IMPLEMENTACIÓN DE UN EQUIPO PASTEURIZADOR TIPO FLASH PARA ELABORAR BEBIDAS MALTEADAS EN UNA LÍNEA DE GASEOSAS

INFORME DE SUFICIENCIA

PARA OPTAR EL TÍTULO PROFESIONAL DE:
INGENIERO MECÁNICO

SANDRO CARHUAY SILVEIRA

PROMOCIÓN 2002 – II

LIMA – PERÚ

2011
AGRADECIMIENTO

A Dios, a mis padres por su dedicación y creencia en mis objetivos, a los ingenieros Edwin Abregú y Wilson Silva y a todas las personas que quienes con su apoyo hicieron posible lograr este objetivo.
DEDICATORIA

A mi Madre: fuente de energía, por ser esa compañera eterna en mis sueños, vivencias y sobretodo por darme esa fuerza, orgullo y valor para empujar siempre todo hacia adelante.
ÍNDICE GENERAL

Índice General.................................................................................................................. i
Glosario de términos......................................................................................................... v
Abreviaturas..................................................................................................................... viii
Prólogo............................................................................................................................... 1

CAPÍTULO 1: INTRODUCCIÓN

1.1 Antecedentes.............................................................................................................. 3
1.2 Objetivo....................................................................................................................... 4
1.3 Alcances....................................................................................................................... 4
1.4 Limitaciones............................................................................................................... 4
1.5 Justificación............................................................................................................... 5

CAPÍTULO 2: GENERALIDADES SOBRE EL SISTEMA DE PASTEURIZACIÓN

2.1 Proceso de pasteurización de bebidas malteadas..................................................... 6
  2.1.1 Tipos de proceso de pasteurización................................................................. 7
    a) Proceso Alta temperatura / breve tiempo (HTST)........................................... 7
    b) Proceso Ultra alta temperatura (UHT)............................................................ 8
  2.1.2 Medición de unidades de pasteurización (UP)................................................ 8
2.2 Tipos de pasteurizadores.......................................................................................... 10
  2.2.1 Pasteurizador tipo túnel................................................................................... 10
CAPÍTULO 3: SELECCIÓN DEL EQUIPO DE PASTEURIZACIÓN

3.1 Consideraciones para la selección.......................................................... 38
  3.1.1 Características sanitarias del equipo................................................. 38
  3.1.2 Normas aplicables.............................................................................. 38
3.2 Requerimientos de demanda del mercado................................................. 40
3.3 Cálculo de flujo de bebida a pasteurizar................................................. 40
3.4 Selección del tipo de equipo.................................................................... 42
3.5 Requerimientos del proceso..................................................................... 43
3.6 Balance energético del pasteurizador...................................................... 44
  3.6.1 Cálculos térmicos.............................................................................. 45
  3.6.2 Cálculos de refrigeración................................................................. 52
  3.6.3 Cálculo de la tubería de mantenimiento para bebida malteada........... 55
3.6.4 Cálculo de las pérdidas en tuberías y equipos de pasteurización ........ 56
3.6.5 Cálculo de las unidades de pasteurización .............................................. 61

CAPÍTULO 4: IMPLEMENTACIÓN DEL EQUIPO DE PASTEURIZACIÓN EN LA
LÍNEA DE GASEOSAS

4.1 Descripción de la línea de producción de gaseosas .................................. 62
4.2 Disposición de la bebida malteada a pasteurizar ........................................ 67
  4.2.1 Proceso de recepción de la bebida a malteada sin pasteurizar ............... 67
  4.2.2 Pasteurizado .................................................................................. 67
  4.2.3 Almacenamiento de la bebida pasteurizada ........................................ 67
4.3 Materiales empleados para movilizar la bebida malteada ......................... 68
  4.3.1 Acabado superficial de las tuberías para movilizar la bebida malteada .... 69
  4.3.2 Proceso de soldadura empleado en la unión de tuberías y accesorios sanitarios para movilizar la bebida malteada ........................................ 69
4.4 Implementación del sistema auxiliar de refrigeración ............................... 70
  4.4.1 Tuberías y accesorios .................................................................. 70
  4.4.2 Tanques ....................................................................................... 70
  4.4.3 Elementos y accesorios implementados ........................................... 71
4.5 Implementación del sistema auxiliar de vapor ........................................... 73
  4.5.1 Elementos y accesorios implementados ......................................... 74
4.6 Implementación sensórica ......................................................................... 75
  4.6.1 Implementación de sensores de nivel ............................................ 76
  4.6.2 Implementación de sensores de temperatura .................................... 78
  4.6.3 Implementación de sensores de flujo .............................................. 80
  4.6.4 Implementación de sensores de presión .......................................... 82
4.7 Implementación de válvulas y actuadores .................................................. 84
Glosario de términos

**Malteado**, proceso aplicado a los granos de cereal en el que dichos granos se hacen germinar y se secan rápidamente tras el desarrollo de la planta. La malta se usa para fabricar cerveza, whisky y vinagre de malta. La cebada es el cereal malteado más común, debido a su alto contenido en enzimas.

**Bebida malteada**, se elabora a base de malta de cebada, azúcar, vitaminas, colorante de origen natural, agentes acidulantes, aromatizantes y emulsificantes certificados, esta bebida provee una cantidad considerable de vitamina B.

**Pasteurización**, proceso que tiene por cometido destruir microorganismos patógenos (causantes de enfermedades e intoxicaciones) en alimentos y bebidas, produciendo a la vez la inactivación de enzimas, esporas de hongos y otros microorganismos no patógenos mediante la elevación de su temperatura generalmente por debajo del punto de ebullición por lo que los productos preservados mediante este tratamiento presentan un bajo deterioro térmico, aunque pueden quedar activas algunas enzimas. En la mayoría de los casos las temperaturas por encima de este valor afectan irreversiblemente a las características físicas y químicas del producto alimenticio.

**Microorganismos patógenos**, son organismos que no pueden ser observados si no es con la ayuda de un microscopio y que causan enfermedades en los seres humanos. Comúnmente las bacterias, virus y protozoos parásitos.
Enzima, sustancia proteínica que producen las células vivas y que actúa como catalizador de los procesos del metabolismo. Es específica para cada reacción o grupo de reacciones.

Almidón, polisacárido de reserva alimenticia predominante en las plantas, constituido por amilosa y amilopectina. Proporciona el 70-80% de las calorías consumidas por los humanos de todo el mundo.

Plúmula, parte de la semilla de donde se desarrollará el tallo

Unidad de pasteurización (UP), indicador adimensional que define la eficacia de la pasteurización y la manera de pasteurizar la cerveza y bebidas malteadas.

CIP (Cleaning in place), es un método de limpieza de las superficies interiores de tuberías y cámaras que son necesario limpiar para mantener la inocuidad del producto

HACCP (Hazard Analisys Control Critical Point), análisis de peligros y control de puntos críticos, norma internacional relacionada a garantizar la inocuidad de los productos alimenticios

Entalpía, cantidad de energía de un sistema termodinámico que puede intercambiar con su entorno a presión constante, el cambio de entalpía del sistema es el calor absorbido o desprendido en la reacción.

Calor específico, magnitud física que se define como la cantidad de calor que hay que suministrar a la unidad de masa de una sustancia o sistema termodinámico para elevar su temperatura en una unidad (kelvin o grado Celsius). En general, el valor del calor específico depende de dicha temperatura inicial.

Elastómero, polímero que cuenta con la particularidad de ser muy elástico pudiendo incluso recuperar su forma luego de ser deformado. Debido a estas características son el material básico de fabricación de otros materiales como la goma ya sea natural o sintética y para algunos productos adhesivos.
Condensador evaporativo, es un intercambiador que consta de un condensador con rociador de agua y normalmente, disponen de uno o más ventiladores. Se utilizan para eliminar el calor sobrante de un sistema de refrigeración en los casos en los que este calor no se pueda utilizar para otros propósitos. El exceso de calor se elimina evaporando el agua. En un condensador evaporativo se enfria el refrigerante principal del sistema de refrigeración, al contrario de lo que ocurre con una torre de refrigeración.

Saneamiento higiene y limpieza de un sistema empleando agentes químicos de limpieza para garantizar la salubridad.
### Abreviaturas

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTST</td>
<td>High Temperature / Short Time, Alta temperatura / breve tiempo</td>
</tr>
<tr>
<td>UHT</td>
<td>Ultra High Temperature, Ultra alta temperatura</td>
</tr>
<tr>
<td>UP</td>
<td>Unidades de pasteurización</td>
</tr>
<tr>
<td>PHE</td>
<td>Plate Heat Exchanger, intercambiador de calor a placas</td>
</tr>
<tr>
<td>BHE</td>
<td>Brazed Heat Exchanger, intercambiador de calor a placas soldadas</td>
</tr>
<tr>
<td>PET</td>
<td>Polietileno Tereftalato</td>
</tr>
<tr>
<td>CIP</td>
<td>Cleaning in place (limpieza en lugar)</td>
</tr>
<tr>
<td>TIG</td>
<td>Tungsten Inert Gas, gas inerte tungsteno</td>
</tr>
<tr>
<td>OD</td>
<td>Out Diameter, diámetro externo</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing Materials (Sociedad americana de pruebas a materiales)</td>
</tr>
<tr>
<td>ANSI</td>
<td>(American National Standards Institute - Instituto Nacional Americano de Estándares)</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society Mechanical Engineer (Sociedad Americana de Ingenieros Mecánicos)</td>
</tr>
<tr>
<td>DIN</td>
<td>Instituto Alemán de Estandarización (Deutsches Institut für Normung)</td>
</tr>
<tr>
<td>°C</td>
<td>Grados centigrados</td>
</tr>
<tr>
<td>ASHRAE</td>
<td>American Society of Heating, refrigerant and Air-Conditioning Engineers (Sociedad Americana de los Ingenieros de Calefacción, Refrigeración y Aire Acondicionado)</td>
</tr>
<tr>
<td>°F</td>
<td>Grados Farenheit</td>
</tr>
<tr>
<td>°K</td>
<td>Grados Kelvin</td>
</tr>
<tr>
<td>l/h</td>
<td>Litros por hora</td>
</tr>
<tr>
<td>HI</td>
<td>Hectólitros</td>
</tr>
<tr>
<td>h</td>
<td>Entalpia</td>
</tr>
<tr>
<td>Cp</td>
<td>Calor específico</td>
</tr>
<tr>
<td>BTU</td>
<td>British Thermal Units</td>
</tr>
</tbody>
</table>
BHP  Boiler Horse Power. Potencia de los Calderos (equivale a producir 34.4 lb/h o 15.6 kg/h de vapor desde y hasta 100°C a 0 psig), este valor varía si se incrementa la presión de generación o se disminuye la temperatura en el ingreso.

Lb  Libra

h  Hora

Bar  Unidad de presión aproximadamente igual a una atmósfera (1 Atm).

PSI  Libras por pulgada cuadrada (pound square inch)

A  Amperios

V  Voltaje

mA  Miliamperios

AWG  Dimensión de cables (American Wire Gauge)

cm  Centímetros

kg  Kilogramos

m  Metros

mm  Milímetros

NEMA  Asociación Nacional de Fabricantes Eléctricos de los Estados Unidos (National Electrical Manufacturers Association)

PLC  Controlador Lógico Programable (Programmable Logic Controller)

CPU  Unidad central de procesos (Central Process Unit)

RTD  Detector de temperatura resistivo (Resistance Temperature Detector)

TIR  Tasa de retorno de inversión

VAN  Valor actual neto

CFM  Cubic feet meter, pie cúbico por minuto
Prólogo

El desarrollo del presente informe de suficiencia se divide en 5 capítulos definidos en los que secuencialmente se desarrolla la implementación de un equipo pasteurizador tipo flash en una línea de gaseosas existente.

En el capítulo 1 se hace una definición de las necesidades que anteceden la implementación del equipo pasteurizador, así como el objetivo central del presente informe considerando sus alcances y limitaciones basándose siempre en la justificación cuantitativa y cualitativa del producto.

El capítulo 2 explica las generalidades y características técnicas de los procesos y tipos de equipos de pasteurización existentes, así como de los componentes y servicios auxiliares comprometidos en su entorno, justificando teóricamente los conceptos que involucran los cálculos de selección e implementación.

El capítulo 3 se aboca estrictamente a la selección del tipo de equipo pasteurizador considerando características y requisitos que debe cumplir el equipo cualitativamente hasta el desarrollo de la ingeniería necesaria para calcular y dimensionar variables que intervienen en la selección del equipo y sus componentes.
En el capítulo 4 se describe la ubicación del equipo en la línea así como todos los procedimientos empleados para su montaje considerando la aplicación del tipo de materiales en todo el proceso, implementando también la instrumentación necesaria y dimensionando la estación de pasteurización de acuerdo al espacio y aprovechando las instalaciones existentes.

Finalmente en el capítulo 5 se presentan los costos que demanda la implementación de la estación de pasteurización, considerando solo las adquisiciones realizadas, sin considerar las instalaciones y servicios existentes en la planta.
CAPÍTULO 1:
INTRODUCCIÓN

1.1 Antecedentes

En Latinoamérica, principalmente en Panamá, Ecuador, Venezuela, Colombia y Uruguay se elabora una bebida a base de cerveza, pero sin alcohol y endulzada con azúcar caramelizada. Es en Panamá, donde se da auge a la venta de la malta como bebida refrescante. Dicho producto ingresa al mercado peruano en el año 2009, para tal efecto, se requirió considerar que para su elaboración en planta era necesario implementar el equipamiento adecuado.

La elaboración se desarrolla en una línea de gaseosa existente acondicionada pero con un proceso preliminar faltante que es el de la pasteurización, siendo necesario implementar un pasteurizador en la planta, materia sobre la cual se basa el presente informe.

Este proceso se realizó mediante el uso de un pasteurizador tipo flash, el cual en síntesis consta de un intercambiador tipo placas que calienta la bebida malteada a una temperatura alrededor de los 76°C manteniéndola a esta temperatura durante un tiempo promedio de 30 segundos enfriándola finalmente a 14ºC mediante el uso de otro intercambiador a placas para lograr la pasteurización, teniendo como soporte los sistemas energéticos existentes en la planta.
1.2 Objetivo

El objetivo de este trabajo es implementar un equipo de pasteurización tipo flash para elaborar bebidas malteadas en una línea de producción de gaseosas. Para esto se considera la selección del pasteurizador de acuerdo a las condiciones de trabajo requeridas las cuales son definidas por las necesidades de producción.

1.3 Alcances

El presente informe trata sobre la selección de los componentes para la implementación de un equipo pasteurizador tipo flash el cual abarcará hasta la implementación de las conexiones a los sistemas auxiliares requeridos por este proceso tales como el térmico, refrigerante y neumático en el cual se procederá a realizar los respectivos cálculos de capacidad de los equipos y sus respectivos componentes auxiliares y la realización del mismo.

Para tal efecto, serán considerados y acondicionados sistemas auxiliares ya existentes en la planta.

Asimismo, se tomarán en cuenta las diferentes normas y reglamentos vigentes en nuestro país al momento de la implementación. Finalmente se presentará los costos de implementación que demanda la implementación de dicho equipo.

1.4 Limitaciones

Se limitará la capacidad del equipo de acuerdo a lo requerido por la demanda del mercado y solo se empleará el pasteurizador para la elaboración de bebidas malteadas, no pudiéndose emplear para elaborar otras bebidas.
1.5 Justificación

Cubrir con un nuevo producto el mercado con la elaboración de un nuevo tipo de bebida malteada no alcohólica que tiene características nutrientes a fin de satisfacer necesidades a un público de todas las edades.
CAPÍTULO 2:
GENERALIDADES SOBRE EL SISTEMA DE PASTEURIZACIÓN

2.1 Proceso de pasteurización de bebidas malteadas

Para garantizar la calidad de la bebida malteada es importante impedir la presencia de elementos patógenos y de alterantes indeseables. La pasteurización es una operación de estabilización de alimentos que persigue la reducción de la población de microorganismos presentes en éstos de forma que se prolongue el tiempo de vida útil del alimento\(^1\).

La pasteurización consigue disminuir la población de microorganismos mediante la elevación de la temperatura durante un tiempo determinado, lo que implica la aplicación de calor. Se la considera una operación básica que consiste en un tratamiento térmico relativamente suave (temperaturas inferiores a 100\(^\circ\)C).

Se realiza el proceso utilizando un pasteurizador flash. Con este método se toma el caso de la bebida malteada similar a la cerveza, por ser un tipo de alimento líquido a granel, la pasteurización se la realizaría alrededor de 76\(^\circ\)C y tiempos cortos que pueden ir desde 30 a 35 segundos con una presión de estabilización cercana a 7.5 bares\(^2\). Los cálculos se realizaran asumiendo que los periodos de calentamiento y

---

\(^1\) Ingeniería Industrial Alimentaria Volumen 1: Procesos Físicos de conservación. Mafart
\(^2\) Continuous thermal processing of foods: pasteurization, Michael Lewis.
enfriamiento son lo suficientemente rápidos como para no causar efectos, considerando a este como un caso de ciclo ideal.

2.1.1 Tipos de proceso de pasteurización

Hoy en día existen dos tipos de proceso de pasteurización industrial.\(^3\)

a) Proceso alta temperatura / breve tiempo (HTST)

b) Proceso ultra alta temperatura (UHT)

A continuación se describen los mismos:

a) **Proceso alta temperatura / breve tiempo (HTST)**

Este proceso es el empleado en los líquidos a granel como la cerveza y bebidas malteadas. Por regla general es la más conveniente ya que expone a la bebida malteada a altas temperaturas durante un periodo breve de tiempo y además se necesita poco equipamiento para poder realizarla, reduciendo de esta manera los costes de mantenimiento de equipos. Entre las desventajas está la necesidad de personal altamente cualificado capaz de realizar controles intensos sobre la producción.

En un proceso de flujo continuo, la bebida se mantiene entre dos placas de metal o también denominado intercambiador de calor a placas PHE que consiste de una pila de placas de acero inoxidable corrugado prensada dentro de un marco. Hay varios patrones de flujo que pueden ser utilizados. Se utilizan empaques para definir las fronteras de los canales y evitar fugas. El medio de calentamiento es agua caliente.

La pasteurización continua tiene varias ventajas por encima del método de pasteurización por lotes (vat), siendo la más importante el ahorro de tiempo y energía.

---

\(^3\) Introducción a la microbiología, Gerard Tortora.
b) Proceso ultra alta temperatura (UHT)

El proceso UHT es de flujo continuo y mantiene la bebida a temperatura superior más alta que la empleada en el proceso HTST y puede rondar los 138 °C durante un periodo de al menos dos segundos. Debido a este periodo de exposición, aunque breve, se produce una mínima degradación de la bebida. La bebida pasteurizada empacada de forma aséptica resulta en un producto estable que no requiere de refrigeración hasta que se abre. Este proceso no es recomendable para elaborar bebidas malteadas.

2.1.2 Medición de unidades de pasteurización (UP)

La pasteurización se realiza siempre a una temperatura inferior a los 100°C. La mayor parte de las veces se efectúa entre los 65 y los 80°C durante un tiempo variable, de 15 a 30 segundos.

Las unidades de pasteurización se determinan por medio de dos parámetros (tiempo y temperatura), atribuyendo un valor numérico al resultado del tratamiento de pasteurización.

Por lo tanto, la pasteurización flash resulta de la combinación entre duración y temperatura. En el caso de la cerveza y bebidas malteadas, se aplica la siguiente fórmula:

\[ UP = tm \times 1.393^{(T_p-6)} \]

Donde:

- \( tm \) indica el tiempo, en minutos, necesario para eliminar (a temperatura constante) el 90% de los organismos vegetativos, residuos incluidos.

---

4 Fermented beverage production. Andrew Geoffrey.
• Tp indica el aumento de la temperatura en grados Celsius necesario para reducir los microorganismos patógenos.
UP = adimensional, solo se menciona grados UP

Control de las unidades de pasteurización (UP)

Al ser el flujo de la llenadora variable y que el pasteurizador flash trabaja en serie con esta unidad, se debe tratar este caudal variable/fluctuante sin que se produzca una sub-pasteurización o una sobre-pasteurización. Ambas reducen la calidad de la bebida malteada: la primera produce una bebida malteada inestable desde un punto de vista microbiológico y la segunda afecta el gusto.

Se debe por lo tanto realizar un constante control de las unidades de pasteurización según las condiciones de la línea de llenado.

Se instala un tanque pulmón (comúnmente llamado “buffer”) entre el pasteurizador flash y la llenadora a fin de reducir la dependencia del pasteurizador flash. Este sistema ofrece ventajas considerables con respecto a otros tipos de pasteurizadores:

• Una reducción del caudal en la llenadora implica:
  1. aumento del nivel en el tanque buffer,
  2. reducción del caudal en el pasteurizador flash.

• Un caudal creciente en la llenadora implica:
  1. reducción del nivel en el tanque buffer,
  2. aumento del caudal en el pasteurizador flash.

A continuación se presenta la tabla N° 2.1 que es un extracto de la norma que trata sobre las especificaciones y/o valores referenciales del control de
proceso de elaboración y envasado de la bebida malteada en las plantas de
la empresa que elabora dicha bebida y que se adjunta en el anexo A1.

Tabla N° 2.1. Especificaciones y/o valores referenciales
(Fuente: Unión de Cervecerías Peruanas Backus y Jhonston S.A.A)

<table>
<thead>
<tr>
<th>TÍTULO: ESPECIFICACIONES Y/O VALORES REFERENCIALES DEL CONTROL DEL PROCESO DE ELABORACIÓN Y ENVASADO DE MALTI N POWER</th>
<th>CÓDIGO: UCP-D00-EG-473-08</th>
<th>VERSIÓN: 01</th>
<th>PÁGINA: 02/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. PASTEURIZADOR FLASH (Para envasado de PET)</td>
<td>Temperatura, °C</td>
<td>76.0 – 81.0</td>
<td>Según PFQ MP</td>
</tr>
<tr>
<td></td>
<td>*Caudal, l/h</td>
<td>10000 - 18000</td>
<td>Según PFQ MP</td>
</tr>
<tr>
<td></td>
<td>Unidades de Pasteurización, UP</td>
<td>90-110</td>
<td>Según PFQ MP</td>
</tr>
</tbody>
</table>

2.2 Tipos de pasteurizadores

En la industria existen diversos tipos de equipos utilizados para realizar el
proceso de pasteurización, sin embargo entre los equipos más utilizados tenemos a
los de pasteurización tipo túnel y pasteurización tipo flash.

A continuación se detalla en rasgos generales la descripción y funcionamiento de
estos tipos de pasteurizadores:

2.2.1 Pasteurizador tipo túnel

Este tipo de pasteurizador es utilizado para pasteurizar bebida
embotellada o enlatada. Dado que el tiempo de pasaje de la bebida
malteada envasada por el equipo es alto se requiere que el equipo posea
dimensiones grandes ocupando un gran espacio en la sala de envasado,
incrementando de igual forma sus costos de inversión y operatividad.

El calentamiento y el enfriamiento de la bebida malteada ocurren a través de
rociadores de agua temperada, los cuales posibilitan el intercambio de calor.

En la figura N° 2.1 se representa el esquema de un pasteurizador tipo túnel
así como el circuito y partes que lo componen:
Figura N° 2.1 Esquema típico de un pasteurizador tipo túnel

Asimismo, en la figura 2.2, se presenta la foto de un pasteurizador tipo túnel empleado en la industria.

Figura N° 2.2 Foto de un pasteurizador tipo túnel
Descripción de funcionamiento:

La bebida malteada envasada es transportada lentamente hacia un túnel y calentada por medio de rociadores de agua tibia y caliente que caen sobre el envase hasta llegar a la temperatura de pasteurización deseada la cual es enfriada posteriormente.

Consta de zonas individuales de temperatura las cuales se encuentran conformadas por techos, paredes y tanques colectores de agua, el calentamiento de agua se realiza por medio de intercambiadores de calor tubulares que calientan el agua a una temperatura de 85 a 90° C donde mantiene la bebida malteada envasada hasta la temperatura de pasteurización en un rango de 75 a 85° C para luego enfriarla también en forma gradual hasta aproximadamente 35° C. Todo el proceso tiene una duración aproximada de 1 hora.

2.2.2 Pasteurizador tipo flash

En el pasteurizador flash la bebida malteada es calentada por medio de un intercambiador de calor de placas a menor temperatura de su punto de ebullición y se la mantiene a esa temperatura un tiempo breve, posteriormente se le vuelve a enfriar a temperatura baja. Todo el proceso tiene una duración de de aproximadamente 2 minutos y apenas afecta la calidad de la bebida ya que no la degrada ni afecta su composición físico-química.

El calentamiento y el enfriamiento de la bebida malteada ocurren a través de intercambiadores de calor de placas, los cuales posibilitan un intensivo intercambio de calor. En la figura N° 2.3 se representa el esquema de un pasteurizador tipo flash así como el circuito y partes que lo componen.
Descripción de zonas y funcionamiento:

A continuación se describe las zonas de las que consta el pasteurizador tipo flash:

a) **Zona de regeneración**

En esta zona la bebida malteada fría que ingresa es precalentada por bebida malteada caliente en contraflujo. La bebida malteada fría también sirve para enfriar la caliente, reduciéndose así el consumo de refrigerante y energía en ambos casos. Se pueden conseguir eficiencias de regeneración de hasta el 94-95% en las modernas instalaciones de pasteurización.
Si se toma el perfil de operación más simple, como tratamiento térmico de la bebida malteada a pasteurizar, como ejemplo, se utilizará la fórmula\(^5\):

\[
R = \frac{(T_r - T) \times 100}{(T_p - T)},
\]

donde:

R: eficiencia de regeneración, %

Tr: temperatura de la bebida después de la regeneración (° C)

T: temperatura de entrada de la bebida (° C)

Tp: temperatura de pasteurización (° C)

b) **Zona de calentamiento**

La bebida malteada precalentada proveniente de la zona de regeneración eleva en esta zona su temperatura a la temperatura de pasteurización deseada por medio de agua caliente proveniente de un intercambiador tubular de vapor externo.

c) **Zona de mantenimiento**

Un tratamiento térmico correcto exige que la bebida malteada se mantenga durante un tiempo determinado de aproximadamente 30 segundos a la temperatura de pasteurización y posteriormente reingrese a la zona de regeneración.

La zona de mantenimiento consiste de una tubería de acero inoxidable 304L sanitaria normalmente de schedule 10, dispuesta en forma de zig-zag tal como muestra la figura 2.4. La longitud de la tubería y la velocidad de flujo se calculan de forma que el tiempo de permanencia en esta sección sea igual al tiempo requerido de mantenimiento.

---

\(^5\) Manual de industrias lácteas, Antonio López.
Es necesario controlar de forma precisa el caudal del producto que pasa por la sección de mantenimiento, ya que esta ha sido dimensionada para conseguir un tiempo determinado de mantenimiento para un caudal determinado. El tiempo de mantenimiento es inversamente proporcional al caudal del producto en esta sección.

![Figura Nº 2.4 Tubería de mantenimiento](image)

**Cálculo de la tubería de mantenimiento**

La longitud apropiada del tubo para conseguir un adecuado tiempo de mantenimiento se puede calcular cuando se conocen la capacidad horaria y el diámetro interior del tubo de mantenimiento. Como el perfil de velocidades en el tubo de mantenimiento no es uniforme, algunas porciones de bebida tendrán una velocidad de circulación superior a la media. Para asegurar que incluso las porciones que se mueven a mayor velocidad sean pasteurizadas suficientemente, se debe utilizar un factor de eficiencia. Este factor depende del diseño del tubo de mantenimiento, pero normalmente vale entre 0.8 y 0.9.  

---

6 y 7 Manual de industrias lácteas, Antonio López.
Para calcular las tuberías de mantenimiento se emplean las siguientes fórmulas:

\[ V = \frac{\dot{V} \times t_m}{3600 \times \eta} \quad \text{en dm}^3 \quad (2.3) \]

\[ L = \frac{V \times 4}{\pi \times D^2} \quad \text{en dm} \quad (2.4) \]

donde:

\( \dot{V} \): Caudal de pasteurización en litros por hora, l/h

\( t_m \): Tiempo de mantenimiento, en segundos

\( L \): Longitud del tubo de mantenimiento, en dm, correspondiente a \( \dot{V} \) y \( t_m \)

\( D \): Diámetro interior del tubo de mantenimiento, en dm

\( V \): Volumen de bebida en litros o dm\(^3\) que se corresponden con \( \dot{V} \) y \( t_m \)

\( \eta \): factor de eficacia

d) Zona de enfriamiento

La bebida malteada proveniente de la zona de regeneración donde bajó su temperatura debido a que cedió calor a la bebida fría entrante ingresa a otro intercambiador de placas donde se producirá el enfriamiento. En dicho intercambiador el refrigerante usado es el amoniaco y generalmente dicho refrigerante líquido se vaporiza a la presión de 50 psi.

2.3 Proceso de limpieza interna para equipos de pasteurización

Se debe de prestar mucha atención a este proceso debido a que es de relevante importancia mantener los equipos con un elevado grado de salubridad e higiene, debido al riesgo de contaminación que este pudiera ocasionar a la bebida, previamente se debe identificar los puntos críticos de control sobre las partes más...
propensas a contaminación en los equipos involucrados en la pasteurización mediante un adecuado soporte del plan HACCP.

2.3.1 Equipos de limpieza

Para realizar el proceso de limpieza de los equipos de producción que tienen contacto directo con la bebida, se cuenta dentro de la sala de jarabe de la planta con un equipo de limpieza denominado CIP. El equipo de CIP está constituido básicamente por tres tanques y una electrobomba, así como un intercambiador de vapor tubular. Los tanques son de acero inoxidable y están constituidos de la siguiente manera:

**Tanque de agua fresca**: Recipiente que sirve como pulmón para el abastecimiento de agua al sistema.

**Tanque de agua caliente**: Recipiente donde se almacena el agua destinada a la limpieza de los equipos, el calentamiento se da mediante recirculación de agua por el intercambiador de vapor tubular al tanque, la temperatura alcanzada es de 80° C.

**Tanque de agente de limpieza**: Sirve como recipiente donde se almacena el agente de limpieza en este caso la soda cáustica, la cual debe poseer una concentración adecuada para cumplir su cometido. Su calentamiento se da de forma similar a la del tanque de agua caliente utilizando el mismo intercambiador tubular y realizando un manejo adecuado de cierre de válvulas a fin de no mezclar los fluidos, siendo la temperatura alcanzada de 80° C.

**Electrobomba de limpieza CIP**: Su función es la de recircular el fluido de cada tanque para realizar el calentamiento en el intercambiador de calor y
su vez de enviar la soda cáustica y el agua caliente para realizar el proceso de limpieza adecuado al sistema de pasteurización.

La figura N° 2.5 permite visualizar los equipos e instalaciones típicas de una sala de limpieza CIP de la planta de bebidas.

Figura N° 2.5 Instalación del sistema de limpieza Cip de la planta

**2.3.2 Descripción de funcionamiento del sistema de limpieza**

El proceso de limpieza CIP es similar en muchas instalaciones, en este caso considerando que el equipo de pasteurización sea cual sea siempre tendrá un ingreso de bebida y una salida, se conecta entonces el ingreso de bebida al sistema CIP y la salida de bebida con el ingreso a los tanques del sistema CIP, recirculándose el agua mediante la electrobomba manteniéndose el circuito cerrado hasta culminar el proceso de limpieza. El intercambio de conexiones se realiza mediante la instalación de válvulas neumáticas gobernadas desde el mismo equipo de pasteurización. Se hace
circular primero el agua caliente luego esta se purga e inmediatamente se hace circular la soda cáustica hasta que se alcance la limpieza deseada purgándose esta del sistema y finalmente se circula nuevamente agua caliente para realizar la limpieza de residuos de soda cáustica y luego se purga esta agua del sistema.

2.4 **Servicios auxiliares del pasteurizador**

Se emplean los servicios y equipos existentes en la planta para conexionarlos al pasteurizador tales como los servicios de refrigeración y térmico.

2.4.1 **Sistema de refrigeración**

Es un circuito de refrigeración primaria constituido por 2 compresores de amoniaco tipo pistón, 2 aerocondensadores evaporativos que trabajan con flujo de esparción de agua y ventilación de tiro forzado, 1 válvula de expansión que regula la presión y temperatura del amoniaco líquido hasta tener una temperatura adecuada de refrigerante.

Soporta el intercambio de calor conveniente entre la bebida malteada a pasteurizar y el agente refrigerante amoniaco con la finalidad de bajar la temperatura de la bebida malteada a través de un intercambiador de calor tipo placas en el pasteurizador flash.

El circuito de sistema de refrigeración de la planta se muestra a continuación en la figura 2.6.
Figura N° 2.6 Circuito de sistema de refrigeración existente


**Ciclo de refrigeración**

Partiendo del comportamiento de un ciclo de refrigeración considerado ideal, se puede establecer un conjunto de expresiones que nos ayudarán a calcular los valores más representativos de los elementos necesarios en la instalación frigorífica que debo trabajar en determinadas condiciones tales como las entalpias y potencias, así como el flujo másico de refrigerante necesario dentro del intercambiador de calor como se verá más adelante en el punto 2.6.1.

Tomando la temperatura (te) y presión de evaporación que se necesite y conocida la temperatura (tc) y presión de condensación, podrá trazarse sobre el diagrama p-h el ciclo y hallar sucesivamente los valores que se indiquen en el modelo de cálculo que se propone.

Estos puntos se trasladarán posteriormente al diagrama de Molliere correspondiente al refrigerante R717 Amoniaco (NH₃) que se emplea para enfriar la bebida malteada en el pasteurizador flash a fin de realizar los cálculos de refrigeración respectivos.

A continuación, en la figura N° 2.9 se indica el ciclo de refrigeración con sus respectivos procesos característicos:

1-2 Compresión

2-3 Condensación

3-4 Expansión

4-1 Evaporación
Tuberías del circuito de refrigeración

Para el cálculo rápido de tuberías se emplea el ábaco para determinación de las tuberías para instalaciones frigoríficas de amoniaco de la ASHRAE del anexo B1, partiendo de los siguientes datos:

- Temperatura de evaporación de amoniaco en °C
- Potencia de la instalación frigorífica en kcal/h

Se obtienen:
Diámetro de tubería de aspiración
Diámetro de tubería de descarga
Diámetro de tubería de líquido
Capacidad de llenado de tanques de amoníaco

De acuerdo al procedimiento ITC MIE-APQ-4 del anexo A2 adoptada por la NTP (Norma Técnica Peruana) para determinar el máximo porcentaje de llenado, se considera:

1. Almacenamiento refrigerado: Es aquél en el cual la temperatura del amoníaco anhidro es aproximadamente -33 °C, con presión prácticamente igual a la atmosférica.
2. Almacenamiento semirefrigerado: Es aquél en el cual la temperatura del amoníaco es sensiblemente superior a -33 °C, pero inferior a la temperatura ambiente, con presión superior a la atmosférica.
3. Almacenamiento no refrigerado: Es aquél en el cual la temperatura máxima que puede alcanzar el amoníaco anhidro es igual a la máxima temperatura ambiente, con presión muy superior a la atmosférica.

Grado de llenado de tanques de amoníaco

1. Almacenamiento refrigerado: 0.64
2. Almacenamiento semirefrigerado con temperatura máxima en servicio inferior a 5° C: 0.60
3. Almacenamiento no refrigerado: 0.53

El porcentaje de llenado máximo del volumen de un tanque o recipiente a presión, en función de la temperatura del amoníaco anhidro que contiene, será el siguiente:

\[ V = 100 \times \frac{G}{P} \]  

(2.5)

siendo:

\[ V = \text{Volumen máximo admisible, en porcentaje.} \]
G = Grado de llenado máximo indicado según el tipo de almacenamiento.

P = Peso específico del amoníaco anhidro líquido a la temperatura a que se encuentre en el tanque o recipiente a presión.

2.4.2 Sistema térmico

Es el que proporciona vapor a la planta para uso en los equipos de lavado de botellas, limpieza CIP. Dicho sistema está constituido por 1 caldero de vapor pirotubular de 125 BHP que por limitaciones actuales produce solo 1278.65 kg de vapor por hora. Su uso para el pasteurizador flash es proporcionar vapor para elevar la temperatura del agua a través de un intercambiador de calor tubular, esta agua caliente a su vez elevar la temperatura de la bebida malteada mediante un intercambiador de placas. La figura N° 2.7 grafica el tipo de intercambiador de calor tubular utilizado para calentar agua en el pasteurizador tipo flash.

![Figura N° 2.7 Intercambiador de calor de coraza y tubos usado en el proceso de transferencia de vapor de agua](image)

El circuito de distribución del sistema de vapor de la planta se muestra a continuación en la figura 2.8.
Figura Nº 2.8 Circuito de sistema térmico existente

- CALDERO MANSER 125 HP 1278.65 Kg/Hr
- OTROSUSOS Demanda 420 Kg/Hr
- TANQUES CIP Demanda 307 Kg/Hr
- LAVADOR DE VIDRIO 1020 Kg/hr para mantener temperatura 3305 Kg/Hr en hora cero de calentamiento
- TANQUE PULMON 1.5 M3
- Retorno de condesado
- LAVADOR DE BOTELLONES Demanda 169.60 Kg/Hr
Tuberías del circuito de vapor
Las velocidades convenientes para tuberías de vapor fluctúan entre los 15 y 60 m/s. Normalmente en tuberías principales de distribución se debe adoptar velocidades elevadas de hasta 50 m/s. Para tramos de conexión a equipos, en cambio se recomienda adoptar velocidades inferiores de alrededor de los 20 m/s.
Para el cálculo y dimensionamiento de tuberías de vapor y condensado se emplean las tablas de Crane del anexo B2 en la cual se ingresa por el lado de presión hasta interceptar la línea de flujo másico y desplazarnos hasta encontrar el diámetro requerido para cada tramo de tubería y las gráficas de los anexos B5 y B6 así como el aislamiento respectivo en el anexo B7.

2.5 Intercambiadores de calor
Un intercambiador de calor es un dispositivo que facilita la transferencia de calor de una corriente de fluido a otra. Los procesos de refrigeración, elaboración de alimentos y bebidas dependen de diversos tipos de intercambiadores de calor.
Una importante clasificación los divide en intercambiadores de una sola corriente e intercambiadores de dos corrientes.
Un intercambiador de una sola corriente es aquel en el que solo varía la temperatura de un fluido como por ejemplo los condensadores y calderas.
A continuación en la figura N° 2.10, se muestra las variaciones de temperatura en intercambiadores de una sola corriente.

![Figura N° 2.10 Variaciones de temperatura en una sola corriente](Fuente: Transferencia de Calor, F. Mills)

Un intercambiador de dos corrientes es aquel en el que cambia la temperatura de ambos fluidos pudiendo ser de flujos paralelos o de flujos en contracorriente como es el caso de los intercambiadores a placas del pasteurizador tipo flash.

La figura N° 2.11 muestra las variaciones de temperatura en flujos paralelo para la clasificación enunciada.

![Figura N° 2.11 Variaciones de temperatura en flujos paralelos](Fuente: Transferencia de Calor, F. Mills)
Asimismo en la figura N° 2.12, se muestra las variaciones de temperatura en flujos en contracorriente para la clasificación enunciada.

2.5.1 Análisis de un intercambiador de calor

Para diseñar o predecir el rendimiento de un intercambiador de calor, es escencial relacionar la transferencia total de calor con cantidades tales como las temperaturas de entrada y salida del fluido, el coeficiente global de transferencia de calor y el área superficial total para transferencia de calor. En particular, si \( q \) es la transferencia total de calor entre los fluidos caliente y frío y hay transferencia de calor insignificante entre el intercambiador y sus alrededores, así como cambios de energía potencial y cinética despreciables, la aplicación de un balance de energía da la ecuación\(^8\):

\[
Q = m \times \Delta h
\]  

\(^8\) Ecuaciones (2.6), (2.7), (2.8): Transferencia de Calor, A. Mills y Frank Incrópera.
Donde \( m \) es el flujo del fluido y \( \Delta h \) es la diferencia de entalpías de los fluidos caliente y frío.

Si los fluidos no experimentan un cambio de fase y se suponen calores específicos constantes, esta ecuación se reduce a:

\[
Q = m \times C_p \times \Delta T
\]  
(2.7)

Donde \( C_p \) es el calor específico del fluido y \( \Delta T \) es la variación de temperaturas medias del fluido en las posiciones de medición.

Asimismo, consideraremos la densidad del fluido constante obteniendo la relación:

\[
\rho = \frac{m}{V}
\]  
(2.8)

donde:

- \( m \) es la masa del fluido
- \( V \) su volumen

A los modelos geométricos de flujo dentro del intercambiador se asocian ciertas variaciones de temperatura características, como se muestra en los casos de las figuras N° 2.9 y 2.10. El subíndice \( C \) denota la corriente caliente y el subíndice \( F \) la corriente fría. En la figura 2.9 la diferencia de temperatura para la transferencia de calor \( (T_C - T_F) \) disminuye a lo largo del intercambiador en la dirección del flujo, mientras que en la figura 2.10 la diferencia de temperatura \( (T_C - T_F) \) puede disminuir o aumentar, o bien, en un caso especial, permanecer constante. El subíndice \( L \) indica salida y el subíndice \( O \) indica entrada.
2.5.2 Intercambiadores de calor de placas

Equipos introducidos en la industria ya hace más de setenta años. Existen varios diseños de intercambiadores de placas, pero son dos las construcciones básicas más difundidas:

- Intercambiador de placas con juntas, designado PHE
- Intercambiador de placas soldadas, designado BHE

Ambos diseños se conocen indistintamente como intercambiadores compactos. Admiten una gran variedad de materiales para su construcción, tienen una elevada área de intercambio de calor en una disposición muy compacta. Por su construcción están limitados a presiones relativamente pequeñas.

Los PHE consisten en un conjunto de placas metálicas corrugadas montadas entre dos placas, una fija (bastidor) y otra móvil (de presión). Este paquete de placas a su vez, es soportado por dos barras guía, una superior y otra inferior que apoyan sobre una columna o pedestal tal como se aprecia en la figura N° 2.13. El conjunto de placas es comprimido mediante espárragos que aseguran el apriete y estanqueidad entre las mismas.

Los intercambiadores de placas PHE son utilizados preferentemente en los equipos de pasteurización tipo flash.
A continuación la figura N° 2.13, muestra el despiece de un intercambiador de placas PHE.

Las placas contienen orificios que permiten y dirigen el flujo de los fluidos tal como se muestra en la figura N° 2.14.
El sellado entre placas se efectúa mediante juntas elastómeras quienes a su vez dirigen los fluidos por canales alternos tal como se muestra en la figura Nº 2.15.

![Figura Nº 2.15 Placa con junta elastómera de intercambiador PHE](image)

Las conexiones de entrada y salida se localizan en la placa fija del bastidor salvo en el caso de que haya más de un paso, donde se utilizan ambas placas del bastidor así como una placa alternativa ubicada en el paquete tal como se muestran en la figura Nº 2.16.

![Figura Nº 2.16 Conexiones de entrada/salida de Intercambiadores PHE](image)
A continuación se presenta la tabla N° 2.2, que indica las características técnicas de diseño y materiales empleados en la construcción del intercambiador de placas tipo PHE.

<table>
<thead>
<tr>
<th>Valores de parámetros máximos de funcionamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión de funcionamiento</td>
</tr>
<tr>
<td>Temperatura de funcionamiento</td>
</tr>
<tr>
<td>Capacidad Pasteurización</td>
</tr>
<tr>
<td>Capacidad calentamiento y refrigeración</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materiales</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Placas</strong></td>
</tr>
<tr>
<td>Acero inoxidable AISI 316</td>
</tr>
<tr>
<td>Acero inoxidable AISI 304</td>
</tr>
<tr>
<td>Titanio</td>
</tr>
<tr>
<td>SMO (Acero inoxidable austenitico)</td>
</tr>
<tr>
<td><strong>Juntas</strong></td>
</tr>
<tr>
<td>Nitrilo FDA</td>
</tr>
<tr>
<td>EPDM</td>
</tr>
<tr>
<td>Vitón</td>
</tr>
<tr>
<td><strong>Pacón fijo y móvil</strong></td>
</tr>
<tr>
<td>Acero inoxidable sólido</td>
</tr>
<tr>
<td>Acero dulce pintado con pintura epóxica</td>
</tr>
<tr>
<td><strong>Guías</strong></td>
</tr>
<tr>
<td>Acero inoxidable a prueba de ácido</td>
</tr>
<tr>
<td><strong>Rejilla</strong></td>
</tr>
<tr>
<td>Acero inoxidable a prueba de ácido</td>
</tr>
<tr>
<td><strong>Bosaje</strong></td>
</tr>
<tr>
<td>Acero inoxidable a prueba de ácido</td>
</tr>
<tr>
<td><strong>Tuercas móviles de guías</strong></td>
</tr>
<tr>
<td>Latón chapado en cromo</td>
</tr>
</tbody>
</table>
La tabla N° 2.3, indica las ventajas y desventajas que se tiene en el empleo de intercambiadores de placas tipo PHE.

**Tabla N° 2.3 Ventajas y desventajas de uso de intercambiadores tipo PHE**

(Fuente: Cao, E. Intercambiadores de calor, EDIGEN S.A. Buenos Aires, 1983)

<table>
<thead>
<tr>
<th><strong>Ventajas</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Equipo continuo que puede manejar elevados flujos en cortos tiempos y con un aprovechamiento elevado de la energía.</td>
</tr>
<tr>
<td>2</td>
<td>Aplicaciones en que están involucrados productos de consumo humano, porque garantizan las condiciones higiénicas para el procesamiento de alimentos.</td>
</tr>
<tr>
<td>3</td>
<td>Fáciles de instalar, pues son ligeros y compactos, de fácil manipulación y automatización.</td>
</tr>
<tr>
<td>4</td>
<td>Rangos de exactitud de temperaturas que se puede alcanzar, dadas sus ventajosas áreas de transferencias, lo que permite llegar a obtener eficientes parámetros convectivos.</td>
</tr>
<tr>
<td>5</td>
<td>Eficientes desde el punto de vista de su área de transferencia, porque se recoge en un espacio pequeño una superficie de calor relativamente grande.</td>
</tr>
<tr>
<td>6</td>
<td>Fácil de limpiar siempre y cuando se lo haga con soluciones no muy fuertes y no más de 10 minutos. Esto es en lo que respecta a la limpieza entre placas y el costo de su mantenimiento está en función del tipo de proceso en el que ejecuten su función, pues si los cambios térmicos son muy drásticos, las juntas sufren distensiones y estas son muy costosas.</td>
</tr>
<tr>
<td>7</td>
<td>En lo que se refiere a accesibilidad, las características de ahorro de espacio son importantes. Pueden atenderse desde un pasillo lateral y estrecho a lo largo del bastidor.</td>
</tr>
<tr>
<td>8</td>
<td>Tienen la posibilidad de tener varias secciones o varias etapas en el mismo equipo (calentamiento y enfriamiento).</td>
</tr>
<tr>
<td>9</td>
<td>Con las diferentes distribuciones de placas, se puede lograr diferentes regímenes tecnológicos, lo que determina en este equipo una gran versatilidad y flexibilidad.</td>
</tr>
<tr>
<td>10</td>
<td>Se puede recuperar calor, lo que mejora notablemente la economía del proceso.</td>
</tr>
<tr>
<td>11</td>
<td>Su eficiencia está asegurada porque trabajan con flujo turbulento y por sus diferentes arreglos de flujos, principalmente por los efectos que produce en la transferencia de calor. El tipo de arreglo dependerá del fluido a tratar y de los objetivos perseguidos.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Desventajas</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Incapaces de procesar fluidos muy viscosos o de alto contenido de sólidos en suspensión por la distancia entre placas.</td>
</tr>
<tr>
<td>2</td>
<td>Son los más caros del mercado.</td>
</tr>
<tr>
<td>3</td>
<td>La presión de operación depende fundamentalmente de la resistencia de las juntas de goma. Luego habría que tener control en lo que respecta a fuga. Esto es una limitante en cuanto a la presión.</td>
</tr>
<tr>
<td>4</td>
<td>Tienen tendencia a la formación de incrustaciones en las secciones de placas.</td>
</tr>
</tbody>
</table>
2.6 Flujo forzado a través de tubos y conductos

El grupo adimensional que caracteriza a un flujo viscoso es el número de Reynolds\(^9\):

\[
Re = \frac{G \times D}{\mu}
\]  
(2.9)

Donde \(D\) es el diámetro del tubo, \(G\) es la velocidad de masa \((G = \dot{m} / A_c)\) siendo \(\dot{m}\) el flujo másico en kg/s y \(A_c\) el área de la sección transversal del flujo en m\(^2\) y \(\mu\) la viscosidad dinámica en kg/m s, correspondiendo esta última a la relación

\[
v = \frac{\mu}{\rho}
\]  
(2.10)

Donde \(v\) es la viscosidad cinemática y \(\rho\) la densidad del fluido en kg/m\(^3\).

Para valores de \(Re < 2300\) el flujo es laminar, la transición a turbulencia se produce en \(Re = 2300\) aunque la turbulencia no se establece por completo hasta que \(Re > 10000\). Para un flujo totalmente desarrollado hidrodinámicamente el factor de fricción puede obtenerse a partir de un diagrama de Moody o bien si la pared del tubo es lisa, a partir de la fórmula de Petukhov:

\[
f = (0.790 \times \ln Re - 1.64)^{-2}; \quad 10^4 < Re < 5 \times 10^6
\]  
(2.11)

2.6.1 Pérdida de carga primaria en régimen laminar y turbulento para tuberías

En el cálculo de las pérdidas de carga en tuberías juegan un papel discriminante 2 factores: el que la tubería sea lisa o rugosa y el que el régimen de corriente sea laminar o turbulento.

\(^9\) Ecuaciones (2.9), (2.10), (2.11): Transferencia de Calor, A. Mills y Frank Incrópera.
Para una tubería de diámetro constante, si aumentamos el caudal por lo tanto aumenta la velocidad del fluido.

En régimen laminar, la pérdida de carga es proporcional a la primera potencia de la velocidad y en régimen declaradamente turbulento a la segunda potencia de la velocidad, sin embargo, advirtamos que en realidad no es la velocidad la que condiciona este fenómeno sino como siempre el número de Reynolds.

La fórmula fundamental que expresa lo anterior es la ecuación de Darcy-Weisbach:\cite{Mecánica Fluidos y Máquinas hidráulicas}:

$$h_{p} = f \frac{L}{D} \frac{V^{2}}{2g}$$  \hspace{1cm} (2.12)

donde:

- $h_{p}$: pérdida de carga primaria en metros de agua, mH$_{2}$O
- $f$: factor de fricción, adimensional
- $L$: Longitud de la tubería en metros, m
- $D$: Diámetro de la tubería en metros, m
- $V$: Velocidad media del fluido en m/s

Si el caudal y el área de la sección transversal del flujo son constantes, la relación de la velocidad media del fluido se reduce a la relación:

$$V_{m} = \frac{V}{A_{c}}$$  \hspace{1cm} (2.13)

donde:

- $V$: caudal del fluido, en m$^{3}$/s
- $A_{c}$: área de la sección transversal del flujo en m$^{2}$

\cite{Mecánica Fluidos y Máquinas hidráulicas} Ecuaciones (2.12), (2.13), (2.14): Mecánica de fluidos y máquinas hidráulicas, Claudio Mataix.
2.6.2 Pérdida de carga secundaria en conductos cerrados o tuberías

De uso universal en el mundo entero en los libros y formularios de hidráulica y análoga a la ecuación de Darcy-Weisbach, se tiene la siguiente fórmula:

\[ hs = k \frac{V^2}{2g} \] (2.14)

donde:

hs: pérdida de carga secundaria en metros de agua, mH₂O
k: Coeficiente adimensional de pérdida de carga secundaria, se obtiene de tablas
V: Velocidad media del fluido en m/s
CAPÍTULO 3:
SELECCIÓN DEL EQUIPO DE PASTEURIZACIÓN

3.1 Consideraciones para la selección

Se establecen las siguientes condiciones para la selección del equipo:

3.1.1 Características sanitarias del equipo:

Todos los materiales en contacto con la bebida malteada deben ser inertes frente a los mismos, en las condiciones de uso.

Las superficies en contacto con la bebida malteada pertenecientes a tuberías y accesorios de conexión entre equipos e instalaciones deben ser lisas, pulidas, no porosas.

Todas las superficies en contacto con la bebida malteada deben ser accesibles para su inspección.

Todas las zonas interiores de los equipos en contacto con la bebida malteada deberán tener una disposición tal que permita el drenado total de los líquidos empleados en la limpieza CIP.

3.1.2 Normas aplicables

La implementación del equipo debe cumplir con lo establecido en las normas de condiciones generales de diseño, en lo que le sea aplicable: materiales, soldadura, pruebas de hermeticidad a tuberías y equipos.
En cuanto a las tuberías a emplear se considera la norma: "ASTM A-270, Standard Specification for Seamless and Welded Austenitic Stainless Steel Sanitary Tubing". Norma ASTM para tubería sanitaria soldada longitudinalmente por proceso TIG. Contempla el acabado adecuado para las industrias alimentaria y farmacéutica, el cual hace prácticamente imperceptible la soldadura.

La tabla N° 3.1 describe las normas para uniones sanitarias más empleadas, podemos encontrar las diferentes designaciones así como su procedencia.

<table>
<thead>
<tr>
<th>Designación de Norma</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMS 1145</td>
<td>Suecia</td>
</tr>
<tr>
<td>DIN 11851</td>
<td>Alemania</td>
</tr>
<tr>
<td>RJT (BS 1864)</td>
<td>Inglaterra</td>
</tr>
<tr>
<td>FIL-IDF (ISO 2853)</td>
<td>ISO</td>
</tr>
<tr>
<td>Clamp (ISO 2852)</td>
<td>ISO</td>
</tr>
<tr>
<td>DS 722</td>
<td>Dinamarca</td>
</tr>
</tbody>
</table>

En el país, la norma más usada es la SMS seguida por la norma DIN, introducida por la industria cervecera y en tercer lugar la norma CLAMP la cual es usada, entre otras, por empresas de origen norteamericano. Las normas IDF, RJT y ACME prácticamente no son utilizadas en el país. La norma DS se puede encontrar en equipos de origen argentino. Para el montaje e implementación de tuberías y accesorios de la estación de pasteurización por donde se desplaza la bebida malteada, se emplea la Norma DIN 11851.
3.2 Requerimientos de demanda del mercado

Los requerimientos de producción de bebida malteada requieren en promedio 75428 paquetes de 12 unidades en botellas de 0.33 litros a la semana, los cuales se envasarán en 3 días de jornadas de 16 horas, ya que las 8 horas restantes del día son empleadas en realizar limpiezas y saneamientos a fin de contribuir en la máxima limpieza y cuidado contra la contaminación del producto.

3.3 Cálculo de flujo de bebida a pasteurizar

De acuerdo a los requerimientos del mercado, se establece la producción de bebida a producir.

El máximo flujo de bebida a la cual corre la Llenadora es de 15 000 Litros por hora. Por lo tanto, el flujo de bebida a pasteurizar debe ser menor o igual a este valor a fin de determinar la factibilidad de producción, la cual se estima en base a los datos por semana especificados en el punto 3.2:

Paquetes a producir = 75 428
Cantidad de botellas por paquete = 12 botellas
Volumen de botella = 0.33 litros
Días de producción = 3 días
Horas por día = 16 horas

Por lo tanto el flujo de bebida se calcula en base a la siguiente fórmula:

$$ \dot{V}_{bebida} = \frac{volumen}{tiempo} $$ 

(3.1)
Deduzcendo el volumen total en litros y el tiempo total de horas y reemplazando datos en la ecuación 3.1.

\[
\dot{V}_{\text{bebida}} = \frac{\text{paquetes} \times \text{cantidad de botellas} \times \text{volumen de botella}}{\text{días} \times \text{horas por día}}
\]

\[
\dot{V}_{\text{bebida}} = \frac{75 \times 420 \times 12 \times 0.33}{3 \times 16 \, \text{h}}
\]

\[
\dot{V}_{\text{bebida}} = 6522.81 \, \text{l/h}
\]

Considerando un factor de 5% por pérdidas de bebida, tendremos un nuevo flujo:

\[
\dot{V}_{\text{bebida}} \times 1.05 = 6534 \, \text{l/h}
\]

Por lo tanto el pasteurizador a implementar debe cumplir con la capacidad de flujo requerida de:

\[
\dot{V}_{\text{bebida}} = 6534 \, \text{l/h}
\]
3.4 Selección del tipo de equipo

La matriz de selección de la tabla N° 3.2, muestra los diversos criterios técnicos y económicos los cuales se tomarán en cuenta para seleccionar el tipo de pasteurizador a implementar.

<table>
<thead>
<tr>
<th>Matriz de criterio de selección</th>
<th>Flash</th>
<th>Túnel</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PROCESO ISO 9001</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criterio de espacio</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Alto costo de instalación</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Mayor capacidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bajo costo de mantenimiento</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Bajo tiempo de pasteurización</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Alto costo de instalaciones estériles</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Personal más capacitado</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Fácil operación</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Material de botella que emplea el proceso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pet</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Vidrio y lata</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td><strong>MEDIO AMBIENTE ISO 14000</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento de aguas residuales del proceso</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Gasto operativos energético mayor (agua, electricidad, vapor, CO2)</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Emisiones de olores y polvos al aire</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td><strong>HIGIENE Y SEGURIDAD OCUPACIONAL OHSAS 18000</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riesgo de explosiones</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Exposición a riesgos de origen químico (amoníaco, CO2)</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Riesgos físicos</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Exposición al ruido y a las vibraciones</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Por lo expuesto anteriormente, la opción más conveniente de acuerdo a criterios expuestos es la de contar con un equipo pasteurizador tipo flash, debido a que el proceso de envasado se realiza en envases tipo pet los cuales no están diseñados para ser sometidos a diferentes cambio de temperatura en caso de pasar por un pasteurizador tipo túnel; con una producción de flujo continuo y por el espacio reducido con el que se cuenta en la línea para implementar dicho equipo es
también determinante, asimismo para las cantidades de hectólitros por hora requeridos se sobredimensionaría si se tratase de implementar un pasteurizador tipo túnel así como los gastos operativos se incrementan. Asimismo, los criterios de cuidado de medio ambiente y seguridad son mayores en este tipo de equipo.

3.5 Requerimientos del proceso

Con el tipo de equipo pasteurizador seleccionado es necesario definir algunos valores de parámetros establecidos que sirven para realizar los cálculos para determinar la selección de equipos a implementar. Estos valores se muestran a continuación en la tabla N° 3.3.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valores establecidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flujo de bebida</td>
<td>6000 - 7000 l/h</td>
</tr>
<tr>
<td>Temperatura de pasteurización</td>
<td>76 - 81° C</td>
</tr>
<tr>
<td>Temperatura ingreso a pasteurizador</td>
<td>13° C</td>
</tr>
<tr>
<td>Presión de estabilización de bebida</td>
<td>7 Bar</td>
</tr>
<tr>
<td>Temperatura salida de pasteurizador</td>
<td>14° C</td>
</tr>
<tr>
<td>Unidades de pasteurización</td>
<td>90 - 110</td>
</tr>
<tr>
<td>Tiempo de pasteurización</td>
<td>30-35 s</td>
</tr>
<tr>
<td>Temperatura de agua zona calentamiento</td>
<td>80 - 85° C</td>
</tr>
<tr>
<td>Temperatura de envasado</td>
<td>0° C</td>
</tr>
</tbody>
</table>

El flujo de bebida se calculó en base a la demanda del mercado.
La temperatura y unidades de pasteurización son especificaciones de la norma UCP-D00-EG-473-08 de la fuente de la empresa Backus.
Las temperaturas y presiones de trabajo son las empleadas de acuerdo a las necesidades de envasado de la misma empresa.
El tiempo de pasteurización es un tiempo estándar* (magazine Pasteurización Flash, Kathinka Engineering).
3.6 Balance energético del pasteurizador

Es necesario tener en cuenta el flujo de bebida a pasteurizar, la cual se encuentra determinada por la demanda de la producción y que fue calculada en el punto 3.3 como: \( V_{\text{bebida}} = 6534 \text{ l/h} \)

Son conocidas también las características de la bebida malteada tal como se muestra en la tabla N° 3.4 y con datos del anexo B3:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad de la bebida malteada</td>
<td>( \rho_{\text{bebida}} = 1.04 \text{ Kg/l} )</td>
</tr>
<tr>
<td>Calor específico de la bebida malteada</td>
<td>( C_{p_{\text{bebida}}} = 3.77 \text{ KJ/Kg °K} )</td>
</tr>
<tr>
<td>Viscosidad cinemática de la bebida malteada</td>
<td>( \nu_{\text{bebida}} = 1.8286 \times 10^{-6} \text{ m}^2/\text{s} )</td>
</tr>
</tbody>
</table>

Asimismo, en la figura N° 3.1 se ilustra el diagrama del pasteurizador indicando sus zonas y valores de parámetros de ingreso tanto de la bebida malteada como de los fluidos provenientes de los sistemas auxiliares.

Figura N° 3.1 Diagrama de pasteurizador flash
3.6.1 Cálculos térmicos

Se requiere realizar el balance térmico para el intercambiador de placas donde se debe calentar y pasteurizar la bebida, teniendo en consideración los valores de los parámetros requeridos.

De acuerdo a lo establecido, este intercambiador de placas se subdivide en 2 zonas, la de regeneración y la de calentamiento propiamente dicho.

En la zona de regeneración el intercambio de calor se da entre bebida-bebida (zona I) y en la de calentamiento entre bebida-agua caliente (zona II).

Analizaremos primeramente la zona I de regeneración:

![Figura Nº 3.2 Zona de regeneración](image)
De acuerdo a lo descrito en el punto 2.1.2, se establece que la temperatura de la bebida a la salida de la zona de regeneración debe ser menor de 65ºC (temperatura mínima de pasteurización). Por lo tanto, de acuerdo a regulaciones estableceremos una temperatura de 59ºC.

Según equilibrio de calor y de la fórmula 2.6:

\[
Q = m_{\text{bebida}} \times C_p_{\text{bebida}} \times (T_2 - T_1) - m_{\text{bebida}} \times C_p_{\text{bebida}} \times (T_5 - T_6)
\]

Tenemos entonces que:

\[
T_2 - T_1 = T_5 - T_6
\]

59º C − 13º C = 76º C − T_6

Por lo tanto

\[
T_6 = 30º C
\]

Tendremos las temperaturas:

\[
T_1 = 13º C = 286º K
\]
\[
T_2 = 59º C = 332º K
\]
\[
T_5 = 76º C = 349º K
\]
\[
T_6 = 30º C = 303º K
\]

Asimismo, debemos conocer el flujo másico de bebida malteada a pasteurizar, de acuerdo a los datos de la tabla N° 3.4 y reemplazando en la ecuación 2.7 con los datos:

\[
\rho_{\text{bebida}} = \frac{m_{\text{bebida}}}{V_{\text{bebida}}}
\]

Despejando

\[
m_{\text{bebida}} = \rho_{\text{bebida}} \times V_{\text{bebida}} = 1.04 \times 6534
\]

\[
m_{\text{bebida}} = 6795.36 \text{ kg/h}
\]

Por lo tanto:

\[
Q_1 = 6795.36 \text{ kg/h} \times 3.77 \text{ kJ/kg} \cdot \text{°K} \times (332° \text{ K} - 286° \text{ K}) \times 1 \text{ h/3600 seg}
\]

\[
Q_1 = 327.34 \text{ kW}
\]
Cálculo de la eficiencia de regeneración

De la fórmula 2.2 obtendremos:

\[ R = \frac{(59 - 13) \times 100}{(76 - 13)} \]

\[ R = 73\% \]

Analizaremos ahora la zona II de calentamiento:

Conociendo las temperaturas de entrada y salida de la bebida y trabajando con el mismo flujo de bebida:

\[ Q_2 = \dot{m}_{bebida} \times C_p_{bebida} \times (T_4 - T_3) \]

Por condición, se observa que las temperaturas T3 y T4 son conocidas:
La temperatura $T_3$ de ingreso a la zona de calentamiento se considera igual a la temperatura $T_2$ de salida de la zona de regeneración, asimismo la temperatura $T_4$ de salida de la zona de calentamiento se considera igual a la temperatura $T_5$ de ingreso a la zona de regeneración y ambas iguales a la temperatura de pasteurización de la bebida malteada.

Por lo tanto:

$$T_3 = T_2 = 332^\circ K$$

$$T_4 = T_5 = T_p = 349^\circ K$$

$$Q_2 = 6795.36 \text{ kg/h} \times 3.77 \text{ kJ/kg } ^\circ K \times (349^\circ K - 332^\circ K) \times \frac{1 \text{ h}}{3600 \text{ seg}}$$

$$Q_2 = 120.98 \text{ kW}$$

Con estos valores y con el apoyo de la tabla Información general de aplicación del anexo B4 de selección de intercambiadores de calor a placas de Alfa Laval se selecciona la unidad higiénica de flujos paralelos M10 del tipo Base Line, porque tiene servicio de refrigeración y calentamiento de agua, asimismo todas sus partes deben ser en acero inoxidable por ser una unidad higiénica, su presión de funcionamiento bajo los 10 bar y capacidad de pasteurización de 7 000 l/h. Las características de diseño más importantes se detallan en la ficha técnica del anexo C1.1 y C1.2 y el plano del anexo 01 del equipo proporcionado por Alfa Laval.
Cálculo del flujo de agua para calentar la bebida malteada

Ahora bien, también será necesario calcular el flujo de agua caliente necesario para calentar la bebida. Tenemos el intercambiador tubular de vapor que está regulado para suministrar agua caliente a 85° C ó 358° K al intercambiador de calor.

Realizando el balance energético:

\[ Q_2 = Q_3 = m_{H_2O} \times C_{pH_2O} \times (T_b - T_a) \]

\[ 120.98 \, kW = m_{H_2O} \times 4.192 \, kJ/kg \, ^°K \times (358° \, K - 347° \, K) \]

\[ m_{H_2O} = 2.62 \, kg/s \]

siendo la \( \rho_{H_2O} = 1000 \, kg/m^3 \)

\[ \dot{v}_{H_2O} = 2.62 \, l/s \]

Para calentar el agua que ingresa al intercambiador de placas, se cuenta con un intercambiador de calor tipo tubular de coraza existente en planta, el cual posee los siguientes datos de placa descritos en la tabla N° 3.5:
Tabla N° 3.5 Datos de placa de intercambiador tubular a vapor existente

<table>
<thead>
<tr>
<th>Marca</th>
<th>Transitherm GmbH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>21EDNSO19</td>
</tr>
<tr>
<td>Presión de trabajo (bar)</td>
<td>3 – 6</td>
</tr>
<tr>
<td>Temperatura (ºC)</td>
<td>75 – 150</td>
</tr>
<tr>
<td>Volumen (lts)</td>
<td>2.5 – 6</td>
</tr>
</tbody>
</table>

Calcularemos ahora el flujo másmico de vapor requerido para realizar este calentamiento, para un flujo de una sola corriente según la figura N° 2.10, con las fórmulas de las ecuaciones (2.5) y (2.6), ya que la transferencia de calor es similar y las pérdidas son despreciables:

\[
\dot{m}_{\text{H}_2\text{O}} \times C_{\text{P,H}_2\text{O}} \times (T_b - T_a) = \dot{m}_V \times h_{\text{tg}}
\]

Por otro lado, la entalpía de evaporación que cede el vapor en condensación se obtiene de las tablas de propiedades termodinámicas del vapor saturado para una presión de vapor saturado de 3 bares que es la que se regula para el ingreso de vapor en el intercambiador tubular e interpolando valores se obtiene:

\[
h_{\text{tg}} = 2.164 \times 10^6 \text{ J/kg}
\]

Reemplazando:

\[
2.86 \text{ kg/s} \times 4.192 \text{ kJ/kg} \text{°K} \times (357^\circ \text{K} - 347^\circ \text{K}) = \dot{m}_V \times 2.16 \times 10^6 \text{ J/kg}
\]

\[
\dot{m}_V = 0.056 \text{ kg/s}
\]

\[
\dot{m}_V = 201.63 \text{ kg/h}
\]

Siendo este valor menor que la capacidad horaria total del caldero Manser que es de 1278.65 kg/h como se muestra en el punto 2.4.2 y la figura N° 2.8, por lo tanto es factible su empleo.
Tubería de vapor

De acuerdo a las tablas del anexo B2 y B5 para tuberías de vapor:

\[ m_v = 201.63 \text{ kg/h} \]

\[ P_{V,saturado} = 3 \text{ bar} \]

Intercepta a la recta bajo 1 ½"

Diámetro de tubería de vapor: 1 ½"

Tubería de condensado

De acuerdo a la tabla 1 del anexo B6 para porcentaje de condensado se obtiene:

Presión primaria (vapor saturado)= 3 bar

Presión secundaria (retorno de condensado de la red) = 0.5 bar

Se obtiene 6% de porcentaje en peso de vapor flash

\[ m_{v,flash} = 0.06 \times 201.63 \text{ kg/h} = 12.09 \text{ kg/h} \]

De acuerdo a la tabla 2 del anexo B6 para caudal de vapor flash se obtiene:

Para Velocidad de vapor: 20 m/s

Presión secundaria (retorno de condensado de la red) = 0.5 bar

Ingresando con el caudal de vapor flash, nos ubicamos cerca a 14 kg/h que corresponde una tubería de DN15 mm

Diámetro de tubería de condensado: ¾”

Aislamiento de tuberías

Asimismo, de la tabla del anexo B7 de espesor de aislamiento de tuberías obtenemos:

Espesor de aislamiento para tubería de vapor: 1 ½”

Espesor de aislamiento para tubería de condensado: 1”
3.6.2 Cálculos de refrigeración

Del mismo modo, se requiere realizar el balance de refrigeración para el intercambiador de placas donde se enfriará la bebida pasteurizada, teniendo en consideración los valores de los parámetros requeridos.

Analizaremos ahora la zona de enfriamiento:

La temperatura $T_7$ de ingreso a la zona de enfriamiento se considera igual a la temperatura $T_6$ de salida de la zona de regeneración, asimismo la temperatura $T_8$ de salida de la zona de enfriamiento por requerimiento debe ser de 14º C.

Por lo tanto:

$$T_7 = T_8 = 303º K$$

$$T_8 = 14º C = 287º K$$

Realizando el balance energético:

$$Q_4 = \dot{m}_{bebida} \times C_{p_{bebida}} \times (T_7 - T_8)$$

$$Q_4 = 6795.36 \text{ kg/h} \times 3.77 \text{ kJ/kg} \cdot \text{K} \times (303º K - 287º K) \times 1 \text{ h/3600 seg}$$

$$Q_4 = 113.86 \text{ kW}$$
Con estos valores y con el apoyo de la tabla Información general de aplicación del anexo B4 de selección de intercambiadores de calor a placas de Alfa Laval se selecciona la unidad higiénica de flujos paralelos M6 de la Serie M, porque se trata de un servicio exclusivo de refrigeración y calentamiento, su presión de funcionamiento es alta sobre los 10 bar y capacidad de pasteurización que bordea los 8 5000 l/h. Las características de diseño más importantes se detallan en la ficha técnica C2.1 y C2.2 y el plano del anexo 02 del equipo proporcionado por Alfa Laval.

**Cálculo del flujo de amoníaco para enfriar la bebida malteada**

Según equilibrio de calor y de la fórmula 2.5:

\[ Q_5 = m_{NH_3} \times \Delta h_{NH_3} \]

Despejando

\[ m_{NH_3} = \frac{Q_5}{\Delta h_{NH_3}} \]

Donde:

\( \Delta h_{NH_3} \): Cálculo de la diferencia de entalpias en el proceso de evaporación

Para la presión constante en condiciones ideales en el proceso de evaporación del amoníaco tal como se describió en el punto 2.5 y el diagrama p-h de la figura Nº 2.9.

Para una presión de 45 Psi la cual es la presión de evaporación y 150 psi la presión de condensación que son valores típicos de presiones manométricas con los que trabaja la planta y usando el diagrama de Mollier para el Amoniaco R717 del anexo B8 y tablas del anexo B9 se obtiene:

\[ p_1 = 45 \text{ psi} \]

corresponde una presión absoluta

\[ P_1 = 59.7 \text{ psi} = 411.62 \text{ kPa} \] (Presión de evaporación)
y la temperatura de evaporación:

\[ T_1 = -1.1 \, ^\circ \text{C} \]

Luego para

\[ p_4 = 150 \, \text{psi} \]

corresponde una presión absoluta \( P_4 = 164.7 \, \text{psi} = 1135.57 \, \text{kPa} \)

Hallando las entalpías:

\[ h_2 = 1460.2 \, \text{kJ/kg} \]
\[ h_4 = 330.7 \, \text{kJ/kg} \]

Por lo tanto:

\[ \Delta h_{\text{NH}_3} = 1460.2 - 330.7 = 1129.5 \, \text{kJ/kg} \]

Realizando el balance energético:

\[ Q_4 = Q_5 = 113.86 \, \text{kW} \]
\[ m_{\text{NH}_3} = 113.86 \, \text{kW}/1129.5 \, \text{kJ/kg} \]
\[ m_{\text{NH}_3} = 362.9 \, \text{kg/h} \]

Este será el flujo másico de refrigerante amoniacal necesario para enfriar la bebida en el pasteurizador.

**Cálculo de tuberías del sistema de refrigeración**

De los cálculos anteriores se tiene como datos:

- Temperatura de evaporación de amoníaco \( T_1 = -1.1 \, ^\circ \text{C} \)
- Potencia = 113.86 kW = 97896.83 kcal/h

De acuerdo al ábaco para tuberías de amoníaco ingresando con los datos anteriores a las gráficas del anexo B1 se obtiene:

1) Diámetro de tubería de aspiración: 45 mm, tubería comercial de 2"

Espesor de aislamiento en fibra de vidrio: 2"
2) Diámetro de tubería de líquido 1: 26 mm, tubería comercial de 1”. Espesor de aislamiento en fibra de vidrio: 1 ½”
Asimismo, las tuberías de servicio del tanque al intercambiador de placas M10 Base Line son de 3” de diámetro el ingreso de amoniaco líquido y de 4” de diámetro el retorno de amoniaco gaseoso del intercambiador al tanque.

Cálculo de la capacidad de llenado del tanque de amoniaco
Aplicando la ecuación 2.5, para determinar el máximo porcentaje de llenado y considerando el grado de llenado máximo para almacenamiento semirefrigerado de 0.60 kg/I, siendo 0.64 kg/I el peso específico del amoniaco a la temperatura de amoniaco en el tanque que es de -1.1° C:

\[ V = 100 \times \frac{0.60}{0.64} = 93.75\% \]

3.6.3 Cálculo de la tubería de mantenimiento para bebida malteada
De acuerdo a la ecuación 2.3,

\[ V = \frac{v \times t_m}{3600 \times \eta} \]

reemplazando los datos conocidos para un valor de eficacia intermedio de 0.85 según lo descrito en el punto 2.2.2 c) y reemplazando en la ecuación (2.3) tenemos:

\[ V = \frac{6534 \times 30}{3600 \times 0.85} = 64.058 \]

\[ V = 64.058 \, \text{dm}^3 \]

del mismo modo de la ecuación (2.4), y reemplazando datos, para la tubería de 50 mm de diámetro o 0.50 dm

\[ l = \frac{64.058 \times 4}{\pi \times 0.50^2} = 316.05 \]
Este será el valor de la longitud total de la tubería de mantenimiento del pasteurizador.

3.6.4 Cálculo de las pérdidas en tuberías y equipos de pasteurización

De acuerdo a datos técnicos de la tubería comercial DIN 50 que posee un diámetro interno (ID) de 50 mm reemplazando datos y aplicando las fórmulas de la ecuación (2.9) para la determinación del número de Reynolds para definir el tipo de flujo se obtiene:

\[
m_{bebida} = 6795.36 \text{ kg/h} = 1.8876 \text{ kg/s}
\]

\[
A_c = \pi \times 0.05^2/4 = 0.001963 \text{ m}^2
\]

\[
\mu = 1.8286 \times 10^{-6} \text{ m}^2/\text{s} \times 1040 \text{ kg/m}^3 = 1.901744 \times 10^{-3} \text{ kg/m s}
\]

\[
Re = (1.8876/0.001963) \times 0.05/1.901744 \times 10^{-3} = 25282
\]

Re = 25282 > 2300, por lo tanto se trata de un flujo turbulento.

Considerando superficies con rugosidad baja casi despreciables, aplicando las fórmulas de la ecuación (2.11) para régimen turbulento y según diagrama de Moody del anexo B10 hallamos el factor de fricción:

\[
f = (0.790 \times \ln 26417 - 1.64)^2
\]

\[
f = 0.02439
\]

Pérdidas en tuberías de bebida malteada

De acuerdo al metrado general de longitud de tuberías y accesorios de la tabla N° 3.6:
### Tabla Nº 3.6 Metrado General de Tuberías y accesorios de la estación de pasteurización

<table>
<thead>
<tr>
<th>Tubo</th>
<th>Sistema</th>
<th>Diámetro Tubería (metros)</th>
<th>Longitud (metros)</th>
<th>Codo 90°</th>
<th>Codo 45°</th>
<th>Tee</th>
<th>Válvulas</th>
<th>Válvulas no neumáticas</th>
<th>Unión clamps 1&quot;</th>
<th>Unión clamps 2&quot;</th>
<th>Switch (caño)</th>
<th>Reducción 2&quot;</th>
<th>Unión DIN</th>
<th>Redas</th>
<th>Válvulas neumáticas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sistema Amoniaco</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amoniaco líquido - Tanque baja presión</td>
<td>1'</td>
<td>5.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanque baja presión - Amoniaco gas</td>
<td>2'</td>
<td>4.16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanque baja presión - Intercambiador 2 (líquido)</td>
<td>4'</td>
<td>2.12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercambiador 2 - Tanque baja presión (Gas)</td>
<td>3'</td>
<td>1.20</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sistema Vapor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubería Vapor</td>
<td>1-1/2&quot;</td>
<td>5.44</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubería Condensado</td>
<td>1/2&quot;</td>
<td>6.59</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sistema Agua Caliente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercambiador 1 - Intercambiador tubular</td>
<td>2'</td>
<td>1.61</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercambiador tubular - Bomba H2O</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bomba H2O - Intercambiador</td>
<td>0.27</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sistema Agua Fría</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubería Agua Fría</td>
<td>1/2&quot;</td>
<td>8.09</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sistema Inoxidable bebida malteada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panel de Jarabe - Panel Envasado</td>
<td>50 mm</td>
<td>8.00</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panel de Envasado - Panel Carbocompressor</td>
<td></td>
<td>4.50</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panel 1 Carbocompressor - Bomba 1</td>
<td>6.23</td>
<td>5</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bomba 1 - Bomba 2</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bomba 2 - Intercambiador 1</td>
<td>2.53</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercambiador 1 - Bomba 3</td>
<td>1.60</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bomba 3 - Intercambiador 1</td>
<td>1.01</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercambiador 1-Serpentin-Intercambiador 1</td>
<td>3.45</td>
<td>26</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercambiador 1-Intercambiador 2</td>
<td>2.93</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanque buffer</td>
<td>2.39</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercambiador 2 - Tanque buffer</td>
<td>1.00</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanque buffer - Panel 2 Carbocompressor</td>
<td>10.00</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
se obtiene \( L = 91.05 \text{ m} \)

Considerando la velocidad media constante, de la ecuación (2.13) obtenemos

\[
\dot{V}_{\text{bebida}} = 6534 \text{ l/h} = 0.001815 \text{ m}^3/\text{s}
\]

\( A_c = 0.001963 \text{ m}^2 \)

\[
\frac{\dot{V}_m}{0.001963} = 0.001815
\]

\[
\dot{V}_m = 0.001963
\]

\( \dot{V}_m = 0.924 \text{ m/s} \)

De acuerdo a la ecuación (2.12) de Darcy – Weisbach se hallan las pérdidas en las tuberías, por lo tanto,

\[
ht = 0.02439 \times \frac{91.05 \times 0.924^2}{0.05 \times 2 \times 9.81}
\]

\( h_T = 1.933 \text{ mH}_2\text{O} = 2.80 \text{ psi} \)

**Pérdidas en accesorios de tuberías de bebida malteada**

Ahora se determinan las pérdidas en accesorios según la ecuación (2.14) obteniéndose las cantidades de accesorios de la tabla N° 3.7 y los valores del factor \( K \) del anexo B11\textsuperscript{11}

\[\text{11 Mecánica de fluidos. Robert Mott}\]
<table>
<thead>
<tr>
<th>Tramo</th>
<th>Tuberías</th>
<th>Codo 90°</th>
<th>Codo 45°</th>
<th>Tee</th>
<th>Válvula Check</th>
<th>Unión clamp 1&quot;</th>
<th>Unión clamp 2&quot;</th>
<th>Spitch (caño)</th>
<th>Reducción 2º</th>
<th>Unión DIN</th>
<th>Bridas</th>
<th>Válvulas neumáticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Sala de Jarabe - Panel Sala Envasado</td>
<td>0.1699</td>
<td>0.11</td>
<td>0</td>
</tr>
<tr>
<td>Panel Sala Envasado - Panel 1 Carbocooler</td>
<td>0.09557</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>Panel 1 Carbocooler - Bomba 1</td>
<td>0.17478</td>
<td>0.11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0955211</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bomba 1 - Bomba 2</td>
<td>0.01062</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>Bomba 2 - Intercambiador 1</td>
<td>0.05373</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0478</td>
<td>0</td>
<td>0.0477605</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intercambiador 1 - Bomba 3</td>
<td>0.03398</td>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td>Bomba 3 - Intercambiador 1</td>
<td>0.02145</td>
<td>0.11</td>
<td>0</td>
</tr>
<tr>
<td>Intercambiador 1-Serpentin-Intercambiador 1</td>
<td>0.77409</td>
<td>0.55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0477605</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intercambiador 1-Intercambiador 2</td>
<td>0.06222</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0477605</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Purga</td>
<td>0.04885</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0477605</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intercambiador 2 - Tanque buffer</td>
<td>0.27608</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0477605</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tanque buffer - Panel 2 Carbocooler</td>
<td>0.21237</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0477605</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Pérdidas en mH2O: 3.9416943
Pérdidas en PSI: 5.7154568
Perdidas en codos 90° (72 unds)
\[ h_1 = 72 \times 20 \times 0.924^2/2 \times 9.81 \]
\[ h_1 = 1.53 \text{ mH}_2\text{O} \]

Perdidas en codos 45° (2 unds)
\[ h_2 = 2 \times 16 \times 0.924^2/2 \times 9.81 \]
\[ h_2 = 0.034 \text{ mH}_2\text{O} \]

Pérdidas en "Tees" (3 unds)
\[ h_3 = 3 \times 20 \times 0.924^2/2 \times 9.81 \]
\[ h_3 = 0.064 \text{ mH}_2\text{O} \]

Pérdidas en válvulas check (1 und)
\[ h_4 = 1 \times 45 \times 0.924^2/2 \times 9.81 \]
\[ h_4 = 0.048 \text{ mH}_2\text{O} \]

Pérdidas en válvulas neumáticas con compuerta tipo mariposa (8 unds)
\[ h_5 = 8 \times 45 \times 0.924^2/2 \times 9.81 \]
\[ h_5 = 0.334 \text{ mH}_2\text{O} \]

Por lo tanto las pérdidas totales en accesorios:
\[ h_a = h_1 + h_2 + h_3 + h_4 + h_5 \]
\[ h_a = 2.01 \text{ mH}_2\text{O} = 2.91 \text{ psi} \]

**Pérdidas en intercambiadores de placas**

De acuerdo a los anexos C1 y C2, las pérdidas por caída de presión en los intercambiadores de placas según fabricante para el equipo M10M Base Line son de 120 kPa ó 17.73 psi y en intercambiador de placas de la serie M6 de 11.4 kPa ó 1.68 psi.
Pérdidas totales

Las pérdidas totales para el flujo de bebida malteada es la suma de las pérdidas en tuberías, accesorios e intercambiadores:

\[ H_T = h_T + h_a + h_{M10M} + h_{M6} \]

\[ H_T = 2.80 + 2.91 + 17.73 + 1.68 \]

\[ H_T = 25.12 \text{ psi} \]

De acuerdo a la selección de bombas se opta por establecer 3 bombas en serie adicional a la bomba de envío Cip ubicada en sala de jarabe de similares características a fin de estandarizar su uso.

Las bombas en mención para un caudal de 6.5 m³/h poseen una altura de 43 metros de columna de agua a 4.3 Bar de presión, cuyas características y curvas se detallan en el anexo C3, por lo que de acuerdo al análisis se instalarán 2 bombas en serie antes del ingreso al primer intercambiador y una tercera bomba en el tramo de ingreso a la zona de calentamiento para compensar la caída de presión existente en el intercambiador M10.

3.6.5 Cálculo de las unidades de pasteurización

De acuerdo a la ecuación 2.1 del capítulo 2,

\[ UP = tm \times 1.393(T_p - 60^\circ C) \]

Teniendo en consideración los valores de temperatura en la zona de mantenimiento

\[ T_p = 76 ^\circ C \]

\[ tm = 30 \text{ segundos o 0.5 minutos} \]

Reemplazando datos

\[ UP = 0.5 \times 1.393 (76 - 60 \ ^\circ C) \]

\[ UP = 100.50 \text{ (adimensional)} \]
CAPÍTULO 4:
IMPLEMENTACIÓN DEL EQUIPO DE PASTEURIZACIÓN EN LA LÍNEA DE GASEOSAS

Para la implementación del equipo pasteurizador tipo flash en la línea de gaseosas es necesario conocer su disposición y recorrido por la línea así como las características técnicas de equipos, accesorios, materiales y cantidades a emplear, esto se detalla a continuación.

4.1 Descripción de la línea de producción de gaseosas

En principio, la línea de producción de gaseosa donde se implementará el pasteurizador consta de los equipos mostrados en el diagrama de procesos de la figura N° 4.1, los productos de esta línea se embotellan en envases plásticos denominados pet.
Figura N° 4.1 Diagrama de procesos actual de la planta
Se da un breve detalle de cada uno de los equipos que intervienen en el proceso de envasado:

**Enjuagador**, realiza el enjuague interior de la botella mediante toberas de inyección con una presión de chorro de 20 psi como mínimo. Se utiliza el agua ozonizada proveniente de un sistema generador de ozono ubicado en la sala de fuerza.

**Mezclador-carbonatador**, denominado también mixer/carbocooler, es un mezclador de agua de procesos y jarabe que a su vez carbonata la bebida con dióxido de carbono (CO₂) y la enfria dentro de un tanque con un intercambiador de placas interno el cual lleva la bebida hasta un promedio de 1 a 3° C, dicho tanque pertenece al circuito de refrigeración de la planta siendo el refrigerante el amoníaco.

El caudal de salida de bebida de este equipo es de 18000 litros por hora (lt/hr).

**Llenadora**, se encarga del llenado de la bebida en los respectivos envases, consta de 90 válvulas de llenado. Para el caso de la gaseosa es contrapresionada por aire estéril y para el caso de la bebida malteada contrapresionada por dióxido de carbono (CO2). Se llena la bebida a la temperatura que envía el mixer carbocooler. Actualmente por condiciones de uso este equipo cuenta con un caudal de bebida de 15000 litros por hora (lt/hr).

**Capsulador**, coloca tapas rosca plásticas y consta de 16 cabezales para el capsulado de las botellas tipo pet.

**Etiquetadora**, se encarga del etiquetado de la botella la cual se realiza con suministro de rollos de etiqueta que son unidas por una película de goma en sus bordes, dicha goma es suministrada por una bomba de goma a una temperatura de 180° C.

**Codificador**, imprime la codificación de identificación interna y fecha de vencimiento del producto, se utiliza tinta especial y solvente los cuales son impresos por medio de chorros.
Empacador Termocontraible de paquetes, se cuenta con 2 equipos los cuales se encuentran en disposición paralela, ambos con el mismo principio de funcionamiento que consta de selección y formación de botellas en paquetes los cuales son enrollados en láminas plásticas y contraídas en túneles de calentamiento mediante resistencias eléctricas con una temperatura promedio en el túnel de 180° C. La capacidad de empaque de cada túnel termocontraible es de 15 paquetes por minuto.

Transportadores, traslado de botellas por medio de cadenas de tablillas metálicas de acero inoxidable. Su movimiento en los diferentes tramos se debe al uso de motoreductores, los cuales son gobernados por el uso de variadores de velocidad alterando la frecuencia del motor.

A continuación en la figura Nº 4.2 se muestra el diagrama de proceso de envasado de la línea modificado con la implementación del equipo pasteurizador tipo flash.
Figura N° 4.2 Diagrama de procesos modificado de la planta
4.2 Disposición de la bebida malteada a pasteurizar

Tanto la recepción de la bebida a pasteurizar así como el proceso de pasteurización y almacenamiento de la bebida pasteurizada tiene la disposición que a continuación se detalla en los puntos 4.2.1, 4.2.2 y 4.2.3.

4.2.1 Proceso de recepción de la bebida malteada sin pasteurizar

La bebida malteada sin pasteurizar es elaborada en otra planta, la cual se traslada a las instalaciones de la planta de gaseosas mediante el uso de camiones cisterna de tanques de acero inoxidable y se la descarga mediante mangueras que salen de la cisterna y son acopladas a un panel de recepción de bebida, siendo bombeada a la sala de jarabes mediante una bomba tipo Alfa Laval sanitaria y almacenada en 2 tanques verticales de acero inoxidable AISI 316 de 200 y 100 Hectólitros respectivamente con indicadores y registradores de presión, temperaturas, medidores de flujo, etc.

4.2.2 Pasteurizado

Proceso realizado mediante el uso de 2 intercambiadores de placas para calentamiento y enfriamiento respectivamente, controlado por el uso de instrumentación y mandos debidamente seleccionados, uso de sistema de tuberías empleadas para el traslado del producto así como las interconexiones a los servicios auxiliares de la planta tales como refrigerantes (amoníaco NH3), vapor de agua y aire.

4.2.3 Almacenamiento de la bebida pasteurizada

El almacenamiento de la bebida pasteurizada se debe realizar una vez que la bebida culmina su adecuado proceso de pasteurización, llegando
a un tanque vertical de acero inoxidable de 200 Hectólitros de capacidad, en el cual se almacena hasta que se inicie el proceso de envasado en la línea de producción.

4.3 Materiales empleados para movilizar la bebida malteada

El acero inoxidable es utilizado extensamente en la fabricación de equipos de proceso alimentario, por su resistencia mecánica, excelente terminación sanitaria y buena resistencia a los agentes ambientales, agentes de limpieza e insumos químicos.

Las tuberías y conexiones sanitarias son normalmente de material acero inoxidable sanitario con mejor soldabilidad por su bajo contenido de carbono tales como el 304L y 316L cuyas características se muestran en el anexo C4. En la tabla N° 4.1, se detalla la composición química de porcentaje en peso de cada uno de los aceros inoxidables descritos anteriormente.

<table>
<thead>
<tr>
<th>Elementos de composición química</th>
<th>% presente de cada elemento químico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acero inoxidable 304L</td>
</tr>
<tr>
<td>(C) Carbono, máx.</td>
<td>0.030</td>
</tr>
<tr>
<td>(Mn) Manganeso, máx.</td>
<td>2</td>
</tr>
<tr>
<td>(P) Fósforo, máx.</td>
<td>0.045</td>
</tr>
<tr>
<td>(S) Azufre, máx.</td>
<td>0.03</td>
</tr>
<tr>
<td>(Si) Silicio, máx.</td>
<td>1.0</td>
</tr>
<tr>
<td>(Ni) Níquel</td>
<td>8.0 - 12.0</td>
</tr>
<tr>
<td>(Cr) Cromo</td>
<td>18.0 - 20.0</td>
</tr>
<tr>
<td>(Mo) Molibdeno</td>
<td>N/C</td>
</tr>
</tbody>
</table>

Tabla N°4.1. Composición química de los aceros 304L y 316L
(Fuente: Diseño de industrias agroalimentarias, Ana Casp Vanaclocha)
A continuación en la figura N° 4.3 se ilustra las diferentes conexiones sanitarias empleadas para el montaje de las tuberías por donde se desplaza la bebida malteada del pasteurizador flash tales como codos, uniones roscadas, tees, abrazaderas, etc. El detalle y característica de cada una se muestra en el anexo C5.

![Figura N° 4.3 Accesorios de acero inoxidable utilizados en el montaje de tuberías del pasteurizador flash](image)

4.3.1 Acabado superficial de las tuberías para movilizar la bebida malteada

La terminación de la superficie debe tener una rugosidad máxima en el diámetro interno de 0.5 um (20 u-in Ra) y un máximo de 0.8 um (30 u-in Ra) en la superficie del diámetro externo, medida conforme a ASME/ANSI B46.1.

4.3.2 Proceso de soldadura empleado en la unión de tuberías y accesorios sanitarios para movilizar la bebida malteada

La soldadura empleada para procesos de grado alimenticio se da por el proceso de soldadura TIG bajo atmósfera inerte de argón, con pulido mecánico a fin de dejar la rugosidad superficial deseada. Con estos procedimientos se asegura una resistencia adecuada a los ataques
corrosivos y una superficie que se pueda limpiar y esterilizar en forma que se asegure la calidad sanitaria del equipo y de la bebida.

4.4 Implementación del sistema auxiliar de refrigeración

A continuación en los puntos 4.4.1 y 4.4.2, se detalla el material empleado en las tuberías, tanques y accesorios del sistema de refrigeración.

4.4.1 Tuberías y accesorios

En concordancia con los procedimientos de la norma ASME B31.5., es común en la industria utilizar el acero o hierro dúctil en instalaciones que emplean el Amoniaco como medio refrigerante. Cuando se emplea el acero, todas las tuberías o accesorios para el paso de Amoniaco deben ser en acero extra pesado (schedule 80) cuando se usan juntas roscadas. Se usa acero peso estándar (schedule 40) cuando las juntas son tanto soldadas o unidas por bridas soldadas.

El uso de tubería soldada peso estándar (schedule 40) se emplea para el sistema de refrigeración del pasteurizador y cuyas características técnicas se detallan en el anexo C6, la cual se rige bajo la norma ASTM A53.

4.4.2 Tanques

Deben ser diseñados y construidos bajo el código ASME-Boiler and pressure Vessel-Sección VIII, División 1.

Soldadura

Según las especificaciones de soldadura para sistemas de refrigeración a baja temperatura se utiliza soldadura E6010 o E6011 para el pase de raíz y E7018, E8018 o E8018-G para los pases de relleno.
Pruebas de seguridad

Todas las instalaciones de Amoniaco deben ser chequeadas contra fugas después del ensamble, a una presión no menor a la presión normal de operación del sistema. Cualquier fuga que se advierta, debe ser eliminada. Se emplea el Dióxido de Sulfuro (SO2) para localizar fugas de NH3, si se forma una nube blanca, es advertencia que se tiene una fuga. Se emplea papel de fenolftaleína húmedo o rojo tornasol, la rapidez e intensidad del cambio de color del papel indicará la proximidad o tamaño de la fuga. El papel de fenolftaleína se tornará de blanco a rosa o rojo intenso y el rojo tornasol se cambiará a color azul.

4.4.3 Elementos y accesorios implementados

A continuación la figura N° 4.4 muestra el sistema de refrigeración implementado y los accesorios empleados.

![Diagrama de sistema de refrigeración](image-url)
Tanque de acero semiesférico recibidor de líquido a baja presión

Las medidas del tanque son:

Diámetro: 0.57 m
Longitud: 2.0 m
Volumen: 0.47 m³

Sus características de diseño se especifican en el punto 4.4.2.
Asimismo, la lectura de presión se efectúa por un manómetro de dial para amoníaco ubicado en la parte superior del tanque.

Tubería de líquido
Instalación de un filtro al ingreso y una electroválvula solenoide de ingreso de amoníaco líquido.
Las características del filtro y la válvula se especifican en los anexos C7 y C8 respectivamente.

Tubería de aspiración
Instalación de una válvula principal para regular la presión y temperatura del amoníaco gaseoso y cuyo control de presión se encuentra gobernada por una válvula piloto combinada con apertura/cierre forzado de un controlador eléctrico manteniéndose constante la presión de amoníaco gaseoso. Las características de ambas válvulas se especifican en los anexos C9 y C10 respectivamente.

Válvulas de seguridad
Según la instrucción MI IF 009, los recipientes con un volumen igual o superior a 0.28 m³ se protegerán con 2 válvulas de seguridad en paralelo
conectadas a una válvula de cierre de 3 vías del tipo que no puedan seccionarse las 2 válvulas de seguridad simultáneamente.
Las características de las válvulas de seguridad seleccionadas se especifican en el anexo C11.

**Controlador de Nivel**

Control de nivel doble de Amoniaco líquido instalado, el control inferior señala nivel de líquido de operación en el tanque y el control superior corta el ingreso de amoniaco líquido por máximo llenado.
Las características del controlador instalado se especifican en el anexo C12.

**4.5 Implementación del sistema auxiliar de vapor**

En concordancia con los procedimientos de la norma ASME B31.1., es común en la industria utilizar el acero en instalaciones de generación de vapor. Todas las tuberías o accesorios para el paso del vapor o condensado deben ser acero peso estándar (schedule 40) cuando las juntas son tanto soldadas o unidas por bridas soldadas.
Por lo tanto se emplea esta última para el sistema de distribución de vapor del pasteurizador y cuyas características técnicas se detallan en el anexo C6, la cual se rige bajo la norma ASTM A53.
Asimismo, estas tuberías deben estar revestidas con aislamiento térmico adecuado como la lana de vidrio que es la que se emplea para el sistema auxiliar de vapor del pasteurizador.
4.5.1 Elementos y accesorios implementados

A continuación la figura N° 4.5 muestra el sistema de vapor implementado y los accesorios empleados.

Figura N° 4.5 Sistema auxiliar de vapor implementado

**Tubería de vapor**

Instalación de un filtro al ingreso y una válvula de compuerta.

Una estación reductora de presión la cual se compone de:

- 01 válvula reguladora de presión.
- 02 válvulas, una de apertura/cierre y otra moduladora para mantener constante la presión regulada y requerida.
- 01 válvula de seguridad para prevenir en caso de falla el aumento de presión que afecte al sistema y en consecuencia al producto.

Las características de estas válvulas se especifican en los anexos C13, C14 y C15 respectivamente.
Tubería de condensado
- Instalación de una trampa de vapor.
- Instalación de una válvula de retención.

Las características de la trampa de vapor se especifican en el anexo C16.

4.6 Implementación sensórica

Se considera la instalación de sensores en el entorno del proceso de pasteurización, los cuales sirven como controladores del proceso a fin de obtener las condiciones óptimas de pasteurización. Se deben considerar los siguientes factores descritos en la tabla Nº 4.2, a la hora de seleccionar un sensor:

Tabla Nº 4.2 Factores a considerar en la selección de un sensor  
(Fuente: Instrumentación industrial, Antonio Creus)

<table>
<thead>
<tr>
<th>Magnitud a medir</th>
<th>Características de alimentación del sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolución</td>
<td>Tensión</td>
</tr>
<tr>
<td>Exactitud deseada</td>
<td>Corriente</td>
</tr>
<tr>
<td>Estabilidad</td>
<td>Potencia disponible</td>
</tr>
<tr>
<td>Ancho de banda</td>
<td>Frecuencia (si es alterna)</td>
</tr>
<tr>
<td>Tiempo de respuesta</td>
<td>Estabilidad</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Características de salida del sensor</th>
<th>Características ambientales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>Margen de temperatura</td>
</tr>
<tr>
<td>Tipo: tensión, corriente, frecuencia</td>
<td>Humedad</td>
</tr>
<tr>
<td>Forma de señal: unipolar, flotante, diferencial</td>
<td>Vibraciones</td>
</tr>
<tr>
<td>Impedancia</td>
<td>Agentes químicos</td>
</tr>
<tr>
<td>Destino: presentación analógica, digital</td>
<td>Atmosfera explosiva</td>
</tr>
<tr>
<td>Telemédida</td>
<td>Entorno electromagnético</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otros factores</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso</td>
<td>Longitud de cable necesaria</td>
</tr>
<tr>
<td>Dimensiones</td>
<td>Tipo de conector</td>
</tr>
<tr>
<td>Vida media</td>
<td>Situación en caso de fallo</td>
</tr>
<tr>
<td>Disponibilidad</td>
<td>Tiempo de instalación</td>
</tr>
<tr>
<td>Costos de adquisición, verificación, mantenimiento y sustitución</td>
<td></td>
</tr>
</tbody>
</table>
4.6.1 Implementación de sensores de nivel

Son elementos de medición utilizados para determinar el nivel de los fluidos que intervienen en el proceso. Dependiendo de su aplicación, estos poseen características de funcionamiento diferentes. La tabla N° 4.3 nos indica las características de los diferentes tipos de medidores de nivel de líquidos.

Tabla N° 4.3 Medidores de nivel de líquidos
(Fuente: Instrumentación industrial, Antonio Creus)

<table>
<thead>
<tr>
<th>Instrumento de:</th>
<th>Campo de medida</th>
<th>Precisión % escala</th>
<th>Presión máxima BAR</th>
<th>Temperatura máxima del fluido ºC</th>
<th>Desventajas</th>
<th>Ventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonda</td>
<td>Limitado</td>
<td>0.5mm</td>
<td>Atm</td>
<td>60</td>
<td>Manual, sin olas.</td>
<td>Económico, preciso</td>
</tr>
<tr>
<td>Cristal</td>
<td>Limitado</td>
<td>0.5mm</td>
<td>150</td>
<td>200</td>
<td>Sin transmisión</td>
<td>Seguro, preciso</td>
</tr>
<tr>
<td>Flotador</td>
<td>0 - 10m</td>
<td>±1 - 2%</td>
<td>400</td>
<td>250</td>
<td>Posible agarrotamiento</td>
<td>Simple, independiente, naturaleza líquida</td>
</tr>
<tr>
<td>Manométrico</td>
<td>Altura tanque</td>
<td>±1%</td>
<td>Atm</td>
<td>60</td>
<td>Tanques abiertos, fluidos limpios</td>
<td>Económico</td>
</tr>
<tr>
<td>Membrana</td>
<td>0 - 25m</td>
<td>±1%</td>
<td>Atm</td>
<td>60</td>
<td>Tanques abiertos</td>
<td>Económico</td>
</tr>
<tr>
<td>Vibración</td>
<td>Limitado</td>
<td>±1%</td>
<td>40</td>
<td>150</td>
<td>Posible agarrotamiento</td>
<td>Económico, simple, fácil limpieza, todo tipo de tanques y líquidos</td>
</tr>
<tr>
<td>Presión diferencial</td>
<td>0.3m</td>
<td>±0.15 - ±0.5%</td>
<td>150</td>
<td>200</td>
<td>Posible agarrotamiento</td>
<td>Para todo tipo de tanques y líquidos. Interface líquido</td>
</tr>
<tr>
<td>Conductivo</td>
<td>Ilimitado</td>
<td>80</td>
<td>200</td>
<td></td>
<td>Líquido conductor</td>
<td>Versátil</td>
</tr>
<tr>
<td>Capacitivo</td>
<td>0.6m</td>
<td>±1%</td>
<td>80 - 250</td>
<td>200 - 400</td>
<td>Recubrimiento electrodo</td>
<td>Resistencia corrosión</td>
</tr>
<tr>
<td>Ultrasónico</td>
<td>0.3m</td>
<td>±1%</td>
<td>400</td>
<td>200</td>
<td>Sensible a densidad</td>
<td>Para todo tipo de tanques y líquidos</td>
</tr>
<tr>
<td>Radiación</td>
<td>0 - 2.5m</td>
<td>±0.5 - ±2%</td>
<td>150</td>
<td></td>
<td>Fuente radiactiva</td>
<td>Para todo tipo de tanques y líquidos y sin contacto líquido</td>
</tr>
<tr>
<td>Láser</td>
<td>0 - 2m</td>
<td>±0.5 - ±2%</td>
<td>1500</td>
<td></td>
<td>Láser</td>
<td>Para todo tipo de tanques y líquidos y sin contacto líquido</td>
</tr>
</tbody>
</table>
Se selecciona e implementa de acuerdo a la tabla N° 4.3, para el caso de los tanques de almacenamiento de bebida pasteurizada los medidores de presión diferencial, debido a que requerimos conocer el estado de nivel de los líquidos en los tanques.

Este tipo de sensores se ajustan al requerimiento debido a que funcionan también para tanques cerrados y bajo cierta presión y además se trata de mantener estándares de higiene en productos alimenticios.

Se pueden apreciar el medidor de de nivel de líquido por presión diferencial seleccionado en la figura N° 4.6. Sus características técnicas se adjuntan en el anexo C17.

Figura N° 4.6 Medidor de nivel de líquido por presión diferencial

El funcionamiento de este medidor de nivel de líquido consiste en un diafragma en contacto con el líquido que mide la presión hidrostática en el fondo del tanque, este valor se registra electrónicamente, teniendo en consideración que la bebida malteada pasteurizada es almacenada y contrapresionada por CO2 en un tanque cerrado. Se observa en la figura 4.7 la disposición del medidor de nivel.
4.6.2 Implementación de sensores de temperatura

La medida de la temperatura es muy importante, la selección de los sensores de temperatura tiene que abarcar el rango de todos los fluidos que intervienen en el proceso como el agua, la soda cáustica al 2% en concentración y la bebida malteada a pasteurizar, por lo tanto el sensor de temperatura a usar debe cumplir con estos requerimientos de medida.

En la tabla N° 4.4 se muestra un resumen de características de los instrumentos de temperatura.

<table>
<thead>
<tr>
<th>Características</th>
<th>Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RTD de plato de película</td>
</tr>
<tr>
<td>Costo del sensor</td>
<td>Moderado a bajo</td>
</tr>
<tr>
<td>Campo de medida</td>
<td>-200 a 750º C (560º C máx. t.), tip.)</td>
</tr>
<tr>
<td>Intercambiabilidad</td>
<td>+/-0.1%, +/-0.3º C</td>
</tr>
<tr>
<td>Estabilidad</td>
<td>Excelente</td>
</tr>
<tr>
<td>Sensibilidad</td>
<td>+/-0.39%/ºC</td>
</tr>
<tr>
<td>Sensibilidad relativa</td>
<td>Moderada</td>
</tr>
<tr>
<td>Linealidad</td>
<td>Excelente</td>
</tr>
<tr>
<td>Pendiente</td>
<td>Positiva</td>
</tr>
<tr>
<td>Susceptibilidad a ruido</td>
<td>Baja</td>
</tr>
</tbody>
</table>
Se selecciona e implementa de acuerdo a la tabla N° 4.4, por su excelente estabilidad y exactitud para el caso de la precisión de temperatura de pasteurización los sensores de temperatura tipo RTD de platino.

El sensor de temperatura seleccionado e implementado mostrado en la figura N° 4.8 es un sensor tipo RTD con rangos de medida desde -50 °C hasta +250 °C el cual cumple con todos los requerimientos del pasteurizador a implementar. Sus características técnicas se adjuntan en el anexo C18.

Figura N° 4.8 Sensor de temperatura

El elemento de detección consiste usualmente en un arrollamiento de hilo muy fino del conductor adecuado bobinado entre capas de material aislante y protegido con un revestimiento de vidrio o cerámico. Las bobinas están encapsuladas y situadas dentro de un tubo de protección o vaina de material adecuado al fluido del proceso como el acero inoxidable 304 o 316 además que trata de mantener estándares de higiene en productos alimenticios.
4.6.3 Implementación de sensores de flujo

Los medidores que determinan el caudal lo realizan bien sea directamente (desplazamiento) o bien indirectamente por deducción o inferencia, están compuestos por dos elementos, uno primario que genera la señal que permite la medición del caudal según el principio de funcionamiento y el secundario que se encarga de transmitir la señal que proviene del elemento primario. La tabla N° 4.5 indica los elementos que los componen.

<table>
<thead>
<tr>
<th>Instrumento de:</th>
<th>Elemento que genera señal</th>
<th>Transmisor (medio de difusión)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión diferencial</td>
<td>Placa de orificio</td>
<td>Silicio difundido</td>
</tr>
<tr>
<td></td>
<td>Tobera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubo Venturi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubo Pitot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubo Annubar</td>
<td></td>
</tr>
<tr>
<td>Área variable</td>
<td>Rotámetro</td>
<td>Potenciométrico</td>
</tr>
<tr>
<td>Velocidad</td>
<td>Turbina</td>
<td>Potenciométrico/Piezoeléctricos</td>
</tr>
<tr>
<td></td>
<td>Sondas ultrasónicas</td>
<td></td>
</tr>
<tr>
<td>Fuerza</td>
<td>Placa de impacto</td>
<td>Galgas extensométricas</td>
</tr>
<tr>
<td>Tensión inducida</td>
<td>Medidor magnético</td>
<td>Convertidor potenciométrico</td>
</tr>
<tr>
<td>Desplazamiento positivo</td>
<td>Disco oscilante</td>
<td>Generator tacométrico o transductor de impulsos</td>
</tr>
<tr>
<td></td>
<td>Pistón oscilante</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pistón alternativo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medidor rotativo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medidor paredes deformables</td>
<td></td>
</tr>
<tr>
<td>Torbellino</td>
<td>Medidor de frecuencia de termostancia, condensador o ultrasónico</td>
<td>Transductor de resistencia</td>
</tr>
<tr>
<td>Oscilante</td>
<td>Válvula oscilante</td>
<td>Transductor de impulsos</td>
</tr>
</tbody>
</table>

Asimismo, en la tabla N° 4.6 se hace una clasificación de los sensores según su principio de funcionamiento.
<table>
<thead>
<tr>
<th>Caudal máx./min.</th>
<th>Precisión en % de toda la escala</th>
<th>Escala</th>
<th>Presión máx. bar</th>
<th>Temp. Máx. °C</th>
<th>Perdida de carga máx. m=mm c. de a b MPa</th>
<th>Servicio</th>
<th>Materiales de construcción</th>
<th>Coste relativo</th>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>laca</td>
<td>3:1</td>
<td>1-2%</td>
<td>√</td>
<td>400</td>
<td>500</td>
<td>20 m</td>
<td>Liq./vapor/gas</td>
<td>Metales y plásticos</td>
<td>Bajo</td>
<td>Simple, económica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Δp, fluidos limpios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobera</td>
<td>3:1</td>
<td>0.9-1.5%</td>
<td>√</td>
<td>400</td>
<td>500</td>
<td>16 m</td>
<td>Liq./vapor/gas</td>
<td>Metales y plásticos</td>
<td>Medio</td>
<td>Simple, precisión</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Δp, cara</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubo venturi</td>
<td>3:1</td>
<td>0.75%</td>
<td>√</td>
<td>400</td>
<td>500</td>
<td>4 m</td>
<td>Liq./vapor/gas</td>
<td>Metales y plásticos</td>
<td>Muy alto</td>
<td>Precisión, poca Δp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Muy caro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubo Pitot</td>
<td>3:1</td>
<td>1.5-4%</td>
<td>√</td>
<td>400</td>
<td>500</td>
<td>-</td>
<td>Liq./vapor/gas</td>
<td>Metales y plásticos</td>
<td>Bajo</td>
<td>Simple, económica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poca precisión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubo Annubar</td>
<td>3:1</td>
<td>1%</td>
<td>√</td>
<td>400</td>
<td>500</td>
<td>-</td>
<td>Liq./vapor/gas</td>
<td>Metales y plásticos</td>
<td>Bajo</td>
<td>Simple, económica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poca precisión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotámetro</td>
<td>10:1</td>
<td>1-2%</td>
<td>lineal</td>
<td>400</td>
<td>250</td>
<td>5 m</td>
<td>Liq./vapor/gas</td>
<td>vidrio/cerám.</td>
<td>Bajo</td>
<td>más preciso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Golpe ariete causa daños</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertedero</td>
<td>3:1</td>
<td>1-2%</td>
<td>especial</td>
<td>Atmosf. 60</td>
<td>-</td>
<td></td>
<td>Líquidos</td>
<td>Metales</td>
<td>Alto</td>
<td>coste medio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbina</td>
<td>15:1</td>
<td>0.3%</td>
<td>lineal</td>
<td>200</td>
<td>250</td>
<td>0.7 b</td>
<td>Liq./gas</td>
<td>Metales</td>
<td>Alto</td>
<td>Precisión, margen amplio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caro, calibr. fluidos limpios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonico</td>
<td>20:1</td>
<td>2%</td>
<td>lineal</td>
<td>100</td>
<td>250</td>
<td>nula</td>
<td>Líquidos</td>
<td>Metales y plásticos</td>
<td>Alto</td>
<td>Cualquier líquido, baja Δp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caro, calibración sensible a densidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placa de impacto</td>
<td>10:1</td>
<td>1%</td>
<td>√</td>
<td>100</td>
<td>400</td>
<td>0.5 b</td>
<td>Líquidos</td>
<td>Metales</td>
<td>Medio</td>
<td>Fluidos viscosos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poca capacidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnético</td>
<td>100:1</td>
<td>0.5-1%</td>
<td>lineal</td>
<td>20-200</td>
<td>150</td>
<td>nula</td>
<td>Líquidos</td>
<td>Teflón, fibra vidrio (tubo)</td>
<td>Alto</td>
<td>Baja Δp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cara, líquidos conductores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disco oscilante</td>
<td>5:1</td>
<td>1-2%</td>
<td>lineal</td>
<td>10-150</td>
<td>120</td>
<td>0.3 m</td>
<td>Líquidos</td>
<td>Metales</td>
<td>Bajo</td>
<td>Barato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Par pequeño</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistón oscilante</td>
<td>5:1</td>
<td>0.2-0.5%</td>
<td>lineal</td>
<td>25</td>
<td>150</td>
<td>10 b</td>
<td>Líquidos</td>
<td>Metales</td>
<td>Medio</td>
<td>Liq. Viscosos corrosivos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Δp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pistón alternativo</td>
<td>5:1</td>
<td>0.2%</td>
<td>lineal</td>
<td>25</td>
<td>100</td>
<td>0.2 m</td>
<td>Líquidos</td>
<td>Metales</td>
<td>Medio</td>
<td>Precisión</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cara, voluminoso, Δp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cicloidal</td>
<td>10:1</td>
<td>1%</td>
<td>lineal</td>
<td>100</td>
<td>150</td>
<td>0.3 b</td>
<td>Liq./gas</td>
<td>Metales</td>
<td>Medio</td>
<td>Poca Δp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poca precisión en caudales bajos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birrotor</td>
<td>5:1</td>
<td>0.2%</td>
<td>lineal</td>
<td>100</td>
<td>60-200</td>
<td>0.4 b</td>
<td>Líquidos</td>
<td>Metales</td>
<td>Medio</td>
<td>Precisión, reversible</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Margen pequeño</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovál</td>
<td>10:1</td>
<td>0.5%</td>
<td>lineal</td>
<td>100</td>
<td>180</td>
<td>1 b</td>
<td>Líquidos</td>
<td>Metales</td>
<td>Medio</td>
<td>Indep. dens. y viscosity, Δp</td>
</tr>
<tr>
<td>Paredes deformables</td>
<td>10:1</td>
<td>+/-0.3%</td>
<td>lineal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Gas</td>
<td>Metales y plásticos</td>
<td>Medio</td>
<td>Precisión</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Voluminoso, Δp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torbellino</td>
<td>100:1</td>
<td>0.2%</td>
<td>caudal instantáneo</td>
<td>100</td>
<td>100</td>
<td>0.4 b</td>
<td>Liq./gas</td>
<td>Metales y plásticos</td>
<td>Medio</td>
<td>Margen, Δp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vólerx</td>
<td>10:1</td>
<td>1%</td>
<td>lineal</td>
<td>50</td>
<td>400</td>
<td>Liq./gas</td>
<td>Liq./gas</td>
<td>Metales y plásticos</td>
<td>Medio</td>
<td>Vibraciones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Insensible a bajo caudal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscilante</td>
<td>10:1</td>
<td>0.5%</td>
<td>lineal</td>
<td></td>
<td></td>
<td>Liq./gas</td>
<td>Liq./gas</td>
<td>Metales y plásticos</td>
<td>Medio</td>
<td>Propano, butano</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cara, gases, bajos caudales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Término</td>
<td>10:1</td>
<td>1%</td>
<td>lineal</td>
<td>100</td>
<td>65</td>
<td>5 m</td>
<td>Liq./gas</td>
<td>Metales y plásticos</td>
<td>Alto</td>
<td>Δp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cara, gases, bajos caudales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial</td>
<td>5:1</td>
<td>1%</td>
<td>lineal</td>
<td>100</td>
<td>120</td>
<td>0.2 b</td>
<td>Liq./gas</td>
<td>Metales y plásticos</td>
<td>Alto</td>
<td>Δp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cara, margen, poco preciso, caudales bajos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coriolis</td>
<td>10:1</td>
<td>0.5%</td>
<td>lineal</td>
<td>400</td>
<td>200</td>
<td>0.1 a 3 b</td>
<td>Liq./gas</td>
<td>Metales y plásticos</td>
<td>Alto</td>
<td>Independiente, precisión, temp. dens.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caudales medios</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla Nº 4.6 Clasificación de sensores de flujo según principio de funcionamiento (Fuente: Instrumentación industrial, Antonio Creus)
Se selecciona e implementa de acuerdo a las tablas N° 4.5 y N° 4.6, por su pérdida de carga nula y baja diferencial de presión así como poseer características no invasivas sobre la bebida malteada el medidor de flujo magnético y su precio es mucho más bajo que un sensor ultrasónico que también aplica las mismas características.

El medidor seleccionado e implementado consta de 2 elementos, los cuales son mostrados en la figura 4.9. Sus características técnicas se adjuntan en los anexos C19 y C20 respectivamente.

![Figura N° 4.9 a) Elemento primario y b) Elemento secundario o transmisor](image)

4.6.4 Implementación de sensores de presión

Se clasifica la medida de la presión de modo mecánico y de modo electromecánico donde dichos instrumentos utilizan un elemento mecánico primario elástico combinado con un transductor eléctrico que genera la señal eléctrica correspondiente. A continuación en la tabla N° 4.7 se puede apreciar los distintos tipos de sensores de presión electromecánicos con los que se cuenta en el mercado.
### Tabla 4.7 Clasificación de sensores de presión
(Fuente: Instrumentación industrial, Antonio Creus)

<table>
<thead>
<tr>
<th>Equilibrio de fuerzas</th>
<th>Margen en bar</th>
<th>Precisión en % de toda la escala</th>
<th>Estabilidad en el tiempo</th>
<th>Sobrecarga</th>
<th>Temp máx. de servicio °C</th>
<th>Nivel señal salida</th>
<th>Impedancia salida</th>
<th>Error de cero por infl uencia temperatura/ambiente</th>
<th>Resolución</th>
<th>Sensibilidad a vibraciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrio de fuerzas</td>
<td>2-6000</td>
<td>0.5</td>
<td>Media a mala</td>
<td>150%</td>
<td>80</td>
<td>10 V</td>
<td>600 Ω</td>
<td>0-9-2.3%</td>
<td>Continua</td>
<td>Alta</td>
</tr>
<tr>
<td>Resistivos</td>
<td></td>
</tr>
<tr>
<td>0-0.1 a 0-300</td>
<td>1</td>
<td>Mala</td>
<td></td>
<td>150%</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Inductancia variable</td>
<td></td>
</tr>
<tr>
<td>0-0.1 a 0-300</td>
<td>0.5</td>
<td>Media</td>
<td></td>
<td>150%</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Reluctancia variable</td>
<td></td>
</tr>
<tr>
<td>0-0.1 a 0-300</td>
<td>1</td>
<td>Media</td>
<td></td>
<td>150%</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnéticos</td>
<td></td>
</tr>
<tr>
<td>0-0.1 a 0-300</td>
<td>0.5</td>
<td>Media</td>
<td></td>
<td>150%</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitivos</td>
<td></td>
</tr>
<tr>
<td>0.05-5 a 0-05-600</td>
<td>1</td>
<td>Media a buena</td>
<td></td>
<td>150%</td>
<td>150</td>
<td></td>
<td>0.5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galgas</td>
<td></td>
</tr>
<tr>
<td>exoespírométricas</td>
<td></td>
</tr>
<tr>
<td>0.0.5 a 0-3000</td>
<td>0.5</td>
<td>Mala</td>
<td></td>
<td>150%</td>
<td>120</td>
<td></td>
<td>35 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-0.01 a 0-600</td>
<td>1</td>
<td>Mala</td>
<td></td>
<td>200%</td>
<td>120</td>
<td></td>
<td>35 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Silicio fundido</td>
<td>0.2 a 0-600</td>
<td>Muy buena</td>
<td></td>
<td>200%</td>
<td>107</td>
<td></td>
<td>2-10 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piezoeléctricos</td>
<td>0.1-600</td>
<td>1</td>
<td>Mala</td>
<td>200%</td>
<td>90</td>
<td></td>
<td>600 mV</td>
<td></td>
<td></td>
<td>Baja</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Se selecciona e implementa de acuerdo a la tabla N° 4.7, por tener una alta precisión de medición y un nivel alto en la señal de salida el transmisor electrónico de equilibrio de fuerzas.

El transmisor seleccionado e implementado es mostrado en la figura N° 4.10. Sus características técnicas se adjuntan en el anexo C21.

Figura N° 4.10 Transmisor electrónico

4.7 Implementación de válvulas y actuadores

El control automático del proceso de pasteurización se realiza mediante el uso de válvulas de control mediante las cuales se controlan las regulaciones del flujo de la bebida malteada. Dichas válvulas de control se encuentran gobernadas a su vez por diferentes tipos de actuadores que posicionan su abertura dependiendo la aplicación tal como se muestra en la tabla N° 4.8.
Tabla N° 4.8 Actuadores que gobiernan las válvulas de control
(Fuente: Instrumentación industrial, Antonio Creus)

<table>
<thead>
<tr>
<th></th>
<th>Actuador Neumático</th>
<th>Actuador Eléctrico</th>
<th>Actuador Hidráulico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuerza</td>
<td>Presión de aire</td>
<td>Energía Eléctrica</td>
<td>Presión hidráulica</td>
</tr>
<tr>
<td>Generadora de Movimiento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elemento Motriz</td>
<td>Embolo, Pistón o Veleta</td>
<td>Motor Eléctrico</td>
<td>Embolo, Pistón o Veleta</td>
</tr>
<tr>
<td>Transmisión de Fuerza o Torque</td>
<td>Eje o Cremallera</td>
<td>Reductor</td>
<td>Eje</td>
</tr>
<tr>
<td>Conversión mecánica</td>
<td>Yugo o Piñón</td>
<td>No hay</td>
<td>Yugo o Piñón</td>
</tr>
</tbody>
</table>

4.7.1 Implementación de actuador de válvula principal

Se selecciona e implementa de acuerdo a la tabla N° 4.8 un actuador eléctrico el cual es simple en comparación con la de los actuadores hidráulicos y neumáticos, ya que sólo se requieren de energía eléctrica como fuente de poder. Como se utilizan cables eléctricos para transmitir electricidad y las señales, es altamente versátil y prácticamente no hay restricciones respecto a la distancia entre la fuente de poder y el actuador. El actuador seleccionado e implementado para gobernar la válvula de flujo de ingreso al intercambiador de placas de enfriamiento final de la bebida es mostrado en la figura N° 4.11. Sus características técnicas se adjuntan en el anexo C22.

Figura N° 4.11 Actuador eléctrico
4.7.2 Implementación de actuadores secundarios

A los mecanismos que convierten la energía del aire comprimido en trabajo mecánico se les denomina actuadores neumáticos. El diseño de acción doble implica que el actuador abre o cierra la válvula aplicando aire comprimido, según las necesidades, los muelles pueden abrirse o cerrarse. Los actuadores de acción simple sólo aplican aire comprimido en un lado, mientras que el ajuste al otro lado se produce por la fuerza del muelle. De este modo, si se produce un fallo de aire, vuelven automáticamente a una posición de seguridad.

Los demás tipos de actuadores seleccionados e implementados para el control del fluido en el proceso son neumáticos de acción simple tal como se muestra en la figura Nº 4.12. Sus características técnicas se adjuntan en el anexo C23.

![Actuador neumático](image)

Figura Nº 4.12 Actuador neumático

4.8 Criterios para la implementación

Se debe instalar el equipo pasteurizador en la línea de gaseosas de acuerdo a la distribución de equipos en planta y la cercanía al carbocooler y a la llenadora. Asimismo, en el plano D3, se presenta también el layout de la línea de envasado donde se instala el equipo pasteurizador.
4.8.1 Dimensionamiento de la estación de pasteurización

De acuerdo al layout de la línea donde es necesario que se instale el equipo de pasteurización se cuenta con un promedio de 30 m$^2$ de área libre con una longitud de 6 m y un ancho de 5 m, eso quiere decir que el equipo a instalar debe adecuarse a las dimensiones requeridas. La plataforma donde se monta el equipo nos detalla las dimensiones exactas de 4 m de longitud y 2 m de ancho las cuales se ajustan al área libre, estas medidas se observan en el plano D4 de la plataforma.

Las dimensiones que constituyen el pasteurizador serán aquellas que permitan la circulación y el funcionamiento requerido para la función propuesta, acorde con el dimensionamiento permitido por la línea. Las dimensiones de los equipos se sustentan en las características propias de dicho equipo.

4.8.2 Recorridos, cantidades y materiales

El recorrido de las tuberías y accesorios necesarios de la estación de pasteurización se establecen y dimensionan en el plano 02, donde se traza cada tramo existente, con lo que se realiza el metrado respectivo resumido en la tabla Nº 3.6.
4.9 **Puesta en marcha**

Se contempla la parte final de la implementación de la estación de pasteurización especificando primero la descripción del proceso, las pruebas de funcionamiento, ajustes finales e inspecciones al equipo de modo que se garantice el óptimo funcionamiento del pasteurizador flash.

4.9.1 **Descripción del proceso**

El proceso completo de la pasteurización así como la ubicación de la instrumentación respectiva se muestra en el plano 01.

El proceso se inicia con la recepción de la bebida malteada, la cual es bombeada hasta el tanque de 200 HI ubicado en la sala de jarabe de la planta, una vez almacenada es nuevamente bombeada hacia la estación de pasteurización, en este punto se mide la presión de ingreso mediante el sensor de presión 1780PT01.

Se dispone de las bombas en serie 1700P01 y 1702P02, donde se eleva la presión de la bebida hasta los 7 bares.

La bomba 1702P02 equipada con un variador de velocidad, permite controlar la presión en el serpentín de mantenimiento. El variador de velocidad es controlado por el HS 7000 teniendo como referencia la señal del transmisor de presión 1781PT01.

La bebida malteada ingresa al primer intercambiador de placas iniciándose el proceso de regeneración, sale de la zona I e ingresa a la zona II impulsada por la tercera bomba 1704P03, alcanza su temperatura de pasteurización midiéndose en la salida con el sensor de temperatura 1760TT01 para pasar a la zona de mantenimiento durante 30 segundos y volver a ingresar al intercambiador a la zona de regeneración midiéndose su
temperatura con el sensor 1762TT03 y su presión mediante el sensor 1781PT02 donde cede su calor.

Saliendo de esta zona se mide el caudal con el medidor 1790FT01 y se controla el flujo con la válvula de regulación de actuador eléctrico 1751PV01 mediante el controlador HS 7000, teniendo como referencia la señal del medidor de flujo 1790FT01 para dirigirse hacia el segundo intercambiador donde se realiza el enfriamiento de la bebida.

Tanto en el ingreso como en la salida del 2do intercambiador se monitorea las temperaturas respectivas con los sensores 1763TT04 y 1764TT05, las cuales son visualizadas en los controladores digitales del tablero de control, una vez que se baja la temperatura de la bebida, esta es almacenada en un tanque buffer ubicado en la sala de jarabe, cuyo nivel es monitoreado constantemente por el medidor de nivel tipo diferencial.

Desde el tanque buffer, se envía la bebida hacia el carbocooler y se inicia el ciclo de envasado similar al envasado de la gaseosa y cuyo proceso se detalla en el punto 4.1.

4.9.2 Pruebas de funcionamiento

Control de temperatura

Para realizar las pruebas de funcionamiento, se realizan observaciones del comportamiento de la temperatura del pasteurizador en la producción, durante una semana siguiente después de realizarse la implementación.

Se tuvo control estricto en los set points de temperatura definidos y también se midieron las UP obtenidas durante este control para observar la relación entre ambas.
Los set points y las temperaturas reales se muestran en la tabla N° 4.9:

<table>
<thead>
<tr>
<th>Día</th>
<th>Formato</th>
<th>Set Point</th>
<th>Valor Real</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/08/2009</td>
<td>330 ml</td>
<td>76</td>
<td>75.8 - 76.3</td>
<td>95 - 111.01</td>
</tr>
<tr>
<td>21/08/2009</td>
<td>330 ml</td>
<td>76</td>
<td>75.9 - 76.3</td>
<td>98 - 110.06</td>
</tr>
<tr>
<td>22/08/2009</td>
<td>330 ml</td>
<td>76</td>
<td>75.5 - 76.2</td>
<td>93 - 108.60</td>
</tr>
<tr>
<td>27/08/2009</td>
<td>330 ml</td>
<td>76</td>
<td>75.7 - 76.2</td>
<td>97 - 109.00</td>
</tr>
<tr>
<td>28/08/2009</td>
<td>330 ml</td>
<td>76</td>
<td>75.6 - 76.1</td>
<td>98 - 100.60</td>
</tr>
<tr>
<td>29/08/2009</td>
<td>330 ml</td>
<td>76</td>
<td>75.8 - 76.3</td>
<td>98 - 107.60</td>
</tr>
</tbody>
</table>

Asimismo, se implementa un formato de control de parámetros de funcionamiento del pasteurizador, el cual sirve para llevar a cabo el registro de las mediciones de los parámetros de funcionamiento del mismo.

A continuación, la tabla N° 4.10 muestra el formato de control:
Tabla N° 4.10 Formato de control de parámetros de funcionamiento de pasteurizador
Fuente: Unión de Cervecerías Peruanas Backus & Jhonston SAA

<table>
<thead>
<tr>
<th>HORA</th>
<th>AMENADO</th>
<th>AGUA</th>
<th>MIMER</th>
<th>PASTEUIZADOR</th>
<th>LLENADORA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Código</td>
<td>Ingreso</td>
<td>Stock</td>
<td>Stock</td>
<td>Consumo</td>
<td>Unidad</td>
</tr>
<tr>
<td>0:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTROL DE INSUMOS: Frecuencia cada término de turno y/o término de producción.

<table>
<thead>
<tr>
<th>Código</th>
<th>DESCRIPCIÓN DEL MATERIAL</th>
<th>Stock Inicial</th>
<th>Stock Final</th>
<th>Consumo</th>
<th>Unidad</th>
<th>Observaciones</th>
</tr>
</thead>
</table>

VERIFICACIÓN DE MÁQUINA

<table>
<thead>
<tr>
<th>Check List</th>
<th>MIMER</th>
<th>PASTEURIZ</th>
<th>LLENAVERSION</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvulas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programación</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conexiones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operador 1er Turno
Nombre

Operador 2do Turno
Nombre

Supervisor 1er Turno
Nombre

Operador 3er Turno
Nombre

Supervisor 2do Turno
Nombre

Supervisor 3er Turno
Nombre

Fecha
4.9.3 Ajustes finales

En esta etapa de la implementación se tomará en cuenta los ajustes para los instrumentos finales de campo como las bombas y las válvulas.
- Para las bombas se debe observar la presión alcanzada así como su consumo de corriente respectivo.
- Al momento del arranque se debe realizar un análisis de vibración y ruido a los elementos que generan este efecto, principalmente bombas e intercambiadores de calor, ver su efecto global en todo el sistema y tomar las medidas correctivas como cambiar tuberías rígidas de control por fundas selladas.
- Con respecto a las válvulas solenoides del sistema de refrigeración por amoníaco verificar el funcionamiento correcto en la apertura/cierre de la misma.
- Con respecto a las válvulas moduladoras de vapor verificar su apertura/cierre y modulación respectiva, así como la regulación de presión de vapor adecuada.
- Con respecto a la válvula de expansión sistema de refrigeración, se debe mantener la presión y controlando la válvula de expansión considerando que se tiene como refrigerante al amoníaco.
4.9.4 Inspección del equipo

Su objetivo es encontrar anomalías en los diferentes componentes del pasteurizador. El área de de mantenimiento de planta especializado en las diferentes ramas es el que realiza la inspección del equipo. La inspección contiene los diferentes aspectos y factores que deben observarse y describirse así:

- Conforme: Cuando el componente inspeccionado cumple satisfactoriamente su funcionamiento garantizando el adecuado funcionamiento del pasteurizador.
- No conforme: Cuando existe alguna anomalía y no pueda cumplir con el funcionamiento óptimo del pasteurizador.

Las no conformidades se ingresan al sistema SAP mediante un aviso de avería a fin de programar el correctivo respectivo y dejar el equipo en condiciones adecuadas para su óptimo funcionamiento.

Las inspecciones que se realizan son las siguientes:

- Mecánica.
- Eléctrica.
- Automatización.

Las inspecciones eléctricas y de automatización no se profundizarán ya que están fuera del alcance del presente trabajo, dichas inspecciones analizan el estado físico del PLC (controlador lógico programable) y estado físico de las instalaciones eléctricas de los motores, sensores y paneles del pasteurizador.
Inspección mecánica del pasteurizador:

La inspección mecánica tiene como fin observar las condiciones de todos los accionamientos mecánicos que conforman los diferentes componentes del pasteurizador.

La inspección mecánica es realizada por los mecánicos del área de mantenimiento, ya que son ellos los que tienen los conocimientos necesarios para realizar la inspección del equipo.

A continuación la tabla Nº 4.11 se presenta el formato de inspección mecánica que deberá realizarse en el equipo.
<table>
<thead>
<tr>
<th>N°</th>
<th>CONJUNTO</th>
<th>EQUIPO</th>
<th>COMPONENTE</th>
<th>AISLAMIENTO</th>
<th>TEMPERATURA</th>
<th>RUEDAS</th>
<th>PLINTURA</th>
<th>VIBRACION</th>
<th>LUBRICACION</th>
<th>MARCHA</th>
<th>ACOPLE</th>
<th>MAQUINAS / VALVULAS</th>
<th>LIMPIEZA</th>
<th>INSUMO</th>
<th>ESTRUCTURA</th>
<th>FUERAS / DERIVAM</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Placas</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Intercambiador M10</td>
<td>Bastidor</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Bomba 1</td>
<td>Conexiones</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Motor</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Bomba 2</td>
<td>Motor</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Bomba 3</td>
<td>Bomba</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Intercambiador ENDS</td>
<td>Casquete</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Bomba H2O</td>
<td>Bomba</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Intercambiador M6</td>
<td>Placas</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Recibidor NH3</td>
<td>Tanque</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Válulas</td>
<td>Conexiones</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Estructura</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Estructura</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

**Tabla N° 4.11 Formato de inspección mecánica de pasteurizador**

*Fuente: Unión de Cervecerías Peruanas Backus & Johnson SAA*

**OBSERVACIONES**
1. Los puntos sombreados no forman parte de la inspección
2. Asignar "C" a los items que estén Conformes
3. Asignar "T" a los items que estén No Conformes
4. Los items No Conformes deben ser escritos en el reverso de la hoja
CAPÍTULO 5:
COSTOS DE IMPLEMENTACION

En este capítulo se detallan los costos involucrados solo en la implementación de la estación de pasteurización, se considera los costos de los equipos principales y secundarios, el costo de materiales clasificados por el tipo de servicio así como el costo de la mano de obra por parte de terceros, cabe hacer mención que los equipos que no se encuentran en los cuadros son aquellos que pertenecen a la planta y no han sido valorizados, asimismo la moneda utilizada es el Nuevo Sol y los precios descritos no incluyen el IGV.

5.1 Costos de Equipos

En la implementación del pasteurizador se toman en cuenta los equipos principales y secundarios y que a continuación en la tabla N° 5.1 se muestran tanto en cantidad como su costo unitario por ítem:
### Tabla N° 5.1 Costo de equipos

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipos</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo unitario</th>
<th>Costo parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intercambiador de placas M6 marca Alfa Laval</td>
<td>un</td>
<td>1</td>
<td>21187.50</td>
<td>21187.50</td>
</tr>
<tr>
<td>2</td>
<td>Intercambiador de placas M10 Base Line marca Alfa Laval</td>
<td>un</td>
<td>1</td>
<td>45708.50</td>
<td>45708.50</td>
</tr>
<tr>
<td>3</td>
<td>Electro bombas centrífugas sanitarias marca Hilge</td>
<td>un</td>
<td>3</td>
<td>15592.00</td>
<td>46776.00</td>
</tr>
<tr>
<td>4</td>
<td>Electro bomba centrífuga bombeo de agua marca Hidrostal</td>
<td>un</td>
<td>1</td>
<td>1500.00</td>
<td>1500.00</td>
</tr>
<tr>
<td>5</td>
<td>Variador de frecuencia 5 kw</td>
<td>un</td>
<td>1</td>
<td>7062.50</td>
<td>7062.50</td>
</tr>
<tr>
<td>6</td>
<td>Tanque recipiente de NH₃ líquido</td>
<td>un</td>
<td>1</td>
<td>28250.00</td>
<td>28250.00</td>
</tr>
<tr>
<td>7</td>
<td>CPU marca Siemens HS 7000</td>
<td>un</td>
<td>1</td>
<td>11200.00</td>
<td>11200.00</td>
</tr>
<tr>
<td>8</td>
<td>PLC marca Siemens</td>
<td>un</td>
<td>1</td>
<td>2000.00</td>
<td>2000.00</td>
</tr>
<tr>
<td>9</td>
<td>Tarjetas de entradas discretas y analógicas Siemens</td>
<td>un</td>
<td>3</td>
<td>625.00</td>
<td>1875.00</td>
</tr>
<tr>
<td>10</td>
<td>Tarjetas de salidas discretas y analógicas Siemens</td>
<td>un</td>
<td>3</td>
<td>625.00</td>
<td>1875.00</td>
</tr>
<tr>
<td>11</td>
<td>Instrumentos de medición de temperatura</td>
<td>un</td>
<td>5</td>
<td>223.18</td>
<td>1115.88</td>
</tr>
<tr>
<td>12</td>
<td>Instrumentos de medición de presión</td>
<td>un</td>
<td>2</td>
<td>3390.00</td>
<td>6780.00</td>
</tr>
<tr>
<td>13</td>
<td>Instrumentos de medición de nivel</td>
<td>un</td>
<td>2</td>
<td>3672.50</td>
<td>7345.00</td>
</tr>
<tr>
<td>14</td>
<td>Instrumentos de medición de flujo.</td>
<td>un</td>
<td>1</td>
<td>4694.59</td>
<td>4694.59</td>
</tr>
<tr>
<td>15</td>
<td>Controlador de flujo con actuador eléctrico</td>
<td>un</td>
<td>1</td>
<td>5650.00</td>
<td>5650.00</td>
</tr>
<tr>
<td>16</td>
<td>Válvulas con actuador neumático</td>
<td>un</td>
<td>7</td>
<td>1612.22</td>
<td>11285.52</td>
</tr>
<tr>
<td>17</td>
<td>Computador</td>
<td>un</td>
<td>1</td>
<td>3157.00</td>
<td>3157.00</td>
</tr>
<tr>
<td>18</td>
<td>Licencias de programación</td>
<td>un</td>
<td>1</td>
<td>8475.00</td>
<td>8475.00</td>
</tr>
</tbody>
</table>

**Subtotal Equipos**: 215937.48
5.2 Costos de Materiales

Los materiales que se emplean en la implementación se clasifican en:

a) Materiales empleados para el montaje de la estructura y soporte de la estación de pasteurización y cuyos costos se muestran en la tabla N° 5.2:

<table>
<thead>
<tr>
<th>Item</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo unitario</th>
<th>Costo parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Estructura de plataforma 2do nivel</td>
<td>un</td>
<td>1</td>
<td>15150.00</td>
<td>15150.00</td>
</tr>
<tr>
<td>2</td>
<td>Escalera</td>
<td>un</td>
<td>1</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>3</td>
<td>Barandas</td>
<td>un</td>
<td>1</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>4</td>
<td>Soporte de tanque recibidor de amoniaco</td>
<td>un</td>
<td>1</td>
<td>500.00</td>
<td>500.00</td>
</tr>
</tbody>
</table>

Subtotal Estructura 17650.00

b) Materiales y accesorios empleados para el montaje de las tuberías para el desplazamiento de la bebida malteada del pasteurizador y cuyos costos se muestran en la tabla N° 5.3:

<table>
<thead>
<tr>
<th>Item</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo unitario</th>
<th>Costo parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tubería de acero inoxidable 316L diámetro 50 mm</td>
<td>m</td>
<td>93.465</td>
<td>48.62</td>
<td>4543.80</td>
</tr>
<tr>
<td>2</td>
<td>Válvula Spitch</td>
<td>un</td>
<td>2</td>
<td>100.00</td>
<td>200.00</td>
</tr>
<tr>
<td>3</td>
<td>Codo 90° OD</td>
<td>un</td>
<td>79</td>
<td>40.80</td>
<td>3223.20</td>
</tr>
<tr>
<td>4</td>
<td>Unión “T”</td>
<td>un</td>
<td>3</td>
<td>289.37</td>
<td>868.11</td>
</tr>
<tr>
<td>5</td>
<td>Unión rosca DIN</td>
<td>un</td>
<td>21</td>
<td>225.00</td>
<td>4725.00</td>
</tr>
<tr>
<td>6</td>
<td>Unión tipo clamp 1&quot;</td>
<td>un</td>
<td>5</td>
<td>60.00</td>
<td>300.00</td>
</tr>
<tr>
<td>7</td>
<td>Unión tipo clamp 2&quot;</td>
<td>un</td>
<td>2</td>
<td>120.00</td>
<td>240.00</td>
</tr>
<tr>
<td>8</td>
<td>Reducción</td>
<td>un</td>
<td>10</td>
<td>100.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>9</td>
<td>Válvula check</td>
<td>un</td>
<td>2</td>
<td>904.00</td>
<td>1808.00</td>
</tr>
<tr>
<td>10</td>
<td>Manómetro 0-100 Lbs Conex 1/4 Dial 2-1/2&quot;</td>
<td>un</td>
<td>1</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Subtotal Tuberías y accesorios del pasteurizador 17008.11
c) Materiales y accesorios empleados para el montaje del sistema de refrigeración del pasteurizador y cuyos costos se muestran en la tabla N° 5.4:

<table>
<thead>
<tr>
<th>Item</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo unitario</th>
<th>Costo parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tubería de acero 1&quot;</td>
<td>m</td>
<td>5.06</td>
<td>50.85</td>
<td>257.30</td>
</tr>
<tr>
<td>2</td>
<td>Tubería de acero 2&quot;</td>
<td>m</td>
<td>4.16</td>
<td>84.75</td>
<td>352.56</td>
</tr>
<tr>
<td>3</td>
<td>Tubería de acero 3&quot;</td>
<td>m</td>
<td>1.2</td>
<td>76.28</td>
<td>91.53</td>
</tr>
<tr>
<td>4</td>
<td>Tubería de acero 4&quot;</td>
<td>m</td>
<td>2.12</td>
<td>93.23</td>
<td>197.64</td>
</tr>
<tr>
<td>5</td>
<td>Aislamiento de fibra de vidrio e=1-1/2&quot;</td>
<td>m</td>
<td>5.06</td>
<td>35.00</td>
<td>177.10</td>
</tr>
<tr>
<td>6</td>
<td>Aislamiento de fibra de vidrio e=2&quot;</td>
<td>m</td>
<td>4.16</td>
<td>72.00</td>
<td>299.52</td>
</tr>
<tr>
<td>7</td>
<td>Válvula ingreso amoniaco EVRA</td>
<td>un</td>
<td>1</td>
<td>2879.35</td>
<td>2879.35</td>
</tr>
<tr>
<td>8</td>
<td>Filtro de amoniaco líquido</td>
<td>un</td>
<td>1</td>
<td>388.00</td>
<td>388.00</td>
</tr>
<tr>
<td>9</td>
<td>Regulador de presión principal PM</td>
<td>un</td>
<td>1</td>
<td>1971.82</td>
<td>1971.82</td>
</tr>
<tr>
<td>10</td>
<td>Regulador piloto</td>
<td>un</td>
<td>1</td>
<td>542.81</td>
<td>542.81</td>
</tr>
<tr>
<td>11</td>
<td>Válvula de seguridad</td>
<td>un</td>
<td>2</td>
<td>1395.25</td>
<td>2790.50</td>
</tr>
<tr>
<td>12</td>
<td>Presostato</td>
<td>un</td>
<td>1</td>
<td>582.00</td>
<td>582.00</td>
</tr>
<tr>
<td>13</td>
<td>Manómetro de amoniaco</td>
<td>un</td>
<td>1</td>
<td>706.25</td>
<td>706.25</td>
</tr>
<tr>
<td>14</td>
<td>Control de nivel</td>
<td>un</td>
<td>2</td>
<td>1629.60</td>
<td>3259.20</td>
</tr>
<tr>
<td>15</td>
<td>Válvula de cierre 15 mm</td>
<td>un</td>
<td>2</td>
<td>470.26</td>
<td>940.51</td>
</tr>
<tr>
<td>16</td>
<td>Válvula de cierre 80 mm</td>
<td>un</td>
<td>2</td>
<td>1767.34</td>
<td>3534.68</td>
</tr>
<tr>
<td>17</td>
<td>Válvula drenaje de aceite</td>
<td>un</td>
<td>1</td>
<td>826.83</td>
<td>826.83</td>
</tr>
</tbody>
</table>

Subtotal Tuberías y accesorios de sistema de refrigeración **19797.59**
d) Materiales y accesorios empleados para el montaje del sistema de vapor del pasteurizador y cuyos costos se muestran en la tabla N° 5.5:

<table>
<thead>
<tr>
<th>Item</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo unitario</th>
<th>Costo parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tubería de acero 1-1/2&quot;</td>
<td>m</td>
<td>5.44</td>
<td>42.38</td>
<td>230.52</td>
</tr>
<tr>
<td>2</td>
<td>Tubería de acero 3/4&quot;</td>
<td>m</td>
<td>6.585</td>
<td>35.26</td>
<td>232.19</td>
</tr>
<tr>
<td>3</td>
<td>Aislamiento de fibra de vidrio e=1-1/2&quot;</td>
<td>m</td>
<td>5.44</td>
<td>35.00</td>
<td>190.40</td>
</tr>
<tr>
<td>4</td>
<td>Aislamiento de fibra de vidrio e=1&quot;</td>
<td>m</td>
<td>6.585</td>
<td>25.00</td>
<td>164.63</td>
</tr>
<tr>
<td>5</td>
<td>Válvula reguladora de presión</td>
<td>un</td>
<td>1</td>
<td>4438.72</td>
<td>4438.72</td>
</tr>
<tr>
<td>6</td>
<td>Válvula de cierre automático</td>
<td>un</td>
<td>1</td>
<td>1866.28</td>
<td>1866.28</td>
</tr>
<tr>
<td>7</td>
<td>Válvula moduladora de presión</td>
<td>un</td>
<td>1</td>
<td>2153.40</td>
<td>2153.40</td>
</tr>
<tr>
<td>8</td>
<td>Válvula de seguridad</td>
<td>un</td>
<td>1</td>
<td>1109.68</td>
<td>1109.68</td>
</tr>
<tr>
<td>9</td>
<td>Válvula de compuerta</td>
<td>un</td>
<td>1</td>
<td>353.08</td>
<td>353.08</td>
</tr>
<tr>
<td>10</td>
<td>Trampa de vapor</td>
<td>un</td>
<td>1</td>
<td>989.40</td>
<td>989.40</td>
</tr>
<tr>
<td>11</td>
<td>Válvula de retención</td>
<td>un</td>
<td>1</td>
<td>453.00</td>
<td>453.00</td>
</tr>
<tr>
<td>12</td>
<td>Trampa “Y”</td>
<td>un</td>
<td>1</td>
<td>469.48</td>
<td>469.48</td>
</tr>
<tr>
<td>13</td>
<td>Unión universal 1/2&quot;</td>
<td>un</td>
<td>1</td>
<td>30.00</td>
<td>30.00</td>
</tr>
<tr>
<td>14</td>
<td>Manómetro</td>
<td>un</td>
<td>2</td>
<td>100.00</td>
<td>200.00</td>
</tr>
</tbody>
</table>

Subtotal Tuberías y accesorios del sistema de vapor 12880.77

e) Materiales y accesorios empleados para el montaje del sistema neumático del pasteurizador y cuyos costos se muestran en la tabla N° 5.6:

<table>
<thead>
<tr>
<th>Item</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo unitario</th>
<th>Costo parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tubería de acero 1/2&quot;</td>
<td>m</td>
<td>7</td>
<td>28.25</td>
<td>197.75</td>
</tr>
<tr>
<td>2</td>
<td>Válvula de bola</td>
<td>un</td>
<td>1</td>
<td>30.00</td>
<td>30.00</td>
</tr>
<tr>
<td>3</td>
<td>Tablero de control 530x430x200</td>
<td>un</td>
<td>1</td>
<td>278.00</td>
<td>278.00</td>
</tr>
<tr>
<td>4</td>
<td>Mangueras neumática exterior 4 mm</td>
<td>m</td>
<td>150</td>
<td>3.50</td>
<td>525.00</td>
</tr>
<tr>
<td>5</td>
<td>Mangueras neumática exterior 6 mm</td>
<td>m</td>
<td>100</td>
<td>4.60</td>
<td>460.00</td>
</tr>
<tr>
<td>6</td>
<td>Electrovalvulas</td>
<td>un</td>
<td>10</td>
<td>70.00</td>
<td>700.00</td>
</tr>
<tr>
<td>7</td>
<td>Regulador de presión</td>
<td>un</td>
<td>1</td>
<td>350.00</td>
<td>350.00</td>
</tr>
<tr>
<td>8</td>
<td>Regulador de caudal de aire</td>
<td>un</td>
<td>5</td>
<td>20.00</td>
<td>100.00</td>
</tr>
<tr>
<td>9</td>
<td>Conectores rápidos 4 mm</td>
<td>un</td>
<td>50</td>
<td>9.00</td>
<td>450.00</td>
</tr>
<tr>
<td>10</td>
<td>Conectores rápidos 6 mm</td>
<td>un</td>
<td>50</td>
<td>10.00</td>
<td>500.00</td>
</tr>
</tbody>
</table>

Subtotal Tuberías y accesorios del sistema neumático 3590.75
Materiales y accesorios empleados para el montaje del sistema eléctrico del pasteurizador y cuyos costos se muestran en la tabla N° 5.7:

<table>
<thead>
<tr>
<th>Item</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo unitario</th>
<th>Costo parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tablero de control hermético inox 800x600x300 mm</td>
<td>un</td>
<td>1</td>
<td>428.00</td>
<td>428.00</td>
</tr>
<tr>
<td>2</td>
<td>Tablero de fuerza hermético inox 1600x800x400 mm</td>
<td>un</td>
<td>1</td>
<td>1433.00</td>
<td>1433.00</td>
</tr>
<tr>
<td></td>
<td>Ventilador de tablero eléctrico</td>
<td>un</td>
<td>2</td>
<td>521.00</td>
<td>1042.00</td>
</tr>
<tr>
<td>3</td>
<td>Controlador digital</td>
<td>un</td>
<td>6</td>
<td>516.00</td>
<td>3096.00</td>
</tr>
<tr>
<td>4</td>
<td>Selectores de 2 posiciones</td>
<td>un</td>
<td>1</td>
<td>44.00</td>
<td>44.00</td>
</tr>
<tr>
<td>5</td>
<td>Selectores de 3 posiciones</td>
<td>un</td>
<td>4</td>
<td>50.00</td>
<td>200.00</td>
</tr>
<tr>
<td>6</td>
<td>Indicador luminoso</td>
<td>un</td>
<td>9</td>
<td>81.00</td>
<td>729.00</td>
</tr>
<tr>
<td>7</td>
<td>Pulsadores de arranque y parada</td>
<td>un</td>
<td>11</td>
<td>29.55</td>
<td>325.05</td>
</tr>
<tr>
<td>8</td>
<td>Pulsador de emergencia</td>
<td>un</td>
<td>1</td>
<td>60.00</td>
<td>60.00</td>
</tr>
<tr>
<td>9</td>
<td>Boreras de 1.5, 2, 2.5, 4 mm</td>
<td>un</td>
<td>100</td>
<td>4.80</td>
<td>480.00</td>
</tr>
<tr>
<td>10</td>
<td>Interruptor termomagnético 125 amp</td>
<td>un</td>
<td>1</td>
<td>650.00</td>
<td>650.00</td>
</tr>
<tr>
<td>11</td>
<td>Interruptor termomagnético 25 amp</td>
<td>un</td>
<td>4</td>
<td>151.00</td>
<td>604.00</td>
</tr>
<tr>
<td>12</td>
<td>Contactor 25 amp</td>
<td>un</td>
<td>4</td>
<td>210.00</td>
<td>840.00</td>
</tr>
<tr>
<td>13</td>
<td>Guardamotor 25 amp</td>
<td>un</td>
<td>4</td>
<td>400.00</td>
<td>1600.00</td>
</tr>
<tr>
<td>14</td>
<td>Canaleta L 1670 x A 90 mm</td>
<td>m</td>
<td>20</td>
<td>10.00</td>
<td>200.00</td>
</tr>
<tr>
<td>15</td>
<td>Tubería flexible 1/4 PVC</td>
<td>m</td>
<td>20</td>
<td>3.50</td>
<td>70.00</td>
</tr>
<tr>
<td>16</td>
<td>Cable de control #16 AWG shielded</td>
<td>m</td>
<td>200</td>
<td>15.00</td>
<td>3000.00</td>
</tr>
<tr>
<td>17</td>
<td>Cable de control #18 AWG shielded</td>
<td>m</td>
<td>200</td>
<td>20.00</td>
<td>4000.00</td>
</tr>
<tr>
<td>18</td>
<td>Cable de fuerza #14 AWG</td>
<td>m</td>
<td>300</td>
<td>8.80</td>
<td>2640.00</td>
</tr>
<tr>
<td>19</td>
<td>Cable de fuerza #16 AWG</td>
<td>m</td>
<td>300</td>
<td>3.35</td>
<td>1005.00</td>
</tr>
<tr>
<td>20</td>
<td>Sirena</td>
<td>un</td>
<td>1</td>
<td>545.30</td>
<td>545.30</td>
</tr>
</tbody>
</table>

Subtotal Cables y accesorios del sistema eléctrico 22991.35
A continuación en la tabla N° 5.8, se muestra el resumen del costo total de materiales empleados en el montaje de la estación de pasteurización:

<table>
<thead>
<tr>
<th>Item</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo unitario</th>
<th>Costo parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Estructura</td>
<td>un</td>
<td>1</td>
<td>17650.00</td>
<td>17650.00</td>
</tr>
<tr>
<td>2</td>
<td>Pasteurizador</td>
<td>un</td>
<td>1</td>
<td>17008.11</td>
<td>17008.11</td>
</tr>
<tr>
<td>3</td>
<td>Sistema de refrigeración</td>
<td>un</td>
<td>1</td>
<td>19797.59</td>
<td>19797.59</td>
</tr>
<tr>
<td>4</td>
<td>Sistema de vapor</td>
<td>un</td>
<td>1</td>
<td>12880.77</td>
<td>12880.77</td>
</tr>
<tr>
<td>5</td>
<td>Sistema neumático</td>
<td>un</td>
<td>1</td>
<td>3590.75</td>
<td>3590.75</td>
</tr>
<tr>
<td>6</td>
<td>Sistema eléctrico</td>
<td>un</td>
<td>1</td>
<td>22991.35</td>
<td>22991.35</td>
</tr>
</tbody>
</table>

Subtotal Materiales 93918.57

5.3 Costos de Mano de obra

Entre los costos de mano de obra están implicados los siguientes rubros y que a continuación se muestran en la tabla N° 5.9:

<table>
<thead>
<tr>
<th>Item</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo unitario</th>
<th>Costo parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conexión de tuberías de sistema de pasteurización</td>
<td>un</td>
<td>1</td>
<td>15091.89</td>
<td>15091.89</td>
</tr>
<tr>
<td>2</td>
<td>Montaje de estructuras y de plataforma 2do nivel</td>
<td>un</td>
<td>1</td>
<td>11330.00</td>
<td>11330.00</td>
</tr>
<tr>
<td>3</td>
<td>Conexión de tuberías de sistema de vapor</td>
<td>un</td>
<td>1</td>
<td>3000.00</td>
<td>3000.00</td>
</tr>
<tr>
<td>4</td>
<td>Conexión de tuberías de sistema de refrigeración</td>
<td>un</td>
<td>1</td>
<td>3500.00</td>
<td>3500.00</td>
</tr>
<tr>
<td>5</td>
<td>Conexión de tuberías de agua</td>
<td>un</td>
<td>1</td>
<td>1500.00</td>
<td>1500.00</td>
</tr>
<tr>
<td>6</td>
<td>Conexión de tuberías de aire</td>
<td>un</td>
<td>1</td>
<td>1500.00</td>
<td>1500.00</td>
</tr>
<tr>
<td>7</td>
<td>Cableado de instrumentación</td>
<td>un</td>
<td>1</td>
<td>3500.00</td>
<td>3500.00</td>
</tr>
<tr>
<td>8</td>
<td>Cableado de control y fuerza</td>
<td>un</td>
<td>1</td>
<td>4000.00</td>
<td>4000.00</td>
</tr>
<tr>
<td>9</td>
<td>Acometidas a motores y válvulas</td>
<td>un</td>
<td>1</td>
<td>1500.00</td>
<td>1500.00</td>
</tr>
</tbody>
</table>

Subtotal Mano de obra 44921.89
5.4 Costo final

Se requiere obtener el costo total de la implementación. Este costo está representado por los valores gastados en equipos, materiales y mano de obra necesarios para la implementación de la estación de pasteurización y su funcionamiento en lo que refiere a los factores técnicos, humanos y materiales utilizados. El desglose de este costo se lo aprecia en la tabla 5.10:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipos</td>
<td>215937.48</td>
</tr>
<tr>
<td>Materiales</td>
<td>93918.57</td>
</tr>
<tr>
<td>Mano de obra</td>
<td>44921.89</td>
</tr>
<tr>
<td><strong>Total costo inversión</strong></td>
<td><strong>S/. 354,777.95</strong></td>
</tr>
</tbody>
</table>

Tabla 5.10 Costo total de implementación
Conclusiones

1. El funcionamiento del pasteurizador tiene como objetivo calentar la bebida malteada a la temperatura de 76 ºC durante el tiempo suficiente para alcanzar las UP necesarias para eliminar los microorganismos presentes, este proceso impacta de forma significativa en la calidad del producto debido que puede ser subpasteurizada o sobrepasteurizada, afectando que no se exterminen los microorganismos o afectando las propiedades organolépticas de la bebida malteada respectivamente.

2. Las pérdidas más grandes de presión se dan en el intercambiador de calor de placas M10 Base Line de 42 placas donde se realiza el calentamiento, representando el 70.35% de las pérdidas mientras que en el intercambiador M6 de 19 placas 7%.

3. La eficiencia de regeneración del intercambiador M10 Base line es del 73%, la cual no puede ser mayor debido a que tendríamos que elevar más la temperatura de ingreso a la zona de calentamiento acercándonos más a la temperatura de pasteurización poniendo en peligro las propiedades del producto. En otro caso, se requeriría aumentar más placas a este intercambiador para aumentar su eficiencia de regeneración lo cual implicaría incrementar los costos.

4. Si aumentamos el flujo de producto en los intercambiadores de placas hasta su límite de capacidad, tendremos:
- Incremento de la caída de presión
- Incremento del flujo de agua caliente.

En estos casos lo que ocurre es que el mismo equipo estrangula más el flujo. Esta pérdida de carga tiene su lado positivo, que es el fuerte incremento de la turbulencia y un fuerte incremento del coeficiente de transferencia de calor.

Los intercambiadores de calor tipo placas son equipos versátiles, ya que si deseamos aumentar el flujo de bebida o tener temperaturas diferentes, solo tenemos que modificar la cantidad de placas.
Recomendaciones

1. Analizando las pérdidas de presión del sistema, para establecer una presión constante de 7 bares en todo el tramo es necesario implementar un sistema de bombeo eficaz.

2. Al momento de realizar la implementación se recomienda que se sigan las normas de instalación de cada uno de los elementos según lo especifican los fabricantes y tomando en cuenta la calibración que se ha presentado en el proyecto con el fin de evitar algún problema en la puesta en marcha.

3. Instalar filtros de mallas apropiados en las tuberías de ingreso a los intercambiadores de placas, debido a que si ingresa un cuerpo extraño que sea relativamente más grande que la separación entre placas este pueda producir que se separen las placas y fugue bebida o refrigerante o lo que es peor se raje la placa y produzca mezcla de bebida con otros fluidos.

4. Se recomienda realizar un mantenimiento preventivo de los equipos e instrumentos al menos dos veces al año, dándole una mayor importancia a las calibraciones de la instrumentación del pasteurizador, ya que la confiabilidad de los instrumentos y del funcionamiento del pasteurizador aseguran la calidad del producto, además de un seguimiento de los valores
que analizan de forma periódica al menos una vez al día para asegurar el correcto desempeño de los mismos.

5. Cumplir estrictamente con los procedimientos y periodicidades de las actividades del mantenimiento autónomo para aprovechar al máximo los beneficios del sistema así como la limpieza CIP. La sección de regeneración es la más afectada por las incrustaciones, debido a que ambas caras de las placas se encuentran expuestas al contacto con la bebida malteada. Asimismo, utilizar agua blanda, para el intercambio de calor con la bebida malteada en la sección de calentamiento para evitar las incrustaciones que afectan el área de transferencia de calor.

6. Capacitar adecuadamente a los operadores porque deben tener un mayor grado de conocimiento del equipo además de saber cuál es la función de la instrumentación mecánica del mismo y tener conocimiento del automatismo del pasteurizador.
Bibliografía

1] Frank P. Incrópera, Fundamentos de Transferencia de Calor, Editorial Prentice Hall, 4ta Edición, 1999
3] Alfa Laval, Catálogo de equipos sanitarios, 2005
7] Juan Ramírez Miralles, Refrigeración, Editorial CEAC, 1ra Edición, 1994
8] Patrick Jacquard, Formulario del frío, Editorial Marcombo, 1ra Edición, 1999
9] Mataix, Mecánica de fluidos y máquinas hidráulicas, Editorial del Castillo, 1ra Edición, 1970
12] Cao, E. Intercambiadores de calor, EDIGEN S.A. Buenos Aires, 1983


16] Ana Casp Vanaclocha, Diseño de industrias agroalimentarias, Ediciones Mundiprensa, 1ra Edición, 2005


IMPLEMENTACIÓN DEL EQUIPO PASTEURIZADOR
TIPO FLASH

ESTRUCTURA DE PLATAFORMA

IMPLEMENTACIÓN DEL EQUIPO PASTEURIZADOR TIPO FLASH

Dibujo:
Revisado:
FECHA
15/07/2021

IMPLEMENTACION DEL EQUIPO PASTEURIZADOR
TIPO FLASH

ESTRUCTURA DE PLATAFORMA

IMPLEMENTACIÓN DEL EQUIPO PASTEURIZADOR TIPO FLASH

Dibujo:
Revisado:
FECHA
15/07/2021

IMPLEMENTACION DEL EQUIPO PASTEURIZADOR
TIPO FLASH

ESTRUCTURA DE PLATAFORMA

IMPLEMENTACIÓN DEL EQUIPO PASTEURIZADOR TIPO FLASH

Dibujo:
Revisado:
FECHA
15/07/2021
FRAME PLATE

FRAME PLATE

FRAME PLATE CONNECTING PLATE

PRESSURE PLATE

CONSTRUCTION OF ONE UNIT

CLAMP 101.6, S1, S4, T2, T3
CLAMP 76 A11, A12, A13, A14

PLATE IN MOUNTING

TOTAL NUMBER PLATES 44
NET WEIGHT 316 kg
WEIGHT WITH WATER 352 kg
TOTAL VOLUME 40 m³
DESIGN PRESSURE 10 bar / 10 bar
TEST PRESSURE 13 bar / 13 bar
DESIGN TEMPERATURE MIN 0 °C / 10° C
DESIGN TEMPERATURE MAX 120 °C / 120 °C
RISK CATEGORY N/A

EXTRAS

FLUID DANGER GROUP

PLATE HEAT EXCHANGER
M10-MBASE

PED

PREPARED DATE QUOTATION
Sales

REV
0
**PLATE HEAT EXCHANGER**

**M6-MWFGR**

**PED**

**MARKS:**
- EST PRESSURE: 13 bar, 20.8 bar
- DESIGN PRESSURE: 10 bar, 16 bar
- MAX TEMPERATURE: 50 °C, 50 °C
- MIN TEMPERATURE: -10 °C, -15 °C
- WEIGHT WITH WATER: 151 kg
- HEAT LOAD: 114 kW
- NBR/CR CLIP-ON
- ALLOY 316
- PLATE MATERIAL
- PLATE THICKNESS: 0.60 mm
- AMMONIA
- 12% Saturated

**TOTAL LENGTH:** 615
**TOTAL WIDTH:** 320
**TOTAL HEIGHT:** 920

**FLOW RATE:** 6334 kgh
**PRESSURE DROP:** 11.37 kPa
**FOURTH SYMBOL:**

**DATE:** 2008-10-18
**REV. NO.:** 0
1. OBJETIVO:
La presente norma establece las especificaciones y valores referenciales de los parámetros de control en el proceso de elaboración y envasado de Maltin Power.

2. ALCANCE:
La presente norma es administrada por la Dirección Técnica y es fuente de consulta y aplicación en las Gerencias de Elaboración, Control de Calidad y Envasado de Planta Ate.

3. DOCUMENTOS A CONSULTAR:
- Plan Físicoquímico Maltin Power (Planta Ate)
- Plan Microbiológico Maltin Power
- Insumo: Malta
- Insumo: Azúcar Blanca
- Maltin Power
- Especificaciones y Valores Referenciales del Control de Procesos en el Envasado de Cerveza
- Plan Físico Químico (Cerveza)
- Plan Organoléptico

4. DEFINICIONES:

4.1 Especificación: Es el valor o rango de valores, que una variable de producto o proceso debe cumplir.

Nota: Una variable de producto o proceso debe obligatoriamente cumplir con la especificación dado que afecta la calidad del producto.

4.2 Valor referencial: Es el valor o rango de valores, al que una variable de proceso debe tender.

Nota: Se exige solo tendencia y no cumplimiento, dado que se aplica a una variable de proceso no crítica con respecto a la calidad del producto. El incumplimiento de un valor referencial puede tener impacto en el proceso en términos de eficiencia, es decir costo.

LOS VALORES EN * (ASTERISCO) SON REFERENCIALES PARA EL PROCESO.

4.3 PFQ: Plan Físico Químico que establece responsables de controles / ensayos y frecuencias de los mismos
- PFQ MP -> Plan Físico Químico Maltin Power
- PFQ -> Plan Físico Químico de Plantas Ate ó Motupe ó Huarochiri

5. CONDICIONES BÁSICAS:
- Para el análisis organoléptico de las Materias Primas, Insumos, Ingredientes ó Productos en Proceso, deben cumplir con los requisitos establecidos en ésta norma. Se anotará el término y/o sticker “CONFORME ó NORMAL”, como expresión del resultado de conformidad; en caso contrario se anotará el término y/o sticker de OBSERVACION ó NO CONFORME.

- Para los controles de envasado en envases de vidrio revisar la norma Especificaciones y Valores Referenciales del Control de Procesos en el Envasado de Cerveza UCP-D00-ES-363-08

- Los valores de las especificaciones de esta norma son de cumplimiento obligatorio.
### 6. REQUISITOS:

<table>
<thead>
<tr>
<th>ETAPA DEL PROCESO</th>
<th>CONTROL</th>
<th>ESPECIFICACIONES/ (*)VALORES REFERENCIALES</th>
<th>FRECUENCIA MÍNIMA</th>
</tr>
</thead>
</table>
| **1. RECEPCIÓN DE MATERIAS PRIMAS** | Análisis Organoléptico de la Malta | 1. Color: Característico  
2. Olor: Característico  
3. Apariencia: Sin presencia de granos extraños, partículas extrañas e insectos | Según PFQ MP |
| **2. AGUA DE PROCESO II** | Alcalinidad Total, mg/l | < 45 | Según PFQ |
| | pH | 5.0 - 6.5 | Según PFQ |
| | Análisis Organoléptico | Transparente - Inodora - Incolora - Libre de sabores | Según Plan Organoléptico |
| **3. AGUA PROCESO III** | Cloro residual / Dióxido de Cloro, mg/l | 0 | Según PFQ |
| | Temperatura, °C | 1 - 3 | Según PFQ |
| | *Contenido de CO₂, (vol/vol.) | Mínimo 1.5 | Según PFQ |
| | Contenido de O₂ disuelto, ppb | < 10 | Según PFQ |
| | Presencia de grasa | Ausencia | Según PFQ |
| | Análisis Organoléptico | Transparente - Inodora - Incolora - Libre de sabores | Según Plan Organoléptico |
| **4. INSUMOS** | Análisis Organoléptico | COLOR Y OLOR: Característico  
APARIENCIA: Sin presencia de partículas extrañas, agua, manchas, suciedad o presencia de insectos. | Cada Lote |
| **5. MOLIENDA DE MALTA** | Humedad en Malta, % (Silo en consumo) | Máximo 6.0 | Según PFQ |
| | Humedad en Malta con molienda acondicionada, % | Máximo 7.5 | Según PFQ |
| | Volumen de Cáscara (ml / 100 g malta) | Molienda Acondicionada: > 700  
Molienda Seca: 400 - 600 | Según PFQ |
| | Para molino de rodillos | Sobre malla 1.25 mm.: 10 - 25  
Sobre malla 1.00 mm.: 4 - 10  
Sobre malla 0.50 mm.: 30 - 40  
Sobre malla 0.25 mm.: 15 - 25  
Sobre malla 0.125 mm.: 5 - 15  
Pasa malla 0.125 mm.: 10 - 20 | Según PFQ |
<p>| *Granulometría para la malta molid.a. (para Cuba-filtro), % | | | |
| <strong>6. PAILA MEZCLADORA, PAILA DE MOSTO, ENFRIADOR</strong> | * Temperatura de arranque en la paila mezcladora | 34 – 36 °C | Cada cocimiento |
| | Tiempo de reposo proteolítico en la mezcladora | 40°C x 35 min. | Cada cocimiento |
| | * Temperatura de reposo en la mezcladora | 50° – 52° x 25 min. | Cada cocimiento |
| | Tiempo de reposo en la mezcladora | 60 x 15 min. | Cada cocimiento |
| | *Temperatura de reposo en la paila mezcladora | 71° – 73° x 30 min. | Cada cocimiento |
| | Reacción al Yodo | Negativo | Cada cocimiento |</p>
<table>
<thead>
<tr>
<th>ETAPA DEL PROCESO</th>
<th>CONTROL</th>
<th>ESPECIFICACIONES/ VALORES REFERENCIALES</th>
<th>FRECUENCIA MÍNIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>6. PAILA MEZCLADORA, PAILA DE MOSTO, ENFRIADOR</strong></td>
<td><strong>Temperatura de reposo en la paila mezcladora</strong></td>
<td>71° - 73° x 30 min.</td>
<td>Cada cocimiento</td>
</tr>
<tr>
<td></td>
<td><strong>Reacción al Yodo</strong></td>
<td>Negativo</td>
<td>Cada cocimiento</td>
</tr>
<tr>
<td></td>
<td><strong>Extracto del Primer Mosto, °P</strong></td>
<td>17.70</td>
<td>Cada cocimiento</td>
</tr>
<tr>
<td></td>
<td><strong>Temperatura de hervido del mosto, °C</strong></td>
<td>98 - 105</td>
<td>Cada cocimiento</td>
</tr>
<tr>
<td></td>
<td><strong>Tiempo de hervido del mosto</strong></td>
<td>50 +/- 3 minutos</td>
<td>Cada cocimiento</td>
</tr>
<tr>
<td></td>
<td><strong>Extracto del mosto caliente, °P</strong></td>
<td>15.8 +/- 0.2</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Extracto del mosto frío, °P</strong></td>
<td>16.0 +/- 0.2</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>pH del mosto caliente</strong></td>
<td>4.1 - 4.3</td>
<td>Cada cocimiento</td>
</tr>
<tr>
<td></td>
<td><strong>Tiempo de Sedimentación en Tanque Whirlpool, min</strong></td>
<td>25 - 35</td>
<td>Cada cocimiento</td>
</tr>
<tr>
<td></td>
<td><strong>Alfa ácidos en mosto frío</strong></td>
<td>1.0 +/- 0.2</td>
<td>Cada cocimiento</td>
</tr>
<tr>
<td></td>
<td><strong>Tiempo de enfriamiento</strong></td>
<td>Máximo: 60 min.</td>
<td>Cada cocimiento</td>
</tr>
<tr>
<td></td>
<td><strong>Temperatura de enfriamiento de mosto en tanque de reposo lleno</strong></td>
<td>4.0 - 8.0</td>
<td>Cada cocimiento</td>
</tr>
<tr>
<td><strong>7. PROCESO DE REPOSO, Tanque</strong></td>
<td><strong>Temperatura de estabilización, °C</strong></td>
<td>0 - -1.0</td>
<td>Cada tanque</td>
</tr>
<tr>
<td></td>
<td><strong>Tiempo de estabilización</strong></td>
<td>48 - 72</td>
<td>Cada tanque</td>
</tr>
<tr>
<td></td>
<td><strong>Extracto, °P</strong></td>
<td>15.80 - 16.20</td>
<td>Cada tanque</td>
</tr>
<tr>
<td></td>
<td><strong>Color, °SRM</strong></td>
<td>125 - 150</td>
<td>Cada tanque</td>
</tr>
<tr>
<td></td>
<td><strong>Turbidez, EBC ángulo 90°</strong></td>
<td>Max. 14</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Turbidez, EBC ángulo de 25°</strong></td>
<td>Max. 9</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Análisis Organoléptico</strong></td>
<td>Aspecto: Brillante al trasluz</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Extracto, °P</strong></td>
<td>15.0 - 15.5</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Color, °EBC</strong></td>
<td>120 - 145</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Temperatura, °C</strong></td>
<td>2 - 8</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Gas Carbónico, vol</strong></td>
<td>1.0 +/- 0.2</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>pH</strong></td>
<td>4.2 +/- 0.2</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td><strong>8. PROCESO DE FILTRACIÓN</strong></td>
<td><strong>Extracto, °P</strong></td>
<td>15.0 - 15.5</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Color, °EBC</strong></td>
<td>120 - 145</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Temperatura, °C</strong></td>
<td>2 - 8</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Gas Carbónico, vol</strong></td>
<td>1.0 +/- 0.2</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Natamicina, mg/L (para PET)</strong></td>
<td>9.5 +/- 2</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>pH</strong></td>
<td>4.2 +/- 0.2</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Acidez Citrica</strong></td>
<td>0.11 - 0.14</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Turbidez, °EBC (90° / 25°)</strong></td>
<td>Max. 19 / Max 5.5</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td><strong>9. BEBIDA FILTRADA CONCENTRADA</strong></td>
<td><strong>Extracto, °P</strong></td>
<td>15.0 - 15.5</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Color, °EBC</strong></td>
<td>120 - 145</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Temperatura, °C</strong></td>
<td>2 - 8</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Gas Carbónico, vol</strong></td>
<td>1.0 +/- 0.2</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Natamicina, mg/L (para PET)</strong></td>
<td>9.5 +/- 2</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>pH</strong></td>
<td>4.2 +/- 0.2</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Acidez Citrica</strong></td>
<td>0.11 - 0.14</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td></td>
<td><strong>Turbidez, °EBC (90° / 25°)</strong></td>
<td>Max. 19 / Max 5.5</td>
<td>Según PFQMP</td>
</tr>
<tr>
<td>ETAPA DEL PROCESO</td>
<td>CONTROL</td>
<td>ESPECIFICACIONES/VALORES REFERENCIALES</td>
<td>FRECUENCIA MÍNIMA</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>----------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>10. SALIDA DE BLENDING</td>
<td>Extracto, °P</td>
<td>11.0 +/- 0.2 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Color, °EBC</td>
<td>85 – 105 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura, °C</td>
<td>Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dióxido de Carbono, vol</td>
<td>2.7 – 2.9 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turbidez, °EBC (90° / 25°)</td>
<td>Max. 10 / Max 4 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td>11. TANQUE DE GOBIERNO</td>
<td>Extracto, °P</td>
<td>11.0 +/- 0.2 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>4.2 +/- 0.2 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Color, °EBC</td>
<td>85 – 105 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acidez Citrica,</td>
<td>0.077 – 0.097 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turbidez EBC, 90°</td>
<td>&lt; 10 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turbidez EBC, 25°</td>
<td>&lt; 4 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dióxido de Carbono, vol</td>
<td>2.7 – 2.9 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td>12. MIXER</td>
<td>Factor de CO2</td>
<td>Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factor de Mezcla</td>
<td>Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura</td>
<td>Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td>13. PASTEURIZADOR</td>
<td>Extracto, °P</td>
<td>11.0 +/- 0.2 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td>FLASH (Para envasado de PET)</td>
<td>Temperatura, °C</td>
<td>76.0 – 81.0 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Caudal, L/Hr</td>
<td>10000 – 18000 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unidades de Pasteurización, UP</td>
<td>90-110 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td>14. BOTELLA PET (reición soplada)</td>
<td>Análisis Organoléptico</td>
<td>Libre de defectos Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td>15. ETIQUETADORA</td>
<td>Etiquetado</td>
<td>Sellado y Traslape Conforme Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td>16. AGUA DE ENJUAGUE (RINSER)</td>
<td>Concentración Ozono, mg/L</td>
<td>0.25 – 0.80 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concentración de Cloro</td>
<td>0.5 - 1.0 Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extracto, °P</td>
<td>10.8 - 11.2 Según PFQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Color, SRM</td>
<td>85 - 105 Según PFQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>4.0 - 4.4 Según PFQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas Carbónico, volúmenes</td>
<td>3.0 - 3.4 Según PFQ</td>
<td></td>
</tr>
<tr>
<td>17. LLENADORA</td>
<td>Volumen de Llenado</td>
<td>El promedio del lote debe de cumplir con la Norma Metrológica Peruana Según PFQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Análisis Organoléptico</td>
<td>Aroma: Característico Sabor: Característico Aspecto: Brillante Según PFQ</td>
<td></td>
</tr>
<tr>
<td>18. BOTELLA TAPADA</td>
<td>Control de Enchapado</td>
<td>1.125 – 1.135 Según PFQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control de Torque (Envases PET) lb*pulg</td>
<td>8 – 13 * Remoción : 8 – 13 * Incremento : 10 - 20 Según PFQ</td>
<td></td>
</tr>
<tr>
<td>19. INSPECTOR DE BOTELLAS LLENAS</td>
<td>Control de Calibración</td>
<td>100% Conforme. Patrón es rechazado Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td>20. CODIFICADO</td>
<td>Fechado</td>
<td>Conforme = Codificado válido en texto y fecha Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td>21. EMPAQUETADO</td>
<td>Control de empaquetado</td>
<td>*Uso: Lamina Termocontraible microperforado. Sellado conforme en el traslape Termocontracción del paquete conforme Según PFQ MP</td>
<td></td>
</tr>
<tr>
<td>ETAPA DEL PROCESO</td>
<td>CONTROL</td>
<td>ESPECIFICACIONES/ (*)VALORES REFERENCIALES</td>
<td>FRECUENCIA MÍNIMA</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td>--------------------------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 22. LAVADORA DE BOTELLAS DE VIDRIO, Línea 2. | Concentración de soda, % p/v | Tq. 1: 2.0 – 2.5  
Tq. 2: 2.0 – 2.5  
Tq. 3: 2.5 – 3.0  
Tq. 4: 2.5 – 3.0  
Tq. 5: 2.0 – 2.5  
Tq. 6: Máx 2.0  
Tq. 7: Máx 0.5 | Según PFQ MP |
|                   | Temperatura de tanques, °C | Tq. 1: 70 - 75  
Tq. 2: 75 - 80  
Tq. 3: 75 - 80  
Tq. 4: 75 - 80  
Tq. 5: 70 - 75  
Tq. 6: 60 – 70  
Tq. 7: Max 45 | Según PFQ MP |
|                   | pH agua de enjuague       | 7 - 8 | Según PFQ MP |
|                   | Botellas Sucio estándar   | 100% limpias | Según PFQ MP |
|                   | Agua de enjuague          | Libre de grasa. Prueba al alcanfor | Según PFQ MP |
|                   | Dióxido de Cloro          | 0.20 – 0.40 | Según PFQ MP |
| 23. BOTELLA LAVADA | Soda Residual             | Libre de restos de soda cáustica | Según PFQ MP |
|                   | Azul de Metileno          | Ausencia de manchas | Según PFQ MP |
|                   | Análisis Organolérico     | Ausencia de manchas, partículas | Según PFQ MP |
| 24. INSPECTOR DE BOTELLAS VACÍAS | Control de Eficiencia   | 100% | Según PFQ MP |
| 25. PASTEURIZACIÓN TUNEL (Envases de vidrio) | Unidades de Pasteurización | 90 - 110 | Según PFQ MP |
|                   | Temperatura de producto en la salida, °C | Max 35°C | Según PFQ MP |
| 26. ETIQUETADORA | Evaluación Etiquetado     | Cumplir con el PPOA | Según PFQ MP |
|                   | Torque (Lbx pulg.), para envases PET | * Remoción : 8 – 13  
* Incremento : 10 - 20 | Según PFQ MP |
|                   | Coronado, para envases de vidrio tapas Pry Off | * Pasa : 1.125 mm  
* No Pasa : 1.135 mm | Según PFQ MP |
|                   | Volumen de llenado (ml)   | * Formato 330 ml : 325 – 335  
* Formato 1500 ml : 1490 – 1510 | Según PFQ MP |
|                   | Codificado, Etiquetado    | * Conforme | Según PFQ MP |
|                   | Empaquetado y/o Encajonado|                                  | Según PFQ MP |
|                   | Turbidez, EBC             | Máx.: 12 EBC 90°  
Max : 7 EBC 25° | Según PFQ MP |
|                   | Análisis Organolérico     | Taponado, etiquetado, nivel de llenado, enjuague: Conforme. | Según PFQ MP |

**ELABORADO POR**: <<ELABORADOR>>
**FECHA**: <<FECHA1>>

**REVISADO POR**: <<REVISOR>>
**FECHA**: <<FECHA2>>

**APROBADO POR**: <<APROBADOR>>
**FECHA**: <<FECHA3>>
ITC MIE-APQ-4: «ALMACENAMIENTO DE AMONÍACO ANHIDRO»

CAPÍTULO I. Generalidades

Artículo 1. Objeto.

La presente instrucción técnica complementaria establece las prescripciones a las que se sujetarán los almacenamientos de amoníaco anhidro.

Artículo 2. Campo de aplicación.

Esta instrucción técnica complementaria es de aplicación a los almacenamientos de amoníaco anhidro, con excepción de los siguientes:

1. Los integrados en procesos de fabricación.
2. Las cisternas de transporte y, en general, los almacenamientos en envases móviles.
3. Las grandes tuberías para transporte (amonoductos).

Artículo 3. Definiciones.

1. Almacenamiento.- Es el conjunto de recipientes y recipientes de todo tipo que contengan o puedan contener amoníaco anhidro, incluyendo los recipientes propiamente dichos, sus recipientes de retención, las calles intermedias de circulación y separación, las tuberías de conexión y las zonas e instalaciones de carga, descarga y trasiego anexas y otras instalaciones necesarias para el almacenamiento, siempre que sean exclusivas del mismo.
2. Amoníaco anhidro.- Gas licuado de contenido en amoníaco superior a 99.5 por 100 en peso.
3. Cubeto.- Cavity capaz de retener los productos contenidos en los elementos de almacenamiento en caso de vertido o fuga de los mismos.
4. Recipiente.- Todas cavidades con capacidad de almacenamiento. A efectos de esta ITC, las tuberías no se consideran como recipientes.
5. Recipiente a presión.- Recipiente diseñado para soportar una presión interna manométrica superior a 0.5 bar.
6. Tanque.- Recipiente cerrado diseñado para soportar una presión interna manométrica no superior a 0.5 bar, generalmente de forma cilíndrica de eje vertical.

Artículo 4. Tipos de almacenamiento.

1. Almacenamiento refrigerado.- Es aquel en el cual la temperatura del amoníaco anhidro es aproximadamente menor a 33 °C, con presión prácticamente igual a la atmosférica.
2. Almacenamiento semifriogrado.- Es aquel en el cual la temperatura del amoníaco es sensiblemente superior a menos de 33 °C, pero inferior a la temperatura ambiente, con presión superior a la atmosférica.
3. Almacenamiento no refrigerado.- Es aquel en el cual la temperatura máxima que puede alcanzar el amoníaco anhidro es igual a la máxima temperatura ambiente, con presión muy superior a la atmosférica.

Artículo 5. Inscripción.
de la pared de tierra será coincidente con el ángulo de reppso del material con que esté construida.

Los cubetos construidos con materiales porosos recibiran un tratamiento de impermeabilización.

d. Se procurará disminuir en lo posible la superficie del cubeto al objeto de reducir la vaporización del amoníaco líquido en caso de derrame.

e. Se dispondrán los medios necesarios para drenar el agua de lluvia que pueda quedard embalsada en el cubeto, la superficie tendrá una pendiente mínima del 1 por 100 hacia el pozo de drenaje.

El drenaje no se realizará directamente, sino mediante un dispositivo que impida el vertido del amoníaco anhidro en caso de derrame.

f. Las tuberías del almacenamiento que discurren por el interior de los cubetos tendrán la menor longitud posible. No se permitirán tuberías enterradas ni tuberías ajenas al almacenamiento dentro de los cubetos.

g. El cubeto dispondrá, como mínimo, de dos escaleras de peaje estratégicamente situadas.

b. Los cubetos estarán rodeados, en una cuarta parte de su perímetro, como mínimo, por vías de acceso que tendrán 2.5 metros de anchura mínima y la altura libre precisa para circulación y maniobra de la maquinaria de mantenimiento.

2. Capacidad:

a. Almacenamientos refrigerados y semirefrigerados: la capacidad del cubeto será suficiente para retener el líquido que se calcule en el proyecto que no se evaporará instantáneamente en caso de colapso del tanque o recipiente a presión de mayor capacidad.

b. Almacenamientos no refrigerados: la capacidad del cubeto será suficiente para retener el 50 por 100 de la capacidad del recipiente mayor en el contenido.

CAPÍTULO IV. Diseño, construcción, inspecciones y pruebas.


Las disposiciones de este capítulo se refieren exclusivamente a tanques y recipientes a presión. Los demás elementos, equipos, tuberías e instalaciones que componen el almacenamiento se diseñarán, construirán, inspeccionarán y probarán según sus respectivas normas y códigos de diseño y construcción y las reglamentaciones específicas que les afecten.

Artículo 11. Diseño.

1. Grado de llenado máximo:

a. La capacidad máxima de un tanque o recipiente a presión se determinará de forma que el amoníaco anhidro líquido no ocupe más del 95 por 100 del volumen total, tras dilatarse al incrementar su temperatura hasta la máxima que pueda alcanzar en servicio.

b. Los grados de llenado máximo de amoníaco anhidro para tanques y recipientes a presión de los distintos tipos de almacenamiento serán los siguientes, expresados en kilogramos de amoníaco anhidro por litro de volumen del tanque o recipiente a presión:

   1. Almacenamiento refrigerado: 0.64.
2. Almacenamiento semi refrigerado con temperatura máxima en servicio inferior a 5 °C: 0.60.
3. Almacenamiento no refrigerado: 0.53.

Estos valores máximos se han determinado según la relación:

Grado de llenado máximo (0.55) multiplicado por peso específico del amoníaco anhído líquido a la máxima temperatura de servicio.

c. La capacidad máxima de un tanque o recipiente a presión se determinará por la siguiente fórmula:

\[ A = \frac{V}{G} \]  

Amoníaco anhído (en kg) igual al volumen total (en l) multiplicado por el grado de llenado máximo (en kg/l) indicado en 11.1.6 según tipo de almacenamiento.

d. El porcentaje de llenado máximo del volumen de un tanque o recipiente a presión, en función de la temperatura del amoníaco anhído que contiene, será el siguiente:

\[ V = 100 \times (G : P) \]

siendo:

\[ V = \text{Volumen máximo admisible, en porcentaje.} \]
\[ G = \text{Grado de llenado máximo indicado en 11.1.6 según el tipo de almacenamiento.} \]
\[ P = \text{Peso específico del amoníaco anhído líquido a la temperatura a que se encuentre en el tanque o recipiente a presión.} \]

2. Datos de diseño:

a. Los tanques y recipientes a presión se diseñarán de acuerdo con las presiones y temperaturas más desfavorables que puedan producirse en servicio y en prueba. La presión de diseño será siempre superior a la presión máxima de servicio. Para los recipientes no refrigerados la presión de diseño será, como mínimo, 22 bar.

e. Se considerará, como mínimo, 1 milímetro de sobreespesor de corrosión para tanques y recipientes a presión, y 2 milímetros para withdrawals de las conexiones.

3. Códigos de diseño:

e. Los tanques y recipientes a presión se diseñarán de acuerdo con códigos de reconocida solvencia, tales como Api Standard 620 Appendix R o British Standard 4741, para almacenamientos refrigerados, y CODAP, Asme Section VIII, British Standard 5500 o AD Merkblatter, para almacenamientos semi refrigerados y no refrigerados.

f. Una vez elegido el código de diseño, se aplicarán sin efectuar combinaciones de cálculos y criterios de diferentes códigos. Cuando, para un determinado cálculo, no haya herramientas de cálculo en el código elegido, se podrán usar otros códigos o procedimientos de cálculo.

g. Los recipientes a presión cumplirán también lo establecido en el h.

Los materiales a utilizar cumplirán los requisitos del código de diseño. Sus características deberán satisfacer las condiciones más desfavorables de presión y
Gráfica: Abaco para dimensionado de tuberías de amoníaco. L=30 m
d = diámetro interior de tubería, pulgs.

Flujo de vapor con velocidad de 6,000 ppm

Presión de vapor manométrica, psig.

Presión absoluta, psia.
### 6.1.6. Condiciones de conservación de los productos

<table>
<thead>
<tr>
<th>Naturaleza del producto</th>
<th>Calor específico kJ/kg · K</th>
<th>Calor latente L/ Kg</th>
<th>Grado de humedecimiento</th>
<th>Tendencia al secado</th>
<th>Normativa del aire</th>
<th>Temperatura recomendada para conservación</th>
<th>Düración máx. almacenable</th>
<th>Objetivo</th>
<th>Cámara conserv.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Panadería-Pastelería</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantequilla</td>
<td>2,302</td>
<td>1,465</td>
<td>62,775</td>
<td>75</td>
<td>C</td>
<td>+60/8&quot;</td>
<td>160</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>Chocolate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+150/18&quot;</td>
<td>160</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>Crema helada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+150/18&quot;</td>
<td>160</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>Harinas</td>
<td>1,090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+40/4&quot;</td>
<td>160</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>Levadura</td>
<td>1,423</td>
<td>1,046</td>
<td>58,590</td>
<td>80</td>
<td>A</td>
<td>+70/10&quot;</td>
<td>160</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>Miel</td>
<td>2,510</td>
<td>1,800</td>
<td>113,000</td>
<td>80</td>
<td>A</td>
<td>+80/10&quot;</td>
<td>160</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>Pan (corto)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+80/10&quot;</td>
<td>160</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>Pan (demora de envejecimiento)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+80/10&quot;</td>
<td>160</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>Pasta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+80/10&quot;</td>
<td>160</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>Productos terminados de pastelería</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+80/10&quot;</td>
<td>160</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>Mantequilla sin sal</td>
<td>2,302</td>
<td>1,255</td>
<td>209,250</td>
<td>75</td>
<td>C</td>
<td>+60/8&quot;</td>
<td>160</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>Azúcar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+180/20&quot;</td>
<td>160</td>
<td>A</td>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Cafetería</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cámara conserv. chocolate</td>
</tr>
<tr>
<td>Cámara de empapar tado de chocolate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Líquidos-Cervezas-Vinos</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerveza de barril</td>
</tr>
<tr>
<td>Cerveza de tiro</td>
</tr>
</tbody>
</table>
| Cava de cerveza             | 3,770 | 85 | V | +3/6"
| Fermentación, baja principal| 3,770 | 90 | M | +1/2"
| Cava de cerveza             | 3,770 | 90 | M | +50/8" |
| Fermentación, baja secundaria| 3,770 | 90 | M | 0/1" |
| Vermouth                   | 90 | 70 | M | 0/1" |
| Oporto                     | 90 | 70 | M | 0/1" |
| Jugo de uva                | 3,770 | 90 | M | 0/1" |
| Lúpulo                     | 70 | 75 | M | 0/1" |
| Lev. baja (madre)          | 70 | 75 | M | 0/1" |
| Levadura alta              | 85 | V | M | +12/10" |
| Malta                      | 85 | V | M | +9/10" |
| Jarabe de fruta            | 85 | V | M | +7/10" |
## Intercambiadores de placas con juntas

### Información general de aplicación

<table>
<thead>
<tr>
<th><strong>Placas</strong></th>
<th>ClipLine</th>
<th>Baseline</th>
<th>TL</th>
<th>M-Series</th>
<th>TS-Serie</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tipo</strong></td>
<td>Clip</td>
<td>Front?</td>
<td>3</td>
<td>6</td>
<td>6-M</td>
</tr>
</tbody>
</table>

### Tareas principales

#### Productos lácteos
- Refrigeración de esche
- Pasteurización de leche y nata
- Pasteurización de suero lácteo
- Pasteurización de helados

#### Cervezas
- Refrigeración de mosto
- Refrigeración de cerveza
- Pasteurización de cerveza

#### Bebidas
- Vinos, bebidas y zumos clarificados
- Zumos y bebidas con pulpa o fibra
- Concentrados clarificados de fruta y azúcar
- Concretados de yuca espesos

#### Otros alimentos
- Productos con poca viscosidad
- Productos con mucha viscosidad
- Paja casera/con trampolines/finas partículas
- Aceite vegetal

#### Pharma
- Puñalación mediante precalentamiento
- Calentador en línea en WF/PW
- Refrigeración de punto de uso

#### Otras aplicaciones
- Refrigeración y calentamiento de productos

### Servicios
- Calentamiento CIP
- Refrigeración y calentamiento de agua
- Refrigeración de gasa
- Refrigeración y calentamiento de CO2

### Características

| **Presión de funcionamiento (barg)** | 10 | 21 | 21 | 21 | 10 | 10 | 10 | 13 | 10 | 13 | 10 | 10 | 10 | 10 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
|------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

### Capacidad máx.

- Pasteurización, 1.000 l/h
- Pasteurización, US GPM
- Calentamiento y refrigeración, 1.000 l/h
- Calentamiento/refrigeración, US GPM

1**dispónible con placas Front-Standard, Front-Gemini y Front-Widestream**
2**dispónible con placas Gemini
RETORNO DEL CONDENSADO

La manera más sencilla de recuperar el condensado sería devolverlo directamente desde cada purgador a la caldera pero, cuando se trabaja con muchos purgadores, esta solución sería cara y poco práctica. Es mucho más lógico dirigir la salida de los distintos purgadores a un conducto común que dirija a la caldera la totalidad del condensado.

Cuando las conducciones de descarga de varios equipos consumidores de vapor se conectan a un conducto común, la presión de cada equipo debe ser superior a la presión en la línea de condensado (figura 1). De esta forma la presión diferencial siempre será positiva y los purgadores podrán drenar el condensado.

Conectar al mismo conducto de retorno equipot consumidores de vapor a distintas presiones no representa ningún problema, si la línea se dimensiona adecuadamente. De hecho, los purgadores actúan como “aislantes” de las presiones respectivas en los distintos equipos, cuyo valor no tiene ninguna influencia en la presión de la línea.

DISEÑO DE LAS LÍNEAS DE CONDENSADO

En las líneas de condensado se produce normalmente una cierta revaporización del condensado (vapor flash) por la tubería circula pues una mezcla de líquido y vapor. Si este hecho no se tiene en cuenta al dimensionar la tubería, y se considera que por ella circula solamente líquido, se elegirá un diámetro demasiado pequeño; este error es bastante habitual y sus consecuencias son nefastas.

En efecto, si la tubería de condensado es de un diámetro inferior a lo necesario, la presión en ella (contrapresión) aumenta por encima de lo previsto; a consecuencia de ello disminuye la presión diferencial a la que trabajan los purgadores, lo que disminuye su capacidad, por lo que los equipos consumidores de vapor no funcionarán bien y, a menudo, se inundan de condensado en los momentos de máximo consumo. Muchos de los problemas generalmente encontrados en las instalaciones, que consumen vapor tienen su origen en un dimensionamiento inadecuado de las tuberías de condensado.

Aunque el cálculo exacto del diámetro que debe tener una línea de condensado es un problema complicado, para el caso particular en el que todos los purgadores que descargan a la misma trabajan con vapor a la misma presión, es posible dar un método sencillo y razonablemente aproximado. El cálculo se realiza en cuatro etapas:

1° Se calcula la cantidad total de condensado que la línea debe vencer, como la suma del condensado que produce cada uno de los equipos conectados a la línea.
2° Se calcula el porcentaje de condensado que se convertirá en vapor flash. Para ello debe conocerse la presión del vapor en los purgadores y la presión que se desea tener en la línea de condensado. Con esos dos datos la tabla 1 da directamente el porcentaje de condensado que se convierte en vapor flash.

Si la presión primaria no fuera la misma en todos los purgadores, este cálculo debería hacerse por separado para cada uno de ellos.

3° Se calcula la cantidad de vapor flash que circulará por la línea de condensado, aplicando el porcentaje calculado en el paso anterior a la cantidad total de condensado producido.

4° Se dimensiona la tubería como si por ella solamente circulara el vapor, empleando la tabla 2. Los datos necesarios para ello son la presión del vapor (es decir, la presión en la línea de condensado), la cantidad de vapor que circula (que hemos calculado en el paso anterior) y la velocidad del vapor, que normalmente se elige entre 20 y 30 metros por segundo.

Veamos un ejemplo. Supongamos una instalación en la que veinte purgadores consumen cada uno 100 kg/h de vapor a 10 bar. Se desea dimensionar una línea de condensado para una presión de 0,5 bar en la que el vapor circula a 20 m/s.

1° La producción total de condensado será 20 x 100 = 2000 kg/h.

2° La tabla 1, para una presión primaria de 10 bar y una secundaria de 0,5 bar indica que el 14,11% de condensado se convierte en vapor flash.

3° La cantidad de vapor flash que circulará por la tubería de condensado será pues: 0,1411 x 2000 = 282,2 kg/h.

4° La tabla 2 indica que para una presión de 0,5 bar y una velocidad del vapor de 20 m/s una tubería de DN 80 puede vehicular 332 kg/h de vapor, y una de DN 65 solamente 241. En nuestro caso deberemos elegir una tubería de DN 80. Los diámetros que se obtienen con este método de cálculo suelen sorprender por lo elevados que son respecto a los que se emplean habitualmente. Debe tenerse en cuenta que en la mayoría de los casos las tuberías de condensado están ampliamente sobredimensionadas lo que, como ya hemos dicho es la causa de muchos de los problemas que se encuentran en las instalaciones de vapor.

**PORCENTAJE EN PESO DEL CONDENSADO QUE SE CONVIERTE EN VAPOR FLASH**

<table>
<thead>
<tr>
<th>Presión primaria (kg/h)</th>
<th>Presión secundaria (kg/h)</th>
<th>0</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td>0.2</td>
<td>0.82</td>
<td>0.69</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.5</td>
<td>1.25</td>
<td>1.14</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.0</td>
<td>2.04</td>
<td>1.71</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1.96</td>
<td>5.95</td>
<td>7.17</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2.02</td>
<td>5.95</td>
<td>7.22</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2.06</td>
<td>5.95</td>
<td>7.26</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2.10</td>
<td>5.95</td>
<td>7.30</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2.14</td>
<td>5.95</td>
<td>7.34</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>2.18</td>
<td>5.95</td>
<td>7.38</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>2.22</td>
<td>5.95</td>
<td>7.42</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>2.26</td>
<td>5.95</td>
<td>7.46</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>2.30</td>
<td>5.95</td>
<td>7.50</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>2.34</td>
<td>5.95</td>
<td>7.54</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>2.38</td>
<td>5.95</td>
<td>7.58</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>2.42</td>
<td>5.95</td>
<td>7.62</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>2.46</td>
<td>5.95</td>
<td>7.66</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>2.50</td>
<td>5.95</td>
<td>7.70</td>
</tr>
</tbody>
</table>

**CAUDAL DE VAPOR FLASH, Kg/h**

<table>
<thead>
<tr>
<th>Presión (kg/h)</th>
<th>Velociad (m/s)</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>22</td>
<td>32</td>
<td>42</td>
<td>56</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>54</td>
<td>72</td>
<td>90</td>
<td>120</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>18</td>
<td>36</td>
<td>54</td>
<td>72</td>
<td>108</td>
<td>144</td>
<td>192</td>
<td>288</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>350</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>700</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>75</td>
<td>150</td>
<td>225</td>
<td>300</td>
<td>450</td>
<td>600</td>
<td>750</td>
<td>1050</td>
<td>1350</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>125</td>
<td>250</td>
<td>375</td>
<td>500</td>
<td>750</td>
<td>1000</td>
<td>1250</td>
<td>1750</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>175</td>
<td>350</td>
<td>525</td>
<td>700</td>
<td>1050</td>
<td>1400</td>
<td>1750</td>
<td>2500</td>
<td>3000</td>
</tr>
</tbody>
</table>

**Tabla 1**

**Tabla 2**
<table>
<thead>
<tr>
<th>Diámetro de la Tubería (in)</th>
<th>Espesor del aislamiento (in)</th>
<th>Presión de Vapor (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hasta 1.5</td>
</tr>
<tr>
<td>0.5-1</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>1.25-1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>2 o más</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Temperatura</td>
<td>Presión (PSIA)</td>
<td>Presión (PSIG)</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>°C</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>-50</td>
<td>5.6</td>
<td>18.6</td>
</tr>
<tr>
<td>-59</td>
<td>17.8</td>
<td>-50.3</td>
</tr>
<tr>
<td>-57</td>
<td>17.4</td>
<td>-49.4</td>
</tr>
<tr>
<td>-56</td>
<td>17.7</td>
<td>-48.9</td>
</tr>
<tr>
<td>-55</td>
<td>16.6</td>
<td>-48.3</td>
</tr>
<tr>
<td>-54</td>
<td>16.2</td>
<td>-47.8</td>
</tr>
<tr>
<td>-53</td>
<td>15.1</td>
<td>-47.2</td>
</tr>
<tr>
<td>-52</td>
<td>15.3</td>
<td>-46.7</td>
</tr>
<tr>
<td>-51</td>
<td>14.8</td>
<td>-46.1</td>
</tr>
<tr>
<td>-50</td>
<td>14.3</td>
<td>-45.6</td>
</tr>
<tr>
<td>-49</td>
<td>13.8</td>
<td>-45.0</td>
</tr>
<tr>
<td>-48</td>
<td>13.3</td>
<td>-44.4</td>
</tr>
<tr>
<td>-47</td>
<td>12.8</td>
<td>-43.9</td>
</tr>
<tr>
<td>-46</td>
<td>12.2</td>
<td>-43.3</td>
</tr>
<tr>
<td>-45</td>
<td>11.7</td>
<td>-42.8</td>
</tr>
<tr>
<td>-44</td>
<td>11.1</td>
<td>-42.2</td>
</tr>
<tr>
<td>-43</td>
<td>10.6</td>
<td>-41.7</td>
</tr>
<tr>
<td>-42</td>
<td>10.0</td>
<td>-41.1</td>
</tr>
<tr>
<td>-41</td>
<td>9.3</td>
<td>-40.6</td>
</tr>
<tr>
<td>-40</td>
<td>8.7</td>
<td>-40.0</td>
</tr>
<tr>
<td>-39</td>
<td>8.1</td>
<td>-39.4</td>
</tr>
<tr>
<td>-38</td>
<td>7.4</td>
<td>-38.9</td>
</tr>
<tr>
<td>-37</td>
<td>6.8</td>
<td>-38.3</td>
</tr>
<tr>
<td>-36</td>
<td>6.1</td>
<td>-37.8</td>
</tr>
<tr>
<td>-35</td>
<td>5.4</td>
<td>-37.2</td>
</tr>
<tr>
<td>-34</td>
<td>4.7</td>
<td>-36.7</td>
</tr>
<tr>
<td>-33</td>
<td>3.9</td>
<td>-36.1</td>
</tr>
<tr>
<td>-32</td>
<td>3.2</td>
<td>-35.6</td>
</tr>
<tr>
<td>-31</td>
<td>2.4</td>
<td>-35.0</td>
</tr>
<tr>
<td>-30</td>
<td>1.6</td>
<td>-34.4</td>
</tr>
<tr>
<td>-29</td>
<td>0.8</td>
<td>-33.9</td>
</tr>
<tr>
<td>-28</td>
<td>0.0</td>
<td>-33.3</td>
</tr>
<tr>
<td>-27</td>
<td>0.8</td>
<td>-32.8</td>
</tr>
<tr>
<td>-26</td>
<td>2.2</td>
<td>-32.2</td>
</tr>
<tr>
<td>-25</td>
<td>3.5</td>
<td>-31.6</td>
</tr>
<tr>
<td>-24</td>
<td>4.8</td>
<td>-31.0</td>
</tr>
<tr>
<td>-23</td>
<td>6.1</td>
<td>-30.4</td>
</tr>
<tr>
<td>-22</td>
<td>7.4</td>
<td>-30.0</td>
</tr>
<tr>
<td>-21</td>
<td>8.7</td>
<td>-29.4</td>
</tr>
<tr>
<td>-20</td>
<td>10.0</td>
<td>-28.8</td>
</tr>
<tr>
<td>-19</td>
<td>11.3</td>
<td>-28.2</td>
</tr>
<tr>
<td>-18</td>
<td>12.6</td>
<td>-27.6</td>
</tr>
<tr>
<td>-17</td>
<td>13.9</td>
<td>-27.0</td>
</tr>
<tr>
<td>-16</td>
<td>15.2</td>
<td>-26.4</td>
</tr>
<tr>
<td>-15</td>
<td>16.5</td>
<td>-25.8</td>
</tr>
</tbody>
</table>
Valores de factor K para accesorios de tuberías
Fuente: Mecánica de fluidos, Robert Mott

$K = \frac{W}{T}$

(b) Codo a 90° de radio largo
(c) Codo a 45°

(d) Codo soldado a 90°
(e) Codo roscado a 45°
(f) Vuelta en retorno

FIGURA 10.22 Codos de tubería. (Fuente: Crane Valves, Signal Hill, CA.)

FIGURA 10.23 Tes estándar. (Fuente: Crane Valves, Signal Hill, CA.)
Alfa Laval Plate Heat Exchanger Specification

PHE type M10-MBASE

<table>
<thead>
<tr>
<th>Section</th>
<th>Flowrate (kg/h)</th>
<th>Media</th>
<th>Temperature progr. (°C)</th>
<th>dP (kPa)</th>
<th>Grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8034</td>
<td>Water</td>
<td>74 ≤ 85</td>
<td>21</td>
<td>15H</td>
</tr>
<tr>
<td></td>
<td>6800</td>
<td>13.0% Sugar</td>
<td>59 ≥ 76</td>
<td>14</td>
<td>15H</td>
</tr>
<tr>
<td></td>
<td>6800</td>
<td>13.0% Sugar</td>
<td>30 ≤ 76</td>
<td>42</td>
<td>35H</td>
</tr>
<tr>
<td></td>
<td>6800</td>
<td>13.0% Sugar</td>
<td>13 ≥ 59</td>
<td>43</td>
<td>35H</td>
</tr>
</tbody>
</table>

Plates
(Gaskets are CLIP-ON if not otherwise mentioned)

<table>
<thead>
<tr>
<th>Section</th>
<th>Quantity</th>
<th>Material</th>
<th>Thickness (mm)</th>
<th>Gasket</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>42</td>
<td>ALLOY 316</td>
<td>0.50</td>
<td>NBRP</td>
</tr>
</tbody>
</table>

Frame

<table>
<thead>
<tr>
<th>PV Code</th>
<th>Connection standard</th>
<th>Lengths</th>
<th>Accessories included</th>
</tr>
</thead>
<tbody>
<tr>
<td>PED</td>
<td>Frame(S1): CLAMP</td>
<td>LC: 730 mm</td>
<td>Feet: FIXED</td>
</tr>
<tr>
<td>101.6</td>
<td>101.6</td>
<td>LT: 560 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other (state below):</td>
<td>Total length: 872 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plate pack: 297 mm</td>
<td>Net weight: 316 kg</td>
<td></td>
</tr>
</tbody>
</table>

Max. working pressure: 10 bar  Test pressure: 13.0 bar  Design temp.: 120 °C

Comments: Regenerative:  %  Cleaning data (Min): Flow: lb, Press drop: kPa
Intercambiadores de placas con juntas

La elección más acertada para tareas en proceso y servicios

Intercambiadores de calor de placas BaseLine

Aplicación
Refrigeración y calentamiento de productos lácteos y viscosos, cervezas y bebidas y pasteurización en algunas aplicaciones.

Principios de funcionamiento
El intercambiador de calor de placas consta de un conjunto de placas metálicas acanaladas con orificios para permitir el paso de dos fluidos entre los que se realiza la transferencia de calor.

El conjunto de placas está montado entre una placa bastidor y otra de presión y se mantiene apretado mediante pernos tensores.

Las placas están provistas de una junta estanca que sella el canal y envía a los fluidos hacia canales alternos. El número de placas varía en función de la velocidad de flujo, las propiedades térmicas de los fluidos, la caída de presión y el programa de temperaturas. El acanalado de las placas provoca un régimen turbulento del fluido y contribuye a que las placas resistan a la presión diferencial.

Bastidor
Las placas y la placa de presión se encuentran en suspensión de una barra sustentadora y colocadas con una barra guía interior, las cuales están fijadas a la columna de apoyo. En los tipos más grandes, algunos pernos tensores están equipados con arandelas de cojinete de bola para facilitar la apertura y el cierre de la unidad. El bastidor está diseñado para ser exclusivamente montado sobre suelo. Las patas estarán están fijadas.

Una unidad puede constar de varios intercambiadores de calor, independientes por placas de separadores con conexiones intercaladas. (No sirve para M3-Base)

Placa
El acanalado de las placas facilita el paso entre las mismas, sirve de apoyo entre unas y otras y aumenta la turbulencia, dando como resultado una transferencia de calor eficaz. Las salidas y juntas estancas de los extremos están colocadas de modo que los dos medios transmiten a través de canales alternos.

Las placas tienen un ángulo en forma de V para obtener una resistencia máxima al funcionamiento a altas presiones. Existen disponibles distintos diseños de ángulos para obtener de forma óptima una transferencia de calor alta y una caída de presión baja.

Una zona de distribución única ofrece un flujo uniforme sobre la superficie de la placa. El sistema de Alta Laval permite un manejo rápido de las placas en el bastidor, junto con el estanco que es un conjunto de placa interesante.

Junta estanca
Las placas llevan juntas con presión sin movimiento, lo que impide su estancamiento incluso con las placas cortadas del bastidor.
1.1

Tipos de placas
M3, M6, M6M, M10B, M10M y TL:10B.

Materiales estándar
Placas
Acero inoxidable AISI 316l, titanio o SMO.

Juntas estancas
Nitrilo-FDA, EPDM o FPM-FDA.

Diseño de la presilla
Bastidor
Bastidor y placa de presión en acero inoxidable sólido. Todas las piezas bañadas en acero inoxidable a prueba de ácidos. Superficies externas en varios grados de acero inoxidable. Tuercas móviles en los pernos tensores en latón chapado en cromo.

Datos técnicos
Presión del diseño mecánico (g) / Temperatura
10 bar / 150°C
Cumplir la directiva europea de recipientes a presión (PED).

Conexiones
Piezas macho DIN, SMS, Abrazadera triple, B.S./RJT y IDF/ISO.

Opcional
A. Chapa de protección
B. Acabado 3-A
C. Patas regulables, bajas o altas
D. Llave
E. Certificados de pruebas y del material
F. Pruebas realizadas por empresas de inspección homologadas

No todas las opciones se encuentran disponibles para todos los modelos.

Intercambiadores de placas con juntas

### Dimensiones (mm)

<table>
<thead>
<tr>
<th>Dimensiones</th>
<th>BASE-3</th>
<th>BASE-6</th>
<th>BASE-10</th>
<th>BASE-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>180</td>
<td>300</td>
<td>410</td>
<td>470</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>140</td>
<td>223</td>
<td>218</td>
</tr>
<tr>
<td>D</td>
<td>357</td>
<td>640</td>
<td>719</td>
<td>1338</td>
</tr>
<tr>
<td>E</td>
<td>545</td>
<td>855</td>
<td>995</td>
<td>2071</td>
</tr>
<tr>
<td>F</td>
<td>141</td>
<td>152</td>
<td>153</td>
<td>418</td>
</tr>
<tr>
<td>G</td>
<td>176</td>
<td>290</td>
<td>430</td>
<td>590</td>
</tr>
<tr>
<td>H</td>
<td>250-510</td>
<td>575-1325</td>
<td>700-1530</td>
<td>1100-3000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conexión</th>
<th>BASE-3</th>
<th>BASE-6</th>
<th>BASE-10</th>
<th>BASE-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>diámetro en mm</td>
<td>25</td>
<td>51</td>
<td>76/101.6</td>
<td>76/101.6</td>
</tr>
</tbody>
</table>

### Capacidad

<table>
<thead>
<tr>
<th></th>
<th>BASE-3</th>
<th>BASE-6</th>
<th>BASE-10</th>
<th>BASE-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasteurización l/h</td>
<td>6.000</td>
<td>9.000</td>
<td>15.000</td>
<td></td>
</tr>
<tr>
<td>Calentamiento/refrigeración l/h</td>
<td>4.500</td>
<td>15.000</td>
<td>66.000</td>
<td>70.000</td>
</tr>
<tr>
<td>Agua l/h</td>
<td>4.800</td>
<td>35.000</td>
<td>130.000</td>
<td>130.000</td>
</tr>
</tbody>
</table>

El número de pernos de apriete de las placas es diferente para cada tipo. El espacio libre recomendado alrededor de la unidad es de 1,0 m en los lados y en el extremo superior del bastidor.
# Technical Specification

<table>
<thead>
<tr>
<th>Customer</th>
<th>Model</th>
<th>Project</th>
<th>Item</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MS-MWFGR</td>
<td></td>
<td>Enfriador bebida</td>
<td>18/10/2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Hot Side</th>
<th>Cold side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>kg/m³</td>
<td>12.0% Sugar</td>
</tr>
<tr>
<td>Specific heat capacity</td>
<td>kW/(kg·K)</td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>W/(m²·K)</td>
<td></td>
</tr>
<tr>
<td>Viscosity inlet</td>
<td>cP</td>
<td></td>
</tr>
<tr>
<td>Viscosity outlet</td>
<td>cP</td>
<td></td>
</tr>
<tr>
<td>Volume flow rate</td>
<td>m³/h</td>
<td></td>
</tr>
<tr>
<td>Inlet temperature</td>
<td>°C</td>
<td>30.0</td>
</tr>
<tr>
<td>Outlet temperature</td>
<td>°C</td>
<td>14.0</td>
</tr>
<tr>
<td>Pressure drop</td>
<td>kPa</td>
<td>11.4</td>
</tr>
<tr>
<td>Heat Exchanged</td>
<td>kW</td>
<td>113.6</td>
</tr>
<tr>
<td>L.M.T.D.</td>
<td>K</td>
<td>19.7</td>
</tr>
<tr>
<td>Relative directions of fluids</td>
<td></td>
<td>Co-current</td>
</tr>
</tbody>
</table>

| Plate material / thickness | ALLOY 316 / 0.60 mm |
| Ring Gasket | NBRP CLIP-ON | Welded |
| Connection material | Stainless steel | Stainless steel |
| Connection diameter | See drawing | See drawing |
| Nozzle orientation | S2 -> S1 | S3 -> S4 |
| Pressure vessel code | PED |
| Flange rating | DIN PN16 |
| Design pressure | bar | 10.0 | 16.0 |
| Test pressure | bar | 13.0 | 20.8 |
| Design temperature | °C | 50.0-10.0 | 50.0-15.0 |
| Overall length x width x height | mm | 615 x 320 x 920 |
| Flooded weight | kg | 148 |
| Packed weight (SKID BASE) | kg | 162 |
| Internal volume | m³ | 0.3 |
| length x width x height | mm | 960 x 420 x 680 |

Performance is conditioned on the accuracy of customer's data and customer's ability to supply equipment. Data, specifications, and other kind of information of technological nature set out in this document and submitted by Alfa Laval to you (Proprietary Information) are intellectual proprietary rights of Alfa Laval. The Proprietary Information shall remain the exclusive property of Alfa Laval and shall only be used for the purpose of evaluating Alfa Laval's quotation. The Proprietary Information may not, without the written consent of Alfa Laval, be used or copied, reproduced, transmitted or communicated or disclosed in any other way, to a third party.
Para servicios de calentamiento y refrigeración

Serie M Intercambiadores de calor de placas

Apliaciones

Para los servicios de calentamiento y refrigeración, se pueden utilizar los intercambiadores de calor de placas industriales de Alfa Laval. Se presentan de forma detallada en las hojas de producto siguientes.

Diseño estándar

El intercambiador de calor de placas consta de un conjunto de placas metálicas acopladas, con orificios para permitir el paso de los dos fluidos. Sobre ellos, se realiza la transferencia de calor.

El conjunto de placas está montado entre una placa del bastidor del y otra placa de izquierda y derecha de acero inoxidable, formando un canal de paso de los fluidos. Las placas están provistas de una junta recta que obtura el canal entre las placas y dejan los fluidos a canales alternos. El número de placas depende del caudal, las placas de acero inoxidable de los fluidos, cada uno de los para la temperatura. El acoplamiento de las placas provoca un régimen turbulento fluido y contribuye a que las placas resistan a la presión diferencial.

La placa y placa de presión están fijadas entre una barra superior y una inferior, ambas fijadas a una columna de suporte.

Las conexiones están situadas en la placa bastidor o en uno o ambos fluidos pasan más de una vez por la unidad, en las placas de bastidor y de presión.

Principio de funcionamiento

En el caso de la circulación de calor se forman canales y los fluidos de las placas están dispuestos de manera que los dos fluidos circulan por canales alternos. El calor se transfiere por la placas situadas entre los canales. Para incrementar la eficiencia al máximo se crea un flujo alternativo. La forma de acoplamiento de las placas permite el paso de la misma, además de ofrecer soporte a cada placa con su anclaje y aumentar la turbulencia, dando como resultado una transferencia térmica efectiva.
### Serie M

#### Intercambiadores de placas con juntas

##### Conexiones de tuberías (re en bastidor tipo FD)
- Placa frontal con malla: Tablero 30 mm, JIS/BS/DIN.
- Placa frontal: Tablero 38 mm, JIS/BS/DIN.
- Pared de entrada con: Tablero 30 mm, JIS/BS/DIN.

##### Conexiones de bala
- FM: Din 2631, Asme B16.10
- FG: Din 2631, Asme B16.10
- FG: Din 2631, Asme B16.10
- FD: Din 2631, Asme B16.10
- FD: Din 2631, Asme B16.10

#### Dimensiones

<table>
<thead>
<tr>
<th>Medidas en mm (pulgadas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>Mi-FM</td>
</tr>
<tr>
<td>Mi-FG</td>
</tr>
<tr>
<td>Mi-FO</td>
</tr>
</tbody>
</table>

**Información necesaria para una solicitud de presupuesto**
- Carátula o carga térmica
- Programa de temperatura
- Propiedades físicas de los líquidos en función de su temperatura
- Presión de funcionamiento deseada
- Carta de presión máxima permitida
- Presión de vapor disponible

---

**M6**

#### Capacidades típicas

- **Caudal de los líquidos**: hasta 10 gpa (650 gpm), en función del fluido, de la carta de presión permitida y del programa de temperaturas.
- **Calentamiento de agua mediante vapor**: hasta 800 kW.

#### Tipos de placa
- M6: MiM, MiMG y MiMA

#### Tipos de bastidor
- FM, FG y FD

#### Materiales estándar

- **Placa estándar**: Acero suave, pintado con pintura epóxica.

#### Tubos

- Acero al carbono.
  - **Aislatamiento de tubos**: Acero inoxidable, blanco.
  - **Revestimiento de juntas**: Tetral, EPDM.

#### Placas

- Acero inoxidable: Aluminio 316L
  - Tablero 600 mm

#### Juntas

- M6: Nefco, EPDM, HeatSeal F™
- Metal: Nefco, EPDM, HeatSeal F™

**Datos técnicos**

- **Carga de presión máx. del bastidor**: 1.0 MPa, 160°C.
- **Presión de prueba estándar**: 150 psi, 320°F.

- **Bastidor FG también aplicable para 1.2 MPa, 200°C con el líquido para su uso en sistemas de vapor con válvulas de seguridad.**

### Superfície en agua de transmisión térmica

- 380 kW/m² (2000 W/m²).
Euro-HYGIA®

Technical data

**Euro-HYGIA® I and II**

- **Head:** up to 85 m
- **Flow rate:** up to 0.5 m³/h
- **(Euro-HYGIA® III on request):** up to 250 m³/h
- **Operating pressure:** up to 16 bar
- **Operating temperature:** 95 °C
- **(up to 150 °C on request)**
- **Sterilisation temperature:** 140 °C (SIP).

**Applications**

- The unique hygienic design and the materials used make the Euro-HYGIA® pump range suitable for these applications:
  - Life science/pharmaceutical
    - pure water systems (WFI)
    - biotechnology
    - infusion
    - nutrient and alcohol infusions
    - filling/bottling systems.
  - Personal care
    - pure water
    - lotions
    - perfumes.
  - Food and beverage
    - beer/breweries
    - dairies
    - soft drink mixing
    - yeast processes.
  - Other industries
    - cleaning solutions (CIP systems)
    - water treatment
    - semiconductor manufacturing

**Construction**

Euro-HYGIA® pumps are single-stage, end-suction centrifugal pumps, designed to meet the hygienic requirements of sterile process technology.

The pumps are available in a variety of flexible versions. The pumps are CIP and SIP capable in compliance with the DIN EN 12462 performance criteria.

The design of the wetted parts complies with:

- QHD criteria
- EHEDG recommendations for CIP cleanability (validated by the TNO Quality of Life Institute)
- 3A Sanitary Standards (US)
- GOST sanitary standard (Russia).

**Fig. 2 Certification**

The pumps comply with these surface finish requirements:

- Standard pump version: 3A1
- Optional: 3A2, 3A3.

For explanation, see Certification, page 26.

The pump housing is made of heavy-cured, rolled and electro-drawn CrNiMo steel to DIN EN 1.4404/1.4435, the equivalent of AISI 316L.

Three impeller types are available, depending on the applications: Semi-open, closed and free-flow impeller. See page 24.

The pumps have a mechanical shaft seal and a fan-cooled asynchronous motor with enclosure to IP 55.

**Fig. 3 Sectional drawing of Euro-HYGIA® I Biko-SUPER on combifoot**
Euro-HYGIA®
Sanitary pumps

Materials

<table>
<thead>
<tr>
<th>Part</th>
<th>Component</th>
<th>Material</th>
<th>DIN/EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Impeller</td>
<td>CrNiMo steel</td>
<td>1.4404</td>
</tr>
<tr>
<td>2</td>
<td>Pump housing</td>
<td>CrNiMo steel</td>
<td>1.4404</td>
</tr>
<tr>
<td>3</td>
<td>Shaft seal</td>
<td>Sterile applications: BIC/QC/EPDM</td>
<td>1.4416</td>
</tr>
<tr>
<td>4</td>
<td>Pump shaft</td>
<td>Hygienic applications: Carbon/stainless steel / EPDM or FKM</td>
<td>1.4416</td>
</tr>
<tr>
<td>5</td>
<td>Motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SHADE</td>
<td>Stainless steel</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SUPPORT</td>
<td>Stainless steel/cast iron</td>
<td></td>
</tr>
</tbody>
</table>

Design variations

Standard variation Description

Euro-HYGIA® Adapta® Horizontal installation, Adapta® motor/stainless steel
Euro-HYGIA® Adapta® SUPER Horizontal installation, Adapta® motor/stainless steel and shaft seal
Euro-HYGIA® Bloc Horizontal installation
Euro-HYGIA® Bloc-SUPER Horizontal installation, motor with stainless steel shaft seal

Variation on request Description

Euro-HYGIA® Adapta® V Vertical installation, Adapta® motor/bottom seal
Euro-HYGIA® Bloc-V Vertical installation
Euro-HYGIA® CN Vertical installation, long-coupled version mounted on base plate
Euro-HYGIA® tronic Horizontal installation, vertical installation, motor with built-in frequency converter (up to 7.5 kW)

See page 28.

Mechanical shaft seal
Grundfos offers these seal arrangements:
- single seal
- double tandem seal
- double back-to-back seal.

As standard, the Euro-HYGIA® is fitted with a single, inboard, mechanical shaft seal with an optimum position in the pumped liquid. This ensures lubrication, cooling as well as CIP and SIP, according to the criteria of hygienic design.

Standard seals have carbon/stainless steel seal faces and EPDM O-rings. Other seal face material combinations are available on request.

See page 25.

Surface treatment
As standard, all wetted parts are electro-polished to improve corrosion-resistance and surface finish.

Standard connection
Grundfos offers threads to DIN 11851 as standard for Euro-HYGIA® pumps.

Connections on request
Threads:
- Aseptic threads to DIN 11864-1.

Flanges:
- Aseptic flanges to DIN 11864-2
- APV flanges
- Flanges to DIN EN 1092-1 (DIN 2633)
- Kremp flanges to DIN EN 1092-1 (DIN 2633/42)

Clamps:
- Clamps to DIN 32672
- Clamps for Tri-Clamp®, Tri-Clover®

Note: Not all pump sizes are available with all connections types. See pages 32 to 33.

For other connection types as well as applications and design of connections, see pages 125 to 143.

Features and benefits
- a wide range of support options for motor and pump
- extremely reliable operation under most working conditions
- optimised hydraulics for high efficiency
- reduced power consumption
- multifunction inducer for NFS reduction or pumping of liquids containing gas (Euro-HYGIA® II)
- motors for special voltages and frequencies
- Euro-HYGIA® Adapta® and Euro-HYGIA® CN with explosion-proof or flameproof three-phase motors available for ATEX applications
- motors for variable speed drive with built-in frequency converter as "tronic", available for motor sizes up to 7.5 kW
- mobile pumps mounted on two-wheeled stainless steel trolley with on/off switch and electric cable
- DN 15 diaphragm valve drain for sterile processes
- DN 15 drain connection
- heating jacket for pump housing
- integral flange ring for hosed housing closure (APM)
- special paint finish for the drive and the cast iron/steel parts.
Identification

Sanitary pumps

Type keys

**Euro-HYGIA**

Example: Euro-HYGIA 1 bloo 40 82 2 2 4

- Pump range
- Size
- Design
- Nominal diameter of suction port (DN)
- Nominal diameter of discharge port (DN)
- Motor power (P2)
- Number of poles

**F&B-HYGIA**

Example: F&B-HYGIA 1 K 40 40 2 2 4

- Pump range
- Size
- Design
- Nominal diameter of suction port (DN)
- Nominal diameter of discharge port (DN)
- Motor power (P2)
- Number of poles

**Contra**

Example: Contra K1 bloo 82 26 1 6 2

- Pump range
- Size/stages
- Design
- Nominal diameter of suction port (DN)
- Nominal diameter of discharge port (DN)
- Motor power (P2)
- Number of poles

**durietta O**

Example: durietta 82 K 32 26 0.66 2

- Pump range
- Size/stages
- Design
- Nominal diameter of suction port (DN)
- Nominal diameter of discharge port (DN)
- Motor power (P2)
- Number of poles

**SIPLA**

Example: SIPLA 81 bloo 82 32 0.76 4

- Pump range
- Size
- Design
- Nominal diameter of suction port (DN)
- Nominal diameter of discharge port (DN)
- Motor power (P2)
- Number of poles

**MAXA**

Example: MAXA 80-250 CN 100 80 37 2

- Pump range
- Size
- Design
- Nominal diameter of suction port (DN)
- Nominal diameter of discharge port (DN)
- Motor power (P2)
- Number of poles

**MAXANA**

Example: MAXANA 35-200 bloo 60 92 5 6 2

- Pump range
- Size
- Design
- Nominal diameter of suction port (DN)
- Nominal diameter of discharge port (DN)
- Motor power (P2)
- Number of poles
# Product data

## Sanitary pumps

## Product range

| Parameter                  | E                  | E                  | F                  | F                  | EM                  | EM                  | EM                  | EM                  | EM                  | EM                  | SW                  | SW                  | SW                  | SW                  | SW                  | SW                  |
|----------------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| **Hyaloril data**          |                    |                    |                    |                    |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| Max. head [m]              | 62                 | 85                 | 52                 | 56                 | 153                 | 220                 | 70                  | 28                  | 45                  | 54                  | 75                  | 87                  | 97                  |                     |                     |                     |
| Max. flow rate [m³/h]      | 42                 | 95                 | 42                 | 95                 | 23                  | 65                  | 6                   | 13                  | 31                  | 45                  | 23                  | 51                  | 70                  | 80                  | 110                 | 120                 |
| Max. operating temperature [°C] | 55                | 95                 | 55                 | 95                 | 56                  | 96                  | 55                  | 96                  | 95                  | 65                  | 75                  | 75                  | 85                  | 95                  | 95                  | 95                  |
| Max. temperature [°C]      | 150                | 150                | 150                | 150                | 132                 | 116                 | 130                 | 120                 | 160                 | 170                 | 160                 | 160                 | 160                 | 160                 | 160                 | 170                 |
| Max. operating pressure [bar] | 18                | 18                 | 18                 | 18                 | 20                  | 20                  | 20                  | 20                  | 20                  | 20                  | 20                  | 20                  | 20                  | 20                  | 20                  | 20                  |
| Max. pump efficiency [%]   | 62                 | 59                 | 52                 | 56                 | 55                  | 62                  | 48                  | 15                  | 19                  | 24                  | 24                  | 24                  | 24                  | 24                  | 24                  | 24                  |
| **Motor data**             |                    |                    |                    |                    |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| Motor power [kW]           | 0.55               | 0.35               | 1.1                | 2.2                | 0.65                | 1.75                | 2.2                | 1.6                | 1.8                | 1.4                | 1.8                | 3.5                | 1.1                | 3.6                | 1.1                | 3.6                |
| **Design**                 |                    |                    |                    |                    |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| Boc                       | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Boc SUPER                  | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Bov                        | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| VE                        | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Adapt®                     | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Adapt® SUPER               | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Adapt® ST                | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Adapt® ST                    | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Adapt®                       | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| < SUPER                  | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| < ST                       | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| CN                        | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| -                          | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Techno                     | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| **Material**               |                    |                    |                    |                    |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| Pump housing:             |                    |                    |                    |                    |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| DIN 11850 stainless steel | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Pipe connections           |                    |                    |                    |                    |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| See pages 133 to 143       |                    |                    |                    |                    |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| **Impeller types**        |                    |                    |                    |                    |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| Semi-open                  | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Closed                     | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Tandem (closed)           |                    |                    |                    |                    |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| Free-flow                  | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |
| Star                       | •                  | •                  | •                  | •                  | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   | •                   |

- Standard
- Available on request
Performance curves/Technical data

Euro-HYGIA® I

2-pole

4-pole
**Technical data**

**Euro-HYGIA® I Bloc-SUPER on stainless steel combi foot**

![Diagram of Euro-HYGIA® I Bloc-SUPER on stainless steel combi foot]

**Technical data**

<table>
<thead>
<tr>
<th>P2 [kW]</th>
<th>n [min⁻¹]</th>
<th>IEC size</th>
<th>On stainless steel combi foot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>l</td>
</tr>
<tr>
<td>0.55</td>
<td>1753</td>
<td>A6</td>
<td>470</td>
</tr>
<tr>
<td>0.75</td>
<td>1753</td>
<td>B6</td>
<td>470</td>
</tr>
<tr>
<td>1.1</td>
<td>1800</td>
<td>C6</td>
<td>470</td>
</tr>
<tr>
<td>1.5</td>
<td>1500</td>
<td>D6</td>
<td>470</td>
</tr>
<tr>
<td>1.5</td>
<td>1753</td>
<td>D6L</td>
<td>470</td>
</tr>
<tr>
<td>2.2</td>
<td>1500</td>
<td>A6L</td>
<td>470</td>
</tr>
<tr>
<td>3.3</td>
<td>1753</td>
<td>E6L</td>
<td>342</td>
</tr>
<tr>
<td>3.3</td>
<td>1500</td>
<td>E6L</td>
<td>342</td>
</tr>
<tr>
<td>4.0</td>
<td>1500</td>
<td>E12M</td>
<td>342</td>
</tr>
<tr>
<td>4.6</td>
<td>1500</td>
<td>E12M</td>
<td>342</td>
</tr>
</tbody>
</table>

Dimensions depend on housing size (DN₄, DN₅, h₂, b₂). See table of connections, page 32.

1) Other sizes and special connections are available on request.

2) Largest diameter of pump without motor.

# Connection selection guide

## Selection of connection according to application

The table below is intended as a general guide. The selection of connections often depends on local conditions.

<table>
<thead>
<tr>
<th>Connection</th>
<th>Application</th>
<th>Beverages</th>
<th>Food</th>
<th>Life science and personal care</th>
<th>Industrial applications</th>
<th>Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aseptic threaded connector</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 1156-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threaded connection</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 1156-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threaded connection, 2UN</td>
<td>ISO 2637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threaded connection, CS</td>
<td>DIN 2332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threaded connection, SE</td>
<td>BS 4528-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threaded connection, DP</td>
<td>ISO 2631</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threaded connection, PIP</td>
<td>BS 4528-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threaded connection, male, GAZ</td>
<td>DIN 1028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapped connection, male</td>
<td>DIN EN 1022-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aseptic flange</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1156-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flange, APV-EN1-APV-FE</td>
<td>ISO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flange</td>
<td>DIN EN 1092</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kreo flange</td>
<td>DIN EN 1092-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flange, ASME 150 LBF</td>
<td>ANSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamp</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 3267</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamp</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 263</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamp</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASME BPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamp</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1156-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Typically used.*
### TUBOS DE ACERO INOXIDABLE

**ASTM A249, A-269, A312, A-554**

- Con y sin costura de calidades 304L y 316L
- Pipe de cédula 10 y 40 ASTM A-312 desde 1/4" hasta 6"
- Tuberías (Tubing OD: outside diameter) ornamentales ASTM A554
- En stock espesores de 1.2 y 1.5 mm desde 1" hasta 2"
- Tubos cuadrados desde 1" hasta 2" Espesor de 1.5 mm

---

#### DIÁMETRO NOMINAL NPS

<table>
<thead>
<tr>
<th>DIÁMETRO NOMINAL NPS</th>
<th>DIÁMETRO EXT.</th>
<th>GROSOR PARED</th>
<th>CÉDULA 10</th>
<th>PESO APROXIMADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pg mm</td>
<td>pg mm</td>
<td>PSI</td>
<td>Kg/m</td>
</tr>
<tr>
<td>1/8</td>
<td>0.405</td>
<td>10.29</td>
<td>0.049</td>
<td>1.24</td>
</tr>
<tr>
<td>1/4</td>
<td>0.540</td>
<td>13.72</td>
<td>0.065</td>
<td>1.65</td>
</tr>
<tr>
<td>3/8</td>
<td>0.675</td>
<td>17.10</td>
<td>0.065</td>
<td>1.65</td>
</tr>
<tr>
<td>1/2</td>
<td>0.840</td>
<td>21.34</td>
<td>0.083</td>
<td>2.11</td>
</tr>
<tr>
<td>3/4</td>
<td>1.050</td>
<td>26.67</td>
<td>0.083</td>
<td>2.11</td>
</tr>
<tr>
<td>1</td>
<td>1.315</td>
<td>33.40</td>
<td>0.109</td>
<td>2.77</td>
</tr>
<tr>
<td>1 1/4</td>
<td>1.660</td>
<td>42.16</td>
<td>0.109</td>
<td>2.77</td>
</tr>
<tr>
<td>1 1/2</td>
<td>1.900</td>
<td>48.26</td>
<td>0.109</td>
<td>2.77</td>
</tr>
<tr>
<td>2</td>
<td>2.375</td>
<td>60.33</td>
<td>0.109</td>
<td>2.77</td>
</tr>
<tr>
<td>2 1/2</td>
<td>2.875</td>
<td>73.03</td>
<td>0.120</td>
<td>3.05</td>
</tr>
</tbody>
</table>
**Fittings Inoxidable Sanitarios:**
Amplio stock en fittings Inoxidable Sanitario
Material AISI 304
NORMAS SMS Y DIN
Medidas: De 1" a 3"
Aplicaciones: Industria farmacéutica, cerveza, alimento, petróleo, bebida de leche, cosméticos

### Codos:
**Material:** 304
**Conexión:** Soldar
**Norma:** SMS DIN
**Medidas:** 1"- 3"
**Aplicaciones:** Industria farmacéutica, cerveza, alimento, petróleo, bebida de leche, cosméticos

**Norma SMS:**

<table>
<thead>
<tr>
<th>OD/ID</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25/22.6 x 1.2</td>
<td>33.5</td>
</tr>
<tr>
<td>38</td>
<td>38/35.6 x 1.2</td>
<td>48.5</td>
</tr>
<tr>
<td>51</td>
<td>51/48.6 x 1.2</td>
<td>60.5</td>
</tr>
<tr>
<td>63.5</td>
<td>63.5/60.3 x 1.6</td>
<td>83.5</td>
</tr>
<tr>
<td>76.1</td>
<td>76.1/72.9 x 1.6</td>
<td>88.5</td>
</tr>
</tbody>
</table>

**Norma DIN:**

<table>
<thead>
<tr>
<th>OD/ID</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>29/26 x 1.5</td>
<td>50</td>
</tr>
<tr>
<td>32</td>
<td>35/32 x 1.5</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>41/38 x 1.5</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>53/50 x 1.5</td>
<td>70</td>
</tr>
<tr>
<td>65</td>
<td>70/66 x 2.0</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>85/81 x 2.0</td>
<td>90</td>
</tr>
</tbody>
</table>

* Las medidas y espesores son referenciales, por consiguiente pueden estar sujetas a cambios.

### Tees:
**Material:** 304
**Conexión:** Soldar
**Norma:** SMS DIN
**Medidas:** 1"- 3"
**Aplicaciones:** Industria farmacéutica, cerveza, alimento, petróleo, bebida de leche, cosméticos

**Norma SMS:**

<table>
<thead>
<tr>
<th>OD/ID</th>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25/22.6 x 1.2</td>
<td>33.5</td>
</tr>
<tr>
<td>38</td>
<td>38/35.6 x 1.2</td>
<td>48.5</td>
</tr>
<tr>
<td>51</td>
<td>51/48.6 x 1.2</td>
<td>60.5</td>
</tr>
<tr>
<td>63.5</td>
<td>63.5/60.3 x 1.6</td>
<td>83.5</td>
</tr>
<tr>
<td>76.1</td>
<td>76.1/72.9 x 1.6</td>
<td>88.5</td>
</tr>
</tbody>
</table>

**Norma DIN:**
Las medidas y espesores son referenciales, por consiguiente pueden estar sujetas a cambios.

**Reducciones Concéntricas:**

- **Material:** 304
- **Conexión:** Soldar
- **Norma:** SMS DIN
- **Medidas:** 1” - 3”
- **Aplicaciones:**
  - Industria farmacéutica, cerveza, alimento, petróleo, bebida de leche, cosméticos

### Norma SMS:

<table>
<thead>
<tr>
<th>OD1</th>
<th>OD2</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>38/25</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>51/25</td>
<td>51</td>
<td>25</td>
</tr>
<tr>
<td>51/38</td>
<td>51</td>
<td>38</td>
</tr>
<tr>
<td>63.5/38</td>
<td>63.5</td>
<td>38</td>
</tr>
<tr>
<td>63.5/38</td>
<td>63.5</td>
<td>51</td>
</tr>
<tr>
<td>76.1/51</td>
<td>76.1</td>
<td>51</td>
</tr>
<tr>
<td>76.1/63.5</td>
<td>76.1</td>
<td>63.5</td>
</tr>
</tbody>
</table>

### Norma DIN:

<table>
<thead>
<tr>
<th>OD1</th>
<th>OD2</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/10</td>
<td>29.4</td>
<td>13.4</td>
</tr>
<tr>
<td>25/15</td>
<td>29.4</td>
<td>19.4</td>
</tr>
<tr>
<td>25/20</td>
<td>29.4</td>
<td>23.4</td>
</tr>
<tr>
<td>32/20</td>
<td>35.4</td>
<td>23.4</td>
</tr>
<tr>
<td>32/25</td>
<td>35.4</td>
<td>29.4</td>
</tr>
<tr>
<td>40/15</td>
<td>41.4</td>
<td>19.4</td>
</tr>
<tr>
<td>40/20</td>
<td>42</td>
<td>24</td>
</tr>
<tr>
<td>40/25</td>
<td>42</td>
<td>30</td>
</tr>
<tr>
<td>40/32</td>
<td>41.4</td>
<td>35.4</td>
</tr>
<tr>
<td>50/25</td>
<td>54</td>
<td>30</td>
</tr>
<tr>
<td>50/32</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td>50/40</td>
<td>53.4</td>
<td>41.4</td>
</tr>
<tr>
<td>65/25</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>65/32</td>
<td>70</td>
<td>36</td>
</tr>
<tr>
<td>65/40</td>
<td>70</td>
<td>42</td>
</tr>
<tr>
<td>65/50</td>
<td>70</td>
<td>54</td>
</tr>
<tr>
<td>80/40</td>
<td>85</td>
<td>42</td>
</tr>
<tr>
<td>80/50</td>
<td>85</td>
<td>54</td>
</tr>
<tr>
<td>80/65</td>
<td>85</td>
<td>70</td>
</tr>
</tbody>
</table>

* Las medidas y espesores son referenciales, por consiguiente pueden estar sujetas a cambios.
Reducciones Excéntricas:
Material: 304
Conexión: Soldar
Norma: SMS DIN
Medidas: 1”- 3”
Aplicaciones:
Industria farmacéutica, cerveza, alimento, petróleo, bebida de leche, cosméticos

<table>
<thead>
<tr>
<th>Norma SMS:</th>
<th>OD1</th>
<th>OD2</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>38/25</td>
<td>38</td>
<td>25</td>
<td>44</td>
</tr>
<tr>
<td>51/25</td>
<td>51</td>
<td>25</td>
<td>86</td>
</tr>
<tr>
<td>51/38</td>
<td>51</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>63.5/38</td>
<td>63.5</td>
<td>38</td>
<td>82</td>
</tr>
<tr>
<td>63.5/51</td>
<td>63.5</td>
<td>51</td>
<td>40</td>
</tr>
<tr>
<td>76.1/51</td>
<td>76.1</td>
<td>51</td>
<td>79</td>
</tr>
<tr>
<td>76.1/63.5</td>
<td>76.1</td>
<td>63.5</td>
<td>39</td>
</tr>
<tr>
<td>101.6/76.1</td>
<td>101.6</td>
<td>76.1</td>
<td>81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Norma DIN:</th>
<th>OD1</th>
<th>OD2</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>40/25</td>
<td>41.4</td>
<td>29.4</td>
<td>22</td>
</tr>
<tr>
<td>50/25</td>
<td>53.4</td>
<td>29.4</td>
<td>45</td>
</tr>
<tr>
<td>50/32</td>
<td>53.4</td>
<td>35.4</td>
<td>34</td>
</tr>
<tr>
<td>50/40</td>
<td>53.4</td>
<td>41.4</td>
<td>23</td>
</tr>
<tr>
<td>65/40</td>
<td>70</td>
<td>42</td>
<td>53</td>
</tr>
<tr>
<td>65/50</td>
<td>70</td>
<td>54</td>
<td>30</td>
</tr>
<tr>
<td>80/50</td>
<td>85</td>
<td>54</td>
<td>58</td>
</tr>
<tr>
<td>80/65</td>
<td>85</td>
<td>70</td>
<td>28</td>
</tr>
</tbody>
</table>

* Las medidas y espesores son referenciales, por consiguiente pueden estar sujetas a cambios.

Uniones Americanas:
Material: 304
Conexión: Soldar
Norma: SMS DIN
Medidas: 1”- 3”
Aplicaciones: Industria farmacéutica, cerveza, alimento, petróleo, bebida de leche, cosméticos

<table>
<thead>
<tr>
<th>Norma SMS:</th>
<th>OD1</th>
<th>OD2</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>38/25</td>
<td>38</td>
<td>25</td>
<td>44</td>
</tr>
<tr>
<td>51/25</td>
<td>51</td>
<td>25</td>
<td>86</td>
</tr>
<tr>
<td>51/38</td>
<td>51</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>63.5/38</td>
<td>63.5</td>
<td>38</td>
<td>82</td>
</tr>
<tr>
<td>63.5/51</td>
<td>63.5</td>
<td>51</td>
<td>40</td>
</tr>
<tr>
<td>76.1/51</td>
<td>76.1</td>
<td>51</td>
<td>79</td>
</tr>
<tr>
<td>76.1/63.5</td>
<td>76.1</td>
<td>63.5</td>
<td>39</td>
</tr>
<tr>
<td>101.6/76.1</td>
<td>101.6</td>
<td>76.1</td>
<td>81</td>
</tr>
</tbody>
</table>

Las medidas y espesores son referenciales, por consiguiente pueden estar sujetas a cambios.

Uniones Americanas:
Material: 304
Conexión: Soldar
Norma: SMS DIN
Medidas: 1”- 3”
Aplicaciones: Industria farmacéutica, cerveza, alimento, petróleo, bebida de leche, cosméticos

<table>
<thead>
<tr>
<th>Norma SMS:</th>
<th>OD1</th>
<th>OD2</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>38/25</td>
<td>38</td>
<td>25</td>
<td>44</td>
</tr>
<tr>
<td>51/25</td>
<td>51</td>
<td>25</td>
<td>86</td>
</tr>
<tr>
<td>51/38</td>
<td>51</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>63.5/38</td>
<td>63.5</td>
<td>38</td>
<td>82</td>
</tr>
<tr>
<td>63.5/51</td>
<td>63.5</td>
<td>51</td>
<td>40</td>
</tr>
<tr>
<td>76.1/51</td>
<td>76.1</td>
<td>51</td>
<td>79</td>
</tr>
<tr>
<td>76.1/63.5</td>
<td>76.1</td>
<td>63.5</td>
<td>39</td>
</tr>
<tr>
<td>101.6/76.1</td>
<td>101.6</td>
<td>76.1</td>
<td>81</td>
</tr>
</tbody>
</table>
Las medidas y espesores son referenciales, por consiguiente pueden estar sujetas a cambios.

**Uniones Clamp:**
- **Material:** 304
- **Conexión:** Soldar
- **Norma:** SMS DIN
- **Medidas:** 1"-3"  
- **Aplicaciones:** Industria farmacéutica, cerveza, alimentación, petróleo, bebida de leche, cosméticos
**Norma SMS:**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-38</td>
<td>53.5</td>
</tr>
<tr>
<td>51</td>
<td>67.5</td>
</tr>
<tr>
<td>63.5</td>
<td>81</td>
</tr>
<tr>
<td>76.1</td>
<td>94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OD/IDx&amp;t</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25.4/22.4 x 1.5</td>
<td>50.5</td>
</tr>
<tr>
<td>38</td>
<td>38.1/35.1 x 1.5</td>
<td>50.5</td>
</tr>
<tr>
<td>51</td>
<td>50.8/48.0 x 1.5</td>
<td>64</td>
</tr>
<tr>
<td>63.5</td>
<td>63.5/59.5 x 2.0</td>
<td>77.5</td>
</tr>
<tr>
<td>76.1</td>
<td>76.2/72.2 x 2.0</td>
<td>91</td>
</tr>
</tbody>
</table>

**Norma Din:**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-40</td>
<td>53.5</td>
</tr>
<tr>
<td>50</td>
<td>67.5</td>
</tr>
<tr>
<td>65</td>
<td>94</td>
</tr>
<tr>
<td>80</td>
<td>109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OD/IDx&amp;t</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>29/26 x 1.5</td>
<td>50.5</td>
</tr>
<tr>
<td>32</td>
<td>35/32 x 1.5</td>
<td>50.5</td>
</tr>
<tr>
<td>40</td>
<td>41/38 x 1.5</td>
<td>50.5</td>
</tr>
<tr>
<td>50</td>
<td>53/50 x 1.5</td>
<td>64</td>
</tr>
<tr>
<td>65</td>
<td>70/66 x 2.0</td>
<td>91</td>
</tr>
<tr>
<td>80</td>
<td>85/81 x 2.0</td>
<td>106</td>
</tr>
</tbody>
</table>

*Las medidas y espesores son referenciales, por consiguiente pueden estar sujetas a cambios.*

**Abrazaderas:**

- **Material:** 304
- **Conexión:** Soldar
- **Norma:** SMS DIN
- **Medidas:** 1"- 3"
- **Aplicaciones:**
  - Industria farmacéutica, cerveza, alimento, petróleo, bebida de leche, cosméticos

*Las medidas y espesores son referenciales, por consiguiente pueden estar sujetas a cambios.*

**Soporte para Tubos:**

- **Material:** 304
- **Conexión:** Soldar
- **Norma:** SMS DIN
- **Medidas:** 1"- 3"
- **Aplicaciones:**
  - Industria farmacéutica, cerveza, alimento, petróleo, bebida de leche, cosméticos
Las medidas y espesores son referenciales, por consiguiente pueden estar sujetas a cambios.
Anexo C6.1

CORPORACION ACEROS AREQUIPA S.A.
AREQUIPA: Calle Jacinto Ibanez 111, Parque Industrial Arequipa-Peru.
Tel.(51)(54) 23-2000 / Fax (51)(54) 23-9796.
PISCO: Panamericana Sur Km.266, Ica-Perú.
Tel.(51)(56) 53-2957, 53-2960 / Fax (51)(56) 53-2971.
www.acerosarequipa.com  e-mail: mxmgr@acerosarequipa.com
Anexo C6.2

D.E.S.CRIPCIÓN:
Tubos para alta presión (SCH 40) fabricados con acero al carbono de calidad estructural, utilizando el sistema de soldadura por resistencia eléctrica por inducción de alta frecuencia longitudinal (ERW).

USOS:
Conducción para alta presión de agua, gas, vapor, petróleo, aire presurizado y fluidos no corrosivos.

NORMA TÉCNICA DE FABRICACIÓN:
Según Norma ASTM A53

PROPIEDADES MECÁNICAS:

<table>
<thead>
<tr>
<th></th>
<th>Resistencia Tensión Mpa</th>
<th>Límite de Fluencia Mpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado A</td>
<td>330</td>
<td>266</td>
</tr>
<tr>
<td>Grado B</td>
<td>415</td>
<td>240</td>
</tr>
</tbody>
</table>

TOLERANCIAS:

- Espesor mínimo: - 12.5% del valor nominal
- Peso: +/ - 10% del valor nominal
- Diametro: +/ - 1% del valor nominal

PRUEBAS:

- Hidrostática: 1.000 PSI
- Doblando: Según Norma ASTM A53
- Aplastamiento: Según Norma ASTM A53

PRESENTACIÓN:

1.- Longitud: 6.40 m (21) Otras longitudes *

2.- Acabado de extremos: Reinfortad plano, limpio de rebordes, Biselado *
Roscado (según norma ANSI B1.20.1) RMS tipo Vickers *

3.- Recubrimiento: Negro
Galvanizado (Según ASTM A53) *

4.- Acabado interno: Escurrido *

* Fabricación bajo pedido.

DIMENSIONES Y PESOS NOMINALES:

<table>
<thead>
<tr>
<th>Designación</th>
<th>Diámetro Exterior mm</th>
<th>Espesor SCH 40 mm</th>
<th>Peso SCH 40 kg/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>10.3</td>
<td>1.72</td>
<td>0.270</td>
</tr>
<tr>
<td>1/4</td>
<td>13.7</td>
<td>2.24</td>
<td>0.620</td>
</tr>
<tr>
<td>1/2</td>
<td>17.1</td>
<td>2.71</td>
<td>1.160</td>
</tr>
<tr>
<td>1/2</td>
<td>21.3</td>
<td>2.71</td>
<td>1.250</td>
</tr>
<tr>
<td>1/2</td>
<td>25.4</td>
<td>2.74</td>
<td>1.600</td>
</tr>
<tr>
<td>1/2</td>
<td>33.4</td>
<td>3.36</td>
<td>2.500</td>
</tr>
<tr>
<td>1/2</td>
<td>42.2</td>
<td>3.36</td>
<td>3.350</td>
</tr>
<tr>
<td>1/2</td>
<td>48.3</td>
<td>3.68</td>
<td>4.050</td>
</tr>
<tr>
<td>1/2</td>
<td>60.3</td>
<td>3.91</td>
<td>5.160</td>
</tr>
<tr>
<td>3/4</td>
<td>88.9</td>
<td>5.49</td>
<td>11.280</td>
</tr>
<tr>
<td>3/4</td>
<td>101.6</td>
<td>5.34</td>
<td>12.570</td>
</tr>
<tr>
<td>1</td>
<td>114.3</td>
<td>6.02</td>
<td>16.670</td>
</tr>
<tr>
<td>1</td>
<td>141.3</td>
<td>6.35</td>
<td>21.700</td>
</tr>
<tr>
<td>1</td>
<td>168.3</td>
<td>7.11</td>
<td>26.260</td>
</tr>
</tbody>
</table>

CORPORACIÓN
ACEROS AREQUIPA S.A.
INTRODUCTION

These rugged, refrigerant strainers (filters) are designed to remove foreign materials, like dirt and weld slag, from refrigeration systems. Strainers help prevent damage to valves and other components, reducing costly service and downtime. Strainers are usually close-coupled to solenoid valves, pressure regulators and other flanged valves.

ORDERING INFORMATION

FOR VALVE SIZE

<table>
<thead>
<tr>
<th>CAT NO.</th>
<th>FOR VALVE SIZE</th>
<th>FLANGE STYLE AND SIZES CONNECTIONS AVAILABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inch (mm)</td>
<td>FPT, SW, WN ODS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STD</td>
</tr>
<tr>
<td>ST050</td>
<td>½&quot; (13)</td>
<td>½&quot;</td>
</tr>
<tr>
<td>ST100</td>
<td>1&quot; (25)</td>
<td>1&quot;</td>
</tr>
<tr>
<td>ST200</td>
<td>1½&quot; (40)</td>
<td>1½&quot;</td>
</tr>
<tr>
<td>ST250</td>
<td>2&quot; (50)</td>
<td>2&quot;</td>
</tr>
<tr>
<td>ST300</td>
<td>2½&quot; (65)</td>
<td>2½&quot;</td>
</tr>
<tr>
<td>ST400</td>
<td>3&quot; (80)</td>
<td>3&quot;</td>
</tr>
<tr>
<td>STW500</td>
<td>4&quot; (160)</td>
<td>4&quot;</td>
</tr>
<tr>
<td>STW600</td>
<td>6&quot; (150)</td>
<td>6&quot;</td>
</tr>
</tbody>
</table>

OPTIONS

- Strainer Basket: heavy duty, available for ST100.
- Perforated Metal Strainer: necessary for suction side port applications (1½" through 3"); contact factory.
- Cloth Bags: available up to 4" for system start-up.
- Filter System: An extra-fine filter system with double the cleansing capacity of standard strainers is available. See bulletin T782 for more information.

TO ORDER: Specify catalog number and if strainer will be close-coupled to valve or installed as a separate unit. If it will be a separate unit, also specify flange connection style and size.

MATERIAL SPECIFICATIONS

- Body: ½" through 4": Ductile iron, ASTM A536, (nodular iron GGG-40), 65,000 psi tensile 3" and 6": Cast steel, ASTM A352
- Bottom Cover: ½": Steel, ASTM 108
- 1½" through 3": Ductile iron, ASTM A536
- 4" through 6": Steel, ASTM A36
- Drain Plug: Standard on ½" through 1½" (½" NPT), 1½" through 4" (½" NPT), 5" & 6" (¾" NPT)
- Screen: Stainless steel, 60 mesh (233 micron rating)
- ST050 has 100 mesh (150 micron rating)
- Gaskets: Nonasbestos, graphite composite
- Safe Working Pressure: 400 psig (27 bar)
- Operating Temperature: -60°F to +240°F (-50 to +115°C)
CAUTION

Hansen strainers are for refrigeration systems only. Read these instructions and related safety precautions completely before selecting, using, or servicing these strainers. Only knowledgeable, trained refrigeration mechanics should install, operate, or service these strainers. Stated temperature and pressure limits should not be exceeded. The bottom cover should not be removed from strainers unless the system has been evacuated to zero pressure. See also Safety Precautions in the current List Price Bulletin and the Safety Precautions Sheet supplied with the product. Escaping refrigerant can cause injury, particularly to the eyes and lungs.

WARRANTY

Hansen strainers and valves are guaranteed against defective materials or workmanship for one year F.O.B. our plant. No consequential damages or field labor is included.

REPLACEMENT SCREEN KITS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen Kit for ST050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen Assembly</td>
<td>1</td>
<td>78-1001</td>
</tr>
<tr>
<td>Bottom Cap Gasket</td>
<td></td>
<td>78-0005</td>
</tr>
<tr>
<td>Screen Kit for ST100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[standard] Consists of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen Assembly</td>
<td>1</td>
<td>78-1003</td>
</tr>
<tr>
<td>Bottom Cover Gasket</td>
<td></td>
<td>78-0016</td>
</tr>
<tr>
<td>Screen Kit for ST100 [optional, heavy duty] Consists of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen Assembly</td>
<td>1</td>
<td>78-1013</td>
</tr>
<tr>
<td>Bottom Cover Gasket</td>
<td></td>
<td>78-0023</td>
</tr>
<tr>
<td>Screen Kit for ST250 Consists of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen Assembly</td>
<td>1</td>
<td>78-1005</td>
</tr>
<tr>
<td>Bottom Cover Gasket</td>
<td></td>
<td>78-0026</td>
</tr>
<tr>
<td>Screen Kit for ST300 Consists of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen Assembly</td>
<td>1</td>
<td>78-1006</td>
</tr>
<tr>
<td>Bottom Cover Gasket</td>
<td></td>
<td>78-0027</td>
</tr>
<tr>
<td>Screen Kit for ST400 Consists of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen Assembly</td>
<td>1</td>
<td>78-1007</td>
</tr>
<tr>
<td>Bottom Cover Gasket</td>
<td></td>
<td>78-0028</td>
</tr>
<tr>
<td>Screen Kit for STW500 &amp; STW600 Screen Assembly</td>
<td>1</td>
<td>78-1009</td>
</tr>
<tr>
<td>Bottom Cover O-Ring, Inner</td>
<td></td>
<td>78-0010</td>
</tr>
<tr>
<td>Bottom; Cover O-Ring, Outer</td>
<td></td>
<td>78-0005</td>
</tr>
</tbody>
</table>

HANSEN TECHNOLOGIES CORPORATION
6827 High Grove Boulevard
Burr Ridge, Illinois 60521 USA
Telephone: 630-325-1565
Toll-free: 800-426-7368
FAX: 630-325-1572
E-mail: info@hantech.com
Website: www.hantech.com
Válvulas solenoides
Tipo EVRA 3 → 40 y EVRAI 10 → 20
Introducción

Las EVRA son válvulas solenoide de acción directa o servoa hora para líneas de líquido, aspiración y gas caliente con monofásico o gases fluidados. Las válvulas EVRA se suministran completas o por partes, p.e. se pueden pedir por separado cuerpo, bobina y bridas.

La EVRA está servoa hora en una apertura adicta, para líneas de líquido, aspiración y gas caliente con monofásico y refrigerantes fluidados.

La EVRA está especialmente diseñada para abrir - y permanecer abierta - con una caída de presión de 0 bar. La válvula solenoide EVRA se utiliza por lo tanto en plantas donde se requieren presiones diferenciales de apertura de 0 bar.

La EVRA está disponible por partes; se debe pedir por separado cuerda, brida y bobina.

La EVRA 10, 15 y 20 tienen un husillo para aperturas manuales.

Homologaciones

DNV Det Norske Veritas, Norway
OE Polski Rejestr Stowarzyszenia, Poland
MPS, Maritime Register of Shipping, Russia
Pressure Equipment Directive PED

Listado UL con bobinas GP

Valvulas solenoide tipo EVRA 3 a 40 y EVRAT 10 a 20

Datos técnicos

Refrigerantes
R 717 (NH₃), R 22, R 34a, R 404A, R 410A,
R 744 (CO₂), R 502 etc.

Temperatura ambiente y protección para bobina

Temperatura ambiente: ver “Bobinas para válvulas solenoide” EOJUE 205.

Max. 130ºC durante desecación.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Diferencial de presión apertura</th>
<th>Temperatura del medio</th>
<th>Max. presión trabajo</th>
<th>Calor kg/h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>con bobina estándar, ap. bar</td>
<td></td>
<td>bar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>10 W a. c.</td>
<td>12 W a. c.</td>
<td>20 W a. c.</td>
</tr>
<tr>
<td>EVRA 3</td>
<td>0.30</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>EVRA 10</td>
<td>0.30</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>EVRA 15</td>
<td>0.30</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>EVRA 20</td>
<td>0.30</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>EVRA 30</td>
<td>0.30</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>0.30</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

1. Evrata se el medio a m³ há a una carrera de 1 bar y 0.75 bar.
2. MOP para el medio en forma de gas de 100 bar mayores.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Capacidad nominal líquido</th>
<th>Volumen de aspiración</th>
<th>Capacidad nominal gas caliente</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a 10°C</td>
<td>a 15°C</td>
<td>a 15°C</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>R717</td>
<td>R22</td>
<td>R34a</td>
<td>R404A</td>
</tr>
<tr>
<td>EVRA 3</td>
<td>21.8</td>
<td>4.6</td>
<td>4.3</td>
</tr>
<tr>
<td>EVRA 10</td>
<td>14.0</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>EVRA 15</td>
<td>9.0</td>
<td>3.4</td>
<td>2.5</td>
</tr>
<tr>
<td>EVRA 20</td>
<td>9.0</td>
<td>3.4</td>
<td>2.5</td>
</tr>
<tr>
<td>EVRA 30</td>
<td>9.0</td>
<td>3.4</td>
<td>2.5</td>
</tr>
<tr>
<td>EVRA 40</td>
<td>9.0</td>
<td>3.4</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Capacidad nominal de gas caliente según temperatura de condensación $c = +40°C$,
cada de presión $p$ de la válvula ap = 6.8 bar,
temperatura gas caliente $l = -40°C$,
y calorifilamento $A_{cal} = 1.5$.

Anexo C8.2
Reguladores de presión y temperatura, tipo PM, y válvulas piloto
Introducción

La PM es una válvula principal servoaconada que se utiliza para regular la presión y la temperatura de las instaciones refrigeradoras.

La válvula principal PM se puede utilizar en el lado de alta y en el de baja presión del sistema, en líneas de aspiración humedas o secas, así como en líneas de líquido sin calzado de tira (es decir, donde no se produzca evaporación en la válvula).

El funcionamiento de la válvula principal PM depende únicamente de la presión de control que la válvula recibe, ya sea por medio de válvulas pilotas o por medio de una presión de control externa. La PM 1 tiene consideración para una presión de control una válvula piloto, mientras que la PM 3 tiene conexiones para tres presiones de control tres válvulas piloto.

Características

- Se puede utilizar con todos los refrigerantes corrientes no inflamables incluyendo el R 717, así como medios líquidos o gaseosos no corrosivos, teniendo en cuenta la compatibilidad de los materiales de estanqueidad.

- Amplia selección de bridas de acuerdo con los tamaños de conexiones de las normas DIN, ANSI, SC, SA y FPT.

- Puede funcionar como válvula de función múltiple cuando se le acoplan varias válvulas pilotas.

- Todas las válvulas piloto pueden aplicarse a todos los tamaños de válvula principal PM y pueden encerrarse directamente en la válvula principal, así se evitan las soldaduras y las líneas piloto externas.

- La válvula tiene una conexión de manómetro para la medición de la presión de entrada.

- La válvula tiene un filtro incorporado y un asiento de fijación que garanta una gran estanqueidad sobre el asiento.

- La cubierta de la válvula principal PM puede orientarse en cualquier dirección sin que esto influya en el funcionamiento de la válvula.

- La válvula puede equiparse con un indicador de posición electrónico AKS 45, como accesorio.
**Diseño**

La válvula principal PM se puede conectar mediante una amplia variedad de bridones que cubren los siguientes tipos:
- Soldar acero DIN (2443).
- Soldar acero ANSI (B 36.10).
- Manquitos soldar acero ANSI (B 16.11).
- Conexiones soldar acero DIN (2866).
- Conexiones soldar cobre ANSI (B 16.22).
- Rosca interior FPT NPT (ANSI ASA B 1.20.1).

La válvula principal PM se puede conectar con una varilla de bridón de 1.1/2" (DN 20) y un bridón DN 150. La aplicación de la válvula permite sólo su cierre hermético en la dirección de la flecha de flato.

**Datos técnicos**

<table>
<thead>
<tr>
<th>Tamaño Nominal</th>
<th>DN 40</th>
<th>DN 65</th>
<th>DN 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificado según</td>
<td>PN 16</td>
<td>PN 25</td>
<td>PN 40</td>
</tr>
<tr>
<td>Material</td>
<td>Aço 316</td>
<td>Aço 316</td>
<td>Aço 316</td>
</tr>
<tr>
<td>Catálogo</td>
<td>Articulo 3, párrafo 3</td>
<td>Articulo 3, párrafo 3</td>
<td>Articulo 3, párrafo 3</td>
</tr>
</tbody>
</table>

**Reticulantes.**

Todos los reticulantes comerciales no inflamables incluyen el R 717, así como líquidos refrigerantes no corrosivos, teniendo en cuenta las compatibilidades de los materiales de construcción:

- No se recomienda el uso de hidrocarburos inflamables. Para más información, póngase en contacto con Danfoss.

**Gama de temperatura.**

-50°C a 120°C (4°F a 248°F). Cuando se utiliza la PM a bajas temperaturas entre -60°C y -85°C (131°F y -12°F), es necesario que los pernos de las bridones y de las tapas superior e inferior sean de acero inoxidable (tipo A4, cantidad 80).

**Acabado.**

PM 5-65
El acabado exterior es de zinc-cromado para proteger contra la corrosión.
PM 50-125
El acabado final son varias capas de pintura.

**Gama de presión.**

Las válvulas están diseñadas para:
- Presión de trabajo máxima: 25 bar (450 psi).
- Presión de prueba máxima: 42 bar (600 psi).

Diferencia de presión para apertura máxima:
- Totalmente abierta: 0.2 bar (3 psi).
- Modo de prueba: 0 a 2.5 bar (0 a 35 psi).

El acoplamiento flexible PM 5-40 max. 150 u (15 mesh/hour).
PM 50-125 max. 1500 a (10 mesh/hour).
DUAL PRESSURE-RELIEF VALVES

In accordance with ANSI/ASHRAE 15-1994 Safety Code for Mechanical Refrigeration, pressure vessels having 10 cubic feet or more of internal gross volume, shall be fitted with dual pressure-relief valves. This is typically accomplished using a pair of pressure-relief valves inter-connected via a three-way dual shut-off valve. Even on smaller vessels this arrangement is often preferred because one valve remains operational while the other is being replaced; thereby eliminating the need to remove refrigerant from the vessel. Hansen can provide any or all the necessary components, in addition to the actual relief valves, as follows:

THREE-WAY DUAL SHUT-OFF VALVES
These rugged, forged steel bodied valves facilitate the parallel installation of pressure-relief valves. Because three-way valves will not isolate both pressure-relief valves simultaneously, they are considered the only acceptable type of shut-off valve for use with refrigerant relief piping. Their durable metal-to-metal seating and patented non-leak packing plus o-ring stem seal design combine for long, trouble-free service. Inlet and outlet connections are threaded female NPT all the same size.

Shown below is a three-way dual shut-off valve in the stem out position (back seated). The valve stem should be positioned so that only one pressure-relief valve is activated. While the valve can be either front-seated (front port is closed) or back-seated (back port is closed), the back-seated position (shown) is recommended for normal use because it takes pressure off the packing and reduces the possibility of packing leaks.

Three-Way Dual Shut-Off Valve
(shown back-seated)

<table>
<thead>
<tr>
<th>CAT. NO.</th>
<th>CONNECTION SIZE</th>
<th>DIMENSIONS (INCHES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H8021</td>
<td>½&quot; NPT</td>
<td>A: 3.93&quot; B: 2.39&quot; C: 3.98&quot; D: 1.76&quot; E: 6.00&quot;</td>
</tr>
<tr>
<td>H8022</td>
<td>½&quot; NPT</td>
<td>A: 3.93&quot; B: 2.39&quot; C: 3.98&quot; D: 1.76&quot; E: 6.00&quot;</td>
</tr>
<tr>
<td>H8024</td>
<td>1&quot; NPT</td>
<td>A: 6.88&quot; B: 3.76&quot; C: 4.00&quot; D: 2.00&quot; E: 6.00&quot;</td>
</tr>
<tr>
<td>H8025</td>
<td>1¼&quot; NPT</td>
<td>A: 7.38&quot; B: 3.76&quot; C: 4.00&quot; D: 2.00&quot; E: 6.00&quot;</td>
</tr>
</tbody>
</table>

TO ORDER: Please specify three-way dual shut-off valve catalog number and connection size.

DUAL AND DUAL UNION PRESSURE-RELIEF KITS
Hansen's Dual Pressure-Relief Valve Kit includes one (1) three-way dual shut-off valve, two (2) pressure-relief valves, and two (2) nipples for field assembly. The Dual Kit is available ½" to 1¼". The Dual Union Pressure-Relief Valve Kit consists of one (1) three-way dual shut-off valve, two (2) pressure-relief valves, four (4) unions and a single outlet. Unions at the inlets and outlets of both pressure-relief valves facilitate valve replacement. The Dual Union kit is only available with ½" & ¾" inlet sizes. Both kits require field assembly. Assembled kits are shown below.

To Order: Add "D" suffix for Dual Kit or "DU" suffix for Dual Union Kit to pressure-relief valve catalog number. Specify inlet/outlet connection size and pressure setting.

RUPTURE DISC ASSEMBLIES
Hansen rupture disc assemblies (RDAs) are used to indicate which pressure-relief valve has discharged. A pressure-relief valve will reset after discharging. However, a rupture disc remains open after bursting. An installed pressure gauge or switch (required by code) provides a visual or electronic indication that the rupture disc has burst. Also, rupture disc assemblies provide a hermetic seal to help eliminate any possibility of minute losses of refrigerant via pressure-relief valve seat materials. Rupture disc assemblies are required when using Hansen pressure-relief valves in halocarbon applications because the high cost of such refrigerants demands extreme tightness. For more detailed information, including ordering and ASME capacity requirements, see Hansen Bulletin K209.

HANSEN TECHNOLOGIES CORPORATION
6827 High Grove Boulevard
Burr Ridge, Illinois 60527 USA
Telephone: 630-325-1565
Toll-free: 800-426-7368
FAX: 630-325-1572
E-mail: info@hantech.com
Web: www.hantech.com

Teflon® is a registered trademark of DuPont®
© 2002 Hansen Technologies Corporation

3
HANSEN TECHNOLOGIES CORPORATION

HLL REFRIGERANT FLOAT SWITCH

INTRODUCTION
These Hansen refrigerant liquid level float switches (HLL Series) are used to electrically indicate or control a liquid level by opening or closing a SPDT switch. Their simple, reliable design provides long life performance for almost any application.

APPLICATIONS
These refrigerant liquid level float switches are typically installed on a vessel's liquid level column. They can control liquid level by controlling a liquid fill solenoid valve. Often, they are used to provide high level cut-out or alarm. In addition, they can be used to turn off a recirculating liquid pump if a low level occurs. Other applications include control of liquid level via a liquid exit solenoid valve, level indication via a pilot light, and transfer drum operation.

MATERIAL SPECIFICATIONS
Safe Working Pressure: 400 PSIG (27 bar)
Operating Temperature: -50°F to +150°F (-45°C to +65°C)
Connections: ¾" FPT X 1" Butt Weld combination
Specific Gravity: 0.57 to 1.70
Electrical Switch: 120V, 240V, 10 amp SPDT
Connection: ½" NPSM for conduit, Din plug (3 wire plus ground)

ADDITIONAL FEATURES
Float switches as well as tank assemblies are exactly interchangeable with R/S LL Series float switches. CSA/US Certified, CE Mark Available

ADVANTAGES
Innovative features make these float switches the superior selection. To overcome the most common reason for existing float switch failure, switch burnout, a heavy duty 10 amp snap action Honeywell SPDT Micro Switch® is used. This switch is sealed in a clear housing to allow visual confirmation of switch action but protection from tampering. In addition, the switch is surrounded by an inert gas which provides an environment which inhibits corrosion. For ease of installation, switch assembly position rotates 360°.

Tank assembly is rugged, steel bodied with unique combination ¾" FPT X 1" Butt Weld connections. Inside, a high pressure tested float ball moves up and down via a large diameter stem, overcoming potential binding or breakage. Its movement is accurately guided by the attractor and an alignment guide. Therefore, the float ball assembly is not subject to the common, adverse effects of normal oil and sludge build-up on the tank interior walls. A deflector plate across the inlet of the tank assembly protects the float ball against sudden surges and provides smoother operation. In addition, lower and upper cushioning springs provide improved protection for the float ball. A standard 2" (50 mm) differential prevents most short cycling due to momentary changes in liquid level; other differentials down to 0.5" (13 mm) are available. Because the tank assembly is welded, it eliminates gasket leak potential as well as tampering.

Specifications, Applications, Service Instructions & Parts

REFRIGERANT FLOAT SWITCHES

for Ammonia, R22, R134a and Other Approved Liquids

Bulletin HLL-2d
May 2003
INSTALLATION INSTRUCTIONS

Carefully remove plastic cap and wooden retaining plug from the side connection of the tank and discard. Install tank per proper refrigeration practice being sure tank is vertical in all planes.

Remove the shipping tube from the float switch assembly and discard. Install the float switch assembly on the float switch tank being certain the float switch assembly bottoms on the neck assembly. Warning: Tighten the retaining screw such that the screw tip is in the groove in the neck assembly. If the float switch assembly is not properly positioned and retained, the switch may not function.

CAUTION

Hansen refrigerant float switches are only for refrigeration systems. These instructions and related safety precautions must be read completely and understood before selecting, using or servicing these liquid level monitors. Only knowledgeable, trained refrigeration mechanics should install or service these refrigerant float switches. Stated temperature and pressure limits should not be exceeded. See also the Safety Precautions sheet supplied with product. Escaping refrigerant might cause personal injury, particularly to the eyes and lungs.

ELECTRICAL WIRING

HIGH LEVEL

GRAY (COM.)

LOW LEVEL

WARRANTY

Hansen electrical parts are guaranteed against defective materials and workmanship for 90 days F.O.B. our plant. All other components are guaranteed for one year F.O.B. our plant. No consequential damage or field labor is included.

ORDERING INFORMATION,
REFRIGERANT FLOAT SWITCHES

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLL</td>
<td>Standard Float Switch with Side &amp; Bottom Connections</td>
</tr>
<tr>
<td>HLLS</td>
<td>Universal Float Switch with 2 Side &amp; 1 Bottom Connections</td>
</tr>
<tr>
<td>HLLC</td>
<td>HLL with Protective Metal Cover</td>
</tr>
<tr>
<td>HLLSC</td>
<td>HLLS with Protective Metal Cover</td>
</tr>
<tr>
<td>HLLSW</td>
<td>Switch Assembly Only, Hermetic (fits all above &amp; R/S LL Float Switches)</td>
</tr>
<tr>
<td>E</td>
<td>European DIN Plug construction on any of above (Add E suffix)</td>
</tr>
<tr>
<td>COV</td>
<td>Metal Cover Only (fits HLL)</td>
</tr>
<tr>
<td>HTR1</td>
<td>10 Watt 115V Heater (fits HLL)</td>
</tr>
<tr>
<td>HTR2</td>
<td>10 Watt 230V Heater (fits HLL)</td>
</tr>
</tbody>
</table>

TO ORDER

Specify Catalog Number. To order float switch with heater, add H suffix: Example: HLLH and specify voltage. Heater can also be retrofitted.

---

HANSEN TECHNOLOGIES CORPORATION
6827 High Grove Boulevard
Burr Ridge, Illinois 60527 USA
Tel: (630) 325-1565 Fax: (630) 325-1572
Toll: (800) 426-7368 http://www.hantecl.com
© 2004 Hansen Technologies Corporation
Reguladores de presión sin energía auxiliar

Valvula reductora de presión universal Tipo 41-23

Aplicación

Margenes de regulación de 5 mbar hasta 28 bar
Diametro nominal DN 15 a 100 - Presión nominal PN 16 a 40
Para líquidos, gases y medios en fase vapor hasta 350 °C

- Reguladores proporcionales sin energía auxiliar, comandados por el medio, de fácil mantenimiento
- Cierre hermético hacia el exterior del variador del obturador, exento de rozamiento mediante fieltro de acero inoxidable
- Kit de la tubería de mando para la toma directa de la presión en el cuerpo, como accesorio
- Amplio margen de regulación y conmutado ajuste del punto de consigna mediante una tuerca
- Accionamiento y resortes intercambiables
- Valvula de asiento simple, a resorte, presión de entrada y de salida compensados por un fieltro de acero inoxidable
- Obturador con junta blanda para grandes exigencias de hermeticidad
- Obturador normal silencioso - ejecución especial para una reducción adicional del nivel de ruido con divisor de flujo St I o St III (DN 65 a 100) ver hoja técnica T 80811

Ejecuciones

Valvula reductora de presión para la regulación de la presión reducida p2 al punto de consigna ajustado. La valvula cierra al aumentar la presión detrás de la valvula.

Típo 41-23 - ejecución estandar

Valvula Tipo 2412 - diámetro nominal DN 15 a 100 - con obturador de cierre metálico - cuerpo de fundición gris EN-JLT040, fundición esteroidal EN-J51049, acero al carbono 1.0619 o acero inoxidable 1.4301

Accionamiento Tipo 2413 con membro enrollable de EPDM y rociar - piezas en contacto con el medio exentas de metal no férreo

Construcciones

Valvula reductora de presión para milibares (DN 15 a 80) - para puntos de consigna de 5 a 50 mbar
Valvula reductora de presión para pequeños caudales - con internos para microcaudales Kvs = 0.001 a 0.011 Kvs - en ejecución especial reducido
Valvula reductora de presión para vapor - con depósito de condensación para vapor hasta 350 °C
Valvula reductora de presión de seguridad - con conexión para tuberia de fugas y cierre al exterior o doble membrana e indicador de rotura de membrana

11 con Kvs = 2.5 sin fieltro de compensación

La valvula cierra al aumentar la presión detrás de la valvula.
VÁLVULAS DE CONTROL Y VALVULAS ON/OFF (CERTIFICADAS ISO-PED-ATEX)

Válvulas de control de dos vías, mezcladoras y diversoras de tres vías. Válvulas ON/OFF de dos vías y desviadoras de tres vías. Ejecuciones con fuelle, criogénicas y especiales. Actuadas neumáticamente para la regulación de fluidos (agua, líquidos, gases, vapor y aceite térmico)

Válvulas ON/OFF 2 y 3 vías (desviadoras). Ejecuciones con fuelle, criogénicas y especiales. Con actuadores neumáticos de simple o doble efecto y eléctricos, para la regulación de fluidos (agua, líquidos, gases, vapor y aceite térmico)

Válvulas de control 2 vías, mezcladoras y diversoras 3 vías. Válvulas ON/OFF de 2 y 3 vías (desviadoras). Con actuadores neumáticos o eléctricos para aplicaciones higiénicas y sanitarias. Conexiones para soldar, clamp, DIN, SMS...
Safety relief valves are ideal relief valves for medium mass flows. Their large proportional range leads to consistent functioning and relief of pressure peaks, particularly with liquids. Both proportional and safety relief valves are characterized by particularly stable operation.

**Type 431/433:**

Safety relief valve spring loaded, cast construction with flanged connections for nominal pressure ratings up to PN 40 / PR #150. Three body materials: stainless steel, carbon steel and nodular cast iron.

<table>
<thead>
<tr>
<th>Type</th>
<th>Bonnet</th>
<th>Flange ANSI B 16.5</th>
<th>Flange DIN 2501</th>
<th>Form</th>
<th>Opening Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>431</td>
<td>Open</td>
<td>#150</td>
<td>1/2&quot;...6&quot;</td>
<td>Angle Type</td>
<td>Safety Relief</td>
</tr>
<tr>
<td>433</td>
<td>Closed</td>
<td>#150</td>
<td>16...40</td>
<td>15...150</td>
<td></td>
</tr>
</tbody>
</table>
**Description**

The FT14 is an IG iron bodied ball float steam trap having stainless steel working internals and integral automatic air venting facility. The FT14 can be maintained without disturbing the pipework.

**Available types**

- FT14 (R-L): Horizontal connections with flow from right to left
- FT14 (L-R): Horizontal connections with flow from left to right
- FT14V: Vertical connections with flow downwards

**Capsule**

The BSPI/32 capsule which is used in the FT14 is suitable for use on 150°C superheat @ 6 bar g and 50°C superheat @ 32 bar g.

**Optional extras**

A manually adjustable needle valve designated "C" on the nomenclature, i.e., FT14-C can be fitted to the trap. This option provides a steam lock release (SLR) feature in addition to the standard air vent. For further information please consult Spirax Sarco.

The FT14 has the option of an integral strainer screen designated "A" on the nomenclature, i.e., FT14-X.

**Standards**

This product fully complies with the requirements of the European Pressure Equipment Directive 97/23/EC.

**Certification**

This product is available with a manufacturer's Typical Test Report. Note: All certification, inspection requirements must be stated at the time of order placement.

**Sizes and pipe connections**

1½", 2", and 3" screwed BSP or NPT.

**Pressure/temperature limits (ISO 6552)**

- Maximum allowable pressure: 16 bar g @ 100°C
- Maximum allowable temperature: 250°C @ 13 bar g
- Minimum allowable temperature: -10°C
- Maximum operating pressure: 14 bar g
- Maximum operating temperature: 250°C @ 13 bar g
- Minimum operating temperature: 0°C

**Materials**

- No. Part | Material | DIN 1683/GGG 40
- 1 Body | SG iron | BS 1562 Gr A8
- 2 Cover bolts | Steel | BS 3506
- 3 Cover gasket | Reinforced expanded graphite
- 4 Cover | SG iron | DIN 1683/GGG 40
- 5 Valve seat | Stainless steel | BS 970 431 S29
- 6 Valve seat gasket | Stainless steel | BS 1449 309 S19
- 7 Phot frame assembly, screws | Stainless steel | BS 8106 C142-70
- 8 Ball float and lever | Stainless steel | BS 1449 304 S16
- 9 Phot frame | Stainless steel | BS 1449 304 S16
- 10 Phot pin | Stainless steel
- 11 Erosion deflector (1" only) | Stainless steel | BS 970 431 S29
- 12 Air vent assembly | Stainless steel
- 13 Air vent gasket | Stainless steel | BS 1449 409 S19
- 14 SLR assembly | Stainless steel | BS 970 309 S21
- 15 SLR gasket | Stainless steel | BS 1449 304 S16
- 16 SLR seal | Graphite
- 17 Valve spring (1" only) | Stainless steel | BS 3066 302 S28

*Note: Item 12 is pressed into item 1 (1" only).*
Capacities shown above are based on condensate at saturation temperature. When discharging sub-cooled condensate the air vent provides extra capacity. Under start-up conditions when the condensate is cold the internal thermostatic air vent will be open and provides additional capacity to the main valve. On 4.5 bar units this will provide a minimum of 50% increased capacity above the hot condensate figures shown.

On 10 and 14 bar units this will be a minimum increase of 100% on the published capacity. The following table gives the minimum additional condensate capacities from the air vent.

<table>
<thead>
<tr>
<th>J.P (bar)</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4.5</th>
<th>7</th>
<th>10</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2&quot; and 3/4&quot;</td>
<td>70</td>
<td>140</td>
<td>250</td>
<td>360</td>
<td>560</td>
<td>870</td>
<td>1130</td>
<td>1590</td>
</tr>
<tr>
<td>1&quot;</td>
<td>120</td>
<td>240</td>
<td>360</td>
<td>500</td>
<td>840</td>
<td>920</td>
<td>1220</td>
<td>1590</td>
</tr>
</tbody>
</table>

FT14 Ball Float Steam Trap (Screwed)

Anexo C16.2
Características

La serie LD400 está formada por transmisores inteligentes de presión diferencial, absoluta o manométrica, así como modelos para aplicaciones de nivel sanitario. Está disponible en el protocolo HART®.

El LD400 HART® ofrece la mejor solución para las aplicaciones de campo que demandan alto desempeño. Presenta las siguientes características:

- Exactitud de ± 0.045.
- Estabilidad del ± 0.2% del URL garantizada por 12 años.
- Rango bidireccional 200.
- Tiempo de respuesta 35 ms.
- Aumento del área visible del Display.
- Lacre de seguridad para medición fiscal y transferencia de custodia.
- Bornes sin polarización.
- Gran variedad de rango de presión y aplicaciones.
- Otolización No-volatil.
- Linearidad para Tanque.
- Función de Control PID.
- Diagnóstico Avanzado.
- Medición de Flujo Bidireccional.
- Soporta DDF, EDDL y FDT/DTM.
- Supercap de Transmision Integrado.

Tipos de Transmisores

SANITARIO - LD400 S

El LD400 S se ha desarrollado especialmente para la industria de alimentos y otras aplicaciones que necesiten conexiones sanitarias. La conexión rosca a clamp permiten mantenimiento y limpieza fáciles y rápidos. La conexión flange elimina el cuello para remover de, sitios sin desconecta el sello. Las conexiones cumplen con el estandar I 974-02.
Resistance Thermometers  
Model TR30, Compact Design

Applications
- Machine building, plant and tank construction
- Power transmission engineering, hydraulics
- Industrial temperature measurement applications

Special Features
- Measuring ranges from -50 °C to +250 °C, accuracy class in accordance with DIN EN 60 751
- Integrated transmitter, programmable and calibratable via software
- Electrical connection via L-plug or circular connector
- Process connection and thermowell made from stainless steel
- Intrinsically safe versions (ATEX)

Description
This series of resistance thermometers is designed for the measurement of liquid or gaseous media. They are suitable for a max. pressure of 40 bar (special designs to 400 bar, dependant on insertion length and diameter). All electrical parts are protected against water splashes, and are built to be fully vibration resistant.

Insertion length, process connection, measuring element, etc. can be specified for the respective application in accordance with the ordering information on the back page.

The TR30 resistance thermometer incorporates a thermowell, which can be mounted to the process by means of a welded screw connection or an compression fitting. A variant without a process connection is also available. Electrical connection is via standard DIN L-plug or M12 x 1 circular connection.

Output signal Pt100
The Model TR30-P resistance thermometer provides a direct Pt100 signal output. An intrinsically-safe variant is available as an option.

Output signal 4 ... 20 mA
The Model TR30-W resistance thermometer has a built-in transmitter with a 4 ... 20 mA output signal, programmable via software. This enables the measured temperature values to be transmitted safely and easily. An intrinsically-safe variant of the Model TR30-W resistance thermometer is available as an option.

Output signal 0 ... 10 V
The Model TR30-V resistance thermometer has a built-in transmitter with a 0 ... 10 V output signal. This version is particularly suited to machine-building applications.
4 ... 20 mA output signal, Model TR30-W

Measuring element and measuring insert
The Pt100 measuring element is located in the lower tip of the thermometer. The 4 ... 20 mA transmitter is built into and potted within the thermometer's tubular housing.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Model TR30-W</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Temperature range</strong></td>
<td>Measuring range without extension neck: -50 °C ... +150 °C, with extension neck: -50 °C ... +250 °C. Measuring range is adjustable. Minimum 29 K, maximum 300 K.</td>
</tr>
<tr>
<td><strong>Measuring span</strong></td>
<td>Measuring range 0 ... +150 °C</td>
</tr>
<tr>
<td><strong>Basic configuration</strong></td>
<td>1...26 mA, 2-wire design</td>
</tr>
<tr>
<td><strong>Analogue output</strong></td>
<td>0.2 % (transmitter)</td>
</tr>
<tr>
<td><strong>Sensor burnout alarm indication</strong></td>
<td>Configurable, NAMUR downscale &lt; 3.6 mA (typical 3 mA)</td>
</tr>
<tr>
<td><strong>Sensor-signal circuit</strong></td>
<td>NAMUR upscale &gt; 21.0 mA (typical 25 mA)</td>
</tr>
<tr>
<td><strong>Load R_L</strong></td>
<td>Not configuration, in general NAMUR downscale &lt; 3.6 mA (typical 5 mA)</td>
</tr>
<tr>
<td><strong>Load effect</strong></td>
<td>R_L ≤ (U_L - 900) / 0.023 A with R_L in Ω and U_L in V</td>
</tr>
<tr>
<td><strong>Power supply</strong></td>
<td>± 0.05 % / °C</td>
</tr>
<tr>
<td><strong>Max. permissible ripple</strong></td>
<td>10 ... 36 V DC</td>
</tr>
<tr>
<td><strong>Input power supply protection</strong></td>
<td>10 % with 24 V / maximum load 300 Ω</td>
</tr>
<tr>
<td><strong>Power supply effect</strong></td>
<td>Reverse polarity</td>
</tr>
<tr>
<td><strong>Electromagnetic compatibility (EMC)</strong></td>
<td>Per EMC Directive 68/336/EGW DIN EN 81 326/3262</td>
</tr>
<tr>
<td><strong>Ambient conditions</strong></td>
<td>-40 ... +85 °C</td>
</tr>
<tr>
<td><strong>Ambient and storage temperature</strong></td>
<td>IP 67 IEC 529 / EN 60 529, when connected</td>
</tr>
<tr>
<td><strong>Ex-proof protection</strong></td>
<td>IP 65 IEC 529 / EN 60 529, when connected</td>
</tr>
<tr>
<td><strong>Special features</strong></td>
<td>Configurable °C, °F, K</td>
</tr>
<tr>
<td><strong>Temperature units</strong></td>
<td>FAG No., Description and Message can be stored within transmitter</td>
</tr>
<tr>
<td><strong>Input data</strong></td>
<td>Permanently stored in EEPROM</td>
</tr>
<tr>
<td><strong>Configuration and calibration data</strong></td>
<td>Intrinsically safe in acc. with Ex e (ATEX) gas group, to directive 94/9/EC.</td>
</tr>
<tr>
<td><strong>Explosion protection (optional)</strong></td>
<td>Marking: II 3G Ex e IIC T4 or II 2G Ex e II 21 T respectively</td>
</tr>
<tr>
<td><strong>Case, process connection and thermowell</strong></td>
<td>Stainless steel</td>
</tr>
<tr>
<td><strong>Weight</strong></td>
<td>Approx. 200 Lb / 700 g (depending on version)</td>
</tr>
<tr>
<td><strong>Dimensions</strong></td>
<td>See drawings</td>
</tr>
</tbody>
</table>

Specifications in °C refer to the measuring span

1) For measuring spans lower than 50 K, additional 0.1 %
2) For measuring spans higher than 50 K, additional 0.1 %
3) ±0.2 %, with measuring range with initial value lower than 5 °C or measuring span higher than 50 K, whichever is greater.

Electrical connection

**L-plug DIN EN 175301-803**

![Electrical connection diagram](image)

**Load diagram**

The permissible load is dependent upon the loop power supply voltage.

![Load diagram](image)
Anexo C19.1

Sensor electromagnético
Serie
FLOMID FX

Manual de Instrucciones

Conforme a la Directiva 97/23/CE de Equipos a Presión.

Este equipo está considerado un accesorio a presión y NO un accesorio de seguridad según la definición de la Directiva 97/23/CE. Artículo 1, párrafo 2.1.3.
## LÍMITES DE TEMPERATURA, PRESIÓN Y VACÍO

<table>
<thead>
<tr>
<th>DN</th>
<th>PTFE</th>
<th>PTFE / PVDF</th>
<th>PP</th>
<th>EBOHITA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flomid 2, 4</td>
<td>Flomid 0, 1, 3, 5, 7</td>
<td>Flomid 0</td>
<td>Flomid 2, 4</td>
</tr>
<tr>
<td>PN</td>
<td>PN</td>
<td>PN</td>
<td>PN</td>
<td>PN</td>
</tr>
<tr>
<td>DN2501</td>
<td>ANSI</td>
<td>PN</td>
<td>ANSI</td>
<td>PN</td>
</tr>
<tr>
<td>bar</td>
<td>B16.5</td>
<td>bar</td>
<td>B16.5</td>
<td>bar</td>
</tr>
<tr>
<td>mbar</td>
<td>psi</td>
<td>mbar</td>
<td>psi</td>
<td>mbar</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>16-40</td>
<td>0</td>
<td>16-40</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>150-300</td>
<td>150-300</td>
<td>150-300</td>
<td>150-300</td>
</tr>
<tr>
<td>15</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>25</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>35</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>40</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>45</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>50</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>55</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>60</td>
<td>900</td>
<td>900</td>
<td>900</td>
<td>900</td>
</tr>
</tbody>
</table>

(1) En mbar se excluyen los de referencia 40°C y 80°C (140°F y 176°F)

### GARANTÍA

Tecfluid S.A. GARANTIZA TODOS SUS PRODUCTOS POR UN PERÍODO DE 24 MESES desde su venta contra cualquier defecto de materiales, fabricación y funcionamiento.

Quedan excluidas de esta garantía las averías que pueden atribuirse al uso indebido o aplicación diferente a la especificada en el pedido, manipulación por personal no autorizado por Tecfluid S.A., manejo inadecuado y malos tratos.

La obligación asumida por esta garantía se limita a la sustitución o reparación de las partes en las cuales se observen defectos que no hayan sido causados por uso indebido.

Esta garantía se limita a la reparación del equipo con exclusión de responsabilidad por cualquier otro daño.

Cualquier envío de material a nuestras instalaciones o a un distribuidor debe ser previamente autorizado.

Los productos enviados a nuestras instalaciones deberán estar debidamente embalados, limpios y completamente exentos de materiales líquidos, grasas o sustancias nocivas, no aceptándose ninguna responsabilidad por posibles daños producidos durante el transporte. El equipo a reparar se deberá acompañar con una nota indicando el defecto observado, nombre, dirección y número de teléfono del usuario.

---

TECFUID S.A.
Narcis Monturiol, 33
E-08960 Sant Just Desvern
Tel. +34 933 724 511 - Fax +34 934 730 854
E-mail: tecfluid@tecfuid.com
Internet: www.tecfuid.com

Las características de los aparatos descritos en este documento, pueden ser modificadas, sin previo aviso, si nuestras necesidades lo requieren.
Excitación por señal pulsante de las bobinas del sensor, obteniendo una deriva de cero despreciable

- Salida de pulsos programable.
- Salida analógica 4-20 mA (activa o pasiva).
- Fácil programación por el usuario sin necesidad de abrir la caja (teclas táctiles).
- Diferentes unidades de medición independientes para caudal y totalizador.
- Fácil intercambio con sensores de la serie Flomid y Flomat FX.
- Montaje compacto o separado.
- Display orientable (dos posiciones) para facilitar la lectura según el punto de instalación.
- Indicador local de caudal y totalizador con puesta a cero.
- Dirección de fluido programable.
- Detección e indicación de tubería vacía programable.
- Compatibilidad con el protocolo HART (modelo XT5H).
- Caja en policarbonato resistente a U.V.

Alimentación: 230, 240, 115, 24 VAC 50/60 Hz
24 VDC
UniTrans®
Transmisor universal
Tipo UT-10 y UT-11

Aplicaciones

- Ingeniería de proceso
- Ingeniería química
- Plantas en general
- Ingeniería mecánica

Especialidades

- Rango linealmente escalable (Turn down hasta 1 : 20)
- Rango de medición desde 0 ... 20 mbar hasta 0 ... 4000 bar
- Alta precisión en la medición
- Membrana de acero inoxidable, totalmente soldada
- Display multifuncional

Descripción

Con su turn down máximo de 1 : 20, el UniTrans puede ser utilizado en muy diferentes aplicaciones. Este turn down elimina la necesidad de mantener diferentes transmisores en stock; es mucho más fácil escalar el transmisor en vez de cambiarlo (por ejemplo un transmisor de 100 bar puede ser ajustado a 5 bar).

Alta precisión en la medición
El procesado digital de la señal permite una alta precisión y rapidez de la medida desde 20 mbar hasta 4000 bar.

Indicación multifuncional
El indicador digital opcional puede ser ajustado mecánicamente y electrónicamente, lo que garantiza muchas variaciones de visualización y una óptima lectura desde diferentes direcciones. Una barra gráfica y la tendencia son visualizadas permanentemente.

Solo una pequeña modificación en la caja es suficiente para poder realizar la lectura del display desde ambas. Todas las unidades standard se pueden indicar en el display. Dos líneas más se utilizan para información adicional (valores max y min, temperatura del sensor, etc).

Con un menú muy sencillo, el usuario puede modificar los parámetros como el lenguaje, la unidad, el punto cero, el span, la inversión de la señal, etc.

El UniTrans también ofrece la posibilidad de linealización de tanques con hasta 32 puntos.

Estos transmisores se alimentan con una tensión de entrada de 12 ... 36 DC V. La señal de salida es de 4 ... 20 mA, con un sistema de 2-mitos.
<table>
<thead>
<tr>
<th>Datos técnicos</th>
<th>Tipo UT-10 ejecución estándar / UT-11 membrana aislante</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rango de medición</strong></td>
<td>0.4</td>
</tr>
<tr>
<td><strong>Límite de sobrecarga</strong></td>
<td>200</td>
</tr>
<tr>
<td><strong>Presión de rataura</strong></td>
<td>2.4</td>
</tr>
</tbody>
</table>

**Material**
- Piezas en contacto con el medio: Acero inoxidable
- Tipo UT-10: Acero inoxidable (Hastelloy C4, nitrógeno, teflón, carbono, niquel, etc.)
- Tipo UT-11: Acero inoxidable (Hastelloy C4, teflón, nitrógeno, niquel, etc.)
- Caja: Alta resistividad, plástico reforzado con fibra de vidrio (FEP), aluminio
- Liquido interno de transmisión: Sólido con rango de medición hasta 15 bar o tipo UT-11 (membrana aislante)

**Energía auxiliar Ue**
- DC: 12 V

**Señal de salida y Carga máxima admisible R A**
- Rs ≤ (Ue − 12 V) / 3.023 A con R A en ohm y Ue en volt

**Ajustabilidad**
- **punto cero**: %
- **span**: %

**Velocidad de medición interna**
- Hz: 100

**Predicción**
- % del span

**Reliabilidad**
- % del span

**Exactitud al año**
- % del span

**Error total con ±10 ... +40 °C**
- % del span

**Temperatura permitible**
- medio: °C
- ambiente: °C
- refrigeración: °C

**Rango de temperatura compensado**
- TK medio del punto cero:
- TK medio del span:

**Amortiguación**
- g

**CIF indicativo**
- 39-336 EVG; ausencia perturbaciones y resistencia a interferencias EN 61 326

**Resistencia a choques**
- g: 100 según IEC 60068-2-27 (impacto mecánico)

**Resistencia a vibraciones**
- g: 5 según IEC 60068-2-6 (vibración con resonancia)

**Protección eléctrica**
- Protección contra polaridad inversa y cortocircuito [Protección contra sobretensión]

**Clase de protección según**
- IEC 60 529 / EN 60 529, ver página 3

**Peso**
- Kg: Aprox. 2.7 (versión aluminio aprox. 1.5)
E range electric actuators
20 years of proved reliability

Code | Description
--- | ---
ERLB | 10W regulated heating resistor
ERT...B** | 10W self-regulated heating resistor
ECA | Aluminium cover
EPR.B | 0.1K 1K 5K 10K feedback potentiometer
EPT.A1 | 4-20mA feedback potentiometer
EFC.2 | 2 extra switch card
EBS.24 | 24V / 100-240V FAILSAFE security block
ECM.1 | M12 3P+T Connector
ECM.2 | M12 3P+T Connectors

Options* | Option1 | Option2 | Option3 | Option4 | Option5
--- | --- | --- | --- | --- | ---
Versions | ERLB | ERT.B | ECA | EPR.B | EPT.B | EFC.2 | EBS.24 | ECM.1 | ECM.2
MOD./ON-OFF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
P6(4-20mA/0-10V) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

* The options 1, 2 and 3 are compatibles.
** Specify the voltage
## Durée sous tension S4-50%

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Star/connection</th>
<th>Torque</th>
<th>Voltages</th>
<th>Power</th>
<th>90° travel time</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR25.709.R00</td>
<td>VR25.709.A.GP5</td>
<td>17F05-F07</td>
<td>25Nm</td>
<td>400V TRI</td>
<td>20W</td>
<td>10s</td>
</tr>
<tr>
<td>VR25.70A.G00</td>
<td>VR25.70A.A.GP5</td>
<td>17F05-F07</td>
<td>25Nm</td>
<td>100-240V AC</td>
<td>45W</td>
<td>7s (15s*)</td>
</tr>
<tr>
<td>VR25.703.G00</td>
<td>VR25.703.A.GP5</td>
<td>17F05-F07</td>
<td>25Nm</td>
<td>24V AC DC</td>
<td>45W</td>
<td>7s (15s*)</td>
</tr>
<tr>
<td>VR45.709.R00</td>
<td>VR45.709.A.GP5</td>
<td>17F05-F07</td>
<td>45Nm</td>
<td>400V TRI</td>
<td>52W</td>
<td>10s</td>
</tr>
<tr>
<td>VR45.70A.G00</td>
<td>VR45.70A.A.GP5</td>
<td>17F05-F07</td>
<td>45Nm</td>
<td>100-240V AC</td>
<td>45W</td>
<td>15s</td>
</tr>
<tr>
<td>VR45.703.G00</td>
<td>VR45.703.A.GP5</td>
<td>17F05-F07</td>
<td>45Nm</td>
<td>24V AC DC</td>
<td>45W</td>
<td>15s</td>
</tr>
<tr>
<td>VR75.709.R00</td>
<td>VR75.709.A.GP5</td>
<td>17F05-F07</td>
<td>75Nm</td>
<td>400V TRI</td>
<td>52W</td>
<td>15s</td>
</tr>
<tr>
<td>VR75.70A.G00</td>
<td>VR75.70A.A.GP5</td>
<td>17F05-F07</td>
<td>75Nm</td>
<td>100-240V AC</td>
<td>45W</td>
<td>20s</td>
</tr>
<tr>
<td>VR75.703.G00</td>
<td>VR75.703.A.GP5</td>
<td>17F05-F07</td>
<td>75Nm</td>
<td>24V AC DC</td>
<td>45W</td>
<td>20s</td>
</tr>
<tr>
<td>VS100.909.R00</td>
<td>VS100.909.A.GP5</td>
<td>22F07-F10</td>
<td>100Nm</td>
<td>400V TRI</td>
<td>135W</td>
<td>10s</td>
</tr>
<tr>
<td>VS100.90A.G00</td>
<td>VS100.90A.A.GP5</td>
<td>22F07-F10</td>
<td>100Nm</td>
<td>100-240V AC</td>
<td>45W</td>
<td>15s</td>
</tr>
<tr>
<td>VS100.903.G00</td>
<td>VS100.903.A.GP5</td>
<td>22F07-F10</td>
<td>100Nm</td>
<td>24V AC DC</td>
<td>45W</td>
<td>15s</td>
</tr>
<tr>
<td>VS150.909.R00</td>
<td>VS150.909.A.GP5</td>
<td>22F07-F10</td>
<td>150Nm</td>
<td>400V TRI</td>
<td>135W</td>
<td>20s</td>
</tr>
<tr>
<td>VS150.90A.G00</td>
<td>VS150.90A.A.GP5</td>
<td>22F07-F10</td>
<td>150Nm</td>
<td>100-240V AC</td>
<td>85W</td>
<td>30s</td>
</tr>
<tr>
<td>VS150.903.G00</td>
<td>VS150.903.A.GP5</td>
<td>22F07-F10</td>
<td>150Nm</td>
<td>24V AC DC</td>
<td>85W</td>
<td>30s</td>
</tr>
<tr>
<td>VS300.909.R00</td>
<td>VS300.909.A.GP5</td>
<td>22F07-F10</td>
<td>300Nm</td>
<td>400V TRI</td>
<td>135W</td>
<td>35s</td>
</tr>
<tr>
<td>VS300.90A.G00</td>
<td>VS300.90A.A.GP5</td>
<td>22F07-F10</td>
<td>300Nm</td>
<td>100-240V AC</td>
<td>85W</td>
<td>50s</td>
</tr>
<tr>
<td>VS300.903.G00</td>
<td>VS300.903.A.GP5</td>
<td>22F07-F10</td>
<td>300Nm</td>
<td>24V AC DC</td>
<td>85W</td>
<td>50s</td>
</tr>
<tr>
<td>VT600.909.T00</td>
<td>VT600.909.A.T00</td>
<td>36F10-F12</td>
<td>600Nm</td>
<td>400V TRI</td>
<td>250W</td>
<td>38s</td>
</tr>
<tr>
<td>VT600.90A.T00</td>
<td>VT600.90A.A.T00</td>
<td>36F10-F12</td>
<td>600Nm</td>
<td>230V AC</td>
<td>250W</td>
<td>38s</td>
</tr>
<tr>
<td>VT1000.909.T00</td>
<td>VT1000.909.A.T00</td>
<td>36F10-F12</td>
<td>1000Nm</td>
<td>400V TRI</td>
<td>250W</td>
<td>38s</td>
</tr>
<tr>
<td>VT1000.90A.T00</td>
<td>VT1000.90A.A.T00</td>
<td>36F10-F12</td>
<td>1000Nm</td>
<td>230V AC</td>
<td>250W</td>
<td>38s</td>
</tr>
</tbody>
</table>

* *4-20mA travel time*
**VALVULAS INOX LÍNEA SANITARIA CON ACTUADOR NEUMÁTICO**

**STAINLESS STEEL VALVES WITH PNEUMATIC ACTUATORS**

### FIGURA / FIGURE

**VALVULA MARIPOSA EXTREMOS SOLDAR / SOLDAR**

**CARACTERÍSTICAS DE VALVULA VEP ART. 2044E**

**CARACTERÍSTICAS DE ACTUADOR VEP ART. 2044E / 2049 ACTUACIÓN SIMPLE EFECTO / DOBLE EFECTO**

**BUTTERFLY VALVE END WELDED / WELDED VALVE CHARACTERISTICS SEE ART. 2044E**

**ACTUATION CHARACTERISTICS SEE ART. 2044E / 2049. SPRING RETURN OR DOUBLE ACTING ACTUATOR**

#### NOVEDAD/ NEW

<table>
<thead>
<tr>
<th>Código</th>
<th>Medida</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>5943E 06 44</td>
<td>1&quot;</td>
<td>3.740</td>
</tr>
<tr>
<td>5943E 07 44</td>
<td>1 1/4&quot;</td>
<td>3.930</td>
</tr>
<tr>
<td>5943E 08 44</td>
<td>1 1/2&quot;</td>
<td>3.940</td>
</tr>
<tr>
<td>5943E 09 44</td>
<td>2&quot;</td>
<td>4.350</td>
</tr>
<tr>
<td>5943E 10 44</td>
<td>2 1/2&quot;</td>
<td>4.790</td>
</tr>
<tr>
<td>5943E 11 44</td>
<td>3&quot;</td>
<td>5.050</td>
</tr>
<tr>
<td>5943E 12 44</td>
<td>4&quot;</td>
<td>5.700</td>
</tr>
</tbody>
</table>

#### DOBLE EFECTO / DOUBLE ACTING

<table>
<thead>
<tr>
<th>Código</th>
<th>Medida</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>5943E 06 49</td>
<td>1&quot;</td>
<td>3.740</td>
</tr>
<tr>
<td>5943E 07 49</td>
<td>1 1/4&quot;</td>
<td>3.930</td>
</tr>
<tr>
<td>5943E 08 49</td>
<td>1 1/2&quot;</td>
<td>3.940</td>
</tr>
<tr>
<td>5943E 09 49</td>
<td>2&quot;</td>
<td>4.350</td>
</tr>
<tr>
<td>5943E 10 49</td>
<td>2 1/2&quot;</td>
<td>4.790</td>
</tr>
<tr>
<td>5943E 11 49</td>
<td>3&quot;</td>
<td>5.050</td>
</tr>
<tr>
<td>5943E 12 49</td>
<td>4&quot;</td>
<td>5.700</td>
</tr>
</tbody>
</table>

**NOTA: PARA VÁLVULAS EN 316L AUTOMATIZADAS ROGAMOS CONSULTAR:**

*FOR VALVE MADE IN 316L WITH ACTUATOR, PLEASE CONTACT US.*
FOTO 01: VISTA PANORÁMICA DEL PASTEURIZADOR
FOTO 02: VISTA DE SERPENTIN DE MANTENIMIENTO, INTERCAMBIADOR M6 Y SISTEMA DE REFRIGERACIÓN

FOTO 03: VISTA LATERAL DE PASTEURIZADOR
FOTO 04: VISTA DE INTERCAMBIADOR M10 BASE LINE Y BOMBAS

FOTO 05: VISTA DE INTERCAMBIADOR TUBULAR PARA CALENTAMIENTO DE AGUA