"DISEÑO E IMPLEMENTACION DE UNA RED INDUSTRIAL DE AREA LOCAL PARA EL LABORATORIO DE CONTROL Y AUTOMATIZACION DE LA FIEE"

TESIS

PARA OPTAR EL TITULO PROFESIONAL DE:

INGENIERO ELECTRONICO

PRESENTADO POR:

LUIS JACOB TAFUR BENZAQUEN

PROMOCION 1985-I

LIMA-PERU
1999
DISEÑO E IMPLEMENTACION DE UNA RED INDUSTRIAL DE AREA LOCAL PARA EL LABORATORIO DE CONTROL Y AUTOMATIZACION DE LA FIEE
SUMARIO

Mediante la presente tesis se realiza el diseño e implementación de una red industrial de área local para integrar cuatro controladores programables (PLCs) de la familia SLC500 Allen Bradley, del laboratorio de control y automatización de la facultad de Ingeniería Eléctrica y Electrónica (FIEE) de la UNI, conjuntamente con los procesos que controlan para conformar un sistema CIM, y dotar el soporte necesario de dicho laboratorio para la enseñanza de control y supervisión de procesos Industriales.

Para tal fin, se han seguido los criterios de planeamiento e Instalación de una red de área local Data High Way -485 (DH-485) de Allen Bradley según las necesidades y especificaciones del laboratorio de Control y Automatización de la FIEE. Asimismo, se ha realizado la compatibilización del software de programación de los PLCs (Rslogix500) con el software de supervisión Rsview32, ambos de Rockwell Software, para la supervisión y mando de los procesos del sistema CIM.
ÍNDICE

<table>
<thead>
<tr>
<th>PROLOGO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPITULO I</td>
<td>1</td>
</tr>
<tr>
<td>GENERALIDADES</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Tecnología de la integración.</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Redes de comunicación en plantas de producción.</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1 Niveles de control en plantas industriales.</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2 Características de las redes industriales.</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Integración de dispositivos en una planta industrial.</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1 Estándares de comunicaciones serial de baja</td>
<td>8</td>
</tr>
<tr>
<td>1.3.2 Interfaces con buces serial y otras equipos de control</td>
<td>9</td>
</tr>
<tr>
<td>1.3.3 Bus de interfase de propósito general.</td>
<td>10</td>
</tr>
<tr>
<td>1.3.4 Bus de campo estándar.</td>
<td>10</td>
</tr>
<tr>
<td>1.3.5 Protocolo de automatización en la producción (MAP)</td>
<td>11</td>
</tr>
</tbody>
</table>
CAPITULO II

CRITERIOS PARA EL PLANIAMIENTO E INSTALACION
INSTALACION DE LA RED DH-485

2.1 Introducción. 13
2.2 Descripción de la red DH-485. 14
2.2.1 Protocolo de la red DH-485. 14
2.2.2 Rotación token DH-485. 15
2.2.3 Inicialización de la red DH-485. 15
2.2.4 Dispositivos que usa la red DH-485. 15
2.2.5 El acoplador de enlace aislado 1747-AIC para DH-485. 16
2.3 Consideraciones para la planificación de la Red DH-485. 17
2.3.1 Introducción 18
2.3.2 Consideraciones del hardware. 18
2.3.3 Número de dispositivos y longitud del cable de comunicaciones. 19
2.3.4 Planeamiento de las rutas del cable. 19
2.3.5 Consideraciones del software. 19
2.3.6 Número de nodos. 20
2.3.7 Direcciones de nodos. 20
2.3.8 Velocidad del procesador. 21
2.3.9 Máximo número de dispositivos de comunicación. 21
2.4 Instalación de la red DH-485. 21
CAPITULO III

PLANEAMIENTO E INSTALACION DE LA RED DH-485 PARA EL LABORATORIO DE CONTROL Y AUTOMATIZACION DE LA FIEE.

3.1 Introducción. 22
3.2 Configuración de la red. 22
3.2.1 Consideraciones del hardware 23
3.2.2 Número de dispositivos y longitud del cable de comunicación 23
3.2.3 Planeamiento de las rutas de la distribución de cable 23
3.2.4 Consideraciones del software 24
3.3 Instalación de la red. 25
3.4 Operación de la red. 40

CAPITULO IV

APLICACIONES DEL SOFTWARE DE SUPERVISION. 43

4.1 El software de supervisión RSVIEW 32. 43
4.1.1 Configuración del RSVIEW 32 43
4.1.2 Drivers de comunicaciones. 45
4.1.3 Creación de tags y Alarmas. 52
4.1.4 Creación de gráficos. 63
4.1.5 Dotando control a los objetos gráficos. 67
4.1.6 Creación de expresiones. 80
PROLOGO

El avance a lo largo de la historia en la investigación matemática ha ido paralelo al desarrollo del campo de la informática. Cada vez que ha habido un avance en uno de estos campos, han ido inmediatamente seguido por el avance del otro.

Con la introducción del ordenador personal comenzó la revolución informática. La competividad en el mercado entre fabricantes desencadenó rápidos avances en este campo. Finalmente los ordenadores han llegado ha ser una herramienta de trabajo común para todo el mundo.

La electrónica está integrada en casi todas las áreas de la vida cotidiana. Se utiliza tanto en el control de los motores como en los terminales de ventas de supermercados.

Así, los fabricantes líderes en automatización se abocaron en brindar la confianza necesaria a sus clientes, elaborando una estrategia que tuvo la designación de Computer Integrated Manufacturing (CIM)

Al tiempo que las compañías líderes fueron desarrollando estrategias en CIM, también se hicieron pioneras en estrategias compatibles de administración para simplificar e integrar aún más el proceso de manufactura. En un sentido, estas estrategias (tiempo real, control total del proceso, control total de calidad,
CAPITULO I
GENERALIDADES

1.1 Tecnología de la integración

El camino para la integración, tanto dentro de la empresa como fuera de una empresa, es utilizar adecuadamente la tecnología de la información para que satisfaga nuestros requerimientos.

Pueden existir cuatro niveles funcionales críticos donde la compatibilidad es importante para lograr una integración funcional amplia en una empresa. Estos niveles están mostrados en la figura 1.1.

El servicio de acceso para aplicaciones, incluyendo una interface de usuario consistente, es lo que los usuarios visualizan cuando acceden a la red desde su terminal o cuando utilizan comandos para un servicio de procesamiento. Las interfaces de usuario que son consistentes de aplicación a aplicación y de sistema a sistema permiten reducir, significativamente los costos de capacitación.

El servicio de comunicación es el nivel en el cual los programas interaccionan transfiriendo y recibiendo la información necesaria para la ejecución de sus procedimientos. Las técnicas de comunicación uniformes entre programas simplifica la integración de aplicaciones. Los servicios de comunicación también incluyen la posibilidad de intercambiar mensajes y documentos.
tecnología de grupo, etc.) proporcionaban guías para los ejecutivos mostrando el beneficio total del CIM.

Hoy en día los fabricantes están haciendo alianzas entre proveedores, distribuidores, usuarios y principales competidores para permanecer en el mercado. Al mismo tiempo, la presión por obtener productos de alta calidad y mayores niveles de respuesta y satisfacción del cliente se está incrementando en proporciones muy grandes.

El presente trabajo, tiene la finalidad de mostrar las posibilidades de integración de los dispositivos PLCs (controladores lógicos programables) que pueden ser configurados de manera local por el operador a través del teclado o de manera remota a través de una red desde la computadora, para el control de procesos industriales, permitiendo por intermedio de protocolos acceder a toda la información de la producción en tiempo real de las diferentes áreas de una empresa (Ingeniería, investigación, ventas, etc.) para asegurar la calidad total de los productos.

El objetivo de la presente tesis es divulgar consideraciones y criterios para la implementación de una red industrial de área local para el laboratorio de electrónica de la Facultad de Ingeniería Eléctrica y Electrónica de la UNI para la enseñanza de control y supervisión de procesos industriales.
Figura 1.1 Niveles de compatibilidad funcional

La información y compartimiento de recursos provee la interface que los programas utilizan para acceder a los bancos de datos. Los estándares a este nivel indican que los programas deben acceder fácilmente a los bancos de datos, independientemente de qué base de datos o dispositivos de almacenamiento son usados.

Actualmente, los proveedores de redes de computadoras están abocados en integrar el estándar internacional OSI (Open System Interconnection) en todos sus productos, para la interconexión entre computadoras.

Los soportes de estos niveles funcionales son el hardware de computadoras y el sistema operativo. Estos afectan directamente a los costos de implementación para administración y soporte de sistemas.
1.2 Redes de comunicación en plantas de producción

Un ambiente de planta de manufactura tiene todas las características expresadas anteriormente y además otra: La integración de los dispositivos de planta.

En algunos puntos, la integración de dispositivos y computadoras en la planta es más difícil de alcanzar que la integración de sistemas de computadoras en otros niveles de una organización empresarial. Esto es debido a la gran diversidad de procesos de manufactura requeridos.

Literalmente, miles de fabricantes poseen dispositivos y equipamiento especializados. La integración requiere un rango que abarque la inclusión del ultimo dispositivo que reporte información hasta los lazos de control de alta velocidad que requieren tiempo de respuesta de orden de los milisegundos. Los volúmenes de datos varían desde unos pocos caracteres de actualización de bits de estado hasta los millones de caracteres utilizados en el control numérico.

1.2.1 Niveles de control en plantas industriales.

El proceso de manufactura que se ilustra en la figura 1.2, ilustra la diversidad y complejidad del ambiente de información en una planta. Esta figura, muestra dos tipos de red. La red (representada por la curva S) que conecta las computadoras en los niveles empresariales, planta y área de control y las subredes de integración de los dispositivos de planta que conectan computadoras en el nivel de control con dispositivos de campo.
MODELO DE DISTRIBUCION DE LOS NIVELES DE CONTROL EN PLANTAS DE MANUFACTURA

NIVEL 4
SISTEMAS EMPRESARIALES

NIVEL 3.
CONTROL DE PLANTA

Distribución

MRP II
Mantenimiento

NIVEL 2.
CONTROL DE AREA

Control de celda
Servidor Terminal
Proceso de Optimización

NIVEL 1
CONTROL DE UNIDAD

PLC Robot NC Disp. MAP
Terminales lectores de Códigos de Barras RS-232
Proceso de control distribuido

NIVEL 0.
MAQUINARIA/PROCESO

FIGURA 1.2 Modelo de distribución de los niveles de control en plantas de manufactura
1.2.2 Características de las redes industriales.

En la Tabla 1.1 se resume las características claves para diferenciar las redes de computadoras de las subredes de integración de dispositivos de planta.

<table>
<thead>
<tr>
<th>Características</th>
<th>Niveles Empresariales (3 y 4)</th>
<th>Niveles de planta (2 y 3)</th>
<th>Niveles de celda (1 y 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Función</td>
<td>Integración Empresarial</td>
<td>Integración de grupos/ departamentos de trabajo</td>
<td>Automatización</td>
</tr>
<tr>
<td>Distancia</td>
<td>Varios Kilómetros</td>
<td>300 metros a mas</td>
<td>30 metros</td>
</tr>
<tr>
<td>Tipo</td>
<td>Red de Area Amplia</td>
<td>Red de Area local</td>
<td>Sub Red de Area Local</td>
</tr>
<tr>
<td>Conexión Física</td>
<td>X.25 , CCITT , vía satélite , microondas</td>
<td>802.3 /Ethernet , banda base , banda ancha , fibra óptica</td>
<td>Líneas serieales , MAP , 803.3/Ethernet.</td>
</tr>
<tr>
<td>Velocidad</td>
<td>56 Kbits/s hasta 1.5 Mbits/s</td>
<td>10 Mbits/s</td>
<td>Menos de 19.2 kbits/s</td>
</tr>
<tr>
<td>Protocolo</td>
<td>OSI,SNA</td>
<td>OSI , TCP/IP</td>
<td>MMS , Multipropietario</td>
</tr>
<tr>
<td>Tipos de nodos</td>
<td>Mainframes</td>
<td>Microcomputadoras , mainframes , PCs</td>
<td>Equipamiento de planta , PLC , terminales</td>
</tr>
<tr>
<td>Número de nodos</td>
<td>Miles</td>
<td>Cientos</td>
<td>menos de 10</td>
</tr>
<tr>
<td>Servicios de comunicación</td>
<td>Transferencia de archivos , terminales virtuales , acceso remoto a bancos de datos , administración de red , compartimiento de recursos</td>
<td>Lectura/escritura de datos , dispositivos de arranque / parada , estado de dispositivos</td>
<td></td>
</tr>
</tbody>
</table>

TABLA 1.1 Características de redes industriales

1.3 Integración de dispositivos en una planta industrial.

Las comunicaciones entre computadoras y dispositivos de manufactura en la planta consiste típicamente de mensajes cortos de control e información de estados. Se han desarrollado varios esquemas de comunicación para soportar estos intercambios, que frecuentemente exigen una alta velocidad por la premura del tiempo.
En el nivel de planta(nivel1 en el modelo de red de manufactura en la figura 1.2), los enlaces punto a punto y los buses seriales permiten a los controladores de celda, comunicarse con PLCs y otros dispositivos inteligentes.

Esquemas de comunicación y estándares que son usados en este nivel:

a) Interfaces RS-232C, RS-422 y RS-423
b) Bus serial BITBUS y otros equipamientos de control.
c) Interface de propósito general para pruebas y equipamiento de laboratorio
d) Protocolo de Automatización de Manufactura(MAP)

1.3.1 Estándares de comunicaciones seriales de baja velocidad (Norma EIA)

La Electronic Industries Association (EIA) ha desarrollado muchas especificaciones para estandarizar los sistemas de interfaces en comunicaciones. Los estándares seriales usados en industrias incluyen el RS-232, RS-422ª y RS-423A.

El RS-232 es una especificación para retransmisión de datos en corta distancia (50 Pies máximo) a bajas velocidades (19.2 Kbit/s).

La versión de corriente, el RS-232C, especifica las características eléctricas de la señal y las características mecánicas de las interfaces y posee una descripción funcional del circuito de intercambio.

El RS-423 extiende a la velocidad de 100Kbit/s (Sobre distancias hasta de 300 pies) y extiende a la distancia de 4000 Pies (velocidades hasta 1Kbit/s).

Para datos sobre 100Kbit/s, se usa otro esquema .El RS-422 permite velocidades hasta 10 Mbit/s en distancias hasta de 40 Pies y longitudes hasta de 4000 Pies a velocidades hasta de 100 Kbit/s.
El RS-449 especifica las características funcionales y mecánicas del equipamiento terminal de datos (DTE) con el equipo de comunicaciones de datos (DCE).

1.3.2 Interfaces con buces seriales y otros equipos de control

El BITBUS es una interconexión serial de alta velocidad desarrollada por Intel Corporation para soportar comunicaciones entre microcontroladores y computadoras en el nivel de planta que controlan y monitorean el proceso industrial.

<table>
<thead>
<tr>
<th>MODO</th>
<th>VELOCIDAD</th>
<th>DISTANCIA MAXIMA</th>
<th>MAXIMO DE NODOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asincrono 1</td>
<td>62.5 Kbits/s</td>
<td>13.2 Km.</td>
<td>250</td>
</tr>
<tr>
<td>Asincrono 2</td>
<td>375 Kbits/s</td>
<td>900 m</td>
<td>84</td>
</tr>
<tr>
<td>Sincrono</td>
<td>2400 Kbits/s</td>
<td>30 m</td>
<td>28</td>
</tr>
</tbody>
</table>

Tabla 1.2 BITBUS

El protocolo de mensajes, BITBUS direcciona hasta 250 nodos dentro de una red simple. Un nodo puede soportar hasta 16 tareas sincrónicas en un tiempo real, cada una llevando un conjunto particular de eventos.
La tabla 1.2 muestra los modos de comunicación BITBUS, velocidad, máxima distancia y el número máximo de nodos soportados.

1.3.3 Bus de interface de propósito general

El bus de interface de propósito general (GPIB), o bus de instrumentación, es un estándar internacional para interconectar instrumentación programable. En un ambiente de laboratorio, un GPIB es empleado en casi todas las piezas de equipamiento de control manufacturados.

Más de 1200 instrumentos producidos por más de 100 fabricantes son ofrecidos con interfaces compatibles GPIB.

El estándar define un sistema interconectado de 16 hilos que permite hasta 15 dispositivos, comunicarse el uno con el otro en un modo bit paralelo/bit serial. El estándar especifica el protocolo de transferencia de datos.

Internacionalmente, existen dos estándares el GPIB, el estándar IEEE 488-2978 en EUA y el estándar IEC 625-1 en Europa. Estos estándares son funcionalmente idénticos, diferenciándose solo en el tipo de conector usado.

Los estándares IEEE/IEC especifican una máxima velocidad de GPIB de 1 Mbytes. Los instrumentos típicos conectados al bus aceptan entradas o producen salidas de 1Kbytes a 10Kbytes.

1.3.4 Bus de campo estándar

El estándar de comunicaciones bus de campo, desarrollado por Instrument Society Of America’s Standard Practises 50 Committee (SP-50), define un estándar entre dispositivos de campo en plantas discretas o de procesos y sus dispositivos de
control. Los dispositivos incluyen flujo, temperatura y sensores de presión, indicadores de posicionamiento angular y actuadores de válvulas y motores.

El propósito de este nuevo estándar es de reemplazar el estándar de 4 a 20 mA (de más de 30 años de antigüedad), el cual es un estándar muy poco usado en la industria. El bus de campo reemplazará a la antigua tecnología analógica, por una tecnología digital. Los enlaces digitales son más baratos y de alta confiabilidad.

El esfuerzo del SP-50 ampliará el beneficio de interconectividad entre equipamiento de diferentes marcas y estandarizará las interfaces a dispositivos de campo inteligente y sistemas de control 1 y 0.

1.3.5 Protocolo de automatización en la producción (MAP)

El protocolo de automatización en la producción (MAP) es una especificación definida por el usuario para un conjunto de protocolos de red basados en los estándares OSI. La especificación MAP está diseñada para comunicaciones de dispositivos de diferentes marcas en la planta de producción.

La figura 1.3 muestra las columnas MAP. El File Transfer Acces Management (FTAM) definido por ISO, se encarga de unificar los distintos protocolos que existen para la transmisión de archivos. El servicio CASE (Common Aplication Service Elements) soporta todos los servicios proporcionados por los niveles inferiores de la arquitectura. El MMFS (Manufacturing Message Format Standard), es un protocolo que se basa en la definición sintáctica y semántica de los mensajes entre máquinas y automatismo con los centros de control.
El nivel de transporte es compatible con la clase 4 del protocolo estándar ISO 8073(TP4). El nivel red proporciona la clase 3 orientada a la no conexión del servicio de red especificado por ISO 8473.

NIVELES OSI

<table>
<thead>
<tr>
<th>NIVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>APLICACION</td>
</tr>
<tr>
<td>PRESENTACION</td>
</tr>
<tr>
<td>SESION</td>
</tr>
<tr>
<td>TRANSPORTE</td>
</tr>
<tr>
<td>RED</td>
</tr>
<tr>
<td>ENLACE</td>
</tr>
<tr>
<td>FISICO</td>
</tr>
</tbody>
</table>

NIVELES MAP

<table>
<thead>
<tr>
<th>NIVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directorios, MMFS FTAM CASE NULO</td>
</tr>
<tr>
<td>SESION (NUCLEO)</td>
</tr>
<tr>
<td>TRANSPORTE CLASE 4</td>
</tr>
<tr>
<td>ISO NO CONEXION</td>
</tr>
<tr>
<td>802.2 LLC.1</td>
</tr>
<tr>
<td>802.4 CARRIER BAND BROAD BAND</td>
</tr>
</tbody>
</table>

Figura 1.3 Niveles OSI y MAP
CAPITULO II
CRITERIOS PARA EL PLANEAMIENTO E INSTALACION DE LA RED DH-485

2.1 Introducción

La siguiente información ayuda a planificar, instalar y operar la familia de PLCs SLC 500 de Allen Bradley en una red (Data High Way -485). Aquí describimos la arquitectura y las características de funcionamiento de la red DH-485 considerando:

a) Descripción de la red DH-485
b) Protocolo de la red DH-485
c) Rotación del testigo DH-485
d) Inicialización de la red DH-485
e) El Acoplador de Enlace Aislado 1747-AIC para DH-485.

2.2 Descripción de la red DH-485

Nosotros tenemos que diseñar la red DH-485 para transferir información de los dispositivos de planta. La red monitorea los parámetros de los dispositivos, el estado de los dispositivos los programas de aplicación para la adquisición de datos, la carga del programa como el almacenamiento, la supervisión y control de todo el sistema.

La red DH-485 ofrece:
Interconexión de 32 dispositivos.

a) Capacidad MULTIMASTER.

b) Acceso y control del paso del testigo.

c) Capacidad para adicionar o remover nodos sin afectar la red

d) Longitud máxima de red de 1219 metros (400 ft).

2.2.1 Protocolo de la red DH-485

Aquí describimos el protocolo usado para el control y la transferencia de mensajes en la red DH-485. El protocolo soporta dos clases de dispositivos; el que inicia y el que responde. Todo iniciador en la red tiene la capacidad de iniciar la transferencia de mensajes. Para determinar qué iniciador tiene el derecho de transmitir, se usa un paso de testigo algoítmico.

2.2.2 Rotación del testigo DH-485

Un nodo al retener el testigo puede enviar un paquete de información en la red de trabajo. Cada nodo toma solamente una transmisión cada vez que recibe el testigo.

El protocolo usa una trama de control llamada testigo de acceso o derecho de acceso, que confiere a una estación el uso exclusivo del bus. La estación que ostente el testigo usará el bus durante un período de tiempo para enviar y recibir datos (o incluso para sondear a otra estaciones) y a continuación se lo entregará a otra estación designada. En la topología en bus, todas las estaciones escuchan y reciben el testigo de acceso, pero la única estación que queda autorizada para usar el canal es aquella que aparezca indicada expresamente en el testigo de acceso. Todas las demás estaciones deberán esperar su turno para recibir el testigo.
Las estaciones van recibiendo el testigo cíclicamente, con lo cual se configura un anillo lógico, aunque sobre un bus físico. Esta modalidad de paso del testigo se conoce como sistema de testigo explícito, porque cada testigo lleva incorporado la dirección de su destinatario.

![Diagrama de red con paso de testigo en bus](image.png)

S= Dirección de la siguiente estación a la que envía el testigo (sucesor)

FIGURA 2.1 Red con paso de testigo en bus (Token Bus)

2.2.3 Inicialización de la red DH-485

La inicialización de la red empieza cuando un período de inactividad excede al tiempo de enlace esto es detectado por un iniciador en la red. Cuando el tiempo de enlace es excedido, usualmente el iniciador con más baja dirección reclama el testigo. Cuando el iniciador tiene el testigo puede trabajar en la red. La red requiere del iniciador para poder inicializarse.

2.2.4 Dispositivos que usa la red DH-485

Presentamos los siguientes dispositivos que soporta la red DH-485

a) Controlador SLC500 con I/O fijos (responde)

b) Controlador SLC 5/01 con I/O modular (responde)

c) Controlador SLC 5/02 con I/O modular (Inicia/Responde)
d) Controlador SLC 5/03 con I/O modular (Inicia /responde)

e) Controlador SLC 5/04 con I/O modular (Inicia/Responde)

f) Computador Personal ejecuta el programa (Iniciador)

g) Hand –Held Terminal (iniciador)

h) DTAM (Inicia/Responde)

Otros dispositivos que usa la red DH-485 Están incluidos en la tabla.

<table>
<thead>
<tr>
<th>Numero de catalogo</th>
<th>Descripción</th>
<th>Instalación Requerida</th>
</tr>
</thead>
<tbody>
<tr>
<td>1746-BAS</td>
<td>Modulo Básico</td>
<td>Chasis SLC</td>
</tr>
<tr>
<td>1747-KE</td>
<td>DH-485/DF1 Modulo de interfaces</td>
<td>Chasis SLC</td>
</tr>
<tr>
<td>1784-KR</td>
<td>PC - DH-485 Modulo de interfaces</td>
<td>IBM XT/AT</td>
</tr>
<tr>
<td>1770 - KF3</td>
<td>DH-485 / DF1 Modulo de interfaces</td>
<td>Standalone(desktop)</td>
</tr>
<tr>
<td>1785-KA5</td>
<td>DH+/DH-485 Gateway</td>
<td>1771 PLC (CHASIS)</td>
</tr>
</tbody>
</table>

Tabla 2.1

2.2.5 El acoplador de enlace aislado 1747- AIC para DH –485

El acoplador de Enlace Aislado (1747 – AIC) es usado para conectar la familia SLC500 a la red DH-485 figura 2.1 .El acoplador provee 6 posiciones removibles para la conexión del cable de comunicación hacia la red DH-485.

Las conexiones de red para el procesador SL500 está determinado por el catálogo número 1747 –c11 , cable de alimentación de 304.8 mm para el 1747 –AIC . La conexión de red para dispositivos periféricos tal como el Conversor De Interfase Personal (1747-PIC) , el Modulo de Acceso de Tabla de Datos (1747-DTAM), o el Terminal de Mano (Hand –Held Terminal 1747 –PT1) esta determinado por el catálogo estándar número 1747 – C10 Cable de 1.8 m que alimenta a cada uno de
esos dispositivos. Si se requiere conectar un dispositivo periférico que está entre 1.8 m (6ft) y 6.1m(20ft) o más, se usará el cable 1747-C20.

Para proteger los dispositivos conectados, el Acoplador provee aislamiento de 1500Vdc entre el cable de comunicación, el controlador SLC500 y los dispositivos periféricos (PIC, DTAM, HHT).

El 1747-AIC también se puede usar para proveer conectividad entre un dispositivo periférico y los dispositivos periféricos, PIC, DTAM, o HHT. Para distancias mayores que 1.8m (6ft), hasta un máximo de 1219 m (400 ft). En la figura 2.1 se tiene un ejemplo de una conexión remota entre un computador trabajando y un procesador.

FIGURA 2.1

2.3 Consideraciones para la planificación de la red DH-485.

El diseño de una red, involucra un cuidadoso planeamiento y evaluación de diferentes opciones de diseño. Las redes pueden ser diseñadas con diferentes topologías, métodos de acceso, medios de transmisión y otros componentes. Cuando se aplica a un ambiente industrial, el diseño de la red debe ser adecuado a
las necesidades especiales y condiciones presentadas en planta (en nuestro caso la red es una red industrial para fines educativos).

El diseñador de la red, determina que equipamiento usar, dónde colocar el equipamiento, y como relacionar nodos y grupos de trabajo para satisfacer los requerimientos económicos y de aplicación. El diseñador también se esforzará para lograr el máximo rendimiento de la red a un costo razonable. Para alcanzar esta meta debe realizarse un análisis de las necesidades de la red. Este es el núcleo del planeamiento.

2.3.1 Introducción

Se debe planificar la configuración de la red antes de instalar algún hardware. Listamos algunos de los factores que pueden afectar el funcionamiento del sistema:

a) Cantidad de ruidos eléctricos, temperatura y la humedad en la red.

b) Número de dispositivos en la red

c) Conexión, tierra y calidad de la instalación

d) Tipo de procesos a ser controlados

e) Configuración de la red.

2.3.2 Consideraciones del hardware

Se requiere decidir la longitud del cable de comunicación, la ruta y la protección donde se va ha realizar la instalación.

Cuando el cable de comunicación está instalado se requiere conocer cuántos dispositivos estarán conectados durante la instalación y cuantos dispositivos se adicionarán en el futuro.
2.3.3 Número de dispositivos y longitud del cable de comunicación.

Se debe de instalar un Acoplador de Enlace (1747-AIC) por cada nodo en la red de trabajo. Si se piensa adicionar nodos después, se tendrá que tener los Acopladores de Enlace (1747-AIC) por cada nodo en la red de trabajo. Si se piensa adicionar nodos después tendrás que tener los Acopladores de Enlace durante la instalación inicial para evitar el recableado cuando la red esta en operación.

2.3.4 Planeamiento de las rutas del cable

Siguiendo los siguientes pasos se protege al cable de comunicación de una interferencia eléctrica

a) El cable de comunicación debe estar separado por lo menos 1.52m (5ft) de motores eléctricos, transformadores, rectificadores, generadores, efectos inductivos o fuentes de radiación de microondas.

b) El cable de comunicación debe estar por lo menos a 0.15m (6 in) separado de líneas eléctricas de menos de 20 A, 0.30m (1ft) de líneas eléctricas que transportan mas de 20 A hasta 100KVA y 0.60m (2ft) para líneas eléctricas que transportan mas de 100KVA.

c) Si el cable es llevado a los terminales o al procesador atraves de canaletas de plástico, existe una extra protección de daños físicos y de interferencias eléctricas.

2.3.5 Consideraciones del software

Incluye la configuración de la red y los parámetros que pueden ser especificados para los requerimientos de la red. Los siguientes factores de configuración tienen un efecto significativo en el funcionamiento de la red:

a) Número de nodos en la red
b) Direcciones de los nodos

c) Baudios

d) Máxima selección de direcciones de nodos

e) Máximo número de dispositivos comunicando

2.3.6 Número de nodos

El número de nodos en la red afectan directamente a la transferencia de datos entre nodos. Nodos innecesarios hacen que la transferencia de los datos sea baja el máximo numero de nodos en una red es 32.

2.3.7 Direcciones de nodos

El mejor funcionamiento de la red ocurre cuando la dirección del nodo comienza en 0 y luego la asignación es en orden secuencial. En los procesadores SLC500 la dirección por default es 1. La dirección del nodo es almacenada en el archivo de estado del procesador (S:15L). El procesador no puede ser nodo 0

También iniciadores tal como computadoras personales pueden ser asignadas a números de direcciones bajas esto minimiza el tiempo requerido para inicializar la red.

Si algunos nodos están conectados temporalmente no asignar direcciones a ellos. Crearlos cuando los necesites luego borrarlos.

La máxima dirección posible del nodo tiene que ser la más baja posible esto minimiza la cantidad de tiempo usada al inicializar la red. Si todos los nodos son seleccionados en secuencia desde 0 y la máxima dirección de nodo, la rotación del testigo puede mejorar por la cantidad de tiempo requerido para transmitir una solicitud.
2.3.8 Velocidad del procesador

El mejor funcionamiento se logra a los 19200 baudios.Todo dispositivo debe tener una velocidad de transferencia de datos.Por defecto para los dispositivos SLC500 es de 19200 la velocidad es almacenada en los archivos de estado del procesador (Procesor Status File (S:15H)).

2.3.9 Máximo número de dispositivos de comunicación

Los procesadores SLC500 pueden sensar un número máximo de 32 nodos

2.4 Instalación de la red DH-485

Para instalar una red DH-485, se requiere herramientas para conectar los terminales y el Acoplador de Enlace Aislado.

Para instalar la red DH-485 se utilizan las siguientes herramientas (o equivalente) tabla 2.2.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>NUMERO DE PARTE</th>
<th>MANUFACTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par trenzado</td>
<td>#9842</td>
<td>BELDEN</td>
</tr>
<tr>
<td>Tiras (stripping tool)</td>
<td>45-164</td>
<td>Ideal para industrias</td>
</tr>
</tbody>
</table>

Tabla 2.2
CAPITULO III
PLANEAMIENTO E INSTALACIÓN DE LA RED DH-485 PARA EL
LABORATORIO DE CONTROL Y AUTOMATIZACIÓN DE LA FIEE.

3.1 Introducción

Algunas redes de área local deben ser diseñadas acondicionándose al
equipamiento ya existente, como por ejemplo conectar bloques automatizados
distribuidos en planta (en nuestro caso laboratorio de la FIEE). Otros diseños serán
realizados sin considerar el cableado o equipamiento existente. En seguida,
describiremos el planeamiento típico y condiciones de diseño que un diseñador debe
tener en cuenta para la configuración de la red.

3.2 Configuración de la red

Para el planeamiento e instalación de la red DH-485 para el laboratorio de
control y automatización de la FIEE hemos tomado en consideración algunos
factores que pueden afectar el funcionamiento del sistema antes de la instalación del
hardware, como son la cantidad de ruido eléctrico, temperatura, humedad de la red,
número de dispositivos en la red, conexión a tierra y calidad de la instalación, tipos
de procesos a ser controlados y por último la configuración de la red.
3.2.1 Consideraciones del hardware

La longitud del cable es de aproximadamente 2mt por cada estación de trabajo (nodo), se ha establecido una ruta en serie según como podemos observar en la figura 2.2, temporalmente los cables están protegidos por el aislamiento propio del cable belden # 9842 el cual determina la protección externa y reduce los efectos de ruidos electrostáticos proveniente de sistemas industriales.

3.2.2 Número de dispositivos y longitud del cable de comunicación

la cantidad de nodos con los cuales estamos trabajando son cuatro nodos considerando la computadora y los tres PLCs SLC500/2 a los cuales estamos supervisando

a) El sentido de giro cíclico de un motor eléctrico.

b) El sistemas de fajas transportadoras.

c) El sistema elevador - separador de paquetes.

la red de la FIEE puede soportar hasta 32 nodos pudiendo en un principio supervisar hasta 32 procesos diferentes, la ampliación dependerá de los acopladores de enlace (1747-AIC), del software (RSlogix500, RSview32), y de los cables que se pueda adicionar. La longitud total del cable no excede en nuestro caso a los 20 mts.

3.2.3 Planeamiento de las rutas de la distribución del cable.

Los cables de comunicación han sido separados aproximadamente 1.52 mts de motores eléctricos, transformadores, rectificadores, generadores, efectos inductivos y fuentes de radiación de microondas ya que con esto aseguramos que la transmisión de los datos no sean alterados.
Además los cables se han separado 0.30 mt de líneas eléctricas que transportan de 20 A hasta 100 KVA, considerando estrictamente los estándares eléctricos para la protección de datos. Es conveniente recomendar el llevado del cable a los terminales o al procesador atraves de canaletas de plástico, para determinar una extra protección en el laboratorio a interferencias electromagnéticas.

3.2.4 Consideraciones del software

Aplicando RSlogix500 se realizaron los diagramas en escalera luego comunicamos este software con el RSview32 el cual permitió supervisar el proyecto. Los siguientes factores de configuración fueron preparados en la red empleando los software anteriormente citados, obteniendo un efecto significativo en el funcionamiento de la red los cuales fueron:

a) Programación en escalera para cada uno de los procesos.

b) Comunicación aplicando el Winlinx.

c) Preparación de los nodos.

d) Direcciones de los nodos.

e) baudios.

Cada sistema fue diseñado teniendo en consideración las entradas que normalmente eran comandadas por un panel de control Físico, realizando un estudio de la lógica del sistema obteníamos la señal de salida. Todo esto fue plasmado utilizando el RSlogix500 en los programas en escalera que se adicionan al final de la tesis, aquí aplicamos direcciones a las entradas y salidas según como observamos en los programas, también a los bits internos que desarrollan el proceso lógico de aperación de cada proyecto, además tuvimos que adicionar unos bits de supervisión
que nos permitan control virtual, estos bits comunican el programa en escalera del
RSlogix500 con el RSview32 a través de una preparación de tags.

A continuación presentamos algunas pantallas de configuración de red
aplicando el RSview32

- **Configuración del canal**

 En esta pantalla se puede observar que el tipo de comunicación en la red es el
DH-485 utiliza el canal #1 y que posee un PIC que permite la comunicación. En
nuestro caso inicialmente fue el 1747-PIC para una comunicación punto a punto
luego fue cambiado por un 1747-AIC cuando la comunicación se realizó a nivel de
red multipunto. Estos 1747 son los llamados drivers de comunicación primarios
existen también los drivers de comunicación secundarios que nos son utilizados en
esta tesis figura 3.1.
- **Preparación de nodos**

En esta segunda ventana podemos observar cómo se configura los nodos tenemos los nombres de los nodos utilizados (Elevator, Maq4, Proyect1). En el caso del nodo llamado elevator tenemos que definirlo como perteneciente a un tipo SLC500, ya que normalmente este nodo es un SLC500/2, además establecer el tipo de canal el numero de estación y cada cuantos segundos tendrá que ser supervisado por el Rsview32 a través del microprocesador del computador, es importante señalar
que todos los nodos tendrán que prepararse en cada proyecto si no se realiza esto los nodos no son reconocidos figura 3.2.

![Figura 3.2](Image)

- **Scanning del nodo**

Aquí se observa la pantalla que nos permite obtener la información proveniente de los tags, estos valores son buscados en las direcciones de los controladores programables a través de los drivers. A cada tag se le puede asignar una búsqueda periódica, el diseñador determina con qué frecuencia se toman los valores. Puede observarse en la Figura 3.3 que existe un scanning (exploración) periódico Foreground que se aplica a los gráficos y a la base de datos.
Background se aplica a cualquier componente que está en actividad como a eventos alarmas y datos de entrada. Se puede cambiar el tiempo de scanning para diferentes procesos, figura 3.3.

Figura 3.3

- **Preparación de los tags para ser reconocidos por el Rsview32**

 Esta ventana nos indica cómo preparar el tag para que sea entendido por el RSview se deberá informar el nombre del tag con el cual se está trabajando, tipo (digital, análogo, string), la seguridad, la descripción, la escala, la unidad en uso y lo más importante ud tendrá que definir la dirección en tipo de dato fuente(data source type) es aquí donde se realiza el reconocimiento del tag como dirección proveniente del RSlogix500 por el RSview32 en caso de no ser aceptada su
dirección es imposible realizar algún tipo de comunicación con los nodos. Podemos
observar en las Figuras 3.4 y la Figura 3.5 .

FIGURA 3.4
- **El Tag monitor**

 Con el tag monitor establecemos si los tag recibidos por el Rsview32 son validos o no. la valides del tag va ser determinada cuando ud introduzca a la base de datos el tag seleccionado. en caso de no existir comunicacion los tag son no validos.
- Apertura del proyecto.

 Cuando se va ha comunicar el software de supervisión Rsview32 con el software de programación se deberá prepararlo, siguiendo los siguientes pasos (ver las figuras 3.7, 3.8, 3.9)

 – Adicionar el proyecto creado en el DDE server, figura 3.7

 – Seleccionarlo en Select Default Proyect, figura 3.8

 – Luego seleccionarlo en Topic Configuration, figura 3.9
• Apertura del proyecto.

Cuando se va ha comunicar el software de supervisión Rsview32 con el software de programación se deberá prepararlo, siguiendo los siguientes pasos (ver las figuras 3.7, 3.8, 3.9):

– Adicionar el proyecto creado en el DDE server, figura 3.7
– Seleccionarlo en Select Default Proyect, figura 3.8
– Luego seleccionarlo en Topic Configuration, figura 3.9
Figura 3.7
Figura 3.8
- **El Super who**

 El Super who permite establecer quién está activo en la red. Cuando los nodos estén activos, podremos visualizarlos en esta pantalla a cada uno de ellos como activos en la red.
3.3 Instalación de la red

El acoplador de Enlace provee una conexión para cada nodo. El Acoplador de Enlace Aislado eléctricamente, aísla la comunicación entre el procesador y los dispositivos periféricos.

El aislamiento eléctrico y óptico proveído es de 1500V.

Se sugiere usar como cable para la comunicación DH-485 el Belden #9842 posee un jack para la conexión dos pares trenzados y un cable a tierra, un par balancea la señal de línea y un alambre del otro par se usa como referencia común para todos los nodos. La protección externa reduce los efectos de ruidos electrostáticos provenientes de sistemas industriales.
a) Instalación del cable de comunicación DH-485.

El cable de comunicación consiste de un número de segmentos de cable conectados a los Acopladores de Enlace según como se observa en la figura 2.2. Se debe dejar la suficiente longitud de cable, para que el nuevo segmento pueda conectarse al otro aislador.

Figura 3.11
b) Conexión del cable de comunicación al Acoplador de Enlace

Conectar el cable hacia el bloque de conexión según como se muestra en la figura 3.11.

Figura 3.12

La tabla 3.1 descrita abajo muestra la conexión antigua alambre/terminal para DH-485 para el cable Belden #9842.

<table>
<thead>
<tr>
<th>Para el Par/Alambre</th>
<th>Conexión de los Alambres</th>
<th>Hacia los terminales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shiel Drain</td>
<td>No conectado</td>
<td>Terminal 2</td>
</tr>
<tr>
<td>Negro/Blanco</td>
<td>Negro</td>
<td>Conexión</td>
</tr>
<tr>
<td></td>
<td>Blanco</td>
<td>Terminal 3 (Común)</td>
</tr>
<tr>
<td>Negro/rojo</td>
<td>Negro</td>
<td>Terminal 4 (Data B)</td>
</tr>
<tr>
<td></td>
<td>Rojo</td>
<td>Terminal 5 (Data A)</td>
</tr>
</tbody>
</table>
La tabla 3.2 muestra la conexión usada actualmente alambre/terminal.

<table>
<thead>
<tr>
<th>Para el Par/Alambre</th>
<th>Conexión de los Alambres</th>
<th>Hacia los terminales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shield/Drain</td>
<td>No conectado</td>
<td>Terminal 2</td>
</tr>
<tr>
<td>Azul/Negro</td>
<td>Negro con Azul/rayado</td>
<td>Conexión</td>
</tr>
<tr>
<td></td>
<td>Azul con Negro/rayado</td>
<td>Terminal 3 (común)</td>
</tr>
<tr>
<td></td>
<td>Negro con Naranja/rayado</td>
<td>Terminal 4 (Data B)</td>
</tr>
<tr>
<td>Negro/Naranja</td>
<td>Naranja con Negro/Rayado</td>
<td>Terminal 5 (Data A)</td>
</tr>
</tbody>
</table>

Tabla 3.2

c) Tierra y terminales para la red DH-485

Solo uno de los acopladores de enlace al final del enlace puede tener los terminales como se ve en la figura 2.4. Esto provee la conexión a tierra para la protección del cable de comunicación.

Los acopladores de enlace en ambos finales de los conectores tienen el terminal 5 y 6 cortocircuitados. Esto permite obtener 120 ohm las cuales requieren las especificaciones de la red DH-485. La figura 3.12 permite observar este hecho.

![Figura 3.12](image-url)
d) Alimentación para el acoplador de enlace

Cuando el controlador programable está conectado al acoplador, la fuente del procesador se conecta al acoplador y a los dispositivos periféricos (DTAM, PIC, HHT) a través del cable C11. Si se no conecta el acoplador de enlace, entonces se tendrá que usar una fuente de 24 voltios para el acoplador y los dispositivos periféricos.

El 1747-AIC requiere 85mA para 24VDC. Con un dispositivo periférico conectado la corriente requerida es 190mA para 24VDC, si se utiliza una fuente externa solo ella se conectará al Acoplador de Enlace. Se puede usar una fuente externa DC con las siguientes especificaciones:

- Voltaje: 24 VDC (+25% o -25%)
- Corriente de salida: 190 mA

La figura 3.13 muestra las conexiones externas y las especificaciones del acoplador de enlace.

e) Instalación y conexión del Acoplador de Enlace

Se debe estar seguro que el cable conectado al SLC500 este fijo, y además seguro que los cables Belden #9842 estén bien adheridos al bloque terminal.
3.4 Operación de la red

La red de datos puede extenderse hasta una longitud de 4000 pies (1219.2 m) como máximo. El diagrama de la Figura 3.13 muestra un acoplador de enlace 1747-AIC en cada derivación de la red.
En este diagrama se observa un computador conectado a cada 1747 -AIC , los acopladores de enlace reciben energía de los procesadores . Atraves de cada PLC SLC500 (5/02) , Se controla y supervisa un sistema industrial (sentido de giro cíclico de un motor eléctrico , fajas transportadoras , separador de paquetes) .

Cuando se desea cargar un programa en el procesador simplemente se llama al RSlogix 500 y se realiza un download del programa y se establece el modo RUN , luego se llama al RSview 32 cargo el gráfico virtual correspondiente al programa que se está ejecutando en el RSlogix y se establece la comunicación , luego se pone al RSview32 en modo RUN . Virtualmente estaremos comandando cualquiera de los proyectos cargados en el procesador del sistema a implementar en el laboratorio de la FIIE , lo que se muestra en la figura 3.14 . A la configuración de la red de la Figura 3.14 se puede adicionar interfaces tales como (Terminal de mano , y Módulos de acceso a la tabla de datos) para un mejor control y supervisión de los sistemas implementados en el módulo.
CAPÍTULO IV
APLICACIONES DEL SOFTWARE DE SUPERVISIÓN

4.1 El software de supervisión RSVIEW32

Este software ha sido diseñado para ser usado con Microsoft Windows NT y Window95, RSVIEW32 tiene una serie de herramientas que permiten monitorear, supervisar y comandar procesos industriales.

4.1.1 Configuración del RSVIEW32

Para trabajar con el RSVIEW32 tendrá que crear un proyecto. Un proyecto es un folder que contiene como mínimo lo siguiente.

a) Archivo proyecto (project file (*.rsv))

b) Directorios de tag (folder tag)

c) Directorios de comunicación (Comprf (Comunities Profile) folder)

d) Directorios Cache (cache folder)

El archivo proyecto (proyect file (*.rsv)) contiene información general del proyecto. Por defecto todos los componentes del proyecto están localizados localmente en directorios dentro del directorio de proyectos
La Tabla 4.1 lista los directorios RSVIEW32 y los tipos de archivos que ellos contienen.

<table>
<thead>
<tr>
<th>Folder</th>
<th>Contents</th>
<th>File extension(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project name</td>
<td>RSVIEW32 project file, system files and the folders described below</td>
<td>.rsv, .sec, act</td>
</tr>
<tr>
<td>Project name\Actlog</td>
<td>activity log files</td>
<td>.dbf</td>
</tr>
<tr>
<td>Project name\Almlog</td>
<td>alarm log files</td>
<td>.dbf</td>
</tr>
<tr>
<td>Project name\Als</td>
<td>alarm summary files</td>
<td>.als</td>
</tr>
<tr>
<td>Project name\Cache</td>
<td>Rdmda folder containing files for used by the RSVIEW32 internal</td>
<td>.ctl, .dat, .idx</td>
</tr>
<tr>
<td></td>
<td>runtime database</td>
<td></td>
</tr>
<tr>
<td>Project name\Compref</td>
<td>information on channel, nodes and scan classes</td>
<td>.csv, .ctl</td>
</tr>
<tr>
<td>Project name\Dilog</td>
<td>data log models and data log files</td>
<td>.mdf, .dbf</td>
</tr>
<tr>
<td>Project name\Dts</td>
<td>derived tag files</td>
<td>.dts</td>
</tr>
<tr>
<td>Project name\Eds</td>
<td>events files</td>
<td>.eds</td>
</tr>
<tr>
<td>Project name\Gfx</td>
<td>graphic display files</td>
<td>.gfx</td>
</tr>
<tr>
<td>Project name\Key</td>
<td>global key files</td>
<td>.key</td>
</tr>
<tr>
<td>Project name\Mcr</td>
<td>macro files</td>
<td>.mcr</td>
</tr>
<tr>
<td>Project name\Par</td>
<td>parameter files</td>
<td>.par</td>
</tr>
<tr>
<td>Project name\Rcp</td>
<td>recipe files</td>
<td>.rcp</td>
</tr>
<tr>
<td>Project name\Tag</td>
<td>tag database files</td>
<td>.db, .cac, .ctl, .dat</td>
</tr>
<tr>
<td>Project name\Tgs</td>
<td>tag monitor files</td>
<td>.tgs</td>
</tr>
</tbody>
</table>

Tabla 4.1

En base a la tabla 4.1 Ud. podrá configurar el RSVIEW32 para una aplicación industrial.

Cuando se ingresa al RSVIEW32 se crea un administrador del proyecto (Proyect Manager), el administrador del proyecto es lo más importante para trabajar con el RSVIEW32, cada vez que se crea un proyecto un administrador de proyecto aparece mostrando el nombre definido por Ud. para el proyecto figura 4.1
Figura 4.1

Los componentes del administrador de proyectos son archivos de referencia los cuales permiten establecer rutas hacia el archivo físico, pueden ser direccionados por intermedio del procesador (5/02 en nuestro caso) permitiendo mando y supervisión de dispositivos industriales. Para establecer la comunicación con dispositivos ALLEN-BRADLEY RSview32 utiliza el RSLINX o el WINTELLIGENT LINX.

4.1.2 Drivers de comunicación

El driver de comunicación es un software que permite la comunicación del computador con los dispositivos de control (RSLINX o WINTELLIGENT LINX), para comunicarse con los canales se requiere

a) Canales

b) Dispositivos de comunicación

c) Software de comunicación (RSLINX o WINTELLIGENT LINX)
d) Nodos (control de los dispositivos)

e) Configurar los drivers de comunicación para controladores ALLEN-BRADLEY

la figura 4.2 muestra una estación RSVIEW32, los canales y nodos.

![Diagrama de comunicación]

FIGURA 4.2

a) **Canal de comunicación**

El canal de comunicación es la conexión de la estación RSVIEW32 a través de la red hacia los controladores conectados.

b) **Dispositivos de comunicación**

Los dispositivos de comunicación conectan los canales de comunicación hacia la computadora (como el 1784-KT/KTX, el 1747 AIC).
c) Software de comunicación (Rslinx o Wintelligent Linx)

Rslinx se utiliza para Window NT 3.51 y Wintelligent Linx para Windows 95.

d) Nodos

El nodo es un controlador programable conectado a la red de trabajo. Periódicamente la estación RSVIEW 32 escanea los nodos. Basando en una configuración.

e) Configurando los drivers de comunicación para los controladores Allen-Bradley

Puedes establecer la comunicación con el RSVIEW32 utilizando (Rslinx o Wintelligent Linx instalandolo, hardware de comunicación), los siguientes pasos permiten integrar el software de comunicación a los controladores Allen-Bradley

• Configurar y cargar el software apropiado de comunicación.

• Iniciar el RSview32 y crear o abrir un proyecto.

• En el editor de campo seleccionar un canal y asignar el tipo apropiado de red de trabajo

inicialmente asignar un driver para el canal. Si no se quiere asignar un driver para el canal hacer Clic en NONE LOAD. Para configurar un canal se tendrá que realizar lo siguiente:

- En el administrador de proyecto (Proyect Manager) abrir System.

- Abrir el editor de canal, doble clic en el icono obtendrá la figura 4.3.
Figura 4.3

- Selecciona un canal con la siguiente información.

Tipo de red (Network Type usando la tabla 4.2 como guía seleccionar un tipo de red).
Network Ty
Use the following table as a guide, select a network type:

<table>
<thead>
<tr>
<th>To</th>
<th>Select</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicate with programmable controllers on a ControlNet network</td>
<td>ControlNet</td>
</tr>
<tr>
<td>Communicate with programmable controllers on local or remote DH networks</td>
<td>DH</td>
</tr>
<tr>
<td>Communicate with programmable controllers on local or remote DH+ networks, or</td>
<td>DH+</td>
</tr>
<tr>
<td>Communicate with SLC controllers on remote DH-485 networks</td>
<td>DH-485</td>
</tr>
<tr>
<td>Connect to Channel 0 of an Enhanced PLC, or</td>
<td>TCP/IP</td>
</tr>
<tr>
<td>Connect to an SLC with an RS-232 port</td>
<td>TCP/IP Bridge</td>
</tr>
<tr>
<td>Communicate with SLC controllers on local DH-485 networks</td>
<td></td>
</tr>
<tr>
<td>Communicate with Ethernet programmable controllers directly connected to the TCP/IP network</td>
<td></td>
</tr>
<tr>
<td>Communicate with programmable controllers through the Ethernet Interface of a Pyramid Integrator, WIntelligent LINX Gateway, or RSlinx Gateway</td>
<td></td>
</tr>
<tr>
<td>Not use a channel, or Clear a channel configuration</td>
<td>None Loaded</td>
</tr>
</tbody>
</table>

Tabla 4.2

En mensajes se tipea un número entre 1 y 10; que es la cantidad de mensajes que el controlador puede enviar al RSview32.

Se selecciona el drive apropiado para la comunicación. Aquí se encuentra los drivers instalados y trabajando con el Rslinx o Wintelligent Linx. Cuando se está diseñando el proyecto es preferible seleccionar NONE LOADED para el driver, esto evita que a la hora de cargar tags no se cometa errores de comunicación. Al terminar la configuración del canal se tipea ok.
Para crear nodos primero se asigna un nombre lógico a una dirección para cada controlador programable; así el RSview32 puede comunicarse. Antes de configurar el nodo se tiene que configurar los canales.

Para crear un nodo ir al administrador de proyecto y hacer doble clic en el ícono node, aparece la figura 4.4

![Figura 4.4](image)

Llenar la información de nombre de nodo (Tipar un nombre cualquiera hasta 40 caracteres. Este nombre representa al controlador programable), el nombre puede tener letras, números, _,(espacios no son permitidos).
Seleccionar el tipo según la tabla 4.3.

TIPO

Selecciona el tipo de dispositivo que se está usando:

<table>
<thead>
<tr>
<th>Para este tipo de dispositivo</th>
<th>Selecciona</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC 2</td>
<td>PLC 2</td>
</tr>
<tr>
<td>PLC 3</td>
<td>PLC 3</td>
</tr>
<tr>
<td>SLC-5, SLC-5/01, SLC-5/02, SLC-5/03 (0530G)</td>
<td>SLC-5 (Entendid)</td>
</tr>
<tr>
<td>SLC-5/03 (05301), SLC-5/04</td>
<td>SLC-5 (Entendid)</td>
</tr>
</tbody>
</table>

Tabla 4.3

En el canal seleccionar el número de canal donde el nodo reside. En estación se tipea la dirección de la estación del controlador programable. En Timeout tipear el número de segundos para que el Rsview32 espere antes que reporte un error de comunicación usualmente por default es 3 segundos. En enable normalmente los nodos están activos permitiendo tener una colección de valores desde el controlador programable, los cuales podrán ser cargados y validados en el Rsview32. El estado de un tag puede ser visto en el Tag Monitor. Al terminar la configuración hacer clic en cerrar (close).

Cuando el Rsview32 está trabajando hace un scannig periódico de los valores de los tags que se toman de las tablas, dichos valores se buscan en las direcciones de los controladores programables a través de los drivers, A cada tag se le puede asignar una búsqueda periódica, el diseñador determina con qué frecuencia los valores de los tags son tomados. Un escaneo tiene dos períodos, un periodo Foreground y un periodo Background. El Foreground se aplica a los gráficos y al
tag monitor y el Background se aplica a cualquier componente que esta en actividad como eventos, alarmas y datos de entrada.

4.1.3 Creación de tags y alarmas

En el Tag Database, se define el dato para monitorearlo con el RSview32. Cada entrada definida en la base de datos se llama tag. Un tag es un nombre lógico para una variable que representa un dispositivo o una memoria local (RAM).

Por ejemplo un tag puede representar un proceso variable en un controlador programable. Cuando se requiere el valor de un tag desde un dispositivo este debe estar conectado y almacenado en la memoria del computador, refiriéndonos como un valor en la tabla, es inmediatamente accesible por todo el Rsview32. Un gráfico usa valores de tag para control, animación, tendencias, alarmas, valores para límites predefinidos y datos de entrada.
a) Tipos de tag

Rsview 32 usa los siguientes tipos de tags.

<table>
<thead>
<tr>
<th>TAG</th>
<th>TIPO DE DATA ALMACENADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOGO</td>
<td>Rango de valores</td>
</tr>
<tr>
<td></td>
<td>Estos tags pueden representar variables de datos como</td>
</tr>
<tr>
<td></td>
<td>Temperatura o la posición de control de Rotación.</td>
</tr>
<tr>
<td>DIGITAL</td>
<td>0 O 1</td>
</tr>
<tr>
<td></td>
<td>Estos tags pueden representar dispositivos que solo pueden ser ON</td>
</tr>
<tr>
<td></td>
<td>o OFF, como Switches, contactos y reles.</td>
</tr>
<tr>
<td>STRING</td>
<td>ASCII STRING, serie de caracteres o toda palabra (máximo de 82 caracteres).</td>
</tr>
<tr>
<td></td>
<td>Pueden representar dispositivos que usan textos, como un código de barra, código Alphanumerico.</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>Informacion generada cuando el sistema esta ejecutándose, incluye</td>
</tr>
<tr>
<td></td>
<td>informacion de alarmas, estados de comunicación sistema de</td>
</tr>
<tr>
<td></td>
<td>tiempo y fecha Rsview crea los tags del sistema cuando este crea un</td>
</tr>
<tr>
<td></td>
<td>Proyect, el tag del sistema es almacenado en una carpeta llamada</td>
</tr>
<tr>
<td></td>
<td>system en la base de datos del tag.</td>
</tr>
</tbody>
</table>

Tabla 4.3 a

- Fuente de datos

Cuando se define un tag análogo, digital o string, se tiene que especificar la fuente que proporciona el dato y si el tag recibe los valores externamente o internamente
• **Dispositivos**

Un tag que representa un dispositivo es una fuente de datos que recibe externamente datos a través del Rsview32. El dato puede venir directamente programado desde el controlador.

• **Memoria**

Un tag que representa memoria es una fuente de datos que recibe información desde una tabla de valores a través del RSview32, puede ser usado para almacenar valores internos.

b) Organización tags

La creación de una base de datos es rápida y sencilla. Para organizar tags:

• Establecer convenciones de nombre

• Usar carpetas para relacionar grupos de tags.

c) Nombrando tags

El tag puede tener mas de 40 caracteres. Si tu creas una carpeta, el nombre de la carpeta es parte del nombre del tag.

El tag puede contener.

• de A a la Z

• de 0 a 9

• guiones (_) , (-)

Cuando el nombre de un tag comienza con un número o contiene un guión, cerrar con llaves, por ejemplo: [N23 –0].
d) **Uso de carpetas para grupos de tags.**

Para organizar tags, crear una carpeta e incluir tags relacionados uno con el otro para separar el nombre de la carpeta de los nombres de tags que representan procesos del proyecto a fin utilizar un backslash, por ejemplo: AREA1\ MAQUINA1\ BOMBA

e) **El editor de una base de datos**

Para abrir el editor de una base de datos.

- En el administrador del proyecto abrir la carpeta SYSTEM.
- Luego abrir la base de datos (Tag Database) haciendo doble clic en tag database.

El editor de la base de datos posee las partes que se observan en la figura 4.5.

![Figura 4.5](image-url)
• **Uso de la forma**

Permite crear un tag dando las características básicas, como nombre, tipo, seguridad y especificaciones relacionadas con el tipo de tag en la parte de abajo se define la fuente de datos (de donde vienen los valores para el tag).

• **Selección de alarmas**

El sistema chequea el proyecto y define las condiciones de alarma para un tag digital o análogo. Para esto hacer clic en el botón de alarma.

• **Uso de la query box (caja de preguntas)**

Usar la query box para seleccionar el tag que se desea mostrar en el display.

En la hoja (Spreadsheet), se puede seleccionar un solo tag o múltiples tags ubicados en la misma carpeta o en diferentes carpetas.

• **Uso del explorador (Folder hierarchy)**

Los que trabajan con Rsview 32 normalmente utilizan el explorador y la hoja de trabajo. Con el explorador se selecciona la carpeta del proceso y en la hoja se visualiza los tags correspondientes al proceso.

• **Creación de una carpeta**

Se puede anidar carpetas, si la carpeta posee un signo (+) esta contiene más carpetas, si no tiene el signo (+) no contiene más carpetas.

La carpeta contiene una o más carpetas

La carpeta no contiene más carpetas.

- Hacer clic en nueva carpeta (New Folder), barra de menús en editar o clic en crear nueva carpeta en la barra de herramientas, se obtendrá la figura 4.6
- Tipear el nombre de la carpeta

- Clic en ok

La nueva carpeta aparece en el explorador de window (Hierachy Window).

- **Configuración del tipo de tag**

- Configuración de un tag análogo. Si el tag es parte de la carpeta, seleccionar la carpeta. El nombre de la carpeta aparece en el nombre de campo y es la primera parte del nombre del tag.

- Tipeo del nombre del tag. Si el tag es parte de otra carpeta se tipea el nombre de la carpeta y después un backslash (\).

- Selección del tipo análogo. Según como se puede observar en la figura 4.7
- Selección de la seguridad. Para restringir el acceso a este tag, se selecciona un código de seguridad. Si el acceso es restringido el operador no puede cargar el valor del tag sin el código apropiado de seguridad.

- Tipo del mínimo y el máximo valor definido por el controlador (especificamente por el programa residente en el)

- Tipo de un número. No utilizar 0 para desactivar la escala. Se tipea 1, para activar el offset se tipea 0.

- El nombre unidad utiliza hasta 20 caracteres es solo para mostrar en el display, y especifica la medida del tag (por ejemplo, galón, psi, min, sec)

- Selecciona el tipo de dato para obtener el formato que se almacenará en el controlador programable o en la aplicación de windows.

- **Configuración de un tag digital**

 - Si el tag es parte de una carpeta, seleccionar la carpeta. El nombre de la carpeta aparece en el nombre de campo y es la primera parte del nombre del tag.

 - Tipo de nombre del tag. Si el tag es parte de otra carpeta se tipea el nombre de la carpeta y después un backsh (\).

 - Para tipo, **seleccionar** digital según como se puede observar en la figura 4.8.
Figura 4.8

- Seleccionar la seguridad para restringir el acceso a este tag, seleccionar un código de seguridad. Si el acceso es restringido él no puede cargar el valor del tag sin el código apropiado de seguridad.

- Tipeo de una descripción del tag. El tag puede tener hasta 128 caracteres.

- En activar etiqueta y desactivar etiqueta tipear un texto hasta de 20 caracteres que describe el estado off (valor = 0) y el estado on (valor = 1) del tag. La etiqueta OFF y ON son diferentes uno o el otro, pero no ambos pueden estar en el formulario.

- **Configuración de un string tag**

 - Si el tag es la parte de una carpeta, seleccionar la carpeta. El nombre de la carpeta aparece en el nombre de campo y es la primera parte del tag.

 - Tipear el nombre del tag. Si el tag es parte de otra carpeta se tipea el nombre de la carpeta y después un backslash (\) como se puede observar en al figura 4.9.
- Selección de la seguridad. Para restringir el acceso a este tag, se selecciona un código de seguridad. Si el acceso es restringido el no puede cargar el valor del tag sin el código apropiado de seguridad.
- Tipo de una descripción del tag. El tag puede tener hasta 128 caracteres.
- Tipar un numero entre 1 y 82 para especificar la longitud del tag string en caracteres.

- **Especificación de la fuente de datos**

 Los siguientes puntos describen cómo se puede asignar información a los campos de la fuente de datos (data source) un tag que representa un dispositivo es una fuente de datos que recibe datos atraves del RSview32. El dato puede provenir de:

 Un controlador programable Allen-Bradley, atraves del Rslink o Wintelligent Linx.
- Un controlador programable Allen –Bradley, a través de un DDE Server.
- Otro programa windows a través del DDE Server.

Especificación del dispositivo como la fuente de datos.
- Hacer clic en un dispositivo (device) en la figura 4.10

![Figura 4.10](image)

- Tipoar un nombre del nodo (node name)
- Hacer doble – clic en el nombre de campo nodo
- Hacer clic … para abrir una lista y seleccionar el nombre del nodo.

En el campo dirección se pondrá lo siguiente para la conexión hacia dispositivo Allen –Bradley especificar la localización de la memoria física en el controlador programable. La sintaxis de la dirección depende del controlador programable.

Especificación de la memoria como fuente de datos.
- Hacer clic en la memoria (memory) figura 4.11

![Figura 4.11](image)
Cuando se ejecuta un proyecto el tag que representa memoria tiene un valor definido de campo. Todos los procesos siguientes utilizan los últimos valores de tags antes de que el proyecto pare. El valor que representa memoria se puede utilizar en eventos, gráficos.

d) Uso del tag monitor

Se usa el tag monitor para ver información acerca de tags cómo los valores cargados y el estado de la información para uno o más tags.

Para crear un tag monitor se puede

- Crear el tag monitor object con el editor de gráficos
- Crear el tag monitor file, con el administrador de proyecto.
- creando un tag monitor object
- Abrir el editor de gráficos.
- Abrir el tag monitor realizando lo siguiente. En le menú en objetos hacer ,clic en el RSview objects y en tag monitor. Clic en tag monitor el cursor cambiara como

- Crear con el mouse un recuadro con las dimensiones que se crea conveniente. Cuando se suelta el mouse aparece en Graphic Display Editor el cual carga el menú de barras para el tag monitor. Selecciona el tag que se quiere visualizar.

- Editar el objeto del tag monitor.

- Cuando se termine se almacena el gráfico.

f) Creando un archivo del tag monitor

- Abrir la carpeta system (system folder)
Abrir el editor del tag monitor (doble clic en el icono del tag monitor).

- En view menu clic en Form para mostrar en el display la Form en la hoja de trabajo.
- Seleccionar el tag que se desee mostrar en el display como el descrito anteriormente.
- En el File menú, hacer clic en guardar y se tipea el nombre del archivo.
- Seleccionar tags

Para seleccionar tags, la form Part del tag monitor debe ser visible, si no es visible clic Form en el View menú.

Para seleccionar tags que quieres visualizar realizar uno de los siguientes pasos:

 Tipear un nombre de tag en el campo nombre de tag
 - Clic para abrir una lista y seleccionar un tag en Form.

g) Alarmas para tags

Los tags análogos y digitales pueden tener alarmas asociadas con ellos, el Rsview32 busca valores de los tags en la data base y compara los límites que tienen los tags. Si un valor de tag pasa el límite, la alarma se dispara.

Cuando un tag tiene configurada una alarma, aparece una x en la columna de alarma de la base de datos del editor, la alarma en el editor es vista.

4.1.4 Creando gráficos

Un gráfico representa la operación vista en una planta. esta puede mostrar sistemas o procesos y proveer al operador un medio para definir valores externos a dispositivos tal como a un controlador programable, los componentes que tu gráficas
pueden ser llamados objetos gráficos. Los objetos gráficos pueden ser creados por un
:Editor de gráficos

a) Tomados de una librería de gráficos

b) Copiados de una aplicación de windows y pasados al gráfico

c) Creados por una aplicación windows usando objetos OLE (Object Linking An
Embedding)

d) Insertados por el Active Object.

Con editor de gráficos se podrá abrir la carpeta de gráficos y abrir la carpeta
editora de gráficos(Graphics Display Editor) referencia figura 4.12

![Diagrama de la carpeta de gráficos](image)

FIGURA 4.12

Cuando se trabaja con la hoja editora de gráficos ciertas acciones y técnicas se
usan frecuentemente. Conociendo estas técnicas se puede ahorrar tiempo al realizar
el gráfico. Al **insertar** un objeto en la hoja editora de gráficos se podrá seleccionar el
objeto y al hacer clic derecho se tendrá un menú contextual con múltiples opciones de
control y **visualización** del gráfico según como se observa en la figura 4.13.
Figura 4.13

Se puede utilizar dos métodos de trabajo en la hoja editora el modo **normal** y el modo de prueba. Representados por los botones **(modo de prueba)** **(modo normal)**. También posee una barra de dibujos que es una herramienta que nos permite crear, seleccionar y rotar objetos. Estas herramientas también se disponen en la barra de menú principal, opción objetos como se ve en la figura 4.14

Figura 4.14
se puedes crear los siguientes tipos de objeto

a) Objetos simples (simple objects)

b) Objetos RSview (Rsview objects)

c) Objetos OLE (OLE objects)

d) Objetos Active X (formalmente llamado control OLE o OCXs)

Para crear un objeto RSview usa la barra de gráficos y efectúa los siguientes pasos:

- Hacer clic en la barra de gráficos y crea aproximadamente el dibujo que se desee requerías luego con un clic derecho se abre la ventana de diálogo.

- Configurar el objeto ingresando la información requerida.

- Asignar nombres a los tags

Cuando se crea un objeto Rsview32 , se puede usar el nombre de un tag existente en la base de datos o el nombre de un tag existente en la base de datos o el nombre de un tag que no este en la base de datos . Si se especifica un tag que no existe se tendrá que crearlo en la base de datos.

Para asignar nombres a los tags realizar lo siguiente

- Asignar un control

- Asignar un nombre de un tag definido en la base de datos, luego aceptar el control definido.
4.1.5 Dotando control a los objetos gráficos

Existen varios tipos de control que se puede asignar a los gráficos, antes de aceptar el control se tiene que definir el nombre del tag o expresiones y comandos que establecen los límites de control del tag.

a) Tipos de control

Cuando se crea gráficos se puede conectar control de animación a los objetos que representan los tags, tal que los objetos aparentemente efectúen procesos virtuales reflejando los valores existentes del tag en el monitor. Además se puede conectar controles a los botones pulsadores (start, stop, ... etc) o botones del mouse, para efectuar una operación.

También se puede conectar control a un objeto OLE, cuando una expresión evaluada es verdadera o a un objeto active X.

b) Usando la ventana de dialogo

Todo gráfico puede tener un control conectado a el, grupos de objetos pueden tener también control, para definir esto se tendrá que seleccionar el gráfico, abrir la ventana de dialogo y asignarle un control. Como podemos observar en la Figura 4.15.
Figura 4.15

Cuando queremos dotar al objeto de un cierto tipo de control el Rsview32 nos visualiza la siguiente ventana, Figura 4.16.
c) Tab de control

Aquí se puede definir el tipo de control.

d) Area de expresión

Crear una o más expresiones en la ventana, las expresiones son evaluadas en el orden listado. Los tags que intervienen en las expresiones pueden ser los mismos como pueden ser diferentes.

e) Expresiones resultados

Son los valores mínimos y máximos que tomará el objeto basado en el resultado de la expresión evaluada.

f) Mínimo y máximo

Si se no quiere utilizar los valores definidos inicialmente se puede especificar un mínimo y un máximo en el rango definido anteriormente.
g) Uso de comandos y macros

Muchos comandos como el control de tocado (control touch) requiere especificar una acción. La acción es un comando o macro en RSview32, el comando o macro depende del tipo de acción que se quiera.

h) Configuración del control de la visibilidad

Con el control de la visibilidad un objeto puede ser visible o invisible basado en el valor del tag o en el resultado de una expresión lógica 4.17.

![Figura 4.17](image)

Para configurar el control de la visibilidad:

- Seleccionar el objeto.
- Hacer clic derecho y luego clic izquierdo en control.
- Hacer clic izquierdo en visibilidad.
• Crear una expresión. Puede ser un nombre de tag o una expresión compleja. Si el nombre del tag es usado, el valor del tag determina la visibilidad, el valor diferente de cero es verdadero.

• Luego de haber evaluado la expresión hacer clic en visible o invisible.

• luego hacer clic en aplicar.

i) Configuración del color

Con el control de color, se toma un color basado en un valor del tag o en el resultado de una expresión lógica, se puede especificar 16 colores (A-P) para cada objeto, Colores que pueden ser sólidos o oscilantes (Blinking) figura 4.18 y figura 4.19.
Figura 4.18

LAS PARTES DE ESTA VENTANA SON

![Diagrama de las partes de ventana](image)

Figura 4.19

- Seleccionar objeto .
- Hacer clic derecho, luego clic izquierdo en control.
- Hacer clic en tag de control .
- Crear una expresión completa. Si se utiliza un nombre de tag, el valor del tag determina un color.
- La Selección de un color puede ser sólido o oscilante (blink) para líneas y fondos (sólido un color oscilante dos colores)
• En campo oscilante (Blink Rate Field), especificar cuántos segundos oscilan los colores.

• Luego hacer clic en aplicar.

j) Configuración del control de llenado

El nivel de llenado en un objeto está basado en valores de tags y relacionados con valores mínimos y máximos (hacia arriba, hacia abajo, hacia la derecha o izquierda) según figura 4.19.

configuración del control de llenado.

• Seleccionar el objeto.

• Hacer clic derecho, luego clic izquierdo en control.

• Hacer clic en tab de llenado en la ventana de diálogo.

• Crear expresión. La expresión puede ser el nombre de un tag o una expresión.

• Especificar el valor mínimo y máximo para el nivel de llenado.

• Si se selecciona solo adentro (Inside Only) el chequeo es de lo que existe dentro del objeto

• Especificar el máximo o mínimo valor. Hacer clic en especificar (Specify) primero.

• Luego hacer clic en aplicar (Apply), figura 4.20
k) Configuración de la posición horizontal

Con un control de posición horizontal, un objeto se mueve horizontalmente basado en el resultado de una expresión, en relación a un valor mínimo y a otro máximo. La posición horizontal del objeto es proporcional al valor de la expresión de control.

Para configurar la posición horizontal

- Seleccionar el objeto.
- Hacer clic derecho, luego clic izquierdo en control.
- Hacer clic en el tab de posición horizontal.
- Crear una expresión. La expresión puede ser un nombre de tag o una expresión compleja si un nombre de tag es usado el valor del tag determina la posición horizontal.
- Especificar el valor mínimo y máximo y hacer clic en especificar y determine los valores mínimos y máximos del campo.
• Hacer clic en aplicar

1) **Configuración de la posición vertical**

Configurando la posición vertical con un control de posición vertical, un objeto se puede mover verticalmente, basado en el resultado de una expresión en relación a un valor mínimo y máximo.

Para configurar la posición vertical:

• Seleccionar el objeto

• Hacer clic derecho, luego clic izquierdo en el control.

• Hacer clic en el tab de posición vertical

• Crear una expresión. La expresión puede ser el nombre del tag o una expresión compleja.

• Especificar el mínimo y máximo valor

• Luego clic en aplicar, ver figura 4.21.

![Figura 4.21](image-url)
Los procedimientos para la configuración de ancho, peso, rotación, toque, deslizamiento vertical, deslizamiento horizontal, objetos OLE son los mismos que los especificados en los controles anteriores con la diferencia que los nombres de tag (tag name) o expresiones complejas variarán de acuerdo a lo requerido por el objeto, así como los valores máximos y mínimos, a continuación presentamos las pantallas de configuración de cada uno de los controles mencionados según las figuras 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28.

![Figura 4.22](image)
Figura 4.25

Figura 4.26
4.1.6 Creación de expresiones

Algunas veces el dato que se toma de los dispositivos es solo procesado cuando:

- Se compara con otros valores.
- Se combina con otros valores.
- Se crea un efecto relacionado con otros valores.

Las expresiones permiten crear combinaciones matemáticas o lógicas de datos que nos retornan más datos para poder ser procesados.

a) Componentes de las expresiones

Las expresiones pueden ser construidas desde:

- Valores de tags
- Constantes
- Operadores de decisión (If Then Else)

Las expresiones se pueden utilizar con el editor de gráfico (Graphic Display) para definir control de varios aspectos de un gráfico creando expresiones.

Todo editor que usa expresiones incluye un campo expresión que puede ser visualizada en un botón o en una columna.

La siguiente figura ilustra lo dicho anteriormente figura 4.29.
Los botones que representan expresiones están representados en la Tabla 4.4

<table>
<thead>
<tr>
<th>Este botón</th>
<th>Muestra</th>
<th>Este botón</th>
<th>Muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej...</td>
<td>Operador if then else</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical...</td>
<td>Operador lógico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relational..</td>
<td>Operador Relacional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic...</td>
<td>Operador Aritmético</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operador de Bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operador de Funciones</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operador de tags</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.4

b) Dotación de formato a la expresión

Se puede dar un formato a la expresión para su fácil lectura.

Ejemplo

if (tag1>tag2) then 0
else if (tag1>tag3) then 2 else 4

puedes condensar con la siguiente expresión

if (tag1>tag2) then 0 else if (tag1>tag3) then 2 else 4

• **Usando el comando igual (=)**

 podemos dar un ejemplo

 tag1=tag1+1

 incrementa el valor del tag1 en 1

 tag1=tag2

 el tag1 adquiere el valor del tag2

 l_pump={industria-2}+{2 pump}

 Adiciona el valor de 2pum a industria-2 y el resultado lo almacena l_pump .

• **Constantes**

 una constante puede tener uno de los siguientes formatos

 – entero (123)

 – punto flotante (123.45)

 – notación científica (1.2345E2)

 – **Constante** de cadena ("carácter string")

 – El símbolo PI .Rview32 reemplaza el símbolo por el valor numérico.

• **Operadores aritméticos**

 Los operadores aritméticos calculan valores basados en 2 o más valores numéricos. Los operadores aritméticos son (tabla 4.5):
<table>
<thead>
<tr>
<th>SIMBOLO</th>
<th>OPERADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>SUMA</td>
</tr>
<tr>
<td>-</td>
<td>RESTA</td>
</tr>
<tr>
<td>*</td>
<td>MULTIPLICACION</td>
</tr>
<tr>
<td>/</td>
<td>DIVISION</td>
</tr>
<tr>
<td>MOD ,%2</td>
<td>MODE</td>
</tr>
<tr>
<td>..</td>
<td>EXPONENTE</td>
</tr>
</tbody>
</table>

Tabla 4.5

- **Operadores de cadena**

 El operador (+) puede ser usado como un operador de cadena. Por ejemplo la expresión.

 "HOLA"+"MUNDO" retorna : HOLAMUNDO.

- **Operador relacional**

 El operador relacional compara dos valores numéricos o valores de cadena para darnos un valor verdadero o falso. Si el estamento es verdadero el valor de 1 es devuelto. Si es falso un valor cero es retornado los valores relacionales son tabla 4.6.
SIMBOLO | OPERADOR
--- | ---
EQ , | IGUAL
EN , <> | NO IGUAL
LT , < | MENOR QUE
GT , > | MAYOR QUE
LE , <= | MENOR QUE O IGUAL QUE
GE , >= | MAYOR QUE O IGUAL QUE

Tabla 4.6

- **Operadores lógicos**

 Un operador lógico determina la validez de uno o más estamentos. Existen tres operadores lógicos: AND, OR, NOT. El operador retorna un valor diferente a cero, si la expresión es verdadera o cero si la expresión es falsa.

SIMBOLO	OPERADOR
AND, && | AND
OR, || | OR
NOT | NEGACION

Tabla 4.7
• **Operador bits**

El operador de bits examina y manipula bits individualmente.

Los operadores de bits son:

<table>
<thead>
<tr>
<th>SIMBOLO</th>
<th>OPERADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>INCLUSIVO OR</td>
</tr>
<tr>
<td>^</td>
<td>EXCLUSIVO OR (XOR)</td>
</tr>
<tr>
<td>>></td>
<td>RIGHT SHIFT</td>
</tr>
<tr>
<td><<</td>
<td>LEFT SHIFT</td>
</tr>
<tr>
<td>~</td>
<td>COMPLEMENTO</td>
</tr>
</tbody>
</table>

Tabla 4.8

• **Funciones Built-In**

Los tipos de funciones Built-in son:

- Tag
- Tiempo
- Archivo
- Matricial

Muchas funciones chequean para especificar una condición verdadera o falsa.

Ellas retornan 1 si la condición es verdadera y 0 si la condición es falsa.
• **Funciones Tag**

Las siguientes funciones examinan el estado de un tag

<table>
<thead>
<tr>
<th>FUNCION</th>
<th>Retorna</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM IN ALARM (tag)</td>
<td>1 (verdadero) si el tag es alarma</td>
</tr>
<tr>
<td>ALM ACX (tag)</td>
<td>0 (falso) si el tag alarma no es reconocido. 1 (verdadero si es reconocido)</td>
</tr>
<tr>
<td>ALM_SEVERITY(tag)</td>
<td>La severidad de la alarma un valor entre 1 y 8 o 0 si el tag no es alarma.</td>
</tr>
<tr>
<td>ALM_LEVEL(tag)</td>
<td>Es un nivel de alarma para un tag análogo: un valor entre 1 y 8 o 0 si el tag no es alarma.</td>
</tr>
<tr>
<td>ALM SUPPRESS(tag)</td>
<td>1 (verdadero) si el tag de alarma es suprimido.</td>
</tr>
<tr>
<td>ALM_FAULT(tag)</td>
<td>1 (verdadero) si se tiene una alarma por defecto para un valor específico.</td>
</tr>
<tr>
<td>COMM_ERR(tag)</td>
<td>1 (verdadero) si la última operación de lectura o escritura especificada para un tag indica un error en la comunicación.</td>
</tr>
</tbody>
</table>

Tabla 4.9

• **Funciones de tiempo**

Las siguientes funciones examinan el sistema de hora. Esas funciones usa la hora o intervalos las funciones son:

<table>
<thead>
<tr>
<th>FUNCION</th>
<th>Retorna</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>1 (verdadero) si la hora especificada es la hora actual</td>
</tr>
<tr>
<td>BEFORE_TIME</td>
<td>1 (verdadero) si la expresión es evaluada antes de especificar la hora</td>
</tr>
<tr>
<td>AFTER_TIME</td>
<td>1 (verdadero) si la expresión es evaluada después de especificar la hora</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>1 (verdadero) si especificas un intervalo de tiempo, el intervalo de tiempo empieza cuando un evento inicia un trabajo</td>
</tr>
</tbody>
</table>

Tabla 4.10
• funciones de tiempo

Las siguientes funciones chequean si un archivo existe y chequea la cantidad de espacio libre.

<table>
<thead>
<tr>
<th>FUNCION</th>
<th>RETORNABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE EXISTS</td>
<td>1 (verdadero) si el archivo existe.</td>
</tr>
</tbody>
</table>

Tabla 4.11
- **Funciones trigonométricas, Raíz cuadrada, Logarítmica**

 Las siguientes funciones son también utilizadas.

<table>
<thead>
<tr>
<th>Función</th>
<th>Retorna</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQRT</td>
<td>Raíz cuadrada</td>
</tr>
<tr>
<td>LOG</td>
<td>Logaritmo natural</td>
</tr>
<tr>
<td>LOG 10</td>
<td>Logaritmo en base 10</td>
</tr>
<tr>
<td>SIN</td>
<td>El seno de una expresión</td>
</tr>
<tr>
<td>COS</td>
<td>El coseno de una expresión</td>
</tr>
<tr>
<td>TAN</td>
<td>La tangente de la expresión en radianes</td>
</tr>
<tr>
<td>ARCSIN</td>
<td>El arco seno en radianes</td>
</tr>
<tr>
<td>ARCCOS</td>
<td>El arco coseno en radianes</td>
</tr>
<tr>
<td>ARCTAN</td>
<td>El arco tangente en radianes</td>
</tr>
<tr>
<td>SIND</td>
<td>El seno de la expresión en grados</td>
</tr>
<tr>
<td>COSD</td>
<td>El coseno de la expresión en grados</td>
</tr>
<tr>
<td>TAND</td>
<td>La tangente de la expresión en grados</td>
</tr>
<tr>
<td>ARCSIND</td>
<td>El arco seno en grados de la expresión</td>
</tr>
<tr>
<td>ARCCOSD</td>
<td>El arco coseno en grados de la expresión</td>
</tr>
<tr>
<td>ARCTAND</td>
<td>El arco tangente en grados de la expresión</td>
</tr>
</tbody>
</table>

Tabla 4.12

c) **Orden de evaluación de los operadores**

 Expresiones con más de un operador son evaluadas como sigue:

 - Operadores en paréntesis son evaluadas primero el operador con más alto rango es evaluado después
• cuando dos operadores tienen igual rango, ellos son evaluados de derecha a izquierda.

Los operadores son evaluados en el siguiente orden.

<table>
<thead>
<tr>
<th>ORDEN DE EVALUACION</th>
<th>SIMBOLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (MAS ALTO)</td>
<td>()</td>
</tr>
<tr>
<td>2</td>
<td>NOT</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>MOD ,%</td>
</tr>
<tr>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>
| | AND ,&
| | & |
| | >> |
| | << |
| 4 | + |
| | - |
| | OR , II |
| | I |
| | ^ |
| 5 (MAS BAJO) | EQ , = |
| | EN ,<> |
| | LT , < |
| | GT , > |
| | LE , <=|
| | GE , >=|

TABLA 4.13

d) If Then Else

Es una acción condicional que permite establecer decisiones evaluando ciertas expresiones además permite repetir actividades determinadas sobre ciertas condiciones de carga.

La expresión usa operadores relacionales y operadores lógicos.

La estructura If Then Else es definida como a continuacion se menciona.

If estamento Then value1 Else value2

Si el estamento es verdadero la expresión retorna a value1, si el estamento es falso la expresión retorna al valor 2.
4.2 Supervisión de la inversión de giro cíclica de un motor eléctrico

Aquí presentamos el gráfico virtual y el diagrama de escalera preparado para que el sistema funcione, el desarrollo y preparación están explicados en los capítulos anteriores, ya que la tesis se centra al desarrollo virtual y a la integración de este sistema a nivel de red. Lo que se puede agregar es que se han adicionado bits de control para la supervisión en los diagramas de escalera, que los presentamos en el anexo A.

Figura 30 Supervisión de la inversión de giro de un motor eléctrico
4.3 Supervisión del sistema de fajas transportadoras.

Aquí presentamos el gráfico virtual y el diagrama de escalera preparado para que el sistema funcione, el desarrollo y preparación están explicados en los capítulos anteriores ya que la tesis se centra al desarrollo virtual y a la integración de este sistema a nivel de red. Lo que se puede agregar es que se han adicionado bits de control para la supervisión en los diagramas de escalera, que los presentamos en el anexo A.

Figura 31 Supervisión del sistema de fajas transportadoras
4.4 Supervisión del sistema elevator, separador de paquetes

Aquí presentamos el gráfico virtual y el diagrama de escalera preparado para que el sistema funcione, el desarrollo y preparación están explicados en los capítulos anteriores ya que la tesis se centra al desarrollo virtual y a la integración de este sistema a nivel de red. Lo que se puede agregar es que se han adicionado bits de control para la supervisión en los diagramas de escalera, que presentamos en el anexo A.

Figura 32 Supervisión del sistema elevator, separador de paquetes
CAPITULO V
COSTOS

5.1 Introducción

Los costos que se consideran para la red industrial de área local del laboratorio de control y automatización de la FIEE, están divididos en dos rublos:

Costos de hardware, es decir, costos de dispositivos y materiales, y costos de software. El Rslogix500 para programar los PLC de la familia SLC500 de Allen Bradley, y el Rsview32 para supervisión y mando.

No se incluyen, costos de planificación y diseño, mano de obra calificada, ni costos de pruebas y puesta a punto del sistema.

Cabe mencionar que los costos mencionados son aproximados.

5.2 Costos de elementos de hardware

En la tabla 5.1 se resume los costos de dispositivos y materiales. Los items señalados con un asterisco no han sido adquiridos para el presente trabajo de tesis, son de propiedad del laboratorio de la FIEE.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>CANTIDAD</th>
<th>PRECIO UNITARIO</th>
<th>PRECIO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>PLCs controlador</td>
<td>04</td>
<td>$1500</td>
<td>$6000</td>
</tr>
<tr>
<td></td>
<td>PLC marca Allen Brandley, modelo SLC, procesador 5/02 de 4K de memoria de usuario tiempo de Scan 8 milisegundos con Rak de 10 slot, con fuente de alimentación de 220 VAC, 24VDC, con una tarjeta de 16 entradas discretas para la polarización 24DC y una tarjeta de 16 salidas a relé, con interfase de comunicación RS232 /RS485.</td>
<td>04</td>
<td>$1500</td>
<td>$6000</td>
</tr>
<tr>
<td>02</td>
<td>Tarjetas #1747 AIC</td>
<td>04</td>
<td>$300</td>
<td>$1200</td>
</tr>
<tr>
<td></td>
<td>Acoplador de Enlace Aislado para comunicación en red DH-485</td>
<td>04</td>
<td>$300</td>
<td>$1200</td>
</tr>
<tr>
<td>03</td>
<td>Cable belden #9842</td>
<td>04</td>
<td>$10</td>
<td>$10</td>
</tr>
<tr>
<td>04</td>
<td>Ferretería</td>
<td>04</td>
<td>$30</td>
<td>$30</td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL</td>
<td></td>
<td>$7240</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.1
5.3 Costos de software

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCION</th>
<th>CANTIDAD</th>
<th>PRECIO UNITARIO</th>
<th>PRECIO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>RSLOGIX500 Software de programación de PLCs de la familia SLC500 de Allen Bradley, en entorno windows</td>
<td>01</td>
<td>$1500</td>
<td>$1500</td>
</tr>
<tr>
<td>02</td>
<td>RSVIEW32 Software de supervisión</td>
<td>01</td>
<td>$2500</td>
<td>$2500</td>
</tr>
</tbody>
</table>

| | SUBTOTAL | $4000 |

Tabla 5.2

- **Costo total**

El costo total del proyecto es el resultado de la suma de los subtotales de la Tablas 5.1 y Tabla 5.2 asciende a la suma de $11240 (Mil Cuatrocientos Venticuatro dólares americanos).
CONCLUSIONES

Con el diseño e implementación de la red Industrial de Área local del laboratorio de control y automatización de la FIEE, materia de la presente tesis, se permitirá a estudiantes de esta Facultad el estudio teórico-práctico de la comunicación y utilización de la base de datos de los software aplicativos para la transferencia de información entre los PLCs y la PC, relacionados los procesos que controlan en el sistema CIM.

Por otro lado, se permitirá el estudio teórico-práctico de la supervisión y mando de procesos industriales, en base a los procesos existentes en dicho laboratorio.

Finalmente, la propuesta planteada en la presente tesis, mediante algunos ejemplos de supervisión de procesos es limitada frente a las muchas posibilidades y aplicaciones que se puedan realizar en este laboratorio, más aún si se considera que mediante la misma red se pueden emplear otros softwares de supervisión y control, con las interfaces adecuadas.
BIBLIOGRAFÍA

1. A. PORRAS Y A. MONTERO
 AUTOMATAS PROGRAMABLES

2. ROCKWELL SOFTWARE
 GETTING RESULTS WITH
 RSLOGIX500

3. ROCKWELL SOFTWARE
 RSVIEW32 RUNTIME

4. ALLEN-BRADLEY
 SOFTWARE DE
 PROGRAMACION (MANUAL
 DE USUARIO)

5. ROCKWELL SOFTWARE
 USER MANUAL OF RSVIEW32

6. ROCKWELL AUTOMATION
 FAMILIA DE CONTROLADORES
 PROGRAMABLES COMPACTOS
 SLC500

7. GE FANUL AUTOMATION
 CIMPLICITY MONITORING
 AND CONTROL

8. ROBERTO ACERO SEGURA
 DISEÑO DE REDES
 INDUSTRIALES DE AREA LOCAL
 (TESIS PARA OPTAR DE
 INGENIERO ELECTRONICO UNI
 1998)

9. JOSE MARTINEZ EYZAGUIRRE
 DISEÑO Y CONSTRUCCION DE UN
 MODULO DE ENSEÑANZA DE
 AUTOMATISMOS NEUMATICOS
BASADOS EN PLCs (TESIS PARA
OPTAR EL PROFESIONAL
DE ING. ELECTRONICO-UNI 1997)