UNIVERSIDAD NACIONAL DE INGENIERIA

PROGRAMA ACADEMICO DE INGENIERIA SANITARIA

Estudio sobre el Problema de Basuras, Roedores e Insectos en el Medio Hospitalario

TESIS DE BACHILLER Y GRADO

PARA OPTAR EL TITULO DE INGENIERO SANITARIO

EDUARDO MUÑOZ ZAMORA

PROMOCION 1971
ÍNDICE

PRIMERA PARTE. Pag.

INTRODUCCION...(1)

CAPITULO I

1.1. IMPORTANCIA DEL PROBLEMA DE BASURAS........... 1
 1.1.1. Punto de vista sanitario.......................2
 1.1.2. Punto de Vista estético...................... 4
 1.1.3. Punto de vista económico..................... 5

1.2. IMPORTANCIA DEL PROBLEMA DE INSECTOS Y
 ROEDORES... 6
 1.2.1. Punto de vista sanitario.....................7
 1.2.1.1. Ciclo Epidemiológico de
 las enfermedades.......................7
 1.2.1.2. Mecanismo de Transmisión
 de las Enfermedades....................9
 1.2.1.3. Mecanismo de Transmisión
 de los Agentes Infecciosos
 o Patógenos.............................14
 1.2.2. Punto de Vista Económico.................... 22

CAPITULO II

2.1. TOTAL DE CAMAS.. 25
 2.1.1. Generalidades y clasificación.............. 25
 2.1.2. Cuadro total de camas....................... 27

2.2. POBLACION HOSPITALARIA
 2.2.1. Generalidades................................. 27
 2.2.2. Clasificación y cuadros sobre su
 población.................................... 28
CAPITULO III

3. TIPOS DE BASURA QUE SE PRODUCE............ 38
 3.1. Generalidades.......................... 38
 3.2. Clasificación de la basura hospitalaria 41
 3.3. Tipo de basura por departamentos...... 47

ITULO IV

4. SISTEMA DE ALMACENAMIENTO, RECOLECCIÓN Y
 DISPOSICIÓN FINAL.......................... 52
 4.1. Generalidades.......................... 52
 4.2. Limpieza................................. 53
 4.2.1. Organización.......................... 54
 4.2.2. Personal.............................. 56
 4.2.3. Frecuencia............................ 57
 4.2.4. Equipos, materiales.................. 57
 4.3. Almacenamiento........................... 61
 4.3.1. Ubicación............................ 62
 4.3.2. Personal.............................. 63
 4.3.3. Período de Almacenamiento........... 64
 4.3.4. Recipientes........................... 66
 4.3.5. Mantenimiento de Recipientes........ 67

 4.4. Almacenamiento en Departamentos de
 Especial consideración................. 69
4.4.1. Comedores.......................... 69
4.4.2. Cocina.............................. 70
4.4.3. Sala de Partos....................... 71
4.4.4. Sala de Cirugía........................ 72
4.4.5. Laboratorio......................... 73

4.5. Recolección............................. 75
 4.5.1. Horario y Frecuencia.................. 75
 4.5.2. Personal............................ 76
 4.5.3. Rutas............................... 77
 4.5.4. Equipo.............................. 78

4.6. Sistema de Reducción.................... 79
 4.6.1. Incineración........................ 79
 4.6.1.1. Ubicación........................ 80
 4.6.1.2. Personal........................ 80
 4.6.1.3. Horario......................... 81
 4.6.1.4. Procedimiento................... 81
 4.6.2. Trituración.......................... 83
 4.6.2.1. Ubicación........................ 83
 4.6.2.2. Personal........................ 83
 4.5.2.3. Horario......................... 84
 4.6.2.4. Procedimiento................... 84

4.7. Sistema de Disposición final............ 85
 4.7.1. Relleno Sanitario.................... 86
 4.7.2. Desecho a la Red de Desagüe.......... 87
 4.7.3. Alimentación para chanchos.......... 87
 4.7.4. Reutilización de los Envases de Vidrio........ 89
CAPITULO V

5. PROBLEMAS QUE SE PRESENTAN CON RELACION A INSECTOS Y ROEDORES 90
 5.1. GENERALIDADES E INFECTACIONES QUE PRESENTA EL HOSPITAL DEL EMPLEADO 90
 5.1.1. Cucarachas .. 91
 5.1.2. Moscas .. 98
 5.1.3. Roedores .. 100
 5.2. Causas de la Subsistencia del Problema. 101
 5.2.1. Falta de conocimiento del problema 102
 5.2.2. Falta de Saneamiento 103
 5.2.3. Falta de un Plan integral de control 104

-SEGUNDA PARTE.
CAPITULO VI

6. ANALISIS DE LA PRODUCCION DE BASURAS 105
 Pisos de Hospitalización 110
 6.2. Oficinas de Administración y Consultorios Ambulatorios 124
 6.3. Departamentos y Servicios 126
 6.3.1. Departamentos y Servicios Generales 127
 6.3.2. Departamentos y Servicios de Especial Consideracion 134
 6.4. Incineración 145
 6.5. Cuadro General 148
CAPITULO VII

7. PESO ESPECIFICO DE LAS BASURAS............. 149
 7.1. Pisos de Hospitalización 149
 7.2. Oficinas de administración y consultorios ambulatorios............. 150
 7.3. Departamentos y Servicios.............. 150
 7.3.1. Departamentos y Servicios Generales............... 150
 7.3.2. Departamentos y Servicios Especial Consideración............. 151
 7.4. Cuadro General....................... 152

CAPITULO VIII

8. SISTEMA DE ALMACENAMIENTO Y RECOLECCION
 PROPUESTO.. 153
 8.1. Disposición de basuras en establecimientos hospitalarios............. 153
 8.1.1. Departamento responsable...... 154
 8.1.2. Organización..................... 154
 8.1.3. Personal......................... 155
 8.2. Sistema de Almacenamiento............ 162
 8.2.1. Factores que inciden en el proceso..................... 162
 8.2.1.1. Tipo de basura producida............. 162
 8.2.1.2. Sist. de reducción y disposición final adoptado............. 163
 8.2.1.3. Diseño arquitectónico, 164
8.2.2. Recipientes.......................... 164
8.2.3. Utilización de adita entos especiales....................... 167
 8.2.3.1. Utilización de bolsas de plástico............... 168

8.3. Sistema de Almacenamiento Propuesto........... 173
 8.3.1. Pisos de Hospitalización........... 173
 8.3.2. Oficinas Administrativas y consultorios ambulatorios........ 176
 8.3.3. Departamentos y Servicios............. 179
 8.3.3.1. Departamentos y Servicios generales.......... 180
 8.3.3.2. Departamentos y servicios de Especial Consideración........ 181

8.4. Sistema de Recolección Interna............. 194
 8.4.1. Factores que inciden en el proceso......................... 194
 8.4.2. Sistemas de Recolección interna existente.................. 196
 8.4.2.1. Sistema de línea de receptores...................... 197
 8.4.2.2. Sistema de Ductos 198

8.5. Sistema de Recolección Interna Propuesto. 201
 8.5.1. Horarios y frecuencias....................... 201
 8.5.2. Ruta.. 203
 8.5.3. Personal y Equipo............................ 203

CAPITULO IX

9. SISTEMA DE REDUCCION Y DISPOSICION FINAL... 205
9.1. Sistema de Reducción 205
 9.1.1. Compactación 205
 9.1.2. Reducción a Pulpa (Pulping) 206
 9.1.3. Trituración 208
 9.1.4. Incineración 209

9.2. Sistema de Reducción Propuesto 212
 9.2.1. Incineración 212
 9.2.1.1. Cámara de combustión principal 212
 9.2.1.2. Cámara de combustión secundaria 217
 9.2.1.3. Chimenea 218
 9.2.2. Ubicación del incinerador 219
 9.2.3. Adaptación del sistema de disposición de basuras 219
 9.2.4. Análisis de basuras 220
 9.2.4.1. Temperatura a la cual se debe mantener el hor-
 no 221
 9.2.4.2. Cantidad de aire para la combustión 222
 9.2.4.3. Calor de combustión 222
 9.2.4.3.1. Utilización de combustible adicional 23
 9.2.4.3.2. Cálculo del calor de combustión 224
 9.2.5. Operación del incinerador 227
 9.2.5.1. Alimentación 227
 9.2.5.2. Funcionamiento 229
 9.2.5.3. Productos de la incineración (gases y cenizas) 231
9.2.6. Mantenimiento del imineralor...235

9.3. Sistema de disposición final........... 237
9.3.1. Relleno sanitario............... 237
9.3.2. Desecho a la Red de Desagüe... 238
9.3.3. Alimentación para chanchos.... 239
9.3.4. Material reutilizable........... 241

CAPITULO X

10. Solución Propuesto para el control de insectos y roedores....................... 243
10.1. La mosca................................ 243
10.1.1. Ciclo de Vida...................... 243
10.1.2. Características y hábitos..... 246
10.1.3. Factores que determinan la densidad de su población..... 247
10.1.4. Principales sitios de reproducción......................... 248

10.2. Medidas de control de la mosca...... 248
10.2.1. Medidas permanentes........... 249
10.2.1.1. Saneamiento general........... 249
10.2.2. Medidas auxiliares............. 251
10.2.2.1. Medidas individuales....... 251
10.2.2.2. Utilización de insecticidas... 252

10.3. Las cucarachas..................... 259
10.3.1. Ciclo de vida.................... 259
10.4. Medidas de control de la cucaracha... 261
10.4.1. Medidas permanentes......... 261
10.4.2. Utilización de insecticidas. 263

10.5. Los Roedores.................. 265
10.5.1. Enfermedades que transmiten.. 265
10.5.2. Características............... 268
10.5.3. Ciclo de vida.................. 269
10.5.4. Hábitos y costumbres........... 270
10.5.5. Aptitudes de las ratas........ 271
10.5.6. Grado de infestación y número
 de ratas presentes............... 273

10.6. Programa de control de roedores...... 275
10.6.1. Medidas permanentes o preven-
 tivas.................................. 275
 10.6.1.1. Saneamiento general. 275
 10.6.1.2. Construcción a
 prueba de ratas....... 278

 10.6.2. Medidas auxiliares o comple-
 mentarias......................... 279
 10.6.2.1. Medidas individuales.... 279
 10.6.2.2. Utilización de Roden-
 ticidas......................... 280
 10.6.2.2.1. Fluoraceta de
 sodio......................... 280
 10.6.2.2.2. Warfarina.............. 282

10.6.3. Controles adicionales en el
 Programa de control de roedo-
 res.................................. 293
10.6.3.1. Control de Ectopa-
 rásitos......................... 293
10.6.3.2 Control de olor de los roedores muertos... 294

CAPITULO XI

CONCLUSIONES.......................... 296
INTRODUCCION

* IMPORTANCIA DE LA INGENIERIA SANITARIA EN EL MEDIO AMBIENTE HOSPITALARIO

Desde su inicio, el hospital empezó como un albergue para indigentes y fue en su mayoría administrado por la clase religiosa. Hasta el momento, los hospitales modernos son unas organizaciones complejas dedicadas a proteger la salud de la comunidad y velar por el progreso de la ciencia médica. Es por eso, la importancia que tiene actualmente, convirtiéndose en una Institución que realiza diversos servicios como profilaxis, terapéutica, rehabilitación enseñanza e investigación, etc.

Vemos, que el hospital por su compleja función y gran inversión en su planeamiento, construcción y principalmente en su mantenimiento, acarrea problemas de índole económico, social y administrativo. Por lo tanto, necesita competente personal profesional y técnico.

Actualmente y desde hace varios años se nota la
imperiosa necesidad de la cooperación y opinión profesional de un Ingeniero Sanitario, debido a que el campo de este profesional es muy extenso dentro y fuera del hospital, en la lucha preventiva de las enfermedades transmisibles que están relacionadas en forma directa con las buenas condiciones del aire, agua, alimentos, disposición de aguas servidas y basuras. Sin embargo, hasta hoy, la administración de los hospitales no le ha dado la debida importancia a los problemas que origina el mantenimiento del medio ambiente, no encontrando la necesidad de contar con los servicios de este profesional, dando la responsabilidad de este cargo a personal de otros Departamentos capaces de solucionar el problema pero no de solucionarlo en la forma adecuada que este necesita. Hasta que punto yerra esta noción, que ha sido demostrado por especialistas, en numerosos artículos sobre los problemas que ocasionan las enfermedades infecciosas en los hospitales, tanto a los pacientes como al personal que labora en los diferentes Departamentos y Servicios, viéndose que estos problemas son causa directa por la falta de atención a los principios básicos de saneamiento y a la ausencia de educación sanitaria.

En los países de avanzada, como Inglaterra, Es
tados Unidos, Alemania, etc., donde la Ingeniería Sanitaria tiene un rol preponderante en el mantenimiento del medio ambiente hospitalario, el Ingeniero Sanitario tiene labores específicas como:

1.- Participación y opinión profesional en el planeamiento y construcción de hospitales, sobre los posibles peligros contra la salud que pueden surgir en proyectos de abastecimiento de agua, red de desagües, diseño de cámaras frigoríficas, quirófanos, rayos X, etc.

2.- Mantenimiento de equipos e instalaciones que están dentro de su campo.

3.- Medicina preventiva, en la cual es miembro del Comité contra infecciones.

4.- Disposición de residuos sólidos.

5.- Control de insectos y roedores.

6.- Además, el Ingeniero Sanitario ejerce el papel de funcionario de seguridad, donde no -
sólo debe estar alerta a los peligros, sino debe prevenirlos.

Como podemos deducir, el rol fundamental que desempeña el Ingeniero Sanitario en el medio ambiente hospitalario es la medicina preventiva, complementando su labor con charlas, conferencias, etc., sobre métodos y técnicas sanitarias, a todo personal que requiera de estos conocimientos, especialmente al que la bora en manipulación de alimentos, operarios de laboratorios, lavandería, limpieza y desinfección de ambientes. Para realizar esta labor, el Ing° Sanitario debe estar al tanto de las nuevas técnicas y avances de esta ciencia (Ingeniería Sanitaria), logrando así un eficiente desenvolvimiento en el ámbito hospitalario, que será en beneficio de los pacientes y trabajadores en general.
CAPÍTULO I
IMPORTANCIA DEL PROBLEMA DE BASURAS
IMPORTANCIA DEL PROBLEMA DE INSECTOS Y ROEDORES
1.1. IMPORTANCIA DEL PROBLEMA DE BASURAS

Por las funciones complejas que desarrollan los Departamentos e Intendencias Médicas y Paramédicas del hospital, traen como consecuencia la producción de basuras. Definiendo basura como todo residuo sólido resultante de una actividad humana.

En la actualidad, el hospital por las funciones de tratamiento, cuidado de enfermos e investigación, hace que su ambiente físico sea diferente al de cualquier otra Institución. Por lo tanto, deben tener consideraciones especiales con el sistema de eliminación de basuras que se producen.

El problema principal existente en la eliminación de basuras en el medio ambiente hospitalario, aunque parezca paradójico, es la falta de conocimiento del mismo, y en consecuencia la carencia de normas y sistemas técnicos operativos, que éste proceso requiere. Por eso, el proceso de disposición de basuras es relegado a un últi
mo plano, haciéndolo que el personal que ejecuta esta labor ignore el papel que desempeña en el mantenimiento sanitario, estético y económico de este proceso.

Para un mejor análisis de la importancia del problema de basuras, lo plantearemos desde 3 puntos de vista:

a) Sanitario b) Estético c) Económico

1.1.1. PUNTO DE VISTA SANITARIO.

Los pacientes y el personal relacionado con el hospital están en contacto de numerosos vehículos, tales como agua, alimentos, basuras, etc. y vectores comunes de agentes infecciosos. Además, la naturaleza misma del hospital, hace que aumente la posibilidad de contaminación debido a que los agentes etiológicos viables se encuentran en mayor variedad y concentración que en cualquier otra institución. Por lo tanto, la disposición de basuras desde el punto de vista sanitario, está considerada como un es-
labón dentro del saneamiento del medio ambiente hospitalario, debido a que los residuos sólidos durante su proceso de disposición tienen posibilidad de albergar o servir de vehículo a los agentes patógenos que traen como consecuencia las enfermedades transmisibles o infecciosas.

Por las causas enumeradas anteriormente y el tipo de basura producido en los cuartos de hospitalización, Departamentos de cirugía, partos y laboratorios, hace que la basura hospitalaria sea diferente a la basura producida por la comunidad, y debido a estas razones la opinión de estudiosos y entendidos sobre éste problema, consideren dicha basura como CONTAMINADA. Partiendo de esta premisa, el proceso de disposición de basuras en el medio ambiente hospitalario, desde su inicio, hasta su disposición final debe estar regido por normas y técnica operativa sanitaria, para evitar cualquier riesgo de contaminación.
a que éste no hace variar el sistema -
del proceso, pero ocasiona crítica y -
rechazo por parte de las personas que-
están en contacto directo ú ocasional-
con este problema.

1.1.3. PUNTO DE VISTA ECONOMICO.

El proceso de eliminación de basuras en
el medio ambiente hospitalario, y en to-
do ambiente similar, crea la necesidad
de personal para su planeamiento, ejecu-
ción y mantenimiento. El número de per-
sonal depende de diversos factores, co-
mo: tipo, arquitectura, capacidad del-
hospital, y el sistema de eliminación-
establecido. El personal para ejecutar
esta labor requiere del equipo necesari-
rio, para que la disposición sea efí-
ciente, este equipo en consecuencia re-
quiere de herramientas, materiales, etc,
para su mantenimiento, conservación y
normal funcionamiento. Por lo tanto, el
personal, equipo y mantenimiento del -
proceso representa para la institución
hospitalaria, un desembolso económico-
y como en cualquier labor de ingeniería todo proceso o servicio debe justificar su inversión y costo de mantenimiento, esto hace que se deba considerar como requisito de solución de toda alternativa presentada, su factibilidad económica.

PROBLEMA DE INSECTOS Y ROEDORES

La presencia de los insectos y roedores, es uno de los problemas que suscita su control, lo cual debe estar incluido dentro del programa general de saneamiento ambiental hospitalario. Debido a que el hospital forma parte de la comunidad, es susceptible a la infestación y proliferación de estas plagas.

La presencia de los insectos o roedores, es causa directa de las deficientes condiciones sanitarias del Hospital o sus alrededores, por lo cual se requiere tomar medidas correctivas inmediatas y tiene relación directa con los Depart...
tamentos en que se recepciona, almacena, elabora y se distribuye alimentos o víveres. El problema de infección por la gravedad que representa en estos tipos de establecimientos, requiere de medidas especiales para combatirlo.

1.2.1. PUNTO DE VISTA SANITARIO

El principal problema desde el punto de vista sanitario, es, que estos insectos o roedores pueden actuar como vectores de enfermedades transmisibles, aunque en la mayoría de los casos, estas enfermedades se han presentado por contaminación de los alimentos almacenados o elaborados, ocasionando graves consecuencias en la población hospitalaria.

La presencia de los insectos o roedores, indican condiciones antihigiénicas, además ocasionan molestias a los pacientes y personal del hospital.

1.2.1.1. CICLO EPIDEMIOLOGICO DE LAS ENFERMEDADES TRANSMISIBLES.
Los insectos o roedores es uno de los eslabones del ciclo epidemiológico, del cual la Ingeniería Sanitaria se vale en la lucha contra las enfermedades transmisibles o infecciosas. Por lo tanto, hacemos una introducción del ciclo epidemiológico de las enfermedades transmisibles para un mejor conocimiento.

Epidemiología

En la transmisión de enfermedades transmisibles, la epidemiología se ocupa del curso que sigue el agente patógeno en el medio ambiente, desde que sale del enfermo, hasta que ingresa al sano, y su estancia en los diferentes elementos que le han servido de vehículo.

Welch: Definió la epidemiología como "La Historia Natural" de la enfermedad, a diferencia de la Historia Clínica, que estudia el agente patógeno en el interior del ser humano.
1.2.1.2. MECANISMO DE TRANSMISION DE LAS ENFERMEDADES TRANSMISIBLES.

La propagación de las enfermedades transmisibles en una comunidad, requiere de los siguientes elementos:

(1) RESERVORIO (2) AG. INFECCIOSO (3) VEHICULO (4) HUESPED
(1) **Reservorio o Fuente Primaria de Infección.**—Se define así, al ser humano, o animal, donde vive y se multiplica el agente infeccioso como cabe citar:

RESERVORIO HUMANO: (Hepatitis-Disentería-Tifus Exantámico-etc).

RESERVORIO ANIMAL: (Brucelosis, Tifus Murino, etc).

(2) **Agente causal o infeccioso.**—Se define así, al organismo vivo que produce la enfermedad en el hombre o animal.

Por su naturaleza, puede ser:

VEGETAL: Bacterias (Peste Bubónica-
Fiebre Malta).

ANIMAL: Parásitos (Disentería-
Paludismo-etc).

INDEFINIDO: Rikettsias (Tifus Exantématico-
Tifus Murino-
Virus de Hepatitis).
(3) **Vehículos.** Se define así, al ente que conduce el agente infeccioso-facilitando su propagación, y puede ser:

- Animado
 - Portador
 - Clínico
 - Pasivo
 - Crónico
 - Vector
 - Dípteros
 - Sifonápteros
 - Ortópteros
 - Anópteros
 - Hemípteros
 - Acáridos

- Inanimado (agua, suelo, objetos, alimentos, etc).

Portador. Cuando el vehículo es el ser humano, y es:

a) **Clínico,** cuando el portador se halla enfermo.

b) **Pasivo,** cuando el portador se halla convaleciente.

c) **Crónico,** cuando el portador es sano, pero conserva el agente infeccioso.
Vector.- Entre los vectores, el principal grupo que facilita la propagación de las enfermedades transmisibles, es el de los insectos, y en especial las 6 órdenes siguientes:

a) Dípteros: Moscas y mosquitos
b) Sifonápteros: pulgas.
c) Ortópteros: cucarachas.
d) Anópluros: piojos chupadores
e) Hemípteros: chinches.

(4) Huesped.- Se define así, al hombre o animal que permite la vida del agente causal o infeccioso de una enfermedad transmisible.

Puede ser: Intermediario-(Secundario)
Es el huesped que aloja al parásito en forma madura, o que haya pasado por su fase sexual.

Definitivo-(Primario) - Cuando el huesped aloja al parásito en fase larval o asexual.
1.2.1.3. MECANISMO DE TRANSMISION DE LOS AGENTES INFECCIOSOS O PATOGENOS

Para prevenir y controlar las enfermedades infecciosas, se requiere del conocimiento de los principios relativos al mecanismo de transmisión de los agentes patógenos.

Los cuales pueden ser:

Contacto Directo.— Se realiza persona a persona, y por medio de:

a) Gotillas: Cuando la persona enferma estornuda o tose cerca de una persona sana, la propagación de los agentes patógenos se realiza a través del aire.

b) Piel: Se realiza por contacto o roce de cualquier parte del cuerpo (manos, boca, etc).

c) Fecal-Oral: Se realiza por falta de asepsia o negligencia del paciente o personas que atienden a los pacientes.

Contacto Indirecto.—
Vehículos: Son aquellos que conducen o facilitan la propagación de los agentes patógenos. Entre ellos tenemos:

Alimentos: Es uno de los vehículos de mayor importancia en el control de transmisión de enfermedades infecciosas, por la susceptibilidad de contaminarse en cualquiera de sus etapas; desde su adquisición, hasta su distribución, debido a la falta de normas sanitarias o por negligencia de los que manipulan alimentos. Entre los principales tenemos:

Leche: Es uno de los principales vehículos, debido a que la leche y sus derivados por sus características nutritivas actúa como cultivo, facilitando la multiplicación y propagación de los agentes patógenos.
Carne.- La carne actúa como vehículo a agentes patógenos cuando ésta procede de animales enfermos o cuando esta se contamina durante su elaboración o su expendio.

Vegetales.- En especial las verduras y frutas que se consumen en su estado natural o crudas deben considerarse contaminadas, desde el momento de su adquisición, por lo cual se deben tomar las precauciones sanitarias que requieren.

Huevos.- Los huevos y sus derivados entre los alimentos más vulnerables a contaminarse, especialmente cuando se consumen crudos o presentan anomalías tales como suciedad, rajaduras, etc.

Agua Este elemento es el principal vehículo de las enfermedades hídricas(disentería, difteria) y puede estar contaminada desde el punto de abastecimiento, por causa de conexiones cruzadas, negligencia de las personas que manipulan éste líquido o falta de normas sanitarias.
El Hielo.- Por no estar considerado como alimento ni bebida en el ambiente hospitalario, su elaboración y manipulación se realiza en forma antihigiénica, trayendo com o consecuencia la fácil propagación de las enfermedades infecciosas.

Objetos:

Equipo y suministros.- El equipo que se utiliza durante la estadía de los pacientes en el hospital, como equipo individual terapéutico y diagnóstico, pueden servir de vehículo de agentes patógenos, conexando entre los pacientes enfermedades infecciosas. Por lo tanto, para la utilización de este equipo, debe observarse normas de asepsia, por ser en su mayoría de uso general.

a) **Equipo Individual** (Siletas, palanganas, termómetros, etc).

b) **Equipo terapéutico y diagnóstico** (Equipo de aspiración y suscisión, rayos X, etc.) marcarillas, tiendas de oxígeno, instrumentos urológicos).
c) Suministros (Toallas, pijamas, sábanas, colchones, etc).

UTENSILIOS UTILIZADOS EN LA ALIMENTACIÓN Y BEBIDA.-

En los hospitales generales se deben tener medidas de asepsia y desinfección con esta clase de utensilios, especialmente con los que provienen de pacientes infecto contagiosos, debido a que estos utensilios son de uso general y no exclusivo, facilitando a que estos sirvan de vehículo a los agentes patógenos.

AIRE.-

El aire actuando como vehículo en la transmisión de agentes patógenos, ha recibido especial atención en el control de enfermedades infecciosas. Es considerado como un nuevo riesgo ambiental para la población que integra el hospital, debido a su fácil difusión y su difícil control. Tal es así, que se han optado diversas medidas para facilitar el control de su calidad, como cabe citar:

- Medidas de aislamiento, separando las áreas -
críticas de las otras partes del hospital(maternidad).

- La construcción de hospitales exclusivamente para pacientes de enfermedades contagiosas(pulmonares, etc).

- Nuevas técnicas en el diseño de hospitales(verticales, horizontales).

- Utilización de sistemas mecánicos de ventilación, acondicionamiento del aire y utilización de filtros de aire, etc.

Sin embargo, no se ha podido lograr un óptimo - control de la calidad del aire, pero con la ayuda de normas y técnicas de asepsia, desinfección y seguridad, se está tendiendo a controlar este problema.

INSECTOS Y ROEDORES.-

Insectos.- Pueden transmitir agentes infecciosos al hombre:

Vector Mecánico.- Cuando su participación no es estrictamente necesaria para la supervivencia y transmisión del **agente infeccioso,** (entre los principales, moscas y cucaracha), o sea que -
los agentes infecciosos son simple-
mente transportados sin sufrir modi-
ficación esencial.

Vector Biológico. - Esto sucede cuando
la participación es fundamentalmente
en el ciclo biológico del agente in-
feccioso como el *Plasmodium* (*Malaria*)
y los piojos en el Tifus Exantemáti-
co.

TRANSMISION:

Picadura. - La introducción del agente -
patógeno, se origina cuando el insecto
infectado lo lleva en la sali a y cuan-
do pica lo introduce al hombre, como -
paludismo, fiebre amarilla.

Regurgitación. - Esto sucede cuando el -
insecto al chupar la sangre de la perso-
a sana, lleva el agente patógeno hasta
la primera parte del tracto digestivo -
donde la contamina, luego lo devuelve y
el agente patógeno es introducido por -
lesión de la piel al rascarse la perso-
na.
Heces.- Esto sucede con algunos insectos que cuando se alimentan defecan a la vez y los agentes patógenos que contienen - sus heces son introducidos por lesión - de la piel o por las mucosas.

Roedores:

Los roedores intervienen en el mecanismo de la transmisión de enfermedades infecciosas de la siguiente manera:

Directa: Cuando los roedores infectados transmiten los agentes patógenos a otros roedores sanos, o al hombre por medio de su mordeura.

Indirecta: Cuando los roedores contribuyen o participan en el mecanismo de transmisión de agentes patógenos, pero en forma indirecta, y esto sucede cuando actúan como:

a) Huésped.- Cuando los roedores sirven de albergue y además alimentan con su sangre a insectos que están infectados con los agentes patógenos, esta cla-
se de insectos son denominados Ectoparásitos, entre los principales tenemos a la pulga, piojos, chinche, garrapatas, etc).

b) Vector: Esto sucede cuando los roedores contaminados sirven de transporte a los agentes patógenos y estos agentes patógenos que se hallan en la superficie de su cuerpo son depositados en los lugares por donde transitan, paredes, objetos, alimentos, etc., contaminándolos.

HECES U ORINA:

Esto sucede cuando los roedores infectados contaminan los alimentos, bebidas u objetos por medio de sus doreccion, (Salmonellosis, Leptopirosis).

1.2.2. PUNTO DE VISTA ECONOMICO.

Los problemas que representan los roedores desde el punto de vista económico en el medio ambiente hospitalario, son los -
siguientes:

a) El deterioro que causan a la propiedad al construir sus madrigueras, fuera del que causan al equipo u objetos con sus roeduras, debido a que por naturaleza tienen que desgastar sus incisivos por crecerles éstos constantemente (5" al año).

b) El problema que ocasionan en los almacenes o despensas de productos alimenticios, causando el deterioro de los alimentos y sus envases, porque está probado que los roedores hacen a perder más lamentos de los que consumen.

c) En forma indirecta el control de insectos y roedores, representa dentro del programa general de Saneamiento del medio ambiente hospitalario, una demanda económica para atender los gastos de personal, equipo y productos químicos.
El problema que representan los insectos desde el punto de vista económico no es significativo, ya que la única demanda económica es la que exige el mantenimiento de su control.
CAPITULO II

TOTAL DE CAMAS.

POBLACION HOSPITALARIA.
2.1. TOTAL DE CAMAS

El Hospital del Empleado, presta un servicio - de tipo general, en las especialidades de Medicina General, Maternidad, Cirugía, etc; cuenta - con dos tipos de camas que son: camas hospitalarias, y cama considerada no hospitalaria.

Cama Hospitalaria.-

Es aquella que se instala en un servicio hospitalario, para uso regular de pacientes por períodos de 24 horas; excluyéndose a las camas - para uso de recién nacidos sanos en el hospital. Pero sí incluye las incubadoras existentes como cama hospitalaria.

La utilización de estas camas origina una unidad adicional" PACIENTE DIA" por cada 24 horas de tratamiento en ellas mismas.

CAMA DIA.- Se entiende como tal, cada período- de 24 horas durante el cual una cama del Hospital permanece en disponibilidad para la hospitalización de pacientes independientemente de que se
encuentre ocupada o nó.

CUNA.- Se le denomina así, a la cama instalada en la maternidad para el uso regular de recién nacidos en el hospital. La cama se computa como una cama hospitalaria cuando el recién nacido recibe atención médica.

CAMA NO HOSPITALARIA.- Son aquellas que están instaladas en el Hospital, pero que son utilizables en forma momentánea por los pacientes, como ocurre con las que están instaladas en los Servicios de Emergencia y Recuperación. En esta clasificación están consideradas también las camas utilizadas en la Residencia de Médicos y Enfermeras.

En el Hospital en un estudio con respecto al total de camas, se obtuvieron las siguientes cifras, procedentes de los Departamentos de Gobernación y Estadística:
2.1.2. CUADRO DE TOTAL DE CAMAS.

GOBERNACION
Sección Hospitalaria.................. 1,198
Residencia Médicos..................... 44
Residencia Enfermeras é Internos.. 55
Emergencia.............................. 17
Recuperación............................ 9

ESTADISTICA
Medicina.................. 331
Cirugía.................. 309
Obstetricia.................. 338
Ginecología.............. 24
Prematuros(Incubadoras)...... 60
.................. 1,120

2.2. POBLACION HOSPITALARIA

2.2.1. GENERALIDADES.
La población de un hospital difiere notablemente de aquella que compone la comunidad en general, debido principalmente a la variación que ella es susceptible
en períodos cortos de tiempo, que es consecuencia del tipo de servicio que ésta presta, en el Diagnóstico, Tratamiento y Recuperación de los enfermos y prevenir que enfermen los supuestos sanos.

2.2.2. CLASIFICACION.

La población hospitalaria está compuesta esencialmente por pacientes, personal que labora en los diferentes servicios del Hospital, y por personas que proceden del medio exterior, entre las que tenemos a los visitantes.

2.2.2.1. PACIENTES.

Es toda persona alojada o no en el Hospital con fines de Diagnóstico, Observación ó tratamiento, que hace uso de los servicios ambulatorios del mismo.

Los pacientes que reciben atención médica en un Establecimiento Hospitalario están clasificados en dos tipos, que son los siguientes:
Pacientes Ambulatorios.- Es toda persona que hace uso de los servicios del Hospital, ya sea con fines de diagnóstico o terapéutica, pero que no ocupa una cama hospitalaria o cuna.

Paciente Hospitalizado ó Interno.- Es toda persona que ocupa una cama o cuna, mientras permanece alojado en el Hospital para fines de diagnóstico, observación, cuidados o tratamiento, y del cual se mantiene una historia clínica durante su período de hospitalización.

Cada período de 24 horas durante el cual una cama de Hospital permanece ocupada por un paciente se denomina "PACIENTE-DIA".

En el Hospital en Estudio, el cálculo de pacientes es una cifra muy difícil de obtener, debido a la gran variación que sufre en períodos cortos de tiempo, por lo cual se ha tomado un número global mensual, con respecto a los pacien-
tes ambulatorios, y se ha tratado de obtener una cifra estimada de los pacientes internos, efectuando un muestreo diario por mes del archivo de "PACIENTE-DIA" del Hospital, los cuales arrojan las siguientes cifras:

PACIENTES DE CONSULTA EXTERNA (1971)

(Dpto. de Estadística)

<table>
<thead>
<tr>
<th></th>
<th>Medicina y Especialidad</th>
<th>Cirugía y Especialidad</th>
<th>Ginecología y Obstetricia</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERO</td>
<td>30,337</td>
<td>15,279</td>
<td>9,097</td>
<td>54,893</td>
</tr>
<tr>
<td>FEBRERO</td>
<td>32,557</td>
<td>15,368</td>
<td>9,461</td>
<td>57,386</td>
</tr>
<tr>
<td>MARZO</td>
<td>35,821</td>
<td>17,362</td>
<td>10,496</td>
<td>63,679</td>
</tr>
<tr>
<td>ABRIL</td>
<td>31,815</td>
<td>14,463</td>
<td>9,534</td>
<td>55,812</td>
</tr>
<tr>
<td>MAYO</td>
<td>31,915</td>
<td>15,577</td>
<td>9,207</td>
<td>56,699</td>
</tr>
<tr>
<td>JUNIO</td>
<td>30,026</td>
<td>14,540</td>
<td>9,275</td>
<td>53,841</td>
</tr>
<tr>
<td>JULIO</td>
<td>29,866</td>
<td>14,041</td>
<td>8,872</td>
<td>52,779</td>
</tr>
<tr>
<td>AGOSTO</td>
<td>31,271</td>
<td>15,114</td>
<td>9,735</td>
<td>56,120</td>
</tr>
<tr>
<td>SETIEMBRE</td>
<td>33,029</td>
<td>16,175</td>
<td>8,688</td>
<td>55,892</td>
</tr>
<tr>
<td>OCTUBRE</td>
<td>32,568</td>
<td>15,631</td>
<td>9,377</td>
<td>55,576</td>
</tr>
<tr>
<td>NOVIEMBRE</td>
<td>32,509</td>
<td>15,330</td>
<td>10,250</td>
<td>58,089</td>
</tr>
<tr>
<td>DICIEMBRE</td>
<td>28,214</td>
<td>13,603</td>
<td>8,565</td>
<td>50,382</td>
</tr>
</tbody>
</table>

TOTAL 379,928 182,483 112,537 674,948
MUESTREO DEL NUMERO DE PACIENTES INTERNADOS (1971)

<table>
<thead>
<tr>
<th>Mes</th>
<th>905</th>
<th>1012</th>
<th>1033</th>
<th>1025</th>
<th>1043</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>Febrero</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Marzo</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Abril</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Mayo</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>Junio</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Julio</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Agosto</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Setiembre</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>Octubre</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Noviembre</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Diciembre</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

MUESTREO DEL NUMERO DE PACIENTES INTERNADOS (1972)

<table>
<thead>
<tr>
<th>Mes</th>
<th>923</th>
<th>951</th>
<th>965</th>
<th>941</th>
<th>936</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Febrero</td>
<td>974</td>
<td>949</td>
<td>953</td>
<td>967</td>
<td>981</td>
</tr>
<tr>
<td>Marzo</td>
<td>975</td>
<td>959</td>
<td>951</td>
<td>1011</td>
<td>947</td>
</tr>
<tr>
<td>Abril</td>
<td>926,</td>
<td>959</td>
<td>977</td>
<td>962</td>
<td>989</td>
</tr>
<tr>
<td>Mayo</td>
<td>912</td>
<td>953</td>
<td>979</td>
<td>994</td>
<td>993</td>
</tr>
</tbody>
</table>
NUMERO DE EGRESOS DE PACIENTES HOSPITALIZADOS

(1971)

<table>
<thead>
<tr>
<th>MES</th>
<th>RESTABLECIDOS</th>
<th>FALLECIDOS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-48 horas</td>
<td>-48 horas</td>
<td></td>
</tr>
<tr>
<td>Enero</td>
<td>2542</td>
<td>22</td>
<td>36</td>
</tr>
<tr>
<td>Febrero</td>
<td>2632</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>Marzo</td>
<td>2857</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>Abril</td>
<td>2556</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>Mayo</td>
<td>2636</td>
<td>21</td>
<td>37</td>
</tr>
<tr>
<td>Junio</td>
<td>2583</td>
<td>19</td>
<td>32</td>
</tr>
<tr>
<td>Julio</td>
<td>2592</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>Agosto</td>
<td>2416</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>Setiembre</td>
<td>2662</td>
<td>16</td>
<td>34</td>
</tr>
<tr>
<td>Octubre</td>
<td>2771</td>
<td>13</td>
<td>34</td>
</tr>
<tr>
<td>Noviembre</td>
<td>2742</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>Diciembre</td>
<td>2891</td>
<td>27</td>
<td>33</td>
</tr>
</tbody>
</table>

TOTAL ES: 31880 206 388 32474

2.2.2.2. PERSONAL QUE LABORA EN EL HOSPITAL

En los establecimientos hospitalarios, como en cualquier otra Institución similar, se requiere de personal profesi-
nal, femenino, y subalterno para el normal funcionamiento de sus servicios clínicos que éste reúne.

En el Hospital en estudio, esta parte de la población hospitalaria está conformado, por el siguiente personal:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDICOS</td>
<td>383</td>
</tr>
<tr>
<td>ENFERMERAS</td>
<td>513</td>
</tr>
<tr>
<td>OBSTETRICES</td>
<td>173</td>
</tr>
<tr>
<td>EMPLEADOS</td>
<td>625</td>
</tr>
<tr>
<td>AUXILIARES</td>
<td>765</td>
</tr>
<tr>
<td>SUBALTERNOS</td>
<td>954</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,413</td>
</tr>
</tbody>
</table>

2.2.2.3. VISITANTES

Esta parte de la población hospitalaria está conformada por las personas que visitan a los pacientes internados en las diferentes áreas de hospitalización.

En el Hospital en estudio, según un reglamento, las pacientes hospitalizados
pueden recibir visitas 2 veces al día; salvo casos especiales.
Las visitas se realizan mediante turnos los cuales tienen un horario establecido, que es el siguiente:

1er. turno.....tardes (1pm.-4pm.)
2do. turno.....noches (7pm.-9pm.)

El número de visitantes que puede recibir un paciente durante un turno de visita, es ilimitado.
En el Hospital en estudio, no existe datos estadísticos sobre el número estimado de visitantes que ingresan a los pisos de hospitalización. Por lo cual se tuvo que practicar un método práctico, para obtener una cifra representativa del número estimado de visitantes, que ingresan diariamente a dicho establecimiento hospitalario.
El método prácticado fue el siguiente: El Público Visitante, para subir a los pisos de hospitalización, hace uso de los ascensores de servicio externo, que
es el único medio de transporte permitido, por lo cual funcionan con este fin durante los horarios de visita establecidos. El número de ascensores que prestan este servicio son 6, de los cuales 3 funcionan en el ala "A" (Maternidad) y los 3 restantes en el ala "B y C" (Medicina general y especialidades).

Para la obtención del número estimado de visitantes, se observó que el momento más adecuado, y que prestaba mayor facilidad, era cuando los visitantes formaban cola al costado derecho del ascensor que los iba a transportar, en aquel instante se realizaba el Conteo de los visitantes, aprovechando el lapso que demoraban los ascensores, entre uno y otro viaje, a los pisos de hospitalización.

Como durante los turnos de visita, los ascensores tanto del ala "A" como el ala "B y C" funcionan simultáneamente en el transporte de los visitantes, se tuvo que contar con la colaboración de otra persona para obtener el total de visitantes que ingresaban a los pisos de hospitaliza-
ción durante un turno de visita.

El Número total estimado de visitantes diarios se obtenía sumando el número de visitantes del ala "A" más los del ala "ByC" de los dos turnos diarios.

En las siguientes cifras obtenidas se podrá apreciar la variación que existe entre la cifra de visitantes de un día y otro.
NUMERO ESTIMADO - DIARIO DE VISITANTES

<table>
<thead>
<tr>
<th>TURNO</th>
<th>ALA</th>
<th>D I A S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>TARDE</td>
<td>A</td>
<td>789</td>
</tr>
<tr>
<td>(1pm-4pm)</td>
<td>B y C</td>
<td>1129</td>
</tr>
<tr>
<td>NOCHE</td>
<td>A</td>
<td>834</td>
</tr>
<tr>
<td>(7pm-9pm)</td>
<td>ByC</td>
<td>1254</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>4006</td>
</tr>
</tbody>
</table>
CAPÍTULO III

TIPOS DE BASURA QUE SE PRODUCE.
3. TIPOS DE BASURA QUE SE PRODUCEN

3.1. GENERALIDADES

La basura que se produce en el Hospital es muy heterogénea y sus diferentes tipos dependen de las funciones y procesos que ejecutan sus Departamentos y Servicios.

El estudio y clasificación de la basura producida en esta Institución, es un principal factor que interviene en el planeamiento y ejecución del proceso de su eliminación y de ello resulta:

- Establecer el sistema de disposición más conveniente.
- Prever normas y técnicas operativas, para lograr una mejor eficiencia en las diferentes etapas del proceso de disposición.
- Optimizar el diseño y mantenimiento del equipo requerido en el sistema de disposición establecido.

La basura producida en el Hospital, ha -
sido clasificada según:

Ralph J. Black

a) desechos
d) basura de cirugía
b) desperdicios
e) basura de autopsia
c) basura de los cuartos de hospitales.
f) no combustibles (latas, botellas)

UNDA-OPAZO

a) basura seca (limpieza del piso, papeles, objetos en desuso, flores).
b) basura húmeda (cocina).
d) restos de tejidos y huesos.
d) moldes de yeso (traumatología)
e) desechos provenientes de las salas de recepción de mercaderías (cajas de embalaje, envases, papel, etc).
f) desechos (rayos X).
g) restos de metal (incluye latas y envases metálicos).
h) vidrios.

Vinson R. Oviatt

a) Administración.- Papeles, tarjetas.
b) Departamento de Obstetricia y Cuartos de Pacientes.- Ropa sucia, esponjas, placenta, cáp-
sulas de Nitrato de plata, agujas, jeringas, máscaras, goteros, drenes, (desechables) ampolletas, depósitos de plástico, glucosa, suero, etc.

c) **Emergencia, Depto. de Cirugía y Cuarto de Pacientes.** - Esponjas, restos biológicos, amputaciones, materia orgánica, agujas, jeringas, máscaras, drenes y sondas desechables.

d) **Laboratorio, Patología y Salas Autopsia.** - Botellas, pomos de análisis, porta-objetos y petris desechables, restos de tejidos, órganos, huesos.

e) **Cuartos Aislados.** - Papel, papeles con esputos y secreciones nasales, vendajes.

f) **Estación de Enfermeras.** - Ampollas, agujas y jeringas desechables, papeles, restos de frascos de medicamentos, apóstitos.

g) **Areas de Servicio.** - Papel, cartón, material de empaque, recipientes de metal, canastas, botellas latas de alimentos envasados, resto de botellas de farmacia, basura proveniente del público y pacientes, restos de rayos X, restos de alimentos de cocina.

Analizando las diferentes clasificaciones hechas por los autores mencionados, y la apreciación realizada en el Hospital, podemos deducir una clasificación más general y sintética de la basura hospitalaria.
3.2. CLASIFICACION DE LA BASURA HOSPITALARIA.

Desechos
(basura seca)

Combustibles
Papeles, cartulina, cartones, madera y derivados, objetos en desuso, envases desechables de plástico, cajas y material de embalaje, radiografías, trapos, etc.

No combustibles
Ampolletas
Latas y envases metálicos
Botellas, pomos

Desperdicios
(basura húmeda)

Residuos de Alimentos
Restos de cocina
Restos de comedores
Restos de reposteros

Residuos de Jardinería
Canastas con flores
(cuarto de pacientes)
Restos de plantas, pasto etc. (mantenimiento de jardines).

Basura Especial ó Patológica

Proveniente: Cirugía, partos, patología, autopsia.
Proveniente: Laboratorios.
Proveniente: Pacientes aislados de infecto y contagiosos Ambulatorios

Material Inerte

Residuos de tierra: Limpieza de ambientes, pisos, etc.
Restos material de reconstrucción: Reparaciones y mantenimiento del Hospital.

Cenizas: Residuos de combustible, material incinerado.
DESECHOS (Basura Seca).

Es el tipo de basura conformada por residuos que no contienen líquido o humedad, en consecuencia no putrecibles. La disposición de este tipo de basura no representa ningún problema sanitario a excepción de la que proviene o ha tenido contacto con los pacientes infecto contagiosos. Este tipo de basura generalmente se produce en mayor volumen en los hospitales.

Los Desechos se subdividen en:

a) **Desechos Combustibles.**- Son aquellos desechos que tienen la propiedad de quemarse con facilidad. Por lo tanto el principal riesgo que representa su disposición es el de producir incendios. En este tipo de desecho tenemos: papel, cartón, material plástico, telas, maderas y derivados, etc.

b) **Desechos no Combustibles.**- Es el tipo de desecho como su nombre lo indica no tiene propiedad para quemarse, y por no ser putrecible puede ser almacenados por mayor período de tiempo que los demás desechos. Entre ellos tenemos: botellas, pomos, vidrios, latas, objetos de metal.
DESPERDICIOS (Basura húmeda)

Este tipo de basura está conformada por materia orgánica de fácil descomposición.

La disposición de estos residuos representan un problema serio, debido a los malos olores que producen y además por ser un foco atractivo para los insectos y roedores.

Los desperdicios se subdividen:

a) **Residuos de Alimentos**.- Este tipo de residuos proviene de los Departamentos que receptionan y elaboran y distribuyen alimentos, tales como:

1. **Cocina**.- Los desperdicios que provienen de la cocina, están constituidos por los residuos no utilizable de los diferentes alimentos naturales (cáscaras de vegetales y frutas), parte de alimentos malogrados durante su manipulación, huesos y grasas de la elaboración de alimentos.

2. **Comedor**.- Los desperdicios que provienen del comedor, están constituidos por los restos de alimentos elaborados y no consumidos por el personal que labora en el hospital (desayuno, almuerzo, comida).
3.- **Reposteros**: Los desperdicios que provienen de los reposteros están constituídos por los restos de alimentos elaborados por la cocina general o dietas que no han sido consumidos por los pacientes de los pisos de hospitalización, y por los residuos de alimentos y frutas de la preparación de las dietas.

b) **Residuos de Jardinería**.- Este tipo de residuo está constituído por restos de flores, plantas, poda de arbustos y árboles que provienen del mantenimiento de los jardines del Hospital. Dentro de este rubro también se puede citar los restos de canastas de flores recibidas por los pacientes durante su estadía.

BASURA ESPECIAL O PATOLOGICA.-

La denominación de especial o Patológica se debe a que este tipo de basura se produce sólo en hospitales, clínicas, y establecimientos similares. Estos residuos están constituídos por restos de
tejidos orgánicos o materiales que hayan absor-
bido secreciones patológicas o sangre, etc., por
lo cual son de rápida descomposición y su dispo-
sición trae consigo problemas sanitarios y es-
téticos.

La Basura Especial o Patológica se subdivide en
3 grupos:

a) **Basura Especial o Patología proveniente de la Sala de Cirugía, Partos, Patología, Autopsia.**

Esta basura está constituída por fragmentos
de tejidos orgánicos, placenta, huesos, vendaje,
toallas sanitarias, algodones y gasas—que contienen o no secreciones patológicos o sangre, sondas, drenas, equipos de venoclisis,
papeles gasas en que viene envuelto el mate-
rial esterilizado.

b) **Basura Especial o Patológica proveniente de Laboratorios.**

Esta basura está constituída—por botellas y pomo que sirven de envase a
las muestras de orina, heces, medios de cul-
tivo, gasas, algodones, y papeles, utilizados
en los análisis de bacteriología o de sangre.
c) **Basura Especial o Patológica proveniente de Pacientes Infecto-Contagiosos.** — (Pacientes Internos o Ambula orios).—El proceso de disposición de esta basura tiene vital importancia sanitaria por la potencialidad de contaminación que ésta representa, por ende, se le denomina también "Basura Séptica", y dentro de este tipo está considerada toda basura proveniente de esta sección que haya tenido contacto o no con los pacientes mencionados.

MATERIAL INERTE.

Este tipo de basura no representa problema sanitario pero sí estético por el aspecto de suciedad que produce el polvo y cenizas que lo constituye durante el proceso de disposición.

Dentro de este tipo podemos citar 2 grupos:

a) **Escombros y restos de material de construcción**

Este tipo de basura proviene de ampliaciones y mantenimiento de las áreas del Hospital y tierra proveniente de la limpieza.

b) **Cenizas.** — Este tipo de basura son residuos — provenientes de materiales utilizados como —
combustible. (carbón, madera).

3.3. TIPO DE BASURA PRODUCIDA POR DEPARTAMENTOS.

La siguiente clasificación ha sido realizada en base a los puntos iniciales de producción, durante el periodo de estudio realizado en el establecimiento hospitalario, del cual obtendremos en cálculos estimado del tipo de basuras producidas por Departamentos, el tipo de mayor producción. Datos que servirán para futuros estudios para los usos pertinentes.

a) Administración y Oficinas Similares,
 Sistematización e Imprenta
 1.- Papeles
 2.- Cartulinas
 3.- Tarjetas.

b) Pisos de Hospitalización (Cuartos de Pacientes - Estación de Enfermeras)
 1.- Papeles, cartones, papel higiénico (banos paciente, personal).
 2.- Envasos de cartón, metal y plástico.
3.- Recipientes desechables, venoclisis
4.- Botellas, pomos, ampolletas.
5.- Drenes, goteros, sondas.
6.- Algodones, gasas, esparadrapos, vendas.
7.- Desperdicios de alimentos (reposteros).
8.- Restos de yeso (traumatología).

c) Maternidad (Sala de partos, Puerperio, Ginecología).
1.- Papeles, cartones, restos de envases.
2.- Algodones, gasas, toallas sanitarias, esparadrapos, vendas.
3.- Placentas, residuos de sangre y líquido (partos).
4.- Algodones, papeles (empaque de instrumentos esterilizados).

d) Sala de Cirugía, Autopsia, Patología
1.- Fragmentos de tejidos orgánicos, huesos.
2.- Algodones, gasas, esparadrapos, vendas (con secreciones).
3.- Equipos desechables, venoclisis (suerro, sangre, etc).
4.- Papel y gasa (empaque de instrumentos esterilizados).
5.-Pomos, ampolletas.

e) Consultorios Externos o Ambulatorios

(edicina General y Maternidad).

1.- Papeles, cartones, toallas sanitarias, esparadrapos.

2.- Basura general proveniente de los pacientes ambulatorios y público.

f) Emergencia

Es el Departamento que produce la mayor variedad de basura, debido al período de tiempo que trabaja (24 horas) y a las Secciones que contiene como - Sala de Operaciones, partos, traumatología, sala de curaciones (tópico), farmacia etc. (ver la producción de estos - Departamentos).

g) Farmacia y Drogas

1.- Restos de embalaje (metálicos, madera, cartón).

2.- Botellas, pomos, envases plásticos.

3.- Papeles, cartones.
h) **Laboratorios**

1. Botellas, pomos (envases de muestras de orina, heces, etc).
2. Edios de cultivos, restos químicos (envases).
3. Papeles, cartones, algodones, gasas.

i) **Rayos X Cobalto terapia**

1. Papeles, cartones, cartulinas.
2. Material de radiografía.

j) **Almacenes** (viveres, materiales, artículos hospitalarios)

1. Restos de embalajes (metálicos, madera, cartón, plástico).
2. Papeles, trapos.

k) **Departamento de Mantenimiento** (mecánica, carpintería, albañilería)

1. Resto de envases (metálicos, madera, cartón).
2. Papeles, trapos, huaype.
3. Residuos de madera y derivados (vi-ruta, aserrín, etc.)
4. Residuos de material de construc-
ción (restos de demolición, ladrillos, arena, fierros, etc.).

1) COCINA, COMEDORES, REPOSTEROS

1.- Residuos de la elaboración de alimentos (huesos, grasas, cáscaras, hojas, peps, de vegetales y frutas).

2.- Residuos de alimentos elaborados (dietas, comida general, pero no consumida por el personal y pacientes).

3.- Cartones, latas (alimentos envasados).
CAPÍTULO IV

SISTEMA DE ALMACENAMIENTO, RECOLECCION Y DISPOSICION FINAL.
1. SISTEMA DE ALMACENAMIENTO-RECOLECCIÓN Y DISPOSICION FINAL

4.1. GENERALIDADES.

En el presente estudio del Sistema de Disposición de Basuras en el Medio Ambiente Hospitalario, se requiere hacer un análisis del actual proceso, con el fin de obtener datos y conclusiones que nos sirvan como base de comparación en el estudio de futuras ampliaciones o proyectos relacionados con este proceso. Debido a que en la actualidad en nuestro medio no se cuenta con Bibliografía ó Referencia necesaria realacionada con el proceso de Disposición de Basuras en el Medio Hospitalario y en consecuencia se carece de Reglamentos o Normas que rijan este proceso, para que se desarrolle en óptimas condiciones sanitarias, estéticas y de seguridad.

ORGANIZACIÓN.

El proceso de Disposición de Basuras en el Hospital del Empleado, está bajo la responsabilidad del Departamento de "GOBER ACION Y LIMPIEZA". El mencionado Departamento tiene a cargo varios -
servicios entre los cuales está considerado en forma secundaria este proceso.

La Disposición de Basuras en el Ambiente Hospitalario está considerado como una etapa final de la limpieza, por lo cual el personal que ejecuta esta labor, lo realiza como un trabajo secundario y supeditado a la limpieza.

La responsabilidad del Normal Funcionamiento del Proceso de Disposición de Basuras, está estructurado de la siguiente forma.

<table>
<thead>
<tr>
<th>JEFE DEL DPTO.</th>
<th>CAPATAZ GENERAL</th>
<th>CAPATACES</th>
<th>PERSONAL SUBALTERNO</th>
</tr>
</thead>
</table>

En el sistema de disposición establecido, otro Departamento que tiene acción directa en el proceso es el "DEPARTAMENTO DE CALDERAS", el cual tiene responsabilidad en el funcionamiento operacional del incinerador, para lo cual dicho Departamento aporta su propio personal para este servicio.

4.2. LIMPIEZA.

En los Establecimientos Hospitalarios, la labor de limpieza está considerado como un escalón en el proceso de Disposición de Basuras. Debido
a que en forma indirecta al término de esta labor se realiza el almacenamiento o desecho de baño, que se origina por la limpieza propiamente dicha, más la basura originada por las actividades propias de dicha área.

La labor de limpieza en los establecimientos hospitalarios está considerada como una labor de conservación de estética y orden, y nó como una práctica de Saneamiento y prevención en la propagación de enfermedades infecciosas, aun que esta labor implique actividades como: Desinfección de ambientes, mobiliario, y control de plagas.

4.2.1. ORGANIZACION DE LABOR DE LIMPIEZA.

El Hospital del Empleado, por tener un Diseño arquitectónico de tipo vertical consta de 14 pisos y un sótano.

Cada piso tipo está dividido en tres zonas verticales, llamadas Alas "A", Ala "B" y Ala "C".

ALA "A".- Esta zona tiene la particularidad de estar aislada de las demás alas, y pertenece a la Especialidad de Maternidad y Ginecología, el aislamiento-
to es una medida de prevención en la transmisión de enfermedades infecciosas o las que las parturientas y recién nacidos son susceptibles a contraerlas.

ALA "B y C".- Estas dos zonas están comunicada, y en las cuales funcionan las diferentes especialidades de medicina y cirugía.

* Por estas condiciones ya mencionadas el servicio de limpieza se realiza en forma independiente, tanto en el ala "A" como el ala "B y C" como en cada piso de estas respectivas alas (Pisos de Hospitalización).

* En el ler. Piso donde funcionan los consultorios ambulatorios, oficinas administrativas, etc., la labor de limpieza en estos sectores de espera y atención del público, está repartida en áreas ya establecidas.

* Los Departamentos y Servicios Médicos y Paramédicos que funcionan en el ler. Piso y Sótano, la labor de limpieza está efectuado en forma exclusiva por el Departa--
mento de servicio.

* La limpieza de las áreas circundantes - del Hospital, y el mantenimiento y limpieza de jardines están repartida por áreas ya establecidas.

4.2.2. PERSONAL

*En los pisos de hospitalización, la labor de limpieza está ejecutada por personal formado por hombres y mujeres, donde la labor de las mujeres consiste en conservar limpieza y orden en los cuartos de los pacientes en forma exclusiva, y el personal masculino complementa la labor limpiando los pasadizos, baños del personal, estaciones, etc. del piso correspondiente.

* En los Departamentos y servicios que funcionan en el ler. piso y sótano, el personal que ejecuta la limpieza es masculino, y ejecuta esta labor en forma exclusiva en el Departamento o servicio que le ha sido designado.

* El personal que labora en las áreas citadas, depende en forma directa o indirecta del Departamento de Gobernación.
4.2.3. FRECUENCIA.

*En los pisos de hospitalización la frecuencia con que se realiza la limpieza es diaria, y realizándose esta labor en la mañana (7 am-1 pm).

*En el ler. piso donde funcionan los consultorios ambulatorios y oficinas administrativas, por la función que desempeñan, de atender al público al instante en que abre las puertas este establecimiento hospitalario, su frecuencia de limpieza es diaria pero es realizada en un horario especial (horas de la noche), para no interferir o molestar al público presente.

*En los Departamentos o servicios del ler. Piso o del sótano la frecuencia de limpieza y horario está supeditado a la función y necesidad de cada departamento o servicio.

4.2.4. EQUIPOS Y MATERIALES

El personal del servicio de limpieza de este Establecimiento Hospitalario para ejecutar su labor, cuenta con equipos y
materiales que son abastecidos por medio del almacén de este Departamento.

El equipo y material que es usado en -forma general por el personal de este servicio es el siguiente:

EQUIPO:

Escoba.- Este implemento de limpieza está siendo desterrado en la limpieza de los ambientes del Hospital, especialmente en los pisos de hospitalización, debido que este implemento al ser usado produce la suspensión de partículas de polvo, que pueden ser vehículos de agentes patógenos, así como la molestia que causa el polvo a los pacientes.

Este implemento es usado en las áreas circundantes, jardines del Hospital, y Departamentos de mantenimiento del Sótano.

Esgobillón.- Este implemento es el que ha reemplazado a la escoba en la limpieza de pisos en los establecimientos hospitalarios, porque además de facilitar la labor de limpieza, la suspensión de-
partículas de polvo es mínima.

Trapeador.- Este implemento es el de mayor uso en los establecimientos hospitalarios en lo que se refiere a limpieza de pisos, ya que es utilizado en la limpieza, lavado, desmanche y encerado de los pisos, en especial los pisos de las áreas de hospitalización.

Baldes.- Estos implementos son de material de plástico y aluminio, siendo de mayor uso este último por constar de un medio de transporte y un aditamento mecánico que sirve para exprimir los trapeadores en forma manual. Estos baldes sirven como recipiente y medio de transporte a las soluciones de detergente, desinfectante, y cera, utilizados en la limpieza de pisos, paredes, mobiliario, etc.

Recogedores.- Estos implementos son utilizados especialmente en las áreas de atención al público para recoger restos de basura en forma dispersada.

Escobillas.- Estos implementos son de dos clases: las usadas para limpiar mobiliario y las utilizadas para limpiar los W.C. de los baños de pacientes, personal y público.
Lustradoras.- Este implemento es de tipo industrial, para cubrir las necesidades de este establecimiento y usada para el encherado y lustrado de los pisos de los diferentes ambientes del Hospital.

MATERIALES.

Detergente.- Es el material que tiene usos múltiples en dicho establecimiento - hospitalario, ya que es utilizado como reemplazo del jabón en la limpieza, lavado de ropa, y en el lavado de mobiliario, utensilios de los diversos departamentos del Hospital.

Sapolio.- Este material es utilizado en la limpieza de labatorios, sanitarios de los baños de los pacientes, personal y público.

Desinfectante.- Este material es utilizado en las áreas de hospitalización, consultorios, y en los ambientes donde se requiere un ambiente aséptico.

El desinfectante utilizado es de tipo líquido y concentrado para lo cual es disuelto con agua, generalmente es usado junto-
con el detergente en la limpieza de pisos y paredes.

Ácido Muriático.—Este material de limpieza es utilizado en la remoción y desmanche de los sanitarios de los baños de pacientes, personal y público.

Cera.—Este material es usado en todos los ambientes del Hospital, la cera utilizada es de tipo líquida y en su aplicación es mezclada con desinfectante, para tener una protección en los pisos de los ambientes de mayor riesgo a las enfermeras—infecciosas.

ALMACENAMIENTO.

Es la parte del proceso de disposición de basuras en el cual los residuos sólidos producidos en dicho establecimiento hospitalario, deben ser almacenados por un período de tiempo determinado, debido a que estos no pueden ser transformados o desechados en forma inmediata por requerimiento operacional del proceso, salvo casos especiales como los restos de comida provenientes de los pacientes en hospitalización, que en su reporte correspondiente son triturados y desechados a la Red de Desagüe.
El almacenamiento de residuos sólidos en el ambiente hospitalario se realiza de dos formas:

Almacenamiento Parcial.- Es el almacenamiento de basura que se utiliza en cada uno de los puntos de producción, de una misma área.

Almacenamiento Total.- Es el almacenamiento resultante que proviene de los diferentes puntos de producción de una misma área.

4.3.1. **UBICACION**

En el siguiente punto se citará la situación de los recintos de almacenamiento de los principales sectores de producción de basuras en el Hospital en Estudio.

* **Pisos de Hospitalización**

En esta área del Hospital, tanto en el Ala "A" como en el Ala "ByC" los recintos de almacenamiento, en cada piso, están ubicados por diseño frente a los ascensores de servicio interno del Hospital.

* **Oficinas Administrativas y Consultorios - Ambulatorios**.-

Los recintos de almacenamiento en estos sectores, no tienen una ubicación específica por diseño, por lo cual en cada sec-
tor se encuentran ubicados provisionalmente en el cuarto donde se limpian y almacenan los instrumentos de limpieza. Los consultorios ambulatorios están separados en dos sectores principales, que atienden la Especialidad de Maternidad y Ginecología, y Medicina General; cada una con sus respectivas oficinas administrativas.

* Departamentos Médicos y Paramédicos -

Los recintos de almacenamiento de los Departamentos ubicados tanto en el 1er piso como en el sótano no cuentan con un compartimiento destinado con este fin. Por lo cual los recipientes de almacenamiento de cada departamento se encuentra en el Departamento más apropiado para facilitar dicha labor.

4.3.2. PERSONAL

Los encargados de ejecutar la labor de almacenar los residuos sólidos, desde los puntos de producción, hasta sus respectivos departamentos de almacenamiento, es el mismo personal que ejecuta la labor de limpieza en esa misma área o departamento.
4.3.3. **PERIODO DE ALMACENAMIENTO**

El período de almacenamiento lo definimos como el lapso de tiempo transcurrido desde el momento de almacenamiento de la basura, hasta su transformación o disposición final.

El período de almacenamiento en este tipo de establecimientos, es generalmente de 24 horas, y es debido en gran parte a la forma operacional de la transformación o disposición final de la basura; salvo excepciones que dependen de los siguientes factores:

* **Tipo de Basura.**— En el período de almacenamiento, el tipo de basura juega un papel importante, que determina el mayor o menor lapso de tiempo que ésta puede ser almacenada, como cabe citar:

El tipo de basura que contiene materia orgánica, como son los restos alimenticios, que son susceptibles a descomponerse en corto tiempo, y sinó se cuenta con aditamentos especiales, tales como recintos refrigerados, estos deberán ser desechados lo más pronto posible, para evitar problemas de índole sanitario y estético,
Mientras que el tipo de basura seca, puede ser almacenada por períodos largos de tiempo, aunque no se debe realizar para evitar problemas como riesgos de incendio, o que sirvan como refugio de distintas plagas.

* **Cantidad de Basura.** En los Establecimientos Hospitalarios, la constante variación en la cantidad de basura producida, ocasiona cambios en el período normal de almacenamiento, al recinto de almacenamiento el acarreo de la basura será mayor que lo normal y en consecuencia el período de almacenamiento menor.

* **Tipo de Reducción o Disposición Final.** El período de almacenamiento varía con el tipo de educación o Disposición Final adoptado, esto quiere decir, que dependerá del sistema operacional del proceso. Como cabe citar el desecho casi inmediato de los restos alimenticios, provenientes de los cuartos de hospitalización a la Red de Desagüe previa trituración. Mientras que la basura en general se debe almacenar hasta que entre a funcionar el -
incinerador, cuyo funcionamiento es de
(8 a.m. a 1 p.m.).

4.3.4. **RECIPIENTES**

Los recipientes utilizados en el proceso de almacenamiento de la basura en las diferentes áreas del Hospital en Estudio se pueden clasificar en tres tipos:

- Recipientes metálicos
- Recipientes de cartón
- Provisionales.

Recipientes Metálicos. Estos recipientes son cilíndricos que han servido de envase a productos químicos o aceites, etc. y son adquiridos por el Hospital, para este fin. Su capacidad de estos recipientes es de 55 galones = 208 litros y de un peso de 20 kgs.

Este tipo de recipiente es usado principalmente en pisos de hospitalización, y en el almacenamiento de desperdicios de comedores y cocina; siendo este recipiente el de mayor uso en este establecimiento.

Los recipientes metálicos, también son usados en las salas de parto, sala de ciru-
gía, y reposteros, siendo estos de menor capacidad (18 galones).

Recipientes de cartón.- Este tipo de recipientes también son de forma cilíndrica y son usados en las áreas o Departamentos que se produce basura seca (esterilización, sistematización, rayos X, etc), ya que este tipo de recipientes se deteriora con el contacto de líquidos o objetos que contengan humedad. También se utilizan en forma provisional cuando se deterioran los recipientes metálicos, y no hay stock en existencia en el almacén.

Recipientes Provisionales.- Estos recipientes son generalmente cajas de cartón o madera provenientes de los restos de embalaje.

Estos recipientes son utilizados a falta de los recipientes metálicos o los de cartón, pero son utilizados mayormente para almacenar restos de envases, tanto de cartón como de vidrio.

4.3.5. MANTENIMIENTO DE RECIPIENTES.

El cuidado y mantenimiento de los recipien-
tes utilizados en el proceso de disposición de basuras, está bajo la responsabilidad del Personal que ejecuta este servicio en los diferentes sectores del Hospital.

* Los recipientes metálicos son los únicos que reciben mantenimiento, a diferencia de los demás que cuando se deterioran, son desechados.

* Cuando son adquiridos los recipientes metálicos son pintados, como una medida de prevención a la corrosión.

* El tipo clásico de mantenimiento que se da a los recipientes metálicos en este establecimiento hospitalario, y que puede tomarse como una medida sanitaria, es la que reciben después de desechar la basura, y consiste en lavar el recipiente con agua caliente, y luego se le introduce en una cámara en la que se le rocía vapor a presión.

Este tipo de limpieza o mantenimiento es generalmente utilizado en los recipientes que hayan almacenado restos de materia orgánica (sala de partos, cirugía, comedor,
cocina etc).

* La renovación o cambio de estos recipientes, no se realiza en forma periódica, sino cuando están deteriorados y no pueden cumplir su función.

4.4. ALMACENAMIENTO DE BASURA EN DEPARTAMENTOS DE ESPECIAL CONSIDERACION.

4.4.1. COMEDORES

En el Hospital en Estudio, existen dos comedores destinados para el personal de empleados y subalternos de este Establecimiento, y tienen el mismo sistema con lo que respecta al almacenamiento de sus residuos sólidos.

* El tipo de basura almacenada, son restos de comida originadas en desayuno, almuerzo y comida.

* Los recipientes utilizados son cilindros, metálicos standart (55 galones aproximadamente - 208 lit) de capacidad.

* Estos recipientes están ubicados en los lugares donde se ejecuta el lavado y lim-
pieza de la vajilla para tener mayor fa-
cilidad para deschar los desperdicios-
de platos y bandejas.

* Después de esta operación, realizada en
los puntos de producción, los recipientes
son trasladados, por personal designado
por este departamento, al reciento de al-
macenamiento.

* El reciento de almacenamiento se encuen-
tra ubicado en el ambiente donde se rea-
liza una limpieza de los recipientes. El
recinto en mención, tiene las caracterís-
ticas especiales, de una cámara refrige-
rante, cuya función es cortar la descom-
posición de estos desperdicios, y además,
 evitar ser alimento de roedores ó insec-
tos.

* El período de almacenamiento de estos des-
perdicios es de 24 horas.

4.4.2. **COCINA**

En el siguiente Departamento el proceso -
de almacenamiento tiene una forma similar
de comedores, salvo algunas diferen-
cias.
* El tipo de desperdicios originados en este Departamento son en su mayoría cáscara de verduras y frutas, ó parte de ellas, que han sido deterioradas durante su transporte o manipuleo.

* Los recipientes utilizados, son cilindros metálicos standard (55 gals. = 208 lit aprox). de capacidad.

* Estos recipientes se hallan en los puntos de producción o sea junto a las mases donde se selecciona y se pela los vegetales, con el objeto de facilitar el almacenamiento de estos desperdicios.

* Luego son almacenados en el mismo recinto refrigerado en el que se almacena los desperdicios provenientes de los comedores.

* El mantenimiento que reciben los recipientes de almacenamiento de este departamento, consiste en ser lavados con agua caliente y luego son introducidos en una cámara donde se les da un baño con vapor a presión; luego de esta operación están listos para ser utilizados.

4.4.3. SALA DE PARTOS
* En la sala de partos, el almacenamiento de residuos sólidos producidos tienen especial atención debido al tipo de basura originado, que como sabemos consiste en restos de tejidos orgánicos, sangre y líquidos, además de la basura originada en este servicio.

* Los recipientes utilizados en este servicio, son cilindros metálicos (18 gls) de capacidad, y se encuentran en una sala contigua destinada a la limpieza general de este servicio.

* El período de almacenamiento es de 24 horas, durante el período no cuenta con ningún aditamento esencial para evitar problemas sanitarios y estéticos.

* El mantenimiento y limpieza que reciben los recipientes son igual al que reciben los recipientes que tienen contacto con materia orgánica.

4.4.4. SALA DE CIRUGIA

* El almacenamiento de los residuos sólidos provenientes de las intervenciones quirúrgicas, las cuales consisten en restos de-
tejidos orgánicos y desechos originados durante estas intervenciones, como apó-
sitos, esparadrápos, etc., son almacenados en un recipiente único.

* El recipiente utilizado es un cilindro metálico (145 lit) aprox. de capacidad y está ubicado en un recinto junto a la sala de operaciones.

* Los residuos sólidos originados en este servicio son desechados dos veces al día en dos turnos, el primero (8 am) y el 2do. (4 p.m.), esto hace que el período de almacenamiento varíe de acuerdo al turno de desecho.

* El mantenimiento o limpieza que reciben los recipientes es igual al que reciben los recipientes que tienen contacto con materia orgánica.

4.4.5. LABORATORIO DE ANALISIS

* El laboratorio por el servicio que presenta, origina una variedad de residuos só-
lidos, pero los de principal atención son los envases de vidrio (pomos y botellas) en los cuales los pacientes internos y
y ambulatorios traen sus muestras de heces y orina para sus respectivos análisis. Por lo tanto, estos envases representan un gran riesgo de contaminación—si no tienen un proceso adecuado de desecho.

* Dichos envases no cuentan con un recipiente de almacenamiento específico en el laboratorio (pto. de producción), estos envases después de terminada su función son colocados en un carro y son trasladados a un almacén destinado para estos envases, además de los provenientes de farmacia. Este recinto se encuentra ubicado en el mismo ambiente de limpieza—de los recipientes de basura, pero en forma independiente.

* En dicho recinto los envases son almacenados en cilíndros (metálicos y de cartón) la cantidad de estos es variable.

* El período de almacenamiento es variable de (5-8 días) y depende del tiempo en que se llenen la capacidad del recinto con cilíndros.

* Cuando se llena la capacidad de este —
recinto, los cilíndros conteniendo los envases son trasladados al área exterior del Hospital (cerca de los talleres) donde estos envases son depositados en el suelo al aire libre (hasta su disposición final).

4.5. RECOLECCION.

La recolección de basura en este Establecimiento hospitalario consiste en transportar la basura desde el punto de almacenamiento hasta el punto de reducción o disposición final (Recolección Interna).

El sistema de recolección en este establecimiento se realiza en la forma convencional o sea utilizando una línea de recipientes.

En la mayoría de los sectores de producción de basura su recolección es de tipo mixto, esto quiere decir que utilizan un recipiente único para todo tipo de basura, con excepción de algunos Departamentos y servicios tales como: sala de cirugía, partos, laboratorio farmacia, etc., que cuentan con recipientes específicos para los tipos de basuras que producen (recolec. separada)

4.5.1. HORARIO Y FRECUENCIA
El horario de recolección varía según los sectores de producción de basuras.

* **Pisos de Hospitalización.** Tanto en el Ala de Maternidad como en el Ala de Medicina General, el horario de recolección es de (8 - 10 am). La frecuencia de recolección en este sector es diaria.

* **Oficinas Administrativas y Consultorios Ambulatorios.** En este sector el horario de recolección de la basura producida es en la mañana (8 - 10 am). La frecuencia de recolección es diaria.

* **Departamentos y servicios.** En los Departamentos y servicios del 1er. piso, del sótano, el proceso de recolección de la basura es realizado en un horario variable igual que en su frecuencia de recolección y están supeditados a las funciones que desempeñan cada Departamento o servicio.

4.5.2. **PERSONAL**

El personal que realiza el proceso de recolección de basura en los distintos sectores del Hospital es el mismo que ejecuta la limpieza en su respectivo sector.
4.5.3. **RUTAS**

En la etapa de acarreo o transporte -- propiamente dicha, de la basura del punto de almacenamiento al punto de reducción o disposición final, en este establecimiento hospitalario, se realizan por rutas que están establecidas para cada sector de producción.

Las rutas utilizadas no han sido tomadas en cuenta en una forma específica en cuanto a las distancias recorridas, tiempo de recorrido, etc, debido a que dichas rutas son semejantes y su variación no es significativa, además de ser las rutas independientes. Las variaciones que se presentan durante este proceso de acarreo son debidas:

* **Ubicación del sector de producción con respecto al punto de reducción o disposición final.**

* **Facilidad de acceso a los ascensores de servicio tanto al dirigirse al punto de reducción o disposición final como al regresar al sector de producción respectivo.**
* Al tiempo que se demora cada operario en realizar la limpieza de su respectivo recipiente después del desecho de la basura.

En la etapa de recolección los factores en que se deberá tomar la mayor atención son el aspecto sanitario y estético. Debido a que el manipuleo y transporte de la basura se desarrolla en su mayor parte a vista de los pacientes y personal que labora en este Establecimiento Hospitalario.

4.5.4. EQUIPO

El equipo que se utiliza durante este proceso en los diferentes sectores de producción es el mismo y consiste:

* 1 Recipiente, para el almacenamiento y transporte de la basura.

* 1 carrito, utilizado para transportar en forma manual el recipiente.

4.6. SISTEMA DE REDUCCION

La reducción es el proceso que sirve para disminuir el volumen original de la basura para faci-
litar su disposición final.

El sistema de reducción se utiliza especialmen-
te cuando el volumen de basura producida es con-
siderable como sucede en los hospitales genera-
les.

En el Establecimiento Hospitalario en Estudio,
se utiliza dos sistemas de reducción que son --
las siguientes:

4.6.1. *INCINERACION

Este método de reducción consiste en la
destrucción de la basura por medio de la
combustión.

El proceso de incineración es el método-
de reducción óptimo desde el punto de
vista sanitario para establecimientos de
tipo hospitalario, porque además de des-
truir la basura general, lo hace con la
basura, médico quirúrgica, placenta, basu-
ra infecto contagiosa, que su disposición
final es dificultosa por otros métodos,
debido a los problemas sanitarios y esté-
ticos que están acarrean.

En el establecimiento hospitalario en Es-
tudio se incinera toda la basura con ---
excepción de:
- Pion y botellas provenientes de laboratorios y farmacias.
 Desperdicios provenientes de comedores y cocina.

4.6.1.1. Ubicación
El incinerador de los residuos sólidos está situado en el sub-sótano del Hospital contiguo al Departamento de calderas del cual depende su funcionamiento y mantenimiento.
La alimentación del incinerador (basura) se realiza por medio de un ducto situado en la parte superior del incinerador, dicho compartimento está ubicado en el sótano.

4.6.1.2. Personal
El personal encargado del funcionamiento y mantenimiento del incinerador, son dos operarios que se turnan en forma diaria, los cuales son proporcionados por el Departamento de calderas donde desempeñan la función de ayudantes de calderas y -
la labor operacional que realizan en el incinerador es secundaria.

4.6.1.3. Horario

El incinerador funciona en el día un promedio de 5-6 horas diarias en un horario de 8 1/2 am. a 1.00 pm. pero cuando se produce una sobre producción de basura su funcionamiento se prolonga de 1 a 1 1/2 horas. La frecuencia de funcionamiento es diaria.

4.6.1.4. Procedimiento

* El operario de turno empieza su labor en el incinerador a las 7.30 am, hora en que realiza la limpieza de las cenizas y escorias que son el producto de la incineración de la basura del día anterior. Para realizar su labor de limpieza tiene que introducirse en la cámara, y en forma manual, ayudado por una escoba reune este residuo y lo almacena en cilindros metálicos. Luego de terminar con esta labor realiza el encendido del incinerador cuyo quemador funciona con petróleo.

* Una vez prendido el incinerador se empie-
za a vacío, la basura proveniente de los sectores de producción, esta operación se realiza en forma manual o sea vaciando la basura en forma directa de los recipientes de almacenamiento al ducto de alimentación, haciendo que la basura ingrese a la cámara por gravedad.

* El operativo durante el funcionamiento del incinerador vigila en forma periódica la combustión uniforme de la basura que va ingresando, para lo cual cuenta con una claraboya. Dicha claraboya sirve también para introducir un trinche de metal para remover la basura, ayudando a que su combustión sea completa.

* Las cenizas y escorias almacenadas en cilindros después de la limpieza del incinerador, son subidas al nivel superior (sótano) por medio de un montacarga instalado con este fin.

Los cilindros son arrumados junto al montacarga al aire libre, esta operación se repite hasta tener acumulados un número de cilindros de (8-12) que justifique su zarreo hasta su disposición final.
4.6.2. **TRITURACION**

Es un sistema de reducción mecánico por el cual cierto tipo de basura en especial los residuos alimenticios son desmenuzados y que acompañados por un volúmen de agua ya dosificada por el mecanismo del triturador son desechados a la Red de Desagüe.

En el Hospital en Estudio el uso de trituradores es usado excesivamente para deschar los residuos de alimentos provenientes de los pacientes hospitalizados.

4.6.2.1. **Ubicación**

Estos sistemas de reducción están instalados en forma independiente en cada repostería de los pisos de hospitalización. Los trituradores se encuentran instalados entre el avabo donde se ejecuta la limpieza de la vajilla y la Red de Desagüe del Piso respectivo.

4.6.2.2. **Personal**

El personal encargado del correcto funcio-
nacimiento de los trituradores son las o-
perarias del repostero que dependen del
Departamento de cocina. Dicho personal
labora en dos turnos diarios.

4.6.2.3. Horario
La operación de trituración se realiza
después que recogen las vajillas de los
cuartos de Hospitalización al término —
de las 3 comidas principales (Desayuno,
almuerzo y comida).

4.6.2.4. Procedimiento
Los desperdicios resultantes de las co-
midas principales, que provienen de los
pacientes hospitalizados, son traslada-
dos a sus respectivos reposteros, en los
cuales la operaria pone en funcionamien-
to el triturador que es accionado por un
motor eléctrico; en seguida va desechan-
do los desperdicios al mismo tiempo que
realiza el lavado de la vajilla, estos —
residuos van ingresando por la parte su-
perior del triturador acompañados por un
volúmen de agua dosificada por el mismo
triturador para facilitar la operación una vez en el interior los residuos son aplastados contra las paredes del triturador por medio de un tambor no concéntrico que gira a velocidad, desmenuzando estos residuos - que van siendo desechados por la parte inferior del triturador hacia la Red de Desagüe.

4.7. SISTEMA DE DISPOSICION FINAL

Es la culminación del Proceso de Disposición de Basuras y en el cual se debe tomar las medidas correspondientes para que este no presente problemas de índole sanitario, estético, económico, que puede acarrear su mala ejecución, especialmente por tratarse de un establecimiento hospitalario, su disposición final debe ser la más óptima posible por el tipo especial de basura que este produce.

En el Hospital en Estudio la disposición final se realiza de 4 formas independientes, y cada uno de ellos depende en forma esencial del tipo de basura que se ha de desechar.

Las 4 formas de Disposición Final son las siguientes:
* Relleno Sanitario.

* Desecho a la Red de Desagüe.

* Alimentación para chanchos.

* Reutilización de envases de vidrio.

4.7.1. **RELENO SANITARIO.**

La siguiente forma de disposición final se realiza únicamente para desechar las cenizas y escorias resultantes del proceso de reducción por incineración.

Esta forma de disposición final consiste en el enterramiento de la basura, por capas sucesivas apisonadas y cubiertas por tierra, la cual es compactada a su vez.

Este tipo de disposición es realizado fuera del área hospitalaria, en terrenos utilizados para la disposición final de la basura producida por la comunidad, los terrenos en mención pertenecen al relleno sanitario de Chillón, ubicado en el km. 18 de la carretera a Ancón.

El acarreo de las cenizas y escorias es realizado por medio de recipientes metálicos (cilindros). El medio de transpor-
te utilizado es un camión perteneciente al Hospital que presta diferentes servicios de transporte en este establecimiento.

Esta operación de acarreo no tiene un horario ni una frecuencia fija, es realizada en las mañanas y con una periodicidad de (4 á 6) días, debido a que la producción diaria de cenizas no justifica el viaje desde el Hospital al Relleno Sanitario.

4.7.2. DESECHO A LA RED DE DESAGÜE

El desecho de residuos sólidos a la Red de Desagüe se realiza en forma exclusiva con los desperdicios alimenticios provenientes de las comedas principales de los pacientes internados.

Este método de disposición final requiere un proceso de reducción para facilitar su disposición y el utilizado en este establecimiento Hospitalario es la trituración.

4.7.3. ALIMENTACIÓN PARA CHANCHOS
El siguiente método de disposición final como su nombre lo indica se realiza por medio de la alimentación del ganado porcino, este método tiene la ventaja de que la basura en vez de ser desechada es utilizada pero sólo se realiza con un tipo de basura, que está constituido por los desperdicios alimenticios, provenientes de la cocina general y de los comedores, en los cuales ingieren alimentos el personal que labora en el Hospital.

La disposición de estos desperdicios implica que su proceso sea independiente de otro tipo de basura desde el punto de Producción, hasta su disposición final.

En el Hospital en Estudio estos desperdicios son comercializados con terceras personas, las cuales compran estos desperdicios por volumen, cuya unidad de comercialización (cilindro lleno) por el cual pagan una cantidad de dinero ya convenida. La persona que compra dichos desperdicios posee su propio medio de acarreo y personal que recoge los desperdicios desde su recinto de almacenamiento ubicado en el sótano del Hospital.
El sistema usado para el manipuleo de estos desperdicios es el intercambio de Recipiente(cilindro metálico) o sea que recogen los recipientes con desperdicios y dejan en su reemplazo otros vacíos dicha operación se realiza diariamente - en las primeras horas de la mañana(7.00 horas).

4.7.4. REUTILIZACION

El siguiente método se realiza en cierto tipo de residuos sólidos, que bajo ciertas condiciones de tratamiento o transformación pueden ser utilizados nuevamente. en el Hospital en Estudio la reutilización se realiza con los envases de vidrio (pomos,botellas, etc) provenientes del laboratorio ó farmacia. Estos envases que son almacenados parcialmente en su respectivo reciento son trasladados al área exterior del Hospital pero que pertenece a su jurisdicción para ser apilados(al aire libre) hasta ser comercializados al mejor Postor por medio de subasta.
CAPÍTULO V

PROBLEMAS QUE SE PRESENTAN CON RELACIÓN A INSECTOS Y ROedores.
5. PROBLEMAS QUE SE PRESENTAN EN RELACIÓN A INSECTOS Y ROEDORES

5.1. GENERALIDADES

Los insectos y roedores han sido compañeros del hombre a través del tiempo, siendo algunas especies beneficiosas, mientras que otras, le han causado molestias, y se han convertido en factor preponderante en la transmisión de enfermedades. Por lo tanto, su control se ha convertido en una ciencia dentro del campo de la Ingeniería Sanitaria.

El Hospital como cualquier otra Institución que forma parte de la Comunidad, está expuesta a las infestaciones de insectos y roedores; por esta razón, y por la labor inherente que desarrolla este establecimiento es casi imposible lograr su total erradicación, pero sí se debe tender a controlar su proliferación dentro de los alcances posibles.

En el Hospital en estudio, los problemas de infestaciones son las siguientes:

- Cucarachas.
- Moscas.
- Roedores.
5.1.1. **CUCARACHAS**

En los establecimientos hospitalarios, el mayor problema existente con respecto a infestaciones es el ocasionado por las cucarachas. Siendo la cucaracha alemana el tipo de mayor proliferación.

En el Hospital en Estudio, las áreas que presentan mayor proliferación, son aquellas en las cuales se manipulan alimentos, como suceden en comedores, cocinas, reposteros, etc., debido a que en dichos lugares las cucarachas encuentran condiciones favorables para su desarrollo, tales como, calor, humedad, facilidad para establecer sus guaridas y adquirir alimentos.

El problema de infestación se presenta en este Establecimiento Hospitalario, a pesar de las buenas condiciones de limpieza, debido a que estos insectos se introducen por diferentes medios como son canastas, cajas, paquetes, etc. en los cuales llegan suministros de Equipo, Materiales, en especial productos alimenticios, por las cajas de Registro de los desagües que se hallan en malas condicio-
nes sanitarias.
En el Hospital los servicios en los cuales la infestación se ha convertido en un gran problema por las proporciones que presentan, son los siguientes:

* Cocina central.
* Reposteros
* Comedores

Cocina Central
El Hospital del Empleado, cuenta con una cocina central, ubicada en su sótano, la cual está encargada de elaborar los alimentos para los pacientes y personal que la labora en este establecimiento.

La cocina por la función que desempeña, implica la manipulación de los alimentos en todas sus fases como son: Recepción, Almacenamiento, Elaboración y Distribución. Siendo cada una de estas susceptibles a la infestación de cucarachas en forma independiente debido a que se llevan a cabo en áreas cuyas condiciones ambientales son diferentes.

En la cocina el problema de infestación
abarca también los servicios de (Lechería, Panadería, Carnicería) por funcionar estos dentro su j ridicción.

En estos servicios las cucarachas encuentran condiciones ambientales favorables para su desarrollo entre las que citamos:

Calor. - generado por artefactos eléctricos, cocinas, hornos.

Humedad. - producida por el agua y vapor, utilizada en la elaboración o transformación de los alimentos o el utilizado en la limpieza - de Equipo, local etc.

Guaridas. - que ofrecen, la maquinaria que no está herméticamente cerrada repisas, mesas etc. esencialmente, sumideros y rejillas utilizadas para drenar el agua.

Alimentos. - productos mal almacenados (harinas, azúcares, etc), restos alimenticios que se encuentran en el Equipo y lavabos mal aseados, en recipientes de basura usados, sin tapa.

La cocina por la labor inherente de dis-
tribución de alimentos, ha facilitado la infestación de estos insectos a las diferentes áreas vinculadas con este servicio, como son los reposteros ubicados en los pisos de hospitalización, comedores del personal, convirtiéndose en un centro de propagación cuyo medio de transporte utilizado por las cucarachas son los carros térmicos usados en la distribución de los alimentos.

Las cucarachas por ser insectos que habitan en la inmundicia y en la materia orgánica en descomposición, hace que su presencia en estos servicios, origine en los pacientes y personal, desconfianza del buen estado de salubridad que se encuentra el alimento ofrecido en este Establecimiento Hospitalario.

REPOSTERO

Los Reposteros son servicios que están ubicados en cada piso de hospitalización, tanto en Ala "A" como el Ala "B y C", cuya función es distribuir a los pacientes internos los alimentos procedentes de la
cocina central o del Departamento de Dietas.

Por estar los reposteros ubicados en los pisos de hospitalización uno de los problemas que crea esta infestación, es la facilidad de acceso que tienen estos insectos a los cuartos de los pacientes y demás servicios ubicados en estas áreas de hospitalización, causando su presencia repugnancia y molestias a los pacientes y al personal que labora en estas áreas y como consecuencia dando una mala impresión sobre estado de limpieza y saneamiento del área correspondiente.

Pero el problema que suscita el mayor interés, es la subsistencia de la infestación, a pesar del control que ejecuta el personal encargado por medio de Productos Químicos en dichos servicios. La causa de la subsistencia del problema constante reinfestación que supera estos servicios por medio de los carros térmicos que transportan los alimentos procedentes de la cocina central.

La secuencia del proceso de Reinfestación
de los reposteros es la siguiente:
Los carros térmicos además de ser un artefacto utilizado en el transporte de alimentos, cuentan con cientos aditamentos eléctricos, los cuales sirven para mantener la temperatura de los alimentos en los reposteros hasta el momento de ser servicios a los pacientes.
Los carros térmicos utilizados en el Hospital tienen destinado un ambiente en el cual se ejecuta su limpieza y además sirve como su depósito. Dicho ambiente está ubicado junto a la cocina propiamente dicha, existiendo libre acceso entre ambos ambientes.
El problema se inicia cuando los carros térmicos son guardados en el ambiente citado al fin de la jornada diaria, después de haber ejecutado su limpieza, listos para ser usados al día siguiente; entonces es cuando al llegar la noche, en la ausencia de luz y movimiento, las cucarachas salen de sus guaridas en busca de alimento, introduciéndose en los compartimentos de los carros térmicos y en su --
parte interior(mecanismos) por medio de las uniones mal selladas o por los orificios de los enchufes. Luego estos carros infestados son utilizados posteriormente, y cuando se requiere usar sus ventajas térmicas, estos son enchufados en los reposteros, y es cuando las cucarachas al sentir el aumento de temperatura salen del interior del carro térmico por donde les es posible, invadiendo las instalaciones y equipo del repostero. El proceso de reinfestación citado se realiza en forma constante y es aquí — don de realmente está la clave del problema. Aunque el problema se ha tratado de combatir con productos químicos se ha encontrado el inconveniente que estos productos causan deterioro al mecanismo térmico que estos poseen.

COMEDORES

El Hospital cuenta con dos comedores que están ubicados en el Sótano, los cuales prestan servicio al personal que labora en este Establecimiento.
Los dos comedores se encuentran afectados por el problema de infestación de cucarachas, cuyo principal foco de proliferación está ubicado en el recinto donde se ejecuta la limpieza del Equipo y vajilla utilizado en la distribución de los alimentos.

La causa principal de la proliferación de estos insectos es debido a la permanencia de los cilindros utilizados en el almacenamiento de los desperdicios en este recinto, sin las medidas sanitarias correspondientes, como son, la falta de un compartimiento para guardar el recipiente durante su permanencia en dicho recinto, la utilización de un recipiente que carece de tapa, etc.

La proliferación de estos insectos se ve favorecida por los sumideros y enrejados que carece de tapas apropiadas, facilitando a las cucarachas utilizarlo como sus guaridas y medio de abastecimiento de alimento.

5.1.2. MOSCAS

La infestación de moscas que se observó
en el Hospital no reviste carácter de problema debido a que su presencia es reducida.

Pero durante el tiempo que se estuvo efectuando el presente Estudio, se originó una infestación de grandes proporciones. La causa del problema en forma esencial fue la falta de conocimiento del ciclo Biológico, y Hábitos de estos insectos, el cual motivó que se permitiera introducir guano fresco en el área circundante del Hospital para utilizarlo como abono en jardinería; pero notar que el guano estaba fresco, lo espacieron para lograr que este se signe al medio ambiente. Sirviendo esto como el mejor medio para que las moscas depositaran sus huevos y multiplicarse aceleradamente. La proliferación tomó proporciones de alarma debido a que las moscas infestaron todas las instalaciones del Hospital, causando molestias y quejas de los pacientes y personal que labora en dicho establecimiento.

El problema se solucionó de la siguiente
forma: en primer término se erradicó -
la fuente de infestación (guano), en -
segundo término se realizó en forma in-
tensiva su control con productos quími-
cos, con lo cual se obtuvo buenos resul-
tados.
En la actualidad las moscas que se pue-
den ver, se encuentran en Departamentos
o Servicios en los cuales se manipulan
alimentos, principalmente donde se eje-
cuta, la limpieza de equipo, vajilla etc,
en los recientes donde se almacena los-
desperdicios, esta presencia es debido -
a la carencia de Normas Sanitarias o de-
ficiencia de limpieza en dichas áreas.

5.1.3. ROEDORES
En el Hospital, la infestación de roedo-
res que se observó durante el período
de Estudio, fue casi nula, por lo que no
revisó carácter de problema.
Durante este período y según información
del personal que labora en los turnos de
noche y de madrugada en los Departamentos
del Sótano declararon haber visto casos
esporádicos de presencia de roedores, principalmente en el sector de la cocina y en las áreas circundantes al Hospital (áreas exteriores). Además el personal que labora en el mantenimiento de maquinaria y equipo en los servicios que se manipulan alimentos, manifestó haber encontrado nido de roedores en el interior de algunas maquinarias.

Anteriormente al presente Estudio, el Hospital sufrió una infestación de grandes proporciones, la cual se presentó en las áreas circundantes, donde los roedores hicieron sus madrigueras, pero en busca de alimento, estos roedores ingresaron a las instalaciones interiores del Hospital, siendo el área más afectada el de la cocina.

Por las proporciones que presentó el problema citado el Departamento encargado pidió colaboración al Ministerio de Salud, el cual controló dicho problema por medio de "Cianogas".

5.2. CAUSAS DE LA SUSTENENCIA DEL PROBLEMA
En el Hospital del Empleado la subsistencia del problema de infestaciones, ya mencionados, se debe a varias causas, las cuales se podría resumir en los siguientes puntos:

* Falta de conocimiento del Problema.
* Falta de Saneamiento.
* Falta de un plan integral de control.

5.2.1. **FALTA DE CONOCIMIENTO DEL PROBLEMA.**

En todo establecimiento hospitalario la población que lo conforma debe tener conocimiento general sobre las infestaciones más frecuentes, que pueden ser susceptibles sus instalaciones.

En el Hospital en estudio, el personal vinculado con las áreas susceptibles a infestaciones ya mencionadas anteriormente, son sin querer los mejores colaboradores de la proliferación de estas plagas, debido en forma esencial a la falta de un conocimiento integral del problema, trayéndolo como consecuencia, que no exista una conciencia de responsabilidad hacia este problema, por parte del personal ad-
ministrativo y técnico de dicho establecimento, y con mayor razón de parte del personal subalterno.

5.2.2. FALTA DE SANEAMIENTO

En las áreas afectadas por estas plagas el factor determinante de su causa es la carencia de Educación Sanitaria, Reglamentación de Normas y Técnicas Sanitarias para este tipo de Establecimiento etc., -- Siendo esto una consecuencia de la falta del conocimiento global del Problema.

En este tipo de Establecimientos el "Saneamiento preventivo" es considerado como base primordial en el control de infestación. Sin embargo, vemos que no hay coordinación entre los Departamentos o Servicios que tienen que ver en forma directa o indirecta con este problema, tales como:

* Manipuleo de alimentos(Recepción, almacenamiento, elaboración, Distribución)

* Disposición de Basuras(Principalmente-cocina, comedores, repositorios etc.)

* Mantenimiento de Sumideros(Rejillas, Ca-
5.2.3. FALTA DE UN PROGRAMA DE CONTROL INTEGRAL

El personal encargado del control de infestaciones en el Hospital en Estudio, carece en forma esencial de un conocimiento integral sobre la Erradicación de Infestaciones, debido en forma categórica, a que el único medio de control utilizado en el uso de Productos Químicos, sin darle la importancia debida al problema, que representa estas infestaciones, y efectuar un estudio planificado sobre las causas; factores ambientales que favorecen su proliferación; ciclo de vida, Hábitos de los insectos y roedores causales; y fundamentalmente saber que el saneamiento y la limpieza son medios primordiales en el control de infestaciones y siendo los Productos Químicos un medio complementario para obtener mejores resultados.
CAPÍTULO VI

ANÁLISIS DE LA PRODUCCION DE BASURAS.
ANÁLISIS Y PRODUCCIÓN DE BASURAS

En el presente estudio sobre la disposición de Basuras en el ambiente hospitalario. Se realizó el análisis y producción de la basura proveniente de las diferentes áreas del hospital, con el objeto de obtener el peso y volumen de los componentes físicos de que estaba constituida dicha basura, y a partir de éstos datos obtener el peso y volumen de la basura total producida en el Hospital.

Los resultados obtenidos servirán como referencia para futuras ampliaciones o nuevos proyectos de Disposición de Basura en dicho Establecimiento Hospitalario.

El análisis y producción de basuras se requiere para facilitar:

- El conocimiento del tipo de basuras y sus propiedades para poder elegir el sistema de disposición más adecuado.
- La elección del recipiente adecuado para el correspondiente tipo de basura, así como su capacidad de almacenamiento en las diferentes áreas de Producción.
- El cálculo de capacidad de los Recintos Especiales
de almacenamiento, tales como, cámaras refrigeradas para desperdicios provenientes de comedores y cocina, o cuartos de almacenamientos para botellas y frascos provenientes de Farmacia, Laboratorios etc.

El cálculo de cantidad, tipo y dimensiones del Equipo necesario del sistema de disposición elegido para realizar el análisis y producción de basuras en el establecimiento en estudio, se pidió la colaboración del Departamento de Ingeniería del Hospital para que proporcionara:

LUGAR.

El sitio para efectuar el análisis y producción de basura, para el recinto destinado al lavado de los recipientes de basura (Sótano).

EQUIPO.

Para efectuar las medidas de peso y volumen de la basura se obtuvo:

* 1 Caja de madera de forma rectangular cuyas medidas interiores eran 60 x 50 x 40 (cms). La caja constaba de una escala interior graduada en (cms) para poder medir las variaciones de la altura para el cálculo de los volúmenes compactado y sin compactar.

* 1 Balanza graduada con una capacidad de 40 kg, con
una aproximación de 0.100 kg.

* 1 Cilindro de metal de 55 gal. de capacidad para reemplazar los recipientes en estudio.

AYUDANTE.

El Departamento de Ingeniería proporcionó 2 ayudantes del cuarto de calderas, que se turnaban en forma diaria para prestar su colaboración debido a su horario de trabajo.

PLAN DE TRABAJO.

1 Plan de Trabajo utilizado para realizar el estudio de análisis y producción de basuras en el Hospital fue el siguiente:

Para facilitar la labor del estudio, debido a la gran extensión de los ambientes del Hospital se procedió a dividirlo en 4 sectores de producción de basuras.

Primer sector- Pisos de Hospital zación.
Segundo sector- Oficinas Administrativas y Consultorios ambulatorios
Tercer sector- Departamento y servicios
Cuarto Sector- Departamentos de Especial consideración(cirugía-sala de partos-cocina y comedor Patalogía.)
Se observó en las áreas de producción las posibles variaciones en el período de almacenamiento, cantidad, y tipo de basura, con el fin, que al realizar los análisis respectivos se pueda obtener las muestras más significativas, en esta labor se contó con la colaboración del operario de cada área de producción.

Se observó que el momento más adecuado para efectuar los análisis era cuando se transportaban los recipientes de basura de su área respectiva al sistema de reducción utilizado (ó) almacenamiento.

Para efectuar el análisis se notificaba con anterioridad al operario del área en estudio, con el objeto de que el recipiente de basura correspondiente no sea desechado sino trasladado al recinto donde se efectuaban los análisis.

Realización del análisis (procedimiento).

Al término del análisis respectivo, la basura analizada era desechada, luego se procedía a la limpieza del Equipo y en forma seguida se devolvía el cilindro a su área de procedencia

PROCEDEMIENTO.

El análisis de basura propiamente dicho o procedimiento se ejecutaba según los siguientes pasos:
* Se retiraba el Equipo para efectuar el análisis del almacén.
* Se procedía a chequear la balanza y ponerla en cero, debido a posibles variaciones que haya alterado su sensibilidad durante el manipuleo.
* Se pesaba la caja de madera vacía.
* Del recipiente en estudio se tomaba una muestra de basura, que era vaciada en la caja de madera, tratando que esta se acentara por su propio peso, se tomaba la altura correspondiente (altura sin compactar), luego se procedía a pesar.
* En seguida se separaba la basura en sus componentes físicos (desperdicios - desechos), los cuales se pesaban separadamente, para conocer que parte en peso constituía del total.
* Nuevamente se vaciaba los constituyentes en la caja de madera y procedía a compactar mediante el peso corporal del ayudante y se procedía a tomar la altura correspondiente (altura compactada).
* Se desechaba esta basura en otro recipiente y se tomaba una nueva muestra y se repetían los pasos anteriores, hasta analizar en forma total la basura del recipiente en estudio.
ANÁLISIS DE BASURAS.

AREA: Pisos de Hospitalización.

PISO: 2do.

MATERNIDAD Y GINECOLOGÍA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kg)</th>
<th>Desecho (kg)</th>
<th>Alturas (cms)</th>
<th>Volumen (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1.80</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1.20</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2.50</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>5.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kg)</th>
<th>Desecho (kg)</th>
<th>Alturas (cms)</th>
<th>Volumen (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>3.40</td>
<td>2.20</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>4.40</td>
<td>2.20</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>7.80</td>
<td>4.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDIDA DE LA CAJA = 60 x 50 x Hsc x 40.

VOLUMEN = Sección de la caja x altura.

VOLUMEN sin compactar = 60 x 50 x Hsc

VOLUMEN compactado = 60 x 50 x Hc.
ANALISIS DE BASURAS.

AREA: Pisos de Hospitalización.

PISO: 3ro.

MATERNIDAD Y GINECOLOGÍA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kg)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>2.20</td>
<td>5.00</td>
<td>27</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6.80</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>8.20</td>
<td>3.40</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>10.40</td>
<td>14.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kg)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>3.40</td>
<td>3.20</td>
<td>28</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>8.00</td>
<td>2.80</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>6.40</td>
<td>4.20</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>17.80</td>
<td>10.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDIDA DE LA CAJA $= 60 \times 50 \text{ (cms)} \times 40$

VOLUMEN $= \text{Sección de la caja} \times \text{altura}$.

VOLUMEN sin compactar $= 60 \times 50 \times \text{Hsc}$.

VOLUMEN compactado $= 60 \times 50 \times \text{Hc}$.
ANALISIS DE BASURAS.

AREA: Pisos de Hospitalización.

PISO: 4to.

MATERNIDAD Y GINECOLOGIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kg)</th>
<th>Desecho (kg)</th>
<th>Alturas(cm)</th>
<th>Volumen (cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>4.60</td>
<td>4.40</td>
<td>39</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>1.80</td>
<td>6.00</td>
<td>38</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>7.60</td>
<td>39</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>10.20</td>
<td>4.40</td>
<td>38</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>16.60</td>
<td>22.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kg)</th>
<th>Desecho (kg)</th>
<th>Alturas(cm)</th>
<th>Volumen (cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>120</td>
<td>2.60</td>
<td>33</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>5.40</td>
<td>2.40</td>
<td>29</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>6.60</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDIDA DE LA CAJA = 60 x 50 (cm3) x 40
VOLUMEN = Sección de la caja x altura.
VOLUMEN sin compactar = 60 x 50 x Hsc.
VOLUMEN compactado = 60 x 50 x Hc.
ANALISIS DE BASURAS.

AREA: Pisos de Hospitalización.

PISO: 5to.

MATERNIDAD Y GINECOLOGIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>12.00</td>
<td>39</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>4.80</td>
<td>6.80</td>
<td>38</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>4.80</td>
<td>18.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>2.40</td>
<td>1.80</td>
<td>28</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4.00</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>4.00</td>
<td>3.60</td>
<td>34</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>5.40</td>
<td>9.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDIDA DE LA CAJA = 60 x 50 (cms) x 40

VOLUMEN = Sección de la caja x altura.

VOLUMEN sin compactar = 60 x 50 x Hsc.

VOLUMEN compactado = 60 x 50 x Hc.
ANALISIS DE BASURAS.

AREA: Pisos de Hospitalización.

PISO: 6to.

MATERNIDAD Y GINECOLOGIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>7.80</td>
<td>2.20</td>
<td>35</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>8.40</td>
<td>3.20</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>10.10</td>
<td>2.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>26.30</td>
<td>8.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3.80</td>
<td>36</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>2.20</td>
<td>3.00</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>4.00</td>
<td>3.20</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>6.60</td>
<td>11.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medida de la caja = 60 x 50 (cms) x 40

VOLUMEN = Sección de la caja x altura.

VOLUMEN sin compactar = 60 x 50 x Hsc.

VOLUMEN compactado = 60 x 50 x Hc.
ANALISIS DE BASURAS

AREA: Pisos de Hospitalización.

PISO: 7mo.

MATERNIDAD Y GINECOLOGIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (Hsc)</th>
<th>Volumen (Vsc)</th>
<th>Volumen (Vc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.80</td>
<td>11.20</td>
<td>39</td>
<td>25</td>
<td>117,000</td>
</tr>
<tr>
<td>2</td>
<td>4.60</td>
<td>2.80</td>
<td>37</td>
<td>20</td>
<td>111,000</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2.00</td>
<td>17</td>
<td>10</td>
<td>51,000</td>
</tr>
<tr>
<td>Total</td>
<td>7.40</td>
<td>23.40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (Hsc)</th>
<th>Volumen (Vsc)</th>
<th>Volumen (Vc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>6.60</td>
<td>32</td>
<td>19</td>
<td>96,000</td>
</tr>
<tr>
<td>2</td>
<td>2.99</td>
<td>4.40</td>
<td>28</td>
<td>17</td>
<td>54,000</td>
</tr>
<tr>
<td>3</td>
<td>6.40</td>
<td>3.00</td>
<td>35</td>
<td>14</td>
<td>105,000</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>6.40</td>
<td>38</td>
<td>17</td>
<td>114,000</td>
</tr>
<tr>
<td>5</td>
<td>1.80</td>
<td>2.40</td>
<td>22</td>
<td>11</td>
<td>66,000</td>
</tr>
<tr>
<td>Total</td>
<td>14.20</td>
<td>22.80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDIDA DE LA CAJA = 60 x 50 (cms) x 40

VOLUMEN = Sección de la caja x altura.

VOLUMEN sin compactar = 60 x 50 x Hsc.

VOLUMEN compactado = 60 x 50 x Hc.
ANÁLISIS DE BASURAS

AREA: Pisos de Hospitalización.

PISO: 8vo.

MATERNIDAD Y GINECOLOGÍA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms) Hsc</th>
<th>Alturas (cms) Hc</th>
<th>Volumen (cms³) Vsc</th>
<th>Volumen (cms³) Vc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.20</td>
<td>4.20</td>
<td>34</td>
<td>16</td>
<td>102,000</td>
<td>48,000</td>
</tr>
<tr>
<td>2</td>
<td>8.40</td>
<td>5.40</td>
<td>29</td>
<td>18</td>
<td>87,000</td>
<td>54,000</td>
</tr>
<tr>
<td>Total</td>
<td>16.60</td>
<td>9.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms) Hsc</th>
<th>Alturas (cms) Hc</th>
<th>Volumen (cms³) Vsc</th>
<th>Volumen (cms³) Vc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.80</td>
<td>2.20</td>
<td>35</td>
<td>15</td>
<td>105,000</td>
<td>45,000</td>
</tr>
<tr>
<td>2</td>
<td>6.60</td>
<td>3.60</td>
<td>33</td>
<td>16</td>
<td>99,000</td>
<td>48,000</td>
</tr>
<tr>
<td>3</td>
<td>2.80</td>
<td>11.80</td>
<td>14</td>
<td>7</td>
<td>42,000</td>
<td>21,000</td>
</tr>
<tr>
<td>Total</td>
<td>16.20</td>
<td>17.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDIDA DE LA CAJA = 60 x 50 (cms) x 40

VOLUMEN = Sección de la caja x altura.

VOLUMEN sin compactar = 60 x 50 x Hsc.

VOLUMEN compactado = 50 x 50 x Hc.
ANALISIS DE BASURAS.

AREA: Pisos de Hospitalización.
PISO: 9no.

MATERNIDAD Y GINECOLOGIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>9.0</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>5.20</td>
<td>6.00</td>
<td>29</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>6.80</td>
<td>1.20</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>12.00</td>
<td>16.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>4.80</td>
<td>3.20</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6.40</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>6.40</td>
<td>1.80</td>
<td>36</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>11.20</td>
<td>11.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDIDA DE LA CAJA = 60 x 50 (cms) x 40
VOLUMEN = Sección de la caja x altura.
VOLUMEN sin compactar = 60 x 50 x Hsc.
VOLUMEN compactado = 60 x 50 x Hc.
ANALISIS DE BASURAS.

AREA: Pisos de Hospitalización.

PISO: 10mo.

MATERNIDAD Y GINECOLOGIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>3.20</td>
<td>5.40</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2.40</td>
<td>3.60</td>
<td>29</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3.80</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>5.60</td>
<td>12.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4.60</td>
<td>36</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>2.80</td>
<td>2.20</td>
<td>39</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>5.60</td>
<td>5.40</td>
<td>38</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>8.40</td>
<td>12.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDIDA DE LA CAJA = 60 × 50 (cms)x40

VOLUMEN = Sección de la caja x altura.

VOLUMEN sin compactar = 60 × 50 × Hsc.

VOLUMEN compactado = 60 × 50 × Hc.
ANÁLISIS DE BÁSURAS

ÁREA: Pisos de Hospitalización

PISO: 12°.

MATERNIDAD Y GINECOLOGÍA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>6.40</td>
<td>2.80</td>
<td>37</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>5.00</td>
<td>3.60</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>11.40</td>
<td>6.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6.20</td>
<td>39</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>6.40</td>
<td>3.20</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>1.80</td>
<td>2.80</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4.20</td>
<td>36</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3.20</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>8.20</td>
<td>19.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDIDA DE LA CAJA = 60 x 50 (cms) x 40

VOLUMEN = Sección de la caja x altura.

VOLUMEN sin compactar = 60 x 50 x Hsc,

VOLUMEN compactado = 60 x 50 x Hc.
ANÁLISIS DE BASURAS

AREA: Pisos de Hospitalización.
PISO: 13vo.

MATERNIDAD Y GINECOLOGIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.00</td>
<td>4.40</td>
<td>39</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>2.40</td>
<td>6.40</td>
<td>38</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4.20</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>14.40</td>
<td>15.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.20</td>
<td>2.80</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>6.60</td>
<td>4.00</td>
<td>38</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>7.60</td>
<td>39</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>9.80</td>
<td>14.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEDIDA DE LA CAJA = 60 x 50 (cms) x 40

VOLUMEN = Sección de la caja x altura.

VOLUMEN sin compactar = 60 x 50 x Hsc.

VOLUMEN compactado = 60 x 50 x Hc.
ANÁLISIS DE BASURAS

AREA: Pisos de Hospitalización.
(Síntesis).

MATERNIDAD Y GINECOLOGÍA

<table>
<thead>
<tr>
<th>PISO</th>
<th>PESO Desperdicio (kgs)</th>
<th>Desechos (kgs)</th>
<th>Total (kgs)</th>
<th>VOLUMEN Sin compactar (lts)</th>
<th>Compactado (lt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>5.50</td>
<td>5.50</td>
<td>153</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>10.40</td>
<td>14.20</td>
<td>26.60</td>
<td>228</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>16.60</td>
<td>22.40</td>
<td>39.00</td>
<td>462</td>
<td>210</td>
</tr>
<tr>
<td>5</td>
<td>4.80</td>
<td>18.80</td>
<td>23.60</td>
<td>231</td>
<td>141</td>
</tr>
<tr>
<td>6</td>
<td>26.30</td>
<td>8.20</td>
<td>34.50</td>
<td>308</td>
<td>177</td>
</tr>
<tr>
<td>7</td>
<td>7.40</td>
<td>16.00</td>
<td>23.40</td>
<td>279</td>
<td>165</td>
</tr>
<tr>
<td>8</td>
<td>16.60</td>
<td>9.60</td>
<td>26.20</td>
<td>189</td>
<td>102</td>
</tr>
<tr>
<td>9</td>
<td>12.00</td>
<td>16.20</td>
<td>28.20</td>
<td>231</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>5.60</td>
<td>12.80</td>
<td>18.40</td>
<td>243</td>
<td>144</td>
</tr>
<tr>
<td>11</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>11.40</td>
<td>6.40</td>
<td>17.80</td>
<td>189</td>
<td>81</td>
</tr>
<tr>
<td>13</td>
<td>14.40</td>
<td>15.00</td>
<td>29.40</td>
<td>276</td>
<td>192</td>
</tr>
</tbody>
</table>

TOTALES 25.50 145.10 270.60 2,789 1,566
ANÁLISIS DE BASURAS

ÁREA: Pisos de Hospitalización.

(Síntesis)

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>PISO</th>
<th>Peso Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Total (kgs)</th>
<th>Volumen Sin compact. (lts)</th>
<th>Volumen Compact. (lts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7.80</td>
<td>14.40</td>
<td>12.20</td>
<td>159</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>17.80</td>
<td>10.20</td>
<td>28.00</td>
<td>249</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>6.60</td>
<td>5.00</td>
<td>11.60</td>
<td>188</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>5.40</td>
<td>9.40</td>
<td>14.80</td>
<td>270</td>
<td>147</td>
</tr>
<tr>
<td>6</td>
<td>6.60</td>
<td>11.00</td>
<td>17.60</td>
<td>318</td>
<td>171</td>
</tr>
<tr>
<td>7</td>
<td>14.20</td>
<td>22.80</td>
<td>37.00</td>
<td>435</td>
<td>234</td>
</tr>
<tr>
<td>8</td>
<td>16.20</td>
<td>17.60</td>
<td>33.80</td>
<td>246</td>
<td>114</td>
</tr>
<tr>
<td>9</td>
<td>11.20</td>
<td>11.40</td>
<td>22.60</td>
<td>252</td>
<td>165</td>
</tr>
<tr>
<td>10</td>
<td>8.40</td>
<td>12.20</td>
<td>20.60</td>
<td>369</td>
<td>192</td>
</tr>
<tr>
<td>11</td>
<td>10.00</td>
<td>16.00</td>
<td>26.00</td>
<td>312</td>
<td>186</td>
</tr>
<tr>
<td>12</td>
<td>8.20</td>
<td>19.60</td>
<td>27.80</td>
<td>471</td>
<td>225</td>
</tr>
<tr>
<td>13</td>
<td>9.80</td>
<td>14.40</td>
<td>24.20</td>
<td>269</td>
<td>138</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122.20</td>
<td>154.00</td>
<td>276.20</td>
<td>3,536</td>
<td>1,941</td>
</tr>
</tbody>
</table>
ANÁLISIS DE BASURAS.

AREA: Oficinas Administrativas y Consultorios Ambulatorios

MEDICINA GENERAL

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hc</td>
<td>Vsc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10.40</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>14.60</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>11.80</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERNIDAD Y GINECOLOGIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hc</td>
<td>Vsc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>12.60</td>
<td>38</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10.20</td>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6.40</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>11.60</td>
<td>39</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANÁLISIS DE BASURAS.

AREA: Oficinas Administrativas y Consultorios Ambulatorios

(Síntesis)

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Total (kgs)</th>
<th>Sin compact (lit)</th>
<th>Compact (lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternidad.</td>
<td>0</td>
<td>36.8</td>
<td>36.8</td>
<td>318</td>
<td>94</td>
</tr>
<tr>
<td>Med. General.</td>
<td>0</td>
<td>40.8</td>
<td>40.8</td>
<td>417</td>
<td>153</td>
</tr>
<tr>
<td>TOTALES</td>
<td>0</td>
<td>77.6</td>
<td>77.6</td>
<td>735</td>
<td>247</td>
</tr>
</tbody>
</table>
ANÁLISIS DE BASURAS.

AREA: Departamentos y Servicios

CLASE: Departamentos y Servicios Generales.

BANCO DE SANGRE

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Altura (cm)</th>
<th>Volumen (cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vsc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6.80</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2.20</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>9.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RAYOS X

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Altura (cm)</th>
<th>Volumen (cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vsc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10.20</td>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7.60</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>8.40</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>26.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALISIS DE BASURAS.

AREA: Departamentos y Servicios

CLASE: Generales.

EMERGENCIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>2.60</td>
<td>9.10</td>
<td>36</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>4.20</td>
<td>5.20</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4.40</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>8.90</td>
<td>35</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>8.60</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>1.60</td>
<td>6.20</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>9.90</td>
<td>42.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LABORATORIO

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>12.00</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>16.20</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>10.40</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>38.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-127-
ANÁLISIS DE BASURAS

ÁREA: Departamentos y Servicios

CLASE: Generales

DROGAS

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas(cm)</th>
<th>Volumen (cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>7.20</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6.40</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5.00</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>18.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ESTERILIZACIÓN

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas(cm)</th>
<th>Volumen (cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6.10</td>
<td>37</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4.80</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4.60</td>
<td>33</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6.20</td>
<td>39</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6.60</td>
<td>34</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>28.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALISIS DE BASURAS.

AREA: Departamentos y Servicios

CLASE: Generales.

COBÁTÓTERAPIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicios (kgs)</th>
<th>Desecho (kgs)</th>
<th>Altura(cm) Hsc</th>
<th>Altura(cm) Hc</th>
<th>Volumen (cm³) Vsc</th>
<th>Volumen (cm³) Vc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5.20</td>
<td>22</td>
<td>12</td>
<td>66,000</td>
<td>36,000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4.80</td>
<td>18</td>
<td>8</td>
<td>48,000</td>
<td>24,000</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FARMACIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas(cm) Hsc</th>
<th>Alturas(cm) Hc</th>
<th>Volumen(cm³) Vsc</th>
<th>Volumen(cm³) Vc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>8.40</td>
<td>39</td>
<td>17</td>
<td>117,000</td>
<td>41,000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10.20</td>
<td>36</td>
<td>19</td>
<td>108,000</td>
<td>57,000</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6.20</td>
<td>31</td>
<td>16</td>
<td>93,000</td>
<td>48,000</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>7.60</td>
<td>34</td>
<td>18</td>
<td>102,000</td>
<td>54,000</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>7.80</td>
<td>38</td>
<td>20</td>
<td>114,000</td>
<td>60,000</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>40.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANÁLISIS DE BASURAS.

AREA: Departamentos y Servicios.

CLASE: Generales.

SISTEMATIZACION

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicios (kgs)</th>
<th>Desecho (kgs)</th>
<th>Alturas (cms)</th>
<th>Volumen (cms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>9.20</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7.40</td>
<td>37</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>8.60</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6.80</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>7.20</td>
<td>35</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>39.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMPRENTA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kg)</th>
<th>Desecho (kg)</th>
<th>Altura (cms)</th>
<th>Volumen (cms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
<td>Vsc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10.20</td>
<td>39</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7.40</td>
<td>35</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6.80</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>9.20</td>
<td>37</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>7.80</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>41.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANÁLISIS DE BASURAS.

AREA: Departamentos y Servicios

CLASE: Generales

MGI

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicios (kgs)</th>
<th>Desecho (kgs)</th>
<th>Altura (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6.60</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5.20</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3.80</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>15.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAJA DEL SEGURO

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Desperdicio (kgs)</th>
<th>Desecho (kgs)</th>
<th>Altura (cms)</th>
<th>Volumen (cms³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsc</td>
<td>Hc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10.20</td>
<td>39</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6.80</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>7.20</td>
<td>28</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>10.40</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6.20</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>40.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALISIS DE BASURAS.

AREA: Departamentos y Servicios
CLASE: Generales **(Síntesis)**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bco. de Sangre</td>
<td>0</td>
<td>9.00</td>
<td>9.00</td>
<td>126</td>
<td>66</td>
</tr>
<tr>
<td>Rayos X</td>
<td>0</td>
<td>26.20</td>
<td>26.20</td>
<td>258</td>
<td>84</td>
</tr>
<tr>
<td>Emergencia</td>
<td>9.9</td>
<td>42.40</td>
<td>52.30</td>
<td>594</td>
<td>330</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>0</td>
<td>38.60</td>
<td>38.60</td>
<td>264</td>
<td>114</td>
</tr>
<tr>
<td>Drogas</td>
<td>0</td>
<td>18.60</td>
<td>18.60</td>
<td>294</td>
<td>138</td>
</tr>
<tr>
<td>Esterilización</td>
<td>0</td>
<td>28.30</td>
<td>28.30</td>
<td>525</td>
<td>201</td>
</tr>
<tr>
<td>Cobalterapia</td>
<td>0</td>
<td>10.00</td>
<td>10.00</td>
<td>114</td>
<td>60</td>
</tr>
<tr>
<td>Farmacia</td>
<td>0</td>
<td>40.20</td>
<td>40.20</td>
<td>534</td>
<td>260</td>
</tr>
<tr>
<td>Sistematización</td>
<td>0</td>
<td>39.20</td>
<td>39.20</td>
<td>510</td>
<td>296</td>
</tr>
<tr>
<td>Imprenta</td>
<td>0</td>
<td>41.40</td>
<td>41.40</td>
<td>531</td>
<td>306</td>
</tr>
<tr>
<td>MGI</td>
<td>0</td>
<td>15.60</td>
<td>15.60</td>
<td>228</td>
<td>114</td>
</tr>
<tr>
<td>Caja de Seguro</td>
<td>0</td>
<td>40.80</td>
<td>40.80</td>
<td>495</td>
<td>231</td>
</tr>
<tr>
<td>Totales</td>
<td>9.9</td>
<td>350.30</td>
<td>360.20</td>
<td>4,473</td>
<td>2,200</td>
</tr>
</tbody>
</table>

* Departamento de Especial consideración
 Desperdicios alimenticios + Restos de tejido orgánico.
ANALISIS DE BASURAS

AREA: Departamentos y Servicios

CLASE: Especial consideración

SALA DE CIRUGIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Restos de tejidos Orgánicos</th>
<th>Desechos (kgs)</th>
<th>Alturas Hac</th>
<th>Alturas Hc</th>
<th>Volumen (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vsc</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>8.60</td>
<td>23</td>
<td>18</td>
<td>69,000</td>
</tr>
<tr>
<td>2</td>
<td>2.20</td>
<td>10.40</td>
<td>26</td>
<td>16</td>
<td>78,000</td>
</tr>
<tr>
<td>3</td>
<td>2.80</td>
<td>9.40</td>
<td>30</td>
<td>16</td>
<td>90,000</td>
</tr>
<tr>
<td>4</td>
<td>2.20</td>
<td>8.60</td>
<td>27</td>
<td>14</td>
<td>81,000</td>
</tr>
<tr>
<td>Total</td>
<td>7.20</td>
<td>37,20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PATOLOGIA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>Restos de tejidos Orgánicos</th>
<th>Desechos (kgm)</th>
<th>Volumen aproximado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.20</td>
<td>0</td>
<td>4,200 cm³</td>
</tr>
<tr>
<td>2</td>
<td>8.40</td>
<td>0</td>
<td>6,800 cm³</td>
</tr>
<tr>
<td>Total</td>
<td>13.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALISIS DE BASURAS

a) Departamentos y Servicios

b) Departamentos de Especial Consideración

c) Sala de Partos.

CALCULO DEL PESO APROXIMADO DE UNA PLACENTA

<table>
<thead>
<tr>
<th>Nª DE</th>
<th>No. de</th>
<th>P. Bruto</th>
<th>Tara</th>
<th>P. neto</th>
<th>P. prom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>11.70</td>
<td>1.60</td>
<td>10.10</td>
<td>0.56</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>8.20</td>
<td>1.60</td>
<td>6.60</td>
<td>0.55</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>12.70</td>
<td>1.60</td>
<td>11.10</td>
<td>0.55</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>6.20</td>
<td>1.60</td>
<td>4.60</td>
<td>0.58</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>7.60</td>
<td>1.60</td>
<td>6.00</td>
<td>0.60</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>9.60</td>
<td>1.60</td>
<td>8.00</td>
<td>0.62</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>8.60</td>
<td>1.60</td>
<td>7.00</td>
<td>0.64</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>10.40</td>
<td>1.60</td>
<td>8.80</td>
<td>0.63</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>9.80</td>
<td>1.60</td>
<td>8.20</td>
<td>0.59</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>6.80</td>
<td>1.60</td>
<td>5.20</td>
<td>0.52</td>
</tr>
</tbody>
</table>

PROM: 75.60 5.84

Peso Prom. de c/Placenta = \(\frac{5.84}{10} = 0.584 \) = 0.580 kg.

PROMEDIO DE NACIMIENTOS POR PISO Y POR MES DURANTE AÑO 1971

<table>
<thead>
<tr>
<th>PISO</th>
<th>3o.</th>
<th>4o.</th>
<th>5o.</th>
<th>6o.</th>
<th>8o.</th>
<th>9o.</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prom. de Nacimiento</td>
<td>203</td>
<td>176</td>
<td>217</td>
<td>196</td>
<td>182</td>
<td>180</td>
<td>1,154</td>
</tr>
</tbody>
</table>

Prom Nac. Diario = \(\frac{1154}{30} = 38.4 \) = 38 nac/día
ANÁLISIS DE BASURAS

Area: Departamentos y Servicios.

Departamentos de Especial Consideración.

SALA DE PARTOS

NACIMIENTOS POR PISO DURANTE AÑO 1972 EN LOS MESES

<table>
<thead>
<tr>
<th></th>
<th>3o.</th>
<th>4o.</th>
<th>5o.</th>
<th>6o.</th>
<th>8o.</th>
<th>9o.</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERO</td>
<td>225</td>
<td>213</td>
<td>222</td>
<td>192</td>
<td>215</td>
<td>190</td>
<td>1,257</td>
</tr>
<tr>
<td>FEBRERO</td>
<td>213</td>
<td>183</td>
<td>207</td>
<td>200</td>
<td>194</td>
<td>177</td>
<td>1,174</td>
</tr>
<tr>
<td>MARZO</td>
<td>229</td>
<td>211</td>
<td>218</td>
<td>219</td>
<td>200</td>
<td>193</td>
<td>1,270</td>
</tr>
<tr>
<td>ABRIL</td>
<td>223</td>
<td>206</td>
<td>206</td>
<td>205</td>
<td>213</td>
<td>208</td>
<td>1,261</td>
</tr>
</tbody>
</table>

Prom. de Nac= \(\frac{Total}{4x80} = \frac{4,962}{120} = 41.3 = 41 \) NAC/DIA

Como - No. Nacimiento = No. Placentas.

No. PLACENTAS DIARIAS = 41

Por lo tanto el peso aproximado de la materia orgánica (Placentas) proveniente de las salas de parto del Hospital.

Peso = No. Placentas x P.aproximado de c/u.

Peso = 41 x 0.58 kg = 23.78 = 23.80.
ANÁLISIS DE BASURAS

Area:

a) Departamentos y servicios.

b) Departamentos de Especial Consideración.

c) Comedores y Cocina.

CALCULO DEL PESO DE LOS DESPERDICIOS

\[P_{\text{neto}} = P_{\text{bruto}} - \text{Tara} \]

\[\text{Tara} = P_{\text{carretilla}} + P_{\text{cilindro}} \]

\[\text{Tara} = 26 + 18 = 44 \text{ kg.} \]

\[P_{\text{NETO}} = P_{\text{BRUTO}} - 44 \text{ kg.} \]

CALCULO DEL VOLUMEN DE LOS DESPERDICIOS

Los cilindros utilizados en el almacenamiento de desperdicios de los comedores y cocina son todos de igual capacidad Total (55Gal). Por lo tanto la única variable en el cálculo de los volúmenes será la altura:

\[V_t = \pi R_x^2 H_t \] (Volúmen del cilindro)

Para el cálculo de un volumen (X)

\[V_x = \pi R_x^2 H_x \]

Relacionamos el volumen total con el volumen X.

\[\frac{V_t}{V_x} = \frac{\pi R_x^2 H_t}{\pi R_x^2 H_x} = \frac{V_t}{V_x} = \frac{H_t}{H_x} \]
\[V_x = V_t \times \frac{H_x}{H_t} \]

Reemplazando valores.

\[V_t = 55 \text{ Gal.} = 208.16 \text{ lit.} \]

\[H_t = 34'' = 86 \text{ cms.} \]

LUEGO:

\[V_x = 208.16 \times \frac{H_x}{86} \]

(lit) 86
ANÁLISIS DE BASURAS

Area: Departamentos y Servicios
Comedores y Cocina

<table>
<thead>
<tr>
<th>CILINDRO</th>
<th>CLASE</th>
<th>PB Bruto (kgs)</th>
<th>Tara (kgs)</th>
<th>P. Neto (kgs)</th>
<th>H (cms)</th>
<th>VOLUMEN (litros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cocina</td>
<td>140</td>
<td>44</td>
<td>96</td>
<td>50</td>
<td>120.85</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>180</td>
<td>44</td>
<td>126</td>
<td>52</td>
<td>125.79</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>130</td>
<td>44</td>
<td>86</td>
<td>66</td>
<td>159.65</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>95</td>
<td>44</td>
<td>51</td>
<td>46</td>
<td>111.27</td>
</tr>
<tr>
<td>5</td>
<td>comedor</td>
<td>90</td>
<td>44</td>
<td>46</td>
<td>78</td>
<td>188.68</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>179</td>
<td>44</td>
<td>135</td>
<td>72</td>
<td>174.17</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>221</td>
<td>44</td>
<td>177</td>
<td>74</td>
<td>179.01</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>170</td>
<td>44</td>
<td>128</td>
<td>48</td>
<td>116.11</td>
</tr>
</tbody>
</table>

PRIMERA MUESTRA: Total = 843, Volumen = 1175.63

<table>
<thead>
<tr>
<th>CILINDRO</th>
<th>CLASE</th>
<th>PB Bruto (kgs)</th>
<th>Tara (kgs)</th>
<th>P. Neto (kgs)</th>
<th>H (cms)</th>
<th>VOLUMEN (Litros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cocina</td>
<td>113</td>
<td>44</td>
<td>69</td>
<td>64</td>
<td>154.82</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>139</td>
<td>44</td>
<td>95</td>
<td>65</td>
<td>159.65</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>176</td>
<td>44</td>
<td>132</td>
<td>75</td>
<td>181.43</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>142</td>
<td>44</td>
<td>98</td>
<td>81</td>
<td>195.94</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>170</td>
<td>44</td>
<td>126</td>
<td>64</td>
<td>154.82</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>132</td>
<td>44</td>
<td>88</td>
<td>78</td>
<td>188.68</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>156</td>
<td>44</td>
<td>112</td>
<td>77</td>
<td>186.26</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>112</td>
<td>44</td>
<td>68</td>
<td>73</td>
<td>176.59</td>
</tr>
<tr>
<td>9</td>
<td>comedor</td>
<td>130</td>
<td>44</td>
<td>86</td>
<td>56</td>
<td>135.46</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>151</td>
<td>44</td>
<td>107</td>
<td>68</td>
<td>164.49</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>78</td>
<td>44</td>
<td>34</td>
<td>47</td>
<td>113.69</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>142</td>
<td>44</td>
<td>108</td>
<td>64</td>
<td>154.82</td>
</tr>
</tbody>
</table>

SEGUNDA MUESTRA: Total = 1123, Volumen = 1966.65
ANÁLISIS DE BASURAS

Area: Departamentos y Servicios
Comedores y cocina

TERCERA MUESTRA

<table>
<thead>
<tr>
<th>CILINDRO</th>
<th>CLASE</th>
<th>Pbruto (kgs)</th>
<th>Tara (kgs)</th>
<th>Pneto (kgs)</th>
<th>H (cms)</th>
<th>VOLUMEN (lit.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cocina</td>
<td>152</td>
<td>44</td>
<td>108</td>
<td>73</td>
<td>176.59</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>99</td>
<td>44</td>
<td>55</td>
<td>81</td>
<td>195.94</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>160</td>
<td>44</td>
<td>116</td>
<td>81</td>
<td>195.94</td>
</tr>
<tr>
<td>4</td>
<td>comedor</td>
<td>136</td>
<td>44</td>
<td>92</td>
<td>41</td>
<td>99.18</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>129</td>
<td>44</td>
<td>85</td>
<td>71</td>
<td>171.75</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>116</td>
<td>44</td>
<td>72</td>
<td>68</td>
<td>164.49</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>180</td>
<td>44</td>
<td>142</td>
<td>43</td>
<td>104.02</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>110</td>
<td>44</td>
<td>66</td>
<td>64</td>
<td>154.82</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>160</td>
<td>44</td>
<td>116</td>
<td>76</td>
<td>183.84</td>
</tr>
</tbody>
</table>

852 1,486,57

CUARTA MUESTRA

<table>
<thead>
<tr>
<th>CILINDRO</th>
<th>CLASE</th>
<th>Pbruto (kgs)</th>
<th>Tara (kgs)</th>
<th>Pneto (kgs)</th>
<th>H (cms)</th>
<th>VOLUMEN (lit.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cocina</td>
<td>142</td>
<td>44</td>
<td>98</td>
<td>71</td>
<td>171.75</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>114</td>
<td>44</td>
<td>70</td>
<td>80</td>
<td>193.52</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>126</td>
<td>44</td>
<td>82</td>
<td>73</td>
<td>176.59</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>120</td>
<td>44</td>
<td>76</td>
<td>48</td>
<td>116.11</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>112</td>
<td>44</td>
<td>68</td>
<td>86</td>
<td>208.03</td>
</tr>
<tr>
<td>6</td>
<td>comedor</td>
<td>174</td>
<td>44</td>
<td>130</td>
<td>74</td>
<td>179.01</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>200</td>
<td>44</td>
<td>156</td>
<td>66</td>
<td>159.65</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>192</td>
<td>44</td>
<td>148</td>
<td>62</td>
<td>149.48</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>120</td>
<td>44</td>
<td>26</td>
<td>78</td>
<td>188.68</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>108</td>
<td>44</td>
<td>64</td>
<td>74</td>
<td>179.01</td>
</tr>
</tbody>
</table>

968 1,722,33
ANALISIS DE BASURAS

Area: Departamentos y Servicios
Comedores y Cocina.

QUINTA MUESTRA

<table>
<thead>
<tr>
<th>CILINDRO</th>
<th>CLASE</th>
<th>Pbruto (kgs)</th>
<th>Tara (kgs)</th>
<th>Pneto (kgs)</th>
<th>Hx (cms)</th>
<th>VOLUMEN (Lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cocina</td>
<td>204</td>
<td>44</td>
<td>160</td>
<td>74</td>
<td>179.01</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>110</td>
<td>44</td>
<td>66</td>
<td>71</td>
<td>171.75</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>115</td>
<td>44</td>
<td>71</td>
<td>52</td>
<td>125.79</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>68</td>
<td>44</td>
<td>24</td>
<td>48</td>
<td>116.11</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>82</td>
<td>44</td>
<td>38</td>
<td>58</td>
<td>140.30</td>
</tr>
<tr>
<td>6</td>
<td>comedor</td>
<td>204</td>
<td>44</td>
<td>160</td>
<td>71</td>
<td>171.75</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>198</td>
<td>44</td>
<td>154</td>
<td>76</td>
<td>183.84</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>158</td>
<td>44</td>
<td>114</td>
<td>62</td>
<td>149.98</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>144</td>
<td>44</td>
<td>100</td>
<td>56</td>
<td>135.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>887</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,373.99</td>
</tr>
</tbody>
</table>

SEXTA MUESTRA

<table>
<thead>
<tr>
<th>CILINDRO</th>
<th>CLASE</th>
<th>Pbruto (kgs)</th>
<th>Tara (kgs)</th>
<th>Pneto (kgs)</th>
<th>Hx (cms)</th>
<th>VOLUMEN (lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cocina</td>
<td>102</td>
<td>44</td>
<td>58</td>
<td>78</td>
<td>188.68</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>89</td>
<td>44</td>
<td>45</td>
<td>82</td>
<td>198.36</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>72</td>
<td>44</td>
<td>28</td>
<td>72</td>
<td>174.17</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>89</td>
<td>44</td>
<td>45</td>
<td>86</td>
<td>208.03</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>62</td>
<td>44</td>
<td>18</td>
<td>41</td>
<td>99.18</td>
</tr>
<tr>
<td>6</td>
<td>comedor</td>
<td>162</td>
<td>44</td>
<td>118</td>
<td>74</td>
<td>179.01</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>142</td>
<td>44</td>
<td>98</td>
<td>74</td>
<td>179.01</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>110</td>
<td>44</td>
<td>66</td>
<td>48</td>
<td>116.11</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>132</td>
<td>44</td>
<td>88</td>
<td>68</td>
<td>164.49</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>198</td>
<td>44</td>
<td>154</td>
<td>54</td>
<td>130.63</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td>156</td>
<td>44</td>
<td>112</td>
<td>74</td>
<td>179.01</td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td>168</td>
<td>44</td>
<td>124</td>
<td>72</td>
<td>174.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>954</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1990.85</td>
</tr>
</tbody>
</table>
ANÁLISIS DE BASURAS

Area: Departamentos y Servicios

Comedores y cocina

<table>
<thead>
<tr>
<th>CILINDRO</th>
<th>CLASE</th>
<th>Pbruto (kgs)</th>
<th>Tara (kgs)</th>
<th>Pneto (kgs)</th>
<th>N_x (cms)</th>
<th>VOLUMEN (lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cocina</td>
<td>98</td>
<td>44</td>
<td>54</td>
<td>78</td>
<td>188.68</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>138</td>
<td>44</td>
<td>94</td>
<td>72</td>
<td>174.17</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>120</td>
<td>44</td>
<td>76</td>
<td>46</td>
<td>111.27</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>108</td>
<td>44</td>
<td>64</td>
<td>54</td>
<td>130.63</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>132</td>
<td>44</td>
<td>88</td>
<td>78</td>
<td>188.68</td>
</tr>
<tr>
<td>6</td>
<td>comedor</td>
<td>104</td>
<td>44</td>
<td>96</td>
<td>76</td>
<td>183.64</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>204</td>
<td>44</td>
<td>160</td>
<td>86</td>
<td>208.00</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>100</td>
<td>44</td>
<td>56</td>
<td>65</td>
<td>157.24</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>142</td>
<td>44</td>
<td>98</td>
<td>68</td>
<td>164.49</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>190</td>
<td>44</td>
<td>146</td>
<td>76</td>
<td>183.64</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td>152</td>
<td>44</td>
<td>108</td>
<td>70</td>
<td>169.33</td>
</tr>
</tbody>
</table>

1,040 | 1,860.17

<table>
<thead>
<tr>
<th>CILINDRO</th>
<th>CLASE</th>
<th>Pbruto (kgs)</th>
<th>Tara (kgs)</th>
<th>Pneto (kgs)</th>
<th>H_x (cms)</th>
<th>VOLUMEN (lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cocina</td>
<td>160</td>
<td>44</td>
<td>116</td>
<td>86</td>
<td>208.0</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>114</td>
<td>44</td>
<td>70</td>
<td>86</td>
<td>208.0</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>90</td>
<td>44</td>
<td>46</td>
<td>54</td>
<td>130.63</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>128</td>
<td>44</td>
<td>84</td>
<td>72</td>
<td>174.17</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>175</td>
<td>44</td>
<td>131</td>
<td>60</td>
<td>145.14</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>112</td>
<td>44</td>
<td>68</td>
<td>86</td>
<td>145.14</td>
</tr>
<tr>
<td>7</td>
<td>comedor</td>
<td>138</td>
<td>44</td>
<td>94</td>
<td>64</td>
<td>208.00</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>115</td>
<td>44</td>
<td>71</td>
<td>56</td>
<td>154.82</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>169</td>
<td>44</td>
<td>125</td>
<td>78</td>
<td>135.46</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>170</td>
<td>44</td>
<td>126</td>
<td>70</td>
<td>169.33</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td>108</td>
<td>44</td>
<td>64</td>
<td>72</td>
<td>174.17</td>
</tr>
</tbody>
</table>

995 | 1,896.40
ANÁLISIS DE BASURA

Area: Departamentos y Servicios

Comedores y cocina

<table>
<thead>
<tr>
<th>NOVENA MUESTRA</th>
<th>CILINDRO</th>
<th>CLASE</th>
<th>Pbruto (kgs)</th>
<th>Tara (kgs)</th>
<th>Pneto (kgs)</th>
<th>Hx (cms)</th>
<th>VOLUMEN (lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cocina</td>
<td></td>
<td>128.</td>
<td>44</td>
<td>84</td>
<td>86</td>
<td>208.0</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td></td>
<td>108</td>
<td>44</td>
<td>64</td>
<td>86</td>
<td>208.0</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td></td>
<td>118</td>
<td>44</td>
<td>74</td>
<td>74</td>
<td>179.01</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td></td>
<td>114</td>
<td>44</td>
<td>70</td>
<td>76</td>
<td>183.84</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td></td>
<td>96</td>
<td>44</td>
<td>52</td>
<td>86</td>
<td>208.00</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td></td>
<td>126</td>
<td>44</td>
<td>82</td>
<td>81</td>
<td>195.94</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td></td>
<td>116</td>
<td>44</td>
<td>72</td>
<td>72</td>
<td>174.17</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td></td>
<td>122</td>
<td>44</td>
<td>78</td>
<td>78</td>
<td>188.68</td>
</tr>
<tr>
<td>9</td>
<td>comedor</td>
<td></td>
<td>230</td>
<td>44</td>
<td>196</td>
<td>70</td>
<td>169.33</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td></td>
<td>192</td>
<td>44</td>
<td>148</td>
<td>61</td>
<td>147.53</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td></td>
<td>160</td>
<td>44</td>
<td>116</td>
<td>80</td>
<td>193.52</td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td></td>
<td>173</td>
<td>44</td>
<td>129</td>
<td>71</td>
<td>171.75</td>
</tr>
<tr>
<td>13</td>
<td>"</td>
<td></td>
<td>180</td>
<td>44</td>
<td>136</td>
<td>64</td>
<td>154.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DECIMA MUESTRA</th>
<th>CILINDRO</th>
<th>CLASE</th>
<th>Pbruto (kgs)</th>
<th>Tara (kgs)</th>
<th>Pneto (kgs)</th>
<th>Hx (cms)</th>
<th>VOLUMEN (lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cocina</td>
<td></td>
<td>162</td>
<td>44</td>
<td>118</td>
<td>82</td>
<td>198.36</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td></td>
<td>124</td>
<td>44</td>
<td>180</td>
<td>74</td>
<td>179.01</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td></td>
<td>108</td>
<td>44</td>
<td>64</td>
<td>70</td>
<td>169.33</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td></td>
<td>92</td>
<td>44</td>
<td>48</td>
<td>75</td>
<td>181.43</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td></td>
<td>122</td>
<td>44</td>
<td>78</td>
<td>78</td>
<td>188.68</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td></td>
<td>146</td>
<td>44</td>
<td>102</td>
<td>60</td>
<td>145.14</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td></td>
<td>118</td>
<td>44</td>
<td>74</td>
<td>66</td>
<td>159.65</td>
</tr>
<tr>
<td>8</td>
<td>comedor</td>
<td></td>
<td>213</td>
<td>44</td>
<td>169</td>
<td>86</td>
<td>208.00</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td></td>
<td>169</td>
<td>44</td>
<td>125</td>
<td>67</td>
<td>162.07</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td></td>
<td>172</td>
<td>44</td>
<td>128</td>
<td>74</td>
<td>179.01</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td></td>
<td>194</td>
<td>44</td>
<td>150</td>
<td>60</td>
<td>145.14</td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td></td>
<td>156</td>
<td>44</td>
<td>112</td>
<td>72</td>
<td>174.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,348</td>
</tr>
</tbody>
</table>

Nota: Los valores están en kilogramos (kgs), litros (lit), centímetros cuadrados (cms), y centímetros (cm).
ANALISIS DE BASURA

BASURAS DE ESPECIAL CONSIDERACION
(Síntesis)

<table>
<thead>
<tr>
<th>PESO</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resto de tejidos (kgs)</td>
<td>Total (kgs)</td>
</tr>
<tr>
<td>Sala de Cirugía</td>
<td>7.20</td>
</tr>
<tr>
<td>Sala de Patalogía</td>
<td>13.60</td>
</tr>
<tr>
<td>Sala de Part.</td>
<td>23.80</td>
</tr>
<tr>
<td>TOTALES</td>
<td>44.60</td>
</tr>
</tbody>
</table>

COMEDORES Y COCINA
(Síntesis)

DESPERDICIOS

<table>
<thead>
<tr>
<th>MUESTRA (día)</th>
<th>PESO (kgs)</th>
<th>VOLUMEN (lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>843</td>
<td>1175.63</td>
</tr>
<tr>
<td>2</td>
<td>1123</td>
<td>1966.65</td>
</tr>
<tr>
<td>3</td>
<td>852</td>
<td>1486.57</td>
</tr>
<tr>
<td>4</td>
<td>968</td>
<td>1722.33</td>
</tr>
<tr>
<td>5</td>
<td>887</td>
<td>1373.99</td>
</tr>
<tr>
<td>6</td>
<td>954</td>
<td>1990.85</td>
</tr>
<tr>
<td>7</td>
<td>1040</td>
<td>1860.17</td>
</tr>
<tr>
<td>8</td>
<td>995</td>
<td>1896.40</td>
</tr>
<tr>
<td>9</td>
<td>1301</td>
<td>2382.69</td>
</tr>
<tr>
<td>10</td>
<td>1348</td>
<td>2090.02</td>
</tr>
<tr>
<td>TOTALES</td>
<td>10312</td>
<td>17945.3</td>
</tr>
</tbody>
</table>

PROMEDIO DIARIO = 1,031.2 1,794.53
ANALISIS DE BASURAS

Area: Incinerador

CALCULO EN PESO Y VOLUMEN DE LA PRODUCCION DIARIA DE
CENIZAS DEL INCINERADOR

Pcilindro Chico- 6 kgs -----Htotal chico= 88 cms.
Pcilindro mediano- 16 kgs------Htotal mediano=76 cms.
Peso carretilla = 26 kgs.

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>CILINDRO</th>
<th>CLASE</th>
<th>Pbruto (kgs)</th>
<th>Tara (kgs)</th>
<th>Pneto (kgs)</th>
<th>Hx VOLUMEN (lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mediano</td>
<td>105</td>
<td>36</td>
<td>69</td>
<td>68</td>
<td>184.89</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>84</td>
<td>36</td>
<td>48</td>
<td>70</td>
<td>190.33</td>
</tr>
<tr>
<td>3</td>
<td>chico</td>
<td>79</td>
<td>32</td>
<td>37</td>
<td>77</td>
<td>127.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>154</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>502.96</td>
</tr>
<tr>
<td>1</td>
<td>mediano</td>
<td>88</td>
<td>36</td>
<td>52</td>
<td>61</td>
<td>165.86</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>99</td>
<td>36</td>
<td>63</td>
<td>62</td>
<td>168.58</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>106</td>
<td>36</td>
<td>70</td>
<td>66</td>
<td>179.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>185</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>513.89</td>
</tr>
<tr>
<td>1</td>
<td>mediano</td>
<td>109</td>
<td>36</td>
<td>73</td>
<td>76</td>
<td>206.64</td>
</tr>
<tr>
<td>2</td>
<td>chico</td>
<td>87</td>
<td>32</td>
<td>55</td>
<td>88</td>
<td>145.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>352.63</td>
</tr>
<tr>
<td>1</td>
<td>mediano</td>
<td>103</td>
<td>36</td>
<td>67</td>
<td>66</td>
<td>179.45</td>
</tr>
<tr>
<td>2</td>
<td>chico</td>
<td>81</td>
<td>32</td>
<td>49</td>
<td>80</td>
<td>132.72</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>76</td>
<td>32</td>
<td>44</td>
<td>83</td>
<td>137.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>449.87</td>
</tr>
<tr>
<td>1</td>
<td>mediano</td>
<td>96</td>
<td>36</td>
<td>60</td>
<td>56</td>
<td>152.26</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>89</td>
<td>36</td>
<td>53</td>
<td>62</td>
<td>168.58</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>112</td>
<td>36</td>
<td>76</td>
<td>66</td>
<td>179.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>189</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500.29</td>
</tr>
</tbody>
</table>
ANÁLISIS DE BASURAS

CENIZAS DEL INCINERADOR
(continuación)

<table>
<thead>
<tr>
<th>MUESTRA CILINDRO</th>
<th>CLASE</th>
<th>Pbruto (kgs)</th>
<th>Tara (kgs)</th>
<th>Pneto (kgs)</th>
<th>Hx (cms)</th>
<th>VOLUMEN (lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mediano</td>
<td>106</td>
<td>36</td>
<td>70</td>
<td>71</td>
<td>193.05</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>98</td>
<td>36</td>
<td>62</td>
<td>64</td>
<td>174.02</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>128</td>
<td>36</td>
<td>92</td>
<td>66</td>
<td>179.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>224</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>546.52</td>
</tr>
<tr>
<td>1</td>
<td>chico</td>
<td>85</td>
<td>32</td>
<td>53</td>
<td>64</td>
<td>106.18</td>
</tr>
<tr>
<td>2</td>
<td>mediano</td>
<td>103</td>
<td>36</td>
<td>67</td>
<td>56</td>
<td>152.26</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>96</td>
<td>36</td>
<td>60</td>
<td>52</td>
<td>141.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>399.83</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>mediano</td>
<td>101</td>
<td>36</td>
<td>65</td>
<td>64</td>
<td>174.02</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>134</td>
<td>36</td>
<td>98</td>
<td>52</td>
<td>141.39</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>114</td>
<td>36</td>
<td>78</td>
<td>49</td>
<td>133.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>241</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>448.64</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>mediano</td>
<td>125</td>
<td>36</td>
<td>89</td>
<td>65</td>
<td>176.74</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>108</td>
<td>36</td>
<td>72</td>
<td>58</td>
<td>157.70</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>121</td>
<td>36</td>
<td>85</td>
<td>62</td>
<td>168.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>246</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>503.02</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>mediano</td>
<td>112</td>
<td>36</td>
<td>76</td>
<td>68</td>
<td>184.89</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>92</td>
<td>36</td>
<td>56</td>
<td>57</td>
<td>154.98</td>
</tr>
<tr>
<td>3</td>
<td>chico</td>
<td>76</td>
<td>32</td>
<td>44</td>
<td>72</td>
<td>119.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>176</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>459.32</td>
</tr>
</tbody>
</table>

TOTAL PESO NETO---- 1883.00 kgs. - 10 MUESTRAS
VOLUMEN TOTAL ---- 4676.97 lit.
PRODUCCION PROMEDIO DIARIO = 188.3 kgs.
 = 467.7 lit.
PRODUCCION DE BASURAS

1 Producción de Basura por cama
Total de camas día = 1120 (capit. 2.1.)
Producción total de basura = 2,105 kg/día

P = 2105 = 1.88 kg/cama/día.
1120

2 Producción de Basura por paciente-día
No. Promedio de Paciente-día = 960 (cap. 2.2.1)
Producción total de basura = 2,105 kg/día.

P = 2105 = 2.19 kg/paciente/día.
960

3 Producción de basura por población hospitalaria

Se considera:

Población Hospitalaria total = A + B
A = Personal que labora a tiempo parcial o total en el Hospital.
B = No. Promedio de paciente-día.

Población Hospitalaria total = 3413 + 960 = 4373
Producc. total de basura = 2105 kg/día.

P = 4373 = 0.48 kg/población_hospitalaria/día
2105
CAPÍTULO VII

PESO ESPECÍFICO DE LAS BASURAS.
PESO ESPECIFICO DE LAS BASURAS

PISO DE HOSPITALIZACION- ALA "A" (MATERNIDAD)

ALA "B" (MEDICINA GENERAL)

PISOS DE HOSPITALIZACION

<table>
<thead>
<tr>
<th>Piso</th>
<th>Peso (kg)</th>
<th>Volumen (m3)</th>
<th>P.E (kg/m3)</th>
<th>Piso</th>
<th>Peso (kg)</th>
<th>Volumen (m3)</th>
<th>P.E (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.50</td>
<td>0.153</td>
<td>35.948</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26.60</td>
<td>0.228</td>
<td>116.667</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>39.00</td>
<td>0.462</td>
<td>84.416</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>23.60</td>
<td>0.831</td>
<td>102.165</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>34.50</td>
<td>0.308</td>
<td>112.013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23.40</td>
<td>0.279</td>
<td>83.871</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>26.20</td>
<td>0.189</td>
<td>138.624</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28.20</td>
<td>0.231</td>
<td>122.078</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18.40</td>
<td>0.243</td>
<td>75.720</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>17.80</td>
<td>0.189</td>
<td>94.180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>29.40</td>
<td>0.276</td>
<td>106.522</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P.E = Peso / Volumen
PESO ESPECIFICO DE BASURAS

OFICINAS Y CONSULTORIOS AMBULATORIOS

<table>
<thead>
<tr>
<th>ALA</th>
<th>PESO (kgs)</th>
<th>VOLUMEN (m³)</th>
<th>P.E. (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternidad</td>
<td>36.8</td>
<td>0.318</td>
<td>115.723</td>
</tr>
<tr>
<td>Medicina General</td>
<td>40.8</td>
<td>0.417</td>
<td>97.842</td>
</tr>
</tbody>
</table>

DEPARTAMENTOS Y SERVICIOS (Dptos. Generales)

<table>
<thead>
<tr>
<th>Departamento de Servicio</th>
<th>Peso (kgs)</th>
<th>Volumen (m³)</th>
<th>P.E. (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bco. de Sangre</td>
<td>9.00</td>
<td>0.126</td>
<td>714.29</td>
</tr>
<tr>
<td>Rayos X</td>
<td>26.20</td>
<td>0.258</td>
<td>101.55</td>
</tr>
<tr>
<td>Emergencia</td>
<td>52.30</td>
<td>0.594</td>
<td>88.047</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>38.60</td>
<td>0.264</td>
<td>146.212</td>
</tr>
<tr>
<td>Drogas</td>
<td>18.60</td>
<td>0.294</td>
<td>63.265</td>
</tr>
<tr>
<td>Esterilización</td>
<td>28.30</td>
<td>0.525</td>
<td>53.905</td>
</tr>
<tr>
<td>Cobaltoterapia</td>
<td>10.00</td>
<td>0.114</td>
<td>87.719</td>
</tr>
<tr>
<td>Farmacia</td>
<td>40.20</td>
<td>0.534</td>
<td>75.281</td>
</tr>
<tr>
<td>Sistematizac.</td>
<td>39.20</td>
<td>0.510</td>
<td>75.969</td>
</tr>
<tr>
<td>Imprenta</td>
<td>41.40</td>
<td>0.531</td>
<td>77.966</td>
</tr>
<tr>
<td>MGI</td>
<td>15.60</td>
<td>0.228</td>
<td>68.421</td>
</tr>
<tr>
<td>Caja de Seguro</td>
<td>40.80</td>
<td>0.495</td>
<td>82.424</td>
</tr>
</tbody>
</table>
PESO ESPECIFICO DE LAS BASURAS

DEPARTAMENTOS Y SERVICIOS

COMEDORES Y COCINA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>PESO (kgs)</th>
<th>VOLUMEN (m3)</th>
<th>P.E. (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>843</td>
<td>1.175</td>
<td>717.447</td>
</tr>
<tr>
<td>2</td>
<td>1123</td>
<td>1.966</td>
<td>571.211</td>
</tr>
<tr>
<td>3</td>
<td>852</td>
<td>1.486</td>
<td>573.351</td>
</tr>
<tr>
<td>4</td>
<td>968</td>
<td>1.722</td>
<td>562.137</td>
</tr>
<tr>
<td>5</td>
<td>887</td>
<td>1.373</td>
<td>646.973</td>
</tr>
<tr>
<td>6</td>
<td>954</td>
<td>1.990</td>
<td>479.397</td>
</tr>
<tr>
<td>7</td>
<td>1040</td>
<td>1.860</td>
<td>559.140</td>
</tr>
<tr>
<td>8</td>
<td>995</td>
<td>1.896</td>
<td>524.789</td>
</tr>
<tr>
<td>9</td>
<td>1301</td>
<td>2.382</td>
<td>546.180</td>
</tr>
<tr>
<td>10</td>
<td>1348</td>
<td>2.090</td>
<td>644.976</td>
</tr>
</tbody>
</table>

DEPARTAMENTOS DE ESPECIAL CONSIDERACION

<table>
<thead>
<tr>
<th>DEPARTAMENTOS</th>
<th>PESO (kg)</th>
<th>VOLUMEN (m3)</th>
<th>P.E. (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sala de Cirugía</td>
<td>44.40</td>
<td>0.318</td>
<td>139.623</td>
</tr>
<tr>
<td>Patología</td>
<td>13.60</td>
<td>0.013</td>
<td>1046.154</td>
</tr>
<tr>
<td>Sala de Partos</td>
<td>31.20</td>
<td>0.198</td>
<td>157.576</td>
</tr>
</tbody>
</table>
PESO ESPECIFICO DE LAS BASURAS

PESO ESPECIFICO PROMEDIO POR AREA DE PRODUCCION

<table>
<thead>
<tr>
<th>AREA</th>
<th>PESO ESPECIFICO PROMEDIO (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pisos de A</td>
<td>97.47</td>
</tr>
<tr>
<td>Hospitalización</td>
<td>80.63</td>
</tr>
<tr>
<td>Oficinas y Consulta de Ambulatorios</td>
<td>106.78</td>
</tr>
<tr>
<td>Departamentos y Servicios</td>
<td>82.68</td>
</tr>
<tr>
<td>Comedores y Cocina.</td>
<td>582.56</td>
</tr>
<tr>
<td>Basura de Espec. y Consideración</td>
<td>447.78</td>
</tr>
</tbody>
</table>
CAPITULO VIII

SISTEMA DE ALMACENAMIENTO Y RECOLECCION PROPUESTO.
8.1. SISTEMA DE DISPOSICIÓN DE BASURA PROPUESTO

El Proceso de Disposición de Basuras en el edificio ambiental Hospitalario como hemos visto en capítulos anteriores trae consigo problemas de diverso índole a lo largo de su proceso, por lo cual deben tenerse en especiales consideraciones; estas consideraciones deben tomarse como factores esenciales en el planeamiento de este proceso en nuevas Instituciones o en la remodelación de éstas.

El Estudio y Planeamiento de la Disposición de Basuras en los Establecimientos Hospitalarios debe ser una labor conjunta entre el Proyectista, Médico e Ingeniero Sanitario a fin de poder abordar en óptimas condiciones las necesidades presentes y futuras de dicha Institución.

Debido a que los objetivos y normas del Proceso de Disposición de Basuras en Hospitales e Instituciones similares no han sido definidos y Reglamentados por causas ya citadas (falta de importancia, referencias, estudios, etc) sobre este problema. Sin embargo en otros países de avanzada como (EE.UU., Alemania, etc) el problema ha sido estudiado con la importancia e interés que este requiere, originando
polémicas sobre las consecuencias que puede ocasio-
nar su mal ejecución, como cabe citar (transmisión-
de enfermedades infecciosas, contaminación del me-
dio ambiente hospitalario. Polución del ambiente de
la comunidad, altos costos de operación, etc).

Por lo tanto el presente estudio no solo
pretende analizar los aspectos técnicos, sino desta-
car también las medidas y acciones tendientes a man-
tener en buenas condiciones de operación y manteni-
miento los diferentes sistemas y equipos relaciona-
dos con este proceso.

8.1.1. DEPARTAMENTO RESPONSABLE O ENCARGADO

En nuestro medio y en la mayoría de países
la Disposición de Basuras en los Establecimientos -
Hospitalarios, está bajo la responsabilidad del De-
partamento de Limpieza, por ésta razón su adminis-
tración, organización, personal es el mismo. Siendo
éste uno de los factores que se debe tener en cuen-
ta en la Planificación de éste proceso.

8.1.2. ORGANIZACION
La estructuración de éste servicio depende de varios factores como, tipo de servicio que realiza, capacidad, arquitectura, administración del Hospital.

El inicio de una buena administración está en que la Dirección o Administración del Hospital reconozca y comprenda la importancia de la labor que desarrolla dicho servicio y brindarle el apoyo que requiere además de satisfacer sus necesidades para su normal funcionamiento.

Una buena organización a contar con:

* Una sólida política administrativa
* Planificación y Estructura orgánica comprensible
* Contar con personal profesional, técnico y subalterno capacitado y responsable.
* Debe establecer armonía y un trabajo en conjunto con los Departamentos que están relacionados con éste servicio.

1.3. PERSONAL DEL SERVICIO

Como en toda labor técnica-operativa, el elemento humano es un gran factor, que determina su eficiencia y calidad, por lo cual dicho personal de-
be tener condiciones y aptitudes que dicho servicio requiere para su buen funcionamiento.

El proceso de disposición de basura, requiere del siguiente personal:
* Jefe de Departamento o administrador
* Supervisores o capataces.
* Personal subalterno.

JEFÉ DE DEPARTAMENTO O ADMINISTRADOR

El Departamento encargado del proceso de Disposición de Basuras (Departamento de Limpieza) debe ser administrado y dirigido en forma funcional y dinámica, para lo cual es necesario una dirección capacitada de conocimientos técnicos y operativos relacionados con este proceso.

Además de nociones administrativas y de saneamiento ambiental hospitalario.

El Jefe de Departamentos o Administrador debe reunir las siguientes condiciones y aptitudes:
* Planificar y organizar, sistemas de limpieza, disposición de basuras, control de insectos y roedores.
* Dirigir y capacitar al personal mediante un programa sobre los sistemas, equipos materiales utilizados, así como la implantación de los nuevos a-
delantos relativos a estos ítems.
* Capacidad para seleccionar y establecer sistemas, equipos y materiales para alcanzar el mejor nivel de Saneamiento.
* Establecer normas operativas para mantener los sistemas y equipos en buenas condiciones de funcionamiento, así como la buena distribución y utilización de materiales.
* Supervisar y determinar la eficiencia del trabajo realizado por el personal, el rendimiento del equipo y materiales utilizados.

SUPERVISORES O CAPATACES

Es el personal conocido también como de mando intermedio, necesario específicamente en Establecimientos Hospitalarios que por su tamaño y capacidad sería imposible efectuar un control o supervisión eficiente por una sola persona (Jefe del Departamento).

El supervisor o capataz debe tener conocimiento sobre los sistemas y normas adoptados por el Jefe del Departamento para poder trasmitirlas en forma clara y comprensible al personal subalterno.

El Supervisor o capataz debe reunir las siguientes condiciones:
* Capacidad y carácter para dirigir y controlar personal.

* Educación y conocimientos técnicos necesarios para poder tomar decisiones y solucionar problemas en forma inmediata del personal.

* Habilidad para explicar y hacer comprender sistemas establecidos para poder exigir la máxima eficiencia.

* Buena capacidad de observación y razonamientos para poder efectuar sus evaluaciones en forma correcta.

PERSONAL SUBALTERNO

El personal subalterno encargado en forma directa de la limpieza, disposición de basuras, control de insectos y roedores, es quizás el trabajador que es tratado con la menor jerarquía y hasta con menosprecio se podría decir, debido a la labor que ejecuta en el Hospital.

Por lo cual la mayoría de este personal está conformado por personas que por sus reducidos conocimientos o aptitudes laboran en éste puesto por necesidad y no por ser un trabajo que les guste o les interese. Siendo ésto el principal motivo que trae como consecuencia la falta de importancia y res-
ponsabilidad en el desarrollo de su labor; resultando de esta causa, un factor negativo para el Departamento y para los intereses del Establecimiento Hospitalario.

Selección del Personal

En toda labor o trabajo que interviene en forma directa el factor humano (mano de obra) es necesario seleccionarlo para poder obtener el rendimiento satisfactorio esperado.

El Hospital por ser una Institución en que las labores se desarrollan en un medio ambiente y condiciones diferentes a los demás centros de trabajo de la comunidad. El Personal requerido debe ser seleccionado contemplando los siguientes factores:

CARACTER.- Debe presentar buen carácter, el cual se manifiesta en la sobriedad, confianza y disponibilidad de dicha persona en su desenvolvimiento.

EDUCACION.- Capacidad para comunicarse en forma oral y escrita, para poder comprender las instrucciones o para realizar sus respectivos informes.

FISICO CORPORAL.- Debe ser fuerte, ágil, no debe ser pesado ni lerdo, como para trabajar en alturas consi-
derables o en áreas congestionadas.

INTELIGENCIA. - Su standart no éste por debajo de lo Normal, debido/que tiene que tomar desiciones a las diversas soluciones que puede encontrar en su labor.

EDAD. - El primordial requisito es que tenga madurez y como consecuencia se podrá obtener responsabilidad en sus acciones.

EXPERIENCIA. - En ésta labor la experiencia no es necesaria siempre y cuando el Departamento se encarga de dar la capacitación y entrenamiento a los nuevos empleados.

SEXO. - Debido a las labores inherentes que desarrolla el Departamento, es necesario personal de ambos sexos.

Entrenamiento

El entrenamiento del Personal en cierto grado es necesario y único para cada establecimiento hospitalario. Por lo cual debe ser específicamente analizado y estar de acuerdo a los fines que éste persigue.

La razón en sí del entrenamiento es poner en
conocimiento de los sistemas, equipos y materiales - utilizados, así como las normas de saneamiento, y - seguridad de la ejecución de su labor.

El 7 nombre es necesario porque permite desarrollar en el individuo habilidades y el perfeccionamiento en las diferentes técnicas utilizadas obteniendo en beneficio que dicho personal realice su labor utilizando el mínimo (tiempo -esfuerzo y costo).

Además el entrenamiento incentiva en forma positiva a que el individuo adopte una conducta adecuada y sentido de responsabilidad de su trabajo.

SALUD Y SEGURIDAD

El personal que labora en el Departamento - de limpieza por su labor inherente que desarrolla, está en contacto directo con enfermos, ambientes y basura contaminado. Por lo cual el Jefe del Departamento tiene la responsabilidad de la salud y seguridad de éste personal, teniendo el deber de poner en conocimiento de los riesgos y peligros a que están expuestos y en consecuencia enseñarles las medidas preventivas necesarias para protegerse así mismo en el medio ambiente hospitalario, contra enfermedades infecciosas y accidentes que le puede acarrear el desarrollo diario de su labor.
8.2. SISTEMA DE ALMACENAMIENTO

8.2.1. FACTORES QUE INCIDEN EN EL PROCESO

El proceso de almacenamiento propuesto para el Hospital del Empleado estará supeditado en forma esencial a los siguientes factores:

* Tipo de Basura producida.
* Sistema de reducción y disposición final adoptado
* Diseño arquitectónico del Hospital.

8.2.1.1. TIPO DE BASURA PRODUCIDA

El sistema de disposición de basura, se ve-rá, facilitado si su almacenamiento se plantea en forma separada por tipo característico de basura. Para lo cual se clasificarán en:

BASURA GENERAL. - Es el tipo de basura que está compuesta generalmente por desechos secos y combustibles tales como (papeles, telas, plásticos etc).

DESPERDICIOS. - Es el tipo de basura conformada por restos alimenticios, los cuales por razones sanitarias y de seguridad serán subdivididos en:

a) Restos alimenticios que han tenido contacto con los pacientes (reposteros).
b) Restos alimenticios que no han tenido contacto —con los pacientes ni con los ambientes de hospitalización, tales como:

- Desperdicios provenientes de la cocina.
- Desperdicios provenientes de los comedores, del personal que labora en el Hospital.

BASURA DE ESPECIAL CONSIDERACION.— Es el tipo de basura conformada por restos de tejidos orgánicos ó aquellos proveniente de ambientes de probable contaminación.

- Basura proveniente de cirugía, sala de partos, emergencia etc.
- Basura proveniente de las áreas en las cuales atienden pacientes infecto-contagiosos.
- Basura proveniente del laboratorio de análisis.

8.2.1.2. **SISTEMA DE REDUCCION Y DISPOSICION FINAL ADOPTADO**

Debido a la variedad y cantidad de los tipos de basura producidos, el proceso de almacenamiento —debe estar supeditado al sistema de reducción y disposición final adoptado de cada tipo, para que éste pueda ser operado con la mayor facilidad y eficien-
cia posible.

8.2.1.3. **DISEÑO ARQUITECTÓNICO**

El diseño arquitectónico vertical, y la capacidad del Hospital juegan un papel importante en la sectorización y estandarización de sus áreas típicas de producción.

Debido a los factores citados el Hospital será sectorizado en las siguientes áreas de producción de basura:

- Pisos de Hospitalización
- Consultorios Ambulatorios
- Oficinas Administrativas
- Departamentos y Servicios

8.2.2. **RECIPIENTES**

El sistema de almacenamiento será ejecutado en la forma convencional, o sea utilizando una línea de recipientes:

Los recipientes utilizados estarán supeditados a los siguientes factores:

- Tipo de basura
- Volúmen de producción.
- Facilidad de operación y mantenimiento.
Los recipientes serán divididos en dos grupos los cuales serán utilizados en el:

Departamento de Producción.— Como su nombre lo indica son utilizados en lugar donde se origina la basura.

Almacenamiento parcial.— Estos recipientes serán utilizados en almacenar la basura resultante de los diferentes puntos de producción de un sector establecido.

CARACTERISTICAS GENERALES DE LOS RECIPIENTES

* etálico, impermeable y a prueba de herrumbre.
* Estructura fuerte, preferible de forma cilíndrica
* Sus dimensiones deben ser tales, que sea fácil de llenar, vaciar y limpiar dicho recipiente por un solo operario.
* Su superficie debe ser lisa y no contener porosidades que faciliten la retención de la suciedad, dificultando su limpieza.
* Debe estar provisto de una tapa de cierre hermético y poseer asaderas para facilitar su manipulación.

MANTENIMIENTO DE LOS RECIPIENTES
El objeto principal del mantenimiento es tratar de preservar los recipientes en buenas condiciones físicas y estéticas de utilización, esto quiere decir que los recipientes en mención deben recibir un cuidado permanente con respecto a su conservación, limpieza y desinfección.

En todo establecimiento hospitalario cuya disposición de basura se realiza por medio de una línea de recipientes debe contar con un recinto especial para ejecutar su mantenimiento (incluido en el diseño del Hospital).

El recinto mencionado debe estar ubicado lo más próximo al punto de almacenamiento final o reducción (próximo al incinerador caso del Hospital en Estudio), para poder facilitar su limpieza y desinfección de los recipientes una vez desechada la basura.

Dicho recinto debe estar provisto con instalaciones de agua fría y caliente a presión y contar con un dispositivo especial para desinfectar los recipientes por medio de la inyección de vapor a presión.

Por la labor que realiza el recinto de mantenimiento de recipientes, sus paredes deben ser lavables y sus pisos deben estar provistos de un buen sistema de drenaje, para evitar la acumulación de agua y residuos de la limpieza, favoreciendo la proliferación de insectos y roedores.
8.2.3. ADITAMENTOS ESPECIALES

En los Establecimientos Hospitalarios de EE.UU. y Europa el uso de bolsas (tela, papel, plástico) en la disposición de basura han tenido gran aceptación, debido a las ventajas sanitarias y estéticas que facilitan su uso.

Por sus características las bolsas pueden ser clasificadas en:

* Bolsas reutilizables
* Bolsas desechables.

Bolsas Reutilizables. Las bolsas que tienen esta característica, están confeccionadas de tela resistente (lona). El uso de este tipo de bolsa está limitada a la disposición de basura seca, debido a que no tiene la particularidad de ser impermeables.

Además la ventaja de ser reutilizables plantea un sistema de lavado y desinfección que representa un costo adicional.

Bolsas Desechables (una sola utilización)

Las bolsas que tienen dicha característica están confeccionadas de material plástico, o papel especial - Las bolsas de papel por su limitación de solo poder desechar basura seca, es utilizada en la dis-
posición de basura proveniente de áreas infecto-con-
tagiosas.

Las bolsas de plástico tienen la principal
particularidad que son impermeables, o sea a prueba
de basuras, son ideales para desechar basura que con-
tenga desperdicios, tejidos orgánicos y apósitos que
contengan secreciones patológicas (esputos, sangre,
pus, etc).

8.2.3.1. UTILIZACION DE BOLSA DE PLÁSTICO

Analizando las características de las bolsas
 mencionadas anteriormente, vemos que las bolsas de
plástico tienen la ventaja esencial de poder almacenan
basura de alto grado de humedad, requisito nece-
sario para su utilización en las áreas que se propon-
drán su uso.

La utilización de las bolsas de plástico para
la disposición de residuos sólidos en el Hospital
del Empleado, no será en forma general si no serán u-
tilizadas en las áreas que se produzcan basuras, cuya-
composición o poder de contaminación originan en su
disposición riesgos o problemas por los métodos con-
vencionales.

Las bolsas de plástico serán utilizadas •
las siguientes áreas de producción:

Salas de partos.
- Salas de cirugía
- Emergencia
 Reposteros.
- Infecto-contagiosos

Ventajas que brindan su utilización
- Facilidad de almacenamiento y manipuleo-
de cualquier tipo de basura a excepción de elementos
punzo-cortantes.
- Medida Sanitaria y de Seguridad, contra
la contaminación del ambiente hospitalario y protec-
ción del personal contra posibles enfermedades infe-
ciosas.
- Medida Estética, la utilización de las bol-
sas evita ruidos, malos olores, y mal aspecto durante
el proceso de disposición de basura.
- Su correcta utilización evita la atracción
de insectos y roedores.

Forma de utilización

La utilización de las bolsas de plástico en
la disposición de basura se realiza generalmente de
dos formas:

- Como funda interior de los recipientes-convencionales.

Por medio de sujetadores especiales.

El sellado de las bolsas una vez llenada su capacidad se realiza por medio de (ligas, cinta adhesiva, o grampas), esta acción se lleva a cabo generalmente en los puntos de producción.

El acarreo de las bolsas con basura de los puntos de producción a los sitios de almacenamiento o reducción se realiza por medio de carros adecuados para este fin. (método convencional).

Si el sistema de manipulación de la basura se realiza por medio de ductos. Hay que tener en cuenta, la relación del diámetro del ducto y el posible volumen de las bolsas con la basura respectiva, para evitar obstrucciones frecuentes en el ducto.

El grosor de la bolsa, también es un factor que hay que tener en cuenta para evitar su rompimiento, debido a la fricción de las bolsas con las paredes -del ducto- al impacto a consecuencia de la caída en el punto de recepción.

Dimensionamiento de las bolsas de plástico

Las dimensiones de las bolsas utilizadas en
la disposición de basura estarán supeditadas al volumen y peso de la basura a desechar en cada área o departamento que se requiera su utilización.

El volumen de la basura producida nos dará una idea sobre la capacidad de la bolsa o sea de sus dimensiones lineales.

El peso de la basura no servirá para poder determinar en forma aproximada la resistencia del material utilizado o sea el espesor de la bolsa.

Como en la mayoría de establecimientos hospitalarios se producen diversos tipos de basura, en consecuencia existen diversos sistemas de Reducción o Disposición Final.

Si se implanta la utilización de bolsas de plástico en la disposición de basura, se produciría un problema de indentificación de la basura ya empaquetada, para evitar que esto suceda, se propondrá la utilización de bolsas de colores, estableciendo para cada tipo de basura un color determinado, por ejemplo:

Bolsas de color Blanco.- Para la disposición de basuras que contengan restos de tejidos orgánicos, como la procedente de Sala de cirugía, partos etc.

Bolsas de color Rojo.- Para la disposición de la basura general procedente de áreas aisladas como la de infecto-contagiosos.
Bolsas de color Amarillo.- Para la disposición de basura que este compuesta por desperdicios alimenticios que han tenido contacto con pacientes o áreas de Hospitalización (Reposteros).
8.3. SISTEMA DE ALMACENAMIENTO PROPUESTO

El sistema de almacenamiento de basura, propuesto en el Hospital del Empleado, se basará en el tipo de basura característica producida en determinadas áreas.

Por la disposición arquitectónica de su edificio y por las funciones inherentes que cada área realiza, el Hospital será sectorizado en las siguientes áreas de producción de basuras:

- Pisos de Hospitalización.
- Consultorios Ambulatorios y ofic. administrat.
- Departamentos y servicios

8.3.1. PISOS DE HOSPITALIZACION

El Diseño Arquitectónico del área de Hospitalización es de tipo vertical y está distribuida en 12 de los 14 pisos de su edificio(2o -13vo.piso). A su vez el edificio está dividido en 3 sectores verticales (A, B y C), siendo los pisos de Hospitalización de cada sector típicos.

El Sector A (Maternidad, Ginecología) es independiente del resto del edificio o sea que los pi-
sos de este Sector no se comunican con los del Sector adyacente. (medida sanitaria de diseño para controlar posibles infecciones a parturientas y recién nacidos).

El Sector B y C (Medicina General y Cirugía) se comunican entre si y forman un solo Sector.

Por lo tanto, el sistema de almacenamiento de Basura propuesto para el área de Hospitalización será realizado en forma independiente en dos sectores:

- Sector A - Maternidad y Ginecología
- Sector B y C - Medicina General y Cirugía.

PUNTOS DE PRODUCCION

En los dos sectores de Hospitalización, por diseño sus respectivos pisos son similares por lo cual el sistema de almacenamiento se podrá estandarizar en los siguientes puntos de producción.

* Cuarto del Paciente
* Estación de Enfermeras.
* Sala de exámen y diagnóstico
* Baños del personal
* Reposteros.

ALMACENAMIENTO PARCIAL

En los pisos de cada sector mencionado, se
contará con un recinto, con el fin de almacenar o reunir la basura procedente de los pisos de producción de cada Piso.

La principal razón de este Recinto será de uniformizar y simplificar la labor de almacenamiento y recolección de cada piso.

Los Recintos de almacenamiento parcial, para cumplir con eficiencia su cometido deben tener las siguientes características:

- Su diseño y ubicación debe realizarse en forma conjunta cuando se proyecta el edificio y demás instalaciones hospitalarias.
- Por diseño debe estar aislado de los ambientes del Hospital.
- Su dimensionamiento debe ser tal que facilite la manipulación del recipiente de basura por el operario.
- Poseer luz artificial y ventilación.
- Su interior debe estar revestido de material lavable para facilitar su limpieza y desinfección.

CANTIDAD Y TIPO DE BASURA PRODUCIDA

En el área de Hospitalización según análisis realizados arrojan una Producción Promedio de Basura 0.270 m^3, por piso, por día. Dicha cifra incluye los
desperdicios "No triturables" procedentes de los re-
poster de cada piso.

En este Sector la basura producida está cons-
tituída en su totalidad por desechos, aunque existen
áreas que producen basura de Especial Consideración
procedente de Sala de Cirugía, Partos y del área de
Infecto-Contagiosas, de este tipo de especial basura
nos ocuparemos más adelante en forma más detallada.

RECIPIENTES

En el Sector de Hospitalización, los reci-
piéntes utilizados en el almacenamiento parcial de-
basura, serán cilindros convencionales de 55 galones
de capacidad (208 lit), a los cuales se le propor-
cionarán los aditamentos necesarios para que cumplan
los requisitos básicos de todo recipiente de basura.

Los recipientes utilizados serán de la si-
guiente manera:

En el Sector A 1 recipiente /piso.
Sector ByC - 1 recipiente/piso.

8.3.2. OFICINAS ADMINISTRATIVAS Y CONSULTORIOS

AMBULATORIOS
El Sector correspondiente a esta área de producción de basura, se encuentra en la primera planta del Edificio Hospitalario.

Por diseño arquitectónico y por sus labores que realiza dicho sector, está dividido al igual que el Sector de Hospitalización en: Consultorios Ambulatorios de Maternidad- Ginecología y de Medicina General-cirugía. Siendo este un factor por el cual su almacenamiento de basura se plantea en forma independiente:

Sector A- Oficina y Consultorios de Maternidad-ginecología

Sector B- Oficina y Consultorio de Medicina General y Cirugía.

TIPO Y CANTIDAD DE BASURA PRODUCIDA

En este Sector la basura producida está constituida generalmente por desechos, incluyendo basura de especial consideración procedentes de los consultorios de Infecto-Contagiosos tales como Bronco-Pulmonares, Venereas etc, cuyo almacenamiento y manipulación se realizarán según método para Basura de Especial Consideración.

La cantidad de basura producida en este Sector según
los análisis realizados es el siguiente:
Sección Maternidad-Ginecología------- 0.318 m³/día.
 Medicina General-Cirugía------- 0.417 m³/día.

PUNTOS DE PRODUCCION

Los consultorios ambulatorios de maternidad-ginecología, al igual que medicina general, están subdivididos en especialidades clínicas. Por lo cual cada consultorio será contabilizado como un Punto de Producción.

Toda oficina administrativa será considerada como un Punto de producción, siempre y cuando no esté incluida en un consultorio.

ALMACENAMIENTO PARCIAL

Los consultorios ambulatorios y oficinas de cada Sector mencionado contará con un Recinto de Almacenamiento parcial que reunirá la basura producida en sus respectivos puntos de producción.

El Recinto contará con las características mencionadas anteriormente en el área de Hospitalización.
RECIPIENTES

Los recipientes utilizados en este Sector para almacenar la basura, serán cilindros convencionales (55 galones) .208 m³.

En Sector de Maternidad y Ginecología---2 recipientes.
 Medicina General y Cirugía--- 2 " "

8.3.3. **DEPARTAMENTOS Y SERVICIOS**

La mayoría de departamentos y servicios del Hospital del Empleado están ubicados en el 1er. Piso y Sótano.

Para facilitar el proceso de almacenamiento y disposición de la basura en los Departamentos, han sido clasificados en dos grupos, atendiendo al tipo de basura que produce.

Departamentos y Servicios Generales. Dentro esta clasificación estarán considerados aquellos cuya producción de basura este compuesta por desechos combustibles.

- Banco de Sangre
- Rayos X y Cobaltoterapia
- Laboratorio
- Esterilización

- Farmacia y Drogas.
- Sistemización.
- Imprenta
- Caja del Seguro etc.
Departamentos de Especial Consideración.- Se
denominará así aquellos cuya producción de basuras
esten constituídas por materia orgánica (putrecible)
o aquellas que hayan tenido contacto con áreas o pa-
cientes infecto-contagiosos. Siendo necesario tanto
para su almacenamiento como manipulación la utiliza-
ción de aditamentos y normas especiales.

Dentro de esta clasificación están considerados los
departamentos y servicios siguientes:

- Emergencia
- Cocina y comedores.
- Sala de cirugía y partos
- Laboratorio de análisis
- Repostería.

8.3.3.1. DEPARTAMENTOS Y SERVICIOS GENERALES

El almacenamiento de basura en estos depart-
tamentos será efectuado en forma independiente o sea
que cada uno constituirá un Punto de Producción.

Se utilizarán como recipientes de almacen-a-
miento cilindros convencionales de 55 gal. El núme-
ro de recipientes necesarios para cada Departamento
será dado por la cantidad de producción de basura -
diaria.
8.3.3.2. DEPARTAMENTOS Y SERVICIOS DE ESPECIAL CONSIDERACIÓN

COCINA Y COMEDORES

El Departamento de cocina, al igual que los comedores utilizados por el personal que labora en este establecimiento hospitalario, tienen una producción de basura similar en cuanto a su composición. Por lo cual el Proceso de Almacenamiento que se planteará para ambos Departamentos será el mismo.

TIPO Y CANTIDAD DE BASURA

La basura producida en estos Departamentos está constituida por desperdicios alimenticios en su mayoría.

El departamento de cocina produce desperdicios compuestos de hojas, cascarras de vegetales y frutas; huesos, y grasas etc.

El departamento de comedores produce desperdicios compuestos por restos de alimentos elaborados.

La cantidad promedio de basura producida por ambos Departamentos según análisis realizados, es la siguiente:

Volúmen $= 1.793 \text{ m}^3 / \text{día}$

Peso $= 834.5 \text{ kg} = 0.83 \text{ ton/día}$.
PUNTOS DE PRODUCCION

En el Departamento de cocina existen varios puntos de producción de basura, los cuales serán simplificados en los siguientes:

* Recepción y almacenamiento.
* Selección y Elaboración.
* Restos Elaborados.

En los comedores se tendrá un punto de producción, el cual estará ubicado en el Recinto donde se ejecuta el lavado y desinfección del equipo y vajilla utilizado en la distribución de los alimentos.

ALMACENAMIENTO PARCIAL

Debido al gran volumen de producción de estos desperdicios y a la facilidad con que se descomponen, es necesario contar con un Recinto de almacenamiento especial provisto de refrigeración, para evitar problemas sanitarios tales como, producción de malos olores, ser atracción y fuente de proliferación de insectos y roedores.

El diseño del Recinto debe ser previsto durante el proyecto del Edificio del Hospital. Siendo necesario efectuar un estudio pertinente para poder calcular, su ubicación, capacidad de almacenamiento
y la e sus instalaciones para su normal funcionamiento.

RECIPIENTES

En el departamento de cocina y comedores, los recipientes utilizados deben ser de la mayor capacidad posible, teniendo en cuenta que sean fácilmente manipulado por un solo operario. Por lo cual se recomienda el uso de cilindros de material resistente a la herrumbre (fierro galvanizado ó aluminio o en su defecto cilindros convencionales (55 gal) impermeabilizados y pintados con pintura anticorrosiva, cortando de esta manera su rápido deterioro causado por los líquidos que contienen los desperdicios y por la humedad existente en la cámara refrigerante.

Según análisis realizados del volumen de producción vemos que varía diariamente entre (9-13) cilindros diarios, por lo cual será necesario utilizar 15 cilindros diarios, teniendo un margen de seguridad pero como se utiliza un sistema de mermazo en la recolección de éstos desperdicios, será necesario utilizar el doble o sea 2 x 15 = 30 cilindros.
Reposterios

Los reposteros son servicios ubicados en cada piso de los Sectores de Hospitalización, cuya misión es la distribución de comidas y dietas para los pacientes hospitalizados.

Teóricamente los reposteros no deberían producir ninguna clase de basura, debido a que cada uno de ellos está provisto con un triturador de desperdicios, el cual se encarga de reducirlos para luego sean desechados a la Red de Desagüe. Sin embargo, debido a los atracos y desperfectos originados por cascaras de fruta, pepas y huesos, es preferible deschar dichos desperdicios en forma convencional.

Pero éstos desperdicios no deben ser desechados directamente al recipiente de almacenamiento parcial del piso, porque origina problemas sanitarios.

Por lo cual se propone que los desperdicios no triturables de los reposteros se almacenen y se recolecten en bolsas de plástico. Estas bolsas serán utilizados como fundas de las recipientes actuales (Reposteros) para que al término de la labor diaria del Repostero, sean sacadas del recipiente y después de sellarla convenientemente puedan ser desechadas sin problemas posteriores al recipiente de almacenamiento parcial del respectivo piso.
El número de bolsas necesarias para cubrir la demanda diaria de los reposteros será igual:

No. Pisos de Hospitalización	= 12.
No. de Sectores	= 2.
No. Reposteros	= No. de bolsas.
No. total de Reposteros	= 24.

Es necesario 24 bolsas de plástico diarias.

SALA DE CIRUGÍA

En el Hospital la sala de cirugía está situada en el 2do. Piso del Ala B y C en la cual se efectúa las intervenciones quirúrgicas que son programadas previamente a excepción con la Sala ubicada en el Departamento de Emergencia.

TIPO Y CANTIDAD DE BASURA

La basura originada en este Departamento está compuesto por dos tipos:

a) Restos de tejidos orgánicos y apósitos con secreciones.

b) Desechos (papeles, algodones, envases desechables etc).

La cantidad de basura producida según los a-
nálisis realizados es la siguiente:

\[V = 0.318 \text{ m}^3 /\text{día}. \]

PUNTOS DE PRODUCCION

En este Departamento existen varios ambientes que se constituyen en puntos de producción de basura, pero el punto de producción que mayor atención requiere es la sala de cirugía en sí, debido al tipo de basura que origina.

La producción de basura en este punto de producción está constituido por los residuos sólidos originados en cada intervención quirúrgica. Por lo cual se recomienda el uso de bolsas plásticas para su desecho.

ALMACENAMIENTO PARCIAL

En el Departamento de cirugía se contará con un recinto de almacenamiento el cual albergará un recipiente para reunir la basura procedentes de los diferentes puntos de producción. El manipuleo de este recipiente así como su mantenimiento debe realizarse con las medidas más estrictas de seguridad. Evitando de esta manera una posible contaminación de esta área.
RECIPIENTES

El recipiente de almacenamiento parcial debe ser aterial anti-oxidable (fierro galvanizado o aluminio) o en su defecto un cilindro convencional (55 gal) impermeabilizado y cubierto con pintura anti-corrosiva. Este recipiente debe ser diariamente lavado y desinfectado.

SALA DE PARTOS

Estos Departamentos de producción de basura se encuentran ubicados en el (3-4-5-6-8-9 pisos) de Hospitalización del Ala correspondiente a Maternidad y Ginecología.

TIPO Y CANTIDAD DE BASURA

Los residuos sólidos originados en estos puntos de producción están compuestos por restos de tejidos orgánicos, resultantes en cada intervención de gestación.

Estos restos orgánicos están compuestos por (placentas, coágulos, líquidos etc).

Además se producen desechos (papeles, gasas, apósitos etc) originados en otras secciones de este
Departamento.

La cantidad promedio de basura producida en este Sector según análisis realizado, es el siguiente:

Volumen = 0.198 m³ Peso = 31.20 kg.

PUNTOS DE PRODUCCION

En cada Departamento de Partos existen varios ambientes, que constituyen puntos de producción, siendo la sala de partos el que reviste mayor atención debido a los problemas sanitarios que puede originar el tipo de basura que produce.

ALMACENAMIENTO PARCIAL

Los residuos sólidos originados después de una intervención en cada Sala de Partos, deberán ser desechados a un recipiente, que será ubicado fuera del ambiente de la Sala de Intervenciones.

El recipiente estará provisto de una bolsa de plástico, la cual estará colocada como una funda interior que recibirá los residuos sólidos resultantes, del total de Partos ocurridos en un período de 2 horas, al término de este período las bolsas serán selladas debidamente para su recolección en forma indepen-
diente o pudiendo ser desechadas al recipiente de almacenamiento parcial de su respectivo Piso.

RECIPIENTES

Los Recipientes utilizados en este Sector de producción serán cilíndros convencionales de 18 gal. de capacidad, los cuales presentarán características que este tipo de basura requiere.

El número de recipientes utilizados serán los siguientes:

EMERGENCIA

El Departamento de Emergencia está ubicado en el ler. Piso del Edificio hospitalario, el cual tiene por función atender casos de urgencia, durante un período interrumpido de 24 horas al día.

Para poder desarrollar sus funciones en forma eficiente cuenta con consultorios de diferentes especialidades tales como: Tópicos, Sala Diagnóstico y Observación, Traumatología, Sala de Cirugía y Partos etc.
TIPO Y CANTIDAD DE BASURA

El Departamento de Emergencia debido a la diversidad de Especialidades que reúne, tiene una producción Heterogénea de Basura y sin lugar a dudas es el área del Hospital, que produce mayor tipos de basura.

Los tipos de basura producidos en este Departamento pueden ser agrupados de la siguiente forma:

* Desechos-(Oficinas-Farmacia,Sala Diagnósticos etc).

* Desperdicios -(Restos de alimentos procedentes de los pacientes en observación).

* Basura de Especial consideración(Sala de Cirugía y Partos, Tópicos).

La capacidad promedio de basura producida por este Departamento según los análisis realizados es el siguiente:

Volúmen: 0.594 m³.

PUNTOS DE PRODUCCION

En el Departamento de Emergencia, cada una de sus diversas secciones (Especialidades) que lo componen, serán considerados como puntos de producción, en las cuales se adoptarán las medidas de almacenamiento-
to correspondientes según el tipo de basura. Por lo tanto la basura de Especial Consideración generada en la Sala de Cirugía y Partos al igual que los desperdicios alimenticios serán desechados en bolsas plásticas en sus respectivos puntos de producción.

ALMACENAMIENTO PARCIAL

Los diversos tipos de basura originada en los puntos de producción serán desechados en un mismo recipiente de almacenamiento parcial, el cual estará situado en un recinto, que será accesible desde los diferentes puntos de producción.

RECIPIENTES

El recipiente utilizado para el almacenamiento de basura, serán cilindros convencionales de 55 gal. El número de cilindros está dado por la relación:

\[
\text{Vol. produc} = 0.694 \\
\text{No. cilindros} = \frac{0.594}{0.208} = 2.8 \\
\text{Capac. de c/cilindro} = 0.208 \text{ m}^3 \\
\text{No. de cilindros} = 3.
\]

LABORATORIO DE ANALISIS

Este Departamento está encargado de efectuar análisis de sangre, orina, heces etc, que los pacien-
tes hospitalizados ó ambulatorios requieren para sus respectivos Diagnósticos.

TIPO Y CANTIDAD DE BASURA

En el laboratorio de análisis se produce 2 tipos de basura:

a) Desechos (papeles, cartones, algodones etc)

b) Envases de las muestras de análisis (botellas, pomos etc).

La cantidad de basura producida según los análisis realizados es el siguiente:

- Desechos \[-0.264 \text{ m}^3/\text{día}\].
- Botellas y Pomos- 200 unidades/\text{día}(análisis de orina).

PUNTOS DE PRODUCCION

El laboratorio de análisis está conformado por varias secciones tales como, sangre-bactereología oficinas etc. las cuales constituirán c/u un punto de producción.

En los puntos de producción se realizará el almacenamiento en forma separativa, o sea que los desechos se desecharán en un recipiente diferente al de los envases de muestras.
ALMACENAMIENTO PARCIAL

En el laboratorio el almacenamiento parcial se realizará en forma separativa al igual que los puntos de producción.

Los envases que sirven para traer las muestras de orina son en su mayoría botellas y pomos. Estos envases tienen un valor intrínseco que representa un beneficio económico, su comercialización.

Por lo tanto estos envases pueden ser recuperables, sometiéndolos a un proceso de lavado y desinfección, medida que se tomaría para evitar que dichos envases se constituyan en un riesgo sanitario durante su almacenamiento parcial y su posterior comercialización.

Los envases utilizados en traer muestras de heces no serán tomados dentro esta medida por no ser comerciables debido a su pequeño tamaño.

RECIPIENTES

En el laboratorio de análisis se utilizarán 2 tipos de recipientes de almacenamiento:

1 cilindro convencional (55 gal) para almacenar los desechos producidos.
1 cilindro convencional (55 gal) para almacenar los envases (pomos-botellas).
8.4. RECOLECCION INTERNA

Es la parte del proceso de disposición de basuras, cuya función es transportar la basura de los recintos de almacenamiento parcial a los puntos de producción o disposición final adoptados.

Los sistemas de Recolección Interna en los establecimientos Hospitalarios son variados, pero ninguno reúne todas las condiciones para poder ser ejecutado en forma óptima. Entre estas condiciones podemos citar:

1.- Buena apariencia estética.
2.- Seguridad contra las contaminaciones (propagación de infecciones).
3.- Operación sin Ruidos.
4.- Alto grado de libertad del operador
5.- Costo bajo de mantenimiento
6.- Seguridad contra incendios.

8.4.1. FACTORES QUE INCIDEN EN EL PROCESO

En el planeamiento y elaboración de un sistema interno de recolección en los establecimientos hospitalarios, existen factores variables que deben ser previamente evaluados y coordinados para la optimización
del proceso, entre los principales factores tenemos:

- Horario y frecuencia
- Rutas
- Personal y equipo

HORARIO Y FRECUENCIA

El horario de recolección interna depende del tipo de actividad que desarrolla cada área de producción en el establecimiento hospitalario.

El horario para realizar la recolección debe ser tal que no interfiera con las actividades inherentes del Hospital, debiendo realizarse en horarios de menos actividad y tránsito, tanto de servicios, equipos y personal.

El sistema de Recolección Interna debe estar íntimamente coordinado con el horario de operación del sistema de Reducción o Disposición Final.

El sistema de recolección en los establecimientos hospitalarios, por zonas de planeamiento y operación deben tener una frecuencia mínima de 1 vez/día.

- En determinadas área de producción la frecuencia de recolección está supeditada en forma directa a la actividad desarrollada.

RUTA

- Debe utilizarse las rutas más cortas (teóricamente)
porque por razones de sanidad y seguridad debe evi-
tarse pasar por zonas rígidas para este servicio,
como son:
áreas de esterilización, manipulación de alimentos
y zonas de atención al público.
Cuando se utilice ascensores o montacargas para
transportar la basura debe estar terminantemente
prohibido realizar al mismo tiempo transporte de-
pacientes, suministros de equipo o alimentos.

PERSONAL Y EQUIPO

La labor de recolección interna puede ser
realizada por el mismo personal que ejecuta la lim-
pieza en cada área o personal especialmente designa-
do según el sistema de recolección planteado.

El equipo utilizado debe ser diseñado o es-
cogido según las exigencias que el servicio requiera.
Debiendo reunir condiciones de uniformidad tanto en
características como en dimensiones.

8.4.2. SISTEMAS DE RECOLECCION INTERNA EXISTENTES

En los establecimientos hospitalario existen
fundamentalmente 2 sistemas de recolección interna de
basura, aunque existe entre ellas diversas combinaciones.
* Línea de Recipientes (sistema convencional)
* Ductos.

8.4.2.1. Línea de Recipientes

Este sistema de recolección consiste en transportar la basura del punto de almacenamiento a otro, por medio de un recipiente y un equipo de transporte.

En EE.UU. en una encuesta realizada en establecimientos hospitalarios sobre el sistema de Recolección Interna, el Sistema de línea de recipientes arrojó un 80% de utilización.

En nuestro medio es el sistema de mayor utilización.

Ventajas y Desventajas

* Su utilización es generalmente en Hospitales de arquitectura horizontal, aunque es independiente del diseño de la edificación hospitalaria.

* Su buena operación minimiza el riesgo de contaminación e incendio.

* Los recipientes utilizados en la recolección pueden ser los mismos que sirven para el almacenamiento.

* En este sistema de recolección es necesario de un recinto de almacenamiento para albergar el
recipient de cada área de producción.

* En Hospitales de arquitectura vertical -existen la necesidad de utilizar montacargas o lle-
vadores.

8.4.2.2. SISTEMA DE DUCTOS

La Recolección de basura por este sistema-
consiste en transportarla por medio de una tubería,
de un nivel a otro menor utilizando la fuerza de gra-
vedad.

La utilización de este sistema tiene diver-
sas variaciones dependiendo principalmente de la ar-
quitectura del Edificio Hospitalario, por lo cual su
adopción debe estar debidamente evaluados por enten-
didos, desde los puntos sanitarios económicos y de
seguridad.

En Países de avanzada como EE.UU. Gran Bre-
taña etc., los estudiosos sobre Disposición de Basu-
ras en Establecimientos Hospitalarios han vetado es-
te sistema de recolección interna porque han confir-
mado según estudios microbiológicos que los ductos -
son el punto inicial de contaminación de los ambien-
tes en dichos Establecimientos.
VENTAJAS Y DESVENTAJAS

- El sistema de Ductos es utilizado especialmente en Hospitales de Arquitectura Vertical, justificando su principio de utilización (definición).

- Disminuye la labor del operario y ahorra el tiempo que este emplea en sistema convencional, debido a que la basura desechada pasa directamente de las áreas de producción (Pisos) a la central(es) de colección o directamente al sistema de reducción.

- Elimina el almacenamiento parcial en las áreas de producción y en consecuencia, los recintos y respectivos recipientes.

- Necesidad de Diseño Especial, que se realiza al mismo tiempo en que se realiza el del Edificio Hospitalario. Debido a que su posterior implantación sería dificultosa y anti-económica.

- Necesidad de seleccionar la basura, siendo utilizado mayormente para desechar la de tipo general (desecho), debido a que otros tipos como basura de Especial Consideración (Desperdicios, restos de tejidos orgánicos etc) deben ser desechados por medio - de bolsas de plástico debidamente selladas o recurrir a la utilización adicional de una línea de recipientes, evitando los problemas sanitarios y estéticos que están basuras pueden ocasionar.

- El mal diseño así como su mala operación, es una de las principales causas de contaminación de los ambientes hospitalarios, contribuyendo a esto la dificultad que representa su limpieza y mantenimiento.
ESQUEMAS DE LOS SISTEMAS DE RECOLECCION INTERNA

1 DUCTO

Pto. de Producción

→ Clasificación

→ Botellas, Pamos etc.

→ B. Especial consideración

→ Acarreo al Chute o Ducto

→ Acarreo

→ Almacenamiento Parcial

→ Acarreo

→ Central de Almac.

→ Sist. de Reducción

→ Sistem. de Disposición Final

2 SISTEMA DE LINEA DE RECIPIENTES

→ Ptos. de Producción

→ Clasificación

→ Almac. Parcial

→ Acarreo Interno

→ Sist. de Reducción

→ Almac. Final

→ Acarreo

→ Disp. Final
8.5. SISTEMA DE RECOLECCION PROPUESTO

Después de analizar los sistemas de recolección interna existentes y evaluar sus ventajas y desventajas, así como su factibilidad de operación en el Hospital en Estudio, se propone mejorar el sistema convencional de Recipientes que opera actualmente.

8.5.1. HORARIO Y FRECUENCIA

En el sistema de recolección que se propone la frecuencia y horarios adoptados estarán intimamente ligados al de funcionamiento del Proceso de Reducción (incineración) o disposición final.

Por razones de planeamiento y operación del sistema en general, la frecuencia de recolección interna será cada 24 horas como máximo.

En las áreas o Departamentos que por su volumen de producción sea necesario, que la frecuencia de recolección sea más de una vez diaria, se operara en la siguiente manera:

Las recolecciones adicionales en estas áreas se deberán realizar en lo posible durante el período de operación del sistema de reducción (incineración)
partir de las 7 pm.

Departamentos y Servicios.- En estas áreas de producción tanto los Departamentos y Servicios Generales como los de Especial Consideración, la recolección será realizada en el horario más conveniente tro el horario de funcionamiento del Sistema de Reducción (8.30 -1pm), teniendo en cuenta la actividad que realiza cada departamento, así como su volumen de producción.

8.5.2. **RUTAS**

Las Rutas Internas para transportar la basura desde los recintos de almacenamiento parcial de cada área de producción al sistema de reducción o almacenamiento final, serán las mismas que actualmente se realizan, debido a que en una nueva reestructuración, las variaciones susceptibles serían mínimas, por ser rutas relativamente cortas.

8.5.3. **PERSONAL Y EQUIPO**

El personal que ejecutará la Recolección Interna será el mismo que ejecuta la limpieza de su res-
pectiva área ó departamento.

El equipo utilizado para acarrear la basura constará de los siguientes aditamentos:

1 recipiente, que será el mismo que se utiliza para el almacenamiento en su respectiva área.

1 carrito, que será utilizado para transportar el recipiente en forma manual por el operario.
CAPÍTULO IX

SISTEMA DE REDUCCION Y DISPOSICION FINAL.
9.1. SISTEMA DE REDUCCIÓN

Los sistemas de reducción de basuras utilizados en los Establecimientos Hospitalarios tiene como finalidad principal la reducción de su volumen original, facilitando de esta manera su acarreo y disposición final.

SISTEMAS DE REDUCCIÓN

En Establecimientos Hospitalarios de EE.UU. y Europa se utilizan generalmente los siguientes métodos:

* Compactación
* Reducción a Pulpa (pulping)
* Trituración o Mollenda (Grinding)
* Incineración

Los siguientes sistemas deben ser estudiados y evaluados en forma conciente para verificar si es factible su utilización en Establecimientos Hospitalarios de nuestro medio.

9.1.1. COMPACTACIÓN

El proceso de compactación consiste en reducir el volumen de la basura por medio de la compresión,
utilizando equipos accionados por medios mecánicos.

Este método se utiliza generalmente cuando la basura general (desechos) van a ser acarreados —fuera del Hospital para posterior proceso o Disposición final.

VENTAJAS Y DESVENTAJAS

* El proceso de compactación puede reducir el volumen original de la basura de (3-l), dependiendo del tipo de basura y la clase de compactador usado.

* En la utilización del método de compactación, existe riesgo de contaminación debido a los aerosoles producidos en la zona de proceso.

* La utilización del sistema de compactación, implica la necesidad de un sistema de reducción adicional para poder disponer la basura patológica e infecciosa sin riesgos sanitarios ni estéticos.

* La utilización de éste método de reducción en establecimientos hospitalarios está limitado a aquellos que por razones de Polución Ambiental o Económicas no pueden utilizar el sistema de incineración (en EE.UU.) y tienen que utilizar el relleno sanitario.

9.1.2. REDUCCION A PULPA (Pulping)

El proceso de "Pulping" consiste en reducir
el volumen de la basura compuesta esencialmente por desechos o materia similar a una especie de pasta humeda condicionada para su Disposición Final que generalmente es el relleno sanitario.

El sistema de operación es el siguiente:

La basura previamente seleccionada es introducida en un tanque de acero inoxidable provisto de un disco dentado, que con acción violenta y alta velocidad giratoria va desmenuzando la basura hasta llegar a una especie de pulpa, al mismo tiempo que se realiza esta operación un mecanismo en forma automática abastece el agua para facilitar el proceso del desmenuzado

La pulpa es bombeada posteriormente mediante una red de tubería hacia una hélice espiral, que - con una acción conjunta de elevación y compresión separa el agua de la pulpa al mismo tiempo que la eleva a la parte superior de la unidad, llegando a un Ducto de Descarga, por el cual se canaliza la pulpa para ser envasada en los recipientes, ordenados para su posterior acarreo al punto de disposición final.

VENTAJAS Y DESVENTAJAS

* El sistema necesita pre-seleccionar la basura, recomendándose el proceso de desechos o material
o material similar.

* La utilización del este proceso implica un método adicional para disponer la basura patológica e infecciosa sin riesgos sanitarios ni estéticos, debido a que el producto final del proceso de "Pulping" no es esteril.

* El proceso de Pulping, requiere alta automatización haciendo costoso su implantación y mantenimiento.

* El proceso de Pulping reduce el volumen original en una proporción (4:1) sin embargo aumenta su peso original en un 70% debido al agua que contiene la pulpa, aumentando el costo de su acarreo.

9.1.3. **TRITURACION**

Es un proceso de reducción mecánica con el cual los desperdicios alimenticios son triturados desmenuzados, y por medio de un volumen de agua que es dosificado por el sistema del triturador, a la vez que facilita la operación del triturador, ayuda a desecar el producto final a la Red de Desagüe.

Este proceso es utilizado particularmente para reducir desperdicios alimenticios aunque en Países de avanzada, este sistema se ha utilizado par-
desechar los residuos sólidos originados en los partos, pero el método de desechar este tipo de basura ha encontrado el mayor inconveniente en que la mayoría de las Redes de Desague y Plantas de Tratamiento no están diseñadas para atender este incremento de materia orgánica.

VENTAJAS Y DESVENTAJAS

* El método de trituración es utilizado particularmente para residuos alimenticios no pudiendo ser generalizado su utilización para otros tipos de basura.

* S utilización implica pre-selección de la basura, además debe evitarse aunque teóricamente no es necesario, procesar huesos, cáscaras y pepas de frutas, que pueden ocasionar accidentes al operador o perturbar el normal funcionamiento del triturador.

* Es el proceso de reducción más aceptable desde el punto sanitario y estético para este tipo de basura, siempre y cuando se tomen las consideraciones que implica su utilización.

9.1.4. **INCINERACION**

Es un proceso que consiste en reducir la basura en peso y volumen por aplicación de fuego a altas temperaturas en dispositivos especiales llama-
dos hornos incineradores.

La incineración es el método de reducción más completo desde el punto sanitario y estético, para procesar basura originada en establecimientos hospitalarios. Debido esencialmente a la capacidad de procesar cualquier tipo de basura típica hospitalaria, como es, desechos basura de especial consideración, desperdicios etc, sin dejar residuos líquidos o sólidos que puedan presentar posteriormente problemas secundarios.

El proceso de incineración desde el punto económico es costoso tanto por su inversión inicial como su operación y mantenimiento, debido a que este proceso necesita de estructuras especiales, así como los materiales utilizados en su edificación (Acero-fierro fundido, ladrillos refractarios etc), para poder soportar estos las altas temperaturas a que opera dicho proceso (tem 650°C).

Además necesita accesorios adicionales tales como un quemador (gas, ó petróleo), extractores, toberas etc, que se utilizan con el fin de evitar la combustión incompleta de la basura así como los de los gases generados en el proceso que pueden originar problemas de contaminación y malos olores.
El proceso de incineración es el método de reducción con el cual se obtiene la mayor reducción de volumen y de peso por unidad de basura tratada siendo la relación de reducción de (10-1).

CONCLUSION

Habiéndose analizado y evaluado los sistemas de reducción de basura anteriormente citados, observamos que la incineración es el método ideal de reducción para hospitales y establecimientos similares, por lo siguiente:

La carencia o dificultad que presentan otros sistemas para procesar en forma óptima la basura de especial consideración que involucra (restos de tejidos orgánicos, basura contaminada o infecciosa etc) que son los tipos de basura que originan mayor dificultad para su disposición final.

El alto costo de inversión inicial como el de operación del proceso se justifica por la calidad del producto final de la basura procesada que es inerte y estéril a diferencia de los demás procesos cuyo producto final no es estéril, significando un riesgo para la salud pública su disposición en estas condiciones.
SISTEMA DE REDUCCION PROPUESTOS

9.2.1. INCINERACION

La necesidad de los establecimientos hospitalarios de contar con un medio de reducción sanitario y estético para facilitar la disposición final de su basura típica ha conducido a la instalación y uso generalizado de hornos incineradores en nuestro medio.

Los incineradores utilizados para la reducción de basuras son muy variados, dependiendo del tipo de diseño, funcionamiento y operación. No existiendo dos incineradores exactamente iguales, como cuando los proyectos sean de un mismo Ingeniero, sin embargo la mayoría de los incineradores diseñados están constituidos por 3 elementos principales:

1- Cámara de combustión principal
2- Cámara de combustión secundaria
3- Chimenea.

9.2.1.1. CAMARA DE COMBUSTION PRINCIPAL

En todo horno incinerador la cámara de combustión principal debe diseñarse para lograr un rápido secado de la basura húmeda y la combustión completa
de la basura general así como de los gases generados en el proceso, aunque parte de ellos se queman en la cámara secundaria.

Según investigaciones de la Universidad de California la Cámara de combustión principal debe diseñarse para quemar:

48 -190 kg/hora/m3
3 - 12 lb/hora/p3

Pero otros autores asignan que la capacidad de la cámara principal debe ser de 0.3 m3/ton/día pudiendo aumentar 0.5 m3/ton/día cuando se utiliza solamente tipo natural.

Las tasas interiores las tienen plantas que emplean parrillas suspendidas o transportadoras o disponen de plataformas que reciben los desperdicios húmedos para su secado mediante los gases calientes.

Las tasas superiores se obtienen cuando la basura se descarga directamente sobre la que se halla en combustión existiendo además atizamiento del fuego en forma manual o mecánica.

En general los Hospitales utilizan una misma cámara de combustión principal para incinerador la basura general y los residuos patológicos. Pero existen diseños que presentan 2 cámaras las cuales funcionan independientemente para cada tipo de basura.
Debido a que los restos patológicos están compuestos en un 70% de agua, grasas y otros compuestos, la cámara del horno patológico está diseñada de tal forma que la llama del quemador cae directamente sobre los restos patológicos de manera que estos queden carbonizados en el tiempo mínimo.

La cámara de combustión principal consta generalmente de 3 niveles:

Nivel superior------Boca de carga(alimentación de basuras)

Nivel Medio ------ Zona de Combustión(parrillas)

Nivel inferior---- Zona de escorias y cenizas(recepción de residuos)

BOCA DE CARGA. - Es la parte de la cámara por la cual se introduce la basura para ser quemada. Por razones de operación se recomienda que sus dimensiones sean mayores de (0.5 x0.6 mts).

La boca de carga puede ubicarse en el techo de la cámara o en la parte frontal superior, y pueden ser simples en su operación como aquellas que el método de alimentación es directo, ó hasta un equipo complejo que opere mecánicamente.

Sea cualquiera el sistema de alimentación empleado debe tener la característica fundamental de operación, que la basura a procesar debe permanecer
el menor tiempo posible en contacto con el ambiente, por razones obvias de salud pública.

ZONA DE COMBUSTION.—Es el nivel de la cámara de combustión en el cual se lleva a cabo el proceso de incineración propiamente dicho, dicha zona consta de 2 sectores el de parrillas y el del quemador—(cuando se utiliza combustible adicional), el sector de parrillas es aquel donde la basura es sostenida—para someterla a la acción directa de la llama.

El sistema más simple de parrillas es aquella que es fija y está diseñada en fierro colado. Las diseños pueden llegar a ser complejos, como las parrillas de volteo o aquellas que son vibratorios, cuya principal finalidad es facilitar el descenso de la cenizas a su depósito.

Las parrillas se diseñan para quemar:

- 195-730 kg basura/hora/m² de parrilla
- 40-50 lb basura/hora/pie² de parrilla
- 250-400 kg/hora/²/parrilla (mont. de Hospitales y saneamiento básico).

En la zona de combustión el operario debe regular el abastecimiento de aire y saber atizar el fuego, ya sea en forma manual ó mecánicamente, para lo
cual se debe tener en cuenta que el aire debe pasar de abajo hacia arriba a través de la basura para obtener el mejor resultado.

El quemador es prácticamente el único equipo susceptible a fallas mecánicas en el incinerador. Estas fallas pueden evitarse; haciendo el uso correcto del quemador y por el período de tiempo recomendado. En la mayoría de diseños este equipo cumple debe función en el proceso de incineración: realizar la iquicación y combustión del combustible adicional y el de generar ventilación forzada necesaria para realizar-se la combustión completa.

ZONA DE ESCORIAS Y CENIZAS.— El último nív el que conforma la cámara principal de combustión está constituído por el sistema de recolección del producto final de la combustión (cenizas y escorias).

El método como el equipo utilizado para su recolección puede variar de sistemas manuales a equipos mecanizados dependiendo del diseño y la capacidad de operación del incinerador. En grandes plantas la recolección se realiza por medio de una tolva que carga el producto final en forma directa (por gravedad) a los camiones transportadores.

En plantas menores la capacidad de la tolva
permite almacenar las cenizas de algunas horas (periodo de operación); sea cualquiera el método o equipo utilizado debe tener un mantenimiento adecuado, debido a las propiedades corrosivas y roedoras de las cenizas.

9.2.1.2. CAMARA DE COMBUSTION SECUNDARIA

Este componente del incinerador es conocida también como cámara de expansión y está situada entre la cámara de combustión principal y la chimenea.

La cámara de combustión secundaria tiene los siguientes propósitos, los cuales no se cumplen en todo horno incinerador.

Reducir la turbulencia y velocidad de los gases para permitir la sedimentación de las cenizas y hollín fino, (cortando) evitando que estos salgan en forma incandescente por la chimenea.

Permitir la mezcla de los gases quemados y no quemados y dar tiempo para que se efectúe su combustión completa.

Según diseño en algunos incineradores lo utilizan para quemar restos patológicos o cadáveres de animales.

Utilizar la energía calorífica de la combustión de los gases con fines utilitarios.
Según investigadores de la Universidad de California:
En un horno incinerador si la combustión es apropiada y la cantidad de aire satisfactoria, los gases volátiles son quemados en su mayor parte en la cámara principal de combustión y si esto no sucede, este proceso se realiza en la cámara secundaria y aún en el conducto de la chimenea.

Pero según investigadores algunos proyectistas diseñan hornos incineradores para que la mayoría de los gases sean quemados en la cámara secundaria. Debido a que han encontrado mayor temperatura en la cámara secundaria que en la primaria.

El volumen de diseño de la cámara secundaria varia apreciablemente según investigaciones.

\[(0.142 - 0.775) \text{ m}^3/\text{ton. diaria de basura} \] (UNDA OPAZO)
\[(527) \text{ m}^3/\text{ton. diaria de basura} \] (Ehlers Steed)
El 33% por lo menos de la capacidad de la cámara principal (centro de mantenimiento e Ingeniería de Hospitales Caracas-Venezuela)

0.21.3. CHIMINEA

Es el Ducto que sirve de nexo entre el incinerador y el medio ambiente, cuyos objetivos principales son:
Producir una corriente de aire a tiro de chimenea para facilitar la rápida combustión de la basura, también es conocido como "Efecto de chimenea". Descargar a la atmósfera los gases, producto de la combustión a una suficiente altura para que puedan diluirse en forma conveniente, reduciendo al mínimo el efecto del hollín y cenizas livianas.

9.2.2. UBICACION DEL INCINERADOR

En los establecimientos hospitalarios la ubicación del incinerador depende principalmente de su arquitectura, si el Hospital es de tipo horizontal el incinerador debe estar ubicado junto a la casa de fuerza, para facilitar el suministro de combustible. Si es de tipo vertical el incinerador debe estar ubicado en el sótano.

Su ubicación además depende de las siguientes condiciones que debe facilitar el área designada:
- carga del incinerador
- operación
- descarga de cenizas y escorias
- mantenimiento

9.2.3. ADAPTACION DEL SISTEMA DE DISPOSICION DE BASURAS
En los establecimientos hospitalarios su sistema de disposición de basura (almacén y recolección) debe estar estructurada de tal forma que exista íntima coordinación con el sistema de operación del incinerador. Para lo cual se debe efectuar un estudio previo sobre horarios, personal y equipo, con el fin de uniformizar y coordinar el normal funcionamiento de ambos sistemas.

En el proceso de incineración es necesario seleccionar la basura, con el fin de evitar sobrecargar el trabajo del incinerador y poder recuperar elementos con valor económico.

La selección de basura para su incineración, se basa principalmente en 2 tipos:
Basura incinerable (desechos, desperdicios, restos patológicos etc).
Basura no incinerable (elementos de vidrio y metal elementos inertes (tierra-restos de construcción).

9.2.4. **ANÁLISIS DE BASURAS**

La realización de un eficiente diseño y como consecuencia el normal funcionamiento de un incinerador, es necesario efectuar un análisis físico-químico de la basura típica a procesar. A partir del cual se
obtendrán los siguientes valores:

- Producción total de basuras (peso y volumen)
- Tipos que constituyen la basura (desperdicios, desechos etc).
- Contenido de humedad de la basura.

A partir de los valores obtenidos del análisis de basuras se calcularán sus dimensionamiento y de los factores necesarios para su normal funcionamiento como son:
1.- Temperatura a lo cual se debe mantener al horno.
2.- Cantidad de aire necesario para la combustión.
3.- Calor de combustión requerido.

9.2.4.1. TEMPERATURA A LA CUAL SE DEBE MANTENER EL HORNO

La temperatura mínima de funcionamiento para que se efectúe un buen proceso de incineración es de 675°C, temperatura ligeramente superior del carbono e hidrocarburos (medida que se toma para poder obtener una combustión completa y cortar los malos olores de los gases parcialmente quemados.

Si se quiere generar vapor con fines utilitarios la temperatura a que se debe mantener el horno incinerador es de (950-1000°C). No siendo conveniente
sobrepasar esta temperatura para evitar sobrecargar las estructuras del incinerador, aunque estén debidamente cubiertas con material refractario de óptima calidad.

9.2.4.2. CANTIDAD DE AIRE PARA LA COMBUSTION

A partir de la cantidad de carbono e hidrógeno, de que está compuesta la basura, y que fundamentalmente se combina con el oxígeno para su combustión, nos permitimos determinar el volumen de aire para la combustión completa.

Según investigaciones se ha llegado a la conclusión que una libra de material combustible necesita un tipo de aire forzado de 19 lb.

9.2.4.3. CALOR DE COMBUSTION

El bajo calor de combustión y el alto porcentaje de humedad de la basura sin factores adversos al funcionamiento de todo horno incinerador, siendo estas factores diversos superados por medio de:

* Preca lentamiento del aire ó presecado de la basura.

* Utilización de combustible adicional.

Según estudios y experiencias prácticas, indican que las basuras que contienen:
1-
Desperdicios (80%)
(en peso)
Desechos (20%)
Pueden arder sin combustible adicional si se suministra aire precalentado a un temperatura 150°C.

2-
Desperdicios (60%)
o 50% c/u
Desechos
Se queman satisfactoriamente sin necesidad de aire precalentado, ni combustible adicional.

3.-
Si % de Desperdicios es menor que el % de Desechos se obtiene un juego en llamarada y la operación resulta poco satisfactoria. El procedimiento de humedecer los desechos para superar esta dificultad no da buenos resultados.

9.2.4.3.1. UTILIZACION DE COMBUSTIBLE ADICIONAL

En los hornos incineradores es necesario utilizar combustible adicional por los siguientes casos.
* En incinerador que no operan las 24 horas del día, requieren por lo menos combustible adicional para iniciar la marcha del horno.
* Cuando la basura a incinerar contiene excesiva humedad.
* En caso de diseño(de) u operación deficiente cuyo rendimiento no permite que el material combustible
sea suficiente para alcanzar en el horno la temperatura que permita la combustión completa de los sólidos y gases, que se generan en el proceso.

* En el supuesto caso que se requiera energía calorífica para generar vapor con fines utilitarios (980 - 1000°C).

9.2.4.3.2. CALCULO DEL CALOR DE COMBUSTION

Para poder efectuar el cálculo del calor de combustión a partir de los compuestos de la basura a procesar es necesario conocer los siguientes valores:

1- Producción total de la basura, así como el % en peso de sus componentes (desperdicios, desechos M. inerte) deduciéndose también la cantidad de humedad contenido.

2- La jornada de trabajo del incinerador (Hospitalario) no debe ser mayor de 6 horas/día, según las normas del "Incinerator Institute of americana".

3- La temperatura ideal de incineración es de 675°C (1250°F).

4- El calor generado por lb de basura combustible varía de 7,000 - 8,000 BTU.

5- El calor generado por 1 galón petróleo - 150,000 BTU

- La cantidad de aire que requiere 1 lb de basura combustible es de 19 lb.
Ejemplo de Aplicación

Calor, el calor de combustión, y el combustible necesario para incinerar la basura de un establecimiento hospitalario con las siguientes características.

1) Total de basura a incinerar por día-

2,000 lb	% prom humedad =----------55%
2,000 lb	% material combustible------45%
2,000 lb	% material inerte----------5%

2) temperatura final de incineración ------ 1250°F(675 °C)

3) Jornada de incineración 5 horas/día

4) calor generado por 1 lb basura combust--7000BTU

1 galón de petróleo genera 150,000 BTU.

1 contenido promedio de humedad de la basura

P humedad = 0.55 x 2000 = -110 lbs de H2O

Prom. agua/hora = \(\frac{1100}{5} = 220 \text{ lb H2O/hora.} \)

2) contenido promedio de material combustible

Prom material combust = 0.40 x 2000 = 800 lb mat.comb.

Prom material combst/hora = \(\frac{800}{5} = 160 \text{ lbs/hora.} \)

3) contenido promedio de material inerte

Prom material inerte = 0.05 x 2000 = 100 lbs.

Prom material inerte/hora = \(\frac{100}{5} = 20 \text{ lb/hora.} \)

4) Cantidad promedio de aire requerido para la combustión del material combustible.
sabemos: 1 lb material combustible necesita 19 lb de aire
160 lb/hora necesitará --160 x 19= 3040 lb de aire/hora

3040 lb de aire/hora----608 c-fm (Pies³/minuto)
por lo tanto el inyector de aire debe tener una capacidad de 608 pies³/minuto.

5) Calor requerido para elevar de (0°-1250°F)/hora.

\[Q = \text{Masa} \times C_{específico} \times (\Delta \text{Temp}) \]

a) Para elevar 220 lbs de agua de (0°- 212°F)
\[Q = 220 \times 1 \times (0-212) = 46,640 \text{ BTU/hora.} \]

b) Para evaporar 220 lbs de agua de 212°F
\[Q = 220 \times 971(1) = 213,620 \text{ BTU/hora.} \]

c) Para elevar vapor de (212°-1250°F)
\[Q = 220\times0.5(1250-212) = 114,180 \text{ BTU/hora.} \]

d) Para elevar 3,040 lb de aire a 1250°F.
\[Q = 3040 \times 0.25 \times (1250) = 950,000 \text{ BTU/hora} \]

c) Para elevar 20 lb de material inerte a 1250°F
\[Q = 40 \times 0.2 \times (1250) = 5,000 \text{ BTU/hora.} \]

f) Para elevar 160 lb de material combustible a 1250°F
\[Q = 160 \times 0.2 \times (1250) = 40,000 \text{ BTU/hora.} \]

\[Q_{necesario} = a+b+c+d+e+f \]
\[Q_{necesario} = 1'369,440 \text{ BTU/hora} \]
\[Q_{Total necesario} = 1'369,440 + 10\% \times Q_{necesario} \text{ (perdida por radiación)} \]
\[Q_{Total necesario} = 1'506,384 = 1'506,400 \text{ BTU/hora.} \]
6) Calor generado por el material combustible por hora.

1 lb material combust. = 7000 BTU

\[Q_{generado} = 160 \times 7000 = 1'120,000 \text{ BTU/hora.} \]

7) Comparando el calor necesario y el calor generado por el material combustible.

\[Q_{total\ necesario} = 1'506,400 \text{ BTU} \]
\[Q_{generado} = 1'120,000 \text{ "} \]
\[Q_{deficit} = 386,400 \text{ BTU} \]

como existe un déficit de calor es necesario la utilización de combustible adicional para cubrirlo.

8) Número de galones de petróleo por hora necesarios para cubrir el déficit de calor.

Sabemos = 1 galón de petróleo genera = 150,000 BTU

\[\frac{No \ Galones/hora = 386,400}{150,000} = 2.57 \]

9.2.5 OPERACION DEL INCINERADOR

9.2.5.1. ALIMENTACION DEL INCINERADOR

Una vez seleccionada la basura esta será dosificada en cantidades previamente calculadas (cuota de carga).

La falta de dosificación de la basura en la alimentación del incinerador puede causar:
- Si la alimentación, se realiza demasiado rápida el efecto final será un enfriamiento y mala combustión con gran producción con gran producción de humo.

Si la alimentación se realiza lentamente producirá una combustión con intervalos de tiempo mayores a las requerido, prolongando la jornada de trabajo y trayendo como consecuencia el exceso de temperatura que causa el deterioro de la parrilla, del revestimiento refractario y causando además una producción de tipo excesivo, arrastrando residuos y cenizas por la chiminea.

PAUTAS PARA CALCULAR LA CUOTA DE CARGA

Utilizando las tablas 1 y 2 y conociendo las características del incinerador se puede determinar la cuota de carga apropiada.

TABLA 1

<table>
<thead>
<tr>
<th>Superficie de parrilla (m²)</th>
<th>Cuota de carga (kg/hora)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>300</td>
</tr>
<tr>
<td>1.34</td>
<td>200</td>
</tr>
<tr>
<td>1.00</td>
<td>150</td>
</tr>
</tbody>
</table>

TABLA 2

Forma de determinar aproximadamente el peso de la basura según volumen del recipiente.
<table>
<thead>
<tr>
<th>RECIPIENTE</th>
<th>VOLUMEN (lit)</th>
<th>PESO APROX (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediano</td>
<td>55</td>
<td>25-35</td>
</tr>
<tr>
<td>Grande</td>
<td>100</td>
<td>50-60</td>
</tr>
<tr>
<td>Cilindro</td>
<td>200</td>
<td>80-90</td>
</tr>
</tbody>
</table>

Ejemplo práctico

Datos: Superficie de parrilla = 1 m2

Tipo de recipiente = cilindros

1 m2 de parrilla --- cuota de 150 kg/hora

1 cilindro --- capacidad 200 lit = 80 kgs.

frecuencia de carga = cuota de carga / No. recip/hora = capacidad de recip

No. recip/hora = 150 = 1.88 = 2 cilindros /hora 80

(se supone que todos los recipientes son iguales)

9.2.5.2. **FUNCIONAMIENTO DEL INCINERADOR.**

a) Para iniciar el encendido del incinerador en cada nueva jornada de trabajo, primeramente se pondrá en funcionamiento la ventilación y se abrirá los grifos de las toberas de aire. Después de haber transcurrecido 5 minutos como mínimo, volver a cerrar estos grifos.

b) Antes de hacer la primera cuota de carga, se pone en marcha el quemador para un período de (15 a 30')
con el objeto de elevar la temperatura del horno más fácilmente y originar el efecto de chiminea.

c) Se procede a echar la lera, cuota de basura la cual se secará y empezará su combustión en forma espontánea. Para mejorar esta operación la basura que se encuentra en la rejilla debe atizarse en forma manual o mecánica, con el objeto que las cenizas se desplacen y faciliten la penetración del aire favoreciendo la combustión. Esta acción debe realizarse especialmente antes de cargar el horno con una nueva cuota de relleno.

Cada vez que se realiza la alimentación con una nueva cuota, debe tenerse cuidado, que la basura se acumule delante de la boquilla del quemador obstruyendo su normal funcionamiento.

d) Una vez depositada la última cuota de basura y después que la combustión este avanzada, se procederá a poner el quemador en ventilación y abrir las toberas, para acelerar el proceso con una mayor inyección del aire.

e) El colector de cenizas no deberá llenarse más de la 1/2 de su capacidad, procediendo a su vaciado cada vez que suceda lo contrario. El objeto de esta operación es permitir que exista en forma permanente una cámara de aire debajo de la parrilla favoreciendo así su combustión.
9.2.5.3. **PRODUCTOS DE LA INCINERACION (Gases y cenizas)**

Las características de los productos originados en la incineración no dan a saber en forma directa o por medio de análisis físico-químico, si se está efectuando una combustión completa.

Los gases tienen partículas sólidas y líquidas en suspensión, y cuando su contenido es alto se puede apreciar a simple vista por su color gris o negro que causa reducción de la visibilidad y contaminación ambiental.

La combustión en ausencia de suficiente oxígeno produce una alta concentración de hidrocarburos no saturados y partículas no quemadas, causando la descarga de humo, hollín y alquitrán por la chimenea, siendo indicio de la combustión incompleta.

Por lo cual un análisis físico-químico de los gases evacuados por la chimenea son una buena pauta para conocer si se está efectuando una combustión completa de los sólidos y gases.

Los gases representan del 50-90% en peso del material quemado en el incinerador.

Se ha calculado que el volumen de los gases que se generan en la combustión es de 7-9 kg Gases TN Basura, siendo esto un referencia ya que este volumen varía según la composición y humedad de la basura, así como
el exceso de aire utilizado durante el proceso, teniendo en cuenta esto, las chimeneas se diseñan para evacuar de 100-200% de los gases calculados. También se sabe que la velocidad de los gases en la chimenea varía (7-15 m/seg).

Las cenizas y escorias varía según el tipo de basura y método de operación.

Cuando la basura se quema a baja temperatura se origina un exceso de ceniza debido al contenido de carbono no quemado, pero cuando se opera a altas temperaturas se obtiene una escoria dura con óxido orgánico. Por lo cual el criterio que se utiliza para considerar una buena combustión es el contenido orgánico de la ceniza, el cual es aceptable sino sobrepasa del 1-3%.

Según estudios las cenizas en suspensión, que son arrastradas por los gases de combustión son aproximadamente el 1% en peso seco de la ceniza total y el 98% de las partículas descargados tienen un tamaño menor de 1 micrón, por lo cual estas no sedimentan cuando se entregan a la atmósfera y permanecen dispersas hasta su proceso natural de conglomeración.

Estos productos originados por la combustión de la basura deben reducirse al máximo por las siguientes razones:
- Por ser contaminantes atmosféricos.
- Representan un peligro potencial de incendio en los alrededores de la planta.
- Cenizas más pesadas sedimentan formando una capa en las áreas vecinas, causando malestar y justo reclamo.

PROCEDIMIENTO PARA MINIMIZAR LAS CENIZAS EN SUSPENSION

Uso de una cámara de expansión donde se reduce la velocidad de los gases, sedimentando las partículas de mayor tamaño.

Reducción de la velocidad de los gases por medio de choques contra un sistema de tabiques que permiten la sedimentación.

Uso de un ciclón o separador centrífugo. La fuerza centrífuga hace que las partículas choquen contra las paredes del estanque mientras los gases descargan por un conducto central.

Utilización de una cámara de lavado, la cual consta de una cortina de agua que arrastra las partículas mayores pero no es efectiva contra las de tamaño coloidal.

Utilización de la filtración de los gases, para lo cual los gases con las cenizas son previamente enfriados para luego pasarla a presión a través de
una bolsa de algodón o lana u otro material similar donde quedan las partículas en suspensión, y luego los gases se descargan por la chimenea.

Utilización del precipitador electrostático, equipo bastante eficaz para la eliminación de partículas coloidales.

Este dispositivo produce un campo eléctrico en el cual se cargan las partículas por inducción que luego serán precipitadas por medio de placas de carga eléctrica opuesta.

Elimina partículas 1 micrón

Pero es muy costosa su instalación y explotación
DISPOSICION FINAL

El sistema de disposición final en el Hospital del Empleado se realizará esencialmente basado en el tipo de basura y el sistema de reducción utilizado.

<table>
<thead>
<tr>
<th>TIPO DE BASURA</th>
<th>S. DE REDUCCION</th>
<th>DISPOSICION FINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desechos en general</td>
<td>Incineración</td>
<td>Relleno Sanitario</td>
</tr>
<tr>
<td>Basura de especial consideración</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desperdicios</td>
<td>Area de Hospitalización -Red de Desagüe (trituración)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comedores y cocina -Alimentación de chanchos (ebullición o pasteurización)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Farmacia -Droga-Tópicos</td>
<td></td>
</tr>
<tr>
<td>Botellas y Pamos</td>
<td>Laboratorio de análisis Comercialización (proceso de lavado y desinfección)</td>
<td></td>
</tr>
</tbody>
</table>

9.31. **RELENO SANITARIO**

El sistema de disposición final más común y apropiado para eliminar el producto resultante de la incineración es el relleno sanitario, el cual se
puede realizar en terrenos utilizados para la disposición final de la basura del Sector o Comunidad, también se puede realizar en terrenos particulares destinados con éste fin.

El acarreo o transporte de las cenizas y esporias, del establecimiento hospitalario al relleno sanitario, puede ser ejecutado por el servicio de recolección municipal del sector; por contrata con terceras personas; o estar a cargo del mismo Hospital si cuenta con un servicio de transporte adecuado.

El sistema utilizado para el acarreo de basura al punto de disposición final, puede ser aprovechado para desechar la basura no incinerable como:

- Envases de metal (tarros-latas etc).
- Material inerte (tierra-restos de material de construcción etc).
- Restos de jardinería.

9.3.2. DESECHO A LA RED DE DESAGÜE

Este sistema de disposición final se utilizará en forma específica para desechar los restos alimenticios (desperdicios), previamente reducidos, que provienen del área de hospitalización.

Esta forma de disposición es adoptada principalmente para evitar que los restos alimenticios que
hayán tenido contacto con les pacientes hospitalizados, sean almacenados convirtiéndose en un probable foco de contaminación. Debido a que todo residuo proveniente del área de Hospitalización es considerado contaminado (medián sanitaria y de seguridad).

Cuando se adopta este sistema de disposición final debe tenerse en cuenta para proveerse en el diseño de la Red de Desagüe del establecimiento hospitalario, evitando problemas operacionales posteriores, tales como, diámetro de tubería insuficiente, reducción del diámetro por sedimentación de los restos orgánicos, o padecer de frecuentes atoros.

En caso que el establecimiento hospitalario cuente con una planta de tratamiento de Desagües, se deberá prever esta carga adicional de materia orgánica para no entorpecer su normal funcionamiento. Aunque es recomendable en este caso prescindir de este sistema de disposición final.

En el caso de no poder disponer estos desperdicios a la Red de Desagüe, deberán ser incinerados como medida de seguridad a la Salud Pública, aunque este solucion produciría un aumento en la carga de trabajo del incinerador.

9.3.3. **ALIMENTACION PARA CHANCHOS**

Este sistema de disposición final para desperd...
discos originados en establecimientos hospitalarios, se utilizará en forma específica para aquellos desperdicios que no hayan tenido contacto con pacientes o áreas de Hospitalización.

Los desperdicios de origen hospitalario que pueden ser destinados con este fin, son aquellos provenientes de la cocina general y de comedores destinados para el personal que labora en el Hospital.

Este sistema de disposición final es ventajoso económicamente, siempre y cuando exista un proceso de recolección y almacenamiento separado de cualquier otro tipo de basura y siendo realizado bajo medidas de control estricto, debido a que una operación de disposición deficiente puede acarrear problemas sanitarios tales como, propagación del enfermedades transmisibles, propiciar atracción y la consiguiente proliferación de insectos y roedores.

Para aplicar este sistema de disposición final se deberá tener las siguientes consideraciones:

* La recolección y almacenamiento de la basura debe realizarse en forma separada de cualquier otro tipo de basura, con las medidas sanitarias y de seguridad pertinentes.

* Los recipientes utilizados en el proceso de disposición y transporte de estos desperdicios, deberán ser impermeables, anticorrosivos y provistos de ta-
pas de cierre hermético, las cuales deberán estar sujetos a un constante control y supervisión.

* Los desperdicios antes de servir de alimentos a los chanchos deberán ser cocidos previamente a temperaturas de ebullición durante 30 minutos o pasteurizados ya que la cocción disminuye su poder alimenticio.

* La medida anteriormente citada deberá ser controlada por las autoridades pertinentes, porque esta comprobado que los cerdos alimentados con desperdicios de forma cruda presentan una probabilidad 5 veces mayor de infectarse con triquinosis que los alimentados con cereales.

9.3.1. MATERIAL RECUPERABLE

En el proceso de disposición de basura una de las tendencias es la recuperación del material desechado para su reutilización, siempre y cuando esta operación sea factible tanto económicamente como operacionalmente.

En los establecimientos hospitalarios existen elementos que pueden ser recuperables pero son los envases de vidrio(botellas, pomos etc) los que presentan mayor factibilidad de reautilización y debido
a la facilidad de recuperación su comercialización ofrece un beneficio económico.

Los envases de vidrio procedentes de (farma-cia, drogas, tópicos etc) no representan riesgos sanitarios de contaminación por lo cual el principal problema que presentan estos envases es el espacio que ocupa su almacenamiento.

Por lo cual se debe contar con un recinto o área destinado con este fin, hasta cuando se realice su comercialización.

Los envases de vidrio procedentes del laboratorio de análisis, en los cuales se remiten las muestras de heces y orina para sus respectivos análisis, hace que su disposición origine un problema sanitario, debido al foco potencial de contaminación que representan y a los malos olores que producen los residuos de las muestras en los envases.

Por consiguiente se recomienda que estos envases reciban un proceso de lavado y desinfección pertinente antes de ser dispuestos fuera del laboratorio mencionado, eliminando así cualquier riesgo de contaminación que represente peligro para la salud pública.

Estos envases después del proceso citado quedan en iguales condiciones sanitarias que los provenientes de los Departamentos de Farmacia, Drogas, etc. pudiendo ser almacenados y comercializados conjuntamente.
CAPITULO X

SOLUCION PROPUESTO PARA EL CONTROL DE INSECTOS Y ROEDORES.
10. **SOLUCION PROPUESTA PARA EL CONTROL DE INSECTOS Y ROEDORES**

10.1 **LA MOSCA**

Las moscas han sido compañeras del Hombre desde su inicio, siendo a través del tiempo factor preponderante en la transmisión de enfermedades, especialmente las Entéricas, tales como, tifoidea, diarrea, diarreas etc. Por lo cual es una amenaza para la salud pública y en consecuencia la principal razón para su control. Además que la mosca es un insecto repugnante que con solo su presencia en la vivienda o establecimientos en general causa una impresión de falta de salubridad e higiene.

Debido al gran número de especies que existen y dependiendo esto esencialmente de la situación geográfica y condiciones ambientales, es necesario conocer su ciclo de vida características, hábitos etc. de las moscas que constituyen el problema, para poder efectuar su control en la forma más óptima.

10.1.1. **CICLO DE VIDA**

La mosca en su ciclo de vida por estados pasa que son los siguientes:
HUEVO.— Estos son ovales, de color blanco y de 1 mm. de longitud aproximadamente.

La mosca pone normalmente de (1000-3000) huevos por vez, haciéndolo en grupos de 100-150 huevos. En condiciones favorables puede tener 20 puestas en su ciclo vital, pero normalmente varía de 2-4 puestas. Esto nos hace pensar que en una estación pueda existir aproximadamente 10 generaciones al mismo tiempo y el cálculo matemático que cuenta la descendencia de una mosca alcanza proporciones astronómicas, pero el número de moscas no lo determina su potencialidad reproductora, sino las condiciones ambientales en las que se desarrollan tales como, clima, alimentación, enemigos naturales etc.

Por ejemplo los huevos generalmente se incuban en 12 horas, cuando existe humedad adecuada pero varía:

- De 8 horas cuando existe una temperatura 28°-30°C
- 24 " " " " " " 15 -17°C
- 2 á 3 días " " " " " " 4 -6°C

LARVA.— Las larvas, son cilíndricas de color blanco grisado y de contextura suave, miden aproximada-
damente 1/2" de longitud, por carecer de miembros-
se mueven mediante contracciones y expansiones del-
cuerpo.

El estado larval dura de 4-7 días, siendo-
la temperatura óptima de crecimiento 30°C pero mue-
ren rápidamente a la temperatura de 42°C ó a 38°C
cuando existe humedad. Cuando este finalizando su
período larval, emigran, de los lugares donde se han
alimentado a sitios más fríos y secos en los cuales
pasan a su estado de Pupa.

PUPA.— La envoltura de la Pupa es de color
café y no tiene movilidad.

La duración de este estado depende directa-
mente de la temperatura, en verano puede variar de 3-
6 días y en invierno puede durar hasta 5 meses.

MOSCA.— Cuando emerge del Estado de Pupa la
mosca recién nacida se oculta para acostumbrar sus a-
las, y cuerpo del ejercicio, luego de éste período
sus alas se despliegan y empiezan a volar, y por lo -
regular vivirá por lo alrededores donde ha nacido,
aunque puede volar varios kilómetros si sus necesida-
des vitales lo necesitan.

La mosca doméstica no crece y su tamaño es
el mismo con que emergió del estado de Pupa.
Cuando llega a su madurez sexual empieza a poner huevos (3-20 días de emerger)

El promedio de vida de una mosca varía de 3 á 4 semanas aunque en estado experimental de laboratorio han llegado a 70 días.

El período de mayor o menor proliferación coinciden con las estaciones, siendo la más favorable para su abundancia los de verano. La mosca adulta no sobrevive al frío invernal cuando este baja de los 4°C. Siendo naturalmente la pupa la que mantiene la especie.

10.1.2. CARACTERISTICAS Y HABITOS

* La mosca doméstica no muerde ni pica.
* La mosca adulta mide 1/4 de longitud.
* El macho es más pequeño que la hembra.
* Son fototrópicas, se mueven hacia la luz.
* La mosca es onívivara aunque prefiere determinados alimentos.
* En cada ex tremidad posee un aditamento que le permite en superficies lisas y en los ciegos rasos estar almohadillas de pelos, generalmente el lugar donde se retienen los gérmenes, aunque la mosca no sólo lleva gérmenes en el cuerpo sino también
en su aparato digestivo, por el hábito que tiene de vomitar de 15-30 veces/día, debido a que por su estructura anatómica no puede comer alimentos sólidos, por lo cual la mosca necesita diluir con saliva y después absorverlos con su probosí, luego lo "vomita" y lo vuelve a succionar, esta operación la realiza varias veces, con este alimento semidigerido.

* Es atraída fuertemente por heces y materia orgánica en descomposición.

* El agua es esencial para la mosca ya que no puede vivir 48 horas sin ella.

* Viaja hasta un km. en línea recta, aunque se ha encontrado moscas que han volado hasta 20 kms (ayudadas por vientos, u otros medios de locomoción)

* Su actividad depende de la temperatura del medio ambiente.

Permanecen inactivas a los 7°C y mueren a temperatura 0°C. Su actividad empieza a los 12°C y es plena a los 21°C, siendo máxima a los 32°C. Su actividad decrece conforme aumenta la temperatura cuando pasa los 44°C, se origina la parálisis y su muerte.

10.1.3. FACTORES QUE DETERMINAN LA DENSIDAD DE SU POBLACIÓN

Medio Físico.- Situación geográfica, condiciones ambientales, alimento, agua.
Reproducción: Es con gran frecuencia.

Parasitismo.- Por acción de virus, ricketisias, bacterias, hongos, etc.

Predación.- Enemigos naturales(pajaros, mamíferos insectos y principalmente el Hombre)

Competencia.- Con otras especies para apropiarse de los beneficios que presente el medio.

Invasión.- Dependiendo de la presión del medio.

10.1.4. PRINCIPALES SITIOS DE REPRODUCCION

* El elemento preferido para su reproducción es el guano fresco de animales, siendo principalmente el del caballo.
* En basura, que contenga desperdicios orgánicos.
* Excremento humano.
* Alimentos, especialmente vegetales y frutas en descomposición.
* En el suelo, donde existan pequeños charcos.

10.2. MEDIDAS DE CONTROL DE LA MOSCA

Los objetivos principales de un programa integral de control de moscas, es reducir al mínimo posible su población y en forma esencial corregir las acciones negativas que tienden a facilitar su proliferación.
Todo programa de control de moscas debe constar de:

Medidas permanentes (saneamiento general)
Medida auxiliares (complementarias)

10.2.1. MEDIDAS PERMANENTES.

10.2.1.1. SANEAMIENTO GENERAL.- Dentro las medidas de control de moscas el saneamiento general es la medida más económica y eficaz debido a que se realiza en forma preventiva o sea, esta orientada a controlar las fuentes y factores ambientales, que pueden favorecer la proliferación de estos insectos.

En el control de la mosca el saneamiento general involucra los siguientes aspectos:

Educación Sanitaria.- cuyo principal fin es enseñar y divulgar mediante medios informativos (charlas, folletos, afiches etc), las causas y factores que favorecen la proliferación de las moscas, problemas que acarrean a la salud pública, así como las medidas adecuadas para su control.

Como consecuencia de la educación sanitaria se obtendrá colaboración y cumplimiento de las diferentes medidas adoptadas en el Programa de control.
Manipulación de alimentos. - Es otro aspecto dentro de el Saneamiento General, cuya correcta ejecución encierra un proceso complejo desde la adquisición de los productos hasta su distribución como producto elaborado.

Los productos alimenticios que deben recibir mayor atención durante su manipulación, son aquellos de fácil descomposición (vegetales, frutas, leche y sus derivados, etc) y de mayor atracción a las moscas, para lo cual se debe realizar las medidas y técnicas adecuadas para su protección durante todo el proceso.

Otro aspecto que cabe citar dentro de este item es mantener una minuciosa limpieza y pulcritud de las áreas y recintos donde se manipulan estos alimentos, así como el equipo y maquinaria utilizados a lo largo de todo su proceso.

Disposición de basuras. - En los estudios realizados en el control de la mosca, se ha comprobado que en las áreas rurales el foco principal de su procreación es el estiercol de los establos, y que en las áreas urbanas lo constituye la basura.

Por lo tanto, el control de la correcta disposición de la basura es la principal medida en todo programa de control.
Además e debe controlar la utilización del estiercol como abono de jardinería, tratando que se use con éste fin cuando se encuentre totalmente seco o en su defecto utilizar otro tipo de abono.

Disposición de Aguas Servidas.- Es otro aspecto que se debe tomar en cuenta en todo programa de control, debido a que la mosca es atraída por el olor de la materia orgánica en descomposición que estas acarrean.

Por lo cual es recomendable que las aguas servidas sean desechadas por un sistema de tuberías y no por canales abiertos, y mucho menos utilizarlas en forma cruda, como agua de regadío, haciendo que la materia orgánica en descomposición que lleva en suspenión sirva a la mosca como alimento y foco de procreación.

10.2.2. MEDIDAS AUXILIARES

10.2.2.1. MEDIDAS INDIVIDUAL.- Son aquellas como se - nombre lo indica se utiliza para controlar ambientes de pequeña magnitud de viviendas o instituciones en las cuales el grado de infestación es bajo.

Por su reducido alcance es utilizado en forma complementaria en su programa de control de moscas.
Entre las medidas individuales más comunes tenemos:

* Utilización de mallas metálicas.
* Utilización de papel mata moscas.
* Utilización de matamoscas, etc.

10.2.2.2. UTILIZACION DE INSECTICIDAS. - La población de moscas puede ser rápidamente reducida por medio de la utilización de productos químicos más conocidos como insecticidas.

Existe gran variedad de estos productos, así como la forma de su utilización, pero los más conocidos y utilizados en combatir estos insectos son los siguientes:

Compuestos de Hidrocarburos Clorados.

DDT. - Este insecticida continúa siendo utilizado en lugares en los cuales la mosca aún son susceptibles o sea no han desarrollado resistencia.

El DDT se puede utilizar en interiores, áreas vecinas a las cocinas, en áreas donde se manipulan alimentos teniendo cuidado que el insecticida no caiga sobre ellos. Pero se recomienda no usarlo en lugares donde se procesa o se procesa leche o sus sub-productos.

En el control de la mosca el DDT se puede usar en suspensión o emulsión al 5%, aplicándose una
50 mV/m², cuando se rocía interiores se le puede agregar resina de Pino hasta llegar a una concentración final de 2%, para incrementar su efectividad residual.

La fumigación con DDT debe ser llevada periódicamente y con intervalos aproximados de 1 mes, si es que no se toman otras medidas de control.

Cuando las moscas desarrollan resistencia al DDT, es conveniente su cambio o aumentar su actividad por medio de la combinación con otros compuestos.

La combinación del DDT en el sinergista DMC (P. dichlorodiphenyl methyl carbivil) activa las propiedades del insecticida. Las combinaciones utilizadas varían 5:1 a 20:1, siendo particularmente 7.5:1 = DDT: DMC la combinación que ha dado resultados óptimos en moscas resistentes a los hidrocarburos derivados. Soluciones en aceite, kerosene ó emulsiones de DDT al 5% son muy recomendables.

Dieldrin. Este insecticida es aplicado en emulsiones entre (-.625- a 1.25%), principalmente se recomienda su utilización en exteriores y sólo debe ser usado por personal entrenado. Su aplicación se realiza generalmente en zonas donde la mosca haya presentado resistencia al DDT.
Dilan.- Este insecticida es usado en zonas donde la mosca presenta resistencia al DDT, pero desgraciadamente las moscas también le adquieren rápidamente resistencia. En suspensiones acuosas (2.5-5%) han dado excelentes resultados. Aunque otra fórmula para utilizar este compuesto es la siguiente: 5 partes de DDT - 5 partes de Dilan - 4 partes Aceite de algodón, y aplicada en una solución que deje una tasa de 2000 mg. de Dilan, 2000 mg de DDT y 800 mg. de aceite por m².

COMPUESTOS ORGANOFOSFADOS

El uso de Malathión, DDVP y Diazinón es proporciones de 2.5% en el control de las moscas, esta cubriendo en la actualidad las fallas de los hidrocarburos clorina: aún cuando ya los insectos empiezan a presentar resistencia a estos compuestos, aunque el uso de estos productos requieren más precauciones que los clorinados.

Se ha demostrado que una mezcla de malathión con azúcar aumenta su efectividad, siendo la proporción recomendada 2.5 partes de azúcar por 1 de malathión en volumen. Su período de aplicación residual varía de 3-5 semanas.

PIRETRINAS

La acción de este insecticida paraliza a la
mosca, es de acción violenta, no teniendo efecto residual y su aplicación se basa en la impregnación del aire del ambiente en tratamiento. Existen en la actualidad piretrinas sintéticas y se recomienda el uso del sinergistas.

RESISTENCIA A LOS INSECTICIDAS

Se define que una población de moscas es resistente a un insecticida, cuando dosajes normales y períodos de exposición del insecticida son impotentes para producir una reducción significativa en dicha población.

La población de insectos resistentes se forma por un proceso de selección del supervivencia de las más capaces. Son varias las causas que ayudan a desarrollar esta resistencia tendiendo entre ellas: adaptabilidad fisiológica, exposición insuficiente, dosaje pe ño etc.

Entonces vemos que los insectos más débiles mueren pero los que superviven y a través de generaciones reproducen al final un tipo completamente resistente, según experimentos realizados se ha demostrado que dos estaciones completas de generaciones reproducen moscas resistentes.

Pero existen factores que pueden hacer pensar que auna población de moscas son resistentes al
insecticida utilizado (resistencia acumulada) en base que un programa de control no ha producido una reducción significativa comparada a anteriores.

Entre estos factores podemos citar:

* Declinación en el Saneamiento básico, con el consiguiente aumento de lugares aptos para la proliferación de moscas, y esto sucede generalmente cuando se utiliza el insecticida como medio único y primordial de control.

* Control inadecuado e insuficiente durante la Estación de moscas, originado por la carencia de técnicas u organización.

* Incremento de la población de moscas, debido a condiciones climatéricas más favorables que en otros años.

* Aplicación no tecnificada del insecticida, baja calidad de las materias primas o de las concentraciones utilizadas.

* Fracaso para anular un foco de proliferación imprevisto por falta de reconocimiento.

APLICACION DEL INSECTICIDA

En el control de moscas por medio de insecticidas existen 2 métodos de aplicación: espacial, residual.

El método espacial, como su nombre lo indica
consiste en aplicar el insecticida en el ambiente —con la finalidad que este se rompa en pequeñas partículas (neblina) de modo que se mantenga flotando en el espacio de aplicación.

Por su forma de utilización este método requiere una mayor frecuencia de aplicación. Por lo cual este método es utilizado esencialmente en la estación de mayor proliferación de la mosca adulta.

El método residual requiere que el insecticida sea aplicado en las superficies que generalmente son frecuentadas por las moscas, para lo cual es necesario que las gotas del insecticida sean de mayor tamaño que el espacial para poder durar con más facilidad la superficie de aplicación.

La aplicación de este método se debe realizar en forma anticipada a la estación de proliferación y principalmente en las zonas de mayor infestación como son: zonas de manipulación de alimentos, recintos de almacenamiento de basura y en todo lugar —que pueda ser atractiva para la mosca.

El número y frecuencia de aplicaciones del insecticida en una estación es imposible determinarla teóricamente, únicamente, la evaluación, experiencia en cada zona y los respectivos factores ambientales pueden dar una idea clara.
El equipo utilizado en la aplicación del insecticida depende en forma esencial del método a utilizar y esto lleva a tener un márgen de selección.

El equipo más simple utilizado es la Bomba de mano y consiste de las siguientes elementos:
1º Tanque 2º Cilindro de aire 3º Varilla y boquilla.

Este método arroja el insecticida en cada golpe de bomba, otros más complejos tienen una cámara de aire a presión, llegando hasta equipos que funcionan acopladas por compresoras.

Pero esencialmente lo que determina el tipo de rociamiento en el equipo a utilizar es la boquilla. Como por ejemplo para el rociamiento residual las boquillas de abanico son las mejores.

La limpieza del equipo después del uso, la calidad del kerosene o del agua para evitar otros son aspectos importantes del planeamiento del trabajo.
10.3 LAS CUCARACHAS

Las cucarachas son insectos que proliferan en los diferentes ambientes donde habita el Hombre, desarrollándose principalmente en lugares donde existe materia orgánica en descomposición como son: Redes de Desagüe, Basurales, etc, Por lo cual su presencia es indicio de carencia del saneamiento e higiene.

No ha sido probado que puedan causar enfermedades específicas, pero que sí pueden acarrear organismos patógenos en su cuerpo y heces. Siendo esto un factor preponderante en la transmisión mecánica de enfermedades tales como disentería, diarreas etc.

Existen varios tipos de cucarachas, siendo las más comunes las siguientes:
Periplaneta americana (4.5-5 cms), color café claro
La Blatta orientalis (3.00 cms) color negro.
La Blatella germánica (2.00 cms) color pardo claro.
La supella supellectillium (semejante a la germanica pero más tropical).

10.3.1. CIÉLO DE VIDA

Por sus condiciones de vida abundan todo el año, no dependiendo su abundancia de una estación en especial.
Las cucarachas se desarrollan lentamente requiriendo de 30 a 60 días para dejar el huevo y de 285-971 días para llegar a ser adulta.

Específicamente la Blatella germánica que habita especialmente en ambientes donde se manipula alimentos completa su ciclo de vida en 90 días, pero la hembra puede vivir 260 días y pudiendo poner durante este lapso un promedio de 6 capsulas, las cuales contienen aproximadamente 30 c/una.

Su crecimiento y reproducción depende sustancialmente de factores ambientales de temperatura, humedad y la facilidad para encontrar albergue y alimento.

Su actividad se desarrolla por la noche, mientras que en el día permanecen ocultas en sus guaridas temporales como son: sumideros, registros, grietas o hendiduras, existentes en Equipos o estructuras de la edificación.
10-4. MEDIDAS DE CONTROL DE LA CUCARACHA

Medidas Permanentes (saneamiento general)
Medidas auxiliares (utilización) de insecticidas.

10.4.1. MEDIDAS PERMANENTES

Saneamiento General. Es la medida básica y principal en todo programa de control de estos insectos, debido esencialmente a que las normas y técnicas adoptadas se realizan en forma preventiva, tratando de evitar su infestación y su consecuente proliferación.

El saneamiento general en el control de estos insectos involucra los siguientes aspectos.

Educación Sanitaria. que principalmente requiere el personal que labora en tareas específicas como, control de insectos y roedores, manipulación de alimentos, personal que ejecuta la limpieza y disposición de basura etc.

La divulgación de la Educación Sanitaria puede ser desarrollada por medio de: escritos, charlas etc. que pueden ser elaborados por un Ing. Sanitario o por una persona que tenga conocimientos específicos en Saneamiento.
La manipulación de alimentos. - Es un proceso que requiere ser realizado bajo normas y condiciones especiales, debido a que la contaminación o deterioro de estos productos por estos insectos pueden causar graves problemas de salud pública en una población. Por lo cual debe efectuarse un estricto control con los diferentes tipos de suministros alimenticios que ingresan mediante bultos, cajones u otro medio de embalaje. Esta medida de seguridad debe realizarse también durante su almacenamiento, esta parte del proceso de manipulación de alimentos debe ser realizado en recintos o áreas destinadas con este fin y en recipientes, estructuras o equipos adecuados para su perfecta conservación a prueba de toda contaminación posible por estos insectos.

La mala organización y distribución de equipos en las áreas en que se manipulan alimentos, causan una reducción de espacio operacional, acarreando dificultades para efectuar una buena higiene y limpieza, ayudando en esta forma la proliferación de estos insectos.

En todo programa de control de cucarachas es necesario ejecutar medidas meticulosas de higiene y salubridad de los equipos y vajilla que se utilizan en áreas en las cuales se elaboran y se distribuyen alimentos. Así como en las paredes y pisos de los am-
bientes en los cuales se realizan estas actividades.

Mantenimiento de la Edificación y sus Instalaciones. Es básico en todo programa de control de cucarachas prevenir su acceso a la edificación, que generalmente utilizan como medio de infiltración, grietas, hendiduras u otras fallas existentes en sus estructuras o acabados, por lo cual es necesario ejecutar un Buen Mantenimiento y Control de la Edificación en forma perma ente tanto exterior como interiormente.

Este control de ejecutarse principalmente en sus instalaciones interiores, como son los sistemas de tuberías o conductos utilizados para (agua, desagüe, electricidad, vapor, ventilación etc).

Las Redes de Desagüe que incluyen (registros, sumideros etc) constituyen el principal foco de acceso, distribución y proliferación de estos insectos por lo cual se debe realizar un estricto control y mantenimiento, especialmente de aquellos que se hallan en recintos en los cuales se elaboran, distribuyen, alimentos.

10.4.2 UTILIZACION DE INSECTICIDAS

En todo programa integral de control de insectos la utilización de insecticidas debe ser ejecutada como una medida complementaria del saneamiento general y bo como una medida única y esencial.
La utilización de insecticidas de acción residual tiene la finalidad de reducir al mínimo la población de cucarachas de un área. La aplicación de acción residual es de forma directa, por medio de una boquilla especial capaz de dejar una capa uniforme en la superficie por las cuales estos insectos desarrollan su actividad.

Los insecticidas que utilizan en solución son los siguientes:

Clordane———5%
Lindane ----- 1%
Malathión ---- 2%
Dieldrin 0.5%
Diazinon ---- 0.5% (emulsión)

también se utilizan insecticidas en polvo, los cuales son espolvorados principalmente en sus guaridas, y entre ellos tenemos:

Clordane——— 5%
Malathion——— 3%
Dieldrin——— 1%

El espolvoreado con clordane no debe exceder el 10% del área total del ambiente tratado con el insecticida y no debe aplicarse en ambientes que serán ocupados más de 8 horas por una misma persona.
10.5. LOS ROEDORES

Existe una gran variedad de especies, con características y hábitos particulares, constituyen en algunos casos reservorios potenciales o actuales de enfermedades transmisibles o realizando deterioro de alimentos almacenados y de la Edificación.

Cuando encuentran condiciones ambientes favorables como son albergue y alimento se multiplican rápidamente causando grandes estragos.

En virtud de su amplia proliferación y distribución constituyen un peligro latente para la salud pública presentando desde casos aislados hasta una peste si es que no se realiza su adecuado control.

10.5.1. ENFERMEDADES QUE TRANSMITEN

Las ratas son transmisoras de varias enfermedades, siendo principalmente la Peste Bubónica y la Tifus las de mayor importancia para la Salud Pública, existen otras enfermedades que pueden ser transmitidas como son la Salmonelosis, Triquinosis, enfermedad de Weil etc.
TIFUS

Esta enfermedad se transmite al hombre por medio de la Pulga, es confundido muchas veces con el Tifus Epidérmico cuyo vector es el Piojo.

El método de transmisión de esta enfermedad no ha sido definida. Aproximadamente el tipo de Pulga (xenopsylla cheopis) es el principal vector, pero también es posible que otros vectores ayuden a mantener la infección en la rata. Siendo el agente infeccioso la Ricketsia Typhi que tiene un período de incubación en el hombre de 10-12 días, en la rata el período es más corto.

La (xenopsylla cheopis) no se alimenta de la sangre del Hombre, sino cuando está en peligro de inanición causa que demuestra que solo presenta peligro cuando no encuentra ratas que le sirvan de huesped, siendo esto una pauta para el control de Octoparásitos antes de iniciar cualquier programa de control de roedores.

La picadura de la Pulga no causa la infección sino los organismos patógenos que se encuentran en las heces de la pulga, que se introducen al organismo del hombre por frotación en las heridas que se causa el mismo al rascarse (Las pulgas defecan frecuentemente - cuando se alimentan).
PESTE

Esta enfermedad se presenta en el Hombre en 3 formas, Peste Bubónica, Neumónica y Septicémica siendo más común la Bubónica, la cual tiene un alto índice de mortalidad (60-80% en personas no tratadas).

La peste bubónica es transmitida al Hombre por medio de la picadura de la Pulga Xenopsylla cheopis procedente de ratas infectadas.

El agente inctiológico es la bacteria Pasteurella Pestis que tiene un período de incubación de 3-6 días, esta bacteria se encuentra en la exudación de los Bubones y saliva de los enfermos. Siendo pequeña su supervivencia de esta bacteria fuera del cuerpo.

La Peste Neumónica es relativamente poco común, aunque en cursos de epidemias de Peste Bubónica se presentan numerosos casos. Su principal diferencia entre las dos es que la Neumónica sólo se transmite por medio del aire contaminado por un enfermo por el inadecuado desecho de los apósitos de Bubones.

La Peste Septicémica aunque su incidencia es rara, tiene un índice de mortalidad de 100% en personas no tratadas. Pero una de sus características principales que el bacilo que lo produce está presente en forma constante en la sangre del enfermo.
10.5.2. **CARACTERÍSTICAS**

El éxito de una campaña de erradicación de roedores se basa esencialmente en el mayor o menor conocimiento de los tipos, características y hábitos de estos roedores, que juega un papel preponderante para adoptar las medidas adecuadas para su control, de cada cosa en particular.

Existen varios tipos de ratas siendo las más comunes la Noruega, Alejandrina, techera etc.

CARACTERÍSTICAS FÍSICAS ENTRE EJEMPLARES ADULTOS *

<table>
<thead>
<tr>
<th></th>
<th>Rata Noruega</th>
<th>Rata Techera</th>
<th>Ratón</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUERPO</td>
<td>Gueso y pesado</td>
<td>Delgado y ligero</td>
<td>pequeño es la 1/2 de los anteriores.</td>
</tr>
<tr>
<td>COLA</td>
<td>más corta que la cabeza y cuerpo</td>
<td>más larga que la cabeza y cuerpo</td>
<td>un poco mayor que cabeza y cuerpo.</td>
</tr>
<tr>
<td>OREJAS</td>
<td>Pequeñas y pegadas a la cabeza.</td>
<td>Grandes y prominentes</td>
<td>Prominentes.</td>
</tr>
<tr>
<td>COLOR</td>
<td>Café grisaceo con negro en el lomo y lados</td>
<td>Gris desteñido a blanco amarillento.</td>
<td>Marrón grisaceo.</td>
</tr>
<tr>
<td>PESO</td>
<td>280-480 grs.</td>
<td>270 grs.</td>
<td>14-21 grs.</td>
</tr>
</tbody>
</table>

* Curso de Nutrición aplicada
 Ing. Luis Pinate.
0.5.3. CICLO DE VIDA

Las ratas son capaces de reproducirse a lo (2-3) meses de edad, siendo su periodo de gestación de 22 días, pudiendo tener un promedio de 10 crías/camada. La capacidad de reproducción es grande ya que lo puede hacer entre intervalos de 60-65 días aumentando esta en meses de calor.

La rata tiene una conducta inteligente y vivaz ya que se adaptan a los diferentes modos de vida que se le presenta, aunque varía por maternidad, hambre, sed, temor etc.

Su actividad es función directa a su edad, siendo máxima a los 9 meses y luego va decreciendo.

SENTIDOS

Vista.- No es tan desarrollado pero es capaz de distinguir movimientos y medir profundidad. No distingue los colores.

Olfato.- Este sentido lo tiene desarrollado y agudo, demostrado en la búsqueda de alimentos. Tiene aversión por el kerosene, gasolina y tabaco.

Gusto.- Tan bueno como del Hombre, demostrado por la aversión a cualquier alimento que le pueda ocasionar daño.
Tacto.— Este sentido lo percibe por medio de sus bigotes y pelos factiles que cubren su cuerpo.

Oído.— Tiene bien agudizado este sentido, pudiendo localizar el origen del ruido y cuando no es usual las hace escapar rápidamente.

10.5.4. HABITOS Y COSTUMBRES

Las ratas se organizan en colonia, siendo las más fuertes e inteligentes las que comen primero y lo mejor.

Buscan ubicar sus guaridas cerca de las fuentes de alimento y bebida, utilizando para este fin muchos agujeros, tabiques dobles y lugares inaccesibles por sus enemigos naturales.

Las excavaciones que realizan para construir sus guaridas están provistas de varios túneles y salidas pero tienen la característica de no exceder de 1/2 mt de profundidad.

Tiene habilidad para subir por alambres, tuberías, sogas etc.

Es una gran nadadora y buceadora, pudiendo nadar en aguas abiertas hasta 3/4 km. Utilizando muy bien los desagües ya sean en acequias o Redes de alcantarillado.
Las ratas deben roer durante todo el ciclo de su vida para poder conservar sus dientes incisivos en forma ya que de lo contrario le crecerían desmesuradamente; les crecen en una proporción de (10-15 cms) por año; por lo cual causa deterioro de la Edificación y mobiliario.

10.5.5. **APTITUDES DE LAS RATAS**

Para poder atravesar orificios de 3 cms de diámetro.

- Subir por el interior de tuberías o conductos verticales de un diámetro máximo de 7-5 cms.
- Trepar por tuberías y conductos verticales de cualquier tamaño que estén a menos de 7,5 cms de distancia de la pared.
- Saltar verticalmente 0,90 mt. desde una superficie plana.
- Saltar horizontalmente 1,20 mt desde una superficie plana.
- Saltar horizontalmente 2,50 desde una altura de 4,50 mt. por encima de la altura de llegada.
- Caerse de una altura de 15 mt. sin matarse.

La Población de Roedores depende:
* Reproducción

* Mortalidad Predación y Parasitismo competencia

* Emigración - Presión del medio)

* Condiciones ambientales.
10.6 PROGRAMA DE CONTROL DE ROEDORES

1. Medidas Permanentes y Preventivas
 a) Saneamiento general
 b) Edificación a prueba de Ratas.

2. Medidas auxiliares o complementarias
 a) Enemigos naturales, trampas
 b) Utilización de Rodenticidas.

10.6.1. MEDIDAS PERMANENTES O PREVENTIVAS

Son las medidas de mayor importancia de Erradicación de Roedores, porque controla los elementos básicos favorables, que utilizan los Roedores para su estadía, alimentación y consiguiente proliferación.

10.6.1.1. SANEAMIENTO GENERAL

Es la base de cualquier programa de control el cual involucra los siguientes aspectos:

 Educación Sanitaria.- Que juega un papel importante por medio de ella se enseña y se difunde los
conocimientos de la causa y factores que favorecen las infestaciones, problemas que originan estas infestaciones así como las medidas y medios utilizados para su control.

Manipulación de alimentos.—La correcta operación del sistema y una adecuada supervisión son las mejores medidas para que las áreas en que se desarrollan estas actividades sean difícilmente infestadas por estos roedores, porque está comprobado que la principal causa de las infestaciones es la facilidad que tienen estos roedores para proveerse de alimentos. Si teóricamente se lograría eliminar toda posibilidad de facilitar alimentos a los roedores, estos tenderían a desaparecer. Partiendo de esto se deben adoptar las medidas necesarias de protección de los productos alimenticios a lo largo de todo su proceso, principalmente durante el período de almacenamiento y el desecho de sus residuos.

Medidas de protección de los alimentos durante su respectivo almacenamiento.

* Todo local o recinto que tenga la finalidad de almacenar productos alimenticios debe ser construido a prueba de ratas. Debiendo refraccionarse o clausurar los elementos estructurales o acabados que
puedan servir como medio de acceso o albergue a estos roedores.

* Los productos alimenticios atractivos para estos roedores deben ser almacenados en unidades o recipientes, fabricados de material que no pueda ser deteriorado por los roedores.

* Cuando se almacene víveres en bolsas o sacos, estos deben descansar directamente en el suelo, deberán descansar en estructuras perfectamente libres e iluminadas, para evitar lugares oscuros invertidos y propicios para la creación de sus nidos.

Una de las técnicas utilizadas para esta forma de almacenamiento es el uso de banquillos cuya base esté a una altura de (0,15-0,20 mt) del suelo y que deberán ser colocados a una distancia de 0,15 mt. de la pared como mínimo. En este sistema se debe evitar almacenar los sacos hasta llegar al techo para lo cual se dejará un espacio libre de 0,60 mts. como mínimo, facilitando así la circulación del aire.

Todas estas medidas además de evitar el acceso de los roedores facilita también su correcta manipulación.

* Se recomienda almacenar la cantidad de víveres necesarios, tratando de evitar almacenar grandes cantidades por períodos largos, y debiendo realizarse
el almacenamiento en forma relativa, dando preferencia de salida a los productos de mayor período de almacenamiento.

10.6.1.2 CONSTRUCCION A PRUEBA DE RATAS

Las principales objetivos de esta medidas son:

* Prevenir que las ratas tengan acceso al Edificio.

* Facilitar la erradicación de los roedores que se encuentran en el interior del Edificio.

* Reducir el trabajo de mantener el Edificio libre de ratas.

Para lograr estos objetivos se debe tener en cuenta los siguientes aspectos:

Tipo de construcción.
- Las aptitudes y costumbres de las Ratas.
- Los hábitos y costumbres de las personas.

Teniendo en cuenta estos aspectos se deberán tomar las siguientes medidas:

* Las Edificaciones deberán construirse con materiales nobles, tales como concreto y ladrillo, que hacen prácticamente imposible el acceso de los roe-
dores por sus propios medios.

En caso de construcciones antiguas es necesario calzar los aumentos, profundizándoles como mínimo 0,60 mts. y 0,10 mt de espesor de concreto, el sobrecimiento de 0,30 mt. y el piso de concreto de 0,10 de espesor.

* Evitar que los elementos de arquitectura y acabados de la Edificación faciliten a los roedores en la utilización como albergue.

* Dar facilidades y rápida solución a las Remodelaciones y reparaciones de la Edificación para evitar la posibilidad de las infiltraciones de los roedores.

* Realizar la protección adecuada de las instalaciones interiores tales como redes de desagüe, ductos de instalaciones eléctricas, ventilación, extractores, etc.

* Realizar un adecuado mantenimiento de las áreas exteriores que circundan el edificio, especialmente cuando existe jardines con arbustos y vegetación.

10.6.2 MEDIDAS AUXILIARES O COMPLEMENTARIAS

10.6.2.1 MEDIDAS INDIVIDUALES

En esta medida auxiliar se utilizan generalmente trampas que pueden ser de diferentes formas, tamaños, y en algunos casos se utilizan enemigos natura-
les como son gatos y algunas razas de perros.

Las medidas individuales cubren necesidades muy limitadas por lo cual casi no son tomadas en cuenta en programas integrales de control, debido a su escaso rendimiento en reducir la población de roedores.

10.6.2.2 UTILIZACIÓN DE RODENTICIDAS

Cuando se quiere reducir al mínimo la población de roedores o sea tender a la Erradicación total es necesario proceder a la utilización de un programa adecuado de envenenamiento. Pero teniendo en cuenta que no es una medida única o de aislada sino es complemento de las medidas permentes de control.

El Rodenticida es el conjunto de veneno y cebo capaz de eliminar en dosis normales roedores, pudiendo ser utilizados en forma de mezclas o soluciones.

Los Rodenticidas más importantes son:

* Fluoracetato de sodio (1080)

* Warfarina

10.6.2.2.1 Fluoracetato de sodio (1080)

Es un compuesto blanco, astringino, sin olor y sabor muy soluble en el agua pero prácticamente in-
insoluble en el aceite. Su acción es en el corazón, de los animales; sintiéndose su efecto a los 20 minutos demorando hasta 8 horas.

Es muy efectivo pero sumamente peligroso, bastan dosis de (3 á 7 mg./ kg de animal). No hay antídoto conocido por lo cual hay que tener especial cuidado en su manipulación. Bajo determinadas condiciones puede ser absorbido por heridas, por lo cual se debe tomar medidas de seguridad como la utilización de guantes, mascarillas etc y prohibir terminantemente su manipulación a personas que tengan heridas.

El 1080 debe ser utilizado únicamente por personal competente y responsable, debiendo evitarse su utilización en el interior de la vivienda.

UTILIZACIÓN DEL 1080 EN EL CONTROL DE ROEDORES

* Los cebos deben protegerse cuidadosamente y deben ser colocados lejos del alcance del hombre o animales domésticos.

* La concentración recomendada para su utilización para cebos líquidos es de (12-14 grs/galón de agua), la cual es efectiva para cualquier clase de roedores.

La cantidad de solución necesaria es de 1/2 onza/ estación teniendo cuidado de ser colocado en
sitios que no moje ni se desparrame.

* La dosis recomendable para cebos sólidos es de 1 onza de 1080/kg de cebo.

* Se recomienda no usar dosis mayores a las prescritas, porque puede causar envenenamiento secundario o sea envenenamiento del animal que come a su vez al animal muerto por la acción del veneno.

* Cuando los resultados con el 1080 no son satisfactorios hay que cambiar de cebo.

* Cuando hay que utilizarlo en área donde se manipulan alimentos se recomienda el uso de comederos especiales.

Si el hombre ingiere por casualidad (1080) deberá mantenerse en reposo, y debe hacersele vomitar por cualquier método posible, darle sales de magnesio como purgante y llamar al médico inmediatamente.

10.6.2.2.2.WARFARINA

Es un rodenticida en polvo de color blanco sin olor y sabor, pudiendo ser soluble en el agua, si venden en el comercio al 5 ó 10% de concentración.

Su acción como veneno se realiza de la siguiente forma:
La Warfarina se acumula en el organismo del roedor, retardando su coagulación sanguínea y produciendo después de 2 a 9 días de ingestión repetida la muerte del animal debido a las hemorragias externas e internas y a la consiguiente anemia.

El gran factor de eficiencia como rodenticida es que su acción como rodenticida no causa convulsiones ni dolores, haciendo que la rata consuma el cebo envenenado sin sospechar. La rata no llega a relacionar el cebo envenenado con el malestar que siente, ni con la muerte de sus congéneres, como ocurre con otros venenos más violentos.

La warfarina es relativamente inofensiva para el hombre y animales que lo hayan consumido en forma eventual. Si por alguna circunstancia ocurriera un caso de envenenamiento accidental por ingestión o absorción repetida de warfarina, será necesario tratarlo con transfusiones de sangre y con vitamina K que favorece la coagulación de la sangre y neutraliza el veneno.

Los animales envenenados también pueden ser tratados con vitamina K o con el producto Koagamin (material patentado en los EE.UU., que contiene ácido oxálico y malónico).

El resultado obtenido con este rodenticida en otros países han sido espectaculares. Siendo con-
firmado en nuestro medio en programas de control de roedores en poblaciones de Lima y Tumbes.

El método preciso para hacer satisfactorio la acción del Rodenticida varía con las especies de roedores, condiciones locales, hábitos etc, también siendo un gran factor la habilidad, experiencia y espíritu de observación del desratizador.

CEBOS

Los cebos utilizados con warfarina son generalmente sólidos, aunque también se utiliza cebos líquidos en base que dicho veneno es soluble en el agua.

Los cebos sólidos a pesar que varían sigue las condiciones locales, estos están básicamente compuestos por cereales, debido a que se conservan razonablemente bien y se de mayor aceptación que otros cebos.

En todo programa de envenenamiento las condiciones que debe tener el cebo son:

* El cebo utilizado debe ser de buena calidad, libre de moño, insectos u otras contaminaciones.

* El cebo escogido debe ser esencialmente el que presente el mayor atractivo y preferencia a los roedores a extirpar.
Si en una campaña de control los Roedores no prueban los bos, puede ser debido:

* El cebo utilizado no tiene aceptación.
 Para lo cual se debe buscar la aceptación agregando al cebo (pescado, carne, maní, frutas etc) en las proporciones que sean necesarias.
 También se puede aumentar el atractivo del cebo agregándole en peso:
 aceite vegetal refinado (2-10%)
 azúcar (1-2%)

Según experiencias se ha visto que agregando 1 gota de esencia de anís sirve de atractivo y borra cualquier indicio de olor que haga desconfiar al roedor.

* Cuando los roedores disponen de otros alimentos que pueden establecer competencia con los cebos.
 Para lo cual se tomarán las medidas necesarias, eliminando estas posibles fuente, mediante el buen almacenamiento y la correcta disposición de basuras.

* Cuando el emplazamiento de los cebos no es la correcta.
 Este común desacierto es debido a que no
existe una regla fija para su ubicación, y esta se basa en la experiencia y observación del operador.

MEZCLA

La mezcla de los ingredientes del rodenticida debe realizarse en forma correcta para lo cual es necesario pesar cada uno de sus componentes en una balanza adecuada.

La mezcla inapropiada de los ingredientes puede traer como causa:

* El exceso de veneno da lugar a un cebo de fuerte olor y sabor, trayendo como consecuencia la no aceptación por parte de los roedores.

La cantidad excesiva de veneno aumenta el peligro para el hombre y animales.

* La reducción de veneno trae como consecuencia una menor eliminación de roedores y un alargamiento del programa de control.

Como medida de seguridad del cebo suelo ser coloreado de (negro-verde, gris) para evitar confusión con otros alimentos harenosos y también disminuir su atractivo tanto al hombre como los animales (Este
medida no interfiere en la aceptación del cebo debido a que la rata no distingue las colores)

PROPORCIÓN DE INGREDIENTES USADA GENERALMENTE EN LA MEZCLA

La Warfarina se vende en el comercio en polvo concentraciones del 5-10%, y de estas se toma una cantidad equivalente a 0,025% de Warfarina Pura.

* De la concentración 5% se tomará 0,50% en peso o

De la concentración 10% se tomará 0,25% en peso.

Obteniendo así de cualquiera de las concentraciones citadas 0,025% de Warfarina pura.

Warfarina del 5% ------ 0,5%

* Cuando se utilicen cebos secos, como cereales se debe utilizar aceite vegetal refinado o de pescado para poder facilitar la mezcla y poder ligar en forma uniforme el cebo con el veneno.

Aceite Vegetal refinado----5,5%

* Para evitar que el cebo expuesto a la interperie desarrolle, hongos o moho se utilizará.

Parinitrofenol--------0,25%

* El cebo utilizado (maíz, avena, harina, maní, fruta seca, carnes etc).
en la proporción que ha presentado mayor atractivo en la prueba de aceptación.

Cebo ----88.75%
* Para alimentar el atractivo del cebo se recomienda usar azúcar

Azúcar ----5%

Total de Ingredientes y porcentaje en peso:

Warfarina al 5% --------0.5%
Aceite vegetal refinado---5.5%
Parinitrotenol--------0.25%
Cebo-------------------88.75%
Azúcar-----------------5.00%
 100.00%

PRECAUSIONES

* El equipo utilizado para la manipulación del veneno no debe ser utilizado para otros fines, y debe ser guardado en un sitio adecuado bajo llave
* Debe rotularse y almacenarse en forma debida los ingredientes, principalmente los venenos.
* Durante la manipulación de la mezcla se deberá tener las siguientes consideraciones:
 - Evitar la inhalación del veneno para lo cual se utilizará mascaras o protectores
- Evitar el contacto directo con el veneno, utilizando ropa adecuada para este fin, como mandiles, overoles, guantes etc.

- No cometer la impudencia de comer, beber o fumar durante la manipulación de la mezcla.

* El operario después de realizar la manipulación de estas mezclas debe ejecutar la limpieza del Equipo y del área utilizada y especialmente realizar-se meticulosamente su aseo personal.

COMEDEROS

Aunque es hábito de las ratas habitar en lugares de suciedad e inmundicia, estos roedores no ingieren alimentos rancios, o contaminados. Por lo tanto los cebos deben estar protegidos de la acción del ambiente de tal manera que no impida el libre acceso de la ra. De preferencia para evitar que se desparra-me o deteriore el cebo debe ser colocado en recipientes adecuados (comederos).

Los comederos deben ser fijados, o diseñados de tal forma que no puedan ser arrastrados o volteados, para evitar estos inconvenientes se eligen para su ubicación lugares pegados a las paredes o junto a vigas, tuberías etc.
En áreas libres (esteriores) para la protección de los comederos del medio ambiente se puede utilizar tuberías de cemento, tejas, latas o cajones etc.

Para la utilización de comederos se recomienda que sean hechos o confeccionados con materiales impermeables de cartón o metal.

EMPLAZAMIENTO DE CEBOS

Las ratas son muy exigentes en lo que respecta a sus hábitos alimenticios, por ejemplo para comer prefiere ubicarse en lugares ocultos o en aquellos que tiene facilidades para escapar rápidamente.

Por lo tanto es necesario conocer lo mejor posible los hábitos y costumbres de las ratas locales (como viven, como, que comen y donde comen, así como los lugares de mayor actividad etc) así el operador se permitirá tener una idea cabal de los lugares adecuados para emplazar sus cebos.

Es imposible sentar reglas precisas para distribuir los cebos o conocer el número de puntos exactos para tratar una infestación. Sin embargo para la utilización del cebo de warfarina, se puede seguir las
siguientes pautas como orientación:

Colocar los cebos en los puntos probables siendo preferible en los lugares en los roedores — presentan mayor actividad, como:

En los puntos de salida en sus guaridas, o próximos a estos. En algunos casos a veces es necesario establecer plataformas o repisas improvisadas con este objetivo.

- Ubicar el cebo próximo a los puntos probables donde las ratas van a beber. Esta comprobado que la rata tiene mayor avidez por el agua que por el alimento, y aprovechando la solubilidad de la warfarina se pueden preparar cebos líquidos acelerando de esta manera el envenenamiento de estos roedores.

En se deros y recorridos normales, y lugares que presentan signos de ser usados activamente por las ratas, teniendo cuidado que los cebos sean colocados a un costado y no interferir las rutas para evitar despertar desconfianza en la rata.

- Cerca de mercadería almacenada, la cual muestra signos de haber sido atadada por los roedores.

* Se inspeccionaran los sitios donde se ubicaron los cebos o comederos. Es poco probable que en
los dos primeros días haya consumo de cebos, por lo cual la primera inspección debe realizarse después del 3er o 4to día.

Al mismo tiempo que se va inspeccionando se va rellenando y emparejando los comederos que han sido consumidos, y los que no han sido consumidos pueden ser retirados y ser colocados en otros puntos probables.

Por lo cual se recomienda utilizar comederos que han sido puestas una cantidad fija de cebo para facilitar la inspección del material consumido y su respectiva operación de relleno.

* Debe seguirse rellenando los comederos mientras muestren signos de ser consumidos, generalmente se acepta que por cada rata vista existan lo que viven en el mismo área, por lo cual se debe tener esta proporción y otros detalles, para distribuir la suficiente cantidad de cebo, tratando que sobre y no falte. Dando así de comer a la población murina las cantidades suficientes para lograr en forma óptima el objetivo del programa.

* Cuando los cebos ya no son consumidos deben establecerse comederos permanentes por los puntos probables que pueden tener acceso las ratas.

Estos puntos de cocontrol permanente permitirán eliminar la posibilidad de una posible reinfesta-
ción que puede venir procedente de áreas vecinas no controladas.

Estos puntos de control serán inspeccionados cada (3-4) semanas para rellenarles o reemplazar el cebo si es necesario.

El resultado óptimo de un programa de envenenamiento se obtiene siempre y cuando se realice en forma conjunta, medidas permanentes de saneamiento -general y las debidas estructuras y reparaciones a prueba de ratas de la Edificación.

10.6.3. CONTROLES ADICIONALES EN EL PROGRAMA DE CONTROL DE ROEDORES

10.6.3.1. CONTROL DE ECTOPARASITOS

Los Ectoparásitos (pulgas, piojos, etc) se nutren de la sangre de los roedores huésped y cuando estos mueren envenenados o atrapados en las trampas estos ectoparásitos usan temporalmente al Hombre como huésped y si estos están infestados, existe el peligro de originar enfermedades transmisibles.

Cuando se considera que existe enfermedades en los roedores, se debe destruir a los Ectoparásitos "antes" de empezar la campaña de erradicación de los roedores.
MEDIDAS DE CONTROL DE ECTOPARASITOS

* Primeramente se realiza una inspección en busca de indicios de roedores determinando especialmente las marcas de roce en las bases de las paredes así como la localización de las sendas y guaridas.

* Tratar todas las sendas, entradas de las guaridas con DDT en Polvo al 10% aplicándolo en las superficie verticales, que pueden ser regadas por los roedores y esto se realiza por medio de un pulverizador o en forma manual.

Así la rata llevará el DDT a sus nidos o guaridas controlando las ectoparásitos en estas zonas - fuera del alcance de las actividades normales de pulverización.

0.6.3.2. CONTROL DE OLOR DE LOS ROEDORES MUERTOS

Siempre que sea posible se debe recoger a los roedores muertos resultante de toda campaña de control, pero cuando mueren en sitios inaccesibles hay que aplicar las siguientes medidas para poder evitar el olor parcial o total.

* Empleo de ventiladores que activen la circulación del aire.

* Se puede usar esencia de Pino, menta, torma-
lina, anís ó carbón activado.

Ejemplo: la solución de 10 gotas de esencia del pino en 4 litros de agua, luego aplicarse con un atomizador o pulverizador fino.

* Si se puede ubicar el sitio donde se encuentran y no poder extrer los roedores, como entre tabiques, paredes o falsos pisos, se puede abrir un orificio e introducir la siguientes mezclas:

1 MEZCLA
Paradiclorobenceno (PDB)---------- 1 parte
Cal hidratada 1 parte
talio 1 parte

2 MEZCLA
Cloruro de zinc-------------------3 1/2 onzas (105 grs)
Sal de mesa---------------------- 2 1/2 onzas (75 grs)
Agua -------------------------- 1/4 galón (0.95 lit).

Todos estos productos químicos deben aplicarse lo más cerca posible al lugar donde se origina el mal olor.
CONCLUSIONES Y RECOMENDACIONES

1-) Considerando los Estudios realizados en diversos Establecimientos Hospitalarios y especialmente en el Hospital del Empleado, se ha observado la carencia de Normas Técnicas y operativas que rigen en forma satisfactoria las actividades relacionadas con el Saneamiento Ambiental Hospitalario.

Existiendo como consecuencia una deficiencia de Saneamiento en el desarrollo de las labores inherentes con este camp.

Por lo cual se recomienda al Ministerio de Salud disponga a quién corresponda la elaboración de un Reglamento que adecúe normas y controle las diversas actividades relacionadas con el Saneamiento del Ambiente Hospitalario.

2-) Durante el presente estudio se ha observado que la mayoría de las deficiencias presentadas en el buen mantenimiento del Saneamiento Hospitalario y particularmente en el Proceso de Residuos Só-
lidos y control de insectos y roedores, son causadas por falta de conocimiento del problema y de las medidas sanitarias integrales necesarias en estas actividades.

Recomienda a la Escuela de Salud Pública del Perú a fin de que en coordinación con los Establecimientos Hospitalarios, se lleve a cabo cursos y cursos de capacitación en los aspectos de Saneamiento Hospitalario, dirigido al personal profesional, mando medio y auxiliar.

3-) Considerando que el Saneamiento Ambiental Hospitalario es un campo nuevo en nuestro medio. Se tiene como consecuencia un déficit de personal capacitado, para resolver los diversos problemas que este plantea en las totalidad de Instituciones Hospitalarias.

Por lo cual se solicita al Ministerio de Salud Pública que por medio de sus Departamentos y áreas de salud correspondientes, solucionen en parte este déficit, prestando asesoramiento técnico y la superficiación adecuada, para que los diversos aspec-
tos de Saneamiento dentro las actividades hospitalarias cumpla sus objetivos, obteniendo así un mejor mantenimiento del nivel del ambiente, en beneficio de los pacientes y del personal que laboran en la Institución.

4-) Habiéndose observado que en los diversos Establecimientos Hospitalarios visitados, no existe un Departamento que controle el nivel de Saneamiento con que se ejecuta las diversas actividades relacionadas con este campo. Se tiene como consecuencia que el nivel de Saneamiento de cada actividad esté supeditado al criterio del Personal que la ejecuta sin ninguna supervisión o control. Por lo cual se recomienda a la Dirección o Administración Hospitalaria (de cada Institución) reconozca:

a) La importancia y papel fundamental que desarrolla el Saneamiento Ambiental en las Instituciones Hospitalarias o Centros similares. Debiendo establecer dentro su estructura orgánica y administrativa un Departamento que se responsabilice por el nivel de Saneamiento
de la Institución, la cual imparta las Normas técnicas y operacionales y su correspondiente supervisión en el desarrollo de todas las actividades relacionadas con este campo.

b) La necesidad de contar con el asesoramiento de un Ingeniero Sanitario o del Ambiente, a tiempo parcial o total según las necesidades de cada Institución. Para que solucione en forma cabal los problemas relacionados con el Saneamiento Ambiental Hospitalario, mejorando así su nivel en beneficio de los pacientes y del personal que labora en dicha Institución.

5-) Que habiendo constatado personalmente durante la ejecución del presente estudio, el gran campo de acción que tiene la Ingeniería Sanitaria, particularmente en el campo de Saneamiento Hospitalario. Se observa en contraste, la falta o poca disponibilidad de Bibliografía e Información especializada al respecto.

a) Por lo cual se recomienda a la UNI por medio del
Departamento Académico de Saneamiento, continuar con los Estudios de Investigación sobre este campo para obtener las respectivas referencias y evaluaciones, que ayudarán a mejorar la organización y planificación de las actividades relacionadas con el Saneamiento Hospitalario en nuevas Instituciones.

b) Solicitar a los organismos del Estado e Internacionales relacionados con la Ingeniería Sanitaria y Ciencias del Ambiente, dar las facilidades necesarias para proporcionar la bibliografía y publicaciones científicas respecto al campo de Saneamiento Hospitalario y así poder actualizar las Nuevas Técnicas y mejorar la tecnología existente.
BIBLIOGRAFÍA

- "Introducción a la Salud Pública (José Marroquin)
 Departamento de Ingeniería Sanitaria UNI-1971.

- "Curso Mantenimiento de Equipo Hospitalario y Saneamiento Básico en Hospitales" OEA y ORS UNI
 1963.

- "Control de Enfermedades Infecciosas en Hospitales generales"
 O.P.S. Public. Científica 197-1970

- "Saneamiento Hospitalario" (Fco. Unda Opazo)
 Publicación (centro Regional de Ayuda Técnica)
 Chile.

- "Ingeniería aplicada a Saneamiento y Salud Pública" (Fco. Unda Opazo)
 UTEHA - 1965.

- "Servicio de Limpieza y Disposición de Residuos Sólidos".
 Centro de Mantenimiento e Ingeniería de Hospitales Caracas (Venezuela)

- "Saneamiento Básico" (Ehlers and Steel)

- "Eliminación de Basuras y Control de Insectos y Roedores". OPS Public. Científ. 75 - 1962.

- "Disposición de Residuos Sólidos"
 Publicación "Hospital's" Diciembre 1968.

 Manipulación de Basuras en Hospitales .
 Publicación "Hospital's" - Mayo 1970.
- Plan de Disposición de Basuras.
 Publicación "Hospital's" (Febrero 1956).

- "Los Empleados del Hospital también se Enferman"
 ¡Basural Por favor Quememosla.
 Publicación "Modern Hospital" Setiembre 1971.

- "El Problema de las Infecciones"
 Publicación "El Hospital"- Diciembre 1962.

- Control de Infecciones Cruzadas en Hospitales
 Publicación "El Hospital" Enero 1965.

- "Environmental Aspect of the Hospipital"
 Volúmen I (Infección control)
 Volúmen II (Supportive Departaments).
 U.S. Public. Health Service Publication No. 930-C-16.

- "One use waste receptacles minimize infection spread"
 Publicación "Hospital's" Diciembre 1958.

- "How to remove waste to remove hazards".
 Publicación "Modern Hospital" Octubre 1958.

- "The selection of incinerator for Hospital Use"

 Incinerator of Hospital waste.

- "Waste disposal incineration"
 Desing (Ewyn E. Seelye) Volúmen I.

- "Sanitation en Hospital Food Service"

- "Safe Food Handling Requires Health conscions Handler's"
- "Ler. Curso Internacional de Nutrición Aplicada"
 Ing. Luis Píatte.
- "Control de Roedores y Saneamiento"
 Servicio de veterinaria del Ejercito.
 Public. Técnicas del Ejercito I - 1961
- "Control de Insectos Vectores" (Ing. Dante Carbajal)
 M.S.P. Departamento de Ingeniería Sanitaria.
- "Introducción al Estudio de artrópodos de importancia en Salud Pública".
- "El Control de Ratas y ratones domésticos"
- "La mosca y su importancia para la salud Pública y su control"
- Pulgas de importancia en Salud Pública y su control

*