UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA CIVIL

"Excentricidad Accidental en el Análisis Sísmico"

Tesis para optar el Título de Ingeniero Civil

Presentado por:
Bachiller Jesús Eduardo Gómez Padilla

Lima – Perú
2004
Este trabajo está dedicado a Dios por haber puesto tanta gente bondadosa en mi camino, y con especial admiración y cariño a mis padres - Cirina y Víctor, y a mis hermanos - Betzabeth, Víctor y Marcos. Pues es bien cierto que: “En esta vida, por más condiciones que uno tenga, para lograr grandes objetivos, es necesario que haya gente buena a tu alrededor y además tener un poco de suerte”.
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

INDICE

RESUMEN

INTRODUCCIÓN

CAPÍTULO 1

ENTORNO DEL PROBLEMA

1.1 Los sísmos y sus características 1 - 1
1.1.1 Movimientos sísmicos del terreno 1 - 1
1.1.2 Efectos sísmicos en los edificios 1 - 2
1.1.2.1 Características de la acción sísmica 1 - 2
1.1.2.2 Respuesta de los edificios a la acción sísmica 1 - 5
1.1.2.3 Efectos de torsión 1 - 8

1.2 Norma técnica de edificación E.030 (2003) 1 - 8
1.2.1 Generalidades 1 - 8
1.2.1.1 Solicitaciones sísmicas y análisis 1 - 8
1.2.1.2 Modelos para análisis de edificios 1 - 8
1.2.1.3 Peso de la edificación 1 - 9
1.2.1.4 Desplazamientos laterales 1 - 9
1.2.1.5 Solicitaciones sísmicas verticales 1 - 9
1.2.2 Análisis Estático 1 - 10
1.2.2.1 Generalidades 1 - 10
1.2.2.2 Período fundamental 1 - 10
1.2.2.3 Fuerza cortante en la base 1 - 11
1.2.2.4 Distribución de la fuerza sísmica en altura 1 - 11
1.2.2.5 Efectos de torsión 1 - 11
1.2.2.6 Fuerzas sísmicas verticales 1 - 12
CAPÍTULO 2
MÉTODOS DE ANÁLISIS

2.1 Exigencias de la norma E.030 “Diseño Sismorresistente” 2 - 1

2.2 Efectos de la modificación de masas y rigideces en los periodos naturales y modos de vibración 2 - 2

2.3 Variación de la matriz de masas al considerar la excentricidad accidental 2 - 8

2.4 Expresiones simplificadas para edificaciones de 1 piso 2 - 11

2.5 Aplicación a edificaciones de uno o dos pisos 2 - 22

CAPÍTULO 3
INFLUENCIA DE LA EXCENTRICIDAD ACCIDENTAL

3.1 Edificios estudiados 3 - 1

3.2 Estructura típica de un colegio 3 - 2

3.3 Módulos de un conjunto habitacional 3 - 24

3.3.1 Módulo I 3 - 24

3.3.2 Módulo II 3 - 46

3.3.3 Módulo III 3 - 70

3.4 Edificio de 9 pisos 3 - 93

3.5 Edificio de 12 pisos 3 - 115

3.6 Resumen 3 - 137
CAPÍTULO 4

COMPONENTE ROTACIONAL DEL SISMO

4.1 Estimación de la componente rotacional 4 - 1
4.2 Respuesta evaluada por superposición modal espectral 4 - 2
4.3 Comparación de los efectos de la rotación en planta con los debidos a una excentricidad accidental 4 - 3
 Estructura típica de un colegio 4 - 5
 Módulo I 4 - 11
 Módulo II 4 - 17
 Módulo III 4 - 23
 Edificio de 9 pisos 4 - 29
 Edificio de 12 pisos 4 - 35

CONCLUSIONES Y RECOMENDACIONES

BIBLIOGRAFÍA
ÍNDICE DE FIGURAS

CAPÍTULO 1

Fig. 1.1 Fuerza de Inercia generada por la vibración de la estructura 1 - 3
Fig. 1.2 Modelo de un sistema de un grado de libertad (1 GDL) 1 - 3
Fig. 1.3 Flujo de fuerzas en la estructura debido a la vibración 1 - 4
Fig. 1.4 Amplificación del movimiento del terreno en sistemas con distinto periodo fundamental de vibración 1 - 5
Fig. 1.5 Relación carga deformación de una estructura 1 - 6
Fig. 1.6 Respuesta elástica e inelástica de sistemas de un grado de libertad 1 - 7

CAPÍTULO 2

Fig. 2.1 Variación de la matriz de masas de una edificación de 1 piso (conformado por una losa rectangular) al realizar el análisis con respecto a P.R y considerando excentricidades en ambas direcciones. (a), (b) y (c) aceleración unitaria en la dirección del GDL 1, 2 y 3 respectivamente. 2 - 10
Fig. 2.2 Considerando excentricidad “ex” en la planta regular de una edificación de 1 piso 2 - 11
Fig. 2.3 Considerando excentricidad “ey” en la planta regular de una edificación de 1 piso 2 - 20
Fig. 2.4 Considerando excentricidad “ex = 5% (7m)” en la planta regular de una edificación de 1 piso 2 - 22
Fig. 2.5 Relación entre las componentes de los valores propios al considerarlas variación de la matriz de masas (dM) y aquel considerando solamente la variación de la matriz de rigidez (dK) 2 - 25
Fig. 2.6 Relación entre los factores de participación al aplicar aceleración unitaria en cada GDL cuando se considera la variación de la matriz de masas (dM) y aquellas considerando solamente la variación en la matriz de rigidez (dK) 2 - 26
Fig. 2.7 Considerando excentricidad "ex = 5% (7m)" en la planta regular de una edificación de 2 pisos
2 - 27

Fig. 2.8 Considerando excentricidad "ex = 5% (7m)" en la planta irregular de una edificación de 1 piso
2 - 31

Fig. 2.9 Considerando excentricidad "ex = 5% (7m)" en la planta irregular de una edificación de 2 pisos
2 - 10

CAPÍTULO 3

Fig. 3.1 Colegio – Planta Típica
3 - 2

Fig. 3.2 Módulo I – Planta Típica
3 - 25

Fig. 3.3 Módulo II – Planta Típica 1
3 - 47

Fig. 3.4 Módulo II – Planta Típica 2
3 - 48

Fig. 3.5 Módulo II – Corte Transversal
3 - 49

Fig. 3.6 Módulo III – Planta Típica 1
3 - 71

Fig. 3.7 Módulo III – Planta Típica 2
3 - 72

Fig. 3.8 Edificio de 9 pisos – Planta Típica
3 - 94

Fig. 3.9 Edificio de 12 pisos – Planta Típica
3 - 116
INDICE DE CUADROS

CAPÍTULO 2

A) Edificaciones de 1 y 2 pisos con planta regular

A.1) Edificación de 1 piso con planta regular

Cuadro A1.1 Frecuencias y modos de vibración cuando no se toma en cuenta la excentricidad accidental – A3S. 2 - 23

Cuadro A1.2 Nuevas frecuencias de vibración – Hoja de cálculo. 2 - 23

Cuadro A1.3 Comparación de frecuencias de vibración 2 - 23

Cuadro A1.4 Nuevas modos de vibración – Hoja de cálculo. 2 - 24

Cuadro A1.5 Nuevas factores de participación – Hoja de cálculo. 2 - 24

Cuadro A1.6 Modos de vibración cuando se toma en cuenta la excentricidad accidental(varía sólo la matriz K) – A3S. 2 - 24

Cuadro A1.7 Factores de participación cuando se toma en cuenta la excentricidad accidental(varía sólo la matriz K) – A3S. 2 - 24

Cuadro A1.8 Aplicación de las Ecs. (2.70), (2.71) y (2.72) a los modos del Cuadro A1.6 2 - 26

Cuadro A1.9 Verificación del paralelismo de las componentes de los modos del Cuadro A1.4 con aquellos del Cuadro A1.8 2 - 26

Cuadro A1.10 Aplicación de la Ec. (2.74) a los modos del Cuadro A1.6 2 - 27

Cuadro A1.11 Comparación de los factores de participación del Cuadro A1.5 y del Cuadro A1.10 2 - 27

A.2) Edificación de 2 pisos con planta regular

Cuadro A2.1 Frecuencias y modos de vibración cuando no se toma en cuenta la excentricidad accidental – A3S. 2 - 28

Cuadro A2.2 Nuevas frecuencias de vibración – Hoja de cálculo. 2 - 28

Cuadro A2.3 Comparación de frecuencias de vibración 2 - 29

Cuadro A2.4 Nuevas modos de vibración – Hoja de cálculo. 2 - 29

Cuadro A2.5 Nuevas factores de participación – Hoja de cálculo. 2 - 29
Cuadro A2.6 Modos de vibración cuando se toma en cuenta la excentricidad accidental (varía sólo la matriz K) – A3S. 2 - 29

Cuadro A2.7 Factores de participación cuando se toma en cuenta la excentricidad accidental (varía sólo la matriz K) – A3S. 2 - 30

Cuadro A2.8 Aplicación de las Ecs. (2.70), (2.71) y (2.72) a los modos del Cuadro A2.6 2 - 30

Cuadro A2.9 Verificación del paralelismo de las componentes de los modos del Cuadro A2.4 con aquellos del Cuadro A2.8 2 - 30

Cuadro A2.10 Aplicación de la Ec. (2.74) a los modos del Cuadro A2.6 2 - 31

Cuadro A2.11 Comparación de los factores de participación del Cuadro A2.5 y del Cuadro A2.10 2 - 31

B) Edificaciones de 1 y 2 pisos con planta irregular

B.1) Edificación de 1 piso con planta irregular

Cuadro B1.1 Frecuencias y modos de vibración cuando no se toma en cuenta la excentricidad accidental – A3S. 2 - 32

Cuadro B1.2 Nuevas frecuencias de vibración – Hoja de cálculo. 2 - 32

Cuadro B1.3 Comparación de frecuencias de vibración 2 - 32

Cuadro B1.4 Nuevas modalidades de vibración – Hoja de cálculo. 2 - 32

Cuadro B1.5 Nuevos factores de participación – Hoja de cálculo. 2 - 33

Cuadro B1.6 Modos de vibración cuando se toma en cuenta la excentricidad accidental (varía sólo la matriz K) – A3S. 2 - 33

Cuadro B1.7 Factores de participación cuando se toma en cuenta la excentricidad accidental (varía sólo la matriz K) – A3S. 2 - 33

Cuadro B1.8 Aplicación de las Ecs. (2.70), (2.71) y (2.72) a los modos del Cuadro B1.6 2 - 33

Cuadro B1.9 Verificación del paralelismo de las componentes de los modos del Cuadro B1.4 con aquellos del Cuadro B1.8 2 - 34

Cuadro B1.10 Aplicación de la Ec. (2.74) a los modos del Cuadro B1.6 2 - 34

Cuadro B1.11 Comparación de los factores de participación del Cuadro B1.5 y del Cuadro B1.10 2 - 34

VIII
B.2) Edificación de 2 pisos con planta irregular

Cuadro B2.1 Frecuencias y modos de vibración cuando no se toma en cuenta la excentricidad accidental – A3S. 2 - 35
Cuadro B2.2 Nuevas frecuencias de vibración – Hoja de cálculo. 2 - 35
Cuadro B2.3 Comparación de frecuencias de vibración 2 - 36
Cuadro B2.4 Nuevas modos de vibración – Hoja de cálculo. 2 - 36
Cuadro B2.5 Nuevos factores de participación – Hoja de cálculo. 2 - 36
Cuadro B2.6 Modos de vibración cuando se toma en cuenta la excentricidad accidental(varía sólo la matriz K) – A3S. 2 - 36
Cuadro B2.7 Factores de participación cuando se toma en cuenta la excentricidad accidental(varía sólo la matriz K) – A3S. 2 - 37
Cuadro B2.8 Aplicación de las Ecs. (2.70), (2.71) y (2.72) a los modos del Cuadro B2.6 2 - 37
Cuadro B2.9 Verificación del paralelismo de las componentes de los modos del Cuadro B2.4 con aquellos del Cuadro B2.8 2 - 37
Cuadro B2.10 Aplicación de la Ec. (2.74) a los modos del Cuadro B2.6 2 - 38
Cuadro B2.11 Comparación de los factores de participación del Cuadro B2.5 y del Cuadro B2.10 2 - 38

C) Edificación de 1 piso con planta regular – SAP v.8

Cuadro C.1 Verificación del paralelismo usando SAP v.8 (Análisis Tridimensional) en lugar del A3S (Análisis Seudo-Tridimensional) 2 - 38

D) Edificación de 1 piso con planta regular – ETABS v.8

Cuadro D.1 Verificación del paralelismo usando ETABS v.8 (Análisis Tridimensional) en lugar del A3S (Análisis Seudo-Tridimensional) 2 - 38

CAPÍTULO 3

Efectos para 5% de excentricidad accidental

Cuadro 3.1 y 3.2 Estructura típica de un colegio (X e Y) 3 - 138
Cuadro 3.3 y 3.4 Módulo I (X e Y) 3 - 139
Cuadro 3.5 y 3.6 Módulo II (X e Y) 3 - 140
Cuadro 3.7 y 3.8 Módulo III (X e Y) 3 - 141
Cuadro 3.9 y 3.10 Edificio de 9 pisos (X e Y) 3 - 142
Cuadro 3.11 y 3.12 Edificio de 12 pisos (X e Y) 3 - 143

CAPÍTULO 4

Cuadro 4.1 Cambio porcentuales de las principales variables globales
[Distorsiones y cortantes para el caso extremo \(v_s = 300 \text{ m/s} \)] 4 - 4

Estructura típica de un colegio

Cuadro 4.2 Desplazamiento en X del Centro de Masas Original 4 - 5
Cuadro 4.3 Giro en Planta 4 - 5
Cuadro 4.4 Distorsión en X del Centro de Masas Original 4 - 5
Cuadro 4.5 Distorsión Angular en Planta 4 - 5
Cuadro 4.6 Cortante Basal X 4 - 5
Cuadro 4.7 Distorsión X del Pórtico A 4 - 6
Cuadro 4.8 Distorsión X del Pórtico B 4 - 6
Cuadro 4.9 Cortante en X del Pórtico A 4 - 6
Cuadro 4.10 Cortante en X del Pórtico B 4 - 6

Cuadro 4.11 Desplazamiento en Y del Centro de Masas Original 4 - 8
Cuadro 4.12 Giro en Planta 4 - 8
Cuadro 4.13 Distorsión en Y del Centro de Masas Original 4 - 8
Cuadro 4.14 Distorsión Angular en Planta 4 - 8
Cuadro 4.15 Cortante Basal Y 4 - 8
Cuadro 4.16 Distorsión Y del Pórtico 1 4 - 9
Cuadro 4.17 Distorsión Y del Pórtico 7 4 - 9
Cuadro 4.18 Cortante en Y del Pórtico 1 4 - 9
Cuadro 4.19 Cortante en Y del Pórtico 7 4 - 9

Módulos de un conjunto habitacional

Módulo I

Cuadro 4.20 Desplazamiento en X del Centro de Masas Original 4 - 11
<table>
<thead>
<tr>
<th>Cuadro</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.21</td>
<td>Giro en Planta</td>
<td>4 - 11</td>
</tr>
<tr>
<td>4.22</td>
<td>Distorsión en X del Centro de Masas Original</td>
<td>4 - 12</td>
</tr>
<tr>
<td>4.23</td>
<td>Distorsión Angular en Planta</td>
<td>4 - 12</td>
</tr>
<tr>
<td>4.24</td>
<td>Cortante Basal X</td>
<td>4 - 12</td>
</tr>
<tr>
<td>4.25</td>
<td>Distorsión X del Pórtico 2</td>
<td>4 - 12</td>
</tr>
<tr>
<td>4.26</td>
<td>Distorsión X del Pórtico 6</td>
<td>4 - 12</td>
</tr>
<tr>
<td>4.27</td>
<td>Cortante en X del Pórtico 2</td>
<td>4 - 12</td>
</tr>
<tr>
<td>4.28</td>
<td>Cortante en X del Pórtico 6</td>
<td>4 - 12</td>
</tr>
<tr>
<td>4.29</td>
<td>Desplazamiento en Y del Centro de Masas Original</td>
<td>4 - 14</td>
</tr>
<tr>
<td>4.30</td>
<td>Giro en Planta</td>
<td>4 - 14</td>
</tr>
<tr>
<td>4.31</td>
<td>Distorsión en Y del Centro de Masas Original</td>
<td>4 - 14</td>
</tr>
<tr>
<td>4.32</td>
<td>Distorsión Angular en Planta</td>
<td>4 - 14</td>
</tr>
<tr>
<td>4.33</td>
<td>Cortante Basal Y</td>
<td>4 - 14</td>
</tr>
<tr>
<td>4.34</td>
<td>Distorsión Y del Pórtico B</td>
<td>4 - 15</td>
</tr>
<tr>
<td>4.35</td>
<td>Distorsión Y del Pórtico G</td>
<td>4 - 15</td>
</tr>
<tr>
<td>4.36</td>
<td>Cortante en Y del Pórtico B</td>
<td>4 - 15</td>
</tr>
<tr>
<td>4.37</td>
<td>Cortante en Y del Pórtico G</td>
<td>4 - 15</td>
</tr>
</tbody>
</table>

Módulo II

<table>
<thead>
<tr>
<th>Cuadro</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.38</td>
<td>Desplazamiento en X del Centro de Masas Original</td>
<td>4 - 17</td>
</tr>
<tr>
<td>4.39</td>
<td>Giro en Planta</td>
<td>4 - 17</td>
</tr>
<tr>
<td>4.40</td>
<td>Distorsión en X del Centro de Masas Original</td>
<td>4 - 17</td>
</tr>
<tr>
<td>4.41</td>
<td>Distorsión Angular en Planta</td>
<td>4 - 17</td>
</tr>
<tr>
<td>4.42</td>
<td>Cortante Basal X</td>
<td>4 - 17</td>
</tr>
<tr>
<td>4.43</td>
<td>Distorsión X del Pórtico 7</td>
<td>4 - 18</td>
</tr>
<tr>
<td>4.44</td>
<td>Distorsión X del Pórtico 12</td>
<td>4 - 18</td>
</tr>
<tr>
<td>4.45</td>
<td>Cortante en X del Pórtico 7</td>
<td>4 - 18</td>
</tr>
<tr>
<td>4.46</td>
<td>Cortante en X del Pórtico 12</td>
<td>4 - 18</td>
</tr>
<tr>
<td>4.47</td>
<td>Desplazamiento en Y del Centro de Masas Original</td>
<td>4 - 20</td>
</tr>
<tr>
<td>4.48</td>
<td>Giro en Planta</td>
<td>4 - 20</td>
</tr>
<tr>
<td>4.49</td>
<td>Distorsión en Y del Centro de Masas Original</td>
<td>4 - 20</td>
</tr>
<tr>
<td>4.50</td>
<td>Distorsión Angular en Planta</td>
<td>4 - 20</td>
</tr>
<tr>
<td>4.51</td>
<td>Cortante Basal Y</td>
<td>4 - 20</td>
</tr>
</tbody>
</table>
Cuadro 4.52 Distorsión Y del Pórtico B
Cuadro 4.53 Distorsión Y del Pórtico D
Cuadro 4.54 Cortante en Y del Pórtico B
Cuadro 4.55 Cortante en Y del Pórtico D

Módulo III

Cuadro 4.56 Desplazamiento en X del Centro de Masas Original
Cuadro 4.57 Giro en Planta
Cuadro 4.58 Distorsión en X del Centro de Masas Original
Cuadro 4.59 Distorsión Angular en Planta
Cuadro 4.60 Cortante Basal X
Cuadro 4.61 Distorsión X del Pórtico 13
Cuadro 4.62 Distorsión X del Pórtico 19
Cuadro 4.63 Cortante en X del Pórtico 13
Cuadro 4.64 Cortante en X del Pórtico 19

Cuadro 4.65 Desplazamiento en Y del Centro de Masas Original
Cuadro 4.66 Giro en Planta
Cuadro 4.67 Distorsión en Y del Centro de Masas Original
Cuadro 4.68 Distorsión Angular en Planta
Cuadro 4.69 Cortante Basal Y
Cuadro 4.70 Distorsión Y del Pórtico B
Cuadro 4.71 Distorsión Y del Pórtico D
Cuadro 4.72 Cortante en Y del Pórtico B
Cuadro 4.73 Cortante en Y del Pórtico D

Edificio de 9 pisos

Cuadro 4.74 Desplazamiento en X del Centro de Masas Original
Cuadro 4.75 Giro en Planta
Cuadro 4.76 Distorsión en X del Centro de Masas Original
Cuadro 4.77 Distorsión Angular en Planta
Cuadro 4.78 Cortante Basal X
Cuadro 4.79 Distorsión X del Pórtico A
Cuadro 4.80 Distorsión X del Pórtico D
Cuadro 4.81 Cortante en X del Pórtico A
Cuadro 4.82 Cortante en X del Pórtico D

Cuadro 4.83 Desplazamiento en Y del Centro de Masas Original
Cuadro 4.84 Giro en Planta
Cuadro 4.85 Distorsión en Y del Centro de Masas Original
Cuadro 4.86 Distorsión Angular en Planta
Cuadro 4.87 Cortante Basal Y

Cuadro 4.88 Distorsión Y del Pórtico 1
Cuadro 4.89 Distorsión Y del Pórtico 5
Cuadro 4.90 Cortante en Y del Pórtico 1
Cuadro 4.91 Cortante en Y del Pórtico 5

Edificio de 12 pisos

Cuadro 4.92 Desplazamiento en X del Centro de Masas Original
Cuadro 4.93 Giro en Planta
Cuadro 4.94 Distorsión en X del Centro de Masas Original
Cuadro 4.95 Distorsión Angular en Planta
Cuadro 4.96 Cortante Basal X

Cuadro 4.97 Distorsión X del Pórtico 1
Cuadro 4.98 Distorsión X del Pórtico 5
Cuadro 4.99 Cortante en X del Pórtico 1
Cuadro 4.100 Cortante en X del Pórtico 5

Cuadro 4.101 Desplazamiento en Y del Centro de Masas Original
Cuadro 4.102 Giro en Planta
Cuadro 4.103 Distorsión en Y del Centro de Masas Original
Cuadro 4.104 Distorsión Angular en Planta
Cuadro 4.105 Cortante Basal Y

Cuadro 4.106 Distorsión Y del Pórtico A
Cuadro 4.107 Distorsión Y del Pórtico J
Cuadro 4.108 Cortante en Y del Pórtico A
Cuadro 4.109 Cortante en Y del Pórtico J

XIII
INDICE DE GRÁFICAS

CAPÍTULO 3

3.1 Estructura típica de un colegio

Gráfico 3.1 T1 v.s. % Eccentricidad Accidental Y (% ey) 3 - 6
Gráfico 3.2 T2 v.s. % Eccentricidad Accidental Y (% ey) 3 - 6
Gráfico 3.3 T3 v.s. % Eccentricidad Accidental Y (% ey) 3 - 7
Gráfico 3.4 % Desplazamiento en X del Centro de Masas Original(C.M.o) v.s. % ey 3 - 8
Gráfico 3.5 Giro en Planta v.s. % ey 3 - 8
Gráfico 3.6 % Distorsión X del Centro de Masas Original(C.M.o) v.s. % ey 3 - 9
Gráfico 3.7 Distorsión Angular v.s. % ey 3 - 9
Gráfico 3.8 % Cortante Basal X v.s. % ey 3 - 10
Gráfico 3.9 Cortante Basal X : Dinámico v.s. Estático 3 - 10
Gráfico 3.10 % Distorsión X del Pórtico A v.s. % ey 3 - 11
Gráfico 3.11 % Distorsión X del Pórtico B v.s. % ey 3 - 11
Gráfico 3.12 % Cortante en X del Pórtico A v.s. % ey 3 - 12
Gráfico 3.13 % Cortante en X del Pórtico B v.s. % ey 3 - 12
Gráfico 3.14 % Distorsión X del Pórtico A v.s. % ey (Dinámico - Estático) 3 - 13
Gráfico 3.15 % Distorsión X del Pórtico B v.s. % ey (Dinámico - Estático) 3 - 13
Gráfico 3.16 % Cortante en X del Pórtico A v.s. % ey (Dinámico - Estático) 3 - 14
Gráfico 3.17 % Cortante en X del Pórtico B v.s. % ey (Dinámico - Estático) 3 - 14
Gráfico 3.18 T1 v.s. % Eccentricidad Accidental X (% ex) 3 - 15
Gráfico 3.19 T2 v.s. % Eccentricidad Accidental X (% ex) 3 - 15
Gráfico 3.20 T3 v.s. % Eccentricidad Accidental X (% ex) 3 - 16
Gráfico 3.21 % Desplazamiento en Y del Centro de Masas Original(C.M.o) v.s. % ex 3 - 17
Gráfico 3.22 Giro en Planta v.s. % ex 3 - 17
Gráfico 3.23 % Distorsión Y del Centro de Masas Original(C.M.o) v.s. % ex 3 - 18
Gráfico 3.24 Distorsión Angular v.s. % ex 3 - 18
Gráfico 3.25 % Cortante Basal Y v.s. % ex 3 - 19
Gráfico 3.26 Cortante Basal Y : Dinámico v.s. Estático 3 - 19
Gráfico 3.27 % Distorsión Y del Pórtico 1 v.s. % ex 3 - 20
Gráfico 3.28 % Distorsión Y del Pórtico 7 v.s. % ex 3 - 20
Gráfico 3.29 % Cortante en Y del Pórtico 1 v.s. % ex 3 - 21
Gráfico 3.30 % Cortante en Y del Pórtico 7 v.s. % ex 3 - 21
Gráfico 3.31 % Distorsión Y del Pórtico 1 v.s. % ex (Dinámico - Estático) 3 - 22
Gráfico 3.32 % Distorsión Y del Pórtico 7 v.s. % ex (Dinámico - Estático) 3 - 22
Gráfico 3.33 % Cortante en Y del Pórtico 1 v.s. % ex (Dinámico - Estático) 3 - 23
Gráfico 3.34 % Cortante en Y del Pórtico 7 v.s. % ex (Dinámico - Estático) 3 - 23

3.1 Módulos de un conjunto habitacional

3.3.1 Módulo I

Gráfico 3.35 T1 v.s. % Eccentricidad Accidental Y (% ey) 3 - 28
Gráfico 3.36 T2 v.s. % Eccentricidad Accidental Y (% ey) 3 - 28
Gráfico 3.37 T3 v.s. % Eccentricidad Accidental Y (% ey) 3 - 29
Gráfico 3.38 % Desplazamiento en X del Centro de Masas Original(C.M.o) v.s. % ey 3 -30
Gráfico 3.39 Giro en Planta v.s. % ey 3 - 30
Gráfico 3.40 % Distorsión X del Centro de Masas Original(C.M.o) v.s. % ey 3 - 31
Gráfico 3.41 Distorsión Angular v.s. % ey 3 - 31
Gráfico 3.42 % Cortante Basal X v.s. % ey 3 - 32
Gráfico 3.43 Cortante Basal X : Dinámico v.s. Estático 3 - 32
Gráfico 3.44 % Distorsión X del Pórtico 2 v.s. % ey 3 - 33
Gráfico 3.45 % Distorsión X del Pórtico 6 v.s. % ey 3 - 33
Gráfico 3.46 % Cortante en X del Pórtico 2 v.s. % ey 3 - 34

XV
Gráfico 3.47 % Cortante en X del Pórtico 6 v.s. % ey 3 - 34
Gráfico 3.48 % Distorsión X del Pórtico 2 v.s. % ey (Dinámico - Estático) 3 - 35
Gráfico 3.49 % Distorsión X del Pórtico 6 v.s. % ey (Dinámico - Estático) 3 - 35
Gráfico 3.50 % Cortante en X del Pórtico 2 v.s. % ey (Dinámico - Estático) 3 - 36
Gráfico 3.51 % Cortante en X del Pórtico 6 v.s. % ey (Dinámico - Estático) 3 - 36
Gráfico 3.52 T1 v.s. % Eccentricidad Accidental X (% ex) 3 - 37
Gráfico 3.53 T2 v.s. % Eccentricidad Accidental X (% ex) 3 - 37
Gráfico 3.54 T3 v.s. % Eccentricidad Accidental X (% ex) 3 - 38
Gráfico 3.55 % Desplazamiento en Y del Centro de Masas Original (C.M.o) v.s. % ex 3 - 39
Gráfico 3.56 Giro en Planta v.s. % ex 3 - 39
Gráfico 3.57 % Distorsión Y del Centro de Masas Original (C.M.o) v.s. % ex 3 - 40
Gráfico 3.58 Distorsión Angular v.s. % ex 3 - 40
Gráfico 3.59 % Cortante Basal Y v.s. % ex 3 - 41
Gráfico 3.60 Cortante Basal Y : Dinámico v.s. Estático 3 - 41
Gráfico 3.61 % Distorsión Y del Pórtico B v.s. % ex 3 - 42
Gráfico 3.62 % Distorsión Y del Pórtico G v.s. % ex 3 - 42
Gráfico 3.63 % Cortante en Y del Pórtico B v.s. % ex 3 - 43
Gráfico 3.64 % Cortante en Y del Pórtico G v.s. % ex 3 - 43
Gráfico 3.65 % Distorsión Y del Pórtico B v.s. % ex (Dinámico - Estático) 3 - 44
Gráfico 3.66 % Distorsión Y del Pórtico G v.s. % ex (Dinámico - Estático) 3 - 44
Gráfico 3.67 % Cortante en Y del Pórtico B v.s. % ex (Dinámico - Estático) 3 - 45
Gráfico 3.68 % Cortante en Y del Pórtico G v.s. % ex (Dinámico - Estático) 3 - 45

3.3.2 Módulo II
Gráfico 3.69 T1 v.s. % Eccentricidad Accidental Y (% ey) 3 - 52
Gráfico 3.70 T2 v.s. % Eccentricidad Accidental Y (% ey) 3 - 52
Gráfico 3.71 T3 v.s. % Eccentricidad Accidental Y (% ey) 3 - 53

XVI
Gráfico 3.72 % Desplazamiento en X del Centro de Masas Original (C.M.o) v.s. % ey 3 - 54
Gráfico 3.73 Giro en Planta v.s. % ey 3 - 54
Gráfico 3.74 % Distorsión X del Centro de Masas Original (C.M.o) v.s. % ey 3 - 55
Gráfico 3.75 Distorsión Angular v.s. % ey 3 - 55
Gráfico 3.76 % Cortante Basal X v.s. % ey 3 - 56
Gráfico 3.77 Cortante Basal X : Dinámico v.s. Estático 3 - 56
Gráfico 3.78 % Distorsión X del Pórtico 7 v.s. % ey 3 - 57
Gráfico 3.79 % Distorsión X del Pórtico 12 v.s. % ey 3 - 57
Gráfico 3.80 % Cortante en X del Pórtico 7 v.s. % ey 3 - 58
Gráfico 3.81 % Cortante en X del Pórtico 12 v.s. % ey 3 - 58
Gráfico 3.82 % Distorsión X del Pórtico 7 v.s. % ey (Dinámico - Estático) 3 - 59
Gráfico 3.83 % Distorsión X del Pórtico 12 v.s. % ey (Dinámico - Estático) 3 - 59
Gráfico 3.84 % Cortante en X del Pórtico 7 v.s. % ey (Dinámico - Estático) 3 - 60
Gráfico 3.85 % Cortante en X del Pórtico 12 v.s. % ey (Dinámico - Estático) 3 - 60
Gráfico 3.86 T1 v.s. % Eccentricidad Accidental X (% ex) 3 - 61
Gráfico 3.87 T2 v.s. % Eccentricidad Accidental X (% ex) 3 - 61
Gráfico 3.88 T3 v.s. % Eccentricidad Accidental X (% ex) 3 - 62
Gráfico 3.89 % Desplazamiento en Y del Centro de Masas Original (C.M.o) v.s. % ex 3 - 63
Gráfico 3.90 Giro en Planta v.s. % ex 3 - 63
Gráfico 3.91 % Distorsión Y del Centro de Masas Original (C.M.o) v.s. % ex 3 - 64
Gráfico 3.92 Distorsión Angular v.s. % ex 3 - 64
Gráfico 3.93 % Cortante Basal Y v.s. % ex 3 - 65
Gráfico 3.94 Cortante Basal Y : Dinámico v.s. Estático 3 - 65
Gráfico 3.95 % Distorsión Y del Pórtico B v.s. % ex 3 - 66
Gráfico 3.96 % Distorsión Y del Pórtico D v.s. % ex 3 - 66
Gráfico 3.97 % Cortante en Y del Pórtico B v.s. % ex 3 - 67
Gráfico 3.98 % Cortante en Y del Pórtico D v.s. % ex 3 - 67

XVII
Gráfico 3.99 % Distorsión Y del Pórtico B v.s. % ex (Dinámico - Estático) 3 - 68
Gráfico 3.100 % Distorsión Y del Pórtico D v.s. % ex (Dinámico - Estático) 3 - 68
Gráfico 3.101 % Cortante en Y del Pórtico B v.s. % ex (Dinámico - Estático) 3 - 69
Gráfico 3.102 % Cortante en Y del Pórtico D v.s. % ex (Dinámico - Estático) 3 - 69

3.3.3 Módulo III

Gráfico 3.103 T1 v.s. % Eccentricidad Accidental Y (% ey) 3 - 75
Gráfico 3.104 T2 v.s. % Eccentricidad Accidental Y (% ey) 3 - 75
Gráfico 3.105 T3 v.s. % Eccentricidad Accidental Y (% ey) 3 - 76
Gráfico 3.106 % Desplazamiento en X del Centro de Masas Original(C.M.o) v.s. % ey 3 - 77
Gráfico 3.107 Giro en Planta v.s. % ey 3 - 77
Gráfico 3.108 % Distorsión X del Centro de Masas Original(C.M.o) v.s. % ey 3 - 78
Gráfico 3.109 Distorsión Angular v.s. % ey 3 - 78
Gráfico 3.110 % Cortante Basal X v.s. % ey 3 - 79
Gráfico 3.111 Cortante Basal X : Dinámico v.s. Estático 3 - 79
Gráfico 3.112 % Distorsión X del Pórtico 13 v.s. % ey 3 - 80
Gráfico 3.113 % Distorsión X del Pórtico 19 v.s. % ey 3 - 80
Gráfico 3.114 % Cortante en X del Pórtico 13 v.s. % ey 3 - 81
Gráfico 3.115 % Cortante en X del Pórtico 19 v.s. % ey 3 - 81
Gráfico 3.116 % Distorsión X del Pórtico 13 v.s. % ey (Dinámico - Estático) 3 - 82
Gráfico 3.117 % Distorsión X del Pórtico 19 v.s. % ey (Dinámico - Estático) 3 - 82
Gráfico 3.118 % Cortante en X del Pórtico 13 v.s. % ey (Dinámico - Estático) 3 - 83
Gráfico 3.119 % Cortante en X del Pórtico 19 v.s. % ey (Dinámico - Estático) 3 - 83
Gráfico 3.120 T1 v.s. % Eccentricidad Accidental X (% ex) 3 - 84
Gráfico 3.121 T2 v.s. % Eccentricidad Accidental X (% ex) 3 - 84
Gráfico 3.122 T3 v.s. % Eccentricidad Accidental X (% ex) 3 - 85
Gráfico 3.123 % Desplazamiento en Y del Centro de Masas Original(C.M.o) v.s. % ex 3 - 86

XVIII
Gráfico 3.124 Giro en Planta v.s. % ex 3 - 86
Gráfico 3.125 % Distorsión Y del Centro de Masas Original (C.M.o) v.s. % ex 3 - 87
Gráfico 3.126 Distorsión Angular v.s. % ex 3 - 87
Gráfico 3.127 % Cortante Basal Y v.s. % ex 3 - 88
Gráfico 3.128 Cortante Basal Y : Dinámico v.s. Estático 3 - 88
Gráfico 3.129 % Distorsión Y del Pórtico B v.s. % ex 3 - 89
Gráfico 3.130 % Distorsión Y del Pórtico D v.s. % ex 3 - 89
Gráfico 3.131 % Cortante en Y del Pórtico B v.s. % ex 3 - 90
Gráfico 3.132 % Cortante en Y del Pórtico D v.s. % ex 3 - 90
Gráfico 3.133 % Distorsión Y del Pórtico B v.s. % ex (Dinámico - Estático) 3 - 91
Gráfico 3.134 % Distorsión Y del Pórtico D v.s. % ex (Dinámico - Estático) 3 - 91
Gráfico 3.135 % Cortante en Y del Pórtico B v.s. % ex (Dinámico - Estático) 3 - 92
Gráfico 3.136 % Cortante en Y del Pórtico D v.s. % ex (Dinámico - Estático) 3 - 92

3.4 Edificio de 9 pisos

Gráfico 3.137 T1 v.s. % Eccentricidad Accidental Y (% ey) 3 - 97
Gráfico 3.138 T2 v.s. % Eccentricidad Accidental Y (% ey) 3 - 97
Gráfico 3.139 T3 v.s. % Eccentricidad Accidental Y (% ey) 3 - 98
Gráfico 3.140 % Desplazamiento en X del Centro de Masas Original (C.M.o) v.s. % ey 3 - 99
Gráfico 3.141 Giro en Planta v.s. % ey 3 - 99
Gráfico 3.142 % Distorsión X del Centro de Masas Original (C.M.o) v.s. % ey 3 - 100
Gráfico 3.143 Distorsión Angular v.s. % ey 3 - 100
Gráfico 3.144 % Cortante Basal X v.s. % ey 3 - 101
Gráfico 3.145 Cortante Basal X : Dinámico v.s. Estático 3 - 101
Gráfico 3.146 % Distorsión X del Pórtico A v.s. % ey 3 - 102
Gráfico 3.147 % Distorsión X del Pórtico D v.s. % ey 3 - 102
Gráfico 3.148 % Cortante en X del Pórtico A v.s. % ey 3 - 103
Gráfico 3.149 % Cortante en X del Pórtico D v.s. % ey 3 - 103

XIX
Gráfico 3.150 % Distorsión X del Pórtico A v.s. % ey (Dinámico - Estático) 3 - 104
Gráfico 3.151 % Distorsión X del Pórtico D v.s. % ey (Dinámico - Estático) 3 - 104
Gráfico 3.152 % Cortante en X del Pórtico A v.s. % ey (Dinámico - Estático) 3 - 105
Gráfico 3.153 % Cortante en X del Pórtico D v.s. % ey (Dinámico - Estático) 3 - 105
Gráfico 3.154 T1 v.s. % Eccentricidad Accidental X (% ex) 3 - 106
Gráfico 3.155 T2 v.s. % Eccentricidad Accidental X (% ex) 3 - 106
Gráfico 3.156 T3 v.s. % Eccentricidad Accidental X (% ex) 3 - 107
Gráfico 3.157 % Desplazamiento en Y del Centro de Masas Original (C.M.o) v.s. % ex 3 - 108
Gráfico 3.158 Giro en Planta v.s. % ex 3 - 108
Gráfico 3.159 % Distorsión Y del Centro de Masas Original (C.M.o) v.s. % ex 3 - 109
Gráfico 3.160 Distorsión Angular v.s. % ex 3 - 109
Gráfico 3.161 % Cortante Basal Y v.s. % ex 3 - 110
Gráfico 3.162 Cortante Basal Y : Dinámico v.s. Estático 3 - 110
Gráfico 3.163 % Distorsión Y del Pórtico 1 v.s. % ex 3 - 111
Gráfico 3.164 % Distorsión Y del Pórtico 5 v.s. % ex 3 - 111
Gráfico 3.165 % Cortante en Y del Pórtico 1 v.s. % ex 3 - 112
Gráfico 3.166 % Cortante en Y del Pórtico 5 v.s. % ex 3 - 112
Gráfico 3.167 % Distorsión Y del Pórtico 1 v.s. % ex (Dinámico - Estático) 3 - 113
Gráfico 3.168 % Distorsión Y del Pórtico 5 v.s. % ex (Dinámico - Estático) 3 - 113
Gráfico 3.169 % Cortante en Y del Pórtico 1 v.s. % ex (Dinámico - Estático) 3 - 114
Gráfico 3.170 % Cortante en Y del Pórtico 5 v.s. % ex (Dinámico - Estático) 3 - 114

3.5 Edificio de 12 pisos

Gráfico 3.171 T1 v.s. % Eccentricidad Accidental Y (% ey) 3 - 119
Gráfico 3.172 T2 v.s. % Eccentricidad Accidental Y (% ey) 3 - 119
Gráfico 3.173 T3 v.s. % Eccentricidad Accidental Y (% ey) 3 - 120
Gráfico 3.174 % Desplazamiento en X del Centro de Masas Original (C.M.o) v.s. % ey 3 - 121

XX
<table>
<thead>
<tr>
<th>Gráfico</th>
<th>Descripción</th>
<th>v.s.</th>
<th>%</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.175</td>
<td>Giro en Planta</td>
<td>% ey</td>
<td></td>
<td>3 - 121</td>
</tr>
<tr>
<td>3.176</td>
<td>Distorsión X del Centro de Masas Original</td>
<td>% ey</td>
<td></td>
<td>3 - 122</td>
</tr>
<tr>
<td>3.177</td>
<td>Distorsión Angular</td>
<td>% ey</td>
<td></td>
<td>3 - 122</td>
</tr>
<tr>
<td>3.178</td>
<td>Cortante Basal X</td>
<td>% ey</td>
<td></td>
<td>3 - 123</td>
</tr>
<tr>
<td>3.179</td>
<td>Cortante Basal X : Dinámico</td>
<td>% ey</td>
<td></td>
<td>3 - 123</td>
</tr>
<tr>
<td>3.180</td>
<td>Distorsión X del Pórtico 1</td>
<td>% ey</td>
<td></td>
<td>3 - 124</td>
</tr>
<tr>
<td>3.181</td>
<td>Distorsión X del Pórtico 5</td>
<td>% ey</td>
<td></td>
<td>3 - 124</td>
</tr>
<tr>
<td>3.182</td>
<td>Cortante en X del Pórtico 1</td>
<td>% ey</td>
<td></td>
<td>3 - 125</td>
</tr>
<tr>
<td>3.183</td>
<td>Cortante en X del Pórtico 5</td>
<td>% ey</td>
<td></td>
<td>3 - 125</td>
</tr>
<tr>
<td>3.184</td>
<td>Distorsión X del Pórtico 1</td>
<td>% ey</td>
<td></td>
<td>3 - 126</td>
</tr>
<tr>
<td>3.185</td>
<td>Distorsión X del Pórtico 5</td>
<td>% ey</td>
<td></td>
<td>3 - 126</td>
</tr>
<tr>
<td>3.186</td>
<td>Cortante en X del Pórtico 1</td>
<td>% ey</td>
<td></td>
<td>3 - 127</td>
</tr>
<tr>
<td>3.187</td>
<td>Cortante en X del Pórtico 5</td>
<td>% ey</td>
<td></td>
<td>3 - 127</td>
</tr>
<tr>
<td>3.188</td>
<td>T1</td>
<td>% Eccentricidad Accidental X</td>
<td>% ex</td>
<td>3 - 128</td>
</tr>
<tr>
<td>3.189</td>
<td>T2</td>
<td>% Eccentricidad Accidental X</td>
<td>% ex</td>
<td>3 - 128</td>
</tr>
<tr>
<td>3.190</td>
<td>T3</td>
<td>% Eccentricidad Accidental X</td>
<td>% ex</td>
<td>3 - 129</td>
</tr>
<tr>
<td>3.191</td>
<td>% Desplazamiento en Y del Centro de Masas Original</td>
<td>% ex</td>
<td>3 - 130</td>
<td></td>
</tr>
<tr>
<td>3.192</td>
<td>Giro en Planta</td>
<td>% ex</td>
<td></td>
<td>3 - 130</td>
</tr>
<tr>
<td>3.193</td>
<td>Distorsión Y del Centro de Masas Original</td>
<td>% ex</td>
<td></td>
<td>3 - 131</td>
</tr>
<tr>
<td>3.194</td>
<td>Distorsión Angular</td>
<td>% ex</td>
<td></td>
<td>3 - 131</td>
</tr>
<tr>
<td>3.195</td>
<td>Cortante Basal Y</td>
<td>% ex</td>
<td></td>
<td>3 - 132</td>
</tr>
<tr>
<td>3.196</td>
<td>Cortante Basal Y : Dinámico</td>
<td>% ex</td>
<td></td>
<td>3 - 132</td>
</tr>
<tr>
<td>3.197</td>
<td>Distorsión Y del Pórtico A</td>
<td>% ex</td>
<td></td>
<td>3 - 133</td>
</tr>
<tr>
<td>3.198</td>
<td>Distorsión Y del Pórtico J</td>
<td>% ex</td>
<td></td>
<td>3 - 133</td>
</tr>
<tr>
<td>3.199</td>
<td>Cortante en Y del Pórtico A</td>
<td>% ex</td>
<td></td>
<td>3 - 134</td>
</tr>
<tr>
<td>3.200</td>
<td>Cortante en Y del Pórtico J</td>
<td>% ex</td>
<td></td>
<td>3 - 134</td>
</tr>
<tr>
<td>3.201</td>
<td>Distorsión Y del Pórtico A</td>
<td>% ex</td>
<td></td>
<td>3 - 135</td>
</tr>
</tbody>
</table>

XXI
Gráfico 3.202 % Distorsión Y del Pórtico J v.s. % ex (Dinámico - Estático) 3 - 135
Gráfico 3.203 % Cortante en Y del Pórtico A v.s. % ex (Dinámico - Estático) 3 - 136
Gráfico 3.204 % Cortante en Y del Pórtico J v.s. % ex (Dinámico - Estático) 3 - 136

CAPÍTULO 4

Estructura típica de un colegio

Gráfico 4.1 Corte en el Eje A - Vs 4 - 7
Gráfico 4.2 Corte en el Eje B - Vs 4 - 7
Gráfico 4.3 Corte en el Eje 1 - Vs 4 - 10
Gráfico 4.4 Corte en el Eje 7 - Vs 4 - 10

Módulos de un conjunto habitacional

Módulo I

Gráfico 4.5 Corte en el Eje 2 - Vs 4 - 13
Gráfico 4.6 Corte en el Eje 6 - Vs 4 - 13
Gráfico 4.7 Corte en el Eje B - Vs 4 - 16
Gráfico 4.8 Corte en el Eje G - Vs 4 - 16

Módulo II

Gráfico 4.9 Corte en el Eje 7 - Vs 4 - 19
Gráfico 4.10 Corte en el Eje 12 - Vs 4 - 19
Gráfico 4.11 Corte en el Eje B - Vs 4 - 22
Gráfico 4.12 Corte en el Eje D - Vs 4 - 22

Módulo III

Gráfico 4.13 Corte en el Eje 13 - Vs 4 - 25
Gráfico 4.14 Corte en el Eje 19 - Vs 4 - 25
<table>
<thead>
<tr>
<th>Gráfico</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.15</td>
<td>Corte en el Eje B - Vs</td>
<td>4-28</td>
</tr>
<tr>
<td>4.16</td>
<td>Corte en el Eje D - Vs</td>
<td>4-28</td>
</tr>
<tr>
<td>Edificio de 9 pisos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Corte en el Eje A - Vs</td>
<td>4-31</td>
</tr>
<tr>
<td>4.18</td>
<td>Corte en el Eje D - Vs</td>
<td>4-31</td>
</tr>
<tr>
<td>4.19</td>
<td>Corte en el Eje 1 - Vs</td>
<td>4-34</td>
</tr>
<tr>
<td>4.20</td>
<td>Corte en el Eje 5 - Vs</td>
<td>4-34</td>
</tr>
<tr>
<td>Edificio de 12 pisos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>Corte en el Eje 1 - Vs</td>
<td>4-37</td>
</tr>
<tr>
<td>4.22</td>
<td>Corte en el Eje 5 - Vs</td>
<td>4-37</td>
</tr>
<tr>
<td>4.23</td>
<td>Corte en el Eje A - Vs</td>
<td>4-40</td>
</tr>
<tr>
<td>4.24</td>
<td>Corte en el Eje J - Vs</td>
<td>4-40</td>
</tr>
</tbody>
</table>
RESUMEN

En general la excentricidad accidental es considerada en las normas de diseño sismorresistente. Por un lado, para considerar la componente rotacional del sismo y, de otro lado, para tener en cuenta la variabilidad en la distribución de masas.

Esta tesis trata esencialmente tres aspectos:

- **Procedimientos simplificados** para reducir el tiempo de cómputo al hacer análisis dinámicos considerando la excentricidad accidental.

- **Los efectos de considerar lo especificado en la norma E-030** en el contexto de procedimientos de análisis sísmico estático y dinámicos aplicados a estructuras reales.

- **Una cuantificación de lo que podría considerarse como componente rotacional del sismo**.

Refiriéndonos a los tres aspectos tratados en esta tesis, en ese orden, se concluyó que:

 Cuando en el análisis dinámico se considera la excentricidad accidental, usando **procedimientos simplificados**, los nuevos modos y nuevas frecuencias de vibración podrían ser calculados en función de aquellos modos y frecuencias de vibración correspondientes al análisis dinámico en el que la excentricidad accidental no es tomada en cuenta, es decir cuando se trabaja con respecto al centro de masas original o punto de referencia original. Cabe indicar que estos procedimientos simplificados podrían ser utilizados tanto en análisis dinámicos tridimensionales y seudo tridimensionales, ya que dichos procedimientos no involucran a la matriz de rigidez del sistema al calcular los nuevos modos y nuevas frecuencias de vibración respecto al punto de referencia original. Adicionalmente, el tiempo de cómputo podría ser reducido al usar estos procedimientos ya que, a diferencia del análisis dinámico tradicional en el que la matriz de rigidez varía sustancialmente, en los procedimientos simplificados mencionados sólo se tendrían cambios en la matriz de masas M que se calculan con relativa facilidad.
Al realizar los análisis sísmicos tanto estático como dinámico en estructuras reales (6 edificaciones) considerando lo especificado en la Norma E-030, los efectos para las variables importantes fueron:

- **Para periodos y modos de vibración**, en estos el efecto de las excentricidades accidentales está relacionado con la regularidad o irregularidad de la estructura analizada. Los periodos y frecuencias naturales se modifican en la medida en que los correspondientes modos son afectados por la excentricidad. En general, las excentricidades accidentales en una dirección dada, tienen poca influencia en los modos con componentes en tal dirección, pero tienen mayor influencia en los modos que corresponden a movimientos en dirección perpendicular a la dirección de la excentricidad.

- **Para el desplazamiento del centro de masas y corte globales**, aún si las estructuras son regulares y simétricas los efectos globales cambian al considerar una excentricidad accidental. Por otro lado, si la estructura es irregular la excentricidad accidental puede aumentar o reducir los efectos de la excentricidad real. El cortante global máximo corresponde siempre a la excentricidad accidental que compensa la excentricidad real, de modo que el giro en planta resulta mínimo - resultando cero algunos casos.

- **Para las distorsiones y fuerzas cortantes en los pórticos**, la excentricidad accidental tiene mucho mayor influencia en los efectos locales que en los globales, lo cual se verificó en la mayoría de las estructuras analizadas. Con pocas excepciones, los efectos de una excentricidad accidental en el procedimiento de fuerzas estáticas equivalentes son en términos porcentuales menores que los efectos que resultan en desplazar en la misma distancia el centro de masas, pudiendo afirmarse, en general, que los procedimientos no son equivalentes.

 A pesar de tenerse, en términos porcentuales, una influencia importante de la excentricidad accidental en los resultados del análisis dinámico, las fuerzas cortantes en la base obtenida del análisis estático siguen siendo mayores.
Al cuantificar lo que podría considerarse como componente rotacional del sismo se observó que:

- Cuando los edificios son casi simétricos se aprecia que los resultados globales son poco sensibles a la componente rotacional del movimiento del terreno al considerar distintos valores de V_s – velocidad de la onda de corte. En cambio, para estructuras irregulares los efectos sí son significativos.

- Refiriéndose a las fuerzas cortante en los pórticos en cada extremo de los edificios analizados, se observa en todos los casos, como era de esperarse, efectos decrecientes a medida que V_s aumenta. En general, los resultados del procedimiento estático son en magnitud (no en porcentaje) mayores a los obtenidos con el procedimiento dinámico. La consideración de la componente rotacional produce efectos mayores que desplazar 5% el centro de masas sólo si V_s es relativamente baja. Con algunas excepciones, se observan valores similares cuando V_s es del orden de 1000 m/s.

- Por los argumentos antes expuestos, si V_s se considerara del orden de 3000 m/s, secluiría que 5% de excentricidad accidental sería excesiva. Sin embargo debe tenerse en cuenta que una parte de la excentricidad accidental se justifica por la distribución no uniforme de las masas.

Por último, al final de esta tesis se presentan conclusiones y recomendaciones, las cuales dan a entender que una modificación de la norma podría ser conveniente, pues lo que se especifica en la norma en el caso del procedimiento de análisis dinámico es inconsistente con el tratamiento del tema al hacer un análisis con fuerzas estáticas equivalentes.
INTRODUCCIÓN

En las normas de diseño sismorresistente se hace en general referencia a la excentricidad accidental. Por un lado, para considerar la componente rotacional del sismo y, de otro lado, para tener en cuenta la variabilidad en la distribución de masas.

La motivación para esta tesis fue el importante cambio que ha tenido la excentricidad accidental en diferentes versiones de la norma de Diseño Sismorresistente E-030. Esto también se ha observado en las normas de otros países. En la norma de 1997 se especificaba una excentricidad accidental del orden del 10% de la dimensión del edificio (en la dirección perpendicular a la de la componente de sismo considerada). La norma vigente (2003) especifica 5%. En la norma de 1977, para el análisis estático se tenía una combinación de 5% de la dimensión del edificio, mas una magnificación de la excentricidad real, entendida como la distancia entre el centro de masas y el centro de rigidez. La norma de 1977 no hacía referencia al tema de la excentricidad accidental al tratar sobre el análisis dinámico. Cabe notar que excentricidades accidentales del orden de 10% e incluso 5% pueden influir considerablemente en los resultados del análisis sísmico.

Este trabajo se refiere a estructuras en que las losas son elementos con gran rigidez en su plano. Lo habitual es suponer que las losas son de infinita rigidez. Evidentemente el concepto de excentricidad accidental no resulta aplicable a aquellas situaciones en que las estructuras de los pisos o techos son flexibles, ya que en tales casos cada porción de las estructuras debería soportar las fuerzas de inercia resultantes de las correspondientes masas.

Esta tesis tiene cuatro capítulos en los que se revisan y verifican, mediante el análisis de seis edificaciones, los requisitos de la norma de diseño sismorresistente en lo que se refiere a la excentricidad accidental.

En el Capítulo 1, los sismos y sus características son tratados de manera concisa, así como los efectos sísmicos en los edificios – el efecto de torsión es el tema a tratar en esta tesis; además se hace una revisión de la norma técnica de edificación E.030 (2003).

En el Capítulo 2, debido a la complejidad que implica el realizar un análisis dinámico – mucho mayor que para el análisis estático - para distintas posiciones del
centro de masas, con la finalidad de encontrar la posición crítica del centro de masas (máximos efecto y desplazamientos), se presentan y proponen expresiones simplificadas para lograr tal propósito.

En el Capítulo 3, se cuantifican los efectos de la excentricidad en situaciones típicas; para esto se realiza el análisis de 6 edificaciones de plantas regulares e irregulares. Dichas edificaciones fueron analizadas y los resultados graficados para un rango de excentricidad accidental de -10% a 10% para poder apreciar mejor el comportamiento de variables importantes en el análisis sísmico.

Por último, en el Capítulo 4, se toma en cuenta la componente rotacional del sismo apropiada, según ideas propuestas por Newmark y Roseblueth, aplicándolas a estructuras reales – las cuales fueron analizadas en el capítulo anterior.

Finalmente, se presentan conclusiones y recomendaciones. Se observa que lo especificado por la norma en el caso del procedimiento de análisis dinámico es inconsistente con el tratamiento del tema al hacer un análisis con fuerzas estáticas equivalentes, por lo que se concluye que una modificación de la norma podría ser conveniente.
1.1 LOS SISMOS Y SUS CARACTERÍSTICAS (*)

Debido a que es importante entender la razón de ser de los procedimientos de diseño contemplados en los códigos, se ha visto conveniente exponer de manera concisa el origen y características de los fenómenos sísmicos.

Desde el punto de vista de la ingeniería, los sismos más importantes son los de origen tectónico, es decir, aquellos debidos a desplazamientos bruscos de las grandes placas que conforman la corteza. A pesar de la poca frecuencia con que se dan grandes sismos, resultan muy importantes por la enorme energía que liberan y las extensas áreas que afectan.

La energía liberada se da principalmente en forma de ondas vibratorias, las cuales se propagan a grandes distancias a través de la roca de la corteza.

Al verse afectadas extensas áreas es claro que las edificaciones que se encuentran sobre dichas áreas también se verán afectadas. El movimiento en la base de las edificaciones originará fuerzas de inercia en las masas, induciéndose así esfuerzos importantes en los elementos de la estructura, que pueden llegar a fallar.

1.1.1 MOVIMIENTOS SÍSMICOS DEL TERRENO

La corteza terrestre vibra con diversos tipos de onda que se propagan desde la zona de ruptura, producto de la energía liberada por un sismo. Los tipos de ondas que se identifican son: las ondas de cuerpo que viajan a grandes distancias a través de roca y su amplitud se atenúa poco a poco, y las ondas superficiales que se deben a reflexiones y refracciones de las ondas de cuerpo, cuando éstas llegan a la superficie o a una

(*) Esta sección está basada en el Cap. 1 de la Referencia [4] y el Cap. 7 de la Referencia [2]
interfase entre estratos. Las ondas de cuerpo pueden ser *ondas P* (principales o de dilatación), en las cuales las partículas de la corteza experimentan un movimiento paralelo a la dirección de la propagación, u *ondas S* (secundarias o de cortante), en las que las partículas se mueven transversalmente a la dirección de propagación.

La velocidad de propagación de las ondas *P* es mayor que de las ondas *S*, por lo que a medida que nos alejamos del *epicentro* (proyección sobre la superficie terrestre del punto subterráneo donde se inició el movimiento) crece la diferencia en tiempo de llegada de los dos tipos de trenes de onda. Dicha diferencia es empleada para determinar la distancia entre el epicentro y alguna estación sismológica donde se haya registrado el movimiento del terreno; por ende, sirve de base para la localización del epicentro.

Los movimientos del terreno más intensos y de características más dañinas para las edificaciones son los producidos por las ondas *S* (más que las ondas *P*). En general, el movimiento del terreno en un sitio dado es muy complejo e irregular debido a la complejidad de los mecanismos de ruptura y a la irregularidad de las formaciones geológicas por las que viajan las ondas y por las múltiples refracciones y reflexiones que sufren durante su recorrido.

Para cuantificar la energía liberada por un sismo se utiliza la *magnitud*. Por otro lado al medir la severidad de la sacudida sísmica que se experimenta en un sitio dado se hace referencia a la *intensidad*. Esto significa que un mismo sismo, que tiene una sola magnitud, tendrá diferentes intensidades, según el sitio donde se registre el movimiento. En general la intensidad decrece a medida que nos alejamos de la zona epicentral, y para una misma distancia epicentral son más intensos los sismos de mayor magnitud.

1.1.2 EFECTOS SÍSMICOS EN LOS EDIFICIOS

1.1.2.1 Características de la acción sísmica

La base de los edificios que se encuentran apoyados sobre el suelo tiende a seguir el movimiento del suelo debido al movimiento sísmico, mientras que, por inercia, la masa del edificio se opone a ser desplazada dinámicamente y a seguir el movimiento de su base (Fig. 1.1), generándose de esta manera las fuerzas de inercia. No cabe duda que se trata de un problema dinámico y que, por la irregularidad del movimiento del suelo y por la complejidad de las edificaciones, requiere de grandes simplificaciones.
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO
Cap. 1: Entorno del Problema

para ser objeto de análisis como parte del diseño estructural. Dichas simplificaciones serán vistas en la Secc. 1.2

![Fuerza de Inercia](image)

Fig. 1.1 *Fuerza de Inercia generada por la vibración de la estructura*. Referencia [4]

Las vibraciones horizontales y verticales son resultado del movimiento del suelo. Donde las primeras en general son más críticas. Las segundas son tomadas en cuenta en los códigos bajo condiciones especiales.

El hecho de que una estructura vibre de forma distinta a la del suelo mismo es debido a la flexibilidad de la estructura. Es muy importante indicar que las fuerzas inducidas en la estructura no solamente son función de la intensidad del movimiento del suelo, sino que también dependen en forma preponderante de las propiedades de la estructura misma. Por tratarse de fuerzas inerciales actuando sobre la estructura se tiene, por un lado, que éstas son proporcionales a la masa del edificio y, por otra, son función de algunas propiedades dinámicas que definen su forma de vibrar.

![Amortiguador](image)

Fig. 1.2 *Modelo de un sistema de un grado de libertad (1 GDL)*. Referencia [4]

El estudio de un sistema de un grado de libertad, el cual es un modelo simple, nos permite tener una apreciación aproximada de la respuesta sísmica de una estructura. Dicho modelo simple está constituido por una masa concentrada y un elemento resistente con cierta rigidez lateral y cierto amortiguamiento (Fig. 1.2). Este sistema se caracteriza por tener un período natural de vibración proporcional a la raíz cuadrada de la razón entre la masa y la rigidez.
En la Fig. 1.2 se puede apreciar que las aceleraciones que se presentan en el sistema llegan a ser varias veces superiores a las del terreno. Esto último se debe a las amplificaciones importantes de los movimientos del suelo por la vibración de la estructura. Dicho grado de amplificación depende del amortiguamiento propio de la edificación y de la relación entre el periodo de la estructura y el periodo dominante del suelo. Las construcciones rigidas y pesadas resultan más afectadas cuando los movimientos del suelo son bruscos con predominio de ondas de periodo corto. Y en las estructuras altas y flexibles se amplifican las vibraciones y se generan aceleraciones más elevadas y por ende fuerzas de inercia mayores cuando el movimiento del terreno es lento, con periodos dominantes largos.

Fig. 1.3 Flujo de fuerzas en la estructura debido a la vibración. Referencia [4]

La configuración estructural juega un papel de gran importancia puesto que ella define las trayectorias por las cuales las fuerzas de inercia que se generan por la vibración en los lugares donde se encuentran las masas del edificio se transmiten al terreno a través de la estructura. Dichas fuerzas generan esfuerzos y deformaciones que ponen en riesgo la estabilidad de la construcción. Lo dicho anteriormente, aplicado a una estructura típica, se puede apreciar en la Fig. 1.3. Además, en dicha figura se observa que pueden resultar críticas las fuerzas en las uniones entre los elementos estructurales, las fuerzas cortantes en las columnas y la transmisión de dichas fuerzas a la cimentación.
1.1.2.2 Respuesta de los edificios a la acción sísmica

La intensidad de la vibración inducida en una estructura, tal como se indicó en la sección anterior, depende tanto de las características del movimiento del terreno como de las propiedades dinámicas de la estructura. Para sismos moderados la estructura se mantiene, normalmente, dentro de su intervalo de comportamiento elástico lineal y su respuesta puede calcularse con buena aproximación en los métodos de análisis dinámico de sistemas lineales.

Como se comentó en la Sec. 1.1.2.1, al modelar la estructura mediante un sistema de un grado de libertad con periodo igual al fundamental de la estructura se puede estimar con aceptable precisión las características esenciales de la respuesta. Esto se puede observar en la Fig. 1.4, en la cual se someten varios sistemas de un grado de libertad con diferentes periodos a una cierta ley de movimientos del terreno, respondiendo cada uno de manera diferente; siendo la amplitud de su respuesta función, esencialmente, de la relación entre el periodo del sistema y el periodo dominante del movimiento del suelo \((T_R / T_s)\). Se observa también en la figura que mientras más cercana a la unidad sea esta relación, mayor es la amplitud de la respuesta. Se debe de señalar sin embargo que una estructura real es un sistema más complejo que el de un grado de libertad y su respuesta es más difícil de estimar.

![Periodo dominante del movimiento del suelo](image)

Fig. 1.4 Amplificación del movimiento del terreno en sistemas con distinto periodo fundamental de vibración. Referencia [4]

También, el comportamiento de los principales materiales y sistemas estructurales es muy importante puesto que ellos modificarán la respuesta que se tiene después que por la fluencia, fisuración y otras causas, dicho comportamiento deja de ser lineal. La rigidez de la estructura se reduce drásticamente y por otra parte entran en
juego fuentes de amortiguamiento mucho mayores que las que se tienen en la etapa de comportamiento lineal. Por otro lado, es importante en este contexto la ductilidad, que se refiere a la capacidad de mantener su resistencia para deformaciones muy superiores a aquella para la que se inició la fluencia. La ductilidad es una propiedad muy importante en una estructura que debe resistir efectos sísmicos, ya que reduce la posibilidad de una falla súbita de tipo frágil y, además, posibilita que se tenga un amortiguamiento significativo.

El comportamiento no lineal está asociado a daño, inicialmente sólo en los elementos no estructurales y después también en la estructura misma. Evidencias del comportamiento no lineal, y del daño, son agrietamientos, desprendimientos, pandeos locales, y deformaciones residuales de la estructura. Referencia [4]

![Diagrama de relación carga deformación de una estructura](image)

Fig. 1.5 Relación carga deformación de una estructura. Referencia [4]

El comportamiento no lineal de una estructura se puede describir, de la forma más simple, mediante la relación de la carga lateral total aplicada, fuerza cortante en la base, y el desplazamiento en la parte superior del edificio. La Fig. 1.5 muestra para una estructura simple formas típicas de esta relación. Se observa el comportamiento de una estructura con ductilidad considerable y otra con un comportamiento frágil. En las curvas que describen el comportamiento frágil o dúctil se distinguen puntos en los que la rigidez cambia drásticamente y que corresponden a eventos importantes de comportamiento, como la iniciación del agrietamiento de la estructura, la primera fluencia de un elemento estructural, y la pérdida de capacidad de carga que marca el inicio del colapso. Esto significa que tales puntos podrían representar estados límite del comportamiento estructural: el primero cuando se sobrepasa las condiciones deseables de servicio de la construcción, el segundo cuando se llega a daño estructural significativo y el tercero cuando se da el colapso. En resumen, a través de la Fig. 1.5 se
puede comprender de una manera muy sencilla que cada material y sistema estructural presenta variaciones en su respuesta que dan lugar a diferencias tanto en las cargas como a las deformaciones que se requieren para alcanzar los distintos estados límite. Esto último es muy importante puesto que una parte importante del diseño sísmico consiste en proporcionar a la estructura, además de la resistencia necesaria, la capacidad de deformación que permita la mayor ductilidad posible.

La Fig. 1.6, que muestra la historia de desplazamientos de tres sistemas de un grado de libertad ante un mismo movimiento de la base, correspondiente a un *sismo severo*, ilustra el efecto del comportamiento inelástico en la respuesta sísmica. A pesar que los tres sistemas poseen el mismo periodo de vibración y el mismo porcentaje de amortiguamiento se observa que el primero posee suficiente resistencia para soportar el sismo manteniéndose en su intervalo de comportamiento lineal, el segundo tiene la mitad de esa resistencia y el tercero la cuarta parte. Sin embargo, estos dos últimos poseen suficiente capacidad de deformación para que no haya colapso, con un tipo de comportamiento que se denomina *elastoplástico*. De la Fig. 1.6 se puede observar que las historias de desplazamiento resultan similares en lo general y, en particular, el desplazamiento máximo de los tres sistemas es del mismo orden de magnitud.

Fig. 1.6 Respuesta elástica e inelástica de sistemas de un grado de libertad. Referencia [4]

En cuanto a lo que concierne a la *respuesta inelástica*, del ejemplo mostrado puede inferirse que es posible dar a una estructura una seguridad adecuada contra el colapso, con una resistencia elevada aunque no se cuente con mucha ductilidad, o con una resistencia mucho menor siempre que se proporcione amplia capacidad de deformación inelástica (*ductilidad*). En conclusión, basados en lo visto a lo largo de la Secc. 1.1, se opta por la segunda posibilidad puesto que es en general más económica,
ya que se aprovecha el amortiguamiento inelástico para disipar una parte sustancial de la energía introducida por el sismo.

1.1.2.3 Efectos de Torsión

Debido a que una estructura puede presentar además, movimientos de rotación en cada nivel, un modelo más completo debe de incluir los correspondientes grados de libertad. La importancia de las rotaciones y la magnitud de las solicitudes que por este efecto se inducen en la estructura dependen no solamente de la distribución en planta de las masas y de las rigideces laterales, sino también del propio movimiento sísmico. Para incluir los efectos de torsión las normas de diseño sismorresistente hacen referencia a una excentricidad accidental, teniendo en cuenta así, la componente rotacional del sismo y además la variabilidad en la distribución de las masas.(1)

1.2 NORMA TÉCNICA DE EDIFICACIÓN E.030 (2003)

1.2.1 GENERALIDADES / Art. 16 /

1.2.1.1 Solicitaciones Sísmicas y Análisis / Art. 16.1 /

En concordancia con los principios de diseño sismorresistente del Artículo 3, se acepta que las edificaciones tendrán incursiones inelásticas frente a solicitudes sísmicas severas. Por tanto las solicitaciones sísmicas de diseño se consideran como una fracción de la solicitación sísmica máxima elástica.

El análisis podrá desarrollarse usando las solicitudes sísmicas reducidas con un modelo de comportamiento elástico para la estructura.

1.2.1.2 Modelos para Análisis de Edificios / Art. 16.2 /

El modelo para el análisis deberá considerar una distribución espacial de masas y rigideces que sea adecuada para calcular los aspectos más significativos del comportamiento dinámico de la estructura.

Para edificios en los que se pueda razonablemente suponer que los sistemas de piso funcionan como diafragmas rígidos, se podrá usar un modelo con masas

(1) En este trabajo se hará uso de la Norma E-030 (2003)
(2) La símbología " / Art. # / " indica que el tema a tratar está relacionado con el artículo # de la Norma E.030
concentradas y tres grados de libertad por diafragma, asociados a dos componentes ortogonales de traslación horizontal y una rotación. En tal caso, las deformaciones de los elementos deberán compatibilizarse mediante la condición de diafragma rígido y la distribución en planta de las fuerzas horizontales deberá hacerse en función a las rigideces de los elementos resistentes.

Deberá verificarse que los diafragmas tengan la rigidez y resistencia suficientes para asegurar la distribución mencionada, en caso contrario, deberá tomarse en cuenta su flexibilidad para la distribución de las fuerzas sísmicas.

Para los pisos que no constituyan diafragmas rígidos, los elementos resistentes serán diseñados para las fuerzas horizontales que directamente les corresponde.

1.2.1.3 Peso de la Edificación / Art. 16.3 /

El peso (P), se calculará adicionando a la carga permanente y total de la edificación un porcentaje de la carga viva o sobrecarga que se determinará de la siguiente manera:

a) En edificaciones de las categorías A y B, se tomará el 50% de la carga viva.

b) En edificaciones de la categoría C, se tomará el 25% de la carga viva.

c) En depósitos, el 80% del peso total que es posible almacenar.

d) En azoteas y techos en general se tomará el 25% de la carga viva.

e) En estructuras de tanques, silos y estructuras similares se considerará el 100% de la carga que puede contener.

1.2.1.4 Desplazamientos Laterales / Art. 16.4 /

Los desplazamientos laterales se calcularán multiplicando por 0,75R los resultados obtenidos del análisis lineal y elástico con las solicitudes sísmicas reducidas. Para el cálculo de los desplazamientos laterales no se considerarán los valores mínimos de C/R indicados en el Artículo 17 (17.3) ni el cortante mínimo en la base especificado en el Artículo 18 (18.2 d).

1.2.1.5 Solicitaciones Sísmicas Verticales / Art. 16.6 /

Estas solicitaciones se considerarán en el diseño de elementos verticales, en elementos post o pretensados y en los voladizos o salientes de un edificio.
1.2.2 ANÁLISIS ESTÁTICO / Art. 17 /

1.2.2.1 Generalidades / Art. 17.1 /

Este método representa las solicitudes sísmicas mediante un conjunto de fuerzas horizontales actuando en cada nivel de la edificación.

1.2.2.2 Período Fundamental / Art. 17.2 /

a.) El periodo fundamental para cada dirección se estimará con la siguiente expresión:

\[T = \frac{h_s}{C_T} \] (1.1)

donde:

\(C_T = 35 \) para edificios cuyos elementos resistentes en la dirección considerada sean únicamente pórticos.

\(C_T = 45 \) para edificios de concreto armado cuyos elementos sismorresistentes sean pórticos y las cajas de ascensores y escaleras.

\(C_T = 60 \) para estructuras de mampostería y para todos los edificios de concreto armado cuyos elementos sismorresistentes sean fundamentalmente muros de corte.

b.) También podrá usarse un procedimiento de análisis dinámico que considere las características de rigidez y distribución de masas en la estructura. Como una forma sencilla de este procedimiento puede usarse la siguiente expresión:

\[T = 2\pi \sqrt{\frac{\sum_{i=1}^{n} P_i \cdot D_i^2}{g \cdot \sum_{i=1}^{n} F_i \cdot D_i}} \] (1.2)

Cuando el procedimiento dinámico no considere el efecto de los elementos no estructurales, el periodo fundamental deberá tomarse como el 0,85 del valor obtenido por este método.
1.2.2.3 Fuerza Cortante en la Base / Art. 17.3 /

La fuerza cortante total en la base de la estructura, correspondiente a la dirección considerada, se determinará por la siguiente expresión:

\[V = \frac{ZUCS}{R} \cdot P \]

(1.3)

debiendo considerarse para \(C/R \) el siguiente valor mínimo: 0.125

1.2.2.4 Distribución de la Fuerza Sísmica en Altura / Art. 17.4 /

Si el periodo fundamental \(T \) es mayor que 0,7 s una parte de la fuerza cortante \(V \), denominada \(F_a \), deberá aplicarse como fuerza concentrada en la parte superior de la estructura. Esta fuerza \(F_a \) se determinará mediante la expresión:

\[F_a = 0,07 \cdot T \cdot V \leq 0,15 \cdot V \]

(1.4)

donde el período \(T \) en la expresión anterior será el mismo que el usado para la determinación de la fuerza cortante en la base.

El resto de la fuerza cortante, es decir \((V - F_a) \), se distribuirá entre los distintos niveles, incluyendo el último, de acuerdo a la siguiente expresión:

\[F_i = \frac{P_i \cdot h_i}{\sum_{j=1}^{i} P_j \cdot h_j} \cdot (V - F_a) \]

(1.5)

1.2.2.5 Efectos de Torsión / Art. 17.5 /

Se supondrá que la fuerza en cada nivel \((F_i) \) actúa en el centro de masas del nivel respectivo y deberá considerarse además el efecto de excentricidades accidentales como se indica a continuación.

Para cada dirección de análisis, la excentricidad accidental en cada nivel \((e_i) \), se considerará como 0,05 veces la dimensión del edificio en la dirección perpendicular a la de la acción de las fuerzas.

En cada nivel además de la fuerza actuante, se aplicará el momento accidental denominado \(M_i \) que se calcula como:

\[M_i = \pm F_i \cdot e_i \]

(1.6)
Se puede suponer que las condiciones más desfavorables se obtienen
considerando las excentricidades accidentales con el mismo signo en todos los niveles.
Se considerarán únicamente los incrementos de las fuerzas horizontales, no así las
disminuciones.

1.2.2.6 Fuerzas Sísmicas Verticales / Art. 17.6 /

La fuerza sísmica vertical se considerará como una fracción del peso. Para las
zonas 3 y 2 esta fracción será de 2/3 Z. Para la zona 1 no será necesario considerar
este efecto.

1.2.3 ANÁLISIS DINÁMICO / Art. 18 /

1.2.3.1 Alcances / Art. 18.1 /

El análisis dinámico de las edificaciones podrá realizarse mediante
procedimientos de combinación espectral o por medio de análisis tiempo-historia.

Para edificaciones convencionales podrá usarse el procedimiento de
combinación espectral; y para edificaciones especiales deberán hacerse análisis tiempo-
historia.

1.2.3.2 Análisis por combinación modal espectral / Art. 18.2 /

a.) Modos de Vibración

Los periodos naturales y modos de vibración podrán determinarse por cualquier
procedimiento de análisis que considere apropiadamente las características de rigidez y
la distribución de las masas de la estructura.

b.) Aceleración Espectral

Para cada una de las direcciones horizontales analizadas se utilizará un espectro
inelástico de pseudo-aceleraciones definido por:

\[S_a = \frac{ZUCS}{R} \cdot g \]

Para el análisis en la dirección vertical podrá usarse un espectro con valores
iguales a los 2/3 del espectro empleado para las direcciones horizontales.
c.) Criterios de Combinación

Mediante los criterios de combinación que se indican, se podrá obtener la respuesta máxima esperada (r) tanto para las fuerzas internas en los elementos componentes de la estructura, como para los parámetros globales del edificio como fuerza cortante en la base, cortantes de entrepisos, momentos de volteo, desplazamientos totales y relativos de entrepisos.

La respuesta máxima elástica esperada (r) correspondiente al efecto conjunto de los diferentes modos de vibración empleados (r_i) podrá determinarse usando la siguiente expresión.

\[
r = 0,25 \cdot \sum_{i=1}^{n} |r_i| + 0,75 \cdot \sqrt{\sum_{i=1}^{n} r_i^2}
\] \hspace{1cm} (1.8)

Alternativamente, la respuesta máxima podrá estimarse mediante la combinación cuadrática completa de los valores calculados para cada modo.

En cada dirección se considerarán aquellos modos de vibración cuya suma de masas efectivas sea por lo menos el 90% de la masa de la estructura, pero deberá tomarse en cuenta por lo menos los tres primeros modos predominantes en la dirección de análisis.

d.) Fuerza Cortante Mínima en la Base

Para cada una de las direcciones consideradas en el análisis, la fuerza cortante en la base del edificio no podrá ser menor que el 80 % del valor calculado según el Artículo 17 (17.3) para estructuras regulares, ni menor que el 90 % para estructuras irregulares.

Si fuera necesario incrementar el cortante para cumplir los mínimos señalados, se deberán escalar proporcionalmente todos los otros resultados obtenidos, excepto los desplazamientos.

e.) Efectos de Torsión

La incertidumbre en la localización de los centros de masa en cada nivel, se considerará mediante una excentricidad accidental perpendicular a la dirección del sismo igual a 0,05 veces la dimensión del edificio en la dirección perpendicular a la dirección de análisis. En cada caso deberá considerarse el signo más desfavorable.
1.2.3.3 Análisis Tiempo-Historia / Art. 18.3 /

El análisis tiempo historia se podrá realizar suponiendo comportamiento lineal y elástico y deberán utilizarse no menos de cinco registros de aceleraciones horizontales, correspondientes a sismos reales o artificiales. Estos registros deberán normalizarse de manera que la aceleración máxima corresponda al valor máximo esperado en el sitio.

Para edificaciones especialmente importantes el análisis dinámico tiempo-historia se efectuará considerando el comportamiento inelástico de los elementos de la estructura.
CAPÍTULO 2
MÉTODOS DE ANÁLISIS

2.1 EXIGENCIAS DE LA NORMA E-030 "DISEÑO SISMO RESISTENTE"

Tanto en el procedimiento con fuerzas estáticas equivalentes como al efectuar un análisis dinámico, la norma E-030 y otras normas análogas requieren considerar una “excentricidad accidental”. En la norma E-030, la excentricidad accidental se justifica por la “incertidumbre en la localización de los centros de masa”.

En el análisis estático se supone que las fuerzas equivalentes al sismo no actúan en el centro de masas, sino en una posición desplazada. La distancia en la que se trasladan las fuerzas es comúnmente llamada excentricidad accidental. En el caso de la norma vigente (2003) esta excentricidad accidental se considera igual a 5% de la dimensión del edificio en dirección perpendicular a la de la componente de sismo analizada. En este aspecto se tiene un cambio importante respecto a la versión anterior de la norma (1997), en la que la excentricidad accidental era el 10% y respecto a la versión precedente (1977) que especificaba una excentricidad accidental en la que, adicionalmente al 5% actualmente especificado, se magnificaba la distancia entre el centro de rigidez y el centro de masas. Las expresiones contenidas en la norma de 1977 implicaban modelos simplificados, para los que se puede establecer un centro de rigidez como una característica intrínseca de la estructura.

La norma de 1977 no hacía referencia al tema de la excentricidad accidental en el análisis dinámico. A partir de la norma de 1997 se consideró el desplazamiento del centro de masas como un equivalente a la excentricidad accidental del procedimiento estático. Este criterio se mantuvo en la norma vigente. En el capítulo siguiente se muestra que ese planteamiento es incorrecto. Suponer un desplazamiento del centro de masas produce en algunos casos efectos mucho mayores y en otros mucho menores que los que resultan en el procedimiento estático. En casos extremos, el desplazamiento del centro de masas puede compensar una irregularidad torsional real.
Desde el punto de vista de cómputo, la consideración de la excentricidad accidental en *el procedimiento estático* es simple. Típicamente se requiere considerar dos situaciones de carga para cada dirección en la que se realiza el análisis sísmico, con excentricidades hacia uno u otro lado. Sin embargo, para realizar *el análisis dinámico* desplazando el centro de masas, con el típico programa de análisis, se requiere determinar cuatro veces los modos de vibración, esto es, se requiere repetir cuatro veces la porción del proceso que consume la mayor parte del tiempo de cómputo. En las secciones siguientes se presenta un procedimiento que permite la determinación de los modos de vibración para los cuatro casos requeridos por la norma con un mínimo de aritmética a partir de los modos de vibración obtenidos para el caso en que no se desplaza el centro de masas. Con ello se podría reducir significativamente el tiempo de cómputo.

2.2 EFECTOS DE LA MODIFICACIÓN DE MASAS Y RIGIDEZEN LOS PERIODOS NATURALES Y MODOS DE VIBRACIÓN (*)

Del problema del cálculo de los vectores y valores propios involucrado en el análisis dinámico, es decir, cuando no se toma en cuenta las excentricidades (cuando no hay variaciones en la matrices K ó M del sistema), se tiene la Ec. (2.1)

\[
K \phi = \lambda M \phi
\]

(2.1)

que aplicada a un vector propio conocido ϕ_i nos da

\[
K \phi_i = \lambda_i M \phi_i
\]

(2.2)

Por otro lado, considerar un centro de masas distinto del original, cuando la excentricidad accidental es tomada en cuenta, equivale a introducir cambios en las matrices K ó M.

Si se supusiera como punto de referencia el "nuevo" centro de masas, desplazado, se mantendría diagonal la matriz M. Es decir, la inercia rotacional permanece igual; este aspecto no está claramente definido en los códigos. Sin embargo, la que varía sustancialmente es la matriz K.

En cambio, mantener el punto de referencia original es mucho más simple, pues no se tendrían cambios en K pero sí cambios en M calculados con relativa facilidad

(*) Esta sección recoge algunas ideas de la Sección 10-1 de la Referencia [1]
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

Cap. 2 : Métodos de Análisis

(tales cambios se mostrarán en la sección siguiente). Por tal motivo, o sea, por razones de simplicidad, se ha optado por desarrollar expresiones cuando se producen cambios en la matriz \(M \). Entonces, para este caso, la ecuación característica esta dada por:

\[
K \phi = \lambda (M + \Delta M) \phi
\]

(2.3)

donde los \(\phi \) son expresados, en cada diafragma, con referencia a su centro de masas original, el cual difiere de su nuevo centro de masas a causa de las excentricidades accidentales tomadas en cuenta. Reordenando la Ec. (2.3) se tiene

\[
(K - \lambda M) \phi = \lambda \Delta M \phi
\]

(2.4)

llamando \(g = \lambda \Delta M \phi \) la Ec. (2.4) es:

\[
(K - \lambda M) \phi = g
\]

(2.5)

Además es posible expresar

\[
\phi = \sum_j c_j \phi_j^o
\]

(2.6)

donde \(\phi_j^o \) es la solución de la Ec. (2.1) y \(\phi \) es la de la Ec. (2.3).

También, suponiendo que la normalización de los vectores propios o modos en la Ec. (2.1) fue hecha con respecto a la matriz de masas, o sea

\[
\phi_i^o \mathbf{M} \phi_i^o = 1
\]

(2.7)

entonces, reemplazando la Ec. (2.6) en la Ec. (2.5) y luego operando se tiene

\[
K \sum_j c_j \phi_j^o - \lambda M \sum_j c_j \phi_j^o = g
\]

(2.8)

premultipliando entonces por \(\phi_n^o \) y reordenando la Ec. (2.8) queda como

\[
\sum_j \left(\phi_n^o \mathbf{K} \phi_j^o \right) c_j - \lambda \sum_j \left(\phi_n^o \mathbf{M} \phi_j^o \right) c_j = \phi_n^o \mathbf{g}
\]

(2.9)

Para simplificar aún más la expresión dada por la Ec. (2.9) se usará algunas propiedades de los modos de vibración tales como

\[
\phi_n^o \mathbf{K} \phi_j^o = \lambda_n^o \quad \text{sólo para} \quad n = j. \text{Con} \quad n \neq j \quad \phi_n^o \mathbf{K} \phi_j^o = 0
\]

(2.10)

\[
\phi_n^o \mathbf{M} \phi_j^o = 1 \quad \text{sólo para} \quad n = j. \text{Con} \quad n \neq j \quad \phi_n^o \mathbf{M} \phi_j^o = 0
\]

(2.11)
Simplificando ahora la Ec. (2.9), basado en las propiedades de los modos, se tiene

\[\lambda_n^o \ c_n - \lambda c_n = \phi_n^o \ g \quad \rightarrow \quad c_n (\lambda_n - \lambda) = \phi_n^o \ g \] \hspace{1cm} (2.12)

Despejando \(c_n \) de esta última expresión tenemos

\[c_n = \frac{\phi_n^o \ g}{(\lambda_n^o - \lambda)} \] \hspace{1cm} (2.13)

Para \(n = j \) en la Ec. (2.13) se tiene:

\[c_j = \frac{\phi_j^o \ g}{(\lambda_j^o - \lambda)} \] \hspace{1cm} (2.14)

Al reemplazar en la Ec. (2.6) obtenemos

\[\phi = \sum_j \left(\frac{\phi_j^o \ g}{(\lambda_j^o - \lambda)} \right) \phi_j^o \] \hspace{1cm} (2.15)

donde \(g = \lambda M \phi \), luego

\[\phi = \sum_j \left(\frac{\phi_j^o \ \lambda M \phi}{(\lambda_j^o - \lambda)} \right) \phi_j^o \] \hspace{1cm} (2.16)

reordenando esta última expresión

\[\phi = \sum_j \left(\frac{\phi_j^o \ \Delta M \phi}{\left(\frac{\lambda_j^o}{\lambda} - 1 \right)} \right) \phi_j^o \] \hspace{1cm} (2.17)

Ahora supongamos que \(\phi = \phi_m \) y \(\lambda = \lambda_m \) representan la solución de la Ec. (2.3).

Evaluando tal solución en la Ec. (2.17) nos da

\[\phi_m = \sum_j \left(\frac{\phi_j^o \ R \phi_m}{\left(\frac{\lambda_j^o}{\lambda_m^o} - 1 \right)} \right) \phi_j^o \] \hspace{1cm} (2.18)

donde \(R = \Delta M \).

Al separar el término \(m^\text{ésimo} \) de la sumatoria de la Ec. (2.18) se llega a
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

Cap. 2: Métodos de Análisis

\[
\phi_m = \left(\phi_m^o \right)^T R \phi_m + \sum_{j \neq m} \left(\phi_j^o \right)^T R \phi_m \phi_j^o
\]

(2.19)

rescribiendo la Ec. (2.19) tenemos:

\[
\phi_m = \alpha_m \phi_m^o + \sum_{j \neq m} \frac{\phi_j^o}{\lambda_m^j \left(\frac{\lambda_m^j}{\lambda_m} - 1 \right)} \phi_j^o
\]

(2.20)

donde

\[
\alpha_m = \frac{\phi_m^o}{\lambda_m^m \left(\frac{\lambda_m^m}{\lambda_m} - 1 \right)}
\]

(2.21)

Resolviendo la ecuación implícita dada por la Ec. (2.20) mediante el remplazo de ésta así misma, se tiene

\[
\phi_j^o \phi_j \left(\alpha_m \phi_m^o + \sum_{r \neq m} \phi_r^o \phi_m \phi_r^o \phi_j \right)
\]

\[
\phi_m = \alpha_m \phi_m^o + \sum_{j \neq m} \frac{\phi_j^o}{\lambda_m^j \left(\frac{\lambda_m^j}{\lambda_m} - 1 \right)} \phi_j^o
\]

(2.22)

operando esta última ecuación

\[
\phi_m = \alpha_m \phi_m^o + \sum_{j \neq m} \phi_j^o R \alpha_m \phi_m^o \phi_j + \sum_{j \neq m} \phi_j^o R \sum_{r \neq m} \left(\phi_r^o \phi_m \phi_r^o \phi_j \right)
\]

y luego ordenando adecuadamente los términos

\[
\phi_m = \alpha_m \phi_m^o + \alpha_m \sum_{j \neq m} \phi_j^o \phi_m \left(\phi_j^o \phi_m \phi_j \right) + \sum_{j \neq m} \sum_{r \neq m} \phi_j^o R \phi_r^o \phi_m \phi_j \phi_j
\]

(2.23)

Si comparamos las Ecs. (2.20) y (2.23) notaremos que el segundo término de la Ec. (2.20) ha sido multiplicada por \(\alpha_m \). También se puede observar que se genera una
doble sumatoria. Entonces de manera análoga, al realizar el reemplazo de la Ec. (2.20) en la Ec. (2.23) se obtendrá:

$$\phi_n = \alpha_m \phi_n^o + \alpha_m \sum_{j=1}^{\infty} \left(\frac{\phi_j^o R \phi_m^o}{\lambda_m^0 \left(\frac{\lambda_m^0}{\lambda_m} - 1 \right)} \right) \phi_j^o + \alpha_m \sum_{j=1}^{\infty} \sum_{r=1}^{\infty} \left(\frac{\phi_r^o R \phi_j^o}{\lambda_m^0 \left(\frac{\lambda_m^0}{\lambda_m} - 1 \right)} \right) \phi_r^o + \ldots \ldots \ldots (2.24)$$

Definiendo

$$S_{ys} = \phi_y^o R \phi_z^o$$

(2.25)

que es función de R, ϕ_y^o y ϕ_z^o que son conocidos (siendo estos dos últimos solución de la Ec. (2.1)) y luego factorizando α_m en la Ec. (2.24) se tiene

$$\phi_m = \alpha_m \left(\phi_m^o + \sum_{j=1}^{\infty} \frac{S_{jm}}{\lambda_m^0 \left(\frac{\lambda_m^0}{\lambda_m} - 1 \right)} \phi_j^o + \sum_{j=1}^{\infty} \sum_{r=1}^{\infty} \frac{S_{jr}}{\lambda_m^0 \left(\frac{\lambda_m^0}{\lambda_m} - 1 \right)} \phi_r^o + \ldots \ldots \ldots \ldots \ldots (2.26)\right)$$

Se observa de la Ec. (2.21) que α_m es función de ϕ_m y λ_m. Al ordenar adecuadamente la Ec. (2.21) se tiene

$$\left(\frac{\lambda_m^0}{\lambda_m} - 1 \right) \alpha_m = \phi_m^o R \phi_m$$

(2.27)

Reemplazando la Ec. (2.26) en la Ec. (2.27)

$$\left(\frac{\lambda_m^0}{\lambda_m} - 1 \right) \alpha_m = \phi_m^o R \alpha_m \left(\phi_m^o + \sum_{j=1}^{\infty} \frac{S_{jm}}{\lambda_m^0 \left(\frac{\lambda_m^0}{\lambda_m} - 1 \right)} \phi_j^o + \sum_{j=1}^{\infty} \sum_{r=1}^{\infty} \frac{S_{jr}}{\lambda_m^0 \left(\frac{\lambda_m^0}{\lambda_m} - 1 \right)} \phi_r^o + \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (2.28)\right)$$

Eliminando α_m de la Ec. (2.28) y despejando λ_m se tiene
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

Cap. 2: Métodos de Análisis

\[\lambda_m = \frac{\lambda_m^o}{1 + \phi_m^{oT} R \left(\phi_m^o + \sum_{jm} S_{jm} \frac{\lambda_m^o}{(\lambda_m^o - 1)} \right) \phi_j^o + \sum_{jm} \sum_{rm} S_{jr} \frac{\lambda_r^o}{(\lambda_r^o - 1)} \phi_j^o + \ldots \} \]

operando lo que se encuentra en el denominador

\[\lambda_m = \frac{\lambda_m^o}{1 + \phi_m^{oT} R \phi_m^o + \phi_m^{oT} R \sum_{jm} S_{jm} \frac{\lambda_m^o}{(\lambda_m^o - 1)} \phi_j^o + \sum_{jm} \sum_{rm} S_{jr} \frac{\lambda_r^o}{(\lambda_r^o - 1)} \phi_j^o + \ldots \} \]

ordenando lo que se encuentra en el denominador

\[\lambda_m = \frac{\lambda_m^o}{1 + \phi_m^{oT} R \phi_m^o + \sum_{jm} \phi_m^{oT} R \phi_j^o \frac{S_{jm}}{(\lambda_m^o - 1)} + \sum_{jm} \sum_{rm} \phi_m^{oT} R \phi_j^o \frac{S_{jr}}{(\lambda_r^o - 1)} + \sum_{jm} \sum_{rm} \frac{S_{mr}}{(\lambda_r^o - 1)} + \ldots} \] (2.29)

Simplificando aún más la Ec. (2.29) mediante el uso de la Ec. (2.25)

\[\lambda_m = \frac{\lambda_m^o}{1 + S_{mm} + \sum_{jm} S_{mj} \frac{S_{jm}}{(\lambda_m^o - 1)} + \sum_{jm} \sum_{rm} S_{mj} \frac{S_{jr}}{(\lambda_r^o - 1)} + \sum_{jm} \sum_{rm} \frac{S_{mr}}{(\lambda_r^o - 1)} + \ldots} \] (2.30)

Finalmente, es importante señalar que con las Ecs. (2.26) y (2.30) se obtienen los períodos y modos de vibración para cuando se mueve el centro de masas original (o sea para cuando se considera la excentricidad accidental). Faltando sólo determinar la forma que tendrá la variación de la matriz de masas; dicha forma será mostrada en la siguiente sección.
2.3 VARIACIÓN DE LA MATRIZ DE MASAS AL CONSIDERAR LA EXCENTRICIDAD ACCIDENTAL

Refiriéndonos al análisis dinámico (Secc. 1.2.3), por Norma se tiene que en cada dirección principal se debe de considerar una excentricidad accidental \(e_{acc} \) debido a la incertidumbre en la localización de los centros de masa en cada nivel.

Para apreciar con mayor claridad lo dicho anteriormente, analicemos la losa (diafragma rígido) de una edificación de 1 piso cuyo centro de masas es denotado como \(C.M. \) (ver Fig. 2.1). Además, los 3 grados de libertad considerados estarán referidos al centro geométrico de la losa (P.R.) o centro de masas iniciales (cuando la excentricidad accidental no es tomada en cuenta). Sólo con la finalidad de obtener una variación de la matriz de masas en forma genérica se trabajará con ambas excentricidades, luego, como es sabido según norma, sólo consideraremos una excentricidad dependiendo de la dirección de análisis, puesto que el análisis debe realizarse para cada dirección y por separado. También, sólo por simplicidad dicha losa será rectangular, de manera que no se pierda de vista la idea que se pretende transmitir; viéndose más adelante que este método es independiente de la forma de la sección. Luego generalizaremos la variación de la matriz de masas para un sistema de varios grados de libertad.

La matriz de masas del sistema dada las excentricidades en ambas direcciones, basados en la Fig. 2.1, se define con una idea similar a la matriz de rigidez de un sistema, sólo que en este último caso la ecuación estará dada por la Ley de Newton \(M \ddot{\mathbf{U}} = \mathbf{F}_{\text{teoría}} \), en la cual las fuerzas actuantes son fuerzas de inercia contrarias al movimiento; es decir: «La columna "\(j \)" de la matriz de masas son las fuerzas necesarias para "vencer" las fuerza de inercia generadas debido a una aceleración unitaria en el grado de libertad (GDL) "\(j \)" y en los restantes una aceleración con valor cero». Luego, aplicando el enunciado anterior para nuestra edificación de 1 piso mostrada en la Fig. 2.1, y teniendo como punto de referencia P.R., la matriz de masas final \(M_{\text{mod}} \) de nuestro sistema de 3 GDL queda como:

\[
M_{\text{mod}} = \begin{pmatrix}
m & 0 & -m e_y \\
0 & m & m e_x \\
-m e_y & m e_x & J + m (e_x^2 + e_y^2)
\end{pmatrix} = M + \Delta M
\]

(2.31)
de donde al descomponer la matriz final de masas de manera adecuada se logra identificar la matriz de masas original (matriz diagonal) y su variación debido a las excentricidades, que viene dadas en ese orden por:

\[
M = \begin{pmatrix}
 m & 0 & 0 \\
 0 & m & 0 \\
 0 & 0 & J
\end{pmatrix}
\]

(2.32)

\[
\Delta M = \begin{pmatrix}
 0 & 0 & -m_e_y \\
 0 & 0 & m_e_x \\
 -m_e_y & m_e_x & m(e_x^2 + e_y^2)
\end{pmatrix}
\]

(2.33)

También, como se habrá observado la variación de la matriz de masas dada por la Ec. (2.33) es independiente de la forma de la planta, sólo depende de las excentricidades accidentales y de las masas e inercias rotacionales correspondiente a cada nivel, siendo el uso de la planta rectangular empleada un caso particular. Entonces, ello significa que la Ec. (2.31) también pudo haber sido demostrada usando una planta de forma irregular.

Luego, al generalizar las Ecs. (2.32) y (2.33) para sistemas de “n” pisos se obtiene la siguiente matriz de masas y su respectiva matriz de variación (*) :

\[
M = \begin{pmatrix}
 m_1 & m_1 & [0] \\
 J_1 & m_2 & [0] \\
 [0] & m_2 & J_2 \\
\end{pmatrix}
\]

(2.34)

\[
\Delta M = \begin{pmatrix}
 0 & 0 & -m_1(e_y^2) \\
 0 & 0 & m_1(e_x^2) \\
 -m_1(e_y^2) & m_1(e_x^2) & m_1(e_x^2 + e_y^2) \\
 0 & 0 & -m_2(e_y^2) \\
 0 & 0 & m_2(e_x^2) \\
 -m_2(e_y^2) & m_2(e_x^2) & m_2(e_x^2 + e_y^2)
\end{pmatrix}
\]

(2.35)

donde [0] indica que los elementos restantes que no aparecen son todos cero.

(*) Dicha matriz de variación en la Secc. 3.1.1 será denominada \(R \), es decir \(R = \Delta M \)
Finalmente, como podrá observarse, la variación de la matriz de masas, dada por la Ec.(2.35), muestra porque resulta mucho más simple mantener el punto de referencia original. Para esto, en la siguiente sección se muestran expresiones simples de edificaciones de un piso basadas en ecuaciones obtenidas con anterioridad en las Seccs. 2.2 y 2.3.

Fig. 2.1 Variación de la matriz de masas de una edificación de 1 piso (conformado por una losa rectangular) al realizar el análisis con respecto a P.R. y considerando excentricidades en ambas direcciones.

(a), (b) y (c) Aceleración unitaria en la dirección del GDL 1, 2 y 3 respectivamente.
2.4 EXPRESIONES SIMPLIFICADAS PARA EDIFICACIONES DE 1 PISO

Por simplicidad desarrollaremos expresiones para una edificación de 1 piso cuya planta regular es como se muestra en la Fig. 2.2

Fig. 2.2 Considerando excentricidad "e_x" en la planta regular de una edificación de 1 piso

Para esta edificación los modos iniciales, obtenidos al resolver el problema característico dado por la Ec. (2.1), cuando no se considera la excentricidad, es decir

\[K \phi^o = \lambda^o M \phi^o \]

\[\phi_1^o = \frac{1}{\sqrt{m}} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \rightarrow \phi_1^{oT} = \frac{1}{\sqrt{m}} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \]

\[\phi_2^o = \frac{1}{\sqrt{m}} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \rightarrow \phi_2^{oT} = \frac{1}{\sqrt{m}} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \]

\[\phi_3^o = \frac{1}{\sqrt{j}} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \rightarrow \phi_3^{oT} = \frac{1}{\sqrt{j}} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \]

(2.36)
(2.37)
(2.38)

Pero como nuestro objetivo en la presente sección es resolver el problema característico considerando la excentricidad, es decir la Ec. (2.3)

\[K \phi = \lambda (M + \Delta M) \phi \]

(2.3)

donde (**)

\[\lambda_n = \frac{\lambda_n^o}{1 + \sum_{j=n}^{\infty} S_{nj} \left(\frac{S_{jm}}{\lambda_n^o - 1} \right) + \sum_{j=n}^{\infty} \sum_{\nu=n}^{\infty} S_{nj} \left(\frac{S_{jr}}{\lambda_n^o - 1} \right) \left(\frac{S_{\nu j}}{\lambda_n^o - 1} \right) + \ldots} \]

(2.30)

(*) La letra cursiva "(\#)" indica que esta ecuación ya fue definida con anterioridad.

(**) En la presente sección, el subíndice "m" de las ecuaciones de la Secc. 2.2 a usarse será cambiado por "n" para evitar confusión con la masa "m" de la edificación.
Sólo por simplicidad, para evitar trabajar con expresiones algebraicas complejas, en la Ec. (2.30) sólo se considerará hasta el término de doble sumatoria, en la misma se verá que para obtener mejores resultados se requieren más términos. Luego:

$$\lambda_n = \frac{\lambda^o_n}{1 + S_{mm} + \sum_{\mathbf{ss}} S_{ss} \left(\frac{S_{ji}}{(\lambda^o_n)^2 - 1} \right) \sum_{\mathbf{ss}} S_{ss} \left(\frac{S_{ji}}{(\lambda^o_n)^2 - 1} \right)}$$

(2.39)

$$S_{xy} = \phi_x^o R \phi_y^o$$

(2.25)

variando los subíndices "x e y" de 1 a 3 (por tener 3 GDL)

$$R = \Delta M = \begin{bmatrix} 0 & 0 & -m e_x \\ 0 & 0 & m e_x \\ -m e_y & m e_x & m (e_x^2 + e_y^2) \end{bmatrix}$$

(2.33)

para nuestro caso, considerando sólo la excentricidad "e_x", tenemos

$$R = \Delta M = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & m e_x \\ 0 & m e_x & m e_x^2 \end{bmatrix}$$

(2.40)

Al calcular los términos de la Ec. (2.25) y operando adecuadamente los productos matriciales obtenemos

$$S_{11} = \left(\phi_x^o R \phi_x^o \right) = 0$$

$$S_{12} = \left(\phi_x^o R \phi_y^o \right) = 0$$

$$S_{13} = \left(\phi_x^o R \phi_y^o \right) = 0$$

$$S_{21} = \left(\phi_y^o R \phi_x^o \right) = 0$$

$$S_{22} = \left(\phi_y^o R \phi_y^o \right) = 0$$

$$S_{23} = \left(\frac{\phi_y^o R}{\sqrt{m}} \right) \phi_x^o = \frac{1}{\sqrt{m}} \begin{bmatrix} 0 & 0 & m e_x \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \sqrt{m} \end{bmatrix} = \sqrt{m} e_x$$

$$S_{31} = \left(\phi_x^o R \phi_1^o \right) = 0$$

$$S_{32} = \left(\phi_y^o R \phi_2^o \right) = \frac{1}{\sqrt{J}} \begin{bmatrix} 0 & 0 & m e_x \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \sqrt{J} \end{bmatrix} = \sqrt{J} e_x$$

$$S_{33} = \left(\phi_y^o R \phi_3^o \right) = \frac{1}{\sqrt{J}} \begin{bmatrix} 0 & 0 & m e_x \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ m e_x^2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \sqrt{J} \end{bmatrix} = \frac{m}{J} e_x^2$$
los cuales pueden ser ordenados en una matriz "S", como se muestra a continuación

\[
S = \begin{pmatrix}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\
0 & \sqrt{\frac{e_x}{J}} & 0 \\
0 & 0 & \sqrt{\frac{e_x}{J}}
\end{pmatrix}
\]

(2.41)

Simplificando la notación en la Ec. (2.39)

\[
\lambda_n \approx \frac{\lambda_n^o}{1 + (S_{11} + Z_n + ZZ_n)}
\]

(2.42)

donde \(Z_n \) y \(ZZ_n \) representan los términos de una y doble sumatoria respectivamente. Empleando la Ec. (2.42) para el cálculo de los valores propios, se tiene

a) Para \(n = 1 \), o sea \(\lambda_1 \):

\[
\lambda_1 \approx \frac{\lambda_1^o}{1 + (S_{11} + Z_1 + ZZ_1)}
\]

(2.43)

donde al usar la Ec. (2.41) se tiene:

\[
S_{11} = 0
\]

\[
Z_1 = \sum_{j=1}^{m} \sum_{k=1}^{m} \frac{S_{jk}}{2\lambda_n^o \left(\frac{1}{\lambda_n^o} - 1 \right)} = S_{11} \left(\frac{S_{21}}{2\lambda_1^o \left(\frac{1}{\lambda_1^o} - 1 \right)} \right) + S_{12} \left(\frac{S_{31}}{2\lambda_1^o \left(\frac{1}{\lambda_1^o} - 1 \right)} \right)
\]

= 0

\[
ZZ_1 = \sum_{j=1}^{m} \sum_{k=1}^{m} \frac{S_{jk}}{2\lambda_n^o \left(\frac{1}{\lambda_n^o} - 1 \right)} = S_{11} \left(\frac{S_{21}}{2\lambda_1^o \left(\frac{1}{\lambda_1^o} - 1 \right)} \right) + S_{12} \left(\frac{S_{31}}{2\lambda_1^o \left(\frac{1}{\lambda_1^o} - 1 \right)} \right)
\]

= 0

Por lo tanto, al reemplazar estos valores en la Ec. (2.43) obtenemos

\[
\lambda_1 = \lambda_1^o
\]

(2.44)
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO
Cap. 2: Métodos de Análisis

b) Para \(n = 2 \), o sea \(\lambda_2 \):

\[
\lambda_2 \approx \frac{\lambda_2^o}{1 + (S_{21} + Z_2 + ZZ_2)} \tag{2.45}
\]

donde al usar la Ec. (2.41) se tiene:

\[
S_{22} = 0
\]

\[
Z_2 = \sum_{j=1}^{m} S_{j2} \left(\frac{S_{j2}}{\left(\frac{\lambda_j^o}{\lambda_2} \right) - 1} \right) = S_{21} \left(\frac{S_{21}}{\left(\frac{\lambda_1^o}{\lambda_2} \right) - 1} \right) + S_{22} \left(\frac{S_{22}}{\left(\frac{\lambda_2^o}{\lambda_2} \right) - 1} \right)
\]

\[
ZZ_2 = \sum_{j=1}^{m} S_{j2} \left(\frac{S_{j2}}{\left(\frac{\lambda_j^o}{\lambda_2} \right) - 1} \right)^2 = S_{21} \left(\frac{S_{21}}{\left(\frac{\lambda_1^o}{\lambda_2} \right) - 1} \right)^2 + S_{22} \left(\frac{S_{22}}{\left(\frac{\lambda_2^o}{\lambda_2} \right) - 1} \right)^2
\]

Por lo tanto, al reemplazar estos valores en la Ec. (2.45) obtenemos

\[
\lambda_2 = \frac{\lambda_2^o}{1 + \frac{m}{J} e_x^2 \left(\frac{1}{\lambda_2^o} \right) + \frac{m}{J} e_x^2 \left(\frac{1}{\lambda_2} \right)} \tag{2.46}
\]

c) Para \(n = 3 \), o sea \(\lambda_3 \):

\[
\lambda_3 \approx \frac{\lambda_3^o}{1 + (S_{33} + Z_3 + ZZ_3)} \tag{2.47}
\]
donde al usar la Ec. (2.41) se tiene:

\[S_{33} = \frac{m}{J} e_x^2 \]

\[
Z_3 = \sum_j S_{3j} \left(\frac{\omega_j^2}{\lambda_3 - 1} \right) = \sum_j S_{3j} \left(\frac{\omega_j^2}{\lambda_3} \right) - 1 \]

\[= \sqrt{\frac{m}{J}} e_x \left(\frac{m}{J} e_x^2 \right) = \frac{m}{J} e_x^2 \left(\frac{\omega_3^2}{\lambda_3 - 1} \right) \]

\[Z_{22} = \sum_j \sum_{\eta} S_{j\eta} \left(\frac{\omega_j^2}{\lambda_3 - 1} \right) \left(\frac{\omega_\eta^2}{\lambda_3 - 1} \right) = \sum_j \sum_{\eta} S_{j\eta} \left(\frac{\omega_j^2}{\lambda_3} \right) \left(\frac{\omega_\eta^2}{\lambda_3} \right) - 1 \]

\[= S_{31} \left(\frac{\omega_3^2}{\lambda_3 - 1} \right) \left(\frac{\omega_1^2}{\lambda_3 - 1} \right) + S_{32} \left(\frac{\omega_3^2}{\lambda_3} \right) \left(\frac{\omega_2^2}{\lambda_3} \right) - 1 \]

Por lo tanto, al reemplazar estos valores en la Ec. (2.47) obtenemos

\[
\lambda_3 = \left(1 + \frac{m}{J} e_x^2 + \frac{m}{J} e_x^2 \right) \left(\frac{\omega_3^2}{\lambda_3} \right) - 1 \]

De lo obtenido en a), b) y c), recordando además que

\[\lambda_3 = \omega_n^2 \quad \text{y} \quad \omega_n = \sqrt{\lambda_3} \]

los periodos, para la edificación de 1 piso, con 3 GDL que definen el movimiento del diafragma, se calcularían como sigue

\[T_n = \frac{2\pi}{\omega_n} \quad \text{y} \quad T_n = \frac{2\pi}{\sqrt{\lambda_n}} \]

Notar que los valores propios definidos por las Ecs. (2.46) y Ec. (2.48), a pesar de provenir de ecuaciones simplificadas, se deben calcular de manera iterativa.
A continuación procederemos al cálculo de los vectores propios, los cuales están definidos por la Ec. (2.26)

\[\phi_n = \alpha_n \left(\phi_n^\alpha + \sum_{j=1}^{\infty} \frac{S_{jn}}{(\Lambda_n - 1)} \right) \phi_n^\beta + \sum_{j=1}^{\infty} \sum_{\eta=1}^{\infty} \left(\frac{S_{jr}}{(\Lambda_n - 1)} \right) \left(\frac{S_{r\eta}}{(\Lambda_n - 1)} \right) \phi_j^\eta + \ldots \] \hspace{1cm} (2.26)

Como en el caso del cálculo de los valores propios, de la Ec. (2.26), sólo por facilidad en el cálculo algebraico, serán considerados términos que involucren la primera y segunda sumatoria. Luego

\[\phi_n \approx \alpha_n \left(\phi_n^\alpha + \sum_{j=1}^{\infty} \frac{S_{jn}}{(\Lambda_n - 1)} \right) \phi_n^\beta + \sum_{j=1}^{\infty} \sum_{\eta=1}^{\infty} \left(\frac{S_{jr}}{(\Lambda_n - 1)} \right) \left(\frac{S_{r\eta}}{(\Lambda_n - 1)} \right) \phi_j^\eta \] \hspace{1cm} (2.26)

Sabemos además que \(\alpha_n \) viene dado por

\[\alpha_n = \frac{\phi_n^\alpha R \phi_n}{(\Lambda_n - 1)} \] \hspace{1cm} (2.21)

donde como podrá apreciarse \(\alpha_n \) es un valor numérico que involucra el vector incógnita \(\phi_n \) que pretendemos hallar en la Ec. (2.26). Esto a primera vista hace parecer al problema complicado. Sin embargo, es posible calcular un vector paralelo "//" y obviar tal \(\alpha_n \) por ser justamente un valor numérico. Luego la Ec. (2.26) quedaría así

\[\phi_n \parallel \left[\phi_n^\alpha + \sum_{j=1}^{\infty} \frac{S_{jn}}{(\Lambda_n - 1)} \right] \phi_n^\beta + \sum_{j=1}^{\infty} \sum_{\eta=1}^{\infty} \left(\frac{S_{jr}}{(\Lambda_n - 1)} \right) \left(\frac{S_{r\eta}}{(\Lambda_n - 1)} \right) \phi_j^\eta \] \hspace{1cm} (2.51)

Y al ser conocido todos los términos de esta última ecuación, es decir los vectores y valores propios iniciales, los valores propios finales y los elementos de la matriz de la matriz \(S \), Ec. (2.41); el problema estaría ya resuelto.

Escribiendo de manera más compacta la Ec. (2.51)

\[\phi_n \parallel \left[\phi_n^\alpha + W_n + WW_n \right] \] \hspace{1cm} (2.52)
donde W_n y WW_n representan los términos de una y doble sumatoria respectivamente.

Empleando la Ec. (2.52) para el cálculo de los vectores propios, se tiene

a) Para $n = 1$, o sea ϕ_1:

\[
\phi_1 \parallel [\phi_1^* + W_1 + WW_1]
\] \hspace{1cm} (2.53)

donde al usar la Ec. (2.41) se tiene:

\[
W_1 = \sum_{j=0}^{\infty} \left(\frac{S_{1j}}{\lambda_n} \right) \phi_j^* = \sum_{j=1}^{\infty} \left(\frac{S_{1j}}{\lambda_1} \right) \phi_j^* = \left(\frac{S_{21}}{\lambda_1} \right) \phi_2^* + \left(\frac{S_{31}}{\lambda_1} \right) \phi_3^* = 0
\]

\[
WW_1 = \sum_{j=0}^{\infty} \sum_{\text{run}} \left(\frac{S_{1j}}{\lambda_n} \right) \left(\frac{S_{1n}}{\lambda_n} \right) \phi_j^* \sum_{j=1}^{\infty} \sum_{\text{run}} \left(\frac{S_{1j}}{\lambda_1} \right) \left(\frac{S_{11}}{\lambda_1} \right) \phi_j^* = \left(\frac{S_{21}}{\lambda_1} \right) \phi_2^* + \left(\frac{S_{31}}{\lambda_1} \right) \phi_3^* = 0
\]

Luego, al reemplazar estos valores en la Ec. (2.53) obtenemos

\[
\phi_1 \parallel \phi_1^*
\] \hspace{1cm} (2.54)

b) Para $n = 2$, o sea ϕ_2:

\[
\phi_2 \parallel [\phi_2^* + W_2 + WW_2]
\] \hspace{1cm} (2.55)

donde al usar la Ec. (2.41) se tiene:

\[
W_2 = \sum_{j=0}^{\infty} \left(\frac{S_{1j}}{\lambda_n} \right) \phi_j^* = \sum_{j=2}^{\infty} \left(\frac{S_{1j}}{\lambda_2} \right) \phi_j^* = \left(\frac{S_{22}}{\lambda_2} \right) \phi_2^* + \left(\frac{S_{32}}{\lambda_2} \right) \phi_3^* = 0
\]

\[
WW_2 = \sum_{j=0}^{\infty} \sum_{\text{run}} \left(\frac{S_{1j}}{\lambda_n} \right) \left(\frac{S_{1n}}{\lambda_n} \right) \phi_j^* \sum_{j=2}^{\infty} \sum_{\text{run}} \left(\frac{S_{1j}}{\lambda_2} \right) \left(\frac{S_{12}}{\lambda_2} \right) \phi_j^* = \left(\frac{S_{22}}{\lambda_2} \right) \phi_2^* + \left(\frac{S_{32}}{\lambda_2} \right) \phi_3^* = 0
\]

2 - 17
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

Cap. 2: Métodos de Análisis

\[WW_2 = \sum_{j=1}^{n} \sum_{r=1}^{m} \left(\frac{S_{\mu}^j}{\beta_2^j - 1} \right) \left(\frac{S_{\mu}^r}{\beta_2^r - 1} \right) \phi_j^e = \sum_{j=2}^{n} \sum_{r=2}^{m} \left(\frac{S_{\mu}^j}{\beta_2^j - 1} \right) \left(\frac{S_{\mu}^r}{\beta_2^r - 1} \right) \phi_j^e \]

\[= \left(\frac{S_{11}}{\beta_2^1 - 1} \right) \phi_1^e + \left(\frac{S_{12}}{\beta_2^2 - 1} \right) \phi_2^e + \left(\frac{S_{22}}{\beta_2^2 - 1} \right) \phi_2^e + \left(\frac{S_{32}}{\beta_2^2 - 1} \right) \phi_3^e \]

Luego, al reemplazar estos valores en la Ec. (2.55) obtenemos

\[\phi_2 \parallel \begin{bmatrix} \phi_2^e + \left(\frac{m e_x}{\sqrt{J} \lambda^2} \right) \left(\frac{m e_x^2}{1 + \frac{J}{\lambda^2}} \right) \phi_3^e \end{bmatrix} \]

(2.56)

c) Para \(n = 3 \), o sea \(\phi_3 \):

\[\phi_3 \parallel \begin{bmatrix} \phi_3^e + W_3 + WW_3 \end{bmatrix} \]

(2.57)

donde al usar la Ec. (2.41) se tiene:

\[W_3 = \sum_{j=1}^{n} \sum_{r=1}^{m} \left(\frac{S_{\mu}^j}{\beta_2^j - 1} \right) \phi_j^e = \sum_{j=2}^{n} \sum_{r=2}^{m} \left(\frac{S_{\mu}^j}{\beta_2^j - 1} \right) \phi_j^e = \left(\frac{S_{23}}{\beta_3^2 - 1} \right) \phi_2^e \]

\[= \left(\frac{m e_x}{\sqrt{J} \lambda^2} \right) \phi_2^e \]

\[WW_3 = \sum_{j=1}^{n} \sum_{r=1}^{m} \left(\frac{S_{\mu}^j}{\beta_2^j - 1} \right) \left(\frac{S_{\mu}^r}{\beta_2^r - 1} \right) \phi_j^e = \sum_{j=2}^{n} \sum_{r=2}^{m} \left(\frac{S_{\mu}^j}{\beta_2^j - 1} \right) \left(\frac{S_{\mu}^r}{\beta_2^r - 1} \right) \phi_j^e \]

\[= \left(\frac{S_{11}}{\beta_3^1} \right) \phi_1^e + \left(\frac{S_{12}}{\beta_3^2} \right) \phi_2^e + \left(\frac{S_{22}}{\beta_3^2} \right) \phi_2^e + \left(\frac{S_{32}}{\beta_3^2} \right) \phi_3^e \]

=0
Luego, al reemplazar estos valores en la Ec. (2.57) obtenemos

\[
\phi_3 \parallel \left[\phi_z^0 + \left(\frac{1}{\lambda_2} \frac{m}{J} \frac{e_x}{e_x^2} \right) \phi_z^0 \right]
\]

A manera de resumen, para la Fig. 2.2, cuando se considera sólo la excentricidad "\(e_x \)" (variando de esta manera la matriz de masas), se tiene los siguientes valores propios

\[
\lambda_1 = \lambda_x^0
\]

\[
\lambda_2 = \frac{\lambda_2^0}{1 + \frac{m}{J} e_x^2 \left(\frac{1}{\lambda_2^0} \frac{1}{\lambda_2^0 - 1} + \left[\frac{m}{J} e_x^2 \left(\frac{1}{\lambda_2^0} \frac{1}{\lambda_2^0 - 1} \right) \right] \right) \lambda_2^0}
\]

\[
\lambda_3 = \frac{\lambda_3^0}{1 + \frac{m}{J} e_x^2 + \frac{m}{J} e_x^2 \left(\frac{1}{\lambda_3^0} \frac{1}{\lambda_3^0 - 1} + \left[\frac{m}{J} e_x^2 \left(\frac{1}{\lambda_3^0} \frac{1}{\lambda_3^0 - 1} \right) \right] \right) \lambda_3^0}
\]

y vectores propios

\[
\phi_1 \parallel \phi_z^0
\]

\[
\phi_2 \parallel \left[\phi_z^0 + \left(\frac{1}{\lambda_2} \frac{m}{J} \frac{e_x}{e_x^2} \left(\frac{1}{\lambda_2} \frac{e_x^2}{\lambda_2^0 - 1} \right) \phi_z^0 \right] \right)
\]

\[
\phi_3 \parallel \left[\phi_z^0 + \left(\frac{1}{\lambda_2} \frac{m}{J} \frac{e_x}{e_x^2} \phi_z^0 \right) \right]
\]

Recuerde, por último que los periodos son calculados con \(T = 2\pi \sqrt{\frac{m}{J}} \). También se debe acotar que los nuevos vectores propios definidos por las Ecs. (2.54), (2.56) y (2.58), si se normalizan con respecto a la matriz de masas, dicha normalización deberá ser hecha con la matriz de masas modificadas definida por la Ec. (2.31), es decir con \(M_{\text{mod}} = M + \Delta M \).
También, de manera análoga a lo hecho anteriormente (cuando se consideró la excentricidad \(e_x \) solamente), se obtienen los **nuevos** periodos y modos de vibración cuando sólo se toma en cuenta la excentricidad "\(e_y \). Luego la planta de la Fig. 2.2 queda como se muestra en la Fig. 2.3

![Diagrama de planta](image)

Fig. 2.3 Considerando excentricidad "\(e_y \)" en la planta regular de una edificación de 1 piso

Para esta situación, con una variación de la matriz de masas dada por

\[
R = \Delta M = \begin{pmatrix}
0 & 0 & -m e_y \\
0 & 0 & 0 \\
-m e_y & 0 & m e_y^2
\end{pmatrix}
\]

(2.59)

\[
S = \begin{pmatrix}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & -\sqrt{\frac{m}{J}} e_y \\
0 & 0 & 0 \\
-\sqrt{\frac{m}{J}} e_y & 0 & \frac{m}{J} e_y^2
\end{pmatrix}
\]

(2.60)

los valores propios serían

\[
\lambda_1 = \frac{\lambda_0^2}{1 + \frac{m}{J} e_y^2 \left[\frac{1}{\lambda_1} - \frac{\lambda_0}{\lambda_1} \left(\frac{1}{\lambda_1} - 1 \right) \right]^2}
\]

(2.61)

\[
\lambda_2 = \lambda_0^2
\]

(2.62)

\[
\lambda_3 = \frac{\lambda_0^2}{1 + \frac{m}{J} e_y^2 + \frac{m}{J} e_y^2 \left[\frac{1}{\lambda_3} - \frac{\lambda_0}{\lambda_3} \left(\frac{1}{\lambda_3} - 1 \right) \right]}
\]

(2.63)
donde los periodos vendrían a estar dados por \(T_n = \frac{2\pi}{\sqrt{\lambda_n}} \).

y los vectores propios por

\[
\phi_1 \parallel \phi_1^* - \left(\frac{2\pi}{\sqrt{\lambda_1}} \right) \phi_1^* \]

\[
\phi_2 \parallel \phi_2^* - \left(\frac{2\pi}{\sqrt{\lambda_2}} \right) \phi_2^* \]

\[
\phi_3 \parallel \phi_3^* - \left(\frac{2\pi}{\sqrt{\lambda_3}} \right) \phi_3^* \]

(2.64) (2.65) (2.66)

Comentario sobre la Secc. 2.4

Se ha visto en la Secc. 2.2 que el cálculo de los valores propios corregidos, debido a que se toma en cuenta la excentricidad en cualquiera de las direcciones principales de análisis, debe ser hecho mediante el uso de un proceso iterativo. En la Secc. 2.4 se aprecia lo dicho, por la forma que tienen las Ecs. (2.44), (2.46) y (2.48) cuando se considera la excentricidad "e_x" y las Ecs. (2.61), (2.62) y (2.63) al considerarse "e_y", a pesar que las ecuaciones mencionadas toman en cuenta términos que sólo involucran hasta la doble sumatoria y se aplican a edificaciones de 1 piso con planta regular, de ahí que su deducción fue hecha sólo con la finalidad de mostrar "la idea" de como el considerar excentricidades, trae consigo cambios en la matriz de masas del sistema referidos a P.R., mas no en los efectos globales y locales del sistema a analizar.

En la presente tesis se desarrolló una hoja de cálculo (*) basada en las expresiones generales de las Seccs. 2.2 y 2.3. En dicha hoja de cálculo, aplicable a edificaciones de múltiples pisos de planta regular o irregular, se consideraron más términos con la finalidad de obtener una mejor precisión en el cálculo de las frecuencias de vibración corregidas, así como también los modos de vibración corregidos.

En la siguiente sección, Secc. 2.5, se verá la aplicación de tal hoja de cálculo a edificaciones de 1 y 2 pisos con plantas de forma regular e irregular.

(*) Esta hoja de cálculo, hecha por quien realiza el estudio de tesis, será llamada así en lo que resta de este capítulo.
2.5 APLICACIÓN A EDIFICACIONES DE UNO Ó DOS PISOS

En la presente sección analizaremos edificaciones de 1 y 2 pisos con plantas de forma regular e irregular para cada caso. El sismo actuará en la dirección “y”, es decir la excentricidad establecida por Norma a tomarse en cuenta será “e_y”, que para nuestro caso es mayor que “e_x”. Para tal propósito, usaremos la hoja de cálculo (mencionada en la sección anterior) que requiere de los resultados arrojados por el programa de análisis sísmico seudo-tridimensional “A3S” (*) luego de un análisis hecho sin considerar la excentricidad. Luego, al final de cada análisis se mostrará que hay una relación muy sencilla entre los modos y factores de participación que se obtienen cuando se realiza un Análisis Dinámico Convencional (mencionado en la Secc. 1.2.3) y aquellos cuando en tal Análisis Dinámico se consideran las expresiones generales de las Seccs. 2.2 y 2.3.

También se mostrará más adelante que tal relación, en general, se cumple para cualquier tipo de programa de análisis ya sea seudo-tridimensional (como es el caso del A3S) o tridimensional como es caso del SAP versión 8, Etabs versión 8, entre otros; puesto que para obtener los nuevos periodos y modos no es indispensable el uso de la matriz de rigidez del sistema.

A) EDIFICACIONES DE 1 Y 2 PISOS CON PLANTA REGULAR

A.1) Edificación de 1 piso con planta regular

DATOS:
- Altura de entresuelo: 3.00 m
- Masa (m_i) = 4 kg/m
- Momento Polar de Inercia (J_i) = 2.47E+01
- $E_c =$ 2.00 E +06 ; G_c = 0.4 E_c
- Espectro de Pseudo Aceleración:
 - T_s = 0.00, 0.40
 - Sa(m/s²) = 1.23, 1.23
- Columnas: C 0.30x0.30m
- Viga: V 0.30x0.60m (Factor de reducción de rigideces = 0.70)

![Diagrama de edificación de 1 piso con planta regular](image)

Fig. 2.4 Considerando excentricidad “e_x = 5% (7m)” en la planta regular de una edificación de 1 piso

(*) Desarrollado por el Dr. Hugo Scaletti Farina
Luego de realizar un análisis sísmico con el "A3S" sin tener en cuenta la excentricidad accidental, es decir con centro de masas = (3.5m, 2.5m), se obtuvieron los siguientes modos de vibración (*) que se muestran en el Cuadro A1.1:

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Modo ° 1</th>
<th>Modo ° 2</th>
<th>Modo ° 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.500000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>v ° I</td>
<td>0.000000</td>
<td>0.500000</td>
<td>0.000000</td>
</tr>
<tr>
<td>giro ° I</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.2013470</td>
</tr>
</tbody>
</table>

A continuación se hará uso de la hoja de cálculo para calcular los nuevos valores y vectores propios. Para ello requerimos de los valores y vectores de un análisis sísmico hecho sin tener en cuenta la excentricidad accidental, es decir los obtenidos en la Cuadro A1.1. Luego, con

$$M = \begin{bmatrix} 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.40 \\ 0.00 & 1.40 & 0.49 \end{bmatrix}$$

Y lo obtenido en el Cuadro A1.1 obtenemos

$$S = \begin{bmatrix} 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.14094 \\ 0.000000 & 0.14094 & 0.01986 \end{bmatrix}$$

que servirá para el cálculo de los nuevos valores y vectores (los cuales no llevan superíndice). Esto se muestra a continuación en los Cuadros A1.2, A1.3, A1.4 y A1.5

(*) El super-índice " o " indica que el análisis sísmico se hizo sin considerar la excentricidad accidental.
(1) " * " indica que el análisis sísmico se hizo considerando la excentricidad accidental (dM ≠ 0).
(2) " * * " indica que el análisis sísmico se hizo considerando sólo la variación de la matriz de rigidez (dM=0)
Los Cuadros A1.2, A1.3, A1.4 y A1.5 muestran los resultados de un análisis sísmico hecho con la hoja de cálculo. Sin embargo, en el Cuadro A1.3 para efectos de comparación, se han incluido las frecuencias de vibración obtenidas con el programa "A3S" al considerar solamente una variación en la matriz de rigidez ($dK=0$ y $dM=0$). Resultando de tal análisis los valores y vectores propios dados en el Cuadro A1.6 y los factores de participación, mostrados en el Cuadro A1.7.

Como se podrá apreciar en el Cuadro A1.3 las frecuencias de vibración obtenidas cuando se considera la variación de la matriz de masas (dM) debido a la excentricidad accidental y aquellas obtenidas al considerar solamente la variación de la matriz de rigidez (dK) son casi iguales con pequeñas diferencias en sus últimas cifras, debido a la cantidad de cifras usadas en las operaciones y los redondeos hechos en cada programa.

Basados en el párrafo anterior, podemos inferir que existe una relación entre cada componente de los vectores propios mostrados en los Cuadros A1.4 y A1.6.
Apoyados en el significado de cada componente de un vector propio y conservando la notación ya establecida con anterioridad, tenemos lo que se muestra en la Fig. 2.5

![Diagrama](image)

Fig. 2.5 Relación entre las componentes de los valores propios al considerar la variación de la matriz de masas (dM) y aquel considerando solo la variación de la matriz de rigidez (dK)

De la Fig. 2.5 podemos ver que se establecen las siguientes relaciones

\[
\begin{align*}
 u'_{j} &= u_{j} \\
 v'_{j} &= v_{j} + ((e_{x})_{j} \theta_{j}) \\
 \theta'_{j} &= \theta_{j}
\end{align*}
\]

(2.67) \hspace{1cm} (2.68) \hspace{1cm} (2.69)

de las cuales podemos apreciar que solo la componente en dirección del sismo varía, aquella transversal a la excentricidad. Despejando convenientemente y reemplazando la Ec. (2.69) en la Ec. (2.68), ya que se desea las componentes cuando se considera dM en función de aquellas cuando se toma en cuenta solamente dK tenemos

\[
\begin{align*}
 u_{j} &= u'_{j} \\
 v_{j} &= v'_{j} - ((e_{x})_{j} \theta'_{j}) \\
 \theta_{j} &= \theta'_{j}
\end{align*}
\]

(2.70) \hspace{1cm} (2.71) \hspace{1cm} (2.72)

Entonces aplicando las Ecs. (2.70), (2.71) y (2.72) a los vectores dados en el Cuadro A1.6 obtenemos (*) lo mostrado en el Cuadro A1.8

(*) Este super-índice indica las componentes de los vectores que se obtienen al aplicar las Ecs. (2.70), (2.71) y (2.72) a los vectores obtenidos a partir de considerar solo la variación de la matriz de rigidez (dK) mostrados en el Cuadro A1.6.
Entonces al comparar cada componente del Cuadro A1.4 con aquellas del Cuadro A1.8 tenemos

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>Paralelismo</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>u/"u"1</td>
<td>1.000000000</td>
<td>1.000000000</td>
<td>1.000000000</td>
<td></td>
</tr>
<tr>
<td>y/y"1</td>
<td>1.000000000</td>
<td>0.999999969</td>
<td>1.00001650</td>
<td></td>
</tr>
<tr>
<td>g/g"1</td>
<td>1.000000000</td>
<td>1.00006638</td>
<td>0.99999980</td>
<td></td>
</tr>
</tbody>
</table>

Los resultados en el Cuadro A1.9 muestran que la inferencia hecha a partir de las comparaciones en el Cuadro A1.3 es correcta.

Ahora, si observamos los Cuadros A1.5 y A1.7 vemos que los factores de participación guardan también una relación puesto que se puede ver que aquellos en la dirección X e Y no cambian. Sin embargo aquellos de la dirección del giro sí lo hacen.

Recurrirando entonces al concepto de lo que es un Factor de Participación con la finalidad de establecer una relación entre los resultados a considerar dM y aquel en el que es considerado solamente dK, basado en las relaciones dados en la Ecuación 2.73 tenemos según muestra la Fig. 2.6

\[
\begin{align*}
\Gamma_x &= \phi_x (M + \Delta M) \Gamma_x \\
\Gamma_y &= \phi_y (M + \Delta M) \Gamma_y \\
\Gamma_\theta &= \phi_\theta (M + \Delta M) \Gamma_\theta \\
\Gamma'_x &= \phi'_x M \Gamma'_x \\
\Gamma'_y &= \phi'_y M \Gamma'_y \\
\Gamma'_\theta &= \phi'_\theta M \Gamma'_\theta
\end{align*}
\] (2.73)

Fig. 2.6 Relación entre los factores de participación al aplicar aceleración unitaria en cada GDL cuando se considera la variación de la matriz de masas (dM) y aquellas considerando solamente la variación en la matriz de rigidez (dK)

De la Fig. 2.6 y la comparación hecha entre los Cuadros A1.5 y A1.7 se tiene

\[
\begin{align*}
\Gamma_x &= \Gamma'_x \\
\Gamma_y &= \Gamma'_y \\
\Gamma_\theta &= \Gamma_\theta + (e_x)_j \Gamma'_y
\end{align*}
\] (2.74)
las cuales son relaciones importantes que justifican la razón por la cual es lógico que en la dirección X e Y se tengan los mismos factores de participación. AdemáIs, los factores fueron hallados consistentemente, ver Ec. (2.73). Por otro lado en la dirección del giro los factores de participación son distintos ya que aplicar un giro unitario en un punto dado (para nuestro caso en $P.R.$) y luego en otro distinto producirá aceleraciones distintas.

Aplicando las relaciones de la Ec. (2.74) al Cuadro A1.7 obtenemos lo mostrado en el Cuadro A1.10

<table>
<thead>
<tr>
<th>Cuadro A1.10</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r^n x i$</td>
<td>2.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>$r^n y i$</td>
<td>0.00000000</td>
<td>1.99499500</td>
<td>-0.14140000</td>
</tr>
<tr>
<td>$r^n g i$</td>
<td>0.00000000</td>
<td>1.04938425</td>
<td>4.90463700</td>
</tr>
</tbody>
</table>

que al ser comparado con el Cuadro A1.5 resulta

<table>
<thead>
<tr>
<th>Cuadro A1.11</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r x i / r^n x i$</td>
<td>1.00000000</td>
<td>1.00000000</td>
<td>1.00000000</td>
</tr>
<tr>
<td>$r y i / r^n x i$</td>
<td>1.00000000</td>
<td>0.99999987</td>
<td>1.00000071</td>
</tr>
<tr>
<td>$r g i / r^n g i$</td>
<td>1.00000000</td>
<td>1.00001641</td>
<td>0.99999164</td>
</tr>
</tbody>
</table>

Lo que confirma la validez de las expresiones dadas por la Ec. (2.74).

Para los demás casos se hará solamente referencia a los gráficos y relaciones establecidas en este caso.

A.2) Edificación de 2 pisos con planta regular

DATOS:
* Altura de entrepiso: 1ro - 3.00 m, 2do - 3.00 m
* Masa (m) 1ro - 4 kg.s²/m, 2do - 3 kg.s²/m
* Momento Polar de Inercia (J) $J_1 = J_2 = 2.47E+01$
* $Ec = 2.00 E +06$, $Gc = 0.4 \cdot Ec$
* Espectro de Pseudo Aceleración:
 * $T(s)$ 0.00 0.40
 * $Sa(m/s²)$ 1.23 1.23
* Columnas: C 0.30x0.30m
* Vigas: V 0.30x0.60m (Factor de reducción de rigideces = 0.70)

Fig. 2.7 Considerando excentricidad “$e_x = 5\% (7m)$” en la planta regular de una edificación de 2 pisos
Después de realizar un análisis sísmico con el "A3S" sin tener en cuenta la excentricidad accidental, es decir con centro de masas = (3.5m, 2.5m), se obtuvieron los siguientes modos de vibración que se muestran en el Cuadro A2.1:

<table>
<thead>
<tr>
<th>Cuadro A2.1</th>
<th>(\omega_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.904</td>
</tr>
<tr>
<td>(\lambda_j)</td>
<td>193.3212</td>
</tr>
<tr>
<td>(\phi_j)</td>
<td>Modo (^o) 1</td>
</tr>
<tr>
<td>(u)</td>
<td>0.483640</td>
</tr>
<tr>
<td>(v)</td>
<td>0.000000</td>
</tr>
<tr>
<td>(giro)</td>
<td>0.000000</td>
</tr>
<tr>
<td>Nivel 2</td>
<td></td>
</tr>
<tr>
<td>(u)</td>
<td>0.2730730</td>
</tr>
<tr>
<td>(v)</td>
<td>0.000000</td>
</tr>
<tr>
<td>(giro)</td>
<td>0.000000</td>
</tr>
<tr>
<td>Nivel 1</td>
<td></td>
</tr>
</tbody>
</table>

Luego se hará uso de la hoja de cálculo para lo cual requerimos de los valores y vectores de un análisis sísmico hecho sin tener en cuenta la excentricidad accidental, es decir los obtenidos en la Cuadro A2.1. Entonces con la variación de la matriz de masas (matriz en la que el segundo nivel está en la parte superior y el primer nivel en la parte inferior)

\[
\Delta M = \\
\begin{bmatrix}
0.00 & 0.00 & 0.00 \\
0.00 & 1.05 & 0.37 \\
0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00
\end{bmatrix}
\]

y lo obtenido en el Cuadro A2.1 obtenemos

\[
S = \\
\begin{bmatrix}
0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.12667 & 0.000000 & 0.000000 & 0.01977 \\
0.000000 & 0.12667 & 0.01605 & 0.000000 & -0.00300 & 0.00210 \\
0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & -0.00300 & 0.000000 & 0.000000 & 0.13535 \\
0.000000 & 0.01977 & 0.00210 & 0.000000 & 0.13535 & 0.01871
\end{bmatrix}
\]

que servirá para el cálculo de los nuevos valores y vectores (los cuales no llevan superíndice). Esto se muestra a continuación en los Cuadros A2.2, A2.3, A2.4 y A2.5

<table>
<thead>
<tr>
<th>Cuadro A2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_j)</td>
</tr>
<tr>
<td>193.321216</td>
</tr>
<tr>
<td>205.40826</td>
</tr>
<tr>
<td>498.901956</td>
</tr>
<tr>
<td>1441.56902</td>
</tr>
<tr>
<td>1469.82368</td>
</tr>
<tr>
<td>4126.30966</td>
</tr>
<tr>
<td>(\omega_j)</td>
</tr>
<tr>
<td>13.900</td>
</tr>
<tr>
<td>14.332</td>
</tr>
<tr>
<td>22.336</td>
</tr>
<tr>
<td>37.968</td>
</tr>
<tr>
<td>38.338</td>
</tr>
<tr>
<td>64.236</td>
</tr>
</tbody>
</table>
Los Cuadros A2.2, A2.3, A2.4 y A2.5 muestran los resultados de un análisis sísmico hecho con la hoja de cálculo. Sin embargo, en el Cuadro A2.3 para efectos de comparación, se han incluido las frecuencias de vibración obtenidas con el programa "A3S" al considerar solamente una variación en la matriz de rigidez (dK ≠ 0 y dM=0). Además de tal análisis se obtuvieron los valores y vectores propios dados en el Cuadro A2.6

y los factores de participación, los cuales se muestran en el Cuadro A2.7
En este caso, como en el caso A1, en el Cuadro A2.3 las frecuencias de vibración obtenidas cuando se considera la variación de la matriz de masas \((dM) \) debido a la excentricidad accidental y aquellas obtenidas al considerar solamente la variación de la matriz de rigidez \((dK) \) son casi iguales. Luego, también existirá una relación entre cada componente de los vectores propios mostrados en los Cuadros A2.4 y A2.6 (ver Fig. 2.5).

Entonces aplicando las Ecs. (2.70), (2.71) y (2.72) a los vectores dados en el Cuadro A2.6 obtenemos lo mostrado en el Cuadro A2.8

Entonces al comparar cada componente del Cuadro A2.4 con aquellas del Cuadro A2.8 tenemos

Los resultados en el Cuadro A2.9 muestran que la inferencia hecha a partir de las comparaciones en el Cuadro A2.3 también, al igual que en el caso A1, es correcta.

Asimismo, vemos que los factores de participación de los Cuadros A2.5 y A2.7 guardan también la relación establecida por la Ec. (2.74), ver Fig. 2.6. Es decir al aplicar
las relaciones de la Ec. (2.74) al Cuadro A2.7 obtenemos lo mostrado en el Cuadro A2.10

<table>
<thead>
<tr>
<th>Cuadro A2.10</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
<th>M 4</th>
<th>M 5</th>
<th>M 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r''x_i)</td>
<td>2.54321400</td>
<td>0.000000000</td>
<td>0.00000000</td>
<td>0.72942500</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>(r''y_i)</td>
<td>0.00000000</td>
<td>2.54145900</td>
<td>-0.23294500</td>
<td>0.00000000</td>
<td>0.69543200</td>
<td>-0.05565500</td>
</tr>
<tr>
<td>(r''g_i)</td>
<td>0.00000000</td>
<td>1.49893365</td>
<td>6.63651525</td>
<td>0.00000000</td>
<td>0.42252420</td>
<td>1.92929375</td>
</tr>
</tbody>
</table>

que al ser comparado con el Cuadro A2.5 resulta

<table>
<thead>
<tr>
<th>Cuadro A2.11</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
<th>M 4</th>
<th>M 5</th>
<th>M 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_{x_i}/ \rightarrow r''x_i)</td>
<td>1.000000001</td>
<td>1.000000000</td>
<td>1.000000000</td>
<td>1.0000000094</td>
<td>1.000000000</td>
<td>1.000000000</td>
</tr>
<tr>
<td>(r_{y_i}/ \rightarrow r''x_i)</td>
<td>1.000000000</td>
<td>0.99999927</td>
<td>1.00009476</td>
<td>1.000000000</td>
<td>1.00024824</td>
<td>1.00055421</td>
</tr>
<tr>
<td>(r_{g_i}/ \rightarrow r''g_i)</td>
<td>1.000000000</td>
<td>1.00003785</td>
<td>0.99999750</td>
<td>1.000000000</td>
<td>1.00023334</td>
<td>0.99984707</td>
</tr>
</tbody>
</table>

Lo que confirma una vez más que las expresiones dadas por la Ec. (2.74) son válidas.

B) EDIFICACIONES DE 1 Y 2 PISOS CON PLANTA IRREGULAR

B.1) Edificación de 1 piso con planta irregular

DATOS:
* Altura de entresuelo: 3.00 m
* Masa \((m_i) = 4 \text{ kg}\cdot\text{m}^2\)
* Momento Polar de Inercia \((J_i) = 2.47\text{E+01}\)
* \(Ec = 2.00 \text{E+06} \; \text{Gc} = 0.4 \; Ec\)
* Espectro de Pseudo Aceleración:
 \(T(\alpha) \; 0.00 \; 0.40\)
 \(Sa(m/s^2) \; 1.23 \; 1.23\)
* Columnas: C 0.30x0.30m
* Muro: L=2.00m, espesor (c) = 0.30 m
* Viga: V 0.30x0.60m (Factor de reducción de rigideces = 0.70)

![Fig. 2.8](image)

Fig. 2.8 Considereando excentricidad \(e_x = 5\% \) (7m) en la planta irregular de una edificación de 1 piso

Luego de realizar un análisis sísmico con el "A3S" sin tener en cuenta la excentricidad accidental, es decir con centro de masas = (3.5m, 2.5m), se obtuvieron los siguientes modos de vibración que se muestran en el Cuadro B1.1:
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

Cap. 2: Métodos de Análisis

<table>
<thead>
<tr>
<th>Cuadro B1.1</th>
<th>(\omega_j^i)</th>
<th>27.338</th>
<th>95.263</th>
<th>189.290</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_j)</td>
<td>747.3662</td>
<td>9075.0392</td>
<td>35830.7041</td>
<td></td>
</tr>
<tr>
<td>(\phi_j^o)</td>
<td>Modo 1</td>
<td>Modo 2</td>
<td>Modo 3</td>
<td></td>
</tr>
<tr>
<td>Nivel 1</td>
<td>(u^o)</td>
<td>0.2539910</td>
<td>0.4075030</td>
<td>-0.1393910</td>
</tr>
<tr>
<td></td>
<td>(v^o)</td>
<td>0.3544760</td>
<td>-0.2897080</td>
<td>-0.2010390</td>
</tr>
<tr>
<td></td>
<td>(giro^o)</td>
<td>0.0985040</td>
<td>-0.0013300</td>
<td>0.1756010</td>
</tr>
</tbody>
</table>

A continuación se hará uso de la hoja de cálculo que requiere de los valores y vectores de un análisis sísmico hecho sin tener en cuenta la excentricidad accidental, es decir los obtenidos en la Cuadro B1.1. Entonces, con

\[
\Delta M = \begin{bmatrix} 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.40 \\ 0.00 & 1.40 & 0.49 \end{bmatrix}
\]

Y lo obtenido en el Cuadro B1.1 obtenemos

\[
S = \begin{bmatrix} 0.10252 & -0.04068 & 0.06790 \\ -0.04068 & 0.00108 & -0.07096 \\ 0.06790 & -0.07096 & -0.08374 \end{bmatrix}
\]

que servirá para el cálculo de los nuevos valores y vectores (los cuales no llevan superíndice). Esto se muestra a continuación en los Cuadros B1.2, B1.3, B1.4 y B1.5

<table>
<thead>
<tr>
<th>Cuadro B1.2</th>
<th>(\lambda_j)</th>
<th>677.732095</th>
<th>9066.06429</th>
<th>39551.9006</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_j)</td>
<td>26.03</td>
<td>95.216</td>
<td>198.877</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro B1.3</th>
<th>COMPARACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td># modo</td>
<td>1</td>
</tr>
<tr>
<td>(\omega_j^o)</td>
<td>27.338</td>
</tr>
<tr>
<td>(\omega_j (dM)^{(*)})</td>
<td>26.033</td>
</tr>
<tr>
<td>(\omega_j (dK)^{(*)})</td>
<td>26.033</td>
</tr>
<tr>
<td>(\omega_j) ?</td>
<td>Disminuye</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro B1.4</th>
<th>(\omega_j)</th>
<th>22.093</th>
<th>22.445</th>
<th>38.996</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_j)</td>
<td>Modo 1</td>
<td>Modo 2</td>
<td>Modo 3</td>
<td></td>
</tr>
<tr>
<td>Nivel 1</td>
<td>(u)</td>
<td>0.2403924</td>
<td>0.4204882</td>
<td>-0.1241280</td>
</tr>
<tr>
<td></td>
<td>(v)</td>
<td>0.3381791</td>
<td>-0.2701014</td>
<td>-0.2601545</td>
</tr>
<tr>
<td></td>
<td>giro</td>
<td>0.0940163</td>
<td>-0.0011950</td>
<td>0.1780297</td>
</tr>
</tbody>
</table>

2 - 32
Los Cuadros B1.2, B1.3, B1.4 y B1.5 muestran los resultados de un análisis sísmico hecho con la hoja de cálculo. Sin embargo, en el Cuadro B1.3 para efectos de comparación, se han incluido las frecuencias de vibración obtenidas con el programa "A3S" al considerar solamente una variación en la matriz de rigidez ($dK \neq 0$ y $dM=0$). Además de tal análisis se obtuvieron los valores y vectores propios dados en el Cuadro B1.6 y los factores de participación, los cuales se muestran en el Cuadro B1.7.

Como se podrá apreciar, al igual que en los caso A1 y A2, en el Cuadro B1.3 las frecuencias de vibración obtenidas cuando se considera la variación de la matriz de masas (dM) debido a la excentricidad accidental y aquellas obtenidas al considerar solamente la variación de la matriz de rigidez (dK) son casi iguales. Luego, también existe una relación entre cada componente de los vectores propios mostrados en los Cuadros B1.4 y B1.6.(ver Fig. 2.5).

Entonces aplicando las Ecs. (2.70), (2.71) y (2.72) a los vectores dados en el Cuadro B1.6 obtenemos lo mostrado en el Cuadro B1.8.

Entonces al comparar cada componente del Cuadro B1.4 con aquellas del Cuadro B1.8 tenemos
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

Cap. 2: Métodos de Análisis

<table>
<thead>
<tr>
<th>Cuadro B1.9 Paralelismo</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_{1}/u^{*}_{1})</td>
<td>0.99999762</td>
<td>1.000000997</td>
<td>1.00009698</td>
</tr>
<tr>
<td>(y_{1}/y^{*}_{1})</td>
<td>0.99999923</td>
<td>0.99997270</td>
<td>1.00027954</td>
</tr>
<tr>
<td>(g_{1}/g^{*}_{1})</td>
<td>1.00000284</td>
<td>1.00002048</td>
<td>0.99991430</td>
</tr>
</tbody>
</table>

Los resultados en el Cuadro B1.9 muestran que la inferencia hecha a partir de las comparaciones en el Cuadro B1.3 también, al igual que los casos A1 y A2, es correcta.

Ahora, vemos que los factores de participación de los Cuadros B1.5 y B1.7 guardan también una relación dada por la Ec. (2.74), ver Fig. 2.6. O sea al aplicar las relaciones de la Ec. (2.74) al Cuadro B1.7 obtenemos lo mostrado en el Cuadro B1.10

<table>
<thead>
<tr>
<th>Cuadro B1.10: (r^n_{x_i})</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r^n_{y_i})</td>
<td>0.96157100</td>
<td>1.68193500</td>
<td>-0.49646500</td>
</tr>
<tr>
<td>(r^n_{g_i})</td>
<td>1.48433800</td>
<td>-1.08210700</td>
<td>-0.79106600</td>
</tr>
</tbody>
</table>

que al ser comparado con el Cuadro B1.5 resulta

<table>
<thead>
<tr>
<th>Cuadro B1.11: (r^*_{x_i})</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r^*_{y_i})</td>
<td>0.99999866</td>
<td>1.00001057</td>
<td>1.00009497</td>
</tr>
<tr>
<td>(r^*_{g_i})</td>
<td>1.00000090</td>
<td>0.99997370</td>
<td>1.00039209</td>
</tr>
</tbody>
</table>

Lo que confirma una vez más que las expresiones dadas por la Ec. (2.74) son válidas.

B.2) Edificación de 2 pisos con planta irregular

DATOS:
* Altura de entresiso: 1ro - 3.00 m, 2do - 3.00 m
* Masa (m): 1ro - 4 kg/m²/m, 2do - 3 kg/m²/m
* Momento Polar de Inercia (J): J₁ = J₂ = 2.47E+01
* Ec = 2.00 E +06; Gc = 0.4 Ec
* Espectro de Pseudo Aceleración: T(s) 0.00 0.40
 Sa(m/s²) 1.23 1.23
* Columnas: C 0.30x0.30m
* Muros: L = 2.00m, espesor (e) = 0.30 m
* Vigas: V 0.30x0.60m (Factor de reducción de rigideces = 0.70)

Fig. 2.9 Considerando excentricidad "\(e_x = 5\% \text{ (7m) }" en la planta irregular de una edificación de 2 pisos
Después de realizar un análisis sísmico con el “A3S” sin tener en cuenta la excentricidad accidental, es decir con centro de masas = (3.5m, 2.5m), se obtuvieron los siguientes modos de vibración que se muestran en el Cuadro B2.1:

<table>
<thead>
<tr>
<th>Cuadro B2.1</th>
<th>(\omega_j)</th>
<th>16.881</th>
<th>43.845</th>
<th>46.287</th>
<th>79.007</th>
<th>182.043</th>
<th>356.716</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\lambda_j)</td>
<td>284.9682</td>
<td>1922.3840</td>
<td>2142.4864</td>
<td>6242.1060</td>
<td>33139.6538</td>
<td>127246.3047</td>
</tr>
<tr>
<td></td>
<td>(\phi_\theta)</td>
<td>Modo 1</td>
<td>Modo 2</td>
<td>Modo 3</td>
<td>Modo 4</td>
<td>Modo 5</td>
<td>Modo 6</td>
</tr>
<tr>
<td>Nivel 2</td>
<td>(u \circ)</td>
<td>0.242490</td>
<td>-0.444320</td>
<td>-0.1271230</td>
<td>-0.1562020</td>
<td>-0.1806990</td>
<td>0.0624540</td>
</tr>
<tr>
<td></td>
<td>(v \circ)</td>
<td>0.3342730</td>
<td>0.2922780</td>
<td>-0.2307600</td>
<td>-0.2402340</td>
<td>0.1399360</td>
<td>0.0870860</td>
</tr>
<tr>
<td></td>
<td>(giro \circ)</td>
<td>0.0912140</td>
<td>0.0014830</td>
<td>-0.01599110</td>
<td>0.1600790</td>
<td>-0.0006350</td>
<td>-0.0588770</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>(u \circ)</td>
<td>0.1358240</td>
<td>-0.1449410</td>
<td>0.2223710</td>
<td>-0.0458620</td>
<td>0.3758510</td>
<td>-0.1331450</td>
</tr>
<tr>
<td></td>
<td>(v \circ)</td>
<td>0.1884920</td>
<td>0.1287520</td>
<td>0.2915150</td>
<td>-0.0772050</td>
<td>-0.2671720</td>
<td>-0.1886030</td>
</tr>
<tr>
<td></td>
<td>(giro \circ)</td>
<td>0.0522130</td>
<td>0.0056560</td>
<td>0.0846950</td>
<td>0.0601750</td>
<td>-0.0009190</td>
<td>0.1642440</td>
</tr>
</tbody>
</table>

Luego se hará uso de la hoja de cálculo para lo cual requerimos de los valores y vectores de un análisis sísmico hecho sin tener en cuenta la excentricidad accidental, es decir los obtenidos en la Cuadro B2.1. Entonces con la variación de la matriz de masas (matriz en la que el segundo nivel está en la parte superior y el primer nivel en la parte inferior)

\[
\Delta M = \begin{bmatrix}
0.00 & 0.00 & 0.00 \\
0.00 & 1.05 & 0.37 \\
0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 \\
\end{bmatrix}
\]

y lo obtenido en el Cuadro B2.1 obtenemos

\[
S = \begin{bmatrix}
0.09598 & 0.03988 & 0.00223 & 0.05302 & -0.00750 & 0.01972 \\
0.03988 & 0.00330 & 0.00667 & 0.05917 & -0.00262 & 0.01044 \\
0.00233 & 0.00067 & 0.10089 & -0.01007 & -0.03961 & 0.06169 \\
0.05302 & 0.05917 & -0.01007 & -0.08258 & -0.00030 & -0.00232 \\
-0.00750 & -0.00262 & -0.03961 & -0.00030 & 0.00051 & -0.06941 \\
0.01972 & 0.01044 & 0.06169 & -0.00232 & -0.00941 & -0.08334 \\
\end{bmatrix}
\]

que servirá para el cálculo de los nuevos valores y vectores (los cuales no llevan superíndice). Esto se muestra a continuación en los Cuadros B2.2, B2.3, B2.4 y B2.5

<table>
<thead>
<tr>
<th>Cuadro B2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_j)</td>
</tr>
<tr>
<td>(\omega_j)</td>
</tr>
</tbody>
</table>
Cuadro B2.3

<table>
<thead>
<tr>
<th># modo</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_i^o</td>
<td>16.881</td>
<td>43.845</td>
<td>46.287</td>
<td>79.007</td>
<td>182.043</td>
<td>356.716</td>
</tr>
<tr>
<td>ω_j</td>
<td>16.122</td>
<td>43.779</td>
<td>44.111</td>
<td>82.807</td>
<td>182.000</td>
<td>374.600</td>
</tr>
<tr>
<td>ω_j (dM)</td>
<td>16.122</td>
<td>43.779</td>
<td>44.112</td>
<td>82.807</td>
<td>182.000</td>
<td>374.598</td>
</tr>
<tr>
<td>ω_j (dK)</td>
<td>16.122</td>
<td>43.779</td>
<td>44.112</td>
<td>82.807</td>
<td>182.000</td>
<td>374.598</td>
</tr>
<tr>
<td>$\dot{\omega}_j$</td>
<td>Disminuye</td>
<td>Disminuye</td>
<td>Disminuye</td>
<td>Aumenta</td>
<td>Disminuye</td>
<td>Aumenta</td>
</tr>
</tbody>
</table>

Cuadro B2.4

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>ϕ_j</th>
<th>Modo 1</th>
<th>Modo 2</th>
<th>Modo 3</th>
<th>Modo 4</th>
<th>Modo 5</th>
<th>Modo 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>u 2</td>
<td>0.2285391</td>
<td>-0.4585953</td>
<td>-0.1090716</td>
<td>-0.1397041</td>
<td>-0.1864103</td>
<td>0.0556203</td>
<td></td>
</tr>
<tr>
<td>v 2</td>
<td>0.3203597</td>
<td>0.2690108</td>
<td>-0.2270028</td>
<td>-0.2946983</td>
<td>0.1227121</td>
<td>0.1092872</td>
<td></td>
</tr>
<tr>
<td>giro 2</td>
<td>0.0874234</td>
<td>0.0008780</td>
<td>-0.0542155</td>
<td>0.1624444</td>
<td>-0.0008187</td>
<td>-0.0597133</td>
<td></td>
</tr>
<tr>
<td>Nivel 1</td>
<td>ϕ_j</td>
<td>Modo 1</td>
<td>Modo 2</td>
<td>Modo 3</td>
<td>Modo 4</td>
<td>Modo 5</td>
<td>Modo 6</td>
</tr>
<tr>
<td>u 1</td>
<td>0.1287719</td>
<td>-0.1495391</td>
<td>0.2144639</td>
<td>-0.0393129</td>
<td>0.3877671</td>
<td>-0.1186739</td>
<td></td>
</tr>
<tr>
<td>v 1</td>
<td>0.1808880</td>
<td>0.1211311</td>
<td>0.2748888</td>
<td>-0.0963674</td>
<td>-0.2439285</td>
<td>-0.2439238</td>
<td></td>
</tr>
<tr>
<td>giro 1</td>
<td>0.0500537</td>
<td>0.0006573</td>
<td>0.0803080</td>
<td>0.0611267</td>
<td>-0.0009165</td>
<td>0.1666711</td>
<td></td>
</tr>
</tbody>
</table>

Los Cuadros B2.2, B2.3, B2.4 y B2.5 muestran los resultados de un análisis sísmico hecho con la hoja de cálculo. Sin embargo, en el Cuadro B2.3 para efectos de comparación, se han incluido las frecuencias de vibración obtenidas con el programa "A3S", al considerar solamente una variación en la matriz de rigidez (dK=0 y dM=0). Además de tal análisis se obtuvieron los valores y vectores propios dados en el Cuadro B2.6

Cuadro B2.6

<table>
<thead>
<tr>
<th>ψ_j</th>
<th>Modo 1</th>
<th>Modo 2</th>
<th>Modo 3</th>
<th>Modo 4</th>
<th>Modo 5</th>
<th>Modo 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 2</td>
<td>u' 2</td>
<td>0.2285390</td>
<td>-0.4589700</td>
<td>-0.11084400</td>
<td>-0.13967900</td>
<td>-0.18640800</td>
</tr>
<tr>
<td>v' 2</td>
<td>0.35095800</td>
<td>0.26652100</td>
<td>-0.24462400</td>
<td>-0.23779900</td>
<td>0.12242900</td>
<td>0.08836500</td>
</tr>
<tr>
<td>giro' 2</td>
<td>0.08742300</td>
<td>0.00025100</td>
<td>-0.05421500</td>
<td>0.16245700</td>
<td>-0.00081900</td>
<td>-0.05971200</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>u' 1</td>
<td>0.12877200</td>
<td>-0.14707500</td>
<td>0.21400000</td>
<td>-0.03931300</td>
<td>0.38776300</td>
</tr>
<tr>
<td>v' 1</td>
<td>0.19820700</td>
<td>0.12695500</td>
<td>0.30370100</td>
<td>-0.07495300</td>
<td>-0.24965500</td>
<td>-0.18551700</td>
</tr>
<tr>
<td>giro' 1</td>
<td>0.05005400</td>
<td>0.00075020</td>
<td>0.08035200</td>
<td>0.06113000</td>
<td>-0.00091600</td>
<td>0.16668700</td>
</tr>
</tbody>
</table>

y los factores de participación, los cuales se muestran en el Cuadro B2.7
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

Cap. 2 : Métodos de Análisis

<table>
<thead>
<tr>
<th>Cuadro B2.7</th>
<th>Modo' 1</th>
<th>Modo' 2</th>
<th>Modo' 3</th>
<th>Modo' 4</th>
<th>Modo' 5</th>
<th>Modo' 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r'_{,x,i}$</td>
<td>1.200700500</td>
<td>-1.967989000</td>
<td>0.524105000</td>
<td>-0.576834000</td>
<td>0.991830000</td>
<td>-0.307811000</td>
</tr>
<tr>
<td>$r'_{,y,i}$</td>
<td>1.845700000</td>
<td>1.307384000</td>
<td>0.481231000</td>
<td>-1.013148000</td>
<td>-0.631332000</td>
<td>-0.476973000</td>
</tr>
<tr>
<td>$r'_{,g,i}$</td>
<td>3.391101000</td>
<td>0.191236000</td>
<td>0.644732000</td>
<td>5.515142000</td>
<td>-0.042794000</td>
<td>2.638728000</td>
</tr>
</tbody>
</table>

En este caso, como en los casos A1, A2 y B1, en el Cuadro B2.3 las frecuencias de vibración obtenidas cuando se considera la variación de la matriz de masas (dM) debido a la excentricidad accidental y aquellas obtenidas al considerar solamente la variación de la matriz de rigidez (dK) son casi iguales. Luego, también existirá una relación entre cada componente de los vectores propios mostrados en los Cuadros B2.4 y B2.6 (ver Fig. 2.5).

Entonces aplicando las Ecs. (2.70), (2.71) y (2.72) a los vectores dados en el Cuadro B2.6 obtenemos lo mostrado en el Cuadro B2.8

<table>
<thead>
<tr>
<th>Cuadro B2.8</th>
<th>\ddot{g}_{i}</th>
<th>Modo" 1</th>
<th>Modo" 2</th>
<th>Modo" 3</th>
<th>Modo" 4</th>
<th>Modo" 5</th>
<th>Modo" 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 2</td>
<td>$u''_{,2}$</td>
<td>0.228539000</td>
<td>-0.459897000</td>
<td>-0.110644000</td>
<td>-0.139697000</td>
<td>-0.168408000</td>
<td>0.055615000</td>
</tr>
<tr>
<td></td>
<td>$y''_{,2}$</td>
<td>0.320359950</td>
<td>0.266433150</td>
<td>-0.225548750</td>
<td>-0.294638995</td>
<td>0.122715650</td>
<td>0.109264200</td>
</tr>
<tr>
<td></td>
<td>$g_{,i}$</td>
<td>0.087423000</td>
<td>0.000251000</td>
<td>-0.054215000</td>
<td>0.162457000</td>
<td>-0.0008190</td>
<td>-0.059712000</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>$u''_{,1}$</td>
<td>0.128772000</td>
<td>-0.147075000</td>
<td>0.214009000</td>
<td>-0.099313000</td>
<td>0.387763000</td>
<td>-0.118664000</td>
</tr>
<tr>
<td></td>
<td>$y''_{,1}$</td>
<td>0.180688100</td>
<td>0.124329300</td>
<td>0.275577800</td>
<td>-0.096348500</td>
<td>-0.2493344</td>
<td>-0.243857450</td>
</tr>
<tr>
<td></td>
<td>$g_{,i}$</td>
<td>0.050054000</td>
<td>0.007502000</td>
<td>0.080352000</td>
<td>0.061130000</td>
<td>-0.0009160</td>
<td>0.166687000</td>
</tr>
</tbody>
</table>

Entonces al comparar cada componente del Cuadro B2.4 con aquellas del Cuadro B2.8 tenemos

<table>
<thead>
<tr>
<th>Cuadro B2.9</th>
<th>Paralelismo</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
<th>M 4</th>
<th>M 5</th>
<th>M 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 2</td>
<td>$u_{,2} / u''_{,2}$</td>
<td>1.00000031</td>
<td>0.99716969</td>
<td>0.98579870</td>
<td>1.00005102</td>
<td>1.00001216</td>
<td>1.00009579</td>
</tr>
<tr>
<td></td>
<td>$y_{,2} / y''_{,2}$</td>
<td>0.99999916</td>
<td>1.00967465</td>
<td>1.00644670</td>
<td>1.00020152</td>
<td>0.99997080</td>
<td>1.00021052</td>
</tr>
<tr>
<td></td>
<td>$g_{,2} / g''_{,2}$</td>
<td>1.00000471</td>
<td>3.49804611</td>
<td>1.00000948</td>
<td>0.99992246</td>
<td>0.99964907</td>
<td>1.00002239</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>$u_{,1} / u''_{,1}$</td>
<td>0.99999927</td>
<td>1.01675389</td>
<td>1.00212539</td>
<td>0.99999865</td>
<td>1.00001052</td>
<td>1.00008360</td>
</tr>
<tr>
<td></td>
<td>$y_{,1} / y''_{,1}$</td>
<td>0.99999942</td>
<td>0.97427631</td>
<td>0.99749987</td>
<td>1.00019621</td>
<td>0.99997650</td>
<td>1.00027225</td>
</tr>
<tr>
<td></td>
<td>$g_{,1} / g''_{,1}$</td>
<td>0.87621600</td>
<td>0.99945187</td>
<td>0.9994567</td>
<td>1.00056198</td>
<td>0.99990453</td>
<td></td>
</tr>
</tbody>
</table>

Los resultados en el Cuadro B2.9 muestran que la inferencia hecha a partir de las comparaciones en el Cuadro B2.3 también, al igual que en los casos A1, A2 y B1, es correcta. A excepción de los valores encerrados en círculo naranja que provienen de la división de dos número no significativos (ver para esto los Cuadros B2.4 y B2.8).

2 - 37
Asimismo, vemos que los factores de participación de los Cuadros B2.5 y B2.7 guardan también la relación establecida por la Ec. (2.74), ver Fig. 2.6. Es decir al aplicar las relaciones de la Ec. (2.74) al Cuadro B2.7 obtenemos lo mostrado en el Cuadro B2.10

<table>
<thead>
<tr>
<th>Cuadro B2.10</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
<th>M 4</th>
<th>M 5</th>
<th>M 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r''x_i$</td>
<td>1.20070500</td>
<td>-1.96798900</td>
<td>0.52410500</td>
<td>-0.57634000</td>
<td>0.99183000</td>
<td>-0.30781100</td>
</tr>
<tr>
<td>$r''y_i$</td>
<td>1.84570000</td>
<td>1.30738400</td>
<td>0.48123100</td>
<td>-1.01314800</td>
<td>-0.63133200</td>
<td>-0.47697300</td>
</tr>
<tr>
<td>$r''g_i$</td>
<td>4.03709600</td>
<td>0.64882040</td>
<td>0.81316285</td>
<td>5.16054020</td>
<td>-0.26376020</td>
<td>2.47176745</td>
</tr>
</tbody>
</table>

que al ser comparado con el Cuadro B2.5 resulta

<table>
<thead>
<tr>
<th>Cuadro B2.11</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
<th>M 4</th>
<th>M 5</th>
<th>M 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r''x_i/r''x_i$</td>
<td>0.99999986</td>
<td>1.00002510</td>
<td>1.01247002</td>
<td>1.00004193</td>
<td>1.00000758</td>
<td>1.00007699</td>
</tr>
<tr>
<td>$r''y_i/r''x_i$</td>
<td>1.00000041</td>
<td>0.99563816</td>
<td>0.98508101</td>
<td>1.00026908</td>
<td>0.99998214</td>
<td>1.00046173</td>
</tr>
<tr>
<td>$r''g_i/r''g_i$</td>
<td>1.00000022</td>
<td>0.98546433</td>
<td>0.99553443</td>
<td>0.99990620</td>
<td>1.00001641</td>
<td>0.99979208</td>
</tr>
</tbody>
</table>

Lo que confirma una vez más que las expresiones dadas por la Ec. (2.74) son válidas.

También, como se dijo anteriormente, las Ec. (2.70), (2.71),(2.72) y las expresiones dadas por la Ec. (2.74) , no sólo se aplican al análisis sísmico seudo-tridimensional como es el caso del programa " A3s ", sino que se aplican también a cualquier programa que realiza un análisis sísmico tridimensional como los caso de los programas SAP Versión 8 y el de ETABS Versión 8 que aplicados al " Caso A1 " arrojan una verificación en el paralelismo como se muestra a continuación

<table>
<thead>
<tr>
<th>Cuadro C-1</th>
<th>Paralelismo</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP.v.8</td>
<td>u''/u''</td>
<td>1.00000000</td>
<td>1.00000000</td>
<td>1.00000000</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>y''/y''</td>
<td>1.00000000</td>
<td>1.00000356</td>
<td>1.00024903</td>
</tr>
<tr>
<td></td>
<td>g''/g''</td>
<td>1.00000000</td>
<td>0.99994799</td>
<td>1.00002235</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro D-1</th>
<th>Paralelismo</th>
<th>M 1</th>
<th>M 2</th>
<th>M 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETABS.v.8</td>
<td>u''/u''</td>
<td>1.00000000</td>
<td>1.00000000</td>
<td>1.00000000</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>y''/y''</td>
<td>1.00000000</td>
<td>1.00000356</td>
<td>1.00024903</td>
</tr>
<tr>
<td></td>
<td>g''/g''</td>
<td>1.00000000</td>
<td>0.99994799</td>
<td>1.00002235</td>
</tr>
</tbody>
</table>
Se han hecho pruebas para edificaciones de 3 y 4 pisos con los programas de Análisis Sísmico Tridimensional SAP v.8 y ETABS v.8 y se llega a la misma conclusión. Es decir la valides de las Ec. (2.70), (2.71),(2.72) y las expresiones dadas por la Ec. (2.74).

Luego de haber usado estos procedimientos simplificados para realizar un análisis dinámico a las estructuras de la Secc. 2.5 considerando la excentricidad accidental, se concluye que dichos procedimientos simplificados podrían ser utilizados tanto en análisis dinámicos tridimensionales y seudo tridimensionales, ya que dichos procedimientos, como se ha podido observar, no involucran a la matriz de rigidez del sistema al calcular los nuevos modos y nuevas frecuencias de vibración respecto al centro de masas original. Además, al usar estos procedimientos se podría ser reducir el tiempo de computo puesto que, a diferencia del análisis dinámico tradicional en el que la matriz de rigidez varía sustancialmente, en los procedimientos simplificados mencionados sólo se tendrían cambios en la matriz de masas M que se calculan con relativa facilidad.
CAPÍTULO 3

INFLUENCIA DE LA EXCENTRICIDAD ACCIDENTAL

3.1 EDIFICIOS ESTUDIADOS

Para considerar la influencia de la excentricidad accidental en los resultados del análisis sísmico, con espectro de respuesta de la Norma E-030 (2003), se presentan en este capítulo los resultados del análisis sísmico de 6 estructuras regulares e irregulares con distintas rangos de alturas. Estos Fueron

- Una edificación regular de 3 pisos, típica de un colegio.
- Tres módulos de un conjunto habitacional, compuesto por edificios de 5 pisos y sótano, con distinto grados de irregularidad.
- Edificio de vivienda de 9 pisos, con configuración simétrica.
- Edificio de vivienda de 12 pisos, una estructura muy regular.

Los resultados son expresados en gráficas de las variables más importantes del análisis sísmico como periodos naturales, cortantes basales, desplazamientos y distorsiones, como función del porcentaje de excentricidad accidental. También se presenta la variación del cortante y la distorsión en los pórticos extremos, en ambas direcciones. Adicionalmente algunas de estas gráficas se comparan con los resultados de un análisis sísmico estático.

En el análisis dinámico seudotridimensional aplicado a las edificaciones, el porcentaje de excentricidad fue un porcentaje de la mayor dimensión del piso o diafragma en dirección perpendicular a la componente de sismo considerada.

Se analizaron todas las edificaciones en un rango de excentricidad accidental de “−10 % a +10% ” para poder apreciar mejor el comportamiento de variables importantes resultantes de realizar un análisis sísmico. Es preciso recordar que el centro de masas inicial (\(e_x = e_y = 0\)) es el que sufrirá cambios en su ubicación, es decir para + % \(e_x\) se moverá en la dirección +X y - % \(e_x\) en la dirección -X, de manera análoga para + % \(e_y\) se moverá en la dirección +Y y - % \(e_y\) en la dirección -Y.
3.2 ESTRUCTURA TÍPICA DE UN COLEGIO

Centro educativo de 3 pisos cuya estructuración es típica. La planta típica (ver Fig. 3.1) se da para el 1er y 2do piso; el 3er piso no tiene volado. El 1er piso tiene una altura de 4.5m, y el 2do y 3er piso 3.25m. En cuanto a la regularidad, en planta es considerado regular, puesto que todos los elementos resistentes al sismo se encuentran dispuestos de manera simétrica; en elevación también posee regularidad estructural. En la dirección X, a pesar del pequeño volado en los dos primeros pisos (pasadizo que no trabaja como elemento resistente al sismo), es regular con 2 pórticos de 6 vanos; y en la dirección Y tiene 3 pórticos de 1 vano y cuatro muros de manpostería, todos ellos distribuidos simétricamente.

Los parámetros usados en el análisis dinámico fueron $Z = 0.4$, $U = 1.5$, $S = 1.2$ ($T_p = 0.6$), $R_x = 8$ y $R_y = 3$. En el estático adicionalmente se usó $C_{tx} = 45$ y $C_{ty} = 60$.

Para cuando las excentricidades no fueron consideradas (o sea $e_x = e_y = 0$) se obtuvieron los siguientes períodos, frecuencias y Masas Efectivas (% de masa total) de los modos más importantes

<table>
<thead>
<tr>
<th>MODO</th>
<th>T (s)</th>
<th>f (Hz)</th>
<th>X</th>
<th>Y</th>
<th>Torsional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.753 s</td>
<td>1.329 Hz</td>
<td>80.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>1.158 s</td>
<td>6.318 Hz</td>
<td>17.20</td>
<td>0.00</td>
<td>1.34</td>
</tr>
<tr>
<td>3</td>
<td>0.145 s</td>
<td>6.885 Hz</td>
<td>0.00</td>
<td>95.10</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.112 s</td>
<td>8.361 Hz</td>
<td>0.31</td>
<td>0.00</td>
<td>93.40</td>
</tr>
<tr>
<td>5</td>
<td>0.062 s</td>
<td>16.043 Hz</td>
<td>2.22</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>6</td>
<td>0.050 s</td>
<td>19.839 Hz</td>
<td>0.00</td>
<td>4.61</td>
<td>0.00</td>
</tr>
</tbody>
</table>

A continuación, en las páginas 3 – 4 y 3 – 5 se presentan los comentarios de las gráficas correspondientes a las variables más importantes en el análisis sísmico, para el sismo actuando en las direcciones X e Y respectivamente. Dichas gráficas, ubicadas de la página 3 - 6 a la 3 - 23, para el rango de excentricidad accidental ya mencionado, muestran los efectos de la excentricidad cuando el sismo actúa en la dirección transversal X e Y.
EFFECTS OF THE EXCENTRICITY \(e_x \) AL ACTUAR LA COMPONENTE DE SISMO EN DIRECCIÓN \(X \)

Están representados por los Gráficos 3.1 al 3.17:

* **Períodos (Gráficos 3.1 a 3.3).**- T1 (*periodo fundamental*), mínimo en \(e_x = 6\% \), tiene poca variación por ser el 1\(^{\text{er}}\) modo fundamentalmente \(X \) con pequeña *componente torsional*. Para T2 se observa una variación un poco más significativa ya que a pesar de que el 2\(^{\text{do}}\) modo es \(X \) tiene *componente torsional significativa*. T3 es casi constante ya que el 3\(^{\text{er}}\) modo sólo tiene componente \(Y \).

* **Desplazamientos del Centro de Masas Original (Gráfico 3.4).**- Variación poco importante. Se aprecia que *no aumenta* en todos los casos. El desplazamiento del 3\(^{\text{er}}\) Nivel tiene un *máximo* para \(e_x = -1\% \).

* **Giros (Gráfico 3.5).**- La pequeña excentricidad de las masas (por la presencia de los volados) hace que los giros se reduzcan para el caso de las excentricidades negativas.

* **Distorsiones del Centro de Masas Original (Gráfico 3.6).**- Consistente con los Desplazamientos del Centro de Masas Original.

* **Distorsiones Angulares (Gráfico 3.7).**- Consistente con los giros.

* **Cortante Basal (Gráficos 3.8 a 3.9).**- No varía porque lo que aumenta el cortante del pórtico en el Eje A es similar a la reducción que sufre el cortante en el pórtico en el Eje B. Además, la estructura es muy simple y ordenada.

* **Pórticos extremos A y B (Gráficos 3.10 a 3.13).**- Cambios poco importantes. Nótese que los porcentajes en que se modifican las distorsiones no son iguales a los de los cortes.

* **Comparación de los análisis Dinámico y Estático (Gráficos 3.14 a 3.17).**- En este caso se observan las mismas tendencias en los resultados de los análisis estáticos y dinámicos, aún cuando los resultados no son iguales.
Efectos de la Excentricidad en el Análisis Sísmico

Cap. 3: Influencia de la Excentricidad Accidental

* Períodos (Gráficos 3.18 a 3.20).- T1 (periodo fundamental) es casi constante por ser el 1er modo fundamentalmente X con pequeña componente torsional y además con pequeña componente en Y que aparece con $e_x \neq 0\%$. T2 no presenta variación importante ya que el 2do es fundamentalmente X con componente torsional significativa que varía muy poco y además con pequeña componente en Y que aparece con $e_x \neq 0\%$. T3 tiene variaciones importantes ya que 1er modo es Y con pequeñas componentes torsionales y X que aparecen con $e_x \neq 0\%$. La influencia de e_x es mayor que la observada con e_y. Se observa además que el periodo mínimo corresponde al caso $e_x = 0\%$, cuando se supone que el centro de masas coincide con el centro de rigidez.

* Desplazamientos del Centro de Masas Original (Gráfico 3.21).- Varía significativamente, sobre todo para $e_x > 5\%$, con variación mínima en $e_x = 0\%$. Esto difiere del análisis estático (en el que no habrá variación); dicha conclusión se aplica si la componentes X del centro de masa y del centro de rigidez coinciden.

* Giros (Gráfico 3.22).- La variación mínima se da en $e_x = 0\%$.

* Distorsiones del Centro de Masas Original (Gráfico 3.23).- Consistente con los Desplazamientos del Centro de Masas Original.

* Distorsiones Angulares (Gráfico 3.24).- Consistente con los giros.

* Cortante Basal (Gráficos 3.25 a 3.26).- Máximo cuando el giro es nulo. Significativo sobre todo para excentricidades altas. Del análisis estático se obtiene un cortante que es constante.

* Pórticos extremos 1 y 7 (Gráficos 3.27 a 3.30).- Porcentajes importantes, presentando máximo para excentricidades del orden de 6\%.

* Comparación de los análisis Dinámico y Estático (Gráficos 3.31 a 3.34).- Los resultados del análisis dinámico y el análisis estático difieren notoriamente. Esto mismo, en general, se aprecia en los resultados para otros edificios. El caso descrito con anterioridad, para el sismo actuando en X, es poco común.
Gráfico 3.3

T3 v.s. % Eccentricidad Accidental Y (% ey)

Período T3

% ey

-10 % -8 % -6 % -4 % -2 % 0 % 2 % 4 % 6 % 8 % 10 %
Gráfico 3.6

% Distorsión X del Centro de Masas Original (C.M.o) v.s. % ey

Gráfico 3.7

Distorsión Angular v.s. % ey
Gráfico 3.20

T3 v.s. % Eccentricidad Accidental X (% ex)

Eje X: % ex
Eje Y: % T3
3.3 MÓDULOS DE UN CONJUNTO HABITACIONAL

Son 3 los módulos que componen este conjunto habitacional. Estos se distinguen por tener distintos grados de irregularidad estructural. Todos ellos tienen 5 pisos y un nivel de sótano. Los parámetros que se usaron para los 3 módulos en el análisis dinámico fueron \(Z = 0.4, \ U = 1.5, \ S = 1.2 \) \((T_p = 0.6) \), \(R_x = 7 \) y \(R_y = 7 \). En el análisis estático adicionalmente se usó \(C_{TX} = 45 \) y \(C_{TY} = 45 \).

3.3.1 MÓDULO 1.- Módulo de 5 pisos cuya planta típica se muestra en la Fig. 3.2. El sótano tiene una altura de 3.0m, del 1er al 5º nivel 2.80m, y las estructuras de la caja de máquinas y el tanque 4.60m. En cuanto a la regularidad, este módulo es considerado irregular por poseer esquinas entrantes en planta. El sistema estructural es dual, con 5 pórticos en la dirección X, y 5 en la dirección Y.

Para cuando las excentricidades no fueron consideradas (o sea \(e_x = e_y = 0 \)) se obtuvieron los siguientes períodos, frecuencias y Masas Efectivas (% de masa total) de los modos más importantes

<table>
<thead>
<tr>
<th>MODO</th>
<th>(T (s))</th>
<th>(f (Hz))</th>
<th>(X)</th>
<th>(Y)</th>
<th>Torsional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.513 s</td>
<td>1.950 Hz</td>
<td>0.40</td>
<td>61.66</td>
<td>0.67</td>
</tr>
<tr>
<td>2</td>
<td>.442 s</td>
<td>2.262 Hz</td>
<td>60.60</td>
<td>0.17</td>
<td>2.21</td>
</tr>
<tr>
<td>3</td>
<td>.338 s</td>
<td>2.960 Hz</td>
<td>3.01</td>
<td>0.01</td>
<td>46.98</td>
</tr>
<tr>
<td>4</td>
<td>.233 s</td>
<td>4.292 Hz</td>
<td>0.15</td>
<td>3.57</td>
<td>6.03</td>
</tr>
<tr>
<td>5</td>
<td>.130 s</td>
<td>7.721 Hz</td>
<td>0.09</td>
<td>13.63</td>
<td>0.83</td>
</tr>
<tr>
<td>6</td>
<td>.112 s</td>
<td>8.907 Hz</td>
<td>13.88</td>
<td>0.01</td>
<td>0.89</td>
</tr>
<tr>
<td>7</td>
<td>.090 s</td>
<td>11.138 Hz</td>
<td>3.88</td>
<td>0.55</td>
<td>5.71</td>
</tr>
<tr>
<td>8</td>
<td>.070 s</td>
<td>14.310 Hz</td>
<td>0.11</td>
<td>1.07</td>
<td>9.98</td>
</tr>
<tr>
<td>9</td>
<td>.062 s</td>
<td>16.107 Hz</td>
<td>0.27</td>
<td>7.66</td>
<td>1.01</td>
</tr>
<tr>
<td>10</td>
<td>.060 s</td>
<td>16.818 Hz</td>
<td>5.86</td>
<td>0.01</td>
<td>0.35</td>
</tr>
<tr>
<td>11</td>
<td>.044 s</td>
<td>22.523 Hz</td>
<td>2.24</td>
<td>1.55</td>
<td>0.05</td>
</tr>
<tr>
<td>12</td>
<td>.041 s</td>
<td>24.721 Hz</td>
<td>1.68</td>
<td>2.20</td>
<td>3.51</td>
</tr>
</tbody>
</table>

A continuación, en las páginas 3 – 26 y 3 – 27 se presentan los comentarios de las gráficas correspondientes a las variables más importantes en el análisis sísmico, para el sismo actuando en las direcciones X e Y respectivamente. Dichas gráficas, ubicadas de la página 3 - 28 a la 3 - 45, para el rango de excentricidad accidental ya mencionado, muestran los efectos de la excentricidad cuando el sismo actúa en la dirección transversal X e Y.
EFECTOS DE LA EXCENTRICIDAD e_y AL ACTUAR LA COMPONENTE DE SISMO EN DIRECCIÓN X

Están representados por los **Gráficos 3.35 al 3.51**:

* **Períodos (Gráficos 3.35 a 3.37).** - T1 (periodo fundamental), mínimo para $e_y = -8\%$, tiene poca variación ya que el 1º modo es Y, con componente X y componente torsional poco significativas. T2, mínimo para $e_y = 7\%$, tiene mayor variación ya que el 2º modo es X, con componente torsional significativa y componente Y no significativa. T3, máximo para $e_y = 7\%$, también tiene una variación importante ya que el 3º modo es X, con componente torsional significativa y componente Y relativamente significativa.

* **Desplazamientos del Centro de Masas Original (Gráfico 3.38).** - Variación importante. A pesar de que los 5 niveles tienen la misma geometría, los máximos desplazamientos en los distintos niveles no ocurren exactamente para las mismas excentricidades, es decir, mientras el 5º Nivel tiene máximo desplazamiento para $e_y = 6\%$ para el 1º Nivel se da para $e_y = 5\%$.

* **Giros (Gráfico 3.39).** - Mientras el giro del 5º Nivel es mínimo para $e_y = 7\%$ el giro del 1º Nivel lo es para $e_y = 5\%$.

* **Distorsiones del Centro de Masas Original (Gráfico 3.40).** - En términos porcentuales los cambios que las e_y producen en todos los niveles son prácticamente los mismos. Las máximas distorsiones se producen cuando $e_y = 4\%$.

* **Distorsiones Angulares (Gráfico 3.41).** - Mientras que la distorsión angular del 5º Nivel es mínimo para $e_y = 6\%$, la distorsión angular del 1º Nivel lo es para $e_y = 7\%$.

* **Cortante Basal (Gráficos 3.42 a 3.43).** - Variación significativa, teniendo un corte máximo para $e_y = 7\%$. Nótese que en el procedimiento estático el cortante basal es independiente de la excentricidad accidental.

* **Pórticos extremos 2 y 6 (Gráficos 3.44 a 3.47).** - Cambios importantes. En términos porcentuales, los cambios son mucho mayores que los del cortante global.

* **Comparación de los análisis Dinámico y Estático (Gráficos 3.48 a 3.51).** - Las comparaciones del análisis dinámico y estático difieren, siendo esto más evidente para porcentajes de excentricidad mayores y menores que 5% y -5% respectivamente.
EFECTOS DE LA EXCENTRICIDAD e_x AL ACTUAR LA COMPONENTE DE SISMO EN DIRECCIÓN Y
Están representados por los Gráficos 3.52 al 3.68:

* **Períodos (Gráficos 3.52 a 3.54).**- T_1 (*periodo fundamental*), *mínimo* para $e_x = -5\%$, tiene variación importante ya que el 1$^\circ$ modo es Y, con *componente X* y *componente torsional* poco significativas. T_2, *máximo* para $e_x = 5\%$, tiene una variación poco significativa ya que el 2$^\circ$ modo es X, con *componente torsional* significativa y *componente Y* no significativa; este modo interviene poco para la acción sísmica en dirección Y. T_3 también tiene una variación poco significativa pues el 3$^\circ$ modo es X, con *componente torsional* significativa y *componente Y* relativamente significativa lo que hace que la variación del periodo T_3 sea mayor que la del periodo T_2.

* **Desplazamientos del Centro de Masas Original (Gráfico 3.55).**- Variación importante. A pesar de que los 5 niveles tienen la misma geometría, los máximos desplazamientos en los distintos niveles no ocurren exactamente para las mismas excentricidades, es decir, mientras el 5$^\circ$ Nivel tiene *máximo* para $e_x = 1\%$ el 1$^\circ$ Nivel lo tiene para $e_x = 5\%$.

* **Giros (Gráfico 3.56).**- Mientras el giro del 5$^\circ$ Nivel es *mínimo* en para $e_x = -3\%$, el giro del 1$^\circ$ Nivel lo es para $e_x = -9\%$.

* **Distorsiones del Centro de Masas Original (Gráfico 3.57).**- La distorsión del 5$^\circ$ Nivel tiene su *máxima* para $e_x = 3\%$ y la distorsión del 1$^\circ$ Nivel para $e_x = -2\%$.

* **Distorsiones Angulares (Gráfico 3.58).**- Mientras la distorsión angular del 5$^\circ$ Nivel es *mínima* en para $e_x = 0\%$, la distorsión angular del 1$^\circ$ Nivel lo es para $e_x = -5\%$.

* **Cortante Basal (Gráficos 3.59 a 3.60).**- Variación algo significativa, se tiene un corte *máximo* para $e_x = 0\%$ a pesar de no existir simetría de los elementos resistentes en la dirección Y.

* **Pórticos extremos B y G (Gráficos 3.61 a 3.64).**- Cambios significativos. En términos porcentuales, los cambios son mucho mayores que los del cortante global.

* **Comparación de los análisis Dinámico y Estático (Gráficos 3.65 a 3.68).**- Las comparaciones del análisis dinámico y estático *diferen*, siendo esto *más evidente* para porcentajes de excentricidad mayores y menores que 4$\%$ y -4$\%$ respectivamente.
Gráfico 3.37

T3 v.s. % Eccentricidad Accidental Y (% ey)

<table>
<thead>
<tr>
<th>Período T3</th>
<th>% ey</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 %</td>
<td>-6 %</td>
</tr>
<tr>
<td>-8 %</td>
<td>-4 %</td>
</tr>
<tr>
<td>-6 %</td>
<td>0 %</td>
</tr>
<tr>
<td>-4 %</td>
<td>2 %</td>
</tr>
<tr>
<td>-2 %</td>
<td>4 %</td>
</tr>
<tr>
<td>0 %</td>
<td>6 %</td>
</tr>
<tr>
<td>2 %</td>
<td>8 %</td>
</tr>
<tr>
<td>4 %</td>
<td>10 %</td>
</tr>
</tbody>
</table>
Gráfico 3.50

% Cortante en X del Pórtico 2 v.s. % ey
Dinámico - Estático

\[\text{Porcentajes en el eje } X \text{ del Pórtico 2} \]
\[\text{Porcentajes en el eje } y \text{ (ey)} \]

Gráfico 3.51

% Cortante en X del Pórtico 6 v.s. % ey
Dinámico - Estático

\[\text{Porcentajes en el eje } X \text{ del Pórtico 6} \]
\[\text{Porcentajes en el eje } y \text{ (ey)} \]
Gráfico 3.54

T3 v.s. % Eccentricidad Accidental X (% ex)

% ex

-10% -8% -6% -4% 0% 2% 4% 6% 8% 10%

Periodo T3

2% 1% 0% 1% 2%
Gráfico 3.55

% Desplazamiento en Y del Centro de Masas Original (C.M.o) v.s. % ex

Gráfico 3.56

Giro en Planta v.s. % ex
Gráfico 3.57

% Distorsión Y del Centro de Masas Original (C.M.o) v.s. % ex

Gráfico 3.58

Distorsión Angular v.s. % ex
Gráfico 3.65

Gráfico 3.66

% Distorsión en Y del Portico B v.s. % ex
Dinámico - Estático

% Distorsión en Y del Portico G v.s. % ex
Dinámico - Estático
3.3.2 MÓDULO II. - Módulo de 5 pisos. Tiene 2 plantas típicas: la primera, Fig. 3.3, corresponde a los niveles 1, 2 y 3; y la segunda, Fig. 3.4, a los niveles 4 y 5. Adicionalmente se presenta un corte transversal en el plano ZX del Módulo II, Fig. 3.5, donde puede apreciarse su irregularidad en altura. El sótano tiene una altura de 3.0m, del 1er al 5to nivel 2.80m, y el tanque y otras estructuras adicionales 3.92m. En cuanto a la regularidad, es considerado irregular por poseer esquinas entrantes en planta y discontinuidad en altura de los sistemas resistentes. El sistema estructural es dual, con 6 pórticos en la dirección X, y 4 en la dirección Y.

Para cuando las excentricidades no fueron consideradas (o sea $e_x = e_y = 0$) se obtuvieron los siguientes períodos, frecuencias y Masas Efectivas (% de masa total) de los modos más importantes

<table>
<thead>
<tr>
<th>MODO</th>
<th>T (s)</th>
<th>f (Hz)</th>
<th>X</th>
<th>Y</th>
<th>Torsional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.531 s</td>
<td>1.882 Hz</td>
<td>0.17</td>
<td>62.93</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>.415 s</td>
<td>2.412 Hz</td>
<td>42.53</td>
<td>0.44</td>
<td>19.13</td>
</tr>
<tr>
<td>3</td>
<td>.185 s</td>
<td>5.418 Hz</td>
<td>0.02</td>
<td>14.87</td>
<td>4.18</td>
</tr>
<tr>
<td>4</td>
<td>.1717 s</td>
<td>5.8241 Hz</td>
<td>16.20</td>
<td>0.70</td>
<td>52.00</td>
</tr>
<tr>
<td>5</td>
<td>.1173 s</td>
<td>8.5228 Hz</td>
<td>22.80</td>
<td>0.68</td>
<td>1.20</td>
</tr>
<tr>
<td>6</td>
<td>.1082 s</td>
<td>9.2452 Hz</td>
<td>0.03</td>
<td>7.20</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>.0784 s</td>
<td>12.7538 Hz</td>
<td>1.04</td>
<td>5.58</td>
<td>1.46</td>
</tr>
<tr>
<td>8</td>
<td>.0670 s</td>
<td>14.9324 Hz</td>
<td>0.39</td>
<td>1.96</td>
<td>8.24</td>
</tr>
<tr>
<td>9</td>
<td>.0544 s</td>
<td>18.3804 Hz</td>
<td>4.42</td>
<td>2.37</td>
<td>1.31</td>
</tr>
<tr>
<td>10</td>
<td>.0506 s</td>
<td>19.7465 Hz</td>
<td>6.13</td>
<td>0.65</td>
<td>0.01</td>
</tr>
<tr>
<td>11</td>
<td>.0457 s</td>
<td>21.8662 Hz</td>
<td>0.98</td>
<td>0.34</td>
<td>7.00</td>
</tr>
<tr>
<td>12</td>
<td>.0370 s</td>
<td>27.0443 Hz</td>
<td>0.00</td>
<td>1.43</td>
<td>0.30</td>
</tr>
</tbody>
</table>

A continuación, en las páginas 3 - 50 y 3 - 51 se presentan los comentarios de las gráficas correspondientes a las variables más importantes en el análisis sísmico, para el sismo actuando en las direcciones X e Y respectivamente. Dichas gráficas, ubicadas de la página 3 - 52 a la 3 - 69, para el rango de excentricidad accidental ya mencionado, muestran los efectos de la excentricidad cuando el sismo actúa en la dirección transversal X e Y.
Fig. 3.3 MÓDULO II - PLANTA TÍPICA 1
Fig. 3.4 MÓDULO II - PLANTA TÍPICA 2
Fig. 3.5 MÓDULO II - CORTE TRANSVERSAL
EFECTOS DE LA EXCENTRICIDAD e_y AL ACTUAR LA COMPONENTE DE SISMO EN DIRECCIÓN X

Están representados por los Gráficos 3.69 al 3.85:

* Períodos (Gráficos 3.69 a 3.71).- T1 (*periodo fundamental*) tiene variación poco significativa ya que el 1er modo es Y, con componente X y componente torsional poco significativas. T2 tiene una variación muy significativa pues el 2do modo es X, con componente Y pequeña y componente torsional relativamente significativa comparada con la del periodo T1. T3, *mínimo* para $e_y = -2\%$, también tiene una variación significativa, pero menor que T2, pues el 3er modo es esencialmente Y y tiene además componente torsional significativa mayor que la del periodo T2.

* Desplazamientos del Centro de Masas Original (Gráfico 3.72).- Variación significativa, especialmente para excentricidades menores que -5%. Además, decrece para porcentaje de excentricidades negativas y aumenta para aquellas positivas.

* Giros (Gráfico 3.73).- Tienden a decrecer para porcentajes de excentricidades negativas y a aumentar para aquellas positivas.

* Distorsiones del Centro de Masas Original (Gráfico 3.74).- Consistente con los Desplazamientos del Centro de Masas Original.

* Distorsiones Angulares (Gráfico 3.75).- Consistente con los giros.

* Corte trans Basal (Gráficos 3.76 a 3.77).- Variación algo significativa, tiene su *máximo* para $e_y = -2\%$. El Gráfico 3.76 no es tan simple como en otros caso; probablemente esto pueda deberse al cambio de la planta a partir del 4no Nivel; sin embargo en algunos casos (ver Gráfico 4.110 para el *Módulo III*) esta hipótesis no se cumple.

* Pórticos extremos 7 y 12 (Gráficos 3.78 a 3.81).- Cambios importantes con comportamiento esperado. También en este caso se observan en los pórticos cambios porcentualmente más importantes que los que se tienen para los efectos globales.

* Comparación de los análisis Dinámico y Estático (Gráficos 3.82 a 3.85).- Las comparaciones del análisis dinámico y estático *dieren*. En este caso lo saltante es que las excentricidades en el procedimiento estático son las que producen los mayores cambios.
EFECTOS DE LA EXCENTRICIDAD \(e_x \) AL ACTUAR LA COMPONENTE DE SISMO EN DIRECCIÓN Y
Están representados por los Gráficos 3.86 al 3.102:

* Períodos (Gráficos 3.86 a 3.88).- T1 (periodo fundamental), con mínimo para \(e_x = -5\% \), tiene una variación que es relativamente significativa ya que el 1er modo es Y, con componente X y componente torsional poco significativas. T2, con máximo para \(e_x = -6\% \), tiene una variación algo menor que la de T1 a pesar de ser el 2do modo X, el cual tiene componente torsional mucho mayor que las del 1er modo que justifica tal variación. T3, con mínimo para \(e_x = -3\% \), sufre variación mayor que las de T1 y T2 pues el 3er modo es esencialmente Y y tiene además componente torsional significativa mayor que la del periodo T2.

* Desplazamientos del Centro de Masas Original (Gráfico 3.89).- Variación de relativa importancia. El desplazamiento para el 5no Nivel es máximo para \(e_x = -4\% \) y en \(e_x = -3\% \) para el 1er Nivel.

* Giros (Gráfico 3.90).- Mientras que giro del 5no Nivel es mínimo para \(e_x = -5\% \), para el 1er Nivel lo es en \(e_x = -7\% \).

* Distorsiones del Centro de Masas Original (Gráfico 3.91).- Variación relativamente importante, con valores máximos de distorsiones en \(e_x = -4\% \).

* Distorsiones Angulares (Gráfico 3.92).- Mientras que la distorsión angular del 5no Nivel es mínima para \(e_x = -5\% \), para la distorsión angular del 1er Nivel lo es en \(e_x = -6\% \).

* Cortante Basal (Gráficos 3.93 a 3.94).- Variación algo significativa, con máximo valor del cortante para \(e_x = -4\% \).

* Pórticos extremos B y D (Gráficos 3.95 a 3.98).- Cambios significativos.

* Comparación de los análisis Dinámico y Estático (Gráficos 3.99 a 3.102).- Las comparaciones del análisis dinámico y estático difieren. En este caso también se observan en los pórticos cambios porcentualmente más importantes que los que se tienen para los efectos globales.
Gráfico 3.72

% Desplazamiento en X del Centro de Masas Original (C.M.o) v.s. % ey

Gráfico 3.73

Giro en Planta v.s. % ey
Gráfico 3.76

% Cortante Basal X v.s. % ey

Gráfico 3.77

Cortante Basal X: Dinámico v.s. Estático
Gráfico 3.84

% Cortante en X del Pórtico 7 v.s. % ey
Dinámico - Estático

Gráfico 3.85

% Cortante en X del Pórtico 12 v.s. % ey
Dinámico - Estático
Gráfico 3.88

T3 v.s. % Eccentricidad Accidental X (% ex)

Período T3

% ex

-3 %

-2 %

-1 %

0 %

1 %

2 %

3 %
Gráfico 3.93

% Cortante Basal Y v.s. % ex

Gráfico 3.94

Cortante Basal Y: Dinámico v.s. Estático
Gráfico 3.101
% Cortante en Y del Pórtico B v.s. % ex
Dinámico - Estático

Gráfico 3.102
% Cortante en Y del Pórtico D v.s. % ex
Dinámico - Estático
3.3.3 MÓDULO III - Módulo de 5 pisos, muy similar al Módulo II sólo que éste tiene un eje inclinado -21.13° con respecto al eje +X; en dicho eje inclinado se encuentra una gran placa. Posee 2 plantas típicas: la primera, Fig. 3.6, representa a los niveles 1,2 y 3; y la segunda, Fig. 3.7, a los niveles 4 y 5. El corte transversal en el plano ZX del Módulo III es prácticamente idéntico al del Módulo II (véase Fig. 3.5); las alturas de entrepiso de estos módulos son iguales. En cuanto a la regularidad, es considerado irregular por poseer esquinas entrantes en planta y algo de discontinuidad en altura de los sistemas resistentes. El sistema estructural es dual, con 6 pórticos en la dirección X y aquel inclinado del que se habló al inicio de la descripción, y 4 en la dirección Y.

Para cuando las excentricidades no fueron consideradas (o sea $e_x = e_y = 0$) se obtuvieron los siguientes periodos, frecuencias y Masas Efectivas (% de masa total) de los modos más importantes

<table>
<thead>
<tr>
<th>MODO</th>
<th>T (s)</th>
<th>f (Hz)</th>
<th>X</th>
<th>Y</th>
<th>Torsional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.518 s</td>
<td>1.930 Hz</td>
<td>1.73</td>
<td>60.92</td>
<td>0.74</td>
</tr>
<tr>
<td>2</td>
<td>.193 s</td>
<td>5.170 Hz</td>
<td>63.91</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>3</td>
<td>.170 s</td>
<td>5.876 Hz</td>
<td>2.05</td>
<td>13.34</td>
<td>1.65</td>
</tr>
<tr>
<td>4</td>
<td>.133 s</td>
<td>7.496 Hz</td>
<td>0.58</td>
<td>3.61</td>
<td>65.79</td>
</tr>
<tr>
<td>5</td>
<td>.106 s</td>
<td>9.435 Hz</td>
<td>0.83</td>
<td>5.20</td>
<td>1.27</td>
</tr>
<tr>
<td>6</td>
<td>.073 s</td>
<td>13.727 Hz</td>
<td>2.86</td>
<td>7.35</td>
<td>0.22</td>
</tr>
<tr>
<td>7</td>
<td>.069 s</td>
<td>14.603 Hz</td>
<td>9.83</td>
<td>1.48</td>
<td>0.19</td>
</tr>
<tr>
<td>8</td>
<td>.048 s</td>
<td>20.774 Hz</td>
<td>0.01</td>
<td>2.98</td>
<td>1.29</td>
</tr>
<tr>
<td>9</td>
<td>.047 s</td>
<td>21.144 Hz</td>
<td>8.14</td>
<td>0.41</td>
<td>2.20</td>
</tr>
<tr>
<td>10</td>
<td>.041 s</td>
<td>24.312 Hz</td>
<td>3.04</td>
<td>0.00</td>
<td>15.61</td>
</tr>
<tr>
<td>11</td>
<td>.035 s</td>
<td>28.711 Hz</td>
<td>0.01</td>
<td>1.75</td>
<td>0.82</td>
</tr>
<tr>
<td>12</td>
<td>.028 s</td>
<td>35.605 Hz</td>
<td>4.02</td>
<td>0.11</td>
<td>0.96</td>
</tr>
</tbody>
</table>

A continuación, en las páginas 3 - 73 y 3 - 74 se presentan los comentarios de las gráficas correspondientes a las variables más importantes en el análisis sísmico, para el sismo actuando en las direcciones X e Y respectivamente. Dichas gráficas, ubicadas de la página 3 - 75 a la 3 - 92, para el rango de excentricidad accidental ya mencionado, muestran los efectos de la excentricidad cuando el sismo actúa en la dirección transversal X e Y.
Fig. 3.6 MÓDULO III – PLANTA TÍPICA 1
Fig. 3.7 MÓDULO III - PLANTA TÍPICA 2
EFEKTOS DE LA EXCENTRICIDAD e_y AL ACTUAR LA COMPONENTE DE SISMO EN DIRECCIÓN X

Están representados por los Gráficos 3.103 al 3.119.

* **Períodos (Gráficos 3.103 a 3.105).**- T1 (periodo fundamental) tiene poca variación pues el 1er modo es Y, con componente X y componente torsional poco significativas. T2, con mínimo para $e_y = 6\%$, tiene una variación significativa ya que el 2do modo es X, con componente Y pequeña y componente torsional de relativa importancia. T3 tiene una variación relativamente mayor que la del periodo T1, pero menor que la del periodo T2, pues el 3er modo es esencialmente Y y tiene además componente torsional significativa.

* **Desplazamientos del Centro de Masas Original (Gráfico 3.106).**- Variación relativamente importante. Sólo el desplazamiento del 5to nivel presenta máximo para $e_y = 4\%$.

* **Giros (Gráfico 3.107).**- Mientras el giro del 5to Nivel es mínimo para $e_y = 5\%$, el giro del 1er Nivel lo es en $e_y = 7\%$.

* **Distorsiones del Centro de Masas Original (Gráfico 3.108).**- Variación de relativa importancia. Sólo la distorsión del 5to nivel es máxima para $e_y = 3\%$.

* **Distorsiones Angulares (Gráfico 3.109).**- Mientras la distorsión angular del 5to Nivel es mínimo para $e_y = 3\%$, la distorsión angular del 1er Nivel lo es en $e_y = 7\%$.

* **Cortante Basal (Gráficos 3.110 a 3.111).**- Variación relativamente importante, con cortante máximo para $e_y = 6\%$. En este caso la variación del cortante no es compleja como en el caso del Gráfico 3.76 (Módulo II); aún cuando se tiene cambio de la planta a partir del 4to Nivel.

* **Pórticos extremos 13 y 19 (Gráficos 3.112 a 3.115).**- Cambios importantes con comportamiento esperado. En este caso se observan en los pórticos cambios porcentualmente mucho mayores que los que se tienen para los efectos globales.

* **Comparación de los análisis Dinámico y Estático (Gráficos 3.116 a 3.119).**- Las comparaciones del análisis dinámico y estático son distintas, especialmente para excentricidades mayores que 5\%.
EFECTOS DE LA EXCENTRICIDAD e_x AL ACTUAR LA COMPONENTE DE SISMO EN DIRECCIÓN Y
Están representados por los Gráficos 3.120 al 3.136:

* Períodos (Gráficos 3.120 a 3.122).- T1 (periodo fundamental) tiene variación de relativa importancia pues el 1er modo es Y, con componente X y componente torsional poco significativas. T2 tiene una variación poco significativa ya que el 2do modo es X, con componente Y pequeña y componente torsional de relativa importancia. T3 tiene una variación importante, mayor que la del periodo T1, pero menor que la del periodo T2, pues el 3er modo es esencialmente Y y tiene además componente torsional significativa.

* Desplazamientos del Centro de Masas Original (Gráfico 3.123).- Variación poco importante. Solamente hay un máximo en $e_x = -7\%$ para el desplazamiento del 5to Nivel.

* Giros (Gráfico 3.124).- Tiende a crecer para porcentajes de excentricidades negativas y a decrecer para aquellas positivas, teniendo sus mínimos relativos para $e_x = 10\%$.

* Distorsiones del Centro de Masas Original (Gráfico 3.125).- Variación poco importante, presentando el 5to Nivel y el 1er Nivel comportamientos opuestos.

* Distorsiones Angulares (Gráfico 3.126).- Consistente con los giros.

* Cortante Basal (Gráficos 3.127 a 3.128).- Variación algo significativa, con cortante máximo relativo para $e_x = 10\%$.

* Pórticos extremos B y D (Gráficos 3.129 a 3.132).- Cambios algo significativos. En este caso se aprecian en los pórticos cambios porcentualmente similares a los que se tienen para los efectos globales.

* Comparación de los análisis Dinámico y Estático (Gráficos 3.133 a 3.136).- Las comparaciones porcentuales del análisis dinámico y estático son distintas para $e_x \neq 0\%$.

3 - 74
Gráfico 3.105

T3 v.s. % Eccentricidad Accidental Y (% ey)

Período T3

-1.0 % -0.8 % -0.6 % -0.4 % -0.2 % 0.0 % 0.2 % 0.4 % 0.6 % 0.8 % 1.0 %

% ey

-10 % -8 % -6 % -4 % -2 % 0 % 2 % 4 % 6 % 8 % 10 %
Gráfico 3.116

Gráfico 3.117

% Distorsión X del Pórtico 13 v.s. % ey
Dinámico - Estático

% Distorsión X del Pórtico 19 v.s. % ey
Dinámico - Estático
Gráfico 3.118

% Cortante en X del Pórtico 13 v.s. % ey
Dinámico - Estático

Gráfico 3.119

% Cortante en X del Pórtico 19 v.s. % ey
Dinámico - Estático
T3 v.s. % Eccentricidad Accidental X (% ex)

Gráfico 3.122
Gráfico 3.125

Gráfico 3.126

% Distorsión Y del Centro de Masas Original (C.M.o) v.s. % ex

Distorsión Angular v.s. % ex
3.4 EDIFICIO DE 9 PISOS

Edificación de 9 pisos, cuyos elementos sismorresistentes son pórticos y relativamente pocas placas. La planta típica para todos los pisos es mostrada en la Fig. 3.8. El 1er piso tiene una altura de 3.15m, y los restantes 2.70m. En cuanto a la regularidad, en planta es considerado irregular por tener esquinas entrantes; por otro lado en elevación si tiene regularidad estructural. Esta edificación (con losas aligeradas) está conformada por dos bloques que se encuentran unidos por una losa maciza y la caja del ascensor. En la dirección X, se tiene 4 pórticos; y en la dirección Y tiene 5 pórticos.

Los parámetros usados en el análisis dinámico fueron $Z = 0.4$, $U = 1$, $S = 1.0$ ($T_p = 0.4$), $R_x = R_y = 8$. En el estático adicionalmente se usó $C_{Tx} = 45$ y $C_{Ty} = 45$.

Para cuando las excentricidades no fueron consideradas (o sea $e_x = e_y = 0$) se obtuvieron los siguientes periodos, frecuencias y Masas Efectivas (% de masa total) de los modos más importantes:

<table>
<thead>
<tr>
<th>MODO</th>
<th>T (s)</th>
<th>f (Hz)</th>
<th>X</th>
<th>Y</th>
<th>Torsional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.347</td>
<td>.742 Hz</td>
<td>0.94</td>
<td>63.21</td>
<td>10.27</td>
</tr>
<tr>
<td>2</td>
<td>1.142</td>
<td>.876 Hz</td>
<td>59.74</td>
<td>4.62</td>
<td>9.34</td>
</tr>
<tr>
<td>3</td>
<td>1.023</td>
<td>.978 Hz</td>
<td>11.89</td>
<td>6.67</td>
<td>56.99</td>
</tr>
<tr>
<td>4</td>
<td>0.368</td>
<td>2.715 Hz</td>
<td>0.21</td>
<td>11.81</td>
<td>2.12</td>
</tr>
<tr>
<td>5</td>
<td>0.314</td>
<td>3.183 Hz</td>
<td>4.36</td>
<td>2.17</td>
<td>6.56</td>
</tr>
<tr>
<td>6</td>
<td>0.276</td>
<td>3.621 Hz</td>
<td>11.13</td>
<td>0.20</td>
<td>4.00</td>
</tr>
<tr>
<td>7</td>
<td>0.170</td>
<td>5.871 Hz</td>
<td>0.12</td>
<td>4.54</td>
<td>1.20</td>
</tr>
<tr>
<td>8</td>
<td>0.152</td>
<td>6.567 Hz</td>
<td>0.75</td>
<td>1.37</td>
<td>3.24</td>
</tr>
<tr>
<td>9</td>
<td>0.124</td>
<td>8.051 Hz</td>
<td>5.20</td>
<td>0.02</td>
<td>0.85</td>
</tr>
<tr>
<td>10</td>
<td>0.101</td>
<td>9.947 Hz</td>
<td>0.06</td>
<td>2.21</td>
<td>0.62</td>
</tr>
<tr>
<td>11</td>
<td>0.092</td>
<td>10.923 Hz</td>
<td>0.30</td>
<td>0.67</td>
<td>1.77</td>
</tr>
<tr>
<td>12</td>
<td>0.073</td>
<td>13.664 Hz</td>
<td>2.55</td>
<td>0.00</td>
<td>0.34</td>
</tr>
</tbody>
</table>

A continuación, en las páginas 3 - 95 y 3 - 96 se presentan los comentarios de las gráficas correspondientes a las variables más importantes en el análisis sísmico, para el sismo actuando en las direcciones X e Y respectivamente. Dichas gráficas, ubicadas de la página 3 - 97 a la 3 - 114, para el rango de excentricidad accidental ya mencionado, muestran los efectos de la excentricidad cuando el sismo actúa en la dirección transversal X e Y.
EFEKTOS DE LA EXCENTRICIDAD e_p AL ACTUAR LA COMPONENTE DE SISMO EN DIRECCIÓN X

Están representados por los Gráficos 3.137 al 3.153:

* **Períodos (Gráficos 3.137 a 3.139).-** T1 (periodo fundamental), con mínimo para $e_p = 5\%$, tiene variación relativamente importante pues el 1er modo es Y, con componente X y componente torsional poco significativas. T2 tiene una variación más significativa que T1 pues el 2do modo es X y tiene además componente torsional significativa. T3, con máximo en 5\%, también tiene una variación más significativa, pero algo mayor que T2, pues el 3er modo también es X y tiene componente torsional algo mayor que las de T2 y esta a su vez mayor que las de T1.

* **Desplazamientos del Centro de Masas Original (Gráfico 3.140).-** Variación importante. Presenta desplazamientos máximos para $e_p = 4\%$.

* **Giros (Gráfico 3.141).-** Se dan los giros mínimos para $e_p = 5\%$.

* **Distorsiones del Centro de Masas Original (Gráfico 3.142).-** Variación importante. Mientras la distorsión del 9no Nivel es máxima para $e_p = 5\%$, la distorsión del 1er Nivel lo es en $e_p = 4\%$.

* **Distorsiones Angulares (Gráfico 3.143).-** Consistentes con los giros.

* **Cortante Basal (Gráficos 3.144 a 3.145).-** Variación significativa, presentando el cortante máximo para $e_p = 5\%$.

* **Pórticos extremos A y D (Gráficos 3.146 a 3.149).-** Cambios muy importantes, con comportamiento no esperado debido a que prima la influencia de algún modo, es decir no siempre la influencia del 1er Modo es mayor que las del 2do y 3er Modo, en algunos su aporte es no significativo. En este caso se tiene en los pórticos cambios porcentualmente mayores que los que se tienen para los efectos globales.

* **Comparación de los análisis Dinámico y Estático (Gráficos 3.150 a 3.153).-** Las comparaciones del análisis dinámico y estático son distintas para $e_p \neq 0\%$.

3 - 95
EFECTOS DE LA EXCENTRICIDAD e_x AL ACTUAR LA COMPONENTE DE SISMO EN DIRECCIÓN Y
Están representados por los Gráficos 3.154 al 3.170:

* **Períodos** (Gráficos 3.154 a 3.156).- T1 (periodo fundamental), con mínimo para $e_x = 8\%$, tiene variación significativa ya que el 1er modo es Y con componente torsional. T2, con máximo para $e_x = 8\%$, tiene una variación mucho menor que T1 puesto que el 2do modo es X con componente torsional. T3, con máximo para $e_x = 8\%$, tiene una variación significativa como T1, pero algo menor, pues el 3er modo a pesar de ser X, tiene componente torsional importante (mayor que las de T1).

* **Desplazamientos del Centro de Masas Original** (Gráfico 3.157).- Variación importante. Mientras que el desplazamiento del 9mo Nivel es máximo para $e_x = 6\%$, el desplazamiento del 1er Nivel lo es en $e_x = 7\%$.

* **Giros** (Gráfico 3.158).- Presenta giros mínimos para $e_x = 8\%$.

* **Distorsiones del Centro de Masas Original** (Gráfico 3.159).- Consistente con los Desplazamientos del Centro de Masas Original.

* **Distorsiones Angulares** (Gráfico 3.160).- Mientras que la distorsión angular del 9mo Nivel es mínima para $e_x = 8\%$, la distorsión angular del 1er Nivel lo es en $e_x = 7\%$.

* **Cortante Basal** (Gráficos 3.161 a 3.162).- Variación significativa, con cortante máximo para $e_x = 7\%$.

* **Pórticos extremos 1 y 5** (Gráficos 3.163 a 3.166).- Cambios muy significativos, sobre todo para $e_x > +3\%$. En este caso se aprecian en los pórticos cambios porcentualmente mucho mayores a los que se tienen para los efectos globales.

* **Comparación de los análisis Dinámico y Estático** (Gráficos 3.167 a 3.170).- Las comparaciones del análisis dinámico y estático son distintas. Siendo esto más evidente para porcentajes de excentricidad mayores y menores que 3% y -3% respectivamente.
Gráfico 3.139
Gráfico 3.140

% Desplazamiento en X del Centro de Masas Original (C.M.o) v.s. % ey

Gráfico 3.141

Giro en Planta v.s. % ey
Gráfico 3.156

T3 v.s. % Eccentricidad Accidental X (% ex)
Gráfico 3.167

% Distorsión en Y del Pórtico 1 v.s. % ex
Dinámico - Estático

Gráfico 3.168

% Distorsión en Y del Pórtico 5 v.s. % ex
Dinámico - Estático
3.5 EDIFICIO DE 12 PISOS

Edificación de 12 pisos, cuyos elementos sismorresistentes que son fundalmente placas se encuentran distribuidos de una manera muy regular tanto en la dirección X como en Y. La planta típica para los 11 primeros pisos es mostrada en la Fig. 3.9. El 1er piso tiene una altura de 3.15m, y los restantes 2.65m. El 12º piso es un depósito situado entre los Ejes E y F en la dirección Y, y entre los Ejes 2 y 4 en la dirección X. En cuanto a la regularidad, en planta es considerado irregular por tener esquinas entrantes; por otro lado en elevación si posee regularidad estructural. Esta edificación esta conformada dos bloques que se encuentran unidos por una caja de ascensor. En la dirección X, se tiene 5 pórticos; y en la dirección Y tiene 10 pórticos.

Los parámetros usados en el análisis dinámico fueron $Z = 0.4$, $U = 1$, $S = 1.0$ ($T_p = 0.4$), $R_x = R_y = 6$. En el estático adicionalmente se usó $C_{tx} = C_{ty} = 60$. Para cuando las excentricidades no fueron consideradas (o sea $e_x = e_y = 0$) se obtuvieron los siguientes periodos, frecuencias y Masas Efectivas (% de masa total) de los modos más importantes

<table>
<thead>
<tr>
<th>MODO</th>
<th>T (s)</th>
<th>f (Hz)</th>
<th>X</th>
<th>Y</th>
<th>Torsional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.737</td>
<td>1.357</td>
<td>0.00</td>
<td>67.50</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>.681</td>
<td>1.468</td>
<td>63.66</td>
<td>0.00</td>
<td>0.92</td>
</tr>
<tr>
<td>3</td>
<td>.619</td>
<td>1.617</td>
<td>0.89</td>
<td>0.00</td>
<td>65.88</td>
</tr>
<tr>
<td>4</td>
<td>.156</td>
<td>6.398</td>
<td>0.00</td>
<td>19.20</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>.154</td>
<td>6.509</td>
<td>21.46</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>6</td>
<td>.120</td>
<td>8.370</td>
<td>0.07</td>
<td>0.00</td>
<td>20.86</td>
</tr>
<tr>
<td>7</td>
<td>.089</td>
<td>11.254</td>
<td>2.58</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>8</td>
<td>.068</td>
<td>14.822</td>
<td>0.00</td>
<td>6.76</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>.062</td>
<td>16.032</td>
<td>6.08</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>.050</td>
<td>19.886</td>
<td>0.00</td>
<td>0.00</td>
<td>6.76</td>
</tr>
<tr>
<td>11</td>
<td>.042</td>
<td>24.103</td>
<td>0.00</td>
<td>2.98</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>.039</td>
<td>25.608</td>
<td>2.66</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

A continuación, en las páginas 3 - 117 y 3 - 118 se presentan los comentarios de las gráficas correspondientes a las variables más importantes en el análisis sísmico, para el sismo actuando en las direcciones X e Y respectivamente. Dichas gráficas, ubicadas de la página 3 - 119 a la 3 - 136, para el rango de excentricidad accidental ya mencionado, muestran los efectos de la excentricidad cuando el sismo actúa en la dirección transversal X e Y.
Efectos del Centro de Masas Original (Gráfico 3.174).- Variación importante. Presenta desplazamientos máximos para $e_x = 1\%$. Los cambios porcentuales para los niveles mostrados en las gráficas son similares.

* Giros (Gráfico 3.175).- Se dan los giros mínimos para $e_y = 1\%$. En este gráfico se presenta un salto para $e_x = 0\%$.

* Distorsiones del Centro de Masas Original (Gráfico 3.176).- Consistente con los Desplazamientos del Centro de Masas Original.

* Distorsiones Angulares (Gráfico 3.177).- Consistentes con los giros.

* Cortante Basal (Gráficos 3.178 a 3.179).- Variación significativa, con cortante máximo para $e_x = 1\%$.

* Pórticos extremos 1 y 5 (Gráficos 3.180 a 3.183).- Presentan salto para $e_y = 0\%$. Cambios importantes, las distorsiones y cortantes siempre disminuyen. En este caso se tiene en los pórticos cambios porcentualmente ligeramente mayores que los que se tienen para los efectos globales.

* Comparación de los análisis Dinámico y Estático (Gráficos 3.184 a 3.187).- Las comparaciones del análisis dinámico y estático son completamente distintas para $e_x \neq 0\%$.

EFECTOS DE LA EXCENTRICIDAD e_x AL ACTUAR LA COMPONENTE DE SISMO EN DIRECCIÓN Y
Están representados por los Gráficos 3.188 al 3.204 (siendo la estructura simétrica para esta
dirección de análisis):

* Periodos (Gráficos 3.188 a 3.190).- T_1 (periodo fundamental), con mínimo en 0%, posee
variación significativa ya que el 1^er modo inicialmente sólo tiene componentes Y. T_2, con
máximo para $e_x = 0\%$, tiene una variación poco significativa ya que el 2^do modo es
inicialmente X. T_3, con máximo en 0%, tiene variación significativa, pero algo menor que
T_1, pues el 3^er modo a pesar de ser Y, tiene componente torsional algo mayor que las de T_2.

* Desplazamientos del Centro de Masas Original (Gráfico 3.191).- Variación importante.
Presenta desplazamientos máximos para $e_x = 0\%$. Los cambios porcentuales para los niveles
mostrados en las gráficas también son similares.

* Giros (Gráfico 3.192).- Presenta giros mínimos para $e_x = 0\%$.

* Distorsiones del Centro de Masas Original (Gráfico 3.193).- Consistente con los
Desplazamientos del Centro de Masas Original.

* Distorsiones Angulares (Gráfico 3.194).- Consistente con los giros.

* Cortante Basal (Gráficos 3.195 a 3.196).- Variación importante, con cortante máximo para
$e_x = 0\%$ por la simetría.

* Pórticos extremos A y J (Gráficos 3.197 a 3.200).- Cambios muy significativos. En este
caso se aprecian en los pórticos cambios porcentualmente mucho mayores a los que se tienen
para los efectos globales.

* Comparación de los análisis Dinámico y Estático (Gráficos 3.201 a 3.204).- Las
comparaciones del análisis dinámico y estático son distintas para $e_x \neq 0\%$.

3 - 118
Gráfico 3.191

% Desplazamiento en Y del Centro de Masas Original (C.M.o) v.s. % ex

Gráfico 3.192

Giro en Planta v.s. % ex
3.6 RESUMEN

EFECTOS PARA 5% DE EXCENTRICIDAD ACCIDENTAL

Basados en las gráficas presentadas en este capítulo, las cuales muestran el comportamiento de las variables más importantes al variar la excentricidad, con la finalidad de tener una idea del efecto del nivel de excentricidad especificado en la norma en las variables que se evalúan, se resumirá en cuadros los efectos para 5% de excentricidad accidental.

En los cuadros se muestran los resultados para los análisis estático y dinámico. Tanto "(-)% ey como (+)% ey" siguen la convención explicada en la página 3-1, además los ejes se encuentran en las vistas en planta de cada estructura, la cual tendrá dos cuadros de resumen, esto es, uno para cuando el sismo actúa en la dirección X y para cuando lo hace en la dirección Y (en ese orden). Es decir, los cuadros para:

- La estructura típica de un colegio, son los Cuadros 3.1 y 3.2
- El Módulo I, son los Cuadros 3.3 y 3.4
- El Módulo II, son los Cuadros 3.5 y 3.6
- El Módulo III, son los Cuadros 3.7 y 3.8
- El edificio de 9 pisos, son los Cuadros 3.9 y 3.10
- El edificio de 12 pisos, son los Cuadros 3.11 y 3.12

Cada cuadro se indica si la configuración resistente al sismo en una dirección dada (X ó Y) es regular o irregular. Además, para una variable del cuadro, "*" quiere decir que no depende de los pisos. "P / U" significa que de esa manera, dependiendo de la excentricidad (-)% ey como (+)% ey), se darán los efectos del primer piso (P) y del último piso representativo (U). También "B", usado para las fuerzas cortantes, está referido a la base, donde [D / E] nos indica el cortante basal dinámico(D) y el estático(E). Por último, los redondeos se harán de manera que los resultados en los cuadros sean representativos; en algunos casos serán tan pequeños, que por motivo de redondeo, serán considerados como cero.

1*) Véase la descripción de cada estructura y sus figura(s) para ver porqué se eligió como último piso representativo (en los cuadros) a un determinado piso.
ESTRUCTURA TÍPICA DE UN COLEGIO

Cuadro 3.1

<table>
<thead>
<tr>
<th>CONFIGURACIÓN REGULAR - SISMO EN X</th>
<th>P / U</th>
<th>(-) % ey</th>
<th>(+) % ey</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 v.s. % ey</td>
<td>*</td>
<td>-0.06 %</td>
<td>.015 %</td>
</tr>
<tr>
<td>T2 v.s. % ey</td>
<td>*</td>
<td>-2.45 %</td>
<td>.328 %</td>
</tr>
<tr>
<td>T3 v.s. % ey</td>
<td>*</td>
<td>.000 %</td>
<td>.000 %</td>
</tr>
<tr>
<td>% Desplazamiento X del C.M.o v.s. % ey</td>
<td>1 / 3</td>
<td>-0.04 %</td>
<td>.00 %</td>
</tr>
<tr>
<td>Giro en planta v.s. % ey</td>
<td>1 / 3</td>
<td>4.4E-5</td>
<td>7.1E-5</td>
</tr>
<tr>
<td>% Distorsión X del C.M.o v.s. % ey</td>
<td>1 / 3</td>
<td>-0.04 %</td>
<td>.04 %</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % ey</td>
<td>1 / 3</td>
<td>4.4E-5</td>
<td>1.2E-5</td>
</tr>
<tr>
<td>% Cortante Basal X v.s. % ey</td>
<td>B</td>
<td>.00 %</td>
<td>-.09 %</td>
</tr>
<tr>
<td>Cortante Basal X : Dinámico v.s. Estático</td>
<td>B [WE]</td>
<td>1.0E2</td>
<td>1.1E2</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico A v.s. % ey</td>
<td>1 / 3</td>
<td>.15 %</td>
<td>.03 %</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico B v.s. % ey</td>
<td>1 / 3</td>
<td>-1.4 %</td>
<td>-.03 %</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico A v.s. % ey</td>
<td>1 / 3</td>
<td>.40 %</td>
<td>.03 %</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico B v.s. % ey</td>
<td>1 / 3</td>
<td>-.30 %</td>
<td>.12 %</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico A v.s. % ey</td>
<td>1 / 3</td>
<td>.17 %</td>
<td>.02 %</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico B v.s. % ey</td>
<td>1 / 3</td>
<td>-.17 %</td>
<td>-.02 %</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico A v.s. % ey</td>
<td>1 / 3</td>
<td>.39 %</td>
<td>.41 %</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico B v.s. % ey</td>
<td>1 / 3</td>
<td>-.39 %</td>
<td>-.41 %</td>
</tr>
</tbody>
</table>

Cuadro 3.2

<table>
<thead>
<tr>
<th>CONFIGURACIÓN REGULAR - SISMO EN Y</th>
<th>P / U</th>
<th>(-) % ex</th>
<th>(+) % ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 v.s. % ex</td>
<td>*</td>
<td>.000 %</td>
<td>.000 %</td>
</tr>
<tr>
<td>T2 v.s. % ex</td>
<td>*</td>
<td>.126 %</td>
<td>.126 %</td>
</tr>
<tr>
<td>T3 v.s. % ex</td>
<td>*</td>
<td>2.34 %</td>
<td>2.34 %</td>
</tr>
<tr>
<td>% Desplazamiento Y del C.M.o v.s. % ex</td>
<td>1 / 3</td>
<td>-7.27 %</td>
<td>-7.27 %</td>
</tr>
<tr>
<td>Giro en planta v.s. % ex</td>
<td>1 / 3</td>
<td>2.4E-4</td>
<td>6.3E-5</td>
</tr>
<tr>
<td>% Distorsión Y del C.M.o v.s. % ex</td>
<td>1 / 3</td>
<td>-7.27 %</td>
<td>-6.87 %</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % ex</td>
<td>1 / 3</td>
<td>2.4E-4</td>
<td>6.3E-5</td>
</tr>
<tr>
<td>% Cortante Basal Y v.s. % ex</td>
<td>B</td>
<td>-7.22 %</td>
<td>-7.22 %</td>
</tr>
<tr>
<td>Cortante Basal Y : Dinámico v.s. Estático</td>
<td>B [WE]</td>
<td>3.4E2</td>
<td>3.0E2</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico 1 v.s. % ex</td>
<td>1 / 3</td>
<td>38.3 %</td>
<td>41.7 %</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico 7 v.s. % ex</td>
<td>1 / 3</td>
<td>-.33.0 %</td>
<td>-.33.0 %</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico 1 v.s. % ex</td>
<td>1 / 3</td>
<td>39.0 %</td>
<td>42.1 %</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico 7 v.s. % ex</td>
<td>1 / 3</td>
<td>-32.6 %</td>
<td>-34.4 %</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico 1 v.s. % ex</td>
<td>1 / 3</td>
<td>17.6 %</td>
<td>17.6 %</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico 7 v.s. % ex</td>
<td>1 / 3</td>
<td>-17.6 %</td>
<td>-17.6 %</td>
</tr>
</tbody>
</table>
MÓDULO I

Cuadro 3.3

<table>
<thead>
<tr>
<th>CONFIGURACIÓN IRREGULAR - SISMO EN X</th>
<th>P/U</th>
<th>(-) % cy</th>
<th>(+) % cy</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 v.s. % cy</td>
<td>*</td>
<td>-0.59%</td>
<td>1.05%</td>
</tr>
<tr>
<td>T2 v.s. % cy</td>
<td>*</td>
<td>3.13%</td>
<td>-1.64%</td>
</tr>
<tr>
<td>T3 v.s. % cy</td>
<td>*</td>
<td>-2.49%</td>
<td>1.29%</td>
</tr>
<tr>
<td>% Desplazamiento X del C.M.o v.s. % cy</td>
<td>1 / 5</td>
<td>-5.56%</td>
<td>-4.78%</td>
</tr>
<tr>
<td>Giro en planta v.s. % cy</td>
<td>1 / 5</td>
<td>2.7E-4</td>
<td>1.8E-3</td>
</tr>
<tr>
<td>% Distorsión X del C.M.o v.s. % cy</td>
<td>1 / 5</td>
<td>-4.38%</td>
<td>-4.67%</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % cy</td>
<td>1 / 5</td>
<td>2.7E-4</td>
<td>3.9E-4</td>
</tr>
<tr>
<td>% Cortante Basal X v.s. % cy</td>
<td>B</td>
<td>-5.51%</td>
<td>3.86%</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico 2 v.s. % cy</td>
<td>1 / 5</td>
<td>3.6%</td>
<td>4.3%</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico 6 v.s. % cy</td>
<td>1 / 5</td>
<td>-16.8%</td>
<td>-16.8%</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 2 v.s. % cy</td>
<td>1 / 5</td>
<td>3.8%</td>
<td>4.5%</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 6 v.s. % cy</td>
<td>1 / 5</td>
<td>-16.4%</td>
<td>-11.5%</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico 2 v.s. % cy</td>
<td>1 / 5</td>
<td>8.1%</td>
<td>8.1%</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico 6 v.s. % cy</td>
<td>1 / 5</td>
<td>-11.8%</td>
<td>-11.8%</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 2 v.s. % cy</td>
<td>1 / 5</td>
<td>8.5%</td>
<td>8.1%</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 6 v.s. % cy</td>
<td>1 / 5</td>
<td>-14.4%</td>
<td>-3.6E4%</td>
</tr>
</tbody>
</table>

Cuadro 3.4

<table>
<thead>
<tr>
<th>CONFIGURACIÓN IRREGULAR - SISMO EN Y</th>
<th>P/U</th>
<th>(-) % ex</th>
<th>(+) % ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 v.s. % ex</td>
<td>*</td>
<td>-0.57%</td>
<td>1.80%</td>
</tr>
<tr>
<td>T2 v.s. % ex</td>
<td>*</td>
<td>-0.27%</td>
<td>0.8%</td>
</tr>
<tr>
<td>T3 v.s. % ex</td>
<td>*</td>
<td>-0.63%</td>
<td>2.8%</td>
</tr>
<tr>
<td>% Desplazamiento Y del C.M.o v.s. % ex</td>
<td>1 / 5</td>
<td>-3.59%</td>
<td>-1.83%</td>
</tr>
<tr>
<td>Giro en planta v.s. % ex</td>
<td>1 / 5</td>
<td>1.2E-4</td>
<td>4.0E-4</td>
</tr>
<tr>
<td>% Distorsión Y del C.M.o v.s. % ex</td>
<td>1 / 5</td>
<td>-3.02%</td>
<td>-1.8%</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % ex</td>
<td>1 / 5</td>
<td>5.8E-5</td>
<td>1.6E-4</td>
</tr>
<tr>
<td>% Cortante Basal Y v.s. % ex</td>
<td>B</td>
<td>-1.3%</td>
<td>-1.3%</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico B v.s. % ex</td>
<td>1 / 5</td>
<td>-10.8%</td>
<td>-10.6%</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico G v.s. % ex</td>
<td>1 / 5</td>
<td>14.7%</td>
<td>17.6%</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico B v.s. % ex</td>
<td>1 / 5</td>
<td>-11.2%</td>
<td>-10.0%</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico G v.s. % ex</td>
<td>1 / 5</td>
<td>13.6%</td>
<td>22.3%</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico B v.s. % ex</td>
<td>1 / 5</td>
<td>-6.9%</td>
<td>-6.9%</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico G v.s. % ex</td>
<td>1 / 5</td>
<td>7.8%</td>
<td>9.0%</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico B v.s. % ex</td>
<td>1 / 5</td>
<td>-7.0%</td>
<td>-7.3%</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico G v.s. % ex</td>
<td>1 / 5</td>
<td>7.9%</td>
<td>12.1%</td>
</tr>
</tbody>
</table>
MÓDULO II

Cuadro 3.5

<table>
<thead>
<tr>
<th>CONFIGURACIÓN IRREGULAR - SÍMOSO EN X</th>
<th>P/U</th>
<th>(-) % ey</th>
<th>(+) % ey</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 v.s. % ey</td>
<td>*</td>
<td>-0.025 %</td>
<td>.043 %</td>
</tr>
<tr>
<td>T2 v.s. % ey</td>
<td>*</td>
<td>-6.20 %</td>
<td>6.49 %</td>
</tr>
<tr>
<td>T3 v.s. % ey</td>
<td>*</td>
<td>.275 %</td>
<td>.181 %</td>
</tr>
<tr>
<td>% Desplazamiento X del C.M.o v.s. % ey</td>
<td>1/5</td>
<td>-5.63 %</td>
<td>2.69 %</td>
</tr>
<tr>
<td>Giro en planta v.s. % ey</td>
<td>1/5</td>
<td>4.9E-4</td>
<td>5.4E-4</td>
</tr>
<tr>
<td>% Distorsión X del C.M.o v.s. % ey</td>
<td>1/5</td>
<td>-5.74 %</td>
<td>2.67 %</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % ey</td>
<td>1/5</td>
<td>3.3E-4</td>
<td>3.6E-4</td>
</tr>
<tr>
<td>% Cortante Basal X v.s. % ey</td>
<td>B</td>
<td>-1.95 %</td>
<td>-88 %</td>
</tr>
<tr>
<td>Cortante Basal X : Dinámico v.s. Estático</td>
<td>B [D&E]</td>
<td>2.4E2</td>
<td>2.4E2</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico 7 v.s. % ey</td>
<td>1/5</td>
<td>-2.7 %</td>
<td>-11.1 %</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico 12 v.s. % ey</td>
<td>1/5</td>
<td>-7.2 %</td>
<td>-5.5 %</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 7 v.s. % ey</td>
<td>1/5</td>
<td>-2.9 %</td>
<td>-10.9 %</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 12 v.s. % ey</td>
<td>1/5</td>
<td>-7.9 %</td>
<td>-4.7 %</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico 7 v.s. % ey</td>
<td>1/5</td>
<td>40.7%</td>
<td>-40.7%</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico 12 v.s. % ey</td>
<td>1/5</td>
<td>-12.8%</td>
<td>-9.2%</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 7 v.s. % ey</td>
<td>1/5</td>
<td>44.2%</td>
<td>-44.2%</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 12 v.s. % ey</td>
<td>1/5</td>
<td>-13.7%</td>
<td>-8.7%</td>
</tr>
</tbody>
</table>

Cuadro 3.6

<table>
<thead>
<tr>
<th>CONFIGURACIÓN IRREGULAR - SÍMOSO EN Y</th>
<th>P/U</th>
<th>(-) % ex</th>
<th>(+) % ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 v.s. % ex</td>
<td>*</td>
<td>-2.04 %</td>
<td>.614 %</td>
</tr>
<tr>
<td>T2 v.s. % ex</td>
<td>*</td>
<td>.233 %</td>
<td>.552 %</td>
</tr>
<tr>
<td>T3 v.s. % ex</td>
<td>*</td>
<td>-1.77 %</td>
<td>1.13 %</td>
</tr>
<tr>
<td>% Desplazamiento Y del C.M.o v.s. % ex</td>
<td>1/5</td>
<td>.12 %</td>
<td>-1.08 %</td>
</tr>
<tr>
<td>Giro en planta v.s. % ex</td>
<td>1/5</td>
<td>6.3E-5</td>
<td>2.6E-4</td>
</tr>
<tr>
<td>% Distorsión Y del C.M.o v.s. % ex</td>
<td>1/5</td>
<td>.31 %</td>
<td>-1.25 %</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % ex</td>
<td>1/5</td>
<td>3.0E-5</td>
<td>1.6E-4</td>
</tr>
<tr>
<td>% Cortante Basal Y v.s. % ex</td>
<td>B</td>
<td>.53 %</td>
<td>-1.46 %</td>
</tr>
<tr>
<td>Cortante Basal Y : Dinámico v.s. Estático</td>
<td>B [D&E]</td>
<td>2.3E2</td>
<td>2.3E2</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico B v.s. % ex</td>
<td>1/4</td>
<td>-5.5 %</td>
<td>2.8 %</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico D v.s. % ex</td>
<td>1/5</td>
<td>2.5 %</td>
<td>-3.2 %</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico B v.s. % ex</td>
<td>1/4</td>
<td>-6.1%</td>
<td>.93 %</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico D v.s. % ex</td>
<td>1/5</td>
<td>2.4%</td>
<td>-3.1%</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico B v.s. % ex</td>
<td>1/4</td>
<td>-2.9 %</td>
<td>2.9 %</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico D v.s. % ex</td>
<td>1/5</td>
<td>1.1 %</td>
<td>-1.1 %</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico B v.s. % ex</td>
<td>1/4</td>
<td>-3.3%</td>
<td>3.3 %</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico D v.s. % ex</td>
<td>1/5</td>
<td>1.0 %</td>
<td>-1.0%</td>
</tr>
</tbody>
</table>
MÓDULO III

Cuadro 3.7

<table>
<thead>
<tr>
<th>CONFIGURACIÓN IRREGULAR - SISMO EN X</th>
<th>P/U</th>
<th>(-) % ey</th>
<th>(+) % ey</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 v.s. % ey</td>
<td>*</td>
<td>-263 %</td>
<td>302 %</td>
</tr>
<tr>
<td>T2 v.s. % ey</td>
<td>*</td>
<td>3.41 %</td>
<td>-1.61 %</td>
</tr>
<tr>
<td>T3 v.s. % ey</td>
<td>*</td>
<td>3.60 %</td>
<td>4.42 %</td>
</tr>
<tr>
<td>% Desplazamiento X del C.M.O v.s. % ey</td>
<td>1 / 5</td>
<td>.73 %</td>
<td>-1.38 %</td>
</tr>
<tr>
<td>Giro en planta v.s. % ey</td>
<td>1 / 5</td>
<td>1.3E-4</td>
<td>4.1E-4</td>
</tr>
<tr>
<td>% Distorsión X del C.M.O v.s. % ey</td>
<td>1 / 5</td>
<td>.60 %</td>
<td>-3.02 %</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % ey</td>
<td>1 / 5</td>
<td>7.7E-5</td>
<td>6.4E-5</td>
</tr>
<tr>
<td>% Cortante Basal X v.s. % ey</td>
<td>B</td>
<td>-1.44 %</td>
<td>1.60 %</td>
</tr>
</tbody>
</table>

Análisis Dinámico

| Cortante Basal X : Dinámico v.s. Estático | B [DE] | 2.8E2 | 3.0E2 | 2.9E2 | 3.0E2 |

Análisis Estático

% Distorsión X del Pórtico 13 v.s. % ey	1 / 5	15.2 %	10.6 %	-20.2 %	-16.3 %
% Distorsión X del Pórtico 19 v.s. % ey	1 / 5	-21.8 %	-17.3 %	28.2 %	22.4 %
% Cortante en X del Pórtico 13 v.s. % ey	1 / 5	15.9 %	7.5 %	-21.5 %	-14.0 %
% Cortante en X del Pórtico 19 v.s. % ey	1 / 5	-22.3 %	-11.8 %	30.3 %	16.2 %

Cuadro 3.8

<table>
<thead>
<tr>
<th>CONFIGURACIÓN IRREGULAR - SISMO EN Y</th>
<th>P/U</th>
<th>(-) % ey</th>
<th>(+) % ey</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 v.s. % ex</td>
<td>*</td>
<td>.953 %</td>
<td>-.896 %</td>
</tr>
<tr>
<td>T2 v.s. % ex</td>
<td>*</td>
<td>.305 %</td>
<td>-.272 %</td>
</tr>
<tr>
<td>T3 v.s. % ex</td>
<td>*</td>
<td>2.07 %</td>
<td>1.80 %</td>
</tr>
<tr>
<td>% Desplazamiento Y del C.M.O v.s. % ex</td>
<td>1 / 5</td>
<td>.12 %</td>
<td>.03 %</td>
</tr>
<tr>
<td>Giro en planta v.s. % ex</td>
<td>1 / 5</td>
<td>1.7E-4</td>
<td>9.1E-4</td>
</tr>
<tr>
<td>% Distorsión Y del C.M.O v.s. % ex</td>
<td>1 / 5</td>
<td>.18 %</td>
<td>-1.7 %</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % ex</td>
<td>1 / 5</td>
<td>1.1E-4</td>
<td>2.2E-4</td>
</tr>
</tbody>
</table>

Análisis Dinámico

| Cortante Basal Y : Dinámico v.s. Estático | B [DE] | 2.3E2 | 3.0E2 | 2.3E2 | 3.0E2 |

Análisis Estático

% Distorsión Y del Pórtico B v.s. % ex	1 / 4	-.7 %	-.5 %	.7 %	.4 %
% Distorsión Y del Pórtico D v.s. % ex	1 / 5	.5 %	.1 %	-.4 %	-1.1 %
% Cortante en Y del Pórtico B v.s. % ex	1 / 4	-1.0 %	-5 %	1.0 %	.5 %
% Cortante en Y del Pórtico D v.s. % ex	1 / 5	5.5 %	.0 %	-5 %	-1.1 %

% Distorsión Y del Pórtico B v.s. % ex	1 / 4	-2.2 %	-6 %	.2 %	.6 %
% Distorsión Y del Pórtico D v.s. % ex	1 / 5	1.4 %	1.2 %	-1.4 %	-1.2 %
% Cortante en Y del Pórtico B v.s. % ex	1 / 4	-3 %	-7 %	.3 %	.7 %
% Cortante en Y del Pórtico D v.s. % ex	1 / 5	1.4 %	1.2 %	-1.4 %	-1.2 %
EDIFICIO DE 9 PISOS

Cuadro 3.9

<table>
<thead>
<tr>
<th>CONFIGURACIÓN IRREGULAR - SISMO EN X</th>
<th>P/U</th>
<th>(-) % ex</th>
<th>(+) % ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 v.s. % ex</td>
<td>*</td>
<td>.698 %</td>
<td>-1.186 %</td>
</tr>
<tr>
<td>T2 v.s. % ex</td>
<td>*</td>
<td>3.39 %</td>
<td>-1.85 %</td>
</tr>
<tr>
<td>T3 v.s. % ex</td>
<td>*</td>
<td>-3.94 %</td>
<td>2.06 %</td>
</tr>
<tr>
<td>% Desplazamiento X del C.M.O v.s. % ex</td>
<td>1 / 5</td>
<td>-8.42 %</td>
<td>-8.68 %</td>
</tr>
<tr>
<td>Giro en planta v.s. % ex</td>
<td>1 / 5</td>
<td>7.6E-4</td>
<td>9.4E-3</td>
</tr>
<tr>
<td>% Distorsión X del C.M.O v.s. % ex</td>
<td>1 / 5</td>
<td>-8.42 %</td>
<td>-8.95 %</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % ex</td>
<td>1 / 5</td>
<td>7.6E-4</td>
<td>8.2E-4</td>
</tr>
<tr>
<td>% Cortante Basal X v.s. % ex</td>
<td>B</td>
<td>-8.23 %</td>
<td>12.27 %</td>
</tr>
<tr>
<td>Cortante Basal X : Dinámico v.s. Estático</td>
<td>B [DE]</td>
<td>2.2E2</td>
<td>3.8E2</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico A v.s. % ex</td>
<td>1 / 5</td>
<td>-2.0 %</td>
<td>-5.7 %</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico D v.s. % ex</td>
<td>1 / 5</td>
<td>-5 %</td>
<td>-8.1 %</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico A v.s. % ex</td>
<td>1 / 5</td>
<td>1.4 %</td>
<td>-3.4 %</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico D v.s. % ex</td>
<td>1 / 5</td>
<td>.2 %</td>
<td>-8.1 %</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico A v.s. % ex</td>
<td>1 / 5</td>
<td>12.1 %</td>
<td>6.1 %</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico D v.s. % ex</td>
<td>1 / 5</td>
<td>-12.4 %</td>
<td>-5.9 %</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico A v.s. % ex</td>
<td>1 / 5</td>
<td>13.8 %</td>
<td>13.8 %</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico D v.s. % ex</td>
<td>1 / 5</td>
<td>-14.9 %</td>
<td>-5.6 %</td>
</tr>
</tbody>
</table>

Cuadro 3.10

<table>
<thead>
<tr>
<th>CONFIGURACIÓN IRREGULAR - SISMO EN Y</th>
<th>P/U</th>
<th>(-) % ex</th>
<th>(+) % ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 v.s. % ex</td>
<td>*</td>
<td>5.00 %</td>
<td>-3.53 %</td>
</tr>
<tr>
<td>T2 v.s. % ex</td>
<td>*</td>
<td>-8.41 %</td>
<td>1.24 %</td>
</tr>
<tr>
<td>T3 v.s. % ex</td>
<td>*</td>
<td>-3.96 %</td>
<td>2.38 %</td>
</tr>
<tr>
<td>% Desplazamiento Y del C.M.O v.s. % ex</td>
<td>1 / 9</td>
<td>-2.31 %</td>
<td>-2.00 %</td>
</tr>
<tr>
<td>Giro en planta v.s. % ex</td>
<td>1 / 9</td>
<td>8.7E-4</td>
<td>1.2E-2</td>
</tr>
<tr>
<td>% Distorsión Y del C.M.O v.s. % ex</td>
<td>1 / 9</td>
<td>-2.31 %</td>
<td>-1.63 %</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % ex</td>
<td>1 / 9</td>
<td>8.7E-4</td>
<td>1.1E-3</td>
</tr>
<tr>
<td>% Cortante Basal Y v.s. % ex</td>
<td>B</td>
<td>-3.63 %</td>
<td>8.21 %</td>
</tr>
<tr>
<td>Cortante Basal Y : Dinámico v.s. Estático</td>
<td>B [DE]</td>
<td>2.3E2</td>
<td>3.8E2</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico 1 v.s. % ex</td>
<td>1 / 9</td>
<td>5.3 %</td>
<td>3.4 %</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico 5 v.s. % ex</td>
<td>1 / 9</td>
<td>-10.6 %</td>
<td>-12.2 %</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico 1 v.s. % ex</td>
<td>1 / 9</td>
<td>5.2 %</td>
<td>3.1 %</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico 5 v.s. % ex</td>
<td>1 / 9</td>
<td>-10.6 %</td>
<td>-10.6 %</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico 1 v.s. % ex</td>
<td>1 / 9</td>
<td>12.1 %</td>
<td>8.7 %</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico 5 v.s. % ex</td>
<td>1 / 9</td>
<td>-14.0 %</td>
<td>-8.8 %</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico 1 v.s. % ex</td>
<td>1 / 9</td>
<td>12.2 %</td>
<td>8.5 %</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico 5 v.s. % ex</td>
<td>1 / 9</td>
<td>14.1 %</td>
<td>8.4 %</td>
</tr>
</tbody>
</table>
EDIFICIO DE 12 PISOS

<table>
<thead>
<tr>
<th>Cuadro 3.11</th>
<th>EDIFICIO DE 12 PISOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGURACIÓN IRREGULAR - SISMO EN X</td>
<td>P/U</td>
</tr>
<tr>
<td>T1 v.s. % ey</td>
<td>*</td>
</tr>
<tr>
<td>T2 v.s. % ey</td>
<td>*</td>
</tr>
<tr>
<td>T3 v.s. % ey</td>
<td>*</td>
</tr>
<tr>
<td>% Desplazamiento X del C.M.o v.s. % ey</td>
<td>1 / 5</td>
</tr>
<tr>
<td>Giro en planta v.s. % ey</td>
<td>1 / 5</td>
</tr>
<tr>
<td>% Distorsión X del C.M.o v.s. % ey</td>
<td>1 / 5</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % ey</td>
<td>1 / 5</td>
</tr>
<tr>
<td>% Cortante Basal X v.s. % ey</td>
<td>B</td>
</tr>
<tr>
<td>Cortante Basal X : Dinámico v.s. Estático</td>
<td>B [D/E]</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico 1 v.s. % ey</td>
<td>1 / 5</td>
</tr>
<tr>
<td>% Distorsión X del Pórtico 5 v.s. % ey</td>
<td>1 / 5</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 1 v.s. % ey</td>
<td>1 / 5</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 5 v.s. % ey</td>
<td>1 / 5</td>
</tr>
<tr>
<td>% Cortante X del Pórtico 1 v.s. % ey</td>
<td>1 / 5</td>
</tr>
<tr>
<td>% Cortante X del Pórtico 5 v.s. % ey</td>
<td>1 / 5</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 1 v.s. % ey</td>
<td>1 / 5</td>
</tr>
<tr>
<td>% Cortante en X del Pórtico 5 v.s. % ey</td>
<td>1 / 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 3.12</th>
<th>EDIFICIO DE 12 PISOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGURACIÓN REGULAR - SISMO EN Y</td>
<td>P/U</td>
</tr>
<tr>
<td>T1 v.s. % ex</td>
<td>*</td>
</tr>
<tr>
<td>T2 v.s. % ex</td>
<td>*</td>
</tr>
<tr>
<td>T3 v.s. % ex</td>
<td>*</td>
</tr>
<tr>
<td>% Desplazamiento Y del C.M.o v.s. % ex</td>
<td>1 / 11</td>
</tr>
<tr>
<td>Giro en planta v.s. % ex</td>
<td>1 / 11</td>
</tr>
<tr>
<td>% Distorsión Y del C.M.o v.s. % ex</td>
<td>1 / 11</td>
</tr>
<tr>
<td>Distorsión Angular v.s. % ex</td>
<td>1 / 11</td>
</tr>
<tr>
<td>% Cortante Basal Y v.s. % ex</td>
<td>B</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico A v.s. % ex</td>
<td>1 / 11</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico J v.s. % ex</td>
<td>1 / 11</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico A v.s. % ex</td>
<td>1 / 11</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico J v.s. % ex</td>
<td>1 / 11</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico A v.s. % ex</td>
<td>1 / 11</td>
</tr>
<tr>
<td>% Distorsión Y del Pórtico J v.s. % ex</td>
<td>1 / 11</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico A v.s. % ex</td>
<td>1 / 11</td>
</tr>
<tr>
<td>% Cortante en Y del Pórtico J v.s. % ex</td>
<td>1 / 11</td>
</tr>
</tbody>
</table>
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

Cap. 3: Influencia de la Excentricidad Accidental

Cabe señalar que los efectos para 5% de excentricidad accidental no necesariamente coinciden con los efectos resultantes cuando la posición del centro de masas es crítica. Lo dicho se puede apreciar mejor en los gráficos correspondiente a cada estructura.

PERIODOS Y MODOS DE VIBRACIÓN

El efecto de las excentricidades accidentales en los periodos naturales y modos de vibración están relacionados con la regularidad o irregularidad de la estructura analizada.

En general, las excentricidades en dirección X, es decir e_x, tienen mayor influencia en los modos que corresponden a movimientos en dirección Y. Comparativamente su influencia es menor en los modos X, pero esto depende de la irregularidad. La excentricidad e_x no afecta un modo X sin componente torsional, es decir, modos X simétricos.

Análogamente, las excentricidades e_y influyen en los modos en dirección X, pero su efecto sobre los modos en dirección Y sólo es apreciable si estos no son simétricos.

Los periodos o frecuencias naturales se modifican en la medida en que los correspondientes modos son afectados por la excentricidad. Se puede concluir que los periodos son función de $(e/r)^2$, siendo r el radio de giro del área de la planta (o de las masas).

DESPLAZAMIENTO DEL CENTRO DE MASAS Y CORTE GLOBALES

Los efectos globales cambian al considerar una excentricidad accidental aún si las estructuras son regulares y simétricas. En tales estructuras estudiadas se observa en la mayor parte de los casos una reducción del cortante global con la excentricidad accidental. Por otro lado, si la estructura es irregular la excentricidad accidental puede aumentar o reducir los efectos de la excentricidad real.

El cortante global máximo corresponde siempre a la excentricidad accidental que compensa la excentricidad real, de modo que el giro en planta resulta mínimo (y en algunos casos cero).
DISTORSIONES Y FUERZAS CORTANTES EN LOS PÓRTICOS

La excentricidad accidental tiene mucho mayor influencia en los efectos locales que en los globales, por ejemplo, las fuerzas cortantes que toma cada pótico. La única excepción en las estructuras estudiadas fue el edificio de 12 pisos, muy simétrico y con gran rigidez torsional.

Con pocas excepciones, los efectos de una excentricidad accidental en el procedimiento de fuerzas estáticas equivalentes son en términos porcentuales menores que los efectos que resultan en desplazar en la misma distancia el centro de masas. En general puede afirmarse que los procedimientos no son equivalentes.

A pesar de tenerse, en términos porcentuales, una influencia importante de la excentricidad accidental en los resultados del análisis dinámico, las fuerzas cortantes en la base obtenida del análisis estático siguen siendo mayores. En consecuencia, el requisito del código por el que se requiere tener por lo menos un cortante en la base de 80% ó 90% de lo obtenido con el procedimiento estático podría en ciertos casos reducir el efecto de la excentricidad en el cortante global, sobre todo en estructuras elevadas. Sin embargo, cuando la excentricidad accidental reduce el cortante global obtenido del análisis dinámico se tendría que multiplicar las fuerzas por un número mayor para conseguir el mínimo requerido por el código.
CAPÍTULO 4
COMPONENTE ROTACIONAL DEL SISMO

Al ocurrir un sismo, los apoyos de las estructuras tienen movimientos ligeramente distintos, o más bien podría decirse desfasados, ya que la onda sísmica no se propaga con una velocidad infinita. Tales diferencias, que se ignoran en el análisis tradicional, deberían ser efectivamente poco importantes en estructuras muy pequeñas, pero podrían ser significativas en estructuras relativamente alargadas. En este capítulo se trata la no simultaneidad del movimiento sísmico como equivalente a considerar una componente rotacional. El análisis siguiente se refiere a estructuras cuyas dimensiones son una fracción de la longitud de onda para la componente correspondiente al periodo fundamental. Siendo \(V_s \) la velocidad de propagación y si el periodo fundamental más corto para muchas edificaciones, según Newmark y Rosemblueth, es del orden de 0.2 s, la longitud de onda resultaría del orden de 0.2 \(V_s \). Los resultados siguientes podrían considerarse válidos para estructuras cuya longitud sea menor o igual que 0.05 \(V_s \).

4.1 ESTIMACIÓN DE LA COMPONENTE ROTACIONAL

Basándose en la teoría de elasticidad, la rotación en la base alrededor de un eje vertical podría determinarse mediante:

\[
\alpha = \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right)
\]

(4.1)

Donde \(u, v \) son las componentes de desplazamiento en dos direcciones ortogonales, \(X \) e \(Y \), respectivamente. Ambas componentes son funciones de tiempo con características similares, por lo que la expresión precedente podría simplificarse, como propuesto por Newmark y Rosemblueth [Referencia 2]:

\[
\alpha = \frac{\partial u}{\partial y}
\]

(4.2)

Esto es suponiendo que \(X \) es la dirección del movimiento de las partículas del suelo con desplazamiento \(u \), e \(Y \) la dirección de propagación de la onda de corte. En este caso \(u \) puede expresarse como función de \((t - y/v_s) \), donde \(V_s \) es la velocidad (de propagación) de la onda. Por lo tanto:
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

Cap. 4: Componente Rotacional del Sismo

\[u = u \left(t - \frac{y}{V_s} \right) \] \hspace{1cm} (4.3)

De lo que se concluye que la rotación podría calcularse mediante:

\[\alpha = \frac{\dot{u}}{V_s} \] \hspace{1cm} (4.4)

Para interpretar correctamente esta expresión, debe tenerse en cuenta la trayectoria de las ondas refractadas. Cuando se tiene un estrato de suelo sobre una roca comparativamente muy rígida, un valor adecuado para las ondas \(S \) podría ser del orden de 3000 m/s, ya que las ondas se propagarían por la roca y, dada la mucho menor rigidez del suelo en relación a la roca subyacente, se refractarían en dirección casi vertical.

4.2 RESPUESTA EVALUADA POR SUPERPOSICIÓN MODAL ESPECTRAL

En un proceso de superposición modal espectral se requeriría estimar el máximo giro en planta, a partir de la rotación del terreno dada por la Ec. (4.4). Para ello sería necesario integrar primero el registro de aceleraciones obteniéndose \(\dot{u}(t) \). Luego debería considerarse la respuesta de sistemas de un grado de libertad, con masas y rigideces rotacionales, obteniéndose un espectro para los giros, análogo al espectro de desplazamientos. En lo que sigue, se ha supuesto que el giro en planta del sistema de un grado de libertad puede estimarse mediante:

\[\theta_{\text{max}} = \frac{S_s}{V_s} = \frac{S_a/w}{V_s} \] \hspace{1cm} (4.5)

donde \(S_s \) y \(S_a \) son los valores espectrales de seudo velocidades y de seudo aceleración. Nótese que \(\theta \) se refiere a la respuesta del sistema, mientras que \(\alpha \) corresponde a la componente rotacional del movimiento del terreno. Puede observarse que \(\theta_{\text{max}} \) resulta en función del período.

Al considerar el modelo para la estructura, con muchos grados de libertad, se tienen ecuaciones de equilibrio:

\[M\ddot{u} + C\dot{u} + Ku = 0 \] \hspace{1cm} (4.6)

o en términos de desplazamientos relativos al terreno (la rotación \(\alpha \)):

\[M\ddot{x} + C\dot{x} + Kx = -Mr\alpha \] \hspace{1cm} (4.7)
donde r representa el conjunto de desplazamientos en los grados de libertad del modelo al tenerse un movimiento de cuerpo rígido con el terreno. Para efectos de este análisis, el movimiento de cuerpo rígido correspondería a una rotación de la estructura alrededor de un eje vertical.

Expresando la respuesta como combinación lineal de los modos de vibración:

$$\mathbf{x} = \sum_j c_j \phi_j$$ \hspace{1cm} (4.8)

y haciendo uso de las relaciones de ortogonalidad se obtiene, para cada modo:

$$c_{jmix} = \frac{\phi_j^T \mathbf{M} \phi_j}{\phi_j^T \mathbf{M} \phi_j} \theta_{max}(w_j) = \Gamma_{\theta j} \theta_{max}(w_j) = \Gamma_{\theta j} \frac{w_j S_d}{V_s}$$ \hspace{1cm} (4.9)

En este caso \(\Gamma_{\theta j} \) sería el factor de participación "rotacional" del modo \(j \).

El efecto de la rotación debe agregarse al de las componentes traslacionales habitualmente consideradas. Suponiendo que para cada modo el giro máximo ocurre simultáneamente con la máxima traslación, lo que es una hipótesis muy conservadora, se tendría:

$$c_{jmix} = (\Gamma_{s j} + \Gamma_{\theta j} \frac{w_j}{V_s}) S_d$$ \hspace{1cm} (4.10)

donde \(\Gamma_{s j} \) es el factor de participación correspondiente a traslación en la dirección de análisis. La expresión precedente indica que los efectos de la componente rotacional pueden tratarse como equivalentes a una modificación de los factores de participación habitualmente considerados.

4.3 COMPARACIÓN DE LOS EFECTOS DE LA ROTACIÓN EN PLANTA CON LOS DEBIDOS A UNA EXCENTRICIDAD ACCIDENTAL

En los cuadros (del 4.2 al 4.109) y gráficas (de la 4.1 al 4.24) mostrados a partir de la página 4 – 5 se presentan resultados de desplazamientos, cortantes y distorsiones para las seis estructuras estudiadas en esta tesis (descritas en el capítulo anterior), incluyendo la componente rotacional. Se comparan resultados para distintas velocidades de propagación con el caso \(V_s \rightarrow \infty \), lo que significaría considerar solo la componente traslacional del movimiento del terreno. La hipótesis \(V_s \rightarrow 300 m/s \) es
excesivamente conservadora para la mayor parte de los casos reales. En los cuadros se presentan los valores obtenidos en cada caso y los porcentajes de cambio respecto al resultado sin incluir la componente rotacional. En algunos cuadros los cambios son porcentajes muy pequeños y no llegan a observarse en las cifras representadas (redondeo).

Los porcentajes de cambio para las principales variables globales se resumen a continuación para el caso extremo \(\nu_s \to 300 \text{ m/s} \):

Cuadro 4.1. CAMBIO PORCENTUAL DE LAS PRINCIPALES VARIABLES GLOBALES

<table>
<thead>
<tr>
<th>EDIFICIO</th>
<th>(\delta_s)</th>
<th>(\nu_s)</th>
<th>(\delta_r)</th>
<th>(\nu_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colegio</td>
<td>1%</td>
<td>7%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Módulo I</td>
<td>18%</td>
<td>66%</td>
<td>15%</td>
<td>115%</td>
</tr>
<tr>
<td>Módulo II</td>
<td>37%</td>
<td>77%</td>
<td>11%</td>
<td>33%</td>
</tr>
<tr>
<td>Módulo III</td>
<td>43%</td>
<td>60%</td>
<td>11%</td>
<td>41%</td>
</tr>
<tr>
<td>Edificio de 9 pisos</td>
<td>19%</td>
<td>32%</td>
<td>15%</td>
<td>25%</td>
</tr>
<tr>
<td>Edificio de 12 pisos</td>
<td>9%</td>
<td>16%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Del Cuadro 4.1 podemos apreciar que los resultados globales son poco sensibles a la componente rotacional del movimiento del terreno cuando los edificios son casi simétricos. Así, en la estructura típica de “Colegio” o en el “Edificio de 12 pisos” para la componente del sismo en dirección transversal, se observa que las distorsiones en el centro de masas y las fuerzas cortantes totales prácticamente no se modifican al considerar distintos valores de \(\nu_s \). En cambio, para estructuras irregulares los efectos si son significativos, como se aprecia sobre todo en el edificio denominado “Módulo I” y en menor medida en los “Módulos 2 y 3”.

Refiriéndose a las fuerzas cortante en los pórticos en cada extremo de la edificación, se observa en todos los casos (como era de esperarse) efectos decrecientes a medida que \(\nu_s \to \infty \). En general, los resultados del procedimiento estático son en magnitud (no en porcentaje) mayores a los obtenidos en el procedimiento dinámico (véase el acápite 3.6). La consideración de la componente rotacional produce efectos mayores que desplazar 5% el centro de masas sólo si \(\nu_s \) es relativamente baja. Con algunas excepciones, se observan valores similares cuando \(\nu_s \) es del orden de 1000 \(\text{m/s} \).

Si \(\nu_s \), por los argumentos expuestos en el acápite 4.1, se considerara del orden de 3000 \(\text{m/s} \), se concluiría que 5% de excentricidad accidental sería excesiva. Sin embargo debe tenerse en cuenta que una parte de la excentricidad accidental se justifica por la distribución no uniforme de las masas.
COMPARACIÓN DE EFECTOS PARA EL COLEGIO - SISMO EN X

Cuadro 4.2

<table>
<thead>
<tr>
<th></th>
<th>Desplazamiento en X del Centro de Masas Original</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{Vs} \rightarrow \infty$</td>
</tr>
<tr>
<td>Nivel 3</td>
<td>0.210</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.057</td>
</tr>
</tbody>
</table>

Cuadro 4.3

<table>
<thead>
<tr>
<th></th>
<th>Giro en Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{Vs} \rightarrow \infty$</td>
</tr>
<tr>
<td>Nivel 3</td>
<td>1.068E-04</td>
</tr>
</tbody>
</table>

Cuadro 4.4

<table>
<thead>
<tr>
<th></th>
<th>Distorsión en X del Centro de Masas Original</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{Vs} \rightarrow \infty$</td>
</tr>
<tr>
<td>Nivel 3</td>
<td>0.0803</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0566</td>
</tr>
</tbody>
</table>

Cuadro 4.5

<table>
<thead>
<tr>
<th></th>
<th>Distorsión Angular en Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{Vs} \rightarrow \infty$</td>
</tr>
<tr>
<td>Nivel 3</td>
<td>9.534E-06</td>
</tr>
</tbody>
</table>

Cuadro 4.6

<table>
<thead>
<tr>
<th></th>
<th>Cortante Basal X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{Vs} \rightarrow \infty$</td>
</tr>
<tr>
<td>Base</td>
<td>99.925</td>
</tr>
</tbody>
</table>
Cuadro 4.7

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 3</td>
<td>0.0803</td>
<td>0.0814</td>
<td>1.35 %</td>
<td>0.0806</td>
<td>0.40 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0565</td>
<td>0.0580</td>
<td>2.66 %</td>
<td>0.0569</td>
<td>0.76 %</td>
</tr>
</tbody>
</table>

Cuadro 4.8

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 3</td>
<td>0.0803</td>
<td>0.0817</td>
<td>1.69 %</td>
<td>0.0807</td>
<td>0.50 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0568</td>
<td>0.0574</td>
<td>1.05 %</td>
<td>0.0569</td>
<td>0.31 %</td>
</tr>
</tbody>
</table>

Cuadro 4.9

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 3</td>
<td>23.594</td>
<td>26.301</td>
<td>11.47 %</td>
<td>24.367</td>
<td>3.23 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>49.638</td>
<td>54.977</td>
<td>10.76 %</td>
<td>51.083</td>
<td>2.91 %</td>
</tr>
</tbody>
</table>

Cuadro 4.10

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 3</td>
<td>23.519</td>
<td>25.794</td>
<td>9.67 %</td>
<td>24.172</td>
<td>2.78 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>50.287</td>
<td>55.525</td>
<td>4.45 %</td>
<td>50.939</td>
<td>1.30 %</td>
</tr>
</tbody>
</table>
Cuadro 4.11
Desplazamiento en Y del Centro de Masas Original

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 3</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Cuadro 4.12
Giro en Planta

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 3</td>
<td>1.145E-10</td>
<td>1.034E-03</td>
<td>3.103E-04</td>
<td>1.551E-04</td>
<td>1.034E-04</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>6.479E-11</td>
<td>5.927E-04</td>
<td>1.779E-04</td>
<td>8.894E-05</td>
<td>5.927E-05</td>
</tr>
</tbody>
</table>

Cuadro 4.13
Distorsión en Y del Centro de Masas Original

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 3</td>
<td>0.0012</td>
<td>0.0012</td>
<td>0.0012</td>
<td>0.0012</td>
<td>0.0012</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0049</td>
<td>0.0049</td>
<td>0.0049</td>
<td>0.0049</td>
<td>0.0049</td>
</tr>
</tbody>
</table>

Cuadro 4.14
Distorsión Angular en Planta

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 3</td>
<td>1.666E-11</td>
<td>1.845E-04</td>
<td>5.534E-05</td>
<td>2.768E-05</td>
<td>1.845E-05</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>6.479E-11</td>
<td>5.927E-04</td>
<td>1.779E-04</td>
<td>8.894E-05</td>
<td>5.927E-05</td>
</tr>
</tbody>
</table>

Cuadro 4.15
Cortante Basal Y

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>361.900</td>
<td>361.900</td>
<td>361.900</td>
<td>361.900</td>
<td>361.900</td>
</tr>
</tbody>
</table>

4 - 8
Cuadro 4.16

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \rightarrow \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.0012</td>
<td>0.0027</td>
<td>120.66 %</td>
<td>0.0016</td>
<td>25.11 %</td>
</tr>
<tr>
<td>1</td>
<td>0.0049</td>
<td>0.0093</td>
<td>89.32 %</td>
<td>0.0058</td>
<td>17.52 %</td>
</tr>
</tbody>
</table>

Cuadro 4.17

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \rightarrow \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.0012</td>
<td>0.0027</td>
<td>120.66 %</td>
<td>0.0016</td>
<td>25.11 %</td>
</tr>
<tr>
<td>1</td>
<td>0.0049</td>
<td>0.0093</td>
<td>89.32 %</td>
<td>0.0058</td>
<td>17.52 %</td>
</tr>
</tbody>
</table>

Cuadro 4.18

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \rightarrow \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>30.876</td>
<td>68.167</td>
<td>120.78 %</td>
<td>38.637</td>
<td>25.14 %</td>
</tr>
<tr>
<td>1</td>
<td>88.076</td>
<td>166.756</td>
<td>89.33 %</td>
<td>103.513</td>
<td>17.53 %</td>
</tr>
</tbody>
</table>

Cuadro 4.19

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \rightarrow \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>30.876</td>
<td>68.167</td>
<td>120.78 %</td>
<td>38.637</td>
<td>25.14 %</td>
</tr>
<tr>
<td>1</td>
<td>88.076</td>
<td>166.756</td>
<td>89.33 %</td>
<td>103.513</td>
<td>17.53 %</td>
</tr>
</tbody>
</table>
COMPARACIÓN DE EFECTOS PARA EL MÓDULO I - SISMO EN X

Cuadro 4.20

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Desplazamiento en X del Centro de Masas Original</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_s \to \infty$</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>0.043</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Cuadro 4.21

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Giro en Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_s \to \infty$</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>1.271E-03</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>1.821E-04</td>
</tr>
</tbody>
</table>

Cuadro 4.22

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Distorsión en X del Centro de Masas Original</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_s \to \infty$</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>0.0089</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0062</td>
</tr>
</tbody>
</table>

Cuadro 4.23

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Distorsión Angular en Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_s \to \infty$</td>
</tr>
</tbody>
</table>

Cuadro 4.24

<table>
<thead>
<tr>
<th>Cortante Basal X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_s \to \infty$</td>
</tr>
<tr>
<td>Base</td>
</tr>
</tbody>
</table>
Cuadro 4.25

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m / s</th>
<th>Vs = 1000 m / s</th>
<th>Vs = 2000 m / s</th>
<th>Vs = 3000 m / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>0.0113</td>
<td>0.0024 -78.42 %</td>
<td>0.0122 7.98 %</td>
<td>0.0117 3.93 %</td>
<td>0.0116 2.61 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0080</td>
<td>0.0044 -45.78 %</td>
<td>0.0087 8.16 %</td>
<td>0.0084 4.02 %</td>
<td>0.0083 2.67 %</td>
</tr>
</tbody>
</table>

Cuadro 4.26

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m / s</th>
<th>Vs = 1000 m / s</th>
<th>Vs = 2000 m / s</th>
<th>Vs = 3000 m / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>0.0067</td>
<td>0.0125 87.40 %</td>
<td>0.0082 23.30 %</td>
<td>0.0074 11.19 %</td>
<td>0.0072 7.35 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0045</td>
<td>0.0082 83.50 %</td>
<td>0.0055 22.22 %</td>
<td>0.0050 10.67 %</td>
<td>0.0048 7.01 %</td>
</tr>
</tbody>
</table>

Cuadro 4.27

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m / s</th>
<th>Vs = 1000 m / s</th>
<th>Vs = 2000 m / s</th>
<th>Vs = 3000 m / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>37.072</td>
<td>58.111 56.75 %</td>
<td>42.949 15.85 %</td>
<td>39.954 7.77 %</td>
<td>38.980 5.15 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>102.675</td>
<td>147.055 43.22 %</td>
<td>115.071 12.07 %</td>
<td>108.759 5.93 %</td>
<td>108.705 3.93 %</td>
</tr>
</tbody>
</table>

Cuadro 4.28

<table>
<thead>
<tr>
<th></th>
<th>Vs → ∞</th>
<th>Vs = 300 m / s</th>
<th>Vs = 1000 m / s</th>
<th>Vs = 2000 m / s</th>
<th>Vs = 3000 m / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>12.650</td>
<td>91.834 625.94 %</td>
<td>34.665 174.02 %</td>
<td>22.929 81.25 %</td>
<td>19.222 51.94 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>53.491</td>
<td>145.836 172.63 %</td>
<td>77.936 45.70 %</td>
<td>65.076 21.66 %</td>
<td>61.050 14.13 %</td>
</tr>
</tbody>
</table>
COMPARACIÓN DE EFECTOS PARA EL MÓDULO 1 - SISMO EN Y

Cuadro 4.29

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.049</td>
<td>0.052</td>
<td>0.050</td>
<td>0.050</td>
<td>0.049</td>
</tr>
<tr>
<td>1</td>
<td>0.010</td>
<td>0.011</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Cuadro 4.30

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4.635E-04</td>
<td>1.868E-03</td>
<td>7.932E-04</td>
<td>6.012E-04</td>
<td>5.470E-04</td>
</tr>
<tr>
<td>1</td>
<td>1.902E-04</td>
<td>4.484E-04</td>
<td>2.498E-04</td>
<td>2.168E-04</td>
<td>2.072E-04</td>
</tr>
</tbody>
</table>

Cuadro 4.31

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0099</td>
<td>0.0114</td>
<td>0.0103</td>
<td>0.0101</td>
<td>0.0100</td>
</tr>
<tr>
<td>1</td>
<td>0.0078</td>
<td>0.0090</td>
<td>0.0082</td>
<td>0.0080</td>
<td>0.0079</td>
</tr>
</tbody>
</table>

Cuadro 4.32

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.068E-04</td>
<td>3.372E-04</td>
<td>1.609E-04</td>
<td>1.305E-04</td>
<td>1.217E-04</td>
</tr>
</tbody>
</table>

Cuadro 4.33

<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>387.810</td>
<td>833.371</td>
<td>497.676</td>
<td>439.010</td>
</tr>
</tbody>
</table>
Cuadro 4.34: Distorsión Y del Pórtilo B

<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>0.0102</td>
<td>0.0130</td>
<td>0.0110</td>
<td>0.0105</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0086</td>
<td>0.0107</td>
<td>0.0091</td>
<td>0.0088</td>
</tr>
</tbody>
</table>

Cuadro 4.35: Distorsión Y del Pórtilo G

<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>0.0097</td>
<td>0.0143</td>
<td>0.0108</td>
<td>0.0102</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0063</td>
<td>0.0091</td>
<td>0.0070</td>
<td>0.0066</td>
</tr>
</tbody>
</table>

Cuadro 4.36: Cortante en Y del Pórtilo B

<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>74.480</td>
<td>128.242</td>
<td>89.090</td>
<td>79.167</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>148.534</td>
<td>203.931</td>
<td>163.707</td>
<td>153.439</td>
</tr>
</tbody>
</table>

Cuadro 4.37: Cortante en Y del Pórtilo G

<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>51.405</td>
<td>148.487</td>
<td>76.182</td>
<td>58.881</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>117.305</td>
<td>238.406</td>
<td>148.116</td>
<td>128.844</td>
</tr>
</tbody>
</table>
COMPARACIÓN DE EFECTOS PARA EL MÓDULO II - SISMO EN X

Cuadro 4.38
<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300$ m/s</th>
<th>$V_s = 1000$ m/s</th>
<th>$V_s = 2000$ m/s</th>
<th>$V_s = 3000$ m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.031</td>
<td>0.041</td>
<td>32.24%</td>
<td>0.034</td>
<td>9.60%</td>
</tr>
<tr>
<td>1</td>
<td>0.005</td>
<td>0.007</td>
<td>35.28%</td>
<td>0.006</td>
<td>10.53%</td>
</tr>
</tbody>
</table>

Cuadro 4.39
<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300$ m/s</th>
<th>$V_s = 1000$ m/s</th>
<th>$V_s = 2000$ m/s</th>
<th>$V_s = 3000$ m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.833E-03</td>
<td>3.847E-03</td>
<td>3.132E-03</td>
<td>2.982E-03</td>
<td>2.932E-03</td>
</tr>
<tr>
<td>1</td>
<td>5.292E-04</td>
<td>8.286E-04</td>
<td>6.150E-04</td>
<td>5.714E-04</td>
<td>5.572E-04</td>
</tr>
</tbody>
</table>

Cuadro 4.40
<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300$ m/s</th>
<th>$V_s = 1000$ m/s</th>
<th>$V_s = 2000$ m/s</th>
<th>$V_s = 3000$ m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0083</td>
<td>0.0114</td>
<td>37.35%</td>
<td>0.0092</td>
<td>11.09%</td>
</tr>
<tr>
<td>1</td>
<td>0.0035</td>
<td>0.0047</td>
<td>35.71%</td>
<td>0.0038</td>
<td>10.64%</td>
</tr>
</tbody>
</table>

Cuadro 4.41
<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300$ m/s</th>
<th>$V_s = 1000$ m/s</th>
<th>$V_s = 2000$ m/s</th>
<th>$V_s = 3000$ m/s</th>
</tr>
</thead>
</table>

Cuadro 4.42
<table>
<thead>
<tr>
<th>Base</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300$ m/s</th>
<th>$V_s = 1000$ m/s</th>
<th>$V_s = 2000$ m/s</th>
<th>$V_s = 3000$ m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>241.676</td>
<td>427.886</td>
<td>77.05%</td>
<td>294.705</td>
<td>267.733</td>
<td>258.895</td>
</tr>
<tr>
<td>Cuadro 4.43</td>
<td>Distorsión X del Pórtico 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vs $\rightarrow \infty$</td>
<td>Vs = 300 m/s</td>
<td>Vs = 1000 m/s</td>
<td>Vs = 2000 m/s</td>
<td>Vs = 3000 m/s</td>
<td></td>
</tr>
<tr>
<td>Nivel 5</td>
<td>0.0012</td>
<td>0.0034</td>
<td>169.96%</td>
<td>0.0019</td>
<td>49.91%</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0013</td>
<td>0.0036</td>
<td>168.62%</td>
<td>0.0020</td>
<td>49.98%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.44</th>
<th>Distorsión X del Pórtico 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs $\rightarrow \infty$</td>
<td>Vs = 300 m/s</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>0.0161</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0075</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.45</th>
<th>Cortante en X del Pórtico 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs $\rightarrow \infty$</td>
<td>Vs = 300 m/s</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>39.055</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>71.050</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.46</th>
<th>Cortante en X del Pórtico 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs $\rightarrow \infty$</td>
<td>Vs = 300 m/s</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>1.085</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>9.194</td>
</tr>
<tr>
<td>Cuadro 4.47</td>
<td>Desplazamiento en Y del Centro de Masas Original</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Vs → ∞</td>
<td>Vs = 300 m/s</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>0.057</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.48</th>
<th>Giro en Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs → ∞</td>
<td>Vs = 300 m/s</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>4.961E-04</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>1.672E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.49</th>
<th>Distorsión en Y del Centro de Masas Original</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs → ∞</td>
<td>Vs = 300 m/s</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>0.0147</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0071</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.50</th>
<th>Distorsión Angular en Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs → ∞</td>
<td>Vs = 300 m/s</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>1.628E-04</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>9.792E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.51</th>
<th>Cortante Basal Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs → ∞</td>
<td>Vs = 300 m/s</td>
</tr>
<tr>
<td>Base</td>
<td>229.486</td>
</tr>
</tbody>
</table>

4 - 20
Cuadro 4.52

<table>
<thead>
<tr>
<th>Distorsión Y del Pórtico B</th>
<th>(V_s \to \infty)</th>
<th>(V_s = 300 \text{ m/s})</th>
<th>(V_s = 1000 \text{ m/s})</th>
<th>(V_s = 2000 \text{ m/s})</th>
<th>(V_s = 3000 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 4</td>
<td>0.0130</td>
<td>0.0142</td>
<td>9.74 %</td>
<td>0.0133</td>
<td>2.83 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0077</td>
<td>0.0086</td>
<td>12.16 %</td>
<td>0.0079</td>
<td>3.49 %</td>
</tr>
</tbody>
</table>

Cuadro 4.53

<table>
<thead>
<tr>
<th>Distorsión Y del Pórtico D</th>
<th>(V_s \to \infty)</th>
<th>(V_s = 300 \text{ m/s})</th>
<th>(V_s = 1000 \text{ m/s})</th>
<th>(V_s = 2000 \text{ m/s})</th>
<th>(V_s = 3000 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>0.0144</td>
<td>0.0162</td>
<td>12.77 %</td>
<td>0.0149</td>
<td>3.69 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0069</td>
<td>0.0077</td>
<td>12.46 %</td>
<td>0.0071</td>
<td>3.56 %</td>
</tr>
</tbody>
</table>

Cuadro 4.54

<table>
<thead>
<tr>
<th>Cortante en Y del Pórtico B</th>
<th>(V_s \to \infty)</th>
<th>(V_s = 300 \text{ m/s})</th>
<th>(V_s = 1000 \text{ m/s})</th>
<th>(V_s = 2000 \text{ m/s})</th>
<th>(V_s = 3000 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 4</td>
<td>74.356</td>
<td>87.122</td>
<td>17.17 %</td>
<td>78.030</td>
<td>4.94 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>88.134</td>
<td>106.901</td>
<td>21.29 %</td>
<td>93.461</td>
<td>6.04 %</td>
</tr>
</tbody>
</table>

Cuadro 4.55

<table>
<thead>
<tr>
<th>Cortante en Y del Pórtico D</th>
<th>(V_s \to \infty)</th>
<th>(V_s = 300 \text{ m/s})</th>
<th>(V_s = 1000 \text{ m/s})</th>
<th>(V_s = 2000 \text{ m/s})</th>
<th>(V_s = 3000 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>15.200</td>
<td>17.266</td>
<td>13.59 %</td>
<td>15.796</td>
<td>3.92 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>5.063</td>
<td>5.887</td>
<td>16.28 %</td>
<td>5.298</td>
<td>4.64 %</td>
</tr>
<tr>
<td>Vs a ∞</td>
<td>Vs a 1000 m/s</td>
<td>Vs a 3000 m/s</td>
<td>Giro en Planta</td>
<td>Distorsión en X del Centro de Masas Original</td>
<td>Distorsión Angular en Planta</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>2.793E-04</td>
<td>6.89E-05</td>
<td>2.012</td>
<td>5.69%</td>
<td>4.950E-05</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>8.94E-05</td>
<td>2.012</td>
<td>2.012</td>
<td>5.69%</td>
<td>4.950E-05</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>1.96E-04</td>
<td>4.87E-05</td>
<td>1.96E-04</td>
<td>5.69%</td>
<td>4.950E-05</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>4.87E-05</td>
<td>1.96E-04</td>
<td>1.96E-04</td>
<td>5.69%</td>
<td>4.950E-05</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>2.52E-04</td>
<td>6.35E-05</td>
<td>2.52E-04</td>
<td>5.69%</td>
<td>4.950E-05</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>6.35E-05</td>
<td>2.52E-04</td>
<td>2.52E-04</td>
<td>5.69%</td>
<td>4.950E-05</td>
</tr>
<tr>
<td>Nivel 5</td>
<td>3.00E-04</td>
<td>7.50E-05</td>
<td>3.00E-04</td>
<td>5.69%</td>
<td>4.950E-05</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>7.50E-05</td>
<td>3.00E-04</td>
<td>3.00E-04</td>
<td>5.69%</td>
<td>4.950E-05</td>
</tr>
</tbody>
</table>
Cuadro 4.61: Distorsión X del Pórtico 13

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0020</td>
<td>0.0033</td>
<td>0.0024</td>
<td>0.0022</td>
<td>0.0021</td>
</tr>
<tr>
<td>1</td>
<td>0.0019</td>
<td>0.0032</td>
<td>0.0022</td>
<td>0.0020</td>
<td>0.0020</td>
</tr>
</tbody>
</table>

Cuadro 4.62: Distorsión X del Pórtico 19

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0016</td>
<td>0.0035</td>
<td>0.0020</td>
<td>0.0018</td>
<td>0.0017</td>
</tr>
<tr>
<td>1</td>
<td>0.0010</td>
<td>0.0024</td>
<td>0.0013</td>
<td>0.0011</td>
<td>0.0011</td>
</tr>
</tbody>
</table>

Cuadro 4.63: Cortante en X del Pórtico 13

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>58.538</td>
<td>104.322</td>
<td>71.022</td>
<td>64.603</td>
<td>62.539</td>
</tr>
<tr>
<td>1</td>
<td>93.338</td>
<td>174.581</td>
<td>114.122</td>
<td>103.195</td>
<td>99.783</td>
</tr>
</tbody>
</table>

Cuadro 4.64: Cortante en X del Pórtico 19

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>52.936</td>
<td>134.159</td>
<td>73.758</td>
<td>62.709</td>
<td>59.292</td>
</tr>
<tr>
<td>1</td>
<td>80.782</td>
<td>241.194</td>
<td>120.542</td>
<td>98.821</td>
<td>92.319</td>
</tr>
</tbody>
</table>
Cuadro 4.65: Desplazamiento en Y del Centro de Masas Original

<table>
<thead>
<tr>
<th></th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>0.054</td>
<td>0.056</td>
<td>0.055</td>
<td>0.054</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.57 %</td>
<td>1.36 %</td>
<td>0.68 %</td>
<td>0.45 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.010</td>
<td>0.011</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.59 %</td>
<td>3.10 %</td>
<td>1.55 %</td>
<td>1.05 %</td>
</tr>
</tbody>
</table>

Cuadro 4.66: Giro en Planta

<table>
<thead>
<tr>
<th></th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nivel 1</td>
<td>1.532E-04</td>
<td>3.391E-04</td>
<td>1.980E-04</td>
<td>1.743E-04</td>
<td>1.668E-04</td>
</tr>
</tbody>
</table>

Cuadro 4.67: Distorsión en Y del Centro de Masas Original

<table>
<thead>
<tr>
<th></th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>0.0136</td>
<td>0.0151</td>
<td>0.0141</td>
<td>0.0138</td>
<td>0.0138</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.93 %</td>
<td>3.22 %</td>
<td>1.59 %</td>
<td>1.06 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0066</td>
<td>0.0073</td>
<td>0.0068</td>
<td>0.0067</td>
<td>0.0066</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.22 %</td>
<td>3.28 %</td>
<td>1.55 %</td>
<td>1.00 %</td>
</tr>
</tbody>
</table>

Cuadro 4.68: Distorsión Angular en Planta

<table>
<thead>
<tr>
<th></th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nivel 1</td>
<td>1.052E-04</td>
<td>2.089E-04</td>
<td>1.306E-04</td>
<td>1.169E-04</td>
<td>1.128E-04</td>
</tr>
</tbody>
</table>

Cuadro 4.69: Cortante Basal Y

<table>
<thead>
<tr>
<th></th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>229.029</td>
<td>322.133</td>
<td>254.324</td>
<td>241.371</td>
<td>237.105</td>
</tr>
<tr>
<td></td>
<td>40.65 %</td>
<td>11.04 %</td>
<td>5.39 %</td>
<td>3.53 %</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 4.70
<table>
<thead>
<tr>
<th></th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 4</td>
<td>0.0110</td>
<td>0.0121</td>
<td>10.24 %</td>
<td>0.0113</td>
<td>3.01 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0059</td>
<td>0.0070</td>
<td>18.59 %</td>
<td>0.0062</td>
<td>5.15 %</td>
</tr>
</tbody>
</table>

Cuadro 4.71
<table>
<thead>
<tr>
<th></th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>0.0148</td>
<td>0.0164</td>
<td>12.43 %</td>
<td>0.0151</td>
<td>3.61 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0069</td>
<td>0.0075</td>
<td>8.99 %</td>
<td>0.0071</td>
<td>2.67 %</td>
</tr>
</tbody>
</table>

Cuadro 4.72
<table>
<thead>
<tr>
<th></th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 4</td>
<td>64.573</td>
<td>75.200</td>
<td>16.46 %</td>
<td>67.572</td>
<td>4.80 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>64.637</td>
<td>86.616</td>
<td>34.00 %</td>
<td>70.580</td>
<td>9.19 %</td>
</tr>
</tbody>
</table>

Cuadro 4.73
<table>
<thead>
<tr>
<th></th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300 \text{ m/s}$</th>
<th>$V_s = 1000 \text{ m/s}$</th>
<th>$V_s = 2000 \text{ m/s}$</th>
<th>$V_s = 3000 \text{ m/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 5</td>
<td>15.372</td>
<td>17.399</td>
<td>13.00 %</td>
<td>15.952</td>
<td>3.77 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>5.084</td>
<td>5.706</td>
<td>12.24 %</td>
<td>5.267</td>
<td>3.60 %</td>
</tr>
</tbody>
</table>
COMPARACIÓN DE EFECTOS PARA EL EDIFICIO DE 9 PISOS - SISMO EN X

Cuadro 4.74

<table>
<thead>
<tr>
<th></th>
<th>Vs $\rightarrow \infty$</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 9</td>
<td>0.152</td>
<td>0.188</td>
<td>11.13 %</td>
<td>0.156</td>
<td>3.29 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.008</td>
<td>0.010</td>
<td>18.97 %</td>
<td>0.009</td>
<td>5.60 %</td>
</tr>
</tbody>
</table>

Cuadro 4.75

<table>
<thead>
<tr>
<th></th>
<th>Vs $\rightarrow \infty$</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 9</td>
<td>7.860E-03</td>
<td>1.019E-02</td>
<td>8.544E-03</td>
<td>8.196E-03</td>
<td>8.088E-03</td>
</tr>
</tbody>
</table>

Cuadro 4.76

<table>
<thead>
<tr>
<th></th>
<th>Vs $\rightarrow \infty$</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 9</td>
<td>0.0171</td>
<td>0.0204</td>
<td>19.41 %</td>
<td>0.0181</td>
<td>5.71 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0084</td>
<td>0.0099</td>
<td>18.97 %</td>
<td>0.0088</td>
<td>5.60 %</td>
</tr>
</tbody>
</table>

Cuadro 4.77

<table>
<thead>
<tr>
<th></th>
<th>Vs $\rightarrow \infty$</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
</table>

Cuadro 4.78

<table>
<thead>
<tr>
<th></th>
<th>Vs $\rightarrow \infty$</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>234.800</td>
<td>310.000</td>
<td>32.03 %</td>
<td>256.800</td>
<td>9.37 %</td>
</tr>
</tbody>
</table>
Cuadro 4.79
Distorsión X del Pórtico A

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300, m/s$</th>
<th>$V_s = 1000, m/s$</th>
<th>$V_s = 2000, m/s$</th>
<th>$V_s = 3000, m/s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.0195</td>
<td>0.0242</td>
<td>0.0209</td>
<td>0.0202</td>
<td>0.0200</td>
</tr>
<tr>
<td></td>
<td>23.87 %</td>
<td>6.93 %</td>
<td>3.44 %</td>
<td>2.28 %</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.0127</td>
<td>0.0157</td>
<td>0.0136</td>
<td>0.0132</td>
<td>0.0130</td>
</tr>
<tr>
<td></td>
<td>23.36 %</td>
<td>6.81 %</td>
<td>3.38 %</td>
<td>2.25 %</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 4.80
Distorsión X del Pórtico D

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300, m/s$</th>
<th>$V_s = 1000, m/s$</th>
<th>$V_s = 2000, m/s$</th>
<th>$V_s = 3000, m/s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.0168</td>
<td>0.0217</td>
<td>0.0183</td>
<td>0.0176</td>
<td>0.0173</td>
</tr>
<tr>
<td></td>
<td>28.91 %</td>
<td>8.48 %</td>
<td>4.22 %</td>
<td>2.81 %</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.0074</td>
<td>0.0105</td>
<td>0.0083</td>
<td>0.0078</td>
<td>0.0077</td>
</tr>
<tr>
<td></td>
<td>41.45 %</td>
<td>12.25 %</td>
<td>6.10 %</td>
<td>4.06 %</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 4.81
Cortante en X del Pórtico A

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300, m/s$</th>
<th>$V_s = 1000, m/s$</th>
<th>$V_s = 2000, m/s$</th>
<th>$V_s = 3000, m/s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>22.739</td>
<td>48.104</td>
<td>29.686</td>
<td>26.103</td>
<td>24.954</td>
</tr>
<tr>
<td></td>
<td>111.55 %</td>
<td>111.55 %</td>
<td>111.55 %</td>
<td>111.55 %</td>
<td>111.55 %</td>
</tr>
<tr>
<td>1</td>
<td>105.254</td>
<td>149.547</td>
<td>117.851</td>
<td>111.466</td>
<td>108.376</td>
</tr>
<tr>
<td></td>
<td>42.06 %</td>
<td>11.97 %</td>
<td>5.90 %</td>
<td>3.92 %</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 4.82
Cortante en X del Pórtico D

<table>
<thead>
<tr>
<th>Nivel</th>
<th>$V_s \to \infty$</th>
<th>$V_s = 300, m/s$</th>
<th>$V_s = 1000, m/s$</th>
<th>$V_s = 2000, m/s$</th>
<th>$V_s = 3000, m/s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>30.685</td>
<td>47.206</td>
<td>35.410</td>
<td>33.017</td>
<td>32.232</td>
</tr>
<tr>
<td></td>
<td>53.84 %</td>
<td>15.40 %</td>
<td>7.60 %</td>
<td>5.04 %</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>64.794</td>
<td>104.824</td>
<td>76.596</td>
<td>70.664</td>
<td>68.700</td>
</tr>
<tr>
<td></td>
<td>61.78 %</td>
<td>18.21 %</td>
<td>9.06 %</td>
<td>6.03 %</td>
<td></td>
</tr>
</tbody>
</table>
COMPARACIÓN DE EFECTOS PARA EL EDIFICIO DE 9 PISOS - SISMO EN Y

<table>
<thead>
<tr>
<th>Cuadro 4.84</th>
<th>Desplazamiento en Y del Centro de Masas Original</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Vs \rightarrow \infty)</td>
</tr>
<tr>
<td>Nivel 9</td>
<td>0.211</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.85</th>
<th>Giro en Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Vs \rightarrow \infty)</td>
</tr>
<tr>
<td>Nivel 9</td>
<td>9.930E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.85</th>
<th>Distorsión en Y del Centro de Masas Original</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Vs \rightarrow \infty)</td>
</tr>
<tr>
<td>Nivel 9</td>
<td>0.0219</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.86</th>
<th>Distorsión Angular en Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Vs \rightarrow \infty)</td>
</tr>
<tr>
<td>Nivel 9</td>
<td>9.594E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.87</th>
<th>Cortante Basal Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Vs \rightarrow \infty)</td>
</tr>
<tr>
<td>Base</td>
<td>238.667</td>
</tr>
</tbody>
</table>
Cuadro 4.88

<table>
<thead>
<tr>
<th></th>
<th>Vs → (\infty)</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 9</td>
<td>0.0312</td>
<td>0.0361</td>
<td>15.63 %</td>
<td>0.0326</td>
<td>4.63 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0200</td>
<td>0.0231</td>
<td>15.39 %</td>
<td>0.0209</td>
<td>4.55 %</td>
</tr>
</tbody>
</table>

Cuadro 4.89

<table>
<thead>
<tr>
<th></th>
<th>Vs → (\infty)</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 9</td>
<td>0.0146</td>
<td>0.0206</td>
<td>41.86 %</td>
<td>0.0163</td>
<td>11.92 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0092</td>
<td>0.0136</td>
<td>47.72 %</td>
<td>0.0105</td>
<td>13.74 %</td>
</tr>
</tbody>
</table>

Cuadro 4.90

<table>
<thead>
<tr>
<th></th>
<th>Vs → (\infty)</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 9</td>
<td>27.279</td>
<td>32.026</td>
<td>17.40 %</td>
<td>28.683</td>
<td>5.15 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>15.089</td>
<td>18.052</td>
<td>19.63 %</td>
<td>15.963</td>
<td>5.79 %</td>
</tr>
</tbody>
</table>

Cuadro 4.91

<table>
<thead>
<tr>
<th></th>
<th>Vs → (\infty)</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 9</td>
<td>22.964</td>
<td>33.150</td>
<td>44.36 %</td>
<td>25.859</td>
<td>12.61 %</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>10.806</td>
<td>16.623</td>
<td>53.83 %</td>
<td>12.475</td>
<td>15.45 %</td>
</tr>
</tbody>
</table>
COMPARACIÓN DE EFECTOS PARA EL EDIFICIO DE 12 PISOS - SISMO EN X

Cuadro 4.92
<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m / s</th>
<th>Vs = 1000 m / s</th>
<th>Vs = 2000 m / s</th>
<th>Vs = 3000 m / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 11</td>
<td>0.074</td>
<td>0.078</td>
<td>4.54 %</td>
<td>0.075</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.002</td>
<td>0.002</td>
<td>9.37 %</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Cuadro 4.93
<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m / s</th>
<th>Vs = 1000 m / s</th>
<th>Vs = 2000 m / s</th>
<th>Vs = 3000 m / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 11</td>
<td>1.386E-03</td>
<td>3.640E-03</td>
<td>2.010E-03</td>
<td>1.687E-03</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>3.577E-05</td>
<td>1.512E-04</td>
<td>6.687E-05</td>
<td>5.031E-05</td>
</tr>
</tbody>
</table>

Cuadro 4.94
<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m / s</th>
<th>Vs = 1000 m / s</th>
<th>Vs = 2000 m / s</th>
<th>Vs = 3000 m / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 11</td>
<td>0.0094</td>
<td>0.0100</td>
<td>5.77 %</td>
<td>0.0096</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0019</td>
<td>0.0020</td>
<td>9.37 %</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

Cuadro 4.95
<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m / s</th>
<th>Vs = 1000 m / s</th>
<th>Vs = 2000 m / s</th>
<th>Vs = 3000 m / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 11</td>
<td>1.658E-04</td>
<td>5.063E-04</td>
<td>2.592E-04</td>
<td>2.105E-04</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>3.577E-05</td>
<td>1.512E-04</td>
<td>6.687E-05</td>
<td>5.031E-05</td>
</tr>
</tbody>
</table>

Cuadro 4.96
<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m / s</th>
<th>Vs = 1000 m / s</th>
<th>Vs = 2000 m / s</th>
<th>Vs = 3000 m / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>495.200</td>
<td>574.400</td>
<td>15.99 %</td>
<td>518.000</td>
</tr>
</tbody>
</table>
Cuadro 4.97
Distorsión X del Pórtico 1

<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 11</td>
<td>0.0104</td>
<td>0.0119</td>
<td>14.75 %</td>
<td>0.0108</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0021</td>
<td>0.0027</td>
<td>28.12 %</td>
<td>0.0022</td>
</tr>
</tbody>
</table>

Cuadro 4.98
Distorsión X del Pórtico 5

<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 11</td>
<td>0.0088</td>
<td>0.0107</td>
<td>21.27 %</td>
<td>0.0094</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0018</td>
<td>0.0109</td>
<td>521.11 %</td>
<td>0.0067</td>
</tr>
</tbody>
</table>

Cuadro 4.99
Cortante en X del Pórtico 1

<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 11</td>
<td>8.670</td>
<td>12.187</td>
<td>40.57 %</td>
<td>9.628</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>13.578</td>
<td>21.074</td>
<td>55.21 %</td>
<td>15.497</td>
</tr>
</tbody>
</table>

Cuadro 4.100
Cortante en X del Pórtico 5

<table>
<thead>
<tr>
<th>Vs → ∞</th>
<th>Vs = 300 m/s</th>
<th>Vs = 1000 m/s</th>
<th>Vs = 2000 m/s</th>
<th>Vs = 3000 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 11</td>
<td>7.441</td>
<td>11.717</td>
<td>57.47 %</td>
<td>8.568</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>11.978</td>
<td>20.110</td>
<td>67.89 %</td>
<td>14.042</td>
</tr>
</tbody>
</table>
COMPARACIÓN DE EFECTOS PARA EL EDIFICIO DE 12 PISOS - SISMO EN Y

<table>
<thead>
<tr>
<th>Cuadro 4.101</th>
<th>Desplazamiento en Y del Centro de Masas Original</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs → ∞</td>
<td>Vs = 300 m / s</td>
</tr>
<tr>
<td>Nivel 11</td>
<td>0.080</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.102</th>
<th>Giro en Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs → ∞</td>
<td>Vs = 300 m / s</td>
</tr>
<tr>
<td>Nivel 11</td>
<td>6.404E-10</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>1.932E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.103</th>
<th>Distorsión en Y del Centro de Masas Original</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs → ∞</td>
<td>Vs = 300 m / s</td>
</tr>
<tr>
<td>Nivel 11</td>
<td>0.0089</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>0.0022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.104</th>
<th>Distorsión Angular en Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs → ∞</td>
<td>Vs = 300 m / s</td>
</tr>
<tr>
<td>Nivel 1</td>
<td>1.932E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadro 4.105</th>
<th>Cortante Basal Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs → ∞</td>
<td>Vs = 300 m / s</td>
</tr>
<tr>
<td>Base</td>
<td>472.933</td>
</tr>
<tr>
<td>Nivel</td>
<td>(\text{Vs} \rightarrow \infty)</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>0.0089</td>
</tr>
<tr>
<td>1</td>
<td>33.54%</td>
</tr>
<tr>
<td>1</td>
<td>0.0033</td>
</tr>
</tbody>
</table>

Distorsión Y del Pórtico A

<table>
<thead>
<tr>
<th>Nivel</th>
<th>(\text{Vs} \rightarrow \infty)</th>
<th>(\text{Vs} = 3000 \text{ m/s})</th>
<th>(\text{Vs} = 2000 \text{ m/s})</th>
<th>(\text{Vs} = 1000 \text{ m/s})</th>
<th>(\text{Vs} = 100 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0099</td>
<td>0.0024</td>
<td>0.0023</td>
<td>0.0091</td>
<td>0.0023</td>
</tr>
<tr>
<td>1</td>
<td>33.54%</td>
<td>12.70%</td>
<td>3.72%</td>
<td>5.94%</td>
<td>3.87%</td>
</tr>
<tr>
<td>1</td>
<td>0.0033</td>
<td>0.0023</td>
<td>0.0023</td>
<td>0.0023</td>
<td>0.0023</td>
</tr>
</tbody>
</table>

Distorsión Y del Pórtico J

<table>
<thead>
<tr>
<th>Nivel</th>
<th>(\text{Vs} \rightarrow \infty)</th>
<th>(\text{Vs} = 3000 \text{ m/s})</th>
<th>(\text{Vs} = 2000 \text{ m/s})</th>
<th>(\text{Vs} = 1000 \text{ m/s})</th>
<th>(\text{Vs} = 100 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0099</td>
<td>0.0024</td>
<td>0.0023</td>
<td>0.0091</td>
<td>0.0023</td>
</tr>
<tr>
<td>1</td>
<td>33.54%</td>
<td>12.70%</td>
<td>3.72%</td>
<td>5.94%</td>
<td>3.87%</td>
</tr>
<tr>
<td>1</td>
<td>0.0033</td>
<td>0.0023</td>
<td>0.0023</td>
<td>0.0023</td>
<td>0.0023</td>
</tr>
</tbody>
</table>

Cortante en Y del Pórtico A

<table>
<thead>
<tr>
<th>Nivel</th>
<th>(\text{Vs} \rightarrow \infty)</th>
<th>(\text{Vs} = 3000 \text{ m/s})</th>
<th>(\text{Vs} = 2000 \text{ m/s})</th>
<th>(\text{Vs} = 1000 \text{ m/s})</th>
<th>(\text{Vs} = 100 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.654</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
<tr>
<td>1</td>
<td>150.368</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
</tbody>
</table>

Cortante en Y del Pórtico J

<table>
<thead>
<tr>
<th>Nivel</th>
<th>(\text{Vs} \rightarrow \infty)</th>
<th>(\text{Vs} = 3000 \text{ m/s})</th>
<th>(\text{Vs} = 2000 \text{ m/s})</th>
<th>(\text{Vs} = 1000 \text{ m/s})</th>
<th>(\text{Vs} = 100 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.654</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
<tr>
<td>1</td>
<td>150.368</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nivel</th>
<th>(\text{Vs} \rightarrow \infty)</th>
<th>(\text{Vs} = 3000 \text{ m/s})</th>
<th>(\text{Vs} = 2000 \text{ m/s})</th>
<th>(\text{Vs} = 1000 \text{ m/s})</th>
<th>(\text{Vs} = 100 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.654</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
<tr>
<td>1</td>
<td>150.368</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
</tbody>
</table>

Cortante en Y del Pórtico J

<table>
<thead>
<tr>
<th>Nivel</th>
<th>(\text{Vs} \rightarrow \infty)</th>
<th>(\text{Vs} = 3000 \text{ m/s})</th>
<th>(\text{Vs} = 2000 \text{ m/s})</th>
<th>(\text{Vs} = 1000 \text{ m/s})</th>
<th>(\text{Vs} = 100 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.654</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
<tr>
<td>1</td>
<td>150.368</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nivel</th>
<th>(\text{Vs} \rightarrow \infty)</th>
<th>(\text{Vs} = 3000 \text{ m/s})</th>
<th>(\text{Vs} = 2000 \text{ m/s})</th>
<th>(\text{Vs} = 1000 \text{ m/s})</th>
<th>(\text{Vs} = 100 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.654</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
<tr>
<td>1</td>
<td>150.368</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nivel</th>
<th>(\text{Vs} \rightarrow \infty)</th>
<th>(\text{Vs} = 3000 \text{ m/s})</th>
<th>(\text{Vs} = 2000 \text{ m/s})</th>
<th>(\text{Vs} = 1000 \text{ m/s})</th>
<th>(\text{Vs} = 100 \text{ m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.654</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
<tr>
<td>1</td>
<td>150.368</td>
<td>150.268</td>
<td>84.004</td>
<td>73.210</td>
<td>13.58%</td>
</tr>
</tbody>
</table>
CONCLUSIONES Y
RECOMENDACIONES

CONCLUSIONES

C.1) La excentricidad accidental tiene mucho mayor influencia en los efectos locales que en los globales, por ejemplo, las fuerzas cortantes que toma cada pórtico. La única excepción en las estructuras estudiadas fue el edificio de 12 pisos, muy simétrico y con gran rigidez torsional.

C.2) En la norma E-030 se hace referencia a la excentricidad accidental como una forma de tratar “la incertidumbre en la localización de los centros de masas de cada nivel”. Desde este punto de vista, la excentricidad accidental debería de depender de la razón entre las masas cuya posición podría variar (como las cargas vivas y en alguna medida la tabiquería) y aquellas fijas (peso propio y acabados). Por ejemplo, la excentricidad accidental debería ser mayor en un edificio de concreto destinado a vivienda.

C.3) Entre otras causas de un momento torsional en planta se tiene la componente rotacional del movimiento de la base. Los efectos de esta componente rotacional son mayores en estructuras alargadas, lo que justifica que la excentricidad accidental sea considerada como una fracción de la dimensión del edificio. Sin embargo, la importancia de estos efectos decrece conforme se tiene mayores velocidades de propagación de las ondas. Según esto, la excentricidad accidental podría también ser función del suelo.

C.4) La consideración de la excentricidad accidental como lo plantea la norma E-030 modifica los periodos y modos de vibración, especialmente en estructuras irregulares. Las excentricidades e_x tienen mayor efecto en los modos que se relacionan con movimiento en la dirección Y. Su efecto en los modos X sólo es importante si estos modos no son simétricos y tanto mayor cuanto más fuertes sean las irregularidades.

C.5) Con pocas excepciones, los efectos de una excentricidad accidental en el procedimiento de fuerzas estáticas equivalentes son en términos porcentuales menores
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

Conclusiones y Recomendaciones

que los efectos que resultan en desplazar en la misma distancia el centro de masas. En general puede afirmarse que los procedimientos no son equivalentes.

C.6) Los efectos globales cambian al considerar una excentricidad accidental aún si las estructuras son regulares y simétricas. En tales estructuras estudiadas se observa en la mayor parte de los casos una reducción del cortante global con la excentricidad accidental. Por otro lado, si la estructura es irregular la excentricidad accidental puede aumentar o reducir los efectos de la excentricidad real.

C.7) El cortante global máximo corresponde siempre a la excentricidad accidental que compensa la excentricidad real, de modo que el giro en planta resulta mínimo (y en algunos casos cero).

C.8) A pesar de tenerse, en términos porcentuales, una influencia importante de la excentricidad accidental en los resultados del análisis dinámico, las fuerzas cortantes en la base obtenida del análisis estático siguen siendo mayores. En consecuencia, el requisito del código por el que se requiere tener por lo menos un cortante en la base de 80% ó 90% de lo obtenido con el procedimiento estático podría en ciertos casos reducir el efecto de la excentricidad en el cortante global, sobre todo en estructuras elevadas. Sin embargo, cuando la excentricidad accidental reduce el cortante global obtenido del análisis dinámico se tendría que multiplicar las fuerzas por un número mayor para conseguir el mínimo requerido por el código.

RECOMENDACIONES

R.1) Las especificaciones de la norma E-030 con relación a la excentricidad accidental deberían modificarse. Los resultados obtenidos en este trabajo, que deben reconocerse como limitados a unos pocos casos, indican que el porcentaje de excentricidad considerado en el análisis dinámico podría ser algo menor, si el objetivo fuera obtener efectos compatibles a los de la torsión accidentales el procedimiento con fuerzas estáticas equivalentes.

R.2) Se recomienda efectuar estudios adicionales para proponer expresiones más elaboradas, que permitan tener en cuenta las condiciones de uso (más propiamente la razón entre masas fijas y variables) y las condiciones de suelo. Las irregularidades pueden hacer que las excentricidades tengan mayor efecto en los resultados globales.
EXCENTRICIDAD ACCIDENTAL EN EL ANÁLISIS SÍSMICO

Conclusiones y Recomendaciones

Esto es una consecuencia del análisis. No parece haber justificación para considerar una excentricidad accidental diferente en una estructura irregular, dado que la excentricidad se justifica sólo por la distribución no uniforme de las masas o por desfase en el movimiento del terreno.

R.3) Un tema no investigado en esta tesis, pero que podría resultar importante, es el de los desfases en los movimientos en las cercanías de los cerros o en general en situaciones en las que no se tiene estratificación uniforme.

R.4) Las expresiones planteadas en el capítulo 2 son relativamente simples y pueden introducirse fácilmente en un programa de cómputo, especialmente cuando se tienen modelos con masas concentradas como los habitualmente usados. Aún cuando el uso de tales expresiones no es indispensable, reducen significativamente el tiempo de cómputo, posibilitando que se apliquen estrictamente las recomendaciones de la norma.

