TESIS

“CADEA DE PRODUCCIÓN, TRANSPORTE Y MONTAJE DE VIGAS PRETENSADAS PARA LA CONSTRUCCIÓN DE UN VIADUCTO ELEVADO DE USO FERROVIARIO ELÉCTRICO”

PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

ELABORADO POR

ARMANDO RODRIGO SÁNCHEZ HUAYTALLA

ASESOR

DR. CÉSAR ALFREDO FUENTES ORTIZ

LIMA – PERÚ

2017
ÍNDICE

RESUMEN... 5
ABSTRACT.. 6
PRÓLOGO.. 7
LISTA DE TABLAS... 8
LISTA DE FIGURAS... 10
LISTA DE GRÁFICOS... 13
LISTA DE SÍMBOLOS Y SIGLAS... 14

CAPÍTULO I: INTRODUCCIÓN.. 15
1.1 GENERALIDADES.. 15
1.2 PROBLEMÁTICA.. 15
1.3 OBJETIVOS... 17

CAPÍTULO II: FUNDAMENTO TEÓRICO.. 18
2.1 PROCESO.. 18
2.2 PLANIFICACIÓN.. 19
2.3 LOS PREFABRICADOS DE CONCRETO.. 20
2.4. HISTORIA DE LOS PREFABRICADOS... 20
2.4.1 Primeros usos de los prefabricados en Europa en viaductos ferroviarios.. 20
2.4.2 Usos de los prefabricados en obras ferroviarias en el Perú 20
2.5 INDUSTRIALIZACIÓN DE LA CONTRUCCIÓN 21
2.5.1 Sistemas constructivos prefabricados ... 21
2.6 VIGAS PREFABRICADAS USADAS EN VIADUCTOS............................... 23
2.7 PLANTAS DE PREFABRICADOS DE CONCRETO.................................. 26
2.7.1 Capacidad de Planta... 26
2.7.2 Distribución de Planta.. 26

CAPÍTULO III: ASPECTOS GENERALES.. 28
3.1 INFRAESTRUCTURA FERROVIARIA - OBRAS CIVILES....................... 28
3.1.1 Viaducto.. 28
3.1.2 Puentes... 29
3.1.3 Estaciones de Pasajeros.. 30
CAPÍTULO IV: ABASTECIMIENTO DE MATERIALES .. 45
4.1 LA GESTIÓN DEL ABASTECIMIENTO .. 45
4.1.1 Insumos principales .. 45
4.1.2 Criterios de compra y aspectos de logística .. 46
4.1.3 Almacenamiento ... 49

CAPÍTULO V: PROCESOS DE FABRICACIÓN DE LAS VIGAS 50
5.1 PROCESOS QUE INTERVIENEN EN LA FABRICACIÓN 50
5.2 PROCEDIMIENTO CONSTRUCTIVO .. 51
5.2.1 Distribución de líneas de producción ... 51
5.2.2 Habilitación del acero de refuerzo ... 51
5.2.3 Colocación de puesta a tierra para sistema electromecánico 52
5.2.4 Colocación de encofrado .. 53
5.2.5 Colocación de ductos/insertos ... 54
5.2.6 Colocación de cables para el pretensado .. 54
5.2.7 Vaciado de concreto de las vigas ... 57
5.2.8 Curado de concreto .. 58
5.2.9 Corte de cables de pretensado ... 59
5.2.10 Protección de torones .. 59
5.2.11 Reparación de burbujas superficiales ... 61
5.2.12 Reparación de cantos quebrados ... 61
5.2.13 Equipos utilizados en la Planta de Prefabricados 62
5.2.14 Personal involucrado por actividad en la Línea 1 Tramo 2 62
5.3 CASO LÍNEA 1 DEL METRO DE LIMA .. 74
5.3.1 Comparaciones de Producción Tramo 2 Vs Tramo 1 74
5.4 COSTOS DE PRODUCCIÓN DE VIGAS PREFABRICADAS PRETENSADAS EN PROYECTOS FERROVIARIOS A NIVEL NACIONAL.. 77
5.4.1 Arequipa.. 81
5.4.2 Trujillo.. 83

CAPÍTULO VI: TRANSPORTE A OBRA... 87
6.1 TRANSPORTE A OBRA... 87
6.1.1 Ubicación de la planta con respecto a la Obra...................................... 87
6.1.2 Consideraciones a tomar antes de iniciar las operaciones de traslado... 87
6.1.3 Durante el traslado.. 88
6.2 CASO METRO DE LIMA LINEA 1 ... 89
6.3 COSTOS DE TRANSPORTE DE VIGAS PREFABRICADAS PRETENSADAS EN PROYECTOS FERROVIARIOS A NIVEL NACIONAL.. 93
6.3.1 Arequipa.. 93
6.3.1 Trujillo.. 94

CAPÍTULO VII: MONTAJE DE VIGAS EN VIADUCTO.................................... 95
7.1 MONTAJE DE VIGAS... 95
7.1.1 Elemento a izar... 95
7.1.2 Puntos de izaje... 95
7.1.3 Maquinaria adecuada.. 95
7.1.4 Medidas de seguridad.. 96
7.2 MONTAJE DE VIGAS – CASO LINEA 1 ... 96
7.2.1 Equipos que se utilizaron para el izaje ... 96
7.2.2 Previo al izaje ... 96
7.2.3 Durante al izaje.. 97
7.2.4 Arriostre de vigas.. 97
7.2.5 Control Topográfico.. 99
7.3 COSTOS DE MONTAJE DE VIGAS PREFABRICADAS PRETENSADAS EN PROYECTOS FERROVIARIOS A NIVEL NACIONAL.. 103
7.3.1 Arequipa.. 103
CAPÍTULO VIII: PLANIFICACIÓN Y GESTIÓN DE LOS PROCESOS........ 105
8.1 PLANIFICACIÓN .. 105
8.1.1 Planes de Trabajo para la elaboración de elementos prefabricados 105
8.2 GESTIÓN ... 108
8.2.1 Gestión de la producción y costos ... 108
8.2.2 Gestión de la calidad ... 112
8.3 PRODUCCIÓN, TRANSPORTE Y MONTAJE DE VIGAS PREFABRICADAS
PRETENSADAS EN PROYECTOS FERROVIARIOS A NIVEL
NACIONAL .. 124

CAPÍTULO IX: INNOVACIÓN DE LOS PREFABRICADOS 129
9.1 LA INNOVACIÓN EN LA CONSTRUCCIÓN .. 129
9.1.1 Importancia de la innovación ... 129
9.1.2 La innovación en el Línea 1 Tramo 2 .. 129

CONCLUSIONES .. 144
RECOMENDACIONES ... 146
REFERENCIAS BIBLIOGRÁFICAS... 147
ANEXOS ... 149
RESUMEN

Actualmente se están desarrollando muchos proyectos en el país y muchos de ellos cuentan con una planta de prefabricados, pero muy pocos demandarán un volumen de elementos prefabricados como los viaductos elevados de uso ferroviario, como por ejemplo la Línea 1 del Metro de Lima.

El proceso de fabricación de las vigas prefabricadas que forman parte del viaducto de la Línea 1 se llevó a cabo en el Planta de Prefabricados, donde se realiza el ensamblaje de las armaduras, las tareas de soldadura y amarre, pretensado y vaciado.

Las vigas prefabricadas eran trasladadas desde la planta a los diferentes puntos de la obra en la noche, de esta manera, la construcción del viaducto tenía un proceso industrial en cuanto se refiere a las vigas y otros elementos prefabricados usados (prelosas, canaletas, etc.).

La rápida construcción del viaducto de la Línea 1 fue producto de estos elementos prefabricados de concreto, que permitieron avanzar el tramo de la avenida Próceres de la Independencia sin interrumpir el tráfico ni molestar a los vecinos.

Teniendo esta experiencia de los prefabricados de la Línea 1, la presente Tesis trata de cubrir todo el proceso seguido, desde el abastecimiento de los materiales, fabricación, transporte a obra, así como también se muestra el proceso de control de calidad aplicado al proceso de fabricación de las vigas pretensadas.

Por último, se hace un compendio de lo explicado anteriormente para poder converger todas las ideas y tener una idea de la magnitud del proyecto. Basándose en estas experiencias se estimaran costos de producción en las ciudades de Arequipa y Trujillo.

Como algo adicional a estos temas, se presenta la fabricación de vigas cabezales como elemento innovador en este tipo de obras.
ABSTRACT

Many projects are being developed in the country and many of them have a prefabricated plant, but few will require a volume of prefabricated elements such as elevated railway viaducts, for example the Line 1 of the Lima Metro.

The manufacturing process of prefabricated beams that are part of the Line 1 viaduct was carried out in the Prefabricated Plant, where the assembly of the reinforcements, the tasks of welding and mooring, prestressing and casting were carried out.

The prefabricated beams were moved from the plant to the different points of the work at night, thus, the construction of the viaduct had an industrial process as far as the beams and other prefabricated elements used (pre-slabs, gutters, etc.).

The rapid construction of the Line 1 viaduct was a product of these prefabricated concrete elements, which allowed the advance of the Proceres de la Independencia Avenue without interrupting traffic or disturbing neighbors.

Having this experience of the prefabricated of the Line 1, this thesis tries to cover all the process followed, from the supply of materials, manufacturing, transport to work, as well as the process of quality control applied to the process of prestressed beams.

Finally, a compendium of the above explained is made to be able to converge all the ideas and to have an idea of the magnitude of the project. Based on these experiences, production costs were estimated in the cities of Arequipa and Trujillo.

As something additional to these issues, the manufacture of head beams is presented as an innovative element in this type of works.

Keywords: prefabricated beams, Metro of Lima, Line 1.
PRÓLOGO

El transporte masivo de pasajeros está ganando mayor aceptación en nuestra capital, pero no son suficientes para disminuir las distancias entre puntos de la Capital, teniendo esta experiencia, las demás ciudades del país como Arequipa y Trujillo, les depararía la misma suerte si es que no se toman las medidas correspondientes a tiempo.

Los proyectos ferroviarios como el metro, son de gran inversión en comparación a la construcción de viaductos elevados de uso ferroviario,

La presente tesis desarrolla el proceso de elaboración transporte y montaje de una viga prefabricada pretensada, la cual forma parte de un viaducto elevado de uso ferroviario, usando como base un proyecto ya existente, la Línea 1 del Metro de Lima, basándose en estas experiencias se ha desarrollado el costo de la vigas para líneas de metro en las ciudades de Arequipa y Trujillo, estimando el costo del proyecto en estas ciudades.
LISTA DE TABLAS

Tabla Nº 1.1: Costos totales y por Km de Metros en Latinoamérica, 16
Tabla Nº 2.1: Secuencia de actividades y procesos dentro de la partida
Fabricación de Vigas Pretensadas Prefabricadas, 18
Tabla Nº 5.1: Secuencia de actividades y procesos dentro de la partida
Fabricación de Vigas Pretensadas Prefabricadas, 50
Tabla Nº 5.2: Relación de Personal, 63
Tabla Nº 5.3: Comparación de producción de elementos en planta del
Tramo 1 vs Tramo 2, 75
Tabla Nº 5.4: Matriz de decisión de una viga Tipo I de 50m de largo y
2.50m de peralte, 78
Tabla Nº 5.5: Matriz de decisión de una viga Tipo I de 25m de largo y
1.80m de peralte, 79
Tabla Nº 5.6: Matriz de decisión de una viga Tipo I de 20m de largo y
1.20m de peralte, 80
Tabla Nº 5.7: Resumen de viaducto elevado propuesto para la ciudad de
Arequipa, 81
Tabla Nº 5.8: Costo de Planta por m3 de viga producida en Arequipa, 83
Tabla Nº 5.9: Análisis de Precios Unitarios de la partida Fabricación de
vigas prefabricadas pretensadas en Arequipa, 83
Tabla Nº 5.10: Resumen de viaducto elevado propuesto para la ciudad
de Trujillo, 84
Tabla Nº 5.11: Costo de Planta por m3 de viga producida en Trujillo, 86
Tabla Nº 5.12: Análisis de Precios Unitarios de la partida Fabricación de
vigas prefabricadas pretensadas en Trujillo, 86
Tabla Nº 6.1: Secuencia de actividades y procesos dentro de la partida
Fabricación de Vigas Pretensadas Prefabricadas, 87
Tabla Nº 6.2: Análisis de Precios Unitarios de la partida Transporte de
vigas prefabricadas pretensadas en Arequipa, 94
Tabla Nº 6.3: Análisis de Precios Unitarios de la partida Transporte de
vigas prefabricadas pretensadas en Trujillo, 94
Tabla Nº 7.1: Secuencia de actividades y procesos dentro de la partida
Montaje de Vigas Prefabricadas, 95
Tabla Nº 7.2: Dimensiones y pesos de vigas prefabricadas, 97
Tabla Nº 7.3: Análisis de Precios Unitarios de la partida Montaje de vigas prefabricadas en Arequipa .. 103
Tabla Nº 7.4: Análisis de Precios Unitarios de la partida Montaje de vigas prefabricadas en Trujillo .. 104
Tabla Nº 8.1: Vigas de 1.3 m de peralte .. 108
Tabla Nº 8.2: Vigas de 1.8 m de peralte .. 109
Tabla Nº 8.3: Costos Totales de Prefabricados por Tramo 110
Tabla Nº 8.4: Costos Totales de Prefabricados por Estaciones 110
Tabla Nº 8.5: Incidencia presupuestal en Obra del Viaducto Tramo 2 111
Tabla Nº 8.6: Indicadores de Producción (mensual) 112
Tabla Nº 8.7: Costo Total por m3 de viga fabricada en Arequipa 124
Tabla Nº 8.8: Estimación de coste de Obra Civil (Viaducto) de la Línea proyectada en Arequipa ... 125
Tabla Nº 8.9: Costo Total por m3 de viga fabricada en Trujillo 126
Tabla Nº 8.10: Estimación de coste de Obra Civil (Viaducto) de la Línea proyectada en Trujillo ... 126
Tabla Nº 8.11: Comparativo del costo de los materiales más representativos según la ubicación del proyecto 127
Tabla Nº 8.12: Variación del costo de los materiales respecto a los precios en Lima ... 127
Tabla Nº 8.13: Comparativo del costo de los materiales según la ubicación del proyecto ... 128
Tabla N° 9.1: Productividad en vigas cabezales 131
LISTA DE FIGURAS

<table>
<thead>
<tr>
<th>Figura Nº 2.1:</th>
<th>Esquema de análisis de las actividades y partidas</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura Nº 2.2:</td>
<td>Viga Tipo I</td>
<td>23</td>
</tr>
<tr>
<td>Figura Nº 2.3:</td>
<td>Puente con tableros de vigas U de canto variable</td>
<td>24</td>
</tr>
<tr>
<td>Figura Nº 2.4:</td>
<td>Tableros pre fabricados en curva</td>
<td>24</td>
</tr>
<tr>
<td>Figura Nº 2.5:</td>
<td>Pieza cantiléver</td>
<td>25</td>
</tr>
<tr>
<td>Figura Nº 2.6:</td>
<td>Pieza central montada sobre las piezas cantiléver</td>
<td>25</td>
</tr>
<tr>
<td>Figura Nº 2.7:</td>
<td>Distribución de planta por procesos</td>
<td>27</td>
</tr>
<tr>
<td>Figura Nº 2.8:</td>
<td>Distribución de planta por productos</td>
<td>27</td>
</tr>
<tr>
<td>Figura Nº 3.1:</td>
<td>Sección Típica del Viaducto Elevado</td>
<td>28</td>
</tr>
<tr>
<td>Figura Nº 3.2:</td>
<td>Descripción de elementos prefabricados usados en el viaducto elevado de la Línea 1 Tramo 2</td>
<td>29</td>
</tr>
<tr>
<td>Figura Nº 3.3:</td>
<td>Carros de avance sobre el Río Rimac</td>
<td>29</td>
</tr>
<tr>
<td>Figura Nº 3.4:</td>
<td>Vistas 3D de algunas Estaciones de la Línea 1 del Metro de Lima según el Expediente Técnico</td>
<td>30</td>
</tr>
<tr>
<td>Figura Nº 3.5:</td>
<td>Geometría de Vigas de 1.8m de peralte</td>
<td>31</td>
</tr>
<tr>
<td>Figura Nº 3.6:</td>
<td>Distribución de tendones para el pretensado en vigas</td>
<td>32</td>
</tr>
<tr>
<td>Figura Nº 3.7:</td>
<td>Distribución de armadura para vigas pretensadas</td>
<td>32</td>
</tr>
<tr>
<td>Figura Nº 3.8:</td>
<td>Geometría de Vigas de 1.3m de peralte</td>
<td>33</td>
</tr>
<tr>
<td>Figura Nº 3.9:</td>
<td>Geometría de pre losas</td>
<td>34</td>
</tr>
<tr>
<td>Figura Nº 3.10:</td>
<td>Geometría de borde típico</td>
<td>35</td>
</tr>
<tr>
<td>Figura Nº 3.11:</td>
<td>Vista isométrica de la viga cabezal prefabricada</td>
<td>36</td>
</tr>
<tr>
<td>Figura Nº 3.12:</td>
<td>Ubicación Planta de Prefabricados de la Línea 1 Tramo 2</td>
<td>37</td>
</tr>
<tr>
<td>Figura Nº 3.13:</td>
<td>Layout de distribución de la planta de la Línea 1 Tramo 2</td>
<td>38</td>
</tr>
<tr>
<td>Figura Nº 3.14:</td>
<td>Distribución de la Planta de prefabricados</td>
<td>39</td>
</tr>
<tr>
<td>Figura Nº 3.15:</td>
<td>Vista panorámica de la Planta de prefabricado de la Línea 1 Tramo 2</td>
<td>40</td>
</tr>
<tr>
<td>Figura Nº 3.16:</td>
<td>Vista panorámica de las grúas pórtico de la planta de la Línea 1 Tramo 2</td>
<td>41</td>
</tr>
<tr>
<td>Figura Nº 3.17:</td>
<td>Vista panorámica del área de almacenamiento de vigas de la planta de la Línea 1 Tramo 2</td>
<td>42</td>
</tr>
<tr>
<td>Figura Nº 3.18:</td>
<td>Vista panorámica de la planta de concreto dentro de la planta de prefabricados de la Línea 1 Tramo 2</td>
<td>43</td>
</tr>
</tbody>
</table>
Figura N° 3.19: Vista de la implementación de la planta de concreto dentro de la planta de prefabricados de la Línea 1 Tramo 2 ..44
Figura N° 4.1: Flujo de compra de materiales ...47
Figura N° 4.2: Sistema de compra de materiales "My Web Day"49
Figura N° 5.1: Detalle de placas de acero galvanizado (platinas) en vigas53
Figura N° 5.2: Encamisado de torones ...55
Figura N° 5.3: Orden de tensado ..57
Figura N° 5.4: Vaciado de Viga ...58
Figura N° 5.5: Secuencia de cortes de cables ...59
Figura N° 5.6: Vista frontal – Detalle talón de protección..............................60
Figura N° 5.7: Vista lateral – Detalle talón de protección61
Figura N° 5.8: Pórticos en Planta de prefabricados ..62
Figura N° 5.9: Etapa de Prevaciado de Viga Prefabricada64
Figura N° 5.10: Etapa de Postvaciado de Viga Prefabricada72
Figura N° 5.11: Comparación entre el Tramo 1 y el Tramo 2 de un Módulo de 100 metros ..74
Figura N° 5.12: Izaje en Tramo 1 y Tramo 2 ...75
Figura N° 5.13: Banco de concreto de 70 cm para un mejor vaciado del Concreto ..76
Figura N° 5.14: Layout fabricación de vigas ...76
Figura N° 5.15: Recorrido de Línea de Metro planteada, la cual pasa por la periferia del centro histórico de Arequipa ..82
Figura N° 5.16: Recorrido de Línea de Metro planteada, la cual pasa por la periferia del centro histórico de Trujillo ..85
Figura N° 6.1: Viga prefabricada circulando por las calles de la ciudad89
Figura N° 6.2: Tráiler con Tándem de Arrastre ..89
Figura N° 6.3: Tráiler para transporte de vigas hacia la obra90
Figura N° 6.4: Codificación de Viga prefabricada91
Figura N° 6.5: Viga prefabricada siendo colocada en el Dolly para su posterior traslado a obra ...91
Figura N° 6.6: Preparado de viga prefabricada ...92
Figura N° 6.7: Viga prefabricada en el tráiler lista para salir a obra93
Figura N° 7.1: Estructura de fijación provisional – vista en planta98
Figura N° 7.2: Estructura de fijación provisional – vista en elevación98
Figura N° 7.3: Arriostres de madera ..99
Figura Nº 7.4: Vigas descargadas a pie de obra .. 99
Figura Nº 7.5: Vigas descargadas a pie de obra 2 .. 100
Figura Nº 7.6: Montaje de Vigas prefabricadas .. 100
Figura Nº 7.7: Montaje de Vigas prefabricadas 2 .. 101
Figura Nº 7.8: Montaje de Vigas prefabricadas 3 .. 101
Figura Nº 7.9: Montaje de Vigas prefabricadas 4 .. 102
Figura Nº 7.10: Montaje de Vigas prefabricadas 5 ... 102
Figura Nº 8.1: Abertura entre paneles de encofrado metálico 113
Figura Nº 8.2: Uso de madera para apoyo de dados .. 114
Figura Nº 8.3: Numeración de Vigas Prefabricadas 116
Figura Nº 8.4: Resane mal ejecutado ... 118
Figura Nº 8.5: Viga estropeada por concreto defectuoso 119
Figura Nº 8.6: Almacenaje deficiente de armaduras y vigas 121
Figura Nº 8.7: Trabajos con amoladora generan polvo y ruido que incomoda al personal encargado del armado de acero (derecha) 122
Figura Nº 8.8: Obstrucción de vías debido al paso de las vigas prefabricadas ... 123
Figura Nº 8.9: Quiñaduras resultado de la mala maniobra durante el montaje ... 124
Figura Nº 9.1: Viga cabezal prefabricada conectada a columna 130
Figura Nº 9.2: Etapa de Prevaciado de Viga Cabezal 133
Figura Nº 9.3: Etapa de Postvaciado de Viga Cabezal 139
Figura Nº 9.4: Viga cabezal en obra ... 142
Figura Nº 9.5: Izaje de viga cabezal en obra .. 142
Figura Nº 9.6: Varillas para unión de Columna-Viga Cabezal 143
LISTA DE GRÁFICOS

Gráfico Nº 8.1: Secuencia de partidas de las vigas prefabricadas en el Proyecto ...105
Gráfico Nº 8.2: Cronograma de Fabricación de vigas prefabricadas ...105
Gráfico Nº 8.3: Producción de vigas de 1.3 m, año 2012-2013 (Línea 1 Tramo 2) ...106
Gráfico Nº 8.4: Producción de vigas de 1.8 m, año 2012-2013 (Línea 1 Tramo 2) ...107
Gráfico Nº 9.1: Producción mensual de vigas cabezales ...132
LISTA DE SÍMBOLOS Y SIGLAS

AATE: Autoridad Autónoma del Tren Eléctrico
AVE: Alta Velocidad Española
ERP: Enterprise Resource Planning
f_c: Resistencia a la compresión del concreto
f_y: Resistencia a la fluencia del acero
IPD: Instituto Peruano del Deporte
CAPÍTULO I

INTRODUCCIÓN

1.1 GENERALIDADES

El crecimiento de la población y de la urbe impacta de forma directa en el transporte urbano, teniendo como problema la gran movilización de pasajeros en un tiempo reducido. Actualmente, en la capital, se trata de mitigar este problema con la existencia del Metropolitano y de los Corredores viales, los cuales no se dan abasto para la población de Lima, inclusive la puesta en operación de la Línea 1 del Metro de Lima no satisface la demanda existente. En otras ciudades del país como Arequipa y Trujillo se están ampliando las calles y mejorando sus sistemas viales, tratando de mitigar el creciente caos vehicular.

En vista de este panorama, las diferentes ciudades del país desean planificar su sistema de transporte, enfocándose en sistema de transportes masivos como los sistemas de metro, apuntando a un sistema intermodal.

1.2 PROBLEMÁTICA

El aumento de la población y su necesidad de transportarse por la ciudad, genera el aumento del parque automotor, lo que conlleva al aumento de la demanda vehicular, la cual en un punto empieza a ser mayor a la oferta vial, generando problemas de tránsito. (Cárdenas Grisales & Cal y Mayor Reyes, 2011, pág. 16)

Tenemos como ejemplo lo ocurrido en Arequipa, a falta de un sistema de transporte eficiente, el parque automotor ha ido aumentado a razón de 25 mil vehículos por año aproximadamente desde el 2009 al 2016, teniéndose actualmente más de 276 mil unidades de transporte motorizado, siendo la segunda ciudad con mayor parque automotor después de Lima. (Diario Regional Sin Fronteras, 2017) (El Pueblo, 2016)

Otro caso se da en Trujillo, donde el parque automotor aumenta un 6% al año y a la fecha existen más de 360 mil vehículos (Diario La República, 2017).
Frente a la creciente demanda de transporte, se tiene que optar por el uso de sistemas masivos de transporte, como lo son los metros.

Los proyectos ferroviarios se caracterizan por tener una gran inversión inicial (infraestructura y material rodante) y alta capacidad de transporte de pasajeros frente a las carreteras (Cárdenas Grisales & Cal y Mayor Reyes, 2011, pág. 36), la inversión en estos proyectos es recuperada a mediano plazo gracias a la gran cantidad de usuarios transportados a lo largo de un tiempo estimado.

Dentro de los proyectos ferroviarios, la infraestructura ferroviaria por donde circula la vía férrea puede ser de 3 tipos:

- A nivel, conformado por terraplenes.
- Túnel subterráneo
- Viaducto elevado.

De estas 3 opciones, la más costosa es la construcción de un túnel subterráneo, estimándose el costo por Km de US$131 Millones de dólares\(^1\) y este costo varía según la complejidad del diseño, extensión de Línea, densidad de estaciones, expropiaciones y del terreno a excavar, como se muestra en la Tabla N° 1.1. , por otro lado, el costo por Km de viaducto elevado asciende en promedio a US$42 Millones de dólares\(^2\), entre estos dos tipos de vía, el viaducto elevado es el de menor costo.

<table>
<thead>
<tr>
<th>Ciudad</th>
<th>Línea</th>
<th>Extensión (Km)</th>
<th>N° de estaciones</th>
<th>Tipo de vía</th>
<th>Costo Total (Millones de US$)</th>
<th>Costo por Km (Millones de US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bogota</td>
<td>L1</td>
<td>27</td>
<td>27</td>
<td>subterráneo</td>
<td>7,600.00</td>
<td>281.5</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>L4</td>
<td>16</td>
<td>7</td>
<td>subterráneo</td>
<td>4,000.00</td>
<td>250.0</td>
</tr>
<tr>
<td>Sao Paolo</td>
<td>L5</td>
<td>11.5</td>
<td>11</td>
<td>subterráneo</td>
<td>2,311.00</td>
<td>201.0</td>
</tr>
<tr>
<td>Lima</td>
<td>L2 y Ramal L4</td>
<td>34.6</td>
<td>35</td>
<td>subterráneo</td>
<td>4,531.00</td>
<td>131.0</td>
</tr>
<tr>
<td>Ciudad de México</td>
<td>L12</td>
<td>23</td>
<td>22</td>
<td>mixto</td>
<td>2,128.00</td>
<td>92.5</td>
</tr>
<tr>
<td>Santiago de Chile</td>
<td>L3</td>
<td>22</td>
<td>18</td>
<td>subterráneo</td>
<td>1,678.00</td>
<td>76.3</td>
</tr>
<tr>
<td>Santiago de Chile</td>
<td>L6</td>
<td>15</td>
<td>10</td>
<td>subterráneo</td>
<td>1,081.00</td>
<td>72.1</td>
</tr>
<tr>
<td>Quito</td>
<td>L1</td>
<td>22</td>
<td>15</td>
<td>subterráneo</td>
<td>1,500.00</td>
<td>68.2</td>
</tr>
</tbody>
</table>

Fuente: Ponencia "Costos de Inversión en Metros de Latinoamérica" – Ing. Vicente Pardo Díaz

\(^1\) Costo por Km de la Línea 2 del Metro de Lima
\(^2\) Costo por Km de la Línea 1 del Metro de Lima
Al ser muy costosa la alternativa subterránea, se puede optar por una vía férrea a nivel o por viaducto elevado, sin embargo, una construcción a nivel solo es recomendada en zonas periféricas de la ciudad, debido a que corta la comunicación entre ambos lados por donde pasa la vía férrea, generando problemas sociales y de tránsito.

1.3 OBJETIVOS
Los viaductos elevados de uso ferroviario eléctrico están conformados por columnas, vigas y una losa, en donde descansa el balasto, durmientes y rieles.

Este tipo de viaductos mayormente están conformados por elementos prefabricados, por ello cabe indicar que la presente tesis se enfocará principalmente en las vigas prefabricadas pretensadas, sin descuidar los demás prefabricados, los cuales tendrán una participación menor en esta tesis.

El objetivo principal es analizar la cadena de procesos en fabricación, distribución y montaje de vigas prefabricadas pretensadas en viaductos elevados de uso ferroviario, tomando como base el viaducto del Metro de Lima - Línea 1 Tramo 2, proponiendo mejoras para cada proceso.

Sin dejar de lado los posibles diversos problemas dentro de la fabricación y distribución de las vigas prefabricadas pretensadas, así como los contratiempos posibles en el montaje y los procedimientos de calidad asociados a las actividades.

Además se hará una estimación de costos de producción de vigas prefabricadas pretensadas en las ciudades de Arequipa y Trujillo.
CAPÍTULO II

FUNDAMENTO TEÓRICO

2.1 PROCESO

Conjunto de acciones dirigidas a un determinado resultado, en nuestro caso cada proceso involucra materiales, recursos humanos, equipos y procedimientos.

Cada partida analizada en la presente Tesis posee actividades y estas actividades poseen procesos internos como se muestra en la Tabla N° 2.1 para la partida Fabricación de Vigas Pretensadas Prefabricadas.

Tabla N° 2.1

Secuencia de actividades y procesos dentro de la partida Fabricación de Vigas Pretensadas Prefabricadas

<table>
<thead>
<tr>
<th>Partida</th>
<th>Actividad</th>
<th>Proceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricación de Vigas Pretensadas</td>
<td>Armado de Acero</td>
<td>Traslado de Acero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posicionamiento de Acero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amarrado de Acero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control de Calidad</td>
</tr>
<tr>
<td></td>
<td>Encofrado</td>
<td>Traslado de formas metálicas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colocación de formas metálicas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aplome y Nivelación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control de Calidad</td>
</tr>
<tr>
<td></td>
<td>Desencofrado</td>
<td>Desencofrado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limpieza de Formas</td>
</tr>
<tr>
<td>Acero Pretensado</td>
<td></td>
<td>Colocación de torones y mangueras</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tensado de Torones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corte de Torones</td>
</tr>
<tr>
<td>Vaciado</td>
<td></td>
<td>Vaciado de Concreto Premezclado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibrado de Concreto</td>
</tr>
<tr>
<td>Curado</td>
<td></td>
<td>Curado</td>
</tr>
<tr>
<td>Movilización Interna</td>
<td></td>
<td>Movilización a zona de despacho</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
Para el análisis de las actividades y partidas, se debe tener en consideración los siguientes puntos:

- La interacción externa y sus límites
- Los recursos que participaran en los proceso
- Los productos resultantes
- Compresión total del flujo de los procesos.

![Diagrama de flujo y sistemas](image)

Figura Nº 2.1: Esquema de análisis de las actividades y partidas

Fuente: “Administración de Operaciones de Construcción” – Alfredo Serpell

Teniendo todos estos puntos claros, además de tener un control y seguimiento de los procesos, permitirán realizar una buena planificación y además, mejorar los procesos.

2.2 PLANIFICACIÓN

Es el conjunto de procesos para definir, coordinar y determinar el orden óptimo con el cual deben desarrollarse las actividades, estableciendo objetivos primarios y secundarios, usando eficientemente los recursos materiales y humanos que se dispone.

Todo lo definido, debe ser plasmado en el Plan de Trabajo, para ser controlado a lo largo del proyecto y corregido si es necesario.
2.3 LOS PREFABRICADOS DE CONCRETO
Son elementos de concreto armado fabricados en plantas acondicionadas para producirlos en grandes cantidades, bajo un proceso industrial con estándares de control de calidad y seguridad. Estos elementos de concreto pueden ser almacenados hasta el momento de su montaje o traslado. (ANDECE, 2016)

2.4 HISTORIA DE LOS PREFABRICADOS
2.4.1 Primeros usos de los prefabricados en Europa en viaductos ferroviarios
El inicio de los prefabricados pretensados se inició con la patente realizada por el ingeniero civil y estructural Eugene Freyssinet en 1928. Ocho años después, en 1936, se construyó el primer puente pretensado con elementos prefabricados con una luz de 19m, en la presa de Pontes de Fer. En 1944, la empresa Pacadar S.A. obtiene las patentes de Freyssinet para operar de forma exclusiva para España y América Latina con prefabricados pretensados.

En 1946, se usó la misma tecnología de Freyssinet para la construcción del viaducto ferroviario Adam en Wigan (Inglaterra), este viaducto cuenta con vigas T de 9 metros. (López Vidal & Fernández-Ordoñez, 2015)

El uso de prefabricados se masificó alrededor de toda Europa y Asia, construyéndose diversos viaductos ferroviarios como por ejemplo:
- Viaducto del tren de alta velocidad (AVE) Madrid-Sevilla, en España a finales de los ochenta.
- Viaducto de Ventabren, en Francia en 1996.

2.4.2 Usos de los prefabricados en obras ferroviarias en el Perú
El uso de prefabricados en obras ferroviarias en el Perú se inició con los durmientes prefabricados utilizados en las obras de rehabilitación del Ferrocarril Central.

Posteriormente, con el reinicio de las obras del Tren Eléctrico Línea 1 Tramo 1, se usaron vigas pretensadas prefabricadas, pre lasas y bordes típicos. En el proyecto Línea 1 Tramo 2 se incluyó a las vigas cabezales en el sistema de prefabricados.
2.5 INDUSTRIALIZACIÓN DE LA CONSTRUCCIÓN
El término industrialización nos indica organizar los procesos de forma óptima, en equipos y materiales, para producir a grandes escalas. Al aplicar dicho término a la construcción, podemos interpretarlo de la siguiente manera: Planificación óptima de los procesos, para obtener rendimientos elevados, optimizando recursos (personal, equipos y materiales) sin descuidar el factor económico.

Con la industrialización de la construcción se busca:

a) En Obra:
- Velocidad de trabajo
- Exactitud en tiempos de construcción
- Eficiencia en controles de obra
- Precisión dimensional

b) Organización y planificación
- Planificación financiera
- Coordinación de actividades

c) Costos
- Presupuestos más precisos
- Control de materiales, 100% optimización
- Anular los tiempos muertos

Actualmente, la industrialización de la construcción se ha vuelto una tendencia, por ello las diferentes empresas del país han iniciado la estandarización de sus procesos, reducción al mínimo sus desperdicios, para obtener óptimos resultados en su productividad.

2.5.1 Sistemas constructivos prefabricados
La utilización de elementos prefabricados en la construcción data desde la antigüedad con la utilización del ladrillo. En la actualidad existen diversos elementos prefabricados para cada tipo de obra, como ductos, vigas, losas, etc.

La presente tesis evaluará las vigas prefabricadas pretensadas usadas en la construcción de los viaductos ferroviarios, estas vigas son producidas a gran escala y su peso promedio es de 19 a 24 toneladas.
A. Ventajas del uso de prefabricados

Calidad
- Mano de obra: especialización y rendimiento
- Facilidad de ejecución: posición más conveniente
- Control de calidad: mayor que en obra, permite correcciones
- Tolerancias: menores
- Materiales: dosificaciones más uniformes, hormigones más densos
- Estandarización: elementos tipo, de calidad uniforme
- Formas arquitectónicas: color, textura y formas especiales

Economía
- Encofrados y apuntalamientos: reutilización; en obra solamente apuntalamientos auxiliares durante el montaje.
- Aumento de la productividad; tareas repetitivas y reducción de horas improductivas
- Sección estáticamente más adecuada
- Pretensado por adherencia directa
- Rapidez; menor costo del capital invertido

Tiempo
- Lugar cerrado; no hay demoras por mal tiempo
- Producción simultánea

B. Desventajas del uso de prefabricados

Transporte
- Transporte al lugar de utilización y montaje, costos y espacios.

Uniones
- Ejecución cuidadosa de las uniones, funcionamiento estático.
2.6 VIGAS PREFABRICADAS USADAS EN VIADUCTOS

Las vigas prefabricadas constituyen productos estándar elaborados en instalaciones industriales fijas y que por tanto, no son realizadas en obra. El empleo principal de estos elementos es de ser portadores de las losas prefabricadas, dependiendo de la forma de la viga, será un porte directo o indirecto.

En el mercado, las vigas prefabricadas en hormigón han adquirido diferentes formas, según la tarea a la cual sean destinadas. Algunas de estas formas, empleos y fabricantes son las que se señalan a continuación:

Las Vigas I, son vigas de concreto pretensado o postensado, dependiendo de las exigencias en obra. Ver Figura N° 2.2.

Figura N° 2.2: Viga Tipo I
Fuente: Propia
Vigas de altura variable (Figura N° 2.3).

Figura Nº 2.3: Puente con tableros de vigas U de altura variable
Fuente: Elementos Prefabricados de Hormigón en Puentes – Ing. Fernando Hue

Vigas de planta curva (Fig. N° 2.4), de caras laterales o inferiores planas y curvas, con vuelos apoyados en nervios o jabalones, de formas variadas y complejas, tramos divididos en su longitud en dos piezas.

Figura Nº2.4: Tableros pre fabricados en curva
Fuente: Elementos Prefabricados de Hormigón en Puentes – Ing. Fernando Hue

Vigas en cantiléver de canto generalmente variable (Fig. N° 2.5) y otra cubriendo el vano central entre las anteriores, de canto generalmente constante (Fig. N°2.6), aunque también puede ser variable, tramos soportados por jabalones (arriostre angular) para reducir la luz efectiva de cálculo del vano, tableros completamente prefabricados para puentes atirantados, tableros de puente con
formas especiales, tableros de arco y otras muchas tipologías. (Hué García, 2007)

Figura Nº 2.5: Pieza cantiléver
Fuente: Elementos Prefabricados de Hormigón en Puentes – Ing. Fernando Hue.

Figura Nº 2.6: Pieza central montada sobre las piezas cantiléver
Fuente: Elementos Prefabricados de Hormigón en Puentes – Ing. Fernando Hue.
2.7 PLANTAS DE PREFABRICADOS DE CONCRETO

Son instalaciones industriales acondicionadas para la elaboración de diferentes elementos de concreto armado, estas instalaciones pueden ser permanentes o temporales.

2.7.1 Capacidad de Planta

Para establecer una línea de producción se debe tener en cuenta la cantidad de unidades que se pueden producir en un periodo determinado, la capacidad de la planta puede ser de dos tipos, la instalada y la efectiva. (Cavero Burga, 2011, pág. 20,21)

- Capacidad instalada: Es la capacidad de producción por la cual ha sido diseñada la planta.

- Capacidad efectiva: Es la capacidad esperada, es menor a la capacidad instalada debido a las restricciones existentes en la producción.

2.7.2 Distribución de Planta

Es la disposición física de los equipos, maquinarias y personal dentro de una instalación. (Carro Paz & González Gómez, pág. 14) La forma de distribución puede ser:

- Distribución por Procesos: Recomendada para producción de bajo volumen y alta variedad, se centra en producir distintos productos cuando hay varios clientes. Ver Figura N° 2.7.

- Distribución por Productos: Es una estrategia de flujo lineal, generando una producción repetitiva y continua, también se le conoce como línea de producción. Ver Figura N° 2.8.
Figura Nº 2.7: Distribución de planta por procesos.
Fuente: Administración de las Operaciones - Capacidad y Distribución Física - Carro Paz, R., & González Gómez, D. (Pág. 15)

Figura Nº 2.8: Distribución de planta por productos.
Fuente: Administración de las Operaciones - Capacidad y Distribución Física - Carro Paz, R., & González Gómez, D. (Pág. 15)
CAPÍTULO III

ASPECTOS GENERALES

3.1 INFRAESTRUCTURA FERROVIARIA - OBRAS CIVILES

3.1.1 Viaducto

Los viaductos son tramos a nivel de superficie o elevados por donde circula el material rodante.

Los viaductos elevados en su mayoría cuentan con elementos prefabricados (bordes típico, prelosas, vigas pretensadas Tipo I, vigas cabezales y canaletas) como también elementos vaciados in situ (zapatas, columnas, vigas diafragma, losa y apoyos de catenaria). (Plasencia, 2012) Ver Figura N° 3.1 y 3.2

Los elementos prefabricados representan el 70% del viaducto elevado, los cuales pueden ser elaborados in situ o en plantas de prefabricados.

Figura N° 3.1: Sección Típica del Viaducto Elevado
3.1.2 Puentes

Son construcciones que permiten cruzar accidentes geográficos o vías de circulación como avenidas u otros puentes.

En la Línea 1 del Metro, se construyeron dos puentes con vigas cajón de sección variable sobre el Río Rímac y sobre la Vía de Evitamiento. Ambos puentes fueron construidos con un sistema de carros de avance, los cuales permitieron construir sobre el río Rímac y la Vía de Evitamiento. Ver Figura N° 3.3.

Figura Nº 3.3: Carros de avance sobre el Río Rímac
Fuente: Blog Desarrollo Peruano
3.1.3 Estaciones de Pasajeros
Las estaciones de pasajeros son parte de la infraestructura ferroviaria en la cual se da acceso al pasajero al abordaje o desabordaje del tren.

Las estaciones de metro por lo general están distanciadas entre 1 a 1.5 km, la ubicación de estas depende de las proyecciones de demanda y disponibilidad del espacio.

Además, algunas estaciones cuenta con un área técnica, en donde se tienen equipos eléctricos de monitoreo y apoyo de suministro de energía a la línea en caso de emergencias. Ver Figura. N° 3.4.

Figura N° 3.4: Vistas 3D de algunas Estaciones de la Línea 1 del Metro de Lima según el Expediente Técnico
Fuente: Consorcio Tren Eléctrico

3.2 PREFABRICADOS UTILIZADOS EN LA CONSTRUCCIÓN DE VIADUCTOS ELEVADOS DE USO FERROVIARIO ELÉCTRICO
3.2.1 Viga Pretensada
Son elementos de concreto sometidos intencionalmente a esfuerzos de compresión previos al vaciado de concreto. Esta tensión se aplica mediante
cables de acero que son tensados y anclados al concreto. Este método puede aplicarse tanto para elementos prefabricados como vaciados in situ.

En la Línea 1 del Metro de Lima los cables de acero de alta resistencia estaban compuestos por torones de 7 hilos de diámetros de 0.6”. Además, eran vigas de Tipo I, de longitudes variables que iban desde los 24.70 metros hasta los 35 metros de longitud, el peralte de las vigas eran de 1.3 metros o 1.8 metros, según las longitudes de los vanos y la rasante del riel proyectado en la obra. Estas vigas fueron fabricadas con un concreto de f’c = 420kg/cm² y varillas de acero corrugado de fy=4200kg/cm². A continuación se muestran las dimensiones de las diferentes vigas prefabricadas. Ver Figuras N° 3.5 al 3.8.

Figura Nº 3.5: Geometría de Vigas de 1.8m de peralte
Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2
Figura Nº 3.6: Distribución de tendones para el pretensado en vigas
Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2

Figura Nº 3.7: Distribución de armadura para vigas pretensadas
Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2
3.2.2 Pre Losa

Las pre losas son placas de hormigón para formar techos como si fueran losas aligeradas. Se usan a modo de encofrado perdido para el vertido de concreto in situ, de modo que una vez fraguado, la prelosa forma parte de la losa maciza.

Conocida como prelosa, por el concepto de elemento prefabricado en planta y completado en obra, estas son ideales para entrepisos y techos, así como para tableros de puentes. La pre losa una vez instalada sirve de encofrado perdido, lo que evita el entablado de la losa y su resistencia da una total seguridad a la hora de desplazarse sobre ella. Su cara inferior es caravista, totalmente plana y lisa. Es posible insertar los elementos necesarios como cajas eléctricas, puntos de luz, registros, etc. Que permiten tener un techo liso sin necesidad de falsos techos. Ver Figura N° 3.9.
3.2.3 Bordes Típicos

El borde pre-moldeado es el elemento lateral del viaducto elevado, conformado por parapetos de concreto armado pre-moldeado que por ser el mismo para todo el viaducto también se le denomina borde típico. Los bordes donde se emplazan los postes de catenaria serán vaciados in situ y tendrán un mayor espesor y refuerzo adicional a fin de resistir las cargas concentradas de los postes. En el tramo “N” donde la catenaria se ubica en el eje del viaducto, se tiene un refuerzo especial en la base de los denominado “postes centrales”. Para el caso de la Tercera Vía, también se cuenta con un refuerzo adicional de la losa a cada lado del tablero, donde se soportaran los pórticos del sistema de catenaria. Ver Figura N° 3.10.
3.2.4 Viga Cabezal Prefabricada:
Las vigas cabezal son elementos transversales sobre las columnas de sección variable en viaductos elevados.

En los tramos rectos del viaducto de la Línea 1, las vigas cabezales de las columnas eran de concreto armado de 1,70 m de ancho y peralte variable desde 1,70 m en el encuentro con la columna a 1,00 m en los extremos del cabezal. Cuando había cambio de sección de viaductos en los cabezales de junta, se diseñaba una geometría especial para el cabezal de modo a compatibilizar las diferencias de peralte. El concreto de las vigas cabezal posen una resistencia a la compresión a los 28 días de $f'_c=28$ MPa. Ver Figura N° 3.11.
3.3 PLANTA DE PREFABRICADOS

En caso de que los elementos vaciados no puedan ser fabricados in situ, se tiene la opción de fabricarlos masivamente en instalaciones acondicionadas las cuales son llamadas plantas de prefabricados.

3.3.1 Ubicación de la Planta de Prefabricados

La ubicación de la planta debe ser de fácil acceso y además estar ubicada estratégicamente para poder alcanzar a todos los frentes sin demora, tener un espacio suficiente para almacenar los prefabricados, en caso de que sea necesario.

3.3.2 Planta de Prefabricados de la Línea 1 Tramo 2

Se construyó en el distrito de San Juan de Lurigancho, entre las avenidas Bayóvar, Próceres de la Independencia y Jirón de la Salud. La ubicación de la Planta de Prefabricados se modificó con respecto al Anteproyecto, ocupando un área aproximada de 54,986.23 m². El predio fue dividido en tres partes: Primer sector de 45,101.29 m² según el convenio entre el IPD y el AATE; el segundo sector de 4,065.916m² correspondiente al área del Patio de Maniobras que se
utilizará hasta el término de uso de la Planta, y por último un área pública de 5,819.024m².

El ingreso hacia la Planta de Prefabricados es por dos accesos vehiculares, de los cuales el ingreso principal es por la Av. Bayóvar. El otro es por la Av. Próceres de la Independencia el cual permitió el ingreso y salida de los camiones plataforma que trasladaban los elementos prefabricados a su posición final en la obra, tal como se muestra en la Fig. N° 3.12 y 3.13.

Figura N° 3.12: Ubicación Planta de Prefabricados de la Línea 1 Tramo 2.
Fuente: Google Maps
A. Descripción de la Planta

La planta estaba dividida en 2 áreas:

- Área de Prefabricados
- Área de Oficinas y Planta de Concreto

El número de personas que laboraron en las instalaciones de la planta fue de un total de 200 personas entre personal administrativo, técnico y obrero. Ver Figura N° 3.14.

En esta planta se fabricaron las vigas longitudinales pretensadas prefabricadas (1 905 unidades); las vigas cabezales pre fabricadas (140 unidades), que se ubican en la parte superior de la columna; las prelosas (27 225 unidades), y los bordes típicos (19 237 unidades) elaboradas con hormigón armado.
Área de Prefabricados
La zona de prefabricados ocupó un total de 32,239 m² y dividió en las siguientes zonas de trabajo:

- Zona de Fabricación de Vigas Tipo I de H = 1.30 m.
- Zona de Fabricación de Vigas Tipo I de H = 1.80 m.
- Zona de Fabricación de elementos menores.
La Zona de Fabricación de Vigas Tipo I de H = 1.30 m contó con 2 puentes grúa de 25 m de luz que corrían a través de rieles de 390m de longitud. En la zona entre los rieles se construyó una losa de concreto para la fabricación y el curado de las vigas. En la Zona de Fabricación de Vigas Tipo I de H = 1.80 m, se contó con 2 puentes grúa de 12m de luz que se desplazaban a través de rieles de 385m de longitud, y una losa de concreto entre rieles para la fabricación y el curado de las vigas.

En la Zona de Fabricación de elementos menores se fabricaron las pre-losas, bordes típicos, canaletas y demás elementos prefabricados catalogados como menores que fueron empleados para la construcción del viaducto. Esta zona contó con puentes grúa de 20m de luz, una línea de rieles de 360m de longitud sobre la cual se desplazaba el puente grúa y una losa de concreto entre rieles para la fabricación y curado de las pre-losas. Ver Figura. N° 3.15.

Figura Nº3.15: Vista panorámica de la Planta de prefabricados de la Línea 1 Tramo 2
Fuente: Youtube – Odebrecht Perú – Vista aérea del Tramo 2 de la Línea 1 del Metro de Lima
Para la construcción de las líneas de producción, se realizaron excavaciones, rellenos y trabajos de nivelación mínimos necesarios para conformar las plataformas, para tener un nivel uniforme para el tránsito de las grúas pórtico. Una vez instalado los rieles, se procedió con los trabajos de montaje de las grúas pórtico.

Se instalaron un total de 6 grúa pórtico con capacidades de 25, 20 y 7Tn, las mismas que permitían realizar los movimientos internos de los elementos prefabricadas de concreto así como también cargarán dichas estructuras a los camiones plataformas. Ver Figuras N° 3.16 y 3.17.

Figura Nº 3.16: Vista panorámica de las grúas pórtico de la planta de la Línea 1 Tramo 2
Fuente: Propia
Área de Oficinas y Planta de Concreto
La zona del área de oficinas y planta de concreto estaba dividido de la siguiente manera:

- Zona de Oficinas.
- Zona de Almacenamiento.
- Zona de Planta de Concreto.
- Zona de Talleres de Equipo

Las oficinas de la planta de prefabricados se construyeron en un área de 21,220m2. Además de oficinas, se incluyeron módulos para el Tópico, Duchas, Vestidores, Comedor y área de estacionamiento. Los módulos de las Oficinas estaban hechas de drywall.

La zona de la Planta de Concreto tuvo un área de 7,066m2 en el cual se ubicaron los puntos de acopio de agregados, los silos de cemento, las plantas de dosificación y mezclado y la poza de curado de las probetas.
La zona de Talleres de Equipo y Almacenes contaba con ambientes destinados a la producción de elementos de señalización, los talleres de equipos, talleres de almacenamiento de productos terminados y los puntos de acopio de desechos.

Planta de Concreto

Fue instalada para abastecer exclusivamente a la planta de prefabricados de la Línea 1 Tramo 2, tenían instalados 2 silos de arena, 2 silos de cemento y dispensadores de aditivos. La planta de concreto era calibrada periódicamente. Ver Figuras N° 3.17 y 3.18.

![Vista panorámica de la planta de concreto dentro de la planta de prefabricados de la Línea 1 Tramo 2](image)

Figura N° 3.18: Vista panorámica de la planta de concreto dentro de la planta de prefabricados de la Línea 1 Tramo 2

Fuente: Propia
Figura Nº 3.19: Vista de la implementación de la planta de concreto dentro de la planta de prefabricados de la Línea 1 Tramo 2
Fuente: Propia
CAPÍTULO IV

ABASTECIMIENTO DE MATERIALES

4.1 LA GESTIÓN DEL ABASTECIMIENTO

4.1.1 Insumos principales

Para la fabricación de elementos prefabricados intervienen los siguientes insumos:

A. Concreto

Eso uno de los principales componentes de los elementos prefabricados, debe cumplir con los todos estándares preestablecidos en el expediente técnico. El concreto usado para la fabricación de los elementos prefabricados puede ser pre-mezclado o fabricado in situ.

En caso de usarse concreto premezclado, se recomienda que sea proporcionado por una empresa reconocida y confiable, para provea el concreto con las especificaciones que se le indiquen.

En caso de fabricarse concreto in-situ, se debe tener los ambientes acondicionados para el acopio de los agregados, cemento, aditivos y la planta de fabricación.

B. Acero

Junto con el concreto, es uno de los principales componentes de los elementos prefabricados. El acero utilizado en las vigas prefabricadas fue usado en dos formas:

- Acero corrugado: El cual forma la estructura de la viga, el cual puede ser habilitado in situ o ser proveído dimensionado.
- Torones: Los cuales son usados en el pretensado permitiendo obtener las luces y las flechas necesarias de la cada viga.

C. Encofrados

Los encofrados son los elementos que revisten al elemento y dan forma al concreto, dependiendo de la cantidad de usos que se le dará se elige entre
madera o acero. En el caso de las vigas prefabricadas en la Línea 1, se optó por el uso de encofrados metálicos.

D. Aditivos
Los aditivos más usados para la fabricación de vigas prefabricadas son los aceleradores de fragua, que permitirán alcanzar rápidamente la resistencia requerida para el desencofrado y poder agilizar el proceso de fabricación.

4.1.2 Criterios de compra y aspectos de logística
Al necesitarse grandes volúmenes de insumos, se realizan compras mediante contratos marco, en los cuales el proveedor se compromete a entregar los materiales mediante programación para evitar almacenamiento

En caso de la Línea 1, el contratista organizó las solicitudes de pedido según el origen y el uso, las solicitudes fueron divididas en:

- Compra de Materiales Nacionales – Área de Logística
 - Comunes (piedra, arena, cemento etc.)
 - No comunes (Estructuras metálicas a pedido)
- Compra de Materiales de Importación Internacional – Área de Procura
 - Comunes (Ascensores, torones para tensado, cables de anclaje (torones), empalmes mecánicos, Rieles, etc.)
 - No comunes (Equipamiento electromecánico para el Tren)

Además, el contratista elaboró un proceso de compras:

- El solicitante era un Responsable de Servicio (RS) o un Responsable de Producción (RP), en caso que el pedido fuera solicitado por un RS, la solicitud debía ser aprobada por el RP a cargo.
- El RP derivaba la solicitud al Gerente de su área, este a su vez da su visto bueno y hace el pedido Director de Contratos.
- El Director de contratos, ordenaba al RP de Logística (compra de materiales nacionales) o Procura (compra de materiales internacionales) según el tipo de material
- El RP de Procura o Logística, realizaba tres cotizaciones.
La decisión de tomar la mejor oferta estaba dada por RP (Logística o Procura) y el solicitante.

Luego de la elección de la oferta el Director de Contratos aprobaba el pedido para su compra.

La entrega del pedido se realizaba en el almacén o en la obra según sea el material y este era recibido por el encargado del almacén y el solicitante para la verificación del material (ver en la siguiente página la Figura N° 4.1).

Como todos los materiales usados en la Línea 1 (por ejemplo los torones) no eran nacionales o debían ser encargados a pedido, se tomaron las siguientes previsiones:
Para los torones, se hizo un contrato con la empresa CAMESA con dos meses de anticipación. Las compras se realizaron en lotes grandes desde México, el pedido realizado fue para la fabricación de las 1914 vigas, utilizándose 920 toneladas de torones aproximadamente.

Para el caso del acero corrugado, se enviaron los planos de ingeniería al servicio de Acero Dimensionado de Aceros Arequipa con 20 días de anticipación, las varillas habilitadas eran entregadas según las coordinaciones de obra.

En el caso del concreto, dentro de la planta de fabricación de las vigas, se instalaron dos plantas de concreto, para ello se elaboró un contrato con UNICON a fin de que produzca el concreto en forma exclusiva para el proyecto.

A. Logística de abastecimiento en la Línea 1 Tramo 2

La logística, según el Council of Logistics Management, es planear, implementar y controlar eficiente el flujo y el almacenamiento de bienes, servicios e información desde el punto de origen hasta el punto de consumo, para satisfacer las necesidades del cliente.

La necesidad de materiales debe ser identificada por el ingeniero de producción en obra y/o residente del frente, el cual debe tener un cronograma interno actualizado de obra y además utilizar herramientas de planificación como el “Just in Time” y el “Last Planner”, que permiten prever cualquier imprevisto que retrasa la producción.

Actualmente existen diversos software ERP (Enterprise Resource Planning) que ayudan en este tipo de decisiones y programaciones, entre ellos tenemos a SAP, SAGE, etc.

Para la ejecución de obra de la Línea 1, también uso una plataforma ERP, este sistema era “My Web Day” (ver Figura N° 4.2), desarrollado en lenguaje JAVA por Odebrecht – Brasil, este sistema integra todas las áreas de la empresa, incluyendo todos los proyectos en ejecución, a través de este sistema se realizaban las solicitudes de material, personal, etc.
El proceso de solicitud era vía correo electrónico y la aplicación generaba valor agregado al pedido debido que tiene diferentes opciones como: carácter de urgencia, fecha en que se necesita el producto, etc.

Cada solicitud de pedido era enviada vía correo electrónico con copia a las personas encargadas según el procedimiento descrito anteriormente.

4.1.3 Almacenamiento

Los materiales recepcionados deben ser acopiados en ambientes adecuados para evitar su deterioro por acción del sol o la humedad.

En una planta de prefabricados el área del almacén juega un papel importante, por ello la recepción de materiales es dosificada mediante cronogramas de entrega de materiales los cuales se elaboran según el ritmo de la obra, para evitar tener grandes aéreas de almacén que podrían ser usadas para provecho de la producción.

Figura N° 4.2: Sistema de compra de materiales "My Web Day"
Fuente: Consorcio Tren Eléctrico
CAPÍTULO V

PROCESOS DE FABRICACIÓN DE LAS VIGAS

Para el presente capítulo se tomará como base la producción de vigas prefabricadas del Tramo 2 de la Línea 1 del Metro de Lima.

5.1 PROCESOS QUE INTERVIENEN EN LA FABRICACIÓN

Se ha revisado las actividades de la partida “Fabricación de Vigas Pretensadas Prefabricadas” y se ha elaborado una tabla de las Actividades y Procesos que intervienen, como se muestra en la Tabla N° 5.1.

<table>
<thead>
<tr>
<th>Partida</th>
<th>Actividad</th>
<th>Proceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricación de Vigas Pretensadas Prefabricadas</td>
<td>Armado de Acero</td>
<td>Translado de Acero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Encofrado</td>
<td>Translado de formas metálicas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colocación de formas metálicas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aplome y Nivelación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control de Calidad</td>
</tr>
<tr>
<td></td>
<td>Desencofrado</td>
<td>Desencofrado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limpieza de Formas</td>
</tr>
<tr>
<td></td>
<td>Acero Pretensado</td>
<td>Colocación de torones y mangueras</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tensado de Torones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corte de Torones</td>
</tr>
<tr>
<td></td>
<td>Vaciado</td>
<td>Vaciado de Concreto Premezclado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibrado de Concreto</td>
</tr>
<tr>
<td></td>
<td>Curado</td>
<td>Curado</td>
</tr>
<tr>
<td></td>
<td>Movilización Interna</td>
<td>Movilización a zona de despacho</td>
</tr>
</tbody>
</table>

Elaboración: Propia
5.2 PROCEDIMIENTO CONSTRUCTIVO

5.2.1 Distribución de líneas de producción
Para la fabricación de vigas pretensadas, se deben zonas adecuadas para la producción de prefabricados lineales, por ello se acondicionan espacios llamados "líneas de producción", en las cuales serán armadas, pretensadas y vaciadas las vigas prefabricadas.

Para la Línea 1 Tramo 2, la fabricación de las vigas se ejecutó en 2 patios, uno para vigas de 1.30m y el otro para vigas de 1.80m de peralte, con su respectivo ciclo de fabricación:

- La fabricación de las vigas de 1.30m se produjeron en 4 líneas de 5 vigas.
- La fabricación de las vigas de 1.80m se produjeron en 2 líneas de 7 vigas.

Al tenerse varias líneas de producción y al ser actividades repetitivas a lo largo del tiempo, se realizaron trenes de actividades, los cuales optimizaron los tiempos de fabricación.

5.2.2 Habilitación del acero de refuerzo
Las armaduras de acero deben ser armadas sobre las líneas de producción, dicho acero puede ser habilitado in situ o puede ser suministrado dimensionado; en la Línea 1, el acero fue suministrado por Aceros Arequipa y las vigas venían en paquetes listas para ser armadas.

El armado del acero de las vigas debe ser realizado sobre solados de apoyo de concreto para cada línea, sobre los cuales deben poseer una plancha de acero (3 mm de espesor) que servirá como encofrado inferior, antes de cada armado, esta superficie será limpiada y recibirá un tratamiento con desmoldantes.

Para la correcta colocación de la armadura, se debe tener un correcto seguimiento topográfico de la longitud de las vigas, para ello se colocan marcas topográficas sobre las planchas metálicas, que servirán como guías para la instalación del acero y su verificación, así como el control de los encofrados (alineamiento, espaciamiento, recubrimientos, niveles, etc.).
Se debe tener en cuenta los elementos embebidos como pases para izaje, pases para barras de postensado, etc., los cuales deben ser colocados en esta etapa, dichos elementos se describirán en los puntos siguientes.

5.2.3 Colocación de puesta a tierra para sistema electromecánico

Los trenes de tracción eléctrica necesitan de un adecuado sistema de puesta a tierra y al ser viaductos elevados, el sistema de puesta a tierra debe conectar las estructuras desde los rieles, pasando por las losas, vigas pretensadas, vigas cabezales, columnas y zapatas, hasta llegar a las líneas de puesta a tierra.

Para conectar todas las estructuras que no han sido unidas monolíticamente por el concreto, se usan placas de acero galvanizado insertas en la estructura que son conectadas mediante alambres desnudos de cobre.

Las placas de aterramiento son soldadas a cierta distancia del extremo de la armadura de la viga, esta soldadura unirá un estribo y un acero longitudinal con la patita de la placa, a su vez se soldaran puntos específicos de los aceros longitudinales para realizar un cierre de circuito con la placa al extremo opuesto de la viga.

La posición de la plancha es fija en todas las vigas pretensadas, esta ubicación de la plancha dependerá de la ubicación de la plancha de la viga cabezal. En la Línea 1, las planchas de acero se ubicaron a 85 cm del extremo de la viga y a 30 cm de la cara lateral de la viga, ver Figura N° 5.1.

La revisión de las soldaduras debe ser un punto de control antes de realizar el cierre del encofrado, el visto bueno de la revisión se registrará en el protocolo de pre-vaciado. (Ver QUA-PRO-00102-F1, Anexo A – Protocolos de Liberación).

Posteriormente, ambas placas serán conectadas por de un cable desnudo de cobre. (Ver Plano CTEL-CTE-AET-PAT-VIA-DWG-54468, Anexo D/ Figura N° 5.1).
5.2.4 Colocación de encofrado

El encofrado a utilizarse debe permitir una gran cantidad de usos, por ello se recomienda el uso de formas o encofrados metálicos, los cuales deben estar sin ondulaciones y deben tener las dimensiones especificadas en los expedientes.

Previo al montaje del encofrado, se debe limpiar y aplicar una capa uniforme de desmoldante a las caras de los paneles de acero, así como a la plancha metálica ubicada como solado de apoyo.

Al ser vigas pretensadas y dichas vigas son armadas en líneas de producción, se debe encofrar primero la cara de los extremos para que los torones pasen a través del encofrado para poder realizar el pretensado.

A acabar el pretensado y la colocación de ductos, se procede a cerrar el encofrado, asegurándose mediante controles topográficos la geometría de las vigas y el recubrimiento especificado. En caso de que los encofrados sean de varios cuerpos longitudinales, se debe realizar un alineamiento y aplanamiento de los mismos, asegurando así la hermeticidad del encofrado en su conjunto.
5.2.5 Colocación de ductos/insertos
Las vigas prefabricadas para ser izadas y postensadas en el diafragma (zona donde se unen dos tramos de vigas prefabricadas) deben poseer pases o también llamados insertos, para las vigas prefabricadas de la Línea 1, se tuvieron los siguientes insertos:

- 06 tubos de acero corrugado Ø 38 mm interior (Post-tensado de diafragma)
- 02 tubos de PVC de Ø 4" para izaje de viga.

5.2.6 Colocación de cables para el pretensado
Terminado el armado del acero de la viga, el encofrado de las caras transversales de la viga y el inserto de todos los tendones a lo largo de todas las vigas puestas en la línea de producción, se procede al pretensado de las vigas, para ello los extremos de los torones serán anclados en los bloques de anclaje (estructuras macizas donde se anclan los torones, esta estructura debe ser capaz de soportar los esfuerzos producto del pretensado) esta actividad es muy importante, por ello se debe tener las siguientes precauciones:

- El número de tendones por cada tipo de viga, deberá ser detallado en cada plano estructural de las vigas prefabricadas pretensadas.
- A las longitudes de los tendones de las vigas dentro de una línea de producción, se le debe adicionar una mayor extensión debido al espacio entre ellas, una longitud para el agarre de las gatas de tensado y los anclajes.
- Colocar las mangueras en los tramos de tendones indicados en los planos de cada viga. Estas mangueras deben tener la estanqueidad necesaria para que la lechada de la mezcla de concreto no discurra entre ella y el tramo de tendón cubierto.

A este proceso también se le conoce como encamisado, el cual consiste en aislar algunos torones para que los esfuerzos por el peso propio y el pre-esfuerzo sean similares.

El funcionamiento del encamisado se muestra en la Figura N° 5.2, en la cual observamos los esfuerzos a lo largo de un elemento debido al peso propio (a) y al presfuerzo (b). Para que ambos esfuerzos sean similares, un número
determinado de torones (x e y) se encamisa una distancia determinada (L_A y L_B) en diferentes posiciones (A y B), para que no se superen los esfuerzos admisibles.

La distancia de encamisado toma en cuenta la longitud necesaria para que estos torones trabajen a los esfuerzos requeridos.

Figura Nº 5.2: Encamisado de Torones

Fuente: Instituto de Ingeniería UNAM

Luego de encamisar todos los torones indicados en los planos, se procede al tensado, dicho proceso fue llevado por Tensacreto (Subcontratista en la Línea 1 Tramo 2) de la siguiente manera:

- Se aplicó una primera carga de 1000 PSI para el reacomodo de los cables. En este caso se hizo una línea de referencia al cable a 200 mm con respecto al accesorio de anclaje. Esta marca representa la elongación teórica referencial del cable a 1000 PSI (marca inicial).
- Se prosiguió con el tensado hasta alcanzar la fuerza especificada de 19,877.7 Kg (195 KN), para ello se usaron dos tipos de gatos:
Al utilizarse el gato QX-240-200 la presión requerida era de 6330 psi, leída en el manómetro para una elongación neta adicional entre 1000 psi y 6330 psi de 752.94 mm (rango entre 715.29 y 790.59 mm aproximadamente con una tolerancia de ± 5%). Además, se agregaba 8 mm de la elongación del cable dentro del gato y los 200 mm de la marca referencial, teniendo como valores totales de elongación en obra entre 923 mm y 999 mm.

Al usarse el gato QX-240-300 la presión requerida era de 5898 psi, leída en el manómetro para una elongación neta adicional entre 1000 psi y 5989 psi de 742.59 mm (rango entre 705.46 y 779.72 mm aproximadamente con una tolerancia de ± 5%). Además, se agregaba 8 mm de la elongación del cable dentro del gato y los 200 mm de la marca referencial, teniendo como valores totales de elongación en obra entre 913 mm y 988 mm.

- El orden de tensado era simétrico, iniciando desde el centro hacia afuera en forma alternada. Por ejemplo para las vigas tipo V-1 el orden de tensado será 9, 9', 8, 8', 7, 7', 6, 6', 5, 5', 4, 4', 3, 3', 2, 2', 1 y 1' (Ver Figura N° 5.3).

- Las elongaciones obtenidas para cada cable eran registradas por Tensacreto S.A. y también por el Contratista, cada uno en su propio formato (Adjuntos en el Anexo A).

Nota: Los detalles de cálculo se indican en el Anexo C – Cálculo de Elongaciones.
5.2.7 Vaciado de concreto de las vigas

Luego de haberse realizado las inspecciones de control de acero, encofrado y posicionamiento de torones, se puede dar inicio al vaciado de las vigas prefabricadas. Para dejar constancia de las revisiones es recomendable registrar la inspección en un protocolo o formato aprobado como por ejemplo el formato QUA-PRO-00102-F1 (ver Anexo A) usado en la Línea 1 Tramo 2.

El concreto que se usará en las vigas debe cumplir las especificaciones de resistencia a la compresión, slump u otra característica planteada en el expediente técnico.

El vaciado debe realizarse en forma continua en 03 etapas para cada viga, para ello se debe usar vibradores de inmersión y vibradores adosados a los encofrados.

La primera capa de concreto se recomienda vaciar a una altura menor al ala inferior de la viga. La segunda capa de concreto se debe vaciar hasta completar el inicio del ala superior. En la tercera capa de concreto se vaciaba hasta la cara superior de la viga. (Ver Figura 5.4). Las capas de concreto deben ser bien...
vibradas a fin de eliminar y minimizar las burbujas superficiales que puedan generarse.

Para las vigas prefabricadas de la Línea 1, se utilizó una resistencia a la compresión de 420 kg/cm², el cual alcanzaba una resistencia de 270 kg/cm² entre las 16 y 18 horas. Además, la temperatura de colocación del concreto alcanzaba temperaturas alrededor de los 38°C (Ref. Norma ACI 305).

![Vaciado de Viga](image)

Figura Nº 5.4: Vaciado de Viga
Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2

5.2.8 Curado de concreto
Para un concreto de 400kg/cm² con acelerante de fragua, se puede seguir los siguientes procesos:

Etapas 1: Posterior a la colocación de concreto
- Cuando el concreto empieza a exudar (30 a 45 minutos de terminado el vaciado), las vigas se cubrirán con una manta de curado.
- Se aplicará agua caliente por encima de la viga a una temperatura de 60 a 100 °C.
- Inmediatamente después la viga será cubierta con una manta plástica.

Etapas 2: Posterior al desencofrado
- El desencofrado de las caras laterales de las vigas se realizará una vez que estas alcancen la resistencia requerida (en este caso 60 kg/cm²).
- Una vez retirado el encofrado, se debe cubrir la viga con una manta de curado, rociarle agua caliente (60 a 100 °C aprox.) y se cubrirán de la misma manera como en la Etapa 1.
Las probetas son ensayadas al tiempo calculado donde debería alcanzar la resistencia adecuada para el corte de los cables (torones); en el caso del concreto de 400kg/cm² con acelerante de fragua, las probetas se ensayaban a las 16, 18 y 20 horas luego del vaciado y la resistencia requerida de 280 kg/cm² era alcanzada por lo general a las 18 horas.

Cuando se haya alcanzado la resistencia requerida, se retiran las mantas de curado y se procede al corte de los cables de pre-tensado. A partir de esta etapa las vigas no necesitan ningún curado adicional.

5.2.9 Corte de cables de pretensado

Una vez que el concreto alcanza la resistencia requerida, el corte de los cables se realizaba de forma secuencial y continua en la dirección longitudinal de los cables, viga a viga, tal y como se especifica en el siguiente esquema (Figura 5.5).

![Figura Nº 5.5: Secuencia de cortes de cables](Image)

Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2

El corte en las colas de las vigas se debe realizar desde el centro de la viga hacia los extremos tratando de mantener la simetría respecto al eje, lo que implica cortar los cables en parejas (Por ejemplo 9 y 9', ver Figura N°5.6).

El primer corte se realizará en la sección de corte N° 1 y continuará secuencialmente hasta la sección de corte N° 6. Posteriormente se cortará los remanentes en las colas de las vigas y se protegerá la punta del cable expuesta contra la corrosión para garantizar la durabilidad del elemento.

5.2.10 Protección de torones

Posterior al corte de los cables, estos serán protegidos de la siguiente manera:

- Se retirará las porciones sueltas o partes fisuradas de la zona de reparación del concreto, hasta tener una superficie con concreto sano sin fisuras ni...
quiñaduras. Para finalizar la limpieza se usará agua para retirar las partículas de concreto y polvo

- Para asegurar la adherencia, se aplicará un puente de adherencia y un mortero de reparación, todo este proceso debe ser continuo, para evitar la pérdida de la mezcla y el puente de adherencia.
- El mortero que protegerá la mecha de los torones debe iniciar en la base inferior de la viga y llegar hasta una distancia de 2cm por encima del torón superior más alejado. (Figura N° 5.6 y Figura N° 5.7).
- El curado de este mortero se realizará con yutes húmedos.

![Figura N° 5.6: Vista frontal – Detalle talón de protección](image-url)

Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2
5.2.11 Reparación de burbujas superficiales
Las zonas con presencia de burbujas superficiales se deben reparar con una mezcla de cemento, cal, arena fina y agua en la proporción adecuada para alcanzar la tonalidad de la estructura.

5.2.12 Reparación de cantos quebrados
Los desperfectos encontrados en las vigas prefabricadas son principalmente segregación, aristas quebradas y/o despostillamiento de concreto, los cuales son resanados con cualquier mortero de reparación que haya sido aprobado para el uso en obra.

El procedimiento de reparación consiste en el retiro de las partes fisuradas y sueltas, luego se procede al lavado de la superficie y saturación de la misma. El mortero se deja reposar por 20 minutos y se le da el acabado para uniformizar color y textura. Solo es necesario reparar las caras laterales y la base de la viga, los extremos y cara recibirán un segundo vaciado (viga diafragma y losa, respectivamente), por ello solo se le retira los elementos sueltos y fisurados.
5.2.13 Equipos utilizados en la Planta de Prefabricados

Entre los principales equipos que intervienen en la fabricación de vigas prefabricadas tenemos los siguientes:

- Grúas pórtico de capacidad 40 toneladas.
- Una planta de concreto premezclado.
- Gatos hidráulicos para el tensado
- Vibradores de concreto

En la Figura N° 5.8 se puede apreciar los pórticos que se usan para transportan los elementos en la planta de prefabricados.

Figura Nº 5.8: Pórticos en Planta de Prefabricados
Fuente: Propia

5.2.14 Personal involucrado por actividad en la Línea 1 Tramo 2

El Ing. de Producción tenía a su cargo varias cuadrillas por actividad, las cuadrillas tenían la misma composición en ambos turnos (diurno y nocturno) de trabajo. Los turnos de trabajo eran de 8 horas y en casos excepcionales se adicionaban 2 horas, las cuales eran consideradas horas extras. Los trabajos en la Planta de Prefabricados eran de Lunes a Domingo.
Las cuadrillas por viga estaban distribuidas como se muestra en la Tabla N° 5.2.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Mano de Obra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operador</td>
</tr>
<tr>
<td>Habilitado de Acero</td>
<td>1</td>
</tr>
<tr>
<td>Encofrado</td>
<td>1</td>
</tr>
<tr>
<td>Colocación de Torones</td>
<td>-</td>
</tr>
<tr>
<td>Vaciado de Concreto</td>
<td>-</td>
</tr>
</tbody>
</table>

Elaboración: Propia
Secuencia Constructiva Ilustrada de las Vigas Pretensadas en la Planta de Prefabricados de la Línea 1 Tramo 2

Figura N° 5.9: Etapa de Prevaciado de Viga Prefabricada
Fuente: Propia

Habilitación de la armadura de acero de la viga pretensada de acuerdo a los planos de proyecto
Figura N° 5.9: Etapa de Prevaciado de Viga Prefabricada
Fuente: Propia

Izaje y colocación de las armaduras de vigas longitudinales en las respectivas líneas de producción.
Figura N° 5.9: Etapa de Prevaciado de Viga Prefabricada
Fuente: Propia

Trabajos de puntos de soldadura y plancha galvanizada, para protección contra corriente de fuga.

Verificación de la ubicación de pases y ductos, según planos del proyecto.
Colocado de cables de pretensado según posición, tipo de viga longitudinal, que son ajustados en el dado de anclaje.
Figura N° 5.9: Etapa de Prevaciado de Viga Prefabricada
Fuente: Propia

Vista del final de colocación de cables de pretensado y mangueras según posición.

Izado del encofrado metálico lateral de la viga prefabricada
Encofrado metálico de las vigas prefabricadas, según geometría verificado por topográfica.

Tensado de los cables con el gato hidráulico QX-240-300, donde se controla que la elongación para una presión de 5898 psi.
Posterior a la liberación topográfica se realizaba el vaciado de concreto $f'_c = 420\ \text{kg/cm}^2$, en las vigas prefabricadas, donde se evaluaba su consistencia y moldeaba especímenes para su verificación de la resistencia a la compresión.
Como parte del curado se cubría con mantas de geotextil y con plástico para evitar la pérdida de calor.

Desencofrado de las vigas prefabricadas y cortado de cables del pretensado (mínimo 70% de f_c)
Descubrimiento del acero que forma parte de las vigas postensada (zona de diafragma).
Figura N° 5.10: Etapa de Postvaciado de Viga Prefabricada
Fuente: Propia

Reparación superficial en zonas de presencia con burbujas

Protección con mortero en las zonas de cables pretensado
5.3. CASO LÍNEA 1 DEL METRO DE LIMA

5.3.1 Comparaciones de Producción Tramo 2 Vs Tramo 1

A. Vigas Típicas de mayor longitud en el Tramo 2

La estructura del módulo típico del viaducto consiste en hasta 4 tramos continuos de 25 metros de luz, con una longitud total máxima de 100 m entre las juntas de expansión, estos módulos están conformados por vigas prefabricadas hechas continuas por medio de diafragmas de concreto armado vaciado in situ, que conectan las vigas de tramos adyacentes. Esta configuración resulta en una estructura hiperestática, con excelente comportamiento bajo solicitudes sísmicas. Las vigas pre-fabricadas se encuentran uniformemente espaciadas transversalmente a lo ancho del tablero a una distancia de 2 m entre los ejes. La estabilidad del conjunto es garantizada por el vaciado de las vigas en los diafragmas de apoyo y en las losas.

El aumento de las luces de las vigas prefabricadas con respecto a las del Tramo 1, permitieron la reducción de columnas, lo cual significó una significativa reducción de tiempo y recursos. Ver Figura N° 5.11.

B. Comparación de la producción entre las plantas del Tramo 1 y Tramo 2

En la Tabla N° 5.8 se muestra las cantidades de elementos prefabricados producidos tanto en la planta del Tramo 1 como en la planta del Tramo 2. Se puede apreciar también que además de producir vigas longitudinales, que es motivo de la presente tesis. Se produjeron también vigas cabezales, prelosas, bordes típicos para el viaducto.
Cadena de Producción, Transporte y Montaje de Vigas Pretensadas para la Construcción de un Viaducto Elevado de Uso Ferroviario Eléctrico
Armando Rodrigo Sánchez Huaytalla
75

Tabla Nº 5.3
Comparación de producción de elementos en planta del Tramo 1 vs Tramo 2

<table>
<thead>
<tr>
<th>Estructura fabricada</th>
<th>Unidad</th>
<th>Tramo 1</th>
<th>Tramo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vigas Pretensadas h = 1.30m</td>
<td>UND</td>
<td>1,455</td>
<td>1,144</td>
</tr>
<tr>
<td>Vigas Pretensadas h = 1.80m</td>
<td>UND</td>
<td>374</td>
<td>774</td>
</tr>
<tr>
<td>Vigas Cabezales</td>
<td>UND</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>Prelosas</td>
<td>UND</td>
<td>21,559</td>
<td>27,225</td>
</tr>
<tr>
<td>Bordes Típicos</td>
<td>UND</td>
<td>8,568</td>
<td>9,237</td>
</tr>
</tbody>
</table>

Fuente: Consorcio Tren Eléctrico

Para las vigas pretensadas de 1.30 y 1.80 metros, el área de fabricación de armadura se ubicaba dentro del patio de producción, lo que facilitaba el rápido trasporte del material (estribos) para la fabricación de la malla de vigas, reduciendo el acarreo manual. El transporte de las armaduras se realizaba con grúa pórtico como se muestra en la Figura Nº 5.12.

Figura Nº 5.12: Izaje en Tramo 1 y Tramo 2
Fuente: Propia

En el Tramo 2, para las actividades de vaciado, se consideró construir el área de producción bajo el nivel de la plataforma para la planta (-70 cm) con la finalidad de que el chute de los mixer pueda tener la inclinación adecuada para la caída del concreto. (Ver Figura Nº 5.13).
Al tener vigas de mayor longitud, la distribución de las líneas de producción de las vigas fue modificada, este cambio lo podemos ver en la Figura N° 5.14.

![Figura N° 5.13: Banco de concreto de 70 cm para un mejor vaciado del concreto.](image1)

Fuente: Propia

![Figura N° 5.14: Layout fabricación de vigas](image2)

Fuente: Consorcio Tren Eléctrico
5.4 COSTOS DE PRODUCCIÓN DE VIGAS PREFABRICADAS PRETENSADAS EN PROYECTOS FERROVIARIOS A NIVEL NACIONAL

Para esta sección se han seleccionado las capitales de departamentos con más habitantes, para la cual se han hecho bosquejos de posibles líneas de metro con viaductos elevados.

La determinación de los parámetros se basó en las matrices de decisiones (Ver Tabla N° 5.4, 5.5 y 5.6), teniendo en cuenta el Alcance, Costo, Tiempo, Calidad y Seguridad de cada alternativa, luego del análisis mostrado en las Tablas, se ha optado por el caso más óptimo la viga de 25m y de peralte de 1.80m.

Además, los parámetros de distancias entre estaciones y carriles de tercera vía, se extrajeron del “Reglamento Nacional del Sistema Eléctrico de Transporte de Pasajeros de vías férreas que formen parte del Sistema Ferroviario Nacional”.

En resumen:

- Las vigas usadas en el viaducto son de 25 m de 1.80m de peralte.
- Por cada tramo entre columna y columna hay 4 vigas.
- Cada estación está ubicada cada 1.5 Km, la cual posee 2 andenes con 8 vigas prefabricadas pretensadas por cada anden.
- Un carril adicional, llamado tercera vía, ubicado cada 6 Km, cada tercera vía tendrá una distancia de 250 m (20 vigas prefabricada pretensadas).
Tabla Nº 5.4
Matriz de decisión de una viga Tipo I de 50m de largo y 2.50m de peralte.

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>ALCANCE</th>
<th>COSTO</th>
<th>TIEMPO</th>
<th>CALIDAD</th>
<th>SEGURIDAD</th>
<th>AL</th>
<th>CO</th>
<th>TI</th>
<th>CA</th>
<th>SE</th>
</tr>
</thead>
</table>
| Fabricación de Vigas Prefabricadas | -Optimización en el proceso de fabricación de vigas prefabricadas.
-Es necesario el uso de arriostre en los elementos.
-Vigas prefabricadas de 50m de largo, con peralte de 2.50m.
-Distancias entre columnas que permitan cruzar calles o pases vehiculares. | -Mayor área para implementación de líneas de producción y zona de almacenaje.
-Costo aproximado de cada viga es US$ 19,372.00
-Construcción de 3 columnas por un tramo de 100m. | -Mayor tiempo de fabricación de vigas por unidad (3 días aprox.).
-Se cumplen con los estándares de las normas: ISO 9001, ISO 14001 y OHSAS 18001 | -Necesidad de andamios para el armado y una grua adicional.
-Dificultad en el traslado a obra por la dificultad de giro del trailer. | -Dificultad de maniobra por necesitar un mayor espacio para la operación. | X | X | X | X | X |
| Transporte de Vigas Prefabricadas | -Traslado de vigas prefabricadas de 50m de largo, con peralte de 2.50m a Obra sin percances. | -Mayor costo de alquiler de trailers, debido al peso de la viga (aprox 45 ton por viga)
-Mayor tiempo de traslado debido a la baja velocidad del trailer por normativa vial. | -Necesidad de dos grua y mayor espacio para el traslado. | -Necesidad de andamios para el armado y una grua adicional.
-Dificultad en el traslado a obra por la dificultad de giro del trailer. | -Dificultad de maniobra por necesitar un mayor espacio para la operación. | X | X | X | X | X |
| Montaje de Vigas Prefabricadas | -Trazo de vigas prefabricadas de 50m de largo, con peralte de 2.50m a Obra sin percances. | -Mayor costo de alquiler de grua, debido al peso de la viga. Uso de guas mayores de 140 tn.
-Mayor tiempo de maniobra por las dimensiones de la viga (aprox. 1 hr.) | -Necesidad de dos grua y mayor espacio para el traslado. | -Necesidad de andamios para el armado y una grua adicional.
-Dificultad en el traslado a obra por la dificultad de giro del trailer. | -Dificultad de maniobra por necesitar un mayor espacio para la operación. | X | X | X | X | X |

Elaboración Propia
Tabla N° 5.5

Matriz de decisión de una viga Tipo I de 25m de largo y 1.80m de peralte.

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>ALCANCE</th>
<th>COSTO</th>
<th>TIEMPO</th>
<th>CALIDAD</th>
<th>SEGURIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricación de Vigas Prefabricadas</td>
<td>- Optimización en el proceso de fabricación de vigas prefabricadas.</td>
<td>- Costo aproximado de cada viga es US$ 10,410.24.</td>
<td>- Se estima un tiempo de 3 días por línea de producción.</td>
<td>- De fácil montaje, no se necesita de andamios, ni de equipos adicionales, sólo uso de EPPs.</td>
<td>AL: ✔️</td>
</tr>
<tr>
<td></td>
<td>- Vigas prefabricadas de 25m de largo, con peralte de 1.80m.</td>
<td></td>
<td></td>
<td></td>
<td>CO: ✔️</td>
</tr>
<tr>
<td></td>
<td>- Distancias entre columnas que permitan cruzar calles o pases vehiculares.</td>
<td></td>
<td></td>
<td></td>
<td>TI: ✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CA: ✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SE: ✔️</td>
</tr>
<tr>
<td>Transporte de Vigas Prefabricadas</td>
<td>- Traslado de vigas prefabricadas de 25m de largo, con peralte de 1.80m a Obra sin percances.</td>
<td>- Puede ser transportados por trailers convencionales con ayuda de apoyos móviles (Tandem de arrastre).</td>
<td>- Transporte sin problemas de tránsito, lo cual reduce el tiempo entre patio de prefabricados y obra.</td>
<td>- Sin dificultad en maniobra durante el recorrido.</td>
<td>AL: ✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO: ✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TI: ✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CA: ✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SE: ✔️</td>
</tr>
<tr>
<td>Montaje de Vigas Prefabricadas</td>
<td>- Izaje de vigas prefabricadas de 25m de largo, con peralte de 1.8m a Obra sin percances.</td>
<td>- Uso de grúas de 140 tn.</td>
<td>- Duración aproximada de izaje por viga no sobrepasa los 30 min.</td>
<td>- Sin dificultad en montaje, zona de seguridad reducida.</td>
<td>AL: ✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO: ✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TI: ✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CA: ✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SE: ✔️</td>
</tr>
</tbody>
</table>

Elaboración Propia
Tabla Nº 5.6
Matriz de decisión de una viga Tipo I de 20m de largo y 1.20m de peralte.

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>ALCANCE</th>
<th>COSTO</th>
<th>TIEMPO</th>
<th>CALIDAD</th>
<th>SEGURIDAD</th>
<th>AL</th>
<th>CO</th>
<th>TI</th>
<th>CA</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricación de Vigas Prefabricadas</td>
<td>- Optimización en el proceso de fabricación de vigas prefabricadas.</td>
<td>- Costo aproximado de cada viga es US$ 8,273.97.</td>
<td>- Se estima un tiempo de 3 días por línea de producción.</td>
<td>- De fácil montaje, no se necesita de andamios, ni de equipos adicionales, solo uso de EPPs.</td>
<td>X ✔ ✔ ✔ ✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transporte de Vigas Prefabricadas</td>
<td>- Traslado de vigas prefabricadas de 20m de largo, con peralte de 1.20m a obra sin percances.</td>
<td>- Puede ser transportados por trailers convencionales con ayuda de apoyos móviles (Tandem de arrastre).</td>
<td>- Transporte sin problemas de transit o, lo cual reduce el tiempo entre patio de prefabricados y obra.</td>
<td>- Sin dificultad en maniobra durante el recorrido.</td>
<td>✔ ✔ ✔ ✔ ✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montaje de Vigas Prefabricadas</td>
<td>- Izaje de vigas prefabricadas de 20m de largo, con peralte de 1.20m a obra sin percances.</td>
<td>- Uso de grua 140 t o menores.</td>
<td>- Duración aproximada de izaje por viga no sobrepasa los 30 min.</td>
<td>- Sin dificultad en montaje, zona de seguridad reducida.</td>
<td>✔ ✔ ✔ ✔ ✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elaboración Propia
5.4.1 Arequipa

Para la ciudad de Arequipa se plantea una línea de metro de viaducto elevado, el cual cruzará de norte a sur la ciudad, desde el Aeropuerto Internacional Rodríguez Ballón, pasando por el centro histórico (como se muestra en la Figura N° 5.15), hasta el cruce de las Av. Las Penas y Av. Independencia. Esta línea propuesta posee un recorrido de 16.9 Km, teniendo en su recorrido 12 estaciones y 3 terceras vías.

Según los parámetros anteriormente explicados y las características del trazado, para esta línea de metro elevado, se necesitaran aproximadamente 2956 vigas prefabricadas. Ver Tabla 5.7.

Para el cálculo del costo de cada viga se ha calculado de la siguiente manera:
- Costo de implementación de planta de prefabricados por cada m3 de viga producido. Ver Tabla 5.8.
- Elaboración de Análisis de Precios Unitarios para la partida Fabricación de Vigas Prefabricadas. Ver Tabla 5.9.

Los detalles de cada uno de los cálculos se encuentran en el Anexo E.

Tabla Nº 5.7
Resumen de viaducto elevado propuesto para la ciudad de Arequipa

<table>
<thead>
<tr>
<th>Descripción de Línea</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia de tramo (km):</td>
<td>16.9</td>
</tr>
<tr>
<td>Número de estaciones:</td>
<td>12</td>
</tr>
<tr>
<td>Número de terceras vías:</td>
<td>3</td>
</tr>
<tr>
<td>Número de vigas calculadas</td>
<td>2956</td>
</tr>
</tbody>
</table>

Elaboración Propia
Figura Nº 5.15: Recorrido de Línea de Metro planteada, la cual pasa por la periferia del centro histórico de Arequipa.

Fuente: Google Earth
Cadena de Producción, Transporte y Montaje de Vigas Pretensadas para la Construcción de un Viaducto Elevado de Uso Ferroviario Eléctrico

5.4.2 Trujillo

En el caso de la ciudad de Trujillo, se plantea una línea de metro de viaducto elevado, el cual cruzará de norte a sur, desde el cruce entre la Av. Grau y la Panamericana Norte, pasando al costado del centro histórico (que se encuentra delimitado por la Av. España) hasta el Distrito de Salaverry, como se muestra en
la Figura N° 5.16. Esta línea propuesta posee un recorrido de 20.2 Km, teniendo en su recorrido 14 estaciones y 4 terceras vías.

Según los parámetros anteriormente explicados y las características del trazado, para esta línea de metro elevado, se necesitaran aproximadamente 3536 vigas prefabricadas. Ver Tabla 5.10.

Para el cálculo del costo de cada viga se ha calculado de la siguiente manera:
- Costo de implementación de planta de prefabricados por cada m3 de viga producido. Ver Tabla 5.11.
- Elaboración de Análisis de Precios Unitarios para la partida Fabricación de Vigas Prefabricadas. Ver Tabla 5.12.

Los detalles de cada uno de los cálculos se encuentran en el Anexo E.

Tabla Nº 5.10
Resumen de viaducto elevado propuesto para la ciudad de Trujillo.

<table>
<thead>
<tr>
<th>Descripción de Línea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia de tramo (km):</td>
</tr>
<tr>
<td>Número de estaciones:</td>
</tr>
<tr>
<td>Número de terceras vías:</td>
</tr>
<tr>
<td>Número de vigas calculadas</td>
</tr>
<tr>
<td>20.2</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3536</td>
</tr>
</tbody>
</table>

Elaboración Propia
Figura Nº 5.16: Recorrido de Línea de Metro planteada, la cual pasa por la periferia del centro histórico de Trujillo.

Fuente: Google Earth
Tabla N° 5.11
Costo de Planta por m3 de viga producida en Trujillo.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidades</th>
<th>Cuadrilla</th>
<th>Cantidad</th>
<th>Precio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td>Costo de alquiler de terreno*</td>
<td></td>
<td></td>
<td></td>
<td>$45,000.00</td>
<td></td>
</tr>
<tr>
<td>N° de meses</td>
<td></td>
<td></td>
<td></td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>Costo Total</td>
<td></td>
<td></td>
<td></td>
<td>$639,000.00</td>
<td></td>
</tr>
<tr>
<td>Costo de Implementación de planta</td>
<td></td>
<td></td>
<td></td>
<td>$332,705.27</td>
<td></td>
</tr>
<tr>
<td>Total de Planta</td>
<td></td>
<td></td>
<td></td>
<td>$971,705.27</td>
<td></td>
</tr>
<tr>
<td>Cantidad de m3 de vigas</td>
<td></td>
<td></td>
<td></td>
<td>66123.20</td>
<td></td>
</tr>
<tr>
<td>Costo de Planta por m3</td>
<td></td>
<td></td>
<td></td>
<td>$14.70</td>
<td></td>
</tr>
</tbody>
</table>

*Tipo de Cambio usado : S/. 3.30

Elaboración Propia

Tabla N° 5.12
Análisis de Precios Unitarios de la partida Fabricación de vigas prefabricadas pretensadas en Trujillo.

1.00 Fabricación de vigas prefabricadas pretensadas $ 424.57

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidades</th>
<th>Cuadrilla</th>
<th>Cantidad</th>
<th>Precio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materiales</td>
<td></td>
<td></td>
<td></td>
<td>$14.70</td>
<td></td>
</tr>
<tr>
<td>Construcción y mantenimiento de patio de</td>
<td>m3</td>
<td>1.00</td>
<td></td>
<td>$14.70</td>
<td>$14.70</td>
</tr>
<tr>
<td>prefabricados</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subpartidas</td>
<td></td>
<td></td>
<td></td>
<td>409.87</td>
<td></td>
</tr>
<tr>
<td>Concreto Premezclado f′c= 420 Kg/cm2</td>
<td>m3</td>
<td>1.00</td>
<td></td>
<td>$105.02</td>
<td>$105.02</td>
</tr>
<tr>
<td>Acero F′y= 4200 Kg/cm2</td>
<td>kg</td>
<td>162.80</td>
<td></td>
<td>$1.29</td>
<td>$210.20</td>
</tr>
<tr>
<td>Acero Pretensado</td>
<td>kg</td>
<td>36.30</td>
<td></td>
<td>$0.25</td>
<td>$8.91</td>
</tr>
<tr>
<td>Encofrado</td>
<td>m2</td>
<td>6.50</td>
<td></td>
<td>$6.47</td>
<td>$42.08</td>
</tr>
<tr>
<td>Curado de Vigas</td>
<td>m3</td>
<td>1.00</td>
<td></td>
<td>$11.32</td>
<td>$11.32</td>
</tr>
<tr>
<td>Movilización interna</td>
<td>m3</td>
<td>1.00</td>
<td></td>
<td>$24.48</td>
<td>$24.48</td>
</tr>
<tr>
<td>Grout para cubrir pretensado</td>
<td>m3</td>
<td>0.0036</td>
<td></td>
<td>$2,184.74</td>
<td>7.87</td>
</tr>
</tbody>
</table>

Elaboración Propia
CAPÍTULO VI

TRANSPORTE A OBRA

6.1 TRANSPORTE A OBRA

El transporte a obra de las vigas prefabricadas pretensadas depende mucho de la ubicación de la planta de prefabricados con respecto a la línea que abastecerá.

En esta etapa se presentan los siguientes procesos:

<table>
<thead>
<tr>
<th>Tabla Nº 6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secuencia de actividades y procesos dentro de la partida Fabricación de Vigas Pretensadas</td>
</tr>
<tr>
<td>Prefabricadas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partida</th>
<th>Actividad</th>
<th>Proceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte de vigas prefabricadas pretensadas</td>
<td>Izaje</td>
<td>Colocación de viga en tráiler</td>
</tr>
<tr>
<td></td>
<td>Transporte</td>
<td>Confirmación de punto de llegada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transporte de carga especial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seguimiento de tráiler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posicionamiento en obra para descarga</td>
</tr>
</tbody>
</table>

Elaboración Propia

6.1.1 Ubicación de la planta con respecto a la Obra

De preferencia se busca tener un terreno en una ubicación estratégica, por lo general al centro del proyecto, para poder abastecer de vigas a toda la obra de forma eficiente.

6.1.2 Consideraciones a tomar antes de iniciar las operaciones de traslado

Al ser elementos de gran longitud, se debe tener en cuenta los siguientes aspectos:

A. Vehículo

La selección del vehículo debe estar en función de las dimensiones, peso y volumen, en caso se necesite, deberá acondicionarse un remolque, el cual deberá cumplir con todas las medidas de seguridad.
B. Recorrido
Se debe plantear una ruta idónea para el traslado de las vigas por las calles de la ciudad hacia los frentes de obra, teniendo en cuenta el ancho de las vías, la cantidad de carriles, entradas al frente de trabajo y el flujo vehicular,

Es recomendable realizar esta actividad de noche cuando el flujo de vehículos haya disminuido.

C. Personal calificado
Se debe contar con conductores y vigías experimentados para evitar contratiempos durante el traslado de las vigas a obra.

El conductor debe conocer las características del elemento prefabricado que está trasladando, así como la ruta que deberá seguir.

D. Medidas de seguridad
Se debe plantear un plan de seguridad para eliminar o minimizar los riesgos provenientes del traslado de las vigas fuera de la zona de obra.

E. Permisos municipales
Luego de tener un recorrido definido, se deben tener los permisos municipales pertinentes para la circulación de carga especial, para ocupación de un carril o en el peor de los casos el cierre de la vía.

6.1.3 Durante el traslado
Al iniciar el recorrido se debe tener establecido el punto de destino en donde estará esperando la grúa para iniciar el montaje de la viga.

Este punto de llegada debe ser coordinado con el encargado del frente, debido a que debe estar libre de obstáculos para el inicio del montaje.
6.2 CASO METRO DE LIMA LINEA 1

Para el transporte de las vigas prefabricadas en el Línea 1 del Metro de Lima, se utilizaron tráileres con tándems de arrastre, como se aprecia en la Figura N° 6.2.
Figura Nº 6.3: Tráiler para transporte de vigas hacia la obra
Fuente: Propia

Concluido el curado inicial y el cortado de los torones de las vigas, éstas se codificaban con pintura de manera clara, de modo que su montaje en el viaducto fuera en el orden establecido en los planos de proyecto. Ver Figura Nº 6.4.

La identificación se realizó de la siguiente forma:

V0X XXXX
DD/MM/YY

Donde:
V0X: Tipo de Viga
XXXX: Número correlativo correspondiente al número de vigas fabricadas de cada tipo.
DD/MM/YY: Fecha de Fabricación.
Una vez codificadas, las vigas eran trasladadas a la zona de stock. El traslado era efectuado con los puentes grúa de la planta.

Figura Nº 6.4: Codificación de Viga prefabricada
Fuente: Propia

Figura Nº 6.5: Viga prefabricada siendo colocada en el Dolly para su posterior traslado a obra
Fuente: Propia
Esta actividad se llevaba a cabo a partir de la medianoche y debido a las horas disponibles de trabajo si trasladaban de 4 a 10 vigas por noche. Se contaba con camionetas al inicio de la caravana de vigas y al final, con señales luminosas con carteles de aviso a los vehículos que circulaban.

Para realizar el despacho de manera oportuna, se preparaban las vigas desde la mañana, procurando que no tengan bordes quebrados, como se observa en la Figura N° 6.6.

![Figura N° 6.6: Preparado de viga prefabricada](image)

Fuente: Propia
6.3 COSTOS DE TRANSPORTE DE VIGAS PREFABRICADAS PRETENSADAS EN PROYECTOS FERROVIARIOS A NIVEL NACIONAL

El transporte a obra de las vigas prefabricadas pretensadas depende mucho de la ubicación de la planta de prefabricados con respecto a la línea que abastecerá. En esta sección se han tomado en cuenta las mismas ciudades del capítulo anterior.

6.3.1 Arequipa

Teniendo en cuenta la longitud de la Línea planteada (16.9 Km) y la ubicación de la planta de prefabricados al centro de la línea, se ha considerado para el cálculo del transporte de las vigas una distancia promedio de 10 Km.
Tabla N° 6.2

Análisis de Precios Unitarios de la partida Transporte de vigas prefabricadas pretensadas en Arequipa.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidades</th>
<th>Cuadrilla</th>
<th>Cantidad</th>
<th>Precio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de Obra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operario</td>
<td>HH 2.00</td>
<td>0.479</td>
<td></td>
<td>$6.08</td>
<td>$2.91</td>
</tr>
<tr>
<td>Oficial</td>
<td>HH 1.00</td>
<td>0.240</td>
<td></td>
<td>$4.99</td>
<td>$1.20</td>
</tr>
<tr>
<td>Peon</td>
<td>HH 1.00</td>
<td>0.240</td>
<td></td>
<td>$4.49</td>
<td>$1.07</td>
</tr>
<tr>
<td>Capataz</td>
<td>HH 0.10</td>
<td>0.024</td>
<td></td>
<td>$6.69</td>
<td>$0.16</td>
</tr>
</tbody>
</table>

Equipos					
Tandem de arrastre	HM 2.00	0.479		$32.90	$15.76
Camión Plataforma Extensible	HM 1.00	0.240		$71.52	$17.13
Camioneta Pick Up 4x4	HM 1.00	0.240		$21.95	$5.26
Herramientas (5%MO)	%MO 0.05			$5.34	$0.27

Elaboración: Propia

6.3.2 Trujillo

Teniendo en cuenta la longitud de la Línea planteada (20.2 Km), la ubicación de la planta de prefabricados, se ha considerado para el cálculo del transporte de las vigas una distancia promedio de 12 Km.

Tabla N° 6.3

Análisis de Precios Unitarios de la partida Transporte de vigas prefabricadas pretensadas en Trujillo.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidades</th>
<th>Cuadrilla</th>
<th>Cantidad</th>
<th>Precio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de Obra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operario</td>
<td>HH 2.00</td>
<td>0.532</td>
<td></td>
<td>$6.08</td>
<td>$3.23</td>
</tr>
<tr>
<td>Oficial</td>
<td>HH 1.00</td>
<td>0.266</td>
<td></td>
<td>$4.99</td>
<td>$1.33</td>
</tr>
<tr>
<td>Peon</td>
<td>HH 1.00</td>
<td>0.266</td>
<td></td>
<td>$4.49</td>
<td>$1.19</td>
</tr>
<tr>
<td>Capataz</td>
<td>HH 0.10</td>
<td>0.027</td>
<td></td>
<td>$6.69</td>
<td>$0.18</td>
</tr>
</tbody>
</table>

Equipos					
Tandem de arrastre	HM 2.00	0.532		$32.90	$17.49
Camión Plataforma Extensible	HM 1.00	0.266		$71.52	$19.01
Camioneta Pick Up 4x4	HM 1.00	0.266		$21.95	$5.83
Herramientas (5%MO)	%MO 0.05			$5.93	$0.30

Elaboración: Propia
CAPÍTULO VII

MONTAJE DE VIGAS EN VIADUCTO

7.1 MONTAJE DE VIGAS

Del análisis de las actividades se ha desdoblado las actividades y procesos que forman parte del montaje de vigas prefabricadas. Ver Tabla N°7.1.

<table>
<thead>
<tr>
<th>Partida</th>
<th>Actividad</th>
<th>Proceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montaje de Vigas Prefabricadas</td>
<td>Izaje</td>
<td>Izaje de viga prefabricada</td>
</tr>
<tr>
<td>Montaje</td>
<td>Direccionamiento de viga con uso de vientos</td>
<td>Posicionamiento de viga sobre neopreno</td>
</tr>
<tr>
<td>Verificación de posición</td>
<td>Control Topográfico</td>
<td></td>
</tr>
<tr>
<td>Arriostramiento</td>
<td>Colocado de arriostres entre vigas</td>
<td></td>
</tr>
</tbody>
</table>

Elaboración: Propia

Para la realización de esta actividad se debe tener en cuenta los siguientes puntos:

7.1.1 Elemento aizar

Dependiendo de la forma del elemento, se debe calcular el peso, dimensiones y volumen finales, para poder definir el centro de gravedad del elemento y poder definir los puntos de izaje y el tipo de grúa idóneo para la operación.

7.1.2 Puntos de izaje

Son los puntos por donde se sostendrá el elemento para poder izado, deben estar acondicionados para poder enganchar eslingas, cadenas o ganchos, para casos prácticos, se dejan pases en el elemento prefabricado o ganchos embebidos en concreto.

7.1.3 Maquinaria adecuada

Para elegir el tipo de grúa debe tenerse en cuenta el peso y las dimensiones, así como la Tabla de Carga del equipo.
7.1.4 Medidas de seguridad
Considerando todos los puntos anteriores, se hace un Plan de Izaje, en este documento se recopila toda la información del elemento y de la grúa a usarse para el izaje, dicho Plan poseerá Protocolos de verificación de los puntos de izaje, estado de las eslingas, cadenas, ganchos u otro elemento que será usado durante el izaje.

Además, se deben un plan de seguridad para el izaje, indicando los riesgos y medidas a tomar antes, durante y después del izaje para mitigarlos o eliminarlos.

7.2 MONTAJE DE VIGAS – CASO LINEA 1
7.2.1 Equipos que se utilizaron para el izaje
- Grúas de 150 toneladas, 200 toneladas, 230 toneladas
- Cuatro Telehandlers
- Estrobos de acero
- Grilletes
- Pines de acero 3 ½" y 5"
- Un Manlift
- Arriostre de madera de sección cuadrada 4"x4"

7.2.2 Previo al izaje
Antes de realizar la actividad, el operador realizaba una inspección minuciosa del winche, poleas, cables, seguros, bridas, abrazaderas y todo el sistema elevador. Dicha verificación también incluía la revisión de las tablas de capacidad y la verificación de la capacidad de carga de cada uno. Ningún elemento de la grúa, estrobos o eslingas debía estar dañado, caso contrario se paralizaba la actividad, o se reponía el elemento dañado.

Además, el operador como los riggers debían mostrar su permiso de trabajo y previamente firmado por los ingenieros de producción y de seguridad. Cada operario debía portar sus EPP sin daño alguno.

Al terminar la inspección, la grúa iniciaba su actividad y se posicionaba en un terreno firme y nivelado, desplegando sus soportes hidráulicos y el área de trabajo era acordonada con cinta roja para evitar interferencias durante el izaje.
7.2.3 Durante el izaje
Cada viga por izarse tenía a cada extremo una soga amarrada, llamada viento, para ser direccionada durante el izaje. Para el izaje de las vigas se utilizaron estrobas de acero, grilletes y pines de acero de 3 ½" y 5"

Al elevarse la carga, los cables debían estar tensos y además debía evitarse la oscilación de la carga. En todo momento el rigger y el montajista estaban comunicados vía radio para coordinar el posicionamiento de la viga. Figuras N° 7.6 y 7.9

<table>
<thead>
<tr>
<th>Longitud de vano</th>
<th>Longitud (m)</th>
<th>Peralte (m)</th>
<th>Volumen (m³)</th>
<th>Peso (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>19.70</td>
<td>1.30</td>
<td>9.66</td>
<td>22.94</td>
</tr>
<tr>
<td>20</td>
<td>19.70</td>
<td>1.80</td>
<td>15.22</td>
<td>36.52</td>
</tr>
<tr>
<td>24</td>
<td>23.70</td>
<td>1.30</td>
<td>13.78</td>
<td>33.07</td>
</tr>
<tr>
<td>24</td>
<td>23.70</td>
<td>1.80</td>
<td>19.64</td>
<td>47.14</td>
</tr>
<tr>
<td>25</td>
<td>24.70</td>
<td>1.30</td>
<td>14.15</td>
<td>33.96</td>
</tr>
<tr>
<td>25</td>
<td>24.70</td>
<td>1.80</td>
<td>20.32</td>
<td>48.77</td>
</tr>
<tr>
<td>25</td>
<td>24.55</td>
<td>1.80</td>
<td>20.22</td>
<td>48.53</td>
</tr>
<tr>
<td>30</td>
<td>29.70</td>
<td>1.80</td>
<td>23.73</td>
<td>56.95</td>
</tr>
<tr>
<td>31</td>
<td>30.70</td>
<td>1.80</td>
<td>24.37</td>
<td>58.49</td>
</tr>
<tr>
<td>32</td>
<td>31.70</td>
<td>1.80</td>
<td>25.01</td>
<td>60.03</td>
</tr>
<tr>
<td>33</td>
<td>32.70</td>
<td>1.80</td>
<td>25.65</td>
<td>61.57</td>
</tr>
<tr>
<td>34</td>
<td>33.70</td>
<td>1.80</td>
<td>26.30</td>
<td>63.12</td>
</tr>
<tr>
<td>35</td>
<td>34.40</td>
<td>1.80</td>
<td>26.94</td>
<td>64.66</td>
</tr>
</tbody>
</table>

Fuente: Expediente Técnico del Proyecto Tren Eléctrico
Línea 1 Tramo 2

7.2.4 Arriostre de vigas
Al tener las 4 vigas colocadas sobre la viga cabezal, se iniciaba el arriostreamiento como se indica a continuación:

- Se usaron arriostres en “X” formados por cuartones de madera de 4”x4” cruzados para sujetar el interior de las vigas, estos eran apoyados contra las alas superiores e inferiores y colocados a tope con cuñas de madera o caucho restringiendo casi totalmente el rango de movimiento en caso de alguna eventualidad. Ver Figura N° 7.2 y 7.3
- Transversalmente se colocaba una barra Dywidag para mantener unidas las vigas, apoyándose en los arriostres en “X”. Ver Figura N° 7.1

Figura N° 7.1: Estructura de fijación provisional – vista en planta
Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2

Figura N° 7.2: Estructura de fijación provisional – vista en elevación
Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2
7.2.5 Control Topográfico

Al terminar el izaje, la cuadrilla de topografía revisaba el alineamiento vertical y la ubicación final de las vigas (posicionamiento).

Figura Nº 7.4: Vigas descargadas a pie de obra
Fuente: Propia
Figura Nº 7.5: Vigas descargadas a pie de obra 2
Fuente: Propia

Figura Nº 7.6: Montaje de Vigas prefabricadas
Fuente: Propia
Figura Nº 7.7: Montaje de Vigas prefabricadas 2
Fuente: Propia

Figura Nº 7.8: Montaje de Vigas prefabricadas 3
Fuente: Propia
Figura Nº 7.9: Montaje de Vigas prefabricadas 4
Fuente: Propia

Figura Nº 7.10: Montaje de Vigas prefabricadas 5
Fuente: Propia
Para más detalle del montaje de las vigas se puede consultar en el anexo C de la presente tesis, el diseño de los arriostres provisionales, Plan de Izaje y Tabla de operación de las grúas.

7.3 COSTOS DE MONTAJE DE VIGAS PREFABRICADAS PRETENSADAS EN PROYECTOS FERROVIARIOS A NIVEL NACIONAL

7.3.1 Arequipa
Teniendo en cuenta las experiencias de la Línea 1, se ha elaborado un Análisis de Precios Unitarios con respecto a la partida de Montaje de Vigas Prefabricadas, para la ciudad de Arequipa, siguiendo el mismo planteamiento de los capítulos anteriores.

<table>
<thead>
<tr>
<th>Tabla Nº 7.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análisis de Precios Unitarios de la partida Montaje de vigas prefabricadas en Arequipa.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.00 Montaje de vigas prefabricadas</th>
<th>Rend: 38.40 m3/dia</th>
<th>$ 65.97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>Unidades</td>
<td>Cuadrilla</td>
</tr>
<tr>
<td>Mano de Obra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operario</td>
<td>HH</td>
<td>2.00</td>
</tr>
<tr>
<td>Oficial</td>
<td>HH</td>
<td>1.00</td>
</tr>
<tr>
<td>Capataz</td>
<td>HH</td>
<td>0.10</td>
</tr>
<tr>
<td>Materiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madera Tornillo Habilitado</td>
<td>p2</td>
<td>3.2</td>
</tr>
<tr>
<td>Equipos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grua autopropulsada de 140 Ton</td>
<td>HM</td>
<td>1.00</td>
</tr>
<tr>
<td>Telehandler</td>
<td>HM</td>
<td>1.00</td>
</tr>
<tr>
<td>Torre de iluminación</td>
<td>HM</td>
<td>1.00</td>
</tr>
<tr>
<td>Herramientas (5%MO)</td>
<td>%MO</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Elaboración: Propia

7.3.1 Trujillo
Teniendo en cuenta las experiencias de la Línea 1, se ha elaborado un Análisis de Precios Unitarios con respecto a la partida de Montaje de Vigas Prefabricadas, para la ciudad de Trujillo, siguiendo el mismo planteamiento de los capítulos anteriores.
Tabla N° 7.4
Análisis de Precios Unitarios de la partida Montaje de vigas prefabricadas en Trujillo.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidades</th>
<th>Cuadrilla</th>
<th>Cantidad</th>
<th>Precio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de Obra</td>
<td></td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>Operario</td>
<td>HH</td>
<td>2.00</td>
<td>0.417</td>
<td>$6.08</td>
<td>$2.53</td>
</tr>
<tr>
<td>Oficial</td>
<td>HH</td>
<td>1.00</td>
<td>0.208</td>
<td>$4.99</td>
<td>$1.04</td>
</tr>
<tr>
<td>Capataz</td>
<td>HH</td>
<td>0.10</td>
<td>0.021</td>
<td>$6.69</td>
<td>$0.14</td>
</tr>
<tr>
<td>Materiales</td>
<td></td>
<td></td>
<td></td>
<td>$5.46</td>
<td></td>
</tr>
<tr>
<td>Madera Tornillo Habilitado</td>
<td>p2</td>
<td>3.2</td>
<td></td>
<td>$1.71</td>
<td>$5.46</td>
</tr>
<tr>
<td>Equipos</td>
<td></td>
<td></td>
<td></td>
<td>$56.75</td>
<td></td>
</tr>
<tr>
<td>Grua autopropulsada de 140 Ton</td>
<td>HM</td>
<td>1.00</td>
<td>0.208</td>
<td>$195.00</td>
<td>$40.63</td>
</tr>
<tr>
<td>Telehandler</td>
<td>HM</td>
<td>1.00</td>
<td>0.208</td>
<td>$99.00</td>
<td>$12.29</td>
</tr>
<tr>
<td>Torre de iluminación</td>
<td>HM</td>
<td>1.00</td>
<td>0.208</td>
<td>$17.50</td>
<td>$3.65</td>
</tr>
<tr>
<td>Herramientas (5%MO)</td>
<td>%MO</td>
<td>0.05</td>
<td></td>
<td>$3.71</td>
<td>$0.19</td>
</tr>
</tbody>
</table>

Elaboración: Propia
CAPÍTULO VIII

PLANIFICACIÓN Y GESTIÓN DE LOS PROCESOS

8.1 PLANIFICACIÓN

8.1.1 Planes de Trabajo para la elaboración de elementos prefabricados

Como indica el tema de la presente Tesis, se hará el enfoque para el proceso de producción, transporte y montaje de vigas prefabricadas pretensadas, dichas partidas son secuenciales como se muestra en el Gráfico N° 8.1.

Gráfico N° 8.1
Secuencia de partidas de las vigas prefabricadas en el Proyecto

<table>
<thead>
<tr>
<th>Fabricación de vigas prefabricadas</th>
<th>Transporte de vigas prefabricadas</th>
<th>Montaje de vigas prefabricadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaboración Propia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para el desarrollo de los costos de producción de las vigas en diferentes ciudades del país se ha propuesto el siguiente cronograma de fabricación, en el cual cada día presenta dos turnos de 8 horas, dicho cronograma contempla la fabricación de 5 vigas (una línea de producción).

Gráfico N° 8.2
Cronograma de Fabricación de vigas prefabricadas.

<table>
<thead>
<tr>
<th>Día 1</th>
<th>Día 2</th>
<th>Día 3</th>
<th>Día 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acero</th>
<th>Encofrado</th>
<th>Tensado</th>
<th>Vaciado</th>
<th>Curado</th>
<th>Corte de Torones</th>
<th>Traslado y resanes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elaboración Propia
A. Fabricación de Vigas prefabricadas

Para la planificación de la fabricación de las vigas prefabricadas depende de su cronograma interno de fabricación y del avance del frente de trabajo.

Como muestra de ello, se tiene la producción de vigas realizada en la Línea 1 Tramo 2, que durante el mes de noviembre del 2012 alcanzó un máximo de 216 vigas producidas, siendo la máxima producción de vigas del tipo de 1.3 m de peralte, según se muestra en el siguiente Gráfico N° 8.3.

Gráfico N° 8.3
Producción de vigas prefabricadas de 1.3 m, año 2012-2013 (Línea 1 Tramo 2)

Este aumento en la producción en las vigas de h=1.30 se debió al inicio de montajes en los tramos V, U y M, entre los meses de octubre y diciembre del año 2012.

Con respecto a las vigas de h=1.80m, se obtuvo la cantidad máxima de producción en el mes de Abril del 2013, en este mes se inició el montaje de las vigas de h=1.80m en la tercera vía, tramo Q. Ver Gráfico N° 8.4.
En ambos casos el aumento de producción se vio marcado por el avance del frente, por ello es muy importante las coordinaciones entre ambas partes, los encargados de los frentes de trabajo y los encargados de la planta de prefabricados, esto puede coordinarse mediante ajustes en la programación con dos semanas de anticipación.

Al momento de tener el área del Patio de Prefabricados, se debe considerar un área específica para el almacenamiento de las mismas, en caso de que la producción sea mayor a la cantidad transportada.

B. Transporte de vigas prefabricadas

Esta actividad está ligada a los requerimientos de los frentes de obra, debido a que se deben programar la cantidad y lugar a donde llegarán las vigas prefabricadas desde planta.

C. Montaje de vigas prefabricadas

Para el izaje de las vigas, se deben tener las vigas para colocarlas sobre las vigas cabezales del viaducto, esta actividad puede hacerse si bien llegan las vigas prefabricadas a obra o con las vigas que hayan sido almacenadas en el frente de obra.
8.2 GESTIÓN

Para la elaboración, transporte y montaje de las vigas prefabricadas se debe tener definido una buena administración de los recursos para poder cumplir con los plazos, calidad y costos presupuestados.

Todos los procedimientos de seguimiento y control usados para la gestión de la obra (trabajos en la planta de prefabricados) deben ser comunicados oportunamente al personal a cargo, así como también deben estar plasmados en el Plan de Trabajo.

8.2.1 Gestión de la producción y costos

A. Vigas Producidas para el Tramo 2 de la Línea 1

El Tramo 2 de la Línea 1, posee 12.4 km en todo su recorrido, por ello se fabricaron en planta 1914 vigas de diversos tamaños. Las longitudes van desde los 14 m hasta los 35 m. como se muestra en las Tablas N° 8.1 y 8.2, donde se puede apreciar dos grupos de vigas, las de 1.30 y las de 1.80 metros de alto, que además tienen diferentes longitudes, también se indica la cantidad de material que intervienen para la fabricación de cada tipo de viga.

<table>
<thead>
<tr>
<th>VIGA TIPO</th>
<th>LONGITUD</th>
<th>VIGA TIPO</th>
<th>LONGITUD</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIGAS V1</td>
<td>19.70</td>
<td>VIGAS V2</td>
<td>19.70</td>
</tr>
<tr>
<td>VIGAS V8</td>
<td>21.10</td>
<td>VIGAS V9</td>
<td>20.87</td>
</tr>
<tr>
<td>VIGAS V9</td>
<td>20.87</td>
<td>VIGAS V19</td>
<td>14.70</td>
</tr>
<tr>
<td>VIGAS V17</td>
<td>16.20</td>
<td>VIGAS VP3</td>
<td>19.20</td>
</tr>
<tr>
<td>VIGAS VP1</td>
<td>19.20</td>
<td>VIGAS VP2</td>
<td>19.20</td>
</tr>
<tr>
<td>VIGAS VP2-A</td>
<td>18.66</td>
<td>VIGAS VPEA-2</td>
<td>19.20</td>
</tr>
<tr>
<td>VIGAS VP3-A</td>
<td>18.66</td>
<td>VIGAS VPEA-1</td>
<td>19.20</td>
</tr>
<tr>
<td>VIGAS V1'</td>
<td>19.55</td>
<td>VIGAS VP-V2</td>
<td>19.20</td>
</tr>
<tr>
<td>VIGAS VP-V2</td>
<td>19.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2
Tabla Nº 8.2
Vigas de 1.8 m de peralte

<table>
<thead>
<tr>
<th>VIGA TIPO</th>
<th>LONGITUD</th>
<th>CANTIDAD P/ VIGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACERO (kg)</td>
</tr>
<tr>
<td>VIGAS V3</td>
<td>26.35</td>
<td>3091.66</td>
</tr>
<tr>
<td>VIGAS V4</td>
<td>29.70</td>
<td>3366.57</td>
</tr>
<tr>
<td>VIGAS V5</td>
<td>31.93</td>
<td>3657.67</td>
</tr>
<tr>
<td>VIGAS V6</td>
<td>34.70</td>
<td>3846.75</td>
</tr>
<tr>
<td>VIGAS V7</td>
<td>29.70</td>
<td>3657.67</td>
</tr>
<tr>
<td>VIGAS VP2</td>
<td>31.70</td>
<td>4066.53</td>
</tr>
<tr>
<td>VIGAS VP3</td>
<td>34.20</td>
<td>4252.71</td>
</tr>
<tr>
<td>VIGAS VP4</td>
<td>31.40</td>
<td>4035.03</td>
</tr>
<tr>
<td>VIGAS VP1-ANG</td>
<td>24.20</td>
<td>3355.37</td>
</tr>
<tr>
<td>VIGAS VP1-AYA</td>
<td>18.90</td>
<td>2767.47</td>
</tr>
</tbody>
</table>

Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2

En los planos de fabricación del proyecto, los cuales se muestran en el anexo D, se puede apreciar con más detalle las características de estas vigas.

B. Porcentaje del Presupuesto total de obra civil del Viaducto y Estaciones en la Línea 1 Tramo dos del Metro de Lima

Las vigas prefabricadas fueron usadas para construcción del Viaducto, así como para la construcción de los andenes de pasajeros en las Estaciones.

La mayor parte de las vigas prefabricadas fueron destinadas a la construcción del viaducto elevado, siendo una cantidad menor (200 vigas) las utilizadas para construir los andenes de pasajeros.

El costo total de prefabricados en el viaducto elevado el cual asciende a US$ 51’443,761.50, el cual corresponde a un 20,4% del costo directo total del viaducto (US$212’565,531.45). VerTabla N° 8.3.
Costos Totales de Prefabricados por Tramo

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Vigas</th>
<th>Pre Losas</th>
<th>Borde Típico</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>$2,389,779.91</td>
<td>$419,208.43</td>
<td>$450,925.68</td>
</tr>
<tr>
<td>N</td>
<td>$1,277,967.46</td>
<td>$233,727.90</td>
<td>$121,895.30</td>
</tr>
<tr>
<td>O</td>
<td>$3,812,513.76</td>
<td>$625,093.44</td>
<td>$651,237.53</td>
</tr>
<tr>
<td>P</td>
<td>$4,637,619.64</td>
<td>$720,201.08</td>
<td>$871,464.54</td>
</tr>
<tr>
<td>Q</td>
<td>$2,873,380.49</td>
<td>$491,204.15</td>
<td>$528,311.40</td>
</tr>
<tr>
<td>Tercera</td>
<td>$2,371,489.43</td>
<td>$291,694.54</td>
<td>$264,730.48</td>
</tr>
<tr>
<td>Vía</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>$4,796,964.52</td>
<td>$638,980.21</td>
<td>$796,251.49</td>
</tr>
<tr>
<td>S</td>
<td>$4,533,631.73</td>
<td>$706,001.41</td>
<td>$825,598.20</td>
</tr>
<tr>
<td>T</td>
<td>$2,826,087.34</td>
<td>$489,101.51</td>
<td>$623,418.49</td>
</tr>
<tr>
<td>U</td>
<td>$4,618,758.18</td>
<td>$688,529.95</td>
<td>$956,473.03</td>
</tr>
<tr>
<td>Total</td>
<td>$38,490,297.12</td>
<td>$5,980,305.38</td>
<td>$6,973,159.00</td>
</tr>
</tbody>
</table>

Costo Total de Prefabricados en Viaducto: US$ 51'443,761.50

Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2

El costo de los prefabricados usados en los andenes de pasajeros es similar, debido a que todas las estaciones son típicas. El costo de los prefabricados asciende a US$ 4'254,205.57 representado un 10.7% del costo directo total de las 10 estaciones (US$39'867,408.41). Ver Tabla N° 8.4.

En la Estación San Carlos, no se colocaron Vigas prefabricadas ni Prelosas debido a que sobre la estación el Cruce Especial San Carlos viene incorporado con los andenes.

Costo Total de Prefabricados en Estación: US$ 4'254,205.57

Fuente: Expediente Técnico del Proyecto Tren Eléctrico Línea 1 Tramo 2
El costo total de vigas prefabricadas según el expediente aprobado fue de US$41'478,047.69, comparando con el costo promedio calculado en la Tabla N° 8.6, encontramos una diferencia de US$ 2,610,660.23, habiendo variado un -6.29%.

Esta variación (-6.29%) nos indica que los metrados usados en la planilla de elaborada por el contratista estaban elevados con respecto a los reales.

Con relación a la incidencia presupuestal, las vigas prefabricadas construidas representaron un 18.28% del costo total del viaducto elevado desde su cimentación hasta la superestructura y un 54.70% de la estructura del tablero (desde las vigas prefabricadas hasta los apoyos de catenaria), según como se muestra en la Tabla N° 8.5.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>P. U. (US$)</th>
<th>Cantidad</th>
<th>Total US $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricación de Vigas</td>
<td>17,954.97</td>
<td>1,914.00</td>
<td>34,365,812.58</td>
</tr>
<tr>
<td>Transporte de Vigas</td>
<td>728.81</td>
<td>1,914.00</td>
<td>1,394,942.34</td>
</tr>
<tr>
<td>Montaje de Vigas</td>
<td>1,623.11</td>
<td>1,914.00</td>
<td>3,106,632.54</td>
</tr>
</tbody>
</table>

Costo Total Vigas: US$ 38,867,387.46

Presupuesto Total para Tablero (obra civil): US$ 71,059,890.72

Presupuesto Total Viaducto (obra civil): US$ 212,565,531.45

| Porcentaje de Incidencia (Tablero): | 54.70% |
| Porcentaje de Incidencia (Viaducto): | 18.28% |

*Los montos son a costo directo

Elaboración Propia

C. Indicadores de Producción en la Línea 1 Tramo 2 del Metro de Lima

Según la información recopilada y mostrada en la Tabla N° 8.2, 8.3 y los Gráficos 8.3 y 8.4 se calculó los siguientes indicadores que se muestran en la Tabla N° 8.6.
8.2.2 Gestión de la calidad

El área de calidad del proyecto es el encargado del aseguramiento de la calidad durante la fabricación y montaje de las vigas pretensadas prefabricadas.

Para el aseguramiento de la calidad, se debe elaborar un Plan de Calidad, en el cual se incluyen los objetivos de la Calidad, la metodología, la organización y los procedimientos para logar la satisfacción del Cliente.

En este Plan de Calidad están consideradas todas las actividades necesarias para la producción de los elementos prefabricados en Planta, además se indica cuáles serán los puntos de control de cada actividad y las tolerancias permitidas.

Para mayor detalle de sobre un Plan de Calidad, se adjunta el Plan de Calidad del Proyecto Tramo 2 Línea 1 del Metro de Lima. (Anexo A).

A. Problemas encontrados y soluciones planteadas durante la fabricación de vigas en la Línea 1 Tramo 2 del Metro de Lima

En todo proyecto se encuentran problemas en obra, los cuales deben ser analizados para encontrar el origen y determinar una solución idónea a dicho percance,

- **Encofrados**

Los encofrados debido a su gran número de usos se deformaban ocasionando ondulaciones en la parte lateral de las vigas y/o desfases entre cuerpos de encofrado, lo que generaba la pérdida de tiempo por resanes. Por cada viga vaciada y resanada por motivos de fallas en el encofrado, se tardaban entre 1 a 2 horas dependiendo de la gravedad de la falla. Cabe resaltar que si había
problemas por ondulaciones y abollamientos en el encofrado, el espesor de recubrimiento no se vio afectado.

Otro problema encontrado fue la limpieza de los encofrados, los cuales originaban aberturas entre paneles, evitando la hermeticidad del mismo. Como ejemplo, en la Figura Nº 8.1, se observa una separación de 9mm entre paneles de encofrado, este tipo de aberturas permite el escape de la lechada del concreto, produciendo disgregación del concreto, el cual es apreciable en el desencofrado de la viga.

Figura Nº 8.1: Abertura entre paneles de encofrado metálico.
Fuente: Propia

El uso de encofrado metálico al no ser moldeable como la madera, ocasionaba que se usaran maderas o triplays para completar las zonas descubiertas o como apoyo para los dados de concreto, pero al no ser fijados adecuadamente, estos elementos caían dentro de la mezcla de concreto, y afloraban al momento del desencofrado.

Para extraer los trozos de madera, se debía picar la zona circundante al elemento extraño, luego se procedía a humedecer la zona con un yute y aplicar Sika Rep.
Medidas correctivas realizadas
Debido a la ocurrencia de elementos extraños embebidos, se evitaba en lo posible usar elementos de madera.

Análisis de la medida correctiva y propuesta de corrección
A pesar de la existencia del problema, se decidió usar una solución práctica frente al problema, pero que a posteriori generaba un mayor impacto, al tener virutas o en el peor de los casos tacos de madera embebidos.

Para poder controlar el uso de los encofrados se debió establecer un sistema de trazabilidad con respecto al número de usos de los encofrados, los cuales deberían estar codificados, y así poder estimar la cantidad de usos antes de recibir alguna reparación. Luego con las estadísticas, se podría determinar una frecuencia de mantenimientos preventivos para alargar la vida útil del encofrado.

- Burbujas superficiales
La presencia de burbujas superficiales generaba pérdida de materiales y horas hombre, ya que había que hacer retrabajos; la presencia de burbujas era muy frecuente, estos agujeros por lo general se encontraba en mayor densidad en la cara superior del ala inferior de la viga.
Estas burbujas aparecían debido a las burbujas de aire que quedaban atrapadas en la parte superior del alma inferior de la viga. Debido a ello por lo menos el 98% de las vigas después de desencofradas necesitaban de un resane para darle un adecuado acabado.

Aunque se mejoraron los procesos de vibrado y se usó el concreto adecuado, solo se pudo mitigar el problema mas no eliminarlo.

A pesar de que la reparación de las burbujas era un trabajo simple, las vigas que se encontraban con gran presencia de burbujas podían ocasionar que la viga no sea despachada a la Obra, teniéndose que buscar otra viga de las mismas características, generando retraso en el traslado de las vigas a obra.

Medidas correctivas realizadas
Las actividades realizadas para poder mitigar la aparición de burbujas solo fue mejorar el vibrado durante el vaciado por cada capa de concreto.

Análisis de la medida correctiva y propuesta de corrección
Las burbujas siempre estarán presentes en los vaciados de concreto, la densidad de éstas es lo que deber ser disminuida. A pesar de realizar un buen vibrado en la primera capa, al vaciarse la segunda capa y profundizar el vibrador para realizar la unión del concreto de la primera y segunda, genera la formación de nuevas burbujas, por ello, al aplicar la segunda capa, se debe hacer un vibrado constante, pero se debe tener cuidado de vibrar en exceso para evitar segregaciones.

- Corte de Torones
Los cortes de torones, actividad realizada luego de la comprobación de más del 60% de la resistencia final a la compresión del concreto, era realizada sin destensar los torones, lo cual implicaba un trabajo muy riesgoso, pudiendo ocasionar accidentes y pérdidas de horas de trabajo.

Medidas correctivas realizadas
No se tomaron medidas al respecto.
Análisis de la medida correctiva y propuesta de corrección

Las vigas luego de superar el 60% de la resistencia final y ser cortadas sufrían una contracción por el pretensado y adquirían una forma ligeramente arqueada hacia arriba, lo cual se llama flecha.

Si se procedía a destensar las vigas de una línea (5 o 7, dependiendo de la altura de la viga) las vigas sufrirían el arqueo, y los torones podían ser cortados más fácilmente, haciendo más segura la labor.

- **Codificación de las vigas y su posición final**

Si bien es cierto, las vigas eran codificadas con un código general de acuerdo a su diseño (en la Figura N° 8.4, V8) y al número de viga producida (en la Figura N° 8.4, 008) y la fecha de fabricación (en la Figura N° 8.3, 13-09-2012), estas eran transportadas a cualquier tramo de la Obra y montadas en el viaducto, ocasionando la pérdida de trazabilidad del elemento.

*Figura N° 8.3: Numeración de Vigas Prefabricadas.
Fuente: Propia*

Medidas correctivas realizadas

En cada tramo, el Ing. de Producción encargado, llevaba un control de las vigas colocadas, pero el formato era elaborado por cada ingeniero.
Análisis de la medida correctiva y propuesta de corrección

Vemos necesario que en la codificación debería colocarse el número del vano y el tramo en que es montada, para hacer un seguimiento ante cualquier problema que se pueda presentar.

Esta codificación propuesta debe ser coordinada entre el área de planta de prefabricados y el Ing. de Producción a cargo del tramo.

- **Reparación de Cantos Quebrados**

 Muy aparte de las burbujas de aire que eran la causa de un retrabajo, existían también los cantos de la viga quebrados que necesitaban también ser resanados.

 Por tratar de agilizar la producción y el despacho de la viga a Obra, el personal encargado no cumplía con los procedimientos de resane, lo cual ocasionaba un retrabajo. Ver Figura N° 8.4.

 La ocurrencia de esta falla era de 1 cada 4 vigas, encontrándose como posibles causas:
 - Mal desencofrado de la viga
 - Daños al transportar la viga desde las líneas de producción a la zona de despacho.
 - Mala aplicación de desmoldante en los quiebres del encofrado.
 - Falta de espacio para almacenaje en la zona de despacho, recurriendo a usar los espacios estrechos entre las vigas ya resanadas, originando choques entre ellas.
Cadena de Producción, Transporte y Montaje de Vigas Pretensadas para la Construcción de un Viaducto Elevado de Uso Ferroviario Eléctrico
Armando Rodrigo Sánchez Huaytalla

Figura Nº 8.4: Resane mal ejecutado
Fuente: Propia

Medidas correctivas realizadas
Se realizaba la reparación de la zona afectada, retirándose todo el material suelto, la reparación se llevaba a cabo usándose el SikaRep y posteriormente se dejaba curar la zona afectada por vía húmeda durante 3 días o mediante curador químico. Se recomendaba no transportar las vigas al menos 3 días después de haberse hecho la reparación.

Con este período de 3 días se evitaba que haya desprendimiento de las zonas resanadas por golpes durante el transporte.

Análisis de la medida correctiva y propuesta de corrección
La medida correctiva aplicada en este caso es acertada, pero el problema se vio con mayor frecuencia durante las últimas etapas de la Planta de Prefabricados, cuando los espacio para colocar las vigas terminadas era reducido y se colocaban las vigas muy juntas, originando choques y quiñes.

- Abastecimiento de concreto
El problema más significativo que tuvo la producción de las vigas fue por el abastecimiento de concreto, por ello se implementó dentro de la planta de prefabricados una planta de concreto, la cual en ocasiones tenía problemas en la calibración generando atrasos en la producción de vigas.
El caso más grave ocurrió cuando por error se usó un aditivo que se encontraba mal rotulado, lo que conllevó a la producción de concreto defectuoso, ocasionando la demolición de 5 vigas prefabricadas.

Mientras estas vigas eran demolidas, se limpiaba la zona y se eliminaban el desmonte, una línea de producción estuvo paralizada, perjudicando la producción semanal.

![Viga estropeada por concreto defectuoso.](image)

Figura Nº 8.5: Viga estropeada por concreto defectuoso.

Fuente: Propia

Medidas correctivas realizadas
Recalibrado de la planta y rotulado de los depósitos del aditivo.

Análisis de la medida correctiva y propuesta de corrección
Para la solución de este problema se propone un mayor control de la planta, por parte del contratista y la supervisión.

Si bien la planta cuenta con equipos automáticos que preparan el diseño según las necesidades de la Obra, estos deben ser calibrados periódicamente y tener un cronograma de mantenimiento para evitar problemas similares.
• **Almacenamiento de vigas pretensadas**

Debido a la gran producción de Vigas pretensadas llegó un momento en la planta donde ya no había espacio para poder almacenar las vigas.

El problema del almacenamiento se debía a diversos factores:

- La producción se realizaba en 2 turnos, cuando el despacho solo se hacía en la noche y era menor a la cantidad producida por día.
- Los frentes de trabajo donde debían llegar las vigas aún no estaban listos para el montaje, por ello las vigas continuaban en espera, o eran transportadas a la Obra y dejadas al costado del viaducto, ocasionando un trabajo doble a la grúa de 240 Tn.

Los resanes de quiñes y/o porosidades retrasaban la salida de las vigas, pues solo se hacía un envío de vigas (4 a 8 vigas) por noche y si la viga no estaba lista para la hora de envío, se dejaba lista para ser despachada en la noche siguiente.

Estos problemas tuvieron las siguientes consecuencias:

- Problemas de circulación entre vigas para su resane y revisión.
- Superposición de actividades, lo cual generaba incomodidad y riesgo de accidentes, por ello la actividad se retrasaba hasta subsanar las faltas, este levantamiento de observaciones duraba entre un par de minutos a casi una hora. Ver Figura N° 8.7.
- Daños entre vigas (quiñaduras) al ser colocadas armaduras y/o vigas terminadas en espacios reducidos o entre 2 vigas almacenadas.
Figura Nº 8.6: Almacenaje deficiente de armaduras y vigas.
Fuente: Propia

Medidas correctivas realizadas
Para mitigar estos problemas se empezó a llevar todas las vigas posibles a los tramos correspondientes, si el tramo no estaba listo, se dejaba al costado para su posterior montaje, para ello se empezaron a enviar de 8 a 12 vigas por noche.

Análisis de la medida correctiva y propuesta de corrección
El traslado de las vigas a obra, generó el doble uso de la grúa de 240TN. El primer uso se daba cuando descargaban del tráiler a la obra y el segundo, cuando era izada finalmente, esto generó un mayor coste de alquiler de equipos mecánicos, pero se vio compensado con la continuidad de la producción de la planta, que al final acabo antes de lo previsto y la devolución de los terrenos del IPD, en donde se encontraba ubicada la planta.

Para evitar estos inconvenientes se debió generar una cultura del Just in Time “Cero Inventario” sincronizada con el avance de los diferentes tramo para evitar el doble uso de la grúa.
B. Problemas encontrados y soluciones planteadas durante el transporte de vigas en la Línea 1 Tramo 2 del Metro de Lima

- Problemas de tránsito

El traslado de las vigas prefabricadas fue una actividad de mucho riesgo, ya que se debía atravesar por las avenidas principales de Lima. Considerando el alto nivel de tránsito de vehículos que hay en todo el día, se propuso como solución el traslado de las vigas a partir de las 11:00pm.

También se debe previó que para el traslado de vigas de una longitud de 35 metros se tenía que realizar maniobras de giro en las calles, en algunas ocasiones se tuvo que demoler sardineles y veredas para el paso de los vehículos que transportaron las vigas, que posterior al termino de los trabajos eran resanados.
C. Problemas encontrados y soluciones planteadas durante el montaje de vigas en la Línea 1 Tramo 2 del Metro de Lima

- Quiñadura de vigas
Debido a malas maniobras al levantar la viga del Dolly, se producen quiñaduras en los bordes inferiores de las vigas, y como estas no pueden resanarse al instante, se debe formar una cuadrilla equipados con un manlift y reparar todas las quiñaduras, lo cual genera una perdida en horas hombre y equipos.
8.3 PRODUCCIÓN, TRANSPORTE Y MONTAJE DE VIGAS PREFABRICADAS PRETENSADAS EN PROYECTOS FERROVIARIOS A NIVEL NACIONAL

Con los Análisis de Precios Unitarios mostrados en los capítulos anteriores, se puede calcular cuánto estaría costando las vigas prefabricadas por metro cúbico, el costo de cada vía prefabricada pretensada y aproximar el costo del viaducto elevado y el costo del viaducto por Km.

Para el caso de la Línea de Metro propuesta para la ciudad de Arequipa, el costo de viga prefabricada pretensada se ha estimado en US$ 542.20 dólares por m3.

<table>
<thead>
<tr>
<th>Tabla Nº 8.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo Directo Total por m3 de viga fabricada en Arequipa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Costo ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 Fabricación de vigas prefabricadas pretensadas</td>
<td>432.47</td>
</tr>
<tr>
<td>2.00 Transporte de vigas prefabricadas</td>
<td>43.76</td>
</tr>
<tr>
<td>3.00 Montaje de vigas prefabricadas</td>
<td>65.97</td>
</tr>
<tr>
<td>Total por m3</td>
<td>542.20</td>
</tr>
</tbody>
</table>

Elaboración Propia
Según las características de las vigas, se ha calculado que cada tiene un volumen de 19.2 m³, por ende cada viga prefabricada pretensada estaría costando US$ 17,197.69 dólares.

Al haber calculado el costo de las vigas y la cantidad, podremos estimar que el Costo Directo total de fabricación, transporte y montaje será de US$ 30'772,626.91, sumando los Gastos Generales (30% del Costo Directo), la Utilidad (10% del Costo Directo) y los impuestos (18% del Subtotal), obtenemos un costo de US$ 50'836,379.85 dólares.

Teniendo la incidencia de las vigas prefabricadas en la Línea 1 del Metro de Lima, la cual nos indica que las vigas fueron un 18.28% del presupuesto de estructuras del viaducto (Obra Civil), podemos aproximar el costo de total del viaducto a un valor de US$ 278’098,356.97 dólares.

Para el caso de la Línea de Trujillo, tomando en cuenta las mismas características de las vigas prefabricadas de Arequipa, el Costo Directo por m³ de viga prefabricada es de US$ 539.04 dólares, por ello cada viga estaría...
costando US$ 17,097.50 dólares (incluyendo impuestos, gastos generales y utilidades).

Tabla N° 8.9
Costo Directo Total por m3 de viga fabricada en Trujillo

<table>
<thead>
<tr>
<th></th>
<th>Precio</th>
<th>Metrado (m3)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 Fabricación de vigas prefabricadas pretensadas</td>
<td>$ 424.57</td>
<td>67891.20</td>
<td>$ 28,824,318.91</td>
</tr>
<tr>
<td>2.00 Transporte de vigas prefabricadas</td>
<td>$ 48.55</td>
<td>67891.20</td>
<td>$ 3,296,337.28</td>
</tr>
<tr>
<td>3.00 Montaje de vigas prefabricadas</td>
<td>$ 65.92</td>
<td>67891.20</td>
<td>$ 4,475,441.84</td>
</tr>
<tr>
<td>Total por m3</td>
<td>$ 539.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De la misma forma que en Arequipa, podemos calcular el costo total de fabricar 3536 vigas prefabricadas pretensadas, teniendo como resultado el monto de US$ 60'456,753.96 dólares.

Por último calculamos el costo aproximado de las Obras Civiles del Viaducto, el cual bordea los US$ 330'726,225.16 dólares.

Tabla N° 8.10
Estimación de coste de Obra Civil (Viaducto) de la Línea proyectada en Trujillo

<table>
<thead>
<tr>
<th></th>
<th>Precio</th>
<th>Metrado (m3)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 Fabricación de vigas prefabricadas pretensadas</td>
<td>$ 424.57</td>
<td>67891.20</td>
<td>$ 28,824,318.91</td>
</tr>
<tr>
<td>2.00 Transporte de vigas prefabricadas (D= 12Km)</td>
<td>$ 48.55</td>
<td>67891.20</td>
<td>$ 3,296,337.28</td>
</tr>
<tr>
<td>3.00 Montaje de vigas prefabricadas</td>
<td>$ 65.92</td>
<td>67891.20</td>
<td>$ 4,475,441.84</td>
</tr>
<tr>
<td>Costo Directo</td>
<td>$ 36,596,098.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastos Generales</td>
<td>$ 10,978,829.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilidad</td>
<td>$ 3,659,609.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td>$ 51,234,537.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGV</td>
<td>$ 9,222,216.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$ 60,456,753.96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Presupuesto aproximado de Tablero (Obra Civil) $ 110,524,230.27
Presupuesto total aproximado de Viaducto (Obra Civil) $ 330,726,225.16
Valor de Viaducto por Km $ 16,372,585.40
Valor de producción de una viga prefabricada pretensada $ 17,097.50

Elaboración: Propia
La variación de los precios entre la ciudad de Arequipa y Trujillo, se basa en el costo de los materiales, los cuales varían dependiendo de la cercanía u origen de estos, como se muestra en la Tabla N° 8.11.

Podemos observar que el precio del acero en la ciudad de Arequipa es menor que en la ciudad de Trujillo, esto es debido a que los centros de producción y de habilitación (acero dimensionado) se encuentran más cerca de la ciudad de Arequipa.

De la misma forma se ha visto que el precio del concreto premezclado es mucho mayor en la ciudad de Arequipa que en Trujillo. Ver Tablas N° 8.11 y 8.12.

Tabla N° 8.11
Comparativo del costo de los materiales más representativos según la ubicación del proyecto

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Lima (Julio-2017)</th>
<th>Arequipa</th>
<th>Trujillo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concreto premezclado f'c= 420 kg/cm²</td>
<td>$ 90.91</td>
<td>$ 104.47</td>
<td>$ 94.51</td>
</tr>
<tr>
<td>Acero F'y= 4200 Kg/cm² dimensionado</td>
<td>$ 0.85</td>
<td>$ 0.82</td>
<td>$ 0.88</td>
</tr>
<tr>
<td>Alambre Negro N°16</td>
<td>$ 0.83</td>
<td>$ 0.83</td>
<td>$ 0.90</td>
</tr>
</tbody>
</table>

Elaboración: Propia

Tabla N° 8.12
Variación del costo de los materiales respecto a los precios en Lima

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Arequipa</th>
<th>Trujillo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concreto premezclado f'c= 420 kg/cm²</td>
<td>15%</td>
<td>4%</td>
</tr>
<tr>
<td>Acero F'y= 4200 Kg/cm² dimensionado</td>
<td>-3%</td>
<td>4%</td>
</tr>
<tr>
<td>Alambre Negro N°16</td>
<td>0%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Elaboración: Propia

Los demás materiales mostrados en la Tabla N° 8.13, tienen ligera variación en los precios debido al flete desde la ciudad de Lima.
Cadena de Producción, Transporte y Montaje de Vigas Pretensadas para la Construcción de un Viaducto Elevado de Uso Ferroviario Eléctrico
Armando Rodrigo Sánchez Huaytalla

CAPÍTULO VIII: PLANIFICACIÓN Y GESTIÓN DE LOS PROCESOS
UNIVERSIDAD NACIONAL DE INGENIERÍA
FACULTAD DE INGENIERÍA CIVIL

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Lima (Julio-2017)</th>
<th>Arequipa</th>
<th>Trujillo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toron pretensado</td>
<td>$ 3.00</td>
<td>$ 3.01</td>
<td>$ 3.01</td>
</tr>
<tr>
<td>Anclajes para pretensado</td>
<td>$ 2.00</td>
<td>$ 2.01</td>
<td>$ 2.01</td>
</tr>
<tr>
<td>Grout</td>
<td>$ 0.99</td>
<td>$ 1.03</td>
<td>$ 1.02</td>
</tr>
<tr>
<td>Desmoldante</td>
<td>$ 10.25</td>
<td>$ 10.29</td>
<td>$ 10.28</td>
</tr>
<tr>
<td>Aditivo de curado</td>
<td>$ 0.86</td>
<td>$ 0.90</td>
<td>$ 0.89</td>
</tr>
</tbody>
</table>

Elaboración: Propia
9.1 LA INNOVACIÓN EN LA CONSTRUCCIÓN

Debemos tener en cuenta que la tecnología avanza en todas las ramas de la ingeniería lo que permite innovar procesos constructivos y la creación de nuevos materiales.

9.1.1 Importancia de la Innovación

Hoy en día las empresas conciben la innovación como la clave para incrementar beneficios y aumentar su participación en los mercados y además los gobiernos las promueven para impulsar sus economías.

9.1.2 La innovación en el Línea 1 Tramo 2

Es muy común ver en Lima los proyectos de intercambios viales, viaductos y puentes que se han construido utilizando vigas cabezales vaciadas in situ, teniendo de alguna manera que lidiar con problemas de espacio, tiempo y riesgo por los trabajos en altura.

En el mismo Tramo 1 de la Línea 1 del Metro de Lima, la totalidad del viaducto fue construido con vigas cabezales vaciadas in situ, es así que en el tramo 2 se decide romper este paradigma e innovar en los prefabricados, produciendo por primera vez en el Perú, vigas cabezales de concreto.

A. Diseño de vigas cabezales

El diseño del viaducto no se vio alterado por el empleo de las vigas cabezales prefabricadas.

El viaducto es una estructura hiperestática, con excelente comportamiento bajo solicitudes sísmicas, la distribución de cargas a nivel de viga prefabricada es la siguiente:
Las vigas longitudinales prefabricadas están apoyadas sobre aparatos elastoméricos de apoyo, ubicados sobre la viga cabezal. Las vigas longitudinales son continuas por medio de diafragmas vaciados in situ.

Los aparatos de apoyo transmiten las cargas verticales al pilar, siendo recibida por la viga cabezal, esta a su vez la transmite a la columna y finalmente la carga llega a la zapata.

Al igual que en los cabezales vaciados in situ, las restricciones longitudinales son embebidas en la viga cabezal y conectadas al tablero a través de los diafragmas. Esto con el fin de transmitir las cargas longitudinales al pilar. Previo a la prefabricación de vigas cabezales, se desarrollaron diversos modelos de prueba para seleccionar cuál de ellos cumple con los requerimientos que exige el proyecto.

Finalmente se consideró el diseño más óptimo, con una estructura maciza y eliminando el postensado. El núcleo de este diseño presentaba 28 ductos de 10 cm de diámetro por las cuales las varillas pasaban y se conectaban mediante empalmes mecánicos a la columna. Finalmente se inyectaba la lechada de 350 kg/cm² de resistencia a la compresión y se culmina con los trabajos de la llave de corte. Ver Figura N° 9.1.

Figura N° 9.1: Viga cabezal prefabricada conectada a columna
Fuente: Consorcio Tren Eléctrico
La continuidad entre columna y viga cabezal está dada por traslapes con el acero de refuerzo de las columnas. Se emplearon conectores mecánicos del tipo “Grip-twist”. Los ductos en el cabezal prefabricado tienen el diámetro suficiente a fin de abarcar a la barra de acero de la columna 1 3/8” y al acople. La armadura del cabezal prefabricado se mantendrá similar a la armadura de los cabezales que originalmente eran vaciados in situ.

B. Producción de vigas cabezales

Se construyó una línea de producción con cinco módulos, cada uno de ellos implementado con un sistema de encofrado y un área de armado de acero. La distribución de los módulos consideraba el pase de camiones mezcladores de concreto sin interferencia con el pase de las grúas pórtico y la ubicación del área de armado de acero facilitaba el armado y transporte de la armadura debido a su cercanía con los módulos. Ver Gráfico N° 9.1, Figuras N° 9.2 y 9.3.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad</td>
<td>Und.</td>
<td>141</td>
</tr>
<tr>
<td>Duración</td>
<td>días</td>
<td>162</td>
</tr>
<tr>
<td>Producción diaria</td>
<td>Und/día</td>
<td>0.87</td>
</tr>
<tr>
<td>Volumen de Concreto</td>
<td>m³</td>
<td>3,222.5</td>
</tr>
<tr>
<td>Peso de acero</td>
<td>TN</td>
<td>1023</td>
</tr>
<tr>
<td>Volumen de concreto</td>
<td>m³/día</td>
<td>20</td>
</tr>
<tr>
<td>Peso de acero</td>
<td>TN/día</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Fuente: Consorcio Cesel - Poyry
Gráfico N° 9.1
Producción mensual de vigas cabezales

<table>
<thead>
<tr>
<th></th>
<th>oct-12</th>
<th>nov-12</th>
<th>dic-12</th>
<th>ene-13</th>
<th>feb-13</th>
<th>mar-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabezales</td>
<td>6</td>
<td>33</td>
<td>32</td>
<td>27</td>
<td>22</td>
<td>21</td>
</tr>
</tbody>
</table>

Elaboración: Propia
Figura N° 9.2: Etapa de Prevaciado de Viga Cabezal
Fuente: Propia

Habilitado de la armadura de acero, restricciones longitudinales y llaves de corte según el tipo de viga cabezal
Figura N° 9.2: Etapa de Prevaciado de Viga Cabezal
Fuente: Propia

Verificación del encofrado, ductos en el inferior y aplicación del desmoldante

Izaje de la armadura del cabezal que se ha colocado en el molde del encofrado metálico
Colocación de las varillas de acero dentro de los ductos corrugados, garantizando la verticalidad del ducto en el vaciado.

Realizado los puntos de soldadura y plancha galvanizada se coloca el encofrado metálico lateral de la viga cabezal.
Cadena de Producción, Transporte y Montaje de Vigas Pretensadas para la Construcción de un Viaducto Elevado de Uso Ferroviario Eléctrico
Armando Rodrigo Sánchez Huaytalla

Figura N° 9.2: Etapa de Prevaciado de Viga Cabezal
Fuente: Propia

Se verifica el recubrimiento del encofrado metálico y fijación mediante telescopios

Se coloca la plancha agujereada en la parte superior para fijar las varillas en posición vertical
Figura N° 9.2: Etapa de Prevaciado de Viga Cabezal
Fuente: Propia

Se realiza los punto de soldaduras y planchas galvanizadas en la parte superior de la armadura de la viga cabezal.
Luego de la liberación topográfica se realizó el vaciado de concreto $f_c=280$ kg/cm², en la viga cabezal, el cual se verificó su consistencia y resistencia de la mezcla.
Descubrimiento de la manta geotextil de la viga cabezal como parte de culminar

Desencofrado lateral de la viga cabezal una vez que alcanzado el fraguado final
Alcanzado el 70% de la resistencia de concreto, se procedía al izaje de la viga cabezal.

Solaqueado y resane de cantos quebrados en la vigas cabezales.
Vista del almacén de las vigas cabezales los cuales se encuentran rotulados por tipo y numeración correlativa.

Carguio de la viga cabezal al camión para ser transportado a obra
C. Montaje de vigas cabezales

En las siguientes imágenes se muestra el proceso de montaje de las vigas cabezales sobre las columnas del viaducto, también se pueden ver las varillas para el anclaje entre columna – cabezal.

Figura N° 9.4: Viga cabezal en obra
Fuente: Propia

Figura N° 9.5: Izaje de viga cabezal en obra
Fuente: Propia
Figura N° 9.6: Varillas para unión de Columna-Viga Cabezal

Fuente: Propia
CONCLUSIONES

- Una parte importante para la fabricación de elementos prefabricados es la sistematización de las actividades, lo cual permite realizar las actividades secuenciales generando un ciclo de trabajo, que puede mejorarse a medida que se repite el ciclo.

- Los diferentes aspectos de mejora de tiempo y costos fueron la evolución de procesos realizados en el Tramo 1 de la Línea 1 del Metro de Lima, los cuales fueron aplicados en el Tramo 2 lográndose óptimos resultados en los procesos.

- Las vigas prefabricadas representan un 18.11% del costo total del Viaducto elevado del Tramo 2 de la Línea 1, el cual está representado en las 1914 unidades fabricadas. Con respecto a la Obra Civil (solo Viaducto), los elementos prefabricados representan el 17.23%.

- Para la toma de decisiones sobre los parámetros de las vigas se usó la herramienta Matriz de Decisiones en base al Alcance, Costo, Tiempo, Calidad y Seguridad, teniendo como alternativa optima la viga de 25 metros y peralte de 1.80m.

- El viaducto elevado propuesto para la ciudad de Arequipa poseería un recorrido de 16.9 km, contaría con 12 estaciones, el costo estimado del viaducto (solo tablero) sería de US$92,936,708.69 Dólares.

- El viaducto elevado propuesto para la ciudad de Trujillo poseería un recorrido de 20.2 km, contaría con 14 estaciones, el costo estimado del viaducto (solo tablero) sería de US$110,524,230.27 Dólares.

- El costo estimado por Km de viaducto elevado para la ciudad de Arequipa es de US$16,455,524.08 Dólares y para la ciudad de Trujillo es de US$16,372,585.40 Dólares, teniendo como costo promedio estimado de Obra Civil por aproximadamente US$ 16.4 Millones de Dólares por Km.
- El uso de herramientas de planificación son muy efectivos para poder actualizar los pedidos de materiales y personal, evitando percances por falta de insumos o de mano de obra.
RECOMENDACIONES

- Se recomienda reforzar la comunicación entre áreas durante cambios de turno, debido a coordinaciones efectuadas en un turno son ejecutadas en turno siguiente, pudiendo generar confusión en el ambiente de trabajo.

- Se recomienda mejorar el Plan de calidad a medida del avance del proyecto, aplicando la metodología de mejora continua.

- Para determinar un costo más real por Km de viaducto se debería analizar el tipo de suelo para poder estimar el costo de cimentación.

- Para hacer el análisis de alternativas se recomienda tener metodologías establecidas como por ejemplo las áreas del conocimiento planteadas por el PMI.
BIBLIOGRAFÍA

- Carro Paz, R., & González Gómez, D. (s.f.). Administración de las Operaciones - Capacidad y Distribución Física. Mar de Plata, Argentina: Universidad Nacional de Mar de Plata.

- Serpell, Alfredo. “Administración de Operaciones de Construcción”, Ediciones Universidad Católica de Chile, Santiago de Chile, 2002