.
Foto Nº 4-8. Horno de manga Nº 3.

Gráfico Nº 4-2. Mapa de proceso aspecto ambiental
Las características que debe reunir el coque son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosidad (%)</td>
<td>53.0</td>
</tr>
<tr>
<td>Reactividad (%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Compresión:</td>
<td></td>
</tr>
<tr>
<td>Frío</td>
<td>421</td>
</tr>
<tr>
<td>Caliente</td>
<td>591</td>
</tr>
<tr>
<td>Prueba al tambor:</td>
<td></td>
</tr>
<tr>
<td>Estabilidad (%)</td>
<td>54</td>
</tr>
<tr>
<td>Dureza (%)</td>
<td>59</td>
</tr>
<tr>
<td>Caída Libre (%):</td>
<td></td>
</tr>
<tr>
<td>- 2 pulg.</td>
<td>18.71</td>
</tr>
<tr>
<td>- 1 pulg.</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Foto Nº 4-8. Llegada de coque al puerto del Callao
El coque además de producir el calor necesario para la fusión del aglomerado de plomo, también proporciona el gas reductor que es el monóxido de carbono (CO); esto reduce los óxidos de plomo a plomo metálico.

Cuya reacción típica es:

\[
PbO + CO \rightarrow Pb + CO_2
\]

Un análisis promedio del coque es:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O (%)</td>
<td>17.0</td>
</tr>
<tr>
<td>Material Volátil (%)</td>
<td>2.0</td>
</tr>
<tr>
<td>Carbón fijo (%)</td>
<td>85.0</td>
</tr>
<tr>
<td>Cenizas (ash %)</td>
<td>13.0</td>
</tr>
<tr>
<td>Azufre (%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Kcal/Kg</td>
<td>6970</td>
</tr>
<tr>
<td>MM BTU/t coque</td>
<td>28.0</td>
</tr>
</tbody>
</table>

El tamaño de coque es muy importante y tiene efecto sobre la eficiencia de utilización de este material en los hornos. Todo el coque utilizado en los hornos debe pasar por una zaranda con una malla de 1” x 1”. Los finos de menos de una pulgada no se utilizan en los hornos, debido a que causan altas temperaturas en los gases de salida de la columna del horno.

Un coque grueso, con un tamaño máximo de 5”, es fundamental para asegurar una alta eficiencia del consumo de coque.
4.2.1.3 **Aire**

Se usa como comburente y proviene de las compresoras de Casa de Fuerza, con una presión que alcanza hasta 43 onzas por pulgada cuadrada, esto varía de acuerdo a las necesidades de volumen de cada horno. Para que se realice la combustión del coque, se insufla el aire por la parte inferior del horno, a través de las toberas, que varían en número según tamaño del horno.

![Foto Nº 4-9. Ingreso de aire al horno de plomo](image)

4.2.1.4 **Chatarra de fierro**

Se agrega a los hornos, para mejorar la fluidez de la escoria, representa de 0.5% a 1.5 % con relación al peso del sinter, y
se adiciona después de cargar el coque. La chatarra también sirve para participar en las reacciones siguientes:

$$\text{PbO} + \text{Fe} \rightarrow \text{FeO} + \text{Pb}.$$
$$\text{Fe}_3\text{O}_4 + \text{Fe} \rightarrow 4\text{FeO}$$

Foto Nº 4-10. Alimentación de chatarra al horno de plomo.

4.2.1.5 Oxígeno

El oxígeno es utilizado para acelerar la velocidad de fusión del sinter y aumentar la capacidad de los hornos, facilitando el consumo de más coque por día, por unidad, y así producir menor cantidad de humos por unidad de sinter consumido. También el oxígeno es muy útil para recuperar un horno frío.

Se debe utilizar el oxígeno con mucho cuidado a fin de no minimizar la reducción de PbO en la zona de reducción del horno. En el Horno 3 el uso de oxígeno es controlado automáticamente. En los Hornos 1 y 2 el uso es controlado indirectamente por manómetros.
4.2.1.6 Otros fundentes

Entre los otros fundentes que se agregan están: la silica (SiO₂), y la caliza (CaCO₃), los cuales se usan según los resultados de los análisis químicos obtenidos de las escorias.

4.2.1.7 Química y termodinámica en el Horno de Plomo

En la materia prima (sinter), el plomo viene en su mayoría en forma de PbO (aprox. 42%), y una pequeña cantidad en forma de PbS (aprox. 1.5%). Las reacciones que se producen en el horno son bastante complejas, pero se aceptan para estudios químicos. El poder reductor del coque se considera:

\[
\begin{align*}
C + O_2 & \rightarrow CO_2 \\
CO_2 + C & \rightarrow 2 CO
\end{align*}
\]

Por encima de los 1,000 ºC, esta reacción es completa y el CO no puede actuar como un agente reductor en la parte interior del horno, ya que siempre trabajan por encima de los 1,000ºC. La acción reductora del carbón sólido, es pequeña comparada con la del CO, y sólo tiene efecto reductor a altas temperaturas. La relación de CO / CO₂ de los gases que salen del horno, se considera como un índice para saber la eficiencia del proceso en el interior del horno; si la relación de CO/CO₂ es alta, la eficiencia reductora es baja; mientras que si la relación es baja, la eficiencia es alta. Para esto es importante realizar frecuentemente análisis de gases de CO y CO₂. Los óxidos son reducidos durante el descenso de la carga por los gases que ascienden producidos por la combustión del coque con el aire insuflado. La mayor parte del calor es aportado por la combustión del coque.
En la parte superior del horno, se mantiene a una temperatura menor a 125 ºC para reducir la volatilización de As; en esta parte se elimina el agua del coque + sinter que representa aproximadamente el 5% de la carga total.

A medida que la carga desciende, ésta se encuentra con gases más calientes y ricos en monóxido de carbono, los cuales reducirán todos los óxidos y sulfuros a metal (zona de reducción); parte del azufre se convertirá a SO$_2$ (anhídrido sulfuroso), el resto formará sulfuros de cobre y fierro (mata); también puede formarse arseniuros y antimoniuros de cobre (speiss). También el azufre puede combinarse con zinc (Zn)
para formar ZnS, el componente básico de los encostamientos en un horno. Esta es una de las razones por las cuales el sinter debe contener menos del 2% de azufre y el arsénico lo más bajo que sea posible, para evitar la formación excesiva de mata y speiss; de esta manera el cobre al no encontrar azufre para combinarse pasará a disolverse en el plomo fundido, que luego es recuperado en la Planta de Espumaje.

En la zona de fusión se formarán las escorias, que se encuentran conformadas mayormente por el fierro (en forma de óxidos), juntamente con la sílice y la cal.

El zinc (Zn) que se encuentra presente en el sinter, como oxido, es parcialmente volatilizado y luego oxidado, se va con los gases y polvos, y otra parte del zinc se descarga en solución con las escorias.

El PbO es un compuesto que se reduce por los gases del horno. El CO producido en la parte inferior comienza a reaccionar de la siguiente forma:

\[
PbO + CO \rightarrow Pb + CO_2
\]

El plomo se desplaza de la mena descompuesta (PbO), absorbiendo los metales preciosos (oro, plata) y también el cobre, arsénico y antimonio.

Estos elementos también reaccionan con:

\[
\begin{align*}
As_2O_3 + 3 CO & \rightarrow 2 As + 3 CO_2. \\
Sb_2O_3 + 3 CO & \rightarrow 2 Sb + 3 CO_2 \\
Cu_2O + CO & \rightarrow 2 Cu + CO_2
\end{align*}
\]

El azufre se une con el cobre (Cu) y fierro (Fe) para formar la mata, de acuerdo a las reacciones siguientes:
La reducción del óxido de zinc (ZnO) es:
\[\text{ZnO} + \text{CO} \rightarrow \text{Zn} + \text{CO}_2 \]

El óxido de fierro del aglomerado se reduce:
\[3 \text{Fe}_2\text{O}_3 + \text{CO} \rightarrow 2 \text{Fe}_3\text{O}_4 + \text{CO}_2 \]
\[\text{Fe}_3\text{O}_4 + \text{CO} \rightarrow 3 \text{FeO} + \text{CO}_2 \]

La chatarra de fierro descompone al sulfuro de plomo (PbS), óxido de plomo (PbO) y lo más importante controla la formación de magnetita:
\[\text{PbS} + \text{Fe} \rightarrow \text{Pb} + \text{FeS} \]
\[\text{PbO} + \text{Fe} \rightarrow \text{Pb} + \text{FeO} \]

El plomo también se obtiene de las reacciones con:
\[2 \text{PbO} + \text{PbS} \rightarrow 3 \text{Pb} + \text{SO}_2 \]
\[\text{PbSO}_4 + \text{PbS} \rightarrow 2 \text{Pb} + 2 \text{SO}_2 \]
\[\text{PbO} + \text{CO} \rightarrow \text{Pb} + \text{CO}_2 \]

A temperaturas de 900°C, la caliza (CaCO₃) se descompone para liberar el óxido de calcio (CaO), y se une con la sílice (SiO₂) y otros minerales de ganga para formar la escoria fusible. Es deseable que la caliza se descomponga en la planta de aglomeración, ayudando a producir un producto poroso y reduciendo la necesidad de coque en los hornos. Esta es otra
razón para tener la caliza bien molida (100% menos de \(\frac{3}{4}'' \)) en la planta de preparación.

\[
\begin{align*}
\text{CaO} + \text{CO}_2 & \quad \text{(aprox. 900ºC)} \\
\text{FeO} + \text{SiO}_2 & \rightarrow \text{FeO.SiO}_2
\end{align*}
\]

4.2.1.8 Escorias

Las escorias de los hornos, al ser descargados por el cajón Roy Tapper, caen al tanque sedimentador, en el cual por diferencias de densidades se separan las escorias y el plomo. Las escorias salen por rebose hacia un canal donde son granulados mediante chisguetes de agua a una presión de 40 a 50 psi, los que son conducidos a las pozas de teleférico, para su posterior transporte a los depósitos de Huanchán.

![Gráfico Nº 4-3. Zonas de formación de las escorias de plomo](image)

4.2.1.9 Plomo de obra

El plomo asentado en la parte inferior del tanque, es evacuado conjuntamente con la mata y speiss, si es que existen, a través
de un sifón, que conecta el interior con el pozo de plomo que se encuentra en el nivel superior, el cual se descarga mediante un pequeño canal hacia una taza receptora, cuya capacidad es de 4.8 TM.

Las escorias con baja temperatura de fusión, \(\frac{\text{CaO}}{\text{SiO}_2} = 0.80 \) o menos), bajo peso específico y alta fluidez, serán deseables en todo momento; estas características son las que economizan el gasto de combustible y harán fácil la separación del plomo de obra, evitando la obtención de escorias con alto contenido de plomo.

4.2.1.10 Gases y polvos metálicos

Los gases y polvos metálicos de los hornos de plomo serán absorbidos por ventiladores, a través de ductos y campanas de ventilación, instalados encima de las columnas de carga, parte de ellos son captados en las tolvas de precipitación,
especialmente los más pesados y el resto llega hasta el sistema de baghouse. Es importante que la temperatura de los gases sea siempre menor de 125 ºC para minimizar las emisiones fugitivas las cuales son captadas por los baghouse de encerramiento, también la de minimizar la volatilización de metales, y asegurar una alta eficiencia de captación de polvo en los baghouses.

Foto Nº 4-12. Vista exterior de los baghouse de encerramiento
Foto Nº 4-13. Vista de los controles de los baghouse de encerramiento

Cuadro Nº 4-4. Análisis de polvos metálicos en los hornos de plomo

<table>
<thead>
<tr>
<th>% Cu</th>
<th>% Pb</th>
<th>% Ag</th>
<th>% Bi</th>
<th>% Cd</th>
<th>% Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>40 -50</td>
<td>0.02</td>
<td>0.25 – 0.35</td>
<td>6 - 10</td>
<td>Tr</td>
</tr>
<tr>
<td>% As</td>
<td>% Zn</td>
<td>% Sb</td>
<td>% Fe</td>
<td></td>
<td>% S</td>
</tr>
<tr>
<td>< 2.50</td>
<td><8.00</td>
<td>< 0.30</td>
<td>< 1.00</td>
<td></td>
<td>< 7.00</td>
</tr>
</tbody>
</table>

Una vez que se cumple un control muy estricto de la temperatura de los gases, el contenido de zinc y arsénico en estos polvos bajará en una manera importante. Estos polvos representan una salida muy importante para drenar el cadmio desde el plomo.
4.2.2 PLANTA DE ESPUMAJE (Dross Plant)

La materia prima tratada en la planta de espumaje es el plomo de obra producido en los hornos. Sale a ± 900 °C y es transportado a través de tazas con capacidad de 7 TM y luego colocadas en la zona de enfriamiento. Para evitar que la costra formada en la taza no se desprenda al momento de vaciar, se adiciona soda Ash en el contorno. Después de enfriar por un tiempo de 30 minutos estas tasas son vaciadas en las ollas de recepción; ahí se procede a zarandear con una cuchara la espuma caliente que se forma en la superficie por enfriamiento a ± 450 °C, (algunas veces se agrega ánodos gastados para ayudar el enfriamiento), y disminuir la solubilidad del Cu, As y Sb.

Gráfico N° 4-3. Mapa de procesos aspectos ambientales
Las reacciones que se producen en las ollas receptoras son:

\[
2 \text{Cu} + \frac{1}{2}\text{S}_2 \rightarrow \text{Cu}_2\text{S} \quad \Delta G^\circ 450 \, ^\circ\text{C} = -26,106 \, \text{Cal/mol}
\]

\[
\text{Pb} + \frac{1}{2}\text{S}_2 \rightarrow \text{PbS} \quad \Delta G^\circ 450 \, ^\circ\text{C} = -23,752 \, \text{Cal/mol}
\]

4.2.2.1 Sistema de control de emisiones fugitivas

Para el control de las emisiones de gas en esta planta, se ha encerrado e instalado baghouse, esto permite no impactar en el medio ambiente.

Foto N° 4-14. Vista de los baghouse de la fundición de plomo
<table>
<thead>
<tr>
<th>Item</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Botón de inicio de secuencia de arranque del ventilador</td>
</tr>
<tr>
<td>2</td>
<td>Indicador de sirena accionada</td>
</tr>
<tr>
<td>3</td>
<td>Indicador de Temperatura (°C)</td>
</tr>
<tr>
<td>4</td>
<td>Indicador de porcentaje de partículas (%)</td>
</tr>
<tr>
<td>5</td>
<td>Indicador de presión diferencial (pulg. H2O)</td>
</tr>
<tr>
<td>6</td>
<td>Indicador de flujo (SCFM)</td>
</tr>
<tr>
<td>7</td>
<td>Válvula dámper</td>
</tr>
<tr>
<td>8</td>
<td>Válvula rotativa</td>
</tr>
<tr>
<td>9</td>
<td>Cuadro de estado del motor de la válvula rotativa</td>
</tr>
<tr>
<td>10</td>
<td>Cuadro de estado del motor del ventilador</td>
</tr>
<tr>
<td>11</td>
<td>Indicador de vibración (mm/s)</td>
</tr>
<tr>
<td>12</td>
<td>Indicador de corriente, voltaje, potencia y frecuencia del motor del ventilador</td>
</tr>
<tr>
<td>13</td>
<td>Motor del ventilador</td>
</tr>
</tbody>
</table>

Gráfico Nº 4-4. Monitoreo y control de las emisiones de gas
4.2.2.2 **Descripción del proceso**

La primera etapa en el tratamiento del Pb de obra es el drossado a 450 - 500 °C de la espuma que sobrenada al baño metálico en las ollas de recepción, y que por su alto contenido de cobre (15 - 25 % Cu) se le denomina Dross de Cobre.

Este dross o espuma se carga al horno Reverbero por el embudo situado en el piso de carga luego de ser “zarandeado” de las ollas de recepción por una de las Grúa - Puente, a intervalos regulares para evitar el encostramiento o recalentamiento del horno, junto con la soda ash (Carbonato de Sodio) y coque fino. Adicionalmente se carga dross frío granulado, espuma de la Refinería de Plomo y limpieza de las ollas de moldeo.

4.2.2.3 **El horno Reverbero de Dross Plant**

Tiene por función (es el riñón de la fundición de plomo) el tratamiento de las espumas producidas por enfriamiento del plomo de obra, debiendo alcanzar 2 objetivos primordiales:

- Recuperar el plomo metálico que éstas espumas contienen
- Eliminar el cobre, arsénico y antimonio en forma de mata y speiss, de la Fundición de Plomo.

4.2.2.3.1 **Consideraciones teóricas del proceso**

Fleming y Day, de la American Smelting and Refining Company, desarrollaron el proceso del carbonato para el tratamiento del Dross de Cobre, en el cual se usa una baja temperatura de fusión y se obtiene un speiss de elevado contenido de cobre y una alta relación Cu/Pb en la mata.

El principio general del proceso es el uso de un fundente que preferentemente se combine con el azufre del dross en la mata y así precipite el plomo del sulfuro de plomo.
4.2.2.3.2 *Las reacciones involucradas son*

\[
\begin{align*}
4 \text{ PbS} + 4 \text{ Na}_2\text{CO}_3 & = 4 \text{ Pb} + 3 \text{ Na}_2\text{S} + \text{ Na}_2\text{SO}_4 + 4 \text{ CO}_2 \\
4 \text{ Cu}_2\text{S} + 4 \text{ Na}_2\text{CO}_3 & = 8 \text{ Cu} + 3 \text{ Na}_2\text{S} + \text{ Na}_2\text{SO}_4 + 4 \text{ CO}_2
\end{align*}
\]

La soda ash (\(\text{Na}_2\text{CO}_3\)) actúa como fundente y a la vez descompone los sulfuros de cobre y plomo presentes en la espuma, con formación de sulfato de sodio. El coque reduce este sulfato a sulfuro de sodio, llamado también mata de soda, que es el que colecta la totalidad del fierro presente:

\[
\text{Na}_2\text{SO}_4 + 2 \text{ C} = \text{Na}_2\text{S} + 2 \text{ CO}_2
\]

Teóricamente, ninguna escoria se produce en el proceso, pero la mata contiene una considerable cantidad de óxidos, principalmente magnetita, y ocasionalmente una escoria de soda se produce debido al arrastre de escoria del horno de manga conjuntamente con el dross.

Cuando el horno está lleno y la carga completamente fundida, se tienen 3 fases definidas: la mata de soda que sobrenada al baño, el speiss que es la fase intermedia, y el plomo bullión.

La descarga de los productos del horno se efectúa por guardias, extrayéndose primero la mata de soda, cuidando de retirar completamente la capa de 3 - 5 pulg. Que se forma encima del baño, ya que de no hacerse así se formarán encostamientos de magnetita que reducirán el volumen útil del horno. A continuación se extrae el plomo hasta que ligeramente aparezca el speiss, procediéndose a taponar inmediatamente el “pecho”, dejando así un resto de plomo y
una capa de speiss que protegerán el fondo del horno. El speiss se descarga cada 2 - 4 días cuando se han acumulado unas 18 pulg. de nivel, evacuándose solo la parte superior de 9 - 10 pulg. Esta capa superior tiene un contenido bajo de plomo y elevado de cobre, mientras que en la parte inferior la relación de contenidos se invierte.

La mata es recepcionada en tazas de Fe fundido de 10 TM de capacidad, el plomo se descarga a las ollas 5 ó 6, mientras que el speiss es granulado mediante un spray de agua y, al igual que la mata, se transfiere al circuito de Cobre.

4.2.2.4 Estructura

El horno reverbero presenta una estructura de fierro y es de forma paralepípeda con base cóncava, interiormente revestido con ladrillo refractario de cromex (cromo-magnesita) y de alusite. El techo tiene la forma de arco de tipo fijo y en la parte del embudo de carga es de tipo suspendido. Este horno tiene una capacidad de unos 130 TM/día, una longitud de 7m y un ancho de 2.75 m.

4.2.2.4.1 Salida de material

Posee tres puntos de salida:

- **Pecho de Plomo.**- Ubicado frente a las ollas de drossado y a una altura de 14” del nivel de piso del horno. Descarga directamente a la olla de recepción N°5.

- **Pecho de Speiss.**- Ubicado en la parte posterior del horno (lado río) a 18” sobre el pecho de plomo.

- **Boca de Mata:** Ubicado en lado río a una altura de 38” con respecto al pecho de speiss.
4.2.2.4.2 Alimentación

La alimentación a este horno está formada por: Espuma caliente, espuma fría, espuma refinería, limpieza de ollas, Na₂CO₃ y coque fino. La espuma caliente proveniente de las ollas receptoras, constituye la principal materia prima por su alto contenido de Pb y Cu. El Na₂CO₃ se agrega para reducir los sulfuros de Cu y Pb; El coque fino se añade para atacar el Na₂SO₄ formado y formar la mata (Na₂S - Cu₂S).

Foto Nº 4-14. Alimentación de dross al horno reverbero

4.2.2.4.3 Espumas

Tenemos las siguientes:

♦ **Espuma Caliente**.- Proveniente de las ollas de recepción, que es cargado mediante zarandas de 2 TM de capacidad.

♦ **Espuma Fría**.- que viene a ser la espuma caliente enfriada y desmenuzada.
Espuma de Refinería.- Esta alimentación no es frecuente y proviene de la refinería de plomo, generalmente es PbO (litargirio).

Espuma de Moldeo.- Proveniente de la limpieza de las ollas de moldeo.

Cuadro N° 4-5. Análisis del material alimentado al horno reverbero

<table>
<thead>
<tr>
<th>%</th>
<th>E. CALIENTE</th>
<th>E. FRIA</th>
<th>E. REFIN.</th>
<th>E. MOLDEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>50.10</td>
<td>48.30</td>
<td>93.50</td>
<td>87.70</td>
</tr>
<tr>
<td>Cu</td>
<td>22.60</td>
<td>27.90</td>
<td>-</td>
<td>2.50</td>
</tr>
<tr>
<td>As</td>
<td>6.80</td>
<td>9.00</td>
<td>0.05</td>
<td>3.40</td>
</tr>
<tr>
<td>Sb</td>
<td>3.20</td>
<td>2.10</td>
<td>0.15</td>
<td>5.10</td>
</tr>
<tr>
<td>Fe</td>
<td>0.80</td>
<td>1.90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S</td>
<td>2.00</td>
<td>2.70</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bi</td>
<td>0.62</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
</tr>
<tr>
<td>Sn</td>
<td>0.34</td>
<td>0.03</td>
<td>-</td>
<td>0.11</td>
</tr>
<tr>
<td>Au (gr/TM)</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>3.00</td>
</tr>
<tr>
<td>Ag (gr/TM)</td>
<td>3280</td>
<td>-</td>
<td>-</td>
<td>3905.00</td>
</tr>
</tbody>
</table>

4.2.2.4.3 Las fases del Horno Reverbero

Están a las siguientes temperaturas:

- Mata ---------------- 1,200 °C
- Speiss --------------- 950 – 1,050 °C
- Plomo Bullón ------ 800 °C

Estas fases se forman, en ese orden, por las diferentes densidades:

- Plomo: 11 gr./cc
- Speiss: 6 gr./cc
- Mata: 5.2 gr./cc
4.2.2.4.4 Relación de Reactivos

Para la formación de la mata, speiss y del plomo bullion, se requiere de la adición de Carbonato de Sodio (Na₂CO₃) y de Coque Fino, con las siguientes relaciones:

- Carbonato de Sodio = 2.0% – 2.5% de la espuma cargada.
- Coque Fino = 1.5% de la espuma cargada.

4.2.2.5 Parámetros operativos

Para lograr un adecuado avance en la fusión del dross, es indispensable el control de temperatura del horno y el acondicionamiento de la carga alimentada. Los siguientes son los parámetros más importantes:

- Temperatura del techo del horno: 1,100-1,200 °C
- Temperatura de los gases de salida (Ducto cuadrado): 350 – 400 °C
- Flujo del aire al quemador: 1200 – 1300 CFM
- Presión del aire: 1.3 - 1.5 PSI
- Flujo del petróleo: 1.4 – 1.6 gal/min.
- Presión del petróleo R-6 al quemador: 30 - 35 PSI
- Temperatura del petróleo R-6 al quemador: 100 - 110 °C
- Tiraje: - 0.001 - 0.010 pulg. de H₂O
- Temperatura de gases de salida al los baghouse <350 °C

Quemadores usados:
Para lograr la fusión del horno hay dos quemadores de petróleo-aire:

- **HAUCK-785** Presión salida de petróleo 30 PSI.
- **HAUCK-783** Presión salida de petróleo 35 PSI.

Cuadro Nº 4-6. Análisis de Gases de Combustión (% vol.)

<table>
<thead>
<tr>
<th></th>
<th>SO₂</th>
<th>CO₂</th>
<th>O₂</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.6</td>
<td>12.8</td>
<td>1.8</td>
<td>0</td>
</tr>
</tbody>
</table>

4.2.2.6 DESCRIPCION DE LOS PRODUCTOS

4.2.2.6.1 Mata

Las matas son sulfuros con enlace covalente y contienen principalmente Cu, Fe y S y hasta 3% de oxígeno disuelto, además contiene cantidades menores en forma de impurezas de As, Sb, Bi, Pb, Ni, Zn y metales preciosos; la producción de una mata de cobre implica la concentración de cobre y el mínimo posible de ganga, adicionalmente se da el caso de la formación de la mata sódica constituida principalmente por los aportes del sodio del carbonato y nitrato de sodio y del S del concentrado que va a retener una parte de la plata. Las reacciones de este proceso se muestran a continuación.

\[
\begin{align*}
\text{Na}_2\text{CO}_3 & \rightarrow \text{Na}_2\text{O} + \text{CO}_2 \\
\text{Na}_2\text{O} & \rightarrow 2\text{Na}^+ + 0^-
\end{align*}
\]

\[
\begin{align*}
\text{PbS} + \text{Cu} & \rightarrow \text{CuS} + \text{Pb} \\
2 \text{PbO} + \text{PbS} & \rightarrow \text{SO}_2 + 3\text{Pb} \\
\text{PbS} + \text{Fe} & \rightarrow \text{FeS} + \text{Pb}
\end{align*}
\]
4.2.2.6.2 **Speiss**

Son aleaciones de metales pesados como el hierro, cobalto o níquel, con arsénico o antimonio, a veces con estano, lo cual disminuye la temperatura de fusión hasta 1,000 °C. Los speiss son sólo parcialmente miscibles con las matas y, si hay suficiente arsénico o antimonio en una carga de cobre, puede formarse un fundido de speiss separado. Los speiss también son inmiscibles en plomo líquido.

La formación de speiss se da cuando la carga contiene alto porcentaje de As y Sb mediante las siguientes reacciones:

\[
\begin{align*}
3Cu + As & \rightarrow Cu_3As \\
3Cu + Sb & \rightarrow Cu_3Sb
\end{align*}
\]

Cuadro Nº 4-7. Composición – Productos del reverbedero

<table>
<thead>
<tr>
<th></th>
<th>PLOMO BULLION</th>
<th>MATA</th>
<th>SPEISS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>-</td>
<td>-</td>
<td>2.88</td>
</tr>
<tr>
<td>Cu</td>
<td>0.98</td>
<td>19.42</td>
<td>49.76</td>
</tr>
<tr>
<td>Pb</td>
<td>94.3</td>
<td>5.72</td>
<td>17.58</td>
</tr>
<tr>
<td>Ag(gr./TM)</td>
<td>5613</td>
<td>1,166.77</td>
<td>6,870.62</td>
</tr>
<tr>
<td>Au (gr/TM)</td>
<td>1.3</td>
<td>1.7</td>
<td>4.51</td>
</tr>
<tr>
<td>As</td>
<td>0.55</td>
<td>3</td>
<td>17.93</td>
</tr>
<tr>
<td>Sb</td>
<td>2.2</td>
<td>0.73</td>
<td>4.98</td>
</tr>
<tr>
<td>Ins</td>
<td>1</td>
<td>15.54</td>
<td>1.44</td>
</tr>
<tr>
<td>Fe</td>
<td>-</td>
<td>12.32</td>
<td>0.92</td>
</tr>
<tr>
<td>Bi</td>
<td>1.2</td>
<td>0.02</td>
<td>0.19</td>
</tr>
<tr>
<td>Zn</td>
<td>2.02</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>6.81</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
4.2.2.7 Decoperizado

En la planta se dispone de 4 ollas de fierro de 1” de espesor, con un diámetro aproximado de 3 m. y con una capacidad de 120 TM de Pb líquido de forma semiesférica. Las ollas N° 1, 2, 3 y 4 son exclusivamente para el decoperizado

El objetivo del proceso de decoperizado es reducir el contenido de cobre del plomo bullón a niveles mínimos, de tal manera que este elemento no cause problemas de contaminación en la subsiguiente etapa de refinación electrolítica y también la de disminuir su concentración en los lodos anódicos de plomo, y facilitar su tratamiento en las plantas de Residuos Anódicos y Refinería de Plata.

Foto Nº 4-15. Polvo formado en el decoperizado

El plomo bullón controlado las impurezas facilitan su moldeo en ánodos en la siguiente etapa. La descripción más amplia de
este proceso es materia del estudio a ser detallado más adelante.

Cuadro Nº 4-8. Análisis de plomo bullion decoperizado

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>95.300</td>
</tr>
<tr>
<td>Ag(gr./TM)</td>
<td>6,852.470</td>
</tr>
<tr>
<td>Au(gr./TM)</td>
<td>2.100</td>
</tr>
<tr>
<td>Bi</td>
<td>1.380</td>
</tr>
<tr>
<td>Sb</td>
<td>2.310</td>
</tr>
<tr>
<td>Cu</td>
<td>0.003</td>
</tr>
<tr>
<td>As</td>
<td>0.140</td>
</tr>
</tbody>
</table>

Foto Nº 4-15. Limpieza del polvo formado con el decoperizado
4.2.3 PLANTA DE MOLDEO

Gráfico Nº 4-5. Mapa de procesos aspectos ambientales

La finalidad del sistema de moldeo, es el de habilitar y moldear el plomo bullón en forma de ánodos para su posterior refinación electrolítica en la refinería de Huaymanta. La sección de moldeo está compuesta por dos ollas de acero, dos tornamesas giratorias y dos plumillas o winchas para el transporte de ánodos de la tornamesa a los carros anoderos.

Cada olla de acero tiene una capacidad de 120 TM de plomo líquido, una de ellas recepciona el plomo tratado en la sección de espumaje y la otra es de moldeo. Sección espumaje bombea el plomo tratado a una temperatura aproximada de 420 °C, a través de un canal de aproximadamente 25 m. de longitud por 30 cm. de ancho que lo une a moldeo. La temperatura de la olla de moldeo
se encuentra entre 360 °C – 380 °C, para permitir la fluidez del material.
Cada tornamesa consta de 24 moldes de ánodos alimentados por dos espátulas o cucharas que giran sobre su propio eje levantando el volumen necesario de plomo para moldearlo.

4.2.3.1 Calidad de los ánodos producidos

Los ánodos producidos deben cumplir las siguientes normas de calidad:

1. Tener una superficie lisa, sin ampollamientos, para evitar las pérdidas de corriente y una deficiente corrosión en el proceso de refinación electrolítica.

2. Deben estar completamente derechos con las orejas en buenas condiciones para que haya un buen apoyo en las celdas y una adecuada separación entre cátodo y ánodo.

3. No debe tener rebabas, porque su presencia puede ocasionar cortocircuitos al entrar en contacto con el slime y porque facilita la fuga y disminución de la eficiencia de la corriente.

Foto Nº 4-16. Control de los ánodos
4.2.3.2 Control de parámetros

1. Se debe controlar la cantidad de agua que se utiliza para el enfriamiento del plomo, ya que poca cantidad de agua origina una deficiente cristalización y poca rigidez del ánodo al momento de retirarlo del molde; un exceso de agua ocasiona pérdida del material, debido a que el agua quedaría en el molde y al momento de llenarlo nuevamente se originaría un choque térmico por diferencia de temperaturas.

2. La temperatura en las ollas de moldeo debe estar entre 360 ºC – 380 ºC, para favorecer una adecuada cristalización en el enfriamiento directo con agua, evitando el ampollamiento por alta temperatura o escarchamiento del canal por baja temperatura.

Cuadro Nº 4-9. Parámetros de operación

<table>
<thead>
<tr>
<th></th>
<th>datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de rotación en la tornamesa</td>
<td>9 minutos por vuelta</td>
</tr>
<tr>
<td>Tiempo de llenado de molde</td>
<td>17 seg. aproximadamente</td>
</tr>
<tr>
<td>Temperatura de Moldeo</td>
<td>360 - 380ºC</td>
</tr>
<tr>
<td>Tiempo que tarda el molde de llegar desde la cuchara hasta:</td>
<td></td>
</tr>
<tr>
<td>1er Spray</td>
<td>2.20 min.</td>
</tr>
<tr>
<td>2do Sprays</td>
<td>3.40 min</td>
</tr>
<tr>
<td>Peso de Ánodos</td>
<td>150 Kg. aproximadamente</td>
</tr>
<tr>
<td>Temperatura de Moldes</td>
<td>100°C aproximadamente</td>
</tr>
<tr>
<td>Dimensión de Ánodo</td>
<td>36.6 X 27.16 X 1.0 pulg.</td>
</tr>
<tr>
<td>Enfriamiento</td>
<td>A base de agua</td>
</tr>
<tr>
<td>N° de ánodos por carro Ánodero</td>
<td>350 ánodos</td>
</tr>
</tbody>
</table>
4.2.3.3 **Principales Impurezas de los Ánodos**

Las principales impurezas de los ánodos se muestran en el siguiente cuadro.

Cuadro Nº 4-9. Principales impurezas de los ánodos

<table>
<thead>
<tr>
<th>IMPUREZAS</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobre</td>
<td>0.004</td>
</tr>
<tr>
<td>Arsénico</td>
<td>0.220</td>
</tr>
<tr>
<td>Antimonio</td>
<td>1.980</td>
</tr>
<tr>
<td>Bismuto</td>
<td>1.470</td>
</tr>
<tr>
<td>Plomo</td>
<td>95.480</td>
</tr>
<tr>
<td>Plata</td>
<td>6,394.960 gr./TM</td>
</tr>
<tr>
<td>Oro</td>
<td>3.670 gr./TM</td>
</tr>
</tbody>
</table>
4.3 Refinación Electrolítica

Gráfico Nº 4-6. Mapa de procesos
4.3.1 Breve Historia de la Refinería de Plomo

El año 1902 Auson Betts demostró que, al electrolito de plomo de obra impuro utilizando como electrolito una solución de PbSiF₆ con exceso de H₂SiF₆, las impurezas contenidas en el plomo de obra tales como Au, Ag, Cu, As, Bi y Sb (por ser más electropositivos que el plomo), se quedaban adheridas al ánodo, esto en base a que el Sb actúa como un aglomerante de impurezas como Fe, Zn, Ni y Co por ser más electronegativos podían disolverse en el electrolito. La prueba culminante de su estudio fue el experimentar con 2,000 gr. de un plomo de obra, cuyo análisis químico ensayaba.

Cuadro Nº 4-10. Análisis químico de un electrolito de plomo (%)

<table>
<thead>
<tr>
<th>Pb</th>
<th>Fe</th>
<th>Cu</th>
<th>Sb</th>
<th>Sn</th>
<th>As</th>
<th>Ag</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.0000</td>
<td>0.0075</td>
<td>0.1700</td>
<td>0.5400</td>
<td>0.0110</td>
<td>0.1460</td>
<td>1.0960</td>
<td>0.0080</td>
</tr>
</tbody>
</table>

Electrolizado con una solución de PbSiF₆ + H₂SiF₆ y con una densidad de corriente de 25 amp/pie² obtuvo un plomo refinado con un análisis de:

Cuadro Nº 4-11. Análisis químico de un electrolito de plomo refinado(%)

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ag</th>
<th>Cu</th>
<th>Sb</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.9971</td>
<td>0.0003</td>
<td>0.0007</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

Este descubrimiento patentado en 1902, revolucionó la metalurgia del plomo, por cuanto hasta ese momento era imposible obtener un plomo puro por los procesos de pirorefinación existentes Parker, Pattinson o Harris.
El mérito de este proceso electrolítico llamado “Proceso Betts” fue el que los refinadores de plomo pudieran separar con facilidad el bismuto del plomo, esto permitió que en el transcurso de los siguientes años, grandes refinerías como las de Trail (Columbia Inglesa) de East Chicago (Indiana), Omaha (Nebraska), New Castle – Upon – Tyne, Inglaterra, San Gavino (Italia), etc. optaran este método para la refinación de plomo.

Es sin embargo, aclarar que este nuevo descubrimiento era económicamente fácil de aplicar cuando el plomo de obra a refinar tenía un contenido de plomo del orden de 97.5 % á 98 %.

Foto N° 4-18. Casa de celdas de la refinería de plomo
Gráfico N° 4-7. Refinería de Plomo – Diagrama de flujo
Las principales plantas industriales que adoptaron este método trabajaron bajo los siguientes parámetros.

Cuadro Nº 4-12. Parámetros del Proceso Betts

<table>
<thead>
<tr>
<th></th>
<th>Consolidated Mining and Smelting Co.Tail, B, Col.</th>
<th>U.S.S. Lead Refinery East, Chicago , Ind.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolito</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso específico</td>
<td>1,195-1,205</td>
<td>1,160</td>
</tr>
<tr>
<td>Plomo grs./lt.</td>
<td>67-72</td>
<td>57.2</td>
</tr>
<tr>
<td>AcidoHidro Fluorsilicico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total grs./lt.</td>
<td>140-150</td>
<td>110</td>
</tr>
<tr>
<td>Libre gr./lt.</td>
<td>95-100</td>
<td>69.8</td>
</tr>
<tr>
<td>Temperatura °C</td>
<td>40-45</td>
<td>42-46</td>
</tr>
<tr>
<td>Corriente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidad catódica, amp/pie²</td>
<td>22.3</td>
<td>44-50</td>
</tr>
<tr>
<td>Voltaje por tanque</td>
<td>0.35 - 0.50</td>
<td>0.44 – 0.62</td>
</tr>
<tr>
<td>Ánodos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(composición química)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>98.400</td>
<td>98.000</td>
</tr>
<tr>
<td>Cu</td>
<td>0.050</td>
<td>N.I.*</td>
</tr>
<tr>
<td>As</td>
<td>0.170</td>
<td>N.I.*</td>
</tr>
<tr>
<td>Sn</td>
<td>0.004</td>
<td>N.I.*</td>
</tr>
<tr>
<td>Bi</td>
<td>0.060</td>
<td>N.I.*</td>
</tr>
<tr>
<td>Sb</td>
<td>1.200</td>
<td>1.530</td>
</tr>
<tr>
<td>* No Informado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensiones de los Ánodos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largo, ancho, espesor, en mm.</td>
<td>990 x 676 x 0.71</td>
<td>952 x 711 x 0.58</td>
</tr>
<tr>
<td>Peso, Kl.</td>
<td>195</td>
<td>213-216</td>
</tr>
<tr>
<td>Duración, días</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>
4.3.2 Proceso Betts Modificado

En 1928 pruebas de laboratorio en La Oroya demostraron que, debido a la complejidad de los minerales, concentrados y subproductos de recirculación en la Fundición, el plomo de obra a producirse en los hornos de manga no podía ser trabajado por el método Betts tal como éste había sido concebido en razón a su alto contenido de impurezas.

Cuadro Nº 4-13.Análisis según el proceso Betts (%)

<table>
<thead>
<tr>
<th>Pb</th>
<th>Bi</th>
<th>Sb</th>
<th>As</th>
<th>Cu</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.10</td>
<td>4.40</td>
<td>2.33</td>
<td>1.90</td>
<td>0.12</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Entre 1929 – 1931 los metalurgistas T. Harper y G. Reimber del Departamento de Investigaciones de La Oroya, vieron culminados sus esfuerzos al modificar el proceso Betts, de modo que permitiera obtener un plomo electrolítico muy puro partiendo de una materia prima que contenía desde 80 % hasta 95 % de plomo.

Según la patente USA. 1913985 de 1933 las modificaciones introducidas al Proceso Betts, son las siguientes:

1. Los ánodos de plomo de obra a refinar son más delgados en su espesor que en el proceso original estando su tiempo de corrosión determinado por la elevación del voltaje a través de la capa de lodo que permanece adherido al ánodo. Esta elevación de voltaje no debe exceder un valor crítico establecido por la experiencia, porque de lo contrario causaría la disolución de impurezas del ánodo y su posterior deposición conjuntamente con el plomo sobre el cátodo, afectando así la calidad del producto final de la refinación. Estos tres factores: peso, voltaje y tiempo de corrosión,
debidamente controlados son esenciales para la eficiente refinería electrolítica de un plomo de obra de 80 % a 95 % de plomo.

2. Los ánodos gastados son sometidos a un lavado de inmersión en contra corriente al terminar su tiempo de corrosión electrolítica, con el objeto de recuperar el costoso electrolito que está retenido en la capa de lodo anódico adherida a los ánodos gastados. Esta modificación permite una reducción de las pérdidas de electrolito a un nivel igual o menor que las pérdidas mostradas por el proceso Betts original.

Esta modificación efectuada al proceso Betts por los metalurgistas T. Harper y G. Reimberg, permitió construir una planta piloto de 25 TM/día, la misma que funcionó entre 1934-1937, la información técnica obtenida en este lapso hizo posible que en 1937 se ponga en operación la primera planta con una capacidad de 90,000 toneladas/año, la misma que viene trabajando hasta nuestros días.

La casa de celdas está conformada por 320 celdas agrupadas en 10 blocks y dos secciones de lavado dispuestos en 4 etapas de 17 celdas cada una. Las celdas electrolíticas están construidas de concreto armado y revestidos con una mezcla de asfalto y asbesto; cada celda descansa sobre cuatro aisladores de porcelana para evitar las fugas a tierra. Las dimensiones interiores de cada celda son de 4.54 m. de largo por 0.94 m. de ancho por 1.27 m. de profundidad. La conexión eléctrica empleada es del tipo Walker.
4.3.3 Etapa 1: RECEPCIÓN Y REFINACION DE PLOMO

4.3.3.1 Descripción

La etapa de refinación de plomo empieza con la recepción de ánodos bullón, los cuales son descargados mediante grúa al cajón de la pegadora de la maquina separadora de ánodos, donde se separan en cargas de 40 ánodos.

El cambio de electrodos se realiza cada 96 horas, según la secuencia que corresponda. Con ayuda de la grúa se retiran los ánodos corroídos hacia la juntadora de ánodos, luego se traslada a la maquina lavadora, para recuperar el lodo y el electrolito que llevan adheridos; los ánodos corroídos (scrap) regresan a la Fundición de Plomo (Planta de Dross de plomo), el lodo anódico se traslada a la planta de Residuos anódicos. Los cátodos cosechados son transportados hacia los lavaderos para lavarlos y luego trasladarlos hacia los escurridores, donde se escurre el electrolito que tienen adherido, posteriormente son trasladados con la grúa a las

Foto Nº 4-19. Anodos gastados para lavado
vaciadoras para retirar las varillas y luego hacia las ollas de fusión donde son fundidos.

El siguiente paso es cargar las láminas iniciales y ánodos nuevos y así continuar con el cambio de electrodos.

Diariamente se añade a los tanques de recirculación de electrolito (sumps) un promedio de 09 cilindros de ácido flúor silílico.

Se disuelve cola y goulac en agua caliente en el tanque de reactivos orgánicos de 10,000 litros de capacidad.

El objetivo de la refinación electrolítica del plomo, es producir un metal de alta pureza para satisfacer los requerimientos de la industria, así mismo recuperar los metales valiosos que contiene el ánodo, que por otro medio no se podría recuperar.

El electrolito es la solución por la cual fluye la corriente eléctrica, en la refinería el electrolito está conformado por la mezcla del ácido flúor silílico (H$_2$SiF$_6$) y el flúor silicato de plomo (PbSiF$_6$). En presencia del agua se descompone en “iones” uno es el Pb$^{+2}$ (catión) y el otro SiF$_6^{-2}$ (anión). En presencia de corriente eléctrica se dirige el primero al cátodo y el segundo al ánodo donde se vuelve a formar el flúor silicato de plomo, que a su vez pasa a la solución donde se ioniza dando inicio a un nuevo ciclo.

Ecuaciones de descomposición del ácido flúor silílico y el flúor silicato de plomo:

\[
\begin{align*}
\text{H}_2\text{SiF}_6 & \rightarrow 2 \text{H}^+ + \text{SiF}_6^{-2} \\
\text{SiF}_6^{-2} + \text{Pb}^0 & \rightarrow \text{SiF}_6\text{Pb} \\
\text{SiF}_6\text{Pb} & \rightarrow \text{Pb}^{+2} + \text{SiF}_6^{-2}
\end{align*}
\]

En la interfase metal electrolito, se produce el proceso de oxidación-reducción (semi -pila), dos semi-pilas hacen la celda.
En el proceso de electrolisis a partir de los iones Pb\(^{2+}\) que son los encargados del transporte eléctrico a través del electrolito, también existe la presencia de electrones libres que fluyen de un electrodo al otro.

Según las leyes de Faraday, las reacciones que se producen en el ánodo y cátodo son:

\[
\begin{align*}
Pb^0 & \rightarrow Pb^{2+} + 2e \quad \text{(ánodo)} \\
Pb^{++} + 2e & \rightarrow Pb^0 \quad \text{(cátodo)}
\end{align*}
\]

Debido al alto contenido de impurezas en los ánodos del plomo bullón se aplica el método de Best modificado. T. Harper y G. Reinberg introdujeron importantes modificaciones debido a que las impurezas ejercen una decisiva influencia en el potencial de la celda electrolítica con los consiguientes perjuicios en la calidad del cátodo de plomo, la modificación consistió en disminuir el tiempo de corrosión y se introdujo el método de recuperación del radical flúor silicato y el plomo (Pb\(^{2+}\)) presente en la capa de lodo adherida a la superficie de los ánodos gastados o trabajados.

En el proceso de refinación se aplica el sistema múltiple o paralelo. Es decir, los ánodos de plomo bullón y los cátodos (laminas iniciales) de plomo refinado se montan en paralelo, o mejor dicho se suspenden alternativamente en la celda electrolítica. Además del cátodo de partida o placa de iniciación se requiere de barras de conexión o de transferencia entre los diversos ánodos y cátodos y también de celda a celda.

4.3.3.2 Definición y Fundamentos

4.3.3.2.1 Ánodos

El plomo de obra previamente decoperizado pasa a una moldeadora del tipo horizontal donde se obtiene los ánodos
con un peso aproximado de 150 Kilos cada uno, el cuerpo es de forma rectangular, teniendo en uno de los extremos superiores orejas, las mismas que servirán para el manipuleo y soporte en las celdas.

Las dimensiones del cuerpo rectangular de los ánodos son de 0.91 m de largo por 0.68 m de ancho con un espesor de 2.5 cm.

Cuadro Nº 4-14. Composición promedio (%)

<table>
<thead>
<tr>
<th></th>
<th>Pb</th>
<th>Cu</th>
<th>As</th>
<th>Sb</th>
<th>Bi</th>
<th>Sn</th>
<th>Ag (Oz/TMC)</th>
<th>Au (Oz/TMC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96.500</td>
<td>0.004</td>
<td>0.340</td>
<td>1.800</td>
<td>0.800</td>
<td>0.023</td>
<td>0.130</td>
<td>0.120</td>
</tr>
</tbody>
</table>

Foto Nº 4-20. Carguío de los ánodos a las celdas

4.3.3.2.2 Cátodos

Para la obtención de los cátodos se usa plomo refinado, el cual es fundido en una olla de 4.5 TM de capacidad. De esta olla el plomo fundido es vaciado mediante una cuchara hacia
una mesa inclinada con refrigeración interior, en su recorrido el plomo se solidifica formando una lámina de 76 cm de ancho por 97 cm de largo; la mesa inclinada en su parte inferior termina en dos cuadrados, los mismos que al voltearse sobre la lámina principal alojan a una barra de cobre de 1.08 m de largo por 3.7 cm de altura y 1.2 cm de ancho que servirá como soporte y transporte de la corriente eléctrica. El peso de cada cátodo sin la barra de cobre es de 7 – 7.5 kilos.

4.3.3.2.3 Electrolito

Es una sustancia que al disolverse en agua, da lugar a la formación de iones y que permiten que la energía eléctrica pase a través de ellos. Los electrolitos pueden ser débiles o fuertes, según estén parcial o totalmente ionizados o disociados en medio acuoso.

En la refinación de plomo el electrolito es la solución conformada por acido flúor silícico, flúor silicato de plomo, agua y reactivos.
6 HF + SiO$_2$ \rightarrow H$_2$SiF$_6$ + 2 H$_2$O
H$_2$SiF$_6$ + PbO \rightarrow PbSiF$_6$ + H$_2$O

4.3.3.2.4 **Electrólisis**

El ciclo de electrólisis comienza con un plomo de obra impuro como ánodo y láminas de plomo electrolítico como cátodos, el espaciamiento entre ánodos es de 10.0 cm. La tensión eléctrica aplicada es de 16 volt/block con una intensidad de 9,200 amperios.

Un análisis típico del electrolito tiene 77 g/l de H$_2$SiF$_6$; 70 g/l de PbSiF$_6$. Durante la electrólisis el plomo se disuelve dejando a las impurezas de los metales más nobles como un lodo adherido al ánodo mientras el plomo puro se deposita en el cátodo.

4.3.3.2.5 **Goulac (lignosulfonato de calcio)**

Es fibra de madera sulfonada que actúa como un amortiguador. En electrodeposición la lignina actúa como un coloide estabilizador y arrastra las impurezas de los electrolitos. También es muy usado como un eficiente agente dispersante aniónico para sólidos finamente divididos en sistemas acuosos.

4.3.3.2.6 **Acido flúor silícico (H$_2$SiF$_6$)**

Es una solución incolora, disuelve fácilmente el ánodo. Es soluble en agua, altamente volátil, no tiene productos anhidros, su máxima concentración es 60.92%, tiene una densidad relativa de 1.32, punto de ebullición 108.5 ºC,

4.3.3.2.7 **Ion**

Es un átomo o una molécula, cargada eléctricamente. Esto se debe a que ha ganado o perdido electrones de su dotación,
originalmente neutra, fenómeno que se conoce como ionización. Los iones cargados negativamente, producidos por la ganancia de electrones, se conocen como aniones (que son atraídos por el ánodo) y los cargados positivamente, consecuencia de una pérdida de electrones, se conocen como cationes (los que son atraídos por el cátodo).

4.3.3.2.8 Reactivos orgánicos

Se denomina así, a la cola de hueso animal y goulac (lignosulfonato de calcio), usados para mejorar la deposición catódica en la electro refinación del plomo bullón.

Como datos históricos en La Oroya se tiene (ver cuadro N° 4-15).

<table>
<thead>
<tr>
<th>Pb</th>
<th>Cu</th>
<th>Sb</th>
<th>Bi</th>
<th>As</th>
<th>Sn</th>
<th>Ag + Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-97</td>
<td>0.04</td>
<td>1.000</td>
<td>0.900</td>
<td>0.300</td>
<td>0.003</td>
<td>Sin límites</td>
</tr>
</tbody>
</table>

La suma de As + Bi + As: ≤ 3 %.

Contaminación del depósito catódico, ninguna pérdida de ácido ≥ 4.9 lb./TC Pb refinado.

Dureza del slime adherido al scrap = sin problemas.
4.3.4 Equipos

4.3.4.1 Máquina separadora

Esta máquina consta de dos partes: la primera tiene un cajón de fierro en plano inclinado (juntadora) que lleva sobre la parte superior de cada pared lateral un eje longitudinal, accionado por un motor eléctrico que le da un movimiento de rotación, con el cual se consigue el deslizamiento de los ánodos hacia dos discos provistos de pestañas, colocados uno para cada eje, que van separando los ánodos a una distancia de 3” y depositando los ánodos en la segunda parte de la máquina. La segunda parte consta de una cadena sin fin accionada por un motor que sirve para transportar los ánodos a medida que van cayendo de los discos hasta llenar toda la sección.

4.3.4.2 Máquina Juntadora

Los ánodos al salir de las celdas electrolíticas están espaciados y es necesario juntarlos para su posterior tratamiento.

Es un equipo conformado por un cajón de fierro de forma rectangular, lleva una cadena encima y a lo largo de cada pared lateral que están conectados por un puente transversal que sirve para juntar y empujar los ánodos. El sistema es accionado por un motor eléctrico, cuyo switch tiene 3 push – button. Uno para hacer desplazar las cadenas y el puente cerca de, otro para hacerlo retroceder y el tercero para parar el equipo.
4.3.4.3 Celdas electrolíticas

Son tanques de concreto armado, con armazón de fierro corrugado, tienen la forma rectangular y están revestidos interiormente con una mezcla de brea – asbesto. Actualmente se está cambiando por celdas con revestimiento polimérico.

Foto Nº 4-22. Celdas reparadas

4.3.4.4 Máquinas lavadoras de ánodos corroídos (scrap)

Se tiene 02 máquinas lavadoras. La máquina de lavado está conformado por un cajón donde se recepcionan los ánodos a lavar (pegadora), y de una estructura vertical de acero inoxidable provista de cadenas para ingreso, subida, transporte horizontal y bajada de los ánodos gastados.

Foto Nº 4-23. Maquina lavadora de ánodos corroídos
4.3.4.5 Máquina lavadora de varillas

Es un tambor giratorio de metal donde se realiza el lavado de varillas de cobre que sirven de soporte a los cátodos iniciales. Tiene dos compartimientos en los cuales se cargan dos canastillas por batch. Tiene un sistema de transmisión del movimiento mediante motor-piñón – catalina.

Foto Nº 4-24. Maquina lavadora de varillas de cobre

4.3.4.6 Escurrideros de cátodos

Son cuatro estructuras de fierro donde se colocan los cátodos lavados para que escurra el electrolito diluido que tiene impregnado. Aquí están instaladas dos balanzas, una en cada estructura, para el control de peso de los cátodos cosechados.

4.3.4.7 Rectificador R-5

Rectificador hexafásico a tiristores de 6 pulsos, de 3 MW de potencia, 300 Voltios DC de salida máxima, 9,200 Amperios DC máximo. Alimenta a los 14,625 blocks de la Refinería de Plomo.
4.3.4.8 Grúas puente
En casa tanques se tiene para el cambio de electrodos tres grúas puente (grúas 3, 4 y 5), las cuales se utiliza para transportar los ánodos nuevos, ánodos corroídos, láminas iniciales y cosecha de cátodos entre otros trabajos.

4.3.4.9 Tanques de preparación de reactivos orgánicos
Los reactivos se preparan en un tanque cilíndrico de 10,000 lts. De capacidad. El tanque está provisto de una tubería de alimentación de agua condensada, una tubería de vapor, una bomba para la descarga de la solución en la parte inferior y un agitador accionado por un motor eléctrico.

4.3.4.10 Sump
Tanque de recepción y almacenamiento de electrolito y desde donde se bombea el electrolito a las celdas electrolíticas.

4.3.4.11 Block comercial.
Es el conjunto de 32 celdas que trabajan en serie. En la refinería existen 468 celdas dispuestas en 14,625 blocks.

4.3.5 Etapa 2: FABRICACION DE LÁMINAS INICIALES

4.3.5.1 Descripción
La fabricación de las láminas iniciales o cátodos iniciales (starting sheet) se elaboran en el área que está ubicado en el primer piso entre la maquina moldeadora de barras y la olla N° 4.
4.3.6 Etapa 3: FUSION Y MOLDEO

4.3.6.1 Descripción

4.3.6.1.1 Fusión

Los cátodos de plomo obtenido en el proceso electrolítico son fundidos en ollas especiales con una capacidad de 160 TM para eliminar impurezas como el Bi, Sb, As, Sn y a continuación moldearlo en forma de barras o blocks para su venta de acuerdo al requerimiento del cliente.

Foto Nº 4-26. Maquina Vaciadora

Nuestra producción diaria aproximada es de 350 toneladas de plomo refinado al 99.99%, por ser éste plomo de alta pureza
el control de todas nuestras operaciones es constante, valiéndonos para ello de los análisis químicos y espectrográficos.

4.3.6.1.2 Moldeo

De acuerdo a los pedidos de nuestros clientes se moldean barras o blocks de plomo refinado.

![Foto Nº 4-27. Laminas iniciales y barras de plomo en stock](image)

4.3.6.1.3 Para el Moldeo de Barras

El peso aproximado de cada uno de los lingotes de plomo refinado es de 100 lb. (45 Kg.), el moldeo de estas barras se lleva a cabo en una tornamesa de barras que tiene 210 moldes de fierro fundido.
4.3.6.1.4 Para el Moldeo de Blocks

El peso aproximado de cada block es de 1 tonelada corta (907 Kg.), para realizar esta operación de moldeo se usa la tornamesa de forma semi circular de 13 moldes grandes.
4.3.7 Etapa 4: Lodos Anódicos

4.3.7.1 Descripción

En esta sección se lleva a cabo las operaciones de acondicionamiento y filtrado del lodo por el filtro automático de presión marca LAROX PF.

Objetivo.- Recuperar el ión plomo y el ácido flúor silílico oculto en el lodo del ánodo generado en el proceso de electro refinación de plomo y obtener un material con una humedad menor de 29 % para su tratamiento en la Planta de Residuos Anódicos.

4.3.7.2 Definición y Fundamento

4.3.7.2.1 Lodo Anódico

Es producto del proceso de electrorefinación, que se obtiene después de un ciclo de 96 horas de corrosión. También se le denomina Slime de plomo, está conformado generalmente por los siguientes elementos: antimonio, arsénico, bismuto, telurio, plata y otros en menor cantidad.

Foto Nº 4-30. Filtro Larox para los lodos
4.3.8 Etapa 5: BALANZA Y DESPACHO

4.3.8.1 Descripción

El propósito de esta etapa es la de pesar, lotizar, enumerar y despachar la producción de plomo refinado, en sus diferentes formas (lingotes y blocks).

El enflejador debe enflejar y emplasticar los paquetes de barras pesados.

Foto Nº 4-30. Carro transportador de lodo

Foto Nº 4-31. Emplastificado de paquetes
4.3.8.2 Definición y Fundamento

4.3.8.2.1 Enflejadora

Equipo neumático semiautomático que permite el enflejado con flejes de fierro o de plástico los paquetes de plomo pesados.

4.3.8.2.2 Paquete

Conjunto de 25 barras de plomo apiladas de 5 en 5, con un peso aproximado entre 1.140 a 1.165 TM.

4.3.8.2.3 Carga

Conjunto de 42 paquetes o 55 blocks que son arrumados e identificados, y que serán cargados en un carro ferroviario o camiones.

Foto Nº 4-32. Despacho en carros de FCA
CAPÍTULO V
TRATAMIENTO DE LOS LODOS DE REFINACIÓN

5.1 Descripción del proceso

Este tratamiento se realiza en la planta de residuos anódicos. En la Planta de Residuos Anódicos, se llevan a cabo los siguientes procesos metalúrgicos:

1. Fusión: Fusión de los lodos anódicos.
2. Conversión: Oxidación Selectiva.
3. Reducción: Reducción de las escorias de Bismuto.
4. Copelación: Obtención del Doré de Plata.
5. Afino Piro metalúrgico: Refinación de Bismuto.
7. Planta de Se/Te: Lixiviación de Polvos para la obtención del Se/Te.

Las operaciones y procesos anteriores, dan lugar a la producción de los siguientes metales:

1. Doré de Plata: 98 – 99 % de Plata.
2. Bismuto Refinado: 99.9997 %
3. Selenio Comercial: 99.9500 %
4. Telurio Comercial: 99.9700 %
Además se generan las siguientes materias recirculantes:

1. Polvo Mixto
2. Escoria de Antimonio
3. Mata de Cobre
4. Cloruro de Plomo
5. Ladrillos Usado

Gráfico Nº 5-1. Mapa de proceso
5.2 FUSIÓN

El objetivo de la fusión, es lograr el cambio de estado físico, de uno o más elementos, de sólido a líquido, se puede considerar también como un proceso de reducción y concentración. El medio para lograr la fusión es el aumento de calor, a base del aumento de temperatura, de donde se tiene que la temperatura es el resultado del balance algebraico entre el calor absorbido y el calor generado y el transportado a los productos formados por los cambios físicos y las reacciones que tienen lugar durante dicho proceso. El grado de temperatura alcanzado dependerá de los calores latentes y específicos de fusión, así como los calores de formación de los productos. El resultado de este proceso es la obtención de una serie de fases.

Esta sección comprende:

Recepción de Slimes

Se recepciona dos tipos de lodos:
5.2.1.1 Slimes de Plomo

Esta a cargo del personal de reverbero de fusión; llegan en carros metaleros, se descarga conforme llegan; la forma de hacerlo es:

✓ Sacar la tapa del metalero mediante la grúa y con el cajón gancho respectivo, descargar el slime hacia la secadora; controlar la guía de remisión.

5.2.1.2 Slime de Cobre

Todos los días llega en un camión un promedio de 10 a 12 cilindros sellados que contienen slime de cobre. Antes de descargar los cilindros revisar los sellos y la guía de remisión de los cilindros. Luego, se procede a vaciar estos cilindros para que el lodo se cargue juntamente con los lodos de plomo al horno de reverbero de fusión. Una vez que en la secadora se obtiene una humedad del 18 % se prepara las cargas, en cajones diseñados para tal fin. En cada cajón se carga un peso aproximado de 1,000 kilos de slime.

La temperatura a la cual se lleva la fusión es de 900º C, la cual se puede considerar como un promedio de las temperaturas de fusión de los elementos presentes; que es:

Cuadro Nº 5-2. Temperatura promedio de fusión (ºC)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Temperatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bismuto</td>
<td>271ºC</td>
</tr>
<tr>
<td>Cobre</td>
<td>1,083ºC</td>
</tr>
<tr>
<td>Antimonio</td>
<td>630ºC</td>
</tr>
<tr>
<td>Estaño</td>
<td>232ºC</td>
</tr>
<tr>
<td>Arsenico</td>
<td>814ºC</td>
</tr>
<tr>
<td>Hierro</td>
<td>1,535ºC</td>
</tr>
<tr>
<td>Plomo</td>
<td>327ºC</td>
</tr>
<tr>
<td>Plata</td>
<td>961ºC</td>
</tr>
<tr>
<td>Selenio</td>
<td>680ºC</td>
</tr>
<tr>
<td>Zinc</td>
<td>419ºC</td>
</tr>
<tr>
<td>Oro</td>
<td>1,063ºC</td>
</tr>
<tr>
<td>Telurio</td>
<td>453ºC</td>
</tr>
</tbody>
</table>
La poca cantidad de escoria formada se puede considerar a los insolubles presentes (SiO₂, CaO, Al₂O₃, etc.) y los óxidos formados especialmente los trióxidos de antimonio y arsénico. Los gases están constituidos por los productos de la combustión del petróleo y los polvos que lleva por arrastre mecánico.

5.2.2 Productos y materia prima

En los Reverberos de fusión se procesa el slime de cobre y plomo. En la siguiente tabla se da una composición aproximada del metal y la escoria producida:

Cuadro Nº 5-3. Composición de materiales de R-1(%)

<table>
<thead>
<tr>
<th>Elementos</th>
<th>Metal de R-1</th>
<th>Escoria de R-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insolubles</td>
<td>3.000</td>
<td>20.200</td>
</tr>
<tr>
<td>Plomo</td>
<td>15.200</td>
<td>18.200</td>
</tr>
<tr>
<td>Cobre</td>
<td>2.800</td>
<td>0.550</td>
</tr>
<tr>
<td>Plata</td>
<td>15.400</td>
<td>0.660</td>
</tr>
<tr>
<td>Oro</td>
<td>0.019</td>
<td>0.001</td>
</tr>
<tr>
<td>Bismuto</td>
<td>24.000</td>
<td>1.500</td>
</tr>
<tr>
<td>Antimonio</td>
<td>27.600</td>
<td>43.200</td>
</tr>
<tr>
<td>Arsénico</td>
<td>4.400</td>
<td>0.020</td>
</tr>
<tr>
<td>Selenio</td>
<td>0.680</td>
<td>0.020</td>
</tr>
<tr>
<td>Telurio</td>
<td>1.610</td>
<td>0.100</td>
</tr>
</tbody>
</table>

5.3 CONVERSION

Los metales fundidos (la mayoría al estado metálico) para su selectividad son sometidos a un proceso de conversión oxidante, aprovechando las diferentes calores de formación de los óxidos a partir de los elementos presentes. Una clasificación de la tendencia a formar óxidos se puede dar así:
Cuadro Nº 5-4. Proceso de oxidación

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Calcio</td>
<td>8.</td>
</tr>
<tr>
<td>3.</td>
<td>Berilio</td>
<td>10.</td>
</tr>
<tr>
<td>4.</td>
<td>Litio</td>
<td>11.</td>
</tr>
<tr>
<td>5.</td>
<td>Zirconio</td>
<td>12.</td>
</tr>
<tr>
<td>6.</td>
<td>Aluminio</td>
<td>13.</td>
</tr>
<tr>
<td>7.</td>
<td>Titanio</td>
<td>14.</td>
</tr>
<tr>
<td>15.</td>
<td>Arsénico</td>
<td>16.</td>
</tr>
<tr>
<td>17.</td>
<td>Plomo</td>
<td>18.</td>
</tr>
<tr>
<td>19.</td>
<td>Cobre</td>
<td>20.</td>
</tr>
<tr>
<td>21.</td>
<td>Oro</td>
<td></td>
</tr>
</tbody>
</table>

5.3.1 Forma de Moldear el Coopel Feed

- Preparar los moldes en forma alineada, el moldeo se hace desde la taza levantada por la grúa.
- Bañar con agua de cal los moldes, para facilitar el desmoldeo.
- Moldear en forma lenta.
- Enfriar el ambiente.
- Desmoldar, formar rumas, controlar el lote, pesar, queda como stock.

5.3.2 Reconocimiento de Oxidación

Las convertidoras que oxida antimonio o bismuto se reconoce por el color de los gases; un color blanquecino para la oxidación de antimonio y un color naranja para la oxidación de bismuto. Se reconoce que alguna de las etapas de oxidación ha terminado cuando:

Antimonio

En la parte superior de la muestra aparecen fracturas.
Bismuto

La aparición de cristales de plata y su crecimiento nos indica en forma aproximada un 50 %.

5.3.2.1 Oxidación de Antimonio

El metal fundido en los hornos de reverberos, junto con la escoria son cargados a la convertidora más gastada, por medio de la grúa y usando tazas de fierro fundido para su transporte. Una temperatura de 1,000 °C.

La insuflación de aire provoca una turbulencia en el líquido, lo que permite un mayor contacto con el oxígeno del aire con los elementos metálicos presentes. El oxígeno va oxidando de acuerdo a su afinidad por el elemento y el grado de su calor de formación. El de mayor calor de formación se oxidará primero. (Un análisis termodinámico posterior explica esto).

De acuerdo al cuadro Nº 5-4, el orden de oxidación de los elementos es (Kcal/mol.):

$$\begin{align*}
\text{Sn} + \text{O}_2 & \rightarrow \text{SnO}_2 + 138.7 \\
4 \text{As} + 3 \text{O}_2 & \rightarrow 2 \text{As}_2\text{O}_3 + 157.8 \\
4 \text{Sb} + 3 \text{O}_2 & \rightarrow 2 \text{Sb}_2\text{O}_3 + 167.0 \\
4 \text{Sb} + 5 \text{O}_2 & \rightarrow 2 \text{Sb}_2\text{O}_5 + 230.0 \\
4 \text{As} + 5 \text{O}_2 & \rightarrow 2 \text{As}_2\text{O}_5 + 218.5 \\
2 \text{Sb} + 2 \text{O}_2 & \rightarrow \text{Sb}_2\text{O}_4 + 213.0
\end{align*}$$

Todas las reacciones son de carácter exotérmico, es decir con desprendimiento de calor.

El trióxido y pentóxido de arsénico y de antimonio, a la temperatura de trabajo tienden a sublimar, pero, además tenemos que entre estos óxidos hay una tendencia a combinarse para formar el tetróxido, que es estable y se
presenta al estado líquido. Este compuesto tiende a formar una escoria de menor densidad y de una buena fluidez; la misma que fluye y flota en el baño metálico.

Terminada la oxidación de antimonio, de acuerdo al cuadro Nº 5-3, el siguiente elemento en oxidarse es el plomo con un desprendimiento de 52.8 Kcal./mol.

\[
2 \text{ Pb} + \text{ O}_2 \rightarrow 2 \text{ PbO}
\]

5.3.2.2 Oxidación de Bismuto

Es la segunda etapa de oxidación selectiva, el metal descargado de la primera etapa está constituido principalmente por Bi, Pb y Ag, y en proporción los demás elementos. La oxidación se realiza de la misma forma que la etapa anterior. Pero al estar en mayor porcentaje el Bismuto su concentración molar será mayor y por lo tanto reaccionará con mayor velocidad que los demás elementos.

De acuerdo al cuadro Nº 5-3, después de la oxidación del plomo comienza a oxidar el bismuto, de acuerdo a la siguiente reacción (Kcal./mol.)

\[
4 \text{ Bi} + 3 \text{ O}_2 \rightarrow 2\text{Bi}_2\text{O}_3 + 138.0
\]

La oxidación del plomo ayuda a fluidizar la escoria de bismuto, la misma que flota sobre el metal fundido y se retira en forma periódica. En la escoria además acompaña otros elementos oxidados, entre los cuales se cuenta el cobre (Kcal./mol.)

\[
4 \text{ Cu} + \text{ O}_2 \rightarrow 2\text{Cu}_2\text{O} + 40.0
\]
La concentración de cristales de llegar hasta un 50 % de Ag considerándose en este momento como terminada la oxidación.

Productos y Materia Prima:
La materia prima para la oxidación es el metal de Reverbero No. 1 (Ver cuadro Nº 5-4.) y para la segunda oxidación el producto de la anterior oxidación. Seguidamente se da un cuadro de ensayos típicos de los productos de las convertidoras.

Cuadro Nº 5-5.Composición de materiales de convertidoras

<table>
<thead>
<tr>
<th>Elementos:</th>
<th>OXIDACIÓN</th>
<th>OXIDACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metal</td>
<td>Escoria</td>
</tr>
<tr>
<td>Plomo</td>
<td>19.60</td>
<td>0.38</td>
</tr>
<tr>
<td>Cobre</td>
<td>0.23</td>
<td>7.00</td>
</tr>
<tr>
<td>Plata (Onz./TMC)</td>
<td>21.80</td>
<td>51.07</td>
</tr>
<tr>
<td>Oro (Onz./TMC)</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Bismuto</td>
<td>0.15</td>
<td>26.90</td>
</tr>
<tr>
<td>Antimonio</td>
<td>32.90</td>
<td>0.02</td>
</tr>
<tr>
<td>Selenio</td>
<td>0.08</td>
<td>1.15</td>
</tr>
<tr>
<td>Telurio</td>
<td>0.02</td>
<td>5.26</td>
</tr>
</tbody>
</table>

5.3.3 Copelación

Una vez concluida la oxidación selectiva, ya se tiene productos específicos, cada uno de los cuales seguirá procesos diferentes, para la recuperación de los diversos metales presentes. En la oxidación de Bismuto se obtiene: La escoria de Bismuto de convertidora, que servirá de alimentación al horno de reducción; y el metal crudo o coopel feed, que servirá de carga a las copelas en la recuperación de plata.
Seguidamente la descripción respectiva a la recuperación de plata en el sistema de copelación:

La oxidación de las impurezas que acompañan al coope l feed, se realiza a una temperatura de 1,100º C. y durante 4 a 5 días. De acuerdo a la composición del *copel feed* y tomando en cuenta el cuadro Nº 5-4 las reacciones que se realizan son:

Cuadro Nº 5-6. Reacciones según la oxidación de las impurezas

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Reactivo</th>
<th>Productos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb</td>
<td>4 + 3 O₂</td>
<td>2 SbO₃</td>
</tr>
<tr>
<td>Sb</td>
<td>4 + 5 O₂</td>
<td>2 SbO₅</td>
</tr>
<tr>
<td>Pb</td>
<td>2 + O₂</td>
<td>2 PbO</td>
</tr>
<tr>
<td>Cu</td>
<td>4 + O₂</td>
<td>2 CuO</td>
</tr>
<tr>
<td>Bi</td>
<td>2 + 2 O₂</td>
<td>2 Bi₂O₄</td>
</tr>
</tbody>
</table>

De acuerdo a los calores de formación el orden es el que se indica. Una vez que el grado de oxidación ha llegado a un 95% de plata, el aire es insuficiente y poco oxidante para la separación de selenio y telurio, es entonces que se requiere una oxidación con nitrato y carbonato de sodio, que se considera etapa de la copelación.

De los oxidantes usados de debe desprender oxígeno elemental, que es el que va a oxidar al Se y Te. Se puede proponer las siguientes reacciones como las más posibles de realizarse.

4 Se+4NO₃Na+C0₃Na₂ + O₂ → SeO₂ + 4 N0₂+C0₂ + 3SeO₃Na₂

4 Te+ 4N0₃Na+C0₃Na₂ + O₂ → TeO₂ + 4N0₂ + C0₂ + 3TeO₃Na₂

En las reacciones anteriores al oxidante es el oxígeno liberado al reducirse el nitrato de sodio a N0₂, el carbonato permite una
acción más prolongada de este oxígeno. Una vez terminadas las mezclas, se realiza un lavado con nitrato, solo para conseguir una total liberación del telurio.
CAPÍTULO VI
REDUCCIÓN DEL CONTENIDO DE COBRE EN EL PLOMO BULLION

6.1 Definición y fundamento

En El Oroya, el plomo es procesado en fusión en los Hornos de Manga a una temperatura de aproximadamente 1,000 ºC a 950 ºC en equilibrio con una escoria silicatada. A esta temperatura el plomo es un solvente casi universal, y como tal contiene numerosas impurezas provenientes del mineral o concentrado original; entre los cuales se encuentran el Cu, As, Sb, Sn, Bi, Ag, Au, etc.

Cuadro Nº 6-1. % Cu en las camas tratadas

<table>
<thead>
<tr>
<th>Año</th>
<th>% Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>1.70</td>
</tr>
<tr>
<td>2002</td>
<td>1.87</td>
</tr>
<tr>
<td>2003</td>
<td>1.97</td>
</tr>
<tr>
<td>2004</td>
<td>2.05</td>
</tr>
<tr>
<td>2005</td>
<td>2.16</td>
</tr>
<tr>
<td>2006</td>
<td>2.31</td>
</tr>
<tr>
<td>2007</td>
<td>2.18</td>
</tr>
<tr>
<td>2008</td>
<td>1.95</td>
</tr>
</tbody>
</table>
Las reacciones que se producen en la olla de recepción son:

\[
\begin{align*}
2\text{Cu} + \frac{1}{2} \text{S}_2 & \rightarrow \text{Cu}_2\text{S} \quad \Delta G° _{475°C} = -23.7 \text{Kcal.} \\
\text{Pb} + \frac{1}{2} \text{S}_2 & \rightarrow \text{PbS} \quad \Delta G° _{475°C} = -21.6 \text{Kcal.} \\
\text{PbS} + \text{Cu} & \rightarrow \text{Pb} + \text{Cu}_2\text{S} \quad \Delta G° _{475°C} = -2.04 \text{Kcal.}
\end{align*}
\]

La termodinámica indica que el sulfuro cuproso (Cu\(_2\)S) se forma primero, y es ligeramente más estable que el sulfuro plumboso (PbS). El plomo de obra llega a la planta a una temperatura entre 850 °C a 900 °C es recepcionada en ollas de 120 TMS de composición y en la primera etapa se realiza un enfriamiento (generalmente se agrega el Ánodos gastados de refinería) hasta alcanzar un promedio de 500 °C produciéndose una espuma que sobrenada en la parte superior con un contenido promedio de 30% de Cu que se le denomina dross de cobre mediante la técnica denominada como licuación (ordrossing). Además compuestos que tienen alto grado de solubilidad unos en otros y que forman soluciones homogéneas a altas temperaturas y se separan formando una mata sólida (pastosa) que flota el metal líquido restante a medida que el plomo se enfria se separa una solución de Pb – Cu con una gravedad específica alrededor de 9; siendo la gravedad específica del plomo 11.3. El descenso de temperaturas hace que el plomo sea menos fluida, entonces los cristales formados de la solución sólida Pb – Cu denominado dross o espuma, lentamente toma su camino a la superficie, el porcentaje de cobre removido aumenta a medida que decrece el punto final de la temperatura del baño, respecto del eutéctico de la solución Pb – Cu. Luego del enfriamiento con el cual se ha formado aproximadamente 25% de espuma respecto a la carga en la olla, es removido de la superficie de
la olla con una zaranda perforada de 2 TMS de capacidad, movido por
una grúa y simultáneamente cargado al horno reverbero.
Luego de la limpieza del dross el plomo es trasladado a las ollas de
decoperización mediante una bomba vertical para su posterior
tratamiento.

6.2 Decoperizado

6.2.1 Equilibrio Químico

La refinación por separación Metal – Metal consiste en eliminar
las impurezas que pueden ser eliminadas por medio de las
fases metálicas separados.
En el diagrama de fases Pb/Cu el Plomo que viene del Alto
Horno generalmente contiene algo de Cu. Parte de este Cu
puede separarse enfriando simplemente el plomo impuro hasta
una temperatura ligeramente arriba de un punto de fusión. La
presencia de Azufre, arsénico, antimonio o estaño favorecen la
separación del Cu cuando se encuentra con el Plomo crudo,
estos elementos forman compuestos sólidos estables con el
Cobre los cuales se separa del líquido durante el enfriamiento.
El Cobre metálico y los compuestos son ligeros que el plomo
por lo que asciende hacia la superficie y pueden ser
despumados.
Se puede eliminar una mayor cantidad de Cobre que se
encuentra en el Plomo líquido mediante la introducción de un
poco de azufre elemental el cual, a la temperatura en cuestión,
estará abajo del punto de fusión. Al reaccionar con el azufre
elemental, el contenido del Cu del Pb. puede ser mucho menor
que el que se calcula para el equilibrio:

\[
PbS_{(S)} + 2Cu = Cu_2S_{(S)} + Pb
\] (1)
Este fenómeno se explica diciendo que el azufre líquido representa un potencial de azufre mucho mayor que el que se calcula para el equilibrio

\[
Pb + S = PbS(S) \quad (2)
\]

\[
(2-X) \text{Cu} + XS = Cu_{(2-X)}S_{(X)} \quad (3)
\]

proceden hacia la derecha. Parece ser que la rapidez de la reacción (3) es mucho mayor que la de la (2) y que casi se alcanza un cierto equilibrio parcial con azufre elemental para el Cu, pero no para el Pb. Una vez que todo el azufre ha reaccionado o se ha evaporado, el contenido de Cu del Plomo aumentará nuevamente debido a la inversión de la reacción (1) hasta que se establece el equilibrio con el Plomo.

6.2.2 Cinética

En este caso, se hace uso de la reducción de solubilidad de cobre en el plomo al decrecer la temperatura: a medida que el plomo se enfriá, una solución sólida de cristales de PbS – Cu$_2$S se separa, y por su menor peso específico, se eleva a la superficie y flota sobre el baño metálico.

El porcentaje de cobre removido es mayor cuanto más baja sea la temperatura final del plomo, y por estudios teóricos y prácticos, se ha establecido que el rango adecuado de temperatura para un eficiente decoperizado es de 320 – 330 °C.

De acuerdo al diagrama de fases Pb – Cu, la solidificación final ocurre a 326 °C y con un contenido final de 0.04% Cu. Estos
valores son confirmados por consideraciones teóricas según la reacción química siguiente:

\[2 \text{Cu (\% en Pb)} + \text{PbS} = \text{Cu}_2\text{S}_2(s) + \text{Pb}(l) \quad (1) \]

De acuerdo a la ecuación, el cobre se separa como sulfuro de cobre, el cual sobrenada en la superficie del plomo en forma de espuma, al estar en contacto con el aire del ambiente y por la temperatura del proceso, esta espuma se “prende” y se transforma en un polvo negruzco de oxido de cobre la cual debe ser evacuada en cuanto se forme para prevenir la re-disolución del cobre al baño de plomo.

En el cuadro Nº 6-2. se suman los valores finales de cobre a diferentes temperaturas de decoperizado.

Cuadro Nº 6-2. % Cu que varía según la temperatura de decoperizado

<table>
<thead>
<tr>
<th>TEMPERATURA (°C)</th>
<th>%Cu en Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>0.0364</td>
</tr>
<tr>
<td>320</td>
<td>0.0402</td>
</tr>
<tr>
<td>330</td>
<td>0.0443</td>
</tr>
<tr>
<td>350</td>
<td>0.0531</td>
</tr>
<tr>
<td>370</td>
<td>0.0630</td>
</tr>
<tr>
<td>390</td>
<td>0.0741</td>
</tr>
<tr>
<td>410</td>
<td>0.0862</td>
</tr>
</tbody>
</table>

Decoperizado del Plomo con adición de Azufre.- El mecanismo exacto de la reacción involucrada en el tratamiento de azufre del
bullón no es precisamente conocida, a pesar de la simplicidad aparente del proceso.

Las reacciones conocidas son:

Reacciones Principales:

Remoción de Cobre con Azufre Elemental

\[
egin{align*}
2Cu + S & \rightarrow Cu_2S \quad \Delta G_{330^\circ C} = -22,6 \text{ Kcal.} \\
Pb + S & \rightarrow PbS \quad \Delta G_{330^\circ C} = -22,4 \text{ Kcal.} \\
PbS + 2Cu & \rightarrow Cu_2S + Pb \quad \Delta G_{330^\circ C} = -0,14 \text{ Kcal.}
\end{align*}
\]

Reacciones Adicionales:

\[
\begin{align*}
3Cu + As & \rightarrow Cu_3As \\
3Cu + Sb & \rightarrow Cu_3Sb \\
Cu_2O + FeS & \rightarrow Cu_2S + FeO
\end{align*}
\]

Esto es mostrado que en el terreno termodinámico el sulfuro de plomo es el más estable a temperaturas bajo 400 °C.

Considerando la ecuación de equilibrio:

\[
K = \frac{(Cu_2S) \times (Pb)}{(PbS) \times (Cu)^2}
\]

La carga de energía libre para esta reacción a 330°C es +1.5 * 10³ cal/gr. mol. La constante de equilibrio puede ser evaluado:

\[
K = 0.28 = \frac{(Cu_2S) \times (Pb)}{(PbS) \times (Cu)^2}
\]
Aunque la actividad máxima del cobre en el bullion no puede exceder la unidad y la actividad del PbS es aproximadamente la unidad esto continúa para que esta reacción proceda hacia la derecha y la actividad del sulfuro de cobre debe ser considerablemente menor que la unidad. Hasta donde se conoce esto es pequeño, si existe alguna solubilidad del sulfuro de cobre en el sulfuro de plomo, esto parecería que el éxito del tratamiento de azufre puede depender de algún otro factor.

Este análisis es apoyado por los siguientes hechos:

1. Es imposible extraer el cobre del bullón por agitación en sulfuro de plomo a 320 ºC.

2. Si el tratamiento del azufre es llevado a cabo a altas temperaturas, 340 ºC-360 ºC, la extracción del cobre es incompleta, es decir 0.01 hasta 0.03% puede quedar en el bullón.

3. Si un tratamiento efectivo del azufre es llevado a cabo y la temperatura es entonces elevada dentro de la remoción del dross, el contenido de cobre del bullion se incrementará, indicando una reversión de la reacción.

Cuadro Nº 6-2. Influencia del azufre según el contenido de arsénico del bullion.
El cuadro Nº 6-2 nos indica el contenido de cobre vs. arsénico del bullón después del tratamiento del azufre obtenido de los resultados de planta.

Esto muestra que cuando el contenido de arsénico del bullón es bajo alrededor de 0.45% alguna dificultad puede ser esperado en reducir el contenido de cobre del bullón hasta 0.002-0.004% por medio del tratamiento del azufre. Ninguna explicación adecuada de este fenómeno es conocido pero es posible que la presencia de arsénico tiene una marcada influencia en la actividad del cobre en el bullón o quizás algún complejo sulfoarseniuro es formado.

Si 0.1% de azufre es agitado en plomo a 330 °C, el contenido final de cobre puede ser 0.0010 % dentro de 15 – 20 minutos de iniciada la agitación. El azufre debe ser añadido gradualmente y la agitación debe ser adecuada para formar un buen vórtex para promover la reacción. La agitación debe concluir 5 minutos después de completar la adición de azufre y el dross debe ser removido sin elevar la temperatura, de lo contrario el cobre podría redisolverse y elevar el contenido final a 0.01% Cu.

Si el proceso se lleva a temperaturas mayores, como 340 – 360 °C, la extracción de cobre será incompleta, alcanzando valores de 0.01 a 0.03 % Cu en el bullion.

Lograr estos contenidos de cobre en el plomo bullion, ha implicado que los contenidos de cobre en los lodos de plomo están por debajo del 1%, permitiendo un mejor procesamiento de estos lodos en la planta de residuos anódicos, generando menores recirculantes con contenidos de plata en esta planta.

Este procedimiento se ha establecido en la fundición de plomo en forma obligatoria para el proceso de decoperizado.
Resultados obtenidos:

Cuadro Nº 6-3. % Cu en el plomo decoperizado

Cuadro Nº 6-4. % Cu en el lodo anódico
Cuadro Nº 6-4. Costo de procesamiento de 1 TM de Plata a través de los lechos de fusión de plomo

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base, TM Cama seca</td>
<td>1.00</td>
</tr>
<tr>
<td>Costo de Procesamiento de 1 TM de Conc. de plomo, US $</td>
<td>133.12</td>
</tr>
<tr>
<td>Porcentaje de Conc. De Plomo en Cama.</td>
<td>0.68</td>
</tr>
<tr>
<td>Costo de Procesamiento de 1 TM de Cama de plomo</td>
<td>90.52</td>
</tr>
<tr>
<td>Contenido de Plomo en Cama, %</td>
<td>41.00</td>
</tr>
<tr>
<td>Contenido de Plata den Cama, Oz/Tcs</td>
<td>65.00</td>
</tr>
<tr>
<td>Contenido de Plomo en 1 TM de Cama, TM</td>
<td>41.00</td>
</tr>
<tr>
<td>Contenido de Plata en 1 TCS de Cama, OZ</td>
<td>65.00</td>
</tr>
<tr>
<td>Precio de Plomo, $/lb</td>
<td>0.19</td>
</tr>
<tr>
<td>Precio de Plata, $/oz</td>
<td>5.00</td>
</tr>
<tr>
<td>Valorización de Plomo en cama, $</td>
<td>17,176.95</td>
</tr>
<tr>
<td>Valorización de Plata en cama, $</td>
<td>358.15</td>
</tr>
<tr>
<td></td>
<td>17,535.10</td>
</tr>
<tr>
<td>Costo de Procesamiento por Plata, en 1 TM de Cama</td>
<td>1.85</td>
</tr>
<tr>
<td>Costo de Procesamiento por Plomo, en 1 TM de Cama</td>
<td>88.67</td>
</tr>
<tr>
<td>Ag dejada de recircular por menor contenido de Cu en lodos de plomo, Kg</td>
<td>496.00</td>
</tr>
<tr>
<td>Cama de Plomo equivalente a 17 002.88 Oz.</td>
<td>261.58</td>
</tr>
<tr>
<td>Ahorro costo de Procesamiento, Fundición</td>
<td>483.64</td>
</tr>
<tr>
<td>Costo de Refinación de Ag, $/oz</td>
<td>0.49</td>
</tr>
<tr>
<td>Ahorro por costo de Procesamiento, Refinería</td>
<td>8,331.41</td>
</tr>
<tr>
<td>Ahorro total por menor recirculación de 496 Kg de Plata. US $</td>
<td>8,815.05</td>
</tr>
<tr>
<td>Valorización de la Plata no recirculada/mes</td>
<td>85,014.40</td>
</tr>
<tr>
<td>Ahorros por Costos financieros, $/mes</td>
<td>995.94</td>
</tr>
<tr>
<td>Consumo de Azufre/1 TM, Kg</td>
<td>0.25</td>
</tr>
<tr>
<td>Producción (envío) de Bullion/mes, TM</td>
<td>19,000.00</td>
</tr>
<tr>
<td>Consumo de Azufre mensual, Kg</td>
<td>4,750.00</td>
</tr>
<tr>
<td>Precio de Azufre, $/Kg</td>
<td>0.33</td>
</tr>
<tr>
<td>Costo de Azufre usado/mes, $</td>
<td>1,567.50</td>
</tr>
<tr>
<td>Ahorro Neto mensual por el Doble decoperizado</td>
<td>8,243.48</td>
</tr>
<tr>
<td>Ahorro Neto Anual por el Doble decoperizado</td>
<td>98,921.80</td>
</tr>
</tbody>
</table>
Cuadro Nº 6-5. Proceso de decoperización del plomo

Pb. de Hornos

Recepción a 1000 °C

Plomo

1er Drosado 500 – 600 °C

Anodos gastados

Plomo

Dross

Coque fino Na₂CO₃

1er Decoperizado 330 °C

Plomo (0.03 - 0.07% Cu)

Azufre

2do decoperizado 330°C

Plomo (0.001 – 0.005% Cu)

Dross de Azufre

Reverbero

Plomo

Mata y Speiss

Circuito de Cobre

Polvo decoperizado
CONCLUSIONES

- Para una eficiente eliminación de cobre por el tratamiento de azufre es necesario que el bullion contendrá alrededor de 0.4% de arsénico después del drossado, aunque se sugiere que el arsénico sea eliminado en el horno.

- El azufre sumado al contenido de arsénico del bullón en exceso de 0.1% sería equivalente hasta o ligeramente alto que el contenido de cobre para minimizar la formación de antimoníuro de cobre en el dross y en consecuencia en el speiss.

- La formación del Cu$_2$S no responde a los criterios de equilibrio químico, y por tanto puede ser revertida por condiciones mecánicas (agitación).

- El cobre en el plomo bullón puede ser reducido a niveles menores al límite de solubilidad (0.046%), con adición de azufre elemental en presencia de agitación a temperaturas cercanas al punto de fusión de plomo (320°C).

- El antimonio y bismuto no muestran influencia en la remoción de cobre por agitación con azufre, a pesar de presentar altas concentraciones en el material empleado (Sb: 2.0% y Bi: 0.87%).

- La técnica operativa descrita, garantiza una concentración de cobre menor a 20 ppm en el plomo bullón e inferior a 1.0% en los lodos anódicos de plomo, que permita elevar la recuperación de metales valioso.

- Si el tratamiento del azufre es llevado a cabo a altas temperaturas, 340 – 360 ºC, la extracción del cobre es incompleta, es decir 0.01 hasta 0.03% puede quedar en el bullón.
BIBLIOGRAFÍA