UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE CIENCIAS

"ELABORACION DE PELICULAS DELGADAS DE SILICIO AMORFO HIDROGENADO POR GLOW DISCHARGE DC Y SU CARACTERIZACION ELECTRICA Y OPTICA"

TESIS

PARA OPTAR EL TITULO PROFESIONAL DE LICENCIADO EN FISICA

JORGE AUGUSTO LEON ERAS

LIMA-PERU
1996
RESUMEN

El presente trabajo tiene por objetivo describir un método no tradicional para el crecimiento de a-Si : H por el plasma DC que considera una reacción de descarga gaseosa del hidrógeno con trozos de silicio policristalino de grado metalúrgico produciéndose la mixtura a-Si-H. Este compuesto se va a depositar sobre un substrato de vidrio, formándose una película delgada de a-Si : H. El proceso puede ser considerado como una extensión del método PAT de "Vepreck" (Plasma Associated Transport), el cual involucra grandes áreas de reacción. Se presentan exitosamente algunas modificaciones en el laboratorio de un equipo de deposición "Glow Discharge" DC., que ha sido montado en el laboratorio de Conversión Fotovoltaíca de la Facultad de Ciencias de la UNI.

Se presentan algunas caracterizaciones eléctricas y ópticas de las películas obtenidas de a-Si : H, depositadas sobre substratos de vidrio transparente mantenidos a temperaturas de 200 y 220 °C., verificándose sus propiedades semiconductoras y las variaciones producidas con los diferentes tratamientos térmicos. Las películas fueron analizadas usando Difractometría de Rayos X para determinar su amorficidad y para determinar su composición se realizó un análisis por la técnica de Electrónica Auger. El tipo de conductividad de las muestras se determinó mediante la respuesta termoeléctrica, usando la sonda Seebeck.

Este trabajo forma parte del proyecto de investigación Conversión Fotovoltaíca de la Energía Solar de la Facultad de Ciencias en la UNI, y considero un aporte en el estudio de películas delgadas de silicio amorfo, y en general, de los semiconductores amorfos.
ÍNDICE

CAPITULO I
INTRODUCCION

1.1 Importancia tecnológica del silicio amorfo hidrogenado (a-Si:H) 1
1.2 Importancia del método de elaboración Glow Discharge (G.D.) . 3
1.3 Objetivos ... 4

CAPITULO II
PROPIEDADES ELECTRICAS Y OPTICAS EN SILICIO AMORFO

2.1 Breve revisión de la estructura de a-Si y a-Si:H 6
2.2 Modelo de la densidad de estados 9
Conductividad eléctrica DC .. 15
2.3.1 Conductividad en estados extendidos de semiconductores
amorños ... 16
2.3.2 Conductividad en los semiconductores extrínsecas
fuertemente compensados a bajas temperaturas 20
2.4 La absorción óptica .. 23
2.4.1 Transmitancia y reflectancia en películas delgadas
sobre un sustrato transparente 24
2.4.2 Borde de absorción óptica 27
2.4.3 Definición de un gap óptico 29
2.5 Influencia de la oxidación en las propiedades optoelectrónicas
de silicio amorfo .. 31
CAPÍTULO III
PREPARACION DE LAS MUESTRAS Y SU COMPOSICION

3.1 Glow Discharge DC ... 35
3.2 Descripción del sistema de Glow Discharge DC reactivo 37
3.3 Condiciones de preparación 39
3.4 Resultados de la elaboración 40
3.5 Análisis por difracción de Rayos X 42
3.6 Composición de las muestras 43

CAPÍTULO IV
TRATAMIENTOS TERMICOS Y DETERMINACION DEL TIPO DE CONDUCTIVIDAD

4.1 Tratamiento térmico en aire 47
4.2 Tratamiento térmico en vacío 48
 4.2.1. Descripción general del equipo de vacío 49
 4.2.2. Procedimiento para el tratamiento térmico 50
4.3 Determinación del tipo de conductividad 52

CAPÍTULO V
CARACTERIZACION ELECTRICA Y OPTICA

5.1 Mediciones de conductividad eléctrica 54
5.2 Medidas de absorción y transmisión óptica 65
 5.2.1 Descripción del espectrómetro optoacústico 65
 5.2.2 Producción de señales fotoacústicas 68
 5.2.3 Montaje del espectrómetro para absorción y transmisión 69
 5.2.4 Espectros de absorbancia optoacústica 70
 a. Cálculo del coeficiente de absorción (α) 71
 b. Determinación del gap óptico 73
5.2.5 Espectro de transmitancia optoacústica 74
CAPITULO VI
CONCLUSIONES .. 80

APENDICES

APENDICE A : La Espectroscopía Optoacústica 85
APENDICE B : Efecto Seebeck en un Semiconductor 88
APENDICE C : Absorbancia en películas delgadas sobre
substrato transparente ... 90
APENDICE D : Datos Experimentales 92

REFERENCIAS .. 98
CAPITULO I

INTRODUCCION

1.1. IMPORTANCIA TECNOLÓGICA DEL SILICIO AMORFO HIDROGENADO (a-Si : H)

El Silicio es el material fundamental en la tecnología de dispositivos electrónicos. Durante cuarenta años ha sido objeto de un gran número de estudios científicos y técnicos. En ese sentido el silicio monocristalino puede considerarse un cristal "bien conocido" y puede decirse que uno de los factores más importantes entre los que determinaron el desarrollo explosivo de la industria microelectrónica es justamente la buena comprensión física del material.

Por el contrario, el silicio amorfo (a-Si) sólo se ha comenzado a estudiar intensivamente durante los últimos años. El conocimiento de sus propiedades físicas se encuentra limitado por un lado por la relativa precariedad de los modelos que explican las propiedades de los sistemas amorfos en general y por otro lado por la relativamente pequeña cantidad de información experimental, que se obtiene en forma intensiva desde hace sólo algunos años, en comparación con la gran variedad de configuraciones estructurales que se derivan de los distintos métodos de preparación.

La incorporación de hidrógeno en el a-Si permite modificar sus propiedades ópticas y electrónicas. Como ejemplo, la conductividad a temperatura ambiente del (a-Si : H) puede ser cambiada por ~5 órdenes de magnitud según la concentración de hidrógeno[1]. El ancho de la banda prohibida también puede cambiar entre ~1.2eV y ~1.9eV con la hidrogenación [2]. Esto significa que la incorporación de hidrógeno modifica el borde de absorción óptico, de modo que el material puede considerarse en condiciones tales que su transmittancia resulta alternativamente alta o baja en el rango del espectro visible e infrarrojo cercano.
Además el hidrógeno permite modificar la densidad de estados localizados en la banda prohibida, lo que varía fuertemente los tiempos de recombincación electrónica. Esto convierte al a-Si:H en un material extremadamente versátil en cuanto a las aplicaciones en electrónica incluyendo las celdas fotovoltáicas, pero como contrapartida, incrementa las dificultades tanto experimentales como teóricas de su estudio.

Las celdas fotovoltáicas son dispositivos semiconductores que realizan la transformación directa de luz solar en energía eléctrica (conversión fotovoltáica). Su eficiencia depende en gran parte del número de electrones por unidad de tiempo que pasan de la banda de valencia a la banda de conducción al absorber radiación electromagnética (luz solar).

El coeficiente de absorción lineal α es un parámetro importante para caracterizar las muestras, resulta que el coeficiente de absorción del silicio amorfo es del orden de 10^4 cm$^{-1}$, lo cual significa que 1 μm de espesor de este material absorbe más del 60% de la radiación incidente; mientras que el silicio cristalino (c-Si) tiene un coeficiente de absorción de 10^3 cm$^{-1}$ y de acuerdo con esto, se necesita sólo 1 μm de a-Si para reemplazar 100 μm de c-Si en la fabricación de celdas fotovoltáicas.

Las celdas solares de capa fina de a-Si: H representa un nuevo tipo de películas cuyas conversiones fotovoltáicas están entre 6 - 8 %, que han sido obtenidos de este material sumamente desordenado por tener una gran resistividad y una movilidad de portadores relativamente baja mientras las celdas monocristalinas han exhibido una alta eficiencia de conversión hasta obtener 19%[3]. Aún con la desventaja en la eficiencia que muestran por ahora las celdas de (a - Si : H) resultan mucho más absorbentes de energía y más económicas que las de c - Si.

Con el propósito de mejorar la calidad en la eficiencia de las celdas amorfas en la actualidad se están investigando aleaciones de las películas de a - Si : H con otros materiales, por ejemplo, con el carbón elevando el gap E_g al rango de 2.1 - 2.8 eV y mejorando las propiedades electrónicas lo cual da
lugar al incremento en la fotosensibilidad acompañado de un decrecimiento en la densidad de los estados de defectos profundos [4].

El presente interés en silicio amorfo hidrogenado (a-Si : H) proviene fundamentalmente del hecho de que puede ser usado como un material fotovoltáico, de bajo costo para aplicaciones terrestres de celdas solares.

Un coeficiente de absorción óptico alrededor de un orden de magnitud mayor que el de silicio monocristalino, para el pico del espectro solar, junto con una alta fotocconductividad, hacen del a - Si : H uno de los materiales más promisorios para la producción de celdas solares a bajo costo[5].

1.2 IMPORTANCIA DEL METODO DE ELABORACION GLOW DISCHARGE (G.D.)

En los últimos años las técnicas de Glow Discharge (GD) han incrementado sus aplicaciones en la fabricación de dispositivos semiconductores. Además una importante aplicación se ha desarrollado en la síntesis de los semiconductores como la aleación amorfa de silicio - hidrógeno, actualmente denominado silicio amorfo hidrogenado (a-Si : H), que sabemos que contiene entre 5 y 40% de hidrógeno. La descarga producida de a - Si : H tiene notables cualidades semiconductoras comparada con el a - Si no hidrogenado preparado por sputtering o evaporación. Esto es debido a la baja densidad de estados localizados en el gap por saturación con el hidrógeno [6].

El a-Si puede ser preparado por un gran número de técnicas, entre ellas:

- Glow Discharge o descarga plasmatica del SiH₃ (DC o AC).
- Sputtering rf en una atmósfera de (Ar + H₂).
- Electrodeposición.
- CVD (Chemical - Vapor - Deposition)
- Evaporación y posthidrogenación (Si + H₂)
En las primeras pruebas para producir a-Si:H, se utilizó la técnica de Glow discharge de radiofrecuencia inductivo (rf) [7]. Este sistema utilizaba una bobina externa que cerraba una cámara de vidrio (campana) donde el silano (SiH₄) fue descompuesto por una potencia rf proporcionada por la bobina y las películas de a-Si:H fueron depositadas sobre substratos de vidrio. Sin embargo, la dificultad en controlar la deposición pudo ser el mayor problema en este sistema. Otro tipo de sistema rf que ha sido usado para la deposición de películas de a-Si:H, en la cámara de reacción de SiH₄, es descomponer por descarga entre dos electrodo usando un potencial de acoplamiento capacitivo rf [8]. Debido a la capacidad de depositar películas uniformes de grandes áreas, este tipo de sistema es mayormente usado en la actualidad y es aplicada para una masiva producción de celdas solares de a-Si:H [9].

Las buenas cualidades de películas de a-Si:H también pueden obtenerse por Glow-Discharge de corriente directa DC por la descomposición del SiH₄. Este arreglo en el interior de la cámara de reacción es similar al sistema capacitivo rf, pero en lugar del generador rf, una fuente de poder DC es conectada a los electrodo. Las primeras películas de a-Si:H usado para hacer dispositivos electrónicos fueron producidos por Glow-Discharge DC en Si:H₄ [10] y celdas solares de a-Si:H con un área de 49 cm², demostraron que las primeras celdas de grandes áreas, fueron hechas en un sistema Glow discharge DC [11].

1.3. OBJETIVOS

Los primeros trabajos que dieron inicio en la elaboración de películas de silicio amorfo por descarga plasmatica (glow discharge) fueron en los años 1986-1987, en la cual habían participado diversos colaboradores y que se concretizó en la primera tesis de maestría en 1994 [47]. En esa oportunidad continue con el trabajo habiéndose realizado diversas modificaciones al equipo de glow discharge para optimizar la calidad de las películas y consistiendo mi contribución fundamental en las mediciones de la conductividad eléctrica en función de la temperatura lo que ha permitido llegar a un modelo teórico para la conductividad de las películas semiconductoras amorfas.
En este trabajo se utiliza una técnica de deposición parecida para el crecimiento de a-Si:H por el plasma DC, en la cual considera una reacción de descarga gaseosa del hidrógeno con granos de silicio policristalino, produciéndose la traza SiH₄ la cual se deposita sobre un substrato de vidrio formándose la película delgada a-Si:H. Se busca optimizar un equipo de deposición Glow Discharge DC que ha sido montado en el laboratorio de Conversión Fotovoltaica de la Facultad de Ciencias UNI, consiguiendo un control de los parámetros para la deposición, como son: la presión del gas H₂ en la campana, la corriente de descarga, la temperatura adecuada del substrato, la polaridad de los electrodos y el tiempo de deposición.

En el capítulo II, se expone una revisión teórica de algunas propiedades eléctricas y ópticas de los semiconductores amorfos y del silicio amorfo. En el capítulo III, se detalla la descripción del método de deposición Glow discharge DC reactivo y los resultados de las muestras elaboradas, comprobando su amorfidad por difractometría de rayos X. El capítulo IV se realizan los diferentes tratamientos térmicos a las películas obtenidas y el tipo de conductividad usando la sonda Seebeck. En el capítulo V, se determina el comportamiento de la conductividad eléctrica en función de la temperatura de las muestras depositadas a 200 y 220 °C y los efectos producidos con los distintos tratamientos térmicos. En este capítulo también se analizan las muestras mediante la espectroscopía optoacústica tomando los espectros de absorción y transmisión, confirmando la carácterística de un semiconductor amorfo y las variaciones con el tratamiento térmico. Finalmente en el capítulo VI, se dan algunas conclusiones del trabajo de tesis desarrollado.
CAPITULO II
PROPIEDADES ELECTRICAS Y OPTICAS EN
SILICIO AMORFO

2.1 BREVE REVISION DE LA ESTRUCTURA DE a-Si y a-Si:H

El rasgo característico fundamental de un cristal es que los átomos o moléculas que lo constituyen forman una estructura ordenada, con periodicidad de orden lejano que da lugar al orden de largo alcance (LRO) en los átomos. La inmensa mayoría de las substancias que nos rodean son amorfas, no cristalinas o no ordenadas, es decir, no existe orden lejano, pero si orden de corto alcance (SRO) en la distribución de los átomos. Numerosas investigaciones experimentales han demostrado que los sólidos amorfos, de un modo semejante a los cristalinos, pueden se dielectricos, semiconductores y metales[12].

En los semiconductores amorfos de enlace tetraédrico el modelo más simple para describir su estructura es la red aleatoria continua (CRN), que se puede construir por medio de esferas y varillas empezando de un tetraedro con ligeras variaciones de los ángulos de enlace y longitudes de enlace y teniendo en cuenta ángulos diedros arbitrarios.

En los materiales como el a-Si y a-Si:H aunque no tienen orden en cuanto a largo alcance, por la quebra en su estructura, sin embargo se observa un alto grado de orden de corto alcance (SRO) debido a los enlaces químicos (Si-H) ; (H-H) ; (Si-Si). Por tanto, la separación de los vecinos mas próximos y las longitudes de los enlaces son aproximadamente iguales como en el caso de Si cristalino. El rasgo común es la distribución a estadística de la posición de los átomos, que da el número promedio de pares de átomos separados por una distancia entre r y r + dr. Se cree que la estructura atómica en el seno del a-Si es tal que en promedio un átomo de Si tiene rodeado otros
cuatro a la misma distancia (como en el cristal) formando un tetraedro regular. Además, cada uno de estos a su vez tiene tres vecinos más, similarmente arreglados, dando origen a una segunda capa bien definida de 12 átomos, ninguno de los cuales es vecino uno con otro. Los datos estructurales demuestran que la semejanza de a-Si al cristal Si se pierde más allá de la segunda capa; el propósito mantenido es que la estructura se puede describir como una CRN. Aunque el número de átomos asociados con los vecinos más cercanos son las mismas, hay sin embargo una variación en los ángulos de interenlaces que rápidamente lleva a una perdida del orden local y posteriormente a la ausencia del orden de largo alcance[13]. En la Figura 2.1 se muestra esquemáticamente las estructuras del silicio cristalino y del silicio amorfo.

Fig. 2.1 Representación Esquemática de las estructuras del Silicio Cristalino y del Silicio Amorfo.

En a-Si: H real, la evidencia experimental parece indicar inhomogeneidades estructurales importantes, por ejemplo, la evidencia de microcolumnar. Se indica una inhomogeneidad composicional de dos fases en que los átomos de H se encuentran en dos clases de agrupamientos; estos son (i) monohidridos agrupados encontrados en superficies de vacíos o
tejidos unidos, o los enlaces múltiples de H formando SiH₃ y (SiH₂)n y (ii) monohidridos distribuidos aleatoriamente no-interactuando. La descripción del a-Si:H ideal como una especie de malla aleatoria continua (CRN), esencialmente homogénea, es el punto de partida del modelo de estructura. Luego se puede añadir defectos locales especiales tales como enlaces pendientes (dangling bonds) o variaciones grandes del ángulo de enlace, y además se suman vacíos, regiones heterogéneas, o regiones del orden microcristalino. Una ilustración esquemática de dos regiones microcristalinas, una de vacío, un número de enlaces pendientes y enlaces de átomos de H en una malla bidimensional se muestra en la Fig. 2.2 [32].

Fig. 2.2: Bosquejo bidimensional de una malla aleatoria incorporando dos regiones microcristalinas, un vacío grande, diversos enlaces pendientes (Dangling Bonds) y diversos enlaces Si-H en varias configuraciones [32].
2.2 MODELO DE LA DENSIDAD DE ESTADOS

En los semiconductores las características principales de la distribución en energía de la densidad de estados electrónicos $D(E)$ son las estructuras claras en las bandas de valencia y de conducción, y las terminaciones abruptas en el máximo de la banda de valencia y el mínimo de la banda de conducción. Los bordes marcados en la densidad de estados producen un gap de energía prohibido bien definido. Los rasgos específicos en la estructura de la banda son consecuencias del orden corto y el orden de largo alcance perfecto del cristal. En un sólido amorfo, el orden de largo alcance se pierde, mientras que el orden de corto alcance, e.d, la distancia interatómica y el ángulo de valencia, es sólo ligeramente cambiado [14].

La densidad de estados en los semiconductores amorfos presentan diferencias considerables en relación a los semiconductores cristalinos, continúan existiendo bandas de estados extendidos separados por una región de estados localizados, que no ocupan todas las diferentes energías en la banda, sino que forman una cola encima y debajo de la banda normal; esta separación define el gap de movilidad, Fig. 2.3. La región de energías ocupadas por los estados localizados también puede llamarse banda prohibida. En la banda prohibida de las substancias amorfas hay algunos estados localizados debido a átomos de impurezas y defectos de la estructura del tipo de enlaces pendientes (dangling bonds) y otros. El pico de los estados localizados ocasionados por los defectos de la estructura se encuentra por lo general en el centro del gap de movilidad y el nivel de Fermi E_F, se encuentra en la región del mid-gap. [15]
La determinación completa de la estructura de la densidad de estados (DOS) de un material requiere el conocimiento de la posición de equilibrio de los átomos (estructura atómica) sus modos normales de vibraciones (estructura de fonones) y la derivación de la estructura electrónica excitada. Aunque esto se puede alcanzar hasta un límite en materiales cristalinos, donde la periodicidad ayuda en la solución del problema por aproximaciones, es más difícil de alcanzar en semiconductores amorfos. Por esta razón es que los semiconductores amorfos (tales como silicio amorfo) son preparados desde una situación de no-equilibrio y son por tanto metaestables. Consecuentemente, su DOS depende de los detalles de las condiciones de preparación. Varios...
factores que determinan la DOS para un material consiste de, entre otros, el número de coordinación, la distancia interatómica y el tipo de enlace químico.

En un material, tal como el a-Si\textsubscript{1-x} H\textsubscript{x}, las fuerzas intensas determinan el número de coordinación Z, las longitudes de enlaces de los enlaces Si-Si y Si-H, y los ángulos de enlaces asociados con el Si. Se ha demostrado que las ligaduras dentro del sólido a-Si\textsubscript{1-x} H\textsubscript{x} se pueden satisfacer si Z=2.45 [16]. Puesto que Z>3 para películas de a-Si: H GD, entonces se exhibirán cantidades considerables de trenzas en estos materiales. Sin embargo, algunas trenzas se pueden liberar por distorsiones del ángulo de enlace y longitud de enlace. El defecto posible más simple que se pueda presentar es el enlace pendiente aislado dangling bond o centro T\textsubscript{3+} (el nombre indica un átomo tricoordinado) [17] como se muestra en la Fig. 2.4 b. La estructura normal de configuración de enlace T\textsubscript{4+}, se muestra en la Fig. 2.4a. Los defectos T\textsubscript{3+} producen dos estados en el gap, un estado inferior llenado (T\textsubscript{3+}) ensanchado por el desorden y un estado superior vacío (T\textsubscript{3+}) de los cuales unos pocos en especial los estados bajos estarán normalmente ocupados, separados por una energía de correlación U\textsubscript{eff} > 0 (esto ampliamente aceptado para el caso de a-Si: H[18]).

La energía de Fermi a la temperatura de cero se determina por el traslape de estas bandas de defectos. Si un electrón es extraído del centro T\textsubscript{3+}, se convierte a T\textsubscript{3+}, con un ángulo de enlace de 120°, mostrado en la Fig. 2.4c. Por otro lado, la conversión de T\textsubscript{3+} a T\textsubscript{3+} lleva a una disminución del ángulo de enlace a 95° (Fig. 2.4d). El espectro DOS resultante está mostrado en la Fig. 2.5a para un semiconductor amorfo de enlace tetraédrico con defectos dangling bond caracterizado por U\textsubscript{eff} > 0. La banda de defectos cuando son llenados, están localizados debajo de E\textsubscript{f} y cuando es vacío está localizado encima de E\textsubscript{f} [19].
La inclusión de hidrógeno reduce la densidad de estados del pseudogap, sin embargo, no significa que hay menos defectos: la posición de los defectos está profundo en las bandas de valencia y estos estados, por tanto, no se manifiestan por estados en el pseudogap. En realidad el hidrógeno sirve principalmente para pasivar los defectos ya presentes en el sistema amorfo y por tanto disminuir la densidad de defectos en el pseudogap [20]. Es posible también que defectos más complicados surjan en aleaciones a-Si:H, tales como centros T_3^o, centros T_5^o [21], defectos complejos tales como defectos tipo vacancias [22] y divacancias [23].

En a-Si:H sin dopaje, los defectos principales han sido asociados con los dangling bonds neutros $T_3^o = D_0$; lo denominaremos el defecto intrínseco Di.
La posición en energía es una función de su ocupación electrónica. D' es el nivel dangling bond doblemente ocupado, que para energía de correlación efectiva $U_{\text{eff}} > 0$, está por encima que $D_{1\text{a}}$, el nivel dangling bond singularmente ocupado. En la Fig. 2.5b se muestra un diagrama esquemático de la densidad de estados del gap para el a-Si:H no dopado.

Fig. 2.5 (a) Densidad de estados efectivos unionelectron de un semiconductor amorfo enlazado tetraédricamente con defectos dangling bonds con $U_{\text{eff}}>0$, sin dopaje [33]; (b) Nuevo modelo esquemático de la DOS en el gap del a-Si:H no dopado, mostrando el estado E_0 asociado con el hidrógeno [32].

A pesar del estudio intenso, la localización de los estados dangling bonds en el gap de movilidad es aún controvertida. Este defecto intrínseco Di es neutro en el oscuro ($D_{1\text{a}}$); y atrapa un electrón o un hueco por iluminación ($D_{1\text{i}}$ y $D_{1\text{i}+}$) que produce relajación en la configuración atómica del centro Di en respuesta al cambio de su estado de carga después de entrampar o emitir un electrón o un hueco [24]. Fig. 2.6.
Uno de los aspectos más notables de las aleaciones de a-Si:H es que pueden ser dopados con átomos que actúan como donadores y aceptores, y que producen variaciones en la conductividad hasta 10 órdenes de magnitud. El método más popular del a-Si:H consiste en la mezcla de gas PH₃ o B₂H₆ al silano por implantación de iones y producen donadores sustitucionales e intersticiales y aceptores sustitucionales. La actividad eléctrica de los átomos dopantes está relacionada a la reacción compleja con los enlaces pendientes y el hidrógeno. Los experimentos demuestran que la densidad de estados en el mid-gap es fuertemente incrementado con el dopaje. Además de la incorporación intencional de diferentes dopantes pueden estar presentes otros defectos extrínsecos como contaminantes. Se demuestra según [26] que alrededor de 10¹⁹ cm⁻³ defectos como oxígeno, nitrógeno, o carbón están presentes en películas de a-Si:H preparadas en condiciones usuales.

Fig. 2.6 Diagrama simple de niveles de energía de los dangling bonds [25]
2.3 CONDUCTIVIDAD ELECTRICA DC

Las propiedades de transporte de los semiconductores amorfos de enlace tetraédrico han dado lugar a mucha confusión hace algunos años. Existen tres posibles mecanismos de conducción, su contribución relativa a la conductividad total depende de la temperatura. (a) A temperaturas muy altas, los portadores pueden ser excitados a través del borde de movilidad en estados extendidos. La contribución de los estados extendidos a la conductividad es siempre dominante cuando hay un suficiente número de electrones o huecos en estos estados. Presentaremos una revisión teórica de este mecanismo de conducción porque es encontrado principalmente en películas de a-Si:H GD publicados en muchas revistas, abstracts o libros sobre el silicio amorfo. (b) A temperaturas bajas, los portadores son excitados entre estados localizados en las colas de las bandas y el transporte de carga entre estos estados solo puede realizarse por saltos (fixed range hopping). (c) A temperaturas muy bajas, la conductividad puede ocurrir por saltos entre estados localizados cerca al nivel de fermi, denominados conducción por saltos en rango variable (variable range hopping).

En el presente trabajo, puesto que en las gráficas experimentales de \(\ln \sigma \) vs. \(1/T \), se observan dos regiones de linealidad, explicaremos esta variación de la conductividad con la temperatura análogamente a la conductividad por ionización de las impurezas en los semiconductores cristalínes fuertemente compensados a bajas temperaturas. La razón es porque en la muestra que se analizó (tipo-p) la densidad de estados relacionados con los defectos es grande, estos pueden actuar como centros aceptores (trampas).
2.3.1 Conductividad en estados extendidos de semiconductores amorfos

El transporte en estados extendidos ocurre vía los portadores excitados más allá del borde de movilidad en los estados en o encima de Ec (o debajo de Ev). La conductividad σ que se requiere para el cálculo, esta dado por la fórmula de Kubo - Greenwood [27],

$$\sigma = -\int \sigma_B \frac{\partial f}{\partial E} dE$$ \hspace{1cm} (2.1)

que para estados no localizados σ_B se puede interpretar como $eg(E)kT\mu$, entonces

$$\sigma = -ef(E)\mu(E)K T \frac{\partial f(E) }{ \partial E} dE$$ \hspace{1cm} (2.2)

donde μ es la movilidad de los portadores con energía E, y puesto que en un semiconductor $f(E)$ es la función de distribución de Fermi-Dirac,

$$f(E) = \frac{1}{1+\exp[(E-E_f)/K T]}$$

tenentes (2.2) se puede escribir como,

$$\sigma = ef(E)\mu(E) f(E) [1-f(E)] dE$$

En el modelo de Davis-Mott el nivel de Fermi E_p está situado cerca del medio del gap y por consiguiente lejos E_s la energía que separa los estados extendidos de los estados localizados, de modo que se puede usar la estadística de Boltzmann para describir la ocupación de estados,

$$f(E) = \exp[-(E-E_f)/K T]$$
De acuerdo al punto de vista de Mott, la movilidad cae repentinamente en la energía crítica E_c (o E_v) pero por ahora no se conoce exactamente como la movilidad depende de la energía en ambos regímenes de conducción.

En el caso no degenerado y bajo la suposición de una densidad de estados constante y movilidad constante, la conductividad debido a electrones excitados lejos del borde de movilidad en los estados extendidos está dado por,

$$\sigma = \epsilon g (E_c) K T \mu_c \exp[-(E_c - E_f)/K T] \quad (2.3)$$

donde μ_c es la movilidad promedio. La ecuación (2.3) se puede escribir también como,

$$\sigma = \sigma_{\min} \exp[-(E_c - E_f)/K T] \quad (2.4)$$

donde,

$$\sigma_{\min} = \epsilon g (E_f) \mu(E_f) K T$$

es la conductividad metálico mínimo, definida tal que para un sistema a $T=0$ K, donde los estados electrónicos están ocupados hasta E_n es el valor no nulo más pequeño de la conductividad en $T=0$ K; σ_{\min} está usualmente en el orden de 200 - 300 Ω^{-1} cm$^{-1}$[28].

Mediciones de absorción óptica hechas en semiconductores amorfos han mostrado que el gap disminuye con la temperatura. La diferencia de energía $E_c - E_v$ por tanto mostrará un comportamiento similar y bajo la suposición de una dependencia lineal con la temperatura,

$$E_c - E_f = C_0 + \gamma T \quad (2.5)$$
Aquí Eo es la distancia en energía en T=0 K, entonces la expresión de la conductividad se convierte en:

\[\sigma = \sigma_{\text{mín}} \exp \left(\gamma / K \right) \exp \left(-E_a / K T \right) \quad (2.6) \]

Podemos escribir esta fórmula en la forma:

\[\sigma = \sigma_o \exp \left(-E_a / k T \right) \quad (2.7) \]

donde:

\[\sigma_o = \sigma_{\text{mín}} \exp \left(\frac{\gamma}{K} \right) \quad (2.8) \]

Se muestra que \(\mu_c \) es proporcional a 1/T, de modo que el factor preexponencial \(\sigma_o \) es independiente de la temperatura. Se han observado valores muy grandes para \(\sigma_o \) desde 1 a 10^6 \(\Omega^{-1} \) cm\(^{-1}\). Si se gráfica la conductividad en escala logarítmica versus el inverso de la temperatura, se obtiene la energía de activación del proceso Eo, por la pendiente de la línea recta (Eo/k) y el intercepto en 1/T=0 es igual a \(\sigma_o \) (realmente el intercepto es log \(\sigma_o \) en escala logarítmica). Esta gráfica se muestra esquemáticamente en la Fig. 2.7.

Un estimativo de \(\gamma \), puede realizarse a través de la dependencia del gap óptico con la temperatura que para el sílice amorfo varía entre (2-4)\\(\times 10^{-4} \) eV K\(^{-1}\) [29].

La experiencia demuestra que en muchos semiconductores amorfos la corriente es transportada por los huecos [28]. En este caso se encuentra en forma análoga a la ecuación (2.4) para la conductividad:
\[\sigma = \sigma_{\text{min}} \exp \left[\frac{E_F - E_r}{kT} \right] \] (2.9)

No se espera que los prefactores, \(\sigma_{\text{min}}\), para electrones y huecos sean diferentes. Este mecanismo de conducción se manifiesta con especial claridad en el silicio amorfo.

\[\text{Ln \(\sigma\)} \]

![Graph](image)

Fig. 2.7. Ln \(\sigma\) vs 1/T experimental de una película típica de n-SiH, G.D. [33]
2.3.2. Conductividad de los semiconductores extrínsecos fuertemente compensados a bajas temperaturas

Puesto que las películas de a-Si:H obtenidas en este trabajo fueron elaborados bajo condiciones no muy óptimas, porque contienen una alta densidad de estados de defectos localizados en el gap (dangling bonds). Debido a que las muestras preparadas bajo estas condiciones contienen una pequeña proporción de hidrógeno que deberían pasivar estos estados defectos, por tanto estos estados defectos pueden existir tal vez como centros aceptores (trampas), análogo a los centros de impurezas aceptora en los semiconductores extrínsecos no degenerado del tipo acceptor. Por consiguiente la conductividad con estos estados defectos localizados tienen el mismo comportamiento que en los semiconductores no degenerados con impurezas a bajas temperaturas (0-50)K.

Consideremos un semiconductor que puede contener tanto impureza donadora, como aceptora. Supongamos que las concentraciones de estas impurezas son respectivamente \(N_d \) y \(N_a \). En la Fig. 2.8 se muestra el esquema energético de tal semiconductor, los electrones en la banda de conducción y los huecos en la banda de valencia se originan debido a la agitación térmica de los electrones de la banda de valencia y los átomos de impurezas. Estos saltos están indicados con flechas. \(N_d^+ \) y \(N_a^- \) es el número de donadores y aceptores ionizados, \(n_d \) es el número de electrones que se encuentra en el nivel de impureza donadora, \(p_a \) es el número de huecos en la impureza aceptora.

Vamos a considerar primero que \(N_d > N_a \), el nivel de Fermi se encuentra mucho más abajo que \(E_g \), la impureza donadora está completamente ionizada. Todos los electrones han pasado desde los niveles donadores a los niveles de impureza aceptora. Por eso, para \(T = 0 \), en los átomos de la impureza aceptora habrá \(N_d - N_a \) huecos. Al aumentar poco la temperatura los electrones pasarán de la banda de valencia a los iones de impureza aceptora y mientras no comience la conductividad intrínseca; el semiconductor se comportará como de tipo-p. Tal semiconductor se llama parcialmente compensado. El grado de compensación se determina, en este caso, por la relación \(N_d/N_a \).
La condición de electroneutralidad en este caso tiene la forma:

\[p_0 + p_a = N_a - N_d \]

o bien

\[p_0 + N_d = N_a \] \hspace{1cm} (2.10)

donde: \(N_a^- \) = \(N_a - p_a \) es la concentración de los iones negativos de la impureza aceptora.

\[N_a^- = \frac{N_a}{1 + 2 \exp \left(\frac{E_a - E_F}{K T} \right)} \] \hspace{1cm} (2.11)
Para temperaturas bajas cuándo \(P_0 < < N_d \) ya no se puede despreciar la influencia de los donadores y en el caso de una fuerte compensación se cumple la desigualdad \(P_0 < < N_d < N_s \). Se deduce que la expresión para la concentración de huecos libres tiene la forma:

\[
P_0 = \frac{(N_s - N_d)}{2N_d} N_d \exp\left(\frac{E_s - E_v}{KT}\right) \quad (2.12)
\]

En este caso, la energía de activación es igual a la energía de ionización de la impureza aceptora \(W=E_s-E_v \).

Mientras la conductividad intrínseca puede despreciarse, la conductividad eléctrica del semiconductor de tipo-p se puede escribir:

\[
\sigma = eP_0 \mu_p \quad (2.13)
\]

En los semiconductores extrínsecos, los cálculos demuestran que la movilidad para temperaturas bajas debido a la dispersión por los iones de impureza, cuando el gas electrónico no es degenerado, varía proporcionalmente a \(T^{3/2} \)[30]. Teniendo en cuenta todo lo expuesto puede llegarse a la conclusión que la dependencia respecto de la temperatura de la conductividad eléctrica para el semiconductor tipo-p fuertemente compensado para bajas temperaturas viene determinado por la expresión:

\[
\sigma = \sigma_0 \exp\left(-\frac{W}{KT}\right) \quad (2.14)
\]

donde \(\sigma_0 \) es prácticamente independiente de la temperatura.
2.4 LA ABSORCIÓN OPTICA

Se da el nombre de absorción de la luz al fenómeno de disminución de la energía de una onda luminosa cuando se propaga en un medio, debido a la transferencia de la energía de la onda al medio en energía disipativa de la sustancia o de radiación secundaria de otra composición espectral y otras direcciones de propagación (fotoluminiscencia). La absorción de la luz puede producir en la sustancia un calentamiento, la excitación e ionización de los átomos o moléculas, reacciones fotoquímicas y otros procesos.

La absorción de la luz se define por la "ley de Buger Lambert", de acuerdo con lo cual la intensidad I_0 de una onda plana de luz monocromática u homogénea disminuye, a medida que pasa por el medio absorbente, según la expresión:

$$I = I_0 \exp(- \alpha d) \quad (2.15)$$

donde I_0 e I son los valores de la intensidad de la luz al entrar y al salir de una capa de espesor d del medio y α es el índice de absorción del medio (coeficiente de absorción lineal) que es característico del medio absorbente y depende de la longitud de onda de la luz. El carácter exponencial del debilitamiento de la luz en el sólido permite interpretar el coeficiente α como la probabilidad de la absorción de un fotón por una muestra de espesor unidad. La dependencia del coeficiente de absorción respecto de la frecuencia $\alpha(w)$ o de la longitud de onda $\alpha(\lambda)$ se llama espectro de absorción de la sustancia [62].
2.4.1 Transmitancia y reflectancia en películas delgadas sobre un substrato transparente

Las propiedades ópticas de un material se definen por la dependencia espectral de su índice de refracción complejo $\hat{n} = n(E) + iK(E)$, donde n es el índice de refracción y K es el índice de atenuación (también llamado coeficiente de extinción $K = \alpha \lambda /4\pi$).

Para semiconductores como el a-Si, n y k se obtienen generalmente de mediciones de transmisión y reflexión de películas delgadas sobre substratos transparentes tales como vidrio o cuarzo. Las cantidades medidas son la transmitancia T y la reflectancia R, donde:

$$T = \text{Intensidad transmitida/Intensidad incidente}$$

$$R = \text{Intensidad reflejada/Intensidad incidente}$$

La conservación de energía define la absorbancia A por:

$$A + R + T = 1 \quad (2.16)$$

Las reflexiones múltiples dentro del substrato y la película hacen el cálculo de T y R en función de constantes ópticas no triviales. Se han hecho un número de simplificaciones en relación a los valores medidos de R y T para n y k.

Las fórmulas generales están dadas en el libro de Heavens [31]. Suponiendo que la luz incide normalmente sobre una película delgada de espesor d y coeficiente α, depositada sobre un substrato de vidrio, figura 2.9.
Fig. 2.9 Transmisión y reflectancia para incidencia normal de una película sobre un substrato transparente.

Los valores de transmisión y reflexión para una película absorbente, en incidencia normal, depositada sobre un substrato no absorbente y en el régimen de absorción baja están dadas por: [32]

\[
T_{t23} = \left(\frac{n_3}{n_1} \right) |t|^2 \times \left(\frac{1 - R_3}{1 - |r|^2 R_3} \right) \quad (2.17)
\]

\[
= T_f \times T_3
\]

\[
R_{t23} = |r|^2 + \frac{|t|^4 R_3}{1 - |r|^2 R_3} \quad (2.18)
\]

\[
= R_f + R_3
\]
Los subíndices \(f \) y \(s \) se refieren a las contribuciones de la película y el substrato, respectivamente y donde:

\[
|q|^2 = \frac{n_1 (1-R_f)(1-R_s)e^{-ad}}{1+R_1 R_2 e^{-2ad} - 2 R_1^{1/2} R_2^{1/2} e^{-ad} \cos \left(\frac{4\pi nd}{\lambda} \right)}
\]

\[
|q'|^2 = \frac{R_1 R_s e^{-ad} + 2 R_1^{1/2} R_2^{1/2} e^{-ad} \cos \left(\frac{4\pi nd}{\lambda} \right)}{1+R_1 R_2 e^{-2ad} - 2 R_1^{1/2} R_2^{1/2} e^{-ad} \cos \left(\frac{4\pi nd}{\lambda} \right)}
\]

En el caso de substrato no absorbente (vidrio transparente), la transmisión del substrato (2.17), resulta en \(T_s = 0.98 \approx 1 \). Similarmente la contribución del substrato a la reflectancia \(R_s \) (2.18) puede ser despreciable comparado con \(R_f \) de la película. Entonces las expresiones de la transmisión y reflectancia de la película se pueden escribir como:

\[
T_f = \frac{n_3}{n_1} |q|^2 = \frac{(1-R_f)(1-R_s)e^{-ad}}{1+R_1 R_2 e^{-2ad} - 2 R_1^{1/2} R_2^{1/2} e^{-ad} \cos \left(\frac{4\pi nd}{\lambda} \right)} \quad (2.19)
\]

\[
R_f = |q'|^2 = \frac{R_1 R_s e^{-ad} + 2 R_1^{1/2} R_2^{1/2} e^{-ad} \cos \left(\frac{4\pi nd}{\lambda} \right)}{1+R_1 R_2 e^{-2ad} - 2 R_1^{1/2} R_2^{1/2} e^{-ad} \cos \left(\frac{4\pi nd}{\lambda} \right)} \quad (2.20)
\]

Asumiendo que el índice de refracción del vidrio es \(n_3 = 1.5 \), del aire \(n_1 = 1.0 \) y \(n_2 = n \) índice de refracción de la película (film), los coeficientes de reflexión se pueden escribir como:

\[
R_f = \frac{(n-1)^2}{(n+1)^2} \quad \text{reflectancia film-aire} \quad (2.21)
\]
\[R_2 = \frac{(n-1.5)^2}{(n+1.5)^2}; \text{ reflectancia vidrio-film} \quad (2.22) \]

Sin embargo, es conveniente, medir la absorbancia, esto es la energía depositada en la muestra directamente. La absorbancia \(A \), como de denota, esta dada por \(A = 1 - R - T \) y se obtiene en términos de la fórmula para \(R \) y \(T \) ecuaciones (2.19) y (2.20) y después de promediar sobre las franjas de interferencia, se obtiene:

\[A_t = \frac{(1 - R_1)(1 - R_2)}{1 - R_1R_2} \quad (2.23) \]

Para esto la absorbancia en el substrato (vidrio) tiene que ser despreciado (ver apéndice C).

2.4.2 El borde de absorción óptica

La figura 2.10 muestra \(\alpha \) en función de la energía en el rango de 1.1eV a 2.4eV para una aleación a-Si:H GD [33]. \(\alpha \) se determinó por mediciones de transmisión.

Hay tres regiones de mayor interés, A, B y C, indicado en la Fig. 2.10; (A) un régimen de ley de potencia encima de \(\alpha = 10^3 \text{ cm}^{-1} \) donde \(\alpha \sim (E - E_g)^2 \); (B) el llamado borde de Urbach entre 1.4 y 1.8 eV donde el coeficiente de absorción depende exponencialmente de \(h\nu \); y (C) una cola de absorción óptica debajo de 1.4eV atribuido a las excitaciones ópticas de los estados defectos profundos en el gap [32].
Considerando la región A revocándonos en los materiales cristalinos hay dos tipos de transición ópticas que pueden ocurrir en el borde absorción fundamental, directa e indirecta. Ambos incluyen la absorción de una onda electromagnética por un electrón en la banda de valencia que salta el gap prohibido hacia la banda de conducción. Sin embargo, las transiciones indirectas incluyen las interacciones simultáneas con fonones. Aquí el vector de onda del electrón cambia en la transición óptica, el cambio de momentum es tomado o dado por los fonones. Despreciando la formación del exciton (la interacción electrón - hueco), \(\alpha(hv) \) depende de la densidad de estados comunes para bandas que contienen los estados inicial y final. Para bandas parabólicas simples, \(g(E) \sim E^{1/2} \) y para transiciones directas, el coeficiente de absorción está dado por [33]:

\[
\alpha m \, hv = B \, (hv - E_g)^r
\]

(2.24)

donde \(r = 2 \) o 3, dependiendo si la transición es mecánica cuántica permitido o prohibido. La ecuación (2.24) se usa generalmente para aleaciones de a-Si:H con \(r=2 \) que implícitamente se asume bandas parabólicas y elementos matriciales iguales para todas las transiciones ópticas con energía de los fotones que exceden del band gap,

\[
\alpha m \, hv = B \, (hv - E_g)^2
\]

(2.25)
2.4.3 Definición de un gap óptico

El borde de absorción de a-Si:H cambia en forma y posición con las condiciones de preparación tal como el contenido de hidrógeno y la temperatura de deposición. La forma es menos afectada en el régimen de ley de potencia (A en la Figura 2.10), es decir, coeficientes de absorción encima de $\sim 5 \times 10^3$ cm$^{-1}$. El régimen de ley de potencia se usa para caracterizar la ubicación del borde de absorción por una única energía denominada el gap de energía E_g.

\[\alpha \left(\text{cm}^{-1} \right) \]

\[E \left(\text{eV} \right) \]

Fig. 2.10 Coeficiente de absorción α, como función de la energía del fotón $E = \hbar \nu$ determinada de mediciones directas de transmisión óptica [33]
Varios métodos se usan para definir el gap óptico. Una definición que tiene mayor significado físico del gap óptico fue introducido por TAUC [34]. Se asumió que las transiciones en la región A de la Fig. 2.10 toma lugar entre estados delocalizados. Para densidades de estados de electrones casi libres y con un elemento matricial constante para todas las transiciones ópticas de energías de los fotones que exceden de la zona del gap [35] y para aleaciones de a-Si:H en la ec. (2.25) obtenemos el resultado originalmente propuesto por TAUC.

\[
\sqrt{\alpha ahv} = C(ahv - E_g) \quad (2.26)
\]

Cuando graficamos en esta forma la extrapolación lineal de \((\alpha ahv)^{1/2}\) versus \(h\nu\) produce \(E_g\) como se muestra en la Fig. 2.11. Esta gráfica de Tauc se usa generalmente para definir \(E_g\). La omisión del índice de refracción \(n\) no afecta la linealidad de la gráfica.

El ancho de banda óptico, \(E_{\text{gap}}\), depende de la temperatura debido a dos mecanismos [36]. Existe un mecanismo explícito causado por el acoplamiento electrón-fonón y lleva a una aproximación lineal del cambio real del ancho de banda para temperaturas encima de la temperatura de Debye. El mecanismo implícito esta ligado con la expansión térmica de la red y tiene un efecto algo menor que el mecanismo explícito. Para temperaturas elevadas ambos efectos llevan a un cambio rojo del gap que se puede aproximar por:

\[
E_{\text{gap}}(T) = E_{\text{gap}}(O) - \gamma\varphi T \quad (2.27)
\]

con \(\gamma_{\varphi} = 4.7 \times 10^{-4} \text{ eV/K} \) para a-Si:H [37]
Fig. 2.11 El coeficiente de absorción graficado en la forma sugerida por J. TAUC.

2.5 INFLUENCIA DE LA OXIDACION EN LAS PROPIEDADES OPTOELECTRONICA DE SILICIO AMORFO

El estudio de la oxidación de películas delgadas de silicio amorfo tiene un doble interés:

- Por un lado, es necesario conocer de que manera se incorpora el oxígeno durante la oxidación post-deposición. En el espectro infrarrojo de películas delgadas de silicio amorfo preparadas en alta presión, evolucionan modos vibracionales distintos de aquellos que aparecen para películas con inclusión de oxígeno durante la deposición. Este efecto y otras propiedades de evolución durante la exposición al aire
(como densidad de espines, el gap óptico, y la energía del borde de absorción, así como la conductividad) permiten clarificar en qué forma se incorpora el oxígeno a las películas.

Por otro lado, el estudio de la evolución de esta propiedades permite conocer detalles sobre la microestructura y sobre el efecto de la superficie en propiedades de las películas delgadas.

Algunos autores han estudiado los efectos producidos por oxígeno incorporado deliberadamente durante la deposición de a-Si y a-Si:H. Los espectros de a-Si:O:H fueron analizados en detalle por G. Lucosey [38], [39].

Por otro lado, las mediciones de anchos de bandas prohibida, fotoluminiscencia, densidad de estado cerca del nivel de Fermi y del producto \((\mu\tau)_{np} \) realizados por Yacobi [40] conducen a las siguientes conclusiones: El oxígeno incorporado durante la deposición de películas de Si-a:H produce ensanchamiento de las colas de banda, un aumento de la densidad de estados en la banda prohibida y variaciones en el producto \((\mu\tau)_{np} \). Bajo condiciones de deposición particulares, la conductividad a oscuras y bajo iluminación aumenta cuando se introduce un flujo de oxígeno durante la deposición por descarga luminiscente. Existe poca información sobre los efectos producidos por el oxígeno incorporado durante el proceso de oxidación post-deposición sobre las propiedades ópticas y electrónicas.

Otros autores han estudiado [41], [42] otras condiciones de oxidación, por el recocido isotérmico sobre diferentes propiedades del Si-a y Si-a:H. En particular, se sabe que el recocido modifica fuertemente el gap óptico y las densidades de spines. Además se ha mencionado que la incorporación de oxígeno en Si-a parece reducir la densidad de defectos más efectivamente que en el recocado. También el calentamiento de las muestras pueden producir reordenamiento de atomos de oxígeno, que puede ser detectado por espectroscopía IR [41]. Este comportamiento no fue observado en las muestras aquí tratadas. Por tanto las variaciones observadas en las propiedades optoelectrónicas están relacionadas únicamente a la incorporación de oxígeno. El borde de la absorción óptica se corre hacia las mayores energías cuando se
produce la oxidación. Como consecuencia \(E_{04} \) definido como la energía del fotón para la cual el coeficiente de absorción es \(10^4 \text{ cm}^{-1} \), crece cerca del 3%. Se ha calculado también el gap óptico extrapolado de la representación de Tauc y \(E_{03} \) definido como la energía del fotón para la cual \(\alpha = 10^3 \text{ cm}^{-1} \). Ambos se comportan como \(E_{04} \) pero con mayor dispersión. En las curvas de la figura 2.10 se observan energías de activación de 0.6 -0.7 eV. Estos altos valores, junto con el comportamiento lineal observado para \(\ln \sigma \) vs \(1/T \) que implica un comportamiento activado, independientemente de la concentración de oxígeno, y que permiten descartar la existencia de conducción por mecanismos de "Hoppins de rango variable".

De acuerdo al modelo propuesto por Koropecki [43], el aumento de la conductancia a oscuras puede ser atribuido a la formación de una capa de acumulación de carga espacial. Esta capa parece debido a la "torcedura de bandas" producida por la fijación de oxígeno en la superficie [44]. A pesar de la baja longitud de Debye en este material debida a la alta densidad de estados en el gap, la gran superficie específica de las muestras hace que este sea un efecto importante.

Otras efectos relacionados con la fijación de oxígeno en la superficie podrían contribuir a la variación de la conductancia: por un lado, la conductividad de la capa de oxígeno difiere de la del Si-a en varios ordenes de magnitud. Por otro lado, el volumen de la muestra puede crecer durante la oxidación, de modo que su conductancia puede ser modificada. Sin embargo, estos efectos son despreciables en comparación con las variaciones producidas por torceduras de bandas.

Otro efecto que se puede esperar relacionado con la torcedura de bandas es un cambio tanto en la energía de activación \(E_a \) como el prefactor \(\sigma_0 \) de la conductividad.

En este trabajo se presentan resultados de las variaciones de medidas de ancho de banda prohibida y conductividad eléctrica de películas de Si-a:H preparadas por Glow Discharge DC, con los diferentes tratamientos térmicos (oxidación) en aire.
Fig. 2.12 Conductividad Vs el Índice de la Temperatura del a-Si:H conforme aumenta la oxidación [42]
CAPITULO III
PREPARACION DE LAS MUESTRAS Y SU COMPOSICION

3.1 GLOW DISCHARGE DC

La técnica más usada para la deposición de a-Si:H es la descomposición de silano SiH₄ por descarga plasmática. Desde el punto de vista de las propiedades fotovoltaicas, el método de Glow Discharge r.f. del SiH₄ es el más comúnmente empleado en la fabricación de celdas solares de a-Si.

En el proceso los átomos del material a depositar son introducidos al plasma formando parte de un compuesto gaseoso. Este se descompone, debido al alto voltaje que a su vez se va depositar sobre el substrato y átomos de gases que son extraídos del sistema mediante una bomba de vacío.

El plasma permanece en contacto con la superficie de la muestra, involucrando reacciones superficiales, con electrones, iones positivos de SiH, SiH₂ y SiH₃, durante el crecimiento de la película. Un control experimental de estas reacciones es uno de los mayores problemas del método de Glow Discharge.

Las películas obtenidas en este trabajo fueron elaboradas por un método no tradicional para el crecimiento de a-Si:H por el plasma DC, que considera una reacción de descarga gaseosa del hidrógeno con trozos de silicio policristalino de grado metalúrgico. La figura 3.1 esquematiza la etapa experimental: entre los electrodos de alto voltaje en que está colocado el material silicio (cátodo) por activación de la descarga gaseosa del H₂, el plasma ataca los trozos de silicio policristalino y produce entre otros compuestos el silano (SiH₄) que se recombina con el substrato caliente situado en el ánodo, formándose la capa delgada de a-Si:H.
Fig. 3.1 Esquema simple del sistema de deposición Glow Discharge DC reactivo.

El método base fue fundamentalmente en el hecho que por estar los substratos de vidrios y los granos de silicio policristalinos en estrecho contacto con el plasma de hidrógeno, éste reacciona químicamente con el silicio del cátodo, formándose hidruros, los cuales se descomponen luego en el substrato anódico debido a la alta temperatura y a la gran intensidad del campo eléctrico existente en esa región. Para evitar que el ánodo y la campana se sobrecalienten se coloca un trozo de cerámica rectangular de aproximadamente la misma dimensión que el calentador (resistencia de grafito) pero de un espesor de 2.5 cm.

Este trozo de cerámica sirve como refractario de calor para evitar que el calor se irradié hacia la parte superior de la campana y que en lugar de ello se concentre en el plasma.
3.2 DESCRIPCIÓN DEL SISTEMA DE GLOW DISCHARGE DC REACTIVO

El equipo diseñado y construido en el laboratorio de Conversión Fotovoltaica de la Facultad de Ciencias de la UNI para la obtención de películas delgadas de a-Si, básicamente consta de las siguientes partes [45] ver figura 3.2.

- Una campana de vacío (vidrio pyrex) de 45 cm. de altura por 25 cm. de diámetro (tubo reactor).
- Dos electrodomos rectangulares 10x10 cm. de acero inoxidable; ánodo A y cátodo C
- Una resistencia de grafito (4.2 Ohm. a 20°C) para calentar el substrato anódico.
- Una fuente de tensión para polarizar las placas marca FUG MCN 350-2000.
- Una resistencia de alta tensión de 5 kohm.
- Un medidor de vacío TC Gauge Control TG-70 para presiones del orden de 1 mtorr (0.133Pa), marca Veeco Instruments INC.
- Un auto transformador variable VOLTAC, modelo SB-01 para calentar la resistencia de carbón.
- Termocupla cobre-constantan, para medir la temperatura del substrato.
- Voltímetro digital modelo 7605C, para controlar la temperatura del substrato.
- Ventilas \(V_1 \) y \(V_2 \) que controlan el paso del \(H_2 \) a la campana de vacío.
- Ventil a \(V_3 \) que controla la salida de los gases plasmáticos al exterior a través de la bomba de vacío.
- Ventil a \(V_4 \) que controla la entrada de aire al tubo reactor.
- Plato metálico circular de 30 cm. de diámetro sobre el cual se apoya la campana de vacío. Presenta una abertura circular de 2 cm a través del cual se hace el vacío dentro de la campana e ingresar al \(H_2 \).
- Cuatro soportes de vidrio de 14 cm. de longitud que sirve de apoyo para el electrodo del ánodo.
- Sustratos de vidrio de 76x26 mm limpios.
- Trozos de silicio metalúrgico: 98% de pureza colocados en el cátodo.

37
- Conexión de bronce entre el balón de \(\text{H}_2 \) y la campana de vacío.
- Cables de conexión, teflón, micas en lámina, aislante dieléctrico en Spray Aislarge-1.

3.3 CONDICIONES DE PREPARACIÓN

Colocar el (o los) sustratos de vidrio, previamente limpiados, lavados con agua y detergente, enjuagados con agua destilada y secados con flujo de aire seco comprimido, sobre la cara inferior del ánodo. Sobre el cátodo se coloca los trocitos de silicio metalúrgico.

- Colocamos el tubo reactor en su lugar, cerrándolo Fig.3.2. Cerramos las ventilas \(V_2 \) y \(V_4 \). Prendemos el sistema de vacío (se abre \(V_3 \)) hasta obtener una presión del orden de \(10^{-4} \) Torr(1.33Pa) lo cual se logra aproximadamente en 24 horas o más. Mientras se hace el vacío en el tubo reactor, encendemos el sistema de calentamiento del substrato en el anodo hasta que la temperatura medida sea de 200 ó 220\(^{\circ}\)C, dicha temperatura se estabiliza en un lapso de tiempo de 2:30 - 3:00 horas aproximadamente.

- Cuando la presión y la temperatura son las indicadas anteriormente llenamos el tubo reactor con gas hidrógeno, abriendo las llaves del balón de hidrógeno y las ventilas \(V_1 \) y \(V_2 \) hasta que la presión sea de 1.0 torr.(133Pa), presión de deposición. Luego aplicamos a los electrodos una diferencia de potencial D.C. comprendido entre 900 - 1080V, consiguiéndose en este trabajo una corriente de excitación del plasma (31, 50, 55mA), el cual ioniza al hidrógeno creándose un plasma visible y estable de color violáceo, paralelas a los electrodos siendo más intenso cerca de la región del cátodo (aproximadamente 2cm. de espesor).

En la tabla 3.1 están resumidos los parámetros de deposición que se obtuvieron:
TABLA 3.1

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESION DEL H₂</td>
<td>1.0 Torr (133Pa)</td>
</tr>
<tr>
<td>CORRIENTE DE DESCARGA</td>
<td>31, 50, 55 mA</td>
</tr>
<tr>
<td>TEMPERATURA DEL SUBSTRATO</td>
<td>110, 200, 220°C</td>
</tr>
<tr>
<td>VOLTAJE DE DESCARGA</td>
<td>900 - 1080 V</td>
</tr>
<tr>
<td>TIEMPO DE DEPOSICION</td>
<td>30 - 80 hrs</td>
</tr>
</tbody>
</table>

3.4 RESULTADOS DE LA ELABORACIÓN

Se prepararon 7 películas sobre substratos de vidrio transparente, bajo los siguientes parámetros de deposición resumidos en la Tabla 3.2.

TABLA 3.2

<table>
<thead>
<tr>
<th>PRESION (Torr)</th>
<th>CORRIENTE DE POLARIZACION (mA)</th>
<th>ALTO VOLTAJE (Volt)</th>
<th>TEMPERATURA SUBSTRATO (°C)</th>
<th>TIEMPO DEPOSICION (hrs)</th>
<th>ESPESORES DE LAS MUESTRAS (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>31</td>
<td>900</td>
<td>110</td>
<td>30</td>
<td>L 0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C 0.118</td>
</tr>
<tr>
<td>1.0</td>
<td>31</td>
<td>900</td>
<td>200</td>
<td>50</td>
<td>C 0.202</td>
</tr>
<tr>
<td>1.0</td>
<td>50</td>
<td>1068</td>
<td>200</td>
<td>55</td>
<td>L 0.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C 0.42</td>
</tr>
<tr>
<td>1.0</td>
<td>55</td>
<td>1080</td>
<td>220</td>
<td>80</td>
<td>L 0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C 0.86</td>
</tr>
</tbody>
</table>

C: Posición central L: Posición lateral
Los espesores de las películas fueron obtenidas por el método gravimétrico (diferencia de pesos) de la siguiente manera:

Se utilizó una balanza de alta precisión (10⁻⁵ de gramo) METTLER H₂₀T.

1° Se peso el substrato, previamente limpiado y secado, obteniendo por resultado una masa de m₀ en gramos.

2° Luego de la elaboración, se peso el substrato con deposición de a-Si:H, obteniendo una masa de m₄ en gramos.

3° Puesto que el substrato tiene forma rectangular, la película depositada en una posición de aquel tenía forma rectangular también, cuyas dimensiones fueron, largo (l), ancho (a), área A = l x a.

4° La diferencia de pesos resulta \(\Delta m = m₄ - m₀ \) en gr.

5° Luego el espesor de la película se calcula por la formula:

\[
e = \frac{\Delta m}{\delta A}
\]

(3.1)

donde \(\delta \) es la densidad promedio de la muestra; en este caso como el Si está en mayor abundancia que el H, \(\delta \) se puede aproximar a la densidad del silicio, según el HANDBOOK OF PHYSICS AND CHEMISTRY densidad del silicio es 2.34 gr/cm³.

Los espesores obtenidos por este método fueron:

1er grupo (2 películas):

- posición central : 0.110 \(\mu \)m
- posición lateral : 0.118 \(\mu \)m

siendo las tasas de deposición de 0.611 Å/min
0.655 Å/min respectivamente.

2do grupo (1 película):

- en posición central: 0.202 \(\mu \)m.

siendo la tasa de deposición de 0.673 Å/min.
3er grupo (2 películas)
 en posición central: 0.42 \(\mu m \)
 en posición lateral: 0.38 \(\mu m \)
siendo las tasas de deposición de \(1.27 \text{ Å/min} \) y \(1.15 \text{ Å/min} \), respectivamente.

4to grupo (2 películas)
 en posición central: 0.86 \(\mu m \)
 en posición lateral: 0.79 \(\mu m \)
siendo las tasas de deposición de \(1.79 \text{ Å/min} \) y \(1.66\text{Å/min} \).

3.5 ANÁLISIS POR DIFRACCIÓN DE RAYOS X

Fue de mucha importancia comprobar las características de estructura de las muestras elaboradas, tomando dos diagramas de difracción de rayos X de la película de mayor espesor, \(e=0.86 \mu m \), en dos laboratorios de difractometría de rayos X.

a) Laboratorio de Difractometría de Rayos X de la Facultad de Ingeniería Geológica, Metalúrgica y Minas de la Universidad Nacional de Ingeniería. En la figura 3.4 se observa que este espectro con mayor resolución no posee ningún pico predominante, entonces se confirma que la muestra es un material amorfo [46].

b) Laboratorio de Difractometría de Rayos X de la Facultad de Ciencias Físicas de la Universidad Nacional Mayor de San Marcos [47]. En la figura 3.5 no se observa ningún pico predominante característico de un material cristalino, confirmando así que la muestra era un material amorfo.

Los dos espectros se pueden comparar con el diagrama de silicio registrado en difractometro en una camara de polvo, en el cual \(\lambda = 0.7 \text{Å} \) con un blanco de Mo de 30KeV [48], Fig. 3.3. En el patrón de difracción de la figura 3.4 se observa halos extendidos que son indicativos de un material amorfo y que han sido interpretables en términos de variados arreglos continuos desordenados de átomos.
Es posible deducir el orden de magnitud de la distancia de mayor acercamiento de los átomos de silicio a partir del ángulo de difracción correspondiente al máximo intensidad del patrón de difracción, usando una fórmula de tipo \(K\lambda = 2X_m \text{Sen}\theta_m \), donde \(K \) es un poco mayor que la unidad, generalmente de 1.1 ó 1.2 [49]. Del gráfico obtenido experimentalmente en la Fig.3.4 la mayor intensidad corresponde al primer halo centrado a un ángulo de \(2\theta \) en promedio de 11.5, entonces \(\theta = 5.75 \). Para \(\lambda =1.54 \text{ \AA} \), y tomando un promedio de \(K = 1.15 \), entonces la separación más pequeña de acercamiento de los átomos de silicio es: \(X_m = 1.2\lambda/2\text{Sen}\theta_m \), evaluando se obtiene \(X_m = 8.7 \text{ \AA} \). Sin embargo, \(K \) depende del arreglo atómico y por consiguiente de la curva de difracción completa. La medida de la posición del máximo no proporciona suficiente información [50].

3.6 COMPOSICION DE LAS MUESTRAS

El estudio de la composición de las muestras elaboradas se realizó mediante un análisis químico de la película de mayor espesor \((e=0.86 \mu m) \), por la Espectroscopía Electrónica Auger, cuyos resultados determinaron que contenía silicio en gran proporción, además carbón y oxígeno y una pequeña proporción de hidrógeno, este hecho determina que las películas elaboradas no fueron de a-Si:H, como se quiso lograr; pero resultado que eran una especie de películas semiconductoras amorfas de silicio hidrogenado con aleación de carbón y oxígeno. Este análisis se realizó en el Laboratorio del Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Santa Fé-Argentina.
CAPITULO IV

TRATAMIENTOS TERMICOS Y DETERMINACION
DEL TIPO DE CONDUCTIVIDAD

4.1 TRATAMIENTO TERMICO EN AIRE

Se realizaron los tratamientos térmicos expuestos a la atmósfera para la película de \(e=0.42 \, \mu m \) y para la película de \(e=0.38 \, \mu m \). La primera muestra para estudiar la variación en la conductividad eléctrica y la segunda para estudiar la variación en el gap óptico.

EQUIPO USADO

- Horno eléctrico marca Blue M. ELECTRIC COMPANY BLUE ISLAND, ILLINOIS, USA.
 2 Termocuplas: una de platino-platino rodio 10 y otra de Cromel-Alumel.
- Multimetro Digital, modelo 177 DMM, para controlar la temperatura del horno.

PROCEDIMIENTO EXPERIMENTAL

a. Poner la muestra dentro del horno.

b. Prender el horno y esperar hasta que el voltaje de termocupla sea la temperatura deseada.

c. Hacer el tratamiento térmico, controlando la temperatura del horno con el switch, poniéndole en medium o high según sea el rango de tratamiento.

d. Apagar el horno y esperar que se enfrie hasta el día siguiente para retirar la muestra.
MUESTRA DE e=0.42μm PARA MEDICIONES DE CONDUCTIVIDADES ELECTRICAS

La temperatura que se midió en voltaje de termocuña platino-platino rodio10, según el HANDBOOK OF PHYSICS AND CHEMISTRY esta referido a 0ºC, a este voltaje se debe restar, el voltaje de la misma termocuña a la temperatura del laboratorio que en ese caso fue de 28ºC correspondiente a 0.16 mV (referido a 0ºC). Entonces se tiene:

1er T.T: rango 250-300ºC, tiempo 2 horas
2do T.T: rango 350-400ºC, tiempo 2 horas
3er T.T: rango 450-500ºC, tiempo 2 horas

MUESTRA DE e=0.38μm PARA MEDICIONES DEL GAP OPTICO

La temperatura medida en voltaje de termocuña Cromel-Alumel, según el Handbook esta referido a 0ºC; a este voltaje se debe restar el voltaje de la misma termocuña a la temperatura del laboratorio, que en ese entonces fue de 25ºC correspondiente a 1.0mV (referido a 0ºC). Luego el voltaje que se debe leer en el multímetro para el tratamiento térmico durante 1 hora a 500ºC fue de 19.65mV.

4.2 TRATAMIENTO TERMICO EN VACIO

Se entiende por vacío la evacuación de gases de un recipiente, por medio de máquinas denominadas BOMBAS DE VACIO. Existen diversos tipos de bombas de vacío, de acuerdo al grado de vacío que se desee obtener, las cuales se clasifican en:

1. Bombas mecánicas 10 a 10^2 torr.
2. Bombas de aceite o difusora 10^2 a 10^8 torr.
3. Bombas moleculares 10^4 a 10^9 torr.
5. Bombas criogénicas de condensación (alta velocidad de bombeo). 10⁻² a 10⁻¹¹ torr.

4.2.1. DESCRIPCIÓN GENERAL DEL EQUIPO DE VACIO

La bomba de vacío empleada es del modelo VS-9 marca Veeco, el cual consta esencialmente de una Bomba Mecánica, una bomba difusora, los cuales comunican a un recinto cerrado a una tapa de vidrio gruesa, el cual llamaremos Cámara, donde se encuentra el Horno alimentado desde afuera por un Variac [51].

(a) Una bomba mecánica (B.M.), modelo DOUSEL 1403, fabricado for The Welch Scientific Company, que reduce la presión entre 10⁻¹ a 10⁻² Torr.

(b) Una bomba difusora (B.D.), marca Veeco, modelo EP2A-1 y cuya velocidad de bombeo es de 90 lts/seg y potencia de 350 watt. Las figura 4.1 muestra el esquema de la bomba de vacío VS-9. Esta bomba de vacío, tiene sus válvulas de alto vacío, que son:

V-1 válvula de vacío previo.
V-2 válvula de evacuación previa, situada en la línea de evacuación entre la bomba mecánica y la campana.
V-3 incomunica la bomba difusora y la campana.
V-4 válvula combinada de ventilación y llenado de gas.
V-5 válvula auxiliar de ventilación.
V-6 válvula de ventilación de la bomba mecánica.

El vacío se mide por medio de sensores que son:
1) S-1 tiene dos posiciones: izquierda y derecha.

La posición izquierda, nos mide el vacío previo (vacío que da la bomba mecánica a la bomba difusora).
La posición derecha, mide el vacío de la campana (vacío en la campana hecho por la bomba mecánica).

2) S-2 mide el vacío de la campana provocado por la bomba difusora (alto vacío).

4.2.2. PROCEDIMIENTO PARA EL TRATAMIENTO TÉRMICO

Se realizó el tratamiento térmico en vacío para la muestra de espesor e=0.86 μm, por una sola vez, a una temperatura de 500°C, durante una hora. Para esto, se colocó la muestra sobre un crisol (botecito de tantaló) colocado dentro del horno, que es alimentado por un variac. La temperatura del horno se midió con una termocuña de platino -platino rodió. La presión en la campana medido con el sensor S-2 debe estar entre (1 - 4) x 10⁴ torr.
4.3 DETERMINACION DEL TIPO DE CONDUCTIVIDAD

Para determinar si la muestras fueron de tipo p o de tipo n preparadas por Glow discharge se hizo uso de efecto Seebeck, que es una de las propiedades termoelectricas de los semiconductores (ver Apéndice B).

Equipo usado

- La sonda Seebeck
 Eliminador de bateria Heathkit modelo IP-12
 Multímetro digital 190 Digital Multimeter Keithley

En la figura 4.2 se puede ver el circuito para la comprobación:

![Diagrama de montaje para la sonda Seebeck](image)

Fig. 4.2 Montaje usado para la sonda Seebeck
Procedimiento Experimental

- Colocamos el multímetro en la escala de tensiones de 1V.
 Calentamos la punta de referencia con el eliminador de batería colocando en 6V y esperamos un tiempo hasta lograr una variación en la lectura del multímetro.
- Si la lectura en el multímetro aumenta la muestra es del tipo p, si la lectura disminuye es del tipo n.

Resultados

En el material semiconductor existen electrones y huecos que conducen la corriente. Cuando calentamos la punta de referencia, se entrega energía a los portadores que se difunden hacia la punta de prueba, debido al gradiente de temperatura. Si se observa en el multímetro un aumento positivo en la fem, significa que los portadores mayoritarios son huecos, por tanto, se trata de un semiconductor tipo p, y si disminuye la fem, se trata de un semiconductor de tipo n.

Después de comprobar con dos muestras conocidas etiquetadas como: 80394-8 P-Type Silicon High Resistivity y 80394-10 N-Type Silicon High Resistivity, se averiguó el tipo de conductividad de las siguientes muestras con sus respectivos tratamientos:

- muestra 4 \(e = 0.42 \, \mu m \), sin T.T., tipo p
- muestra 4 \(e = 0.42 \, \mu m \), con T.T., 450-500°C ligeramente P.
- muestra 5 \(e = 0.38 \, \mu m \), sin T.T., tipo n
- muestra 5 \(e = 0.38 \, \mu m \), con T.T., a 500°C, tipo n.
- muestra 6 \(e = 0.79 \, \mu m \), sin T.T., tipo p
- muestra 7 \(e = 0.86 \, \mu m \), sin T.T., tipo p
- muestra 7 \(e = 0.86 \, \mu m \), con T.T en vacío, a 500°C, tipo n.
CAPITULO V.

CARACTERIZACION ELECTRICA Y OPTICA

5.1 MEDICIONES DE CONDUCTIVIDAD ELECTRICA

Se determina el comportamiento de la conductividad eléctrica como función de la temperatura de las muestras elaboradas, en el rango de temperaturas comprendidos entre 60 a 170°C.

EQUIPO USADO

- Horno eléctrico regulable, de la fábrica SHENIEWINAT KG, D-5982 NEVERRAD, para calentar la muestra.
- Termómetro digital, TERM SYSTEM AMR, para medir la temperatura de la muestra.
- Electrómetro digital KEITHLEY, para medir directamente la resistencia eléctrica de la película.
 Cables de conexión.

PROCEDIMIENTO EXPERIMENTAL

El circuito utilizado para las mediciones de conductividades eléctricas de las películas, se muestra en la figura 5.1.

Se sabe que la resistencia eléctrica, R, de un canal angosto de película cuya separación es L y de sección transversal recta que tiene área A = he, es:

\[R = \rho \frac{L}{he} \]

donde \(\rho = \frac{1}{\sigma} \) siendo \(\rho \) = la resistividad eléctrica.

\(\sigma \) = conductividad eléctrica.

entonces:

\[R = \frac{L}{\sigma he} \]

por tanto:

\[\sigma = \frac{L}{Rhe} \quad (5.1) \]
Fig. 5.1 Esquema del circuito para mediciones de conductividades eléctricas.
a) Muestra de $e=0.42 \, \mu m = 0.42 \times 10^4 \, cm$, $L = 0.16 \, cm$ y $h=0.7 cm$.

\[\sigma = \frac{5442}{R} \, \text{G}\Omega^{-1} \, cm^{-1} \]

donde $R(\Omega) = R(\Omega) \times 10^9$, \quad $1G\Omega = 10^9\Omega$

entonces

\[\sigma = \frac{[(5442/R) \times 10^9]\Omega}{cm^{-1}} \quad (5.2) \]

b) Muestra de $e=0.86\mu m=0.86x10^4$, $L=0.12cm$ y $h=0.535cm$

\[\sigma = \frac{2411}{R} \, \text{G}\Omega^{-1} \, cm^{-1} \]

análogamente,

\[\sigma = \frac{[2611/R \times 10^9]\Omega}{cm^{-1}} \quad (5.3) \]

Tomando el logaritmo neperiano de las ecuaciones (5.2) y (5.3) se obtiene:

\[L_n \sigma = -9L_n 10 + L_n 5442/R \quad (5.4) \]

\[L_n \sigma = -9L_n 10 + L_n 2611/R \quad (5.5) \]

RESULTADOS

Las figuras 5.2, 5.3, 5.4, 5.5, muestran las gráficas de $L_n \sigma$ versus $1/T$ de la película de $e=0.42\mu m$, tipo p, en el rango de 60-170 °C, tomando mediciones cada 5° C, sin tratamiento térmico, luego con diferentes tratamientos del substrato en contacto con la atmósfera. La temperatura del substrato durante la elaboración fue de $T_s=200^\circ C$.

En la Figura 5.6 se muestra el gráfico de $L_n \sigma$ versus $1/T$ de la película de $e = 0.86\mu m$, tipo n, en el rango de 65-135°C, que después de la deposición es expuesta al aire y luego es calentada en vacío a 500°C durante 1 hora. Para este caso la temperatura del substrato durante la elaboración fue de 220°C.
En la Figura 5.7 se muestra reunidos los gráficos anteriores. Se observa que la conductividad de las películas con tratamientos térmico aumenta respecto a la película sin tratamiento.

En ambas muestras se observan dos regiones de linealidad del gráfico $\text{Ln} \sigma$ vs. T^{-1}, región 1 y región 2, excepto en el caso con tratamiento térmico entre 450º-500ºC para la muestra de $e = 0.42 \ \mu m$, donde no es muy notoria la región 1. En la región 1 la conductividad se debe al salto de los electrones, generados térmicamente, de la banda de valencia a los primeros niveles de defectos localizados (dangling bonds) que actúan como centros aceptores, formándose por consiguiente los huecos de equilibrio en la banda de valencia, que son los portadores mayoritarios, y la conductividad varía de acuerdo a la ec.(2.14). En la región 2, al aumentar la temperatura, los electrones saltarán, por algún mecanismo, hacia los segundos niveles de defectos localizados (dangling bonds) que también actúan como centros aceptores y la conductividad también se rige por la ec.(2.14).

En las dos regiones 1 y 2, los valores de las energías de activación W_1 (o W_2) se obtienen por la pendiente W_1/K (o W_2/K) y los factores pre-exponenciales σ_0 y σ_0 de los interceptos en $1/T=0$, de las gráficas $\text{Ln} \sigma$ vs $1/T$. La tabla 5.1 resume los resultados obtenidos para la muestra de $e = 0.42 \ \mu m$, tipo-p, a partir de una regresión lineal de las mediciones de $\text{Ln} \sigma$ vs. $1/T$. Los valores de W_1 y W_2 tienen una desviación del orden de 0.1eV, entonces se puede decir que estos valores son prácticamente independientes del tratamiento térmico. Como puede verse en la Figura 5.7 la conductividad aumenta con los tratamientos térmicos, por tanto, σ_1 y σ_2, aumentan también como se indica en la tercera y cuarta fila de esta tabla. Este efecto puede ser atribuido a la incorporación de átomos de oxígeno desde la superfi cie hacia el bulk del material, formando enlaces principalmente con las trenzas no saturadas de silicio y permitiendo que los electrones tengan más libertad de trasladarse por el material.
TABLA 5.1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W₁ (eV)</td>
<td>0.392</td>
<td>0.432</td>
<td>0.42</td>
<td>——</td>
</tr>
<tr>
<td></td>
<td>σ₂₁(Ω⁻¹ cm⁻¹)</td>
<td>2.12 x 10⁻¹¹</td>
<td>2.87 x 10⁻¹⁰</td>
<td>4.08 x 10⁻¹⁰</td>
<td>——</td>
</tr>
<tr>
<td>REGION 2</td>
<td>W₂(eV)</td>
<td>0.714</td>
<td>0.632</td>
<td>0.710</td>
<td>0.742</td>
</tr>
<tr>
<td></td>
<td>σ₂₂(Ω⁻¹ cm⁻¹)</td>
<td>2.86 x 10⁻¹⁷</td>
<td>6.78 x 10⁻¹⁷</td>
<td>2.92 x 10⁻¹⁷</td>
<td>1.16 x 10⁻¹⁷</td>
</tr>
</tbody>
</table>

T.T. tratamiento térmico

Para la muestra de e = 0.86 μm, tipo-n, que tiene un tratamiento térmico a 500°C en vacío, se observa que la conductividad aumenta respecto a la de la muestra de e=0.42μm que no tiene tratamiento térmico, pero este aumento es menor comparado con los otros tratamientos. Los valores de las energías de activación y los factores pre-exponenciales fueron:

\[
W_1 = 0.443 \text{ eV} \quad \sigma_{01} = 2.65 \times 10^{-10} \text{ Ω}^{-1} \text{ cm}^{-1}
\]
\[
W_2 = 0.708 \text{ eV} \quad \sigma_{02} = 7.87 \times 10^{-5} \text{ Ω}^{-1} \text{ cm}^{-1}
\]

Se puede concluir que el tratamiento térmico en vacío puede producir una compensación de los enlaces no saturados (dangling bonds) del silicio con algunos átomos de impurezas presentes en la muestra (tales como oxígeno y carbono) permitiendo que los electrones tengan más libertad de trasladarse por el material.
Fig. 5.2. Conductividad Vs inverso de la temperatura para la muestra de $e = 0.42 \mu m$. $T_0 = 200^\circ C$, sin tratamiento térmico.
5.2 MEDIDAS DE ABSORCIÓN Y TRASMISIÓN ÓPTICA

5.2.1 Descripción de espectrómetro optoacústico

El espectrómetro optoacústico (OA) usado para realizar las caracterizaciones ópticas de las muestras está compuesto de los siguientes elementos, fig. 5.8.

- Una lámpara-colimador usado como fuente de luz; lámpara de proyector Tungsten Halogen EHL 220V-62W y alimentado por un variac a 210 VAC y con su respectivo sistema de ventilación.

- Chopper mecánico, sistema de intermitencia al paso de la luz, constituido de rendijas que rotan por un motor produciendo frecuencia de modulación de 104Hz.

- Lente convergente (1) de distancia focal de 5 cm que convergen los rayos luminosos de la lámpara hacia el monocromador.

- Un monocromador, modelo Carl Zeiss M40Π52957, formado por un prisma supracil (de cuarzo) que es traspasente entre 200 a 2500 nm, usado para elegir una determinada longitud de onda modulada de incidencia y a su vez fija el ancho de rendija, slıt (s) de operación.

- Lente convergente (2) de distancia focal 3 cm., que concentra los rayos luminosos de la salida del monocromador hacia la celda OA en donde se almacena la muestra.

- Celda optoacústica, elemento de suma importancia para la espectroscopia, más conocida como detector optoacústico, aquí se deposita la muestra en contacto con el gas de acoplamiento (aire) en la zona de la celda conocida como la cámara de la muestra y comunicada por intermedio de un ducto al micrófono [52].
Un micrófono de condensador tipo electret, usado como sensor acústico de la señal de vibración térmica del gas encerrado en la cámara de la muestra, producto de la respuesta de absorción de la muestra al ser calentada por la energía de la onda incidente (ver secc. 5.2.2).

Circuito de polarización de micrófono, convierte la señal del micrófono en pulso eléctrico, circuito conformado por una fuente de 3V en serie con una resistencia.

Un multímetro digital Keithley 177 microvolt DMM, instrumento de medición directa de la señal eléctrica del micrófono. Estas medidas pueden también registrarse en una computadora por intermedio de una interfase, luego los datos del espectro pueden ser ploteados en un gráfico y/o procesados con el uso de programas específicos.

Un sistema de amplificación electrónica tipo "LOCK-IN" usado como un amplificador de las señales eléctricas de las respuestas espectrales débiles de la salida del micrófono, este amplificador tiene la capacidad fundamental de recuperar señales de varias órdenes de magnitud debajo del nivel de ruido de entrada (señales parásitos) y a su vez cumple la función de un filtro, eliminando gran parte el ruido de fondo.

Un estabilizador de voltaje Electronic-Actrakis, 210-230V, 610-220V, 1A-6.5A, 60Hz, este instrumento mantiene constante el voltaje de la central eléctrica, se utiliza para todos los instrumentos que requieren de una fuente de voltaje estable (no se muestra en la fig. 5.8).
El arreglo experimental del espectrómetro OA fue:

<table>
<thead>
<tr>
<th>Distancia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia fuente de luz-lente 1</td>
<td>23 cm</td>
</tr>
<tr>
<td>Distancia lente 1 - monocromador (entrada)</td>
<td>18 cm</td>
</tr>
<tr>
<td>Distancia "Chopper" - monocromador (entrada)</td>
<td>2 cm</td>
</tr>
<tr>
<td>Distancia monocromador (salida) - lente 2</td>
<td>2 cm</td>
</tr>
<tr>
<td>Distancia lente 2 - celda OA</td>
<td>3 cm</td>
</tr>
</tbody>
</table>

5.2.2 Producción de señales fotocústicas

Al incidir luz modulada en intensidad a través de una de las caras transparentes de una celda (de volumen pequeño) cerrada herméticamente y en cuyo lado posterior se encuentra ubicado una muestra, ésta absorberá la luz calentándose cíclicamente y se enfriará del mismo modo cediendo calor al gas circundante ocasionando fluctuaciones de la densidad, es decir, fluctuaciones de la presión, esto es, sonido de la misma frecuencia que la luz modulada incidente Fig. 5.9. Estas variaciones de la densidad son producidas por gradientes de temperatura del orden de microgrados.

A un lado de la celda se encuentra ubicado un microfono sensible para detectar el sonido producido (que en la mayoría de las veces se encuentra inmerso en el ruido) para ser amplificado apropiadamente.

La intensidad del sonido en la celda es proporcional a la energía absorbida y por lo tanto al calor emitido desde la muestra absorbente. Existe pues una correspondencia biunívoca entre el espectro fotoacústico y el espectro de absorción de la muestra respectiva. La magnitud y la fase de la señal dependen de las propiedades térmicas de la muestra, del gas encerrado en la celda y la frecuencia de modulación de la energía incidente.
En la Espectroscopía fotoacústica los procesos no radiantes son los responsables de la disipación de la energía luminosa y son la fuente principal de la señal acústica [53].

![Diagrama de una celda optoacústica](image)

Fig. 5.9 Esquema de una celda optoacústica [53]

5.2.3 **Montaje del espectrómetro para absorción y transmisión**

La lente convergente (2) (Fig. 5.8) focaliza la luz emergente del monocromador sobre un área pequeña en la celda fotoacústica. En la celda fotoacústica se encuentra una capa de negro de humo, que es un tipo de película preparada por evaporación del alcanfor quemado y depositado en un substrato de mica; ésta tiene la propiedad de absorber casi la totalidad de la energía fotónica de la onda modulada incidente y cuya absorción espectral es lineal, eficiente y muy fácil de obtener que se utilizó como espectro patrón. Los espectros de las respuestas OA de las películas analizadas se tienen que normalizar respecto al espectro de negro de humo (datos normalizados). Para el caso de transmisión, la película
está ubicada entre la lente' (2) y muy cerca del detector (según la Fig. 5.8). A la medida de cada señal de respuesta, se tiene que sustraer el de fondo (F), referido a la medida de señales parasitas que perturban los resultados de la señal de la muestra, esta medida del ruido de fondo se realiza cerrando toda la rendija del monocromador, slit(s), pero previamente se tiene que alinear el espectrómetro para obtener mejores señales de respuesta [53].

5.2.4 Espectros de absorbancia óptica

Se midieron los espectros de absorbancia OA para la muestra de e=0.38 μm sin tratamiento térmico, primero con la celda inicial que se ha construido CM1 y CM2 cuyo volumen era de 1.5mm³ en el rango de 400-2500 nm, con un slit del monocromador de 2.0 y cada 10 nm. En este espectro Fig.5.10 se observa que presenta una precisión promedio de 6%, producto de los errores sistemáticos y estadísticos por la gran dispersión de la medida. Para este espectro no se le ha considerado en el cálculo de los parámetros ópticos.

El espectro de la figura 5.11 fue obtenido con la nueva celda construida hasta ese entonces CM3 y CM4 [54] cuyo volumen fue de 0.5mm³ en el rango de 400-2000nm con un slit del monocromador de 0.5 y cada 10 nm. Se observa una mejor resolución que el espectro anterior con una precisión promedio del 3%.

El espectro de absorbancia OA para la muestra de e=0,38 μm cuando se le hizo un tratamiento térmico a 500°C, expuesto a la atmósfera, se muestra en la Fig. 5.12. Se midió con la nueva celda CM3 y CM4 en el rango de 400-1850 nm con slit del monocromador de 0.5 y cada 10 nm. Se observa una precisión promedio similar que el espectro anterior.
Como las muestras obtenidas fueron semiconductores amorfos, mediante el espectro de absorción OA en función de la longitud de onda de la radiación incidente, se observa que estas películas absorben predominantemente en la región UV cercano y parte del visible (400-800 nm).

En la figura 5.13 se comparan los espectros de absorbancia sin tratamiento y con tratamiento térmico a 500°C. Se observa que la absorbancia disminuye con el calentamiento.

a. Cálculo del coeficiente de absorbancia (α)

Considerando que la onda modulada monocromática tiene una incidencia normal a la muestra, que se desee estudiar su respuesta de absorbancia, la cual está incorporada dentro de la celda OA, todos los espectros deben ser normalizados, es decir, dividir la magnitud de la señal obtenida con la muestra \(V_0(\lambda) \) mst entre la magnitud de la señal obtenida con la muestra patrón \(V_0(\lambda) \) N-H [52].

El valor normalizado de las respuestas de absorbancia OA es:

\[
\text{Absorbancia } A(\lambda) = \frac{\left| V_0(\lambda) \text{ mst} \right|}{\left| V_0(\lambda) \text{ N-H} \right|} \quad (5.6)
\]

donde \(V_0 \) se expresa en unidades de voltaje.

De la ecuación de conservación de la energía óptica:

\[A + T + R = 1 \]

donde \(A = \) absorbancia, \(T = \) transmitancia, \(R = \) reflectancia
Por otro lado, se sabe que para incidencia normal en una capa de espesor e depositada sobre un substrato de vidrio que consideramos despreciable su absorbancia, se obtiene de \(A = 1 - T - R \) en promedio para pequeña absorción (ec. 2.23):

\[
A = \frac{(1 - R_1)(1 + R_2)}{1 - R_1R_2} \quad \alpha d
\]

(5.7)

Siendo:

\[
R_1 = \frac{(n - 1)^2}{(n + 1)^2} ; \quad \text{coeficiente de reflexión film-aire}
\]

\[
R_2 = \frac{(n - 1.5)^2}{(n + 1.5)^2} ; \quad \text{coeficiente de reflexión film-vidrio}
\]

Y, \(n \) = índice de refracción promedio de la muestra de a - Si: H que para este trabajo se tomo el valor promedio de \(n = 2 \) encontrado en la referencia [55].

Luego, se obtienen \(R_1 = 0.111 \), \(R_2 = 0.02 \) y para la muestra de espesor \(e = 0.38 \ \mu m = 0.38 \times 10^4 \ \text{cm} \), hallamos el coeficiente de absorción (\(\alpha \)) lineal de la muestra en el rango de longitudes de onda respectivo, de la ec. (5.7) tenemos:

\[
\alpha = \left[\frac{A}{0.345724} \right] \times 10^4 \ \text{cm}^{-1}
\]

(5.8)

donde \(A = A(\lambda) \) y \(\alpha = \alpha(\lambda) \). Esta ecuación nos permite determinar el rango de absorción de la muestra, que es un parámetro importante para la caracterización óptica. Las figuras 5.14 y 5.15 muestran los espectros de
absorción α vs $hv = \frac{hc}{\lambda}$ de la película de espesor $e=0.38$ μm, sin tratamiento térmico y con tratamiento térmico en aire a 500 C respectivamente.

b) **Determinación del gap óptico**

Con los datos de α y E ($=hv$) de los espectros de absorción los trasladamos al gráfico ($\alpha E)^{\nu}$ vs E. Para la región de energía incidente mayor que E_g más incremento ($E > E_g + \Delta$) se aplica la ley de Tauc que nos relaciona el coeficiente de absorción lineal α y la energía incidente E ($=hv$) ver ec. (2.25).

$$\alpha = \frac{B}{hv} (hv - E_g)^{2} \quad (5.9)$$

donde:

\hbar = constante de Planck

ν = frecuencia de la radiación incidente

E_g = ancho de la banda prohibido

B = constante de Tauc

Entonces para valores en la región $E > E_g + \Delta$ se observa en los gráficos 5.16 y 5.17 una zona recta recta y la intersencion de recta con el eje de las E es el ancho del gap óptico. De la ecuación (5.9) resulta:

$$(\alpha E)^{\nu} = B^{\nu} (E - E_g)$$

Con respecto a los gráficos (5.16) y (5.17) y relacionando con la recta ajustada.

$$(\alpha E)^{\nu} = mE + b$$
Luego interceptamos con el eje de \((\alpha E)^{1/2} = 0\), vemos que el gap óptico, para cada gráfico, se debe relacionar con los valores de \(b\) y \(m\) de la recta ajustada.

Los resultados se resumen en la tabla 5.2

TABLA 5.2

| MUESTRA e = 0.38 \(\mu\)m | \(E_s\) (eV) | \(\lambda_s\) (\(\mu\)m) | \(B^{1/2}\) (eV cm)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>sin T.T.</td>
<td>1.148</td>
<td>1082</td>
<td>19.8</td>
</tr>
<tr>
<td>con T.T. 500°C</td>
<td>1.048</td>
<td>1185</td>
<td>12.5</td>
</tr>
</tbody>
</table>

5.2.5 Espectro de transmitancia optoacústica

Como ilustración se midió el espectro de transmisión optoacústica a la muestra de \(e = 0.38 \(\mu\)m, sin tratamiento térmico, con la celda inicial CM1 construido en el laboratorio en el rango de 410-2000 nm, con un slít del monocromador de 2.0 y cada 10 nm, ver figura 5.18. Para medir la transmitancia T, se tienen que normalizar los resultados de las señales de respuesta de transmisión de la muestra con respecto a la señal de transmisión del substrato (vidrio) y utilizando como detector la celda OA con la muestra patrón (negro de humo). Se confirma pues, que las películulas elaboradas fueron semiconductoras amorfas por absorber más en la región de 410-700 nm. Se observa que el espectro medido no presenta patrones de interferencia (máximos y mínimos) debido a que las películulas delgadas obtenidas no tenían espesor uniforme y además contienen rugosidades en la superficie.
Fig. 5.10. Espectro de absorbancia OA vs λ de la película de $e = 0.38 \mu m$, celda CM1, sin tratamiento térmico.

Fig. 5.11. Espectro de absorbancia OA vs λ de la película de $e = 0.38 \mu m$, celda CM3, sin tratamiento térmico.
CAPITULO VI

CONCLUSIONES

En el presente trabajo consideramos haber realizado un aporte en la puesta en funcionamiento de un equipo de deposición Glow Discharge DC para la elaboración de película delgadas de silicio amorfo hidrogenado y construido en el laboratorio de Conversión Fotovoltaica de la Facultad de Ciencias de la Universidad Nacional de Ingeniería. Posiblemente para investigaciones futuras sean necesarias algunas modificaciones, pero consideramos que es interesante para la investigación en películas delgadas de silicio amorfo y nos sirve como introducción en el estudio teórico y experimental de los semiconductores amorfos. Estas películas delgadas semiconductoras amorfas, significan en nuestro medio contribuir con el desarrollo de la ciencia y la tecnología en el país para poder lograr películas fotovoltaicas que en el futuro serían posibles producir en gran escala y que podrán servir como celdas solares. Si bien es cierto que las películas obtenidas en este trabajo no son aún de la calidad y reproductibilidad deseadas para su aplicación en la fabricación de celdas fotovoltaicas, se debe tener presente que las condiciones para producir películas delgadas de buenas calidad, en general, son diferentes de un equipo a otro, esto significa, que se debe de cambiar algunas condiciones de trabajo del sistema para su optimización, pero que nosotros no lo hemos realizado por razones de tiempo y porque en nuestro medio representa todavía muchas dificultades técnicas y económicas. De los resultados experimentales obtenidos en este trabajo y de las condiciones de elaboración del método de deposición, se infieren las siguientes conclusiones:

a. Los resultados experimentales presentados en este trabajo, indican una clara viabilidad del método PAT (Plasma Associated Transport), en la elaboración de películas delgadas semiconductoras amorfas, con un equipo relativamente poco costoso.
b. Se han logrado elaborar 7 películas reunidas en 4 grupos, cada grupo con diferentes parámetros de deposición y con substratos de vidrios colocados en el electrodo superior (ánodo). Se obtiene que al aumentar la temperatura del substrato, la corriente de polarización y el tiempo de exposición, aumenta los espesores de las películas, consiguiéndose mejorar las propiedades ópticas eléctricas [56]. En este trabajo se consideraron para las caracterización eléctricas y ópticas las muestras de espesores: 0.46µm, 0.86µm y 0.38µm. Todas las películas obtenidas fueron de pequeña área aproximadamente de 17cm².

c. Se logró hacer un vacío de 10⁻² Torr. en la campana antes de hacer ingresar el hidrógeno para producir el plasma tratando de evitar cualquier gas residual típico del sistema y así poder acoplar nuestro equipo de deposición G.D. La desventaja del equipo utilizado en este trabajo es la pequeña velocidad de deposición (0.01 µm/h), en comparación a las velocidades de deposición de otros equipos que utilizan sistemas Glow Discharge DC o rf en otros laboratorios, que realizan esta deposición a razón de 0.33 µm/h. [57].

d. Se midieron aproximadamente los espesores de las muestras por el método gravimétrico de diferencia de pesos utilizando una balanza de alta precisión. Estas muestras no mostraron el mismo espesor en toda su extensión debido a que el campo eléctrico entre los electrodos no fue homogéneo por la distinta longitud de uno de los postes cerámicos que separan los electrodos.

e. Los resultados de un análisis químico a la muestra de mayor espesor (e = 0.86 µm) por la Espectroscopía Electrónica Auger realizada en el laboratorio del Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Santa Fe-Argentina, se determinó que la muestra estaba compuesta en gran proporción de silicio, también contenía carbón, oxígeno y una pequeña proporción de hidrógeno, pero como ya lo hemos señalado no fue posible hallar estos porcentajes. Por
lo tanto, las muestras elaboradas no fueron exclusivamente de a-Si:H, sino que se trataba de una aleación con carbón (carburo de silicio) y óxido de silicio. Las causas de tal contaminación fueron:

1. Antes de ser analizados estuvieron expuestos al medio ambiente por un largo período de tiempo, entonces se oxidaron. Para evitar este problema, las películas deben ser rápidamente aisladas en lugares apartados de la humedad y de toda posible contaminación del medio ambiente;

2. La resistencia de grafito que sirvió para calentar el substrato había sido evaporada en una pequeña proporción debido a la alta corriente que circulaba en ella, por tanto se debe cambiar por otra resistencia de micrón para los futuros trabajos;

3. No se consiguió hacer un vacío óptimo en la campana antes de hacer ingresar el hidrógeno, entonces se debió lograr un mejor vacío de -10^4 Torr, tratando de evitar cualquier gas residual.

f. Para determinar la característica del tipo de conductividad de las muestras semiconductoras, se averiguó experimentalmente mediante la respuesta termoelectrica con la sonda Seebeck, a las películas que se midieron su conductividad, cuyos espesores $e = 0.42 \, \mu m$ y $e = 0.86 \, \mu m$, resultando que eran de tipo p, pues los portadores mayoritarios son huecos (carga positiva), que se originan en la banda de valencia debido a la excitación térmica de los electrones hacia los estados de defecto localizados (dangling bonds) en una gran proporción.

g. Mediante el análisis de los espectros de difracción de rayos X de la muestra de mayor espesor, $e = 0.86 \, \mu m$, tomados en dos laboratorios de difractometría distintos, se confirmaron que fueron amorfoso, porque ambos espectros determinaron no poseer ningún pico característico de un material cristalino.
De las mediciones de las conductividades eléctricas con la temperatura resultaron que la conductibilidad disminuye al reducirse la temperatura, característica importante de un semiconductor que los diferencia de una material metálico. Las gráficas de $\ln \sigma$ vs. $1/T$ de la película de $e = 0.42 \ \mu m$, tipo p, medidos en el rango de 60-170°C, y con diferentes tratamientos térmicos en aire, muestran dos regiones de linealidad: en la región 1 la conductividad es debido al salto de los electrones, por excitación térmica, de la banda de valencia a los primeros niveles de defectos (dangling bonds) que pueden existir como centros aceptores (trampas). En la región 2, al aumentar la temperatura, los electrones saltaran, por algún mecanismo, hacia los segundos niveles de defectos de mayor energía que también existen como centros aceptores. En las dos regiones las energías de activación correspondientes, son prácticamente independientes respecto de los valores que tienen cuando se aplican tratamientos térmicos. La conductividad aumenta con los distintos tratamientos en aire. Este efecto puede ser atribuido a la incorporación de átomos de oxígeno desde la superficie hacia el bulk del material. En cambio, en la muestra que tiene tratamiento térmico en vacío, el aumento de la conductividad es menor comparado con los otros tratamientos en aire. Esto se debe porque en el tratamiento termico en vacio puede producirse una compensación de los enlaces pendientes del silicio con algunos de los átomos de impurezas presentes en el material.

 Mediante la Espectroscopía optoacústica de absorción de la muestra de $e = 0.38 \ \mu m$, tipo n, que se elaboró bajo las mismas condiciones que de la muestra de $e=0.42\mu m$ se comprueba que fueron semiconductoras amorfas por absorber predominantemente en la región UV cercano y parte del visible (410-700)nm. Esta caracteristica fue ratificada mediante los espectros de absorción OA de la muestra de $e = 0.86 \ \mu m$ [ver ref 47] y también comprobado en este trabajo mediante el espectro de transmitancia OA de la muestra de $e=0.38\mu m$. Cuando se comparan los espectros de absorción OA de la muestra de $e = 0.38 \ \mu m$ sin T.T y con T.T (en aire a 500°C), se observa que la absorción disminuye con el T.T.
Los valores del gap óptico extrapolado usando la representación de Tauc de la muestra de e = 0.38 μm, fueron de 1.148 eV sin T.T y de 1.048 eV con T.T. Estos resultados no están muy lejos de los valores de Eg comprendidos entre 1.2 y 1.8 eV que se reportan [58] [59]. Consideramos que estos bajos valores dependen en gran medida de las condiciones de deposición, de las impurezas tales como carbón y oxígeno, así como de la baja resolución del espectrómetro;

j. No obstante, las bajas respuestas opto-eléctricas de las muestras elaboradas hasta el momento, se hace necesario realizar mediciones complementarias y modificar el procedimiento experimental para su posterior aplicación a celdas solares.
REFERENCIAS

[45] Carlos Reyes P. "Desarrollo de un Sistema de vacío Glow Discharge para la elaboración de películas de silicio amorfo" Informe interno UNI-CIENCIAS.

