DISEÑO DEL SISTEMA DE AGUA DE ENFRIAMIENTO PARA LA REFINERÍA DE ZINC DE CAJAMARQUILLA - VOTORANTIM

INFORME DE SUFICIENCIA

PARA OPTAR EL TÍTULO PROFESIONAL DE:
INGENIERO MECÁNICO-ELECTRICISTA

JOSÉ WALTER GUZMÁN CHÁVEZ
PROMOCION 1990 - II

LIMA-PERÚ
2012
ÍNDICE

PRÓLOGO ... iv

CAPÍTULO 1.- INTRODUCCIÓN ... 1
 1.1 Antecedentes .. 1
 1.1.1 Ubicación de la refinería ... 2
 1.1.2 Principales áreas existentes ... 3
 1.1.3 Descripción del sistema existente .. 4
 1.2 Objetivo .. 5
 1.3 Justificación ... 6
 1.4 Alcance ... 6

CAPÍTULO 2.-FUNDAMENTO TEÓRICO DEL SISTEMA DE BOMBEO 9
 2.1 Definiciones y términos comúnmente usados .. 9
 2.2 NPSH y cavitation en bombas centrífugas .. 22
 2.3 Clasificación de bombas centrífugas ... 24
 2.3.1 Según la trayectoria del fluido en el interior del impulsor: 24
 2.3.2 Por su aplicación: .. 25
 2.4 Tipos de bombas centrífugas ... 25
 2.4.1 Bombas con impulsor en voladizo .. 25
 2.4.2 Bombas con impulsor entre rodamientos ... 25
 2.4.3 Bombas tipo turbina ... 26
 2.5 Selección de una bomba centrífuga .. 26
2.6 Cálculo de la potencia de bombeo ...31
 2.5.1 Altura dinámica total (TDH) ...32
2.7 Características de las bombas verticales ...33
2.8 Comportamiento de bombas trabajando en paralelo o en serie34
 2.8.1 Bombas en paralelo ...35
 2.8.2 Bombas en serie ..35

CAPÍTULO 3.-DISEÑO DEL SISTEMA DE BOMBEO ..38
3.1 El área de ingeniería ...38
3.2 Secuencia de trabajo en el diseño del sistema de bombeo43
3.3 Determinación de los requerimientos de agua de enfriamiento50
3.4 Determinación del caudal y presión ..52
3.5 Determinación de la cantidad de bombas ..56
3.6 Cálculo de las bombas y motores requeridos ...57
3.7 Componentes del sistema de agua de enfriamiento60
3.8 Uso del pdms como herramienta de diseño ..61
3.9 Diseño de la estación de bombas – arreglos mecánicos67
3.10 Selección del material de las tuberías, accesorios y válvulas69
3.11 Diseño de los arreglos mecánicos de tuberías ..69
3.12 Planos y documentos de la estación de bombeo ..73
3.13 Estimación previa del costo del sistema de bombeo73
3.14 Estructura de las oficinas de ingeniería de detalle para el proyecto 320k74

CAPÍTULO 4.-ADQUISICIÓN DE EQUIPOS ..76
4.1 Bombas y motores ...76
 4.1.1 Documentos para la cotización ...77
4.1.2 Listado de proveedores .. 77
4.1.3 Cotización ... 78
4.1.4 Evaluación de equipos .. 78
4.1.5 Recomendación de compra ... 79

4.2 Tuberías y accesorios ... 79
4.2.1 Documentos para la cotización .. 79
4.2.2 Listado de proveedores .. 80
4.2.3 Cotización de tuberías y accesorios .. 80
4.2.4 Evaluación .. 81
4.2.5 Recomendación de compra ... 81

4.3 Válvulas ... 81
4.3.1 Documentos para la cotización .. 82
4.3.2 Listado de proveedores .. 82
4.3.3 Cotización .. 82
4.3.4 Evaluación de válvulas .. 83
4.3.5 Recomendación de compra ... 83

CAPÍTULO 5.-COSTO DE LOS EQUIPOS .. 85
5.1 Bombas y motores ... 85
5.2 Tuberías, accesorios y válvulas ... 85

CONCLUSIONES ... 88
RECOMENDACIONES ... 89
MATERIAL DE REFERENCIA .. 90
PLANOS .. 92
ANEXOS .. 93
PRÓLOGO

El presente informe trata sobre el diseño del sistema de bombeo de agua de enfriamiento para la refinería de Cajamarquilla, que atiende a los nuevos servicios en la ampliación de la refinería, de 160 000 toneladas a 320 000 toneladas de producción de zinc refinado al año, y que fue denominado proyecto 320K. Este proyecto fue diseñado entre los años 2007 y 2008, y construido y puesto en marcha entre los años 2008 y 2010. A la fecha el sistema está funcionando conforme al diseño original materia de este informe.

En este documento se tratan todos los principales aspectos referidos al cálculo del sistema hidráulico, teniendo como base la información existente antes de realizado el proyecto, los requerimientos del sistema, los criterios de diseño y especificaciones del proyecto 320K, y la información de los equipos a instalar. Además se mostrarán la secuencia en el diseño mecánico del sistema y los programas de cálculo y diseños utilizados para este propósito.

En el primer capítulo se muestran los antecedentes, ubicación de la planta, estado del sistema de bombeo de agua de enfriamiento anterior al proyecto 320K, y los principales requerimientos para el nuevo sistema.

El segundo capítulo trata del al sustento teórico para el diseño del nuevo sistema de agua de enfriamiento, basado principalmente en los criterios de diseño de tuberías,
en los conceptos de mecánica de fluidos, en la Ecuación de Darcy-Weisbach, para el cálculo de pérdidas en las tuberías y en el empleo del Software AFT FATHOM 4.0.

En el tercer capítulo se aborda el diseño del sistema de bombeo, utilizando la metodología de una oficina de ingeniería. Se describe el trabajo de las cinco disciplinas de ingeniería usualmente encontradas en este tipo de proyecto, y las coordinaciones entre las disciplinas y el cliente. Se describen los objetivos específicos del diseño del sistema de bombeo de agua de enfriamiento, tales como: el requerimiento de agua de enfriamiento; los materiales a emplear; la definición de los caudales de diseño, el cálculo hidráulico utilizando el software especializado Fathom. Adicionalmente se describe el procedimiento utilizado para la selección de bombas, motores, tuberías y accesorios y la elaboración de los arreglos mecánicos y de tuberías utilizando el programa de diseño PDMS.

El cuarto capítulo trata de los aspectos relacionados a la adquisición de los equipos, accesorios y válvulas. Además se muestran los procesos de elaboración de los expedientes técnicos, la cotización, la evaluación de equipos y la compra a cargo del cliente.

Finalmente, en el quinto capítulo se muestran los costos del proyecto, referidos exclusivamente a la estación de bombeo, a sus elementos mecánicos, tuberías, válvulas y accesorios. No se incluyen los costos relacionados con el área civil, el área eléctrica y de instrumentación. No se consideran los costos del montaje y/o la construcción.
1.1 ANTECEDENTES

Votorantim Metais Cajamarquilla SA (VM-CJM) realizó la ampliación de la capacidad de la refinería de zinc, desde 160 000 toneladas de zinc refinado por año (proyecto 160K) a 320 000 toneladas por año (proyecto 320K). El proyecto fue otorgado a la consultora internacional AMEC, que tiene oficinas en el Perú y que se encargó de la ingeniería de detalle, la compra de equipos y la gerencia de la construcción del proyecto. Este tipo de proyecto se denomina EPCM (Engineering, Procurement and Construction Management). El desarrollo de la ingeniería de detalle empezó en el año 2006 y la construcción y puesta en marcha del proyecto finalizó con éxito en el año 2010, con una inversión aproximada de 480 000 000 dólares americanos.

La refinería inicia sus operaciones en el año 1983 con una capacidad de producción de 90 000 toneladas por año, y tiene sucesivas ampliaciones hasta el año 2008, en el cual se culminan las obras de ampliación a una capacidad de 160 000 toneladas por año de zinc refinado (160K).

Para el proyecto 320K se ejecutaron importantes trabajos en las diferentes plantas de la refinería, duplicando la capacidad de varias de ellas y ampliando
considerablemente la capacidad en otras. Entre las ampliaciones de la refinería ejecutadas, se encuentran principalmente:

- El nuevo horno calcinador (área 25)
- La nueva planta de ácido sulfúrico (área 35)
- La ampliación de la planta de lixiviación (área 40)
- La ampliación de la planta de purificación (área 50)
- La ampliación de las torres de enfriamiento de solución pura (área 55)
- La nueva casa de celdas (área 75)
- La ampliación de la planta de fundición (área 81)
- La instalación de un nuevo turbo-generador (área 92)
- Un nuevo circuito de agua de enfriamiento (área 93)
- La ampliación de la casa de compresores (área 94)

Todas las instalaciones antes mencionadas utilizan agua de enfriamiento para su operación, considerándose a este sistema, como un servicio que atiende a las plantas referidas.

El trabajo de ingeniería se focaliza en el diseño del nuevo circuito de agua de enfriamiento (área 93) y que atiende principalmente a las nuevas instalaciones del proyecto 320K.

1.1.1 Ubicación de la refinería

La refinería de zinc de Cajamarquilla está ubicada en la localidad de Cajamarquilla, del distrito de Lurigancho, en la provincia de Lima, a 22 km de Lima y 37 km al este del puerto del Callao en Perú.
La elevación de la planta está sobre los 45° m.s.n.m., altitud 12° y longitud 77° y está a 6,5 Km de la carretera central y al final de la autopista Ramiro Prialé en Huachipa. La planta también es servida por un ramal del Ferrocarril Central de la ruta Lima- La Oroya y que también llega al puerto del Callao. La figura N° 1.1 muestra la ubicación general de la refinería de Cajamarquilla.

Figura N° 1.1 Ubicación de la refinería de Cajamarquilla - **Fuente:** Exposición de trabajo en Cajamarquilla

1.1.2 Principales áreas existentes

Las principales áreas de la refinería existentes antes del proyecto 320K y que requieren agua de enfriamiento son:

- El horno de calcinaRoaster (área 20)
• La planta de ácido sulfúrico (área 30)
• El área de lixiviación (área 40)
• El área de purificación (área 50)
• Las casas de celdas (áreas 70 y 73)
• Fundición y moldeo (área 81)
• Área de turbo-generador (área 92)
• La sala de compresores (área 94).

1.1.3 Descripción del sistema existente

La refinería de zinc, hasta antes de la ampliación, era atendida por un solo circuito de agua de enfriamiento compuesto por cuatro (4) bombas existentes y que tienen una capacidad de bombeo de 4 560 m³/h. Además son parte importante del sistema, las torres de enfriamiento.
existentes, las tuberías que recorren la refinería, la reposición de agua de enfriamiento, el drenaje de agua con sedimentos y los sistemas auxiliares tales como la adición de reactivos y anti-incrustantes, los sistemas de bombeo auxiliares, los sistemas de emergencia, entre otros. Antes de la ejecución del proyecto 320K existía solamente un anillo principal de agua que recorre toda la refinería, con una tubería de suministro de agua de enfriamiento y sus ramales hacia cada planta dentro de la refinería. Una tubería de retomo recoge todas las ramificaciones antes señaladas después de atender a cada planta y retorna el agua de enfriamiento hacia las torres de enfriamiento.

El anillo existente, que se mantiene después del proyecto 320K, tiene a la salida de las bombas una tubería de 800 mm de diámetro y que va disminuyendo su diámetro conforme va abasteciendo de agua a las diversas plantas de la refinería hasta disminuir en su tramo final en una tubería de 12”. En el retorno existe una tubería paralela a la tubería de agua de suministro y que llega a las torres de enfriamiento en un diámetro de 800 mm. Ambas tuberías son de iguales características. Cabe señalar que el proyecto inicial fue desarrollado por una empresa europea y las tuberías fueron diseñadas e instaladas según norma DIN.

1.2 OBJETIVO

Diseñar el sistema de bombeo de agua de enfriamiento para las instalaciones de la refinería de zinc, en el proyecto de ampliación de 160 000 a 320 000 toneladas de producción de refinado de zinc al año.
1.3 JUSTIFICACIÓN

El proyecto 320k implica la instalación de nuevas plantas dentro de la refinería. Estas plantas al igual que las plantas existentes antes del proyecto 320k, necesitan de agua de enfriamiento para su funcionamiento y por lo tanto debe diseñarse una nueva estación de bombeo de agua de enfriamiento.

Las principales nuevas áreas de la refinería que necesitan ser suministradas con agua de enfriamiento para el proyecto 320K son:

- La nueva planta de ácido sulfúrico (área 35)
- El nuevo horno de calcina Roaster (área 25)
- La nueva casa de celdas (área 75)
- La ampliación de la planta de fundición y moldeo(área 81)
- La ampliación del área de lixiviación (área 40)
- La instalación del nuevo turbo-generador (área 92)
- otros menores

1.4 ALCANCE

El alcance de este informe se centraliza en el cálculo de las nuevas bombas de agua de enfriamiento, el arreglo mecánico de la estación de bombeo y el diseño mecánico de las tuberías en la estación de bombeo. Todo esto de acuerdo a los estándares de un proyecto de ingeniería de detalle para el sector minero y utilizando programas de cálculo y de diseño.
Se adjuntan los documentos y planos necesarios para la ejecución de las obras mecánicas, la instalación de las tuberías y la información técnica para la compra de las bombas, tuberías, válvulas y accesorios.

Figura N° 1.3 Vista en PDMS de la refinería de Cajamarquilla – Proyecto 320K
Fuente: AMEC –Ingeniería del proyecto 320 K

Se realizó coordinaciones con los ingenieros civiles, eléctricos e instrumentistas para elaborar los planos respectivos, así como la supervisión de las obras realizadas. Se adjuntan los planos y documentos desarrollados por estas disciplinas para un mejor entendimiento del proyecto.
No se incluyen en el informe los cálculos y documentación detallada de las disciplinas civil, eléctrica e instrumentación. No se muestran costos del montaje y/o la construcción que el sistema de bombeo requiere.
2.1 DEFINICIONES Y TÉRMINOS COMÚNMENTE USADOS

a) **Altura:** La presión en cualquier punto del líquido se puede pensar que es causada por una columna vertical del líquido, que debido a su peso, ejerce una presión equivalente en el punto en cuestión. La altura de esta columna se llama altura estática y es expresada en metros de líquido. La altura estática correspondiente a una presión específica es dependiente del peso del líquido de acuerdo a la siguiente fórmula:

\[
\text{Altura (pies)} = \frac{\text{Presión (psi)} \times 2.31}{\text{gravedad específica}}
\]

\[\text{[2.1]}\]

\[
\text{Altura (metros)} = \frac{\text{Presión (kPa)}}{\text{gravedad específica \times 9,81}}
\]

\[\text{[2.2]}\]

Una bomba centrífuga imparte velocidad al líquido. Esta energía de velocidad es transformada en gran parte en energía de presión mientras que el líquido sale de la bomba. Por lo tanto la altura desarrollada es aproximadamente igual a la energía de velocidad en la periferia del impulsor. Esta relación es expresada por la siguiente fórmula:
\[H = \frac{V^2}{2g} \] \[\text{[2.3]} \]

Donde:

H: altura total en pies
V: velocidad de la periferia del impulsor en pies/s
g: 32.2 pies/s²

También

H: altura total en metros
V: velocidad de la periferia del impulsor en m/s
g: 9,81 m/s²

Nosotros podemos predecir aproximadamente la altura de cualquier bomba centrífuga calculando la velocidad periférica del impulsor y sustituyendo en la fórmula arriba mencionada. Una fórmula práctica para la velocidad periférica es:

\[V = \frac{RPM \times D}{229} \] \[\text{[2.4]} \]

D: diámetro del impulsor en pulgadas
V: velocidad en pies/s

\[V = \frac{RPM \times D}{19078.45} \] \[\text{[2.5]} \]

D: diámetro del impulsor en milímetros
V: velocidad en m/s
Lo anteriormente mostrado demuestra porque debemos expresar la presión en términos de altura de líquido y no de presión cuando nos referimos a bombas centrífugas. Una bomba con un diámetro de impulsor definido y una velocidad establecida levantará un líquido a una cierta altura sin tener en cuenta el peso del líquido, según se muestra en la figura Nº 2.1

Figura Nº 2.1 Bomba centrífuga con fluidos de diferentes densidades
Fuente: GouldsPump - Manual de selección de bombas

Todas las formas de energía que involucran un sistema de flujo líquido puede expresarse en términos de metros de líquido. El total
de estas diferentes alturas determina la altura total del sistema o el trabajo que la bomba va a realizar en el sistema.

b) **Succión negativa:** Se denomina que una bomba tiene succión negativa cuando la superficie de la fuente de abastecimiento está debajo del centro de la línea de la bomba. Así la altura estática de succión negativa es la distancia vertical de la línea central de la bomba al nivel libre del líquido a bombear tal como se muestra en la figura N° 2.2

![Figura Nº 2.2 Bomba centrífuga con succión negativa](image)

Fuente: GouldsPump - Manual de selección de bombas

c) **Succión positiva:** Se denomina que una bomba tiene succión positiva cuando la superficie de la fuente de abastecimiento está sobre la línea central de la bomba. Así la altura estática de succión
positiva es la distancia vertical de la línea central de la bomba al nivel libre del líquido a bombear tal como se muestra en figura Nº 2.3

\[\text{Figura Nº 2.3 Bomba centrífuga con succión positiva}
\]
\[\text{Fuente: GouldsPump - Manual de selección de bombas}\]

d) **Altura estática de descarga:** Es la distancia vertical de la línea de la bomba y el punto de descarga libre o de la superficie del líquido en el tanque de descarga cuando la tubería descarga dentro del tanque.

e) **Altura estática total:** Es la distancia vertical entre el nivel libre de la superficie de abastecimiento y el punto de descarga libre o la superficie del líquido en el tanque cuando la tubería descarga dentro del tanque.
f) **Altura de fricción:** Es la altura requerida para vencer la resistencia del flujo en la tubería y accesorios. La fricción depende de los materiales y cantidades de la tubería y accesorios, el caudal, la naturaleza del líquido, estado de mantenimiento de la tubería, temperatura, entre otros.

g) **Altura de velocidad:** Es la energía del líquido como resultado del movimiento a una cierta velocidad \(V \). También se puede definir como la altura necesaria para acelerar el agua a cierta velocidad y puede ser calculada mediante la siguiente relación:

\[
H_v = \frac{v^2}{2g}
\]

donde:
- \(H_v \): altura total en metros
- \(v \): velocidad de la periferia del impulsor en \(m/s \)
- \(g \): 9,81 \(m/s^2 \)

La altura de velocidad no se considera en los cálculos, cuando el valor con respecto a la altura o a la fricción es pequeño, sin embargo puede ser un factor grande y debe ser considerada en sistemas de baja altura.

h) **Altura de presión:** Debe ser considerado cuando el sistema de bombeo comienza o termina en un tanque, el cual está a una presión diferente al de la atmósfera. La presión en el tanque primero debe
ser convertida a metros de líquido. Un vacío en el tanque de succión o una presión positiva en el tanque de descarga deber agregar altura al sistema, mientras que una presión positiva en el tanque de succión o vacío en el tanque de descarga debe restar altura al sistema.

i) **Altura dinámica de succión negativa:** Es la altura estática de succión negativa menos la altura de velocidad en la entrada de succión de la bomba más la altura de fricción en la línea de succión.

j) **Altura dinámica desucción positiva:** Es la altura estática de succión positiva más la altura de velocidad en la entrada de succión de la bomba menos la altura total de la fricción en la línea de succión.

k) **Altura dinámica en la descarga:** Es la altura estática de descarga más la altura de velocidad en la salida de la bomba más la altura total de fricción en la línea de descarga.

l) **Altura dinámica total:** Es la altura dinámica en la descarga menos la altura dinámica de succión positiva o más la altura dinámica en el caso de succión negativa.

m) **Capacidad:** Normalmente expresada en galones por minuto (GPM) o en m^3/h, expresa el volumen en unidad de tiempo que la bomba puede desplazar a un fluido. Existe una relación directa entre el área interna de la tubería y la velocidad de flujo, esta relación es como sigue:

$$H = 449 \times A \times V$$ [2.7]
donde:

A: Área de la tubería en pies2

v: velocidad del flujo en pies/s

Q: Capacidad en GPM

\[H=449 \times A \times v \] \hspace{1cm} [2.8]

donde:

A: Área de la tubería en m2

v: velocidad del flujo en m/s

Q: Capacidad en m3/h

n) **Potencia y eficiencia:** El trabajo realizado por una bomba es una función de la cabeza total y del peso del líquido bombeado en un período dado. La capacidad de la bomba en GPM o en m3/h y la gravedad específica del líquido se utiliza normalmente en las formulas, en vez del peso real del líquido bombeado.

En la entrada de la bomba, la potencia al freno (BPH) es la potencia real entregada al eje de la bomba. En la salida de la bomba, la potencia hidráulica (WHP), es la potencia entregada por la bomba al líquido. Estos dos términos son definidos por las siguientes formulas:

\[WHP = \frac{Q \times T D H \times g.e.}{3960} \] \hspace{1cm} [2.9]

\[BHP = \frac{Q \times T D H \times g.e.}{3960 \times \eta} \] \hspace{1cm} [2.10]
donde:

Q: caudal en GPM
TDH: altura total en pies
g.e: gravedad específica del fluido
η: eficiencia de la bomba

La potencia al freno en la entrada de la bomba es mayor que la potencia hidráulica en la salida de la bomba debido a las pérdidas mecánicas e hidráulicas de la bomba. Por lo tanto la eficiencia de la bomba es el cociente de estos dos valores.

\[\eta = \frac{W_{PH}}{B_{PH}} = \frac{Q \times TDH \times g.e.}{3960 \times B_{PH}} \] \[\text{[2.11]} \]

0) Velocidad específica: La velocidad específica (NS) es un índice no dimensional de diseño usado para clasificar los impulsores de las bombas en cuanto a su tipo y dimensiones. La siguiente fórmula es usada para determinar la velocidad específica.

\[N_s = \frac{N \times (Q)^{1/2}}{(H)^{3/4}} \] \[\text{[2.12]} \]

donde:

N: velocidad de la bomba en RPM
Q: Capacidad en GPM en el punto de mejor eficiencia
H: gravedad específica del fluido
η: Cabeza total en pies por etapa en el punto de mejor eficiencia
La velocidad específica determina la forma y clase del impulsor, según lo descrito en la figura N°2.4. Con el incremento de la velocidad específica el cociente de los diámetros D2/D1 decrece hasta llegar a 1 para impulsores de flujo axial.

![Diagrama de tipos de impulsor]

Figura N° 2.4 Tipos de impulsor

Fuente: GouldsPump - Manual de selección de bombas

p) **Curvas características:** La performance de una bomba centrífuga se puede mostrar en una gráfica denominada curva característica, la cual muestra la altura de elevación dinámica; el caudal; la potencia al freno; la eficiencia; el NPSRHR y el diámetro del impulsor. Una típica curva característica dada por el fabricante para distintos tamaño de impulsor se muestra en el figura N° 2.5.

q) **Curvas del sistema:** Un “sistema” es el conjunto de tuberías, válvulas, accesorios, instrumentos de control y medición, que forman parte de la instalación de un sistema hidráulico alimentado por una o más bombas centrífugas.
Cuando se analiza un sistema en particular, con el propósito de seleccionar una bomba o un grupo de bombas, se debe calcular con precisión la resistencia al flujo del líquido que presenta el sistema completo a través de todos sus componentes (tuberías, válvulas y accesorios).

La curva del sistema es una representación gráfica de la resistencia total del sistema, que son la suma de cargas fijas y variables y tiene mucho uso en la selección de las bombas.

Figura Nº 2.5 Curvas características de una bomba centrífuga
Fuente: Universidad Tecnológica de Panamá- Monografía
Ley de afinidad: Las leyes de afinidad expresan la relación matemática entre las variables que implican el funcionamiento de la bomba. Se aplican a todos los tipos de bombas de flujo centrífugo y axial. Las leyes son las siguientes:

Manteniendo constante el diámetro del impulsor:

\[
\frac{Q_1}{Q_2} = \frac{N_1}{N_2} \tag{2.12}
\]

\[
\frac{H_1}{H_2} = \frac{[N_1]^2}{[N_2]^2} \tag{2.13}
\]

\[
\frac{BHP_1}{BHP_2} = \frac{[N_1]^3}{[N_2]^3} \tag{2.14}
\]

En el figura N° 2.6 se muestra el comportamiento de la altura de bombeo respecto a la velocidad de rotación de la bomba.

Figura N° 2.6 Curvas de una bomba centrífuga a diferentes velocidades
Fuente: Universidad Tecnológica de Panamá - Monografía
Manteniendo constante el diámetro del impulsor:

\[\frac{Q_1}{Q_2} = \frac{D_1}{D_2} \] \hspace{1cm} [2.15]

\[\frac{H_1}{H_2} = \left(\frac{D_1}{D_2}\right)^2 \] \hspace{1cm} [2.16]

\[\frac{BHP_1}{BHP_2} = \left(\frac{D_1}{D_2}\right)^3 \] \hspace{1cm} [2.17]

Donde:

Q : Caudal
H : Altura total
BHP: Potencia al freno
N: velocidad de la bomba
D: Diámetro del impulsor

Cuando el funcionamiento (Q1, H1, BHP1) es conocido a una velocidad particular (N1) o diámetro (D1), las formulas se pueden utilizar para estimar el funcionamiento (Q2, H2, BHP2) a una cierta velocidad N2 o diámetro de impulsor D2. La eficiencia es casi constante para los cambios de velocidad y para los cambios pequeños de diámetro del impulsor.

Los fabricantes de bombas elaboran las curvas características de cada bomba en particular y en estos gráficos se puede ver como cambia la eficiencia de acuerdo al diámetro de impulsor seleccionado. Las formulas anteriores son teóricas y aproximan resultados, sin embargo en la práctica deberá consultarse las curvas de la bomba en estudio.
2.2 NPSH Y CAVITACIÓN EN BOMBAS CENTRÍFUGAS

Se define el NPSH (cabeza neta de succión positiva) como la cabeza de succión total en metros absolutos, determinada en la boquilla de succión y corregida a referencia, menos la presión del líquido en metros absolutos.

Enunciado en forma simple, es un análisis de las condiciones de energía en el lado de succión de una bomba para determinar si el líquido se vaporizará en el punto más bajo de la presión en la bomba.

Durante la operación de la bomba centrífuga no debe permitirse que la presión en cualquier punto de la bomba caiga por debajo de la presión de vapor del líquido a la temperatura de bombeo. Debe haber siempre suficiente energía en la succión de la bomba para conseguir que el fluido ingrese al impulsor venciendo las pérdidas entre la brida de succión y la entrada al impulsor. Deberemos diferenciar los dos valores de NPSH que se consideran
en el campo de las bombas centrífugas NPSH disponible y NPSH requerido. El NPSH requerido es inherente a cada bomba y el NPSH disponible es de acuerdo al sistema en el cual se va a instalar la bomba.

Si no hay suficiente presión de succión para cumplir con el NPSH requerido de la bomba, entonces la presión del líquido se reduce a una presión igual o menor que la presión de vapor y el líquido empieza a formar pequeñas burbujas de vapor. A este fenómeno se conoce como cavitación de la bomba y es muy perjudicial pues causa daños al impulsor y otros elementos de la bomba.

![Figura Nº 2.8:Diferentes configuraciones de succión para una bomba centrífuga](image)

Fuente: GouldsPump - Manual de selección de bombas

PB = Presión barométrica absoluta en pies.
2.3 CLASIFICACIÓN DE BOMBAS CENTRÍFUGAS

Existen diversas clasificaciones de las bombas centrífugas. Entre las principales tenemos:

2.3.1 Según la trayectoria del fluido en el interior del impulsor:

a) Flujo radial. El movimiento del fluido se inicia en un plano paralelo al eje de giro del impulsor de la bomba y termina en un plano perpendicular a este. Estas bombas pueden ser horizontales o verticales.

b) Flujo axial. La dirección del fluido en el impulsor es en forma axial y alrededor del eje de giro del impulsor de la bomba, sin tener cambios de dirección. Estas bombas desarrollan su carga por la acción de un impulso o elevación de los álabes sobre el líquido y usualmente son bombas verticales de un solo paso.

c) Flujo mixto. El movimiento del fluido dentro del impulsor se desarrolla en tres direcciones: tangencial, radial y axial al eje de giro del impulsor de la bomba. Estas bombas desarrollan su carga
parcialmente por fuerza centrífuga y parcialmente por el impulso de los álalbes sobre el líquido.

2.3.2 Por su aplicación:
 a) Para procesos químicos
 b) Para procesos de pulpas en la industria papelera
 c) Para procesos API
 d) Multi-etapas
 e) Para minería
 f) Turbinas verticales

2.4 TIPOS DE BOMBAS CENTRÍFUGAS

Los tipos de bombas centrífugas según su construcción son:

2.4.1 Bombas con impulsor en voladizo
 En estas bombas el impulsor es montado en el extremo de la flecha, transmitiendo en su operación una fuerza y un momento cantiléver sobre el (los) rodamientos de la bomba.

2.4.2 Bombas con impulsor entre rodamientos
 En estos equipos los rodamientos están situados en los extremos, los cuales soportan la flecha con el impulsor o impulsores, según sea de un paso o multipaso respectivamente.
2.4.3 Bombas tipo turbina

Es una bomba vertical para servicio en pozos o cárcamos, donde el nivel del líquido sobrepasa la altura de succión de las bombas horizontales. Estas bombas por lo general se construyen con lubricación por aceite, o por el mismo fluido bombeado (auto lubricadas) con tazones o difusores lo cual la hacen conveniente para construcciones multi-etapas.

2.5 SELECCIÓN DE UNA BOMBA CENTRÍFUGA

En este momento, ya es claro el comportamiento individual y por separado, del sistema y de la bomba. Ahora el trabajo consiste en hacer una buena selección de la bomba, según los requerimientos del proceso (principalmente, cabeza y caudal requerido).

Hay que hacer especial claridad y énfasis en que; una bomba centrífuga siempre tratará de operar en el punto donde su curva característica se intercepte con la curva característica del sistema (Figura Nº.2.9).

![Diagrama de comportamiento conjunto: sistema-bomba-Punto de operación](image.png)

Figura Nº 2.9 Comportamiento conjunto Sistema – bomba- Punto de operación

Fuente: Richard Widman y Omar Linares–Bombas y compresores
El paso siguiente es la selección de la bomba, para esto se debe tener en cuenta dos aspectos primordiales:

a) Cumplir con $H_{\text{Requerido}} \approx H_{\text{BEP}}$ y $Q_{\text{Requerido}} \approx Q_{\text{BEP}}$

b) Buscar una bomba que los valores de cabeza y caudal en su BEP, coincidan ó sean similares a la cabeza y caudal requeridos por el proceso, y

c) Buscar una bomba la cual tenga una curva cabeza-caudal (H-Q), cuya característica pueda cumplir los posibles rangos de operación para satisfacer el proceso.

El primer punto anterior no es mucho lo que nos puede decir sobre el tipo de bomba a utilizar, dado que varias bombas, de varios tipos, pueden tener un BEP que se acerque al requerido por el proceso. Pero al tener conocimiento sobre el rango de trabajo que requiere el proceso, toma sentido el segundo punto anterior, dado que buscaríamos una bomba que satisfaga las necesidades pertinentes.

A continuación se presentaran tres curvas con características H-Q muy diferentes, con los mismos valores de cabeza y caudal para el BEP. (Ver Figuras Nº 2.10; 2.11 y 2.12)
Figura N° 2.10. Curvas características de una bomba flujo Radial.

Fuente: Universidad Mayor de San Simón – Manual del ingeniero Químico

Figura N° 2.11. Curvas características de una bomba de flujo Mixto.

Fuente: Universidad Mayor de San Simón – Manual del ingeniero Químico
Cada una de las tres bombas anteriores cumplen a cabalidad el primer aspecto a tener en cuenta en la selección de la bomba. Como se mencionó anteriormente, para poder satisfacer el segundo punto es necesario conocer el rango de operación del proceso para así elegir una bomba cuya curva H-Q satisfaga dichos requerimientos, sin alejarse significativamente del punto de mejor eficiencia de la bomba.

Además de la cabeza y el caudal, también están asociados al BEP, un valor de potencia (bhp) y un valor de NPSHR (siglas en inglés de Cabeza Neta de Succión Positiva Requerida).
La potencia requerida en el BEP puede ser conseguida dependiendo del motor seleccionado, por lo general esto no genera mucho inconveniente dada la amplia gama de motores desarrollados en la industria.

El término NPSHR es una medida de la energía mínima requerida en el ojo de succión de la bomba, para garantizar el buen funcionamiento de la bomba.

El NPSHR es un parámetro de la bomba y es determinado y suministrado por el fabricante de la bomba.

Este parámetro debe ser comparado contra el NPSHA (siglas en inglés de Cabeza Neta de Succión Positiva Disponible), el cual está determinado por las características del tramo de succión del sistema, y se puede mejorar aumentando el diámetro de la tubería de succión, mejorando la calidad de dicha tubería, reduciendo la distancia de la tubería de succión y la cantidad de accesorios en la línea. Todo lo anterior con el fin de garantizar que:

d) $NPSH_{Disponible} > NPSH_{Requerido}$

e) Muchos autores y la práctica aconseja que:

$$NPSH_{Disponible} \geq NPSH_{Requerido} + 5 \, m$$

Esto último con la intención de tener un factor de seguridad para evitar el negativo fenómeno de cavitation, el cual aqueja frecuentemente los sistemas de bombeo.

f) Teniendo en cuenta los aspectos tratados, seguramente se concebirán sistemas de bombeos óptimos y eficientes, que garantizarán las mejores condiciones de funcionamiento teniendo en cuenta el aspecto económico.
desde el punto de vista de inversión inicial y de operación a lo largo de la vida útil de todo el sistema de bombeo.

2.6 CÁLCULO DE LA POTENCIA DE BOMBEO

El cálculo de la carga total de bombeo consiste en determinar la energía requerida para impulsar el líquido desde el nivel de succión hasta el nivel de descarga, venciendo la resistencia que ofrecen la tubería y los accesorios, al paso del fluido.

Características de operación para una bomba centrífuga de tamaño dado que opera a velocidad constante del impulsor

Figura Nº 2.13 Curva de potencia al freno para las condiciones de operación
Fuente: Universidad Tecnológica de Panamá- Monografía
2.5.1 Altura dinámica total (TDH)

La altura dinámica total se define como la suma total de resistencias del sistema, correspondientes a la carga estática total, a la pérdida de carga por fricción en las tuberías de succión y descarga y a la energía de velocidad.

\[TDH = He + Hf + Hv \] \[(2.18) \]

Para determinar la carga dinámica total del sistema, se hace uso de la ecuación de energía de Bernoulli, y que aplicada a un sistema de bombeo como el mostrado en la figura N° 2.14, se tiene la siguiente expresión:

\[\frac{P_1}{\gamma} + \frac{v_1^2}{2g} + Z_1 + TDH = H_f + \frac{P_2}{\gamma} + \frac{v_2^2}{2g} + Z_2 \] \[(2.19) \]

donde:

- \(P_1 \) y \(P_2 \): presiones al comienzo y final según los puntos de medición
- \(v_1 \) y \(v_2 \): velocidades al comienzo y final según los puntos de medición
- \(H_f \): energía empleada en vencer las fuerzas de fricción a través del recorrido del fluido, expresada en unidades de altura.
- \(TDH \): altura dinámica total, energía que se suministra al fluido expresada en unidades de altura.
- \(Z_1 \) y \(Z_2 \): alturas respecto a un mismo nivel según los puntos de medición
- \(\gamma \): peso específico del líquido.
2.7 CARACTERÍSTICAS DE LAS BOMBAS VERTICALES

Las bombas verticales tipo turbinia tienen un rango de caudal que es bastante amplio y según los fabricantes varía desde 4 l/s (80 GPM) a 630 l/s (9 800 GPM) y alturas de bombeo hasta de 350 m (1,500 pies), dependiendo de la amplia gama de modelos que ofrecen los fabricantes. Se producen lubricadas por agua o por aceite.

Es el tipo de bomba más durable y eficiente entre las bombas centrífugas y que tiene mejor rendimiento sobre su inversión, típicamente se utiliza en pozos profundos, pozas de bombeo, en donde tengamos seguridad de la verticalidad, es decir la bomba trabaje sin recargarse en la pared del pozo o
cárcamo, pues de lo contrario resulta gravemente dañada y su duración es mínima.

Estas bombas a menudo son instaladas con columnas de longitudes considerables para llegar hasta los mantos acuíferos disponibles. Por lo tanto se debe prestar especial atención en el diseño mecánico en cuanto a la resistencia de sus componentes.

El diámetro mínimo del además deberá ser considerado cuidadosamente porque determina el diámetro de bomba máximo que se puede instalar en este pozo. La producción de agua del pozo es basada en el desarrollo del aforo o prueba del mismo. Donde se establece la capacidad, longitud de columna y por lo tanto requerimientos de presión, basada en la carga bajo y sobre la superficial. Para sistemas que requieren presión adicional a la descarga del cabezal esta deberá diseñarse adecuadamente.

2.8 COMPORTAMIENTO DE BOMBAS TRABAJANDO EN PARALELO O EN SERIE

Existen requerimientos de bombeo, de caudales y/o presiones mayores, a los que son ofrecidos por los fabricantes de bombas. Por tal motivo es necesario muchas veces utilizar un sistema de bombeo donde dos o más bombas son colocadas en paralelo o en serie, para lograr caudales o presiones mayores, según se requiera mayor caudal o presión respectivamente. LaFigura Nº 2.15 muestra estas posibilidades.
Figura N⁰ 2.15: Esquema de bombas centrífugas en serie y en paralelo
Fuente: Richard Widman y Omar Linares—Bombas y compresores

2.8.1 Bombas en paralelo

Si dos o más bombas idénticas se conectan en paralelo, la cabeza a través de cada bomba es igual y el caudal se distribuye por igual entre las bombas. La curva combinada H/Q se muestra en la figura 2.16a. Si la resistencia del sistema se dibuja sobre la curva combinada H/Q para la operación en paralelo como se muestra en la figura N° 2.16a, se puede observar que el caudal no se ve incrementado en proporción al número de bombas funcionando. Por ejemplo, en un sistema de tres bombas, dos bombas operando aportan más de las dos terceras partes de la descarga de las tres bombas.

2.8.2 Bombas en serie

Si dos o más bombas idénticas se conectan en serie, la descarga pasa a través de cada bomba por turnos y soporta un incremento en la altura de descarga de H₀/N° de bombas, en cada bomba(H₀/3 para el ejemplo). Una curva H/Q combinada típica se muestra en la figura N°2.16b. La interacción de este arreglo con el sistema se muestra en
la figura N° 2.16b. Como en el caso de operación en paralelo la descarga total no se incrementa proporcionalmente con el número de bombas. Las bombas en serie son más adecuadas en sistemas con una curva de resistencia alta, por ejemplo, con alto contenido de fricción.

Figura Nº 2.16 Curva de bombas centrífugas en serie y en paralelo
Fuente: Richard Widman y Omar Linares—Bombas y compresores

a. Operación en paralelo
b. Operación en serie

Figura Nº 2.17 Curva del sistema versus curvas de las bombas en serie o en paralelo
Fuente: Richard Widman y Omar Linares—Bombas y compresores
CAPÍTULO 3
DISEÑO DEL SISTEMA DE BOMBEO

3.1 EL ÁREA DE INGENIERÍA

El proyecto 320K fue encargado en su totalidad a la empresa consultora en ingeniería AMEC. Esta empresa internacional, con sedes en los 5 continentes, trabajó para este proyecto desde tres oficinas establecidas en: Trail-Canadá, Santiago-Chile y Lima-Perú. El sistema de bombeo de agua de enfriamiento fue una parte del trabajo desarrollado en la oficina de Lima. Sin embargo el área de procesos fue desarrollado en la oficina de Trail, con participación de la oficina de Lima y para ello se estableció una comunicación fluida entre las 3 oficinas mediante la utilización de Internet, telefonía y visitas de personal de AMEC desde las oficinas de Santiago y Trail al Perú.

El total del proyecto de ingeniería básica y de detalle fue realizado en aproximadamente 20 meses, sin considerar la etapa de construcción que fue de aproximadamente 20 meses. El costo total del proyecto 320K estuvo alrededor de 480 millones de dólares americanos, y están incluidos en este monto los costos de la ingeniería, las compras de equipos, la construcción, apoyo a las pruebas pre-operativas y el gerenciamiento de la construcción. El proyecto fue asignado a AMEC en las condiciones de un contrato tipo EPCM (Engineering, Procurement and Construction Management), entonces AMEC se encargó de la ingeniería, las compras y la administración de la construcción.
Este informe tiene como lineamiento, mostrar la secuencia de trabajo y los procedimientos necesarios para elaborar el diseño de una estación de bombeo dentro de un proyecto más amplio, y que ha sido desarrollado por una consultora especializada en el sector minero.

En este capítulo se muestra que para definir los flujos, presiones, arreglos mecánicos, arreglos de tuberías, entre otros necesarios para el diseño de la estación de bombeo, se requiere la intervención de varias disciplinas de ingeniería que aportan iterativamente en el desarrollo de la ingeniería de detalle. A continuación se describe la organización de una oficina de ingeniería típica que realiza trabajos para el sector minero.

El área de ingeniería de la oficina Lima tiene las siguientes disciplinas:

- Disciplina mecánica: es la encargada de definir los equipos mecánicos a utilizar; desarrollar las especificaciones mecánicas donde se señalan los requerimientos mecánicos de los equipos; y preparar las hojas de datos (data sheets), que contiene la información detallada de los equipos a cotizar. Además desarrolla los arreglos mecánicos, emitiendo los planos necesarios para la instalación de los equipos y coordina con otras disciplinas paralos requerimientos de cimentaciones, estructuras, tuberías y suministro eléctrico. La conforman ingenieros mecánicos e ingenieros mecánicos-electricistas que utilizan programas para el cálculo de fajas como el Sidewinder y Helix, y personal técnico, denominados diseñadores, que elaboran los planos y maquetas en programas de diseño como Autocad, PDMS, Cadworks entre otros.
• **Disciplina de tuberías:** se encarga de elaborar los P&IDs (Piping and InstrumentDiagram), que son los planos donde se muestra de manera esquemática las tuberías instaladas desde y/o hasta los equipos mecánicos y la instrumentación necesaria para este fin. Además realiza los cálculos hidráulicos para los sistemas de bombeo y elabora los planos de arreglo de tuberías donde se muestran las tuberías, válvulas, accesorios e instrumentación de una instalación de tuberías. Esta disciplina está conformada principalmente por ingenieros mecánicos y mecánicos de fluidos, que utilizan software de cálculos como el Fathom, Impulse, Caesar II y Autopipe. Además están los diseñadores que elaboran los planos en Autocad, PDMS, Cadworks, VPE, entre otros según lo solicite los clientes.

• **Disciplina Civil:** llamada también CSA (Civil, Structure andArchitecture) tiene tres especialidades dentro del área. El área civil se encarga de elaborar los planos de cimentaciones, edificios de concreto, y servicios de alcantarillado. Los ingenieros de estructuras se encargan de hacer los cálculos de las estructuras en acero y los arquitectos se encargan del diseño de oficinas, servicios, entre otros. Esta disciplina está conformada principalmente por ingenieros civiles, ingenieros civiles especializados en estructuras metálicas y arquitectos, que utilizan programas de software como RISA 3D, SAP 2000. Los diseñadores trabajan en Autocad, Civil 3D y AutocadLan.

• **Disciplina Eléctrica:** se encarga de elaborar los diagramas unifilares, lista de cargas eléctricas, especificaciones de equipos eléctricos, sistemas de
alumbrado y puesta a tierra, protección contra rayos, entre otros. Está conformado principalmente por ingenieros eléctricos que utilizan el software Visual para alumbrado y Etap para los cálculos de flujo de potencia, protección de corto circuito y puesta a tierra. Los diseñadores que trabajan en Autocad, Lan y elaboran los planos eléctricos y diagramas esquemáticos y de conexiones.

- Disciplina de instrumentación: se encarga de aportar en los P&IDs, en lo que a instrumentación y control se refiere. Ademássuministran los diagramas de arquitectura del sistema de control y comunicaciones. Está conformado principalmente por ingenieros electrónicos y en algunos casos por ingenieros eléctricos con especialización en control e instrumentación. También participan de esta área diseñadores especializados que trabajan en Autocad.

Al área de ingeniería se suma la intervención de la disciplina de procesos, que no es considerada parte de ingeniería, pero cuyo trabajo está estrechamente vinculado a esta. El área de Procesos es la encargada de desarrollar los criterios de diseño del proceso, los diagramas de flujo PFDs (ProcessFlowDiagram), donde se muestra esquemáticamente el proceso, los balances de masas y define los equipos principales a utilizar. El área de procesos se conforma principalmente por ingenieros metalurgistas, químicos y en algunos casos petroquímicos o metalurgistas.

Los planos y/o documentos emitidos al final del proyecto y que son entregados al término del proyecto de ingeniería, los cuales se denominan
“entregables”, son resultado de varias emisiones anteriores en trabajo. Las emisiones tienen una secuencia establecida y que asegura la calidad del trabajo y el pleno conocimiento de los involucrados. Cada plano o documento lleva en el cajetín o carátula una letra o número en la casilla “revisión”. Las letras y/o números pueden variar según la empresa de ingeniería que desarrolle el trabajo, pero la secuencia siempre es la misma. La secuencia de emisión en AMEC es como sigue:

a) Rev P, es un plano o documento preliminar, que es emitido por la disciplina (mecánica, tuberías, etc.), y que sirve para una revisión interna. En este momento el líder de la disciplina revisa el plano o documento que ha sido elaborado y/o revisado por el ingeniero a cargo del entregable y hace las observaciones que estime conveniente. En algunos casos se registra la emisión de forma interna y otras veces se registra estos entregables a través de un departamento de “control de documentos”, que se encarga de registrar la fecha de emisión y esta emisión da un avance de que el plano o documento está en un 50-60% de avance. Muchas veces no se lleva un registro y en algunos casos puede ser obviado este paso.

b) RevA, se emite para “revisión interna” y es circulado por todas las disciplinas para conocimiento y revisión. En el caso de los planos sirve para coordinar y cada disciplina coloca allí sus comentarios de requerimientos o anota algún problema. Luego el emisor, levanta las observaciones considerando lo anotado en el plano. En numerosos casos es necesario reuniones para establecer acuerdos entre las disciplinas. En
el caso de documentos sirve para que otras disciplinas coloquen sus aportes o necesidades. En ambos casos estos planos son emitidos a través de un departamento de "control de documentos", que se encarga de registrar la fecha de emisión y esta emisión da un avance de que el plano o documento está en un 70% listo. Este porcentaje puede variar según se acuerde con el cliente.

c) Rev B, es emitido para "aprobación por el cliente". Este entregable es emitido para la revisión por el cliente. El cliente puede incorporar requerimientos o discrepar sobre algún tema. Se reciben los comentarios del cliente y si son revisiones mayores entonces se emite la revisión C, también para aprobación por el cliente. Si los comentarios son menores, entonces estos se incorporan en la revisión final. Las revisiones B o C registran un porcentaje de 85% de avance.

d) Rev 0, emitido "para construcción", es la revisión que finaliza con el proceso de elaboración de planos o documentos. Allí debe incorporarse los comentarios del cliente y también la información proveniente de los proveedores. Si posterior a esta emisión por algún motivo hubieran cambios entonces se tienen que emitir la revisión 1.

3.2 SECUENCIA DE TRABAJO EN EL DISEÑO DEL SISTEMA DE BOMBEO

El diseño de la estación de bombas, se realizó tomando como base a los planos y documentos de la ingeniería básica del proyecto 320K; y fundamentalmente con los cálculos e información que se obtuvo durante el desarrollo de la ingeniería de detalle.
Para la elaboración del arreglo mecánico y de tuberías de la estación de bombeo, así como para la elaboración de arreglos mecánicos de todo el proyecto, el grupo de ingeniería que desarrolló el proyecto 320K coordinó estrechamente e iterativamente hasta emitir los planos enviados al cliente para su aprobación. Estos planos revisados por el cliente fueron actualizados con las observaciones, donde procedían, y luego se emitieron los planos para construcción.

La figura N° 3.1 que resume los procesos iterativos realizados efectuados en el diseño de la estación de bombeo.

Para la elaboración de los arreglos mecánicos, como es el caso de la estación de bombeo, se consideraron varios factores y se desarrolló como sigue:

a) La disciplina de procesos emitió los PFDs necesarios para determinar las áreas (plantas) que requieren agua de enfriamiento, el caudal, las presiones y su recorrido en forma esquemática.

b) La disciplina de procesos emitió los PFDs necesarios para determinar las áreas (plantas) que requieren agua de enfriamiento, el caudal, las presiones y su recorrido en forma esquemática.
Figura No3.1: Secuencia de trabajo en la ingeniería de detalle
Fuente: Autor de este informe
c) La disciplina de procesos emitió los PFDs necesarios para determinar las áreas (plantas) que requieren agua de enfriamiento, el caudal, las presiones y su recorrido en forma esquemática.

d) La disciplina de tuberías, revisó los requerimiento y emitió los primeros P&IDs donde se establecen las tuberías a utilizar y referencialmente la cantidad de bombas a utilizar.

e) La disciplina mecánica propuso un arreglo preliminar usando información referencial, ya que en ese momento no se tenía información de las bombas a adquirir.

f) La disciplina de tuberías elaboró el arreglo preliminar de las tuberías y válvulas a instalar, así como también información de los espacios requeridos. Además realizó los cálculos hidráulicos para encontrar todos los parámetros necesarios para su funcionamiento.

g) Procesos emitió una nueva revisión de los PFD integrando los requerimientos necesarios para que el sistema funcione adecuadamente, tal como la recirculación de agua a través de los filtros, la evaporación y otros.

h) La disciplina mecánica emitió la revisión A para ser comentada por todas las disciplinas de ingeniería.

i) Paralelamente se procedió al requerimiento de cotización, evaluación y posterior compra de las bombas, según se explica más adelante.

Se adjunta figuras Nº 3.2; 3.3; 3.4; 3.5; 3.6; 3.7; de la estación de bombeo que actualmente está funcionando, así como fotos durante su construcción.
Figura Nº 3.2 – Estación de bombeo de agua de enfriamiento existente antes del proyecto 320K. El espacio al fondo fue posteriormente utilizado para la instalación de las torres de enfriamiento y la estación de bombeo del 320K.

Fuente – Autor de este informe

Figura Nº 3.3 – Circuito de agua de enfriamiento – Rack de tuberías

Fuente – Autor de este informe
Figura N° 3.4 – Obras preliminares de la nueva estación de bombeo 32,
Al fondo se ve la estación de bombeo existente
Fuente – Autor de este informe

Figura N° 3.5 – Obras civiles – Nueva estación de bombeo y torres de enfriamiento
Fuente – Autor de este informe
Figura 3.6 – Estación de bombeo proyectada en PDMS. Se ve translucido el edificio de concreto para una mejor visualización. Los motores de las bombas se ven en color rojo.
Fuente – AMEC – Ingeniería del proyecto 320K,

Figura 3.7 – Estación de bombeo del proyecto 320K actualmente trabajando. Los soportes de las tuberías fueron diseñados en Autocad, por tal motivo no se muestran en la maqueta PDMS.
Fuente – Autor de este informe.
3.3 DETERMINACIÓN DE LOS REQUERIMIENTOS DE AGUA DE ENFRIAMIENTO

El proyecto 320K requiere de agua de enfriamiento para el funcionamiento de las nuevas plantas a instalar, del mismo modo que las instalaciones existentes antes del proyecto 320K. En la ingeniería básica del proyecto 320K, anterior a la ingeniería de detalle, se determinaron los principales caudales preliminares y las áreas que requerían agua de enfriamiento, esto en base a información del proveedor preliminar.

Para determinar el requerimiento de agua de enfriamiento para el proyecto 320k, intervinieron las disciplinas de procesos y de tuberías. Ambas disciplinas trabajaron en la determinación del requerimiento de agua de enfriamiento para el proyecto.

La disciplina de procesos recibió la información de la ingeniería básica, y consideró la nueva información del proveedor de cada planta. Es decir, durante el desarrollo de la ingeniería de detalle, la información de los proveedores que intervinieron en cada planta, donde se requiere agua de enfriamiento, fue procesada por la disciplina de procesos e integrada a los diagramas de proceso. Consolidada la información emitió el diagrama de flujo PFD Nº93-01-4001. En este PFD se establecieron los caudales y presiones requeridos por cada planta.

En el PFD Nº 93-01-4001 se muestran: Flujo de trabajo 3 585 m³/h (información obtenida de cada proveedor que interviene en las plantas). El área de procesos, considerando donde pueden existir necesidades de flujos
mayores a los flujos de trabajo, estableció un factor de diseño para cada planta y resultado de esto se concluyó en un flujo de diseño 3 850 m³/h. Como resultado de los factores de diseño de cada planta se obtuvo un factor de diseño promedio de 1.07. El Cuadro N° 3.1 muestra el detalle de los caudales necesarios para cada planta que usa agua de enfriamiento y los factores de diseño asumidos en la ingeniería. También se muestran las presiones requeridas en el ingreso a cada planta y las presiones de salida, es decir, los proveedores de las plantas suministraron los valores de las caídas de presión en cada planta.

Luego de emitidos los diagramas de flujo, la disciplina de tuberías elaboró los P&IDs preliminares del sistema de bombeo, que posteriormente fueron emitidos en su revisión final según se muestra en los adjuntos, y analizó otros requerimientos necesarios para abastecer de agua de enfriamiento a las plantas de la refinería de Cajamarquilla.

<table>
<thead>
<tr>
<th>Plantas del proyecto 320K (Áreas)</th>
<th>Caudal de operación (m³/h)</th>
<th>Caudal de diseño (m³/h)</th>
<th>factor de diseño de cada planta</th>
<th>Presión en el ingreso (bar)</th>
<th>Presión en la salida (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La nueva planta de ácido sulfúrico (Área 35)</td>
<td>2647</td>
<td>2880</td>
<td>1.09</td>
<td>4.0</td>
<td>1.3</td>
</tr>
<tr>
<td>El nuevo tostador de calcina - Roaster (Área 25)</td>
<td>272</td>
<td>304</td>
<td>1.12</td>
<td>4.0</td>
<td>1.3</td>
</tr>
<tr>
<td>La nueva turbina de vapor (Área 92)</td>
<td>60.7</td>
<td>60.7</td>
<td>1.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>La nueva planta de electólisis - Casa de celdas (Área 75)</td>
<td>186</td>
<td>186</td>
<td>1.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>La ampliación de la planta de fusión y moldeo (Área 81)</td>
<td>419.4</td>
<td>419.4</td>
<td>1.0</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Caudal Requerido por las plantas del proyecto 320K</td>
<td>3 585.1</td>
<td>3 850.1</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro N° 3.1 Caudales de operación y diseño, y presiones requeridos
Fuente – Elaboración propia
3.4 DETERMINACIÓN DEL CAUDAL Y PRESIÓN

El diagrama de flujo 93-01-4001 muestra todos los flujos que se necesitan para las diferentes plantas (áreas) que requieren agua de enfriamiento. Sin embargo este diagrama no considera otros caudales necesarios para el funcionamiento del sistema de agua de enfriamiento que son necesarios para el funcionamiento del sistema de agua de enfriamiento.(Ver figura Nº 3.8)

Figura Nº3.8 – Flowsheet que muestra las áreas del proyecto y las oficinas que realizarán los trabajos de cada área. Ver plano adjunto 93-01-4001 para mejor visualización.

Fuente – Oficina AMEC- Lima

Los caudales adicionales, que intervienen además del consumo de las plantas son:

- el agua de enfriamiento que se evapora en las torres de enfriamiento
- el caudal que recircula por los filtros de arena
- el caudal de agua de enfriamiento que es expulsado por limpieza resultado de la filtración del agua.
- el agua de reposición que se adiciona para mantener un mismo volumen de agua circulando
- los aditivos que ingresan al sistema.

El área de proceso integró los caudales adicionales señalados en el párrafo anterior, y determinó un nuevo caudal de operación de 3 735 m3/h. Con las consideraciones de factores de diseño para cada planta se obtuvo un factor de diseño promedio de 1.06. El resultado determinó un caudal de diseño, según procesos, de 3 959 m3/h. El PFD 93-01-4002, anexo en los planos adjuntos, muestra estos valores y detalla los caudales adicionales necesarios para el funcionamiento del sistema hidráulico.

La disciplina de tuberías consideró el nuevo caudal de operación de 3 735 m3/h. y utilizó un factor de diseño de 1.1 para el cálculo del caudal de diseño. Este factor fue asumido en base a experiencias de proyectos anteriores y recomendaciones de prácticas de ingeniería. Resultado de este nuevo factor de diseño, la disciplina de tuberías determinó el caudal diseño en 4 108,5 m3/h.

Comparados los flujos de diseño calculados por la disciplina de procesos y por la disciplina de tuberías, se determinó un flujo de diseño de 4 108,5 m3/h, por ser el más conservador. Finalmente este es el caudal que ha sido utilizado en el diseño del sistema de enfriamiento. Ver cuadro N° 3.2.
<table>
<thead>
<tr>
<th>Item</th>
<th>Determinación de los caudales de operación y de diseño del sistema de agua de enfriamiento - Proyecto 320K</th>
<th>Caudal de operación (m3/h)</th>
<th>Caudal de diseño (m3/h)</th>
<th>factor de diseño</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disciplina de Procesos en ingeniería básica</td>
<td>3 725</td>
<td>4 007</td>
<td>1.08</td>
</tr>
<tr>
<td>2</td>
<td>Disciplina de Procesos en ingeniería de detalle (inicial) - Según los caudales requeridos por las plantas</td>
<td>3 585</td>
<td>3 850,1</td>
<td>1.07</td>
</tr>
<tr>
<td>3</td>
<td>Disciplina de tuberías en la elaboración del sistema hidráulico - Considerando otros caudales necesarios para el funcionamiento del sistema hidráulico</td>
<td>3 735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Procesos en ingeniería de detalle (considerando el aporte del área de tuberías)</td>
<td>3 735</td>
<td>3 959</td>
<td>1.06</td>
</tr>
<tr>
<td>5</td>
<td>Tuberías en ingeniería de detalle (con la nueva emisión de procesos)</td>
<td>3 735</td>
<td>4 108,5</td>
<td>1.1</td>
</tr>
<tr>
<td>Final</td>
<td>Caudales finales utilizados en el diseño del sistema hidráulico</td>
<td>3 735</td>
<td>4 108,5</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Cuadro No 3.2 Determinación de los Flujos de trabajo y de diseño

Fuente – Elaboración propia

Para calcular la presión de trabajo de la bomba o bombas requeridas en la estación de bombeo, se utilizó el software especializado Fathom versión 4.0, que simula un sistema hidráulico y reduce el tiempo de cálculos hidráulicos de manera considerable. Ver los anexos 93-50-4650, Agua de enfriamiento–Diagrama hidráulico–Fathom, y RE-50-4601, AFT FathomModel–Resultados.

Este software ofrece la posibilidad de simular complejos sistemas hidráulicos de fluidos no compresibles, colocando dentro del sistema, bombas, tuberías, válvulas, accesorios, intercambiadores de calor, entre otros. Con múltiples alternativas de ingreso de datos y con los resultados de los cálculos realizados de acuerdo a la conveniencia del usuario. Este software ha sido utilizado en AMEC desde el año 2004 y en ese momento ya había sido probado ampliamente en otros proyectos. Sin embargo el problema principal
de este sistema hidráulico consistía en que los operadores de la refinería de Cajamarquilla habían señalado que requerían que el sistema se auto-regulara sin necesidad de abrir y cerrar válvulas para modificar caudales y por lo tanto el sistema debería ser diseñado de modo que cada planta recibiera el caudal y la presión referidos en los diagramas de flujo, sin necesidad de abrir o cerrar válvulas. Para ser esto posible, las tuberías deberían ser calculadas con los diámetros necesarios y suficientes, evitando sobredimensionar las tuberías o generar caídas de presión que condicionaran que los caudales no fueran los requeridos en el diseño.

Se consideró para este primer cálculo, el arreglo mecánico de la ingeniería básica, que establecía que se utilizarían 3 bombas trabajando y una cuarta bomba quedaría en stand-by, y que estas bombas serias tipo turbina vertical, sobre sumideros de concreto conectados a la piscina de recepción de agua de las torres de enfriamiento. Los parámetros de entrada para el sistema hidráulico fueron:

- El caudal de diseño de 4 108 m3/h fue dividido entre las 3 bombas operativas, entonces cada bomba debería suministrar 1 370 m3/h.
- La presión del agua de enfriamiento requerida en cada una de las plantas de la refinería y la caída de presión en cada planta
- Los sistemas de bombeo auxiliares para el retorno de agua de enfriamiento.

Además se trabajó con el layout de las tuberías, es decir, el arreglo mecánico de las tuberías que consideran la disposición mecánica de todas las tuberías,
diámetro y longitud de las mismas, válvulas y accesorios, cambios de dirección, los niveles de instalación, entre otros.

El resultado de este primer cálculo determinó que se requerían bombas que suministraran un caudal de 1 370 m3/h a una presión de salida de 42,4m (4,6 bar). Esta información fue suministrada a la disciplina mecánica que fue la encargada de determinar las bombas a utilizar.

3.5 Determinación de la cantidad de bombas

Como se señaló en el párrafo anterior, para la simulación del sistema hidráulico se previó el uso de 4 bombas verticales tipo turbina, trabajando tres en forma permanente y una bomba adicional que quedaría en stand-by. Posteriormente la disciplina de tuberías debió re-calcular el sistema hidráulico de acuerdo al número de bombas seleccionado.

La disciplina mecánica recibió el input de procesos y de tuberías, y con el caudal de diseño determinado y con las presiones predeterminadas, se procedió a establecer reuniones de trabajo con los proveedores de bombas y buscar la mejor alternativa. Ver el data sheet preliminar de Wortec S.A.WFTL 20167, del año 2007, en los anexos de este informe, en donde se deja en libertad al proveedor de suministrar 3 o 4 bombas, según los modelos que satisfagan los parámetros requeridos.

Es preciso señalar que la elaboración de la ingeniería es un proceso iterativo en el que intervienen varias disciplinas, siendo para esta parte del proyecto 320K, las áreas de proceso, tuberías y mecánica las más involucradas. Por tal
motivo, como se señaló anteriormente, procesos había determinado un caudal de diseño de 3 850,1 m3/h y considerando 3 bombas operativas, y una en stand-by, cada bomba debería suministrar 1 319 m3/h. Inicialmente se hizo una cotización de 4 bombas para 1 319 m3/h. Se adjunta dicha cotización como referencia, para ilustrar el método a seguir en la elaboración de la ingeniería de detalle y mostrar que no siempre las primeras cotizaciones tienen los parámetros totalmente definidos.

Posteriormente, como se explica en la sección 3.4, las disciplinas de procesos y tuberías establecieron el caudal final de diseño en 4 108,5 m3/h (ver tabla 3.2). Se revisó con los proveedores la capacidad de las bombas que cumplían con el caudal y con la presión de salida pre-establecida. Con estos parámetros todos los proveedores recomendaron utilizar tres bombas operando y una en stand-by, y se pre-seleccionaron las bombas considerando las eficiencias, punto de operación, caudales máximos, porcentaje del diámetro del impulsor, etc. Luego la disciplina de tuberías recalculó la presión de salida, para un sistema de 3 bombas trabajando y con la información real de las bombas seleccionadas. El cálculo hidráulico dio como resultado que se necesitaba una presión a la salida de las bombas de 42.5m.

Finalmente disciplina mecánica re-cotizó 4 bombas, tres operando y una en stand-by, para un caudal de 1 370 m3/h cada una, a una presión de 42,5 m (4,17 bar) en la salida. Ver la evaluación técnica TE-46040 Rev 1 en los anexos, en donde se evalúan las ofertas presentadas por los proveedores, como respuesta a la cotización requerida.
3.6 CÁLCULO DE LAS BOMBAS Y MOTORES REQUERIDOS

Para calcular el caudal de las bombas a adquirirse, se realizó una simulación del sistema hidráulico de todo el circuito de agua de enfriamiento que abastece a las diferentes plantas del proyecto 320k. Para este cálculo se utilizó el software especializado Fathom versión 4.0.

Los parámetros de entrada para fueron: el caudal 1 370 m3/h; la presión del agua de enfriamiento requerida en cada una de las plantas de la refinería; la caída de presión en cada planta; y los sistemas de bombeo auxiliares para el retorno de agua de enfriamiento. Además se trabajó con el layout de las tuberías, es decir, el arreglo mecánico, niveles de instalación, longitud de tuberías, cambios de dirección, etc.

Con este software es posible determinar los parámetros del sistema hidráulico, tales como: altura dinámica de las bombas a emplear, diámetros de las tuberías, caídas de presión en cada elemento del sistema, etc. También es posible saber la velocidad y presión en cada punto que se requiera.

Se adjunta el diagrama elaborado en el programa Fathom 4.0 y las hojas de cálculo que se obtienen, es necesario señalar que las hojas indican la versión 7.0 por tratarse de la versión actual del programa desde donde se obtuvo la información para este informe. Por razones de espacio no se han colocado todos los resultados, sino los más significativos al cálculo de bombas.
3.6.1 Parámetros finales de las bombas a adquirir

Del cálculo hidráulico se obtuvo una altura dinámica total (TDH) de 42,5 m en la salida de las bombas. Entonces el data sheet de las bombas fue elaborado con:

- Caudal: 1 370m3/h
- TDH: 42,5 m (4,17 bar)

3.6.2 Motores requeridos según las bombas requeridas

El mismo software Fathom calculó la potencia hidráulica requerida. Con la eficiencia para bombas de turbina vertical pre-definidas, se calculó que la potencia del motor requerida era de 252. HP. Entonces los motores eléctricos fueron requeridos con una potencia de 300 HP, por ser los motores comerciales disponibles y que cumplen con un factor de servicio de 1.15.

Para elaborar los data sheet para la cotización y posterior compra de las bombas y motores, se consideraron los parámetros obtenidos y que resumimos en el Cuadro N° 3.3. Otras consideraciones también importantes y detalladas pueden ser revisadas en los data sheets (hoja de datos) y especificación de bombas y motores adjuntos.
<table>
<thead>
<tr>
<th>Item</th>
<th>Descripción</th>
<th>Requerido</th>
<th>Ofrecido</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marca y Modelo de bomba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>cantidad de conjuntos bomba - motor</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Caudal de diseño (m³/h)</td>
<td></td>
<td>1370</td>
</tr>
<tr>
<td>4</td>
<td>Altura dinamica total-TDH (m)</td>
<td></td>
<td>42.5</td>
</tr>
<tr>
<td>5</td>
<td>Temperatura del agua (°C)</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Potencia de Motor (HP)</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>7</td>
<td>Peso Total (kgs)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro N° 3.3 Resumen de la hoja de datos para la cotización de las bombas
Fuente: Hoja de datos para la cotización de las bombas – Resumen propio

3.7 COMPONENTES DEL SISTEMA DE AGUA DE ENFRIAMIENTO

El área 93 fue designada como el área que abastece de agua de enfriamiento a toda la refinería. El área 93 comprende dos zonas principales: La Zona de Torres de enfriamiento de agua, que se encuentran ubicada en el lado norte de la refinería; y la Zona de Rack de tuberías, la cual bordea prácticamente toda la refinería de Cajamarquilla de Norte a Sur, haciendo un circuito cerrado con tuberías de ida y vuelta.

La zona de las torres de enfriamiento, para el proyecto 320K, se compone básicamente de:

Las torres de enfriamiento, son estructuras de concreto ubicadas sobre una piscina, que reciben el agua de enfriamiento de retorno, es decir agua que ha servido para enfriar equipos o soluciones de las diferentes plantas de la refinería. Estas torres se comunican con los sumideros donde están instaladas las bombas de agua de enfriamiento.

c) Cuatro bombas verticales tipo turbina con TAGs Nº X2003 / X2004 / X2005 / X2006.4610, que se encargarán de suministrar agua de enfriamiento a las distintas plantas (áreas) que requieran de este servicio.

d) La nueva columna de control de nivel con TAG Nº X2009.4020 se compone de un tanque cilíndrico cerrado con boquillas para la instalación de instrumentos, drenaje, venteo y para ingreso de agua desde el colector de las torres de enfriamiento.

e) El filtro de arena con TAG Nº X2007.4618 tendrá la función de filtrar partículas que puedan dañar los equipos que componen el Sistema de enfriamiento, en consecuencia, bajar su eficiencia.

f) El tanque de ácido sulfúrico con TAG Nº X2008.4020 de planchas de acero al carbono.

g) El nuevo sistema de adición de reactivos contra algas, bacterias y anti incrustante y que fue suministrado por terceros.

3.8 USO DEL PDMS COMO HERRAMIENTA DE DISEÑO

AMEC, para realizar el diseño del proyecto 320 K, utilizó el software de modelamiento llamado PDMS. El PDMS (PlantDesignManagementSystem) es un software que permite realizar los diseños en tres dimensiones, 3D. La elaboración de estos gráficos en 3D es llamado modelamiento y el gráfico en 3D se denomina maqueta. A partir de esta maqueta se pueden elaborar los planos en 2D siendo muy rápido obtener vistas del modelo o cortes según se requiera. Los planos de arreglos mecánicos y de tuberías adjuntos a este
informe han sido extraídos de la maqueta en PDMS y sobre los planos extraídos solamente se efectuó un trabajo de formato.

Todos los planos mecánicos, de tuberías, y algunos planos eléctricos y civiles, fueron obtenidos a partir de la maqueta. Para el área mecánica, solamente se dibujan los detalles donde el modelamiento resulta demasiado lento y se prefiere por el dibujo tradicional. La Figura Nº 3.9 adjunta a este informe es una fotoextraída de la maqueta, sin ningún tipo de trabajo adicional.

En esta maqueta se modelan los equipos mecánicos con sus reales dimensiones, siendo sobre todo muy precisos en las bases, boquillas, salidas de chutes, alturas, largos y anchos, es decir se precisa las dimensiones que interactúan con otros equipos o bases civiles o estructurales. No se consideran detalles de equipos, ya que la finalidad es obtener lo suficiente para construcción y no tener una maqueta extremadamente precisa en el detalle de equipos.

Las tuberías son dibujadas con total exactitud, ya que el PDMS utiliza un banco de datos que considera las dimensiones reales de las tuberías, accesorios y válvulas, de acuerdo a los diámetros de las mismas. Los accesorios y válvulas especiales son dibujados de acuerdo a la información de los proveedores. A partir de la maqueta se obtienen los planos de arreglos de tuberías y también los isométricos con sus listados de materiales en tipo y cantidad.
La disciplina civil, modela las estructuras, también utilizando un banco de datos del PDMS, y también son integradas las dimensiones de concreto, solamente donde se requiera.

El área eléctrica e instrumentación modelan los equipos eléctricos y las bandejas o ductos eléctricos. Los cables o instrumentos menores no son modelados.

En el centro izquierdo de la figura, se muestra el área 40 que es la planta de lixiviación que es donde se inicia el proceso de extracción de zinc refinado. Al lado derecho central, se muestra la nueva casa de celdas (área 75), que es donde se obtiene el zinc refinado mediante el proceso de electrólisis.

La figura Nº 3.10 muestra la estación de bombeo al pie de las tres torres de enfriamiento y se ven las tuberías de salida y posteriormente el manifold, tubería principal que entrega agua fría a las plantas. También se ven las tuberías que retornan el agua hacia las torres de enfriamiento.
Figura Nº 3.10 Estación de bombeo. Se encuentra al pie de las torres de enfriamiento. En los anexos se encuentra el grafico en formato A3

Fuente: AMEC – Ingeniería del proyecto 320 K

La figura Nº 3.11, muestra con mayor detalle las cuatro bombas sobre una piscina con tapa de concreto, que para efectos de mejor visualización, se muestra semi-transparente. La figura Nº 3.12, muestra el rack principal de tuberías, y se aprecia la tubería que sale de la estación de bombeo y que recorre la refinería de norte a sur y también la tubería de retorno de agua de enfriamiento paralela a la primera.
3.9 DISEÑO DE LA ESTACIÓN DE BOMBAS – ARREGLOS MECÁNICOS

El diseño de la estación de bombas, se realizó tomando como base a los planos y documentos de la ingeniería básica del proyecto 320K; y fundamentalmente con los cálculos e información que se obtuvo durante el desarrollo de la ingeniería de detalle.

Para la elaboración del arreglo mecánico de la estación de bombeo, así como para la elaboración de arreglos mecánicos de todo el proyecto, el grupo de ingeniería que desarrolló el proyecto 320K coordinó estrechamente e iterativamente hasta emitir los planos enviados al cliente para su aprobación.

Para la elaboración de los arreglos mecánicos, como es el caso de la estación de bombeo, se consideraron varios factores y se desarrolló como sigue:

a) La disciplina mecánica propuso un arreglo mecánico, considerando el tamaño y número de bombas, usando información referencial, ya que en ese momento no se tenía información del proveedor de bombas. Estos arreglos se desarrollaron en PDMS, maqueta en 3D, según se muestra en la figuraNº 3.9 y siguientes.

b) La disciplina de tuberías entregó información de las tuberías y válvulas a instalar, así como también información de los espacios requeridos. Entonces surgieron los primeros cambios.

c) La disciplina civil revisó lo propuesto y sugirió algunos cambios que fueron de detalles, lo que obligó a modificar el arreglo inicial.
d) Las disciplinas eléctrica e instrumentación se adecuaron a lo planteado pero hicieron requerimientos de espacio para colocar canaletas de concreto y bandejas eléctricas aéreas.

e) Finalmente cuando se recibió la información del proveedor, la disciplina mecánica insertó en los planos desarrollados los cambios o detalles, que se obtuvieron de los planos de bombas certificados.

f) Nuevamente todas las disciplinas revisaron los arreglos mecánicos y finalmente se emitió la revisión B de los planos para la aprobación por parte del cliente.

g) En este caso no hubieron observaciones por parte del cliente y se emitió la revisión 0.

h) Información del proveedor adicional a la recibida inicialmente, obliga a emitir la revisión 1 de los planos de arreglo mecánico.

Los planos de arreglos mecánicos de la estación de bombeo son los descritos a continuación:

- 93-40-4601 Arreglo General Torres de enfriamiento - Planta
- 93-40-4602 Arreglo General Torres de enfriamiento – Secciones 1 de 2
- 93-40-4603 Arreglo General Torres de enfriamiento – Secciones 2 de 2
- 93-40-4604 Estación de bombas – Planta y Secciones

Con esta última emisión de los arreglos mecánicos se terminaron de elaborar los planos de las áreas civil, de tuberías, eléctrica e instrumentación. Aprobados los planos de ingeniería de detalle, se construyeron los sumideros y bases de bombas, se montaron las bombas, tuberías y válvulas y se
instalaron las pasarelas y escaleras. El suministro eléctrico y la instrumentación fueron implementados en la última etapa de la construcción.

En las figuras Nros. 3.2 y 3.7, insertadas en la páginas 49-51 muestran la estación de bombeo antes, durante y después de su construcción.

3.10 SELECCIÓN DEL MATERIAL DE LAS TUBERÍAS, ACCESORIOS Y VÁLVULAS

La selección del material de las tuberías, accesorios y válvulas se realizó en concordancia con la especificación de tuberías del proyecto SP-50-4006, PipingSpecificationIndex, que es la especificación de tuberías preparada para todo el proyecto 320K. Se adjunta la parte que se refiere a la especificación para tuberías, accesorios y válvulas para agua de enfriamiento.

3.11 Diseño de los arreglos mecánicos de tuberías

Los diámetros de las tuberías en la estación de bombeo y en todo el sistema de agua de enfriamiento fueron determinados en base a los siguientes datos de entrada.

a) Caudal de diseño en cada ramal principal y secundario
b) Presión de trabajo a la entrada de cada planta
c) Presión de trabajo a la salida de cada planta

También se consideraron:

a) velocidad recomendada para agua establecida entre 1,5 m/s y 3 m/s.
b) diámetros comerciales considerados en la especificación de tuberías
c) Estandarización en lo posible de diámetros iguales en cada planta.
d) Longitudes de tuberías, número de accesorios, tipo y cantidad de válvulas

3.11.1 Diámetro según el cálculo

El diámetro de las tuberías se calcula en base a los parámetros y consideraciones expuestas. La fórmula inicial que determina la sección de una tubería es:

\[A = \frac{Q}{v} \]

[3.1]

Donde:

- A: Área interna de la tubería (m\(^2\)), convertida a pulg\(^2\)
- Q: Caudal en m\(^3\)/h
- v: Velocidad en m/s

De allí se puede calcular el diámetro teórico inicial de la tubería y luego con las consideraciones expuestas se determina el diámetro a utilizar.

El software Fathom calculó los diámetros de todas las tuberías del sistema de agua de enfriamiento. Ver anexo RE-50-4601

3.11.2 Diámetros seleccionados para la estación de bombeo

Los diámetros de las tuberías en el anillo de agua de enfriamiento son numerosos y van desde 8" hasta tuberías de 32". Las tuberías al interior de cada planta que usa agua de enfriamiento son desde 2" hasta 24".
Todos los diámetros del sistema de agua de enfriamiento han sido calculados utilizando los criterios expresados en la sección 3.7. Para el cálculo se utilizó el software Fathom.

Después de realizados los cálculos hidráulicos y determinados los diámetros a utilizar, las válvulas, accesorios e instrumentos de medición y control, se procede a elaborar los diagramas de tuberías e instrumentación, llamados por sus siglas en inglés P&ID (Piping and InstrumentationDiagram). Estos son planos esquemáticos donde se consolida toda la información referida a las tuberías y son la base para el desarrollo de los planos de arreglos de tuberías.

A continuación se explica lo detallado en el P&ld 93-01-4101 – Diagrama de distribución; y en los planos de tuberías 93-50-4600 al 93-50-4603, en lo referido a las tuberías de la estación de bombeo.

Explicamos el origen de estos códigos, para lo cual tomaremos como ejemplo el código 93-500-WCS-001-4410A:
El número 93 significa que la tubería pertenece al área 93 (ver plano 93-01-4001 anexo a este informe)

500 se refiere al diámetro 20” expresado en mm.

WCS son las iniciales de WaterCoolingSupply, que significa suministro de agua de enfriamiento, (ver el documento SP-50-4006 anexo a este informe)

001 es un código de la clase de tubería y se refiere a una tubería de acero al carbono ASTM A-53, Grado B Tipo E, ANSI b36.10, SCH Standard (ver el documento SP-50-4006 anexo a este informe) y

4410 es un número secuencial asignado por el equipo del proyecto y la letra A, significa que es tubería nueva, ya que algunas tuberías pueden ser parte del proyecto anterior.

Todas las tuberías en el proyecto tienen la misma estructura para la codificación de las mismas. Para un mejor detalle de las especificaciones de tuberías, diámetros utilizados, tipo de conexiones, pruebas hidráulicas, entre otros, referirse al criterio de diseño de tuberías y a la especificación de tuberías SP-50-4006, adjuntos a este informe.

El manifold, es la tubería que recoge el agua a la salida de las bombas es de 32”, cuyo código es 93-800-WCS-001-4403A. Esta tubería es la de mayor diámetro en todo el sistema de agua de enfriamiento y a partir de este empieza la tubería principal de distribución del suministro de agua de enfriamiento hacia todas las plantas. La tubería de suministro va disminuyendo su diámetro conforme va dejando el agua en las
diferentes plantas de las áreas 35, 25, 92, 75 y 81. Ver PFD 93-01-4001 adjunto en los anexos de este informe, y la figura N° 3.12.

Paralela a esta tubería se instaló la tubería de retorno de agua de enfriamiento que va recogiendo el agua de enfriamiento de las plantas anteriormente mencionadas y retorna a las torres de enfriamiento. Después de enfriar el agua en las torres de enfriamiento se vuelve a la impulsión mediante las bombas antes señaladas. Las tuberías de suministro y de retorno de agua de enfriamiento van por toda la refinería de norte a sur y tienen diámetros iguales en los mismos tramos.

3.12 Planos y documentos de la estación de bombeo
Los planos y documentos adjuntos a este informe fueron emitidos para la ejecución de las obras civiles; montaje de las bombas de agua de enfriamiento; instalación de las tuberías, válvulas y accesorios y la ejecución de las instalaciones eléctricas y de instrumentación. Se han colocado todos los planos principales mecánicos y de tuberías. Para las otras disciplinas se adjuntan solo algunos planos a modo de referencia. Ver Planos y anexos adjuntos.

3.13 Estimación previa del costo del sistema de bombeo
La estimación del costo del sistema de enfriamiento fue realizada en una etapa anterior al desarrollo de la ingeniería de detalle del proyecto 320K.
Un equipo especializado en costos elaboró el costo total del proyecto, tomando como referencia proyectos similares, cotizaciones presupuestales (tipo Budget), índices establecidos, entre otros. Es decir no se realizó una cotización minuciosa por cada elemento, sino se realizó una cotización, donde lo principal es tener precios a firme de los equipos de mayor costo, luego los equipos menores con cotizaciones Budget (presupuestales) y luego se realiza una proyección de los costos de menor valor en base a índices, según proyectos anteriores.

3.14 Estructura de las oficinas de ingeniería de detalle para el proyecto 320K

Los documentos, planos y actividades necesarios para la elaboración de la ingeniería de detalle del proyecto 320K, se realizaron íntegramente por la consultora internacional especializada en proyectos mineros AMEC. Fueron tres oficinas que se distribuyeron todo el trabajo según su experiencia y recursos. La oficina de Trail-Canadá, que es la de mayor experiencia en procesos, se encargó del proceso de la refinería y del área de lixiviación, que es la de mayor complejidad en la refinería. La oficina de Santiago de Chile, se encargó de las áreas de purificación, electrólisis, fundición y moldeo.

La oficina de Lima se encargó de las plantas de producción de plata y plomo, la planta de tratamiento de agua de planta, de las torres de enfriamiento de solución pura, y de todos los servicios para la refinería, es decir, agua fresca, agua de proceso, agua de enfriamiento, agua potable, vapor, aire comprimido y de la coordinación del proyecto.
3.14.1 Equipo de trabajo para el área 93

El equipo que realizó la ingeniería de detalle del área 93, referidos a la estación de bombeo de agua de enfriamiento y de todo el circuito de agua que alimenta a las plantas, fue de aproximadamente 16 personas durante 12 meses no continuos. La elaboración se realizó en la medida que se obtuvo la información.

3.14.2 Equipo de trabajo en la oficina de Lima

Un promedio de 40 profesionales trabajaron durante 20 meses en desarrollar la ingeniería de detalle en la oficina de Lima. A ello se debe sumar que durante la ejecución de la construcción, aproximadamente 15 personas trabajaron durante 12 meses para elaborar lo que se denomina ingeniería de terreno, que realiza cambios menores, según se requiera por interferencia con equipos existentes que los ingenieros de Votorantim modificaron o cambiaron para la operación de la refinería y que no fueron informados durante la elaboración de la ingeniería de detalle.

Un grupo similar al de la oficina de Lima trabajo en las oficinas de Santiago de Chile y otro en la oficina de Trail en Canadá.
CAPÍTULO 4
ADQUISICIÓN DE EQUIPOS

4.1 BOMBAS Y MOTORES

Para la selección de las bombas y motores, se procedió según lo establecido en los procedimientos de AMEC, es decir se preparó la documentación técnica necesaria para la compra tales como especificaciones técnicas de bombas y motores con sus respectivas hojas de datos (data sheets); se elaboró la lista de proveedores y se emitió una requisición de cotización. El área de logística del cliente emitió la solicitud de cotización y recibió las cotizaciones de los proveedores. Posteriormente AMEC realizó una evaluación técnica y emitió una recomendación de compra. El área de logística del cliente fue la encargada de emitir la orden de compra de acuerdo a criterios técnicos y económicos.

El cliente Votorantim realizó la evaluación comercial y que coincidió con el proveedor recomendado por AMEC.

Cabe señalar que los documentos para esta cotización fueron preparados todos en el idioma inglés, ya que por tratarse de equipos fabricados en el extranjero, es necesario utilizar este idioma que es más comercial que el español.
4.1.1 Documentos para la cotización

Los documentos necesarios para realizar la cotización son:

a) Especificación técnica de bombas verticales tipo turbina

b) Especificación de motores mayores a 200 kW

c) Hoja de datos (Data sheet) de las características de las bombas a cotizar y cantidad de las mismas.

d) Documento de requisición de cotización, RFP – Requestforquotation. Documento que establece condiciones comerciales y resume a todos los demás documentos.

Además de los documentos antes señalados, la empresa que cotiza, entrega a los proveedores documentos de tipo comercial, donde se ven todos los aspectos de formas de pago, garantías, penalidades, compromisos de entrega, etc. Esto se repite para todas las cotizaciones.

4.1.2 Listado de proveedores

El listado final de proveedores a cotizar, se limitó a tres representantes de bombas. Luego de una pre-selección y de conversaciones con los representantes técnicos de bombas establecidos en el Perú, se escogieron tres proveedores de bombas que reunían los requisitos técnicos y comerciales para asegurar un adecuado proceso de compra. Los criterios de pre-evaluación por AMEC fueron la disponibilidad de bombas con las características técnicas necesarias, la experiencia del proveedor en sistemas de bombeo similares y el respaldo técnico y de mantenimiento. Los requisitos comerciales se refieren a la capacidad
económica del proveedor, a la representación de los equipos establecida en el Perú, y a los tiempos de entrega de equipos similares a los cotizados.

A continuación se indican el representante y la marca de bomba seleccionados para la etapa de cotización:

- Proveedor: ITT- bombas marca Goulds
- Proveedor: WortecPerú –bombas marca Flowserve
- Proveedor: Weir Perú –bombas marca Weir

4.1.3 Cotización
La cotización se realizó a través del cliente, tal como se estableció en el contrato de servicios. El cliente Votorantim fue el encargado de pedir la cotización formal en los temas técnicos y comerciales. AMEC estableció el contacto formal con los representantes de bombas solamente con la autorización del cliente y solo para efectos de clarificación de temas técnicos. Todos los equipos son cotizados y posteriormente comprados utilizando el número asignado por el proyecto. Este número de equipo es llamado Tag del equipo y es el único código con el cual es identificado cada equipo. Todos los planos y documentos se refieren a los equipos por su número de Tag.

4.1.4 Evaluación de equipos
La evaluación del conjunto bomba-motor se realizó de acuerdo a los procedimientos de AMEC y con los formatos del mismo. Se estableció
un contacto directo entre los proveedores y los ingenieros del área mecánica y tuberías para esclarecer numerosos detalles técnicos importantes para la evaluación de las bombas y motores ofertados.

El documento TE-46040 Rev1, anexo a este informe detalla todos los aspectos que se tuvieron en consideración para la evaluación del conjunto bomba-motor y las conclusiones de la evaluación.

4.1.5 Recomendación de compra

La recomendación de compra se hizo considerando solamente los aspectos técnicos, sin considerar precios de equipos, de transporte u otros. El proveedor recomendado fue Wortec Perú, que ofreció una bomba marca Flowserve y un motor General Electric. El cliente había pedido que los motores fueran de preferencia WEG, sin embargo el proveedor se excusó de utilizar este motor por consideraciones técnicas y comerciales. Finalmente el cliente acepto estos equipos los cuales fueron comprados y posteriormente instalados según lo planeado.

4.2 TUBERÍAS Y ACCESORIOS

Las tuberías para estas instalaciones fueron compradas en conjunto con las tuberías y accesorios del proyecto en conjunto. No se consideró una compra por separado para este sistema.

4.2.1 Documentos para la cotización

Los documentos necesarios para realizar la cotización de las tuberías fueron:
a) Especificación técnica de tuberías, SP-50-4006 (Material Specification)

b) Instalación de tuberías SP-50-4005 (Piping Installation)

c) Pre-fabricación de Tuberías, SP-50-4001 (Piping Prefabrication)

d) MTO (Material Take Off), que es un listado que incluye todas las tuberías y accesorios que deberán ser suministrados.

e) Documento de requisición de cotización, RFP Request for Quotation. Documento que establece condiciones comerciales y resume a todos los demás documentos.

4.2.2 Listado de proveedores

El listado de proveedores fue coordinado entre el cliente Votorantim y la oficina de logística de AMEC en Vancouver (Canadá). Para este listado se consideraron razones comerciales. No se tuvo acceso a la información de los proveedores, pero se sabe que fueron compañías internacionales que ofrecían precios y tiempos de entrega mejores a los proveedores nacionales.

4.2.3 Cotización de tuberías y accesorios

La cotización de tuberías y accesorios se realizó a través del cliente, que estableció el contacto formal con los representantes de tuberías y pidieron una cotización formal, en los temas técnicos y comerciales. Para este rubro lo más importante es que las compañías entreguen certificados de calidad que cumplen con las normas requeridas en las especificaciones de tuberías. Las tuberías y accesorios son cotizados en paquetes según el tipo de material y no tienen un número asignado
por cada uno, sino por cada tipo de tubería o accesorio según su diámetro. Para la compra y posterior instalación se elabora un listado de tuberías y accesorios con todas las características suficientes para su plena identificación durante el proceso de compra y posterior instalación.

4.2.4 Evaluación

La evaluación de las tuberías y accesorios se realizó revisando los certificados de calidad que presentan las empresas comercializadoras. No existió participación directa de AMEC.

4.2.5 Recomendación de compra

La evaluación de las tuberías y accesorios fue realizada directamente por Votorantim. Cabe señalar que las tuberías para este sistema de bombeo fueron compradas en conjunto con las tuberías de todo el proyecto, en paquetes según su tipo y tamaño y a diferentes proveedores según el criterio del cliente y atendiendo principalmente razones comerciales.

4.3 VÁLVULAS

Las válvulas para estas instalaciones fueron compradas en conjunto con las válvulas de todo el proyecto. Se hicieron paquetes de compra de válvulas según las características de estas, por material, tamaño, tipo de fluido, etc. No se consideró una compra por separado para el sistema de bombeo de agua de enfriamiento.
4.3.1 Documentos para la cotización

Los documentos necesarios para realizar la cotización son:

a) Especificación de válvulas SP-50-4007 (ValveSpecificationIndex)

b) Instalación de tuberías SP-50-4005 (PipingInstallation)

c) MTO (Material Take Off), que es un listado que incluye todas las válvulas que deberán ser suministradas.

d) Documento de requisición de cotización – RFQ – Requestforquotations.

4.3.2 Listado de proveedores

El listado de proveedores para válvulas fue elaborado por el cliente Votorantim en coordinación con AMEC y de acuerdo a las experiencias anteriores de compra. AMEC recomendó dentro del listado de válvulas a los proveedores: Válvulas Industriales, Nic Industrial, Adolphus y La Llave.

4.3.3 Cotización

La cotización se realizó a través del cliente, que estableció el contacto formal con los representantes de válvulas y pidió una cotización formal, en los temas técnicos y comerciales.

Cada tipo diferente de válvula tiene un código diferente, es decir no se asigna un número por cada válvula sino por tipo. Se elabora durante la ingeniería un listado de válvulas que sirve durante el proceso de compra y posterior instalación.
4.3.4 Evaluación de válvulas

La evaluación de las válvulas fue realizada por el cliente y en algunos casos puntuales por AMEC. El cliente envió las especificaciones de las mismas a los proveedores y estos recomendaron los tipos de válvulas según la marca que ellos proveen. Cabe señalar que las válvulas para este sistema de bombeo fueron compradas en conjunto con las válvulas de todo el proyecto, en paquetes según su tipo y tamaño y a diferentes proveedores según el criterio del cliente.

4.3.5 Recomendación de compra

AMEC participó solamente en la evaluación técnica y los proveedores a quienes se adquirió válvulas fueron: Válvulas Industriales, Nic Industrial y Adolphus. También se realizaron compras a proveedores extranjeros que suministraron parte del paquete de válvulas comprado. La selección final fue mayoritariamente por razones comerciales (precio, plazo de entrega, condiciones de pago, etc.), pero antes se estableció un listado de proveedores y marcas de válvulas aprobados.

AMEC no participó directamente en el proceso de compra y su labor se limitó a la recomendación de proveedores, elaboración de especificaciones y listado de materiales.

Sin embargo, para válvulas especiales, sobre todo automáticas o de tamaños mayores a 20", el cliente solicitó la evaluación técnica de las válvulas propuestas por los proveedores, con un sistema similar al de la
evaluación técnica de equipos. AMEC emitió las evaluaciones técnicas para estos casos.
CAPÍTULO 5

COSTO DE LOS EQUIPOS

5.1 BOMBAS Y MOTORES

El costo de las bombas y motores se va a referir como precio unitario por cada paquete bomba-motor y será establecido como precio FOB. Se adjunta cuadro N° 5.1 resumen del costo de las bombas y motores. No se incluyen costos de instalación.

<table>
<thead>
<tr>
<th>Item</th>
<th>Tag del equipo</th>
<th>Cant.</th>
<th>Modelo de bomba</th>
<th>Motor (HP/RPM)</th>
<th>Tipo de bomba</th>
<th>Costo unitario (US $)</th>
<th>Tiempo de entrega (semanas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X-2003.4610</td>
<td>1</td>
<td>20EPM-3 / B30</td>
<td>300</td>
<td>VTP</td>
<td>157 316</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>X-2004.4610</td>
<td>1</td>
<td>20EPM-3 / B30</td>
<td>300</td>
<td>VTP</td>
<td>157 316</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>X-2005.4610</td>
<td>1</td>
<td>20EPM-3 / B30</td>
<td>300</td>
<td>VTP</td>
<td>157 316</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>X-2006.4610</td>
<td>1</td>
<td>20EPM-3 / B30</td>
<td>300</td>
<td>VTP</td>
<td>157 316</td>
<td>34</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>629 264</td>
</tr>
</tbody>
</table>

Cuadro N°5.1 Costo del conjunto bomba-motor
Fuente: Elaboración propia

5.2 TUBERÍAS, ACCESORIOS Y VÁLVULAS

El costo de las tuberías, accesorios y válvulas se refieren únicamente a la estación de bombeo, desde la salida de las bombas hasta la tubería de 800
mm de diámetro incluyendo el manifold de descarga. No se incluyen costos de instalación.

<table>
<thead>
<tr>
<th>Item</th>
<th>Descripción</th>
<th>Cant. (m)</th>
<th>Cant. (unid)</th>
<th>Costo unitario US $</th>
<th>Costo Parcial (US $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tubería AC SCH Std - 32" - ASTM-A53 Gr B</td>
<td>70</td>
<td></td>
<td>397,15</td>
<td>27 801</td>
</tr>
<tr>
<td>2</td>
<td>Tubería AC SCH Std - 24" - ASTM-A53 Gr B</td>
<td>72</td>
<td></td>
<td>197,23</td>
<td>14 201</td>
</tr>
<tr>
<td>2</td>
<td>Tubería AC SCH Std - 20" - ASTM-A53 Gr B</td>
<td>32</td>
<td></td>
<td>163,82</td>
<td>5 242</td>
</tr>
<tr>
<td>3</td>
<td>Tubería AC SCH Std - 16" - ASTM-A53 Gr B</td>
<td>2</td>
<td></td>
<td>130,57</td>
<td>261</td>
</tr>
<tr>
<td>4</td>
<td>Reducción Exc. AC 20" x 16" - ASTM-A234 WPBW</td>
<td>4</td>
<td></td>
<td>78,36</td>
<td>313</td>
</tr>
<tr>
<td>5</td>
<td>Codo 90º Corto 24" ASTM-A234 WPBW</td>
<td>12</td>
<td></td>
<td>236,67</td>
<td>2 840</td>
</tr>
<tr>
<td>5</td>
<td>Codo 90º Corto 20" ASTM-A234 WPBW</td>
<td>8</td>
<td></td>
<td>180,2</td>
<td>1 442</td>
</tr>
<tr>
<td>6</td>
<td>Brida Slip on 24" ASTM-A105</td>
<td>12</td>
<td></td>
<td>125,02</td>
<td>1 500</td>
</tr>
<tr>
<td>6</td>
<td>Brida Slip on 20" ASTM-A105</td>
<td>4</td>
<td></td>
<td>85,04</td>
<td>340</td>
</tr>
<tr>
<td>6</td>
<td>Junta de expansión 24"</td>
<td>4</td>
<td></td>
<td>2 580</td>
<td>10 320</td>
</tr>
<tr>
<td>7</td>
<td>Válvula Check Cast Iron 20" - Wafer Class 125</td>
<td>4</td>
<td></td>
<td>6 520</td>
<td>26 080</td>
</tr>
<tr>
<td>8</td>
<td>Válvula Mariposa Cast Iron / EPDM Lined 20" Class 150</td>
<td>4</td>
<td></td>
<td>5 850</td>
<td>23 400</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>113 740</td>
</tr>
</tbody>
</table>

Cuadro Nº5.2 Costo de las tuberías, accesorios y válvulas en la estación de bombeo

Fuente: Elaboración propia

Los dos ítems anteriores son de entera responsabilidad del área mecánica y de tuberías, y considerando que el alcance del presente informe se focaliza en estas dos áreas, se han detallado los costos de las bombas principales. El que suscribe este informe fue el responsable del área de tuberías y coordinador durante el desarrollo de la ingeniería desde el año 2006 al 2009, y se desempeñó como gerente de ingeniería durante la ejecución del proyecto en el año 2009. El proyecto fue terminado en su ejecución y puesta en marcha en el primer trimestre del 2010.
A la fecha el sistema de bombeo de agua de enfriamiento está funcionando sin ninguna modificación y atiende los requerimientos para la producción de 320 000 toneladas por año de refinado de zinc.
CONCLUSIONES

1. Se seleccionaron cuatro bombas verticales tipo turbina, con una capacidad de flujo de 1 370 m3/h cada una, y una altura total de descarga de 42,5 metros. Los motores de las bombas son de 300 HP.

2. El sistema de agua de enfriamiento suministra 4 108,5 m3/h y cubre el requerimiento del proyecto 320K, a entera satisfacción del cliente y a la fecha no ha necesitado de ninguna modificación.

3. El nuevo circuito de agua de enfriamiento trabaja independiente del sistema anterior al proyecto 320K, pero puede ser integrado al circuito de agua de enfriamiento existente con la apertura y cierre de válvulas instaladas para este propósito.

4. La intervención del cliente en el proceso de diseño, ha permitido cubrir de manera eficaz, los requerimientos técnicos que van apareciendo en el desarrollo del trabajo.

5. La participación activa de las diferentes disciplinas de la ingeniería, ponen de relieve la nueva tendencia de los proyectos ingenieriles, que es, la ingeniería concurrente.
RECOMENDACIONES

1. Seguir los procedimientos y recomendaciones de mantenimiento del fabricante, que se encuentran en los manuales de los equipos instalados. Las inspecciones periódicas deben realizarse por técnicos entrenados por el proveedor del equipo.

2. Mantener un stock mínimo de repuestos para las bombas y motores, tales como sellos mecánicos, rodamientos y otros recomendados por el fabricante.

3. Realizar un análisis cada seis meses de las condiciones del agua de enfriamiento, en acidez, tamaño y porcentaje de sólidos en suspensión. La dosificación de anti-incrustantes y ácido sulfúrico se debe controlar diariamente.

4. Verificar que las cuatro bombas trabajen alternadamente de acuerdo a la secuencia programada en el PLC instalado para el comando de las bombas.
1. Autor: Mohinder L. Nayyar –
2. Autor: Jhon Wiley & sons
 Designs of piping systems,
 2nd edition.
3. Autor: PETER SMITH
 Piping Materials Selection and Applications,
 USA 2000
4. Autor: GEORGE A. ANTAKI,
 Pipeline Engineering,
 USA, 2003
5. ED BAUSBACHER,
 Process Plant Layout and Piping Design,
 USA, 1993
6. Autor: IGOR J. KARASSIK,
 Bombas Centrífugas,
 México, 1985
MANUALES:

7.- FLOWSERVE,
Cameron Hydraulic Data, Canada,
19th edition, 2002

8.- GOULDS PUMP INC
Goulds Pump Manual,
6th edition

DICIONARIO:

9.- JAVIER COLLAZO,
Diccionario enciclopédico de términos técnicos,
7ma edición. USA

MONOGRAFÍAS:

10.- UNIVERSIDAD TECNOLÓGICA DE PANAMA
Monografía, Elementos de sistemas hidráulicos
Julio del 2006.

12.- Universidad Mayor de San Simón- Monografía, usando los gráficos del Manual del ingeniero Químico, Robert Perry, 6ta edición.
PLANOS

- 93-01-4001 PFD - Coolingwaterdistributiondiagram
- 93-01-4002 PFD - Coolingwater distribution diagram
- 93-01-4101 P&ID - Área 93-Agua de enfriamiento
- 93-01-4102 P&ID - Área 93- Agua de enfriamiento
- 93-01-4103 P&ID - Área 93- Agua de enfriamiento
- 93-01-4100 P&ID - Área 93- Sistema de drenajes y adición de reactivos
- 93-40-4601 Arreglo General Torres de enfriamiento - Planta
- 93-40-4602 Arreglo General Torres de enfriamiento – Secciones 1 de 2
- 93-40-4603 Arreglo General Torres de enfriamiento – Secciones 2 de 2
- 93-40-4604 Estación de bombas – Planta y Secciones
- 93-50-4600 Arreglo general de tuberías – Ubicación de planos – Key Plan
- 93-50-4601 Arreglo general de tuberías – Planta 1
- 93-50-4602 Arreglo general – Estación de bombas - Secciones A y B
- 93-50-4603 Arreglo general – Estación de bombas – Secciones C, D, E, F, G y detalles
- 93-60-4601 Agua de enfriamiento – Diagrama unifilar 4160V
- 93-60-4602 Agua de enfriamiento – Diagrama unifilar 460V
- 93-60-4603 Agua de enfriamiento – Diagrama unifilar 230V
- 93-60-4610 Agua de enfriamiento – Disposición CDC (4160V)
ANEXOS

- SP-50-4006 Piping Material Specification Index
- SP-50-4001 Pipe prefabrication
- SP-50-4003 Pipe Hangers and supports
- SP-50-4005 Piping Installation
- SW-40-4601 Alcance de trabajo, montaje mecánico y piping
- WFTL-20167 Cotización preliminar de Flowserve, año 2007
- DS-40-4610-X2003 Data sheet de las bombas de agua de enfriamiento Rev0
- TE-46040 Rev 0 Technical Evaluation Water cooling Vertical Pumps Rev 0
- DS-40-4610-X2003 Data sheet de las bombas de agua de enfriamiento Rev1
- TE-46040 Rev1 Technical Evaluation Water cooling Vertical Pumps Rev 1
- 93-50-4650 Agua de enfriamiento – Diagrama hidráulico – Fathom
- Figura 1.3 Vista en PDMS de la refinería de Cajamarquilla
- Figura 3.9 Refinería de Cajamarquilla – Maqueta PDMS
- Figura 3.10 Estación de bombeo – Maqueta PDMS
- Figura 3.11 Estación de bombeo - detalle – Maqueta PDMS
- Figura 3.12 Rack de tuberías – Maqueta PDMS
AREA 93 - PIPE RACK
UBICACION DE PLANOS (KEY-PLAN)
NOTAS:

1.- EQUIPO DE PROTECCION MULTIFUNCION CON MEDICION DE ENERGIA, TENSION, CORRIENTE, FACTOR DE POTENCIA, CON PROTOCOLO DE COMUNICACION IEC 61850.

2.- DIMENSIONES FINALES DEFINIR POR PROVEEDOR.

VISTA FRONTAL CDC Z2209.6910
S/E (NOTA 2)
FIGURA 1.3
VISTA EN PDMS DE LA REFINERIA DE CAJAMARQUILLA - PROYECTO 320K
Oct/2008 - AMEC PERU
FIGURA Nº 3.10
ESTACIÓN DE BOMBEO
FIGURA N° 3.11
ESTACIÓN DE BOMBEO
DETALLE DE LA DISPOSICIÓN
DE LAS BOMBAS
FIGURA N° 3.12
Rack de tuberías - Desde la estación de bombeo hacia las áreas 35, 20, 92, 75 y 81
The document revision number is indicated below. Please replace all revised pages of this document and destroy the superseded copies.

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
<th>SP-50-4006</th>
<th>REV. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metais - Cajamarquilla S.A.</td>
<td>PIPING MATERIAL SPECIFICATION INDEX</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISSUED FOR</th>
<th>REV No.</th>
<th>ORIGIN</th>
<th>DATE</th>
<th>ISSUED PAGES/SECTIONS</th>
<th>INITIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval</td>
<td>A</td>
<td>HRM</td>
<td>12-Jul-07</td>
<td></td>
<td>HRM</td>
</tr>
<tr>
<td>Construction</td>
<td>0</td>
<td>MDM</td>
<td>08-Feb-08</td>
<td></td>
<td>HRM</td>
</tr>
<tr>
<td>Construction</td>
<td>1</td>
<td>MDM</td>
<td>26-Feb-08</td>
<td></td>
<td>MDM</td>
</tr>
<tr>
<td>Construction</td>
<td>2</td>
<td>HRM</td>
<td>02-May-08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12 MAYO 2008

CLIENT APPROVAL

Project Manager: __________________________
Date: __________________________

AMEC APPROVAL

Engineering Manager: __________________________
Date: __________________________
Engineering Co-ord.: __________________________
Date: __________________________
Discipline Approval: __________________________
Date: __________________________
TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
<th>SP-50-4006</th>
<th>REV. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 155339</td>
<td></td>
<td>PIPING MATERIAL</td>
<td></td>
</tr>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metals - Cajamarquilla S.A.</td>
<td>SPECIFICATION INDEX</td>
<td></td>
</tr>
</tbody>
</table>

HISTORY OF INDIVIDUAL CLASS REVISIONS

<table>
<thead>
<tr>
<th>REV.</th>
<th>REVISION/ISSUE DESCRIPTION</th>
<th>DATE</th>
<th>ORIGINATOR</th>
<th>CHECK</th>
<th>APPROVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>For Approval - All</td>
<td>11-Jul-07</td>
<td>HRM</td>
<td>MDM</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>For Construction - All</td>
<td>08-Feb-08</td>
<td>MDM</td>
<td>HRM</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>For Construction – 001, 002, 021, 044, 106, 107, 204, 206, 208, 405</td>
<td>26-Feb-08</td>
<td>MDM</td>
<td>HRM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>For Construction - All</td>
<td>02-May-08</td>
<td>HRM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signature: [Signature Image]
TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>PIPING MATERIAL CLASS.</th>
<th>FLUID CODES</th>
<th>SERVICE</th>
<th>MATERIAL</th>
<th>MAX. PRESS.</th>
<th>MAX. TEMP.</th>
<th>REV</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>WHP</td>
<td>High Pressure Water</td>
<td>Carbon Steel</td>
<td>2500 kPa</td>
<td>60°C</td>
<td>1</td>
</tr>
<tr>
<td>013</td>
<td>WF</td>
<td>Fire Water</td>
<td>Carbon Steel, Galvanized</td>
<td>1400 kPa</td>
<td>60°C</td>
<td>1</td>
</tr>
<tr>
<td>020</td>
<td>SL, SC</td>
<td>Low Pressure Steam, Low Pressure Condensate</td>
<td>Carbon Steel</td>
<td>1050 kPa</td>
<td>177°C</td>
<td>1</td>
</tr>
<tr>
<td>021</td>
<td>SM</td>
<td>Medium Pressure Steam</td>
<td>Carbon Steel</td>
<td>2100 kPa</td>
<td>350°C</td>
<td>2</td>
</tr>
<tr>
<td>022</td>
<td>SH</td>
<td>High Pressure Steam</td>
<td>Carbon Steel</td>
<td>4000 kPa</td>
<td>350°C</td>
<td>1</td>
</tr>
<tr>
<td>040</td>
<td>AI</td>
<td>Instrument Air</td>
<td>Carbon Steel, Galvanized, Victaulic</td>
<td>1030 kPa</td>
<td>40°C</td>
<td>1</td>
</tr>
<tr>
<td>043</td>
<td>AI</td>
<td>Instrument Air</td>
<td>SS 304L</td>
<td>1030 kPa</td>
<td>40°C</td>
<td>1</td>
</tr>
<tr>
<td>044</td>
<td>AC</td>
<td>Plant Air</td>
<td>Carbon Steel</td>
<td>1030 kPa</td>
<td>40°C</td>
<td>2</td>
</tr>
<tr>
<td>106</td>
<td>HR, YHS, YSE, WWS, YF, X</td>
<td>Spent Electrolyte, Corrosive Slurries, Corrosive & Erosive Slurries, Effluent Water, Electrolyte, Vacuum</td>
<td>SS 316L</td>
<td>1030 kPa</td>
<td>65°C</td>
<td>2</td>
</tr>
<tr>
<td>107</td>
<td>HS</td>
<td>Strong Acid (H2SO4)</td>
<td>SS 316L</td>
<td>500 kPa</td>
<td>40°C</td>
<td>2</td>
</tr>
<tr>
<td>204</td>
<td>YS, YHS, YSE, HR, V, D, YF, YHF, YF, RL</td>
<td>Non-Corrosive Slurries, Corrosive Slurries, Erosive Slurries, Spent Electrolyte, Vents, Drains, Non-Corrosive Filtrates, Corrosive Filtrates, Electrolyte, Lime Slurry</td>
<td>Polypropylene</td>
<td>1600 kPa</td>
<td>95°C</td>
<td>2</td>
</tr>
<tr>
<td>206</td>
<td>YS, YHS, YSE, HR, V, D, YF, YHF, YF, RL</td>
<td>Non-Corrosive Slurries, Corrosive Slurries, Erosive Slurries, Spent Electrolyte, Vents, Drains, Non-Corrosive Filtrates, Corrosive Filtrates, Electrolyte, Lime Slurry</td>
<td>Polypropylene</td>
<td>1050 kPa</td>
<td>95°C</td>
<td>2</td>
</tr>
</tbody>
</table>
TECHNICAL SPECIFICATION

PROJECT:
- 320K

CLIENT:
- Votorantim Metais - Cajamarquilla S.A.

PIPING MATERIAL SPECIFICATION INDEX

<table>
<thead>
<tr>
<th>PIPING MATERIAL CLASS.</th>
<th>FLUID CODES</th>
<th>SERVICE</th>
<th>MATERIAL</th>
<th>MAX. PRESS.</th>
<th>MAX. TEMP.</th>
<th>REV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>208</td>
<td>YS, YHS, YSE, HR, V, D, YF, YHF, YF, RL</td>
<td>Non-Corrosive Slurries, Corrosive Slurries, Erosive Slurries, Spent Electrolyte, Vents, Drains, Non-Corrosive Filtrates, Corrosive Filtrates, Electrolyte, Lime Slurry</td>
<td>Polypropylene</td>
<td>600 kPa</td>
<td>95°C</td>
<td>2</td>
</tr>
<tr>
<td>212</td>
<td>YS, YHS, YSE, HR, V, D, YF, YHF, YF, WP</td>
<td>Non-Corrosive Slurries, Corrosive Slurries, Erosive Slurries, Spent Electrolyte, Vents, Drain, Non-Corrosive Filtrates, Corrosive Filtrates, Electrolyte, Potable Water</td>
<td>PVC</td>
<td>700 kPa</td>
<td>25°C</td>
<td>1</td>
</tr>
<tr>
<td>215</td>
<td>HS</td>
<td>Strong Acid (H₂SO₄)</td>
<td>Carbon Steel</td>
<td>1050 kPa</td>
<td>35°C</td>
<td>1</td>
</tr>
<tr>
<td>217</td>
<td>WD</td>
<td>Demineralized Water</td>
<td>SS 304L</td>
<td>1050 kPa</td>
<td>40°C</td>
<td>1</td>
</tr>
<tr>
<td>231</td>
<td>YS, YHS, YSE, HR, V, D, YF, YHF, YF</td>
<td>Non-Corrosive Slurries, Corrosive Slurries, Erosive Slurries, Spent Electrolyte, Vents, Drain, Non-Corrosive Filtrates, Corrosive Filtrates, Electrolyte</td>
<td>HDPE</td>
<td>800 kPa</td>
<td>40°C</td>
<td>1</td>
</tr>
<tr>
<td>232</td>
<td>RF</td>
<td>Flocculant</td>
<td>HDPE</td>
<td>800 kPa</td>
<td>40°C</td>
<td>1</td>
</tr>
<tr>
<td>233</td>
<td>WF</td>
<td>Fire Water (Underground)</td>
<td>HDPE</td>
<td>2800 kPa</td>
<td>60°C</td>
<td>1</td>
</tr>
<tr>
<td>234</td>
<td>HR, YF</td>
<td>Spent Electrolyte, Electrolyte</td>
<td>HDPE</td>
<td>1000 kPa</td>
<td>40°C</td>
<td>1</td>
</tr>
<tr>
<td>235</td>
<td>HR, YF</td>
<td>Spent Electrolyte, Electrolyte</td>
<td>HDPE</td>
<td>1600 kPa</td>
<td>40°C</td>
<td>1</td>
</tr>
<tr>
<td>236</td>
<td>HR, YF</td>
<td>Spent Electrolyte, Electrolyte</td>
<td>HDPE</td>
<td>600 kPa</td>
<td>40°C</td>
<td>1</td>
</tr>
<tr>
<td>311</td>
<td>GP, HL</td>
<td>Propane, Fuel Oil</td>
<td>Carbon Steel</td>
<td>150 kPa</td>
<td>40°C</td>
<td>1</td>
</tr>
<tr>
<td>316</td>
<td>VO</td>
<td>Low Pressure Oxygen</td>
<td>Carbon Steel</td>
<td>700 kPa</td>
<td>30°C</td>
<td>1</td>
</tr>
<tr>
<td>321</td>
<td>VOH</td>
<td>High Pressure Oxygen</td>
<td>SS 304L</td>
<td>2750 kPa</td>
<td>40°C</td>
<td>1</td>
</tr>
<tr>
<td>403</td>
<td>YS</td>
<td>Non-Corrosive Slurry</td>
<td>Carbon Steel</td>
<td>1030 kPa</td>
<td>40°C</td>
<td>1</td>
</tr>
<tr>
<td>COMPONENTS</td>
<td>MATERIAL</td>
<td>PRESSURE</td>
<td>TEMP</td>
<td>FLOW RATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------</td>
<td>----------</td>
<td>------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YS, YHS, YSE, HR, V, D, YF, YHF, YF, RL</td>
<td>Non-Corrosive Slurries, Corrosive Slurries, Erosive Slurries, Spent Electrolyte, Vents, Drains, Non-Corrosive Filtrates, Corrosive Filtrates, Electrolyte, Lime Slurry</td>
<td>FRP, PP lined</td>
<td>1050 kPa</td>
<td>95° C</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL SPECIFICATION

PROJECT:

<table>
<thead>
<tr>
<th>320K</th>
<th>SP-50-4006</th>
<th>REV. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° 155339</td>
<td>PIPING MATERIAL SPECIFICATION - 001</td>
<td></td>
</tr>
</tbody>
</table>

CLIENT:

Votorantim Metais - Cajamarquilla S.A.

SPECIFICATION "001"

Service: Emergency Water (WE), Process Water Supply (WPS), Process Water Return (WPR), Raw Water (WR), Cooling Water Supply (WCS), Cooling Water Return (WCR), Fire Water (WF), Recycle Water (WRE), Treated Water (WT)

<table>
<thead>
<tr>
<th>Max. Fluid Press.:</th>
<th>1030 kPa</th>
<th>Code:</th>
<th>ANSI B31.3 CAT. D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Fluid Temp.:</td>
<td>60° C</td>
<td>Corr. Allow.:</td>
<td>1.6 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDT:</td>
<td>Service Test</td>
</tr>
</tbody>
</table>

PIPING MATERIAL SPECIFICATION

PIPE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Carbon Steel, SMLS</td>
<td>ASTM A-53 Gr. B Type S ANSI B36.10</td>
</tr>
<tr>
<td>End Prep.: Threaded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Thick.: Schedule 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN900</td>
<td>Material: Carbon Steel, ERW</td>
<td>ASTM A-53 Gr. B Type E ANSI B36.10</td>
</tr>
<tr>
<td>End Prep.: Bevelled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Thick.: Standard Weight</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FITTINGS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Malleable Iron Conn.: Female NPT Class: 150</td>
<td>ASTM A-197 ANSI B16.3</td>
</tr>
<tr>
<td>DN80 thru DN900</td>
<td>Material: Forged Carbon Steel Conn.: Butt weld Class: Standard Weight</td>
<td>ASTM A-234 WPBW ANSI B16.9</td>
</tr>
</tbody>
</table>

UNIONS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Malleable Iron Conn.: Female NPT Class: 150</td>
<td>ASTM A-197 ANSI B16.39</td>
</tr>
</tbody>
</table>

FLANGES

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN50 (See Note 5)</td>
<td>Material: Forged Steel Type: Raised Face or Flat Face Conn.: Female NPT Class: 150</td>
<td>ASTM A-105 ANSI B16.5</td>
</tr>
<tr>
<td>DN80 thru DN900 (See Notes 4,5)</td>
<td>Material: Forged Steel Type: Raised Face or Flat Face Conn.: Slip-On or Weld Neck Class: 150</td>
<td>ASTM A-105 ANSI B16.47</td>
</tr>
</tbody>
</table>

BLINDS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN80 thru DN900</td>
<td>Material: Forged Steel Type: Flat Face Class: 150</td>
<td>ASTM A-105 ANSI B16.5 ANSI B16.47</td>
</tr>
</tbody>
</table>
TECHNICAL SPECIFICATION

PROJECT: 320K

| CLIENT: Votorantim Metals - Cajamarquilla S.A. |

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
</table>
| **BOLTS** | All Sizes | Material: Carbon Steel
Type: Heavy Hex Machine Bolts | ASTM A-307 Gr. B
ANSI B18.2.1
Class 2A Threads UNC ≤25 mm
Class 2A Threads 8UN > 25 mm |

| **NUTS** | All Sizes | Material: Carbon Steel
Type: Heavy Hex | ASTM A-563 Gr. A
ANSI B18.2.2
Class 2B Threads UNC |

| **GASKETS** | | Material: SBR Rubber
Type: Full Face or Ring Type
Thickness: 3 mm
Class: 150 | Garlock 7125 or equal
ANSI B16.21 |

VALVE DESCRIPTION

<table>
<thead>
<tr>
<th>VALVE</th>
<th>DESCRIPTION</th>
<th>VALVE CODE</th>
</tr>
</thead>
</table>
| **BALL** | DN15 thru DN50 | Material: Carbon Steel/S.S. Trim
Conn.: Female NPT
Class: 1500 W.O.G. | V-4512 |
| | DN80 thru DN200 | Material: Ductile Iron / S.S. Trim
Conn.: Flanged
Class: 150 | V-4232 |
| **GATE** | DN15 thru DN50 | Material: Forged Steel
Conn.: Female NPT
Class: 800 | V-1516 |
| | DN80 thru DN600 | Material: Cast Iron
Conn.: Flanged
Class: 125 | V-1131
(See Note 5) |
| | DN80 thru DN600 Outside Stem and Yoke | Material: Cast Iron
Conn.: Flanged
Class: 125 | V-1133
(See Note 5) |
| | DN80 thru DN600 Non-Rising Stem | Material: Cast Iron
Conn.: Flanged
Class: 125 | |
| **CHECK** | DN15 thru DN50 Swing Type | Material: Bronze
Conn.: Female NPT
Class: 125 | V-3118 |
| | DN80 thru DN600 Duo Type | Material: Cast Iron
Conn.: Water Style
Class: 125 | V-3145 |
TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>VALVE</th>
<th>DESCRIPTION</th>
<th>VALVE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Forged Steel</td>
<td>V-2516</td>
</tr>
<tr>
<td></td>
<td>Conn.: Female NPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class: 800</td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN250</td>
<td>Material: Cast Iron</td>
<td>V-2132</td>
</tr>
<tr>
<td></td>
<td>Conn.: Flanged</td>
<td>(See Note 5)</td>
</tr>
<tr>
<td></td>
<td>Class: 125</td>
<td></td>
</tr>
<tr>
<td>BUTTERFLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN300</td>
<td>Material: Ductile Iron / EPDM</td>
<td>V-9227</td>
</tr>
<tr>
<td></td>
<td>Lined</td>
<td>(See Notes 2 and 3)</td>
</tr>
<tr>
<td></td>
<td>Conn.: Lug</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class: 150</td>
<td></td>
</tr>
<tr>
<td>DN350 thru DN900</td>
<td>Material: Cast Iron / EPDM Lined</td>
<td>V-9243</td>
</tr>
<tr>
<td></td>
<td>Conn.: Wafer</td>
<td>(See Note 2)</td>
</tr>
<tr>
<td></td>
<td>Class: 150</td>
<td></td>
</tr>
</tbody>
</table>

Insulation:
As per piping and instrument diagram and AMEC Specification SP-50-4002.

Cleaning:
Flush and clean system thoroughly.

Painting:
Painting shall be in accordance with AMEC Specification SP-30-4304.

Colour Code:
Colours and identification shall be in accordance with Norma Tecnica Nacional 399.012.
- Water - S-8 RAL 6019 - Pastel Green.
- Fire Water - S-1 RAL 3020 - Traffic Red

NOTES:

1. Swages may be used where small end does not exceed DN40 and large end does not exceed DN150.

2. This style of butterfly valve does not require gaskets.

3. For valves with alignment holes drilled and tapped and for lugs, use heavy hex head machine bolts. Allow 4 mm clearance at the ends of the bolts but not less than one full diameter of bolt penetration into the tapped holes.

4. Weld neck flanges are to be used if being welded directly to a fitting such as an elbow, tee, etc. Slip-on flanges may be used if being welded to pipe.

5. Flat faced flanges are to be used when being bolted up to valves with cast iron flanges.
TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
<th>SP-50-4006</th>
<th>REV. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metals - Cajamarquilla S.A.</td>
<td>PIPING MATERIAL</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATION "002"

Service: Process Water Supply (WPS), Process Water Return (WPR), Raw Water (WR)

Max. Fluid Press.: **1030 kPa**
Max. Fluid Temp.: **60° C**
Corr. Allow.: **1.6 mm**

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Carbon Steel, SMLS End Prep.: Threaded Wall Thick.: Schedule 80</td>
<td>ASTM A-53 Gr. B Type S ANSI B36.10</td>
</tr>
<tr>
<td>DN80 thru DN300 (See Note 6)</td>
<td>Material: Carbon Steel, ERW End Prep.: Victaulic Grooved Wall Thick.: Standard Weight</td>
<td>ASTM A-53 Gr. B Type E ANSI B36.10</td>
</tr>
<tr>
<td>COUPLINGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN300</td>
<td>Material: Ductile Iron Conn.: Victaulic, EPDM Gasket</td>
<td>ASTM A-536 Victaulic Style 77 c/w EPDM gasket (Grade E) or approved equal</td>
</tr>
<tr>
<td>FITTINGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Malleable Iron Conn.: Female NPT Class: 150</td>
<td>ASTM A-197 ANSI B16.3</td>
</tr>
<tr>
<td>DN80 thru DN300 (See Note 5)</td>
<td>Material: Ductile Iron Conn.: Victaulic Grooved</td>
<td>ASTM A-536 Victaulic Fig. 20 thru 110 or approved equal</td>
</tr>
<tr>
<td>UNIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Malleable Iron Conn.: Female NPT Class: 150</td>
<td>ASTM A-197 ANSI B16.39</td>
</tr>
<tr>
<td>FLANGES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Forged Steel Type: Raised Face or Flat Face Conn.: Female NPT Class: 150</td>
<td>ASTM A-105 ANSI B16.5</td>
</tr>
<tr>
<td>DN80 thru DN300</td>
<td>Material: Ductile Iron Type: Split Flange for grooved pipe Conn.: Victaulic, EPDM Gasket Class: 150</td>
<td>ASTM A-536 ANSI B16.5 Victaulic Style 741 c/w EPDM Gasket (Grade E)</td>
</tr>
</tbody>
</table>
TECHNICAL SPECIFICATION

PROJECT: 320K

<table>
<thead>
<tr>
<th>CLIENT: Votorantim Metals - Cajamarquilla S.A.</th>
</tr>
</thead>
</table>

ITEM DESCRIPTION

BLINDS

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN80 thru DN300</td>
<td>Material: Forged Steel, Type: Flat Face, Class: 150</td>
<td>ASTM A-105, ANSI B16.5</td>
</tr>
</tbody>
</table>

BOLTS

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Sizes</td>
<td>Material: Carbon Steel, Type: Heavy Hex Machine Bolts</td>
<td>ASTM A-307 Gr. B, ANSI B18.2.1, Class 2A Threads UNC</td>
</tr>
</tbody>
</table>

NUTS

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Sizes</td>
<td>Material: Carbon Steel, Type: Heavy Hex</td>
<td>ASTM A-563 Gr. A, ANSI B18.2.2, Class 2B Threads UNC</td>
</tr>
</tbody>
</table>

GASKETS

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: SBR Rubber, Type: Full Face or Ring Type, Thickness: 3 mm, Class: 150</td>
<td>Garlock 7125 or equal, ANSI B16.21</td>
<td></td>
</tr>
</tbody>
</table>

VALVE DESCRIPTION

BALL

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>DESCRIPTION</th>
<th>VALVE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Carbon Steel/S.S. Trim, Conn.: Female NPT, Class: 1500 W.O.G.</td>
<td>V-4512</td>
</tr>
</tbody>
</table>

GATE

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>DESCRIPTION</th>
<th>VALVE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Forged Steel, Conn.: Female NPT, Class: 800</td>
<td>V-1516</td>
</tr>
<tr>
<td>DN80 thru DN300</td>
<td>Material: Cast Iron, Conn.: Flanged, Class: 125</td>
<td>V-1131 (See Note 4)</td>
</tr>
</tbody>
</table>

CHECK

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>DESCRIPTION</th>
<th>VALVE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Bronze, Swing Type, Conn.: Female NPT, Class: 125</td>
<td>V-3118</td>
</tr>
<tr>
<td>Swing Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN300</td>
<td>Material: Cast Iron, Conn.: Wafer Style, Class: 125</td>
<td>V-3145</td>
</tr>
<tr>
<td>Duo Type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Specification

Project: 320K

CAJAMARQUILLA

Piping Material

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
<th>SP-50-4006</th>
<th>REV. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metals - Cajamarquilla S.A.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valve Description

<table>
<thead>
<tr>
<th>Valve Type</th>
<th>Description</th>
<th>Valve Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe</td>
<td>DN15 thru DN50, Material: Forged Steel, Conn.: Female NPT, Class: 800</td>
<td>V-2516</td>
</tr>
<tr>
<td></td>
<td>DN80 thru DN250, Material: Cast Iron, Conn.: Flanged, Class: 125</td>
<td>V-2132 (See Note 4)</td>
</tr>
<tr>
<td>Butterfly</td>
<td>DN80 thru DN300, Material: Ductile Iron / EPDM Lined, Conn.: Lug, Class: 150</td>
<td>V-9227 (See Notes 2 and 3)</td>
</tr>
</tbody>
</table>

Insulation

As per piping and instrument diagram and AMEC Specification SP-50-4002.

Cleaning

Flush and clean system thoroughly.

Painting

Painting shall be in accordance with AMEC Specification SP-30-4304.

Colour Code

Colours and identification shall be in accordance with Norma Tecnica Nacional 399.012. Water - S-8 RAL 6019 - Pastel Green

Notes:

1. Swages may be used where small end does not exceed DN40 and large end does not exceed DN150.
2. This style of butterfly valve does not require gaskets.
3. For valves with alignment holes drilled and tapped and for lugs, use heavy hex head machine bolts. Allow 4 mm clearance at the ends of the bolts but not less than one full diameter of bolt penetration into the tapped holes.
4. Flat faced flanges are to be used when being bolted up to valves with cast iron flanges.
5. Elbows shall be long radius (1½ x D) Victaulic Figure 100 or 110.
6. Pipe ends shall be machine grooved as per Manufacturer's specifications and comply with ANSI/AWWA C606.
7. For potable water service, flush system thoroughly and disinfect in accordance with the Manufacturer's recommendations.
SPECIFICATION "004"

Service: High Pressure Water (WHP)

Max. Fluid Press.: 2500 kPa
Max. Fluid Temp.: 60° C
Corr. Allow.: 1.6 mm

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
</table>
| **PIPE**
DN15 thru DN50 | Material: Carbon Steel, SMLS
End Prep.: Plain
Wall Thick.: Schedule 80 | ASTM A-53 Gr. B Type S
ANSI B36.10 |
| DN80 thru DN150 | Material: Carbon Steel, SMLS
End Prep.: Beveled
Wall Thick.: Standard Weight | ASTM A-106 Gr. B
ANSI B36.10 |
| **FITTINGS**
DN15 thru DN50 | Material: Forged Steel
Conn.: Socket Weld
Class: 3000 | ASTM A-105
ANSI B16.11 |
| DN80 thru DN150 | Material: Forged Carbon Steel
Conn.: Butt weld
Class: Standard Weight | ASTM A-234 WPBW
ANSI B16.9 |
| **UNIONS**
DN15 thru DN50 | Material: Forged Steel
Conn.: Socket Weld
Class: 3000 | ASTM A-105
ANSI B16.11 |
| **FLANGES**
DN15 thru DN50 | Material: Forged Steel
Type: Raised Face
Conn.: Female NPT
Class: 300 | ASTM A-105
ANSI B16.5 |
| DN80 thru DN150 | Material: Forged Steel
Type: Raised Face
Conn.: Weld Neck
Class: 300 | ASTM A-105
ANSI B16.5 |
| **BLINDS**
DN15 thru DN150 | Material: Forged Steel
Type: Raised Face
Class: 300 | ASTM A-105
ANSI B16.5 |
TECHNICAL SPECIFICATION

PROJECT: 320K

CLIENT: Votorantim Metais - Cajamarquilla S.A.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOLTS</td>
<td>All Sizes</td>
<td>Material: Alloy Steel
Type: Stud Bolts</td>
</tr>
<tr>
<td></td>
<td>All Sizes</td>
<td>Material: Alloy Steel
Type: Heavy Hex</td>
</tr>
<tr>
<td>GASKETS</td>
<td></td>
<td>Material: 316L SS / Graphite Filler
Type: Spiral Wound / no inner ring, 316L Centering Ring</td>
</tr>
<tr>
<td>VALVE</td>
<td>DESCRIPTION</td>
<td>VALVE CODE</td>
</tr>
<tr>
<td>BALL</td>
<td>DN15 thru DN50</td>
<td>Material: Carbon Steel/S.S. Trim
Conn.: Female NPT
Class: 1500 W.O.G.</td>
</tr>
<tr>
<td>GATE</td>
<td>DN15 thru DN50</td>
<td>Material: Forged Steel
Conn.: Female NPT
Class: 800</td>
</tr>
<tr>
<td></td>
<td>DN80 thru DN150</td>
<td>Material: Cast Steel
Conn.: Flanged
Class: 300</td>
</tr>
<tr>
<td>CHECK</td>
<td>DN80 thru DN150</td>
<td>Material: Cast Steel
Conn.: Wafer
Class: 300</td>
</tr>
</tbody>
</table>

Insulation: As per piping and instrument diagram and AMEC Specification SP-50-4002.

Cleaning: Flush and clean system thoroughly.

Painting: Painting shall be in accordance with AMEC Specification SP-30-4304.

Colour Code: Colours and identification shall be in accordance with Norma Tecnica Nacional 399.012. Water - S-8 RAL 6019 - Pastel Green
SPECIFICATION "013"

Service: Fire Water (WF), (Fire Sprinklers)

- **Max. Fluid Press.:** 1400 kPa
- **Code:** ANSI B31.3 Normal Fluid Service, NFPA
- **Material:** Carbon Steel, Galvanized
- **Corr. Allow.:** 1.6 mm

Piping Material Specification

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
</table>
| **PIE** | DN15 thru DN50 | Material: Carbon Steel, ERW, Galvanized
End Prep.:Threaded
Wall Thick.: Schedule 80 | ASTM A-53 Gr. B Type E
ANSI B36.10 |
| | DN80 thru DN150 (See Note 2) | Material: Carbon Steel, ERW, Galvanized
End Prep.:Victaulic Grooved
Wall Thick.:Standard Weight | ASTM A-53 Gr. B Type E
ANSI B36.10 |
| **COUPLING** | DN80 thru DN150 | Material: Ductile Iron, Galvanized
Conn.:Victaulic, EPDM Gasket
Class:150 | ASTM A-536
Victaulic Style 77 c/w
EPDM Gasket (Grade E) or approved equal |
| **FITTINGS** | DN15 thru DN50 | Material: Cast Iron, Galvanized
Conn.: Female NPT
Class:125 | ASTM A-126
ANSI B16.4 |
| | DN80 thru DN150 (See Note 5) | Material: Ductile Iron, Galvanized
Conn.:Victaulic Grooved | ASTM A-536
Victaulic Fig. 20 thru 110 or approved equal |
| **UNION** | DN15 thru DN50 | Material: Malleable Iron, Ground Joint, Galvanized
Conn.: Female NPT
Class:150 | ASTM A-197
ANSI B16.39 |
| **FLANGE** | DN80 thru DN150 (See Note 4) | Material: Ductile Iron, Galvanized
Type:Split Flange for grooved pipe
Conn.:Victaulic, EPDM Gasket
Class:150 | ASTM A-536
ANSI B16.5
Victaulic Style 741 c/w
EPDM Gasket (Grade E) |
TECHNICAL SPECIFICATION

PROJECT:

<table>
<thead>
<tr>
<th>Project</th>
<th>320K</th>
<th>SP-50-4006</th>
<th>REV. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>155339</td>
<td>PIPING MATERIAL</td>
<td></td>
</tr>
</tbody>
</table>

CLIENT:

Votorantim Metais - Cajamarquilla S.A.

ITEM DESCRIPTION

BLINDS

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
<th>Material</th>
<th>Type</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN150</td>
<td>Material: Forged Steel</td>
<td>Type: Flat Face</td>
<td>Class: 150</td>
<td></td>
</tr>
</tbody>
</table>

BOLTS

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
<th>Material</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Sizes</td>
<td>Material: Carbon Steel</td>
<td>Type: Heavy Hex Machine Bolts</td>
<td></td>
</tr>
</tbody>
</table>

NUTS

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
<th>Material</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Sizes</td>
<td>Material: Carbon Steel</td>
<td>Type: Heavy Hex</td>
<td></td>
</tr>
</tbody>
</table>

GASKETS

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
<th>Material</th>
<th>Type</th>
<th>Thickness</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Material: SBR Rubber</td>
<td>Type: Full Face</td>
<td>3 mm</td>
<td>Class: 150</td>
<td></td>
</tr>
</tbody>
</table>

VALVE DESCRIPTION

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
<th>Material</th>
<th>Connection</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALL DN15 thru DN50</td>
<td>Material: Carbon Steel/S.S. Trim</td>
<td>Conn.: Female NPT</td>
<td>1500 W.O.G.</td>
<td></td>
</tr>
<tr>
<td>GATE DN25 thru DN50</td>
<td>Material: Bronze</td>
<td>Conn.: Female NPT</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN150 Outside Stem & Yoke</td>
<td>Material: Cast Iron</td>
<td>Conn.: Flanged</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN150 Non-Rising Stem</td>
<td>Material: Cast Iron</td>
<td>Conn.: Flanged</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>CHECK DN80 thru DN150 Swing Type</td>
<td>Material: Cast Iron</td>
<td>Conn.: Wafer</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

VALVE CODE

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALL</td>
<td>V-4512</td>
</tr>
<tr>
<td>GATE</td>
<td>V-1213</td>
</tr>
<tr>
<td>DN80 thru DN150</td>
<td>V-1231</td>
</tr>
<tr>
<td>DN80 thru DN150</td>
<td>V-1233</td>
</tr>
<tr>
<td>CHECK</td>
<td>V-3143</td>
</tr>
</tbody>
</table>

PIPING MATERIAL SPECIFICATION - 013

- ASTM A-105
- ANSI B16.5
- ASTM A-307 Gr. B
- ANSI B18.2.1
- Class 2A Threads UNC
- ASTM A-563 Gr. A
- ANSI B18.2.2
- Class 2B Threads UNC
- Garlock 7125 or equal
- ANSI B16.21
TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
<th>SP-50-4006</th>
<th>REV. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° 155339</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metals - Cajamarquilla S.A.</td>
<td>PIPING MATERIAL SPECIFICATION - 013</td>
<td></td>
</tr>
</tbody>
</table>

Insulation: N/A
Cleaning: Flush and clean system thoroughly.
Painting: Painting shall be in accordance with AMEC Specification SP-30-4304.
Colour Code: Colours and identification shall be in accordance with Norma Tecnica Nacional 399.012.
Fire Water - S-1 RAL 3020 - Traffic Red

NOTES:

1. Swages may be used where small end does not exceed DN40 and large end does not exceed DN150.
2. Pipe ends shall be machine grooved as per Manufacturer’s specifications and comply with ANSI/AWWA C606.
3. All valves to be Factory Mutual approved and Underwriter’s Laboratory listed.
4. Flat face flanges are to be used when being bolted up to valves with cast iron flanges.
5. Elbows shall be long radius (1½ x D) Victaulic Figure 100 or 110.
SPECIFICATION “020”

Service: Low Pressure Steam (SL), Low Pressure Condensate (SC)

- **Max. Fluid Press.:** 1050 kPa
- **Code:** ANSI B31.3 Normal Fluid Service
- **Mat'l:** Carbon Steel
- **Corr. Allow.:** 1.6 mm
- **NDT:** 1-1/2 x Design Hydrostatic Test

PIPE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Carbon Steel, SMLS End Prep.: Plain End or Threaded Wall Thick.: Schedule 80</td>
<td>ASTM A-106 Gr. B ANSI B36.10</td>
</tr>
<tr>
<td>DN80 thru DN600</td>
<td>Material: Carbon Steel, ERW End Prep.: Bevelled Wall Thick.: Standard Weight</td>
<td>ASTM A-53 Gr. B Type E ANSI B36.10</td>
</tr>
</tbody>
</table>

FITTINGS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN50 (See Note 2)</td>
<td>Material: Forged Steel Conn.: Socket Weld or Female NPT Class: 3000</td>
<td>ASTM A-105 ANSI B16.11</td>
</tr>
<tr>
<td>DN80 thru DN600</td>
<td>Material: Forged Carbon Steel Conn.: Butt weld Class: Standard Weight</td>
<td>ASTM A-234 WPBW ANSI B16.9</td>
</tr>
</tbody>
</table>

UNIONS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN50 (See Note 2)</td>
<td>Material: Forged Steel Conn.: Socket Weld or Female NPT Class: 3000</td>
<td>ASTM A-105 ANSI B16.11</td>
</tr>
</tbody>
</table>

FLANGES

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN600 (See Notes 4,5)</td>
<td>Material: Forged Steel Type: Raised Face or Flat Face Conn.: Slip-On or Weld Neck Class: 150</td>
<td>ASTM A-105 ANSI B16.5</td>
</tr>
</tbody>
</table>

BLINDS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15 thru DN600</td>
<td>Material: Forged Steel Type: Flat Face Class: 150</td>
<td>ASTM A-105 ANSI B16.5</td>
</tr>
</tbody>
</table>

BOLTS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Sizes</td>
<td>Material: Alloy Steel Type: Heavy Hex Machine Bolts</td>
<td>ASTM A-193 Gr. B7 ANSI B18.2.1 Class 2A Threads UNC ≤25 mm Class 2A Threads 8UN > 25 mm</td>
</tr>
</tbody>
</table>
CAJAMARQUILLA

TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Sizes</td>
<td>Material:</td>
<td>Alloy Steel</td>
</tr>
<tr>
<td></td>
<td>Type:</td>
<td>Heavy Hex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaskets</td>
<td>Material:</td>
<td>SBR Binder</td>
</tr>
<tr>
<td></td>
<td>Type:</td>
<td>Full Face or Ring Type</td>
</tr>
<tr>
<td></td>
<td>Thickness:</td>
<td>2 mm</td>
</tr>
<tr>
<td></td>
<td>Class:</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VALVE</th>
<th>DESCRIPTION</th>
<th>VALVE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material:</td>
<td>Carbon Steel</td>
</tr>
<tr>
<td></td>
<td>Conn.:</td>
<td>Female NPT</td>
</tr>
<tr>
<td></td>
<td>Class:</td>
<td>600</td>
</tr>
<tr>
<td>V-4511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material:</td>
<td>Forged Steel</td>
</tr>
<tr>
<td></td>
<td>Conn.:</td>
<td>Female NPT</td>
</tr>
<tr>
<td></td>
<td>Class:</td>
<td>800</td>
</tr>
<tr>
<td>V-1516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN600</td>
<td>Material:</td>
<td>Cast Iron</td>
</tr>
<tr>
<td></td>
<td>Conn.:</td>
<td>Flanged</td>
</tr>
<tr>
<td></td>
<td>Class:</td>
<td>125</td>
</tr>
<tr>
<td>V-1131</td>
<td>(See Note 5)</td>
<td></td>
</tr>
<tr>
<td>CHECK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material:</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td></td>
<td>Conn.:</td>
<td>Female NPT</td>
</tr>
<tr>
<td></td>
<td>Class:</td>
<td>300</td>
</tr>
<tr>
<td>V-3411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN600</td>
<td>Material:</td>
<td>Cast Iron</td>
</tr>
<tr>
<td></td>
<td>Conn.:</td>
<td>Wafer Style</td>
</tr>
<tr>
<td></td>
<td>Class:</td>
<td>125</td>
</tr>
<tr>
<td>V-3145</td>
<td>(See Note 5)</td>
<td></td>
</tr>
<tr>
<td>GLOBE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material:</td>
<td>Forged Steel</td>
</tr>
<tr>
<td></td>
<td>Conn.:</td>
<td>Female NPT</td>
</tr>
<tr>
<td></td>
<td>Class:</td>
<td>800</td>
</tr>
<tr>
<td>V-2516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN250</td>
<td>Material:</td>
<td>Cast Iron</td>
</tr>
<tr>
<td></td>
<td>Conn.:</td>
<td>Flanged</td>
</tr>
<tr>
<td></td>
<td>Class:</td>
<td>125</td>
</tr>
<tr>
<td>V-2132</td>
<td>(See Note 5)</td>
<td></td>
</tr>
</tbody>
</table>

Insulation: As per piping and instrument diagram and AMEC Specification SP-50-4002.
Cleaning: Flush and clean system thoroughly.
Painting: Not applicable.
Colour Code: Not applicable.

P:\TRL'D4 Dealgn\4.10 Pip\4.10.e Specifying\SP-50-4008 (Material Specifications)\020 R1 (Carbon Steel - Steam).doc
TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
<th>SP-50-4006</th>
<th>REV. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metaal - Cajamarquilla S.A.</td>
<td>PIPING MATERIAL SPECIFICATION - 020</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. Swages may be used where small end does not exceed DN40 and large end does not exceed DN150.
2. Use socket weld fittings where possible and keep threaded connections to a minimum.
3. Steam temperature must not exceed 177°C.
4. Weld neck flanges are to be used if being welded directly to a fitting such as an elbow, tee, etc. Slip-on flanges may be used if being welded to pipe.
5. Flat faced flanges shall be used against valves with cast iron flanges.
TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Carbon Steel, SMLS</td>
<td>ASTM A-106 Gr. B</td>
</tr>
<tr>
<td>(See Note 5)</td>
<td>End Prep.: Plain End</td>
<td>ANSI B36.10</td>
</tr>
<tr>
<td></td>
<td>Wall Thick.: Schedule 80</td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN500</td>
<td>Material: Carbon Steel, SMLS</td>
<td>ASTM A-106 Gr. B</td>
</tr>
<tr>
<td></td>
<td>End Prep.: Bevelled</td>
<td>ANSI B36.10</td>
</tr>
<tr>
<td></td>
<td>Wall Thick.: Standard Weight</td>
<td></td>
</tr>
<tr>
<td>FITTINGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Forged Steel</td>
<td>ASTM A-105</td>
</tr>
<tr>
<td>(See Note 2)</td>
<td>Conn.: Socket Weld</td>
<td>ANSI B16.11</td>
</tr>
<tr>
<td></td>
<td>Class: 3000</td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN500</td>
<td>Material: Forged Carbon Steel</td>
<td>ASTM A-234 WPBW</td>
</tr>
<tr>
<td></td>
<td>Conn.: Butt weld</td>
<td>ANSI B16.9</td>
</tr>
<tr>
<td></td>
<td>Class: Standard Weight</td>
<td></td>
</tr>
<tr>
<td>UNIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Forged Steel</td>
<td>ASTM A-105</td>
</tr>
<tr>
<td>(See Note 2)</td>
<td>Conn.: Socket Weld</td>
<td>ANSI B16.11</td>
</tr>
<tr>
<td></td>
<td>Class: 3000</td>
<td></td>
</tr>
<tr>
<td>FLANGES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN50</td>
<td>Material: Forged Steel</td>
<td>ASTM A-105</td>
</tr>
<tr>
<td></td>
<td>Type: Raised Face</td>
<td>ANSI B16.5</td>
</tr>
<tr>
<td></td>
<td>Conn.: Socket Weld</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class: 300</td>
<td></td>
</tr>
<tr>
<td>DN80 thru DN500</td>
<td>Material: Forged Steel</td>
<td>ASTM A-105</td>
</tr>
<tr>
<td></td>
<td>Type: Raised Face</td>
<td>ANSI B16.5</td>
</tr>
<tr>
<td></td>
<td>Conn.: Weld Neck</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class: 300</td>
<td></td>
</tr>
<tr>
<td>BLINDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15 thru DN500</td>
<td>Material: Forged Steel</td>
<td>ASTM A-105</td>
</tr>
<tr>
<td></td>
<td>Type: Raised Face</td>
<td>ANSI B16.5</td>
</tr>
<tr>
<td></td>
<td>Class: 300</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATION "021"

Service: Medium Pressure Steam (SM)

Max. Fluid Press: 2100 kPa
Max. Fluid Temp.: 350°C (See Note 3)
Corr. Allow.: 1.6 mm

NDT: 1½ x Design
Hydrostatic Test,
5% Radiography

ITEM | DESCRIPTION | SPECIFICATION
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPE</td>
<td>Material: Carbon Steel, SMLS</td>
<td>ASTM A-106 Gr. B</td>
</tr>
<tr>
<td></td>
<td>End Prep.: Plain End</td>
<td>ANSI B36.10</td>
</tr>
<tr>
<td></td>
<td>Wall Thick.: Schedule 80</td>
<td></td>
</tr>
<tr>
<td>FITTINGS</td>
<td>Material: Forged Steel</td>
<td>ASTM A-105</td>
</tr>
<tr>
<td></td>
<td>Conn.: Socket Weld</td>
<td>ANSI B16.11</td>
</tr>
<tr>
<td></td>
<td>Class: 3000</td>
<td></td>
</tr>
<tr>
<td>UNIONS</td>
<td>Material: Forged Steel</td>
<td>ASTM A-105</td>
</tr>
<tr>
<td></td>
<td>Conn.: Socket Weld</td>
<td>ANSI B16.11</td>
</tr>
<tr>
<td></td>
<td>Class: 3000</td>
<td></td>
</tr>
<tr>
<td>FLANGES</td>
<td>Material: Forged Steel</td>
<td>ASTM A-105</td>
</tr>
<tr>
<td></td>
<td>Type: Raised Face</td>
<td>ANSI B16.5</td>
</tr>
<tr>
<td></td>
<td>Conn.: Socket Weld</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class: 300</td>
<td></td>
</tr>
<tr>
<td>BLINDS</td>
<td>Material: Forged Steel</td>
<td>ASTM A-105</td>
</tr>
<tr>
<td></td>
<td>Type: Raised Face</td>
<td>ANSI B16.5</td>
</tr>
<tr>
<td></td>
<td>Class: 300</td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL SPECIFICATION

PROJECT:

<table>
<thead>
<tr>
<th>320K</th>
<th>SP-50-4006</th>
<th>REV. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° 155339</td>
<td>PIPING MATERIAL SPECIFICATION - 021</td>
<td></td>
</tr>
</tbody>
</table>

CLIENT:

- Votorantim Metals - Cajamarquilla S.A.

BOLTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Sizes</td>
<td>Material: Alloy Steel Type: Stud Bolts</td>
<td>ASTM A-193 Gr. B7 ANSI B18.2.1 Class 2A Threads UNC ≤25 mm Class 2A Threads 8UN > 25 mm</td>
</tr>
</tbody>
</table>

NUTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Sizes</td>
<td>Material: Alloy Steel Type: Heavy Hex</td>
<td>ASTM A-194 Gr. 2H ANSI B18.2.2 Class 2B Threads UNC</td>
</tr>
</tbody>
</table>

GASKETS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Material: 316L / Graphite Filler Type: Spiral Wound / no inner ring, 316L centering ring</td>
<td>Garlock FLEXSEAL RW or approved equal ANSI B16.20</td>
</tr>
<tr>
<td></td>
<td>Thickness: 3 mm Class: 300</td>
<td></td>
</tr>
</tbody>
</table>

VALVE DESCRIPTION

<table>
<thead>
<tr>
<th>VALVE</th>
<th>DESCRIPTION</th>
<th>VALVE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALL</td>
<td>DN15 thru DN50 (See Note 4) Material: Carbon Steel Conn.: Female NPT Class: 600</td>
<td>V-4511</td>
</tr>
<tr>
<td>GATE</td>
<td>DN15 thru DN50 Material: Forged Steel Conn.: Socket Weld Class: 800</td>
<td>V-1556</td>
</tr>
<tr>
<td></td>
<td>DN80 thru DN300 Material: Cast Steel Conn.: Flanged Class: 300</td>
<td>V-1436</td>
</tr>
<tr>
<td></td>
<td>DN350 thru DN500 Material: Cast Steel Conn.: Flanged Class: 300</td>
<td>V-1437</td>
</tr>
<tr>
<td>CHECK</td>
<td>DN15 thru DN50 Swing Type Material: Forged Steel Conn.: Socket Weld Class: 800</td>
<td>V-3551</td>
</tr>
<tr>
<td></td>
<td>DN80 thru DN500 Swing type Material: Cast Steel Conn.: Flanged Class: 300</td>
<td>V-3436</td>
</tr>
<tr>
<td>GLOBE</td>
<td>DN15 thru DN50 Material: Forged Steel Conn.: Socket Weld Class: 800</td>
<td>V-2556</td>
</tr>
<tr>
<td></td>
<td>DN80 thru DN250 Material: Cast Steel Conn.: Flanged Class: 300</td>
<td>V-2436</td>
</tr>
</tbody>
</table>
CAJAMARQUILLA

TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
<th>SP-50-4006</th>
<th>REV. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>155339</td>
<td>PIPING MATERIAL</td>
<td></td>
</tr>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metals - Cajamarquilla S.A.</td>
<td>SPECIFICATION - 021</td>
<td></td>
</tr>
</tbody>
</table>

Insulation: As per piping and instrument diagram and AMEC Specification SP-50-4002.
Cleaning: Flush and clean system thoroughly.
Painting: Not applicable.
Colour Code: Not applicable.

NOTES:

1. Swages may be used where small end does not exceed DN40 and large end does not exceed DN150.
2. Use socket weld fittings where possible and keep threaded connections to a minimum.
3. Steam temperature must not exceed 350° C.
4. Ball valve to be used at instrument connections.
The document revision number is indicated below. Please replace all revised pages of this document and destroy the superseded copies.

PROJECT: 320K SP-50-4001 REV. 0

CLIENT: Votorantim Metais - Cajamarquilla S.A.

<table>
<thead>
<tr>
<th>ISSUED FOR</th>
<th>REV No.</th>
<th>ORIGIN</th>
<th>DATE</th>
<th>ISSUED PAGES/SECTIONS</th>
<th>INITIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review</td>
<td>A</td>
<td>HRM</td>
<td>14-Nov-07</td>
<td></td>
<td>HRM</td>
</tr>
<tr>
<td>Construction</td>
<td>0</td>
<td>HRM</td>
<td>10-Jul-08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CLIENT APPROVAL

Project Manager: ____________________________
Date: ____________________________

AMEC APPROVAL

Engineering Manager: ____________________________
Date: ____________________________

Engineering Co-ord.: ____________________________
Date: ____________________________

 Discipline Approval: ____________________________
 Date: ____________________________
TABLE OF CONTENTS

1.0 SUMMARY .. 2
2.0 REFERENCES ... 3
3.0 SYSTEM DESCRIPTION .. 5
4.0 QUALITY ASSURANCE ... 6
5.0 MATERIALS ... 7
6.0 PREPARATION ... 7
7.0 FABRICATION .. 8
8.0 SURFACE PREPARATION AND FINISH ... 11
9.0 NON-DESTRUCTIVE TESTING ... 11
1.0 SUMMARY

1.1 Scope of Work

1.1.1 This document outlines the requirements for the design, supply, fabrication, testing and inspection for the piping to be supplied by the VENDOR.

1.1.2 It is not the intent of this specification to indicate detailed engineering requirements but rather to outline the basis by which the design will proceed.

1.1.3 Standard industry practices and procedures shall be followed even though not stated specifically herein.

1.2 Work Supplied by VENDOR

1.2.1 The work supplied by the VENDOR shall include the following and any other components required for a fully operating system, as indicated on the Drawings and/or Data Sheets:

(a) Supply, fabrication and delivery of piping to site.

(b) Submittals according to the Bidder’s Drawing & Data Commitment Sheet.

(c) Flanges and couplings.

(d) All fittings (elbows, reducers, tees, etc.).

1.2.2 All non-destructive testing (x-ray, ultrasonic, magnetic particle, etc.) and documentation.

1.3 Work Supplied by PURCHASER

1.3.1 The work supplied by the PURCHASER shall include the following:

(a) Installation of the piping and off loading at site.

(b) Nuts, gaskets and bolts.
(c) Supports.
(d) Instrumentation.
(e) Valves.

2.0 REFERENCES

2.1 General

2.1.1 Referenced publications within this Specification shall be the latest revision, unless otherwise specified and applicable parts of the referenced publications shall become a part of this Specification as if fully included.

2.2 Units of Measure

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Name</th>
<th>Symbol</th>
<th>Alternate Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Millimeter</td>
<td>mm</td>
<td>Meter</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>Kilogram</td>
<td>kg</td>
<td>Tonne</td>
<td>t</td>
</tr>
<tr>
<td>Volume (Gas)</td>
<td>Cubic Meter</td>
<td>m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (Liquid)</td>
<td>Liter</td>
<td>L</td>
<td>Cubic Meter</td>
<td>m³</td>
</tr>
<tr>
<td>Pressure</td>
<td>Kilopascals</td>
<td>kPa</td>
<td>Millimeters Water Gauge</td>
<td>mm H₂O</td>
</tr>
<tr>
<td>Temperature</td>
<td>Degree Celsius</td>
<td>ºC</td>
<td>Kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>Tonnes Per Cubic Meter</td>
<td>t/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>Meters/Second</td>
<td>m/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity of Heat</td>
<td>Kilo Joule</td>
<td>kJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy, Work</td>
<td>Kilowatt</td>
<td>kW</td>
<td>Horsepower</td>
<td>HP</td>
</tr>
<tr>
<td>Flow (Gas)</td>
<td>Normal Cubic Meters/ Hour</td>
<td>Nm³/hr</td>
<td>Cubic Meters/ Hour</td>
<td>m³/hr</td>
</tr>
<tr>
<td>Flow (Liquid)</td>
<td>Cubic Meters/ Hour</td>
<td>m³/hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td>Meter</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>YY-MM-DD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3 Codes and Standards

2.3.1 Design, manufacture and testing shall conform to requirements set out in this Specification, attached drawings and other specifications.

2.3.2 Design, manufacture and testing of the equipment shall be in accordance with the latest editions of standards published by the following, as applicable:

- ANSI - American National Standards Institute
- ASME - American Society of Mechanical Engineers
- ASTM - American Society for Testing and Materials
- AWS - American Welding Society
- ISO - International Organization for Standardization
- OSHA - Occupational Safety and Health Administration
- PFI - Pipe Fabrication Institute
- SSPC - Steel Structures Painting Council

2.3.3 Whenever standard codes are referred to, they shall be the edition current on the date set for Submission of Offer.

2.3.4 If a VENDOR takes exception to any requirement of this specification or to any applicable clause of, he shall state it in his Tender.

2.4 Related AMEC Specifications

2.4.1 Related AMEC specifications include:

(a) SP-00-4301, "General Site Conditions"

(b) BI-00-4300, "General Requirement for Procured Equipment"

(c) BI-00-4301, "Quality Assurance Specification"

(d) SP-50-4006, "Piping Material Classification"
2.5 Conflicts

2.5.1 In case of conflict between the provisions of the documents listed below, their order of precedence shall be as follows:

(a) Purchase Order

(b) "Issued for Construction" Equipment Drawing or Data Sheet

(c) Piping Material Classifications

(d) Addenda to Equipment Specification

(e) Equipment Specification

(f) Related documents listed in Section 2.2

(g) Vendor Quotation.

2.5.2 In the event of the VENDOR discovers discrepancies between the above noted documents, the VENDOR shall advise PURCHASER in writing.

3.0 SYSTEM DESCRIPTION

3.1 Design Requirements

3.1.1 The system shall be designed to the standard indicated in the Drawings and/or Data Sheets. It shall be the responsibility of the VENDOR to ensure that all aspects of design, fabrication, inspection, and testing conform to the requirements of the specified codes and meet the legal requirements of local, regional, and national jurisdictional bodies.

3.2 Seismic Design Criteria

3.2.1 Piping shall be designed to resist a lateral seismic force equal to 1.63 (for allowable stress design basis) or 2.3 (for ultimate strength design basis) times the weight of the piping plus contents.
4.0 QUALITY ASSURANCE

4.1 General

4.1.1 The manufacture of this equipment shall be in accordance with the requirements of 00-SP-2101, Quality Assurance Specification, Level 1 (ISO 9001).

4.2 Inspection and Testing

4.2.1 The VENDOR shall conduct all inspections and tests in accordance with the VENDOR’s schedule to verify conformance to the requirements in this Specification and on the Data Sheets prior to shipment. Non-conforming product is not acceptable.

4.2.2 The PURCHASER shall have access at all reasonable times to all areas concerned with the fabrication, welding, installation and testing of the piping under this specification.

4.2.3 The PURCHASER reserves the right to witness any tests and to hold shipment until such tests have been done to his satisfaction.

4.2.4 Tests by independent parties over and above those listed in this Specification may be requested by the PURCHASER at any time. Costs for additional tests shall be paid by the PURCHASER directly.

4.2.5 The PURCHASER or inspector representing the PURCHASER may reject any materials, methods, procedures or work which fails to meet the requirements of applicable codes, specifications, procedures, drawings or VENDOR’s installation instructions.

4.2.6 The VENDOR shall maintain a record of all inspections and tests and submit a copy to the PURCHASER.
TECHNICAL SPECIFICATION

5.0 MATERIALS

5.1 General

5.1.1 Materials in each piping system shall conform to the Piping Material Classifications and to the requirements of applicable Codes and Standards listed in Sections 2.3 and 2.4 of this Specification.

5.1.2 All materials shall be new, of the best quality meeting specification and free from any defects that would render them unsuitable for the intended purpose.

5.1.3 Any materials which do not comply with the Piping Material Classifications but are required by the Purchaser shall be noted on the Drawings. These notes shall supersede the Classifications.

5.1.4 All pipe threads shall be made in accordance with ANSI B2.1.

5.1.5 The VENDOR shall provide test certificates to the PURCHASER of all products and materials that must meet the requirements of a specific code or standard as stated in these Specifications.

5.1.6 The VENDOR shall obtain written approval from the PURCHASER before substituting an "equal in quality" proprietary component.

6.0 PREPARATION

6.1 Weld Preparation

6.1.1 All welding surfaces shall be prepared by machining and grinding.

6.1.2 Flame cutting may be used if the cut is smooth and true and all heavy oxide is thoroughly cleaned from flame cut surfaces, in accordance with the applicable Regulations and Codes.

6.2 Surface Condition

6.2.1 All welding surfaces shall be cleaned and free of paint, oil, rust and mill scale.
6.3 Alignment

6.3.1 The ends of pipe-to-pipe, pipe-to-flange and pipe-to-valve joints shall be aligned as accurately as is practicable within the existing commercial tolerance on pipe diameters, pipe wall thickness and out-of-roundness.

6.3.2 All flange faces shall be perpendicular to the axis of the pipe within a half degree and shall be flat to ±0.794 mm (±1/32 inch).

6.3.3 Alignment shall provide the most favourable conditions for the disposition of the root bead. This alignment must be preserved throughout welding.

6.3.4 In cases where ends of unequal internal diameters are abutted and the internal misalignment exceeds 2 mm, the pipe with the smaller internal diameter shall be counterbored 30° to suit the internal diameter of the adjoining pipe.

6.3.5 In no case shall trimming of the inside diameter result in a wall thickness less than the minimum required for the service condition.

7.0 FABRICATION

7.1 Welding Procedure

7.1.1 All pressure pipe constructed and fabricated by welding shall be in accordance with ASME B31.3 Code for Pressure Piping and applicable local Regulations. All other welding shall be in accordance with AWS D14.1.

7.1.2 Welding procedures and welder qualification shall be generally to ASME Section IX. Every welder shall hold a valid certificate indicating qualifications to do welding in accordance with an approved procedure.

7.1.3 If the materials of construction are not covered in the above specifications the fabricator shall qualify his procedures and welders for the materials and otherwise follow the above applicable specifications.
The VENDOR shall submit his welding procedures to the PURCHASER for approval and shall make the necessary arrangements to have his welders qualified, where necessary.

Welded piping shall be properly aligned and adequately supported during welding in order to avoid possible cracking of tack welds or initial beads.

All butt joints shall be of the single vee type, unless otherwise specified.

Welding shall be done only with electrodes certified by the relevant codes.

Each welder or welder’s valid certificate shall be on file at the job site and available to the PURCHASER upon request.

Upon completion of each welded joint, the welder operator shall mark his identification number on the pipe material adjacent to the weld.

Cracking in the weld bead or parent metal is not permitted.

Unfused overlap of the weld bead onto the parent metal is not permitted.

Crater pits, usually caused by too rapid withdrawal of the electrode at the end of an arc weld, shall not be permitted.

Undercut, if present, shall not create a sharp notch and shall not reduce the thickness of the parent metal below the thickness tolerance specified in the parent metal specification.

All rough welds and longitudinal welds at stiffener and flange locations shall be ground to smooth surfaces.

Weld contours shall blend smoothly into the parent metal. Fillet welds shall be flat or only slightly concave or convex.

Reinforcement of butt welds shall not be more than 15% of the parent metal thickness or 3 mm, whichever is less.

All burns, projections of weld metal, weld scale and spatter shall be completely removed.
7.1.18 Weld sizes shall be as specified on the Drawings or, if not defined, shall meet the requirements of AWS D14.1 or ASME B31.3, as applicable. Weld size must develop the full strength of the plate.

7.1.19 Weld penetration shall be as specified on the Drawings or, if not defined, shall be complete penetration unless otherwise ruled by the PURCHASER.

7.2 Pipe

7.2.1 All piping shown on the Drawings shall be fabricated to tolerances as specified by the Pipe Fabrication Institute Standard ES-3, wherever dimensions are specifically shown, except as otherwise approved by the PURCHASER.

7.3 Threaded Joints

7.3.1 Screwed joints shall be made with American Standard Taper Pipe Threads (ANSI B2.1). Every joint shall be made up with a suitable jointing compound or tape applied only to the male thread. Avoid tool marks or unnecessary pipe threads.

7.3.2 All threaded connections shall be gauge-checked or chased after welding.

7.4 Flanges

7.4.1 Where weld neck flanges are used, the bore of the flange shall match that of the pipe.

7.4.2 Slip-on type flanges shall be welded front and back.

7.4.3 Unless otherwise specified on the drawings, all flange bolt holes shall straddle the centreline of the piping.
8.0 SURFACE PREPARATION AND FINISH

8.1 General

8.1.1 All flanges and pipe ends shall be covered for shipment and on-site storage to prevent ingress of dirt and other contaminants.

8.1.2 All pipe threads shall be protected against damage during shipment and storage.

8.1.3 Surface preparation and cleaning shall be to the SSPC level indicated on the Data Sheets.

8.1.4 Stainless steel fabrication shall be cleaned to the SSPC specification called for on the Data Sheet but shall not be painted.

8.1.5 Grinding and polishing of stainless steel shall be done with tools which are only used on stainless steel.

8.1.6 The painting systems and colours for the equipment shall be of the VENDOR's standards with due regard for the duty and service as expressed in this Specification.

8.1.7 The VENDOR shall provide his standard paint specification for review and approval at the time of his Tender.

9.0 NON-DESTRUCTIVE TESTING

9.1.1 All welds shall be inspected visually for conformance to Section 7.1. Non-destructive inspection shall be carried out as required by the PURCHASER's drawings or applicable specifications.

9.1.2 Defective welds shall be repaired by removing the defective area to sound metal by grinding, chipping or gouging, then re-welding. All requirements governing the original weld shall apply equally to the repair.
9.1.3 All required pressure and non-destructive testing of all pressure piping after fabrication shall fulfill the minimum requirements of the relevant ASME codes and as noted herein.

9.1.4 Test Records shall include for each test:

(a) Identification of piping system
(b) Testing medium
(c) Date of test approval
(d) Signature of test supervisor.
DOCUMENT REVIEW AND APPROVAL

The document revision number is indicated below. Please replace all revised pages of this document and destroy the superseded copies.

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>155339</td>
</tr>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metais - Cajamarquilla S.A.</td>
</tr>
</tbody>
</table>

ISSUED FOR

<table>
<thead>
<tr>
<th>REV No.</th>
<th>ORIGIN</th>
<th>DATE</th>
<th>ISSUED PAGES/SECTIONS</th>
<th>INITIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval</td>
<td>A</td>
<td>HRM</td>
<td>14-Nov-07</td>
<td>HRM</td>
</tr>
<tr>
<td>Construction</td>
<td>0</td>
<td>HRM</td>
<td>10-Jul-08</td>
<td></td>
</tr>
</tbody>
</table>

CLIENT APPROVAL

<table>
<thead>
<tr>
<th>Project Manager:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMEC APPROVAL

<table>
<thead>
<tr>
<th>Engineering Manager:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engineering Co-ord.:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discipline Approval:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1.0 SUMMARY ... 2
2.0 QUALITY ASSURANCE .. 3
3.0 REFERENCES .. 3
4.0 PRODUCTS .. 6
5.0 PREPARATION ... 7
6.0 INSTALLATION ... 8
7.0 FIELD QUALITY CONTROL ... 12
8.0 ADJUSTMENT AND CLEANING ... 13
1.0 SUMMARY

1.1 Scope of Specification

1.1.1 This Specification covers the supply of all materials and the performance of all operations for the fabrication and installation of the Pipe Hanger and Support Systems (herein termed Pipe Restraints), complete and in accordance with this Specification and/or as described on the Drawings.

Note: Only above-ground (non-buried) Pipe Restraint Systems are covered herein.

1.1.2 The intent of this Specification is to provide the VENDOR with an outline of the intent of the work involved. The contractor shall be responsible for all assembly required to make the Pipe Restraints operative.

1.1.3 All pertinent manufacturer’s installation and operating instructions form a part of this Specification.

1.1.4 Where it is stated in this Specification “or approved equivalent”, the VENDOR shall obtain written permission from the PURCHASER before making a substitution.

1.1.5 The VENDOR shall procure all Pipe Restraint materials from a supplier who shall be approved by the PURCHASER.

1.1.6 The VENDOR shall supply materials required to complete the work in accordance with this Specification.

1.1.7 The VENDOR shall be responsible for design, supply, location, and installation of all Pipe Restraints required in accordance with the applicable Codes (Section 3.3).
2.0 QUALITY ASSURANCE

2.1 General

2.1.1 Inspectors representing the PURCHASER shall have access to all areas concerned with the fabrication and welding of Pipe Restraints covered by this Specification. Inspectors may reject any materials, methods, procedures, or work which fails to meet the requirements of applicable codes, specifications, procedures, drawings, purchaser orders, or Manufacturer’s installation instructions. Rejected work shall be corrected at the VENDOR's expense and without delay to project schedules.

2.1.2 Contractors performing installation, repairs or alterations to pressure piping systems shall be licensed in accordance with any relevant regulations.

2.2 Protection

2.2.1 The VENDOR shall be responsible for replacement and/or repairs for any damage caused by loose metal or foreign material in the pipe hangers/supports system or related equipment.

3.0 REFERENCES

3.1 General

3.1.1 Reference publications within this Specification shall be the latest revision, unless otherwise specified and applicable parts of the referenced publications shall become a part of this Specification as if fully included.
Units of Measure

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Name</th>
<th>Symbol</th>
<th>Alternate Name</th>
<th>Alternate Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Millimeter</td>
<td>mm</td>
<td>Meter</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>Kilogram</td>
<td>kg</td>
<td>Tonne</td>
<td>t</td>
</tr>
<tr>
<td>Volume (Gas)</td>
<td>Cubic Meter</td>
<td>m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (Liquid)</td>
<td>Liter</td>
<td>L</td>
<td>Cubic Meter</td>
<td>m³</td>
</tr>
<tr>
<td>Pressure</td>
<td>Kilopascals</td>
<td>kPa</td>
<td>Millimeters Water Gauge</td>
<td>mm H₂O</td>
</tr>
<tr>
<td>Temperature</td>
<td>Degree Celsius</td>
<td>°C</td>
<td>Kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>Tonnes Per Cubic Meter</td>
<td>t/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>Meters/Second</td>
<td>m/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity of Heat</td>
<td>Kilo Joule</td>
<td>kJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy, Work</td>
<td>Kilowatt</td>
<td>kW</td>
<td>Horsepower</td>
<td>HP</td>
</tr>
<tr>
<td>Flow (Gas)</td>
<td>Normal Cubic Meters/Hour</td>
<td>Nm³/hr</td>
<td>Cubic Meters/ Hour</td>
<td>m³/hr</td>
</tr>
<tr>
<td>Flow (Liquid)</td>
<td>Cubic Meters/ Hour</td>
<td>m³/hr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Codes and Standards

3.3.1 Installation and mounting of Pipe Restraints shall at a minimum conform to the latest edition of the following Codes and Standards.

- **ANSI** - American National Standards Institute
- **ASME** - American Society of Mechanical Engineers
- **ASTM** - American Society for Testing and Materials
- **AWS** - American Welding Society
- **ISO** - International Organization for Standardization
- **MSS** - Manufacturer’s Standards Association
- **NFPA** - National Fire Protection Agency
OSHA - Occupational Safety and Health Administration
UL - Underwriter's Laboratories Incorporated

3.3.2 The applicable codes for use in the design of Piping Supports and Hangers are:

ANSI - B1.1 – Fastener Screw Threads
ANSI/ASME - B31.1 – Pressure Piping Code Series
AWS - D1.1 – Welding Practice
MSS - Specifications SP-58 and SP-69
NFPA - NFPA 13 – Hangers for Sprinkler Systems (Vol. 2)
UL - Standard UL-203 – Pipe Hanger Equipment

3.4 Related AMEC Specifications

3.4.1 Related AMEC specifications include:

(a) BI-00-4300, "General Requirements for Procured Equipment"
(b) BI-00-4301, "Quality Assurance Specifications"
(c) SP-00-4301, "General Site Conditions"
(d) SP-50-4005, "Piping Installation"
(e) SP-30-4301, "Structural Steel"

3.5 Conflicts

3.5.1 In case of conflict between the provisions of the documents listed below, their order or precedence shall be as follows:

(a) Purchase Order
(b) "Issued for Construction" Equipment Drawing or Data Sheet
(c) Piping Material Classifications
(d) Addenda to Equipment Specification
(e) Equipment Specification
(f) Related documents listed in Section 3.4
(g) VENDOR Quotation.

3.5.2 In the event of the VENDOR discovering discrepancies between the above noted documents, the VENDOR shall advise the PURCHASER in writing.

4.0 PRODUCTS

4.1 Acceptable Manufacturers

4.1.1 Acceptable Manufacturers for pipe restraint components include I.T.T. Grinnell or other manufacturers approved by the PURCHASER.

4.1.2 Integral attachments shall be purchased from the same manufacturer as that of the Pipe Restraint, where practical.

4.2 Materials

4.2.1 All permanent Pipe Restraints shall be of material suitable for the service conditions.

4.2.2 In selecting the Pipe Restraint materials, the Codes and Standards of Section 3.3 shall apply.

4.2.3 Attachments welded to the piping shall be of a material compatible with the piping and service.
4.2.4 Unless otherwise noted, at time of tendering, the VENDOR may propose substitution of materials by other manufacturers which are considered comparable with or better than the specified products. It is recognized that substitutions may be offered for reasons other than lower initial cost. If no mention of substitutions is made in the VENDOR's proposal, the VENDOR shall furnish products as specified.

4.2.5 The PURCHASER shall be the sole judge of acceptability of proposed substitutions. The VENDOR shall be responsible for providing sufficient information for proper evaluation, including complete identification and description, space requirements, price and delivery time. If substitutions require engineering changes, the PURCHASER's prior approval shall be obtained, and all costs of such changes shall be borne by the VENDOR.

4.3 Fabrication

4.3.1 Restraint components shall be manufactured in accordance with MSS Standard Practice SP-58.

5.0 PREPARATION

5.1 Welding Preparation

5.1.1 All welding surfaces shall preferably be prepared by machining or grinding.

5.1.2 Flame cutting may be used if the cut is smooth and true and all heavy oxide are thoroughly cleaned from flame cut surfaces.

5.2 Surface Conditions

5.2.1 All welding surfaces shall be cleaned and free of paint, oil, rust and mill scale.

5.3 Sliding Supports

5.3.1 The contact surfaces between the pipe and Pipe Restraints sliding surfaces shall be clean and free from any foreign debris.
5.4 Threaded Connections

5.4.1 All threaded pipe restraint connections shall be clean and coated with a suitable anti-seize agent prior to assembly.

6.0 INSTALLATION

6.1 Expansion and Contraction (General)

6.1.1 The VENDOR shall provide any Piping Restraints to suit actual field conditions and/or manufacturer’s requirements.

6.1.2 Allowance shall be made in the Piping Restraint selection and location to permit expansion or contraction to take place without placing undue stress on the piping or connected equipment.

6.1.3 The VENDOR shall install expansion joints at those locations indicated on the Drawings. If the VENDOR wishes to install additional expansion joints or expansion joints at alternate locations, prior written approval shall be obtained from the PURCHASER.

6.1.4 Manufacturer’s instructions shall be followed throughout.

6.2 Metal Pipe and Hanger Support Spacing

6.2.1 Table 1 shall be used for support/hanger spacing on metal pipe systems, unless otherwise noted herein.

6.2.2 Table 1 is based on uninsulated steel pipe containing liquids having specific gravity of 1.0 (as water) and a maximum temperature of 100°C. For other pipe materials or fluid services at temperatures above 100°C, the PURCHASER shall be consulted. For specific gravity greater than 1.0 and pipe size DN 25 and over, the maximum span shall be multiplied by the appropriate multiplier from the table below. If the specific gravity is different from the list in the table, interpolation is acceptable.
Table 1
Maximum Span for Metal Pipe Hanger and Support Spacing

<table>
<thead>
<tr>
<th>Nominal Diameter</th>
<th>Water Service</th>
<th>Steam & Gas Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN (mm)</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>25</td>
<td>2.1</td>
<td>2.7</td>
</tr>
<tr>
<td>40</td>
<td>2.7</td>
<td>3.7</td>
</tr>
<tr>
<td>50</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>65</td>
<td>3.4</td>
<td>4.3</td>
</tr>
<tr>
<td>80</td>
<td>3.7</td>
<td>4.6</td>
</tr>
<tr>
<td>90</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>100</td>
<td>4.3</td>
<td>5.2</td>
</tr>
<tr>
<td>125</td>
<td>4.3</td>
<td>5.2</td>
</tr>
<tr>
<td>150</td>
<td>5.2</td>
<td>6.4</td>
</tr>
<tr>
<td>200</td>
<td>5.8</td>
<td>7.3</td>
</tr>
<tr>
<td>250</td>
<td>6.1</td>
<td>7.9</td>
</tr>
<tr>
<td>300</td>
<td>7.0</td>
<td>9.1</td>
</tr>
</tbody>
</table>

6.3 Thermoplastic Pipe Hanger Support Spacing

6.3.1 Rigid thermoplastic piping shall be supported by the same type of restraints used with steel piping.
6.3.2 Restraint spacing and methods shall be based on the Manufacturer's recommendations for the service conditions.

6.3.3 Flexible thermoplastic tubing at any temperature shall be supported continuously by metal angles or channels and special hangers.

6.4 **Pipe Restraint Selection and Location (General)**

6.4.1 Pipe Restraints will be selected and located on the Drawings. Where such details are not shown, the VENDOR shall install them in accordance with Section 3.3.

6.4.2 In general, Pipe Restraints shall be placed at or near changes of pipe direction. Where changes of direction occur between hangers, the total length of pipe between supports shall be no more than 75% of the normal distance.

6.4.3 Where Victaulic type connections are used, Restraints shall be provided in accordance with the Manufacturer's instructions or as directed by the PURCHASER.

6.4.4 Valves, strainers, magnetic flow meters, density gauges, and other in-line equipment shall have additional Restraints over and above those specified for straight runs of pipe. Vertical lines shall be supported at the base and intermittently as required to provide adequate support. Anchors and sway braces shall be provided where necessary to eliminate excessive vibration or movement of the piping.

6.4.5 Spring hangers shall be installed where necessary to take up excessive thermal expansion or to isolate vibration from the building structure.

6.4.6 Pipes shall be supported with pipe roll hangers where axial pipe movement produces sway of hanger rod in excess of 4°.
6.4.7 No beam attachments shall be welded to any structural steel members less than 6 mm thick. Where necessary, beam attachments shall be of the type that permits the rod to swing in the direction of pipe expansion. Where pipe expansion takes place in two directions, the beam attachment shall permit the rod to swing in both directions.

6.4.8 Anchor and Guides shall be used to protect terminal equipment or other portions of the piping system and to control movement or to direct expansion into those portions of the system which are designed to absorb them.

6.4.9 Fire protection water piping shall be supported in accordance with the National Fire Codes and NFPA 13 and 14 respectively.

6.5 Supplementary Steel Supports

6.5.1 In case of framing structural members between existing steel members, the supplementary steel shall be designed in accordance with AMEC Specification SP-30-4301, Structural Steel.

6.6 Screw Threads

6.6.1 Screw threads shall conform to ANSI B1.1 unless other threads are required for adjustment under heavy loads.

6.6.2 Tumbuckles, adjusting nuts, and the like shall have the full length of internal threads engaged.

6.6.3 Any threaded adjustments shall be provided with a lock-nut, unless locked by other means.

6.6.4 Threads shall receive a coating of anti-seize lubricant prior to assembly.

6.7 Welded Attachments

6.7.1 Welding of miscellaneous supports, etc., not covered by an ANSI B31.3 code, shall comply with applicable Regulations and AWS D1.1.

6.7.2 Each welder or welder operator's valid certificate shall be on file at the job site and made available to the PURCHASER upon request.
6.7.3 Note: Welded Restraint attachments will not be permitted for the following systems:

(a) Plastic piping systems
(b) Plastic, rubber, or metal lined metal piping systems

6.8 Special Restraints

6.8.1 Special restraints such as sway braces, shock suppressors, counter-weight type supports, hydraulic type supports, etc. shall only be used when specified on the Drawings. Additional special restraints shall only be installed after prior written permission has been obtained from the PURCHASER.

6.9 Galvanic Corrosion

6.9.1 In a corrosive environment where a non-welded contact point between pipe and restraint represent a dissimilar metal couple, the two different metals shall be isolated electrically from each other to prevent galvanic corrosion. The method of isolation shall be the responsibility of the VENDOR with review and approval by the PURCHASER.

7.0 FIELD QUALITY CONTROL

7.1 General

7.1.1 All the Pipe Restraint integral and non-integral attachments shall be checked thoroughly by the VENDOR after welding or installation to ensure proper functionality according to the Drawings and Section 3.3.

7.2 Pipe Pressure Testing – Precautions

7.2.1 The VENDOR shall ensure that adequate temporary pipe restraining precautions are taken during pressure testing. These shall include:

(a) Providing temporary supports to piping system when the test fluid is heavier than the normal line content.
(b) Installation of stops on spring hanger assemblies to prevent over extensions.

8.0 ADJUSTMENT AND CLEANING

8.1.1 The VENDOR shall ensure that all restraints are properly adjusted and cleaned. Particular attention shall be paid to sliding type supports and field set spring hangers/supports setting.

8.1.2 The VENDOR shall ensure that all temporary stops and supports installed during testing are removed.
DOCUMENT REVIEW AND APPROVAL

The document revision number is indicated below. Please replace all revised pages of this document and destroy the superseded copies.

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>160K</th>
<th>SP-50-4005</th>
<th>REV. 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 152505</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metals - Cajamarquilla S.A.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The document revision number is indicated below. Please replace all revised pages of this document and destroy the superseded copies.

<table>
<thead>
<tr>
<th>ISSUED FOR</th>
<th>REV No.</th>
<th>ORIGIN</th>
<th>DATE</th>
<th>ISSUED PAGES/SECTIONS</th>
<th>INITIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval</td>
<td>A</td>
<td>HRM</td>
<td>14-Nov-07</td>
<td></td>
<td>HRM</td>
</tr>
<tr>
<td>Construction</td>
<td>0</td>
<td>HRM</td>
<td>10-Jul-08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CLIENT APPROVAL

Project Manager: ____________________________
Date: ____________________________

AMEC APPROVAL

Engineering Manager: ____________________________
Date: ____________________________

Engineering Co-ord.: ____________________________
Date: ____________________________

Discipline Approval: ____________________________
Date: ____________________________
TABLE OF CONTENTS

1.0 SUMMARY ... 2
2.0 REFERENCES .. 3
3.0 MATERIAL ... 5
4.0 PREPARATION ... 6
5.0 INSTALLATION ... 7
6.0 FIELD QUALITY CONTROL AND TESTING ... 12
7.0 ADJUSTMENT AND CLEANING .. 15
1.0 SUMMARY

1.1 Scope of Specification

1.1.1 The scope of the following document is to provide a basis for the supply and installation of the piping described in the Scope of Work.

1.1.2 Standard industry practices and procedures shall be followed even though not specifically stated herein.

1.2 Scope of Work

1.2.1 The Scope of Work shall be as described in the contract documents, including, but not limited to the following:

(a) Drawings
(b) Line List
(c) Tie-in List
(d) Valve List
(e) Specialty Equipment List
(f) Instrumentation List

1.3 Protection

1.3.1 The VENDOR shall be responsible at his expense for the replacement and/or repairs during the entire construction, installation, testing and commissioning time for any damage caused by loose piping components, metal or foreign material in the piping system or related equipment.
2.0 REFERENCES

2.1 Units of Measure

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Name</th>
<th>Symbol</th>
<th>Alternate Name</th>
<th>Alternate Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Millimeter</td>
<td>mm</td>
<td>Meter</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>Kilogram</td>
<td>kg</td>
<td>Tonne</td>
<td>t</td>
</tr>
<tr>
<td>Volume (Gas)</td>
<td>Cubic Meter</td>
<td>m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (Liquid)</td>
<td>Liter</td>
<td>L</td>
<td>Cubic Meter</td>
<td>m³</td>
</tr>
<tr>
<td>Pressure</td>
<td>Kilopascals</td>
<td>kPa</td>
<td>Millimeters</td>
<td>mm H₂O</td>
</tr>
<tr>
<td>Temperature</td>
<td>Degree Celsius</td>
<td>°C</td>
<td>Kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>Tonnes Per Cubic Meter</td>
<td>t/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>Meters/Second</td>
<td>m/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity of Heat</td>
<td>Kilo Joule</td>
<td>kJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy, Work</td>
<td>Kilowatt</td>
<td>kW</td>
<td>Horsepower</td>
<td>HP</td>
</tr>
<tr>
<td>Flow (Gas)</td>
<td>Normal Cubic Meters/Hour</td>
<td>Nm³/hr</td>
<td>Cubic Meters/Hour</td>
<td>m³/hr</td>
</tr>
<tr>
<td>Flow (Liquid)</td>
<td>Cubic Meters/Hour</td>
<td>m³/hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td>Meter</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>YY-MM-DD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2 Codes and Standards

2.2.1 All piping systems shall conform to the latest edition of the following Codes and Standards, where applicable. In cases where conflicts exist between this Specification and such Codes and Standards, the more stringent shall apply:

(a) ASME B31.1; Power Piping

(b) ASME B31.3; Chemical Plant and Petroleum Refinery Piping

(c) ASME Section V

(d) ASME Section VIII
(e) API; American Petroleum Institute
(f) AWS; American Welding Society
(g) CGA G-4.1; Cleaning Equipment for Oxygen Service
(h) FM; Factory Mutual
(i) MSS; Manufacturers Standardization Society
(j) NFPA; National Fire Protection Agency
(k) OSHA; Occupational Safety and Health Association
(l) PFI ES-3; Pipe Fabrication Institute, Fabrication Tolerances
(m) PFI ES-24; Pipe Fabrication Institute, Pipe Bending Tolerances - Minimum Bending Radii, Minimum Tangents
(n) Local Codes and Regulations

2.3 Related AMEC Specifications

2.3.1 Related AMEC specifications include:

(a) BI-00-4300, "General Requirements for Procured Equipment"
(b) BI-00-4301, "Quality Assurance Specifications"
(c) SP-00-4301, "General Site Conditions"
(d) SP-50-4001, "Piping Prefabrication"
(e) SP-50-4002, "Thermal Insulation"
(f) SP-50-4003, "Piping Hangers and Supports"
(g) SP-50-4006, "Piping Material Classifications"
(h) SP-50-4007, "Valves"
3.0 MATERIAL

3.1 General

3.1.1 Materials in each piping system shall conform to the Piping Material Classifications that form Specification SP-50-4006, and to the requirements of applicable Codes and Standards listed in Section 2.2.

3.1.2 Acceptable manufacturers of valves are listed in the Valve Specification (SP-50-4007).

3.1.3 Acceptable manufacturers of other piping equipment (i.e. expansion joints, steam spargers, etc.) are listed in the Specialty Equipment List or Piping Drawings.

3.1.4 All materials shall be new, of the best quality and free from any defects that would render them unsuitable for the intended purpose.

3.1.5 Any material substitutions that do not comply with the Piping Material Classifications shall be approved by the PURCHASER prior to procurement and installation.

3.1.6 The PURCHASER's representative will be sole judge of acceptability of proposed substitutions. The tendering VENDOR shall be responsible for providing sufficient information for proper evaluation, including complete identification and description, space requirements, price and delivery time.

3.2 Galvanized Piping

3.2.1 Galvanized piping shall not be bent or welded. Piping required to be bent or welded shall be hot dip galvanized after fabrication.
3.3 Flanges

3.3.1 All flanges shall be forged steel weld-neck or slip-on flanges to ANSI B16.5, unless noted otherwise in the Specifications or on the Drawings.

3.3.2 Unless otherwise specified on the Drawings, all flange bolt holes shall straddle centerline of equipment and piping.

3.4 Elbows

3.4.1 All butt welding elbows shall be long radius (1.5 times Radius) unless otherwise specified on the Drawings or herein.

3.5 Bends

3.5.1 Bends of pipe DN40 and lower may be pulled hot or cold (manual or machine). Bend parameters (preheat temperature, radii, ovality, wall buckling, thinning tolerances, etc.) shall comply with the relevant section of the ANSI Code for Pressure Piping (ANSI B31) and PFI Standard ES-24. Heat treatment following bending, shall be as required by ASME B31.1/B31.3. A straight tangent shall be left at each end of the bend, to permit end preparation.

4.0 PREPARATION

4.1 Weld Preparation

4.1.1 All welding surfaces shall preferably be prepared by machining and grinding. Flame cutting may be used if the cut is smooth and true and all heavy oxide is thoroughly cleaned from flame cut surfaces, in accordance with the applicable Regulations and Codes.

4.2 Surface Condition

4.2.1 All welding surfaces shall be cleaned and free of paint, oil, rust and mill scale.
4.3 Alignment

4.3.1 The ends of pipe-to-pipe, pipe-to-flange and pipe-to-valve joints shall be aligned as per the requirements of ASME B31.1/B31.3. This alignment must be preserved throughout welding.

5.0 INSTALLATION

5.1 Welding Procedure

5.1.1 All pressure pipe constructed, fabricated or installed by welding shall be to ASME B31.1/B31.3 and applicable local Regulations. Welding procedures and welder qualification shall be generally to ASME Section IX. Every welder shall hold a valid certificate indicating he is qualified to do welding in accordance with the approved procedure.

5.1.2 The VENDOR shall submit his welding procedures to the PURCHASER for approval and shall make the necessary arrangements to have his welders qualified, where necessary.

5.1.3 Cracking in the weld bead or parent metal is not permitted.

5.1.4 Unfused overlap of the weld bead onto the parent metal is not permitted.

5.1.5 Crater pits, usually caused by too rapid withdrawal of the electrode at the end of an arc weld, shall not be permitted.

5.1.6 Undercut, if present, shall not create a sharp notch and shall not reduce the thickness of the parent metal below the thickness tolerance specified in the parent metal specification.

5.1.7 All rough welds and longitudinal welds at stiffener and flange locations shall be ground to smooth surfaces.

5.1.8 Weld contours shall blend smoothly into the parent metal. Fillet welds shall be flat or only slightly concave or convex.
5.1.9 In cases where ends of unequal internal diameters are abutted and the internal misalignment exceeds 2 mm, the pipe with the smaller internal diameter shall be counterbored 30° to suit the internal diameter of the adjoining pipe. In no case, however, shall trimming of the inside diameter result in a wall thickness less than the minimum required for the service condition.

5.1.10 Welded piping shall be properly aligned and adequately supported during welding in order to avoid possible cracking of tack welds or initial beads.

5.1.11 All butt joints shall be of the single vee type, unless otherwise specified.

5.1.12 Welding shall be done only with electrodes certified by the relevant codes.

5.1.13 Each welder or welders' valid certificate shall be on file at the job site and shall be made available to the PURCHASER upon request.

5.1.14 Upon completion of each welded joint, the welder shall mark his identification number on the pipe material adjacent to the weld.

5.1.15 Plastic pipe shall be fabricated and installed to the Manufacturer's recommended methods.

5.2 Pipe

5.2.1 All piping shall be erected to tolerances as specified by the Pipe Fabrication Institute Standard ES-3.

5.2.2 Sufficient construction supports shall be provided to ensure that the connecting piping does not generate excessive stresses in the equipment during installation.

5.2.3 Full lengths of pipe shall be used where possible. Cut pipe to exact measurement and install without springing or forcing, except where cold springing of piping is specified on the Piping Drawings or herein.

5.2.4 Piping interference’s shall be referred to the PURCHASER for adjudication and any revisions caused by such interference’s shall be subject to his approval.
5.2.5 All piping DN50 and smaller, indicated but not detailed on the Drawings, shall be field run by the VENDOR unless otherwise noted. The VENDOR shall examine the Drawings and site and shall be responsible for avoiding any interferences with other piping, structural steel, electrical cables, and cable trays.

5.2.6 The VENDOR shall install no unnecessary "U" or "L" bends on piping runs. Costs incurred in correcting these deficiencies will be borne by the VENDOR.

5.2.7 At all field welds and connections for shop fabricated piping, the VENDOR shall provide 75 mm of additional length on steel pipe; for make-up purposes. Where a field weld occurs at a flange, the VENDOR shall tack weld the flange in position.

5.2.8 Slip-on and threaded orifice flange tapped holes shall be drilled through at both locations 180° apart. Drilled holes for flanges and radius taps shall be free from burrs. Flange seal welds shall be flush and smooth with pipe inside diameter.

5.2.9 All source connections for air and water hoses shall be made with hose clamps over the appropriate pipe nipple.

5.3 Grading and Drainage of Piping

5.3.1 All lines shall be installed in such a manner that all liquid can be drained and all vapours and gases vented from the system. Drain valves and air vents shall be installed as indicated on the Drawings or where necessary as required by the configuration of the piping. Drain valves shall be DN15 as per the applicable piping specification and plugged. Vents shall be DN20 threaded connection and plugged. For high point vents provided for hydrostatic testing or cleaning purposes only, the vent valve may be replaced by a suitable cap or plug after such operations are completed.

5.3.2 Unless otherwise indicated on the Drawings, the minimum down grade (horizontal lines) shall be 0.25%, in the direction of flow.
5.4 Break Flanges and Unions

5.4.1 The VENDOR shall install all unions or flanges required to complete the installation of the piping or to facilitate its removal, where the Piping Material Classifications or Drawings restrict the use of unions, flanges shall be used.

5.5 Threaded Joints

5.5.1 Screwed joints shall be made with American Standard Taper Pipe Threads (ANSI B1.1). Every joint shall be made up with a suitable jointing compound or tape applied only to the male thread. Tool marks or unnecessary pipe threads shall be avoided.

5.5.2 All threaded connections shall be gauge-checked or chased after welding. Openings for thermowells and other inserts shall be drilled through the connection and shall be free from obstruction.

5.6 Flanges

5.6.1 Where weld neck flanges are used, the bore of the flange shall match that of the pipe.

5.6.2 Slip-on type flanges shall be front and back welded.

5.6.3 Nuts, bolts and studs shall be given a suitable coating of anti-seize lubricant prior to joint assembly.

5.6.4 Flange gaskets shall not be coated with pipe joint compound.

5.6.5 All flanges shall be fabricated dimensionally to ANSI B16.5 unless noted otherwise on the Drawings or Piping Material Classifications.

5.6.6 All valves shall meet the requirements set out in the Valve Data Sheets that form Specification SP-50-4007.

5.7 Pipe Sleeves

5.7.1 Sleeves shall be furnished, located and installed where pipe passes through floors and walls if not already provided. Where possible, sleeves shall be
made available before floors and walls are constructed at the locations involved. Where sleeves are not furnished and installed in the original construction, cutting, core drilling and patching shall be satisfactorily performed as required.

5.7.2 Sleeves shall have a minimum internal diameter 50 mm larger than OD of pipe left bare, unless otherwise indicated. Wall sleeves shall be flush on both sides of wall, with floor sleeves flush on ceilings side and extended 75 mm above floor, except where indicated or necessary to suit location and piping function.

5.7.3 Depending on type of floor construction, the type of sleeve or banding shall be as follows:

(a) Concrete Floor - Up to 200 mm diameter hole may be core drilled.

(b) Concrete Floor - 200 mm diameter and over must have a PVC or Carbon steel sleeve.

(c) Grating Floor All openings to be banded with material of section equal to the bearing bars.

5.7.4 All openings more than 150 mm x 150 mm in the profiled steel deck shall be framed and reinforced as per the Drawings. If the framing and reinforcing is not indicated on the drawing, the opening shall be framed and reinforced to the satisfaction of the PURCHASER.

5.8 Valves

5.8.1 Each valve will be provided with the brand and type of packing shown on the nameplate and shall be equipped with a permanent metal tag fastened to the valve with corrosion resistant wire. This tag shall also show the applicable valve code number, as given in the Piping Material Classifications and on the Drawings.

5.8.2 All branches from main supply lines shall be fitted with isolating valves to facilitate local repairs without plant shutdown, whether shown on the Drawings or not.
6.0 FIELD QUALITY CONTROL AND TESTING

6.1 General

6.1.1 This Article covers the required pressure and non-destructive testing of all pressure piping after erection. Tests shall fulfill the minimum requirements of ASME B31.1/B31.3 and as noted herein, and relevant local regulations.

6.1.2 Inspectors representing the PURCHASER shall have access at all reasonable times to all areas concerned with the fabrication, welding, installation and testing of the piping under this Specification. Such an Inspector may reject any materials, methods, procedures or work that fails to meet the requirements of applicable codes, specifications, procedures, drawings or manufacturer’s installation instructions.

6.1.3 Rejected work shall be corrected at VENDOR's expense and without delay to project schedules.

6.2 Non-Destructive Testing

6.2.1 Non-destructive testing of piping systems shall be performed prior to pressure testing, in accordance with the minimum standards of the applicable portions of ASME B31.1/B31.3, with modifications as specified by the local Government Regulations, Project Specifications or as requested by the PURCHASER. All joints found subsequently to be defective shall be repaired/rewelded and re-tested at VENDOR's expense.

6.3 Pressure Test Preparations

6.3.1 Pressure Test Preparations shall conform to the following requirements:

(a) Instrument piping at orifice flanges or equivalent, up to the first block valves, shall be tested with these piping systems or equipment. Unions on the downstream side of the block valves shall be broken and the balance of the instrument piping tested separately to avoid introducing foreign matter into the instrument lines.
6.3.2 The following equipment shall not be subjected to piping test pressure:

(a) Pumps, turbines, compressors and centrifuges.

(b) Explosion discs, safety valves, flame arresters, filters, self-contained pressure regulating valves and sealed control valves.

(c) Any equipment that does not have a specified test pressure.

(d) Any other equipment designated by the PURCHASER.

(e) Expansion joints. (When joint design pressure is less than line test pressure, expansion joint shall not be tested with line.)

6.3.3 Piping which connects to or is continuous with lines installed by others, shall be isolated from these lines by test blanks. When it is necessary to include portions of such lines in the test, the PURCHASER shall be consulted to determine conditions of the test.

6.3.4 Sufficient advance notice of the tests shall be made to allow the PURCHASER and local Government inspectors to make necessary arrangements to be on hand for the tests, where required.

6.3.5 All flanges or threaded joints, and all welds, shall be left unpainted and uninsulated, and underground pipe joints shall be exposed, until testing is completed. Partial back filling on buried lines is permitted to restrain resultant pipe movements but joints must remain exposed.

6.3.6 Equipment that is not to be included in the test shall be either disconnected from the piping or isolated by test blanks.
6.3.7 All restrictions that interfere with filling, venting or draining, such as orifice plates and flow nozzles, shall not be installed until testing is completed.

6.3.8 The VENDOR shall furnish all labour, tools, instruments, testing media and equipment necessary to carry out the tests.

6.4 Hydrostatic Testing Procedure

6.4.1 Hydrostatic tests shall be performed as follows:

(a) Hydrostatic testing shall be performed using clean fresh water.

(b) Gauges used shall be tested for accuracy and shall then be installed as close as possible to the low point of the system to be checked.

(c) Conduct each test over a minimum period of two hours, during which time there shall be no appreciable drop in pressure on test gauge(s) after the compensation for air temperature variations.

(d) Any leaks shall be repaired and lines then re-tested. Any lines changed after testing shall also be re-tested. Re-testing is not required after minor repairs and/or adjustments are made with the PURCHASER's consent.

(e) No piping shall be tested at metal temperature below 5º C. Perform testing of piping when ambient air conditions are approximately constant.

(f) All vents and other connections that can serve as vents shall be open during filling so that all possible air is vented prior to applying test pressure to a system.

(g) After hydrostatic testing of a system is complete and approved, all lines and equipment shall be completely drained of the test medium. System shall be vented during draining to avoid excessive vacuum.

(h) Two or more lines may be combined into a single test system.
While piping is under test, care shall be taken that excessive pressure does not occur due to increase of ambient temperature.

6.5 Test Records

6.5.1 Test records shall be kept as follows:

(a) Accurate test records shall be kept of each line or system tested, on a Piping Test Report Sheet. Tests are to be conducted in the presence of the PURCHASER.

(b) After testing of all piping on the job is complete, the Test Records shall be given to the PURCHASER.

6.5.2 The following test records shall be included:

(a) Identification of piping system

(b) Testing medium

(c) Testing pressure

(d) Date of test approval

(e) Signature of test supervisor, witnessed by the PURCHASER.

7.0 ADJUSTMENT AND CLEANING

7.1 General

7.1.1 All piping systems installed under this Section require cleaning following testing but prior to introduction of specified system operating fluids. Cleaning shall consist of either flushing with water or blowing through with air, to suit chosen Pressure Test Fluid.

7.1.2 Equipment likely to be damaged during cleaning operations shall be removed or isolated from the piping systems, or replaced with temporary spools or plugs, and cleaned separately.
7.1.3 The VENDOR shall provide and install suitable temporary screen strainers where necessary to protect equipment in the piping systems during cleaning. The screening arrangements shall be subject to the PURCHASER’s approval; all screens are to be removed after piping has received his acceptance.

7.1.4 The VENDOR shall make certain that all rags or other obstructions are removed from the pipes before assembly. After installation, all piping shall be completely free from dirt, weld slag and other foreign particles.

7.1.5 The VENDOR shall be responsible for keeping concise records of all successfully cleaned systems. The records shall identify the systems by the number method and date cleaned, and shall provide space for the signature of any special authority (where required) as well as the PURCHASER (every system). Such records shall be passed to the PURCHASER upon completion.

7.1.6 All pipe, fittings, valves, etc. designated for oxygen service must be cleaned, degreased, and nitrogen purged after installation and prior to use. Reference Compress Gas Association Pamphlet G-4.1.

7.2 Water Flushing

7.2.1 Flushing shall consist of pumping clean fresh water through the piping system at a sufficient velocity to keep the pipe filled with water and to remove any construction/fabrication debris in the pipe. Such flow will continue until in the opinion of the PURCHASER, the piping is discharging only clean water.

7.2.2 When piping systems are flushed into a vessel, the vessel shall be drained and cleaned to the satisfaction of the PURCHASER. Should such a vessel be used for storage of water for subsequent flushing operations, it shall be cleaned and inspected prior to such use.

7.3 Air Blowing

7.3.1 Lines requiring air blowing shall be blown with air from the plant air compressors or a similar source approved by the PURCHASER.
7.3.2 Lines shall be blown at a sufficient velocity to loosen all dirt and shall be blown until in the opinion of the PURCHASER the discharge is entirely free from foreign material.

7.3.3 Strong acid lines (93% H_2SO_4 for example) are to be blown dry after testing with instrument quality air to a dew point of -40º C before the introduction of the strong acid.

7.4 Final Adjustment and Cleaning

7.4.1 Effluent streams from cleaning operations shall be correctly disposed of, as directed by the PURCHASER.

7.4.2 The VENDOR shall ensure all pipe restraints are properly adjusted and cleaned. Particular attention shall be paid to sliding type supports and field set spring hangers/supports settings.

7.4.3 The VENDOR shall ensure that all temporary stops and supports installed during testing are removed.

7.4.4 The VENDOR shall replace all parts removed during pressure testing and cleaning and demonstrate to the PURCHASER that all resulting joints are leak tight.

7.4.5 The VENDOR shall remove all temporary restraints associated with expansion joints as installed by expansion joint supplier after all testing is complete as deemed by the PURCHASER.
The document revision number is indicated below. Please replace all revised pages of this document and destroy the superseded copies.

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
<th>SW-40-4601</th>
<th>REV.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metals - Cajamarquilla S.A.</td>
<td>CC-402 CONTRATO DE OBRAS DE MONTAJE MECÁNICO Y PIPING</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISSUED FOR</th>
<th>REV No.</th>
<th>ORIGIN</th>
<th>DATE</th>
<th>ISSUED PAGES/SECTIONS</th>
<th>INITIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval</td>
<td>A</td>
<td>F.C / J.G.</td>
<td>6-May-08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMEC APPROVAL

Engineering Manager: [Signature]
Date: 4 May 08

Engineering Co-ord.: [Signature]
Date: 4 May 08

Discipline Approval: [Signature]
Date: 4 May 08
TECHNICAL SPECIFICATION

CLIENT: Votorantim Metais - Cajamarquilla S.A.

TABLA DE CONTENIDOS

1.0 AREA 32 - ALMACENAMIENTO Y DISTRIBUCIÓN DE ÁCIDO SULFUÍRICO 1
 1.1 MECÁNICA .. 1
 1.1.1 DESCRIPCIÓN .. 1
 1.1.2 ALCANCE DE TRABAJO ... 1
 1.1.3 EXCLUSIONES .. 1
 1.2 TUBERIAS ... 1
 1.2.1 DESCRIPCIÓN .. 1
 1.2.2 ALCANCE DE TRABAJO ... 2
 1.2.3 EXCLUSIONES .. 2

2.0 ÁREA 34 PLANTA DE TRATAMIENTO DE EFLUENTES ... 2
 2.1 MECÁNICA .. 2
 2.1.1 DESCRIPCIÓN .. 2
 2.1.2 ALCANCE DE TRABAJO ... 6
 2.1.3 EXCLUSIONES .. 10
 2.2 TUBERIAS ... 10
 2.2.1 DESCRIPCIÓN .. 10
 2.2.2 ALCANCE DE TRABAJO ... 13
 2.2.3 EXCLUSIONES .. 14

3.0 AREA 41 - PLANTA DE PLOMO PLATA .. 15
 3.1 MECANICO .. 15
 3.1.1 DESCRIPCION .. 15
 3.1.2 ALCANCE ... 16
 3.1.3 EXCLUSIONES .. 21
 3.2 TUBERIAS ... 21
 3.2.1 DESCRIPCION DEL TRABAJO .. 21
 3.2.2 ALCANCE DEL TRABAJO ... 22
 3.2.3 EXCLUSIONES .. 30

4.0 ÁREA 55 ENFRIAMIENTO SOLUCIÓN PURA ... 30
 4.1 MECÁNICA .. 30
 4.1.1 DESCRIPCIÓN .. 30
 4.1.2 ALCANCE DE TRABAJO ... 31
 4.1.3 EXCLUSIONES .. 32
 4.2 TUBERIAS ... 32
 4.2.1 DESCIRIPCIÓN .. 32
 4.2.2 ALCANCE DE TRABAJO ... 32
 4.2.3 EXCLUSIONES .. 33

5.0 AREA 70 - CASA DE CELDAS EXISTENTE .. 34
 5.1 MECÁNICA .. 34
 5.1.1 DESCRIPCIÓN GENERAL ... 34
 5.1.2 ALCANCE DEL TRABAJO ... 34
 5.1.3 EXCLUSIONES .. 35
 5.2 TUBERIAS ... 35
TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>PROJECT: 320K SW-40-4601</th>
<th>REV. A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° 155339</td>
<td>ALCANCE DE TRABAJO</td>
</tr>
<tr>
<td></td>
<td>CC-402</td>
</tr>
</tbody>
</table>

| CLIENT: Votorantim Metais - Cajamarquilla S.A. |

<table>
<thead>
<tr>
<th>5.2.1 DESCRIPCIÓN GENERAL</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2 ALCANCE DE TRABAJO</td>
<td>39</td>
</tr>
<tr>
<td>5.2.3 EXCLUSIONES</td>
<td>41</td>
</tr>
</tbody>
</table>

6.0 ÁREA 93 - AGUA DE ENFRIAMIENTO

<table>
<thead>
<tr>
<th>6.1 ÁREA MECANICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1 DESCRIPCIÓN GENERAL</td>
</tr>
<tr>
<td>6.1.2 ALCANCE DE TRABAJO</td>
</tr>
<tr>
<td>6.1.3 EXCLUSIONES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.2 TUBERÍAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1 DESCRIPCIÓN GENERAL</td>
</tr>
<tr>
<td>6.2.2 ALCANCE DE TRABAJO</td>
</tr>
<tr>
<td>6.2.3 EXCLUSIONES</td>
</tr>
</tbody>
</table>

7.0 ÁREA 94 - AIRE COMPRIMIDO

<table>
<thead>
<tr>
<th>7.1 ÁREA MECANICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.1 DESCRIPCIÓN GENERAL</td>
</tr>
<tr>
<td>7.1.2 ALCANCE</td>
</tr>
<tr>
<td>7.1.3 EXCLUSIONES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.2 TUBERÍAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1 DESCRIPCIÓN GENERAL</td>
</tr>
<tr>
<td>7.2.2 ALCANCE DE TRABAJO</td>
</tr>
<tr>
<td>7.2.3 EXCLUSIONES</td>
</tr>
</tbody>
</table>
1.0 AREA 32 – ALMACENAMIENTO Y DISTRIBUCIÓN DE ÁCIDO SULFÚRICO

1.1 MECÁNICA

1.1.1 DESCRIPCIÓN

Para atender la demanda adicional de transporte de Acido Sulfúrico hacia la planta se incluye el montaje de una (1) nueva bomba de distribución de Acido Sulfúrico con Tag C2040.4610 que se ubicará en la zona norte del área 32. En esta zona actualmente existen seis (6) bombas. Los planos 32-40-4601 al 32-40-4603 muestran el arreglo general de la nueva bomba de distribución de ácido sulfúrico.

1.1.2 ALCANCE DE TRABAJO

La actividad que sigue a continuación constituye el alcance de trabajo:

• Montaje de una bomba de Acido Sulfúrico con Tag C2040.4610.

1.1.3 EXCLUSIONES

• No se incluye obras Civiles, salvo el grouting de la bomba
• No se incluye instalaciones eléctricas.

1.2 TUBERIAS

1.2.1 DESCRIPCIÓN

Se instalarán tuberías de acero al carbono y de acero inoxidable 316L para el transporte de ácido sulfúrico. Estas tuberías se instalarán en la estación de bombeo antes descrita y una tubería desde la nueva planta de ácido sulfúrico (área 35) hacia los tanques de almacenamiento de ácido sulfúrico (área 32).
1.2.2 ALCANCE DE TRABAJO

Las actividades que siguen a continuación constituyen el alcance de trabajo:

- Instalación de las tuberías de acero al carbono en la zona de la estación de bombeo que tendrán puntos de enlace con tuberías existentes. Estas tuberías se muestran en los planos 32-50-4601 al 32-50-4603. Los planos isométricos muestran el detalle y el listado de materiales de cada una de ellas.

- Instalación de las tuberías de acero inoxidable 316L desde la nueva planta de ácido (área 35) hacia el almacén de ácido. Esta tubería se muestra en los planos 32-50-4604 al 32-50-4606. Los planos isométricos muestran el detalle y el listado de materiales de cada una de ellas. Estas tuberías deberán ser acopladas a las tuberías existentes antes del ingreso hacia los tanques de almacenamiento de ácido existentes.

- Suministro, habilitación e instalación de todos los soportes de las tuberías, de acuerdo a los planos de tuberías donde se muestran los mismos.

1.2.3 EXCLUSIONES

- No se incluye suministro y/o montaje de pipe racks, estructuras para cruce de pistas, etc.

- No se incluye remoción de tuberías existentes o cambio de las mismas.

2.0 ÁREA 34 PLANTA DE TRATAMIENTO DE EFLUENTES

2.1 MECÁNICA

2.1.1 DESCRIPCIÓN

Recepción de Efluentes

La recepción de efluentes es la zona a donde llegan los efluentes que contienen zinc. Actualmente está conformada por dos tanques de homogenización (C650.4024 y C651.4024) construidos en concreto con agitadores, dos bombas de transferencia o alimentación de efluentes (C652.4610 y C653.4610), un sumidero y una bomba de sumidero. El proyecto 320K en esta zona incluye la construcción de un nuevo tanque de homogenización de concreto, la instalación de un nuevo...
Tratamiento de Efluentes.

La planta de tratamiento de efluentes actual comprende dos plantas existentes, la No.2 y la No.3. El proyecto 320K contempla la instalación de una nueva (No.4) y la modificación de las existentes para adecuarse a los nuevos requerimientos.

En lo referente a la nueva planta de efluentes, ésta estará conformada por un tanque de mezcla de lodos/cal (C2006.4024) fabricado en acero al carbono, un tanque de mezcla rápida (C2007.4024) fabricado en acero inoxidable, un tanque reactor (C2008.4024) construido de concreto, un tanque clarificador (C2009.4024) de concreto, dos bombas de transferencia de lodos (existentes – reubicadas desde la ETP No.2) (C2012.4610 y C2013.4610), dos bombas de overflow (C2023.4610 y C2024.4610), dos bombas de recirculación de lodos (C2010.4610 y C2011.4610) y una bomba de sumidero (C2014.4610). Por tratarse de una planta nueva, todo lo mencionado anteriormente es nuevo (SIC) y su instalación debe formar parte del alcance. Los tanques de mezcla lodos/cal y tanque de mezcla rápida son tanques de acero con agitadores, deflectores y canaletas de descarga. El tanque reactor es de concreto y tiene en el interior deflectores, de descarga y un difusor de aire. En la parte superior tiene una plataforma de operación en donde se apoya un agitador. El tanque clarificador es de concreto y tiene en su parte superior un puente en donde se apoyará el mecanismo que accionará el rastrillo, este mecanismo cuenta además con una unidad hidráulica y su motor respectivo. En la parte central inferior del puente se instalará una poza de alimentación para recibir los efluentes que vienen del tanque reactor. Esta poza será alimentada mediante una tubería de alimentación que se conectará a la canaleta de descarga que viene del tanque reactor. En la parte inferior el tanque clarificador cuenta con un cono de descarga. Por último en la parte superior del tanque clarificador se tendrá una canaleta de rebose con un labio metálico para regular y limpiar el flujo de descarga.

En lo referente a la planta existente, se instalarán dos nuevas bombas para bombear el overflow del clarificador de la planta No.2 (C2019.4610 y C2020.4610). Se instalarán también dos nuevas bombas de transferencia de lodos (C2045.4610 y C2046.4610) para reemplazar a las que se trasladarán a la planta No.4.

Planta de Cal.

La planta de cal existente consta de un silo de almacenamiento, un transportador de tornillo, un slaker, un tanque de almacenamiento de lechada de cal y bombas de alimentación con lechada de cal. Actualmente se tienen bombas alimentando de lechada de cal a las dos plantas existentes y a la planta de indio (área 42).

El proyecto 320K contempla la instalación de una nueva planta de cal de características similares a la actual.

La nueva planta de cal contará con un silo de almacenamiento Tag C2002.4020, este silo llevará en la parte superior un sistema colector de polvos. Además tendrá una escalera de acceso hacia la parte superior; en la parte superior habrá una baranda perimetral.

En la parte inferior del silo se tendrá un cono de descarga que tendrá un activador con un sistema de vibradores para la descarga. Se tendrá también una válvula tipo compuerta para casos de mantenimiento además de un chute de descarga con indicador de nivel.

El silo estará fabricado en planchas de acero al carbono y tendrá un diámetro aproximado de 3800 mm. y una altura aproximada de 17250 mm.

Para transportar la cal desde la parte inferior del silo, se instalará un transportador de tornillo C2002.4416 con su motor respectivo. Este transportador descargará en una faja balanza la que a su vez conducirá la cal hasta una válvula rotatoria a la entrada del slaker C2003.7590. Tanto el transportador como la faja balanza y el slaker están fabricados básicamente en acero al carbono. El slaker a su vez está conformado por un chute de entrada, un sistema colector de polvos y vapores, un sistema de eliminación de sólidos no mezclados y un panel de válvulas. La instalación será a nivel del piso.
La cal se mezcla con agua fresca en el slaker produciendo lechada de cal. La lechada de cal fluye por rebosamiento desde el slaker hasta el tanque de almacenamiento de lechada de cal C2005.4024.

El tanque de almacenamiento de lechada de cal es un tanque de concreto abierto ubicado bajo el nivel del piso. El diámetro del tanque es de 4600 mm. y su profundidad es de 3000 mm. En la parte interior tiene cuatro deflectores fabricados en acero al carbono. En la parte superior de este tanque se instalará una plataforma de operaciones que a su vez servirá de soporte a las bombas de alimentación de lechada de cal, al agitador y a los brazos pivotantes para el mantenimiento de las bombas y del agitador.

Las bombas que se van a instalar en este nuevo tanque de almacenamiento de lechada de cal serán las de alimentación a la planta de efluentes No.4 C2026.4610 y C2027.4610. Se instalará también la bomba que alimentará con lechada de cal al área 41 C2050.4610 y la que suministrará al área 42, D1380.4610.

Además se instalará el agitador C2005.4011.

La nueva planta de cal será instalada en la ubicación actual de la antigua planta de efluentes (No.1). Esta planta deberá ser desmontada y trasladada al almacén de acuerdo a las indicaciones que entregue el supervisor o Cajamarquilla.

Sistemas de Preparación y Dosificación de Floculante y Sulfato Ferroso

Actualmente el sistema de Floculante consta de un tanque rectangular en donde se prepara y luego se almacena; cuenta además con cuatro bombas dosificadoras. El proyecto 320K contempla mantener el sistema actual trasladándolo a una nueva zona de manera tal que se agrupe junto al sistema de sulfato ferroso.

El sistema de sulfato ferroso actual no es adecuado por lo que el proyecto 320K contempla eliminarlo e instalar uno nuevo junto con el sistema de floculante.
El nuevo sistema de preparación y dosificación de sulfato ferroso cuenta con un tanque de preparación de sulfato ferroso C2035.4024. Este tanque tiene un agitador en la parte superior C2035.4011. También tenemos un tanque de alimentación de sulfato ferroso C2036.4020. Este último no lleva agitador a diferencia del primero. Además se tiene una bomba de transferencia de sulfato ferroso C2047.4610 que sirve para llevar la mezcla de sulfato ferroso desde el tanque de preparación hasta el tanque de alimentación. Por último tenemos dos bombas dosificadoras C2037.4610 y C2038.4610. Adicionalmente se tendrá una plataforma de acceso hacia el tanque de preparación de sulfato ferroso.

Ambos sistemas están ubicados en la zona este de la planta y van sobre pedestales.

El tanque C2035.4024 está fabricado en fibra de vidrio, tiene un diámetro de 2200 mm. y una altura de 2200 mm. El tanque C2036.4020 también es de fibra de vidrio y tiene un diámetro de 2500 mm. y una altura de 2500 mm.

2.1.2 ALCANCE DE TRABAJO

Las actividades que siguen a continuación constituyen el alcance de los trabajos para cada zona:

Recepción de Efluentes

- Suministro, fabricación y montaje de deflectores en el interior del tanque. Los insertos en el concreto serán instalados por el contratista de obras civiles. Para detalles de los deflectores ver plano 34-40-4619.
- Desmontaje y reubicación de bombas de alimentación de efluentes existentes (C652.4610 y C653.4610). Incluye suministro y colocación de grouting.
- Registro y control de modificaciones. Elaboración de planos As Built.
Tratamiento de Efluentes

- Montaje del tanque de mezcla lodos/cal (Tag C2006.4024), el agitador (Tag C2006.4011). La base del tanque está a un nivel referencial de 8.6 metros sobre el nivel del piso.

- Montaje del tanque de mezcla rápida (Tag C2007.4024), el agitador (Tag C2007.4011). La base del tanque está a un nivel referencial de 7.1 metros sobre el nivel del piso.

- Instalación de canaletas de descarga desde el tanque de mezcla de lodos/cal hacia el tanque de mezcla rápida y desde el tanque de mezcla rápida hacia el tanque reactor. El suministro de estas canaletas así como los pernos de amarre, las empaquetaduras y todos los elementos mostrados en el plano 34-40-4623 debe considerarse como parte del alcance.

- Suministro, fabricación e instalación de difusor de aire en la parte interior del tanque reactor C2008.4024. Incluye suministro y colocación de grouting.

- Montaje de puente soporte de mecanismo de rastrillo sobre el tanque clarificador C2009.4024. El nivel de tope referencial del tanque clarificador es 9.2 metros sobre el nivel del piso. Incluye suministro y colocación de grouting.

- Montaje del mecanismo de accionamiento del rastrillo del tanque clarificador C2009.4024.

- Montaje de rastrillo en el tanque clarificador C2009.4024.

- Montaje de cono de descarga en el tanque clarificador C2009.4024.

- Montaje de labio de canaleta de rebose en la parte superior del tanque clarificador C2009.4024.

- Montaje de poza de alimentación en tanque clarificador C2009.4024 apoyado en la parte inferior del puente soporte del mecanismo de rastrillo.
• Montaje de bombas de transferencia de lodos C2012.4610 y C2013.4610. Los motores son de 15 kW. Estas bombas son existentes y están instaladas actualmente en la planta No.2. Deberán ser desmontadas y reinstaladas en la parte inferior del tanque clarificador de la planta No.4. El alcance incluye suministro y colocación del grouting.

• Montaje de bombas de overflow C2023.4610 y C2024.4610. El alcance incluye suministro y colocación de grouting.

• Montaje de bombas de recirculación de lodos C2010.4610 y C2011.4610. Los motores son de 7.5 kW. El alcance incluye el suministro y la colocación del grouting.

• Montaje de bomba de sumidero C2014.4610. El motor es de 5.5 kW. La bomba se instalará sobre una estructura fabricada en canales C8x11.5 y está considerada dentro del alcance. De igual manera se considera dentro del alcance el suministro de las cuatro rejillas que bordean la entrada al sumidero. El alcance incluye el suministro y la colocación del grouting.

• Montaje de bombas de overflow C2019.4610 y C2020.4610 en la planta No.2. El alcance incluye el suministro y la colocación del grouting.

• Montaje de bombas de transferencia de lodos C2045.4610 y C2046.4610 en la planta No.2. Los motores son de 11 kW. El alcance incluye el suministro y la colocación del grouting.

• Registro y control de modificaciones. Elaboración de planos As Built.

Planta de Cal

• Previo a la instalación se procederá al desmantelamiento de la antigua planta de efluentes (planta No.1). Las estructuras metálicas y tanques que sean retirados serán trasladados al almacén de chatarra cercano que tiene Cajamarquilla dentro de la refinería. Se desmontará todo el equipamiento y estructuras existentes antes proceder con la demolición de las estructuras de concreto existentes en la zona. Se debe hacer una excepción con el tanque cónico (de acero) que existe en la zona norte de la planta No.1. Este tanque será trasladado a una nueva ubicación. Los trabajos de instalación de todo el equipamiento mecánico se iniciarán una vez que se hayan desmantelado todas las estructuras y equipos pertenecientes a la planta No.1 y se hayan construido las cimentaciones y el tanque de concreto C2005.4024 en la zona.
- Montaje de silo de almacenamiento de cal C2002.4020 incluyendo escalera de acceso, plataforma y barandas perimetrales superiores. Incluye el suministro y la colocación de grouting.
- Montaje de sistema colector de polvos en la parte superior del silo de almacenamiento de cal.
- Montaje del cono de descarga y sistemas relacionados en la parte inferior del silo de almacenamiento de cal.
- Instalación de la válvula compuerta, del chute de descarga y el detector de nivel en la parte inferior del cono de descarga del silo de almacenamiento de cal.
- Montaje del transportador de tornillo C2002.4416. Incluyendo el suministro y la colocación de grouting.
- Montaje de la faja balanza y la válvula rotaria a continuación del tornillo transportador y antes del slaker C2003.7590.
- Montaje del slaker C2003.7590. Incluyendo el suministro y la colocación de grouting.
- Suministro, fabricación e instalación de deflectores deflectores en el interior del tanque de almacenamiento de lechada de cal. Los insertos embebidos serán instalados por el contratista de obras civiles. El suministro de los deflectores, pernos y soportes debe ser considerado parte del alcance. Ver detalles en plano 34-40-4618.
- Montaje de bombas de alimentación de lechada de cal C2025.4610, C2026.4610, C2050.4610 y D1380.4610. La bomba D1380.4610 está actualmente instalada en la planta de cal existente. Deberá ser desmontada y reubicada en la plataforma del nuevo tanque de almacenamiento de lechada de cal. Considerar que los motores de las bombas son todos de 11 kW.
- Registro y control de modificaciones. Elaboración de planos As Built.
Sistemas de Preparación y Dosificación de Flocculante y Sulfato Ferroso

- Montaje del tanque de preparación de sulfato ferroso C2035.4024.
- Montaje del tanque de alimentación de sulfato ferroso C2036.4020.
- Montaje del agitador del tanque de preparación de sulfato ferroso C2035.4011.
- Montaje de la bomba de transferencia de sulfato ferroso C2047.4610. Instalación de las bombas dosificadoras C2037.4610 y C2038.4610. Incluye el suministro y la colocación del grouting.
- Desmontaje y reubicación del sistema de preparación y dosificación de flocculante existente. Incluyendo las bombas dosificadoras, el sistema de carga de flocculante. Incluye el suministro y la colocación del grouting.
- Registro y control de modificaciones. Elaboración de planos As Built.

2.1.3 EXCLUSIONES

- No se incluye obras Civiles, salvo el grouting de las bombas
- No se incluye instalaciones eléctricas.

2.2 TUBERÍAS

2.2.1 DESCRIPCIÓN

Las actividades que siguen a continuación constituyen una descripción de los trabajos para toda el área:

- Instalación de las tuberías correspondientes a esta área. Las tuberías son principalmente de acero al carbono en diámetros de ½" hasta 10", polipropileno en diámetros de 1-1/2" hasta 6" y HDPE en diámetros de 1" a 6.
- Las tuberías de acero al carbono serán principalmente para el bombeo de lodos y el suministro de aire comprimido y aire de instrumentación.
- Las tuberías de polipropileno principalmente serán usadas para el bombeo de efluentes.
- Las tuberías de HDPE se usarán principalmente en el traslado de efluentes, flocculantes y sulfato ferroso.
• Los planos 34-50-4601 y siguientes muestran los arreglos generales de tuberías. Los planos isométricos muestran el detalle de cada una de ellas y el listado de materiales. Los P&ID 34-01-4101, 34-01-4102, 34-01-4103, 34-01-4104, 34-01-4105 y 34-01-4106 forman parte de la información disponible para la comprensión de los trabajos a realizar.

• El alcance incluye el suministro, fabricación e instalación de todos los soportes de tuberías de acuerdo a planos.

• En caso se presente alguna interferencia o modificaciones por cualquier motivo, el ingeniero residente de obra deberá coordinar con el ingeniero supervisor para modificar el lugar de instalación del soporte o la modificación de los mismos. Estas modificaciones deberán anotarse en los planos “As Built”.

• La instalación de tuberías del área 34 está limitado a lo que está dentro del área misma. No se considerarán parte del alcance del área las tuberías que se instalarán en canaletas _o racks fuera del área 34, salvo lo que se menciona en el siguiente párrafo. La interconexión con las tuberías del rack de tuberías externo sí esta comprendido dentro de este alcance.

• Como única excepción a lo mencionado en el punto anterior, se tendrá que efectuar la instalación incluyendo el suministro, fabricación e instalación de soportes de la línea que transportará lodos concentrados desde las bombas de transferencia de lodos C2045.4610 y C2046.4610 de la planta No.2 hasta el filtro de tambor D074 ubicado en el área 40 de acuerdo a lo que se muestra en planos.

• Se instalarán también lavacjos de emergencia.

A continuación se describen las principales actividades a realizar en cada zona:

Recepción de Efluentes

Los trabajos en esta zona consisten en extender todas las tuberías que actualmente alimentan a los tanques de homogenización C650.4024 y C651.4024. Se deben prolongar para permitir la alimentación del nuevo tanque de homogenización C2015.4024. Esta extensión de tuberías será similar a las existentes incluyendo instrumentos y válvulas.

También se tendrá que modificar las tuberías que alimentan a las bombas existentes C652.4610 y C653.4610 debido a que éstas serán reubicadas.
El resto de tuberías es nuevo, no intervienen sobre elementos existentes y deberán ser instaladas de acuerdo a lo indicado en los planos de arreglos generales e isométricos.

Tratamiento de Efluentes

En lo referente a instalaciones nuevas (planta Nº 4) todas las tuberías también son nuevas, no intervienen sobre elementos existentes y deberán ser instaladas de acuerdo a lo indicado en los planos de arreglo general y en los isométricos.

En lo referente a la planta de tratamiento No. 2 se deberá hacer modificaciones en las tuberías que alimentan a las bombas de transferencia de lodos C2045.4610 y C2046.4610 debido a que las existentes serán reubicadas y las nuevas no ocuparán el mismo lugar que las que se retiren.

Se instalará una nueva tubería para transferencia de lodos hacia el área 40. Esta tubería se conectará a la descarga de las bombas C2045.4610 y C2046.4610, se prolongará hasta el filtro D074 existente en el área 40. En este filtro se deberá hacer la modificación del ingreso colocando un manifold para unir la llegada de la tubería de transferencia de lodos existente que viene de la ETP No. 2 a la nueva línea que vendrá de la ETP No. 3 (desde C2045.54610 y C2046.4610).

De igual manera se deberán hacer modificaciones para instalar las tuberías hacia las nuevas bombas de overflow que se van a instalar C2019.4610 y C2020.4610. Habrá que intervenir también sobre el sistema de alimentación de agua para sellos actual de manera tal que se suministre agua a las nuevas bombas que lo requieran.

Habrá también una nueva línea de alimentación de efluentes que vendrá desde la bomba C2025.4610 de la zona de reopción de efluentes.

En la planta No.3 se deberán hacer modificaciones en la succión de las bombas de overflow C654.4610 y C655.4610 para manejar adecuadamente el nuevo caudal. De igual manera habrá que hacer modificaciones en las tuberías de descarga de estas mismas bombas.
Igual que en la planta No.2 aquí habrá también una nueva línea de alimentación de efluentes que vendrá desde la bomba C652.4610 en la zona de recepción de efluentes.

Planta de Cal

La planta de cal es nueva por lo que todas las tuberías también son nuevas, no intervienen sobre elementos existentes y deberán ser instaladas de acuerdo a lo indicado en los planos de arreglo general y en los isométricos.

Sistemas de Preparación y Dosificación de Floccoliantes y Sulfato Ferroso

La planta de floculante será completamente reubicada y la de sulfato ferroso es nueva por lo que todas las tuberías son nuevas, no intervienen sobre elementos existentes y deberán ser instaladas de acuerdo a lo indicado en los planos de arreglo general y en los isométricos.

En la planta de Borra todas las tuberías son nuevas, no intervienen sobre elementos existentes y deberán ser instaladas de acuerdo a lo indicado en los planos de arreglo general y en los isométricos.

2.2.2 ALCANCE DE TRABAJO

Los trabajos de tuberías a realizarse son los siguientes:

- Instalación de nuevas tuberías de alimentación de efluentes hacia tanques de homogenización.
- Instalación de nuevas tuberías de transferencia de efluentes desde los tanques de homogenización hacia las plantas de tratamiento de efluentes No.2 y No.3.
- Instalación de nuevas tuberías de alimentación de tanques de homogenización hacia bombas de transferencia de efluentes.
- Instalación de nuevas tuberías de lodos desde la nueva bomba de sumidero.
- Instalación de nuevas tuberías de recirculación de lodos.
- Instalación de nuevas tuberías de overflow (agua recuperada).
- Instalación de nuevas tuberías de transferencia de lodos.
- Instalación de nuevas tuberías de suministro de aire comprimido y aire de instrumentación.
- Instalación de nuevas tuberías de suministro de agua de planta.
- Instalación de tuberías de suministro de agua potable para los nuevos lavaojos.
- Instalación de nuevas tuberías de reactivos y flocculantes.
- Instalación de nuevas tuberías de lechada de cal.
- Instalación de nuevos lavaojos.
- Instalación de nuevas tuberías de agua de sellos.
- Instalación de nuevas tuberías de drenaje.
- Modificación de tuberías e instalación de nuevas en el overflow del clarificador de la planta de tratamiento de efluentes No. 2.
- Modificación de tuberías e instalación de nuevas en el underflow del clarificador de la planta de tratamiento de efluentes No. 2 para la transferencia de lodos.
- Modificación de tuberías e instalación de nuevas en el underflow del clarificador de las plantas de tratamiento de efluentes No. 2 y No. 3 para la captación de la recirculación de lodos de la planta No. 4.
- Modificación de tuberías e instalación de nuevas en los sistemas de adición de floclulante y sulfato ferroso de las plantas de tratamiento de efluentes No. 2 y No. 3.
- Suministro e instalación de soportes.
- Registro y control de modificaciones. Elaboración de planos As Built.
- Todas las instalaciones, equipos y modificaciones de tuberías mencionadas anteriormente se muestran en los P&IDs 34-01-4101, 34-01-4102, 34-01-4103, 34-01-4104, 34-01-4105 y 34-01-4106 y en los planos 34-50-4601 y siguientes.

2.2.3 EXCLUSIONES

- Las tuberías de todos los servicios que se encuentren fuera del área 34 (canaletas y piperacks) a excepción de la línea que va hacia el filtro tambor D074. Estas tuberías están consideradas en el área 93.
TECHNICAL SPECIFICATION

PROJECT: 320K
Nº 155339

CLIENT: Votorantim Metais - Cajamarquilla S.A.

SW-40-4601

ALCANCE DE TRABAJO
CC-402

- No se consideran modificaciones en las tuberías existentes, salvo las indicadas en los P&ID 34-01-4105 y 34-01-4106.
- No se considera parte de este alcance la tubería de alimentación de lechada de cal que va hacia el área 41. En cambio sí se considera (dentro del alcance mecánico) la instalación de la bomba de cal para este servicio.
- No se consideran modificaciones en las tuberías de otras áreas que alimentan al área 34.

3.0 AREA 41 - PLANTA DE PLOMO PLATA

3.1 MECANICO

3.1.1 DESCRIPCION

La planta de plomo plata contempla la instalación de 2 líneas de producción correspondientes a plomo y a plata.

Ambos circuitos están conformados básicamente por espesadores celdas de flotación, filtros prensa y bombas. Se considera además los sistemas de dosificación de reactivos y floculantes.

Los equipos serán dispuestos en la misma planta existente para lo cual será necesario desmontar por etapas los equipos existentes.

El desmontaje y montaje de equipos se llevará a cabo en 2 etapas. La primera etapa corresponde a la implementación del circuito de Plata y la segunda al de Plomo.

La planta existente de plata deberá continuar operando durante implementación de la primera etapa.
3.1.2 ALCANCE

FASE I CIRCUITO DE PLATA

Espesador de Residuo

- Montaje del espesador de Residuo Plomo Plata (Tag I2000.4024) el cual será instalado en el lado sur de la planta existente. Esta área se encuentra libre.
- Montaje de dos (2) bombas de lodos (Tag I2001.4610, I2002.4610) para recibir la descarga del espesador y una (1) bomba de sumidero (Tag I2005.4610).
- Ver arreglo General en plano 41-40-4606

Flotación Plata

Para la instalación de los equipos en el área de flotación, primeramente se deberá desmontar los siguientes equipos:

- Tanque Acondicionador I-050
- Banco de celdas de Flotación I-052
- Banco de celdas de Flotación I-053
- Tanque I-059.
- Tanque I-023.
- Tanque decantador Concentrado Plata I-024
- Columna de Compensación I-025
- Bomba Centrífuga I-026

Previo al desmontaje de los 3 últimos equipos se deberá acondicionar el decantador I-060 y la columna I-062 los cuales deben operar con la bomba existente I-026 en el circuito de plata actual mientras dure la implementación de la primera fase.
Luego de efectuar las obras civiles y de estructuras de acero se instalarán los siguientes equipos:

- En la descarga de la ambas celdas columna se montarán las siguientes bombas: Bomba de Colas de Flotación Básica Ag (Tag I2010.4610), bomba de relaves Flotación de limpieza Ag (Tag I2011.4610). Estas bombas están ubicadas en el primer nivel de la planta según se muestra en el plano 41-40-4603.

- En el overflow de la celda columna de flotación de limpieza se montará la bomba de concentrado de flotación de limpieza (Tag I2018.4610). Ver plano 41-40-4604.

- Para recibir las espumas de la celda de flotación de agotamiento, se montará una caja (Tag I059.4020) existente y la bomba de concentrado de flotación de agotamiento (I2014.4610).

- Para los relaves provenientes de la celda de flotación de agotamiento se montará la caja de relaves de flotación de agotamiento (Tag I2015.4020) y la bomba de relaves de flotación de agotamiento (I2016.4610) Ver plano 41-40-4603.

- En el piso del área de flotación se montará la bomba de Sumidero Área de Flotación (Tag I2006.4610) Ver plano 41-40-4603.

- La caja I-018 que trabaja con la bomba I-019 deberá seguir funcionando en esta etapa en la línea de producción de plata existente.

Área de Espesamiento y Filtración Plata

- Se montará el espesador de alta capacidad sin partes móviles (Tag I2019.9999), previamente se tiene que desmontar el decantador I 024. Se deberá desmontar la columna de compensación existente I025 y la bomba I026.

- La bomba existente I026 se reinstalará en una base existente para operar con el decantador I060 y la columna I062.
• Se montará además el tanque de homogenización (Tag I2052.4024) y la bomba inferior de descarga espesador Ag (Tag I2020.4610).

• En esta misma zona se instalará el tanque de filtrado (Tag I023.4020) existente, la bomba solución filtro Ag (Tag I2024.4610) y la bomba de sumidero Área espesador sin partes móviles (Tag I2017.4610). Ver plano 41-40-4603.

• Para la filtración de la Plata se instalará el filtro prensa de Ag (Tag I2021.4618), incluido su sistema hidráulico, el compresor de aire (Tag I2050.4102) y su tanque acumulador (I2051.4023). Ver plano 41-40-4604.

Área de Flocculantes y reactivos

• Montaje de tanque de preparación y distribución (Tag I2030.7590)

• Montaje de una bomba bosster (Tag I2060.4610)

• Montaje de un tanque de agua (Tag I2061.4020)

• Montaje de cinco (5) bombas dosificadoras de reactivos (I2031, I2032, I2033, I2034, I2034.4610) y seis (6) bombas dosificadoras de agua (I2062, I2063, I2064, I2065, I2066, I2067.4610)

Área de reactivos AR 1404 y ER-65

• Montaje de un tanque (Tag I2048.4020) y 2 bombas dosificadoras ((I2042, 2043.4610)

• Montaje de un tanque (Tag I2049.4020) Y 3 bombas dosificadoras (I2044, I2045, I2046.4610).

• Montaje de una bomba dosificadora de reactivos (Tag I2047.4610) para stand by de ambos reactivos.
FASE II CIRCUITO DE PLOMO

Flotación Plomo

Para la instalación de los equipos en el área de flotación, primeramente se deberá desmontar los siguientes equipos:

- Tanque Acondicionador I-009
- Tanque cola lavado (I-055) y Bomba Cola de Lavado (I-056)
- Tanque de espuma (I-020) y bomba espuma (I-021)
- Tanque I-018 y bomba I-019.
- Bomba Vertical I-045
- Tanque Decantador I-060
- Columna de Compensación I-062
- Bomba Centrífuga I-026
- Tanque I-042 y Bombas I-042/044 (Serán desmontados luego de instalar el tanque I2022.4020 y la bomba I2023.4610 para mantener la operatividad del circuito de plata)

Luego de efectuar las obras civiles de estructuras de acero se instalarán los siguientes equipos:

- Montaje de Tanque acondicionador de plomo (Tag I2107.4024), Celda columna flotación básica Pb (Tag I2108.4025), Celda Columna Flotación de Limpieza Pb (Tag I2109.4025) y Celda de Flotación de agotamiento Pb (Tag I2112.40125). Ver planos 41-40-4609 y 41-40-4612.
- En la descarga de ambas celdas columna se montarán las siguientes bombas: Bomba de Colas de Flotación Básica Pb (Tag I2110.4610), bomba de relaves Flotación de limpieza Pb (Tag I2111.4610). Estas bombas están ubicadas en el primer nivel de la planta según se muestra en el dibujo 41-40-4610.
En el overflow de la celda columna de flotación de limpieza se montará la bomba de concentrado de flotación de limpieza Pb (Tag I2118.4610). Ver plano 41-40-4612.

Para recibir las espumas de la celda de flotación de agotamiento, se instalará una caja (I2113.4020) y la bomba de concentrado de flotación de agotamiento (I2114.4610).

Para los relaves provenientes de la celda de flotación de agotamiento se montará la caja de relaves de flotación de agotamiento (Tag I2115.4020) y la bomba de relaves de flotación de agotamiento (I2016.4610) Ver plano 41-40-4610.

En el piso del área de flotación se reinstalará la bomba de Sumidero Área de Flotación (I045.4610) Ver plano 41-40-4610.

Área de Espesamiento y Filtración Plomo

Se montará el espesador de alta capacidad sin partes móviles (Tag I2119.9999), en la parte externa de la planta. Ver plano 41-40-4612.

Se montará además el tanque de homogenización (Tag I2152.4024) y la bomba inferior de descarga espesador Ag (I2120.4610) que alimenta al filtro (2121.4618). Ver dibujo 41-40-4611.

En esta misma zona se montará el tanque de filtrado (Tag I020.4020) existente, la bomba solución filtro Pb (I2124.4610) y la bomba de sumidero Área espesador sin partes móviles (I2106.4610).

Para la filtración de la Plata se montará el filtro prensa de Ag (Tag I2121.4618), incluido su sistema hidráulico, el compresor de aire (Tag I2150.4102), tanque acumulador (I2151.4023), tanque y bomba de lavado de telas, sistema de agua de presionado. Ver plano 41-40-4612.

Área de Relaves

Entre los espesadores existentes (I004.4691, I038.4691) se instalara la caja I2126.4020.

Se instalará la caja de relaves finales (I2022.4020) y las bombas de relaves finales N° 1 (I2023.4610) y N° 2 (I2123.4610). Estos trabajos se efectuaran sin interferir con los equipos existentes. Ver plano 41-40-4612.
Sistema reactivo Flotinol
- Montaje de un tanque de preparación (12037.4020) y un tanque de distribución (12038.4020).
- Montaje de 3 bombas dosificadoras de flotinol, 2 operando y una en stand by (12039, 12040, 12041.4610)

Sistema de Floculantes existente
- Se retirarán los tanques y bombas existentes de floculantes.

3.1.3 EXCLUSIONES
- No se incluye las obras civiles
- No se incluye obras eléctricas

3.2 TUBERIAS

3.2.1 DESCRIPCION DEL TRABAJO
La planta de plomo plata contempla la instalación de 2 líneas de producción correspondientes a plomo y a plata.

Ambos circuitos están conformados básicamente por espesadores celdas de flotación y filtros prensa. Se considera además los sistemas de dosificación de floculantes y reactivos.

El desmontaje y montaje de tuberías se llevará a cabo en 2 etapas. La primera etapa corresponde a la implementación del circuito de Plata y la segunda al de Plomo.

La planta existente de plata deberá continuar operando durante implementación de la primera etapa.

Las tuberías a instalar serán de Polipropileno principalmente para el proceso de producción de plata y plomo. Para los floculantes y reactivos se utilizara tuberías de HDPE. Para las líneas de aire se usara Acero.
3.2.2 ALCANCE DEL TRABAJO

FASE I CIRCUITO DE PLATA

Espesador de Residuo

- Se instalarán 2 tuberías de polipropileno desde un tie in hasta el tanque alimentación espesadores (I2026.4020).
- Se instalará una tubería desde el tanque (I2026.4020) hasta el espesador de Residuo Plomo Plata (I2000.4024).
- Se instalarán tuberías desde el espesador (I2000.4024) a las 2 bombas de lodos (I2001.4610, I2002.4610)
- Se instalará una tubería desde el overflow del espesador de residuo Plomo Plata (I2000.4024) hasta el cajón existente I-042. En la 2da fase esta tubería irá al cajón I2022.4020.
- Se instalará una tubería desde la bomba de sumidero (I2005.4610) hasta el espesador (I2000.4024)
- Ver dibujos 41-50-4606 y 41-50-4604

Flotación

Hay efectuar el desmontaje de todas las tuberías que conectan a los equipos existentes:

- Tanque Acondicionador I-050
- Banco de celdas de Flotación I-052
- Banco de celdas de Flotación I-053
- Tanque decantador concentrado de Plata I-024
- Columna de Compensación I-025
- Bomba Centrífuga I-026
- Duchas y lavaojos.
- Se instalará una tubería desde el tanque acondicionador de plata (12007.4024), hasta la Celda columna flotación básica Ag (12008.4025).

- Se instalará una tubería desde la Celda columna flotación básica Ag (12008.4025) hasta la Celda Columna Flotación de Limpieza (12009.4025). Ver dibujo 41-50-4604.

- Se instalará una tubería desde el underflow de la Celda columna flotación básica Ag (12008.4025), hasta la Bomba de Colas de Flotación Básica Ag (12010.4610).

- Se instalará una tubería desde esta bomba se alimentara a la Celda de Flotación de agotamiento de Ag (12012.4012).

- Se instalará una tubería desde el underflow de la Celda Columna Flotación de Limpieza (12009.4025) hasta la bomba de relaves Flotación de limpieza Ag (12011.4610)

- Se instalará una tubería desde la bomba de relaves Flotación de limpieza Ag (12011.4610) al tanque acondicionador de plata (12007.4024). Ver dibujos 41-50-4602 y 41-50-4607.

- Se instalará una tubería desde el overflow de la Celda de Flotación de agotamiento de Ag (12012.4012) hasta el cajón 1059.4120. Desde este cajón se alimenta a la Bomba de concentrado de flotación de agotamiento (12014.4610).

- Se instalará una tubería desde la Bomba de concentrado de flotación de agotamiento (12014.4610) hasta el tanque acondicionador de plata (12007.4024). Deberá instalarse además una tubería de retorno desde la descarga de esta bomba hacia el cajón 1059.4120.

- Se instalará una tubería desde el overflow de la celda columna de flotación de limpieza (12009.4025) hasta la bomba de concentrado de flotación de limpieza (12018.4610) y desde esta bomba otra tubería hacia el espesador de alta capacidad sin partes móviles (12019.9999).

- Se instalará una tubería desde el underflow de la celda columna de flotación de limpieza (12009.4025) hasta la caja de relaves de flotación de agotamiento (12015.4020) y desde esta caja a la bomba de relaves de flotación de agotamiento (12016.4610).

- Se instalará una tubería desde la bomba de relaves de flotación de agotamiento (12016.4610) hasta el espesador existente 1038. Para la segunda fase, esta tubería irá al acondicionador de Plomo (12107.4024).
Se instalará una tubería desde la bomba de sumidero Área de Flotación (I2006.4610) hasta el tanque acondicionador de plata (I2007.4024).

Área de Espesamiento y Filtración

- Se instalará una tubería desde el espesador de alta capacidad sin partes móviles (I2019.9999), hasta el tanque de homogenización (I2052.4024).
- Se instalará una tubería desde el tanque de homogenización (I2052.4024) hasta la bomba inferior de descarga espesador Ag (I2020.4610). Desde esta última bomba se alimentará al filtro de Plata (I2021.4618).
- Se instalará una tubería desde el filtro de plata hasta hacia el tanque de filtrado (I023.4020).
- Se instalará una tubería desde la bomba solución filtro Ag (I2024.4610) hasta espesador de alta capacidad sin partes móviles (I2019.9999).
- Se instalarán todas las tuberías para el sistema hidráulico, sistema de aire comprimido, sistema de agua de lavado del filtro de plata.
- Se instalará una tubería desde la bomba de sumidero Área espesador sin partes móviles (I2017.4610), hasta el espesador de alta capacidad sin partes móviles (I2019.9999)
- Se instalará una tubería desde el overflow espesador de alta capacidad sin partes móviles (I2019.9999), hasta el tanque existente I-042. En la segunda fase esta tubería se conectará a la caja de relaves finales (I2022.4020).
- En la descarga de las bombas I043/044 se efectuarán un tie in para conectar una tubería para reutilizar el agua para las espumas de las celdas de flotación, para limpieza y para lavado de los filtros. En la Segunda fase se conectará a la descarga de las nuevas bombas I2023 e I2123.

Área de Flocculantes y reactivos

Al lado este del nuevo espesador de residuo Plomo Plata se instaran los sistemas de dosificación de flocculantes y reactivos. Ver dibujo: 41-40-4606.
- Desde el tie in se instalarán tuberías de agua hacia el tanque de I2061.4020 y a la bomba booster I2060.4610.
• Desde el tanque de agua se instalará tuberías y manifold para alimentar a las 6 bombas dosificadoras de agua (12062, 12063, 12064, 12065, 12066, 12067.4610). Desde estas bombas se conectará mediante tuberías a 4 mezcladores en línea. Se considera la instalación de los 4 mezcladores en línea.

• Se instalarán tuberías y manifold desde el equipo de preparación y distribución (12030.7590), para conectar a 5 bombas dosificadoras de reactivos (12031, 12032, 12033, 12034, 12034.4610) que a su vez conectan a los 4 mezcladores en línea.

• Se instalarán tuberías desde los mezcladores en línea hasta los siguientes equipos: Espesador Residuo Plomo Plata (12000.4024), Espesador sin partes móviles 12019, Espesador sin partes móviles 12119 (se dejará en un lugar cercano ya que el espesador será instalado en la segunda fase) y al espesador de relaves finales existente. En la segunda fase la última conexión será hacia la caja 12126.4020 que alimentará a los 2 espesadores existentes. (1004, 1038)

• Se instalarán tuberías de succión y descarga para la dosificación de reactivos AR 1404, desde el tanque (12048.4020) hacia las 2 bombas dosificadoras ((12042, 2043.4610) y desde estas bombas hacia el acondicionador de Plata (12007.4024) y hacia la celda columna limpieza de Plata (12009.4025).

• Se instalarán tuberías de succión y descarga para la dosificación de reactivos ER-65 desde el tanque (12048.4020) hacia 3 bombas dosificadoras (12044, 12045, 12046.4610) y desde estas bombas hacia el acondicionador de Plata (12007.4024), hacia la celda columna limpieza de Plata (12009.4025) y hacia el acondicionador de Plomo (12107.4024). Esta última se dejará en un punto cercano ya que el acondicionador de plomo se instalará en la segunda fase.

Circuito de Cal

Se instalará una tubería desde las bombas ubicadas en el área 34 hasta el hacia 41 para alimentar a al acondicionador de Plata 12007.4020 con retomo al área 34. Se dejará una salida para instalar una descarga al acondicionador de Plomo de la fase II.
Aire de Planta y de Instrumentos

Se instalarán tuberías de aire de planta para la celda columna flotación Básica Ag (I2008.4025) y para la celda de flotación Limpieza (I2009.4025).

Se instalará aire seco para los instrumentos dispuestos en cada uno de los equipos y tuberías en toda la planta.

Agua Potable

Se instalará una línea de agua potable para conectar a las duchas y lava ojos.

FASE II CIRCUITO DE PLOMO.

Espesador de Residuo

Se instalará una tubería desde el overflow del espesador de residuo Plomo Plata (I2000.4024) hasta el cajón I-042 existente, para la 2da fase esta tubería se conectara al cajón I2022.4020.

Flotación

Para la instalación de los equipos en el área de flotación, primeramente se deberá desmontar todas las tuberías que conectan a los siguientes equipos:

- Tanque Acondicionador I-009
- Tanque cola lavado I-055 y Bomba Cola de Lavado I-056.
- Tanque de espuma I-020 y bomba espuma I-021.
- Bomba Vertical I-045.
- Tanque I-042 y bombas I-043/I-044. (se desmontaran luego de las instalación de Tanque I-2022 y bomba I-2023.4610)
- Decantador I-060, columna de compensación I-062 y bombas I-026.
• Se instalará una tubería desde el tanque acondicionador de plomo (I2107.4024), hasta la Celda columna flotación básica Pb (I2108.4025), y desde esta Celda hacia la Celda Columna Flotación de Limpieza (I2109.4025). Ver dibujo 41-50-4619.

• Se instalará una tubería desde el underflow de la Celda columna flotación básica Pb (I2108.4025), hasta la Bomba de Colas de Flotación Básica Pb (I2110.4610) y desde esta bomba a la Celda de Flotación de agotamiento de Pb (I2112.4012).

• Se instalará una tubería desde el underflow de la Celda Columna Flotación de Limpieza (I2109.4025) hasta la bomba de relaves Flotación de limpieza Pb (I2111.4610) y desde esta bomba se retorna mediante otra tubería al tanque acondicionador de plomo (I2107.4024).

• Se instalará una tubería desde el overflow de la Celda de Flotación de agotamiento de Pb (I2112.4012) hasta el cajón I2113.4120. Desde este cajón se alimenta a la Bomba de concentrado de flotación de agotamiento (I2114.4610). Desde esta bomba se instalará una tubería que retorna al tanque acondicionador de plomo (I2107.4024).

• Deberá instalarse además una tubería de retorno desde la descarga de la bomba hacia el cajón I2113.4120.

• Se instalará una tubería desde el overflow de la celda columna de flotación de limpieza (I2109.4025) hasta la bomba de concentrado de flotación de limpieza (I2118.4610) y desde esta bomba otra tubería hacia el espesador de alta capacidad sin partes móviles (I2119.9999), Ver dibujo 41-50-4623.

• Se instalará una tubería desde el underflow de la celda columna de flotación de agotamiento (I2112.4025) hasta la caja de relaves de flotación de agotamiento (I2115.4020) y desde esta caja a la bomba de relaves de flotación de agotamiento (I2116.4610). Desde esta última bomba se instalará una tubería hacia el cajón I2126.4020 para alimentar a los espesadores existentes I004, I038. Ver dibujos 41-50-4617 y 41-50-4623.

• Se instalará una tubería desde la bomba de sumidero Área de Flotación (I045.4610) hasta el tanque acondicionador de plomo (I2107.4024).
Área de Espesamiento y Filtración

- Se instalará una tubería desde el espesador de alta capacidad sin partes móviles (I2119.9999), hasta el tanque de homogenización (I2152.4024) y desde este tanque hacia la bomba inferior de descarga espesador Ag (I2120.4610). Desde esta última bomba se instalará una tubería hasta el filtro de Plomo (I2121.4618). Ver dibujo 41-50-4623.

- Se instalará una tubería desde el filtro de plomo hasta el tanque de filtrado (I020.4020) y desde este tanque a la bomba la bomba solución filtro Pb (I2124.4610) Esta bomba retornara el agua hacia el espesador de alta capacidad sin partes móviles (I2119.9999)

- Para el filtro de plomo se instalarán todas las tuberías para el sistema hidráulico, sistema de aire comprimido, sistema de agua de lavado, sistema de agua de presionado.

- Se instalará una tubería desde la bomba de sumidero área espesador sin partes móviles (I2106.4610), hasta el espesador de alta capacidad sin partes móviles (I2119.9999)

- Se instalará una tubería desde el overflow espesador de alta capacidad sin partes móviles (I2019.9999), hasta el tanque de colas finales I2022.6470.

Área de Espesadores existentes

- Se instalará una tubería desde la bomba existente I006.4610 hasta el tanque de repulpeo (D-2133) ubicado en el área 40.

- La bomba existente I040.4610, tiene una tubería existente que llega hasta el tanque 148 existente. Hay que efectuar un tie in en esta línea para alimentar al tanque de repulpeo D-2133 del área 40. Ver dibujo 41-50-4618.

- Se instalarán tuberías desde la caja de relaves finales (I2022.4020) a las bombas de relaves finales N° 1 (I2023.4610) y N° 2 (I2123.4610) y desde estas bombas se instalará un tubería corta para empalmar con la tubería existente que actualmente esta conectada a la descarga de las bombas I043/I044. Desde esta línea además se efectuará una conexión para la reutilización del agua en la canaleta de espumas de todas las celdas de flotación, para el lavado de telas de los filtros prensa y para limpieza en las zonas de espesador residuo, zona de celdas y zona de espesadores de concentrado.
Área de Floculantes y reactivos

Sistema reactivo Flotinol
- Se instalaran tuberías de agua para alimentar al tanque de preparación (I2037.4020) y al tanque de distribución (I2038.4020).
- Se instalaran tuberías de vapor para el calentamiento del tanque de preparación.
- Se instalaran tuberías desde el tanque de distribución hacia las 3 bombas dosificadoras de flotinol, y desde estas bombas hasta acondicionador de plomo (I2107.4024) y la columna limpieza de plomo (I2104.4025)

Sistema de Floculantes
- Se completara la instalación de las tuberías que alimentan floculantes al espesador sin partes móviles Pb (I2119.9999) y hacia la caja I2126 que alimenta a los espesadores existentes I004 y I038.
- Se retiraran las tuberías existentes del circuito de floculante actual.

Sistema Reactivo ER 65
- Se completara la instalación de la tubería que alimenta reactivo ER-65 al acondicionador de Plomo I2107.4024.

Circuito de Cal

De las líneas de cal instalada en fase I se instalara una derivación hacia el Tanque acondicionador de Pomo I2107.4020.

Aire de Planta y de Instrumentos
- Se instalaran tuberías de aire de planta para la celda columna flotación Básica Pb (I2108.4025) y para la celda de flotación Limpieza (I2109.4025).
- Se instalará aire seco para los instrumentos dispuestos en cada uno de los equipos y tuberías en toda la planta.
3.2.3 EXCLUSIONES

- No se modificarán las tuberías en la descarga de los 2 espesadores existentes.

4.0 ÁREA 55 ENFRIAMIENTO SOLUCIÓN PURA

4.1 MECÁNICA

4.1.1 DESCRIPCIÓN

Torres de Enfriamiento

El edificio de las torres de enfriamiento de solución pura es una estructura de concreto nueva de tres (3) niveles que estará adyacente a un edificio similar. Sobre este edificio se instalarán dos (2) torres de enfriamiento, con sus respectivos ventiladores y motores de accionamiento.

Además deberán instalarse dos tramos de canaletas de fibra de vidrio. Actualmente existen en la zona dos canaletas que transportan solución pura y que deberán ser removidas parcialmente. La primera es una canaleta que lleva solución pura de las actuales torres de enfriamiento hacia los tanques de solución rica y se encuentra en el nivel +15.95. Esta canaleta será removida parcialmente y se deberá colocar bridas ciegas en el extremo donde se realice el corte. También deberá colocarse una brida de empalme en el punto donde se acopla con la nueva canaleta a instalar.

La segunda canaleta lleva solución pura hacia el tanque llamado “copa de champagne” se encuentra en el nivel 12.485m. Esta canaleta será cortada y se deberá colocar bridas de empalme sobre ésta para empalmar con las canaletas del 320K.

Bombas de solución pura – Alimentación de torres de enfriamiento

Se instalarán dos nuevas bombas de solución pura (E2040.4610, E2041.4610), adyacentes a dos bombas existentes de iguales características.
4.1.2 ALCANCE DE TRABAJO

Las actividades que siguen a continuación constituyen el alcance en el área de enfriamiento de solución pura.

Torres de Enfriamiento

- Instalación de dos torres de enfriamiento (G2000.4132 y G2001.4132). Estas torres de enfriamiento son fabricadas en fibra de vidrio y forman un solo cuerpo. Sus medidas son 8 m de largo x 4 m de ancho y 8 m de altura. El peso aproximado es de 12.7 t. Las torres de enfriamiento se instalan sobre la plataforma de concreto en el nivel 19.90 m del edificio de concreto y son ancladas a la plataforma mediante pernos de anclajes que han sido previamente instalados en el concreto. Los planos 55-40-4601 y siguientes muestran el arreglo general de la instalación de las nuevas torres de enfriamiento.

- Desmontaje de canaletas de solución pura existentes y preparación de las mismas para empalmarlas con las nuevas canaletas. La sección de estas canaletas es de 950 mm x 800 mm. Los trabajos deberán ser desarrollados por una empresa especialista en canaletas de fibra de vidrio que deberá ser sub-contratada por el contratista.

- Instalación de tres canaletas nuevas de fibra de vidrio, todas suministradas por Cajamarquilla. El primer tramo de canaleta (G2022.5900) se instalará sobre el edificio de torres de solución pura en el nivel +15.90 m y se encargará de transportar solución pura desde la caja de descarga de las torres hasta el empalme con la canaleta existente G1002.5900A según lo indicado en plano 55-40-4608. El segundo y tercer tramo de canaletas (G2020.5900 A/B/C y G2021.5900 A/B) se colocarán desde las nuevas torres de solución pura hasta la canaleta existente G0818.5900 a +12.485 m de altura.

Bombas de solución pura – Alimentación de torres de enfriamiento

- Instalación de dos bombas centrífugas (E2040.4610 y E2041.4610) con características de físicas y de operación similares a las existentes (E1010.4610 Y E1011.4610) junto con sus respectivos motores de 132 KW cada uno. Los planos 55-40-4613 y 55-40-4614 detallan ubicación, niveles y dimensiones de las bombas a instalarse.

4.1.3 EXCLUSIONES

- No se considera el suministro de nuevas canaletas. Se considera la modificación de las canaletas existentes para permitir la conexión con las nuevas canaletas.

4.2 TUBERÍAS

4.2.1 DESCRIPCIÓN

Torres de Enfriamiento.

Se instalarán tuberías que lleven solución pura hasta las torres de torres de enfriamiento. También se instalarán tuberías para drenajes, para el nuevo sistema contra incendios y para las duchas y lavaojitos de emergencia

Bombas de solución pura – Alimentación de torres de enfriamiento

Esta zona consta de 4 líneas independientes en la descarga de cada bomba de solución pura. De las cuales 2 de éstas reemplazaron a las dos líneas de polipropileno existentes. Las bombas existentes y nuevas tienen un manifold compartido de donde salen las líneas de succión de cada una de ellas. El sistema de bombeo también consta de líneas para drenajes y venteos.

4.2.2 ALCANCE DE TRABAJO

Las actividades que siguen a continuación constituyen el alcance en el área de enfriamiento de solución pura.
Torres de Enfriamiento

- Instalación de tuberías de alimentación a las torres.
- Instalación de tuberías de drenaje.
- Instalación de tuberías del sistema contraincendios. Incluye instalación de sprinkles (rociadores).

Bombas de solución pura – Alimentación de torres de enfriamiento

- Remoción del manifold de succión existente.
- Remoción de las tuberías de descarga de las bombas existentes.
- Instalación de un manifold de succión común para las bombas existentes y nuevas.
- Instalación de las tuberías de descarga para las bombas existentes y nuevas.
- Suministro, fabricación e instalación de todos los soportes de las tuberías y de acuerdo a los planos de tuberías donde se muestran los mismos. Los soportes deberán ser pintados de acuerdo al estándar de pintura. Las estructuras existentes donde se instale algún nuevo soporte y que sufran deterioro en la pintura, ya sea por soldadura, corte u otros, deberá ser repintada en el mismo tipo de pintura y color que el existente.

- Para información de niveles, dimensiones y secciones de las líneas pertenecientes a esta zona ver planos:
 - 55-50-4620, 55-50-4621 y 55-50-4622

4.2.3 EXCLUSIONES

- No se consideran cambios en las boquillas de los tanques existentes.
- No se consideran cambios en las tuberías de alimentación de los tanques de almacenamiento de solución pura existentes.
TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K SW-40-4601 REV. A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 155339</td>
<td>ALCANCE DE TRABAJO</td>
</tr>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metals - Cajamarquilla S.A.</td>
</tr>
</tbody>
</table>

5.0 AREA 70 – CASA DE CELDAS EXISTENTE

5.1 MECÁNICA

5.1.1 DESCRIPCIÓN GENERAL

En el área 70 existente se efectuarán trabajos para mejorar los sistemas. Se convertirá un tanque existente de concreto de 1000 m3 de solución gastada a tanque de solución pura. Se instalará dos (2) nuevas bombas de transferencia de solución pura Tags G2002/G2003.4610 para alimentar la casa de celdas del área 75. Se instalará una nueva bomba sumidero, se construirá un nuevo tanque de 2000 m3 para almacenamiento de solución gastada, se instalará dos (2) nuevas bombas de solución gastada Tag G2007/G2008.4610 para retomar la solución a las áreas 40, 50 y bombeo a las áreas 75 y poza de emergencia. Se Construirá una nueva poza de emergencia con su bomba de retomo Tag G2012.4610 para retornar la solución gastada a los tanques de almacenamiento. Se acondicionará un pond existente y se empleará como recepción del electrolito que se tenga que retirar de las casas de celdas en caso de emergencia por falla de suministro eléctrico prolongado.

5.1.2 ALCANCE DEL TRABAJO

El trabajo incluido en esta área comprende:

- Desmontaje de tres (3) electro-bombas de transferencia de solución gastada, Tags G075/G076/G099.4610, que se encuentran al lado contiguo de los actuales tanques de solución gastada, el desmontaje será coordinado con el supervisor.

- Montaje de dos (2) bombas nuevas de transferencia de solución pura G2002/G2003.4610, estas bombas estarán ubicadas en el lado sur de los tanques de almacenaje de solución pura(ver plano Nº 70-40-4603). Serán instaladas sobre bases de concreto y estas sobre unas plataformas de
Montaje de una bomba de sumidero de solución pura G2004.4610. Esta bomba se instalara en el sumidero existente donde actualmente se encuentra ubicado la bomba G0187.4610 ver planos N° 70-40-4601.

Desmontaje de bomba de sumidero G0187.4610 que se encuentra en zona de tanques de solución pura.

Montaje de bomba de sumidero G0187.4610. Esta bomba se reubicara desde su actual ubicación en el sumidero de solución pura, previo mantenimiento hasta la nueva ubicación, el sumidero de tanques de solución gastada.

Ampliación de canaleta de FRP para transporte de solución pura. Esta canaleta será una extensión de la canaleta existente de FRP G0002.5900 ubicada sobre los tanques de solución pura. La extensión será desde la ubicación del último empalme brizado hasta el punto donde descarga la solución sobre el tanque G074 (ver plano 70-40-4603, 70-40-4610). El contratista asumirá los trabajos de interconexión y montaje de la canaleta incluido las bases de soporte las conexiones de descarga a los tanques, los mecanismos de cierre y apertura y todos los accesorios requeridos para la instalación y correcto funcionamiento de la canaleta (ver plano 70-40-4610).

Montaje de bomba (G2012.4610) con su respectivo motor (G2012.6560).

5.1.3 EXCLUSIONES

- No se incluye obras civiles.
- No se incluye obras eléctricas

5.2 TUBERÍAS

5.2.1 DESCRIPCIÓN GENERAL

Se deben instalar nuevas tuberías en todos los sistemas mecánicos descritos anteriormente. Las tuberías son predominantemente de polipropileno, otras de polietileno que varían en diámetros de 80 a 300mm y algunas menores de acero al carbono y acero inoxidable de diámetros entre 25 a 80mm. Las tuberías de acero inoxidable se instalan en la descarga y drenaje de los tanques de solución pura.
En su gran mayoría las tuberías serán instaladas en pipe racks existentes y/o nuevos.

El desempeño de este trabajo se refiere principalmente a las líneas de solución pura, solución gastada, solución electrolítica (caso de emergencia) y servicio como agua de planta, aire comprimido y de instrumentación.

Se enumera los principales trabajos a realizar:

Nuevo tanque de electrolito agotado G2005

- Tubería de descarga de 350mm de diámetro de material de polipropileno CDR 11/PN10(SP-50-4006). Esta tubería se conecta a la boquilla del tanque con una brida reductora de 400x350 de material acero inoxidable 316L y conecta con el manifold de succión de las bombas, lleva una válvula mariposa para control del cierre y apertura.

- Tubería de rebose de 400mm de diámetro de material de polipropileno, se conecta a la boquilla que se encuentra a un nivel de 20.30m mediante una brida reductora de 450x400 de material 316L llegando el otro extremo de la tubería de forma vertical hasta alcanzar un nivel de 1m sobre el piso.

- Tubería de drenaje de 350mm de diámetro de material de polipropileno, se conecta a la boquilla mediante una brida reductora de 400x350mm seguido una válvula mariposa.

Instalación de tuberías en tanque existente de electrolito agotado G0073

- Tubería de descarga de 350mm de diámetro material polipropileno, se conecta a la nueva boquilla mediante una brida reductora 450x400mm. Esta tubería va desde la boquilla hasta el manifold de succión de las bombas, en el tramo tiene una válvula mariposa de 350mm.

- Tubería de rebose de 400mm de diámetro material polipropileno, Se conecta a una nueva boquilla de 450 mm. (18")de diámetro mediante una brida reductora de 450x400, esta tubería va desde un nivel de la parte superior hasta un metro sobre el piso.

- Tubería de drenaje de 300mm material polipropileno, se conecta a la nueva boquilla de 350mm mediante una brida reductora de 350x300 mm. Esta tubería lleva una válvula mariposa de 350mm y descarga sobre el piso.
Instalación de tuberías en tanque existente G0074

Este tanque en la actualidad almacena solución agotada, se hace cambio de servicio para almacenaje de solución pura y en caso de emergencia almacenaje de solución electrolítica, por ello tiene una conexión tanto para las bombas de solución pura y solución agotada; las tuberías a conectar que incluyen los soportes son los siguientes:

- Tubería de descarga de solución pura de 250mm material acero inoxidable (SP-50-4006), esta tubería se conecta a la nueva boquilla de descarga de 350mm mediante una brida reductora de 350x300mm material acero inoxidable SS316L y el otro extremo se conecta al manifold de succión existente de las bombas de solución pura y también conecta a succión de las dos bombas nuevas de solución pura, instalándose dos válvulas mariposa para control en el manifold.

- Tubería de descarga de solución electrolítica de 350mm material polipropileno, la descarga se encuentra ubicado a un nivel superior con el fin de evitar que el sedimento del almacenamiento de solución pura tape la boquilla. Esta tubería se conecta a una nueva boquilla de 450mm (18") mediante una brida reductora de 450x350 material acero inoxidable SS316L y el otro extremo conecta a la descarga del tanque G0073 hasta llegar al manifold de succión de las bombas de electrolito agotado.

- Tubería de drenaje de 200mm material de acero inoxidable 316L (SP-50-4006), se conecta a nueva boquilla de 350mm mediante una brida reductora de 350x300mm y luego a una reducción concéntrica de 300x200mm y a una válvula mariposa de 200mm.

- Instalación de la línea de rebose de diámetro 400mm va hacia tanque G0006 material manguera flexible de caucho reforzado (ver especificación SP-50-4009), esta línea conecta el sumidero del tanque G0074 con el tanque G0006 y van conectado a un solo nivel.

Instalación de tuberías en tanque existente G0006

Este tanque se acondiciona con la instalación de una boquilla de 450mm para recibir la línea de sumidero del tanque G0074, con el fin de recepcionar del sumidero del tanque contiguo y evitar una caída brusca del fluido. La tubería es de diámetro 400mm material polipropileno SDR 1706/PN6, se instala en la parte interior de los tanques existentes. Se conecta a tope con la boquilla y dirige el flujo
hacia la parte inferior del tanque, se sostiene por una estructura de acero inoxidable anclada a la pared del tanque. Estas instalaciones se repiten en los tanques existente G0006, G0005, G0004.

Bombas de solución Agotada G2007, G2008, G0099

Se instala tuberías de succión y descarga para estas bombas considerándose que la bomba G2007 trabaja en condición de emergencia, para una mejor condición de servicio se considera la instalación de un manifold de carga y un manifold de descarga. La tubería del manifold es de 350mm material de polipropileno. Se instalan válvulas mariposa para el control de la alimentación a las bombas y sistema de drenaje de las tuberías.

Bombas de solución pura G2002, G2003

Se conectan las tuberías de succión al manifold principal, para hacer la descarga por tuberías independientes que van ala nueva casa de celdas área 75. Cruzan el primer nivel de la casa de celdas existente (área 70) hasta llegar ala parte superior de la nueva casa de celdas del área 75 para descargar sobre las canaletas principales. Las tuberías de succión son de material SS316L y las tuberías de descarga son de 250mm de diámetro material polipropileno. Al llegar al punto donde inicia el cruce de casa de celdas del área 70 cambia de material a polietileno de alta densidad (HDPE) manteniéndose el diámetro de 250mm, en la instalación de las tuberías se incluye la instalación sistema de drenajes y de los soportes necesarios de acuerdo a los planos.

Bomba de sumidero de Solución agotada

se hace la conexión de una tubería de 80mm de diámetro material polipropileno, que sale de la descarga de la bomba vertical G0187 llegando ala parte superior de los tanques de almacenaje de solución agotada G2005/G0073, en la instalación de esta tubería se incluye la instalación de los soportes necesarios de acuerdo a los planos.

Bomba de sumidero de Solución pura

Se conecta una tubería de 100mm de diámetro material polipropileno, sale de la descarga de la bomba y sigue la ruta del pipe rack entre las áreas 50y 94, hasta llegar al punto de conexión(tie ins) con la tubería en el área 40. En la instalación de
esta tubería se incluye la instalación de los soportes necesarios de acuerdo a los planos.

5.2.2 ALCANCE DE TRABAJO

Consideramos el alcance según las áreas:

Conexión de tuberías en nuevo tanque de solución agotada G2005.4020

- Instalación de tubería de 350mm de material de polipropileno a descarga de tanque con manifold de succión de bombas.
- Instalación de tubería de 400mm de material polipropileno a boquilla de rebose.
- Instalación de tubería de 350mm de material polipropileno a boquilla de drenaje.

Conexión de tuberías en tanque de solución agotada G0073.4020

- Tubería de descarga de 350mm de diámetro material polipropileno, se conecta a la nueva boquilla hasta el manifold de succión de bombas de proceso.
- Tubería de 400mm de diámetro material polipropileno, se conecta a boquilla de rebose y va dirigida al suelo.
- Tubería de 300mm material polipropileno, se conecta a boquilla de drenaje y va dirigida al suelo.

Conexión de tubería en tanque existente solución pura(solución agotada) G0074.4020

- Tubería de 250mm de diámetro material de acero inoxidable, se conecta a la boquilla de descarga de solución pura y el manifold de descarga de bomba.
- Tubería de 350mm de diámetro material polipropileno, se conecta a la boquilla de descarga de solución gastada y conecta con el manifold de succión de bombas de proceso.
- Tubería de 200mm de diámetro material acero inoxidable, se conecta nueva boquilla de drenaje con la línea existente de drenaje de los tanques de solución pura existentes.
Rebose de tanque, manguera flexible de 400mm de diámetro material caucho reforzado.

Conexión de tubería de recepción de flujo de rebose en tanques G0006/G0005/G0004.4020
- Se conecta una tubería en forma de T al rebose de la parte interna de los tanques y se soporta mediante una estructura anclada alas paredes del tanque (ver plano N° 70-50-4610).

Manifold de descarga de solución agotada & electrolítica
Las líneas que se conectan a este manifold para la distribución de la solución hacia las diferentes áreas son:
- Tubería de 250mm de diámetro material polipropileno y un tramo de polietileno (HDPE), alimentación de solución electrolítica sobre la canaleta principal de la nueva casa de celdas (320K) área 75.
- Tubería de 100mm de diámetro material polipropileno, Alimenta solución agotada que va a purificación Área 50 (tanques E065,E073)
- Tuberías de 250mm material polipropileno, alimenta solución agotada al área 40 (tanques D021,D089)
- Tubería de 300mm material polipropileno, alimenta solución agotada al área 40 (tanques D1019,D2040)
- Tubería de 250mm de material polipropileno y un gran tramo a través del pipe rack de polietileno que va hacia la laguna de emergencia.
- Tuberías de 150mm de diámetro material de polipropileno que recirculan hacia los mismos tanques de almacenamiento.
- Tubería de 250mm material polipropileno que depositan la solución sobre las canaletas de alimentación a las celdas del Area70.
Tuberías de alimentación de solución electrolítica al tanque de almacenamiento.

Dentro de las instalaciones de tuberías al interior del área 70 se contempla las instalaciones de tuberías que alimentan solución a los tanques de almacenamiento (ver planos Nº 70-50-462, 70-50-4604, 70-50-4606, 70-50-4609).

- Tuberías de 200mm y 250mm de diámetro material HDPE, procedente de la nueva casa de celdas (Area75). Descargan en tanques de solución agotada.
- Interconexión con las tuberías existentes de diámetro 225,80mm material polietileno que alimentan solución gastada proveniente de las celdas del Área 70 y bombas de sumidero.
- Conexión de tuberías de aire comprimido, aire de instrumentación, agua de proceso, agua potable.

Tuberías de alimentación de Solución Pura

Las tuberías de alimentación de solución pura a la nueva casa de celdas Área 75(320K), serán dos tuberías de 250mm de material un tramo de polipropileno y polietileno otro tramo, el punto de interconexión(tie in) con las tuberías del Área 75 será como se muestra el plano Nº 70-50-4611.

5.2.3 EXCLUSIONES

En el presente alcance no se contempla:
- Instalaciones mecánicas.
- Remoción de tuberías existentes.
- Desmontajes de equipos e instalaciones civiles.
6.0 AREA 93 - AGUA DE ENFRIAMIENTO

6.1 AREA MECANICA

6.1.1 DESCRIPCION GENERAL

El Área 93 comprende dos zonas principales: La Zona de Torres de enfriamiento de agua, que se encuentran ubicadas Adyacente al Este de las torres de enfriamiento existente y la Zona de Rack de tuberías, la cual cruza prácticamente toda la refinería de Cajamarquilla de Norte a Sur.

El alcance de las nuevas instalaciones mecánicas incluye los siguientes equipos ubicados principalmente en la zona de Torres de enfriamiento de agua:

El nuevo sistema de bombeo para suministro de agua fría se compone básicamente de: Cuatro bombas sumergibles tipo turbina de 1317 m³/h de capacidad con TAG Nº X2003 / X2004 / X2005 / X2006.4610, que se encargarán de suministrar agua fría a las distintas áreas que requieran de este servicio.

La nueva columna de control de nivel con TAG Nº X2009 4020 se compone de un tanque cilíndrico cerrado con boquillas para la instalación de instrumentos, drenaje, venteo y para ingreso de agua desde el colector de las torres de enfriamiento.

El filtro de arena con TAG Nº X2007.4618 tendrá la función de filtrar partículas que puedan dañar los equipos que componen el Sistema de enfriamiento, en consecuencia, bajar su eficiencia.

Tanque de ácido sulfúrico con TAG Nº X2008.4020 de planchas de acero al carbono.

El nuevo sistema de adición de reactivos contra maleza, bacterias y anti incrustante será instalado por otros.
6.1.2 ALCANCE DE TRABAJO

Esta área tiene como alcance lo siguiente:

- Montaje de tres (3) ventiladores de aire tipo axial (TAG 2000 / 2001/ 2002 .4137) de 601.7 m³/s con su respectivo motor de inducción trifásico de 200 HP, en la parte superior de cada torre de enfriamiento, con el eje del motor en posición horizontal a una elevación de 18.76 metros. Los planos 93-40-4601, 93-40-4602 y 93-40-4603 detallan dimensiones para el montaje e instalación las nuevas Torres de enfriamiento.

- Montaje de una columna de control de nivel de agua (TAG N° X2009.4020) con la base sobre la superficie superior de la base del colector de las torres de enfriamiento (Elev. +4 m NTC). los planos 93-40-4601, 93-40-4602 y 93-40-4605 son planos de arreglo general y de detalle de éste equipo.

- Montaje de Filtro de arena (X2007.4618) al norte de la torre de enfriamiento de agua existente X500.4132, con su base a una elevación de +5.0 metros. Para información detallada sobre dimensiones, detalles y datos técnicos de éste equipo ver los planos 93-40-4601, 93-40-4603 y 93-40-4608.

- Montaje de un Tanque de almacenamiento de ácido sulfúrico (TAG 2008.4020) en la parte inferior de la torre de enfriamiento con su base a una elevación de 6 metros. Para información detallada sobre dimensiones, detalles y datos técnicos de éste equipo ver los planos 93-40-4601, 93-40-4602 y 93-40-4607.

6.1.3 EXCLUSIONES

- El alcance de trabajo en esta área no incluyen el suministro ni instalación de reactivos.
- No se incluye obras civiles.
- No se incluye obras eléctricas
6.2 TUBERÍAS

6.2.1 DESCRIPCION GENERAL

Se tiene dos principales zonas de trabajo:

La Zona de Torres de enfriamiento de agua

Esta zona consta de una estación de bombeo adyacente y al este de la existente. Entre las principales tuberías pertenecientes a ésta zona tenemos:

- Tuberías para suministro y retorno de agua de enfriamiento pertenecientes al área 93 (estación de bombeo). La línea de suministro de agua (WCS) consiste en un manifold a la salida de las bombas. La línea de retorno de agua (WCR) reparte el agua hacia las torres de enfriamiento de agua.
- Tuberías para el sistema de reposición de agua de enfriamiento y de filtrado de la misma.
- Tuberías para el sistema de adición de reactivos.
- Tubería de suministro de ácido sulfúrico al nuevo tanque de Acido X2008.4020. Éste suministro será tomado desde la línea de alimentación de acido existente 30-25-HS-107-3503.
- Tubería de interconexión de colectores de torres de enfriamiento nuevas y existentes
- Tuberías para suministro de agua potable para duchas y lavaojos de emergencia.
- Tuberías para drenaje desde equipos principales.
- Tie-ins de interconexión entre el sistema nuevo y el existente.

Rack de tuberías

Comprende todas las tuberías a instalar sobre el pipe rack y que distribuyen los servicios de agua de enfriamiento, agua cruda, agua de proceso, agua potable, agua desmineralizada, combustible diesel, vapor de alta y baja presión, aire comprimido, aire de instrumentación a diferentes áreas de la refinería. La instalación de las líneas mencionadas en esta sección estará dentro del alcance del área 93 sólo si se encuentran en el rack principal. Las tuberías fuera del nuevo
rack, serán consideradas independientemente dentro del alcance del área a la que corresponda.

El plano de diseño 93-50-4600 (Key Plan) muestra la distribución de todos los planos de arreglo general de tuberías sobre el pipe rack. Los planos mencionados detallan ubicaciones, dimensiones y secciones de las líneas consideradas sobre el pipe rack en el área 93.

6.2.2 ALCANCE DE TRABAJO

Se tienen los siguientes alcances.

La Zona de Torres de enfriamiento de agua

- Instalar tuberías para suministro de agua de enfriamiento. La línea de suministro de agua (WCS) tendrá como partida el patio de bombas de agua fría, pasará por el nuevo rack principal a +15.9 m de elevación y distribuirá agua fría a las distintas áreas que requieran de este servicio. Los límites de batería con las áreas abastecidas de agua de enfriamiento estarán identificadas mediante empalmes denominados TIE-IN.

- Instalar tuberías para retorno de agua fría (WCR). Las cuales se instalarán paralelamente y a la misma elevación que las tuberías para suministro (WCS). La única diferencia entre las líneas de suministro y retorno es que tienen direcciones de flujo opuestas, además las líneas retorno han de desembocar sobre las torres de enfriamiento de agua a +14.8 m de altura.

- Instalar una Tubería de realimentación de agua (WR) hacia el colector de las nuevas torres de enfriamiento. Esta línea se tomará desde la línea existente 200.AB.033-1 a una elevación de +5.42 metros.

- Instalar una tubería en posición horizontal (WCS) que conecte el colector de las nuevas torres de enfriamiento con el existente a una elevación de +4.78 metros.

- Instalar una tubería en posición horizontal que conecte el sumidero de las nuevas torres de enfriamiento con el existente a una elevación de +4.2 metros.

- Instalar tuberías para drenajes de los nuevos equipos, las cuales desembocarán en el sumidero de las nuevas torres de enfriamiento de agua.
• Instalar una tubería para suministro de aire a los instrumentos de los nuevos equipos que requieran de éste servicio. Esta línea se tomará de la línea de aire proveniente de los nuevos compresores ubicados en el área 94.

• Instalar líneas para suministro de ácido sulfúrico al nuevo tanque de X2008.4020 desde la línea existente 30-25-HS-107-3503. Instalar tubería de dosificación de ácido sulfúrico al colector de agua desde el nuevo tanque de ácido.

• Instalar líneas de suministro de agua potable a las dos estaciones de duchas y lavaojos de emergencia. Este servicio se tomará desde la línea de agua potable que cruza el nuevo pipe rack principal desde el área 92.

Los planos 93-01-4101, 93-01-4102, 93-50-4601, 93-50-4602 y 93-50-4603 detallan diagramas de distribución, dimensiones, secciones y elevaciones de las tuberías pertenecientes al presente alcance de trabajo.

Rack de tuberías

• Instalar tuberías para el suministro de agua hacia el área 94. Estas tuberías se empalmarán con la línea principal de suministro de agua fría existente 300.ARF.0300.1, del mismo modo, instalar una línea de suministro de agua de enfriamiento para emergencias en el área 94 desde la línea existente 250.ARF.0305.1

• Instalar tuberías para el suministro de agua hacia el área 42. Estas tuberías se empalmarán con la línea principal de suministro de agua fría existente 800.ARF.0300.1.

• Instalar sobre el nuevo rack, tuberías para servicios de aire Comprimido (AC), aire de instrumentación (Al), Vapor de Alta (SH), Vapor de media (SM), Vapor condesado (SC), Vapor de baja (SL), Agua desmineralizada (WD), Agua potable (WP), Combustible (HL), agua fresca (WR), electrolito Spent (HR), Slurry Corrosivo-Erosivo (YHS).

• Instalar Tie-in en los límites de batería con áreas a cargo de las oficinas de Santiago, Trail, y Outotec

• Diseñar e Instalar soportes de tuberías para las líneas pertenecientes a las zonas de las nuevas torres de enfriamiento y el nuevo rack de tuberías.
TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
<th>SW-40-4601</th>
<th>REV. A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° 155339</td>
<td>ALCANCE DE TRABAJO</td>
<td>CC-402</td>
<td></td>
</tr>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metals - Cajamarquilla S.A.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2.3 EXCLUSIONES

La conexión de las tuberías, en los Tie-in con las demás áreas, estará a cargo de cada área.

7.0 ÁREA 94 - AIRE COMPRIMIDO

7.1 AREA MECANICA

7.1.1 DESCRIPCION GENERAL

7.1.2 ALCANCE

Las actividades que siguen a continuación constituyen el alcance de trabajo, pero son de carácter enunciativo y no limitativo ya que el Contratista completará las obras a satisfacción de la Supervisión y del Cliente:

- Montaje de los tres nuevos Compresores Centrífugos
- Montaje de los nuevos Tanques receptores de aire de 7 m3 y 3 m3.
- Montaje de nuevo Secador
- Montaje de nuevo Polipasto de 5 t
7.1.3 EXCLUSIONES

- No se incluye obras civiles, salvo el grouting de los equipos.
- No se incluye instalaciones eléctricas

7.2 TUBERÍAS

7.2.1 DESCRIPCIÓN GENERAL

La actual sala de compresores está actualmente operativa, dentro y fuera de ella se instalarán nuevas tuberías de aire comprimido, aire de instrumentación y agua de refrigeración para los compresores.

Todas las tuberías deberán ser instaladas de acuerdo a los planos de tuberías e isométricos elaborados para el proyecto.

El límite de batería de esta área serán los tie-in entre el área 94 y el área 93 (pipe rack).

7.2.2 ALCANCE DE TRABAJO

- Instalación de tuberías de acero al carbono de para aire comprimido. Estas tuberías serán instaladas desde los nuevos compresores hacia el tanque de almacenamiento y desde allí hacia el pipe rack. Se muestran en los planos 94-50-4601, 94-50-4602, 94-50-4603 y 94-50-4604. Los planos isométricos muestran el detalle de cada una de ellas y el listado de materiales.

- Instalación de tuberías de acero al carbono de para aire de instrumentación. Estas tuberías serán instaladas desde el tanque de almacenamiento y desde allí hacia el pipe rack. Se muestran en los planos 94-50-4601, 94-50-4602, 94-50-4603 y 94-50-4604. Los planos isométricos muestran el detalle de cada una de ellas y el listado de materiales.

- Instalación de tuberías de agua de enfriamiento para los compresores. Se muestran en los planos 94-50-4601, 94-50-4602, 94-50-4603 y 94-50-4604. Los planos isométricos muestran el detalle de cada una de ellas y el listado de materiales.

- Enlace (tie-in) entre las tuberías existentes y las nuevas tuberías a instalar.
- Suministro, habilitación e instalación de todos los soportes de las tuberías y de acuerdo a los planos de tuberías donde se muestran los mismos.

7.2.3 EXCLUSIONES
- No se consideran cambios en las tuberías existentes de la sala de compresores.
- No se consideran cambios en las tuberías existentes externas al edificio de la sala de compresores.
August 29, 2007

VM-CJM 320K Project
c/o AMEC
Av. Apoquindo 3846, piso 8
Las Condes, Santiago,
Chile.

Atención: Herrán Aguirre A.

Asunto: RFQ 155339-46040 Vertical Cooling Water Pumps
 Flowserve Pump Division Ref. 4424-70019 (WFTL-20167)
 Wortec Ref. 07-08342-QUP

Dear sirs,

We are pleased to submit for your consideration the proposal prepared by our representative Flowserv
Pump Division, for the subject project referenced Request for Quotation.

We appreciate the opportunity to present this proposal and look forward to working with you further on this
project,

Sincerely yours

Wortec S. A.

Roberto Peschlera A.
Sales Manager
<table>
<thead>
<tr>
<th>Description</th>
<th>Rev</th>
<th>Requested</th>
<th>Offered</th>
<th>Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>*</td>
<td>A</td>
<td>Florea Std</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>*</td>
<td>A</td>
<td>TBA</td>
<td></td>
</tr>
<tr>
<td>Model Number</td>
<td>*</td>
<td>A</td>
<td>TBA</td>
<td></td>
</tr>
<tr>
<td>Outboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>*</td>
<td>A</td>
<td>Florea Std</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>*</td>
<td>A</td>
<td>TBA</td>
<td></td>
</tr>
<tr>
<td>Model Number</td>
<td>*</td>
<td>A</td>
<td>TBA</td>
<td></td>
</tr>
<tr>
<td>Coupling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>*</td>
<td>A</td>
<td>Florea Std</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>*</td>
<td>A</td>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>*</td>
<td>A</td>
<td>DryA</td>
<td></td>
</tr>
<tr>
<td>Safety Factor</td>
<td>*</td>
<td>A</td>
<td>0.1A</td>
<td></td>
</tr>
<tr>
<td>Baseplate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td></td>
<td>A Carbon Steel</td>
<td>5-10</td>
<td></td>
</tr>
<tr>
<td>Maximum HP Motor</td>
<td>*</td>
<td>A</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Shaft OD under the sleeve (mm)</td>
<td>*</td>
<td>A</td>
<td>493</td>
<td></td>
</tr>
<tr>
<td>Length of Impeller overhang (mm)</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bare pump (kg)</td>
<td>*</td>
<td>A</td>
<td>TBA</td>
<td></td>
</tr>
<tr>
<td>Motor (kg)</td>
<td>*</td>
<td>A</td>
<td>TBA</td>
<td></td>
</tr>
<tr>
<td>Baseplate (kg)</td>
<td>*</td>
<td>A</td>
<td>TBA</td>
<td></td>
</tr>
<tr>
<td>Pump complete w/ drive component (kg)</td>
<td>*</td>
<td>A</td>
<td>TBA</td>
<td></td>
</tr>
<tr>
<td>Surface Preparation and Finish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By VENDOR (Yes/No)</td>
<td>A</td>
<td>Yes</td>
<td>VOA</td>
<td></td>
</tr>
<tr>
<td>Specification SP-30-4304 Req'd (Y/N)</td>
<td>A</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Surface Preparation</td>
<td>A</td>
<td>SSPC 6</td>
<td>Florea Std</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>A</td>
<td>mfg Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer Type</td>
<td>*</td>
<td>A</td>
<td>Florea Std</td>
<td></td>
</tr>
<tr>
<td>Primer Dry Film Thickness (mm)</td>
<td>*</td>
<td>A</td>
<td>Florea Std</td>
<td></td>
</tr>
<tr>
<td>Finish Type</td>
<td>*</td>
<td>A</td>
<td>Florea Std</td>
<td></td>
</tr>
<tr>
<td>Finish Dry Film Thickness (mm)</td>
<td>*</td>
<td>A</td>
<td>Florea Std</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All items with * shall be filled in by the VENDOR</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Pumps using expellers shall have expeller curves included with the quote.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cooling pumps to be determined. VENDOR shall provide two quotes based on 3 pumps operating, 1 spare and 2 pumps operating, 1 spare.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value to be confirmed later.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance between pump baseplate mounting and the bottom of the pond.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials based on existing cooling water pumps. VENDOR shall confirm that materials are suitable application.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date: 2-Aug-07
By: E. Muhante
Checked: F. Cuza
Rev: A
<table>
<thead>
<tr>
<th>Description</th>
<th>Rev</th>
<th>Requested</th>
<th>Offered</th>
<th>Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>A</td>
<td>WEG</td>
<td>GE</td>
<td></td>
</tr>
<tr>
<td>Manufacture Country</td>
<td>A</td>
<td></td>
<td>United States</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>A</td>
<td></td>
<td>Induction</td>
<td></td>
</tr>
<tr>
<td>Model and or catalog number</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>A</td>
<td>IEEE 841</td>
<td>IEEE841</td>
<td></td>
</tr>
<tr>
<td>Motor Shaft</td>
<td>A</td>
<td>Hollow shaft</td>
<td>Hollow shaft</td>
<td></td>
</tr>
<tr>
<td>Power (KW)</td>
<td>A</td>
<td>223.31</td>
<td>223.31</td>
<td></td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>A</td>
<td>4160</td>
<td>4160</td>
<td></td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>A</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Phases (#)</td>
<td>A</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Full load current (A)</td>
<td>A</td>
<td>1200</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td>A</td>
<td>115</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Service Factor</td>
<td>A</td>
<td></td>
<td>T.B.A.</td>
<td></td>
</tr>
<tr>
<td>Frame size</td>
<td>A</td>
<td>Over Sized</td>
<td>T.B.A.</td>
<td></td>
</tr>
<tr>
<td>Terminal box</td>
<td>A</td>
<td>Separated</td>
<td>Not included</td>
<td></td>
</tr>
<tr>
<td>Accessories conduit box</td>
<td>A</td>
<td></td>
<td>T.B.A.</td>
<td></td>
</tr>
<tr>
<td>Enclosure type and rating</td>
<td>A</td>
<td>TEFC, IP65</td>
<td>TEFC,IP65</td>
<td></td>
</tr>
<tr>
<td>Max KVVAR allowed for power factor correction</td>
<td>A</td>
<td>Premium</td>
<td>T.B.A.</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>A</td>
<td>F</td>
<td>T.B.A.</td>
<td></td>
</tr>
<tr>
<td>Insulation Class</td>
<td>A</td>
<td>F</td>
<td>T.B.A.</td>
<td></td>
</tr>
<tr>
<td>Nema Design</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Full load (N-m)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pull-up (%)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Breakdown (%)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Locked rotor (%)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing Rated Fatigue Life</td>
<td>A</td>
<td>L10</td>
<td>T.B.A.</td>
<td></td>
</tr>
<tr>
<td>Bearing Protection</td>
<td>A</td>
<td>Impro/Seal, both ends</td>
<td>T.B.A</td>
<td></td>
</tr>
<tr>
<td>Number of starts</td>
<td>A</td>
<td></td>
<td>T.B.A.</td>
<td></td>
</tr>
<tr>
<td>Motor start capability</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winding Temperature Monitoring</td>
<td>A</td>
<td>RTD, 2 per phase</td>
<td>6 nos of 600-0hm</td>
<td>Electronic</td>
</tr>
<tr>
<td>Bearing Temperature Monitoring</td>
<td>A</td>
<td>RTD, 2</td>
<td>600-0hm</td>
<td>Electronic</td>
</tr>
<tr>
<td>Bearing Vibration Monitoring</td>
<td>A</td>
<td>Transmitter, 2</td>
<td>Motor, CFE-121</td>
<td>Included</td>
</tr>
<tr>
<td>Space Heaters</td>
<td>A</td>
<td>Required</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td>Surge Arresters</td>
<td>A</td>
<td>Required (For MV motor)</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td>Reference Specification</td>
<td>A</td>
<td>SP-60-4326</td>
<td>SP-60-4326</td>
<td></td>
</tr>
</tbody>
</table>

Date: 2-Aug-07
By: E. Mufante
Checked: F. Cuva
Rev: A
<table>
<thead>
<tr>
<th>Description</th>
<th>Rev</th>
<th>Requested</th>
<th>Offered</th>
<th>Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equip No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data sheet 2 of 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Cooling Water Pumps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Number</td>
<td>A</td>
<td>22CAV-2x1g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump Type</td>
<td>A</td>
<td>Vertical</td>
<td>Vertical</td>
<td></td>
</tr>
<tr>
<td>Pump Length</td>
<td>A</td>
<td>1.79 m</td>
<td>165110m</td>
<td></td>
</tr>
<tr>
<td>Pump Nominal Speed (RPM)</td>
<td>A</td>
<td></td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow, Best Efficiency Point</td>
<td>A</td>
<td>145.0.3</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>BEP (m³/h)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of stages</td>
<td>A</td>
<td>2</td>
<td>1.1.</td>
<td></td>
</tr>
<tr>
<td>Wear & Depreciation Allowance (mm)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diameter (mm)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Flange specification</td>
<td>A</td>
<td>ANSI B16</td>
<td>1.1.</td>
<td></td>
</tr>
<tr>
<td>- Suct. elastic head min/max (m)</td>
<td>A</td>
<td>1.1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- NPSH required (m)</td>
<td>A</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diameter (mm)</td>
<td>A</td>
<td>4X4</td>
<td>1.1.</td>
<td></td>
</tr>
<tr>
<td>- Flange specification</td>
<td>A</td>
<td>ANSI B16</td>
<td>ASTM 150</td>
<td></td>
</tr>
<tr>
<td>Materials of Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet end components</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impeller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Material</td>
<td>A</td>
<td>Bronze SAE 40 (a)</td>
<td>Bronze B16</td>
<td></td>
</tr>
<tr>
<td>- Type</td>
<td>A</td>
<td>Enclosed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diameter (mm)</td>
<td>A</td>
<td>442.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tip Speed (m/s)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Max. Allow tip speed (m/s)</td>
<td>A</td>
<td>522.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Material</td>
<td>A</td>
<td>ASTM A276-30 (a)</td>
<td>Cast iron</td>
<td></td>
</tr>
<tr>
<td>- Liner material</td>
<td>A</td>
<td>None</td>
<td>1.1.</td>
<td></td>
</tr>
<tr>
<td>Shaft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge head</td>
<td>A</td>
<td>ASTM A36 / A53 (a)</td>
<td>Carbon steel</td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>A</td>
<td>Carbon steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction strainer</td>
<td>A</td>
<td>Aluminum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted Bolts</td>
<td>A</td>
<td>Carbon steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted Nuts</td>
<td>A</td>
<td>Carbon steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seat Type</td>
<td>A</td>
<td>Gland packing (a)</td>
<td>packed box</td>
<td></td>
</tr>
<tr>
<td>Seal Water Flow (m³/h)</td>
<td>A</td>
<td>1.1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date: 2-Aug-07
By: E. Munante
Checked: F. Cuva
Rev.: A
Project No.
166339

Document No.
DS-40-4610-X2003

Equip No.

Data Sheet 1 of 4

<table>
<thead>
<tr>
<th>Description</th>
<th>Rev</th>
<th>Requested</th>
<th>Offered</th>
<th>Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location (Indoors/Outdoors)</td>
<td>A</td>
<td>Outdoors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Minimum</td>
<td>A</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>- Maximum</td>
<td>A</td>
<td>87</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Relative Humidity (%)</td>
<td>A</td>
<td>85</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Noise Level Allowable per 8 hr shift (dB-Lex)</td>
<td>A</td>
<td>83</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Noise Level Allowable (dB)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation (Continuous/Intermittent)</td>
<td>A</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Days per year</td>
<td>A</td>
<td>365</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>- Hours per day</td>
<td>A</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Availability (%)</td>
<td>A</td>
<td>95</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Toxic</td>
<td>A</td>
<td>No</td>
<td>Ab</td>
<td></td>
</tr>
<tr>
<td>- Corrosive</td>
<td>A</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>- Flammable</td>
<td>A</td>
<td>No</td>
<td>Ab</td>
<td></td>
</tr>
<tr>
<td>Design Capacity Per Pump (m³/h)</td>
<td>A</td>
<td>1317/1967</td>
<td>1317</td>
<td></td>
</tr>
<tr>
<td>Total Dynamic Head (m)</td>
<td>A</td>
<td>42.5</td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td>NPSH Available (m)</td>
<td>A</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Pond Depth (m)</td>
<td>A</td>
<td>1.8</td>
<td>1.9D</td>
<td>Metric</td>
</tr>
<tr>
<td>Units (metric/imperial)</td>
<td>A</td>
<td>Metric</td>
<td>Metric</td>
<td></td>
</tr>
</tbody>
</table>

Name of Solution
A Cooling Water

S.G. of Solution
A 1.00

Solids Content (mg/L)
A 10

pH
A 6.5 - 7.5

Total Hardness (mg/L CaCO₃)
A < 550

Operating Temp (°C)
A 20 - 40

Min./Max. Design Temp (°C)
A 5 - 40

Water Analysis
Cl < 50 mg/L, Residual Cl < 0.1 mg/L, Cu < 0.1 mg/L, Fe < 0.25 mg/L, K < 10 mg/L, Mg < 20 mg/L, Zn < 10 mg/L, Na < 25 mg/L

Operating Flow Rate - 4 pumps (m³/h)
A 1197

Design Flow Rate - 4 pumps (m³/h)
A 1317

Operating Flow Rate - 3 pumps (m³/h)
A 1796

Design Flow Rate - 3 pumps (m³/h)
A 1967

Date
2-Aug-07

By
E. Muñante

Checked
F. Cuya

Rev.
A
Customer: Votorantim Metals
Item number: 20303/04/06/4610
Service: Cooling tower pumps
Vendor reference: 4424-70019
Date: August 27, 2007

Capacity: 1317.0 m3/h
Specific gravity: 1.000
Head: 42.8 m
Pump speed: 1183 rpm

Pump size & type: 22ENL
Based on curve no.: EC-2087
Number of stages: 2

Flowserve Pump Division

Curves are approximate. Pump is guaranteed for one set of conditions, capacity, head and efficiency.

Bowl performance shown below is corrected for materials, viscosity and construction.

Bowl head of 43.6 m corresponds with 42.6 m head at discharge range adjusted for elevation and friction losses.
<table>
<thead>
<tr>
<th>Customer</th>
<th>Votorantim Metals</th>
<th>Pump / Stages</th>
<th>22ENL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer reference</td>
<td>155339-46040</td>
<td>Based on curve no.</td>
<td>EC-2067</td>
</tr>
<tr>
<td>Item number</td>
<td>X-2003-04G5-06.4610</td>
<td>Vendor reference</td>
<td>4424-70019</td>
</tr>
<tr>
<td>Service</td>
<td>Corrosion water pumps</td>
<td>Date</td>
<td>August 27, 2007</td>
</tr>
</tbody>
</table>

Operating Conditions

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Water Capacity (CO=1.00)</th>
<th>Normal capacity</th>
<th>Water head (CH=1.00)</th>
<th>NPSH available (NPSHa)</th>
<th>NPSH margin</th>
<th>Maximum suction pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1317.0 m³/h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11.0 m</td>
<td>-</td>
<td>0.0 kPa.g</td>
</tr>
</tbody>
</table>

Materials / Specification

<table>
<thead>
<tr>
<th>Material column code</th>
<th>Pump specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>B30</td>
<td></td>
</tr>
</tbody>
</table>

Liquid

<table>
<thead>
<tr>
<th>Liquid type</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid description</td>
<td>water</td>
</tr>
<tr>
<td>Temperature</td>
<td>30 °C</td>
</tr>
<tr>
<td>Specific gravity / Viscosity</td>
<td>1.000 / 1.0 cp</td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th>Hydraulic power</th>
<th>155 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump speed</td>
<td>1185 rpm</td>
</tr>
<tr>
<td>Efficiency (CE=1.00)</td>
<td>84.2 %</td>
</tr>
<tr>
<td>NPSH required (NPSHr)</td>
<td>4.7 m</td>
</tr>
<tr>
<td>Rated power</td>
<td>184 kW</td>
</tr>
<tr>
<td>Maximum power</td>
<td>191 kW</td>
</tr>
<tr>
<td>Driver power</td>
<td>300 hp / 224 kW</td>
</tr>
<tr>
<td>Casing working pressure (based on shut off @ cut dia)</td>
<td>789.1 kPa.g</td>
</tr>
<tr>
<td>Maximum allowable</td>
<td>789.1 kPa.g</td>
</tr>
<tr>
<td>Bowl & column hydrotest</td>
<td>861.4 kPa.g</td>
</tr>
<tr>
<td>Minimum submergence</td>
<td>1168.40 mm</td>
</tr>
<tr>
<td>Pump thrust at rated flow</td>
<td>33347.1 N</td>
</tr>
</tbody>
</table>

Other Requirements

<table>
<thead>
<tr>
<th>Hydraulic selection</th>
<th>No specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>No specification</td>
</tr>
<tr>
<td>Test tolerance</td>
<td>Hydraulic Institute Level A</td>
</tr>
<tr>
<td>Driver Sizing</td>
<td>Max Power (SO to EOC) w/o SF</td>
</tr>
</tbody>
</table>

Performance Graphs

- **Power - kW** vs **Head - m**
- **Capacity - m³/h** vs **Efficiency**
- **Capacity - m³/h** vs **Head - m**

Graphs show performance curves for various conditions.
Construction Data Sheet

Customer: Voltacrim Metals
Customer reference: 15839-46040
Item number: X-2003/04/05/06.4610
Service: Cooling water pumps
Vendor reference: 4424-70019
Date: August 27, 2007

Construction Information
- **Bowl construction / lined**: Flanged / Unlined bowls
- **Impeller type**: Enclosed
- **Impeller fastening**: Keyed
- **Suction strainer**: Basket
- **Column construction**: Flanged
- **Column flange spec**: Terrycourt Specification
- **Column dia (nominal)**: 406.40 mm
- **Column pipe length**: 0.25 m
- **Column section length**: 3046.00 mm
- **Line shaft bg spacing**: 3046.00 mm
- **Line shaft diameter**: 49.28 mm
- **Line shaft coupling type**: Threaded coupling
- **Line shaft bearings, qty**: 1
- **Line shaft construction**: Open
- **Line shaft lubrication**: Pumpage
- **Enclosing tube diameter**: N/A
- **Discharge rating**: 16 inch / 150# ANSI / FF
- **Pump driver coupling**: 0

 HF - Fabd / Above grade Dc1lg / Square base

Driver Information
- **Manufacturer**: Flowserve Choice
- **Power / SF (Req / Act)**: 300 hp / 224 kW 1.15 / 1.15
- **Vertical shaft type**: Hollow
- **Driver Type**: Electric motor
- **Frame size / base dia**:
- **Enclosure**: TEFC

Materials
- **Bowl**: Cast iron (A48 CL30)
- **Impeller**: Bronze (B148 C95200)
- **Bowl bearing**: Bronze (C94400)
- **Bowl shaft**: 416SS (A582 Gr 416)
- **Bowl wear ring**: Tin bronze (C90300)
- **Impeller wear ring**: None supplied
- **Section strainer**:
- **Column**:
- **Line shaft**: Carbon steel
- **Enclosing tube**:
- **Bearing retainer**:
- **Line shaft bearing**: Rubber (Buna-N)
- **Line shaft sleeve**:
- **Discharge head**: Steel A33 Type E GrB
- **Head shaft**:
- **Support plate**: Carbon steel (A36)

Paint and Package
- **Arrangement**: Packed Box
- **Size**:
- **Manufacturer / Type**:
- **Material code (Man/WAPI)**: Graphite/high
- **Gland material**: Cast iron
- **Auxiliary seal device**:
- **Seal flush plan**: None
- **Seal flush construction**:

Additional Information
- **Pit / sump depth**: 1.90 m
- **Pump length (TPL)**: 1.78 m
- **Available well diameter**: 2540.00 mm
- **Max dia below mtg surface**: 698.50 mm

Testing
- **Hydrostatic test**: None
- **Performance test**: Non witnessed
- **NPSH test**: None

Notes
<table>
<thead>
<tr>
<th>Description</th>
<th>Rev</th>
<th>Requested</th>
<th>Offered</th>
<th>Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location (indoors/outdoors)</td>
<td>A</td>
<td>Outdoors</td>
<td>Outdoors</td>
<td>Outdoors</td>
</tr>
<tr>
<td>Ambient Temperature (°C)</td>
<td>A</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Minimum</td>
<td>A</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Maximum</td>
<td>A</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative Humidity (%)</td>
<td>A</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nois Level Allowable per 8 hr shift (dB-Lex)</td>
<td>A</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nois Level Allowable (dB)</td>
<td>A</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation (Continuous/Intermittent)</td>
<td>A</td>
<td>365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Days per year</td>
<td>A</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hours per day</td>
<td>A</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Availability (%)</td>
<td>A</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>A</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Toxic</td>
<td>A</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Corrosive</td>
<td>A</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Flammable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Capacity Per Pump (m³/h)</td>
<td>A</td>
<td>1317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Dynamic Head (m)</td>
<td>A</td>
<td>42.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPS Available (m)</td>
<td>A</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pit/ump Depth (m)</td>
<td>A</td>
<td>2.416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit (metric/imperial)</td>
<td>A</td>
<td>Metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of Solution</td>
<td>A</td>
<td>Cooling Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.G. of Solution</td>
<td>A</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Content (mg/L)</td>
<td>A</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity (cP)</td>
<td>A</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>A</td>
<td>6.5 - 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hardness (mg/L CaCO₃)</td>
<td>A</td>
<td>< 550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temp (°C)</td>
<td>A</td>
<td>20 - 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min/Max. Design Temp (°C)</td>
<td>A</td>
<td>5 - 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Flow Rate (m³/h)</td>
<td>A</td>
<td>1230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Flow Rate (m³/h)</td>
<td></td>
<td>1317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Analysis</td>
<td>A</td>
<td>Cl < 50 mg/L, Residual Cl < 0.1 mg/L, Cu < 0.1 mg/L, Fe < 0.25 mg/L, K < 10 mg/L, Mg < 20 mg/L, Zn < 10 mg/L, Na < 25 mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date: 02-Ago-07 30-May-08 11-Ago-08

By: E. Muñante J. Arias J. Arias

Checked: F. Cuya F. Cuya F. Cuya

Page 1 of 5
<table>
<thead>
<tr>
<th>Description</th>
<th>Rev</th>
<th>Requested</th>
<th>Offered</th>
<th>Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Number</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump Type</td>
<td>A</td>
<td>Vertical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump Length - L (mm)</td>
<td>0</td>
<td>2314</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Submergence Required - S (mm)</td>
<td>0</td>
<td>1168.4</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Pump Nominal Speed (RPM)</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow. Best Efficiency Point BEP (m³/h)</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP (HP)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of stages</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear & Depreciation Allowance (mm)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diameter (mm)</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Flange specification</td>
<td>A</td>
<td>ANSI B16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Suct. static head min/max (m)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- NPSH required (m)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diameter (mm)</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Flange specification</td>
<td>A</td>
<td>ANSI B16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials of Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet end components</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impeller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Material</td>
<td>A</td>
<td>Bronze SAE 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Type</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diameter (mm)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hardness (BHN)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tip Speed (m/s)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Max. Allow tip speed (m/s)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Min. Allow. Flow (m³/h)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Material</td>
<td>A</td>
<td>ASTM A278-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Liner material</td>
<td>A</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hardness (BHN)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft</td>
<td>A</td>
<td>ASTM A276-416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge head</td>
<td>A</td>
<td>ASTM A36 / A53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction strainer</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted Bolts</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted Nuts</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal Type</td>
<td>A</td>
<td>Gland packing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal Water Flow (m³/h)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>02-Ago-07</td>
<td>30-May-08</td>
<td>11-Ago-08</td>
<td></td>
</tr>
<tr>
<td>By</td>
<td>E. Muñante</td>
<td>J. Arias</td>
<td>J. Arias</td>
<td></td>
</tr>
<tr>
<td>Checked</td>
<td>F. Cuya</td>
<td>F Cuya</td>
<td>F Cuya</td>
<td></td>
</tr>
<tr>
<td>Rev.</td>
<td>A</td>
<td></td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>Description</td>
<td>Rev</td>
<td>Requested</td>
<td>Offered</td>
<td>Purchased</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>A</td>
<td>WEG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacture Country</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>A</td>
<td>Induction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model and catalog number</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>A</td>
<td>IEEE 841</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Shaft</td>
<td>A</td>
<td>Hollow shaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (KW)</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>A</td>
<td>4160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency (hz)</td>
<td>A</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase (#)</td>
<td>A</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full load current (A)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td>A</td>
<td>1200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Factor</td>
<td>A</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal Box</td>
<td>A</td>
<td>Over Sized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessories conduit box</td>
<td>A</td>
<td>Separated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation type and rating</td>
<td>A</td>
<td>TEFC, IP65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max VAR allowed for power factor correction</td>
<td>A</td>
<td>Premium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>A</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation Class</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vent Design</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Full load (N·m)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pull-up (%)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Breakdown (%)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Locked rotor (%)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing Rated Fatigue Life</td>
<td>A</td>
<td>L-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing Protection</td>
<td>A</td>
<td>Impro/Seal, both ends</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of starts</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor start capability</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winding Temperature Monitoring</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing Temperature Monitoring</td>
<td>A</td>
<td>RTD, 6 - 2 per phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing Vibration Monitoring</td>
<td>A</td>
<td>RTD, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Heaters</td>
<td>A</td>
<td>Transmitter, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surge Arresters</td>
<td>B</td>
<td>Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Specification</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date: 02-Ago-07 30-May-08 11-Ago-08
By: E. Muñante J. Arias J. Arias
Checked: F. Cuya F. Cuya F. Cuya
Page 3 of 5
Bearings

<table>
<thead>
<tr>
<th>Description</th>
<th>Rev</th>
<th>Requested</th>
<th>Offered</th>
<th>Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Manufacturer</td>
<td>* A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Type</td>
<td>* A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Model Number</td>
<td>* A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Manufacturer</td>
<td>* A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Type</td>
<td>* A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Model Number</td>
<td>* A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coupling

<table>
<thead>
<tr>
<th>Description</th>
<th>Rev</th>
<th>Requested</th>
<th>Offered</th>
<th>Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>* A</td>
<td>Direct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baseplate

<table>
<thead>
<tr>
<th>Description</th>
<th>Rev</th>
<th>Requested</th>
<th>Offered</th>
<th>Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>A</td>
<td>Carbon Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum HP Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft OD under the sleeve (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of impeller overhang (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weight

<table>
<thead>
<tr>
<th>Description</th>
<th>Rev</th>
<th>Requested</th>
<th>Offered</th>
<th>Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare pump (kg)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor (kg)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseplate (kg)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump complete w/ drive component (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surface Preparation and Finish

<table>
<thead>
<tr>
<th>Description</th>
<th>Rev</th>
<th>Requested</th>
<th>Offered</th>
<th>Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>By VENDOR (Yes/No)</td>
<td>A</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification SP-30-4304 Req’d (Y/N)</td>
<td>A</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>A</td>
<td>mfg Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer Type</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer Dry Film Thickness (mm)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish Type</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish Dry Film Thickness (mm)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

All items with * shall be filled in by the VENDOR

Pumps using expellers shall have expeller curves included with the quote.

(1) See Dimensions in Figure N° 1 on Page 5

Date: 02-Ago-07 30-May-08 11-Ago-08

By: E. Muñante J. Arias J. Arias

Checked: F. Cuya F. Cuya F. Cuya

Rev.: A B 0
Figure N° 1
DOCUMENT REVIEW AND APPROVAL

The document revision number is indicated below. Please replace all revised pages of this document and destroy the superseded copies.

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
<th>TE - 46040</th>
<th>REV. 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº 155339</td>
<td>TECHNICAL EVALUATION</td>
<td>WATER COOLING</td>
</tr>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metais - Cajamarquilla S.A.</td>
<td>VERTICAL PUMPS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISSUED FOR</th>
<th>REV Nº</th>
<th>ORIGIN</th>
<th>DATE</th>
<th>ISSUED PAGES/ SECTIONS</th>
<th>INITIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval</td>
<td>A</td>
<td>NM</td>
<td>17-Oct-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase</td>
<td>B</td>
<td>JA</td>
<td>04-Jul-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase</td>
<td>0</td>
<td>JA</td>
<td>22-Oct-08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMEC APPROVAL

Engineering Manager:
Date:

Engineer Coordinator:
Date:

Discipline Coordinator:
Date:
INDEX

1.0 EXECUTIVE SUMMARY 3
2.0 DESCRIPTION AND SUPPLY SCOPE 3
3.0 EVALUATION METHOD 4
4.0 TECHNICAL EVALUATION 4
5.0 RECOMMENDATION 5
6.0 PURCHASE SCOPE BY SUPPLY 5
1.0 EXECUTIVE SUMMARY

- This technical evaluation is for the new Water Cooling Vertical Pumps of Area 93.
- ITT, Wortec and Weir-Vulco Peru were requested to provide quotations.
- Wortec is technically acceptable and is the recommended vendor.

2.0 DESCRIPTION AND SUPPLY SCOPE

The Water Cooling Vertical Pumps will be used in the Area 93 for the cooling system. The package includes the following items:

- Design, supply, fabrication and delivery to site of each Vertical Turbine Pump and all required ancillaries (pumps with several stages if required).
- Electrical motors (vertical mounting).
- Drive couplings.
- Safety guards.
- Discharge heads.
- Suction strainers.
- Ratchets for non-reversal.
- Low oil level switch (if required).
- Design, location, type (ASTM), diameter for anchorage bolts.
- General foundation layout, including static and dynamic loads.
- Submittals according to the Bidder's Drawing & Data Commitment Sheet.
- All non-destructive testing and documentation.
- Instruction Manual for all equipment.
- Bill of material (BOM) breakdown indicating model and serial numbers for all subcontracted components.
- Recommended spare parts for two years of operation.
- Drawing & Data Commitment Sheet.
- Special tools required for field erection and maintenance.
3.0 EVALUATION METHOD

The evaluation was conducted by using the following information:
- Quotation ITT LMP348-2007PE REV (Date: 17-Jun-2008)
- Quotation Wortec No 4841-80028 (Date: 01-Jul-2008)
- Quotation Weir No 38954 (Date: 30-May-2008)

4.0 TECHNICAL EVALUATION

ITT GOLDS

ITT offers:
- 1 stage-vertical turbine pumps made of cast iron and bronze (Goulds pumps).
- High efficiency = 83.3%. Motor rated power = 300 HP.
- Impeller size is 93% of maximum size for the pump model.
- Performance curve is very steep.
- Typical sound level will be around 85 dBA at 1m.
- Motors quoted are WEG.
- Units of measure will be imperial.
- The submergence required is the highest = 1.73 m.
- NPSH required is the highest = 9.68 m.

Wortec

Wortec offers:
- 3 stage-vertical turbine pumps made of cast iron and bronze (Flowserve).
- Highest efficiency = 84.7%. Motor rated power = 300 HP.
- Impeller size is 93.7% of maximum size for the pump model.
- Performance curve is very steep.
- The submergence required is = 1.68 m.
- NPSH required is the lowest = 4.9 m.
- Typical sound level will be around 85 dBA at 1m.
- Units of measure will be imperial.
- Spec. SP-60-4032 is not considered.
- Motors quoted are GE not WEG.
- Motors will be rated IP55-not IP65.
Weir-Vulco

Weir offers:

- 1 stage-vertical turbine pumps made of cast iron and bronze (Floway)
- Efficiency = 80%. Motor rated power = 300HP.
- Performance curve is flat.
- The submergence required is 1.422 m.
- NPSH required is 6.82 m
- Motor will not be IEEE compliant.
- Impeller size is 99 % of maximum size for the pump model.
- Sound level will be around 92 dBA at 1m.
- Units of measure will be imperial.
- Motors will be rated IP54, not IP65.
- Inpro Seal on opposite drive end not provided.
- Motor will be rated 4000V not 4160V.
- Motors will be designed with NEMA MG1 std.
- Bearings will be open type and oil lubricated.

Note: Weir was the supplier for the 160k-water cooling pumps but this time they propose another pump model.

5.0 RECOMMENDATION

Wortec's proposal is the only one technically acceptable. Wortec is the recommend vendor because of their best efficiency, best submergence required, steep performance curve and lowest NPSH required.

6.0 PURCHASE SCOPE BY SUPPLY

- Design, supply, fabrication and delivery to site of Vertical Turbine Pumps.
- Electrical motors.
- Drive couplings.
- Safety guards.
- Discharge heads.
- Suction strainers.
- Design, location, type (ASTM), diameter for anchorage bolts.
- General foundation layout, including static and dynamic loads.
EVALUACIÓN TÉCNICA

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 155339</td>
<td></td>
</tr>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metais - Cajamarquilla S.A.</td>
</tr>
</tbody>
</table>

- All non-destructive testing and documentation.
- Instruction Manual for all equipment.
- Recommended spare parts for two years of operation.
- Drawing & Data Commitment Sheet.
APPENDIX A
Technical Evaluation Table
TECHNICAL EVALUATION TABLE

WATER COOLING VERTICAL PUMPS

<table>
<thead>
<tr>
<th>Item</th>
<th>DESCRIPTION</th>
<th>REQUESTED</th>
<th>OFFERED</th>
<th>OFFERED</th>
<th>OFFERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ITT</td>
<td>WORTEC</td>
<td>WEIR VULCO</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>SUMMARY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vendor</td>
<td>ITT Goulds</td>
<td>Wortec</td>
<td>Weir Vulco</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Country</td>
<td>Perú</td>
<td>Perú</td>
<td>Perú</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Address</td>
<td>Av. Canaval y moreyra 654 piso 6 San Isidro Lima</td>
<td>Las Begonias 475 Of. # 320 San Isidro Lima</td>
<td>Av. Argentina # 1969 Lima</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone/Fax</td>
<td>(511)-475-6910</td>
<td>(511)-616-5050</td>
<td>(511)-315-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date of Quotation</td>
<td>17-Jun-08</td>
<td>01-Jul-08</td>
<td>30-May-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quantity</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design Capacity (m³/h)</td>
<td>1317</td>
<td>1317</td>
<td>1317</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDH (m)</td>
<td>42.50</td>
<td>42.50</td>
<td>42.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inlet Water temperature (°C)</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power (KW)</td>
<td>300 HP</td>
<td>300 HP</td>
<td>300 HP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Weight kgs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EQUIPMENT TECHNICAL DATA

2.1 Pump

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Y GOULDS PUMPS</th>
<th>Y FLOWSERVE</th>
<th>Y WEIR FLOWAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number</td>
<td>Y VIT-FF 20EHC</td>
<td>Y 22EPM - 3 stage</td>
<td>Y 19FKN 1770</td>
</tr>
<tr>
<td>Pump Type</td>
<td>Vertical</td>
<td>Vertical</td>
<td>Vertical</td>
</tr>
<tr>
<td>Pump Length</td>
<td>N 2340 mm</td>
<td>Y 2239 mm</td>
<td>Y 1822</td>
</tr>
<tr>
<td>Pump Nominal Speed (RPM)</td>
<td>1800</td>
<td>Y 1200</td>
<td>Y 1800</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>Y 83.3</td>
<td>Y 84.7</td>
<td>Y 79.48</td>
</tr>
<tr>
<td>Flow, Best Efficiency Point BEP (m³/h)</td>
<td>Y 1,416</td>
<td>Y 1,356</td>
<td>Y 1,571</td>
</tr>
<tr>
<td>BHP (HP)</td>
<td>Y 245.1</td>
<td>Y 248</td>
<td></td>
</tr>
<tr>
<td>Number of stages</td>
<td>Y 1</td>
<td>Y 3</td>
<td>Y 1</td>
</tr>
</tbody>
</table>

AMEC Peru S.A.

Project Nº: 155339

Equipment Description: Water Cooling Vertical Pumps

Project: Project 320K

Client: Votorantim Metals – Cajamarquilla S.A.

Prepared by: J. Arias

Reviewed by: F. Cuya

Prepared by: J. Arias

Date: 22-Oct-08
<table>
<thead>
<tr>
<th>Item</th>
<th>DESCRIPTION</th>
<th>REQUESTED</th>
<th>OFFERED</th>
<th>OFFERED</th>
<th>OFFERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ITT</td>
<td>WORTEC</td>
<td>WEIR VULCO</td>
<td></td>
</tr>
<tr>
<td>Submergence required (m)</td>
<td>N</td>
<td>1730</td>
<td>Y</td>
<td>1680</td>
<td>Y</td>
</tr>
<tr>
<td>2.2 Materials of Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impeller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Material</td>
<td>Bronze SAE 40</td>
<td>Y</td>
<td>Bronze</td>
<td>Y</td>
<td>Bronze B148</td>
</tr>
<tr>
<td>-Diameter (mm)</td>
<td>Y</td>
<td>310</td>
<td>Y</td>
<td>375.9</td>
<td>Y</td>
</tr>
<tr>
<td>-Type</td>
<td>Y</td>
<td>Enclosed</td>
<td>Y</td>
<td>Enclosed</td>
<td>Enclosed</td>
</tr>
<tr>
<td>-Min. Allow. Flow (m³/h)</td>
<td>Y</td>
<td>644</td>
<td>Y</td>
<td>941.4</td>
<td>Y</td>
</tr>
<tr>
<td>Bowl Material</td>
<td>ASTM A278-30</td>
<td>Y</td>
<td>Cast iron</td>
<td>Y</td>
<td>Cast Iron A48</td>
</tr>
<tr>
<td>Shaft</td>
<td>ASTM A276-416</td>
<td>Y</td>
<td>416SS</td>
<td>Y</td>
<td>416SS</td>
</tr>
<tr>
<td>Discharge head</td>
<td>ASTM A36 / A53</td>
<td>Y</td>
<td>Carbon steel</td>
<td>Y</td>
<td>Carbon steel</td>
</tr>
<tr>
<td>Column</td>
<td>Y</td>
<td>Carbon steel</td>
<td>Y</td>
<td>Carbon steel</td>
<td>ASTM A53 Gr. B</td>
</tr>
<tr>
<td>Suction strainer</td>
<td>Y</td>
<td>Galvanized steel</td>
<td>Y</td>
<td>Galvanized steel</td>
<td>Y</td>
</tr>
<tr>
<td>Seal Type</td>
<td>Gland packing</td>
<td>Y</td>
<td>Packing</td>
<td>Y</td>
<td>Gland packing</td>
</tr>
<tr>
<td>2.3 Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>WEG</td>
<td>Y</td>
<td>WEG</td>
<td>Y</td>
<td>GE</td>
</tr>
<tr>
<td>Manufacture Country</td>
<td>Y</td>
<td>Brazil</td>
<td>Y</td>
<td>USA</td>
<td>-</td>
</tr>
<tr>
<td>Type</td>
<td>Induction</td>
<td>Y</td>
<td>Induction</td>
<td>Y</td>
<td>Induction</td>
</tr>
<tr>
<td>Standard</td>
<td>IEEE 841</td>
<td>Y</td>
<td>IEEE 841</td>
<td>Y</td>
<td>IEEE 841</td>
</tr>
<tr>
<td>Motor Shaft</td>
<td>Hollow shaft</td>
<td>N</td>
<td>Solid Shaft</td>
<td>Y</td>
<td>Hollow shaft</td>
</tr>
<tr>
<td>Power (HP)</td>
<td>Y</td>
<td>300</td>
<td>Y</td>
<td>300</td>
<td>Y</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>4160</td>
<td>N</td>
<td>4000</td>
<td>Y</td>
<td>4160</td>
</tr>
<tr>
<td>Frequency (hz)</td>
<td>60</td>
<td>Y</td>
<td>60</td>
<td>Y</td>
<td>60</td>
</tr>
<tr>
<td>Item</td>
<td>DESCRIPTION</td>
<td>REQUESTED</td>
<td>OFFERED ITT</td>
<td>OFFERED WORTEC</td>
<td>OFFERED WEIR VULCO</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Phases (#)</td>
<td>3</td>
<td>Y 3</td>
<td>Y 3</td>
<td>Y 3</td>
<td>Y 3</td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td>1200</td>
<td>Y 1800</td>
<td>Y 1200</td>
<td>Y 1800</td>
<td></td>
</tr>
<tr>
<td>Service Factor</td>
<td>1.15</td>
<td>Y 1.15</td>
<td>Y 1.15</td>
<td>Y 1.15</td>
<td></td>
</tr>
<tr>
<td>Frame size</td>
<td>HGF355</td>
<td>Y 5809</td>
<td>Not indicated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal box</td>
<td>Over Sized</td>
<td>Y Over Sized</td>
<td>Y Over Sized</td>
<td>Not indicated</td>
<td></td>
</tr>
<tr>
<td>Enclosure type and rating</td>
<td>TEFC, IP65</td>
<td>Y TEFC, IP65</td>
<td>Y TEFC, IP55</td>
<td>Y TEFC, IP54</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>Premium</td>
<td>Y Premium</td>
<td>Premium</td>
<td>Premium</td>
<td></td>
</tr>
<tr>
<td>Insulation Class</td>
<td>F</td>
<td>Y F</td>
<td>Y F</td>
<td>Not indicated</td>
<td></td>
</tr>
<tr>
<td>Bearing Protection</td>
<td>Impro Seal, b.e.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y No</td>
</tr>
<tr>
<td>Accessories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winding Temperature Monitoring</td>
<td>RTD, 6-2 per phase</td>
<td>Y Yes</td>
<td>Y RTD, 6-2 per phase</td>
<td>Not indicated</td>
<td></td>
</tr>
<tr>
<td>Bearing Temperature Monitoring</td>
<td>RTD, 2</td>
<td>Y -</td>
<td>Y RTD, 2</td>
<td>Not indicated</td>
<td></td>
</tr>
<tr>
<td>Bearing Vibration Monitoring</td>
<td>Transmitter, 2</td>
<td>Y Yes</td>
<td>Y Transmitter, 2</td>
<td>Not indicated</td>
<td></td>
</tr>
<tr>
<td>Space Heaters</td>
<td>Required</td>
<td>Y 120V</td>
<td>Y Yes</td>
<td>Y 230V</td>
<td></td>
</tr>
<tr>
<td>Surge arrester</td>
<td>Required</td>
<td>Y -</td>
<td>Y Yes</td>
<td>Not indicated</td>
<td></td>
</tr>
<tr>
<td>Reference Specification</td>
<td>SP-60-4328</td>
<td>Y Yes</td>
<td>-</td>
<td>Not indicated</td>
<td></td>
</tr>
</tbody>
</table>

2.4 Baseplate

<table>
<thead>
<tr>
<th>Item</th>
<th>DESCRIPTION</th>
<th>REQUESTED</th>
<th>OFFERED ITT</th>
<th>OFFERED WORTEC</th>
<th>OFFERED WEIR VULCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Carbon steel</td>
<td>Y Carbon steel</td>
<td>Y Steel</td>
<td>Y Steel</td>
<td></td>
</tr>
<tr>
<td>Maximum HP Motor</td>
<td>Not indicated</td>
<td>Y 279</td>
<td>Not indicated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft OD under the sleeve (mm)</td>
<td>Not indicated</td>
<td>Y 49.3</td>
<td>Not indicated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL EVALUATION TABLE

WATER COOLING VERTICAL PUMPS

<table>
<thead>
<tr>
<th>Item</th>
<th>DESCRIPTION</th>
<th>REQUESTED</th>
<th>OFFERED ITT</th>
<th>OFFERED WORTEC</th>
<th>OFFERED WEIR VULCO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Meet</td>
<td>Meet</td>
<td>Meet</td>
<td>Meet</td>
</tr>
<tr>
<td>Pump complete w/ drive component (kg)</td>
<td>Y</td>
<td>2,159</td>
<td>Not indicated</td>
<td>Y</td>
<td>Not indicated</td>
</tr>
</tbody>
</table>

2.6 Surface Preparation and Finish

<table>
<thead>
<tr>
<th>Item</th>
<th>REQUESTED</th>
<th>OFFERED</th>
<th>OFFERED</th>
<th>OFFERED</th>
<th>OFFERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>By VENDOR (Yes/No)</td>
<td>Yes</td>
<td>Y</td>
<td>Yes</td>
<td>Y</td>
<td>Yes</td>
</tr>
<tr>
<td>Specification SP-30-4304 Req'd (Y/N)</td>
<td>No</td>
<td>Y</td>
<td>No</td>
<td>Y</td>
<td>No</td>
</tr>
<tr>
<td>Surface Preparation</td>
<td>SSPC 6</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Flowserve standard</td>
<td>Y</td>
</tr>
<tr>
<td>System</td>
<td>mfg Standard</td>
<td>Y</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Vendor standard</td>
</tr>
<tr>
<td>Primer Type</td>
<td>Y</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Flowserve standard</td>
<td>Y</td>
</tr>
<tr>
<td>Primer Dry Film Thickness (mm)</td>
<td>Y</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Flowserve standard</td>
<td>Y</td>
</tr>
<tr>
<td>Finish Type</td>
<td>Y</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Flowserve standard</td>
<td>Y</td>
</tr>
<tr>
<td>Finish Dry Film Thickness (mm)</td>
<td>Y</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Flowserve standard</td>
<td>Y</td>
</tr>
<tr>
<td>Description</td>
<td>Rev</td>
<td>Requested</td>
<td>Offered</td>
<td>Purchased</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Location (Indoors/Outdoors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Minimum</td>
<td>A</td>
<td>Outdoors</td>
<td>Outdoors</td>
<td>Outdoors</td>
<td></td>
</tr>
<tr>
<td>- Maximum</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative Humidity (%)</td>
<td>A</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise level Allowable per 8 hr shift (dB-Lex)</td>
<td>A</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise level Allowable (dB)</td>
<td>A</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation (Continuous/Intermittent)</td>
<td>A</td>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Days per year</td>
<td>A</td>
<td>365</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hours per day</td>
<td>A</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Availability (%)</td>
<td>A</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>A</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Toxic</td>
<td>A</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Corrosive</td>
<td>A</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Flammable</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Capacity Per Pump (m³/h)</td>
<td>1</td>
<td>1370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Dynamic Head (m)</td>
<td>A</td>
<td>42.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPHSH Available (m)</td>
<td>A</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft / m Depth (m)</td>
<td>A</td>
<td>2.416</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units (metric/imperial)</td>
<td>A</td>
<td>Metric</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution Characteristics

<table>
<thead>
<tr>
<th>Name of Solution</th>
<th>S.G. of Solution</th>
<th>Solids content (mg/L)</th>
<th>Solubility (cp)</th>
<th>pH</th>
<th>Total hardness (mg/L CaCO₃)</th>
<th>Oper Temp (°C)</th>
<th>Min/Max. Design Temp (°C)</th>
<th>Oper Flow Rate (m³/h)</th>
<th>Design Flow Rate (m³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Water Analysis

- Cl < 50 mg/L, Residual Cl < 0.1 mg/L, Cu < 0.1 mg/L, Fe<0.25 mg/L, K< 10 mg/L, Mg < 20 mg/L, Zn < 10 mg/L, Na < 25 mg/L.
-

<table>
<thead>
<tr>
<th>Date</th>
<th>02-Ago-07</th>
<th>30-May-07</th>
<th>11-Ago-07</th>
<th>19-Sep-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>By</td>
<td>E. Muñante</td>
<td>J. Arias</td>
<td>J. Arias</td>
<td>J. Arias</td>
</tr>
<tr>
<td>Chec'd</td>
<td>F. Cuya</td>
<td>F Cuya</td>
<td>F Cuya</td>
<td>J. Guzman</td>
</tr>
<tr>
<td>Rev.</td>
<td>A</td>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Description</td>
<td>Rev</td>
<td>Requested</td>
<td>Offered</td>
<td>Purchased</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Number</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump Type</td>
<td>A</td>
<td>Vertical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump Length - L (mm)</td>
<td>A</td>
<td>2314 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submersion Required - S (mm)</td>
<td>A</td>
<td>1168.4 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump Nominal Speed (RPM)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow, Best Efficiency Point BEP (m³/h)</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP (HP)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of stages</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear & Depreciation Allowance (mm)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diameter (mm)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Flange specification</td>
<td>A</td>
<td>ANSI B16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Suct. static head min/max (m)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- NPSH required (m)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diameter (mm)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Flange specification</td>
<td>A</td>
<td>ANSI B16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials of Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet end components</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impeller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Material</td>
<td>A</td>
<td>Bronze SAE 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Type</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diameter (mm)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hardness (BHN)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tip Speed (m/s)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Max. Allow tip speed (m/s)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Min. Allow. Flow (m³/h)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Material</td>
<td>A</td>
<td>ASTM A278-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Liner material</td>
<td>A</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hardness (BHN)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft</td>
<td>A</td>
<td>ASTM A276-416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge head</td>
<td>A</td>
<td>ASTM A36 / A53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction strainer</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted Bolts</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted Nuts</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal Type</td>
<td>A</td>
<td>Gland packing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal Water Flow (m³/h)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>02-Ago-07</th>
<th>30-May-07</th>
<th>11-Ago-07</th>
<th>19-Sep-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>By</td>
<td>E. Munante</td>
<td>J. Arias</td>
<td>J. Arias</td>
<td>J. Arias</td>
</tr>
<tr>
<td>Checked</td>
<td>F. Cuyan</td>
<td>F Cuyan</td>
<td>F Cuyan</td>
<td>J. Guzman</td>
</tr>
<tr>
<td>Rev.</td>
<td>A</td>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Description</td>
<td>Rev</td>
<td>Requested</td>
<td>Offered</td>
<td>Purchased</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Motor</td>
<td>A</td>
<td>WEG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>A</td>
<td>Induction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer Country</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P:</td>
<td>A</td>
<td>IEEE 841</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model or catalog number</td>
<td>A</td>
<td>Hollow shaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Shaft</td>
<td>B</td>
<td>4160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (W)</td>
<td>A</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>A</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>A</td>
<td>1200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base (#)</td>
<td>A</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full load current (A)</td>
<td>A</td>
<td>Over Sized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed RPM</td>
<td>A</td>
<td>Separated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Factor</td>
<td>A</td>
<td>TEFC, IP65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nameplate</td>
<td>A</td>
<td>Premium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor temperature Class</td>
<td>A</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endure</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full load (N·m)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pull-up (%)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakdown (%)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locked rotor (%)</td>
<td>A</td>
<td>L₁₀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Fatigue Life</td>
<td>A</td>
<td>Impro/Seal, both ends</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Protection</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of starts</td>
<td>A</td>
<td>Full voltage across the line &</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor start capability</td>
<td>A</td>
<td>RTD, 6 - 2 per phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winding Temperature Monitoring</td>
<td>A</td>
<td>RTD, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing Temperature Monitoring</td>
<td>A</td>
<td>Transmitter, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing Vibration Monitoring</td>
<td>A</td>
<td>Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Heaters</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surge Arresters</td>
<td>B</td>
<td>Required (For MV motor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winding Temperature Monitoring</td>
<td>A</td>
<td>SP-60-4326</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Rev</th>
<th>Check id</th>
<th>Project No.</th>
<th>Current No.</th>
<th>VERTICAL COOLING WATER PUMPS</th>
<th>amec</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-May-07</td>
<td>B</td>
<td>F Cuya</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-Ago-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-Sep-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Rev</td>
<td>Requested</td>
<td>Offered</td>
<td>Purchased</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Number</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Number</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>*</td>
<td>A Direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Factor</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseplate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>A</td>
<td>Carbon Steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum HP Motor</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft OD under the sleeve (mm)</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of impeller overhang (mm)</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bare pump (kg)</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor (kg)</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseplate (kg)</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump complete w/ drive component (kg)</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Preparation and Finish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By VENDOR (Yes/No)</td>
<td>A</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification SP-30-4304 Req'd (Y/N)</td>
<td>A</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Preparation</td>
<td>A</td>
<td>SSPC 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>A</td>
<td>mfg Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer Type</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer Dry Film Thickness (mm)</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish Type</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish Dry Film Thickness (mm)</td>
<td>*</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All items with * shall be filled in by the VENDOR

Pumps using expellers shall have expeller curves included with the quote.

(1) See Dimensions in Figure No. 1 on Page 5

Date: 02-Ago-07 30-May-07 11-Ago-07 19-Sep-08
By: E. Muñizante J. Arias J. Arias J. Arias
Checked: F. Cuya F. Cuya F. Cuya J. Guzmán
Rev.: A B 0 1
Figure No 1
DOCUMENT REVIEW AND APPROVAL

The document revision number is indicated below. Please replace all revised pages of this document and destroy the superseded copies.

<table>
<thead>
<tr>
<th>PROJECT:</th>
<th>320K</th>
<th>TE - 46040</th>
<th>REV. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 155339</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIENT:</td>
<td>Votorantim Metals - Cajamarquilla S.A.</td>
<td>TECHNICAL EVALUATION</td>
<td>WATER COOLING</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VERTICAL PUMPS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISSUED FOR</th>
<th>REV Nº</th>
<th>ORIGIN</th>
<th>DATE</th>
<th>ISSUED PAGES/ SECTIONS</th>
<th>INITIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval</td>
<td>A</td>
<td>NM</td>
<td>17-Oct-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase</td>
<td>B</td>
<td>JA</td>
<td>04-Jul-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase</td>
<td>0</td>
<td>JA</td>
<td>22-Oct-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase</td>
<td>1</td>
<td>JA</td>
<td>29-Feb-09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMEC APPROVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Manager:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Engineer Coordinator:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Discipline Coordinator:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
</tbody>
</table>
INDEX

1.0 EXECUTIVE SUMMARY 3
2.0 DESCRIPTION AND SUPPLY SCOPE 3
3.0 EVALUATION METHOD 4
4.0 TECHNICAL EVALUATION 4
5.0 RECOMMENDATION 5
6.0 PURCHASE SCOPE BY SUPPLY 5
EXECUTIVE SUMMARY

• This technical evaluation is for the new Water Cooling Vertical Pumps of Area 93.
• ITT, Wortec and Weir-Vulco Peru were requested to provide quotations.
• Wortec is technically acceptable and is the recommended vendor.

DESCRIPTION AND SUPPLY SCOPE

The Water Cooling Vertical Pumps will be used in the Area 93 for the cooling system. The package includes the following items:

• Design, supply, fabrication and delivery to site of each Vertical Turbine Pump and all required ancillaries (pumps with several stages if required).
• Electrical motors (vertical mounting).
• Drive couplings.
• Safety guards.
• Discharge heads.
• Suction strainers.
• Ratchets for non-reversal.
• Low oil level switch (if required).
• Design, location, type (ASTM), diameter for anchorage bolts.
• General foundation layout, including static and dynamic loads.
• Submittals according to the Bidder’s Drawing & Data Commitment Sheet.
• All non-destructive testing and documentation.
• Instruction Manual for all equipment.
• Bill of material (BOM) breakdown indicating model and serial numbers for all subcontracted components.
• Recommended spare parts for two years of operation.
• Drawing & Data Commitment Sheet.
• Special tools required for field erection and maintenance.
3.0 EVALUATION METHOD

The evaluation was conducted by using the following information:

- Quotation ITT LMP348-2007PE REV (Date: 17-Jun-2008)
- Quotation Wortec No 4841-80028 (Date: 01-Jul-2008)
- Quotation Weir No 38954 (Date: 30-May-2008)

4.0 TECHNICAL EVALUATION

ITT GOULDS

ITT offers:

- 1 stage-vertical turbine pumps made of cast iron and bronze (Goulds pumps).
- High efficiency = 83.3%. Motor rated power = 300 HP.
- Impeller size is 93% of maximum size for the pump model.
- Performance curve is very steep.
- Typical sound level will be around 85 dBA at 1m.
- Motors quoted are WEG.

ITT exceptions:

- Units of measure will be imperial.
- The submergence required is the highest = 1.73 m.
- NPSH required is the highest = 9.68 m.

Wortec

Wortec offers:

- 3 stage-vertical turbine pumps made of cast iron and bronze (Flowserve).
- Highest efficiency = 84.7%. Motor rated power = 300 HP.
- Impeller size is 93.7% of maximum size for the pump model.
- Performance curve is very steep.
- The submergence required is = 1.68 m.
- NPSH required is the lowest = 4.9 m.
- Typical sound level will be around 85 dBA at 1m.

Wortec exceptions:

- Units of measure will be imperial.
- Spec. SP-60-4032 is not considered.
- Motors quoted are GE not WEG.
- Motors will be rated IP55-not IP65.
Weir-Vulco

Weir offers:

- 1 stage-vertical turbine pumps made of cast iron and bronze (Floway)
- Efficiency = 80%. Motor rated power = 300HP.
- Performance curve is flat.
- The submergence required is 1.422 m.
- NPSH required is 6.82 m

Weir was the supplier for the 160K water cooling pumps. This time propose another pump model.

Weir exceptions:

- Motor will not be IEEE compliant.
- Impeller size is 99 % of maximum size for the pump model.
- Sound level will be around 92 dBA at 1m.
- Units of measure will be imperial.
- Motors will be rated IP54, not IP65.
- Inpro Seal on opposite drive end not provided.
- Motor will be rated 4000V not 4160V.
- Motors will be designed with NEMA MG1 std.
- Bearings will be open type and oil lubricated.

Note: Weir was the supplier for the 160k-water cooling pumps but this time they propose another pump model.

6.0 RECOMMENDATION

Wortec's proposal is the only one technically acceptable. Wortec is the recommend vendor because of their best efficiency, steep performance curve and lowest NPSH required.

6.0 PURCHASE SCOPE BY SUPPLY

- Design, supply, fabrication and delivery to site of Vertical Turbine Pumps.
- Electrical motors.
- Drive couplings.
- Safety guards.
- Discharge heads.
- Suction strainers.
- Design, location, type (ASTM), diameter for anchorage bolts.
- General foundation layout, including static and dynamic loads.
- All non-destructive testing and documentation.
- Instruction Manual for all equipment.
- Recommended spare parts for two years of operation.
- Drawing & Data Commitment Sheet.
ATTACHMENT A: Technical Evaluation Tables
<table>
<thead>
<tr>
<th>Item</th>
<th>DESCRIPTION</th>
<th>REQUESTED</th>
<th>OFFERED</th>
<th>OFFERED</th>
<th>OFFERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ITT</td>
<td>WORTEC</td>
<td>WEIR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Goulds</td>
<td>Perú</td>
<td>Vulco</td>
</tr>
<tr>
<td>1.</td>
<td>SUMMARY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone/Fax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Quotation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Capacity (m³/h) (See note 1)</td>
<td></td>
<td></td>
<td>1370</td>
<td>1370</td>
<td>1370</td>
</tr>
<tr>
<td>TDH (m)</td>
<td></td>
<td></td>
<td>42.50</td>
<td>42.50</td>
<td>42.50</td>
</tr>
<tr>
<td>Inlet Water temperature (°C)</td>
<td></td>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Power (KW)</td>
<td></td>
<td></td>
<td>300 HP</td>
<td>300 HP</td>
<td>300 HP</td>
</tr>
<tr>
<td>Total Weight kgs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>EQUIPMENT TECHNICAL DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td></td>
<td>GOLDS</td>
<td>FLOWSERVE</td>
<td>WEIR</td>
<td>FLOWWAY</td>
</tr>
<tr>
<td>Model Number</td>
<td></td>
<td>VIT-FF</td>
<td>20EHC</td>
<td>22EPM</td>
<td>3 stage</td>
</tr>
<tr>
<td>Pump Type</td>
<td></td>
<td>Vertical</td>
<td>Vertical</td>
<td>Vertical</td>
<td>Vertical</td>
</tr>
<tr>
<td>Pump Length</td>
<td></td>
<td>2340 mm</td>
<td>2239 mm</td>
<td>1822</td>
<td></td>
</tr>
<tr>
<td>Pump Nominal Speed (RPM)</td>
<td></td>
<td>1800</td>
<td>1185</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td></td>
<td>83.3</td>
<td>84.7</td>
<td>79.48</td>
<td></td>
</tr>
<tr>
<td>Flow, Best Efficiency Point BEP (m³/h)</td>
<td></td>
<td>1,416</td>
<td>1,356</td>
<td>1,571</td>
<td></td>
</tr>
<tr>
<td>BHP (HP)</td>
<td></td>
<td>245.1</td>
<td>248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of stages</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-HPSH required (m)</td>
<td></td>
<td></td>
<td>24.00</td>
<td>25.46</td>
<td>23.58</td>
</tr>
</tbody>
</table>

Notes:
1. See note 1 for design capacity.
TECHNICAL EVALUATION TABLE
WATER COOLING VERTICAL PUMPS

<table>
<thead>
<tr>
<th>Item</th>
<th>DESCRIPTION</th>
<th>REQUESTED</th>
<th>OFFERED</th>
<th>OFFERED</th>
<th>OFFERED</th>
<th>OFFERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ITT</td>
<td>WORTEC</td>
<td>WEIR VULCO</td>
<td></td>
</tr>
<tr>
<td>Submergence required (m)</td>
<td>N 1730</td>
<td>Y 1680</td>
<td>Y 1422.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Materials of Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impeller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Material</td>
<td>Bronze SAE 40</td>
<td>Y Bronze</td>
<td>Y Bronze B148</td>
<td>Y Bronze B148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diameter (mm)</td>
<td>310</td>
<td>Y 375.9</td>
<td>Y 308</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Type</td>
<td>Enclosed</td>
<td>Y Enclosed</td>
<td>Enclosed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Min. Allow. Flow (m³/h)</td>
<td>644</td>
<td>Y 941.4</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowl Material</td>
<td>ASTM A278-30</td>
<td>Y Cast iron</td>
<td>Y Cast Iron A48</td>
<td>Y Cast Iron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft</td>
<td>ASTM A276-416</td>
<td>Y 416SS</td>
<td>Y 416SS</td>
<td>Y 416SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge head</td>
<td>ASTM A36 / A53</td>
<td>Y Carbon steel</td>
<td>Y Carbon steel</td>
<td>Y Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>Carbon steel</td>
<td>Y Carbon steel</td>
<td>Y Carbon steel</td>
<td>Y ASTM A53 Gr. B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction strainer</td>
<td>Galvanized steel</td>
<td>Y Galvanized steel</td>
<td>Y Galvanized steel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal Type</td>
<td>Gland packing</td>
<td>Y Packing</td>
<td>Y Gland packing</td>
<td>Y Gland packing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>WEG</td>
<td>Y WEG</td>
<td>Y GE</td>
<td>Y USEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacture Country</td>
<td>Brazil</td>
<td>Y USA</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Induction</td>
<td>Y Induction</td>
<td>Y Induction</td>
<td>Y Induction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>IEEE 841</td>
<td>Y IEEE 841</td>
<td>Y IEEE 841</td>
<td>Y IEEE 841</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Shaft</td>
<td>Hollow shaft</td>
<td>N Solid Shaft</td>
<td>Y Hollow shaft</td>
<td>Y Hollow shaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (HP)</td>
<td>300</td>
<td>Y 300</td>
<td>Y 300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>4160</td>
<td>N 4000</td>
<td>Y 4160</td>
<td>N 4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>60</td>
<td>Y 60</td>
<td>Y 60</td>
<td>Y 60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL EVALUATION TABLE
WATER COOLING VERTICAL PUMPS

<table>
<thead>
<tr>
<th>Item</th>
<th>DESCRIPTION</th>
<th>REQUESTED</th>
<th>OFFERED WORTEC</th>
<th>OFFERED WEIR VULCO</th>
</tr>
</thead>
</table>
| Phases (#) | 3 | Y | Y | Y
| Speed (RPM) | 1200 | Y | 1800 | 1200 |
| Service Factor | 1.15 | Y | 1.15 | 1.15 |
| Frame size | HGF355 | Y | 5809 | Not indicated |
| Terminal box | Over Sized | Y | Over Sized | Not indicated |
| Enclosure type and rating | TEFC, IP65 | Y | TEFC, IP65 | TEFC, IP54 |
| Efficiency | Premium | Y | Premium | Premium |
| Insulation Class | F | Y | Y | Not indicated |
| Bearing Protection | Impro Seal, b.e. | - | - | Y |
| Accessories | | | | No |
| Winding Temperature Monitoring | RTD, 6-2 per phase | Y | RTD, 6-2 per phase | Not indicated |
| Bearing Temperature Monitoring | RTD, 2 | Y | Y | Not indicated |
| Bearing Vibration Monitoring | Transmitter, 2 | Y | Y | Not indicated |
| Space Heaters | Required | Y | 120V | Y |
| Surge arrester | Required | Y | Y | Not indicated |
| Reference Specification | SP-60-4326 | Y | | Not indicated |
| 2.4 Baseplate | | | | |
| Material | Carbon steel | Y | Steel | Y |
| Maximum HP Motor | | | | Steel |
| Shaft OD under the sleeve (mm) | | | | Y |

Equipment Description:
Water Cooling Vertical Pumps

Project Details:
- Project 320K
- Client: Votorantim Metals - Cajamarquilla S.A.
TECHNICAL EVALUATION TABLE

WATER COOLING VERTICAL PUMPS

<table>
<thead>
<tr>
<th>Item</th>
<th>DESCRIPTION</th>
<th>REQUESTED</th>
<th>OFFERED ITT</th>
<th>OFFERED WORTEC</th>
<th>OFFERED WEIR VULCO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y 2,159</td>
<td>Not indicated</td>
<td>Y Not indicated</td>
</tr>
</tbody>
</table>

2.6 Surface Preparation and Finish

<table>
<thead>
<tr>
<th>By VENDOR (Yes/No)</th>
<th>Yes</th>
<th>Y</th>
<th>Yes</th>
<th>Y</th>
<th>Yes</th>
<th>Not indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification SP-30-4304 Req’d (Y/N)</td>
<td>No</td>
<td>Y</td>
<td>No</td>
<td>Y</td>
<td>No</td>
<td>Not indicated</td>
</tr>
<tr>
<td>Surface Preparation</td>
<td>SSPC 6</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Flowserve standard</td>
<td>Y</td>
<td>Vendor standard</td>
</tr>
<tr>
<td>System</td>
<td>mfg Standard</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Vendor standard</td>
</tr>
<tr>
<td>Primer Type</td>
<td>Y</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Flowserve standard</td>
<td>Y</td>
<td>Vendor standard</td>
</tr>
<tr>
<td>Primer Dry Film Thickness (mm)</td>
<td>Y</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Flowserve standard</td>
<td>Y</td>
<td>Vendor standard</td>
</tr>
<tr>
<td>Finish Type</td>
<td>Y</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Flowserve standard</td>
<td>Y</td>
<td>Vendor standard</td>
</tr>
<tr>
<td>Finish Dry Film Thickness (mm)</td>
<td>Y</td>
<td>Vendor standard</td>
<td>Y</td>
<td>Flowserve standard</td>
<td>Y</td>
<td>Vendor standard</td>
</tr>
</tbody>
</table>

Note 1: Flow changed to 1370 m³/h, according with PFD 93-01-4002 Rev 3
Informe de suficiencia

93-50-4650

REV. 0

Cod 19790167K

AFT Fathom Model- Cálculo Hidráulico

UNIVERSIDAD NACIONAL DE

Sistema de agua de enfriamiento -

INGENIERIA

Diagrama hidráulico

FACULTAD DE INGENIERIA MECÁNICA

CLIENT:

FACULTAD DE INGENIERÍA MECÁNICA

ISSUED FOR

Review

A

JG

13-Jul-12

2

OUT

IN

Approval

B

JG

04-Ago-12

2

Informе

0

JG

25-Set-12

2

PAGES/SECTIONS

INITIAL

Page 3 of 3
<table>
<thead>
<tr>
<th>ISSUED FOR</th>
<th>REV No.</th>
<th>ORIGIN</th>
<th>DATE</th>
<th>ISSUED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>OUT</td>
<td>PAGES/SECTIONS</td>
</tr>
<tr>
<td>Review</td>
<td>A</td>
<td>JG</td>
<td>13-Jul-12</td>
<td>17</td>
</tr>
<tr>
<td>Approval</td>
<td>B</td>
<td>JG</td>
<td>04-Ago-12</td>
<td>17</td>
</tr>
<tr>
<td>Informe</td>
<td>0</td>
<td>JG</td>
<td>25-Set-12</td>
<td>17</td>
</tr>
</tbody>
</table>
General

Title: AFT Fathom Model
Analysis run on: 25/09/2012 03:49:33 p.m.
Application version: AFT Fathom Version 7.0 Viewer (2011.02.02)
Input File: C:\Documents and Settings\jose.guzman\My Documents\UNI Actualizacion\Elaboracion de Informe de suficiencia\INFORME DE SUSTENTACION\Informacion General para Informe de sustentacion\Fathom area 93\Sistema de agua de enfriamiento.fth
Output File: C:\Documents and Settings\jose.guzman\My Documents\UNI Actualizacion\Elaboracion de Informe de suficiencia\INFORME DE SUSTENTACION\Informacion General para Informe de sustentacion\Fathom area 93\Sistema de agua de enfriamiento_10.out

Constant Fluid Property Model
Fluid Database: AFT Standard
Fluid: Water at 1 atm
Max Fluid Temperature Data= 212 deg. F
Min Fluid Temperature Data= 32 deg. F
Temperature= 27 deg. C
Density= 0.99749 S.G. water
Viscosity= 0.8468 centipoise
Vapor Pressure= 0.52017 psia
Viscosity Model= Newtonian

Atmospheric Pressure= 9.76 m H2O std.
Gravitational Acceleration= 1 g
Turbulent Flow Above Reynolds Number= 4000
Laminar Flow Below Reynolds Number= 2300

Total Inflow= 8,709 m3/hr
Total Outflow= 8,709 m3/hr
Maximum Static Pressure is 5.4 barG at Pipe 46 Outlet
Minimum Static Pressure is -0.77 barG at Pipe 9416 Outlet

Pump Summary

<table>
<thead>
<tr>
<th>Jct</th>
<th>Name</th>
<th>Vol. Flow (m3/hr)</th>
<th>Number of Pumps</th>
<th>dH (meters)</th>
<th>Overall Efficiency (Percent)</th>
<th>Speed (percent)</th>
<th>Overall Power (hp)</th>
<th>BEP (m3/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>x2006</td>
<td>1,375</td>
<td>1</td>
<td>42.4</td>
<td>84</td>
<td>100</td>
<td>252.66</td>
<td>1,370</td>
</tr>
<tr>
<td>112</td>
<td>x2005</td>
<td>1,375</td>
<td>1</td>
<td>42.4</td>
<td>84</td>
<td>100</td>
<td>252.62</td>
<td>1,370</td>
</tr>
<tr>
<td>X122</td>
<td>x2004</td>
<td>0</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>132</td>
<td>x2003</td>
<td>1,375</td>
<td>1</td>
<td>42.4</td>
<td>84</td>
<td>100</td>
<td>252.67</td>
<td>1,370</td>
</tr>
<tr>
<td>X7002</td>
<td>Pump</td>
<td>0</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>X7012</td>
<td>Pump</td>
<td>0</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7311</td>
<td>Pump</td>
<td>65</td>
<td>1</td>
<td>2.4</td>
<td>100</td>
<td>N/A</td>
<td>0.57</td>
<td>N/A</td>
</tr>
<tr>
<td>7603</td>
<td>G2267</td>
<td>244</td>
<td>1</td>
<td>23.6</td>
<td>72</td>
<td>100</td>
<td>29.00</td>
<td>200</td>
</tr>
<tr>
<td>X7613</td>
<td>G2268</td>
<td>0</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>X7632</td>
<td>Booster Pump</td>
<td>0</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8130</td>
<td>Pump</td>
<td>328</td>
<td>1</td>
<td>52.0</td>
<td>70</td>
<td>100</td>
<td>89.22</td>
<td>500</td>
</tr>
</tbody>
</table>
AFT Fathom Model

<table>
<thead>
<tr>
<th>Jct</th>
<th>% of BEP (Percent)</th>
<th>NPSHA (meters)</th>
<th>NPSHR (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>100</td>
<td>10.7</td>
<td>5.0</td>
</tr>
<tr>
<td>112</td>
<td>100</td>
<td>10.7</td>
<td>4.9</td>
</tr>
<tr>
<td>X122</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>132</td>
<td>100</td>
<td>10.8</td>
<td>5.0</td>
</tr>
<tr>
<td>X7002</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>X7012</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7311</td>
<td>N/A</td>
<td>9.3</td>
<td>N/A</td>
</tr>
<tr>
<td>7603</td>
<td>122</td>
<td>9.3</td>
<td>4.0</td>
</tr>
<tr>
<td>X7613</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>X7632</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8130</td>
<td>66</td>
<td>10.3</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Valve Summary

<table>
<thead>
<tr>
<th>Jct</th>
<th>Name</th>
<th>Valve Type</th>
<th>Vol. Flow (m3/hr)</th>
<th>Mass Flow (kg/hr)</th>
<th>dP Stag. (MPa)</th>
<th>dH (meters)</th>
<th>P Inlet Static (barG)</th>
<th>Cv</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Valve</td>
<td>REGULAR</td>
<td>1,522</td>
<td>1,517,295</td>
<td>0.000494</td>
<td>0.0506</td>
<td>5.017</td>
<td>26,816</td>
<td>0.17</td>
</tr>
<tr>
<td>16</td>
<td>Valve</td>
<td>REGULAR</td>
<td>1,522</td>
<td>1,517,331</td>
<td>0.000494</td>
<td>0.0506</td>
<td>5.016</td>
<td>26,816</td>
<td>0.17</td>
</tr>
<tr>
<td>26</td>
<td>Valve</td>
<td>REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>5.018</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>36</td>
<td>Valve</td>
<td>REGULAR</td>
<td>1,523</td>
<td>1,518,249</td>
<td>0.000495</td>
<td>0.0506</td>
<td>5.013</td>
<td>26,816</td>
<td>0.17</td>
</tr>
<tr>
<td>106</td>
<td>Valve</td>
<td>REGULAR</td>
<td>1,375</td>
<td>1,370,624</td>
<td>0.000712</td>
<td>0.0728</td>
<td>3.720</td>
<td>20,186</td>
<td>0.30</td>
</tr>
<tr>
<td>116</td>
<td>Valve</td>
<td>REGULAR</td>
<td>1,375</td>
<td>1,369,968</td>
<td>0.000711</td>
<td>0.0727</td>
<td>3.722</td>
<td>20,186</td>
<td>0.30</td>
</tr>
<tr>
<td>126</td>
<td>Valve</td>
<td>REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>3.723</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>136</td>
<td>Valve</td>
<td>REGULAR</td>
<td>1,375</td>
<td>1,370,770</td>
<td>0.000712</td>
<td>0.0728</td>
<td>3.722</td>
<td>20,186</td>
<td>0.30</td>
</tr>
<tr>
<td>X201</td>
<td>Valve</td>
<td>REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>5.263</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>256</td>
<td>Valve</td>
<td>REGULAR</td>
<td>474</td>
<td>472,447</td>
<td>0.000571</td>
<td>0.0585</td>
<td>3.577</td>
<td>7,766</td>
<td>0.46</td>
</tr>
<tr>
<td>X705</td>
<td>Valve</td>
<td>REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>4.047</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>X707</td>
<td>Valve</td>
<td>REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>3.961</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>X1041</td>
<td>Valve</td>
<td>REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>0.974</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1051</td>
<td>Valve</td>
<td>REGULAR</td>
<td>974</td>
<td>971,002</td>
<td>0.000982</td>
<td>0.1005</td>
<td>0.944</td>
<td>12,172</td>
<td>0.33</td>
</tr>
<tr>
<td>X1061</td>
<td>Valve</td>
<td>REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>0.955</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1071</td>
<td>Valve</td>
<td>REGULAR</td>
<td>1,014</td>
<td>1,010,575</td>
<td>0.001064</td>
<td>0.1089</td>
<td>0.923</td>
<td>12,172</td>
<td>0.33</td>
</tr>
<tr>
<td>1081</td>
<td>Valve</td>
<td>REGULAR</td>
<td>949</td>
<td>946,145</td>
<td>0.000933</td>
<td>0.0954</td>
<td>0.926</td>
<td>12,172</td>
<td>0.33</td>
</tr>
<tr>
<td>1091</td>
<td>Valve</td>
<td>REGULAR</td>
<td>1,331</td>
<td>1,326,254</td>
<td>0.001066</td>
<td>0.1090</td>
<td>0.935</td>
<td>15,962</td>
<td>0.31</td>
</tr>
<tr>
<td>1103</td>
<td>Valve</td>
<td>REGULAR</td>
<td>473</td>
<td>471,658</td>
<td>0.000569</td>
<td>0.0583</td>
<td>1.493</td>
<td>7,766</td>
<td>0.46</td>
</tr>
<tr>
<td>X1157</td>
<td>Valve</td>
<td>REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>1.127</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1201</td>
<td>Valve</td>
<td>REGULAR</td>
<td>1,342</td>
<td>1,337,905</td>
<td>0.000319</td>
<td>0.0326</td>
<td>1.055</td>
<td>29,447</td>
<td>0.30</td>
</tr>
<tr>
<td>1211</td>
<td>Valve</td>
<td>REGULAR</td>
<td>1,407</td>
<td>1,402,056</td>
<td>0.000350</td>
<td>0.0358</td>
<td>1.052</td>
<td>29,447</td>
<td>0.30</td>
</tr>
<tr>
<td>1221</td>
<td>Valve</td>
<td>REGULAR</td>
<td>1,375</td>
<td>1,370,614</td>
<td>0.000334</td>
<td>0.0342</td>
<td>1.051</td>
<td>29,447</td>
<td>0.30</td>
</tr>
<tr>
<td>2503</td>
<td>Valve</td>
<td>REGULAR</td>
<td>250</td>
<td>249,049</td>
<td>0.000236</td>
<td>0.0241</td>
<td>3.522</td>
<td>6,370</td>
<td>0.46</td>
</tr>
<tr>
<td>2505</td>
<td>Valve</td>
<td>REGULAR</td>
<td>250</td>
<td>249,049</td>
<td>0.001671</td>
<td>0.1710</td>
<td>1.020</td>
<td>2,394</td>
<td>0.63</td>
</tr>
<tr>
<td>3502</td>
<td>Valve</td>
<td>REGULAR</td>
<td>44</td>
<td>43,725</td>
<td>0.000964</td>
<td>0.0986</td>
<td>3.672</td>
<td>553</td>
<td>0.76</td>
</tr>
<tr>
<td>3506</td>
<td>Valve</td>
<td>REGULAR</td>
<td>44</td>
<td>43,725</td>
<td>0.000964</td>
<td>0.0986</td>
<td>1.130</td>
<td>553</td>
<td>0.76</td>
</tr>
<tr>
<td>3512</td>
<td>Valve</td>
<td>REGULAR</td>
<td>2,350</td>
<td>2,341,976</td>
<td>0.000976</td>
<td>0.0999</td>
<td>3.195</td>
<td>29,447</td>
<td>0.30</td>
</tr>
<tr>
<td>3516</td>
<td>Valve</td>
<td>REGULAR</td>
<td>2,350</td>
<td>2,341,976</td>
<td>0.000976</td>
<td>0.0999</td>
<td>0.679</td>
<td>29,447</td>
<td>0.30</td>
</tr>
<tr>
<td>Jct</td>
<td>Name</td>
<td>Valve Type</td>
<td>Vol. Flow (m³/hr)</td>
<td>Mass Flow (kg/hr)</td>
<td>dP Stag. (MPa)</td>
<td>dH (meters)</td>
<td>P Inlet Static (barG)</td>
<td>Cv</td>
<td>K</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>3522</td>
<td>Valve REGULAR</td>
<td>960</td>
<td>957,046</td>
<td>0.000954</td>
<td>0.0976</td>
<td>2.952</td>
<td>12,172</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>3528</td>
<td>Valve REGULAR</td>
<td>960</td>
<td>957,046</td>
<td>0.000954</td>
<td>0.0976</td>
<td>0.486</td>
<td>12,172</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>7504</td>
<td>Valve REGULAR</td>
<td>146</td>
<td>145,387</td>
<td>0.000063</td>
<td>0.0065</td>
<td>3.630</td>
<td>6,698</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>7512</td>
<td>Valve REGULAR</td>
<td>72</td>
<td>71,729</td>
<td>0.000079</td>
<td>0.0081</td>
<td>3.385</td>
<td>3,172</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>7519</td>
<td>Valve REGULAR</td>
<td>43</td>
<td>43,190</td>
<td>0.000316</td>
<td>0.0323</td>
<td>3.678</td>
<td>955</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>7521</td>
<td>Valve REGULAR</td>
<td>43</td>
<td>43,190</td>
<td>0.001451</td>
<td>0.1485</td>
<td>2.456</td>
<td>445</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>X7527</td>
<td>Valve REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>X7529</td>
<td>Valve REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>7532</td>
<td>Valve REGULAR</td>
<td>29</td>
<td>28,539</td>
<td>0.000271</td>
<td>0.0277</td>
<td>3.471</td>
<td>681</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>7552</td>
<td>Valve REGULAR</td>
<td>74</td>
<td>73,658</td>
<td>0.000083</td>
<td>0.0085</td>
<td>3.383</td>
<td>3,172</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>7559</td>
<td>Valve REGULAR</td>
<td>45</td>
<td>44,351</td>
<td>0.000333</td>
<td>0.0341</td>
<td>3.676</td>
<td>955</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>7561</td>
<td>Valve REGULAR</td>
<td>45</td>
<td>44,351</td>
<td>0.001530</td>
<td>0.1566</td>
<td>2.387</td>
<td>445</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>X7567</td>
<td>Valve REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>X7569</td>
<td>Valve REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>7572</td>
<td>Valve REGULAR</td>
<td>29</td>
<td>29,307</td>
<td>0.000286</td>
<td>0.0292</td>
<td>3.468</td>
<td>681</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>7601</td>
<td>Valve REGULAR</td>
<td>244</td>
<td>243,427</td>
<td>0.001596</td>
<td>0.1633</td>
<td>-0.011</td>
<td>2,394</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>7606</td>
<td>Valve REGULAR</td>
<td>244</td>
<td>243,427</td>
<td>0.008863</td>
<td>0.9068</td>
<td>1.786</td>
<td>1,016</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>X7611</td>
<td>Valve REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>X7616</td>
<td>Valve REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>7631</td>
<td>Valve REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>7633</td>
<td>Valve REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>8102</td>
<td>Valve REGULAR</td>
<td>474</td>
<td>472,447</td>
<td>0.000251</td>
<td>0.0257</td>
<td>3.630</td>
<td>11,713</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>8114</td>
<td>Valve REGULAR</td>
<td>328</td>
<td>327,061</td>
<td>0.179190</td>
<td>18.3339</td>
<td>2.866</td>
<td>283</td>
<td>112.00</td>
<td></td>
</tr>
<tr>
<td>8132</td>
<td>Valve REGULAR</td>
<td>328</td>
<td>326,899</td>
<td>0.000900</td>
<td>0.0921</td>
<td>4.823</td>
<td>4,281</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>8134</td>
<td>Valve REGULAR</td>
<td>328</td>
<td>326,899</td>
<td>0.000900</td>
<td>0.0921</td>
<td>4.746</td>
<td>4,281</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>8138</td>
<td>Valve REGULAR</td>
<td>328</td>
<td>326,899</td>
<td>0.000900</td>
<td>0.0921</td>
<td>2.091</td>
<td>4,281</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>9204</td>
<td>Valve REGULAR</td>
<td>47</td>
<td>47,122</td>
<td>0.001119</td>
<td>0.1145</td>
<td>3.296</td>
<td>553</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>9212</td>
<td>Valve REGULAR</td>
<td>47</td>
<td>47,122</td>
<td>0.001119</td>
<td>0.1145</td>
<td>1.351</td>
<td>553</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>X9224</td>
<td>Valve REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>X9232</td>
<td>Valve REGULAR</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>9412</td>
<td>Valve REGULAR</td>
<td>86</td>
<td>86,121</td>
<td>0.102642</td>
<td>10.5018</td>
<td>4.468</td>
<td>106</td>
<td>108.00</td>
<td></td>
</tr>
<tr>
<td>8136</td>
<td>Control Valve</td>
<td>FCV</td>
<td>328</td>
<td>326,899</td>
<td>0.264163</td>
<td>27.0278</td>
<td>4.711</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>9666</td>
<td>Control Valve</td>
<td>FCV</td>
<td>20</td>
<td>19,933</td>
<td>0.083500</td>
<td>8.5433</td>
<td>0.962</td>
<td>25</td>
<td>25.44</td>
</tr>
<tr>
<td>9775</td>
<td>Control Valve</td>
<td>FCV</td>
<td>99</td>
<td>98,668</td>
<td>0.150397</td>
<td>15.3878</td>
<td>1.539</td>
<td>93</td>
<td>26.92</td>
</tr>
<tr>
<td>5</td>
<td>Check Valve</td>
<td>CHECK</td>
<td>1,522</td>
<td>1,517,295</td>
<td>0.008721</td>
<td>0.8922</td>
<td>5.173</td>
<td>6,383</td>
<td>3.00</td>
</tr>
<tr>
<td>15</td>
<td>Check Valve</td>
<td>CHECK</td>
<td>1,522</td>
<td>1,517,331</td>
<td>0.008721</td>
<td>0.8923</td>
<td>5.173</td>
<td>6,383</td>
<td>3.00</td>
</tr>
<tr>
<td>25</td>
<td>Check Valve</td>
<td>CHECK</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>5.087</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Check Valve</td>
<td>CHECK</td>
<td>1,523</td>
<td>1,518,249</td>
<td>0.008732</td>
<td>0.8934</td>
<td>5.169</td>
<td>6,383</td>
<td>3.00</td>
</tr>
<tr>
<td>105</td>
<td>Check Valve</td>
<td>CHECK</td>
<td>1,375</td>
<td>1,370,624</td>
<td>0.007116</td>
<td>0.7281</td>
<td>3.916</td>
<td>6,383</td>
<td>3.00</td>
</tr>
<tr>
<td>115</td>
<td>Check Valve</td>
<td>CHECK</td>
<td>1,375</td>
<td>1,369,968</td>
<td>0.007109</td>
<td>0.7274</td>
<td>3.918</td>
<td>6,383</td>
<td>3.00</td>
</tr>
<tr>
<td>125</td>
<td>Check Valve</td>
<td>CHECK</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>3.848</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Check Valve</td>
<td>CHECK</td>
<td>1,375</td>
<td>1,370,770</td>
<td>0.007118</td>
<td>0.7282</td>
<td>3.919</td>
<td>6,383</td>
<td>3.00</td>
</tr>
<tr>
<td>7605</td>
<td>Check Valve</td>
<td>CHECK</td>
<td>244</td>
<td>243,427</td>
<td>0.020258</td>
<td>2.0727</td>
<td>2.015</td>
<td>672</td>
<td>8.00</td>
</tr>
<tr>
<td>X7615</td>
<td>Check Valve</td>
<td>CHECK</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Jct</td>
<td>Valve State</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X201</td>
<td>Closed By User</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X705</td>
<td>Closed By User</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X707</td>
<td>Closed By User</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1041</td>
<td>Closed By User</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1051</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1061</td>
<td>Closed By User</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1071</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1081</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1091</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1103</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1157</td>
<td>Closed By User</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1211</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1221</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2503</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2505</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3502</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3506</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3512</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3516</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3522</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3528</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7504</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7512</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7519</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7521</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7527</td>
<td>Closed By User</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7529</td>
<td>Closed By User</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7532</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7552</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7559</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7561</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7567</td>
<td>Closed By User</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7569</td>
<td>Closed By User</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7572</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7601</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7606</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Jct Valve State

<table>
<thead>
<tr>
<th>Jct</th>
<th>Valve State</th>
</tr>
</thead>
<tbody>
<tr>
<td>X7611</td>
<td>Closed By User</td>
</tr>
<tr>
<td>X7616</td>
<td>Closed By User</td>
</tr>
<tr>
<td>7631</td>
<td>Open</td>
</tr>
<tr>
<td>7633</td>
<td>Open</td>
</tr>
<tr>
<td>8102</td>
<td>Open</td>
</tr>
<tr>
<td>8114</td>
<td>Open</td>
</tr>
<tr>
<td>8132</td>
<td>Open</td>
</tr>
<tr>
<td>8134</td>
<td>Open</td>
</tr>
<tr>
<td>8138</td>
<td>Open</td>
</tr>
<tr>
<td>9204</td>
<td>Open</td>
</tr>
<tr>
<td>9212</td>
<td>Open</td>
</tr>
<tr>
<td>X9224</td>
<td>Closed By User</td>
</tr>
<tr>
<td>X9232</td>
<td>Closed By User</td>
</tr>
<tr>
<td>9412</td>
<td>Open</td>
</tr>
<tr>
<td>9616</td>
<td>Open</td>
</tr>
<tr>
<td>9775</td>
<td>Open</td>
</tr>
<tr>
<td>5</td>
<td>Open</td>
</tr>
<tr>
<td>15</td>
<td>Open</td>
</tr>
<tr>
<td>25</td>
<td>Open</td>
</tr>
<tr>
<td>35</td>
<td>Open</td>
</tr>
<tr>
<td>105</td>
<td>Open</td>
</tr>
<tr>
<td>115</td>
<td>Open</td>
</tr>
<tr>
<td>125</td>
<td>Open</td>
</tr>
<tr>
<td>135</td>
<td>Open</td>
</tr>
<tr>
<td>7605</td>
<td>Open</td>
</tr>
<tr>
<td>X7615</td>
<td>Closed by User</td>
</tr>
</tbody>
</table>

Heat Exchanger Summary

<table>
<thead>
<tr>
<th>Jct</th>
<th>Name</th>
<th>Vol. Flow (m³/hr)</th>
<th>Mass Flow (kg/hr)</th>
<th>dP (MPa)</th>
<th>dH (meters)</th>
<th>dT Loss (deg. C)</th>
<th>Heat Rate In (kW)</th>
<th>T Inlet (deg. C)</th>
<th>T Outlet (deg. C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2504</td>
<td>Heat Exchanger</td>
<td>250</td>
<td>249,049</td>
<td>0.2236</td>
<td>22.87</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>3003</td>
<td>Heat Exchanger</td>
<td>3,890</td>
<td>3,876,651</td>
<td>0.0047</td>
<td>0.48</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>3504</td>
<td>Heat Exchanger</td>
<td>44</td>
<td>43,725</td>
<td>0.0976</td>
<td>9.99</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>3514</td>
<td>Heat Exchanger</td>
<td>2,350</td>
<td>2,341,976</td>
<td>0.1621</td>
<td>16.59</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>3525</td>
<td>Heat Exchanger</td>
<td>960</td>
<td>957,046</td>
<td>0.1007</td>
<td>10.30</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>4202</td>
<td>Heat Exchanger</td>
<td>103</td>
<td>102,548</td>
<td>0.3258</td>
<td>33.33</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>7307</td>
<td>Heat Exchanger</td>
<td>33</td>
<td>33,275</td>
<td>0.4334</td>
<td>44.34</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>7309</td>
<td>Heat Exchanger</td>
<td>41</td>
<td>41,002</td>
<td>0.4649</td>
<td>47.56</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>7520</td>
<td>Heat Exchanger</td>
<td>43</td>
<td>43,190</td>
<td>0.1211</td>
<td>12.39</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>7528</td>
<td>Heat Exchanger</td>
<td>43</td>
<td>43,190</td>
<td>0.1211</td>
<td>12.39</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>7533</td>
<td>Heat Exchanger</td>
<td>29</td>
<td>28,539</td>
<td>0.1247</td>
<td>12.76</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>7560</td>
<td>Heat Exchanger</td>
<td>45</td>
<td>44,351</td>
<td>0.1277</td>
<td>13.07</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>7568</td>
<td>Heat Exchanger</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>
AFT Fathom Model

Jet Nama Vol. Mass dP dH dT Haat

<table>
<thead>
<tr>
<th>Jct</th>
<th>Name</th>
<th>Vol. Flow (m³/hr)</th>
<th>Mass Flow (kg/hr)</th>
<th>dP (MPa)</th>
<th>dH (meters)</th>
<th>dT Loss (deg. C)</th>
<th>Heat Rate In (kW)</th>
<th>T Inlet (deg. C)</th>
<th>T Outlet (deg. C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7573</td>
<td>Heat Exchanger</td>
<td>29</td>
<td>29,307</td>
<td>0.1315</td>
<td>13.46</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>8117</td>
<td>Heat Exchanger</td>
<td>156</td>
<td>155,409</td>
<td>0.0161</td>
<td>1.65</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>8121</td>
<td>Heat Exchanger</td>
<td>172</td>
<td>171,652</td>
<td>0.0197</td>
<td>2.02</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>9208</td>
<td>Heat Exchanger</td>
<td>24</td>
<td>23,740</td>
<td>0.1617</td>
<td>16.55</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>9218</td>
<td>Heat Exchanger</td>
<td>23</td>
<td>23,382</td>
<td>0.1569</td>
<td>16.05</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>9228</td>
<td>Heat Exchanger</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>9238</td>
<td>Heat Exchanger</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>9404</td>
<td>Heat Exchanger</td>
<td>139</td>
<td>138,502</td>
<td>0.4342</td>
<td>44.43</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>9414</td>
<td>Heat Exchanger</td>
<td>86</td>
<td>86,121</td>
<td>0.3506</td>
<td>35.87</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

Reservoir Summary

<table>
<thead>
<tr>
<th>Jct</th>
<th>Name</th>
<th>Type</th>
<th>Liq. Height (meters)</th>
<th>Liq. Elevation (meters)</th>
<th>Surface Pressure (barG)</th>
<th>Liquid Volume (meters³)</th>
<th>Liquid Mass (kg)</th>
<th>Net Vol. Flow (m³/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reservoir</td>
<td>Infinite</td>
<td>N/A</td>
<td>5.5</td>
<td>0.056</td>
<td>N/A</td>
<td>N/A</td>
<td>-4,568</td>
</tr>
<tr>
<td>101</td>
<td>X2002</td>
<td>Infinite</td>
<td>N/A</td>
<td>5.3</td>
<td>0.013</td>
<td>N/A</td>
<td>N/A</td>
<td>-1,375</td>
</tr>
<tr>
<td>121</td>
<td>X2001</td>
<td>Infinite</td>
<td>N/A</td>
<td>5.3</td>
<td>0.013</td>
<td>N/A</td>
<td>N/A</td>
<td>-1,375</td>
</tr>
<tr>
<td>131</td>
<td>X2000</td>
<td>Infinite</td>
<td>N/A</td>
<td>5.4</td>
<td>0.013</td>
<td>N/A</td>
<td>N/A</td>
<td>-1,375</td>
</tr>
<tr>
<td>706</td>
<td>FILTRO DE ARENA</td>
<td>Infinite</td>
<td>N/A</td>
<td>6.3</td>
<td>0.013</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
</tbody>
</table>
AFT Fathom Model

<table>
<thead>
<tr>
<th>Jct</th>
<th>Name</th>
<th>Type</th>
<th>Liq. Height (meters)</th>
<th>Liq. Elevation (meters)</th>
<th>Surface Pressure (barG)</th>
<th>Liquid Volume (meters³)</th>
<th>Liquid Mass (kg)</th>
<th>Net Vol. Flow (m³/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7310</td>
<td>Reservoir</td>
<td>Infinite</td>
<td>N/A</td>
<td>3.5</td>
<td>0.026</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>7316</td>
<td>Reservoir</td>
<td>Infinite</td>
<td>N/A</td>
<td>3.0</td>
<td>0.013</td>
<td>N/A</td>
<td>N/A</td>
<td>290</td>
</tr>
<tr>
<td>7600</td>
<td>Reservoir</td>
<td>Infinite</td>
<td>N/A</td>
<td>3.8</td>
<td>0.013</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>8118</td>
<td>H2006</td>
<td>Infinite</td>
<td>N/A</td>
<td>2.1</td>
<td>0.013</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>9667</td>
<td>Reservoir</td>
<td>Infinite</td>
<td>N/A</td>
<td>5.0</td>
<td>0.000</td>
<td>N/A</td>
<td>N/A</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pipe</th>
<th>Name</th>
<th>Vol. Flow Rate (m³/hr)</th>
<th>Velocity (meters/sec)</th>
<th>P Static Max (barG)</th>
<th>P Static Min (barG)</th>
<th>Elevation Inlet (meters)</th>
<th>Elevation Outlet (meters)</th>
<th>dP Static Total (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Pipe</td>
<td>1.522</td>
<td>4.75</td>
<td>5.2280</td>
<td>5.0728</td>
<td>6.5</td>
<td>6.6</td>
<td>0.0020719</td>
</tr>
<tr>
<td>12</td>
<td>Pipe</td>
<td>1.522</td>
<td>4.75</td>
<td>5.2200</td>
<td>5.0713</td>
<td>6.6</td>
<td>6.6</td>
<td>0.0012901</td>
</tr>
<tr>
<td>22</td>
<td>Pipe</td>
<td>0</td>
<td>0.00</td>
<td>5.1973</td>
<td>5.1895</td>
<td>6.5</td>
<td>6.6</td>
<td>0.0007819</td>
</tr>
<tr>
<td>32</td>
<td>Pipe</td>
<td>1.523</td>
<td>4.76</td>
<td>5.2241</td>
<td>5.20338</td>
<td>6.5</td>
<td>6.6</td>
<td>0.0020735</td>
</tr>
<tr>
<td>45</td>
<td>Pipe</td>
<td>4.568</td>
<td>2.56</td>
<td>5.2208</td>
<td>5.20562</td>
<td>5.8</td>
<td>5.8</td>
<td>0.0015138</td>
</tr>
<tr>
<td>73</td>
<td>Pipe</td>
<td>75</td>
<td>0.28</td>
<td>5.0184</td>
<td>4.9093</td>
<td>4.0</td>
<td>5.2</td>
<td>0.0117499</td>
</tr>
<tr>
<td>74</td>
<td>Pipe</td>
<td>75</td>
<td>0.28</td>
<td>4.9009</td>
<td>4.83064</td>
<td>5.2</td>
<td>5.9</td>
<td>0.0070290</td>
</tr>
<tr>
<td>75</td>
<td>Pipe</td>
<td>75</td>
<td>0.41</td>
<td>4.8302</td>
<td>4.82906</td>
<td>5.9</td>
<td>5.9</td>
<td>0.0001125</td>
</tr>
<tr>
<td>102</td>
<td>Pipe</td>
<td>1.375</td>
<td>3.24</td>
<td>3.9788</td>
<td>3.97819</td>
<td>6.6</td>
<td>6.6</td>
<td>0.0000621</td>
</tr>
<tr>
<td>112</td>
<td>Pipe</td>
<td>1.375</td>
<td>3.24</td>
<td>3.9806</td>
<td>3.97995</td>
<td>6.6</td>
<td>6.6</td>
<td>0.0000621</td>
</tr>
<tr>
<td>122</td>
<td>Pipe</td>
<td>0</td>
<td>0.00</td>
<td>3.9301</td>
<td>3.93012</td>
<td>6.6</td>
<td>6.6</td>
<td>0.0000000</td>
</tr>
<tr>
<td>132</td>
<td>Pipe</td>
<td>1.375</td>
<td>3.24</td>
<td>3.9813</td>
<td>3.98073</td>
<td>6.6</td>
<td>6.6</td>
<td>0.0000621</td>
</tr>
<tr>
<td>207</td>
<td>Pipe</td>
<td>4.125</td>
<td>2.32</td>
<td>4.1448</td>
<td>4.04946</td>
<td>5.0</td>
<td>4.0</td>
<td>-0.0095338</td>
</tr>
<tr>
<td>245</td>
<td>Pipe</td>
<td>474</td>
<td>1.48</td>
<td>4.0017</td>
<td>3.98889</td>
<td>2.6</td>
<td>2.6</td>
<td>0.0014846</td>
</tr>
<tr>
<td>246</td>
<td>Pipe</td>
<td>474</td>
<td>1.48</td>
<td>3.9325</td>
<td>3.72122</td>
<td>3.1</td>
<td>3.2</td>
<td>0.0211299</td>
</tr>
<tr>
<td>247</td>
<td>Pipe</td>
<td>474</td>
<td>1.48</td>
<td>3.6668</td>
<td>3.65955</td>
<td>5.7</td>
<td>5.7</td>
<td>0.0007289</td>
</tr>
<tr>
<td>248</td>
<td>Pipe</td>
<td>474</td>
<td>1.48</td>
<td>3.6573</td>
<td>3.63551</td>
<td>5.7</td>
<td>5.7</td>
<td>0.0002750</td>
</tr>
<tr>
<td>249</td>
<td>Pipe</td>
<td>474</td>
<td>1.48</td>
<td>3.5811</td>
<td>3.53985</td>
<td>6.3</td>
<td>6.6</td>
<td>0.0041289</td>
</tr>
<tr>
<td>250</td>
<td>Pipe</td>
<td>474</td>
<td>1.48</td>
<td>3.4855</td>
<td>3.47311</td>
<td>7.2</td>
<td>7.2</td>
<td>0.0008159</td>
</tr>
<tr>
<td>251</td>
<td>Pipe</td>
<td>474</td>
<td>1.48</td>
<td>3.4750</td>
<td>3.47171</td>
<td>7.2</td>
<td>7.2</td>
<td>0.0003316</td>
</tr>
<tr>
<td>252</td>
<td>Pipe</td>
<td>474</td>
<td>1.48</td>
<td>3.4694</td>
<td>3.46616</td>
<td>7.2</td>
<td>7.2</td>
<td>0.0003262</td>
</tr>
</tbody>
</table>
(8 of 17)

AFT Fathom 7.0 Viewer Output
25/09/2012

Pipe

253
254
255
256
257
1030
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1151
2001
2004
2501
2508
3001
3003
3005
3501
3508
3511
3518
3521
3530
4001
4004
4201
4204
X7003
7015
7016
7017
7018
7300
7311
7312

Name

Pioe
Pipe
Pioe
Pipe
Pioe
Pioe
Pioe
Pioe
Pioe
Pioe
Pipe
Pioe
Pioe
Pipe
Pipe
Pioe
Pioe
Pioe
Pioe
Pioe
Pioe
Pioe
Pioe
Pioe
Pipe
Pioe
Pipe
Pipe
Pioe
Pioe
Pioe
Pioe
Pipe
Pipe
Pioe
Pioe

Vol.
Flow Rate
(m3/hr)

474

474

474
474

o

4,268

o

145
473
473
473
473
473
473
473
473

473

473
473
473
4,124
202
202
250
250
3,890
3 890
3,890

44

44
2 350
2,350
960
960
74
74
103
103

o
o
o
o
o
o

65
65

Velocity

(meters/sec)
1.48
1.48
1.48
1.48
0.00
2.40
0.00
0.45
1.48
1.48
1.48
1.48
1.48
1.48
1.48
1.48
1.48
1.48
1.48
1.48
2.32
1.74
1.74
0.95
0.95
2.18
3.94
2.18
1.48
1.48
2.38
2.38
2.26
2.26
1.10
1.10
1.53
1.53
0.00
0.00
0.00
0.00
0.00
0.00
2.20
3.79

P Static Min
P Static
Max
(barG)
(barG)
3.51597
3.5458
3.58042
3.5956
3.57710
3.5804
3.56796
3.5714
3.57888
3.5789
0.97624
1.0160
1.50741
1.5074
1.50635
1.5064
1.49308
1.4965
1.48408
1.4874
1.46891
1.4841
1.37327
1.4145
1.3189
1.31564
1.3134
1.31006
1.3078
1.29965
1.34947
1.3793
1.4292
1.40749
1.4052
1.39794
1.44776
1.6458
1.6956
1.68083
1.2912
1.19463
4.4072
4.21710
0.9064
0.55750
2.8114
2.80872
0.2811
0.16238
4.2610
3.91868
4.9523
1.33827
0.4934
0.24166
2.8593
2.84945
0.2386
0.21472
2.8276·
2.81460
0.2118
0.01480
2.8133
2.79924
0.2373
0.15874
4.2339
3.82532
0.5650
0.22697
5.2267
5.01104
1.3864
1.00454
1.5010
1.50103
1.2176
1.15895
1.2176
1.21759
1.2860
1.21759
1.4033
1.28600
4.7872
4.78719
0.0017
-0.00078
0.1262
-0.04617

Elevation
lnlet
(meters)
6.6
5.7
5.7
5.7
5.7
5.5
5.7
5.7
5.7
5.7
5.7
6.3
7.2
7.2
7.2
6.6
5.7
5.7
5.2
2.6
4.0
12.5
9.0
15.9
17.2
12.9
5.0
16.2
15.9
15.9
15.9
18.3
15.9
17.2
12.5
16.0
5.8
5.0
3.0
6.5
5.9
5.9
5.2
6.3
- 3.5
4.1

Elevation
Outlet
(meters)
6.3
5.7
5.7
5.7
5.7
5.9
5.7
5.7
5.7
5.7
5.7
6.6
7.2
7.2
7.2
6.3
5.7
5.7
3.1
2.6
5.0
9.0
12.5
15.9
15.9
16.2
5.0
12.9
15.9
15.9
15.9
15.9
15.9
15.9
16.0
12.5
5.0
5.8
3.0
5.9
5.9
5.2
4.0
6.3
3.5

4.8

dP Static
Total

(MPa)
-0.0029864
0.0015222
0.0003316
0.0003425
0.0000000
0.0039710
0.0000000
0.0000030
0.0003414
0.0003306
0.0015174
0.0041270
0.0003252
0.0003306
0.0008132

-0.0029883
0.0021680
0.0007265
-0.0198047
0.0014798
0.0096618
-0.0190079
0.0348863
0.0002686
-0.0118713
0.0342350
0.3614036
-0.0251766
0.0009896
0.0023901
0.0012961
-0.0197029
0.0014039
-0.0078555
0.0408608
-0.0337997
0.0215636
0.0381829
0.0000000
-0.0058642
0.0000000
-0.0068416
-0.0117285
0.0000000
0.0002448
0.0172362


<table>
<thead>
<tr>
<th>Pipe</th>
<th>Vol. Flow Rate</th>
<th>Velocity</th>
<th>P Static Max</th>
<th>P Static Min</th>
<th>Elevation Inlet</th>
<th>Elevation Outlet</th>
<th>dP Static Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7313</td>
<td>65</td>
<td>0.97</td>
<td>-0.0237</td>
<td>-0.12586</td>
<td>5.0</td>
<td>5.9</td>
<td>0.0102145</td>
</tr>
<tr>
<td>7501</td>
<td>146</td>
<td>0.80</td>
<td>3.7616</td>
<td>3.76131</td>
<td>3.6</td>
<td>3.6</td>
<td>0.000284</td>
</tr>
<tr>
<td>7502</td>
<td>146</td>
<td>0.80</td>
<td>3.7606</td>
<td>3.63774</td>
<td>3.6</td>
<td>4.8</td>
<td>0.0122860</td>
</tr>
<tr>
<td>7503</td>
<td>146</td>
<td>0.80</td>
<td>3.6370</td>
<td>3.63348</td>
<td>4.8</td>
<td>4.8</td>
<td>0.0003549</td>
</tr>
<tr>
<td>7504</td>
<td>146</td>
<td>0.80</td>
<td>3.6335</td>
<td>3.62993</td>
<td>4.8</td>
<td>4.8</td>
<td>0.0003549</td>
</tr>
<tr>
<td>7505</td>
<td>146</td>
<td>0.80</td>
<td>3.6293</td>
<td>3.62787</td>
<td>4.8</td>
<td>4.8</td>
<td>0.001422</td>
</tr>
<tr>
<td>7506</td>
<td>146</td>
<td>0.80</td>
<td>3.6279</td>
<td>3.18506</td>
<td>4.8</td>
<td>9.3</td>
<td>0.0442814</td>
</tr>
<tr>
<td>7507</td>
<td>146</td>
<td>0.80</td>
<td>3.1471</td>
<td>3.14533</td>
<td>9.7</td>
<td>9.7</td>
<td>0.0001780</td>
</tr>
<tr>
<td>7508</td>
<td>74</td>
<td>0.40</td>
<td>3.1477</td>
<td>3.14697</td>
<td>9.7</td>
<td>9.7</td>
<td>0.0000712</td>
</tr>
<tr>
<td>7509</td>
<td>0</td>
<td>0.00</td>
<td>3.1478</td>
<td>3.14778</td>
<td>9.7</td>
<td>9.7</td>
<td>0.0000000</td>
</tr>
<tr>
<td>7510</td>
<td>0</td>
<td>0.00</td>
<td>3.1478</td>
<td>3.14778</td>
<td>9.7</td>
<td>9.7</td>
<td>0.0000000</td>
</tr>
<tr>
<td>7511</td>
<td>72</td>
<td>1.07</td>
<td>3.2100</td>
<td>3.14276</td>
<td>9.7</td>
<td>9.0</td>
<td>-0.0672625</td>
</tr>
<tr>
<td>7512</td>
<td>72</td>
<td>1.07</td>
<td>3.3845</td>
<td>3.23073</td>
<td>8.8</td>
<td>7.2</td>
<td>-0.0153818</td>
</tr>
<tr>
<td>7513</td>
<td>72</td>
<td>1.07</td>
<td>3.4446</td>
<td>3.40976</td>
<td>6.9</td>
<td>6.6</td>
<td>-0.0034881</td>
</tr>
<tr>
<td>7514</td>
<td>43</td>
<td>0.65</td>
<td>3.4754</td>
<td>3.44829</td>
<td>6.6</td>
<td>6.3</td>
<td>-0.0027062</td>
</tr>
<tr>
<td>7515</td>
<td>43</td>
<td>0.65</td>
<td>3.5774</td>
<td>3.51151</td>
<td>5.9</td>
<td>5.2</td>
<td>-0.005897</td>
</tr>
<tr>
<td>7516</td>
<td>43</td>
<td>0.83</td>
<td>3.6593</td>
<td>3.57604</td>
<td>5.2</td>
<td>4.4</td>
<td>-0.0038217</td>
</tr>
<tr>
<td>7517</td>
<td>43</td>
<td>0.83</td>
<td>3.6883</td>
<td>3.65926</td>
<td>4.4</td>
<td>4.1</td>
<td>-0.0029073</td>
</tr>
<tr>
<td>7518</td>
<td>43</td>
<td>1.80</td>
<td>3.6877</td>
<td>3.67212</td>
<td>3.9</td>
<td>4.1</td>
<td>-0.005562</td>
</tr>
<tr>
<td>7519</td>
<td>43</td>
<td>1.80</td>
<td>3.6823</td>
<td>3.67844</td>
<td>3.9</td>
<td>3.9</td>
<td>-0.003827</td>
</tr>
<tr>
<td>7520</td>
<td>43</td>
<td>1.80</td>
<td>3.6753</td>
<td>3.67145</td>
<td>3.9</td>
<td>3.9</td>
<td>-0.003827</td>
</tr>
<tr>
<td>7521</td>
<td>43</td>
<td>1.80</td>
<td>2.4603</td>
<td>2.45648</td>
<td>3.9</td>
<td>3.9</td>
<td>-0.003827</td>
</tr>
<tr>
<td>7522</td>
<td>43</td>
<td>1.80</td>
<td>2.4420</td>
<td>2.43813</td>
<td>3.9</td>
<td>3.9</td>
<td>-0.003827</td>
</tr>
<tr>
<td>X7525</td>
<td>0</td>
<td>0.00</td>
<td>3.6627</td>
<td>3.66270</td>
<td>4.4</td>
<td>4.4</td>
<td>0.0000000</td>
</tr>
<tr>
<td>X7526</td>
<td>0</td>
<td>0.00</td>
<td>No Solution</td>
<td>No Solution</td>
<td>4.0</td>
<td>4.1</td>
<td>0.0008796</td>
</tr>
<tr>
<td>X7527</td>
<td>0</td>
<td>0.00</td>
<td>No Solution</td>
<td>No Solution</td>
<td>3.9</td>
<td>3.9</td>
<td>0.0000000</td>
</tr>
<tr>
<td>X7528</td>
<td>0</td>
<td>0.00</td>
<td>No Solution</td>
<td>No Solution</td>
<td>3.9</td>
<td>3.9</td>
<td>0.0000000</td>
</tr>
<tr>
<td>X7529</td>
<td>0</td>
<td>0.00</td>
<td>No Solution</td>
<td>No Solution</td>
<td>3.9</td>
<td>3.9</td>
<td>0.0000000</td>
</tr>
<tr>
<td>X7530</td>
<td>0</td>
<td>0.00</td>
<td>2.3985</td>
<td>2.39850</td>
<td>4.4</td>
<td>4.4</td>
<td>0.0049357</td>
</tr>
<tr>
<td>7531</td>
<td>29</td>
<td>1.67</td>
<td>3.4365</td>
<td>3.43449</td>
<td>6.6</td>
<td>6.6</td>
<td>-0.0002017</td>
</tr>
<tr>
<td>7532</td>
<td>29</td>
<td>1.67</td>
<td>3.4705</td>
<td>3.44222</td>
<td>6.4</td>
<td>6.1</td>
<td>-0.0028262</td>
</tr>
<tr>
<td>7533</td>
<td>29</td>
<td>1.67</td>
<td>3.4877</td>
<td>3.47588</td>
<td>5.9</td>
<td>6.0</td>
<td>0.0011852</td>
</tr>
<tr>
<td>7534</td>
<td>29</td>
<td>1.67</td>
<td>2.2284</td>
<td>2.16787</td>
<td>6.0</td>
<td>6.5</td>
<td>0.0060572</td>
</tr>
<tr>
<td>7540</td>
<td>43</td>
<td>1.80</td>
<td>2.4190</td>
<td>2.38235</td>
<td>4.1</td>
<td>4.4</td>
<td>0.0036610</td>
</tr>
<tr>
<td>7541</td>
<td>43</td>
<td>1.80</td>
<td>2.3823</td>
<td>2.29523</td>
<td>4.4</td>
<td>5.3</td>
<td>0.0087120</td>
</tr>
<tr>
<td>7542</td>
<td>43</td>
<td>1.47</td>
<td>2.3007</td>
<td>2.28384</td>
<td>5.3</td>
<td>5.4</td>
<td>0.0016835</td>
</tr>
<tr>
<td>7543</td>
<td>43</td>
<td>1.47</td>
<td>2.2662</td>
<td>2.17103</td>
<td>5.6</td>
<td>6.5</td>
<td>0.0052233</td>
</tr>
<tr>
<td>7544</td>
<td>72</td>
<td>2.43</td>
<td>2.1522</td>
<td>1.82438</td>
<td>6.5</td>
<td>9.5</td>
<td>0.0327823</td>
</tr>
<tr>
<td>7545</td>
<td>72</td>
<td>2.43</td>
<td>1.8017</td>
<td>1.73735</td>
<td>9.6</td>
<td>9.6</td>
<td>0.0064301</td>
</tr>
<tr>
<td>7546</td>
<td>146</td>
<td>4.93</td>
<td>1.6456</td>
<td>1.62728</td>
<td>9.6</td>
<td>7.7</td>
<td>0.0018298</td>
</tr>
<tr>
<td>7547</td>
<td>146</td>
<td>4.93</td>
<td>1.6055</td>
<td>1.03209</td>
<td>7.6</td>
<td>7.2</td>
<td>0.0573374</td>
</tr>
<tr>
<td>7548</td>
<td>146</td>
<td>4.93</td>
<td>-0.07398</td>
<td>-0.07398</td>
<td>7.1</td>
<td>5.9</td>
<td>0.1087490</td>
</tr>
<tr>
<td>7549</td>
<td>146</td>
<td>4.93</td>
<td>-0.0924</td>
<td>-0.10840</td>
<td>5.7</td>
<td>5.1</td>
<td>0.0016030</td>
</tr>
<tr>
<td>7551</td>
<td>74</td>
<td>1.10</td>
<td>3.2090</td>
<td>3.14173</td>
<td>9.7</td>
<td>9.0</td>
<td>-0.0067226</td>
</tr>
<tr>
<td>7552</td>
<td>74</td>
<td>1.10</td>
<td>3.3833</td>
<td>3.22959</td>
<td>8.8</td>
<td>7.2</td>
<td>-0.0153716</td>
</tr>
<tr>
<td>7553</td>
<td>74</td>
<td>1.10</td>
<td>3.4433</td>
<td>3.40847</td>
<td>6.9</td>
<td>6.6</td>
<td>-0.0034866</td>
</tr>
<tr>
<td>Pipe</td>
<td>dH (meters)</td>
<td>P Static In (barG)</td>
<td>P Static Out (barG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.13199</td>
<td>5.2280</td>
<td>5.20728</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.13199</td>
<td>5.2200</td>
<td>5.20713</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.00000</td>
<td>5.1973</td>
<td>5.18951</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.13215</td>
<td>5.2241</td>
<td>5.20338</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0.15489</td>
<td>5.2208</td>
<td>5.20562</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>0.00219</td>
<td>5.0184</td>
<td>4.90093</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>0.01917</td>
<td>4.9009</td>
<td>4.83064</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.01151</td>
<td>4.8302</td>
<td>4.82906</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>0.00636</td>
<td>3.9788</td>
<td>3.97819</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>0.00635</td>
<td>3.9806</td>
<td>3.97995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>0.00000</td>
<td>3.9301</td>
<td>3.93012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>0.00636</td>
<td>3.9813</td>
<td>3.98073</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>0.00655</td>
<td>4.0495</td>
<td>4.14480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>0.15189</td>
<td>4.0017</td>
<td>3.98689</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>0.06790</td>
<td>3.9325</td>
<td>3.72122</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>0.07458</td>
<td>3.6668</td>
<td>3.65955</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>0.22254</td>
<td>3.6573</td>
<td>3.63551</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>0.05845</td>
<td>3.5811</td>
<td>3.53985</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>0.08348</td>
<td>3.4855</td>
<td>3.47731</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>0.03393</td>
<td>3.4750</td>
<td>3.47171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>0.03337</td>
<td>3.4694</td>
<td>3.46616</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>0.05845</td>
<td>3.5160</td>
<td>3.54583</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>0.15575</td>
<td>3.5956</td>
<td>3.58042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>0.03393</td>
<td>3.5804</td>
<td>3.57710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>0.03504</td>
<td>3.5714</td>
<td>3.56796</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>0.00000</td>
<td>3.5789</td>
<td>3.57888</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1030</td>
<td>0.04029</td>
<td>1.0160</td>
<td>0.97624</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>0.00000</td>
<td>1.5074</td>
<td>1.50741</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>0.00031</td>
<td>1.5064</td>
<td>1.50635</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1102</td>
<td>0.03493</td>
<td>1.4965</td>
<td>1.49308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1103</td>
<td>0.03382</td>
<td>1.4874</td>
<td>1.48408</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1104</td>
<td>0.15525</td>
<td>1.4841</td>
<td>1.46891</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1105</td>
<td>0.05825</td>
<td>1.4145</td>
<td>1.37327</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1106</td>
<td>0.03327</td>
<td>1.3189</td>
<td>1.31564</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1107</td>
<td>0.03382</td>
<td>1.3134</td>
<td>1.31006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1108</td>
<td>0.08320</td>
<td>1.3078</td>
<td>1.29965</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1109</td>
<td>0.05825</td>
<td>1.3495</td>
<td>1.37935</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>0.22182</td>
<td>1.4292</td>
<td>1.40749</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>0.07433</td>
<td>1.4052</td>
<td>1.39794</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1112</td>
<td>0.06768</td>
<td>1.4478</td>
<td>1.64581</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1113</td>
<td>0.15140</td>
<td>1.6956</td>
<td>1.68083</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1151</td>
<td>0.00655</td>
<td>1.2912</td>
<td>1.19463</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>1.55521</td>
<td>4.2171</td>
<td>4.40718</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>0.06939</td>
<td>0.9064</td>
<td>0.55750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2501</td>
<td>0.02749</td>
<td>2.8114</td>
<td>2.80872</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2508</td>
<td>0.08539</td>
<td>0.1624</td>
<td>0.28109</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe</td>
<td>dH (meters)</td>
<td>P Static In (barG)</td>
<td>P Static Out (barG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>0.14276</td>
<td>4.2610</td>
<td>3.91868</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3003</td>
<td>36.97701</td>
<td>4.9523</td>
<td>1.33827</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3005</td>
<td>0.78406</td>
<td>0.2417</td>
<td>0.49342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3501</td>
<td>0.10125</td>
<td>2.8593</td>
<td>2.84945</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3508</td>
<td>0.24454</td>
<td>0.2386</td>
<td>0.21472</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3511</td>
<td>0.13261</td>
<td>2.8276</td>
<td>2.81460</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3518</td>
<td>0.38410</td>
<td>0.0148</td>
<td>0.21183</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3521</td>
<td>0.14364</td>
<td>2.8133</td>
<td>2.79924</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3530</td>
<td>0.49627</td>
<td>0.1587</td>
<td>0.23729</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4001</td>
<td>0.68067</td>
<td>4.2339</td>
<td>3.82532</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4004</td>
<td>0.04178</td>
<td>0.2270</td>
<td>0.56497</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4201</td>
<td>3.05628</td>
<td>5.2267</td>
<td>5.01104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4204</td>
<td>3.05668</td>
<td>1.3864</td>
<td>1.00454</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7003</td>
<td>0.00000</td>
<td>No Solution</td>
<td>1.50103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7015</td>
<td>0.00000</td>
<td>1.1589</td>
<td>1.21759</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7016</td>
<td>0.00000</td>
<td>1.2176</td>
<td>1.21759</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7017</td>
<td>0.00000</td>
<td>1.2176</td>
<td>1.28600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7018</td>
<td>0.00000</td>
<td>1.2860</td>
<td>1.40329</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7300</td>
<td>0.00000</td>
<td>4.7872</td>
<td>4.78719</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7311</td>
<td>0.02505</td>
<td>0.0017</td>
<td>-0.00078</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7312</td>
<td>1.07352</td>
<td>0.1262</td>
<td>-0.04617</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7313</td>
<td>0.07510</td>
<td>-0.0237</td>
<td>-0.12586</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7501</td>
<td>0.00290</td>
<td>3.7616</td>
<td>3.76131</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7502</td>
<td>0.04604</td>
<td>3.7606</td>
<td>3.63774</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7503</td>
<td>0.03631</td>
<td>3.6370</td>
<td>3.63348</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7504</td>
<td>0.03631</td>
<td>3.6335</td>
<td>3.62993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7505</td>
<td>0.01455</td>
<td>3.6293</td>
<td>3.62787</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7506</td>
<td>0.02665</td>
<td>3.6279</td>
<td>3.18506</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7507</td>
<td>0.01821</td>
<td>3.1471</td>
<td>3.14533</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7508</td>
<td>0.00728</td>
<td>3.1477</td>
<td>3.14697</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7509</td>
<td>0.00000</td>
<td>3.1478</td>
<td>3.14778</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7510</td>
<td>0.00000</td>
<td>3.1478</td>
<td>3.14778</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7511</td>
<td>0.00778</td>
<td>3.1428</td>
<td>3.21002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7512</td>
<td>0.02022</td>
<td>3.2307</td>
<td>3.38455</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7513</td>
<td>0.00311</td>
<td>3.4098</td>
<td>3.44464</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7514</td>
<td>0.00211</td>
<td>3.4483</td>
<td>3.47535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7515</td>
<td>0.01478</td>
<td>3.5115</td>
<td>3.57740</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7516</td>
<td>0.00457</td>
<td>3.5760</td>
<td>3.65926</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7517</td>
<td>0.00254</td>
<td>3.6593</td>
<td>3.68833</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7518</td>
<td>0.00522</td>
<td>3.6877</td>
<td>3.67212</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7519</td>
<td>0.03916</td>
<td>3.6823</td>
<td>3.67844</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7520</td>
<td>0.03916</td>
<td>3.6753</td>
<td>3.67145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7521</td>
<td>0.03916</td>
<td>2.4603</td>
<td>2.45648</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7522</td>
<td>0.03916</td>
<td>2.4420</td>
<td>2.43813</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7525</td>
<td>0.00000</td>
<td>3.6627</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7526</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe</td>
<td>dH (meters)</td>
<td>P Static In (barG)</td>
<td>P Static Out (barG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7527</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7528</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7529</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7530</td>
<td>0.00000</td>
<td>No Solution</td>
<td>2.39850</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7531</td>
<td>0.02063</td>
<td>3.4365</td>
<td>3.43449</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7532</td>
<td>0.02063</td>
<td>3.4422</td>
<td>3.47050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7533</td>
<td>0.04127</td>
<td>3.4877</td>
<td>3.47588</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7534</td>
<td>0.11974</td>
<td>2.2284</td>
<td>2.16787</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7540</td>
<td>0.01958</td>
<td>2.4190</td>
<td>2.38235</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7541</td>
<td>0.02937</td>
<td>2.3823</td>
<td>2.29523</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7542</td>
<td>0.00925</td>
<td>2.3007</td>
<td>2.28384</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7543</td>
<td>0.07427</td>
<td>2.2662</td>
<td>2.17103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7544</td>
<td>0.38712</td>
<td>2.1522</td>
<td>1.82438</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7545</td>
<td>0.65789</td>
<td>1.8017</td>
<td>1.73735</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7546</td>
<td>2.06421</td>
<td>1.6456</td>
<td>1.62728</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7547</td>
<td>6.28848</td>
<td>1.6055</td>
<td>1.03209</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7548</td>
<td>12.31866</td>
<td>1.0136</td>
<td>-0.07389</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7549</td>
<td>0.81901</td>
<td>-0.0924</td>
<td>-0.10840</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7551</td>
<td>0.00817</td>
<td>3.1417</td>
<td>3.20896</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7552</td>
<td>0.02125</td>
<td>3.2296</td>
<td>3.38331</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7553</td>
<td>0.00327</td>
<td>3.4085</td>
<td>3.44334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7554</td>
<td>0.00222</td>
<td>3.4472</td>
<td>3.47424</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7555</td>
<td>0.01554</td>
<td>3.5104</td>
<td>3.57619</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7556</td>
<td>0.00479</td>
<td>3.5748</td>
<td>3.65795</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7557</td>
<td>0.00266</td>
<td>3.6580</td>
<td>3.68701</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7558</td>
<td>0.00548</td>
<td>3.6855</td>
<td>3.66992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7559</td>
<td>0.04109</td>
<td>3.6798</td>
<td>3.67581</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7560</td>
<td>0.04109</td>
<td>3.6725</td>
<td>3.66846</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7561</td>
<td>0.04109</td>
<td>2.3913</td>
<td>2.38727</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7562</td>
<td>0.04109</td>
<td>2.3720</td>
<td>2.36795</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7565</td>
<td>0.00000</td>
<td>3.6616</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7566</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7567</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7568</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7569</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7570</td>
<td>0.00000</td>
<td>No Solution</td>
<td>2.32885</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7571</td>
<td>0.02170</td>
<td>3.4348</td>
<td>3.43265</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7572</td>
<td>0.02170</td>
<td>3.4402</td>
<td>3.46833</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7573</td>
<td>0.04340</td>
<td>3.4854</td>
<td>3.42449</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7574</td>
<td>0.12603</td>
<td>2.1091</td>
<td>2.09186</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7580</td>
<td>0.02054</td>
<td>2.3485</td>
<td>2.31183</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7581</td>
<td>0.03082</td>
<td>2.3118</td>
<td>2.22456</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7582</td>
<td>0.00973</td>
<td>2.2303</td>
<td>2.21342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7583</td>
<td>0.07817</td>
<td>2.1957</td>
<td>2.09519</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7584</td>
<td>0.40758</td>
<td>2.0753</td>
<td>1.73574</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7601</td>
<td>0.01436</td>
<td>-0.0091</td>
<td>-0.01053</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe</td>
<td>dH</td>
<td>P Static In (barG)</td>
<td>P Static Out (barG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7602</td>
<td>0.03037</td>
<td>-0.0265</td>
<td>-0.02946</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7603</td>
<td>0.00805</td>
<td>-0.0793</td>
<td>-0.08005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7604</td>
<td>0.06584</td>
<td>1.9222</td>
<td>1.91520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7605</td>
<td>0.00200</td>
<td>2.0159</td>
<td>2.01536</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7606</td>
<td>0.00600</td>
<td>1.8035</td>
<td>1.78551</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7607</td>
<td>0.01000</td>
<td>1.6682</td>
<td>1.62719</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7611</td>
<td>0.00000</td>
<td>0.0129</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7612</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7613</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7614</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7615</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7616</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7617</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7618</td>
<td>0.00000</td>
<td>No Solution</td>
<td>1.64921</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7619</td>
<td>0.02602</td>
<td>1.6272</td>
<td>1.62465</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7620</td>
<td>0.03507</td>
<td>1.6389</td>
<td>1.48582</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7621</td>
<td>0.44061</td>
<td>1.4547</td>
<td>1.56766</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7622</td>
<td>0.10721</td>
<td>1.5952</td>
<td>1.71288</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7623</td>
<td>0.11031</td>
<td>1.7404</td>
<td>1.86337</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7624</td>
<td>0.13695</td>
<td>1.8909</td>
<td>1.46921</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7625</td>
<td>0.03284</td>
<td>1.4381</td>
<td>1.49962</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7631</td>
<td>0.00000</td>
<td>3.6366</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7632</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7633</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7634</td>
<td>0.00000</td>
<td>No Solution</td>
<td>3.63103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8101</td>
<td>0.03046</td>
<td>3.5680</td>
<td>3.49364</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8102</td>
<td>0.00834</td>
<td>3.5434</td>
<td>3.63001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8103</td>
<td>0.10237</td>
<td>3.6276</td>
<td>3.86780</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8104</td>
<td>0.03262</td>
<td>3.9173</td>
<td>3.75384</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8105</td>
<td>0.00458</td>
<td>3.7595</td>
<td>3.73171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8106</td>
<td>0.08167</td>
<td>3.6876</td>
<td>3.44436</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8107</td>
<td>0.47247</td>
<td>3.3894</td>
<td>3.34326</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8108</td>
<td>0.99215</td>
<td>3.3397</td>
<td>3.39282</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8109</td>
<td>0.56655</td>
<td>3.3526</td>
<td>3.15371</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8110</td>
<td>0.18807</td>
<td>3.1501</td>
<td>3.45533</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8111</td>
<td>0.19367</td>
<td>3.4890</td>
<td>3.60013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8112</td>
<td>0.19367</td>
<td>3.6338</td>
<td>3.10611</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8140</td>
<td>0.59252</td>
<td>1.3236</td>
<td>1.62002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8141</td>
<td>0.94645</td>
<td>1.6531</td>
<td>1.74021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8142</td>
<td>1.55755</td>
<td>1.7733</td>
<td>1.47140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8143</td>
<td>0.43217</td>
<td>1.4311</td>
<td>1.86147</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8144</td>
<td>0.21587</td>
<td>1.8945</td>
<td>1.46976</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8145</td>
<td>0.05586</td>
<td>1.4295</td>
<td>1.49139</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9201</td>
<td>0.05457</td>
<td>2.7675</td>
<td>2.65171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9208</td>
<td>0.14427</td>
<td>3.6685</td>
<td>3.49410</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9209</td>
<td>0.14500</td>
<td>1.8769</td>
<td>2.02301</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AFT Fathom Model

Pipe Table

<table>
<thead>
<tr>
<th>Pipe</th>
<th>dH (meters)</th>
<th>P Static In (barG)</th>
<th>P Static Out (barG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9216</td>
<td>0.05476</td>
<td>0.2040</td>
<td>0.30909</td>
</tr>
<tr>
<td>9218</td>
<td>0.40285</td>
<td>3.6584</td>
<td>3.23496</td>
</tr>
<tr>
<td>9219</td>
<td>0.15448</td>
<td>1.6663</td>
<td>2.03430</td>
</tr>
<tr>
<td>9221</td>
<td>0.00000</td>
<td>2.5838</td>
<td>2.49180</td>
</tr>
<tr>
<td>X9228</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
</tr>
<tr>
<td>X9229</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
</tr>
<tr>
<td>9236</td>
<td>0.00000</td>
<td>0.0395</td>
<td>0.13143</td>
</tr>
<tr>
<td>X9238</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
</tr>
<tr>
<td>X9239</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
</tr>
<tr>
<td>9401</td>
<td>0.44185</td>
<td>4.1392</td>
<td>3.68551</td>
</tr>
<tr>
<td>X9236</td>
<td>0.00000</td>
<td>0.10611</td>
<td>0.1267</td>
</tr>
<tr>
<td>112</td>
<td>0.10613</td>
<td>3.981</td>
<td>0.1267</td>
</tr>
<tr>
<td>X122</td>
<td>0.12705</td>
<td>3.930</td>
<td>0.1271</td>
</tr>
<tr>
<td>132</td>
<td>0.10904</td>
<td>3.981</td>
<td>0.1297</td>
</tr>
<tr>
<td>X7012</td>
<td>0.00000</td>
<td>No Solution</td>
<td>No Solution</td>
</tr>
<tr>
<td>7311</td>
<td>0.00000</td>
<td>0.0395</td>
<td>0.13143</td>
</tr>
<tr>
<td>9712</td>
<td>0.00000</td>
<td>0.10611</td>
<td>0.1267</td>
</tr>
<tr>
<td>9713</td>
<td>0.33655</td>
<td>-0.0741</td>
<td>-0.04297</td>
</tr>
<tr>
<td>9714</td>
<td>0.52816</td>
<td>0.0352</td>
<td>-0.04417</td>
</tr>
</tbody>
</table>

Pump Table

<table>
<thead>
<tr>
<th>Pump</th>
<th>Name</th>
<th>P Static In (barG)</th>
<th>P Static Out (barG)</th>
<th>P Stag. In (barG)</th>
<th>P Stag. Out (barG)</th>
<th>Vol. Flow Rate Thru Jct (m³/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>x2006</td>
<td>0.10611</td>
<td>3.979</td>
<td>0.1267</td>
<td>4.0312</td>
<td>1.375</td>
</tr>
<tr>
<td>112</td>
<td>x2005</td>
<td>0.10613</td>
<td>3.981</td>
<td>0.1267</td>
<td>4.0329</td>
<td>1.375</td>
</tr>
<tr>
<td>X122</td>
<td>x2004</td>
<td>0.12705</td>
<td>3.930</td>
<td>0.1271</td>
<td>3.9301</td>
<td>0</td>
</tr>
<tr>
<td>132</td>
<td>x2003</td>
<td>0.10904</td>
<td>3.981</td>
<td>0.1297</td>
<td>4.0337</td>
<td>1.375</td>
</tr>
<tr>
<td>X7002</td>
<td>Pump</td>
<td>No Solution</td>
<td>No Solution</td>
<td>No Solution</td>
<td>No Solution</td>
<td>0</td>
</tr>
<tr>
<td>X7012</td>
<td>Pump</td>
<td>No Solution</td>
<td>No Solution</td>
<td>No Solution</td>
<td>No Solution</td>
<td>0</td>
</tr>
<tr>
<td>7311</td>
<td>Pump</td>
<td>-0.00078</td>
<td>0.126</td>
<td>0.0233</td>
<td>0.1976</td>
<td>65</td>
</tr>
<tr>
<td>7603</td>
<td>G2267</td>
<td>-0.08005</td>
<td>1.922</td>
<td>-0.0140</td>
<td>2.2623</td>
<td>244</td>
</tr>
<tr>
<td>X7632</td>
<td>Booster Pump</td>
<td>No Solution</td>
<td>No Solution</td>
<td>No Solution</td>
<td>No Solution</td>
<td>0</td>
</tr>
<tr>
<td>8130</td>
<td>Pump</td>
<td>0.07395</td>
<td>4.875</td>
<td>0.0817</td>
<td>4.8912</td>
<td>328</td>
</tr>
</tbody>
</table>

Mass Flow Rate Thru Jct (kg/hr)

<table>
<thead>
<tr>
<th>Pump</th>
<th>Rate Thru Jct (kg/hr)</th>
<th>Loss Factor (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>1,370,624</td>
<td>0.0000</td>
</tr>
<tr>
<td>112</td>
<td>1,369,968</td>
<td>0.0000</td>
</tr>
<tr>
<td>X122</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>132</td>
<td>1,370,770</td>
<td>0.0000</td>
</tr>
<tr>
<td>X7002</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>X7012</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>7311</td>
<td>64,782</td>
<td>0.0000</td>
</tr>
<tr>
<td>Pump</td>
<td>Mass Flow Rate Thru Jct (kg/hr)</td>
<td>Loss Factor (K)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>7603</td>
<td>243,427</td>
<td>0.0000</td>
</tr>
<tr>
<td>X7613</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>X7632</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>8130</td>
<td>326,899</td>
<td>0.0000</td>
</tr>
</tbody>
</table>