Universidad Nacional de Ingeniería

FACULTAD DE INGENIERIA MECANICA

“Diseño de una Máquina de Accionamiento Hidráulico para la Descarga de Cátodos de Cobre en la Refinería de Huaymanta La Oroya”

TESIS
PARA OPTAR EL TÍTULO PROFESIONAL DE:
INGENIERO MECANICO ELECTRICISTA

CESAR ABRAHAM FLORES CISNEROS
PROMOCION: 1977 - 2

LIMA . PERU . 1992
<table>
<thead>
<tr>
<th>CONTENIDO</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROLOGO</td>
<td>1</td>
</tr>
<tr>
<td>CAPITULO I : INTRODUCCION</td>
<td>4</td>
</tr>
<tr>
<td>CAPITULO II : EL CATODO DE COBRE</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Generalidades</td>
<td>6</td>
</tr>
<tr>
<td>2.2 El Cátodo</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Su Obtención</td>
<td>6</td>
</tr>
<tr>
<td>CAPITULO III : LA OPERACION DE LA DESCARGA DE LOS CATODOS</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Descripción</td>
<td>12</td>
</tr>
<tr>
<td>3.2 Su ubicación dentro de las Operaciones del Manipuleo de Cátodos de Cobre</td>
<td></td>
</tr>
<tr>
<td>CAPITULO IV : EL PROBLEMA</td>
<td>15</td>
</tr>
<tr>
<td>4.1 Definición</td>
<td>16</td>
</tr>
<tr>
<td>4.2 Tecnología vinculada al problema</td>
<td>16</td>
</tr>
<tr>
<td>4.3 Posibilidades de Solución y Requerimientos</td>
<td>17</td>
</tr>
<tr>
<td>4.4 "Lista de Exigencias"</td>
<td></td>
</tr>
<tr>
<td>CAPITULO V : CONCEPTO - SOLUCION</td>
<td>22</td>
</tr>
<tr>
<td>5.1 Generalidades</td>
<td>23</td>
</tr>
<tr>
<td>5.2 Black - Box</td>
<td>25</td>
</tr>
<tr>
<td>5.3 Bloques Funcionales</td>
<td>31</td>
</tr>
<tr>
<td>5.4 Operaciones que satisfacen las funciones</td>
<td></td>
</tr>
<tr>
<td>5.5 Matriz Morfológica</td>
<td></td>
</tr>
</tbody>
</table>
5.6 Configuración de Alternativas
5.7 Selección de Alternativas

CAPITULO VI : LA INGENIERIA BÁSICA
6.1 Generalidades
6.2 Requisitos
6.3 Relación de Planos

CAPITULO VII : LA INGENIERIA DE DETALLE
7.1 Relación de Planos
7.2 Cálculo de Reacciones en las diferentes Posiciones de la Carga
7.3 Cálculo de Componentes
7.3.1 Mesa Fija
7.3.2 Mesa Móvil
7.3.3 Soporte de Mesa
7.3.4 Transportador de Rodillos
7.3.5 Soporte de Transportador de Rodillos
7.4 Mando Electro - Hidráulico
7.4.1 Cálculos

CONCLUSIONES

BIBLIOGRAFÍA

PLANOS

APENDICES
El desarrollo del presente trabajo, sobre el "DISEÑO DE UNA MAQUINA DE ACCIONAMIENTO HIDRAULICO PARA LA DESCARGA DE CATODOS DE COBRE EN LA REFINERIA DE HUAYMANTA - LA OROYA" se presenta en Siete Capítulos, los cuales van desde la Definición del producto a ser manipulado por la máquina, hasta la Ingeniería de Detalle. De esta manera se presenta la secuencia lógica del proceso que debería seguir un Diseñador Mecánico en el momento de enfrentar un problema de "Diseño de Máquinas".

En el Capítulo II, sobre el Cátodo de Cobre se intenta describir el producto a ser manipulado por la Máquina, materia del presente diseño. Se hace un recuento del proceso seguido en Centromin Perú para la obtención del Cátodo de Cobre partiendo desde el mineral (extraido de la mina).

En el Capítulo III, sobre La Operación de la Descarga de los Cátodos, se describe la operación de la descarga en forma manual (proceso actual), la cual será mecanizada mediante el empleo de la "Máquina" materia del presente diseño.

En el Capítulo IV, sobre el Problema, se racionaliza el pedido el pedido realizado por Operaciones de Centromin Perú (Superintendencia de Refinerías) para el diseño de una Máquina Descargadora; "si
realmente máquina solicitada soluciona sus **problemas**", que actualmente se les presenta con la descarga manual.

En el Capítulo V, sobre el Concepto-Solución se definen las funciones que deberá asumir la máquina y las operaciones que las satisfacen. Se llega a plantear alternativas de solución y se escoge la más conveniente (técnica-económicamente).

En Capítulo VI sobre la Ingeniería Básica, se convierte la configuración (solución al problema en forma esquemática) seleccionada en el Capítulo anterior en una Máquina (con sus respectivos elementos de máquinas).

En el Capítulo VII, sobre la Ingeniería de Detalle se pasa a realizar todos los cálculos de Resistencia de Materiales, lo que nos permite llegar a determinar las dimensiones los materiales de los diferentes elementos de máquinas representados en los planos respectivos, los mismos que servirán para la siguiente etapa (de fabricación).

En el Apéndice, se incluye: el Estimado de Costos para la Fabricación de la Máquina, su Cronograma de Fabricación lo cual nos da una idea de precio y del tiempo necesario para su fabricación. Además se incluyen copias de catálogo, de los elementos hidráulicos empleados.

Quisiera agradecer al personal Jerárquico de Centromín Perú (Superintendencia de Fundición y Refinerías, División de Proyectos) los cuales confiaron en mi capacidad profesional y me dieron toda
la colaboración del caso. También al Ingeniero Benjamin Barriga quien me asesoró en lo relativo a los Mandos Hidráulicos.
Finalmente a mi Alma Mater, la UNI, institución con una mística de servicio, calidad y alto nivel científico que acoge a los jóvenes peruanos y extranjeros para formarlos y hacerlos profesionales útiles a la sociedad para su progreso permanente y sostenido.
CAPITULO I
INTRODUCCION

La presente Tesis es una alternativa de cómo un Ingeniero puede atacar el problema de "Diseño de una Máquina".

Como novedad se ha incluido la Metodología Alemana (recomendación VDI 2222, "Métodos de Diseño: Concepción de Productos Técnicos") la cual plantea los siguientes pasos: el Problema, Concepto-Solución, Ingeniería Básica e Ingeniería de Detalle.

Esta metodología rompe con el criterio de que un buen diseño, solo se consigue si el diseñador está "inspirado". Mediante una secuencia lógica permite llegar a soluciones creativas, lógicas, en corto tiempo y con la garantía de que se está atendiendo a los requerimientos del cliente.

Otra ventaja está en el hecho de que se pasa al diseño luego de haber entendido plenamente cual es el problema que se pretende atender mediante el diseño y antes de comenzar a diseñar se revisa toda la tecnología existente alrededor del problema (no se tiene que empezar de cero, cada vez, el Ingeniero no tiene porque "descubrir la pólvera").
También se presenta la tecnología hidráulica, como una herramienta para dar solución a problemas de generación de movimientos y transmisión de fuerzas. La aplicación de esta tecnología permite diseños mas limpios (menos elementos), robustos y fiables. Los elementos hidráulicos empleados en la presente Tesis no son abstractos (generales), sino identificados dentro de los productos hidráulicos ofertados en el mercado, de tal forma que de ser adquiridos pueden ser montados directamente y el circuito funcionará de acuerdo a los requerimientos de la máquina.
CAPÍTULO II
EL CÁTODO DE COBRE

2.1 Generalidades

Siendo el Cátodo de Cobre el elemento a ser manipulado por la Máquina motivo del presente diseño, en este Capítulo se describen las características físicas y químicas del Cátodo para luego indicar los procesos seguidos en la empresa hasta su obtención.

2.2 El Cátodo

Es uno de los productos que vende Centromin Perú. Es un cobre electrolítico de 99.99 % de pureza.

Sus dimensiones son: 750x1000 mm (anchoxlargo), y su espesor varía según los días de permanencia en la celda electrolítica (7, 8 ó 9 días) pudiendo alcanzar los 15 mm y un peso máximo de 98 Kg. (fig. 2.1)

2.3 Su Obtención

Para la obtención de este cobre electrolítico de 99.99 % de pureza se ha debido seguir el siguiente proceso:

1° Extracción de la mina. En forma de mineral junto con otros metales. La extracción se realiza en los seis asientos mineros:
fig. 2.1.- El Cátodo de Cobre, Elementos y Dimensiones
Cobriza, Cerro de Pasco, Casapalca, Morococha, San Cristobal y
Yauricocha.

2° Producción del concentrado de cobre. En los asientos mineros
antes mencionados se hallan sus respectivas plantas concentradoras.
En éstas, el mineral es sometido a un proceso de molienda y luego de
flotación donde se separan los metales de los minerales no valiosos
mediante la acción de reactivos químicos. Al concentrado se le
extrae parte del agua mediante sedimentación y filtraje hasta quedar
con un 20 % de humedad.

3° Fundición de Cobre. Los concentrados de cobre son transportados
de los asientos mineros hacia la Planta de Fundición de Cobre
ubicada en la ciudad de La Oroya a 3800 m.s.n.m..

Luego que el concentrado es sometido a un tratamiento, se le funde y
deposita en moldes. El cobre así obtenido es 97.6 % puro (en el
otro 2.9 % se encuentra Pb, Zn, Te, Au, Ag,...). Este producto es el ánodo en el proceso electrolítico.

4° Refinación del Cobre. Los ánodos son conducidos de la Fundición
da la Refinería, ubicada en la misma ciudad de La Oroya, en la zona
de Huaymanta.

El cobre fundido es sometido a un proceso de electrólisis. El
producto de este proceso es el cátodo de cobre (materia del presente
estudio), el cual es 99.99 % puro. (fig. 2.2)
fig 2.2 Proceso para Obtención del Cátodo de Cobre
CAPITULO III
LA OPERACION DE LA DESCARGA DE LOS CÁTODOS

3.1 Descripción

La función "Descarga de Cátodos" se satisface actualmente mediante la ejecución de cuatro (4) operaciones:

- retiro de los cátodos (25) del dispositivo de izaje (suspendido por la grúa),
- volteo de los mismos (de posición vertical a horizontal); los cátodos se van colocando uno encima de otro conformando una ruma de cátodos,
- retiro de las barras de suspensión de c/u de los cátodos,
- retiro de la ruma formada de la zona de descarga, para iniciar una nueva operación de descarga.

Actualmente todas las operaciones se realizan en forma "manual". La grúa trae 25 cátodos suspendidos en un dispositivo de izaje desde las celdas electrolíticas hasta la zona de descarga. Dos operarios se encargan de descolgar del dispositivo, cátodo por cátodo, apoyándolos en el suelo y dejándolos caer uno sobre otro, conformando así las respectivas rumas.
Como se mencionó en el punto 2.2, el peso de cada cátodo oscila entre los 65 y 96 Kg. La descarga de cátodos se realiza durante un turno/día pudiendo alcanzar la suma de 2900 cátodos descargados. Aún cuando los dos operarios encargados de la descarga van rotando, se trata de operaciones que implican gran fatiga y riesgo en la ejecución.

3.2 Su ubicación dentro de las Operaciones de Manipuleo de Cátodos de Cobre

En tanto existen operaciones antes y después de la descarga de cátodos y se trata de que este proyecto sea el inicio en la mecanización de todas las "operaciones de manipuleo de cátodos" paso a describir c/u de éllas.(fig. 3.1)

Suministro de Anodos. Los ánodos una vez llevados de la Fundición a la Refinería son almacenados. Luego, mediante la grúa y un dispositivo de izaje 24 ánodos son trasladados a la celda electrolítica respectiva. En la electrólisis el ánodo es el insumo y el cátodo el producto final.

Preparación y Suministro de Cátodos Iniciales. En la electrólisis los iones de Cu pasan del ánodo al cátodo. Al iniciarse este proceso, como cátodo debe existir una lámina muy delgada (del mismo material, 0.5 mm de espesor) donde se vayan adhiendo los iones de Cu; esta lámina delgada es el cátodo inicial. Con la misma forma del cátodo, debe prepararse (colocación de orejas, rigidez de la plancha) y debe alimentarse a las celdas electrolíticas.

Suministro de Electrolito y Fluido Kléctrico. El electrolito está
formado por una mezcla de Sulfato de Cobre y de Acido Sulfúrico. Existe un flujo permanente de electrolito entre las celdas con la finalidad de mantener las concentraciones deseadas. La corriente eléctrica pasa del ánodo (+) al cátodo (−) a través del electrolito. Se controla la densidad de corriente (corriente / sección del perfil de cobre).

Cosecha de Cátodos. Un ánodo tiene una vida en la celda de 24 días, después del cual deberá ser retirado y reemplazado por uno nuevo. Cada ánodo produce tres (3) cátodos. Cada cátodo es cosechado (retirado) a los 7, 8 o 9 días mediante la grúa y su respectivo dispositivo de izaje y llevados a la zona de descarga.

Lavado, Pesaje y Almacenamiento de Cátodos. Los cátodos, descargados y ordenados en rumas son lavados con chorros de agua y vapor de agua; luego pesados y de allí almacenados. Aquellos que son para venta son ensanchados y los que van a ser fundidos simplemente almacenados.

Fundición de Cátodos. Parte de la producción de cátodos serán fundidos y convertidos en barras para su posterior trefilación y conversión en alambre de cobre. (fig. 3.2)
CAPÍTULO IV
EL PROBLEMA

4.1 Definición

El Departamento de Refinerías de Centromin Perú solicitó al Departamento de Ingeniería, el diseño de una máquina (para su posterior fabricación) que permitiera realizar la descarga de los cátodos de cobre (actualmente realizada en forma manual) en forma mecanizada.

Se trata en esta parte de la Tesis, de analizar "si la mecanización solicitada es la solución a los problemas que actualmente se les viene presentando con la operación manual".

Luego de investigar los motivos que originaron la solicitud de diseño de la máquina descargadora, se encontraron los siguientes:

Seguridad, la descarga de cátodo por cátodo por dos operarios es muy riesgosa (peso del cátodo: 98 Kg).

Disminución del trabajo bruto, la descarga de cátodo por cátodo por dos operarios en series de 25 y así consecutivamente es un trabajo muy duro para el ser humano.

Mejora de la productividad de la operación, la máquina no se cansa, el hombre sí.

Dar un paso hacia la mecanización de todas las operaciones de manipuleo de cátodos de cobre.
Lo cual nos llevó a la consideración de que el pedido hecho al Departamento de Ingeniería era correcto y que "la máquina solicitada si satisfacería las necesidades de la Operación de la Descarga de Cátodos".

4.2 Tecnología vinculada al problema

Definido el problema, procedí a identificar las siguientes aplicaciones de mecanización de la descarga de cátodos:

- Cerro de Pasco Planta de Lixiviación Descargador basculante de accionamiento neumático.
- Ilo Refinería de Cobre - Descargador basculante de accionamiento hidráulico.
- Japón Oferta Mitsubishi Descargador basculante de accionamiento hidráulico.

Tanto en la segunda como la tercera aplicación, la descarga de cátodos es parte de un Proyecto Automatizado que involucra a todas las operaciones de Manipuleo de Cátodos: Elaboración y Almacenamiento de Cátodos Iniciales, Lavado-Descarga y Pesaje de los Cátodos Finales.

4.3 Posibilidades de Solución y Requerimientos

Definido el problema, identificadas las aplicaciones de mecanización de la descarga de cátodos, evalué las posibilidades de llevar adelante el presente diseño. Los requerimientos fueron los
siguientes:

a) Técnicos:

- información acerca de la concepción de la solución proporcionada por las aplicaciones antes mencionadas,
- manejo interno (empresa) de tecnologías: mecánica, estructural, hidráulica, de producción y de control,
- manejo externo (consultor o proveedor) de mandos hidráulicos.

b) Económicos

- disponibilidad de personal,
- materiales (nacionales e importados),
- disponibilidad de S/. para cubrir los gastos involucrados en el diseño, como también su posterior construcción y puesta en marcha de la máquina descargadora.

Analizados los requerimientos, se vio la factibilidad de poder contar con ellos, con lo cual se dio luz verde al presente proyecto.

4.4 "Lista de Exigencias"

La lista de exigencias que deberá satisfacer el presente diseño, para estar de acuerdo con los requerimientos del cliente son las siguientes (en orden de importancia):

K.1 La máquina deberá ejecutar la descarga y el volteo de los cátodos en rumas de 25 (función principal). Esta exigencia involucra la ejecución de los siguientes
procesos (funciones parciales):

- tomar los cátodos del dispositivo de izaje,
- apilarlos (pegarlos unos contra otros),
- voltearlos (girarlos 90°),
- almacenarlos por rumas de 25 cátodos.

E.2 El Diseño debe ser parte del Proyecto Global para la Mecanización de todas las Operaciones de Manipuleo de Cátodos (PMOMC).

Entre otras características deberá:

ubicarse en el área libre entre las Celdas Electroquímicas y el Horno Asarco,
tomar en cuenta los niveles (alturas) de las diferentes operaciones que están comprometidas con la descarga- lavado de cátodos y extracción + almacenamiento de barras de suspensión.

E.3 El descargador recibirá los cátodos del Dispositivo de Izaje (traido por la grúa puente) en número de 25, distanciados 125 mm entre sí y en posición vertical.

E.4 La descarga será por grupos de 25 cátodos dispuestos uno sobre otro y en posición horizontal.

Luego de descargados deberán almacenarse también en rumas bien conformadas de 25 cátodos.

E.5 El descargador deberá soportar un mínimo de 2,5 Tn (25x98 Kg).

Así mismo deberá albergar 25 cátodos de 15x750x1000
mm de dimensión c/u, con sus respectivas orejas y barras de suspensión.

K.6 El accionamiento deberá conseguirse por actuadores hidráulicos (empleados ya en otras aplicaciones de buen nivel tecnológico), con las ventajas de ser un accionamiento directo, adecuado para la carga a mover y estandarizar con respecto a los accionamientos para el resto del PMOMC.

El Volteo deberá efectuarse a Velocidad Constante.

K.7 El Sistema deberá ser seguro, tomando en cuenta las cargas a mover y los cambios de niveles que experimentará.

K.8 Los materiales a ser usados deberán guardar relación con aquellos empleados por la empresa en este tipo de aplicaciones (HEAVY DUTY).

Los procesos de fabricación deberán ser sencillos y factibles de ser realizados en los talleres de La Oroya.

El Sistema será producto del ensamblaje de partes que permitan una fácil operación de montaje y transporte.

K.9 El Diseño conllevará a un mantenimiento mínimo de la máquina durante su operación (pocos elementos y de gran calidad).

Deberá permitir un mantenimiento programado y acorde con las necesidades de producción.
R.10 El mando estará ubicado en un lugar de fácil acceso para el operador de la "operación de descarga". Contará con un accionamiento de parada de emergencia.

Deberá poder integrarse al Sistema Automatizado del PMOMC.

R.11 Para el suministro de Energía Eléctrica se contará con 220V/440V para fuerza y 24V/48V para el control. La Energía Hidráulica se obtendrá por un equipo de generación propio de la máquina (electro-hidráulico) de mediana presión.

R.12 Respecto a los plazos para la finalización del diseño deberá ser el mínimo, empleando al máximo los recursos propios de la empresa.

"Lista de Requisiciones" – Resumen

E.1 Función Principal
E.2 El Diseño es parte del Proyecto Global
E.3 Alimentación a la máquina
E.4 Descarga de la máquina
E.5 Capacidad: peso – volumen de la carga
E.6 Tipo de Accionamiento
E.7 Seguridad
E.8 Materiales, Procesos de Fab., Montaje y Transporte
E.9 Mantenimiento
E.10 Mando
E.11 Energía - Suministro
E.12 Plazo de Entrega
CAPÍTULO V
CONCEPTO – SOLUCIÓN

5.1 Generalidades

En el presente Capítulo (y una vez definido el problema y las exigencias que deberá reunir el presente diseño en el Capítulo anterior), se identificarán las funciones parciales que deberá satisfacer el Diseño, se propondrán las posibles operaciones que permiten cumplir las funciones respectivas, se obtendrán diferentes juegos de operaciones (alternativas) y se escogerá la alternativa solución; la misma que se desarrollará en la siguiente etapa del proyecto: la Ingeniería Básica.

5.2 Black – box

La Caja negra es la abstracción más gruesa que permite la solución del problema planteado, osea satisface la función principal (exigencia E.1).

- Descargar
- Cambiar de Posición
- Almacenar
Se encontrara representada por el siguiente gráfico (fig.5.1):

fig. 5.1. - Black box

5.3 Bloques Funcionales

Cada función principal está compuesta de distintas funciones parciales. Su representación en forma de bloques (diagrama de flujo) es la siguiente (fig.5.2):
fig. 5.2.- Diagrama de Flujo de Funciones
5.4 *Operaciones que satisfacen las funciones* (alternativas)

Las operaciones que satisfacen las diferentes funciones se muestran en los siguientes esquemas:

fig. 5.3. - Operación de Descarga (O11)

fig. 5.4. - Operación de Descarga y Apilado (O12 + O22)
fig. 5.5.- Operación de Apilado (O21)

fig. 5.6.- Operación de Extracción de Barras (O31)
fig. 5.7.- Operación De Extracción de Barras (O₃₂)

fig. 5.8.- Operación Rotar 90° y Bajar Nivel (O₄₁ + O₅₁)
fig. 5.9.- Operación de Retiro de Carga (Ox₁)
(rodillos locos)

fig. 5.10 Operación de Retiro de Carga (Ox₂)
(rodillos accionados)
fig. 5.11.- Operación Almacenar (071)
(rodillos locos)

fig. 5.12.- Operación Almacenar (072)
(rodillos accionados)
fig. 5.13.- Operación Subir Nivel + Rotar 90° (O\text{α}_1 + O\text{ω}_1)
5.5 **Matriz Morfológica** (funciones vs operaciones)

Una vez definidas las operaciones que corresponden a las diferentes funciones, estas son mostradas mediante una matriz morfológica, la misma que nos permite identificar las diferentes alternativas de solución. En este caso identifico dos alternativas.

<table>
<thead>
<tr>
<th>Función Principal</th>
<th>Función Parcial</th>
<th>Operaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descargar</td>
<td>Descargar (1)</td>
<td>Mediane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accionamiento</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dispositivo de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Izaje - O₁₁</td>
</tr>
<tr>
<td></td>
<td>Apilar (2)</td>
<td>Apilador con</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alimentador</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hidráulico y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>avance por</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transportador - O₂₁</td>
</tr>
<tr>
<td>Cambio de</td>
<td>Extracción</td>
<td>Manual con</td>
</tr>
<tr>
<td>Posición</td>
<td>Barras (3)</td>
<td>Liberación de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>barras por placa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>de elevación - O₃₁</td>
</tr>
<tr>
<td></td>
<td>Rotar 90°</td>
<td>Rotación(gravedad) +</td>
</tr>
<tr>
<td></td>
<td>(4) +</td>
<td>contención</td>
</tr>
<tr>
<td></td>
<td>Bajar Nivel</td>
<td>hidráulica</td>
</tr>
<tr>
<td></td>
<td>2,5 m (5)</td>
<td>O₄₁ + O₅₁</td>
</tr>
<tr>
<td></td>
<td>Retiro de</td>
<td>Por gravedad y</td>
</tr>
<tr>
<td></td>
<td>Carga (6)</td>
<td>sobre rodillos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>locos - O₆₁</td>
</tr>
<tr>
<td>Almacenar</td>
<td>Almacenar (7)</td>
<td>Sobre</td>
</tr>
<tr>
<td>Ramas</td>
<td></td>
<td>transportador de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rodillos locos con</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pendiente - O₇₁</td>
</tr>
<tr>
<td>Recuperar</td>
<td>Subir Nivel</td>
<td>Rotación por brazo</td>
</tr>
<tr>
<td>Posición</td>
<td>2,5 m (8) +</td>
<td>de palanca</td>
</tr>
<tr>
<td>Inicial</td>
<td>Rotar Inv.90°</td>
<td>hidráulico</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>O₄₁ + O₅₁</td>
</tr>
</tbody>
</table>

Solución 1

Solución 2
5.6 Configuración de Alternativas

Con la Matriz Morfológica se pudieron identificar dos alternativas de solución a saber:

Configuración-Solución 1
Configuración-Solución 2
5.7 Selección de Alternativas

Para la selección de la alternativa más adecuada es necesario establecer diversos criterios de evaluación, que nos permitan identificar las ventajas y desventajas de c/u de las alternativas.

<table>
<thead>
<tr>
<th>#</th>
<th>Criterio de Evaluación</th>
<th>Solución 1</th>
<th>Solución 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td># de elementos mecánicos(+ económico)</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>2</td>
<td>Facilidad de manejo</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>Complejidad</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>4</td>
<td>Consumo de energía</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>5</td>
<td>Disponibilidad de tiempo de grúa</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

V = ventaja
D = desventaja

Comentarios

1. Se han tomado en cuenta "Criterios de Evaluación" que permitan diferenciar las alternativas.
2. Ambas soluciones cumplen con la Función Principal del Problema y la Lista de Exigencias.
3. La Solución 2 es el “Concepto Optimo” para la solución actual al problema de la Descarga de Cátodos. Es más económica y cumple con las exigencias del problema.

4. La Solución 1, es la solución a futuro; pensando en el PMOMC.

5. La Solución 2 es flexible. Se convierte con facilidad en la Solución 1 (cuando se implemente la mecanización de las demás operaciones de manipuleo de cátodos).
CAPITULO VI
LA INGENIERIA BASICA

6.1 Generalidades

En esta Etapa se procede a definir la Configuración Seleccionada (Solución 2), mediante el diseño y/o selección de elementos de máquinas.

6.2 Requisitos

Se cuidó que el resultado de la Ing. Básica respetara la "función principal" y la "lista de exigencias" (3.4); así como también que tuviese las características que le permitiesen en un futuro integrarse al "proyecto de mecanización de todas las operaciones de manipuleo de cátodos".
Además se tomaron en cuenta criterios de: Fabricación, Estandarización, Montaje, Mantenimiento, Operación, Seguridad y Costos.

6.3 Relación de Planos

Los dibujos que muestran la representación de la Máquina
Descargadora de Cátodos dentro de las demás operaciones de manipuleo de cátodos (preparación-transporte-almacenamiento de cátodos iniciales, extracción-transporte-almacenamiento de barras y lavado-apilamiento y descarga de cátodos) son los siguientes:

<table>
<thead>
<tr>
<th># de plano</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>5001</td>
<td>Planta</td>
</tr>
<tr>
<td>5002</td>
<td>Elevación</td>
</tr>
</tbody>
</table>

Los dibujos de ensamble de la Máquina Descargadora de Cátodos (concebida de acuerdo a la la configuración-solución 2, 4.5). Solución más económica y sencilla capaz de adecuarse fácilmente al proyecto general de mecanización total son los siguientes:

<table>
<thead>
<tr>
<th># de plano</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003</td>
<td>Vista lateral</td>
</tr>
<tr>
<td>5004</td>
<td>Vista frontal y secciones</td>
</tr>
</tbody>
</table>

Son partes características de la Máquina Descargadora de Cátodos las siguientes:

1° Mesa. Cuya función es la de recibir a los 25 cátodos, ayudar en el proceso de descolgado de los mismos del dispositivo de izaje y soportarlos durante el volteo.

2° Mesa Movil. Elevando a los 25 cátodos, facilita la extracción de las barras de suspensión (de utilidad cuando se mecanicen las
demás operaciones de manipuleo de cátodos).

3° Soporte de Mesa. Estructura que soporta la mesa + la carga.

4° Transportador de Rodillos. En dos etapas. Una primera para recibir a la ruma de cátodos luego del voltee y una segunda para transportarlas (por gravedad) y almacenarlas.

5° Actuadores Hidráulicos. El cilindro principal, contiene a la carga en el voltee y permite el retorno de la mesa a su posición inicial. El segundo, cuya función es la de accionar unas palancas para elevar la mesa móvil y con eso a los 25 cátodos facilitando la extracción de las barras de suspensión.
CAPITULO VII
LA INGENIERÍA DE DETALLE

7.1 Relación de Planos

La Ingeniería de Detalle (documentación para la fabricación) está plasmada en la siguiente relación de planos:

<table>
<thead>
<tr>
<th># de plano</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>5005</td>
<td>Estructura de Mesa</td>
</tr>
<tr>
<td>5006</td>
<td>Mesa Móvil</td>
</tr>
<tr>
<td>5007</td>
<td>Soporte de Mesa y Trans.#1</td>
</tr>
<tr>
<td>5008</td>
<td>Soporte Transportador #2</td>
</tr>
<tr>
<td>5009</td>
<td>Transportador - Rodillos</td>
</tr>
<tr>
<td></td>
<td>Eje y Chumaceras de Mesa</td>
</tr>
</tbody>
</table>

7.2 Cálculo de Reacciones en las diferentes Posiciones de la Carga

El Cálculo de las Reacciones se realiza sobre el Cuerpo Rígido (Mesa Fija). Son puntos donde se calculan las reacciones, el apoyo izquierdo de la mesa (A), el punto de giro de la mesa (O) y el pivote donde actúa el cilindro hidráulico (H). La única acción considerada es el peso de la Carga (P).

Las Posiciones, del I al IV, representan las diferentes posiciones que va tomando la carga, originadas por el giro de la mesa.
fig. 7.1.- Posición 0

\[\Sigma M_0 = 0 \]
\[A(877 + 45) - 5000(45) = 0 \]
\[A = 244 \text{ Kg} \]
\[\Sigma F_v = 0 \]
\[244 + 0 = 5000 \]
\[O = 4756 \text{ Kg} \]

fig. 7.2.- Posición I

\[\Sigma M_0 = 0 \]
\[5000(45) - H(400) = 0 \]
\[H = 562.5 \text{ Kg} \]
\[\Sigma F_v = 0 \]
\[5000 + 562.5 = 0 \]
\[O = 5562.5 \text{ Kg} \]

fig. 7.3.- Posición II

\[O = P = 5000 \text{ Kg} \]
3.2 $H=P=5000 \text{ Kg}$

fig. 7.4.- Posición III

fig. 7.5 Valores de a y b en función al ángulo de giro α (Pos. III)

\[a = \text{Sen}(\alpha - 1.53).R \]
\[b = c - a = \text{Cos}(45 - \alpha).r - \text{Sen}(\alpha - 1.53).R \]
\[a = b \]
\[\text{Sen}(\alpha - 1.53) = 1, r = 0.211 \]
\[\text{Cos}(45 - \alpha) = \frac{2R}{2} \]
\[\alpha = 11.5^\circ \]
\[a = 232.1 \]
\[b = 239.7 \]
fig. 7.6.- Posición IV

7.3 Cálculo de Componentes

En base a las reacciones calculadas en 7.2, se procede a calcular en este punto las fuerzas actuantes sobre cada uno de los elementos de los respectivos componentes (mesa fija, mesa móvil, soporte de mesa, transportador de rodillos, etc) en las diferentes posiciones que va tomando la carga (de la Posición 0 a la Posición IV) buscando siempre la más crítica (donde las cargas son mayores). En estas condiciones se calculan los cortantes, momentos flectores y momentos torsores.

Con estos valores se puede chequear cada uno de los elementos considerados en el diseño, mediante los cálculos respectivos de Resistencia de Materiales.
7.3.1 Mega Fija

Marca 5005-A-1 (Plano 5005)

Cálculo de Fuerzas, Cortantes y Momentos Flectores

\[
A' = \frac{260 \times 4756}{922+260} = 523.1 \text{ Kg}
\]

\[
B' = \frac{Q-A'}{2} = 1854.9 \text{ Kg}
\]

\[
A_0 = A + A' = 244 + 523.1 = 645.1 \text{ Kg}
\]

\[
B_0 = B' = 1854.9 \text{ Kg}
\]

\[
V_x = 0 = 645.1 - q(x-252)
\]

\[
x = 574.5 \text{ mm}
\]

\[
M_{max}/x = 574.5
\]

\[
M_x = 645.1x - q(x-252)(x-252)
\]

\[
M_{max} = 266546.25 \text{ Kg-mm}
\]

\[
M_{1132} = 102510 \text{ Kg-mm}
\]

\[
A_1 = \frac{260 \times 5562.5}{922+260} = 611.8 \text{ Kg}
\]

\[
B_1 = Q - A_1 = 2169.5 \text{ Kg}
\]

\[
V_x = 0 = 611.8 - q(x-252)
\]

\[
x = 558 \text{ mm}
\]

\[
M_{max}/x = 558
\]

\[
M_x = 611.8x - q(x-252)(x-252)
\]

\[
M_{max} = 247809.6 \text{ Kg-mm}
\]

\[
M_{1132} = 141752.4 \text{ Kg-mm}
\]

fig. 7.7.- Posición 0

fig. 7.8.- Posición I
fig. 7.9 Posición II

\[\begin{align*}
A_{II} &= 260 \cdot 5000 = 550 \text{ Kg} \\
(922+260) &= 2 \\
B_{II} &= Q - A_{II} = 1950 \text{ Kg} \\
2 &= x = 527 \text{ mm} \\
M_{\text{Max/}x} &= 527 \\
M_x &= 550x - q(x - 252)(x - 252) \\
2 &= M_{527} = 214225 \text{ Kg-mm} \\
M_{1132} &= -214808 \text{ Kg-mm} \\
\end{align*} \]

\[\begin{align*}
P' &= P \cdot \cos \alpha = 2450 \text{ Kg} \\
x &= 232 - 237 \text{ mm} \\
\cos \alpha &= 240 - 245 \text{ mm} \\
\cos \alpha &= \frac{245}{237+245} = 1245.3 \text{ Kg} \\
H' &= 2450 - 1245.3 = 1204.7 \text{ Kg} \\
O' &= \frac{440.3}{741.5+440.3} = 1245.3 = 464 \text{ Kg} \\
O' &= 1245.3 - 464 = 781.3 \text{ Kg} \\
H' &= \frac{278.5}{41.7+278.5} = 1204.7 = 1047.8 \text{ Kg} \\
H' &= 1204.7 - 1047.8 = 156.9 \text{ Kg} \\
q' &= \frac{P' - 2.34}{(2)(523.5)} \\
A_{III} &= O' - A = 464 \text{ Kg} \\
\end{align*} \]
fig. 7.10. - Posición III (α=11.5°)

Chequeo Marca 5005-A-1

- Características del perfil

Perfil: 6WF15,5 *

- Zx=10 pulg3 (módulo de sección)
- d=6"
- br=6"
- tw=0.235"

Acero: A-36

- $f_p=16.8$ Kg/mm2 (esfuerzo permisible a la flexión, 0.66 F_y)
- $f_v=10.0$ Kg/mm2 (esfuerzo permisible al corte, 0.40 F_y)

- Chequeo por Flexión

$Z_{min}=266546.25$

$Z_{max}=266546.25$

$Z_{min}=15866$ mm3

$=0.97$ pulg3OK

* Exigencia E-8, 6WF15,5 es el perfil de menor tamaño usado en la empresa en construcción de equipos (HEAVY DUTY)
- Cheque por longitud de arriostramiento

condición: \(br \geq \frac{1}{13} \)

\[
\frac{1}{13} = 786.1
\]

\[
\frac{1}{13} = 13 \; 13 \; 25.4
\]

\[
\frac{1}{13} = 2.4 \; \text{OK}
\]

- Chequeo por Cortante

\[
\begin{align*}
f_{v\text{MAX}} &= \frac{V_{\text{MAX}}}{d.t_w} \times (6)(0.235) \times 25.4^2 \\
f_{v\text{MAX}} &= 1.44 \; \text{Kg/mm}^2 \; \text{OK}
\end{align*}
\]

Marca 5005-A-8 (Plano 5005)

Cálculo de Fuerzas, Cortantes y Momentos Flectores

fig. 7.11.- Posición I (más crítica)
Chequeo Marca 5005-A-8

- Características del perfil

Perfil: 6WF15,5 **

Zx=10 pulg³ (módulo de sección)
d=6"

bτ=6"

tw=0.235"

Acero: A-36

fp=16.8 Kg/mm² (esfuerzo permisible a la flexión, 0.66 Fy)

fv=10.0 Kg/mm² (esfuerzo permisible al corte, 0.40 Fy)

- Chequeo por Flexión

\[
\frac{Z_{\min \text{ o } \max}}{f_p} = 564079.6 \\
= 16.8
\]

\[
Z_{\min} = 33576.2 \text{ mm}^3 \\
= 2.1 \text{ pulg}^3 \text{OK}
\]

- Chequeo por longitud de arriostramiento

condición: \(b \tau \geq \frac{l}{13} \)

\[
\frac{l=1182.1}{13 \ 13 \ 25.4} \\
= 3.6" \text{OK}
\]

- Chequeo por Cortante

** Exigencia E-8, 6WF15,5 es el perfil de menor tamaño usado en la empresa en construcción de equipos (HEAVY DUTY)
Marca 5005-A-7 (Plano 5005)

Sometido a Compresión

fig. 7.12.- Posición I (más crítica)

- Características del perfil

Perfil: 6WF15,5

\(r_{\text{min}} = 1.46'' \)

\(A = 4.56 \text{ pulg}^2 \)

Acero: A-36

\(F_y = 36 \text{ Ksi (limite de fluencia)} \)

\(= 25.3 \text{ K/mm}^2 \)

\(C_0 = 126.1 \text{ (Relación de esbeltez de columnas)} \)

- Chequeo por esbeltez

*** Exigencia E-8, 6WF15,5 es el perfil de menor tamaño usado en la empresa en construcción de equipos (HEAVY DUTY)
condición: \(K_1 < C_c \)
\[
K_1 = 1 \left(\frac{351}{r} \right) \cdot 1
\]
\[
K_1 = 9.47 \quad \text{.................OK}
\]

- Chequeo por esfuerzo permisible - \(F_a \)

\[
F.S. = 5 + 3 \frac{K_1}{r} - 1 \left(\frac{K_1}{r} \right)^3
\]
\[
= 3.8 \quad C_c \quad 8 \quad C_c^3
\]

\[
F.S. = 1.7
\]

\[
F_a = \frac{[1 - \left(\frac{K_1}{r} \right)^2]}{2 \quad C_c^2} \cdot F_y = (0.59)(25.3)
\]

\[
F_a = 14.9 \text{ Kg/mm}^2
\]

\[
F_m = F = 2159.5 \cdot 1
\]

\[
A = 4.56 \quad 25.4^2
\]

\[
F_m = 0.74 \text{ Kg/mm}^2 \quad \text{(esfuerzo de trabajo)} \quad \text{.....OK}
\]

fig. 7.13 Sometido a Flexión
- Características del perfil

Perfil: (2)6WF15,5

\[Z_x = (2)(10) \text{ pulg}^3 \] (módulo de sección)

\[d = 8'' \]

\[b_x = 6'' \]

\[t_w = 0.235'' \]

Acero: A-36

\[f_p = 16.8 \text{ Kg/mm}^2 \] (esfuerzo permisible a la flexión, 0.66 \(F_y \))

\[f_v = 10.0 \text{ Kg/mm}^2 \] (esfuerzo permisible al corte, 0.40 \(F_y \))

- Chequeo por Flexión

\[Z_{\text{min}} = Z_{\text{max}} = 3172500 \]

\[f_p = 16.8 \]

\[Z_{\text{min}} = 188839 \text{ mm}^3 \]

\[= 11.5 \text{ pulg}^3 \] OK

- Chequeo por longitud de arriostramiento

condición: \(b_x \geq \frac{1}{13} \)

\[\frac{1}{13} = 0.0769231 \]

\[\frac{1}{13} = 0.0769231 \]

\[25.4 \]

\[13 \]

\[\frac{1}{13} = 0.0769231 \] OK

13

- Chequeo por Cortante

\[f_v \text{MAX} = \frac{V_{\text{MAX}}}{2d.t_w} = \frac{5875}{2(2)(6)(0.235)} \]

\[25.4^2 \]

\[f_v \text{MAX} = 3.23 \text{ Kg/mm}^2 \] OK

**** Exigencia E-8, 6WF15,5 es el perfil de menor tamaño usado en la empresa en construcción de equipos (HEAVY DUTY)
Marca 5005-A-2 (Plano 5005)

Cálculo de Fuerzas, Cortantes y Momentos Flexores

fig. 7.14.- Posición III - Sometido a Flexión

- Características del perfil

Perfil: 6WF15,5 *****

$Z_x = 10 \text{ pulg}^3$ (módulo de sección)

$d = 6''$

$b_f = 6''$

$t_w = 0.235''$

Acero: A-36

***** Exigencia E-8, 6WF15,5 es el perfil de menor tamaño usado en la empresa en construcción de equipos (HEAVY DUTY)
-52-

\(f_p = 16.8 \text{ Kg/mm}^2 \) (esfuerzo permisible a la flexión, 0.66 \(F_y \))
\(f_c = 10.0 \text{ Kg/mm}^2 \) (esfuerzo permisible al corte, 0.40 \(F_y \))

- Chequeo por Flexión

\[Z_{\min} = M_{\max} = 374064.6 \]
\[f_p = 16.8 \]
\[Z_{\min} = 22265.8 \text{ mm}^3 \]
\[= 1.4 \text{ pulg}^3 \] OK

- Chequeo por longitud de arriostramiento

condición: \(br \geq \frac{1}{13} \)
\[\frac{1}{13} \times 357 = \frac{1}{13} \times 13 \times 25.4 \]
\[1 = 1.08" \] OK

- Chequeo por Cortante

\[f_{v\text{MAX}} = V_{\text{MAX}} = \frac{1047.8 \times 1}{d \times t_w} = (6)(0.235) 25.4^2 \]
\[f_{v\text{MAX}} = 1.16 \text{ Kg/mm}^2 \] OK

\[M = (16750)(29) \]
\[M = 4857500 \text{ Kg-mm} \]

(Raymond J. Roark, 1978, pag. 110)

\[M_1 = -M \times (4a - 3a^2 - \frac{12}{l^2}) \]
\[M_1 = -198472 \text{ Kg-mm} \]

\[M_2 = M \times (2a - 3a^2) \]
\[M_2 = 16750 \text{ Kg-mm} \]
M_2 = 1612680 Kg·mm
M_{max} = (8375)(357)
M_{max} = 2939875 Kg·mm

fig. 7.15 Posición IV - Sometido a Flexión y Torsión
- Chequero por esfuerzo permisible - \(\tau_{max} \)

\[\tau_{max} = \left(\sigma_{n} / 2 \right)^2 + \tau^2_{xy} \]
\[= \left(1 / 2. M / Z \right)^2 + (T. c / J)^2 \]

fig. 7.16.- Módulos de Sección \(z_1 \) y \(z_2 \)

\(Z = Z_1 + Z_2 \)

\(Z_1 = Z_{ewf15.5} = (10)(25.4^3) = 163870.6 \text{ mm}^3 \)

\(Z_2 = 2 \left(b \cdot h^2 \right) = 2 \left(\frac{a}{6} \right) (138.7^2) = 41040.4 \text{ mm}^3 \)

\(Z = 204911.1 \text{ mm}^3 \)
(J/c) = (J/c)_1 + (J/c)_2

fig. 7.17.- Momentos Polares (J/c)_1 y (J/c)_2

(Dubbel, Tomo I, pag. 517-519)

F_a = (152.3)(152.3) = 23185.3 mm²
F_1 = (138.7)(138.7) = 19237.7 mm²
F_m = \frac{1}{2}(F_a + F_1) = 21216.5 mm²

(J/c)_1 = 2F_m.s = (2)(21216.5)(6.8) = 286544 mm²

(J/c)_2 = \frac{1}{3}(6²)(138.7) = 1884.4 mm²

(J/c) = 290203.7 mm²

reemplazando:

\[T_{\text{MAX}} = \frac{1.1494937.5}{2} + \frac{198472}{204911.1} \]

\[T_{\text{MAX}} = 3.71 \text{ Kg/mm}^2 \]

(A-36, \quad T_{\text{MAX}} = 8.36 \text{ Kg/mm}^2)
Marca 5005-A-24 (Plano 5005)

Cálculo de Fuerzas, Cortantes y Momentos Flectores

(de Raymond J. Roark, 1978, pag.110)

\[M_1 = M_1 (41a - 3a^2 - 1/2) = -2574281.3 \text{Kg-mm} \]

\[M_2 = M_2 (21a - 3a^2) = 1018043.5 \text{ Kg-mm} \]

\[M_{\text{MAX}} (\text{IZQ}) = -M(4a - 9a^2 + 6a^3 - 1) \]

\[M_{\text{MAX}} (\text{DER}) = +M(4a - 9a^2 + 6a^3) \]

\[M_{\text{MAX}} (\text{DER}) = +1853309.1 \text{ Kg-mm} \]

fig. 7.18.- Posición III

fig. 7.19.- Posición IV - Sometido a Flexión

- Chequeo por Flexión

\[Z_{\text{MIN}} = M_{\text{MAX}} = 3004190.9 \]

\[f_p = 16.8 \]

\[Z_{\text{MIN}} = 178820.9 \text{ mm}^3 \]
fig. 7.20. - Sección del perfil

fig. 7.21. - Sometido a Compresión

- Chequeo por esbeltez

condición: \(k \frac{1}{r} < C_a \)

\[C_a = 126.1 \]

\[K = 0.65 \]
\[l = 320.2 \text{ mm} \]

\[r = \sqrt{\frac{I}{A}} \]

\[I = (120)(171.8^3) - (88.2)(140^3) \]
\[12 \]

\[I = 30538781.5 \text{ mm}^4 \]
\[A = 8268 \text{ mm}^2 \]

\[r = 60.8 \text{ mm} \]
\[K_{0.1} = 3.4 \ldots \ldots \ldots \ldots \text{OK} \]

- Chequeo por esfuerzo permisible - \(F_a \)

\[F.S. = \frac{5 + 3(K_1/r) - 1(K_1/r)^2}{3 \times 8 \times C_o} \]
\[F.S. = 1.68 \]

\[F_a = \frac{(1 - (K_1/r)^2)}{2 \times C_o^2} \cdot F_y = (0.6)(25.3) \]

\[F_a = 15.08 \text{ Kg/mm}^2 \]

\[F_u = H = 16750 \]
\[A = 8268 \]

\[F_u = 2.06 \text{ Kg/mm}^2 \] (esfuerzo de trabajo) \ldots \text{OK}

Marca 5005-A-26 (Plano 5005)

fig. 7.22.- Posición III - Sometido a Compresión
- Chequeo por esfuerzo permisible - F_a

\[
f_w = H = \frac{2457.6}{A \times (2)(25.4)(200)}
\]

$f_w = 0.24 \text{ Kg/mm}^2$.........................OK

fig. 7.23.- Posición IV - Sometido a Flexión + Corte

- Chequeo por Flexión

\[
Z_{min} = \frac{M_{MAX} = 2345000}{16.8} = 139583 \text{ mm}^3
\]

(Dubbel, Tomo I, pag.469)

\[
Z_X = 2(b_h^2) = 2(25.4)(280^2) \div 6
\]

$Z_X = 663786.7 \text{ mm}^3$.............OK

fig. 7.24.- Sección del Elemento
- Chequeo por Cortante

\[f_{\text{vmax}} = \frac{H}{2A} \left(\frac{2}{(25.4)(90)}\right) \]

\[f_{\text{vmax}} = 3.66 \text{ Kg/mm}^2 \]..............OK

Marca 5005-A-30 (Plano 5005)

Cálculo de Fuerzas, Cortantes y Momentos Flectores

fig. 7.25.- Cálculo de Fuerzas

\[\Sigma M_o = 0 \]

\[P(70) - F(172) = 0 \]

\[F = \frac{P(70) = (5000)(70)}{172} \]

\[F = 2035 \text{ Kg} \]

fig. 7.26.- Cortantes y Momento Flector

\[M_{\text{max}} = (2035)(174) \]

\[M_{\text{max}} = 354070 \text{ Kg-mm} \]
- Chequeo por Flexión

\[Z_{min} = \frac{M_{max}}{f_p} = 35.4070 = 21075.5 \text{ mm}^2 \]
\[f_p = 16.8 \]

\[Z_x = \frac{2(b \cdot h^2)}{6} = \frac{2(19)(130^2)}{6} \]
\[Z_x = 205200 \text{ mm}^3 \]
\[\text{OK} \]

fig. 7.27. - Sección

- Chequeo por Cortante

\[f_{vmax} = \frac{F}{A} = \frac{2035}{2(2)(19)(100)} \]
\[f_{vmax} = 0.54 \text{ Kg/mm}^2 \]
\[\text{OK} \]

Marca 5009-D-1 (Plano 5009)

Cálculo de Fuerzas, Cortantes y Momentos Flexores

\[M_{max} = (5875)(239) \]
\[M_{max} = 1404125 \text{ Kg-mm} \]

fig. 7.28. - Posición IV
- Chequeo por Flexión

\[
\begin{align*}
\frac{f}{M} &= \frac{(32)(1404125)}{\pi d^3} \\
&= \frac{5.21 \text{ Kg/mm}^2}{140} \\
&= \text{OK}
\end{align*}
\]

(Acero Boehler VCN 150, \(S_y=60 \text{ Kg/mm}^2\), \(f'_{p}=27 \text{ Kg/mm}^2\))

\(f'_{p}\) = esfuerzo permisible en ejes con canal chavetero

- Chequeo por Deflexión

condición: \(y_{\text{MAX}} \leq 0.8 \text{ mm/m}\)

para \(l = 1192 \text{ mm}\)

\[
\begin{align*}
y_{\text{MAX}} &\leq (0.8)(1.192) \\
&= 0.954 \text{ mm}
\end{align*}
\]

(Dubbel, Tomo I, pag.489)

\[
y_{\text{MAX}} = \frac{Q/4}{EI} \frac{l^3}{4} a (1-4a^2), \quad \text{(para condiciones normales)}
\]

\[
y_{\text{MAX}} = \frac{2937.5}{8}(1192^2)(2391(1-4.239^2)}{(8)(21000)(150^4)} \quad \text{3 1192}\]

\[
y_{\text{MAX}} = 0.22 \text{ mm} \quad \text{OK}
\]

- Chequeo del apoyo

![Diagram](image)

\[
\begin{align*}
P &= 5875 \times 130 \\
f &= \frac{M}{2} = \frac{2}{Z} \frac{d^2}{\pi 120^3} \\
&= \frac{32}{32}
\end{align*}
\]

fig. 7.29. - Apoyo
f=2.25 Kg/mm²

(Acero Bohler VCN 150, Sy=60 Kg/mm², f_p=36 Kg/mm²)

f_p = esfuerzo permisible en ejes

Marcas: 5005-A-26 con 5005-A-24 (Plano 5005)

Cálculo de la Unión Soldada

\[f = \sqrt{(f')^2 + (f'')^2} \]

\[f' = H = \frac{16750}{1(4)(280)} = 15 \text{ Kg/mm} \]

\[f'' = M = (16750)(140) = 44.9 \text{ Kg/mm} \]

\[Z \omega = \frac{(2)(280^2)}{3} \]

\[f = 47.3 \text{ Kg/mm} \]

- tamaño del cordón - (a)

\[a_{\text{min}} = \frac{f}{S_y} = \frac{47.3}{9} = 5.26 \text{ mm} \]

\[a_{\text{min}} = 8 \text{ mm} \]

OK
Marcas: 5005-A-2 con 5005-A-7 (Plano 5005)

Cálculo de la Unión Soldada

\[T= M_1 = 192472 \text{ Kg-mm} \]
\[H/4 = 4187 \text{ Kg} \]

fig. 7.31. - Posición IV

\[f = \sqrt{ \left(f' + f_{H''} \right)^2 + \left(f_v' \right)^2 } \]

\[f' = H/4 = 4187 = 3.6 \text{ Kg/mm} \]
\[L = 1152 \]
\[J = J_{w1} + J_{w2} \]
\[J_{w1} = \frac{2 \cdot (150^3) + (6) \cdot (150) \cdot (150^2) + 150^3}{6} = 5062500 \text{ mm}^3 \]
\[J_{w2} = 138 \cdot (3) \cdot (138^2) + 138^2 = 1752048 \text{ mm}^3 \]
\[J = 6814548 \text{ mm}^3 \]

\[f_{H''} = \frac{T \cdot 0.75}{J} = \frac{192472 \cdot 0.75}{6814548} = 2.12 \text{ Kg/mm} \]
\[f_v'' = \frac{T \cdot 0.75}{J} = \frac{192472 \cdot 0.75}{6814548} = 2.12 \text{ Kg/mm} \]
f=6.1 Kg/mm

- tamaño del cordón - (a)

\[a_{min} = \frac{f}{s} = 6.1 \times 0.7 \text{ mm} \].................OK

Marcas: 5005-A-3 con 5005-A-6 (Plano 5005)

Cálculo de la Unión Soldada

Posición IV

- "igual que la unión anterior, solo cambia el valor de \(T=M_2=1612680 \) Kg-mm"

\[f^{11}_{H} = T_{CH} = (1612680)(75) = 17.75 \text{ Kg/mm} \]

\[f^{11}_{V} = T_{CV} = (1612680)(75) = 17.75 \text{ Kg/mm} \]

\[f = 27.76 \text{ Kg/mm} \]

- tamaño del cordón - (a)

\[a_{min} = \frac{f}{s} = 27.76 \times 3.1 \text{ mm} \]

\[a_{min} = 6 \text{ mm} \].................OK
Marcas: 5005-A-3 con 5005-A-24 (Plano 5005)

Cálculo de la Unión Soldada

fig. 7.33. - Posición IV

\[H/2 = 8375 \text{ Kg} \]
\[M_2 = 1612680 \text{ Kg-mm} \]

fig. 7.34. - Momento Polar de Inercia de línea

\[x = \sum x_1 \cdot l_1 = (4) (30) (60) + (60) (220) + (210) (220) = 100 \text{ mm} \]
\[\sum l_1 = (4)(60) + (2)(220) \]

en general \[I = I_0 + Lh^2 \]
\[I' = \frac{bd^2}{2} + \int \left(\frac{220}{2} \right) (150^2) + (2)(220)(35^2) = 3014000 \text{ mm}^3 \]
\[I'' = \frac{2d^3 + L'' h''^2}{6} = (2)(60^3) + (4)(60)(70^2) = 1248000 \text{ mm}^3 \]
\[I = 4262000 \text{ mm}^3 \]
$Z_{sup} = \frac{1}{110}$ mm2

$$f = \sqrt{f'^2 + f''^2}$$

$f' = \frac{h}{2} = 8375 = 12.3$ Kg/mm
$L = 680$

$f'' = \frac{M}{Z_{\omega}} = 1612880 = 41.6$ Kg/mm
$Z_{\omega} = 38745$

$f = 43.4$ Kg/mm

- tamaño del cordón - (a)

$a_{min} = f = 43.4 = 4.8$ mm

$s_{\omega} = 9$

$a_{min} = 6$ mm. OK

Marcas: 5009-C-1 con 5009-C-4

Cálculo de la Unión Soldada

fig. 7.35.- Posición IV - Momento Polar de Inercia de línea
\[Z_w = \frac{I_w}{c} = \frac{2}{6} = \frac{2}{175} \]

\[Z_w = 65340 \text{ mm}^2 \]

\[f = \sqrt{f' + f''^2} \]

\[f' = 5875 = 9.9 \text{ Kg/mm} \]

\[L = 592 \]

\[f'' = 15.6 \text{ Kg/mm} \]

\[f = 18.4 \text{ Kg/mm} \]

- tamaño del cordón - (a)

\[a_{min} = \frac{f}{2} = 18.4 = 2.0 \text{ mm} \]

Marcas: 5005-A-28 con 5005-A-3 (Plano 5005)

Cálculo de la Unión Empernada

fig. 7.37. - Unión Empernada

- Carga Mayor en Perno por Momento Flector

\[F_{ti} = M.C_1 = \frac{[(2035)(74)](135)}{35^2 + (2)(35^2) + (2)(135^2)} = 522.6 \text{ Kg} \]

- Fuerza Externa Actuante = Tracción + Corte

\[F_e = \sqrt{F_t^2 + 4F_s^2} = \sqrt{522.6^2 + (4)(2035/4)^2} = 1143.9 \text{ Kg} \]
Sección Minima de c/Perno

\[A_s = \frac{F_a}{0.4S_y} = \frac{1143.9}{0.4(34)} \approx 84 \text{ mm}^2 \]

"Perno seleccionado: 4\#5/8"UNC, \(A_s = 145.8 \text{ mm}^2 \) \ldots \ldots OK"

Marcas: 5005-A-18 con 5009-C-1 (Planos 5005 y 5009)

Cálculo de la Unión Empernada

![Diagrama](image)

fig. 7.38.- Posición IV

- Carga Mayor en Perno por Momento Flector

\[F_{t1} = M_c = \frac{[(5875)(173)](465)}{2(35^2) + (2)(465^2)} \approx 1086.7 \text{ Kg} \]

- Fuerza Externa Actuante = Tracción + Corte

\[F_e = \sqrt{F_t^2 + 4F_a^2} = \sqrt{1086.7^2 + (4)(5875/4)^2} \approx 3132.1 \text{ Kg} \]

- Sección mínima de c/Perno

\[A_s = \frac{F_e}{0.4S_y} = \frac{3132.1}{0.4(52)} \approx 150.6 \text{ mm}^2 \]

"Perno seleccionado: 4\#3/4"UNC Grado 8, \(A_s = 215.8 \text{ mm}^2 \ldots \ldots OK"
7.3.2 Mesa Móvil

Marca 5005-A-1 (Plano 5005)

Cálculo de Fuerzas, Cortantes y Momentos Flectores

\[P_1 = q \cdot l \]

\[M_A = M_B = +P_1 \cdot 4a^2 \]

\[= \frac{(2)(500)(500) \cdot (4)(450^2)}{8} \]

\[= \frac{500^2}{8} \]

\[M_A = M_B = +202500 \text{ Kg-mm} \]

\[M_c = -P_1(1-4a^2) \]

\[= \frac{8}{1} \cdot 12^2 \]

\[= \frac{(2)(500)(500)(1-(4)(450^2))}{8} \]

\[= \frac{500^2}{8} \]

\[M_c = -140000 \text{ Kg-mm} \]

(Dubbel, Tomo I, pag.490)

fig. 7.39.- Cortantes y Momentos Flectores

- Características del perfil

Perfil: S6*12.5

\[Z_x = 7.37 \text{ pulg}^3 \] (módulo de sección)
d=6"

b=3.33'
t_w=0.232"

Acero: A-36

f_p=16.8 Kg/mm² (esfuerzo permisible a la flexión, 0.66 F_y)
f_v=10.0 Kg/mm² (esfuerzo permisible al corte, 0.40 F_y)

- Chequeo por Flexión

Z_min=M_max=202500
f_p 16.8

Z_min=12054 mm³
 = 0.74 pulg³.............OK

- Chequeo por longitud de arriostramiento

condición: b_x≥\frac{1}{13}

\frac{1}{13}=580.7\frac{1}{13}=25.4

\frac{1}{13}=1.76".............OK

- Chequeo por Cortante

f_v max=V_max = \frac{900}{d t_w (0.232)} 25.4²

f_v max=1.00 Kg/mm².............OK
Marca 5006-C-5 (Plano 5006)

Cálculo de Fuerzas, Cortantes y Momentos Flectores

\[R = \sqrt{(F/6)^2 + (F/6)^2} \]

\[R = 899.7 \text{ Kg} \]

fig. 7.40.- Cálculo de Fuerzas

\[M_{\text{max}} = (583.8)(78) \]

\[M_{\text{max}} = 45536.4 \text{ Kg-mm} \]

fig. 7.41.- Cortantes y Momentos Flectores

- Chequeo por Flexión Pura

\[f = \frac{32M}{\pi d^2} \times \pi(30^2) \]

\[f = 17.2 \text{ Kg/mm}^2 \]

\[\text{OK} \]

(Acero Boehler VCL 140, \(S_y = 55 \text{ Kg/mm}^2\), \(f_p = 27.5 \text{ Kg/mm}^2\))
Marca 5006-C-1 (Plano 5006)

Cálculo de Fuerzas y Momentos Flectores en B

fig. 7.42.- Cálculo de Fuerzas

\[
c = \frac{l}{25} = \frac{12}{25}
\]

\[f'_{b} = M + F = \frac{2[(50)(10^{3}) + (50)(10)(20^{2})]}{Z}
\]

\[f'_{b} = 4.11 \text{ Kg/mm}^2 \text{..............OK}
\]

fig. 7.43.- Palanca B-C

\[f''_{b} = M + F = \frac{(339.2)(\cos 23)(187) + (339.2)(\sin 23)}{16333.3}
\]

\[f''_{b} = 3.7 \text{ Kg/mm}^2 \text{..............OK}
\]

(Acero A-36, \(f_p = 16.8 \text{ Kg/mm}^2 \))

fig. 7.44.- Palanca A-B
7.3.3 Soporte de Mesa

Marca 5007-A-1 (Plano 5007)

fig. 7.45.- Posición I - Sometido a Compresión

- Características del perfil

Perfil: 8WF31

\[r_{\text{min}} = 2.01'' \]

\[A = 9.12 \text{ pulg}^2 \]

Acero: A-36

\[F_y = 36 \text{ Ksi (limite de fluencia)} \]

\[= 25.3 \text{ K/mm}^2 \]

\[C_o = 126.1 \text{ (Relación de esbeltez de columnas)} \]

-Chequeo por esbeltez

condición: \[K \cdot l < C_o \]

\[\frac{K \cdot l}{r} < C_o \]

\[\frac{K \cdot l = (0.8)(1445)}{r} < 25.4 \]

\[r = 2.01 \]

\[K \cdot l = 1 \]
-74-

\[K_{c}l = 22.6 \quad \text{OK} \]

- Chequeo por esfuerzo permisible - \(f_a \)

\[
F.S. = 5 + 3(K_l/r) - 1(K_l/r)^3
\]
\[
3 \quad 8 \quad C_0 \quad 8 \quad C_0^3
\]

\[F.S. = 1.73 \]

\[
\frac{[1 - (K_l/r)^2]}{2 C_0^2} \cdot F_y = (0.57)(25.3)
\]

\[F_a = 14.4 \text{ Kg/mm}^2 \]

\[F_w = P = 2781.3 \quad \frac{1}{A \quad 9.12 \quad 25.4^2} \]

\[F_w = 0.5 \text{ Kg/mm}^2 \quad (\text{esfuerzo de trabajo}) \quad \text{OK} \]

fig. 7.46.- Posición IV - Sometido a Tracción

- Chequeo por esfuerzo permisible - \(f \)

\[
f = \frac{P = 5875}{A \quad (9.12)(25.4^2)} = 1.00 \text{ Kg/mm}^2 \quad \text{OK} \]
7.3.4 Transportador de Rodillos

Marca 5009-7 (Plano 5009)
Cálculo de Fuerzas, Cortantes y Momentos Flexores

\[M_{max} = (58)(625) \]
\[M_{max} = 36250 \text{ Kg-mm} \]

fig. 7.47.- Momento Flexor

- Chequeo por Flexión

\[f = \frac{M}{d^3} \frac{36250}{\pi d^3} \]
\[f = 13.7 \text{ Kg/mm}^2 \]

Ok

(Acero Bohler VCL 140, \(S_y = 55 \text{ Kg/mm}^2 \), \(f_p = 27.5 \text{ Kg/mm}^2 \))
7.3.5 Soporte de Transportador de Rodillos

Marca 5007-B-1 (Plano 5007)

Cálculo de Fuerzas, Cortantes y Momentos Flectores

\[R_1 = \frac{569 \times 1250}{(281+569)} \]

\[R_1 = 836.8 \text{ Kg} \]

\[R_2 = 1250 - 836.8 \]

\[R_2 = 413.2 \text{ Kg} \]

\[M_{\text{MAX}} = (836.8)(281) \]

\[M_{\text{MAX}} = 235130.9 \text{ Kg-mm} \]

fig. 7.48.- Cortantes y Momento Flector

- Características del perfil

Perfil: W6\#20

\[Z_x = 13.4 \text{ pulg}^3 \text{ (módulo de sección)} \]

\[d = 6.20'' \]

\[b_x = 6.02'' \]

\[t_w = 0.258'' \]

Acero: A-36

\[f_p = 16.8 \text{ Kg/mm}^2 \text{ (esfuerzo permisible a la flexión, 0.66 F_y)} \]

\[f_v = 10.0 \text{ Kg/mm}^2 \text{ (esfuerzo permisible al corte, 0.40 F_y)} \]

- Chequeo por Flexión

\[Z_{\text{MIN}} = M_{\text{MAX}} = 235130.9 \]

\[f_p = 16.8 \]
Zmin = 13995.9 mm³
= 0.9 pulg³ OK

- Chequeo por longitud de arriostramiento

condición: \(b_2 \geq 1 \)

\[
\frac{1}{13} = \frac{569}{13} \quad \frac{1}{13} = 25.4
\]

\[
\frac{1}{13} = 1.7'' \quad OK
\]

- Chequeo por Cortante

\[
f_{v_{max}} = \frac{N_{v_{max}}}{d_{tw}} = \frac{836.2}{(6.2)(0.258)} 25.4^2
\]

\[
f_{v_{max}} = 0.81 \text{ Kg/mm}^2 OK
\]

Marca 5007-B-2 (Plano 5007)

\[
F = 413.2 + 1250 = 1663.2 \text{ Kg}
\]

fig. 7.49.- Sometido a Compresión

- Perfil: W6×20

\[
r_{min} = 1.51''
\]

\[
A = 5.88 \text{ pulg}^2
\]
Acero: A-36

\[F_y = 36 \text{ Ksi} \text{ (limite de fluencia)} \]
\[= 25.3 \text{ K/mm}^2 \]

\[C_0 = 126.1 \text{ (Relación de esbeltez de columnas)} \]

- Chequeo por esbeltez

condición: \(K_1 < C_0 \)

\[r \]

\[K_1 = (0.65)(546) \rightleftharpoons 1 \]
\[r = 1.51 \quad 25.4 \]

\[K_1 = 9.25 \ldots \ldots \ldots \ldots \text{OK} \]
\[r \]

- Chequeo por esfuerzo permisible - \(F_a \)

\[F.S. = \frac{5 + 3(K_1/r) - 1(K_1/r)^3}{3 \ 8 \ C_0 \ 8 \ C_0^3} \]

\[F.S. = 1.69 \]

\[F_a = \frac{(1 - (K_1/r)^2)}{2 \ C_0^2} \cdot F_y = (0.59)(25.3) \]

\[F_a = 14.9 \text{ Kg/mm}^2 \]

\[F_a = \frac{F = 1663.2}{A \ 5.88 \ 25.4^2} \]

\[F_a = 0.44 \text{ Kg/mm}^2 \text{ (esfuerzo de trabajo)...OK} \]
Marca 5008-19 (Plano 5008)

Cálculo de Fuerzas, Cortantes y Momentos Flectores

ΣMA=0

\[(625)(90) + (625)(460) + (625)(620) + (625)(990) - R_x(1230) = 0 \]

\[R_x = 1097.6 \text{ Kg} \]

\[R_1 = 1402.4 \text{ Kg} \]

\[M_{\text{max}} = 1402.4(90+370+160) - 625(370+160) - 625(160) \]

\[M_{\text{max}} = 438238 \text{ Kg-mm} \]

fig. 7.50.- Cortantes y Momento Flector

- Características del perfil

Perfil: C8×8.2

\[Z_x = 4.38 \text{ pulg}^3 \text{ (módulo de sección)} \]

\[d = 6'' \]

\[b_x = 1.92'' \]

\[t_w = 0.200'' \]

Acero: A-36

\[f_p = 16.8 \text{ Kg/mm}^2 \text{ (esfuerzo permisible a la flexión, 0.66 F_y)} \]

\[f_v = 10.0 \text{ Kg/mm}^2 \text{ (esfuerzo permisible al corte, 0.40 F_y)} \]
- Chequeo por Flexión

\[Z_{\text{min}} = M_{\text{max}} = 4382 \text{ mm}^3 \]
\[f_p = 16.8 \]
\[Z_{\text{min}} = 26035.6 \text{ mm}^3 \]
\[= 1.6 \text{ pulg}^3 \quad \ldots \ldots \quad \text{OK} \]

- Chequeo por longitud de arriostramiento

condición: \(b \geq \frac{1}{13} \)
\[\frac{1}{13} = 370, 1 \]
\[13 \quad 13 \quad 25.4 \]
\[\frac{1}{13} = 1.12'' \quad \ldots \quad \text{OK} \]

- Chequeo por Cortante

\[f_{V\text{max}} = \gamma_{\text{max}} = \frac{1402.4}{d \cdot t \cdot w^2} \]
\[d = 6 \quad 0.2 \quad 25.4^2 \]
\[f_{V\text{max}} = 1.3 \text{ Kg/mm}^2 \quad \ldots \ldots \quad \text{OK} \]

Marca 5008-9 (Plano 5008)

fig. 7.51.- Sometido a Compresión
- Perfil: C6*3.2

\[r_{min} = 0.537'' \]
\[A = 2.4 \text{ pulg}^2 \]

Acero: A-36

\[F_y = 36 \text{ Ksi (limite de fluencia)} \]
\[= 25.3 \text{ K/mm}^2 \]
\[C_o = 126.1 \text{ (Relación de esbeltez de columnas)} \]

- Chequeo por esbeltez

condición: \[K_a < C_o \]
\[r \]
\[K_a = \left(1.0 \right)^{\frac{685}{1}} \]
\[r \]
\[= 0.537 \quad 25.4 \]
\[K_a = 50.2 \text{...............OK} \]
\[r \]

- Chequeo por esfuerzo permisible - \(F_a \)

\[F.S. = 5 + 3(KI/r) - 1(KI/r)^3 \]
\[3 8 \quad C_o \quad 8 \quad C_o^3 \]
\[F.S. = 1.81 \]

\[F_a = \frac{\left[1 - (KI/r)^2 \right]}{2 \quad C_o^2} \cdot F_y = (0.51)(25.3) \]
\[F_a = 12.9 \text{ Kg/mm}^2 \]

\[F_w = F = 2500 \]
\[A \quad 2.4 \quad 25.4^2 \]
\[F_w = 1.6 \text{ Kg/mm}^2 \text{ (esfuerzo de trabajo)...OK} \]
7.4 Mando Electro Hidráulico

7.4.1 Cálculos

Dado:
- Bomba, \(Q=28 \) lt/min
- Cilindros, | CD 250 B 125/80x800 (Mesa de Volteo) |
 | CD 160 B 80/40x150 (Mesa Móvil) |
- Cargas, según cálculos 6.2

MESA DE VOLTEO

Chequeo por Fuerzas (\(F \)) y presiones (\(p \))

\[
\begin{align*}
\bar{p}_b &= \bar{p}_p + \Delta \bar{p} \\
&= \frac{16750 + (19)(59)}{122} \\
&= \frac{137+5}{122} \\
&= 142 \text{ bar} \\
\end{align*}
\]

(compromete a los elementos 8 y 9)

\[
\begin{align*}
F_{a-ac} &= p_{11.11} A_p \\
&= (40(122) \\
F_{a-ac} &= 4880 \text{ Kg}
\end{align*}
\]

\[
\begin{align*}
\bar{p}_s-co &= \frac{F}{A_d} = \frac{16750}{112} \\
&= 137 \text{ bar}
\end{align*}
\]

(elementsos 12 y 14)

- Chequeo de los tiempos de la carrera del cilindro (elemento 17)

\[
\begin{align*}
t &= \frac{1.5 A}{Q} \\
t_b &= (0.8)(6)(59) = 10'' \\
&= (x1.4=14'', \text{ tiempo regulado})
\end{align*}
\]
- Chequeo por pandeo del vástago del cilindro

Según tabla de catálogo REXROTH RD 17006/5.81 pag.A/B 10
OK

MESA MOVIL

- Chequeo de Fuerza (F)

\[F_a = p \cdot A = (40)(50) \]
\[F_a = 2000 \text{ Kg} \]
OK

- Chequeo de los tiempos de la carrera del cilindro (elemento 18)

\[t = 1.6A \]
\[Q \]
\[t_b = (0.150)(6)(34) = 1.0'' \]
\[(x1.4 = 1.4'', \text{ tiempo regulado}) \]
\[t_a = (0.150)(6)(50) = 1.6'' \]
\[(x1.24 = 2.0'', \text{ tiempo regulado}) \]

- Chequeo por pandeo del vástago del cilindro

Según tabla de catálogo REXROTH RD 17005/5.81 pag.B 12
OK
CONCLUSIONES

1.- El presente diseño cumple con la "Lista de Exigencias", planteada por el Cliente.

2.- Constituye un Diseño Robusto y que dando solución al problema planteado (Mecanizar la Operación de la Descarga de los Cátodos), mediante elementos complementarios puede pasar a formar parte de la instalación totalmente automatizada que cubre todas las operaciones de manipulación de cátodos en la Refinería de Cobre de La Oroya.

3.- La Metodología de Diseño: Problema, Concepto, Solución, Ingeniería Básica e Ingeniería de Detalle, es perfectamente aplicable para este problema y permitió llegar a una solución óptima.

4.- La aplicación de la Tecnología Hidráulica permitió obtener una solución compacta, robusta y fiable.
BIBLIOGRAFÍA

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Manual of Steel Construction - 1970

BARRIGA, BENJAMIN G.
Método de Diseño en Ingeniería Mecánica, Lima
Pontificia Universidad Católica del Perú, 1985

DUBBEL, H.
Manual del Constructor de Máquinas, España
Editorial LABOR S.A. - 1977

FESTO
Curso de Hidráulica para la Formación Profesional
FESTO DIDACTIC, 1978

HERION
Catálogo de Componentes Hidráulicos
Leibfried, 1985

PARKER, HARRY
Ingeniería Simplificada para Arquitectos y Constructores
Alianza para el Progreso, 1938

RAYMOND J. ROARK
Fórmulas de Resistencia de Materiales, Esfuerzos y Deformaciones
Universidad de Wisconsin, 1978

SKF
Manual de Mantenimiento y Recambio de Rodamientos
SKF, 1986