INFLUENCIA DE LA PROPORCIÓN MOLAR ETANOL /AGUA EN LA SOLUCIÓN PRECURSORA SOBRE LA MORFOLOGÍA Y ACTIVIDAD FOTOCATALÍTICA DE PELÍCULAS PIROLÍTICAS DE ZnO

THE INFLUENCE OF THE ETHANOL/WATER MOLAR RATIO IN THE PRECURSOR SOLUTION ON MORPHOLOGY AND PHOTOCATALYTIC ACTIVITY OF PYROLYTIC ZnO FILMS

María Quintana¹, Juan Rodríguez², José. L. Sólis³, Walter Estrada⁴

RESUMEN

Películas delgadas de óxido de zinc, fueron fabricadas por un sistema de rociado pirolítico equipado con un arreglo óptico que asegura el control in-situ del crecimiento de la película. Una solución 0,1 M de acetato de zinc diluida en una mezcla de etanol y agua, fue usada como solución precursora. La temperatura de depósito y el pH de la solución precursora fueron mantenidos a 350°C y 4,5 respectivamente. Los patrones de difracción de rayos X, revelan que las películas fueron la fase zincita con un tamaño de grano dependiente de la proporción molar etanol/agua, Γ, en la solución precursora. El patrón de interferencia obtenido durante el crecimiento de la película fue usado para monitorear la rugosidad de la película; encontrándose que está relacionado con los resultados de análisis superficial y óptico obtenido por microscopía electrónica de barrido (SEM) y medidas espectrofotométricas, respectivamente. Los resultados fotoelectrocatalíticos indicaron que hay una correlación del volumen molar parcial de etanol respecto al agua en la solución de rociado con la eficiencia fotocatalítica de las películas de ZnO. Encontramos que la máxima fotodegradación del anaranjado de metilo en la solución ocurre usando películas de ZnO obtenidas con Γ igual a 0,12.

Palabras clave: Óxido de zinc, Degradación fotoelectrocatalítica, Anaranjado de metilo, Rociado pirolítico

ABSTRACT

Zinc oxide films were fabricated by a home made spray pyrolysis system equipped with an optical set-up ensuring the in-situ control of the film growth. 0,1 M of zinc acetate diluted in a mixture of ethanol and water was used as the precursor solution. The deposition temperature and the pH of the precursor solution were kept at 350°C and 4,5, respectively. X-ray diffraction patterns revealed that films were zincite-like with a grain size depending of the ethanol/water molar ratio, Γ, in the precursor solution. The interference pattern obtained during film deposition was used to monitor the film roughness; it was found that this is related with those results of surfaces and optical analysis obtained by scanning electron microscopy (SEM) and spectrophotometric measurements, respectively. Photo-electrocatalytic results indicated that there is a correlation of the partial molar

¹Licenciada, de Postgrado de la Facultad de Ciencias de la Universidad Nacional de Ingeniería, ²Dr., Profesor Asociado de la Facultad de Ciencias de la Universidad Nacional de Ingeniería, e Investigador del Instituto Peruano de Energía Nuclear, ³Dr., Profesor de la Facultad de Ciencias de la Universidad Nacional de Ingeniería, e Investigador del Instituto Peruano de Energía Nuclear, ⁴Dr., Profesor de la Facultad de Ciencias de la Universidad Nacional de Ingeniería, e Investigador del Instituto Peruano de Energía Nuclear.
volume of ethanol respect to water in the spraying solution with the photocatalytic efficiency of the ZnO films. We found that the maximum photodegradation of methyl orange in the solution occurs using ZnO films obtained with \(\Gamma \) equal to 0,12.

Key words: Zinc oxide, Photoelectrocatalytic degradation, Metil orange, spray pyrolysis.

INTRODUCCIÓN

Las películas delgadas rugosas son de mucho interés para aplicaciones en fotoelectrocatalísisis, sensores de gas, celdas solares fotoelectroquímicas, etc. Debido a la gran extensión de la interfase entre el sólido y el fluido que se encuentra alrededor de él. La degradación fotocatalítica de compuestos orgánicos ha sido propuesta como una alternativa viable para la descontaminación de aguas servidas o aguas para el consumo humano [1]. El óxido de titanio es el material más estudiado para estas aplicaciones [2]. Sin embargo, el óxido de zinc puede ser usado también para este propósito [3]. La morfología de la película depende de la técnica de depósito y diferentes técnicas han sido reportadas para preparar películas de ZnO, tales como: sol-gel [4], evaporación reactiva [5], sputtering [6], baño químico [7], rociado pirolítico [8, 9, 10, 11], etc. Entre estas técnicas, el rociado pirolítico es una de las más simples y de bajo costo, ademas la morfología de la película puede ser fácilmente modificada controlando el precursor y las condiciones de depósito. Películas transparentes de ZnO, han sido obtenidas por descomposición pirolítica de acetato de zinc diluido en etanol [12], en agua desionizada [13, 14], o una mezcla (3:1 vol) de etanol y agua desionizada [15]. Recientemente hemos reportado la influencia del pH de la solución precursora (acetato de zinc diluido en agua) en la rugosidad de las películas, y la degradación del anaranjado de metilo ha sido eficiente con las películas más rugosas [14]. En este trabajo reportamos la influencia en la morfología de las películas de ZnO de la dilución de acetato de zinc en diferentes mezclas de agua y etanol. El crecimiento de la película fue monitoreado por reflectometría laser in situ, y también fue estudiada la degradación fotoelectrocatalítica del anaranjado de metilo en solución acuosa usando películas delgadas de ZnO. Se observó que la eficiencia de la degradación del anaranjado de metilo está relacionada con la rugosidad de la película.

MÉTODOS Y MATERIALES

Preparación de la película y el monitoreo in situ de su crecimiento.

Las películas de ZnO, fueron depositadas usando un equipo de rociado pirolítico en un sistema descrito anteriormente [14]. Un nebulizador clínico fue usado como atomizador. El proceso empieza formando el aerosol de la solución precursora producida en el nebulizador, el cual es rociado sobre el sustrato caliente donde crecerá la película. Una solución precursora 0,1 M de acetato de zinc extra puro hidratado (Riedel-de-Haen) en una mezcla de agua desionizada y etanol, fue usada en todos los experimentos. Algunas gotas de ácido acético (Mallinckrodt Laboratory Chemicals) fueron añadidas para obtener una total disociación del acetato de zinc, así como para ajustar el pH de la solución a 4,5. Diferentes cantidades de etanol (Merck) estuvieron en la solución precursora, tal que la proporción etanol/agua, \(\Gamma \), en la solución de acetato de zinc fue variada de 0 a 0.92. Se usó aire comprimido como gas portador con flujo y presión de aire constantes de 15 L/min y 1,7x10^5 Pa, respectivamente. Las soluciones fueron rociadas sobre el sustrato a 350°C. Un sistema de reflectometría laser para el monitoreo in situ del crecimiento de la película durante el depósito, fue adaptado al sistema de rociado pirolítico. Este sistema está descrito en la referencia [16]. Las películas de ZnO, fueron depositadas sobre sustratos de vidrio Libby Owens Ford de 2 mm de espesor cubierto con una capa de SnO2:F transparente y conductor por una resistencia/cuadradade de 8 \(\Omega \). Para conseguir películas del mismo espesor, el rociado fue detenido cuando la señal de la reflectancia laser en función del tiempo de depósito mostró tres picos de interferencia (~650 nm de espesor). El espesor de la película fue medido por un perfilómetro Tencor, dando un valor promedio de 600±40 nm. Las gráficas de la reflectancia laser in situ del
crecimiento de películas de ZnO a partir de soluciones precursoras con diferentes proporciones molenares de etanol/agua son mostrados en la Fig. 1.

En todas las películas, las oscilaciones y una atenuación progresiva de la reflectancia son observadas. El máximo y mínimo en la reflectancia define una envoltura, dentro de la cual, se producen las oscilaciones, la cual es asociada a la rugosidad de la película. El grado de rugosidad en la película está relacionada a cuan rápido la amplitud de la envoltura decrece, para una película especular ideal la amplitud de la envoltura no decrece.

Observamos que las películas se vuelven más rugosas a $\Gamma = 0,06$, mientras que la rugosidad de la película obtenida con una solución precursora con mayor o menor proporción molar de etanol/agua disminuye progresivamente. Las películas recuperan su especularidad óptica, caracterizada por franjas de interferencia bien definidas, cuando son preparadas con $\Gamma = 0$ o $\Gamma = 0,92$.

![Fig. 1 Reflectancia normal in-situ, en función del tiempo para depósito para películas de ZnO fabricadas por rociado pirolítico. Cada curva corresponde a la relación molar etanol/agua en la solución precursora indicada.](image)

Caracterización óptica y estructural

La transmittancia (T_s) y la reflectancia (R_s) especular espectral, y la transmittancia (T_d) y reflectancia (R_d) difusa espectral para películas de ZnO, fueron medidas en el rango de longitud de onda entre 300 y 2500 nm, usando un espectrofotómetro de doble haz Perkin Elmer lambda 9 equipado con una esfera integradora. Las estructuras cristalinas de las películas fueron caracterizadas por difracción de rayos X (XRD), usando un diffractómetro Philips X Pert operando con radiación CuKα. Las morfologías superficiales fueron estudiadas con un microscopio electrónico de barrido (SEM) usando un equipo Philips 300 operado a 20 kV.

Degradación fotoelectrocatalítica del anaranjado de metilo.

La degradación fotoelectrocatalítica del anaranjado de metilo (Merck) en solución acuosa usando las películas de ZnO, fue estudiada usando un fotoreactor descrito anteriormente [17]. Este consiste de un contenedor cilíndrico de teflón donde la muestra con película de ZnO se coloca de tal manera que está en contacto con 35×10^{-5} M de una solución acuosa de anaranjado de metilo y puede ser irradiado con luz ultravioleta (UV). Dos ventanas de cuarzo paralelas son alineadas perpendicularmente al eje del cilindro para permitir medir la transmittancia espectral de la solución. Un arreglo de tres electrodos fue usado en los experimentos. Este incluye un alambre de Pt como contraelectrodo, la película de ZnO como electrodo de trabajo y el electrodo de Ag/AgCl como electrodo de referencia. La irradiación UV, fue obtenida usando una lámpara Philips Hg de 250 W montada a 15 cm delante de la muestra. Para evitar los efectos térmicos, se utilizó un filtro de agua entre la lámpara y el fotoreactor.

La intensidad la radiación UV-A (310 a 400 nm), medido con un radiómetro UDT 300, fue 3 mW durante el experimento. El fotoreactor fue colocado en el compartimento de la muestra en un espectrofotómetro Optometrics RS 325 y un sistema mecánico fue usado para evitar la irraciación UV durante la medida en el espectrofotómetro. Un Potenciómetro Wenking POS 73 inerconectado a una computadora, fue usado para las medidas electroquímicas. Un potencial de 0,7 V al electrodo de trabajo fue aplicado para evitar la recombinación electrón - hueco en las muestras irradiadas; porque este efecto podría ser significante, principalmente debido a las trampas y estados superficiales. Para disminuir la influencia del oxígeno libre durante el experimento se burbujeo continuamente nitrógeno en el fotoreactor para que la solución se mantenga uniformemente mezclada.
RESULTADOS

Caracterización óptica

La Fig. 2, muestra la transmittancia especular espectral (Ts) para películas de ZnO depositadas sobre vidrio con diferentes proporciones moleares de etanol/agua, \(\Gamma \), en la solución precursora. Se observa que la transmittancia especular de las películas de ZnO, se modifica si \(\Gamma \) varía. La transmittancia especular espectral, disminuye cuando \(\Gamma \) se incrementa de 0,92 a 0,06, y aumenta para \(\Gamma \) menores que 0,06.

Las películas obtenidas con \(\Gamma \) igual a 0,92 o 0,0 son transparentes. Las películas de ZnO obtenidas con \(\Gamma \) iguales a 0,03, 0,06 y 0,12 no mostraron ningún patrón de interferencia. En estas películas, la superficie rugosa dispersa la luz y destruye los efectos de interferencia, también tienen una apariencia lechosa, y son películas altamente difusivas.

![Gráfico de transmittancia especular de películas de ZnO (Fig. 2)](image)

Fig. 2 Transmittancia especular espectral de películas de ZnO sobre vidrio obtenidas por rociado pirolítico a 350 °C y con diferente proporción molar \(\Gamma \) mostrada de la solución precursora.

En la Fig. 3, se muestran Ts, Td, Rs y Rd medidos a 550 nm como una función de \(\Gamma \) en la solución precursora. De este gráfico se observa claramente que Ts y Rs, siguen el mismo comportamiento y sus valores mínimos son obtenidos con \(\Gamma = 0,06 \).

![Gráfico de transmittancia especular y difusa (Fig. 3)](image)

Fig. 3 Transmittancia especular Ts, y difusa Td, reflectancia normal especular Rs y difusa Rd medidas a 550 nm para películas de ZnO, depositadas sobre vidrio mediante rociado pirolítico a 350 °C en función de la razón molar de etanol/agua \(\Gamma \) de la solución precursora.

Mientras Td y Rd siguen una tendencia inversa, tienen sus máximos con \(\Gamma = 0,06 \), los valores de Td y Rd están relacionadas con la rugosidad de la película.

Caracterización estructural

La Fig. 4 muestra los resultados para las películas de ZnO depositadas sobre los sustratos de vidrios con diferentes proporciones moleares de etanol/agua en la solución precursora. Es evidente que las películas obtenidas consisten de la fases zínca y no depende de \(\Gamma \).

![Gráfico de difractogramas de difracción de rayos X (Fig. 4)](image)

Fig. 4 Difractogramas de difracción de rayos X de las películas de ZnO obtenidas por rociado pirolítico a 350 °C, y diferentes razones moleares de etanol agua en la solución precursora. Los picos observados corresponden a estructuras de zínca.
El tamaño de grano D fue estimado usando la fórmula de Scherrer:

$$D = \frac{0.9 \lambda}{\beta \cos \theta},$$

(1)

donde $\lambda = 1.54$ Å es la longitud de onda de los rayos X de la radiación CuK$_{\alpha}$, 2 θ es el ángulo de difracción, y β es el ancho del pico de difracción a la mitad de la intensidad máxima. Aplicando la fórmula de Scherrer a los picos (100), (002) y (101) de las películas de ZnO, se encontró que el tamaño de grano depende de la proporción molar de etanol/agua en la solución precursora (ver Fig. 5). Sin importar el pico de difracción usado para derivar el tamaño de grano de las películas de ZnO, se tiene un mínimo alrededor de 33 nm a $\Gamma = 0.12$.

Fig. 5 El tamaño de grano de las películas de ZnO obtenidas mediante rociado pirolítico obtenidos por DRX en función de la proporción etanol/agua Γ en la solución precursora.

La Fig. 6, muestra las morfologías de las películas de ZnO obtenidas con diferentes valores de Γ en la solución precursora sobre sustrato de vidrio transparente precubierto de SnO$_2$: F.

La morfología de las películas de ZnO obtenidas con Γ igual a 0 y 0.92, son densos con aglomerados uniformemente distribuidos, mientras que las películas obtenidas con Γ igual a 0.12, 0.18 y 0.32, son menos densos que las películas obtenidas con Γ igual a 0 y 0.92. Esto concuerda con los resultados obtenidos por caracterización óptica.

Fig. 6 Micrografías del ZnO preparadas a pH = 4.5 y 350 °C. Los resultados pertenecen a películas preparadas con diferentes proporciones molares de etanol/agua Γ: (a) 0, (b) 0.03, (c) 0.06, (d) 0.12, (e) 0.18, (f) 0.31, y (g) 0.92.

Degradación fotoelectrocatalítica de anaranjado de metilo.

Las películas preparadas con menores volúmenes parciales de etanol con respecto al agua en la solución precursora ($\Gamma = 0.06$ y $\Gamma = 0.03$), mostraron ser mecánicamente inestables en agua, tal que los estudios de degradación fotoelectrocatalítica para estas películas no fueron realizados. La Fig. 7 muestra los datos medios de fotocorriente para películas de ZnO obtenidas con Γ igual a 0.12, 0.32 y 0.92 en la solución precursora como una función del tiempo de irradiación. Los cortes en la fotocorriente fueron causados al bloquear la radiación UV, mientras se media el espectro del contenido de la celda. Puede
ser visto que la fotocorriente, es mayor para películas de ZnO obtenidas con $\Gamma = 0,12$ en la solución precursora como una función de la irradiación respecto de las otras películas.

![Fig. 7 Fotocorriente en función del tiempo de irradiación UV para películas de ZnO en una solución acuosa de anaranjado de metilo 35×10^{-5} M. Los resultados pertenecen a películas depositadas a diferentes proporciones de etanol/agua, Γ, en la solución precursora: (a) $\Gamma = 0,12$, (b) $\Gamma = 0,32$, (c) $\Gamma = 0,92$.](image)

La Fig. 8, muestra los espectros de absorbancia del anaranjado de metilo en solución acuosa tomado en intervalos de 30 y 35 min de fotoelectrocatalisis con películas de ZnO obtenidas con $\Gamma = 0,12$, 0,32 y 0,92 en la solución precursora bajo irradiación UV. El típico pico de absorción del anaranjado de metilo [18], puede ser identificado a 460 nm. La intensidad de la banda de absorción de la solución de anaranjado de metilo disminuye después de la fotoelectrocatalisis con películas de ZnO obtenidas con $\Gamma = 0,12$ (Fig.8a) en función del tiempo de irradiación, sin embargo las películas de ZnO obtenidas con $\Gamma = 0,32$ (Fig.8b) y 0,92 (Fig.8c), estas bandas de absorción solo presentan una ligera variación, lo que indica un menor degradación fotocalítica de anaranjado de metilo.

![Fig. 8 Espectros de absorbancia medidos después de irradiación UV de la degradación de una solución acuosa de anaranjado de metilo 35×10^{-5} M, con películas de ZnO, obtenidas con proporciones molares de etanol agua en la solución precursora: (a) $\Gamma = 0,12$, (b) $\Gamma = 0,32$, (c) $\Gamma = 0,92$.](image)

La Fig. 9, muestra la concentración relativa C/Co, del anaranjado de metilo como una función del tiempo de irradiación usando películas de ZnO obtenidas con Γ igual a 0,12, 0,32 y 0,92 en la solución precursora. La mejor degradación del anaranjado de metilo en la solución ocurre usando películas de ZnO obtenidos con Γ igual a 0,12.

De estos resultados hay una clara evidencia que el ZnO induce la degradación fotoelectrocatalítica del anaranjado de metilo, y la eficiencia de degradación está relacionada con la morfología de la película.
Influencia de la proporción molar etanol/agua en la solución precursora sobre la morfología y actividad fotocatalítica de películas pirolíticas de ZnO

Fig. 9 Concentración relativa calculada después de irradiación UV, para los tiempos mostrados en la degradación de una solución acuosa de anaranjado de metilo 35x10⁻³ M. Los resultados pertenecen a películas depositadas a diferentes proporciones de etanol agua Π de la solución precursora: (a) Π = 0,12, (b) Π = 0,32, (a) Π = 0,92.

DISCUSIÓN

Las medidas en situ del crecimiento de las películas de ZnO obtenidas durante el depósito de la película, fueron usados para monitorear la rugosidad; se ha encontrado que esto está relacionado con los resultados de análisis superficial y óptico obtenido por SEM y medidas espectrofotométricas, respectivamente.

Los resultados indicaron que existe una correlación entre la proporción molar etanol/agua en la solución precursora y la morfología de las películas de ZnO obtenidas. Los patrones de difracción de rayos X revelan que el tamaño de grano de las películas de ZnO está correlacionado con la proporción molar etanol/agua en la solución precursora. Mientras mantenemos constante la temperatura de depósito, pH, y concentración de la solución precursora, las propiedades físicas de las películas están relacionadas solo con la proporción molar etanol/agua en la solución precursora.

En general el volumen parcial molar de una sustancia A en una mezcla, es el cambio en volumen sobre la adición de 1 mol A en gran exceso de la mezcla [19]. El volumen parcial molar de los componentes de una mezcla binaria de A y B, varía con la composición, porque, el ambiente de cada tipo de molécula cambia, como la composición cambia de A puro, a B puro. Particularmente, el volumen parcial molar de etanol en una mezcla binaria de etanol y agua a través de toda la composición, tiene un mínimo en la proporción molar etanol/agua, Π cerca de 0,07. Nuestros resultados coinciden con el hecho de que la rugosidad de la película y el tamaño de grano tiene un mínimo a una proporción molar etanol/agua, Π igual a 0,06 y 0,12 respectivamente.

Los volúmenes parciales molares de etanol cercanos al mínimo están relacionados a mayores enlaces de puente de hidrógeno, lo cual, contribuiría a mejorar los valores de tensión superficial de la solución precursora y producir pequeñas gotas. Esto puede ser explicado considerando que cuando una molécula de etanol es añadida a un gran volumen de agua, la molécula de etanol, es completamente rodeada por moléculas de agua y debido a sus fuertes enlaces de puente de hidrógeno, ésta es comprimida [19].

Moléculas adicionales de etanol desarrollan nuevos enlaces de puente de hidrógeno entre ellas, las cuales son añadidas a otras de agua decreciendo aún más el volumen molar parcial de etanol. Sin embargo, si la cantidad de las moléculas de etanol se incrementa, los enlaces de puente de hidrógeno entre las moléculas de agua decrecerían y desaparecerían, incrementándose progresivamente el volumen parcial molar de etanol y, las moléculas de agua serían rodeadas por moléculas de etanol. Los puentes de hidrógeno son los responsables para los valores de tensión superficial en la solución, y la solución con mayor tensión superficial produce grandes gotas, como por ejemplo; el etanol (tensión superficial de 24,05 erg/cm²) formaría gotas más pequeñas que el agua (tensión superficial de 72,77 erg/cm²). Luego a mayor cantidad de pequeñas gotas rociadas llegando sobre el sustrato caliente reaccionarían pirolíticamente y cubrirían mayores áreas que las producidas de una solución precursora con baja tensión superficial. Para Π menores que 0,06, el volumen molar parcial de etanol se incrementa y produce gotas mas grandes. Esto podría explicar la morfología y tamaño de grano de las películas.

Las películas preparadas con un volumen parcial menor de etanol respecto al agua en la solución
precursora \(\Gamma = 0.06 \) y \(\Gamma = 0.03 \), son mecánicamente inestables en agua, debido a eso, las películas son bastante rugosas. Las películas depositadas con \(\Gamma \approx 0.06 \) en la solución precursora han mostrado ser las más rugosas, pero las películas tienen una inestabilidad mecánica en agua. Una película obtenida con \(\Gamma = 0.12 \), es aun bastante rugosa pero mecánicamente estable en agua. En la oscuridad las películas preparadas con \(\Gamma \) igual a 0,12, 0,32 y 0,92, tienen buena estabilidad química, sin embargo, bajo iluminación las películas más rugosas (\(\Gamma = 0.12 \)) decrecen su eficiencia, esto podría ser debido a la fotocorrosión del electrodo, este hecho también se observa en otras películas.

Ha sido mostrado que las películas de ZnO obtenidas con \(\Gamma = 0.12 \), tienen una notable buena fotoactividad, y después de 2 h de irradiación UV el anaranjado de metilo es degradado a la mitad de su concentración inicial. Las películas obtenidas con \(\Gamma \) mayores que 0,12 o iguales a 0 son menos rugosas y tienen poca fotoactividad. Se puede ver que la fotocorriente (Fig.7), es mayor para películas rugosas (\(\Gamma = 0.12 \)) que para películas especulares, pero decrecen en el tiempo probablemente debido a i) la velocidad de difusión del pigmento al volumen de la interface, ii) fotocorrosión del electrodo o iii) envenenamiento de la superficie por adsorción irreversible de los productos. Sin embargo, la fotocorriente para películas de ZnO hechas con \(\Gamma = 0.92 \) se incrementan con el tiempo, esto podría ser debido a la fotocorrosión de los electrodos el cual, aumenta el área superficial. Los resultados fotocatalíticos indican que hay una correlación del volumen parcial de etanol respecto al agua en la solución precursora con la eficiencia fotocatalítica de las películas de ZnO.

CONCLUSIONES

Se obtuvieron diferentes morfologías en las películas de ZnO cuando el acetato de zinc fue diluido en diferentes proporciones molaras de etanol y agua, \(\Gamma \), en la solución precursora. Encontramos que la máxima fotodegradación de anaranjado de metilo en la solución ocurre usando películas de ZnO obtenidas con \(\Gamma \) igual a 0,12.

ABREVIATURAS

XRD, difracción de rayos X; SEM, microscopía electrónica de barrido.

AGRADECIMIENTOS

Este trabajo fue parcialmente subvencionado por el proyecto SOLWATER ICA4-CT-2002-10001, el proyecto ASO, OEA AE 141-2001 y el International Science Programme de la Universidad de Uppsala. Agradecemos a la Dra. A. Gorenstein por las medidas espectrofotométricas en la UNICAMP y al Dr. J. Santiago por las fructíferas discusiones.

REFERENCIAS

Influencia de la proporción molar etanol/agua en la solución precursora sobre la morfología y actividad fotocatalítica de películas pirolíticas de ZnO

Correspondencia: westrada@ipen.gob.pe

Recepción de Originales: Setiembre 2005
Aceptación de Originales: Diciembre 2005