
A. Champi, A. Bazan Aguilar, M. Camilo, Maria Quintana

Abstract

Spherical iron oxide nanostructures (Fe\textsubscript{x}O\textsubscript{y} NPs) are obtained by laser ablation technique, which are formed primarily by α-hematite (α- Fe\textsubscript{2}O\textsubscript{3}), γ-hematite (γ-Fe\textsubscript{2}O\textsubscript{3}) and goethite (FeOOH) phases, the dimensions of which are among the 30-60 nm by using the Scanning Electronic Microscope (SEM) analysis. These were incorporated superficially on graphite microflakes (MFG, microflakes of graphite) and / or a few layers of graphene microflakes (FLG, few-layer graphene), through a thermal process, in order to observe their influence on the electro-optical properties on MFG and FLG, tested by Raman microspectroscopy, we detect a correlation of Raman shifts before and after doping. This is explained as a change in the dispersion of two phonons at the edges of the C-C chains forming the FLG against the formation of surface defects due to interaction with Fe\textsubscript{x}O\textsubscript{y} NPs after insertion. Finally, a study of the position, the FWHM, the ration between the intensities and the areas of the G and 2D bands was made in all samples with two Raman lasers (λ = 534 nm and 422 nm).

Keywords

iron oxides nanoparticles; graphite; few-layers graphene; EPR; Raman