UNIVERSIDAD NACIONAL DE INGENIERÍA
FACULTAD DE CIENCIAS
SECCIÓN DE POST-GRADO Y 2da ESPECIALIZACIÓN PROFESIONAL

TESIS PARA OPTAR EL GRADO DE MAESTRÍA EN CIENCIAS,
MENCIÓN:
MATEMÁTICA APLICADA

TITULADA:
MÉTODOS MULTIPASO DE LONGITUD DE PASO
VARIABLE PARA LA SOLUCIÓN NUMÉRICA DE
ECUACIONES DIFERENCIALES ORDINARIAS CON
PROBLEMA DE VALOR INICIAL

PRESENTADO POR:
Arohuana Lagos, Ferdinand Gunard

LIMA - PERÚ
1998
Resumen

El presente trabajo busca construir integradores numéricos, basados en las fórmulas multipaso usando la técnica de paso variable, con la finalidad de solucionar numéricamente Ecuaciones Diferenciales Ordinarias con Problema de Valor Inicial, además se estudian las condiciones necesarias y suficientes para conseguir estabilidad y convergencia.
Índice

1. Dedicatoria

2. Agradecimiento

3. Resumen

4. Índice

5. Introducción 1

Capítulo 1. Métodos multipaso de longitud de paso constante 3

1.1 El problema 4

1.2 Métodos multipaso clásicos 9

 1.2.1 Métodos de Adams-Bashforth 10

 1.2.2 Métodos de Adams-Moulton 17

 1.2.3 Otros métodos multipaso clásicos 20

 1.2.4 Métodos Predictor-Corrector 22

 1.2.5 Fórmulas BDF 24
1.3 Error local y orden de un método multipaso 26
 1.3.1 Error local de un método multipaso 27
 1.3.2 Orden de un método multipaso 29
 1.3.3 Error constante de un método multipaso 33
 1.3.4 Métodos multipaso irreducibles 40
1.4 Estabilidad de los métodos multipaso 41
1.5 Convergencia de los métodos multipaso 51

Capítulo 2. Métodos multipaso de longitud de paso variable 60
 2.1 Métodos Adams de longitud de paso variable 63
 2.1.1 Relaciones de recurrencia para $g_j(n), \Phi_j(n)$ y $\Phi^*_j(n)$ 68
 2.2 Métodos BDF de longitud de paso variable 74
 2.3 Métodos generales de longitud de paso variable y sus órdenes 75
 2.4 Estabilidad de los métodos multipaso de paso variable 80
 2.5 Convergencia de los métodos multipaso de paso variable 94

Capítulo 3. Métodos Nordsieck 98
 3.1 Fórmulas de Nordsieck 99
 3.2 Equivalencia con los métodos multipaso lineales 106
 3.3 Métodos más usuales en la representación de Nordsieck 118
 3.3.1 Métodos Adams implícitos 119
 3.3.2 Métodos BDF 121
Capítulo 4. Implementación y resultados numéricos 125

4.1 Algunos esquemas de selección de longitud de paso y orden 126

4.2 Resultados numéricos 138

Bibliografía 148
Introducción

El objetivo principal de este trabajo es construir integradores que solucione numéricamente ecuaciones diferenciales ordinarias con problemas de valor inicial. En dichos integradores numéricos, basados en las fórmulas multipaso (e.g. fórmulas de Adams, BDF, etc.), se utiliza la técnica de paso variable, la cual permite una mayor precisión. Cabe resaltar que estos métodos son usados cuando la función f de la ecuación diferencial $y' - f(x,y)$ es dada de un modo más complicado, pues es menor el costo computacional comparado con otros métodos (e.g. métodos de un paso).

El Capítulo 1 considera el caso de los métodos multipaso de longitud de paso constante, obteniendo y analizando algunos resultados con la finalidad de extenderlos al caso de paso variable. En el Capítulo 2 se desarrollan las fórmulas de paso variable mediante las diferencias divididas de Newton, estudiando las condiciones necesarias y suficientes para conseguir estabilidad y convergencia. El Capítulo 3 estudia una equivalencia de los métodos multipaso implícitos, formulada por Nordsieck (1962), facilitando considerablemente el cambio de la longitud de paso. Finalmente
el Capítulo 4 está dedicado a la implementación de las fórmulas estudiadas en los Capítulos 2 y 3, y la obtención de algunos resultados numéricos, poniéndose de manifiesto la importancia de estos métodos.

Mencionemos que diversos resultados fueron tomados tanto de Hairer, Norsett & Wanner (1993) y Bulirsch & Stoer (1993), así como de algunos artículos los cuales son citados oportunamente. En cuanto a los resultados numéricos, estos fueron obtenidos de algunos integradores de la biblioteca Netlib, accesible vía Internet.

Deseo agradecer a todas aquellas personas que ayudaron de una u otra manera en la elaboración de este trabajo, en especial al Dr. Rolf Schroeder por sus sugerencias, consejos y paciencia; al centro de cómputo de Ciencias de la UNL, por permitir el uso de sus instalaciones, y a mi familia por su apoyo en toda circunstancia.
1. Métodos multipaso de longitud de paso constante

El presente capítulo tiene como objetivo introducir al lector en el tema de los métodos multipaso de longitud de paso constante, así como familiarizarlo con la terminología usada, preparando el camino para el tema de fondo. Comenzaremos dando una breve descripción del problema a solucionar y algunas de sus condiciones requeridas por la teoría de las ecuaciones diferenciales ordinarias, luego nos ocuparemos de los métodos multipaso más populares, tales como los métodos de Adams, yström, Milne, BDF y los predictor-corrector. Las siguientes secciones son dedicadas al estudio teórico de estas fórmulas, siempre con longitud de paso constante, considerándose tópicos tales como el orden y error local los cuales caracterizan a cada método y nos permiten medir el error cometido en cada paso durante el proceso de integración numérica. Finalmente se buscan condiciones adecuadas para conseguir estabilidad y convergencia de los métodos multipaso.
1.1 El problema

Una ecuación en la que intervienen una o más derivadas ordinarias de la función incógnita se denmina Ecuación Diferencial Ordinaria y se abrevia precisamente con sus iniciales EDO.

Los problemas de resolución de una EDO se clasifican en Problemas de Valor Inicial (PVI) y Problemas de Valor en la Frontera (PVF), dependiendo de cómo se especifiquen las condiciones en los extremos del dominio.

El problema central consiste en resolver una ecuación diferencial de primer orden una vez que se conoce un punto por el cual pasa la curva solución. Nuestro modelo es un PVI que satisface la identidad de la forma \(y'(x) = f(x, y(x)) \), o brevemente,

\[
\begin{align*}
 y' &= f(x, y) \\
 y(a) &= y_0,
\end{align*}
\]

\[y : \mathbb{R} \to \mathbb{R}^n \quad x \in [a, b]. \tag{1.1} \]

En esta ocasión, \(y(x) \) es una función desconocida de \(x \) que esperamos construir a partir de la información proporcionada en las ecuaciones (1.1), donde \(y' = dy(x)/dx \), y la segunda de las dos ecuaciones en (1.1) especifican un valor en particular de la función \(y(x) \).

 Nótese que \(y \) es una función de \(\mathbb{R}^n \) así como \(f \), i.e., asumiremos que (1.1) es un sistema de \(n \)-ecuaciones diferenciales ordinarias, donde 1) \(||\cdot|| \) es una norma sobre \(\mathbb{R}^n \), 2) \(||A|| \) es una norma matricial multiplicativa consistente asociada, y 3) la norma de la matriz identidad es \(||I|| = 1 \).

Además de las ecuaciones diferenciales ordinarias de primer orden, existen ecuaciones diferenciales ordinarias de orden \(m \), las cuales presentan una función desconocida...
cida $y(x)$ con derivadas hasta de orden m de la forma:

$$y^{(m)}(x) = f(x, y(x), y'(x), \ldots, y^{(m-1)}(x)).$$ \hspace{1cm} (1.2)

Sin embargo, introduciendo las funciones auxiliares

$$z_1(x) := y(x),$$
$$z_2(x) := y'(x),$$
$$\vdots$$
$$z_m(x) := y^{(m-1)}(x),$$

las ecuaciones de la forma (1.2) pueden transformarse en un sistema equivalente de ecuaciones diferenciales de primer orden de la forma

$$z' = \begin{pmatrix}
 z'_1 \\
 \vdots \\
 z'_{m-1}
\end{pmatrix} = \begin{pmatrix}
 z_2 \\
 \vdots \\
 z_m
\end{pmatrix},$$

$$f(x, z_1, z_2, \ldots, z_m).$$

El problema de valor inicial para la ecuación diferencial de orden m (1.2), significa encontrar una función $y(x)$, m veces continuamente diferenciable, la cual satisfaga (1.2) y las condiciones iniciales de la forma:

$$y(a) = y_0, \quad y'(a) = y_{10}, \quad y''(a) = y_{20}, \quad \ldots, \quad y^{(m-1)}(a) = y_{m-1,0}.$$

Antes de resolver un problema de valor inicial de la forma (1.1), nos gustaría saber si existe una solución única. Para discutir estos problemas necesitamos algunas
definiciones y resultados -sin demostración- de la teoría de ecuaciones diferenciales ordinarias.

Consideremos una región \(D \subset \mathbb{R}^{n+1} \), de la forma:

\[
D : \quad \{ (x, y) \mid x \in [a, b], \ y \in \mathbb{R}^n \},
\]
donde \(a \), y \(b \) son finitos y además \(a \leq a \ y \ b \leq b \).

Definición 1.1 Se dice que la función \(f(x, y) \) satisface una condición de Lipschitz en la segunda variable y en una región \(D \subset \mathbb{R}^{n+1} \), si existe una constante \(L > 0 \) tal que

\[
\|f(x, y_1) - f(x, y_2)\| \leq L \|y_1 - y_2\| \quad \text{para} \quad (x, y_1); (x, y_2) \in D. \quad (1.3)
\]

Puede entonces mostrarse (véase e.g. De Guzmán (1975)) que el problema de valor inicial (1.1) tiene exactamente una solución.

Teorema 1.2 (Picard-Lindelöf) Sea \(f \) definida y continua sobre una región \(D : \quad \{ (x, y) \mid x \in [a, b], \ y \in \mathbb{R}^n \} \) y además \(f \) satsifaga una condición de Lipschitz. Entonces para cada \(a \in [a, b] \) y cada \(y_0 \in \mathbb{R}^n \) existe exactamente una función \(y(x) \) tal que

a) \(y(x) \) es continua y continuamente diferenciable para \(x \in [a, b] \);

b) \(y'(x) = f(x, y(x)) \) para \(x \in [a, b] \);

c) \(y(a) = y_0 \).

Ejemplo 1.1 (Burden & Faires (1985)) Consideremos el problema de valor inicial

\[
y' = 1 + x \sin(xy), \quad x \in [0, 2], \quad y(0) = 0.
\]
Manteniendo \(x \) constante y aplicando el Teorema del Valor Medio a la función

\[
f(x; y) = 1 + x \text{sen}(xy),
\]

encontramos siempre que si \(y_1 < y_2 \), existe un número intermedio \(\xi \), i.e., \(y_1 < \xi < y_2 \), tal que

\[
x^2 \cos(\xi x) = \frac{\partial}{\partial y} f(x; y) \bigg|_{y=\xi} = \frac{f(x; y_1) - f(x; y_2)}{y_1 - y_2}.
\]

Por lo tanto, para toda \(y_1 < y_2 \),

\[
|f(x; y_1) - f(x; y_2)| = |y_1 - y_2| \left|x^2 \cos(\xi x)\right| \leq 4 |y_1 - y_2|,
\]

y \(f \) satisface una condición de Lipschitz para la variable \(y \) con la constante de Lipschitz cuatro. Como además, \(f(x; y) \) es continua en \(x \in [0, 2] \) y \(-\infty < y < \infty \), el Teorema 1.2 implica que para este problema de valor inicial existe una solución única. ▲

El teorema de valor medio implica que la condición de Lipschitz se cumple si las derivadas parciales \(\partial f_i/\partial y_j \), \(i, j = 1, \ldots, n \), existen sobre \(D \) y son continuas y acotadas allí. Sin embargo, en las aplicaciones, \(f \) es usualmente continua sobre \(D \) y también diferenciable, pero las derivadas parciales \(\partial f_i/\partial y_j \) frecuentemente no son acotadas sobre \(D \). El problema aún puede ser solucionable, si la solución está definida solamente en una cierta vecindad \(V(a) \) del punto inicial y no en todo \([a, b] \) (véase e.g. De Guzmán (1975))

El siguiente resultado muestra que la solución del problema depende continuamente del valor inicial.

Teorema 1.3 (véase e.g. Bulirsch & Stoer (1993)) Sea la función \(f : D \to \mathbb{R}^n \) continua en \(D \) y además satisface la condición de Lipschitz. Sea \(\alpha \in [a, b] \). Entonces,
para la solución $y(x; s)$ del problema de valor inicial

$$y' = f(x, y), \quad y(x_0; s) = s$$

e mantiene la estimación

$$\|y(x; s_1) - y(x; s_2)\| \leq e^{L|x-a|} \|s_1 - s_2\|$$

para $x \in [a, b].$ □

En la búsqueda de una solución $y(x)$, los métodos que se discutirán son construidos efectuando una correspondencia para ciertas abscisas discretas x_i, $i = 0, 1, ..., n$, dadas por $a - x_0 < x_1 < ... < x_{n-1} < x_n - b$, las cuales determinan valores aproximados y_i para los valores exactos $y(x_i)$. Usualmente la discretización de las abscisas es hecha de manera equidistante, $x_i = x_0 + i h$, para $i = 0, 1, ..., n$ y un $h > 0$, $h \in \mathbb{R}$. Además, cuando sea conveniente, también denotaremos los valores aproximados y_i como $y_h(x_i)$, puesto que y_i como x_i dependen de la longitud de paso h usada. Una de las mayores dificultades, para un método dado, será verificar -si lo hace- la velocidad con que, $y_{x-x_0/n}(x)$ converge a $y(x)$ cuando $n \to \infty$, en otras palabras, cuando $h \to 0$.

Los métodos discretos construidos para solucionar Ecuaciones Diferenciales Ordinarias con un Problema de Valor Inicial caen, en principio, en tres grupos:

- métodos de un paso (e.g. métodos de Runge-Kutta),
- métodos multipaso (e.g. métodos de Adams, métodos BDF, etc.),
- métodos de extrapolación (e.g. método de Gragg-Bulirsch-Stoer, etc.).

1.2 Métodos multipaso clásicos

Históricamente, los métodos multipaso mejoraron considerablemente el método de un paso de Euler, incluso fueron utilizados mucho antes que los métodos Runge-Kutta. Estos primeros métodos multipaso fueron ideados por John Couch Adams al intentar solucionar un problema de F. Bashforth, el cual se originó en una investigación de acción capilar. Dicha investigación fue publicada en 1883, donde Bashforth detalla tanto el problema como el esquema de integración numérica. Sin embargo, los inicios de estos métodos datan de mucho antes, aproximadamente a fines de 1855, pues en ese año F. Bashforth solicitó a la Real Society una ayuda gubernamental (véase Hairer, Nørsett & Wanner (1993)). Sucediendo a las fórmulas de Adams, aparecieron nuevos métodos multipaso, tales como, las fórmulas de Nyström en 1925, las fórmulas de Milne en 1926, y posteriormente las fórmulas-BDF o de Gear en 1971, las cuales son ampliamente usadas para la integración de ecuaciones diferenciales rígidas (véase e.g. Hairer & Wanner (1991)).

A diferencia de los métodos de un paso, donde la solución numérica es obtenida solamente del problema de valor inicial (1.1), el algoritmo ideado por Adams consistió de dos partes: primero, de un proceso de inicialización el cual proporcione los primeros valores \(y_1, y_2, \ldots, y_{k-1} \) (aproximaciones a la solución exacta en los puntos de malla \(x_0 + h, \ldots, x_0 + (k - 1)h \) y, segundo, el uso de una fórmula multipaso de \(k \)-pasos la cual permita obtener una aproximación de la solución exacta \(y(x_0 + kh) \). Este algoritmo es aplicado recursivamente, basado en las aproximaciones numéricas de \(k \)-pasos sucesivos, para el cálculo de \(y(x_0 + (k + 1)h) \), y así reiteradamente.
En síntesis, un método multipaso de \(k \)-pasos calcula un valor aproximado \(y_{j+k} \) de \(y(x_{j+k}) \) para \(k \geq 2 \), dados los valores aproximados \(y_i \) de \(y(x_i) \), \(i = j, j + 1, \ldots, j + k - 1 \), en los puntos equidistantes \(x_i = x_0 + ih, \ i = j, j + 1, \ldots, j + k - 1 \), el cual podemos representar mediante el siguiente esquema

\[
\text{para } j = 0, 1, 2, \ldots:\n\]

\[
y_j, y_{j+1}, \ldots, y_{j+k-1} \rightarrow y_{j+k}.
\]

Para iniciar estos métodos, es necesario disponer de los \(k \) valores iniciales por lo que estos deben determinarse de otro modo. Las posibilidades de obtener los valores iniciales son diversas, J.C. Adams los calculó usando el desarrollo de la serie de Taylor de la solución exacta (véase e.g. Hasser, Lasalle & Sullivan (1980)). Sin embargo, por lo general se usa los métodos de un paso, e.g., un método de Runge-Kutta.

1.2.1 Métodos de Adams-Bashforth

Empecemos nuestro estudio introduciendo algunos ejemplos de métodos multipasos clásicos, tales como los métodos de Adams-Bashforth de \(k \)-pasos. Para ello, líneas arriba, indicamos la notación \(x_i = x_0 + ih, \ i = 1, 2, \ldots \), para los puntos de malla equidistante, además supondremos que las aproximaciones numéricas \(y_n, y_{n-1}, \ldots, y_{n-k+1} \) de la solución exacta \(y(x_n), y(x_{n-1}), y(x_{n-2}), \ldots, y(x_{n-k+1}) \) de (1.1) están a nuestra disposición.

Adams consideró (1.1) en la forma integrada:

\[
y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} f(t, y(t)) dt. \tag{1.4}
\]
Nótese que al lado derecho de (1.4) aparece la solución \(y(x) \). Sin embargo, en vista de que las aproximaciones \(y_{n-k+1}, \ldots, y_{n-1}, y_n \) son conocidas, los valores

\[
f_i := f(x_i, y_i) \quad \text{para} \quad i = n-k+1, \ldots, n
\]

también estarán disponibles y es natural reemplazar el integrando en (1.4) por un polinomio interpolante \(P_{k-1}(t) \), de grado menor o igual a \(k - 1 \), en los puntos \((x_i, f_i) \), \(i = n-k+1, \ldots, n \). Dicho polinomio satisface:

\[
P_{k-1}(x_i) = f(x_i, y(x_i)), \quad i = n-k+1, \ldots, n.
\]

Este polinomio es único, pero puede expresarse de diversas formas. Las más usuales, para este tipo de métodos son la \textit{forma de Lagrange} y la \textit{forma de Newton} (véase e.g. Bulirsch & Stoer (1993)), basada en diferencias divididas. En lo sucesivo nos quedaremos con la forma de Newton, motivados principalmente por la abundancia de información que esta provee para la selección de la longitud de paso, y porque también permite de un modo más sencillo formular los métodos de Adams. Por otro lado, el número de operaciones realizadas durante la integración numérica de una ecuación diferencial muestra que la labor computacional involucrada con el uso de diferencias divididas es comparable al requerido por el método Nordsieck (véase Capítulo 3), y es mucho menor que el requerido por los métodos Adams en la forma de Lagrange (véase F.T. Krogh (1973)).

En general, tenemos que el polinomio interpolante de Newton, para las abscisas \(x_0, x_1, \ldots, x_n \) consecutivas y espaciadas arbitrariamente, es dado por la fórmula (véase
e.g. Bulirsch & Stoer (1993))

\[P_n(x) = \delta^0 f[x_0] + \sum_{j=1}^{n} \delta^j f[x_0, x_1, \ldots, x_j](x - x_0) \ldots (x - x_{j-1}), \]

donde

\[\delta^0 f[x_i] = f(x_i), \quad i = 0, \ldots, j, \]

\[\delta^j f[x_i, x_{i+1}, \ldots, x_{i+j}] = \frac{\delta^{j-1} f[x_{i+1}, \ldots, x_{i+j}] - \delta^{j-1} f[x_i, \ldots, x_{i+j-1}]}{x_{i+j} - x_i}, \]

\[i = 0, \ldots, j, \quad j = 1, \ldots, n. \]

La fórmula de dicho polinomio es conocida como la fórmula de diferenciación dividida progresiva interpolante de Newton. Si los nodos interpolantes se reordenan \(x_n, \ldots, x_0\), resultará una fórmula similar a la anterior (véase e.g. Burden & Faires (1985)) dada por

\[P_n(x) = \delta^0 f[x_n] + \delta^1 f[x_{n-1}, x_n](x - x_n) + \delta^2 f[x_{n-2}, x_{n-1}, x_n](x - x_n)(x - x_{n-1}) + \]

\[\ldots + \delta^n f[x_0, x_1, \ldots, x_n](x - x_n)(x - x_{n-1}) \ldots (x - x_1), \]

Usando espacios iguales con \(x = x_n + sh\), y \(x = x_i + (s + n - i)h\) obtenemos

\[P_n(x) = P_n(x_n + sh) \]

\[= \delta^0 f[x_n] + sh \delta^1 f[x_{n-1}, x_n] + s(s + 1)h^2 \delta^2 f[x_{n-2}, x_{n-1}, x_n] + \]

\[\ldots + s(s + 1) \ldots (s + n - 1)h^n \delta^n f[x_0, x_1, \ldots, x_n]. \]

Esta fórmula se llama fórmula de diferenciación dividida regresiva de Newton. Para expresar esta fórmula de un modo más conveniente necesitamos hacer uso de la siguiente definición.
Definición 1.4 Dada la sucesión \(\{ f_n \}_{n=0}^{\infty} \), definimos las diferencias atrasadas o diferencias regresivas mediante

\[
\nabla^0 f_n = f_n, \quad \nabla^{j+1} f_n = \nabla^j f_n - \nabla^j f_{n-1} \quad \text{para} \ j \geq 1.
\]

Por la relación (1.5) se tiene que

\[
\delta^1 f[x_{n-1}, x_n] = \frac{1}{h} \nabla^1 f(x_n), \quad \delta^2 f[x_{n-2}, x_{n-1}, x_n] = \frac{1}{2h^2} \nabla^2 f(x_n),
\]

procediendo por inducción, asumiremos que

\[
\delta^{j-1} f[x_{n-j+1}, \ldots, x_{n-1}, x_n] = \frac{1}{(j-1)! h^j} \nabla^{j-1} f(x_n),
\]

entonces

\[
\delta^j f[x_{n-j}, \ldots, x_{n-1}, x_n] = \frac{\delta^{j-1} f[x_{n-j+1}, \ldots, x_n] - \delta^{j-1} f[x_{n-j}, \ldots, x_{n-1}]}{x_n - x_{n-j}}
\]

\[
= \frac{1}{(j-1)! h^j} \nabla^{j-1} f(x_n) - \frac{1}{(j-1)! h^j} \nabla^{j-1} f(x_{n-1})
\]

\[
= \frac{(x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \ldots + (x_{n-j+1} - x_{n-j})}{(x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \ldots + (x_{n-j+1} - x_{n-j})},
\]

en vista que los nodos son equiespaciados una distancia \(h > 0 \), tenemos

\[
\delta^j f[x_{n-j}, \ldots, x_{n-1}, x_n] = \frac{\nabla^{j-1} f(x_n) - \nabla^{j-1} f(x_{n-1})}{j! h^j}
\]

\[
= \frac{1}{j! h^j} \nabla^j f(x_n).
\]

Consecuentemente escribimos

\[
P_n(x) = \delta^0 f[x_n] + s \nabla^1 f(x_n) + \frac{s(s+1)}{2} \nabla^2 f(x_n) + \ldots
\]

\[
+ s(s+1)\ldots(s+n-1) \frac{\nabla^n f(x_n)}{(n)!}.
\]

Extendiendo la notación del coeficiente binomial para incluir números negativos, se define

\[
\binom{-s}{j} := 1, \quad \text{para} \ j = 0,
\]
\[
\binom{s}{j} = (-1)^s \frac{s(s+1)\ldots(s+j-1)}{j!}
\]

\[
P_n(x) = f(x_n) + (-1)^1 \binom{-s}{1} \nabla^1 f(x_n) + (-1)^2 \binom{-s}{2} \nabla^2 f(x_n) + \ldots
\]
\[
\ldots + (-1)^n \binom{-s}{n} \nabla^n f(x_n),
\]

\[
P'_n(x) = \sum_{j=0}^{n} (-1)^j \binom{-s}{j} \nabla^j f(x_n).
\]

La fórmula de diferenciación que sirve de base para el polinomio es:

\[
P_{k-1}(x) = P_{k-1}(x_n + sh) = \sum_{j=0}^{k-1} (-1)^j \binom{-s}{j} \nabla^j f(x_n) + \int_{x_n}^{x_n+sh} P_{k-1}(x) \, dx,
\]

lo cual para (1.4) es dado por

\[
\phi_{k-1} = \phi_0 + \int_{x_n}^{x_n+sh} P_{k-1}(x) \, dx.
\]
donde los coeficientes γ_j, introduciendo el cambio de variable $x = x_n + sh$, $dx = hds$, cumplen con

$$\gamma_j = (-1)^j \frac{1}{h} \int_{x_n}^{x_{n+1}} \left(-\frac{s}{j} \right) dx$$ \hspace{1cm} (1.8)

$$= (-1)^j \int_0^1 \left(-\frac{s}{j} \right) dx.$$

Las integrales $(-1)^j \int_0^1 \left(-\frac{s}{j} \right) ds$ para varios valores de j se evalúan fácilmente y se muestran en la Tabla 1.1.

Ejemplo 1.2 Calculemos γ_j cuando $j = 3$,

$$(-1)^3 \int_0^1 \left(-\frac{s}{3} \right) ds = - \int_0^1 \frac{(-s)(-s-1)(-s-2)}{1 \cdot 2 \cdot 3} ds$$

$$= \frac{1}{6} \int_0^1 (s^3 + s^2 + 2s) ds$$

$$= \frac{1}{6} \left[\frac{s^4}{4} + \frac{s^3}{3} + s \right]_0^1 = \frac{1}{6} \left(\frac{9}{4} \right) = \frac{3}{8}.$$ \hspace{1cm} \square

Las fórmulas (1.7) son denominadas fórmulas explícitas de Adams o fórmulas de Adams-Bashforth en honor a sus descubridores.

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_j</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{5}{12}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{251}{720}$</td>
<td>$\frac{95}{288}$</td>
<td>$\frac{19087}{60480}$</td>
</tr>
</tbody>
</table>

Tabla 1.1. Coeficientes para las fórmulas explícitas de Adams

Algunos casos especiales de (1.7) para $k = 1, 2, 3, 4, 5$, después de expresar los valores $f(x_{n-j}, y_{n-j})$ por f_{n-j}, $j = 0, \ldots, k - 1$ son:

- $k = 1$: $y_{n+1} = y_n + hf_n$ (método explícito de Euler)
- $k = 2$: $y_{n+1} = y_n + h\left(\frac{3}{2}f_n - \frac{1}{2}f_{n-1} \right)$
\[k = 3: \quad y_{n+1} = y_n + h \left(\frac{23}{12} f_n - \frac{16}{12} f_{n-1} + \frac{5}{12} f_{n-2} \right) \]
\[k = 4: \quad y_{n+1} = y_n + h \left(\frac{55}{24} f_n - \frac{59}{24} f_{n-1} + \frac{37}{24} f_{n-2} - \frac{9}{24} f_{n-3} \right) \]
\[k = 5: \quad y_{n+1} = y_n + h \left(\frac{1901}{720} f_n - \frac{2774}{720} f_{n-1} + \frac{2616}{720} f_{n-2} - \frac{1274}{720} f_{n-3} + \frac{251}{720} f_{n-4} \right) \]

Sin embargo, para fines computacionales, Hairer, Nørsett & Wanner (1993) proporcionan una simple relación de recurrencia para el cálculo de los coeficientes \(\gamma_j \), usando el método de Euler de generación de funciones.

Denotemos por \(G(t) \) la serie

\[G(t) = \sum_{j=0}^{\infty} \gamma_j t^j \]

Con la definición de \(\gamma_j \) (1.8) tenemos

\[G(t) = \sum_{j=0}^{\infty} (-t)^j \int_0^1 \binom{-s}{j} ds = \int_0^1 \sum_{j=0}^{\infty} (-t)^j \binom{-s}{j} ds. \]

Puesto que el integrando es una serie de potencias dada sobre el intervalo \([0, 1]\), ésta viene a ser el desarrollo de la función \((1 - t)^{-s}, s > 0\), obteniéndose así y luego integrando que

\[G(t) = \int_0^1 (1 - t)^{-s} ds = -\frac{\frac{t}{(1-t) \log(1-t)}}{1}. \]

Se puede expresar como

\[-\frac{\log(1-t)}{t} G(t) = \frac{1}{1-t}, \]

donde expandiendo las series respectivas tenemos

\[\left(1 + \frac{1}{2} t + \frac{1}{3} t^2 + \ldots \right) (\gamma_0 + \gamma_1 t + \gamma_2 t^2 + \ldots) = \left(1 + t + t^2 + \ldots \right). \]

Comparando los coeficientes de \(t^j \) conseguimos finalmente la buscada relación

\[\gamma_0 + \frac{1}{2} \gamma_1 + \frac{1}{3} \gamma_2 + \ldots + \frac{1}{t+1} \gamma_0 = 1. \quad (1.9) \]
lo cual recursivamente viene a ser

\[\gamma_0 = 1, \]

y

\[\gamma_i = 1 - \sum_{j=1}^{i} \frac{1}{j+i} \gamma_{i-j}, \quad i = 1, 2, \ldots \]

1.2.2 Métodos de Adams-Moulton

Observando las fórmulas de Adams-Bashforth (1.7), notamos que estas son construidas para integrar de \(x_n \) a \(x_{n+1} \), escapando del intervalo de interpolación \([x_{n-k+1}, x_n]\)
y por lo general, una extrapolación polinomial de este tipo es bastante pobre en precisión. Adams, consciente de ello, investigó métodos de \(k + 1 \) pasos donde en (1.6) se use un polinomio el cual incluya el punto \((x_{n+1}, f_{n+1})\), i.e., consideraremos el polinomio interpolante, de grado \(\leq k \),

\[P_k^*(t) = P_k^*(x_n + sh) = \sum_{j=0}^{k} (-1)^j \begin{pmatrix} -s \end{pmatrix}_j \nabla^j f_{n+1}. \quad (1.10) \]

Insertando este polinomio en (1.4), y procediendo de manera análoga al caso anterior, conseguimos

\[y_{n+1} = y_n + h \sum_{j=0}^{k} \gamma_j^* \nabla^j f_{n+1} \quad (1.11) \]

donde los nuevos coeficientes \(\gamma_j^* \) cumplen con

\[\gamma_j^* = (-1)^j \int_0^1 \begin{pmatrix} -s + 1 \end{pmatrix}_j ds. \quad (1.12) \]

Las fórmulas (1.12) son denominadas fórmulas implícitas de Adams o fórmulas de Adams-Moulton. Sin embargo, ambas fórmulas (1.7) y (1.11) son debidas a Adams.
(véase la Tabla 1.2 para algunos valores numéricos).

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_j^*</td>
<td>1</td>
<td>$-\frac{1}{2}$</td>
<td>$\frac{-1}{12}$</td>
<td>$\frac{-1}{24}$</td>
<td>$\frac{-19}{720}$</td>
<td>$\frac{-3}{160}$</td>
<td>$\frac{-853}{60480}$</td>
</tr>
</tbody>
</table>

Tabla 1.2 Coeficientes para las fórmulas implícitas de Adams

Observése la forma de las nuevas fórmulas obtenidas

\[
y_{n+1} = y_n + h(b_k f_{n+1} + b_{k-1} f_n + \ldots + b_0 f_{n-k+1}),
\]

\[
f_{n+1} = f(x_{n+1}, y_{n+1}),
\]

\[
f_i = f(x_i, y_i), \quad i = n, \ldots, n - k + 1,
\]

donde la ecuación representa, en general, una ecuación no-lineal para y_{n+1}, razón por la cual se les denomina implícitas. En la práctica, dichos métodos son usados utilizando una técnica llamada predictor-corrector dada líneas abajo (véase Sección 1.2.4), la cual es una combinación de fórmulas explícitas e implícitas.

Algunos casos especiales de (1.11) para $k = 0, 1, 2, 3, 4$, después de expresar las diferencias atrasadas (1.5) en términos de f_{n-j+1}, son:

$k = 0: \quad y_{n+1} = y_n + h f_{n+1}$ \quad (método implícito de Euler)

$k = 1: \quad y_{n+1} = y_n + h\left(\frac{1}{2} f_{n+1} + \frac{1}{2} f_n\right)$ \quad (regla Trapezoidal)

$k = 2: \quad y_{n+1} = y_n + h\left(\frac{5}{12} f_{n+1} + \frac{8}{12} f_n - \frac{1}{12} f_{n-1}\right)$

$k = 3: \quad y_{n+1} = y_n + h\left(\frac{9}{24} f_{n+1} + \frac{19}{24} f_n - \frac{5}{24} f_{n-1} + \frac{1}{24} f_{n-2}\right)$

$k = 4: \quad y_{n+1} = y_n + h\left(\frac{251}{720} f_{n+1} + \frac{646}{720} f_n - \frac{264}{720} f_{n-1} + \frac{106}{720} f_{n-2} - \frac{19}{720} f_{n-3}\right)$

Los casos $k = 0$ y $k = 1$ son métodos implícitos de un paso.

La relación de recurrencia para los coeficientes γ_j^* definida por (1.12) satisface $\gamma_0^* = 1$ y procediendo de una manera similar al caso anterior (véase Hairer, Nørsett
& Wanner (1993)) tenemos

\[\gamma_i^* + \frac{1}{2} \gamma_{i-1}^* + \frac{1}{3} \gamma_{i-2}^* + \ldots + \frac{1}{i+1} \gamma_0^* = 0 \quad \text{para} \quad i > 1. \]

la cual recursivamente es

\[\gamma_0^* = 1, \]

\[\gamma_i^* = -\sum_{j=1}^{i} \frac{1}{j+1} \gamma_{i-j}^*. \]

Los métodos (1.11) ofrecen en general más aproximaciones precisas a la solución exacta que los métodos (1.7). La justificación de esta aseveración será discutida en detalle cuando introduzcamos los conceptos de orden y error constante (véase Sección 1.3). Sin embargo, esta mayor precisión tiene un precio que pagar, pues como \(y_{n+1} \)

es definido explícitamente por (1.11), en cada paso ha de resolverse una ecuación no-lineal.

En el tipo de métodos Adams-Moulton (1.11), dados los valores aproximados \(y_n, \ldots, y_{n-k+1} \) para \(y(x_n), \ldots, y(x_{n-k+1}) \), uno debe calcular un valor aproximado \(y_{n+1} \)

para \(y(x_{n+1}) \), \(x_{n+1} \in [a, b] \), a través del siguiente proceso iterativo

\[y_{n+1}^{(i)} \quad \text{arbitrario,} \]

\[y_{n+1}^{(i+1)} = \Psi(y_{n+1}^{(i)}) = y_n + b_k f(x_{n+1}, y_{n+1}^{(i)}) + b_{k-1} f_n + \ldots + b_0 f_{n-k+1} \]

\[0, 1, 2, \ldots, \]

el cual tiene un único punto fijo \(y_{n+1} \) que soluciona (1.11), i.e., \(y_{n+1} = \Psi(y_{n+1}) \), si se cumplen las condiciones del Teorema del punto fijo de Banach. Para ello asumimos
que la derivada parcial con respecto a \(y \) existe, es continua y acotada en una región

\[D = \{(x,y) / a \leq x \leq b, y \in \mathbb{R}^k\}. \]

Entonces se tiene \(\Psi(D) \subset D \) y

\[
\|\Psi(y_{n+1}) - \Psi(z_{n+1})\| \leq |hb_k| \|f(x_{n+1},y_{n+1}) - f(x_{n+1}, z_{n+1})\|
\]

\[
= |hb_k| \left\| \frac{\partial f}{\partial y}(x_{n+1}, \eta) \right\| \|y_{n+1} - z_{n+1}\|
\]

para algún \(\eta \) entre \(y_{n+1} \) y \(z_{n+1} \). Además si \(|h| \) es suficientemente pequeño, tenemos que

\[0 < |h| K \leq 1, \]

donde \(K = |b_k| \left\| \frac{\partial f}{\partial y}(x_{n+1}, \eta) \right\| \), y la convergencia al punto fijo está garantizada.

1.2.3 Otros métodos multipaso clásicos

Con el fin de encontrar una generalización para estas fórmulas, Bulirsch & Stoer (1993) derivan un tipo de métodos multipaso de

\[y(x_{n+r}) = y(x_{n-j}) + \int_{x_{n-j}}^{x_{n+r}} f(t,y(t))dt \quad (1.13) \]

que es la fórmula integrada de (1.1) en el intervalo \([x_{n-j},x_{n+r}] \). Reemplazando el integrando por un polinomio interpolante \(P_k \) de grado \(\leq k \), obtenemos la analogía numérica de (1.13) dada por

\[y_{n+r} = y_{n-j} + \int_{x_{n-j}}^{x_{n+r}} P_k(x)dx \quad (1.14) \]

En el caso \(r = 1, j = 0, n = 0,1,2,..., \) obtenemos de (1.14) las fórmulas explícitas de Adams, o fórmulas de Adams-Bashforth.

En el caso \(r = 0, j = 1, n = 0,1,2,..., \) obtenemos de (1.14), luego de reemplazar \(n \) por \(n+1 \), las fórmulas implícitas de Adams, o fórmulas de Adams-Moulton.
Otros métodos clásicos son las fórmulas explícitas de \(k \)-pasos de Nyström dadas en 1925, las que se obtienen para el caso \(r = 1, j = 1, n = 0, 1, 2, \ldots \) de (1.14), donde reemplazamos la función desconocida por el polinomio interpolante \(P_k \), obteniendo

\[
y_{n+1} = y_{n-1} + h \sum_{j=0}^{k-1} \eta_j \nabla^j f_n.
\]

Los coeficientes \(\eta_j \) son calculados de manera similar a (1.8) por

\[
\eta_j = (-1)^j \int_{-1}^{1} \binom{-s}{j} ds.
\]

Este método fue recomendado por E. J. Nyström debido a la conveniencia del cálculo de sus coeficientes, sin embargo esta recomendación es razonable para cálculos manuales, pero es de poca relevancia para cálculos computacionales. Por otro lado, en el caso \(k = 1 \), resulta la fórmula

\[
y_{n+1} = y_{n-1} + 2hf_n,
\]

denominada regla del punto medio. Es el método de dos pasos más simple, cuya simetría es muy utilizada para la extrapolación (véase e.g. Bulirsch & Stoer (1993)).

En el caso \(r = 0, j = 2, n = 0, 1, 2, \ldots \), resultan de (1.14) las fórmulas implícitas de \(k+1 \)-pasos de Milne-Simpson,

\[
y_{n+1} = y_{n-1} + h \sum_{j=0}^{k} \eta_j^* \nabla^2 f_n,
\]

cuyos coeficientes \(\eta_j^* \) son calculados por (véase Hairer, Nørsett & Wanner (1993))

\[
\eta_j^* = (-1)^j \int_{-1}^{1} \binom{-s+1}{j} ds.
\]

Si expresamos las diferencias atrasadas en términos de \(f_{n-j}, j = 0, \ldots, k - 1 \) se obtienen los siguientes métodos para distintos valores de \(k \):
\[
\begin{align*}
 k = 0: & \quad y_{n+1} = y_n - 2hf_{n+1} \\
 k = 1: & \quad y_{n+1} = y_n - 2hf_n \\
 k = 2: & \quad y_{n+1} = y_n + h\left(\frac{1}{3}f_{n+1} + \frac{4}{3}f_n + \frac{5}{3}f_{n-1}\right) \\
 k = 4: & \quad y_{n+1} = y_n + h\left(\frac{29}{60}f_{n+1} + \frac{124}{60}f_n + \frac{24}{60}f_{n-1} + \frac{5}{60}f_{n-2} - \frac{1}{60}f_{n-3}\right)
\end{align*}
\]

El caso especial \(k = 0 \) es precisamente el \textit{método implícito de Euler}, pero con una longitud de paso \(2h \). Para \(k = 1 \) obtenemos nuevamente la regla del punto medio (1.15). Para \(k = 2 \) la fórmula obtenida es conocida popularmente como el \textit{método de Milne}, la cual es una generalización de la regla de Simpson. Aunque estos métodos proporcionan una mejora de precisión con relación a los métodos Adams-Moulton, esta ventaja es solo al inicio (véase, e.g., Curtis (1991), pp. 302-306), pues en la medida que transcurre el proceso iterativo, el error local (véase Sección 1.3) cometido por el método de Milne es cada vez mayor que el error local cometido por un método de Adams-Moulton. Esto es debido a que el método de Milne posee una anomalía denominada \textit{inestabilidad} (véase Sección 1.4), la cual se presenta independientemente de la solución dada. Por esta razón, los métodos de Adams son preferidos, pues en análisis numérico, la práctica normal evita métodos que tengan anomalías, aún cuando puedan ser más precisos en algunos casos.

\subsection{1.2.4 Métodos Predictor-Corrector}

Este tipo de métodos son dados en los siguientes pasos:

\(P: \) se calcula el valor pronosticado o \textit{predicado} \(\hat{y}_{n+1} = y_n + h \sum_{j=0}^{k-1} \gamma_j f_n \) dado por el \textit{método explícito de Adams-Bashforth} (1.7) proporcionando una razonable aproxi-
mación para $y(x_{n+1})$;

E: se evalúa la función en esta aproximación: $f_{n+1} = f(x_{n+1}, y_{n+1});$

C: se corrige el valor predicho mediante el uso del método implícito de Adams (1.11)

$$y_{n+1} = y_n + h(b_k f_{n+1} + b_{k-1} f_n + \ldots + b_0 f_{n-k+1})$$

para obtener $y_{n+1}.$

E: finalmente se evalúa nuevamente la función con el nuevo valor calculado, i.e., se calcula $f_{n+1} = f(x_{n+1}, y_{n+1}).$

Por esta razón los métodos explícitos Adams-Bashforth son también llamados métodos predictores, y los métodos como los Adams-Moulton son llamados métodos correctores. Esta técnica predictor-corrector no es exclusiva de los métodos Adams (Adams-Bashforth y Adams-Moulton), pues también se aplica a otras fórmulas multipaso (e.g. métodos de Nystroem, métodos de Milne-Simpson), donde un método explícito viene a ser el método predictor, y uno implícito viene a ser el método corretor.

El procedimiento dado es el más usual, y se denota por PECE, sin embargo existen otras posibilidades, e.g. PECECE (dos iteraciones), o PEC donde uno usa f_{n+1} en lugar de f_{n+1} en los subsecuentes pasos. Actualmente, los códigos buscando mayor precisión utilizan el procedimiento P(EC)M o P(EC)M,E donde M es un valor proporcionado por el mismo código según algún criterio de precisión dado, al respecto véase e.g. Gear & Tu (1974), Crouziex & Lisbona (1984).
1.2.5 Fórmulas BDF

El tipo de métodos mostrados a continuación presentan un distinto enfoque para la aproximación numérica del problema de valor inicial (1.1), pues hasta ahora los métodos considerados se basan en la integración numérica, i.e. la integral (1.13) es aproximada numéricamente usando una fórmula de cuadratura.

La idea fundamental de las fórmulas BDF (Backward Differentiation Formulas) es basada en la diferenciación numérica de una función dada, y es debida a Gear en 1971. Él hizo un amplio uso de ellas en la integración numérica de ecuaciones diferenciales rígidas.

Con la finalidad de deducir una fórmula para y_{n+1}, asumiremos que las aproximaciones iniciales y_{n-k+1}, \ldots, y_n a la solución exacta de la ecuación (1.1) están a disposición nuestra. Así mismo consideremos un polinomio $Q_k(x)$, de grado k, el cual interpole los puntos (x_i, y_i), para $i = n-k+1, \ldots, n+1$. Y análogamente a la fórmula (1.6) expresamos dicho polinomio en términos de diferencias atrasadas

$$Q_k(x) = Q_k(x_n + sh) = \sum_{j=0}^{k} (-1)^{j} \binom{-s+1}{j} \nabla^j y_{n+1}. \quad (1.16)$$

El valor y_{n+1} será determinado de modo que el polinomio $Q_k(x)$ satisfaga la ecuación diferencial en al menos un punto de la malla, esto significa que

$$Q_k'(x_{n+1-r}) = f(x_{n+1-r}, y_{n+1-r}). \quad (1.17)$$

Si $r - 1$, tenemos fórmulas explícitas, sin embargo Dahlquist en 1963 mostró que las fórmulas para las que $k \geq 3$, como veremos posteriormente, son inestables (véase Sección 1.4) y, por lo tanto de poca utilidad.
Son de mayor interés las fórmulas obtenidas para \(r = 0 \) en (1.17). En este caso, después de insertar (1.16) en (1.17), obtenemos fórmulas implícitas dadas por

\[
\frac{d}{ds} \left(\sum_{j=0}^{k} (-1)^j \binom{-s + 1}{j} \nabla^j y_{n+1} \right) \bigg|_{x=x_{n+1}} = f_{n+1}
\]

tenonas

\[
\frac{dQ}{dx} \frac{dx}{ds} = \sum_{j=0}^{k} (-1)^j \frac{d}{ds} \left(\binom{-s + 1}{j} \right) \nabla^j y_{n+1} = f_{n+1}.
\]

Resulta:

\[
\sum_{j=0}^{k} x_j^* \nabla^j y_{n+1} = hf_{n+1}, \tag{1.18}
\]

cuyos coeficientes \(x_j^* \) se calculan por

\[
x_j^* = (-1)^j \frac{d}{ds} \left(\binom{-s + 1}{j} \right) \bigg|_{s=1}.
\]

Haciendo uso de la definición del coeficiente binomial extendido para números negativos (véase Sección 1.2.1) tenemos que

\[
(-1)^j \binom{-s + 1}{j} = \frac{1}{j!} (s - 1)s(s + 1)...(s + j - 2), \quad j = 1, 2, ...
\]

donde después de derivar directamente y evaluar en \(s = 1 \), los coeficientes \(x_j^* \) de (1.18) son dados por

\[
x_0^* = 0, \quad x_j^* = \frac{1}{j} \quad \text{para} \quad j = 1. \tag{1.19}
\]

Finalmente, la fórmula general de los métodos BDF para \(r = 0 \) es

\[
\sum_{j=1}^{k} \frac{1}{j!} \nabla^j y_{n+1} = hf_{n+1}.
\]

Si expresamos las diferencias atrasadas en términos de \(y_{n-j} \), se obtienen los siguientes
métodos para distintos valores de k

$$k = 1: \quad y_{n+1} - y_n = hf_{n+1},$$

$$k = 2: \quad \frac{3}{2} y_{n+1} - 2y_n + \frac{1}{2} y_{n-1} = hf_{n+1}$$

$$k = 3: \quad \frac{11}{6} y_{n+1} - 3y_n + \frac{3}{2} y_{n-1} - \frac{1}{3} y_{n-2} = hf_{n+1},$$

$$k = 4: \quad \frac{25}{12} y_{n+1} - 4y_n + 3y_{n-1} - \frac{4}{3} y_{n-2} + \frac{1}{4} y_{n-3} = hf_{n+1},$$

$$k = 5: \quad \frac{137}{66} y_{n+1} - 5y_n + 5y_{n-1} - \frac{10}{3} y_{n-2} + \frac{5}{4} y_{n-3} - \frac{5}{6} y_{n-4} = hf_{n+1},$$

$$k = 6: \quad \frac{147}{66} y_{n+1} - 6y_n + \frac{15}{2} y_{n-1} - \frac{20}{3} y_{n-2} - \frac{15}{4} y_{n-3} - \frac{6}{5} y_{n-4} + \frac{1}{6} y_{n-5} = hf_{n+1}$$

Para $k = 1$ obtenemos una vez más el método implícito de Euler. Lamentablemente los métodos BDF son inestables para $k \geq 7$ (véase Sección 1.4).

1.3 Error local y orden de un método multipaso

Todos los métodos multipaso discutidos hasta aquí, así como los métodos de un paso, pueden ser escritos en la siguiente forma:

$$a_k y_{n+k} + a_{k-1} y_{n+k-1} + \ldots + a_0 y_n = hF(x_k, y_{n+k}, y_{n+k-1}, \ldots, y_n; h; f). \quad (1.20)$$

Si

$$F(x_k; y_{n+k}, \ldots, y_n; h; f) = b_k f(x_{n+k}, y_{n+k}) + b_{k-1} f(x_{n+k-1}, y_{n+k-1}) + \ldots + b_1 f(x_{n+1}, y_{n+1}) + b_0 f(x_n, y_n),$$

es decir,

$$a_k y_{n+k} + a_{k-1} y_{n+k-1} + \ldots + a_0 y_n = h(b_k f_{n+k} + b_{k-1} f_{n+k-1} + \ldots + b_0 f_n), \quad a_k = 0, \quad (1.21)$$
los métodos son denominados métodos multipaso lineales o métodos lineales de r-
pasos, de esta manera los métodos anteriores, salvo los predictor-corrector (véase
Sección 1.2.4), son considerados como casos especiales de (1.21), donde los \(a_i \) y \(b_i \)
son parámetros reales, \(h \) denota una longitud de paso constante y \(f_i = f(x_i, y_i) \),
\(x_i = x_0 + ih \), \(i = 1, 2, \ldots \). Cabe señalar que hablamos de un método multipaso
explícito si el coeficiente \(b_k = 0 \) y un método multipaso implícito si \(b_k = 0 \).

Para realizar un estudio más detenido de estos métodos, veremos algunas definici-
ones y resultados que nos permitan conocer el error local cometido y el orden de un
método de la forma (1.21).

1.3.1 Error local de un método multipaso

El error local nos indicará cuán buena es nuestra aproximación en cada paso con
respecto a la solución exacta del problema (1.1).

Definición 1.5 El error local de un método multipaso de \(k \)-pasos (1.21) es
definido por

\[y(x_k) - y_k, \quad k = 1, 2, 3, \ldots \]

donde \(y(x) \) es la solución exacta de (1.1), \(y_k \) es la solución numérica obtenida de
(1.21), usando los valores iniciales exactos \(y_i = y(x_i), i = 0, 1, \ldots, k-1 \).

Si \(k = 1 \), esta definición coincide con la definición de error local para métodos de
un paso. A fin de determinar una relación para el error local dado, asociaremos a
(1.21) el operador diferencial lineal \(L \), definido por

\[L(y, x, h) = \sum_{i=0}^{k} (a_i y(x + ih) - h b_i y'(x + ih)), \quad (1.22) \]
donde $y(x)$ es una función diferenciable definida en un intervalo que contenga los puntos de malla $x + ih$, $i = 0, 1, 2, \ldots, k$.

Lema 1.6 (Véase Hairer, Nørsett & Wanner (1993), pp 371) Dado el problema (1.1) con $f(x, y)$ continuamente diferenciable, donde $y(x)$ es su solución exacta. Entonces el error local es dado por

$$y(x_k) - y_k = \left(a_k I - hb_k \frac{\partial f}{\partial y}(x_k, \xi) \right)^{-1} L(y, x_0, h), \quad k = 1, 2, 3, \ldots$$

donde ξ es algún valor intermedio entre $y(x_k)$ y y_k, si f es una función escalar (i.e., $f \in \mathbb{R}$). En el caso de una función vectorial f, la matriz $\frac{\partial f}{\partial y}(x_k, \xi)$ viene a ser la Jacobiana y cuyas filas son evaluadas en diferentes valores, fundamentalmente en el segmento entre $y(x_k)$ y y_k.

Prueba: Por la definición 1.5 obtenemos que y_k es dado implícitamente por

$$a_k y_k = h b_k f(x_k, y_k) + \sum_{i=0}^{k-1} (a_i y(x_i) - h b_i f(x_i, y(x_i))).$$

Insertando esta expresión en (1.22) y fijando $x = x_0$ conseguimos

$$L(y, x_0, h) = a_k (y(x_k) - y_k) - h b_k (f(x_k, y(x_k)) - f(x_k, y_k)),$$

y aplicando el Teorema de valor medio tenemos

$$L(y, x_0, h) = a_k (y(x_k) - y_k) - h b_k \frac{\partial f}{\partial y}(x_k, \xi) (y(x_k) - y_k),$$

donde despejando $y(x_k) - y_k$ obtenemos el resultado esperado.

De este Lema se tiene que $a_k^{-1} L(y, x_0, h)$ es esencialmente igual al error local, pues el término $h b_k \frac{\partial f}{\partial y}(x_k, \xi)$ es realmente muy pequeño. Dahlquist, que inició una teoría general de métodos multipaso, llamó a este término el *error local* y nótese que para los métodos explícitos esto es completamente cierto pues $b_k = 0$.
1.3.2 Orden de un método multipaso

Con la definición previa del error local para métodos multipaso, estamos ahora sí en condiciones de definir el concepto de orden para métodos multipaso.

Definición 1.7 El método multipaso (1.21), es consistente de orden p, si una de las siguientes condiciones es cumplida:

i) para toda función suficiente continuamente diferenciable $y(x)$ tenemos que $L(y, x, h) = O(h^{p+1})$;

ii) el error local de (1.21) es $O(h^{p+1})$ para toda ecuación diferencial (1.1) suficiente continuamente diferenciable.

 Nótese de la definición anterior que si la igualdad de la condición i) es multiplicada por el valor $(a_k I - h b_k \partial_f(x_k, \xi))^{-1}$, fijando $x = x_0$, entonces por el Lema 1.6 podemos implicar la condición ii); de manera similar, haciendo nuevamente uso del Lema 1.6, podemos verificar que la condición ii) implica la condición i), observando de esta manera la equivalencia entre las condiciones de la Definición 1.7.

Nuestro siguiente objetivo será caracterizar los métodos multipaso por el orden en función de los a_i y b_k. Al respecto Dahlquist descubrió la importancia de los siguientes polinomios asociados a los métodos multipaso (1.21)

$$
\alpha(\xi) = a_k \xi^k + a_{k-1} \xi^{k-1} + \ldots + a_0, \\
\beta(\xi) = b_k \xi^k + b_{k-1} \xi^{k-1} + \ldots + b_0,
$$

denominados los polinomios generadores del método multipaso (1.21). A continuación tenemos un resultado muy importante, no sólo para esta parte, sino también para situaciones posteriores de enmallados no equidistantes.
\[L(x, y, h) - \sum_{i=0}^{k} \left(a_i \sum_{q=0}^{2} \frac{x^q}{2^q} y^{(q)}(x) - h b_i \sum_{r=1}^{2} \frac{x^r}{2^r} y^{(r+1)}(x) \right) \]

la introducción de la simplificación de la equivalencia entre la condición de la prueba, definiendo:

\[L(\exp, 0, x) = o(\frac{\lambda}{h}) - h o(\frac{\lambda}{h}) \]

la condición de (2.4), se prueba la equivalencia de la condición de (1.4) con (4.1)

una condición de (2.4) con (4.1), haciendo uno de \(b_j - b_j \) en condición (3) puede reestructurarse como:

\[o(\frac{\lambda}{h}) - \log \pi \frac{\lambda}{h} = O(\log \frac{\lambda}{h}) \quad \text{para} \quad b_j = \lambda \]
Sin embargo, esta condición es equivalente a iii), puesto que el desarrollo en serie de potencias de \(\log \zeta \) es

\[
\log \zeta = (\zeta - 1) + \mathcal{O}((\zeta - 1)^2) \quad \text{para} \quad \zeta \to 1,
\]

entonces tenemos que

\[
\frac{\alpha(\zeta)}{\log \zeta} - \beta(\zeta) = \mathcal{O}(\log ^p \zeta) \quad \text{para} \quad \zeta \to 1. \]

\[\blacklozenge\]

Observación. Si un método multipaso (1.21) cumple al menos las condiciones para ser de orden 1, i.e.,

\[
\alpha(1) = \alpha'(1) - \beta(1) = 0, \quad (1.25)
\]

el método multipaso es **consistente**.

Ejemplo 1.3 (Véase Hairer, Nørsett & Wanner (1993)). El Teorema 1.8 nos da las condiciones de poder ver el orden de un método multipaso de la forma (1.21), e.g., estudiemos el orden de los métodos explícitos de Adams. Antes investiguemos para que ecuación diferencial, los métodos explícitos de Adams nos dan teóricamente la solución exacta. Esto sucede si el polinomio \(P(t) \) de (1.6) es igual a \(f(t, y(t)) \). Supóngase también que \(f(t, y) = f(t) \) es una función tal que no depende de \(y \) y, además, es un polinomio de grado menor que \(k \), por lo que se concluye que los métodos explícitos de Adams integran exactamente,

\[
y' = qx^{q-1}, \quad \text{para} \quad q = 0, 1, \ldots, k.
\]

Esta suposición implica que el error local cometido es cero y entonces, debido al Lema 1.6, tenemos que

\[
0 = L(x^q, 0, h) = h^q \left(\sum_{i=0}^{k} a_i i^q - q \sum_{i=0}^{k} b_i i^{q-1} \right) \quad \text{para} \quad q = 0, \ldots, k,
\]
el cual coincide con la condición 1) del Teorema 1.8 donde \(p = k \), por lo que afirmamos que el orden de los métodos explícitos de Adams es al menos \(k \). De modo similar podemos decir que los métodos implícitos de Adams tienen al menos orden \(k + 1 \) pues el polinomio a considerar es \(P^*(t) \) de la forma (1.10) el cual es un grado mayor que \(P(t) \).

Un modo similar de determinar la consistencia de un método multipaso es dado por la siguiente definición

Definición 1.9 El método multipaso (1.21) es consistente del orden \(p \) si para cada \(f \) continuamente diferenciable existe una función \(\sigma(h) \) con \(\lim_{h \to 0} \sigma(h) = 0 \) tal que

\[
\left\| L(x, y, h) \right\| \leq \sigma(h) \quad \text{para todo } (x, y) \in [a, b] \times \mathbb{R}^m,
\]

donde \(\sigma(h) = \mathcal{O}(h^p) \).

La expresión \(\frac{L(x, y, h)}{h} \) es llamada el error de truncamiento local, la cual nos indicará cuán bien la solución exacta de una ecuación diferencial satisface la fórmula de recurrencia (1.21).

Ejemplo 1.4 Para determinar el orden de un método predictor-corrector, usando las fórmulas explícitas e implícitas de Adams, ambas de \(k \)-pasos, tenemos:

\[
\left\| \frac{L(x, y, h)}{h} \right\| = \left\| \frac{1}{h} \left[y(x + kh) - y(x + (k - 1)h) \right] - \sum_{i=0}^{k} b_i f(x + ih, y(x + ih)) + b_k f(x + kh, y(x + kh)) \right\|
\]

\[
\quad + h \left(\sum_{i=0}^{k-1} b_i f(x + ih, y(x + ih)) \right)
\]

\[
\leq \left\| \frac{L^*(x, y, h)}{h} \right\| + b_k \left\| y(x + kh) - y(x + (k - 1)h) \right\|
\quad + h \left(\sum_{i=0}^{k-1} b_i f(x + ih, y(x + ih)) \right).
\]
$$\left\| \frac{L^r(x, y, h)}{h} \right\| \leq \left\| \frac{L^r(x, y, h)}{\lambda h} \right\| + b_k L h \left\| \frac{I^r(x, y, h)}{\lambda h^2} \right\| = O(h^{k+1}),$$

$$\left\| I^r(x, y, h) \right\|$$ es el error de truncamiento local de un método explícito de orden k, luego el orden sigue de la definición 1.6.

Ecuaciones constantes de un método multipaso

Para evitar que el orden de un método multipaso, que indica cuánto se acerca a un caso en el que $h = 0$, sin embargo, las ecuaciones constantes de un caso a tener diferentes ecuaciones por el motivo, para distinguirlos distintos reales, hay ecuaciones mostradas con abreviaciones en Heber. N. meto de Verlet desmend. (199) muestra que el operador diferencia L, asociado a la ecuación x, es un que

$$L(y, x, h) = C_{p+1} h^{p+1} y^{(p+1)}(x) + O(h^{p+2}),$$

que è una función que continúa y continuamente diferenciable. Donde $C_{p+1} = \frac{1}{(p+2)!} \left(\sum_{t=0}^{p+1} \frac{(y+1) \cdot 2}{t!} b_k \right)$.

The document contains mathematical expressions and equations, focusing on numerical methods and error analysis. The text is in Spanish, discussing the order of multipoint methods and the truncation error. It introduces the concept of a multipoint method, emphasizing the reduction of error as the step size h approaches zero. The equations presented are related to the analysis of numerical solutions, particularly in the context of differential equations. The text also touches on the continuous and continuously differentiable nature of certain functions related to the method.
que el error local de un método multipaso, haciendo uso del Lema 1.6 y la fórmula (1.26), es dado por

\[y(x_k) - y_k = a_k^{-1} C_{p+1} h^{p+1} y^{(p+1)}(x_0) + O(h^{p+2}). \]

(1.27)

Esta fórmula no es considerada aún como una definición satisfactoria, como veremos en lo siguiente. Sea

\[e_n = \frac{y(x_n) - y_n}{h^p}, \]

(1.28)

el error global escalado por \(h^p \). Restando (1.21) de (1.22) y usando (1.26) tenemos

\[\sum_{i=0}^{k} a_i (y(x_{n+i}) - y_{n+i}) = h \sum_{i=0}^{k} b_i \left(f(x_{n+i}, y(x_{n+i})) - f(x_{n+i}, y_{n+i}) \right) + C_{p+1} h^{p+1} y^{(p+1)}(x_n) + O(h^{p+2}). \]

Dividiendo por \(h^p \) y usando (1.28) resulta

\[\sum_{i=0}^{k} a_i e_{n+i} = h^{1-p} \sum_{i=0}^{k} b_i \left(f(x_{n+i}, y(x_{n+i})) - f(x_{n+i}, y_{n+i}) \right) + C_{p+1} h y^{(p+1)}(x_n) + O(h^2). \]

(1.29)

Ahora, por el desarrollo de Taylor tenemos las siguientes ecuaciones:

\[b_0 y^{(p+1)}(x_n) = b_0 y^{(p+1)}(x_n), \]

\[b_1 y^{(p+1)}(x_{n+1}) = b_1 y^{(p+1)}(x_n) + O(h), \]

\[b_2 y^{(p+1)}(x_{n+2}) = b_2 y^{(p+1)}(x_n) + O(h), \]

...\]

\[b_k y^{(p+1)}(x_{n+k}) = b_k y^{(p+1)}(x_n) + O(h), \]

donde, sumando miembro a miembro, obtenemos

\[y^{(p+1)}(x_n) = \frac{1}{\beta(1)} \sum_{i=0}^{k} b_i y^{(p+1)}(x_{n+i}) + O(h), \]

(1.30)
\[f(x_{n+t}, y(x_{n+i})) - f(x_{n+t}, y_{n+i}) = \frac{\partial f}{\partial y}(x_{n+i}, y(x_{n+i})) h^p e_{n+i} + O(h^{2p}) \]

After this expression, using (1.8) and (1.9) results in:

\[\frac{h^{1-p}}{\beta(1)} \sum_{i=0}^{k} b_i \left(\frac{\partial f}{\partial y}(x_{n+i}, y(x_{n+i})) h^p e_{n+i} + O(h^{2p}) \right) + C_{p+1} h^1 \sum_{i=0}^{k} b_i y^{(p+1)}(x_{n+i}) + O(h^2). \]

In the expressions \(O(h^p) \) and \(O(h^2) \), please interpret the formula obtained.

The equation to be solved is:

\[\mathbf{z}(t) = (x(t, \mu(t), \text{free}) - (\Psi^p + (\phi^2) \Psi)(t), \text{free}) = 0. \]

\[C = \frac{C_{p+1}}{\beta(1)}. \]
\[y(x_k) - y_k = y'(a_k) \cdot \frac{h^k}{k!} + \mathcal{O}(h^{k+1}), \]

para el error local del método explícito de Adams de segundo orden dado por:

\[y(x_k) - y_k = \gamma_k \cdot f(x_{k-1}) = h \gamma_k \nabla f(x_{k-1}) = h \gamma_k \nabla f(x_0), \]

si que la ecuación diferencial se integra exactamente.

Si \(\gamma_k = 0 \), esta fórmula muestra que el orden del método de Adams supera la tercera, con \(\gamma_k = -1 \), lo que implica que la fórmula (1.17) se reduce a:

\[C_{k+1} = 0. \]

El mismo resultado para los métodos Adams que \(C_k = \zeta^k - \zeta^{k-1} \) y

\(= 0 \) por (1.15), dándonos el error constante en cada paso del tiempo.

Tabla 1.6 muestra algunos resultados numéricos del método como el error a compararse entre otras. Observamos que:

\[\left| \alpha \right| = \left| \alpha \right|, \]

siendo \(\alpha \) un entero en el intervalo \([1, 1]\) y por las condiciones de las ecuaciones (1.17) y (1.18) resulta por (1.5):

\[|\gamma_k| \geq |\gamma_{k+1}|. \]

De este modo, encontramos para los métodos de Runge-Kutta y Runge-Kutta

\[|\eta_k/2| \geq |\eta_{k+1}/2|. \]
<table>
<thead>
<tr>
<th>Método</th>
<th>Orden</th>
<th>Error constante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Método explícito de Adams</td>
<td>k</td>
<td>γ_k</td>
</tr>
<tr>
<td>Método implícito de Adams</td>
<td>$k+1$</td>
<td>γ_{k+1}</td>
</tr>
<tr>
<td>Regla del punto medio</td>
<td>2</td>
<td>$1/6$</td>
</tr>
<tr>
<td>Nyström $k > 2$</td>
<td>k</td>
<td>$\eta_k/2$</td>
</tr>
<tr>
<td>Milne $k = 2$</td>
<td>4</td>
<td>$-1/180$</td>
</tr>
<tr>
<td>Milne-Simpson $k > 3$</td>
<td>$k+1$</td>
<td>$\eta_{k+1}/2$</td>
</tr>
<tr>
<td>BDF</td>
<td>k</td>
<td>$-1/(k+1)$</td>
</tr>
</tbody>
</table>

Tabla 1.3. Orden y error constante de métodos multipaso [Hairer et al. (1991)]

Para realizar una comparación del error constante en valor absoluto de los distintos métodos de j-pasos, $j = 0,\ldots,6$, dados en la tabla 1.3, véase la figura 1.1 y 1.2.

Figura 1.1 Error constante de los métodos explícitos e implícitos
Figura 1.2 Error constante de los métodos multipaso

Ejemplo 1.6 En general, de los resultados precedentes, los métodos implícitos consiguen obtener una mayor precisión comparativamente a los métodos explícitos, en particular diremos que los métodos implícitos de Adams-Moulton (1.11) son más precisos que los métodos explícitos, de Adams-Bashforth (1.7). Para justificar esta afirmación de manera empírica, consideremos el problema de valor inicial

\[y' = -y + x + 1, \quad 0 \leq x \leq 5, \quad y(0) = 1 \]

cuya solución exacta es \(y(x) = e^{-x} + x \). Realmente la ecuación diferencial dada es sencilla comparada con los problemas que se presentan frecuentemente, sin embargo, esta sencillez nos permitirá comprender con facilidad los resultados obtenidos por nuestros métodos numéricos. Para dicho fin hemos aplicado los métodos explícitos e implícitos de Adams ambos de orden \(k = 4 \) para diferentes longitudes de paso \((h = 0.5, h = 0.25, y h = 0.125 \) respectivamente\). Además los requeridos valores iniciales fueron calculados de la solución exacta.
El error local \(y(x_i) - y_i \) cometido de integración se muestra.

 Nótese al inicio el brusco sistema explícito.

Adams-Bashforth en relación al método PECE.

Figura 1

Hairer, Norsett

PECE

... 1 método
Figura 1.4 El error local versus el número de evaluación de la función \(f \).

Resultados similares son obtenidos con otro orden para métodos multipaso ambos del mismo orden, mostrándose así que para un mismo orden \(k \), usualmente, los métodos implícitos dan mejores resultados, aunque cabe mencionar que el método Runge-Kutta clásico (de orden 4) en este problema, tuvo mayor éxito que los métodos multipaso. Sin embargo, este método de un paso requiere para su implementación de cuatro evaluaciones de la función por paso, lo cual implica un mayor costo, y en métodos numéricos esto es una desventaja de consideración.

1.3.4 Métodos multipaso irreducibles

Los polinomios \(\alpha(\zeta) \) y \(\beta(\zeta) \) dados por (1.23), que generan los métodos multipaso de la forma (1.21), pueden originar diversas preguntas, una de ellas es: ¿importa en algo que los polinomios generadores de los métodos multipaso posean un factor común?, supongamos que,

\[
\alpha(\zeta) = F(\zeta)\hat{\alpha}(\zeta), \quad \beta(\zeta) = F(\zeta)\hat{\beta}(\zeta),
\]
donde \(f(\zeta) \) es el factor común, y además \(\tilde{\alpha}(\zeta) \) y \(\tilde{\beta}(\zeta) \) sean los polinomios generadores de un nuevo método multipaso sin factores comunes. Definiendo un operador \(E \), por medio de

\[
E y_n = y_{n+1},
\]

el método multipaso también podrá escribirse de la forma:

\[
\tilde{\alpha}(E)y_n = h\tilde{\beta}(E)f_n.
\] (1.33)

Es claro que cualquier solución \(\{y_n\} \) de este nuevo método es también solución del "antiguo" \(\alpha(E)y_n = h\beta(E)f_n \), esto se ve al multiplicar (1.33) por \(f(E) \). Por lo tanto, ambos métodos son iguales. De modo similar sucede con

\[
\frac{C_{p+1}}{\beta(1)} = \frac{\tilde{C}_{p+1}}{\tilde{\beta}(1)},
\]

pues ambos poseen el mismo error constante. Entonces, por lo visto anteriormente, decimos que los métodos multipaso cuyos polinomios posean un factor común no son de importancia, por ello en adelante asumiremos que

\[
\alpha(\zeta) \text{ y } \beta(\zeta) \text{ no poseen factor común.}
\] (1.34)

Así, todo método multipaso que cumpla la propiedad (1.34) será denominado método multipaso irreducible.

1.4 Estabilidad de los métodos multipaso

Los conceptos y resultados de orden y error local son necesarios y de gran utilidad, pues permiten analizar el comportamiento de la solución numérica dada por un
\[y_{n+2} + 4y_{n+1} - 5y_n = h(4f_{n+1} + 2f_n). \]
durante la ejecución del método, se obtiene y_i, por ejemplo por

$$y_0 - 1,$$

$$y_1 = e^{-h},$$

$$y_{i+2} = 4y_{i+1} - 5y_i = h(-4y_{i+1} - 2y_i)$$

o también

$$y_{i+2} + 4(1 + h) y_{i+1} + (-5 + 2h) y_i = 0.$$

(1.35)

Dichas ecuaciones de diferencia tienen soluciones especiales de la forma $y_i = \zeta^i$.

Insertándolas en (1.35) se obtiene la ecuación característica

$$\zeta^i \left(\zeta^2 + 4(1 + h)\zeta + (-5 + 2h) \right) = 0$$

la cual, aparte de la solución trivial $\zeta = 0$, posee las soluciones

$$\zeta_1 = -2 - 2h + 3\sqrt{1 + \frac{2}{3}h + \frac{4}{9}h^2},$$

$$\zeta_2 = -2 - 2h - 3\sqrt{1 + \frac{2}{3}h + \frac{4}{9}h^2}.$$

Para un h suficientemente pequeño tenemos que

$$\sqrt{1 + \frac{2}{3}h + \frac{4}{9}h^2} = 1 + \frac{1}{3}h + \frac{1}{6}h^2 - \frac{1}{8}h^3 + \frac{1}{216}h^4 + \mathcal{O}(h^5)$$

Entonces resulta:

$$\zeta_1 = 1 - h + \frac{1}{2}h^2 - \frac{1}{6}h^3 + \frac{1}{72}h^4 + \mathcal{O}(h^5),$$

(1.36)

$$\zeta_2 = -5 + 3h + \mathcal{O}(h^2).$$
\[
\begin{array}{cccc}
2 & y_i - y(x_i) & - \frac{x^4}{24} \left(-5 \right) \sin \xpi/8 \\
2 & -0.164 \times 10^{-8} & -0.753 \times 10^{-9} \\
3 & +0.501 \times 10^{-8} & +0.378 \times 10^{-8} \\
4 & -0.300 \times 10^{-7} & -0.190 \times 10^{-7} \\
98 & -0.257 \times 10^{59} & -0.169 \times 10^{59} \\
99 & +0.129 \times 10^{60} & +0.850 \times 10^{59} \\
100 & -0.652 \times 10^{60} & -0.427 \times 10^{60} \\
\end{array}
\]

Tabla 1.4 Comportamiento oscilante del método de Dahlquist.

La solución general de (1.35) se escribe como una combinación lineal de las soluciones \(\zeta_1 \) y \(\zeta_2 \) de la forma:

\[
y_i = A \zeta_1 + B \zeta_2.
\]

Las constantes \(A \) y \(B \), en nuestro caso, son determinadas por las condiciones iniciales \(y_0 \) y \(y_1 \), conduciéndonos al sistema de ecuaciones para \(A \) y \(B \):

\[
y_0 = A + B = 1, \\
y_1 = A \zeta_1 + B \zeta_2 = e^{-h},
\]

cuya solución es dada por

\[
A = \frac{\zeta_2 - e^{-h}}{\zeta_2 - \zeta_1},
\]

y

\[
B = \frac{e^{-h} - \zeta_1}{\zeta_2 - \zeta_1}.
\]
De (1.36) se tiene que

\[\begin{align*}
A &= \frac{-5 - 3h - 1 + h + \mathcal{O}(h^2)}{-6 - 2h + \mathcal{O}(h^2)} = \frac{-6 - 2h + \mathcal{O}(h^2)}{-6 - 2h + \mathcal{O}(h^2)} = 1 + \mathcal{O}(h^2) \\
B &= \frac{1 - h + h^2/2 - h^3/6 + h^4/24 - 1 + h - h^2/2 + h^3/6 - h^4/72 + \mathcal{O}(h^5)}{-6 - 2h + \mathcal{O}(h^2)} \\
&= \frac{1}{216} h^4 + \mathcal{O}(h^5).
\end{align*} \]

Luego, para un \(x = 0 \) fijo, \(h = h_j := x/j, \quad j = 0, 1, 2, ..., \) obtenemos la solución aproximada

\[y(x, h_j) = A \zeta_j + B \zeta_j^2 \]

\[= \left[1 + \mathcal{O}\left(\left(\frac{x}{j}\right)^2\right) \right] \left[1 - \frac{x}{j} + \mathcal{O}\left(\left(\frac{x}{j}\right)^2\right) \right] \\
+ \frac{1}{216} \frac{x^4}{j^4} \left[1 + \mathcal{O}\left(\left(\frac{x}{j}\right)^2\right) \right] \left[-5 - \frac{3x}{j} + \mathcal{O}\left(\left(\frac{x}{j}\right)^2\right) \right]^2. \]

El primer término tiende a \(e^{-x} \) cuando \(j \to \infty \); el segundo miembro, cuando \(j \to \infty \), se comporta como

\[\frac{x^4}{216} \frac{(-5)j}{j^4} e^{3x/5}, \]

por lo tanto diverge; pues \(\lim_{j \to \infty} \frac{5j}{j^4} = \infty \). Resulta que este término es cada vez más oscilante cuando \(j \to \infty \), como se puede ver en la figura 1.5, lo que explica la inestabilidad del método. La razón de este comportamiento estriba en el hecho que \(-5 \) es una raíz de la ecuación cuadrática \(\lambda^2 + 4\lambda - 5 = 0 \), y dicha raíz genera el tipo de soluciones denominadas "soluciones parásitas", pues el valor absoluto de \(\zeta_2 \), cuando \(h \to 0 \), es mayor que el valor absoluto de \(\zeta_1 \) y va incrementándose tanto que al final termina dominando la solución, cuando \(j \to \infty \). Obsérvese de la figura 1.5, el comportamiento patológico para las longitudes de paso \(h = 0.1, 0.05, 0.025 \) y \(0.01 \), pues tanto más pequeña sea la longitud de paso, tanto mayor será el error cometido. \(\blacktriangleright \)
Como observamos, la parte esencial es el comportamiento de la solución cuando $n \to \infty$ (o $h \to 0$) con un x fijo.

En general, de (1.21) resulta para $h \to 0$

$$a_k y_{n+k} + a_{k-1} y_{n+k-1} + \ldots + a_0 y_n = 0,$$

lo cual puede interpretarse como la solución numérica del método (1.21) para la ecuación diferencial

$$y' = 0.$$ \hspace{1cm} (1.38)

Si ponemos $y_j = \zeta^j$ en (1.37), y dividimos por ζ^n, obtenemos

$$\alpha(\zeta) = a_k \zeta^k + a_{k-1} \zeta^{k-1} + \ldots + a_0 = 0,$$

(1.39)

donde ζ es una raíz. Sin embargo, existe la posibilidad de que una raíz posea multiplicidad $m > 1$. En este caso $y_n = n^{j-1} \zeta^n$ para $j = 1, \ldots, m$, son soluciones de (1.37) y obtenemos por el principio de superposición el siguiente lema

Figura 1.5. Comportamiento oscilante de (1.35) para $y(x) = e^{-x}$.

Lema 1.10 Sean ζ_1, \ldots, ζ_r las raíces de $\alpha(\zeta)$ de (1.39), con multiplicidades m_1, \ldots, m_r y sea $a_0 = 0$.

\cdots
Entonces, la solución general de (1.37) es dada por

\[y_n = p_1(n)\zeta_1^n + \ldots + p_r(n)\zeta_r^n \]

(1.40)

donde los \(p_j(n) \) son polinomios arbitrarios de grado \(m_j - 1, j = 1, \ldots, r \).

Prueba: (véase e.g. Bulirsch & Stoer (1993)). □

Este último resultado (fórmula (1.40)), nos muestra que para conseguir acotar o limitar \(y_n \), cuando \(n \to \infty \), es necesario que las raíces de \(\alpha(\zeta) \) (fórmula (1.39)) se encuentren en el disco unitario y que las raíces sobre el disco unitario sean simples.

Definición 1.11 (D-estabilidad) El método multipaso (1.21) es llamado estable, si el polinomio generador \(\alpha(\zeta) \) (fórmula (1.39)) satisface la condición de la raíz, i.e.,

i) los ceros de \(\alpha(\zeta) \) están dentro y en la frontera del círculo unitario, (si \(\lambda \) es un cero de \(\alpha(\zeta) \), se tiene que \(|\lambda| \leq 1 \));

ii) los ceros en la frontera del círculo unitario son simples (si \(\lambda \) es un cero múltiple de \(\alpha(\zeta) \), se tiene que \(|\lambda| < 1 \)).

Cabe indicar que algunas veces, este concepto de estabilidad, (D-estabilidad, en honor a Dahlquist), también es llamado cero-estabilidad.

Observemos que para los métodos explícitos e implícitos Adams se tiene \(\alpha(\zeta) = \zeta^k - \zeta^{k-1} \), donde cero es una raíz múltiple, de multiplicidad \((k - 1) \) y uno es una raíz simple, por esta razón los métodos Adams son estables, de la misma manera, los métodos explícitos de Nystroem y los métodos de Milne-Simpson también son estables pues \(\alpha(\zeta) = \zeta^k - \zeta^{k-2} \), sin embargo, determinar la estabilidad de las fórmulas-BDF
es algo más complicado, y al respecto, Hairer, Nørsett & Wanner (1993) proponen un modo conveniente de verificar la D-estabilidad en los métodos-BDF, el cual describimos a continuación.

Como el polinomio característico de $\nabla^j y_{k+1} = 0$ es dado por $\zeta^{k-j}(\zeta - 1)^j = 0$, se tiene que la forma general de las fórmulas-BDF (véase Sección 1.2.5) es dada por

$$\sum_{j=1}^{k} \frac{1}{j!} \nabla^j y_{n+1} = h f_{n+1}, \quad (1.41)$$

cuyo polinomio generador, aplicando $y_j = \zeta^j$, $\alpha(\zeta)$, tiene la forma

$$\alpha(\zeta) = \sum_{j=1}^{k} \frac{1}{j} \zeta^{k-j}(\zeta - 1)^j.$$

Sin embargo, utilizando la transformación $\zeta = 1/(1-z)$, el polinomio generador $\alpha(\zeta)$ es

$$\alpha\left(\frac{1}{1-z}\right) = \sum_{j=1}^{k} \frac{1}{j} \left(\frac{1}{1-z}\right)^{k-j} \left(\frac{1}{1-z}\right)^j,$$

$$= \sum_{j=1}^{k} \frac{1}{j} z^j \left(\frac{1}{1-z}\right)^{k-j},$$

entonces

$$p(z) = (1-z)^k \alpha\left(\frac{1}{1-z}\right) = \sum_{j=1}^{k} \frac{z^j}{j}. \quad (1.42)$$

 Nótese que este polinomio es la $k-ésima$ suma parcial de $-\log(1-z)$. En vista que los ceros de $p(z)$ y $\alpha(\zeta)$ están relacionados por la transformación dada tenemos el siguiente resultado:

Lema 1.12 La fórmula-BDF de k-pasos (1.41) es estable si y sólo si todos los ceros del polinomio (1.42) están fuera del disco $\{z / |z - 1| \leq 1\}$, y los ceros sobre la frontera del disco son simples.
Prueba. Asumamos que el método-BDF es estable. Si \(\lambda \) es un cero de \(\alpha(\zeta) \), por la definición 1.11, se tiene que \(|\lambda| \leq 1 \). Haciendo uso de la transformación \(\zeta = 1/(1 - \varrho) \), donde \(\varrho \) es un cero de \(p(z) \), tenemos que:

\[
\left| \frac{1}{1 - \varrho} \right| \leq 1 \iff |\varrho - 1| \geq 1.
\]

Luego \(\varrho \) se encuentra fuera del círculo \(\{ z | |z - 1| \leq 1 \} \). Si \(\lambda \) fuera un cero en la frontera del disco \(|\zeta| \leq 1 \), i.e., \(|\lambda| = 1 \), entonces \(\lambda \) es un cero simple (Definición 1.11). Utilizando nuevamente la transformación, se tiene que \(|\varrho - 1| = 1 \), luego \(\varrho \) es un cero simple. El recíproco es análogo. ■

Ejemplo 1.8 La estabilidad de las fórmulas-BDF se verifica para \(k \leq 6 \) por un número finito de cálculos.

Consideremos el caso \(k = 4 \),

\[
p(z) = \sum_{j=1}^{4} \frac{z^j}{j} = z + \frac{1}{2}z^2 + \frac{1}{3}z^3 + \frac{1}{4}z^4
\]
cuyos ceros son:

\[
\varrho_1 = 0
\]

\[
\varrho_2 = \frac{3}{2} \sqrt{\left(\frac{1198}{729} + \frac{2}{27} \sqrt{511} \right)} - \frac{38}{811} \sqrt{\left(\frac{1198}{729} + \frac{2}{27} \sqrt{511} \right)} - \frac{4}{9} + \frac{1}{2} i \sqrt{3} \left(-\frac{3}{2} \sqrt{\left(\frac{1198}{729} + \frac{2}{27} \sqrt{511} \right)} - \frac{38}{811} \sqrt{\left(\frac{1198}{729} + \frac{2}{27} \sqrt{511} \right)} \right)
\]

y su valor absoluto es:

\[
|\varrho_1| = 0,
\]

\[
|\varrho_2| = 1.6214,
\]

\[
|\varrho_{3,4}| = 1.5707,
\]
Figura 1.6 Ceros del polinomio $p(z)$ de (1.42) para $k \leq 6$.

los cuales están fuera del disco $\{z / |z - 1| \leq 1\}$ (véase Figura 1.6), salvo p_1 que se encuentra en la frontera, sin embargo este es un cero simple. Luego por el Lema 1.12, la fórmula-BDF, para el caso $k = 4$, es estable.

De manera similar, se tiene para los casos $k = 1, 2, 3, 5,$ y 6, las fórmulas-BDF son estables, sin embargo, para $k > 6$ los casos a verificar son innumerables (véase Figura 1.7), por lo que su estudio no es tan elemental. Para una prueba de este caso referimos al lector los resultados de e.g. Hairer, Norsett & Wanner (1993), pp. 381-383.

Después de haber obtenido condiciones de estabilidad para los métodos multipaso, es necesario conseguir el mayor orden alcanzable por dichos métodos, sin perder estabilidad, pues como vimos líneas arriba, Dahlquist proporcionó un ejemplo donde desafortunadamente el mayor orden posible no necesariamente implica la estabilidad de un método multipaso (véase ejemplo 1.7). Sin embargo, él fue capaz de encontrar las condiciones necesarias para este fin, resultando así la llamada famosa “primera barrera de Dahlquist,”:
El orden p de un método multipaso lineal estable de k-pasos satisface:

\[p \leq k + 2 \quad \text{si } k \text{ es par}, \]
\[p \leq k + 1 \quad \text{si } k \text{ es impar}, \]
\[p \leq k \quad \text{si } \beta_k/\alpha_k \leq 0 \text{ (en particular si el método es explícito)}. \]

(Prueba, véase e.g. Hairer, Norsett & Wanner (1993)).

Figura 1.7 Algunos ceros del polinomio $p(z)$ de (1.42) para $k > 6$.

1.5 Convergencia de los métodos multipaso

Los resultados obtenidos hasta el momento, nos dan las condiciones para estudiar la convergencia de los métodos multipaso de la forma (1.21).

Una condición importante para esperar convergencia de nuestros métodos numéricos es que la ecuación diferencial (1.1) posea solución y ésta sea única (véase Sección 1.1, Teorema 1.2). Así mismo, generamos una sucesión $\{y_i\}$ obtenida de la fórmula multipaso (1.21), con longitud de paso h, aplicada al problema (1.1), y sean dados x y h de modo que $(x - a)/h - n$ sea un entero, introduciendo la siguiente notación
para referirnos a la solución numérica

\[y_n(x) = y_n \quad \text{si} \quad x - a = nh. \quad (1.43) \]

La idea de convergencia es que la solución numérica aproxima a la solución exacta con precisión arbitraria si \(h \to 0 \). A continuación damos la definición de convergencia para métodos multipaso.

Definición 1.13. (Convergencia) i) El método multipaso lineal (1.21) es convergente si para todo problema de valor inicial (1.1), con una solución única, se cumple

\[y(x) - y_n(x) \to 0 \quad \text{para} \quad h \to 0, \quad x \in [a, b], \]

mientras que los valores iniciales satisfacen

\[y(a + ih) - y_n(a + ih) \to 0 \quad \text{para} \quad h \to 0, \quad i = 0, 1, \ldots, k - 1, \]

ii) El método (1.21) es convergente de orden \(p \), si para el problema (1.1) con \(f \) suficientemente diferenciable, existe un número positivo \(H \), tal que

\[||y(x) - y_n(x)|| \leq C h^p \quad \text{para} \quad h \leq H, \]

mientras que los valores iniciales satisfacen

\[||y(x_0 + ih) - y_n(x_0 + ih)|| \leq C_0 h^p \quad \text{para} \quad h \leq H, \quad i = 0, 1, \ldots, k - 1. \]

El objetivo principal será probar que tanto la estabilidad como la consistencia son condiciones necesarias y suficientes para obtener convergencia de un método multipaso.
Teorema 1.14. Si el método multipaso (1.21) es convergente, entonces necesariamente es

i) estable y

ii) consistente (véase relación (1.25))

Prueba: Si el método multipaso (1.21) es convergente, lo es también para la ecuación diferencial

\[y' = 0, \quad y(0) = 0, \]

obteniendo la ecuación de diferencias (1.37) dada por

\[a_k y_{n+k} + a_{k-1} y_{n+k-1} + \ldots + a_0 y_n = 0. \] (1.44)

Procediendo por contradicción, supóngase que \(\alpha(\zeta) \) tiene una raíz \(\zeta_1 \) fuera del círculo unitario, i.e. \(|\zeta_1| > 1 \), o una raíz \(\zeta_2 \) sobre el círculo unitario de multiplicidad \(j \) mayor que 1. Entonces \(\zeta_1^n \) y \(n^{j-1} \zeta_2^m \) serían según el Lema 1.10 soluciones divergentes de (1.44). Multiplicando por \(\sqrt{h} \) se obtiene que los valores iniciales convergen todavía a \(y_0 = 0 \). Sin embargo, usando \(x/h \equiv n \), se tiene que las soluciones \(y_n(x) = \sqrt{h} \zeta_1^{x/h} \) y \(y_n(x) = (x/\sqrt{h})^{j-1} \zeta_2^{x/h} \) son divergentes para cada \(x \) fijo, lo cual es una contradicción pues el método es convergente, por lo tanto se muestra la estabilidad de (1.21).

A fin de mostrar la consistencia, consideremos la ecuación diferencial \(y' = 0, \ y(0) = 1 \), cuya correspondiente ecuación de diferencias es (1.44), entonces tenemos:

\[a_k y_n(x + kh) + a_{k-1} y_n(x + (k - 1)h) + \ldots + a_0 y_n(x) = 0. \]

Haciendo \(h \to 0 \), y debido a la convergencia resulta que \(\alpha(1) = 0 \).

Finalmente, apliquemos (1.21) al problema \(y' = 1, \ y(0) = 0 \) cuya solución exacta es \(y(x) - x \). En vista que \(\alpha(1) = 0 \), se verifica que una solución numérica particular
es dada por \(y_n = n \lambda M \) ó \(y_n(x) = x M \) donde \(M = \beta(1)/\alpha'(1) \). Por la convergencia del método, tenemos que \(M = 1 \), mostrando así la consistencia del método multipaso (1.21).

Con la finalidad de probar lo recíproco del Teorema anterior, debemos previamente reescribir el método multipaso (1.21) como método de un paso en una dimensión superior. Para ello sea la función \(\psi = \psi(x_i, y_{i+k-1}, \ldots, y_i, h) \) definida implícitamente por

\[
\psi = \sum_{j=0}^{k-1} b_j f(x_i + jh, y_{i+j}) + \hat{b}_k f \left(x_i + kh, \psi - \sum_{j=0}^{k-1} \hat{a}_j y_{i+j} \right)
\]

(1.45)

donde \(\hat{a}_j = a_j/a_k \) y \(\hat{b}_j = b_j/a_k \). Así, reescribiendo (1.21) resulta

\[
y_{i+k} = -\hat{a}_{k-1} y_{i+k-1} - \ldots - \hat{a}_0 y_j + h(\hat{b}_k f_{i+k} + \hat{b}_{k-1} f_{i+k-1} + \ldots + \hat{b}_0 f_j), \quad a_k = 0,
\]

y con la ayuda de (1.44) tenemos:

\[
y_{i+k} = -\sum_{j=0}^{k-1} \hat{a}_j y_{i+j} + h \psi.
\]

(1.46)

Además, introducimos los vectores de dimensión \(n \times k \), (donde \(n \) es la dimensión del problema de valor inicial), dados por

\[
Y_i = (y_{i+k-1}, y_{i+k-2}, \ldots, y_i)^T, \quad i \geq 0,
\]

y

\[
A = \begin{pmatrix}
-\hat{a}_{k-1} & -\hat{a}_{k-2} & \cdots & -\hat{a}_0 \\
1 & 0 & \cdots & 0 \\
0 & \cdots & \cdots & \cdots \\
0 & 1 & 0
\end{pmatrix}, \quad c_1 = \begin{pmatrix}
1 \\
0 \\
\vdots \\
0
\end{pmatrix},
\]

(1.47)
con lo que el método multipaso (1.21) puede expresarse en la forma compacta

\[Y_{i+1} = (A \otimes I)Y_i + h\Phi(x_i, Y_i, h), \quad i \geq 0, \quad (1.48) \]

con

\[\Phi(x_i, Y_i, h) = (c_i \otimes I)\psi(x_i, Y_i, h), \]

donde \(A \otimes I \) denota el producto tensorial de Kronecker, i.e. la matriz bloque de dimensión \(n \times k \) con \((n \times n)-\)bloques \(a_{ij} I \). (Nótese que si \(n = 1 \), entonces el problema de valor inicial es una ecuación escalar y \(A \otimes I - A \)).

Además si \(y(x) \) es la solución exacta del problema (1.1), definamos el vector

\[\hat{Y}_{i+1} = (A \otimes I)Y(x_i) + h\Phi(x_i, Y(x_i), h), \quad i \geq 0, \]

como la solución numérica de un paso, con los valores iniciales exactos

\[Y(x_i) = (y(x_{i+k-1}), y(x_{i+k-2}), \ldots, y(x_i))^T, \quad i \geq 0, \]

El siguiente resultado expresa los conceptos de orden y estabilidad bajo la nueva notación.

Lema 1.15 Asumiendo que los valores iniciales para el método multipaso (1.21) son exactos, tenemos que:

i) si el método multipaso (1.21) es de orden 1 y \(f \) satisface las condiciones del Teorema 1.2 (i.e., \(f \) es continua y Lipschitziana con respecto a \(y \) en una región \(D \)), entonces existe un \(H > 0 \), tal que para \(0 < h \leq H \), se cumple

\[Y(x_{i+1}) - \hat{Y}_{i+1} \leq h\sigma(h), \quad 0 \leq i \leq (b - a)/h - k \]

donde \(\sigma(h) \to 0 \) para \(h \to 0 \).
ii) si el método multipaso (1.21) es de orden \(p \) y \(f \) es suficientemente diferenciable, entonces existe una constante \(K \) tal que para un \(h \) suficientemente pequeño,

\[
\| Y(x_{i+1}) - \bar{Y}_{i+1} \| \leq K h^{p+1}, \quad 0 \leq i \leq (b - a) / h - k.
\]

iii) supóngase que el método (1.21) es estable, entonces existe una norma vectorial en \(\mathbb{R}^{n \times k} \) tal que la matriz \(A \) de (1.47) satisface

\[
\| A \otimes I \| \leq 1
\]

en la norma matricial asociada.

Prueba: Nótese que el primer elemento del vector \(Y(x_{i+1}) - \bar{Y}_{i+1} \) es el error local de la Definición 1.5, sin embargo, los demás componentes son nulos, pues se asume que los valores iniciales son exactos. Como el orden del método es \(p - 1 \) se cumple \(Y(x_{i+1}) - \bar{Y}_{i+1} \| \leq h \sigma(h) \), donde \(\sigma(h) \rightarrow 0 \) para \(h \rightarrow 0 \). La prueba para ii) es análoga, reemplazando \(\sigma(h) \) por \(K h^{p} \).

Ahora, mostremos iii), asumiendo que el método es estable. Sea el polinomio \(\alpha(\zeta) \) correspondiente a (1.21), cuya raíz es \(\lambda \), entonces tenemos que el vector \((\lambda^{k-1}, \lambda^{k-2}, ..., 1) \) es un autovector de la matriz \(A \) con autovalor \(\lambda \). Por consiguiente, los autovalores de \(A \) satisfacen la condición de la raíz (Definición 1.11). Si transformamos la matriz \(A \) a la forma canónica de Jordan, para una \(T \) no-singular, obtenemos

\[
T^{-1} A T = J = \text{diag} \left\{ \lambda_1, ..., \lambda_k \right\}, \quad (1.49)
\]
donde los autovalores $\lambda_1, \ldots, \lambda_k$, tienen valor absoluto 1, y deben ser simples, y los ε_i son 0 ó 1. Además se tiene por una adecuada multiplicación de las columnas de T que $|\varepsilon_j| + |\lambda_j| < 1$, para $j = \ell + 1, \ldots, k - 1$, e.g. sea $\bar{\lambda} = \min_{i+1 \leq j \leq k} (\lambda_j)$, entonces multiplicamos por la matriz diagonal $D = \text{diag}(1, \ldots, 1, \bar{\lambda}, \ldots, \bar{\lambda})$, con $\bar{\lambda}$ a partir de la $(\ell + 1)$-componente, entonces se cumple que $\|J \otimes I\|_\infty \leq 1$. Haciendo uso de la transformación T de (1.49), definimos la norma vectorial

$$\|x\| := \left\|(T^{-1} \otimes I)x\right\|_\infty.$$

Entonces resulta que

$$\|(A \otimes I)x\| = \left\|(T^{-1} \otimes I)(A \otimes I)x\right\|_\infty = \left\|(J \otimes I)(T^{-1} \otimes I)x\right\|_\infty \leq \left\|(T^{-1} \otimes I)x\right\|_\infty = \|x\|,$$

por lo tanto

$$\|A \otimes I\| \leq 1. \square$$

El Lema 1.15 nos da las condiciones para establecer la convergencia de los métodos multipaso mediante el siguiente resultado

Teorema 1.16 Si el método multipaso (1.21) es estable y consistente (i.e., de orden 1), entonces es convergente. Si el método (1.21) es estable y de orden p, entonces es convergente de orden p.

Prueba: Sea $f(x,y)$ definido para todo $y \in \mathbb{R}^n$, $x \in [a,b]$ y satisfaga la condición de Lipschitz, lo cual implica que para un h suficientemente pequeño las funciones $\psi(x_i, Y_i, h)$ y $\Phi(x_i, Y_i, h)$ también satisfacen una condición de Lipschitz respecto a su segundo argumento (con una constante lipschitziana L). En efecto, si existe una
constante $H > 0$, entonces

$$
\| \psi(x_i, Y_i, h) - \psi(x_i, Z_i, h) \| = \left\| \sum_{j=0}^{k-1} \hat{b}_j f(x_i + jh, y_{i+j}) + \hat{b}_k f(x_i + kh, \psi) - \sum_{j=0}^{k-1} \hat{a}_j z_{i+j} \right\|
$$

$$
- \sum_{j=0}^{k-1} \hat{b}_j f(x_i + jh, z_{i+j}) - \hat{b}_k f(x_i + kh, \psi) - \sum_{j=0}^{k-1} \hat{a}_j z_{i+j} \right\|
$$

$$
\leq \tilde{L} \sum_{j=0}^{k-1} \| y_{i+j} - z_{i+j} \| \leq \tilde{L} \| Y_i - Z_i \|
$$
donde \tilde{L} es una constante (que depende de f), $x_i + jh \in [a,b]$, $|h| \leq H$, $Y_i, Z_i \in \mathbb{R}^n$, $j = 0, \ldots, k$. De manera similar se tiene que $\Phi(x_i, Y_i, h)$ es lipschitziana.

Sea Γ una función, definida por (1.48), la cual mapea el vector Y_i sobre Y_{i+1}.

Obtenemos del Lema 1.15, parte iii) que existe una norma adecuada con

$$
\| \Gamma(Y_i) - \Gamma(Z_i) \| \leq \| A \otimes I \| \| Y_i - Z_i \| + h\tilde{L} \| Y_i - Z_i \|
$$

$$
\leq (1 + h\tilde{L}) \| Y_i - Z_i \|. \tag{1.50}
$$

Del lema anterior, parte i), se tiene que el error local $\| Y(x_{i+1}) - \Gamma(Y(x_i)) \| \leq h\sigma(h)$.

Así, de esto junto con (1.50) se tiene que

$$
\| Y(x_n) - Y_n \| = \| Y(x_n) - \Gamma(Y(x_{n-1})) + \Gamma(Y(x_{n-1})) - \Gamma(Y_{n-1}) \| \tag{1.51}
$$

$$
\leq \| Y(x_n) - \Gamma(Y(x_{n-1})) \| + \| \Gamma(Y(x_{n-1})) - \Gamma(Y_{n-1}) \|
$$

$$
\leq h\sigma(h) + (1 + h\tilde{L}) \| Y(x_{n-1}) - Y_{n-1} \|
$$

$$
\leq h\sigma(h)(1 + (1 + h\tilde{L})) + (1 + h\tilde{L})^2 \| Y(x_{n-2}) - Y_{n-2} \|
$$

$$
\leq h\sigma(h)(1 + (1 + h\tilde{L}) + \ldots + (1 + h\tilde{L})^{n-1}) + (1 + h\tilde{L})^n \| Y(x_0) - Y_0 \|
$$

$$
\leq \frac{\sigma(h)}{L} (\exp(nh\tilde{L}) - 1) + \| Y(x_0) - Y_0 \| \exp(nh\tilde{L}).
$$
Por equivalencia de normas, la convergencia se cumple para una norma cualquiera.

Si el método multipaso es de orden \(p \), la prueba es análoga, reemplazando la función \(\sigma(h) \) por \(Kh^p \) el cual da la convergencia de orden \(p \) de (1.21). \(\blacksquare \)
2. Métodos multipaso de longitud de paso variable

Los métodos multipaso de paso constante requieren el uso de nodos uniformemente espaciados. Para muchos problemas esta equidistancia de puntos no es una restricción importante, pero es inapropiada cuando se integra una ecuación diferencial en un intervalo que contiene regiones con variaciones funcionales grandes y regiones con variaciones funcionales pequeñas (véase figura 2.1).

![Diagrama de variación funcional](image)

Figura 2.1 Intervalo con distintas regiones de variación funcional.
En esta situación, se necesita un tamaño de paso menor en las regiones de variación grande que el que se usa en las de menor variación, si se desea que el error local no varíe mucho.

Ejemplo 2.1 Consideremos la ecuación diferencial

\[y' = 3y, \quad y(0) = 1, \]

en el intervalo \(x \in [0, 1] \), cuya solución exacta es \(y(x) = e^{3x} \). Para solucionar numéricamente este problema de valor inicial usaremos los métodos Adams-Bashforth de orden cuarto (AB4) (véase Sección 1.2.1) y un método predictor-corrector (pece4) (véase Sección 1.2.3), ambos con longitud de paso constante \(h = 0.05 \). Los resultados son mostrados en la Figura 2.2.

![Figura 2.2](image)

Figura 2.2 Solución numérica dada por métodos de longitud de paso constante.

Obsérvese el comportamiento divergente de la solución numérica con respecto a la solución exacta a lo largo del proceso de integración. Obviamente este comportamiento se acentuará para un dominio mayor a \([0, 1]\), pero si reducimos la longitud de paso, el error local cometido es cada vez menor (véase Figura 2.3). Sin embargo, el número de evaluaciones de la función será cada vez mayor, lo cual implica un mayor
costo, además, los errores de redondeo incrementados, en cada paso, ocasionan una pérdida en la precisión de la aproximación.

![Diagrama de gráficos](image)

Figura 2.3 Error local versus número de evaluaciones de la función.

Del ejemplo anterior, es claro que un buen integrador numérico debe estar dotado para cambiar de longitud de paso, pero realizar esta tarea con los métodos multipaso es difficultoso, puesto que las fórmulas para los métodos multipaso de longitud de paso constante requieren las aproximaciones en los puntos equidistantes. En principio, existen dos técnicas para manipular esta variación de pasos:

1) La llamada *técnica de interpolación*, que consiste en efectuar los siguientes pasos (compárese Gear & Tu (1974), pp. 1026):

 a) Interpolación, por medio de las aproximaciones conocidas en un paso previo $y_{j+1}, \ldots, y_{j+k-1}$ para una longitud de paso h_{j+k-1}, las nuevas aproximaciones a la solución en la nueva malla equidistante determinada por la nueva longitud de paso h_{j+k}.

 b) Usar la fórmula multipaso de longitud de paso constante en la nueva malla a fin de encontrar una aproximación para y_{j+k}.

2) La *técnica de paso variable*, destinada a construir métodos los cuales se ajusten
automáticamente a puntos de una malla variable.

Sin embargo, estas técnicas para manejar los pasos variables, no tienen las mismas características de estabilidad como fue mostrado por Gear & Tu (1974), Gear & Watanabe (1974), y Crouzier & Lisbona (1984), concluyendo así que la segunda técnica tiene más éxito para una mayor variación en la longitud de paso que la primera técnica. En lo que sigue nos quedaremos con la aproximación por el segundo método.

A lo largo de este capítulo, primero construiremos los métodos multipaso de paso variable de Adams y los BDF, luego investigaremos la consistencia y estabilidad de dichos métodos para finalmente establecer la convergencia.

2.1 Métodos Adams de longitud de paso variable

A fin de construir las fórmulas Adams con longitud de paso variable, consideraremos una malla de puntos arbitraria \(\{x_n\}, n \geq 0 \) la cual discretiza el intervalo de integración \([a,b]\) de (1.1) en la forma \(a = x_0 < x_1 < ... < x_{N-1} < x_N = b \), denotando las longitudes de paso por \(h_n = x_{n+1} - x_n \). Supongamos que usamos una fórmula de \(k - 1 \) pasos para la integración, además las aproximaciones iniciales \(y_j \) para \(y(x_j) \) son conocidas para \(j = n-k+1, ... , n \). Por sencillez de notación pongamos \(f_j = f(x_j,y_j) \).

Denotemos por \(I_{k-1}(t) \) el polinomio de grado \(k - 1 \) que interpola los valores \((x_n, f_n) \) para \(j = n-k+1, ... , n \). Usamos la fórmula de interpolación de Newton (véase Sección 1.2.1) dada en su forma compacta por

\[
P_{k-1}(t) = \sum_{j=0}^{k-1} \prod_{i=0}^{j-1} (t - x_n - i) \delta^j f[x_n, x_{n-1}, ..., x_{n-j}] \tag{2.1}
\]
\[\delta^0 f[x_n] = f_n \]

\[\delta^i f[x_{n-1}, \ldots, x_{n-i+1}] = \delta f[x_n, \ldots, x_{n-j+1}] \]

Para resolver este problema, Zharkov, Krasnov y Waanders (1998), utilizaron la matriz asociada al problema (1.3) como:

\[A_{ij} = \frac{\Phi(x) \Phi(x_i)}{\Phi(x_j) \Phi(x)} \]

Para el problema (1.1) en la forma integral:

\[y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} f(t, y(t))dt \]

Para \(y(x_{n+1}) \) en cada punto:

\[y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} f(t, y(t))dt \]

Se utiliza la fórmula (1.1) y (1.3) obteniendo:

\[y(x_{n+1}) = y(x_n) + \sum_{j=1}^{k-1} \prod_{i=0}^{j-1} \frac{t - x_{n-i}}{\Phi'(x_n)dt} \]

Para la convergencia que se desea: \(n \) calza.

entonces

\[y_{n+1} = y_n + h_n \sum_{j=0}^{k-1} g_j(n) \Phi_j^*(n) \]

(2.4)

con

\[g_j(n) = \frac{1}{h_n} \int_{x_n}^{x_{n+1}} \prod_{i=0}^{j-1} \frac{t-x_{n-i}}{x_{n+1}-x_{n-i}} dt, \quad j = 0, \ldots, k-1 \]

(2.5)

La fórmula (2.4) es la extensión del método explícito de Adams (1.7) para longitudes de paso variable. Obsérvese que para longitudes de paso constante \((h_n = h) \) las expresiones (véase Sección 1.2.1) de arriba (2.2) y (2.5) se reducen a

\[g_j(n) = \gamma_j, \quad \Phi_j^*(n) = \nabla^j f_{n+1}, \quad j = 0, \ldots, k-1. \]

La segunda relación es mostrada en la Sección 1.2.1. Para mostrar la primera relación se tiene que

\[g_j(n) = \frac{1}{h} \int_{x_n}^{x_{n+1}} \frac{(x-x_n)(x-x_{n-1})\cdots(x-x_{n-j+1})}{(x_{n+1}-x_n)(x_{n+1}-x_{n-1})\cdots(x_{n+1}-x_{n-j+1})} dx \]

\[= \frac{1}{h} \int_{x_n}^{x_{n+1}} \frac{(x-x_n)(x-x_{n-1})\cdots(x-x_{n-j+1})}{h(2h)(3h)\cdots(jh)} dx \]

\[= \frac{1}{h} \int_{x_n}^{x_{n+1}} \left(\frac{x-x_n}{h} \right)^j \left(\frac{x-x_{n-j+1}}{h} \right) dx \]

\[= \frac{1}{h} \int_{x_n}^{x_{n+1}} \left(\frac{x-x_n}{h} \right)^j \left(\frac{x-x_{n-j+1}}{h} \right) dx \]

\[= \frac{1}{h} \int_{0}^{1} s(s-1)\cdots(s-j+1) ds \]

\[= \frac{1}{h} \int_{0}^{1} (-1)^j \frac{s(-s+1)\cdots(-s+j-1)}{j!} ds \]

\[= \frac{1}{h} \int_{0}^{1} (-1)^j \left(\frac{s}{j} \right)^j ds = \gamma_j \]

Similarmente los métodos implícitos Adams de longitud de paso variable pueden ser deducidos. Análogamente a los métodos de paso constante, tenemos a \(P_k^*(t) \) como el polinomio de grado \(k \) el cual interpole \((x_j, f_j) \) para \(j = n-k+1, \ldots, n, n+1 \).
Nuevamente, usamos la fórmula de interpolación de Newton

\[P_k^*(t) = \sum_{j=0}^{k-1} \prod_{i=0}^{j-1} (t - x_{n+i-i}) \delta^j f[x_{n+1}, x_{n+1}, \ldots, x_{n-j+1}] \]

A fin de escribir esta fórmula de un modo más conveniente, mostremos, por inducción, la veracidad de:

\[\sum_{j=0}^{k-1} \prod_{i=0}^{j-1} (t - x_{n+i-i}) \delta^j f[x_{n+1}, \ldots, x_{n-j+1}] + \prod_{i=0}^{k-1} (t - x_{n+i-i}) \delta^k f[x_{n+1}, \ldots, x_{n-k+1}] = \]

\[= \sum_{j=0}^{k-1} \prod_{i=0}^{j-1} (t - x_{n+i-i}) \delta^j f[x_{n+1}, \ldots, x_{n-j} + \prod_{i=0}^{k-1} (t - x_{n+i-i}) \delta^k f[x_{n+1}, \ldots, x_{n-k+1}] \]

Para \(k = 1 \), tenemos

\[\delta^0 f[x_{n+1}] + (t - x_{n+1}) \delta^1 f[x_{n+1}, x_n] = f_{n+1} + (t - x_{n+1}) \frac{\delta^0 f[x_{n+1}] - \delta^0 f[x_n]}{x_{n+1} - x_n} \]

\[= f_{n+1} + (t - x_{n+1}) \frac{f_{n+1} - f_n}{x_{n+1} - x_n} \]

\[= (f_{n+1} - f_n) + f_n + (t - x_n + x_n - x_{n+1}) \frac{f_{n+1} - f_n}{x_{n+1} - x_n} \]

\[= \delta^0 f[x_n] + (t - x) \delta^1 f[x_{n+1}, x_n] \]

Asumiendo que la igualdad es cierta para \(k = 1 \), i.e.,

\[\sum_{j=0}^{k-2} \prod_{i=0}^{j-1} (t - x_{n+i-i}) \delta^j f[x_{n+1}, \ldots, x_{n-j+1}] + \prod_{i=0}^{k-2} (t - x_{n+i-i}) \delta^{k-1} f[x_{n+1}, \ldots, x_{n-k+2}] = \]

\[= \sum_{j=0}^{k-2} \prod_{i=0}^{j-1} (t - x_{n+i-i}) \delta^j f[x_{n+1}, \ldots, x_{n-j}] + \prod_{i=0}^{k-2} (t - x_{n+i-i}) \delta^{k-1} f[x_{n+1}, \ldots, x_{n-k+2}] \]

se tiene para \(k = k \), que:

\[\sum_{j=0}^{k-1} \prod_{i=0}^{j-1} (t - x_{n+i-i}) \delta^j f[x_{n+1}, \ldots, x_{n-j+1}] + \prod_{i=0}^{k-1} (t - x_{n+i-i}) \delta^k f[x_{n+1}, \ldots, x_{n-k+1}] = \]
\[
\begin{align*}
= & \sum_{j=0}^{k-2} \prod_{i=0}^{j-1} (t - x_{n+i+1}) \delta^j f[x_{n+1}, \ldots, x_{n-j+1}] + \prod_{i=0}^{k-2} (t - x_{n+i+1}) \delta^{k-1} f[x_{n+1}, \ldots, x_{n-k+2}] + \\
& + \prod_{i=0}^{k-2} (t - x_{n+i+1}) \delta^{k} f[x_{n+1}, \ldots, x_{n-k+1}] \\
= & \sum_{j=0}^{k-2} \prod_{i=0}^{j-1} (t - x_{n+i+1}) \delta^j f[x_{n+1}, \ldots, x_{n-j+1}] + \prod_{i=0}^{k-2} (t - x_{n+i+1}) \delta^{k-1} f[x_{n+1}, \ldots, x_{n-k+2}] + \\
& + \prod_{i=0}^{k-2} (t - x_{n+i+1}) \delta^{k} f[x_{n+1}, \ldots, x_{n-k+1}] \\
= & \sum_{j=0}^{k-1} \prod_{i=0}^{j-1} (t - x_{n+i+1}) \delta^j f[x_{n+1}, \ldots, x_{n-j+1}] + \prod_{i=0}^{k-1} (t - x_{n+i+1}) \delta^{k-1} f[x_{n+1}, \ldots, x_{n-k+1}] + \\
& + \prod_{i=0}^{k-1} (t - x_{n+i+1}) \delta^{k} f[x_{n+1}, \ldots, x_{n-k+1}] \\
= & \sum_{j=0}^{k-1} \prod_{i=0}^{j-1} (t - x_{n+i+1}) \delta^j f[x_{n+1}, \ldots, x_{n-j+1}] + \prod_{i=0}^{k-1} (t - x_{n+i+1}) \delta^{k-1} f[x_{n+1}, \ldots, x_{n-k+1}] + \\
& + \left(\prod_{i=0}^{k-2} (t - x_{n+i+1}) \delta^{k-1} f[x_{n+1}, \ldots, x_{n-k+1}] \\
= & \sum_{j=0}^{k-1} \prod_{i=0}^{j-1} (t - x_{n+i+1}) \delta^j f[x_{n+1}, \ldots, x_{n-j+1}] + \prod_{i=0}^{k-1} (t - x_{n+i+1}) \delta^{k-1} f[x_{n+1}, \ldots, x_{n-k+1}]
\end{align*}
\]

pues \(\prod_{i=0}^{k-1} (t - x_{n+i+1}) = \prod_{i=1}^{k-2} (t - x_{n-i}) \). Así podemos escribir \(P^*_k(t) \) como

\[
P^*_k(t) = \sum_{j=0}^{k-1} \prod_{i=0}^{j-1} (t - x_{n+i+1}) \delta^j f[x_{n+1}, \ldots, x_{n-j+1}] + \prod_{i=0}^{k-1} (t - x_{n+i+1}) \delta^{k-1} f[x_{n+1}, \ldots, x_{n-k+1}]
\]

Ahora, la solución numérica se calcula por

\[
y_{n+1} = y_n + \int_{x_n}^{x_{n+1}} P^*_k(t) dt,
\]

e insertando el polinomio \(P_{k-1}(t) \) resulta la fórmula final para un método multipaso Adams Moulton (implicito) con longitud de paso variable:

\[
y_{n+1} = P_{n+1} + h_n g_k(n) \Phi_k(n + 1),
\]

(2.6)
donde P_{n+1} que es la aproximación numérica obtenida por el método explícito de Adams

$$P_{n+1} = y_n + h_n \sum_{j=0}^{k-1} g_j(n) \Phi_j^*(n)$$

y, además

$$\Phi_k(n + 1) = \prod_{i=0}^{k-1} (x_{n+1} - x_{n-i}) \delta^k f[x_{n+1}, x_n, ..., x_{n-k+1}].$$ \hspace{1cm} (2.7)

Ahora falta solamente una fórmula recursiva para el cálculo de $\Phi_j^*(n)$, $g_j(n)$, para $j = 0, ..., k - 1$, $g_k(n)$, y $\Phi_k(n + 1)$.

2.1.1 Relaciones de recurrencia para $g_j(n)$, $\Phi_j(n)$ y $\Phi_j^*(n)$

Las fórmulas obtenidas (2.4) y (2.6) nos permiten una completa flexibilidad en la selección de la longitud de paso. Sin embargo, F. T. Krogh (1973) (pp. 951) señaló como una gran desventaja, el precio que se debe pagar para calcular los coeficientes de las fórmulas multipaso de paso variable, aunque también indicó que el uso de estas fórmulas es justificado cuando "...el orden es pequeño, o si el cálculo de f es extremadamente costoso (debido a su complejidad), o si el tiempo de cálculo para los coeficientes es suficientemente corto."

Similarmente al capítulo anterior, busquemos relaciones de recurrencia para el cálculo eficiente de los coeficientes (según Hairer, Nørsett & Wanner (1993)) de nuestras fórmulas Adams de paso variable.

Los valores $\Phi_j^*(n)$ ($j = 0, ..., k - 1$) y $\Phi_k(n + 1)$ en las fórmulas (2.4) y (2.6) pueden ser calculados, usando las fórmulas (2.2) y (2.7), mediante las relaciones de
recurrencia

\[\Phi_0(n) = \Phi_0^*(n) = f_n, \]

\[\Phi_{j+1}(n) = \Phi_j(n) - \Phi_j^*(n - 1), \]

\[\Phi_j^*(n) = \vartheta_j(n) \Phi_j(n), \]

donde los coeficientes

\[\vartheta_j(n) = \prod_{i=0}^{j-1} \frac{x_{n+1} - x_{n-i}}{x_n - x_{n-i-1}} \]

pueden calcularse recursivamente por

\[\vartheta_0(n) = 1, \]

y

\[\vartheta_j(n) = \vartheta_{j-1}(n) \frac{x_{n+1} - x_{n-j+1}}{x_n - x_{n-j}}. \]

En efecto, la primera relación de (2.8) sale inmediatamente, para la segunda relación, por (2.7), se tiene que

\[\Phi_{j+1}(n) = \prod_{i=0}^{j} (x_n - x_{n-i-1}) \delta^{j+1} f[x_n, \ldots, x_{n-j-1}] \]

\[= \prod_{i=0}^{j-1} (x_n - x_{n-i-1}) (x_n - x_{n-j-1}) \left(\frac{\delta^j f[x_n, \ldots, x_{n-j}] - \delta^j f[x_{n-1}, \ldots, x_{n-j-1}]}{x_n - x_{n-j-1}} \right) \]

\[= \prod_{i=0}^{j-1} (x_n - x_{n-i-1}) (x_n - x_{n-j}) \Phi_j(n) - \prod_{i=0}^{j-1} (x_n - x_{n-i}) \delta^j f[x_{n-1}, \ldots, x_{n-j-1}] \]

\[= \Phi_j(n) - \Phi_j^*(n - 1). \]

Para la tercera relación de (2.8) tenemos

\[\Phi_j^*(n) = \prod_{i=0}^{j-1} (x_{n+1} - x_{n-i}) \delta^j f[x_n, \ldots, x_{n-j}] \]

\[= \prod_{i=0}^{j-1} (x_{n+1} - x_{n-i}) (x_n - x_{n-i-1}) \delta^j f[x_n, \ldots, x_{n-j}] \]

\[= \prod_{i=0}^{j-1} (x_{n+1} - x_{n-i}) \Phi_j(n) \]

\[= \vartheta_j(n) \Phi_j(n). \]
Finalmente, para obtener (2.10), tenemos por (2.9) que

\[
\vartheta_j(n) = \prod_{i=0}^{j-1} \frac{x_{n+i} - x_{n-i}}{x_n - x_{n-i-1}} = \prod_{i=0}^{j-2} \frac{x_{n+i} - x_{n-i}}{x_n - x_{n-i-1}} \frac{x_{n+j+1} - x_{n-j}}{x_n - x_{n-j}} = \vartheta_{j-1}(n) \frac{x_{n+1} - x_{n-j+1}}{x_{n+1} - x_{n-j}}.
\]

El cálculo de los coeficientes \(g_j(n) \) en (2.6) fue realizado por Krogh en 1974.

Consideremos la \(k \)-uple integral

\[
C_{jq}(x) = \frac{(q-1)!}{h_n^q} \int_x^z \int_{x_n}^{x_{n+1}} \cdots \int_{x_{n+1}}^{x_{n+q-1}} d\xi_0 \cdots d\xi_{q-1},
\]

\[j = 0, 1, \ldots, k-1, \quad q = 1, \ldots, k-1 \tag{2.11} \]

 Nótese que se tiene para \(q = 1, \)

\[
C_{j1}(x) = \frac{1}{h_n} \int_x^z \prod_{i=0}^{j-1} \frac{\xi_0 - x_{n-i}}{x_{n+i} - x_{n-i}} d\xi_0, \quad j = 0, \ldots, k-1
\]

y para \(x = x_{n+1} \) resulta

\[
g_j(n) = C_{j1}(x_{n+1}), \quad j = 0, \ldots, k-1.
\]

El siguiente lema nos permite encontrar relaciones para el cálculo de (2.11).

Lema 2.1 El cálculo de los \(C_{jq}(x), \quad j = 0, \ldots, k-1, \quad q = 1, \ldots, k-1 \) en (2.11) se realiza por:

\[
C_{0q}(x_{n+1}) = \frac{1}{q}, \quad C_{1q}(x_{n+1}) = \frac{1}{q(q+1)}, \quad q = 1, \ldots, k-1,
\]

\[
C_{jq}(x_{n+1}) = C_{j-1,q}(x_{n+1}) - C_{j-1,q+1}(x_{n+1}) \frac{h_n}{x_{n+1} - x_{n-j+1}}, \quad j = 2, \ldots, k-1, \quad q = 1, \ldots, k-1
\]

Prueba: Para la primera relación tenemos de (2.11)

\[
C_{0q}(x) = \frac{(q-1)!}{h_n^q} \int_x^z \int_{x_n}^{x_{n+1}} \cdots \int_{x_{n+1}}^{x_{n+q-1}} d\xi_0 \cdots d\xi_{q-1}
\]
\[
\begin{align*}
&= \frac{(q - 1)!}{h_n^q} \int_{x_n}^x \int_{x_n}^{x_{q-1}} \cdots \int_{x_n}^{x_2} (\xi_1 - x_n) d\xi_1 \cdots d\xi_{q-1} \\
&= \frac{(q - 1)!}{h_n^q} \int_{x_n}^x \int_{x_n}^{x_{q-1}} \cdots \int_{x_n}^{x_2} \frac{(\xi_2 - x_n)^2}{2} d\xi_2 \cdots d\xi_{q-1} \\
&\ddots \\
&= \frac{(q - 1)!}{h_n^q} \int_{x_n}^x \frac{(\xi_{q-1} - x_n)^{q-1}}{(q - 1)!} d\xi_{q-1},
\end{align*}
\]
entonces
\[
C_{0,q}(x_{n+1}) = \frac{(q - 1)!}{h_n^q} \frac{(x_{n+1} - x_n)^q}{q!} = \frac{1}{q}.
\]
Análogamente, se calcula los \(C_{j,q}(x_{n+1}) \), \(q = 0, \ldots, k - 1 \). Para mostrar la tercera relación de recurrencia, consideremos la diferencia \(d(x) \) dada por
\[
d(x) = C_{jq}(x) - C_{j-1,q}(x) \frac{x - x_{n-j+1}}{x_{n+1} - x_{n-j+1}} + C_{j-1,q+1}(x) \frac{h_n}{x_{n+1} - x_{n-j+1}}.
\]
Observemos, por (2.11), que \(d(x_n) = 0 \). Para la primera derivada tenemos
\[
\frac{d}{dx}(d(x)) = \frac{d}{dx} \left(C_{jq}(x) - C_{j-1,q}(x) \frac{x - x_{n-j+1}}{x_{n+1} - x_{n-j+1}} + C_{j-1,q+1}(x) \frac{h_n}{x_{n+1} - x_{n-j+1}} \right)
\]
\[
= \frac{(q - 1)!}{h_n^q} \int_{x_n}^x \int_{x_n}^{x_{q-2}} \cdots \int_{x_n}^{x_1} \prod_{i=0}^{q-1} \frac{\xi_i - x_{n-i}}{x_{n+1} - x_{n-i}} d\xi_0 \cdots d\xi_{q-2} - C_{j-1,q}(x) \frac{1}{x_{n+1} - x_{n-j+1}}
\]
\[
- \frac{x - x_{n-j+1}}{x_{n+1} - x_{n-j+1}} \frac{(q - 1)!}{h_n^q} \int_{x_n}^x \int_{x_n}^{x_{q-2}} \cdots \int_{x_n}^{x_1} \prod_{i=0}^{q-2} \frac{\xi_i - x_{n-i}}{x_{n+1} - x_{n-i}} d\xi_0 \cdots d\xi_{q-2}
\]
\[
+ \frac{h_n}{x_{n+1} - x_{n-j+1}} \frac{q!}{h_n^q} \int_{x_n}^x \int_{x_n}^{x_{q-1}} \cdots \int_{x_n}^{x_1} \prod_{i=0}^{q-1} \frac{\xi_i - x_{n-i}}{x_{n+1} - x_{n-i}} d\xi_0 \cdots d\xi_{q-1},
\]
y evaluando en \(x = x_n \), resulta en
\[
d'(x_n) = 0.
\]
De modo similar se tiene para las siguientes derivadas, en general \(d^{(i)}(x_n) = 0 \) para \(i = 0, 1, \ldots, q - 1 \). Además, la \(q \)-ésima derivada de \(d(x) \) desaparece, puesto que por
la regla de Leibniz tenemos

\[
\frac{d^n}{dx^n} \left(C_{j-1,q}(x) \frac{x - x_{n-j+1}}{x_{n+1} - x_{n-j+1}} \right) = C_{j-1,q}(x) \frac{x - x_{n-j+1}}{x_{n+1} - x_{n-j+1}} +
\]

\[
+ q C_{j-1,q}(x_{n+1}) \frac{1}{x_{n+1} - x_{n+1-j+1}} + 0
\]

\[
= C_{j,q}(x) + C_{j-1,q+1}(x) \frac{h_n}{x_{n+1} - x_{n-j+1}},
\]

Por lo tanto tenemos que \(d(x_n) \equiv 0\), y si ponemos \(x = x_{n+1}\) obtenemos la última relación.

Usando la relación de recurrencia ya mencionada se puede efectuar los cálculos de manera sucesiva

\(C_{2,q}(x_{n+1})\) para \(q = 1, \ldots, k - 1\)

\(C_{3,q}(x_{n+1})\) para \(q = 1, \ldots, k - 2\)

\[
\vdots
\]

\(C_{k,q}(x_{n+1})\) para \(q = 1\).

Este procedimiento da de un modo eficiente los coeficientes \(g_j(n) = C_{j1}(x_{n+1})\) de los métodos Adams.

En resumen, se tiene que las fórmulas para los métodos explícitos Adams-Bashforth son dadas por:

\[
y_{n+1} = y_n + h_n \sum_{j=0}^{k-1} g_j(n) \Phi_j^*(n)
\]

y las fórmulas para los métodos implícitos Adams-Moulton son:

\[
y_{n+1} = y_n + h_n \sum_{j=0}^{k-1} g_j(n) \Phi_j^*(n) + h_n g_k(n) \Phi_k(n + 1)
\]
cuyos coeficientes se determinan mediante las relaciones:

\[
\Phi_0(n) = \Phi^*_0(n) = f_n,
\]
\[
\Phi_{j+1}(n) = \Phi_j(n) - \Phi^*_j(n - 1), \quad j = 0, \ldots, k - 1,
\]
\[
\Phi^*_j(n) = \vartheta_j(n) \Phi_j(n),
\]

donde

\[
\vartheta_0(n) = 1, \quad \vartheta_j(n) = \vartheta_{j-1}(n) \cdot \frac{x_{n+1} - x_{n-j+1}}{x_{n} - x_{n-j}}.
\]

Además, de (2.11), tenemos

\[
g_j(n) = C_{j1}(x_{n+1})
\]

los cuales son calculados por

\[
C_0q(x_{n+1}) = \frac{1}{q}, \quad C_1q(x_{n+1}) = \frac{1}{q(q+1)}, \quad q = 1, \ldots, k - 1,
\]
\[
C_{j2}(x_{n+1}) = C_{j-1,2}(x_{n+1}) - C_{j-1,2+1}(x_{n+1}) \frac{h_n}{x_{n+1} - x_{n-j+1}}, \quad j = 2, \ldots, k - 1
\]
\[
q = 1, \ldots, k - 1.
\]

Ejemplo 2.2 Calculemos el método explícito de Adams para \(k = 2 \). De (2.6) tenemos que

\[
y_{n+1} = y_n + h_n \sum_{j=0}^{1} g_j(n) \Phi^*_j(n) + h_n g_2(n) \Phi_2(n + 1)
\]
\[
= y_n + h_n (g_0(n) \Phi^*_0(n) + g_1(n) \Phi^*_1(n) + g_2(n) \Phi_2(n + 1)).
\]

Por las relaciones de recurrencia (2.8) y Lema 2.1, e introduciendo, a las longitudes de paso, la notación \(\rho_n = h_n / h_{n-1} \) resulta:

\[
\Phi^*_0(n) = f_n,
\]
\[
\Phi^*_1(n) = \vartheta_1(n) \Phi_1(n) = \frac{x_{n+1} - x_n}{x_n - x_{n-1}} (f_n - f_{n-1}) = \rho_n (f_n - f_{n-1}),
\]
\[
\Phi_2(n + 1) = \Phi_1(n + 1) - \Phi^*_1(n) = f_{n+1} - (1 + \rho_n) f_n + \rho_n f_{n-1},
\]
\[g_0(n) = C_{01}(x_{n+1}) = 1, \]
\[g_1(n) = C_{11}(x_{n+1}) = \frac{1}{2}, \]
\[g_2(n) = C_{21}(x_{n+1}) = C_{11}(x_{n+1}) - C_{12}(x_{n+1}) \frac{h_n}{x_{n+1} - x_{n-1}} = \frac{2\rho_n + 3}{6(\rho_n + 1)}. \]

Luego, reemplazando los respectivos coeficientes tenemos

\[
y_{n+1} = y_n + h_n \left(f_n + \frac{1}{2}\rho_n (f_n - f_{n-1}) + \frac{2\rho_n + 3}{6(\rho_n + 1)} (f_{n+1} - (1 + \rho_n) f_n + \rho_n f_{n-1}) \right),
\]

y ordenando linealmente con respecto a los \(f \) resulta

\[
y_{n+1} = y_n + \frac{h_n}{6(1 + \rho_n)} \left((3 + 2\rho_n) f_{n+1} + (3 + \rho_n)(1 + \rho_n) f_n - \rho_n^2 f_{n-1} \right). \quad (2.12)
\]

Observemos que si la longitud de paso es constante, (i.e., \(\rho_n = 1 \)), obtenemos la correspondiente fórmula implícita de Adams de longitud de paso constante.

\subsection{2.2 Métodos BDF de longitud de paso variable}

Similarmente a las fórmulas Adams, las fórmulas BDF (1.18) pueden extenderse de un modo natural a una longitud de paso variable. Se denota por \(Q_k(t) \) el polinomio de grado \(k \) que interpola los puntos \((x_i, y_i) \) para \(i = n+1, n, \ldots, n-k+1 \). Usando diferencias divididas este polinomio puede ser expresado por

\[
Q_k(t) = \sum_{j=0}^{k-1} \prod_{i=0}^{j-1} (t - x_{n+1-i}) \delta^j y[x_{n+1}, x_n, \ldots, x_{n-j+1}].
\]

La condición

\[
Q'_k(x_{n+1}) = f(x_{n+1}, y_{n+1})
\]
conduce inmediatamente a las fórmulas BDF de longitud de paso variable

$$\sum_{j=1}^{k} h_n \prod_{t=1}^{j-1} (x_{n+1} - x_{n+1-t}) \delta^2 y[x_{n+1}, x_n, \ldots, x_{n-j+1}] = h_n f(x_{n+1}, y_{n+1}).$$

(2.13)

En comparación con las fórmulas de Adams, el cálculo de los coeficientes de las fórmulas BDF es mucho más fácil en el caso de una longitud de paso variable.

Ejemplo 2.3 Calculemos el método BDF de paso variable para \(k = 2 \). De (2.13) tenemos

$$\sum_{j=1}^{2} h_n \prod_{t=1}^{j-1} (x_{n+1} - x_{n+1-t}) \delta^2 y[x_{n+1}, x_n, \ldots, x_{n-j+1}] = h_n f(x_{n+1}, y_{n+1}),$$

$$h_n \delta^1 y[x_{n+1}, x_n] + h_n (x_{n+1} - x_n) \delta^2 y[x_{n+1}, \ldots, x_{n-1}] = h_n f(x_{n+1}, y_{n+1}),$$

$$y_{n+1} - y_n + h_n \frac{y_{n+1} - y_n}{x_{n+1} - x_{n}} - h_n^2 \frac{y_n - y_{n-1}}{(x_{n+1} - x_{n}) (x_n - x_{n-1})} = h_n f(x_{n+1}, y_{n+1}).$$

Escribiendo linealmente con respecto a los \(y_i \), y teniendo en cuenta que usamos la notación \(\rho_n = h_n / h_{n-1} \), obtenemos

$$y_{n+1} - \frac{(1 + \rho_n)^2}{1 + 2 \rho_n} y_n + \frac{\rho_n^2}{1 + 2 \rho_n} y_{n-1} = h_n \frac{1 + \rho_n}{1 + 2 \rho_n} f_{n+1}.$$

(2.14)

 Nótese que para un \(h \) constante, la fórmula (2.14) coincide con la versión de la fórmula BDF (1.18), para \(k = 2 \), de longitud de paso constante del capítulo anterior.

2.3 Métodos generales de longitud de paso variable y sus órdenes

En la presente sección nos ocuparemos de determinar el orden y la consistencia de un método multipaso general de paso variable. También veremos algunas definiciones
y resultados que son una generalización del caso de métodos de longitud de paso constante y serán de utilidad para investigar la estabilidad de dichos métodos en la siguiente sección.

Para estudiar teóricamente los métodos multipaso es conveniente escribirlos en una forma donde los valores y_i y f_i aparecen linealmente, como por ejemplo en (2.12) y (2.14), donde hemos introducido la notación $\rho_n = \frac{b_n}{h_{n-1}}$ para la relación de longitud de paso.

Con el objetivo de dar una teoría general para todos estos métodos multipaso de longitud de paso variable, consideraremos las fórmulas de la forma

$$y_{n+k} + \sum_{j=0}^{k-1} a_j y_{n+j} = h_{n+k-1} \sum_{j=0}^{k} b_j f_{n+j}$$ \hspace{1cm} (2.15)

Los coeficientes a_j y b_j actualmente dependen de las relaciones de longitudes de paso $\rho_i = h_i/h_{i-1}$, para $i = n+1, \ldots, n+k-1$, véase e.g. (2.12) o (2.14). Análogamente al caso de longitud de paso constante se considera en la siguiente definición.

Definición 2.2 El método (2.15) es consistente de orden p, si

$$q_p(x_{n+k}) + \sum_{j=0}^{k-1} a_j q_p(x_{n+j}) = h_{n+k-1} \sum_{j=0}^{k} b_j q'_p(x_{n+j})$$

es válido para todos los polinomios $q_p(x)$ de grado $\leq p$ y para todas las mallas (x_j).

Notemos que esta definición coincide con la Definición 1.7 si la longitud de paso es constante. En efecto, puesto que $h = h_{n+k-1}$, luego

$$\sum_{j=0}^{k} \left(a_j q_p(x_n + h j) - h b_j q'_p(x_n + h j) \right) = 0, \quad a_k = 0,$$

reemplazando $q_p(x + h j)$ y $q'_p(x + h j)$, $j = 0, \ldots, k$ por sus series de Taylor resulta

$$\sum_{j=0}^{k} \left(a_j \sum_{i=0}^{p} \frac{j^i}{i!} h^i q'_p(x_n) - h b_j \sum_{i=0}^{p-1} \frac{j^i}{i!} h^i q'_p(x_n) \right)^{(i+1)}(x_n) = 0 \quad \text{con} \quad a_k = 1,$$
\[q_p(x_n) \sum_{j=0}^{k} a_j + \sum_{i=1}^{p} \frac{h^i}{i!} q_p^{(i)}(x_n) \left(\frac{h^i}{i!} q_p^{(i)}(x_n) \right) \quad \text{si} \quad x_n \quad \text{satisfies} \quad

\text{that completes when}

\[k \quad \text{and} \quad \frac{h^i}{i!} \quad \text{are} \quad 0, \quad \text{for} \quad i \quad \text{or} \quad h^i \quad \text{is} \quad 0, \quad \text{for} \quad i \quad \text{or} \quad h^i \quad \text{is} \quad 0.

\text{Introducción al método implícito D.Q. del Técnicas I.}

Por definición, el método explícito Adams (O.K) de la familia de interpolantes PI(x) de grado k (como mencionado D.Q) se define por la relación no lineal \(\text{PI}(x)\) en la ecuación del problema. El método explícito Adams con k = 1, y la técnica-EFEP (O.K) se define como

El concepto de estructura de datos es fundamental en el cálculo de k. Al tratar con el intercambio de datos, el intercambio vectorial y el cálculo vectorial, se puede obtener:

\(a_1 \) y \(b_2 \) son constantes. \(j = 0, 1, \ldots, k \).

avanza un desarrollo de Taylor implícito para la ecuación del que

\[y(x_{n+1}) = \sum_{j=0}^{k} \frac{y_j}{j!} (x_{n+1})^{j-n} \quad \text{y} \quad \sum_{j=0}^{k} \frac{y_j}{j!} (x_{n+1})^{j-n} = O(h^{k+1}) \]
Insertando (2.17) se obtiene

\[
(y(x_{n+k}) - y_{n+k}) - h_{n+k-1} b_{kn} (f(x_{n+k}, y(x_{n+k})) - f(x_{n+k}, y_{n+k})) = O(h_{n+k}^{p+1}).
\]

Por el teorema de valor medio y fijando \(x = x_0 \), resulta

\[
(y(x_{n+k}) - y_{n+k}) \left(I - h_{n+k-1} \frac{\partial f}{\partial y}(x_{n+k}, \eta) \right)^{-1} = O(h_{n+k}^{p+1}).
\]

Entonces tenemos que el error local en \(x_{n+k} \) es también

\[
y(x_{n+k}) - y_{n+k} = O(h_{n+k}^{p+1}).
\]

Ejemplo 2.4 (Gear & Tu (1974) pp. 1036) La fórmula explícita dada por

\[
y_{n+1} = \frac{1}{h_{n-2} - h_{n-1}} \left[(h_n + h_{n-1})^2 - h_{n-2}^2 y_n + (h_n + h_{n-1})^2 - h_{n-2}^2 y_{n-2} \right.
\]

\[
- \frac{h_n (h_n + h_{n-1} + h_{n-2}) f_{n-1}}{h_{n-2}} \left. \right)
\]

es de segundo orden con tal que \(h_{n-2} \neq h_{n-1} \). Sin embargo, si \(h_{n-2} \neq h_{n-1} \), los coeficientes y el término de error explotan. Si usamos esta fórmula con un esquema de selección de paso el cual mantenga \(h_{n-2}/h_{n-1} \) acotada alejada una de la otra, posiblemente obtendríamos convergencia si el método fuese estable. Si el esquema de selección de paso permite que \(h_{n-2}/h_{n-1} \to 1 \) cuando \(h \to 0 \) es muy posible que no obtengamos convergencia. De lo anterior podemos ver la necesidad de mantener acotados los coeficientes \(a_{jn} \) y \(b_{jn} \), \(j = 0, \ldots, k - 1 \).

Esto motiva la investigación de la condición (2.16). Los métodos (2.12) y (2.14) son vistos para satisfacer (2.16) siempre que la relación \(h_n/h_{n-1} \) sea acotada superiormente:
Lema 2.3 Para los métodos Adams explícitos e implícitos como para las fórmulas BDF los coeficientes a_{jn} y h_{jn} son acotados siempre en cuando para algún ω se cumple

$$h_n/h_{n-1} \leq \omega, \quad n \geq 1.$$

Prueba. Probaremos la declaración solamente para los métodos implícitos de Adams. La prueba para otros métodos es similar, por lo que la omitiremos. (La prueba para los explícitos se puede encontrar en Hairer, Nørsett & Wanner (1993), pp. 402).

Observemos que los coeficientes a_{jn} de (2.6) no dependen de n y, por lo tanto, son acotados, sin embargo los coeficientes b_{jn} son compuestos de productos de $g_j(n)$, $\Phi_j^*(n)$, y $\Phi_k(n + 1)$ al ser escritos como una combinación lineal de f_1,\ldots,f_{n-j}. De la fórmula (2.5) tenemos que

$$|g_j(n)| = \left| \frac{1}{h_n} \int_{x_n}^{x_{n+1}} \prod_{i=0}^{j-1} \frac{t - x_{n-i}}{x_{n+1} - x_{n-i}} \, dt \right| \leq \frac{1}{h_n} \int_{x_n}^{x_{n+1}} \prod_{i=0}^{j-1} \frac{1}{x_{n+1} - x_{n-i}} \, dt \leq \frac{1}{h_n} \int_{x_n}^{x_{n+1}} 1 \, dt = 1.$$

Mostremos que los coeficientes $\vartheta_j(n)$ de (2.9) son acotados. Si $j = 1$, tenemos que

$$\frac{x_{n+1} - x_n}{x_n - x_{n-1}} = \frac{h_n}{h_{n-1}} \leq \omega,$$

entonces $(x_{n+1} - x_n) \leq \omega(x_n - x_{n-1})$. Siguiendo para $j > 1$, resulta

$$(x_{n+1} - x_n) \leq \omega(x_n - x_{n-1}) \leq \omega^2(x_{n-1} - x_{n-2}) \leq \cdots \leq \omega^j(x_n - x_{n-j}),$$

luego se sigue que $(x_{n+1} - x_{n-j+1}) \leq \max(1, \omega^j)(x_n - x_{n-j})$, $j = 0,\ldots,k - 1$, por consiguiente los $\vartheta_j(n)$ son acotados. Ahora mostremos que los coeficientes $\Phi_j^*(n)$ son
acotados. El caso para $j = 0$, es trivial. Para el caso $j = 1$, tenemos que

$$
\Phi_j^*(n) = \nu_1(n)\Phi_1(n) = \frac{x_{n+1} - x_n}{x_n - x_{n-1}} \frac{f_n - f_{n-1}}{x_n - x_{n-1}} \leq \omega \frac{f_n - f_{n-1}}{x_n - x_{n-1}} \leq \omega k_1
$$

donde $k_1 = \frac{f_n - f_{n-1}}{x_n - x_{n-1}}$, con tal que $x_n = x_{n-1}$.

Asumiendo que el caso $j = k - 1$ es cierto, probemos para $j = k$,

$$
\Phi_k^*(n) = \nu_k(n)\Phi_k(n) = \nu_{k-1}(n) \frac{x_{n+1} - x_{n-k+1}}{x_n - x_{n-k}} \Phi_k(n),
$$

$$
= \nu_{k-1}(n) \frac{x_{n+1} - x_{n-k+1}}{x_n - x_{n-k}} \left(x_n - x_{n-k} \right)^{k-2} \prod_{i=0}^{k-2} \left(x_{n-i+1} - x_{n-i} \right) \delta^k f[x_n, \ldots, x_{n-k+1}]
$$

$$
= \nu_{k-1}(n) \frac{x_{n+1} - x_{n-k+1}}{x_n - x_{n-k}} \left(x_{n+1} - x_n \right) \frac{\delta^k f[x_n, \ldots, x_{n-k+1}]}{x_n - x_{n-k}}
$$

$$
= \nu_{k-1}(n) \left(x_{n+1} - x_{n-k+1} \right) \left(\Phi_{k-1}^*(n) - \Phi_{k-1}^*(n - 1) \right),
$$

el cual es acotado, probando así que los coeficientes $\Phi_j^*(n)$ son acotados. La prueba de los $\Phi_j(n+1)$ es también realizada de forma similar. Por consiguiente los coeficientes b_m son acotados, lo cual prueba el Lema. ■

La condición $h_n/h_{n-1} \leq \omega$, $n \geq 1$, es una suposición importante pues, teóricamente, nos permitirá obtener resultados para conseguir estabilidad, además en la práctica esta condición fácilmente puede ser satisfecha por un código.

2.4 Estabilidad de los métodos multipaso de paso variable

Gear & Tu (1974) consideran que la estabilidad de un método es afectada por tres factores: la fórmula multipaso fundamental, la técnica usada para manejar la variación
de pasos (e.g. técnica de interpolación y técnica de paso variable), y el esquema usado para seleccionar la longitud de paso (i.e., el criterio para una adecuada elección de la longitud de paso), por lo que un método es usado para referirse a la combinación de los tres factores: fórmula, técnica y esquema. Las fórmulas fundamentales ya fueron construidas en las secciones iniciales (véase Secciones 2.1 y 2.2). Sin embargo, las condiciones para su estabilidad serán dadas en las líneas siguientes, en cuanto a la técnica, Gear & Tu (1974) mostraron que entre la interpolación polinomial y las fórmulas de paso variable, la técnica de paso variable da una mayor estabilidad en comparación con la interpolación, aunque ambas son estables cuando el cambio de la relación de longitudes de paso es muy pequeño para cualquier fórmula usada. Los esquemas de selección de paso serán discutidos en el capítulo final.

Del Lema 1.9 y Definición 1.10 vimos que para mallas equidistantes, la estabilidad es equivalente al acotar la solución numérica, cuando aplicamos ésta a la ecuación diferencial escalar \(y' = 0 \). Hagamos lo mismo aquí para el caso de mallas variables. El método (2.15), aplicado a \(y' = 0 \), da la ecuación de diferencias con coeficientes variables

\[
y_n + k + \sum_{j=0}^{k-1} a_{jn} y_{n+j} = 0. \tag{2.18}
\]

Introduzcamos el vector \(Y_n = (y_{n+k-1}, \ldots, y_n)^T \). Así esta ecuación de diferencias es equivalente a

\[
Y_{n+1} = A_n Y_n
\]
donde

\[
A_n = \begin{pmatrix}
-a_{n-1}, & \cdots & \cdots & -a_n & -a_0 \\
1 & 0 & \cdots & 0 & 0 \\
0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & 1 & 0 & 0 \\
0 & \cdots & 0 & 1 & 0
\end{pmatrix}
\]

(2.19)

es la matriz acompañante \((A_n \in \mathbb{R}^{k \times k})\). Nuestro objetivo será tratar de controlar la solución numérica para \(y' = 0\) a lo largo del proceso de integración. Observemos de (2.18) que la solución numérica depende solamente de los coeficientes \(a_jn\). Para conseguir estabilidad será entonces necesario acotar la matriz (2.19) que contiene a dichos coeficientes.

Definición 2.4 El método (2.15) es llamado ESTEMABLE si existe una constante \(K > 0\), tal que

\[
\|A_{n+\ell}A_{n+\ell-1}...A_{n+1}A_n\| \leq K
\]

(2.20)

para todo \(n\) y \(\ell \geq 0\).

Obsérvese, que en general \(A_n\) depende de las distintas relaciones de longitud de paso \(\rho_{n+1}, \ldots, \rho_{n+k-1}\). Por lo tanto, la condición (2.20) generalmente conducirá a una restricción de estos valores. Para los métodos Adams (2.4) y (2.6) los coeficientes \(a_jn\), no dependen de \(n\) y por consiguiente son estables para cualquier sucesión de longitudes de paso.

Sin embargo, ¿cómo encontrar \(K\)? Asumiendo que los coeficientes \(a_jn\) son considerados funciones que dependen de las relaciones de longitud de paso, es decir que, \(a_jn = a_j(\rho_{n+1}, \ldots, \rho_{n+k-1})\), los siguientes teoremas dan resultados de estabilidad para
ii) los coeficientes $a_{j_n} = a_j(\rho_{n+1}, \ldots \rho_{n+k-1})$

\[\rho \leq h_n / h_{n-1} \leq \omega \]
\[T^{-1}AT = \begin{pmatrix} \bar{A} & 0 \\ 0 & 1 \end{pmatrix} \]

Para obtener un elemento de la diagonal superior, necesitamos que el extremo de la diagonal sean elementos absolutos \(|T_{ii}| \). Este procedimiento implica que este vector también debe ser denso.

\[M = \begin{pmatrix} \bar{A} & 0 \\ 0 & 1 \end{pmatrix} \]

La norma de \(A \) se calcula mediante

\[\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{n} |a_{ij}|. \]
Finally, consider the relation

\[\| T^{-1}A_{n+1}\cdots A_nT \|_1 = \max \left(\| A_n \|_1 \right) - 1. \]

Observe that

\[\| T^{-1}A_{n+1}\cdots A_nT \|_1 = \| T^{-1}A_{n+1}TT^{-1}\cdots TA_{n+1}TT^{-1}A_nT \|_1 \]

\[= \| T^{-1}A_{n+1}TT^{-1}\cdots TA_{n+1}TT^{-1}A_nT \|_1 - 1. \]

Hence, it follows that

\[\| A_{n+1}\cdots A_n \|_1 = \| TT^{-1}A_{n+1}\cdots A_nTT^{-1} \|_1 \]

\[= \| T \|_1 \| TT^{-1}A_{n+1}\cdots A_nTT^{-1} \|_1. \]
\[
T' = \begin{pmatrix}
1 & 0 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \ddots & 1
\end{pmatrix}, \quad T^{-1} = \begin{pmatrix}
1 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 0 \\
0 & 0 & \ddots & 1 \\
0 & 0 & \ddots & 1
\end{pmatrix}
\]
\[
\begin{pmatrix}
-(\sum_{j=k-1}^{k-2} a_{jn}) - 1 & -(\sum_{j=k-2}^{k-3} a_{jn}) - 1 & \cdots & \cdots & -(\sum_{j=1}^{k-1} a_{jn}) - 1 & -(\sum_{j=0}^{k-1} a_{jn}) - 1 \\
1 & 0 & \cdots & \cdots & 0 & 0 \\
0 & 1 & \cdots & \cdots & 0 & 0 \\
0 & 0 & \cdots & \cdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & 0 & 0 & 0 \\
0 & 0 & \cdots & \cdots & 1 & 1 \\
\end{pmatrix}
\]

es comparable con (2.22).

obteniendo

\[
T^{-1}A_nT = \begin{pmatrix}
A_n^* & 0 \\
0 & 1 \\
\end{pmatrix}
\]

(2.23)

donde \(e_{k-1}^T = (0, 0, \ldots, 0, 1)\),

\[
A_n^* = \begin{pmatrix}
-a_{k-2}^* & -a_{k-3}^* & \cdots & -a_{2}^* & -a_{1}^* \\
1 & 0 & \cdots & \vdots & 0 \\
1 & \cdots & \vdots & 0 \\
1 & \vdots & \vdots & \vdots & \vdots \\
1 & 0 & \cdots & \vdots & \vdots \\
\end{pmatrix}
\]

(2.24)

con los coeficientes (por comparación con (2.22))

\[
a_{(k-2)n}^* = -\sum_{j=k-1}^{k-2} a_{jn} - 1 = 1 + a_{(k-1)n}, \quad a_{0n}^* = -\sum_{j=1}^{k-1} a_{jn} - 1 = -a_{0n},
\]

\[
a_{(k-j-1)n}^* - a_{(k-j)n}^* = a_{(k-j)n}
\]

para \(j = 2, \ldots, k-2, k-1\).

Destacamos que los coeficientes \(a_{jn}^*\) son precisamente los coeficientes del polinomio definido por

\[
(\zeta^k + a_{(k-1)n} \zeta^{k-1} + \ldots + a_{1n} \zeta + a_{0n}) =
\]
\[= (\zeta - 1) (\zeta^{k-1} + a_{k-2,n} \zeta^{k-2} + \ldots + a_{n}^* \zeta + a_{n}^*).\]

Con esta nueva notación tenemos el siguiente resultado:

Teorema 2.7 (Ver Hairer, Nørsett & Wanner (1993)) Dado el método (2.15) de orden \(p \geq 0\). Entonces el método es estable si y sólo si para todo \(n\) y \(\ell \geq 0\), se cumple:

\[i) \quad \|e_{k-1}^{\ell} \sum_{j=n}^{n+\ell-1} A_i^* \| \leq K_1,\]
\[ii) \quad \|e_{n}^{T} \sum_{j=n}^{n+\ell-1} \prod_{i=n}^{j-1} A_i^* \| \leq K_2.\]

Prueba. Por inducción, usando la transformación \(T\) de (2.21), se muestra que

\[T^{-1}A_{n+\ell} \ldots A_n T = \begin{pmatrix}
A_{n+\ell}^* & \ldots & A_n^* \\
b_{n,\ell}^T & 1
\end{pmatrix}
\]

con

\[b_{n,\ell}^T = e_{k-1}^T \sum_{j=n}^{n+\ell-1} A_i^*.
\]

En efecto, si \(\ell = 0\), entonces para \(j = n\), esta probado por (2.23), luego asumimos que esto es cierto para \(j = n + \ell - 1\), entonces resta probar para \(j = n + \ell\). Tenemos que

\[T^{-1}A_{n+\ell} \ldots A_n T = T^{-1}A_{n+\ell} T \left(T^{-1}A_{n+\ell-1} T \ldots T^{-1}A_{n+1} T \right) T^{-1} A_n T
\]

\[= \begin{pmatrix}
A_{n+\ell}^* & 0 \\
e_{k-1}^T & 1
\end{pmatrix} \begin{pmatrix}
A_{n+\ell-1}^* \ldots A_n^* \\
e_{k-1}^T \sum_{j=n}^{n+\ell-1} \prod_{i=n}^{j-1} A_i^* & 1
\end{pmatrix}
\]

\[= \begin{pmatrix}
A_{n+\ell}^* eA_{n+\ell-1}^* \ldots A_n^* \\
e_{k-1}^T A_{n+\ell-1}^* \ldots A_n^* + e_{k-1}^T \sum_{j=n}^{n+\ell-1} \prod_{i=n}^{j-1} A_i^* & 1
\end{pmatrix}
\]

\[= \begin{pmatrix}
A_{n+\ell}^* \ldots A_n^* \\
e_{k-1}^T \sum_{j=n}^{n+\ell-1} \prod_{i=n}^{j-1} A_i^* & 1
\end{pmatrix}.
\]

\[
\sup \left\{ \left\| \begin{bmatrix} A_{n+1}^* & \ldots & A_{n}^* \end{bmatrix} \right\| \; : \; k - 1 \leq n \leq \ell \leq N - 1, \; h_n \text{ acotados} \right\} < +\infty,
\]

\[
\sup \left\{ \left\| e_{k-l}^T \sum_{i=l}^{n+\ell} \prod_{j=n+1}^{i} A_i^* \right\| \; : \; k - 1 \leq n \leq \ell \leq N - 1, \; h_n \text{ acotados} \right\} < +\infty,
\]

donde N es el número de puntos en la malla.

En el Teorema 2.7 la dimensión de las matrices, bajo consideraciones, es reducido por uno, esto es útil especialmente para la investigación de estabilidad de métodos de dos pasos.

Ejemplo 2.5 (Crouzeix & Lisbona (1984) pp. 521) Consideremos el método BDF de dos pasos (2.14). Aquí por (2.19) tenemos

\[
A = \begin{pmatrix} -a_{1n} & -a_{0n} \\ 1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad T^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix},
\]

luego

\[
T^{-1}AT = \begin{pmatrix} -a_{1n} + 1 & a_{1n} - 1 - a_{0n} \\ -1 & 1 \end{pmatrix},
\]

donde

\[
a_{0n} = \frac{\rho_{n+1}^2}{1 + 2\rho_{n+1}}, \quad a_{1n} = 1 - a_{0n} = -\frac{(1 + \rho_{n+1})^2}{1 + 2\rho_{n+1}}.
\]

Luego para este caso la matriz (2.24) es:

\[
A^n_n = \begin{pmatrix} -a_{0n}^* \end{pmatrix}, \quad \text{donde} \quad -a_{0n}^* = \frac{\rho_{n+1}^2}{1 + 2\rho_{n+1}}.
\]
Tenemos que exigir que \(|q_n^2| \leq q < 1 \), para que las condiciones del Teorema 2.7 sean satisfechas y así conseguir estabilidad. Como

\[
0 < \frac{\rho_{n+1}^2}{1 + 2\rho_{n+1}} < 1 \iff \rho_{n+1}^2 < 1 + 2\rho_{n+1} \iff (\rho_{n+1} - 1)^2 < 2,
\]

se tendría estabilidad si

\[
0 < \rho_{n+1} = h_{n+1}/h_n \leq \omega < 1 + \sqrt{2}.
\]

Como consecuencia del teorema anterior, esperaremos inestabilidad de la fórmula BDF (2.14) si los radios de longitud de paso se incrementan, llegando a ser mayores que \(1 + \sqrt{2} \). \(\triangleright \)

Esta cota no fue solamente encontrada por Grigorieff en 1983, sino también independientemente por Zlatiev y März en 1981 (compárese Crouzeix & Lisbona (1984)). Sin embargo, la investigación de la estabilidad de métodos de \(k \)-pasos, para \(k \geq 3 \) es más difícil, puesto que se depende de las distintas relaciones \(\rho_{n+1}, \rho_{n+2}, \rho_{n+3}, \ldots \)

Al respecto Grigorieff en 1983 calculó la cota \(\omega \) para métodos-BDF de orden superior con D-estabilidad (véase Hairer, Nørsett & Wanner (1991)), aunque posteriormente esta cota fue mejorada por Calvo, Grande & Grigorieff (1984). Este resultado fue obtenido acotando la propagación de las matrices que aparecen en el anterior Teorema 2.7 mediante convenientes normas de tipo elíptico. Las cotas son dadas en la Tabla 2.1 para los métodos-BDF.

<table>
<thead>
<tr>
<th>(k)</th>
<th>(\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.414</td>
</tr>
</tbody>
</table>

Tabla 2.1. Cotas \(\omega \) para las fórmulas BDF de \(k \)-pasos [Calvo et al. (1984)]
Nótese que el valor de la cota para \(k = 5 \) es menor que 1, sin embargo Grigorieff de sus implicaciones prácticas recomienda que si la fórmula-BDF de 5-pasos es aplicada sucesivamente al menos dos veces con una misma longitud de paso, este valor puede ser incrementado aproximadamente a 1.01 en el siguiente paso. Una recomendación similar, Grigorieff da para las demás fórmulas BDF.

Pero Hairer, Nørsett & Wanner (1993) (pp.405), desestiman estas cotas considerándolas "...ciertamente ilusorias, puesto que todas las variaciones patológicas de longitud de paso son admitidas." Sin embargo, usualmente en la práctica las variaciones de la longitud de paso no son bruscas, o no nos incomodamos en ajustar el paso si el cambio es muy pequeño (i.e., \(\rho_n = h_{n+1}/h_n \approx 1 \))

Si consideramos que las longitudes de paso varían más suavemente (véase Gear & Tu (1974)), el error local será estimado para ser de la forma \(\tau(x_n)h_n^{p+1} + O(h_n^{p+2}) \), donde \(\tau(x) \) es la función de error principal para el método. Este error local es para controlar la longitud de paso, manteniéndose igual a la una tolerancia de error \(Tol \) dada por el usuario. Así tenemos que

\[
|\tau(x_n)| h_n^{p+1} + O(h_n^{p+2}) = Tol
\]

Por consiguiente,

\[
h_n = \left(\left(\frac{Tol}{|\tau(x_n)|} \right)^{1/(p+1)} + O(h_n) \right), \quad \text{donde } p = k + 1 \leq k,
\]

con tal que \(\tau(x_n) \) no sea cero. Luego, por división polinomial, tenemos que

\[
\frac{Tol}{|\tau(x_{n+1})|} + O \left(h_n^{p+12} \right) = \left(\frac{\tau(x_n)}{|\tau(x_{n+1})|} \right) + O \left(h_n^{p+12} \right),
\]
\[
\frac{h_{n+1}}{h_n} = \left| \frac{\tau(x_n)}{\tau(x_{n+1})} \right|^{\omega}
\]

\[
\frac{h_{n+1}}{h_n} = 1 + \mathcal{O}(h_n)
\]

\[
|h_{n+1}/h_n - 1| \leq C h_n.
\]

\[
\{(\rho_{n+1}, \ldots, \rho_{n+k-1}); \rho \leq \rho_j \leq \omega \}
\]
junto con \(p \leq h_{j+1}/h_j \leq \omega \), implica la condición de estabilidad (2.20).

Prueba. Denotemos por \(A \) la matriz acompañante de la fórmula de longitud de paso constante de (1.47) y por \(T \) una transformación adecuada, de modo que \(\|T^{-1}AT\|_1 = 1 \) (véase Sección 1.5, Teorema 1.15), si aplicamos el teorema de valor medio a la diferencia \(a(\rho_{n+1}, \ldots, \rho_{n+k-1}) - a(1, \ldots, 1) \), obtenemos que

\[
\|T^{-1}A_nT - T^{-1}AT\|_1 \leq K \sum_{j=n+1}^{n+k-1} |\rho_j - 1|.
\]

Por consiguiente

\[
\|T^{-1}A_nT\|_1 \leq 1 + K \sum_{j=n+1}^{n+k-1} |\rho_j - 1| \leq \exp \left(K \sum_{j=n+1}^{n+k-1} |\rho_j - 1| \right).
\]

De aquí tenemos

\[
\|T^{-1}A_n+\ldots A_{n+1}A_nT\|_1 \leq \|T^{-1}A_{n+1}T\|_1 \ldots \|T^{-1}A_{n+1}T\|_1 \|T^{-1}A_nT\|_1 \leq \exp(K(k-1)C).
\]

Por lo tanto,

\[
\|A_{n+1} \ldots A_{n+1}A_n\|_1 \leq \|T\|_1 \|T^{-1}A_{n+1} \ldots A_{n+1}A_n\|_1 \|T^{-1}\|_1 \leq \|T\|_1 \|T^{-1}\|_1 \exp(K(k-1)C).
\]

Por la equivalencia de las normas en el \(\mathbb{R}^n \), la convergencia se cumple para una norma cualquiera. \(\blacksquare \)

Finalmente, Gear & Tu (1974) (pp.1042) señalan "...que un error grande creciente no necesariamente implica inestabilidad, y lo más importante, estabilidad no implica un pequeño error creciente".
2.5 Convergencia de los métodos multipaso de paso variable

Consideremos el vector $Y_n = (y_{n+k-1}, \ldots, y_{n+1}, y_n)^T$. Y análogamente a (1.48) expresamos el método (2.15), el cual en la forma compacta es equivalente a

$$Y_{n+1} = (A_n \otimes I)Y_n + h_{n+k-1}\bar{\Phi}(x_n, Y_n, h_n)$$ \hspace{1cm} (2.27)

donde A_n es dado por (2.19) y

$$\bar{\Phi}(x_n, Y_n, h_n) - (e_1 \otimes I)\bar{\psi}(x_n, Y_n, h_n).$$

Además el valor $\bar{\psi} - \bar{\psi}(x_n, Y_n, h_n)$ es definido implícitamente por

$$\bar{\psi} = \sum_{j=0}^{k-1} b_{jn}f(x_{n+j}, y_{n+j}) + b_{kn}f(x_{n+k}, h\bar{\psi} - \sum_{j=0}^{k-1} a_{jn}y_{n+j}),$$

y denotemos por

$$Y(x_n) = (y(x_{n+k-1}), \ldots, y(x_{n+1}), y(x_n))^T$$

los valores exactos a ser aproximados por Y_n. Con esta notación ahora podemos formular el siguiente teorema de convergencia:
Teorema 2.9 Asumiendo que

i) el método (2.15) es estable, de orden p, y tiene coeficientes acotados a_j, $y b_j$,

ii) los valores iniciales satisfacen $||Y(x_0) - Y_0|| = O(h_0^p)$,

iii) las relaciones de longitudes de paso son acotadas $(h_n/h_{n-1} \leq \omega)$,

el método es convergente de orden p, i.e., para cada ecuación diferencial $y' = f(x,y)$, $y(a) = y_0$ con f suficientemente diferenciable el error global satisface

$$||y(x_n) - y_n|| \leq Ch^p$$ para $x_n \leq b$,

donde $h = \max h_j$.

Prueba. En vista que el método es de orden p y los coeficientes y relaciones de longitud de paso son acotados, la fórmula (2.17) muestra que el error local

$$d_{n+1} = Y(x_{n+1}) - (A_n \otimes I)Y(x_n) - h_{n+k-1} \tilde{F}(x_n, Y(x_n), h_n)$$

satisface

$$d_{n+1} = O(h_{n+1}^p).$$

Sustrayendo (2.27) de (2.28) resulta

$$Y(x_{n+1}) - Y_{n+1} = (A_n \otimes I)(Y(x_n) - Y_n) +$$

$$+ h_{n+k-1} (\tilde{F}(x_n, Y(x_n), h_n) - \tilde{F}(x_n, Y_n, h_n)) + d_{n+1}$$

de donde

$$Y(x_n) - Y_n = (A_{n-1} \otimes I)(Y(x_{n-1}) - Y_{n-1}) +$$

$$+ h_{n+k-2} (\tilde{F}(x_{n-1}, Y(x_{n-1}), h_{n-1}) - \tilde{F}(x_{n-1}, Y_{n-1}, h_{n-1})) + d_n$$
...

\[Y(x_1) - Y_1 = (A_0 \otimes I)(Y(x_0) - Y_0) + \]

\[+ h_{k-1} (\tilde{\Phi}(x_0, Y(x_0), h_0) - \tilde{\Phi}(x_0, Y_0, h_0)) + d_1 \]

Reemplazando estas relaciones en (2.30), tenemos

\[Y(x_{n+1}) - Y_{n+1} = (A_n \otimes I)((A_{n-1} \otimes I)(Y(x_{n-1}) - Y_{n-1}) + \]

\[+ h_{n+k-2}(\tilde{\Phi}(x_{n-1}, Y(x_{n-1}), h_{n-1}) - \tilde{\Phi}(x_{n-1}, Y_{n-1}, h_{n-1})) + d_n) \]

\[+ h_{n+k-1}(\tilde{\Phi}(x_n, Y(x_n), h_n) - \tilde{\Phi}(x_n, Y_n, h_n)) + d_{n+1} \]

\[= (A_n A_{n-1} \otimes I)(Y(x_{n-1}) - Y_{n-1}) + \]

\[+ (A_n \otimes I)h_{n+k-2}(\tilde{\Phi}(x_{n-1}, Y(x_{n-1}), h_{n-1}) - \tilde{\Phi}(x_{n-1}, Y_{n-1}, h_{n-1})) \]

\[+ h_{n+k-1}(\tilde{\Phi}(x_n, Y(x_n), h_n) - \tilde{\Phi}(x_n, Y_n, h_n)) + (A_n \otimes I)d_{n} + d_{n+1} \]

así sucesivamente se tiene

\[Y(x_{n+1}) - Y_{n+1} = ((A_n \ldots A_0) \otimes I)(Y(x_0) - Y_0) + \]

\[+ \sum_{j=0}^{n} (h_{j+k-1}(A_n \ldots A_{j+1} \otimes I)(\tilde{\Phi}(x_j, Y(x_j), h_j) - \tilde{\Phi}(x_j, Y_j, h_j)) \]

\[+ \sum_{j=0}^{n} ((A_n \ldots A_{j+1}) \otimes I) d_{j+1}. \]

Como en la prueba del Teorema 1.16, deducimos que \(\tilde{\Phi}_n \) satisface una condición de Lipschitz uniforme con respecto a \(Y_n \). Así, junto con la estabilidad y (2.29), se implica que

\[\| Y(x_{n+1}) - Y_{n+1} \| \leq h_{k-1} L \| Y(x_0) - Y_0 \| + h_k L \| Y(x_1) - Y_1 \| + ... \]

\[... + h_{n+k-1} L \| Y(x_n) - Y_n \| + C_1 h^p, \]

\[\leq \sum_{j=0}^{n} h_{j+k-1} L \| Y(x_j) - Y_j \| + C_1 h^p. \]
donde \(h = \max h_j \).

A fin de solucionar esta desigualdad introducimos la sucesión \(\{w_n\} \) definida por

\[
w_0 = \|Y(x_0) - Y_0\|, \quad w_{n+1} = \sum_{j=0}^{n} h_{j+k-1} Lw_j + C_1 h^p.
\]

(2.31)

Luego procediendo por recurrencia, tenemos que

\[
\|Y(x_1) - Y_1\| \leq h_{k-1} L \|Y(x_0) - Y_0\| + C_1 h^p,
\]

\[= h_{k-1} Lw_0 + C_1 h^p = w_1,
\]

asumiendo que se cumple

\[
\|Y(x_{j-1}) - Y_{j-1}\| \leq w_{j-1}, \quad j = 1, \ldots, n,
\]

tenemos que

\[
\|Y(x_n) - Y_n\| \leq \sum_{j=0}^{n-1} h_{j+k-1} L \|Y(x_j) - Y_j\| + C_1 h^p
\]

\[\leq \sum_{j=0}^{n-1} h_{j+k-1} Lw_j + C_1 h^p = w_n.
\]

(2.32)

De la recurrencia (2.31) obtenemos para \(n \geq 1 \)

\[
w_{n+1} = h_{n+k-1} Lw_n + \sum_{j=0}^{n-1} h_{j+k-1} Lw_j + C_1 h^p
\]

\[= w_n + h_{n+k-1} Lw_n
\]

\[\leq \exp(h_{n+k-1} L)w_n
\]

así también

\[
w_n \leq \exp((b-a) L)w_1 - \exp((b-a) L)(h_{k-1} L\|Y(x_0) - Y_0\| + C_1 h^p).
\]

Por lo tanto, esta desigualdad junto con (2.32) completa la demostración del Teorema dado. ■
3. Métodos Nordsieck

La búsqueda de integradores numéricos cada vez más eficientes, nos conduce a explorar distintas posibilidades, sin embargo esta tarea se dificulta notablemente en el contexto de los métodos multipaso cuando la malla de integración es variable (i.e., con nodos no-equidistantes). Los códigos para la integración de problemas de valor inicial ordinarios basados en fórmulas multipaso, usualmente cambian la longitud de paso, tan grande como sea consistentemente posible con un error local estimado (véase Sección 2.4), y en algunos casos también cambian el orden.

En 1962, A. Nordsieck publicó un importante artículo donde consideró un tipo de métodos que solucionan numéricamente problemas de valor inicial a través de una técnica de interpolación la cual permite de un modo conveniente el cambio de la longitud de paso. Él mismo observó que sus métodos, en cierto sentido, son (Nordsieck (1962) pp. 23) "...equivalentes a una reformulación de los métodos (implicítos) de Adams".

En este capítulo primero desarrollaremos las fórmulas de Nordsieck y buscare-
mos escribir estos métodos de un modo adecuado para su estudio teórico, luego mostraremos la equivalencia de estos con los métodos multipaso lineales, con lo cual las propiedades de estabilidad y convergencia de estos últimos son también transmitidas a los métodos de Nordsieck. Finalmente veremos la equivalencia de los populares métodos Adams y BDF en la representación de Nordsieck.

3.1 Fórmulas de Nordsieck

Los métodos de integración numérica estudiados hasta ahora tienen en común encontrar un polinomio interpolante el cual aproxime la solución exacta de (1.1), sin embargo, Nordsieck (1962) decidió representar dicho polinomio aproximante usando las derivadas escaladas, desde la cero a la k–ésima, por medio de un vector

\[
v_n = \left(y_n, \; h y'_n, \; \frac{h^2}{2!} y''_n, \; \ldots, \; \frac{h^k}{k!} y^{(k)}_n \right)^T,
\]

(3.1)
donde las $y^{(i)}_n$ $i = 0, 1, \ldots, k$ representan las aproximaciones de $y^{(j)}(x_n)$, y $y(x)$ es la solución exacta de la ecuación diferencial (1.1)

\[y' = f(x, y). \]

Nótese que los elementos del vector de Nordsieck (3.1) son similares a los primeros $k + 1$ términos de la serie de Taylor de $y(x)$ alrededor del punto $x = x_n$.

A fin de definir el procedimiento de integración, construiremos una regla para determinar v_{n+1} cuando son dados v_n y la ecuación diferencial (1.1):

\[
v_{n+1} = \left(y_{n+1}, \; h y'_{n+1}, \; \frac{h^2}{2!} y''_{n+1}, \; \ldots, \; \frac{h^k}{k!} y^{(k)}_{n+1} \right)^T.
\]
\[
\begin{align*}
\Delta y_{n+1} &= y_n + h y'_n + \frac{h^2}{2!} y''_n + \frac{h^3}{3!} y'''_n + \frac{h^4}{4!} y^{(4)}_n + \cdots, \\
\Delta y_{n+1} &= y_n + h y'_n + \frac{3h^2}{2} y''_n + h^3 y'''_n + \cdots, \\
\Delta y_{n+1} &= y_n + h y'_n + \frac{3h^2}{2} y''_n + \frac{3h^3}{3!} y'''_n + \cdots, \\
\Delta y_{n+1} &= y_n + h y'_n + \frac{3h^2}{2} y''_n + \frac{3h^3}{3!} y'''_n + \frac{h^4}{4!} y^{(4)}_n + \cdots.
\end{align*}
\] (3).

Esta interrelación en recorrido el caso determinísticamente usando la ecuación diferencial:

\[
y'_{n+1} = f(x_{n+1}, y_{n+1}).
\] (3.1)

Introduciendo (3.1) en la segunda ecuación de (3.2) obtenemos

\[
\frac{\Delta y^2}{\Delta x} = h \left(f(x_{n+1}, y_{n+1}) - y'_n - \frac{h}{2} y''_n - \frac{3h^2}{2} y'''_n - \frac{4h^3}{4!} y^{(4)}_n \right).
\]

Esta determinística de manera que

\[
\frac{\Delta y}{\Delta x} = h f(x, y) - h f'(x, y) = 0.
\]

Onde

\[
h f^p - h f' + \frac{h^2}{2} y'' + \frac{h^3}{3} y''' + \frac{h^4}{4} y^{(4)}.
\]
Con esta relación para e, el método (3.2) viene a ser:

\[
\begin{align*}
y_{n+1} &= y_n + \frac{h}{6} y'' + \frac{h^3}{3!} y''' + \frac{h^4}{4!} y^IV + \frac{1}{5} h f(x_{n+1}, y_{n+1}) - f_n^e \\
\frac{h^2}{2!} y''_{n+1} &= \frac{h^2}{2!} y'' + 3 \frac{h^3}{3!} y''' + 4 \frac{h^4}{4!} y^IV + \frac{1}{5} h f(x_{n+1}, y_{n+1}) - f_n^e \\
\frac{h^3}{3!} y'''_{n+1} &= \frac{h^3}{3!} y''' + 6 \frac{h^4}{4!} y^IV + 2 h f(x_{n+1}, y_{n+1}) - f_n^e \\
\frac{h^4}{4!} y^IV_{n+1} &= \frac{h^4}{4!} y^IV + h f(x_{n+1}, y_{n+1}) - f_n^e
\end{align*}
\]

(3.5)

 Nótese que la primera ecuación de (3.5) constituye una fórmula implícita para y_{n+1} y las restantes son explícitas.

Observemos que para una suficiente precisión de la aproximación de $y^{(j)}_n$ a $y^{(j)}(x_n)$, el valor de e (relación (3.4)) es una aproximación para $y^{(5)}(x_n)$, lo cual parece ser una buena propiedad desde el punto de vista de la precisión. Sin embargo, este método (3.5) es inestable. Para ver esto, pongamos $f(x, y) = 0$ en (3.5). Entonces el método viene a ser para este caso la transformación lineal

\[
v_{n+1} = N v_n,
\]

(3.6)

donde

\[
N = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1/5 \\ 1 \\ 2 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \end{pmatrix},
\]
entonces

\[
N = \begin{pmatrix}
1 & 4/5 & 3/5 & 2/5 & 1/5 \\
0 & 0 & 0 & 0 & 0 \\
0 & -2 & -3 & -3 & -2 \\
0 & -2 & -4 & -5 & -4 \\
0 & -1 & -2 & -3 & -3 \\
\end{pmatrix}
\]

Los autovalores de \(N \) dados por \(\det[\lambda I - N] = 0 \) son 0, 1, -1, -5+2\sqrt{6} y -5+2\sqrt{6}, lo cual implica que (3.5) es inestable. Sin embargo, a fin de salvar esta dificultad, Nordsieck propuso reemplazar las constantes 1/5, 1, 2, 2, 1 que aparecen delante de los paréntesis por adecuados nuevos valores (\(c_0, c_1, c_2, c_4, c_5 \)), y usar esta flexibilidad para conseguir estabilidad.

En general, el método puede escribirse en la forma compacta como

\[
v_{n+1} = (P \otimes I) v_n + (c \otimes I) \left(h f(x_{n+1}, y_{n+1}) - (e_1^T P \otimes I) v_n \right),
\]

(3.7)

donde \(v_n \) es dado por (3.1), \(I \in \mathbb{R}^{m \times m} \) es la matriz identidad, \(P \in \mathbb{R}^{(k+1) \times (k+1)} \), donde \(k \) es el mayor orden de la derivada del vector Nordsieck, \(P \) es denominada la matriz de Pascal definida por

\[
P_{ij} = \begin{cases}
\binom{j}{i} & \text{para } 0 \leq i \leq j \leq k \\
0 & \text{de caso contrario,}
\end{cases}
\]

(3.8)

\(P \otimes I \) denota nuevamente el producto tensorial de Kronecker, es decir, tenemos que \(P \otimes I \in \mathbb{R}^{m(k+1) \times m(k+1)} \) con los \((m \times m)\)-bloques \(P_{ij}I \), \(m \) es la dimensión de la ecuación diferencial (1.1)), \(c = (c_0, c_1, ..., c_k)^T \) y \(e_1 = (0, 1, 0, ..., 0)^T \). Nótese que el índice tanto para vectores y matrices empieza en cero.
En la finalidad de simplificar la notación en lo posterior solamente discutiremos una ecuación diferencial escalar (i.e., de dimensión \(n - 1 \)). La extensión a sistemas de ecuaciones \((m \geq 2) \) es directa, aunque notacionalmente compleja. Así el método (3.7) viene a ser

\[
v_{n+1} = P v_n + c \left(h f_{n+1} - c^T_1 P v_n \right)
\]

(3.9)
donde \(f_{n+1} = f(x_{n+1}, y_{n+1}) \). Aún queda pendiente determinar las componentes del nuevo vector \(c \) a fin de obtener la mejor estabilidad posible.

La condición (3.3) que relaciona el método con la ecuación diferencial fija el valor de \(c_1 \) como

\[
c_1 = 1.
\]

(3.10)

Analizando la estabilidad del método (3.9), haciendo \(f(x, y) = 0 \) como arriba, obtenemos la ecuación de diferencia (3.6) donde

\[
N = P - c_0^T P.
\]

(3.11)

Para nuestro particular caso, \(k = 4 \), la matriz es dada por

\[
N = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 3 & 6 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix} - \begin{pmatrix} c_0 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix}
\]

\[
\begin{pmatrix} c_0 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 3 & 6 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 3 & 6 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_0 & 2c_0 & 3c_0 & 4c_0 \\
0 & 1 & 2 & 3 & 4 \\
0 & c_2 & 2c_2 & 3c_2 & 4c_2 \\
0 & c_3 & 2c_3 & 3c_3 & 4c_3 \\
0 & c_4 & 2c_4 & 3c_4 & 4c_4
\end{pmatrix}
\]

entonces

\[
N = \begin{pmatrix}
1 & 1-c_0 & 1-2c_0 & 1-3c_0 & 1-4c_0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -c_2 & 1-2c_2 & 3-3c_2 & 6-4c_2 \\
0 & -c_3 & -2c_3 & 1-3c_3 & 4-4c_3 \\
0 & -c_4 & -2c_4 & -3c_4 & 1-4c_4
\end{pmatrix}
\]

Observemos que 1 y 0 son dos autovalores de \(N\) y que su polinomio característico determinado por \(\det[\lambda I - N]\) es

\[
p(\lambda) = \lambda(\lambda - 1) \begin{vmatrix}
1 - 2c_2 - \lambda & 1 - 3c_3 - \lambda & 4 - 4c_3 \\
-3c_4 & 1 - 4c_4 - \lambda & 0 \\
3 - 3c_2 & 6 - 4c_2 & -2c_4 \\
-3c_4 & 1 - 4c_4 - \lambda & 1 - 3c_3 - \lambda
\end{vmatrix}
\]

\[
= \lambda(\lambda - 1)\{ -\lambda^3 + \lambda^2(-4c_4 - 3c_3 - 2c_2 + 3) \\
+ \lambda(-16c_4 + 4c_2 - 3) + (-4c_4 + 3c_3 - 2c_2 + 1) \},
\]

el cual es independiente de \(c_0\). En general, Nordsieck determinó \(c_2, \ldots, c_k\) de modo que los distintos autovalores de \(N\) sean cero. Para nuestro caso \(k = 4\), determinemos estos valores igualando a cero los coeficientes del polinomio \(p(\lambda)\) encerrados entre
parentesis, i.e.,

\[-4c_4 - 3c_3 - 2c_2 + 3 = 0\]
\[-16c_4 + 4c_2 - 3 = 0\]
\[-4c_4 + 3c_3 - 2c_2 + 1 = 0\]

resolviendo este sistema de ecuaciones tenemos que \(c_2 = 11/12, c_3 = 1/3, y c_4 = 1/24\).

Finalmente, el coeficiente \(c_0\) puede ser escogido de modo que la constante de error del método dada por \(C = -\frac{b^T c}{k! l_k}\) (véase Teorema 3.2 líneas abajo) desaparezca. En nuestro caso uno tiene que

\[
C = -\frac{(1, -1/2, 1/6, 0, -1/30)(c_0, 1, 11/12, 1/3, 1/24)^T}{4! (1/24)} = 0
\]

resultando \(c_0 = \frac{215}{720}\). Así el método es dado por

\[
c = \left(\frac{215}{720}, 1, \frac{11}{12}, \frac{1}{3}\right)^T,
\]

el cual, como veremos posteriormente, es único para cada caso.
3.2 Equivalencia con los métodos multipaso lineales

Es interesante notar que si efectuamos una eliminación de los términos \((\frac{h^4}{4!})y_n^{IV}\) y \((\frac{h^2}{2!})y_n^{II}\) de la fórmula (3.8) con los índices reducidos, esta nos conduce a

\[
\begin{align*}
 y_{n+1} &= y_n + h y_n' + \frac{251}{720} h (y_{n+1} - y_n) \\
 h y_{n+1}' &= h y_n' + h (y_{n+1}' - y_n') \\
 0 &= \frac{11}{12} h (y_n' - y_{n-1}) \\
 0 &= \frac{1}{3} h (y_{n-1}' - y_{n-2}) \\
 0 &= \frac{1}{34} h (y_{n-2}' - y_{n-3}),
\end{align*}
\]

donde multiplicando por \(\frac{50}{11(20)}\), \(-\frac{87(3)}{720}\) y \(\frac{24(12)}{720}\) la tercera, cuarta y quinta relación respectivamente y sumando miembro a miembro las ecuaciones del sistema obtenemos

\[
y_{n+1} = y_n + \frac{h}{720} \left(251 y_{n+1}' + 646 y_n' - 264 y_{n-1}' + 106 y_{n-2}' - 19 y_{n-3}'\right),
\]

resultando el método implícito Adams de 4 - pasos. Este resultado no es una coincidencia fortuita, sino era de esperar, pues en verdad los métodos Nordsieck son equivalentes a los métodos multipaso, lo que ya fue señalado por Nordsieck (1962).

Los siguientes teoremas establecen esta conexión entre los métodos Nordsieck y los métodos multipaso.

Teorema 3.1 Dado el método Nordsieck (3.9), donde \(c_1 = 1\), entonces los dos primeros componentes de \(v_n\) satisfacen la fórmula multipaso lineal (para \(n \geq 0\))

\[
\sum_{i=0}^{k} a_i y_{n+i} = h \sum_{i=0}^{k} b_i f_{n+i}
\]

(3.12)
donde los polinomios generadores son dados por

\[\alpha(\zeta) = \det(\zeta I - P)c_1^T(\zeta I - P)^{-1}c\] (3.13)

\[\beta(\zeta) = \det(\zeta I - P)c_0^T(\zeta I - P)^{-1}c\]

donde \(P\) es la matriz de Pascal (3.8), y los vectores \(e_0^T = (1, 0, \ldots, 0), e_1^T = (0, 1, 0, \ldots, 0),\)
y \(c = (c_0, c_1, \ldots, c_k)^T\)

Prueba. (Hairer, Nørsett & Wanner (1993)) Si trabajamos con las funciones generatrices (transformación discreta de Laplace)

\[V(\zeta) = \sum_{n \geq 0} v_n \zeta^n, \quad Y(\zeta) = \sum_{n \geq 0} y_n \zeta^n, \quad F(\zeta) = \sum_{n \geq 0} f_n \zeta^n, \ldots\]

Si multiplicamos la fórmula (3.9) por \(\zeta^{n+1}\) y sumamos resulta

\[V(\zeta) = \zeta PV(\zeta) + c \left(hF(\zeta) - e_1^T P \zeta V(\zeta) \right) + (v_0 - chf_0). \quad (3.14)\]

Así también, el método multipaso lineal (3.12) puede escribirse utilizando las funciones generatrices y multiplicando por \(\zeta^k\) para obtener

\[\tilde{\alpha}(\zeta)Y(\zeta) = h\tilde{\beta}(\zeta)F(\zeta) + p_{k-1}(\zeta) \quad (3.15)\]

donde

\[\tilde{\alpha}(\zeta) = \zeta^k \alpha(1/\zeta), \quad \tilde{\beta}(\zeta) = \zeta^k \beta(1/\zeta), \quad (3.16)\]
y \(p_{k-1}(\zeta)\) es un polinomio a lo más de grado \(k - 1\), dependiendo de los valores iniciales.

En efecto,

\[\tilde{\alpha}(\zeta)Y(\zeta) = \sum_{i=0}^{k} a_i \zeta^{k-i} \left(\sum_{n \geq 0} y_n \zeta^n \right) - \sum_{n \geq 0} y_n \zeta^n \left(a_0 \zeta^k + a_1 \zeta^{k-1} + a_2 \zeta^{k-2} + \ldots + a_k \right)\]
\[
\begin{align*}
&= \sum_{n \geq 0} a_0 y_n \zeta^{n+k} + \sum_{n \geq 0} a_1 y_{n+1} \zeta^{n+k-1} + \sum_{n \geq 0} a_2 y_{n+2} \zeta^{n+k-2} + \ldots + \sum_{n \geq 0} a_k y_n \zeta^n \\
&= \sum_{n \geq 0} (a_0 y_n + a_1 y_{n+1} + a_2 y_{n+2} + \ldots + a_k y_{n+k}) \zeta^{n+k} + a_1 y_0 \zeta^{k-1} + \\
&\quad + a_2 y_1 \zeta^{k-2} + a_2 y_2 \zeta^{k-1} + \ldots + a_k y_0 + a_k y_1 \zeta + a_k y_2 \zeta^2 + \ldots + a_k y_{k-1} \zeta^{k-1} \\
&= h \sum_{n \geq 0} \left(\sum_{j=1}^{k} f_n \zeta^j b_0 \zeta^k + \sum_{j=1}^{k} f_n \zeta^j b_1 \zeta^{k-1} + \sum_{j=1}^{k} f_n \zeta^j b_2 \zeta^{k-2} + \ldots + \sum_{j=1}^{k} f_n \zeta^j b_k \right) \\
&\quad + h \sum_{j=1}^{k} \sum_{i=0}^{j-1} a_j y_i \zeta^{k-j+i} - h \left(b_1 f_0 \zeta^{k-1} + b_2 f_1 \zeta^{k-2} + b_2 f_1 \zeta^{k-1} + \ldots + \\
&\quad + b_k f_{k-1} \zeta^{k-1} + b_k f_{k-2} \zeta^{k-2} + \ldots + b_k f_0 \right) \\
&= h \sum_{n \geq 0} f_n \zeta^n \sum_{i=0}^{k} b_i \zeta^{k-i} + \sum_{j=1}^{k} \sum_{i=0}^{j-1} a_j y_i \zeta^{k-j+i} - h \left(\sum_{j=1}^{k} \sum_{i=0}^{j-1} b_j f_i \zeta^{k-j+i} \right) \\
&= h \beta(\zeta) F(\zeta) + \sum_{j=1}^{k} \sum_{i=0}^{j-1} \left(a_j y_i \zeta^{k-j+i} - h b_j f_i \zeta^{k-j+i} \right),
\end{align*}
\]

do

A fin de probar el teorema, mostremos que las dos primeras componentes de

\(V(\zeta) \)

satisfacen una relación de la forma (3.15). Para ello, primero reescribiremos la
ecuación (3.14) a la forma

\[
(I - \zeta P) V(\zeta) = c \left(h F(\zeta) - e_1^T P \zeta V(\zeta) \right) + (v_0 - ch f_0).
\]

Puesto que \((I - \zeta P)\) es regular, resulta

\[
V(\zeta) = (I - \zeta P)^{-1} c \left(h F(\zeta) - e_1^T P \zeta V(\zeta) \right) + (I - \zeta P)^{-1} (v_0 - ch f_0),
\]

donde sus dos primeras componentes vienen a ser

\[
Y(\zeta) = e_0^T (I - \zeta P)^{-1} c \left(h F(\zeta) - e_1^T P \zeta V(\zeta) \right) + e_0^T (I - \zeta P)^{-1} (v_0 - ch f_0),
\]

\[
h F(\zeta) = e_1^T (I - \zeta P)^{-1} c \left(h F(\zeta) - e_1^T P \zeta V(\zeta) \right) + e_1^T (I - \zeta P)^{-1} (v_0 - ch f_0).
\]
Ahora multiplicando la primera relación por $e_1^T(I - \zeta P)^{-1}c$ y la segunda relación por $-e_0^T(I - \zeta P)^{-1}c$, y sumándolas obtenemos:

$$e_1^T(I - \zeta P)^{-1}cY(\zeta) - he_0^T(I - \zeta P)^{-1}cF(\zeta) = e_1^T(I - \zeta P)^{-1}ce_0^T(I - \zeta P)^{-1}v_0 - e_0^T(I - \zeta P)^{-1}ce_1^T(I - \zeta P)^{-1}v_0,$$

pues

$$e_1^T(I - \zeta P)^{-1}ce_0^T(I - \zeta P)^{-1}c = e_0^T(I - \zeta P)^{-1}ce_1^T(I - \zeta P)^{-1}c.$$

Luego obtenemos:

$$e_1^T(I - \zeta P)^{-1}cY(\zeta) = he_0^T(I - \zeta P)^{-1}cF(\zeta) + [e_1^T(I - \zeta P)^{-1}ce_0^T(I - \zeta P)^{-1}c - e_0^T(I - \zeta P)^{-1}ce_1^T(I - \zeta P)^{-1}c]v_0.$$

Si multiplicamos este último resultado por $\det(I - \zeta P)$, conseguimos la fórmula (3.15) con

$$\tilde{\alpha}(\zeta) = \det(I - \zeta P)e_1^T(I - \zeta P)^{-1}c,$$

$$\tilde{\beta}(\zeta) = \det(I - \zeta P)e_0^T(I - \zeta P)^{-1}c,$$

$$p_{k-1}(\zeta) = \det(I - \zeta P)[e_1^T(I - \zeta P)^{-1}ce_0^T(I - \zeta P)^{-1}c - e_0^T(I - \zeta P)^{-1}ce_1^T(I - \zeta P)^{-1}c]v_0 = (\tilde{\alpha}(\zeta)e_0^T - \tilde{\beta}(\zeta)e_1^T)(I - \zeta P)^{-1}v_0.$$

Y con la ayuda de (3.16) obtenemos las fórmulas (3.13), en efecto, pues

$$\alpha(1/\zeta) = \frac{1}{\zeta^k} \det(I - \zeta P)e_1^T(I - \zeta P)^{-1}c,$$

entonces

$$\alpha(\zeta) = \zeta^k \det(I - \frac{1}{\zeta} P)e_1^T(I - \frac{1}{\zeta} P)^{-1}c.$$
análogamente tenemos para $\beta(\zeta)$. Sin embargo, queda mostrar que p_{k-1} dado por (3.17) es un polinomio de grado $k - 1$. Puesto que $\det(I - \zeta P) = (1 - \zeta)^{k+1}$, entonces, $\alpha(\zeta)$ y $\beta(\zeta)$ se comportan como ζ^k cuando $|\zeta| \to \infty$, debido a que las componentes de $(I - \zeta I)^{-1}$ tienen potencias negativas de grados que van de 1 hasta $k+1$. Eso implica que $\tilde{\alpha}(\zeta)e_0 - \tilde{\beta}(\zeta)e_1$ también se comporta como ζ^k cuando $|\zeta| \to \infty$. Sin embargo, al multiplicar $\alpha(\zeta)e_0 - \beta(\zeta)e_1$ con $(I - \zeta P)^{-1}v_0$ (que es p_{k-1}) esta nueva expresión se comporta como ζ^{k-1} cuando $|\zeta| \to \infty$ por el mismo argumento anterior. Además, por la relación (3.15) tenemos que $p_{k-1}(\zeta) = \tilde{\alpha}(\zeta)Y(\zeta) - h\tilde{\beta}(\zeta)F(\zeta)$, lo cual implica que su serie de Laurent no puede contener potencias negativas. ■

Analicemos los polinomios generadores (3.13), con la finalidad de obtener información adicional acerca del método (3.8). Para ello, los representaremos en una forma más conveniente. Hacemos $(\zeta I - P)^{-1}c = d$, de donde $(\zeta I - P)d = c$. Si aplicamos la regla de Cramer para resolver este sistema lineal, tenemos que de (3.13)

$$\alpha(\zeta) = \det \begin{pmatrix} \zeta - 1 & c_0 & -1 & \cdots & -1 \\ 0 & c_1 & -2 & \cdots & -k \\ 0 & c_2 & \zeta - 1 & \cdots & -\frac{k(k-1)}{2!} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & c_k & 0 & \cdots & \zeta - 1 \end{pmatrix}$$

(3.18)
\[\beta(\zeta) = \det \begin{pmatrix}
 c_0 & -1 & -1 & \cdots & -1 \\
 c_1 & \zeta - 1 & -2 & \cdots & -k \\
 c_2 & 0 & \zeta - 1 & \cdots & -\frac{k(k-1)}{2!} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 c_k & 0 & 0 & \cdots & \zeta - 1
\]

(3.19)

cuyas componentes (para cada matriz) de la parte triangular superior, a excepción de la diagonal principal y el elemento \(c_0 \) para \(\alpha(\zeta) \) son los componentes de \(I' \) de (3.8) con signo negativo. Nótese también que \(\alpha(\zeta) \) no depende de \(c_0 \), lo cual es inmediato si calculamos la determinante con respecto a la primera columna. Además \(\zeta_0 = 1 \) es una raíz simple de \(\alpha(\zeta) \) si y sólo si \(c_k = 0 \), pues si \(c_k = 0 \), la última fila de (3.18) es cero, entonces

\[\alpha(1) = 0, \]

y efectuando unos cuantos cálculos se observa que \(\alpha'(1) = k!c_k \) (compárese Hairer, Nørsett & Wanner (1993)) Por otro lado, para \(\beta(1) \), resolviendo la última fila resulta que \(\beta(1) = k!c_k \). Por lo tanto,

\[\beta(1) = \alpha'(1) = k!c_k, \quad c_k = 0, \]

(3.20)

de donde podemos decir que el método es consistente del orden 1 (véase Sección 1.3.2). También tenemos que la condición (3.10) es equivalente a considerar \(a_k = 1 \).

Para determinar el orden y error constante (véase Sección 1.3.3) de un método Nordsieck es necesario el siguiente resultado:
Teorema 3.2 Asumiendo que \(c_k
eq 0 \). El método multipaso definido por (3.12) es de orden al menos \(k \) y su error constante es dado por

\[
C = -\frac{b^T c}{k! c_k},
\]

donde los componentes de

\[
b^T = (B_0, B_1, \ldots, B_k) = (1, -1/2, 1/6, 0, -1/30, 0, 1/42, \ldots)
\]

son los números de Bernoulli.\(^1\)

Prueba. Tenemos que el método multipaso es de orden \(k \) si y sólo si (véase Teorema 1.8)

\[
\alpha(\zeta) - \log \zeta \beta(\zeta) = C_{k+1}(\zeta - 1)^{k+1} + \mathcal{O}\left((\zeta - 1)^{k+2}\right),
\]

puesto que

\[\log \zeta - (\zeta - 1) + \mathcal{O}\left((\zeta - 1)^2\right).\]

Como \(\det(I \zeta - P) = (\zeta - 1)^{k+1} \), la ecuación anterior es, por (3.13), equivalente a

\[
e_1^T (I \zeta - P)^{-1} c - \log \zeta e_0^T (I \zeta - P)^{-1} c = C_{k+1} + \mathcal{O}\left((\zeta - 1)\right).
\]

\(^1\) Conviene mencionar que existen tablas de los números de Bernoulli \(B_k \). Los números \(B_k/q! \) son, por definición, los coeficientes de la serie de MacLaurin

\[
\frac{t}{e^t - 1} = 1 + B_1 t + B_2 t^2 + B_3 t^3 + B_4 t^4 + \ldots,
\]

donde todos los números de Bernoulli impares, salvo \(B_1 = -1/2 \), son nulos. El cálculo recursivo de los polinomios de Bernoulli es dado por:

\[
B_0(t) = 1, \quad B'_k(t) = B_{k+1}(t),
\]

donde

\[
B_k(t) dt = 0, \quad k = 1, 2, \ldots.
\]

Los números de Bernoulli son:

\[B_k = k! B_k(0), \quad k = 0, 1, \ldots\]
El error constante es según (1.32) definido como $C = \frac{c_{k+1}}{\beta(1)}$ y por (3.20) basta mostrar entonces que

$$(\log \zeta e_0^T - e_1^T)(\zeta I - P)^{-1} = b^T + O((\zeta - 1)).$$

(3.21)

Denotaremos el miembro derecho de (3.21) por $b^T(\zeta)$ obteniendo

$$(\zeta I - P)^T b(\zeta) = (\log \zeta e_0 - e_1).$$

(3.22)

Tenemos que la q-ésima componente ($q \geq 2$) de esta ecuación es

$$\zeta b_q(\zeta) - \sum_{j=0}^{q} \binom{q}{j} b_j(\zeta) = 0.$$

Si multiplicamos por $\frac{1}{q!}$ tenemos:

$$\frac{\zeta b_q(\zeta)}{q!} - \sum_{j=0}^{q} \frac{b_j(\zeta)}{j!} \frac{1}{(q-j)!} = 0.$$

Ahora, si multiplicamos a cada q-ésima componente de (3.22) por t^q, $q = 0, 1, 2, \ldots$, resulta

$$\zeta b_0(\zeta) - b_0(\zeta) = \log \zeta,$$

$$\zeta t b_1(\zeta) - \sum_{j=0}^{1} \frac{t b_j(\zeta)}{j!} \frac{1}{(1-j)!} = -t,$$

$$\frac{\zeta t^2}{2!} b_2(\zeta) - \sum_{j=0}^{2} \frac{t^2 b_j(\zeta)}{j!} \frac{1}{(2-j)!} = 0,$$

$$\frac{\zeta t^3}{3!} b_3(\zeta) - \sum_{j=0}^{3} \frac{t^3 b_j(\zeta)}{j!} \frac{1}{(3-j)!} = 0,$$

...

y sumando miembro a miembro tenemos

$$\zeta \sum_{q=0}^{t^q} \frac{t^q b_q(\zeta)}{q!} - \sum_{q=0}^{t^q} \frac{t^q b_q(\zeta)}{j!} \frac{1}{(q-j)!} = \log \zeta - t,$$

$$\zeta \sum_{q=0}^{t^q} \frac{t^q b_q(\zeta)}{q!} - \sum_{q=0}^{t^q} \frac{t^q b_q(\zeta)}{q!} \sum_{q=0}^{t^q} \frac{t^q b_q(\zeta)}{q!} = \log \zeta - t,$$

\[
\zeta \sum_{q \geq 0} \frac{t^q}{q!} b_q(\zeta) - e^t \sum_{q \geq 0} \frac{t^q}{q!} b_q(\zeta) = \log \zeta - t.
\]

Entonces

\[
(e^t - \zeta) \sum_{q \geq 0} \frac{t^q}{q!} b_q(\zeta) = t - \log \zeta,
\]

y

\[
\sum_{q \geq 0} \frac{t^q}{q!} b_q(\zeta) = \frac{t - \log \zeta}{e^t - 1}.
\]

La función \(\zeta\) es el número áureo de Fibonacci.

Hasta el momento, hemos considerado que cada número de la sucesión de Fibonacci está dado en forma de valores en un conjunto de números reales. En este caso, se debe verificar que la función que se define es una función de tal forma que

Teorema 3.4 \(\zeta(\alpha(\zeta), \beta(\zeta))\) es la función generadora de la sucesión de orden \(s\) con \(a_0 = 1, a_1 = \beta\) y \(a_2 = \alpha\).

Esta función es única ya que, dadas las condiciones iniciales y de orden, se puede determinar de manera unívoca.
Prueba. Primero mostremos la existencia de un único vector c para cada método multipasó:

$i)$ Para cada método multipasó de orden k el polinomio $\alpha(\zeta)$ es únicamente determinado por $\beta(\zeta)$ (véase Teorema 1.8). Desarrollando la determinante (3.19) con respecto a la primera columna tenemos que

$$\beta(\zeta) = c_0 (\zeta - 1)^k + c_1 (\zeta - 1)^{k-1} r_1(\zeta) + c_2 (\zeta - 1)^{k-2} r_2(\zeta) + \ldots + c_k r_k(\zeta),$$

donde $r_j(\zeta)$ es un polinomio de grado j que satisface $r_j(1) = 0$. Así, c puede ser calculado de $\beta(\zeta)$.

Ahora mostremos que cada método multipasó puede expresarse como un método Nordsieck mediante una transformación adecuada

$ii)$ Sean dados y_0, \ldots, y_{k-1} y f_0, \ldots, f_{k-1}. Entonces, el polinomio $p_{k-1}(\zeta)$ de grado $k - 1$ que aparece en (3.15) satisface

$$p_{k-1}(\zeta) = u_0^{(0)} + u_1^{(0)} \zeta + u_2^{(0)} \zeta^2 + \ldots + u_{k-1}^{(0)} \zeta^{k-1}.$$

Por otro lado, conocemos el vector inicial v_0 para el método de Nordsieck definido por c de $i)$, entonces el polinomio $p_{k-1}(\zeta)$ es expresado por (3.17). Luego si igualamos ambas expresiones, resulta

$$\sum_{j=0}^{k-1} u_j^{(0)} \zeta^j - \tilde{\alpha}(\zeta) e_0^T - \tilde{\beta}(\zeta) e_1^T (I - \zeta P)^{-1} v_0.$$

(3.25)

Denotando por t_j^T ($j = 0, \ldots, k - 1$) los coeficientes del vector polinomial

$$(\tilde{\alpha}(\zeta) e_0^T - \tilde{\beta}(\zeta) e_1^T (I - \zeta P)^{-1} = \sum_{j=0}^{k-1} t_j^T \zeta^j$$

(3.26)

y pongamos $t_k^T = e_1^T$. Entonces si T es la matriz cuadrada de transformación cuya j-ésima fila es t_j^T, de manera que $u_0 - Tv_0$ es un resultado de (3.25) y $hf_n = hy'_n$.

Ahora aplicamos el mismo argumento para \(y_1, \ldots, y_{n+k-1} \) y \(f_1, \ldots, f_{n+k-1} \), y obtenemos
\[u_n = T u_n \] para todo \(n \). Sin embargo, resta verificar la no-singularidad de \(T \). Para ello
consideraremos \(w = (w_0, w_1, \ldots, w_k)^T \) un vector no-nulo que satisface \(T w = 0 \). Puesto
que \(t_k^T = e_1^T \), necesariamente tenemos que \(w_1 = 0 \), y de (3.26) se sigue (usando la
transformación (3.16)) que
\[
(\tilde{\alpha}(\zeta)v_0^T)(I - \zeta P)^{-1}w = (\tilde{\beta}(\zeta)e_1^T)(I - \zeta P)^{-1}w
\]
\[
\alpha(\zeta)\text{det}(\zeta I - P)e_0^T(I - \zeta P)^{-1}w = \beta(\zeta)\text{det}(\zeta I - P)e_1^T(I - \zeta P)^{-1}w,
\]
luego
\[
\alpha(\zeta) \sigma_0(\zeta) = \beta(\zeta) \sigma_1(\zeta),
\] (3.27)
donde \(\sigma_i(\zeta) = \text{det}(\zeta I - P)e_i^T(\zeta I - P)^{-1}w \) para \(i = 0, 1 \) son polinomios de grado a
lo más \(k \) (véase prueba del Teorema 3.1). Mas aún, si hacemos \((\zeta I - P)^{-1}w = s \),
de donde \((\zeta I - P)s = w \) y aplicamos la regla de Cramer para resolver este sistema,
tenemos que
\[
\sigma_1(\zeta) = \text{det}
\begin{pmatrix}
\zeta - 1 & w_0 & -1 & \cdots & -1 \\
0 & 0 & -2 & \cdots & -k \\
0 & w_2 & \zeta - 1 & \cdots & -\frac{k(k-1)}{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & w_k & 0 & \cdots & \zeta - 1
\end{pmatrix}
\]
es de grado a lo más \(k - 1 \), puesto que \(w_1 = 0 \). Entonces en (3.27) al menos una de
las raíces de \(\alpha(\zeta) \) debe ser una raíz de \(\beta(\zeta) \), lo cual contradice la suposición de que
el método es irreducible y queda así probado el teorema. ■
<table>
<thead>
<tr>
<th>k</th>
<th>c_0</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
<th>c_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1/2$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$5/12$</td>
<td>1</td>
<td>$1/2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$3/8$</td>
<td>1</td>
<td>$3/4$</td>
<td>$1/6$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$251/720$</td>
<td>1</td>
<td>$11/12$</td>
<td>$1/3$</td>
<td>$1/24$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$95/288$</td>
<td>1</td>
<td>$25/24$</td>
<td>$35/72$</td>
<td>$5/48$</td>
<td>$1/120$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$19087/60480$</td>
<td>1</td>
<td>$137/120$</td>
<td>$5/8$</td>
<td>$17/96$</td>
<td>$1/40$</td>
<td>$1/720$</td>
</tr>
</tbody>
</table>

Tabla 3.1 Coeficientes c_j de los métodos implícitos Adams de k – pasos

Los vectores c que corresponden a los métodos implícitos de Adams y a los métodos BDF son dados en las Tablas 3.1 y 3.2 respectivamente. Para estas dos clases de métodos posteriormente investigaremos la equivalencia en la representación de Nordzieck con mayor detalle (véase Sección 3.3)

<table>
<thead>
<tr>
<th>k</th>
<th>c_0</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
<th>c_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$2/3$</td>
<td>1</td>
<td>$1/3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$6/11$</td>
<td>1</td>
<td>$6/11$</td>
<td>$1/11$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$12/25$</td>
<td>1</td>
<td>$7/10$</td>
<td>$1/5$</td>
<td>$1/50$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$60/137$</td>
<td>1</td>
<td>$225/274$</td>
<td>$85/274$</td>
<td>$15/274$</td>
<td>$1/274$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$20/49$</td>
<td>1</td>
<td>$58/63$</td>
<td>$5/12$</td>
<td>$25/252$</td>
<td>$1/84$</td>
<td>$1/1764$</td>
</tr>
</tbody>
</table>

Tabla 3.2 Coeficientes c_j de los métodos-BDF de k – pasos
3.3 Métodos más usuales en la representación de Nordsieck

Los códigos para la integración numérica de problemas de valor inicial, basados en fórmulas multipaso, usualmente cambian la longitud de paso de acuerdo a un cierto criterio de estimación del error local (véase Cap. 4). Existen diversas publicaciones referentes a los métodos Nordsieck, las cuales buscan aprovechar su especial representación para la integración numérica de la ecuación del problema ordinario de valor inicial (1.1). Una de las más importantes es debida a Byrne & Hindmarsh (1975) (pp. 88), ellos señalaron que las ventajas generalmente atribuidas al uso de un arreglo de Nordsieck son las siguientes: "para un orden dado, el arreglo es el mismo, no importando cual sea el método multipaso ..., y así, puede ser usado para más de uno dicho método a un mismo tiempo. Si la longitud de paso h es cambiada, el ajuste de u_n es trivial, uno solamente debe reescalar u_n por potencias de $\rho = h_{\text{new}}/h_{\text{old}}$ Más aún, el costo añadido asociado con la longitud de paso variable y el orden variable, no parece ser apreciablemente grande que para cualquier otro tipo de arreglo". Byrne & Hindmarsh obtuvieron muy buenos resultados, empleando la representación de Nordsieck en la elaboración de su código EPISODE y los sucesores VODE y LSODE.

Puesto que cada método multipaso posee una equivalencia en la representación de Nordsieck, esta sección se dedica a encontrar dicha representación para los métodos multipaso más populares tales como los métodos implícitos de Adams y los BDF.
3.3.1 Métodos Adams implícitos

Para representar los métodos implícitos de Adams en la equivalencia de Nordsieck, recurrimos a los resultados debidos a Byrne & Hindmarsh (1975). Los métodos Adams definen un polinomio que aproxima la solución desconocida del problema (1.1). En particular, si son dados \(y_n, f_n, f_{n-1}, \ldots, f_{n-k+1} \), entonces el método Adams de \(k \)-pasos es equivalente a la construcción de un polinomio \(p_{n+1}(x) \) de grado \(k+1 \), el cual satsface las \(k+3 \) condiciones siguientes

\[
\begin{aligned}
 p_{n+1}(x_n) &= y_n, & p_{n+1}(x_{n+1}) &= y_{n+1}, \\
p_{n+1}'(x_j) &= f_j & \text{para } j &= n-k+1, \ldots, n+1.
\end{aligned}
\] (3.28)

Aquí esta condición (3.28) implícitamente define \(y_{n+1} \). Ahora consideremos un polinomio \(p_{(n)}(x) \) de grado \(k+1 \), consecutivo a \(p_{(n+1)}(x) \) dado por

\[
\begin{aligned}
p_{(n)}(x_n) &= y_n, \\
p_{(n)}'(x_j) &= f_j & \text{para } j &= n-k, \ldots, n.
\end{aligned}
\] (3.29)

Tenemos que la diferencia de los polinomios, \(p_{(n+1)}(x) - p_{(n)}(x) \), de (3.28) y (3.29) respectivamente, se anula en \(x_n \) y su derivada es cero en \(x_{n-k+1}, \ldots, x_n \). Por esto definimos \(e_{n+1} = y_{n+1} - p_{(n)}(x_{n+1}) \), con la diferencia de que estos polinomios puede escribirse como

\[
p_{(n+1)}(x) - p_{(n)}(x) = \Lambda \left(\frac{x - x_{n+1}}{x_{n+1} - x_n} \right) e_{n+1},
\] (3.30)

donde \(\Lambda \) es el único polinomio de grado \(k+1 \) definido por

\[
\begin{aligned}
 \Lambda(0) &= 1, & \Lambda(-1) &= 0, \\
 \Lambda' \left(\frac{x_j - x_{n+1}}{x_{n+1} - x_n} \right) &= 0 & \text{para } j &= n-k+1, \ldots, n.
\end{aligned}
\] (3.31)
Derivando (3.30) y tomando esta derivada en $x = x_{n+1}$, tenemos

$$f_{n+1} - p'_n(x_{n+1}) = \frac{1}{x_{n+1} - x_n} \Lambda'(0) e_{n+1},$$

haciendo $h_n = x_{n+1} - x_n$, resulta

$$h_n f_{n+1} - h_n p'_n(x_{n+1}) = \Lambda'(0) e_{n+1}.$$

Consideremos para nuestro caso el vector Nordsieck dado por

$$\hat{v}_n = \left(p_n(x_n), h_n p'_n(x_n), \frac{h_n^2}{2!} p''_n(x_n), \ldots, \frac{h_n^{k+1}}{(k+1)!} p^{(k+1)}_n(x_n) \right)^T$$

y los coeficientes \hat{c}_j por

$$\Lambda(i) = \sum_{j=0}^{k+1} \hat{c}_j t^j.$$ (3.32)

Así se cumple

$$p_{n+1}(x) - p_n(x) = \Lambda \left(\frac{x - x_{n+1}}{x_{n+1} - x_n} \right) \left(\Lambda'(0) \right)^{-1} (h_n f_{n+1} - h_n p'_n(x_{n+1})), \tag{3.33}$$

la cual es equivalente a

$$\hat{v}_{n+1} = P \hat{v}_n + \hat{c}_1^{-1} \left(h f_{n+1} - e_1^T P \hat{v}_n \right), \tag{3.34}$$

donde $\hat{c} = (\hat{c}_0, \hat{c}_1, \hat{c}_2, \ldots, \hat{c}_{k+1})^T$, y multiplicamos por \hat{c}_1^{-1} para que se cumpla la condición (3.9), P es la matriz de Pascal dada por (3.10), y $e_1^T = (0, 1, 0, \ldots, 0)$,
\[
\begin{align*}
&\left(\hat{c}_1^{-1} \right) \left(h_n f_{n+1} - h_n \hat{P}_n(x_n) - 2 \frac{h_n^2}{2!} \hat{P}_n''(x_n) - \ldots - (k+1) \frac{h_n^{k+1}}{(k+1)!} \hat{P}_n^{(k+1)}(x_n) \right) \\
&\left(\hat{c}_1^{-1} \right) \left(h_n f_{n+1} - h_n \hat{P}_n(x_n) - 2 \frac{h_n^2}{2!} \hat{P}_n''(x_n) - \ldots - (k+1) \frac{h_n^{k+1}}{(k+1)!} \hat{P}_n^{(k+1)}(x_n) \right) \\
&\left(\hat{c}_1^{-1} \right) \left(h_n f_{n+1} - h_n \hat{P}_n(x_n) - 2 \frac{h_n^2}{2!} \hat{P}_n''(x_n) - \ldots - (k+1) \frac{h_n^{k+1}}{(k+1)!} \hat{P}_n^{(k+1)}(x_n) \right)
\end{align*}
\]

en el texto, este método es de la forma (2.6), sin embargo, notice que el Dimensión $d = 0$ y no, como esperábamos por el Teorema 3.3, de dimensión $k = 1$. La resta de demostrar sean $A(j)$ y $\hat{c}(j)$ los polinomios generadores del método múltiple independientes a (1.14). Sin embargo, de (3.11) tenemos que

\[
A(j) = A'(3) = 0,
\]

o lo cual tiene que $A(0) = 0$, esto implica que $A(0) = 0$, haciendo de esta el método reducido (véase Sección 3.5.4). A pesar de esto, el método (3.34) es útil ya que la última componente de σ puede usarse para el control de la longitud de paso.

El cálculo de los coeficientes σ_j para $j = 0, \ldots, k - 1$, definidos por (3.32), y que dependen de las relaciones de las longitudes para x_j, σ_j para $j = 0, \ldots, k - 1$, puede ser calculado por la fórmula

\[
\Delta(z) = \frac{\int_{s_0}^{s} \prod_{j=1}^{k} (s - t_j) ds}{\prod_{j=1}^{k} \prod_{j=1}^{k} (s - t_j)}
\]

para $s > s_0$. (3.33)
consiste en construir un polinomio \(q_{n+1}(x) \), de grado \(k \), el cual satisface las \(k + 1 \) siguientes condiciones

\[
q_{n+1}(x_j) = y_j \quad \text{para } j = n - k + 1, \ldots, n + 1
\]

\[
q'_{n+1}(x_{n+1}) = f_{n+1}.
\]

Esta condición define \(y_{n+1} \) implícitamente, además tenemos que la diferencia de los dos polinomios consecutivos, \(q_{n+1}(x) - q_n(x) \), la cual escribimos como

\[
q_{n+1}(x) - q_n(x) = \Lambda \left(\frac{x_j - x_{n+1}}{x_{n+1} - x_n} \right) (y_{n+1} - q_n(x_{n+1}))
\]

(3.36)

donde \(\Delta(t) \) es el polinomio de grado \(k \), definido por

\[
\Lambda \left(\frac{x_j - x_{n+1}}{x_{n+1} - x_n} \right) = 0 \quad \text{para } j = n - k + 1, \ldots, n
\]

\(\Lambda(0) = 1. \)

Si introducimos el vector Nordheim

\[
\hat{v}_n = \left(q_n(x_n), h_n q_n'(x_n), \frac{h_n^2}{2} q_n''(x_n), \ldots, \frac{h_n^k}{k!} q_n^{(k)}(x_n) \right)^T
\]

y los coeficientes \(\hat{c}_j \) dados por

\[
\Lambda(t) = \prod_{j=1}^k \hat{c}_j t^j,
\]

(3.37)

entonces, la ecuación (3.32) es equivalente a

\[
\hat{v}_{n+1} = P \hat{v}_n + \hat{c}_{c_1}^{-1} (h f_{n+1} - c_1^T P \hat{v}_n)
\]

(3.38)

donde las componentes del vector \(\hat{c} = (\hat{c}_0, \hat{c}_1, \hat{c}_2, \ldots, \hat{c}_{k+1})^T \) definidas por (3.34) pueden calcularse de la fórmula

\[
\Lambda(t) = \prod_{j=1}^k \left(1 + \frac{t_j}{t_j} \right)
\]

(3.39)
Lisboa & Montijano (1987) encontraron que considerando ciertas estrategias de variación de la longitud de paso, que permiten un incremento sustancial en la longitud de paso.

\[
p
k \begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 1.732 & 3.000 & 5.196 & 9.000 & 15.588 & 27.000 & 46.765 \\
4 & 1.241 & 1.521 & 1.834 & 1.971 & 2.494 & 2.879 & 2.813 \\
5 & 1.130 & 1.269 & 1.337 & 1.536 & 1.681 & 1.752 & 1.983 \\
6 & 1.052 & 1.105 & 1.156 & 1.209 & 1.261 & 1.312 & 1.365 \\
\end{array}
\]

Tabla 3.4 Cotas \(\omega_k \) usando la estrategia de \(p \)-pasos constantes [Calvo et al. (1987)]

Para detallar esta estrategia de variación, primero supóngase que la longitud de paso para \(p \)-pasos es constante después de un determinado paso \(j \), i.e., la relación de longitud de paso \(\rho_j \) en un paso \(j \)-ésimo paso es \(\rho_j = 1 \), luego tenemos que \(\rho_{j+1} \ldots = \rho_{j+p-1} = 1 \), y después \(\rho_{j+p} = 1 \). Así tenemos un método BDF de \(k \)-pasos con estrategia de variación de paso \(p \). Bajo estas suposiciones, los intervalos de estabilidad experimentan una dilatación expresada en la Tabla 3.4.
4. Implementación y resultados numéricos
paso variable (2.6), aunque para ambas técnicas el cambio de la longitud de paso
no es tan sencilla, mientras que el cambio de orden es más simple puesto que sola-
mente debemos añadir un término más a la expansión (2.6) ó (1.11) respectivamente.
Además, podemos elegir entre la formulación de "diferencias divididas" (2.6) y/o la
representación de Nordsieck (3.34). Utilizando la representación de Nordsieck (3.34),
lav situación es distinta, puesto que el cambio de orden es costoso, pero la longitud de
paso puede ser cambiada simplemente por multiplicar el vector Nordsieck (3.1) por
la matriz $diag(1, \rho, \rho^2, \rho^3, \ldots)$ donde en un paso n, tenemos que $\rho = h_{n+1}/h_n$ es la
relación de las longitudes de paso.

4.1 Algunos esquemas de selección de longitud de paso y orden

Primero estudiaremos la selección de orden y longitud de paso para métodos de paso
variable dados en la forma de diferencias divididas (2.6), luego para métodos en la
representación de Nordsieck (3.34). La siguiente selección de orden y longitud de paso
fue, en principio, dada por Shampine & Gordon en 1975 y usada en la implementación
de su programa DEABM (al respecto véase e.g. Hairer, Nørsett & Wanner (1993) o
Shampine (1994)).

Para describir este esquema de selección, supóngase que la integración numérica
ha procedido satisfactoriamente hasta x_n, para una longitud de paso h_n y un orden
$k + 1$, lo cual nos proporciona la aproximación y_{n+1} para $y(x_{n+1})$. Con la finalidad de
poder decidir si esta aproximación y_{n+1} será aceptada o rechazada, debemos averiguar
si es o no adecuada. Por ello necesitamos una estimación del error de truncamiento
local \((el)\) (Definición 2.7). Así una estimación es e.g. representada por

\[
el_{k+1}(n+1) = y_{n+1} - y_{n+1},
\]
donde \(y_{n+1}\) es el resultado de la fórmula implícita de Adams de orden \((k+2)\). Restando la fórmula \((2.6)\), \(y_{n+1} = P_{n+1} + h_n g_k(n) \Phi_k(n+1)\), de sí misma, reemplazando \(k\) por \(k+1\), obtenemos:

\[
el_{k+1}(n+1) = P_{n+1,k+1} + h_n g_{k+1}(n) \Phi_{k+1}(n+1) - P_{n+1,k} + h_n g_k(n) \Phi_k(n+1),
\]

\[
y_n + h_n \sum_{j=0}^{k} g_j(n) \Phi_j(n) + h_n g_{k+1}(n) \Phi_{k+1}(n+1) - y_n - h_n \sum_{j=0}^{k-1} g_j(n) \Phi_j(n) - h_n g_k(n) \Phi_k(n+1),
\]

\[
y_n g_k(n) (\Phi_k(n) - \Phi_k(n+1)) + h_n g_{k+1}(n) \Phi_{k+1}(n+1),
\]
y por la relación de recurrencia \((2.8)\) tenemos:

\[
el_{k+1}(n+1) = h_n (g_{k+1}(n) - g_k(n)) \Phi_{k+1}(n+1),
\]
cuyo término principal es \(h_n (g_{k+1}(n) - g_k(n))\). Sin embargo, en vista de que el cálculo \(\Phi_{k+1}(n+1) = \prod_{i=0}^{k} (x_{n+1} - x_{n-i}) \delta^{k+1} f[x_{n+1}, x_n, \ldots, x_{n-k}]\) es difícil, puesto que \(\delta^{k+1} f[x_{n+1}, x_n, \ldots, x_{n-k}]\) depende implicitamente de \(y_{n+1}\), reemplazaremos esta expresión por:

\[
\Phi_{k+1}(n+1) = \prod_{i=0}^{k} (x_{n+1} - x_{n-i}) \delta^{k+1} f^p[x_{n+1}, x_n, \ldots, x_{n-k}],
\]
donde el superíndice \(p\) de \(f\) indica que \(f_{n+1} = f(x_{n+1}, y_{n+1})\) es sustituido por el valor \(f(x_{n+1}, p_{n+1})\) al formarse las diferencias divididas. Si resolvemos iterativamente la ecuación implícita \((2.6)\) con \(p_{n+1}\) como predictor, entonces se tiene que calcular
también $\Phi_{k+1}^p(n+1)$. Por consiguiente, el único costo para calcular la estimación

$$EL_{k+1}(n+1) = h_n (g_{k+1}(n) - g_k(n)) \Phi_{k+1}^p(n+1),$$

(4.2)
es el cálculo de $g_{k+1}(n)$. Una vez calculada la estimación (4.2), para que el paso sea satisfactorio, requerimos que

$$\|EL_{k+1}(n+1)\| \leq \varepsilon$$

(*)
en una norma adecuada,\(^1\) sin embargo algunos prefieren $\|EL_{k+1}(n+1)\| \leq h_n \tau$, donde $\tau > 0$ es una tolerancia dada por el usuario (véase Shampine (1994)).

Si asumimos que y_{n+1} es aceptado, entonces debemos elegir una nueva longitud de paso y un nuevo orden. El punto central del elegir una nueva longitud de paso está en encontrar el h_{n+1} más grande posible para que el error local sea aceptable, i.e., conseguir que

$$\|EL_{k+1}(n+2)\| \leq \varepsilon,$$

$$\overline{h_{n+1} |g_{k+1}(n+1) - g_k(n+1)| \|\Phi_{k+1}^p(n+2)\|} \leq \varepsilon.$$

\(^1\) Sin embargo Hairer, Nørsett & Wanner (1991), pp. 168, recomiendan estimar este error haciendo uso de la norma dada por:

$$\text{err} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{sc_i} \right)^2},$$

donde y_i y \hat{y}_i son dos aproximaciones a la solución, y

$$sc_i = Atol_i + \max(|y_{0i}|, |y_{1i}|) Rtol_i$$

donde $Atol_i$ y $Rtol_i$ son tolerancias arbitrarias dadas por el usuario (errores relativos son considerados para $Atol_i = 0$, y errores absolutos para $Rtol_i = 0$; usualmente ambas tolerancias son diferentes de cero y dependen de los componentes de la solución). En este caso la cota superior para el error es dado por la elección de sc_i y en (*) se puede poner $\varepsilon = 1$, correspondientemente se reemplazaría en este caso en la fórmula (4.3) para la elección de la nueva longitud de paso ε por 1.
Sin embargo, este procedimiento no es práctico en vista que las expresiones \(g_k(n + 1),\)
\(g_{k+1}(n + 1)\) y \(\Phi(n + 2)\) dependen de un modo muy complicado de la desconocida
longitud de paso \(h_{n+1}\), además el cálculo de los \(g_k(n + 1)\) y \(g_{k+1}(n + 1)\) es demasiado
costoso. Para salvar esta dificultad, consideremos una malla de nodos equidistantes, lo
cual es una suposición en cierto sentido ambigua puesto que tratamos con mallas no-
equidistantes, pero ello nos conducirá a obtener una fórmula más sencilla para la nueva
longitud de paso. Tenemos que el error local es de la forma \(C(x_{n+2})h^{k+2} + \mathcal{O}(h^{k+3})\)
para el método de orden \(k + 1\), donde \(C\) depende suavemente de \(x\), entonces
\[
C := C(x_{n+2}) = C(x_{n+1}) + \mathcal{O}(h) \approx C(x_{n+1}),
\]
luego, del comportamiento del error local
\[
\|C\| \approx \frac{\|EL_{k+1}(n + 1)\|}{h_n^{k+2}}.
\]
A fin de encontrar la nueva longitud de paso, exigimos que
\[
\left\|CH_{n_{nuevo}}^{k+2}\right\| = \frac{\|EL_{k+1}(n + 1)\|}{h_n^{k+2}}h_{n_{nuevo}}^{k+2} = \varepsilon,
\]
de donde
\[
h_{n_{nuevo}}^{(k+2)} = h_n\left(\frac{\varepsilon}{\|EL_{k+1}(n + 1)\|}\right)^{1/(k+2)}.
\]
(4.3)
El error local \(EL_{k+1}(n + 1)\) es dado por (4.2) ó, bajo la suposición de una malla
equidistante, según la fórmula (1.12) por
\[
EL_{k+1}(n + 1) = h_n\gamma_{k+1}^p \Phi_{k+1}^p(n + 1),
\]
(4.4)
donde los valores de \(\gamma^*_j \) son dados en la tabla 1.2. Sin embargo algunos programas prefieren mantener la longitud de paso constante si la relación de longitud de paso \(\rho_n = h_{n+1}/h_n \) es muy próxima a 1.

Ahora solo resta determinar un orden óptimo para los métodos multipaso. Para ello se calcula los errores \(EL_{k-1}(n+1), EL_k(n+1) \) y \(EL_{k+1}(n+1) \). Entonces el orden es reducido en 1, si se cumple

\[
\max (\|EL_{k-1}(n+1)\|, \|EL_k(n+1)\|) \leq \|EL_{k+1}(n+1)\|
\]

y es incrementado en 1 si

\[
\|EL_{k+2}(n+1)\| \leq \|EL_{k+1}(n+1)\|
\]

donde previamente se calcula la estimación \(EL_{k+2}(n+1) = h_n \gamma^*_k \Phi^{P}_{k+2}(n+1) \), usando el nuevo valor \(f_{n+1} = f(x_{n+1}, y_{n+1}) \), aunque señalemos que cada implementación de los métodos Adams contiene sus propios y distintos refinamientos (véase e.g. F.T. Krogh (1973)).

Ahora consideremos la representación de Nordsieck (3.34) en lugar de (2.6), aquí la estimación del error local no es tan sencilla, puesto que los \(\hat{v} \)-vectores son totalmente diferentes para órdenes diferentes. Un posible esquema de selección de orden y longitud de paso es propuesto por Byrne & Hindmarsh (1975), y fue utilizado en la implementación de su programa EPISODE, la cual describimos a continuación.

La finalidad es seleccionar la longitud de paso y el orden sobre la base del error local (Definición 2.7). Primero determinaremos este error usando los valores predecesos para los órdenes \(k-1, k, k+1 \), de los cuales el nuevo orden será elegido dependiendo
\begin{align*}
\psi(y + 1) &= \psi(y + 2) \\
\left(x_m + h \frac{\partial \Delta}{\partial x} \right)_{x = x_m} &= y(x_0).
\end{align*}

De las \(y(x) \) y \(y'(x) \), \(j = 0, 1, \ldots, 3n - 1 \), una orden de la función y la derivada a una aplicación continua \(y(x) \). Las \(\beta_{0,0} = 0, \ldots, \beta_{3n-1,0} \) son las soluciones del sistema
orden \(b \) y \(\beta_{0,0} = \beta_{0,0} \).

Ahora, como en (3.23), definamos un polinomio \(p_{n+1,0} \) de grado \(b \) y

\[p_{n+1,0}(x_n) = y(x_n), \]

\[p_{n+1,0}(x_{n+1}) = y(x_{n+1}), \]

para \(b + 1 \) y los \(X_{b+1} \) son el \(\Delta \) de la aplicación \(y(x) \), donde por los puntos \(a, a + h, \ldots, a + (n-1)h \) se

\[p_{n+1,k+1}(x_{n+1}) = y(x_{n+1}), \quad p_{n+1,k+1}(x_m) = y(x_m), \]

(4.2)

La diferencia de estas polinomios \(\Delta_i \) es una \(\Delta \) de los puntos de la

\[c \Delta_k(n + 1) = \Delta(x_{n+1}). \]

(4.3)

tomando las condiciones \(\Delta(x_0) = 0 \) y que \(\Delta(x_{n+1}) = 0 \), para \(i = 0, 1, \ldots, b + 1 \).

Por lo tanto se obtiene que

\[\Delta(x) = -c \int_{x_0}^{x_{n+1}} \psi \Delta \, dx. \]
para algún vector constante M. Pero $M/(k + 1)$ es el coeficiente principal del polinomio interpolante en (4.7), y así

$$M/(k + 1) = p_{n+1,k+1}^{(k+1)}(x_{n+1})/(k + 1)! = y^{(k+1)}(x_{n+1})/(k + 1)! + O(H),$$

donde $0 < \min\{h_i\}, \max\{h_i\} \leq H$. Sustituyendo en (4.8), y haciendo el cambio de variables $s = x_{n+1} + th, ds = hdt$ y $\xi_i = (x_{n+1} - x_{n-i+1})/h$ (donde por comodidad de notación $h = h_{n+1}$), obtenemos

$$el_k(n + 1) = \frac{y^{(k+1)}(x_{n+1})}{k!} \left(\int_0^1 \prod_{i=0}^{k-1} [ht + x_{n+1} + h\xi_i - x_{n+1}] \, hdt \right) + O(H^{k+2}),$$

entonces

$$el_k(n + 1) = \left(\int_0^1 \prod_{i=0}^{k-1} [t + \xi_i] \, dt/k! \right) h^{k+1} y^{(k+1)}(x_{n+1}) + O(H^{k+2}). \tag{4.9}$$

Estimaremos el término (asintótico) principal, usando el siguiente procedimiento. Esto primero requiere la fórmula asintótica para $y(x_{n+1}) - y_{n+1}$, donde y_{n+1} es calculado de (3.29) con los valores anteriores exactos $y_n = y(x_n)$, y también se tiene $f(x_{n-i+1}, y_{n-i+1}) = f(x_{n-i+1}, y(x_{n-i+1}))$, $i = 1, 2, \ldots, k - 1$. De las siguientes relaciones (usando (4.5)):

$$b_{n+1,0}h f(x_{n+1}, y_{n+1}) + h \sum_{i=1}^{k-1} b_{n+1,i} f(x_{n-i+1}, y(x_{n-i+1})) + y(x_n) - y_{n+1} = 0,$$

$$b_{n+1,0}h f(x_{n+1}, y(x_{n+1})) + h \sum_{i=1}^{k-1} b_{n+1,i} f(x_{n-i+1}, y(x_{n-i+1})) +$$

$$+ y(x_n) - y(x_{n+1}) = -el_k(n + 1).$$
Podemos estimar el error $y(x_{n+1}) - y_{n+1}$ consiguiendo

$$y(x_{n+1}) - y_{n+1} = c l_k(n+1) + \mathcal{O}(H^{k+2})$$

$$= \left(\int_0^1 \prod_{i=0}^{k-1} (t + \xi_i) dt / k! \right) h^{k+1} y^{(k+1)}(x_{n+1}) + \mathcal{O}(H^{k+2}).$$

(4.10)

Sin embargo, la solución de (4.7) para y_{n+1} empieza con la predicción de y_{n+1} por $y_{n+1(0)}$ y $f(x_{n+1}, y_{n+1})$ por $y'_{n+1(0)}$ a través del uso del polinomio $\tilde{p}_{n,k}$ definido por

$$\tilde{p}_{n,k}(x_n) = y_n, \quad \tilde{p}'_{n,k}(x_{n-i+1}) = y'_{n-i+1}, \quad i = 1, \ldots, k$$

con

$$y_{n+1(0)} = \tilde{p}_{n,k}(x_{n+1}) \quad y'_{n+1(0)} = \tilde{p}'_{n,k}(x_{n+1}).$$

Estos valores predecidos involucran tanto a y_n y y_{n-1} así como los y'_{ii}, estos pueden ser escritos en términos de $y_{n+1} = y_n + h_n \sum_{i=0}^{k-1} b_{n,i} f(x_{n-i+1}, y(x_{n-i+1}))$. Las siguientes iteraciones son tomadas para resolver y_{n+1} en la ecuación

$$h y'_{n+1} = h y'_{n+1(0)} + (y_{n+1} - y_{n+1(0)}) \frac{1}{b_{n+1(0)}}$$

para obtener un resultado similar, como (4.10), para $y_{n+1(0)}$. Ahora para la estimación del error local, suponemos que $y_{n-i+1} = y(x_{n-i+1}), \quad i = 1, \ldots, k$, así definimos un polinomio $p_{n,k}$ de grado k o menor dado por

$$p_{n,k}(x_n) = y(x_n), \quad p'_{n,k}(x_{n-i+1}) = f(x_{n-i+1}, y_{n-i+1}), \quad i = 1, \ldots, k$$

(4.11)

de modo que $y_{n+1(0)} = p_{n,k}(x_{n+1})$. Definiendo también un polinomio $p_{n,k+1}(x)$ de grado $\leq k + 1$, dado por

$$p_{n,k+1}(x_{n+1}) = y(x_{n+1}), \quad p_{n,k+1}(x_n) = y(x_n),$$

$$p'_{n,k+1}(x_{n-i+1}) = f(x_{n-i+1}, y(x_{n-i+1})), \quad i = 1, 2, \ldots, k.$$
Entonces definimos correspondientemente el polinomio \(\bar{\Delta}(x) = p_{n,k+1}(x) - p_{n,k}(x) \),
así \(y(x_{n+1}) - y_{n+1(0)} = \bar{\Delta}(x_{n+1}) \). Pero de \((4.11)\) y \((4.12)\), \(\bar{\Delta}(x_n) = 0 \) y \(\bar{\Delta}'(x_{n-i+1}) = 0 \),
i = 1, 2, ..., k, y por consiguiente se tiene que \(\bar{\Delta}(x) = \bar{M} \int_{x_n}^{x_{n-k+1}} (s - x_{n-i+1}) ds \) para un vector constante \(\bar{M} \). Procediendo del mismo modo como en \((4.9)\), escribimos

\[
\bar{M}/(k+1) = p_{n,k+1}^{(k+1)}(x_{n+1})/(k+1)! = y_{n+1}^{(k+1)}/(k+1)! + \mathcal{O}(H),
\]
de donde una sustitución y un cambio de variable da

\[
y(x_{n+1}) - y_{n+1(0)} = \left(\int_{-1}^{0} \prod_{i=1}^{k} (t + \xi_i) dt/k! \right) h^{k+1} y^{(k+1)}(x_{n+1}) + \mathcal{O}(H^{k+2}) \quad (4.13)
\]

Restando \((4.10)\) de la relación \((4.13)\) tenemos

\[
e_{n+1} = y_{n+1} - y_{n+1(0)} = y(x_{n+1}) - y_{n+1(0)} - (y(x_{n+1}) - y_{n+1}) = \frac{h^{k+1} y^{(k+1)}(x_{n+1})}{k!} \left[\int_{-1}^{0} \prod_{i=1}^{k} (t + \xi_i) dt - \int_{-1}^{0} \prod_{i=0}^{k-1} (t + \xi_i) dt \right] + \mathcal{O}(H^{k+2}),
\]

\[
= \frac{h^{k+1} y^{(k+1)}(x_{n+1})}{k!} \left[\int_{-1}^{0} \prod_{i=1}^{k-1} (t + \xi_i) [t + \xi_k - t - \xi_0] dt \right] + \mathcal{O}(H^{k+2}),
\]

\[
= \frac{\xi_k}{k!} \left(\int_{-1}^{0} \prod_{i=1}^{k-1} (t + \xi_i) dt/k! \right) h^{k+1} y^{(k+1)}(x_{n+1}) + \mathcal{O}(H^{k+2}),
\]

entonces

\[
e_{n+1} = \frac{\xi_k}{k! k_c k_c} h^{k+1} y^{(k+1)}(x_{n+1}) + \mathcal{O}(H^{k+2}). \quad (4.14)
\]

Aquí se utilizó la relación \(k_{c_k} = 1/(\int_{-1}^{0} \prod_{i=1}^{k-1} (t + \xi_i) dt \), de \((3.33)\) y \((3.35)\). Ahora de \((4.9)\) tenemos

\[
e_{c_k}(n+1) = \left(\int_{-1}^{0} \prod_{i=1}^{k-1} (t + \xi_i) dt/k! \right) h^{k+1} y^{(k+1)}(x_{n+1}) + \mathcal{O}(H^{k+2})
\]

\[
= \left(\int_{-1}^{0} \prod_{i=0}^{k-1} (t + \xi_i) dt/k! \right) k_{c_k} \xi_k h^{k+1} y^{(k+1)}(x_{n+1}) + \mathcal{O}(H^{k+2})
\]
entonces

\[e_{k}(n+1) = \left(k c_k \int_{-1}^{0} \prod_{i=0}^{k-1} (t + \xi_i) dt / \xi_k \right) e_{n+1} + O(H^{k+2}). \]

(4.15)

Además tenemos

\[e_{k-1}(n+1) = \left(k \int_{-1}^{0} \prod_{i=0}^{k-2} (t + \xi_i) dt \right) \left(k c_k (n+1) \right) e_{n+1} + O(H^{k+1}), \]

(4.16)

la cual es basada en la última fila de \(u_{n+1} \) (vector de Nordsieck en el paso \(n+1 \), véase (3.1)). Así obtenemos la estimación de los errores locales de órdenes \(k-1 \) y \(k \), siendo el orden actual \(k \). Resta solamente estimar \(e_{k+1}(n+1) \), para esto usemos \(e_{n+1} \) de (4.14) y \(e_n \) (que es (4.14) en el paso \(n \)), en una apropiada combinación lineal.

De (4.14), vemos a fin de que esta combinación sea asintóticamente \(O(H^{k+2}) \), debe ser proporcional a \(e_{n+1} - Q_{n+1} e_n \), donde

\[Q_{n+1} = \frac{\xi_k(n+1)c_k(n)}{\xi_k(n)c_k(n+1)} \left(\frac{h_{n+1}}{h_n} \right)^{k+1}. \]

Si obviáramos los términos \(O(H^{k+2}) \) en (4.14), y si \(y \in C^{k+2} \), entonces obtenemos de (4.14) (y de (4.14) con \(n+1 \) reemplazado por \(n \)) la relación

\[h^{k+2}y^{(k+2)}(x_{n+1}) = \frac{\xi_k(n+1)c_k(n)}{\xi_k(n)c_k(n+1)} \left(\frac{h_{n+1}}{h_n} \right)^{k+1} y^{(k+1)}(x_{n+1}) - \frac{h^{k+1}y^{(k+1)}(x_n)}{h_{n+1}} + O(H^{k+2}) \]

\[= \frac{k c_k (n+1) k!}{\xi_k (n+1)} (e_{n+1} - Q_{n+1} e_n) + O(H^{k+2}). \]

Luego, insertamos esta expresión en (4.9) reemplazando \(k \) por \(k + 1 \), obteniendo

\[e_{k+1}(n+1) = \left(\int_{-1}^{0} \prod_{i=0}^{k} (t + \xi_i) dt / (k + 1)! \right) h^{k+2}y^{(k+2)}(x_{n+1}) + O(H^{k+3}) \]

(4.17)

\[= \left(k c_{k+1} \int_{-1}^{0} \prod_{i=0}^{k} (t + \xi_i) dt / (k + 1) \xi_k \right) (e_{n+1} - Q_{n+1} e_n) + O(H^{k+3}) \]

El modo para seleccionar la longitud de paso y el orden ahora puede ser resumido sobre cualquier paso dado. Para ello el usuario debe proveer un parámetro de tolerancia para el error \(\varepsilon > 0 \), y un vector de pesos, siempre positivos, \(w = (w_1, w_2, \ldots, w_m)^T \),
(que sirven para controlar la magnitud de los componentes de la solución), con los cuales los errores serán comparados, y un intervalo de longitud S, sobre el cual los errores de longitud ε serán permitidos. Una vez tomados tanto el paso y el orden, la cantidad $D_k = \max_i \{|e_k(n+1)_i/w_i|\}$ será calculada, donde $e_k(n+1)_i$ denota la i-ésima componente del vector $e_k(n+1)$. Ahora requerimos que

$$D_k \leq \varepsilon \equiv \varepsilon h/S \quad (4.18)$$

para que el paso sea satisfactorio. Note que este controla el error por intervalo de longitud de S sobre el eje X, por consiguiente controla el error por unidad de paso si $S = 1$, y el error por paso si h/S es reemplazado por 1. Todas estas opciones son fácilmente disponibles para el usuario. Si fallara el test (4.18), entonces se requerirá de un nuevo valor de h el cual hará que (4.18) se mantenga, este nuevo valor es dado aproximadamente por $h_{nuevo} = \delta_k h$, donde δ_k se determina de la siguiente manera:

Tenemos que el error local es de la forma $C(x_{n+1})h^{k+1} + O(H^{k+2})$ para el método de orden k, donde C depende suavemente de x, luego $C = C(x_{n+1}) - C(x_n) + O(H) \approx C(x_n)$ luego

$$\|C\| \approx \frac{D_k}{h^{k+1}}.$$

A fin de encontrar la nueva longitud de paso, pedimos que

$$\|C\|_{h_{nuevo}^{k+1}} = \frac{D_k}{h_{nuevo}^{k+1}} = \frac{D_k}{h^{k+1}} = \varepsilon$$

2 Un modo de determinar las componentes del vector de pesos, usado por Hindmarsh en la implementación de su programa LSODE (versión del 30.3.87), es

$$w_i = rtol(i)|y_i| + atol(i), \quad i = 1, ..., m,$$

donde los vectores $rtol(i)$ y $atol(i)$ son parámetros de tolerancia del error relativo y absoluto respectivamente ($rtol, atol \in \mathbb{R}^m$). En este caso la cota superior para el error es dada por la elección de w_i y en (4.18) se puede poner $\varepsilon = 1$, correspondientemente se reemplazaría en este caso en la fórmula (4.19) para la elección de la nueva longitud de paso ε por 1.
entonces

\[\delta_k = (\bar{\varepsilon}/D_k)^{1/k+1}, \quad (4.19) \]

sobre la base del comportamiento asintótico de \(D_k \) (compárese con Byrne & Hindmarsh (1975)). Luego el paso de \(x_n \) es retomado, pero con esta nueva longitud de paso \(h_{nuevo} \). Si el test (4.18) es satisfecho, se recomienda repetir (4.19) en un intento de escoger una longitud de paso más grande \(h_{nuevo} \) para el siguiente paso. En ambos casos, la necesaria modificación del arreglo \(v_{n+1} \) sobre un cambio de \(h \) por un factor \(\delta \) es proporcionado por la multiplicación con una matriz diagonal:

\[v_{n+1} \leftarrow v_{n+1} \text{diag}(1, \delta, \delta^2, \ldots, \delta^k). \quad (4.20) \]

Un cambio de orden es considerado después de correr en el orden \(k \) un número de \(k + 1 \) pasos. Por consideración práctica el cambio de orden \(k \) es restringido a \(k \pm 1 \), para cualquiera que sea el caso. Esta estrategia ya fue empleada por Gear en 1971 y Brayton, Gustavson & Hatchel en 1972 (compárese Byrne & Hindmarsh (1975)), la cual solamente tiene una base empírica. Esto garantiza que todos los datos involucrados en el paso de \(x_{n+1} \) a \(x_{n+2} \) y el nuevo orden han sido calculados en el mismo orden.

La selección de nuevo orden empieza con el cálculo de las dos cantidades

\[D_{k \pm 1} = \max_i \{|e_{k \pm 1}(n + 1)_i|/w_i\}, \]

donde (4.16) y (4.17) son usados para estimar los componentes de \(e_{k \pm 1}(n + 1) \). Entonces por analogía con (4.19), estimaremos longitudes de paso aceptables de órdenes \(k - 1 \) y \(k + 1 \) por \(h_{nuevo} = \delta_{k-1}h \), y \(h_{nuevo} = \delta_{k+1}h \) con

\[\delta_{k-1} = (\bar{\varepsilon}/D_{k-1})^{1/k}, \quad \delta_{k+1} = (\bar{\varepsilon}/D_{k+1})^{1/(k+2)} \quad (4.21) \]
El nuevo orden y longitud de paso usados son determinados maximizando la siguiente longitud de paso:

$$\delta = \max\{\delta_{k-1}, \delta_k, \delta_{k+1}\} = \delta_{\text{nuevo}}, \quad h \leftarrow \delta h, \quad k \leftarrow k_{\text{nuevo}}.$$

Si el orden es reducido a $k_{\text{nuevo}} = k - 1$, un ajustamiento del vector ν_{n+1} es necesario. El vector de Nordsieck ajustado ν^*_{n+1} corresponde al polinomio p_n^* de grado $\leq k - 1$ o menor dado por

$$p_n^*(x_{n+1}) = y_{n+1}, \quad p_n^*(x_{n-i+1}) = f_{n-i+1}, \quad i = 0, 1, 2, \ldots, k - 2. \quad (4.22)$$

Comparando con (3.28), obtenemos

$$p_n(x) - p_n^*(x) = \frac{d(t)h^k y_n^{(k)}}{k!}, \quad d(t) = k \int_0^t \prod_{i=0}^{k-2} (u + \zeta_i) du, \quad (4.23)$$

donde $u = x_{n+1} + ht$, y $h^k y_n^{(k)}/k!$ es la última fila de ν_{n+1}. Si $k_{\text{nuevo}} = k + 1$, el vector ajustado ν^*_{n+1} es precisamente ν_{n+1} aumentado por una fila cero. El inicio de este método es llevado a cabo usando $k - 1$, y el orden es mantenido igual a k para $k + 1$ pasos consecutivos antes de considerar un cambio de orden, aunque al momento de la implementación cabe mencionar que existen ligeras diferencias entre uno u otro programa bajo el arreglo de Nordsieck.

4.2 Resultados numéricos

En esta sección presentamos algunas ecuaciones diferenciales de la forma (1.1) o reducibles a ella (véase Sección 1.1), solucionadas numéricamente a través del integrador numérico LSODE (versión 30.3.87), descrito en la sección anterior. La ecuación no-lineal dada por (3.34) (primera componente) es resuelta por iteración de punto fijo.
\[y''_1 = y + y'_1 - \alpha \frac{y + y'_1}{\varepsilon} - \alpha \frac{y}{\varepsilon} \]

\[y'' - y - y'_1 - \alpha \frac{y}{\varepsilon} - \alpha \frac{y}{\varepsilon} \]

\[D_1 = (x + y'^2 + \varepsilon) \quad D_2 = ((y_n^2 + y_n^3)^{3/2} \]

\[\rho = 0.012345678 \quad \text{and} \quad \varepsilon \]
Aquí consideramos los valores iniciales

\[y_1(0) = 0.994, \quad y_1'(0) = 0, \quad y_2(0) = 0, \]

\[y_2'(0) = -2.00158510637908222240537862224, \]

y

\[x_{\text{final}} = 17.0652165601579625588917206249, \]

Figura 4.1 Una órbita de Arenstorf dada por (4.22).

donde la solución es periódica de periodo \(x_{\text{final}} \) (véase Figura 4.1). El problema es de clase \(C^\infty \), excepto en los puntos singulares \(-m,0\) y \((1-m,0)\). La precisión puede chequearse en el punto final, además la solución es muy sensible a los errores de la fase inicial. Los cálculos fueron realizados con una tolerancia de \(10^{-3} \) y \(10^{-8} \), requiriéndose de 872 pasos y 969 evaluaciones de la función, además el orden más frecuente osciló entre 4 y 7.
Figura 4.2. Variación de la longitud de paso y el error local de (4.22).

2. Ecuaciones de Saltzman-Lorenz. (Hairer, Nørsett & Wanner (1993))

Estas ecuaciones fueron descubiertas por Lorenz en 1950 las cuales surgieron de sus conversaciones con Saltzman al investigar ciertos modelos que permitieran predecir el clima. Las ecuaciones son:

\[
\begin{align*}
y'_1 &= -\sigma y_1 + \sigma y_2, \\
y'_2 &= -y_1 y_3 + r y_1 - y_2, \\
y'_3 &= y_1 y_2 - b y_3,
\end{align*}
\]

(4.25)

donde \(\sigma, r, b\) son constantes positivas. Las soluciones de estas ecuaciones son aperiódicas.
Figura 4.3 Solución de las ecuaciones de Lorenz-Saltzman (4.23)

Para este caso se eligió

\[\sigma = 10, \quad r = 28, \quad b = 8/3, \]

con los valores iniciales

\[y_1(0) = -8, \quad y_2(0) = 8, \quad y_3(0) = 27, \]

y

\[x_{final} = 16. \]

Estas ecuaciones son muy sensibles a los errores en los primeros pasos para valores grandes de \(x \), así tenemos que en \(x = 50 \) la solución numérica viene a ser totalmente errada, aun si los cálculos son realizados en cuádruple precisión con una tolerancia de \(10^{-20} \), por lo que una comparación entre diversos métodos no tiene sentido, para una discusión de estas ecuaciones véase e.g. Hairer, Nørsett & Wanner (1993). Los
cálculos fueron realizados con una tolerancia de 10^{-3} y 10^{-8}, requiriéndose de 32557 pasos y 34055 evaluaciones de la función, además el orden más común osciló entre 4 y 7.

\[\text{Figura 4.4 Variación de la longitud de paso y el error local de las ecuaciones (4.23)}\]

3. Pléyades. (Hairer, Nørsett & Wanner (1993)) Este problema de mecánica celeste describe el desplazamiento de 7 estrellas en el plano con coordenadas x_i, y_i, y masas $m_i = i \ (i = 1, 2, \ldots, 7)$ dado por las ecuaciones:

\[\begin{align*}
x_i'' &= \sum_{j=1}^{i} m_j (x_j - x_i)/r_{ij}, \\
y_i'' &= \sum_{j=1}^{i} m_j (y_j - y_i)/r_{ij},
\end{align*}\] \hspace{1cm} (4.26)

donde

\[r_{ij} = \left((x_j - x_i)^2 + (y_j - y_i)^2 \right)^{3/2}, \quad i, j = 1, \ldots, 7,\]
Figura 4.5 Solución de las ecuaciones pléyades (4.24)

además los valores iniciales son:

\[
\begin{align*}
 x_1(0) &= 3, & x_2(0) &= 3, & x_3(0) &= -1, & x_4(0) &= -3, \\
 x_5(0) &= 2, & x_6(0) &= -2, & x_7(0) &= 2, \\
 y_1(0) &= 3, & y_2(0) &= -3, & y_3(0) &= 2, & y_4(0) &= 0, \\
 y_5(0) &= 0, & y_6(0) &= -4, & y_7(0) &= 4, \\
 x_i'(0) &= y_i'(0) = 0, & \text{para todo } i, & \text{a excepción de} \\
 x_6'(0) &= 1.75, & x_7'(0) &= -1.5, & y_4'(0) &= -1.25, & y_5'(0) &= 1,
\end{align*}
\]

e integramos para \(0 \leq t \leq t_{\text{final}} = 3\). El valor inicial para cada cuerpo es marcado por una "o", y el valor final por una "•" (véase Figura 4.5). Los cálculos fueron realizados con una tolerancia de \(10^{-3}\) y \(10^{-8}\), requiriéndose de 2180 pasos y 2372 evaluaciones de la función, además el orden más común osciló entre 5 y 7. Observemos en las figuras...
4.7 y 4.8 el violento cambio de las derivadas $x'_i(t)$, $y'_i(t)$, lo cual muestra que un control de longitud de paso es necesario para este ejemplo.

Figura 4.6 Variación de la longitud de paso y el error local de (4.24)

Figura 4.7 Velocidades x_i, $i = 1, ..., 7$ de (4.24)
Figura 4.8 Velocidades y_i, $i = 1, ..., 7$ de (4.24)

Una ventaja notable de los métodos multipaso comparados con los métodos Runge-Kutta (métodos de un paso) es en el número de evaluaciones de la función f, e.g. si tenemos ambos métodos de orden 4, un método multipaso en el modo PECE efectúa solo dos evaluaciones de la función comparadas con las cuatro evaluaciones del método de un paso. Por otro lado, Hairer, Norsett & Wanner (1993) muestran de sus experimentos numéricos que un método Runge-Kutta, usando su programa DOP853, para estos problemas es más ventajoso en cuanto al tiempo de cálculo, pero en cuanto a la precisión, en los problemas escogidos a excepción del problema de las órbitas de Arenstorf, los métodos multipaso tuvieron mayor éxito.

Bibliografía

