"OPERACIÓN DE TRANSPORTE Y CARGUÍO EN MINAS A TAJO ABIERTO"

TESIS

Para optar el Título Profesional de:

INGENIERO CIVIL

JORGE VILLANUEVA YARMA

Lima - Perú

2009
INDICE

RESUMEN .................................................................................................................. 1

LISTA DE TABLAS .................................................................................................. 3

LISTA DE GRÁFICOS ................................................................................................. 4

INTRODUCCIÓN ....................................................................................................... 5

CAPÍTULO I: CARGUÍO, TRANSPORTE Y DESCARGA .............................. 7

1. Estado del arte en las operaciones de carguío, transporte y descarga .................. 7
   1.1 Tipo y número de equipos utilizados ................................................................. 8
   1.2 Mantenimiento y conservación de las zonas de trabajo ................................ 10

2. El ciclo de carguío y transporte ........................................................................ 13
   2.1 Zona de carguío ............................................................................................... 13
   2.2 Zona de botadero ............................................................................................ 20
   2.3 Tramo de recorrido .......................................................................................... 23

3. Productividad ..................................................................................................... 25

Operación de Transporte y Carguío en Minas a Tajo Abierto
Jorge Villanueva Yarza
CAPÍTULO II: HERRAMIENTAS PARA EL ANÁLISIS DE LA OPERACIÓN. 30

1. El enfoque mecanicista .................................................. 30
   1.1 Mediciones locales .................................................. 30
   1.2 Causas ................................................................ 31
   1.3 Ejemplo ................................................................ 31

2. Sistemas........................................................................... 35
   2.1 Definición de sistema .................................................. 35
   2.2 Tipo de sistemas ......................................................... 36
   2.3 Conceptos claves para la Teoría General de Sistemas .... 38
   2.3 Características de un sistema ....................................... 43

3. Lean Production: Producción sin pérdidas ...................... 46
   3.1 Lean Production: Producción sin pérdidas .................. 48
   3.2 El flujo en los procesos de producción....................... 51
   3.3 Mediciones ............................................................... 51
   3.4 Pérdidas, cadenas de valor y logística ....................... 52

4. Teoría de colas.................................................................. 55
   4.1 Elementos existentes en la teoría de colas ................. 55
   4.2 Estructuras típicas ..................................................... 55

5. Metodología estadística para la toma de datos ............... 57
   5.1 Condiciones para la toma de datos ............................. 57
   5.2 Información obtenida ................................................ 58

CAPÍTULO III: PRODUCTIVIDAD EN CICLOS DE TRANSPORTE .... 60

1. Condiciones y características del trabajo ....................... 60
   1.1 Condiciones geográficas y climatológicas .................. 60
   1.2 Del material transportado .......................................... 60
   1.3 Condiciones en la zona de trabajo ............................ 61

2. Medición de la operación de carguío y transporte ............ 63

3. Resultados obtenidos ..................................................... 65

Operación de Transporte y Carguío en Minas a Tajo Abierto
Jorge Villanueva Yerma
CAPÍTULO IV: EVALUACIÓN DE LOS RESULTADOS

1. Antecedentes

2. Información obtenida
   2.1 Factores a analizar

3. Evaluación de los resultados

4. Procedimiento para el dimensionamiento de la flota asignada a una operación de transporte y carga

5. Costo horario de la operación

CONCLUSIONES

RECOMENDACIONES

GLOSARIO DE TÉRMINOS

BIBLIOGRAFÍA

ANEXOS
RESUMEN

Las operaciones de cargailo y transporte de material proveniente de las excavaciones en minas a tajo abierto constituyen un proceso fundamental en la extracción de minerales. Esta actividad la podemos encontrar a diferentes escalas, la cual dependerá de distintos factores tales como el volumen de trabajo, tipo de material y las condiciones de la zona de trabajo, por ejemplo la altura del banco, distancia de transporte, pendiente de la vía, y que determinarán las características y cantidad de equipos a utilizar.

Ya que el éxito de esta operación se traduce en un menor costo monetario por unidad transportada, resulta fundamental una correcta selección de los equipos a utilizar y un adecuado plan de trabajo. Para esto debemos considerar a esta operación como un sistema, y que por ende ésta se ve afectada por factores inherentes a la misma y por el medio que la rodea. Es importante tener en cuenta que un sistema está constituido por diferentes elementos componentes, y que cada uno de estos opera en función de las necesidades del conjunto.

Entendiendo el concepto de sistema, la toma de datos y el análisis de esta operación se llevará a cabo a través de la observación del proceso, entendiendo su naturaleza, los elementos que lo componen y el medio en el que se encuentra. Una vez entendida la naturaleza de la operación, identificaremos las restricciones que la afectan, las cuales pueden ser de dos tipos: intrínsecas y extrínsecas, y buscaremos las reales
causas que las originan. Esto nos lleva a la implementación de mejoras para el conjunto, las cuales deben ser medidas y verificadas.

El primer capítulo del presente trabajo tratará del estado del arte en las operaciones de carguio y transporte, haciendo una descripción de la problemática tal como la vemos hoy y la naturaleza de la operación Carguio – Transporte, sus componentes y el medio que la circunda.

El segundo capítulo tratará los métodos mecanicistas para realizar mediciones de las operaciones de carguio y transporte y se dará un detalle de las herramientas utilizadas para el análisis de la operación.

En el tercer y cuarto capítulo se presentará un caso real de la operación en una mina a tajo abierto y evaluará los resultados encontrados.

Finalmente presentaremos las conclusiones y recomendaciones para introducir mejoras en las operaciones de transporte y carguio.

**Estos capítulos anteriormente descritos nos llevan al objetivo del presente estudio de tesis, que es el de conocer y analizar la secuencia lógica y natural de una operación de transporte y carguio para dimensionar el tamaño de la flota a utilizar de una manera cualitativa y cuantitativa.**
INTRODUCCIÓN

En un mundo en el que la competencia laboral es cada vez mayor y que requiere mejores productos a un menor precio obliga a las empresas a optimizar sus actividades y estructuras organizacionales de manera que se vuelvan más eficientes y competitivas; de otra manera estarán destinadas al fracaso. Las actividades mineras no son una excepción. En un campo en el que el mercado es muy variable e inestable resulta primordial para las organizaciones administrar de manera racional sus recursos.

En el caso de operaciones de carga y transporte en minería estas optimizaciones se traducen en la capacidad de transportar más material en un menor tiempo y a un menor costo. Si bien es cierto la tecnología ha desarrollado equipos de carga y transporte de mayor capacidad, la optimización consiste en obtener el mejor resultado por el uso de dichos equipos.

Conscientes de esta situación muchas empresas tratan de mejorar sus operaciones; sin embargo enfocan el problema de manera equivocada, atacando el efecto, más no la causa. A través de la observación de operaciones de carga y transporte en diversas minas en el interior del país se ha podido verificar que procedimientos incorrectos son tomados como válidos, llegando a creer que éstos forman parte de la naturaleza de la actividad.
Es por ello que el presente estudio tiene por objetivo dar a conocer la secuencia natural de este tipo de operaciones y apoyado en teorías como las de Sistemas y Lean Production racionalizar el uso de los recursos utilizados. Esto no sólo tiene un fin económico, sino también humano, ya que al alcanzar mejoras en la actividad, las personas involucradas notarán que sus esfuerzos influyen de manera positiva en la empresa y en sus vidas.
CAPÍTULO I: CARGUÍO, TRANSPORTE Y DESCARGA

1. ESTADO DEL ARTE EN LAS OPERACIONES DE CARGUÍO, TRANSPORTE Y DESCARGA

Las operaciones de carguío y transporte con excavadoras hidráulicas o cargadores frontales son usadas hoy en día ampliamente en las explotaciones mineras por su alta flexibilidad para la extracción de materiales. Sin embargo esto no significa que sean económicos. La eficiencia y por ende el costo dependerá de varios factores. Esta operación está constituida por tres actividades, que son la carga, el transporte y la descarga del material, las cuales se dan respectivamente en las siguientes zonas:

- Zona de carguío, en los que los factores que la afectan son la altura del banco, tamaño del material, posición de la excavadora con respecto al camión, el número y la frecuencia de los camiones.
- Tramos de Recorrido, en los que los factores que la afectan son el ancho de la via, la pendiente, las interferencias, las curvas, etc.
- Zona de Botadero, en los que los factores que la afectan son el tamaño del botadero, el número de puntos de descarga, la saturación del botadero, entre otros.

Es evidente que debido a la inversión realizada en las explotaciones mineras, los responsables de obras de movimiento de tierras requieren tener el conocimiento necesario para determinar el tipo y la cantidad de equipos a emplear, lo cual a su vez depende de factores tales como el volumen de trabajo por unidad de tiempo, tipo de material a transportar, las condiciones geográficas y climáticas en el área de...
trabajo; no menos importantes son las intersecciones o cruces. De esta manera el éxito de la operación conjunta dependerá del menor costo por tonelada cargada y transportada. A pesar de esto, en la práctica encontramos una serie de errores los cuales al producirse de manera frecuente y repetitiva ha llegado a ser considerado como parte de la naturaleza de la operación.

1.1 Tipo y Número de Equipos Utilizados

El número de equipos a emplear determinará en gran medida el costo de una operación de carguido; así, utilizar una mayor cantidad de camiones para el transporte de material sólo incrementará los tiempos de espera (que se traduce en un incremento del costo por tonelada de material cargado y transportado), más no necesariamente incrementará la producción. Cabe mencionar que este problema se produce a diferentes escalas, en operaciones en los cuales se utilizan camiones de 25 toneladas de carga neta hasta camiones de 250 toneladas de carga neta. Las siguientes fotografías corresponden a algunas operaciones de carguido y transporte en zonas mineras en el interior de nuestro país y en las que podemos apreciar este error frecuente:

Fotografía N° 1:
Fotografía N° 1: Correspondiente a una operación de carguido y transporte en una mina al interior del país. La operación se realiza con camiones de 20 a 25 toneladas de carga neta y excavadoras hidráulicas de 30 a 33 toneladas de peso. Se puede observar que el incremento del número de camiones sólo genera tiempos de espera de los mismos y desorden en la zona de trabajo. Los tiempos de espera se traducen en mayores costos por unidad transportada y el desorden generado aumenta el peligro de ocurrencia de accidentes.
Fotografía N°2
Fotografía N°2: Correspondiente a la misma zona mostrada en la fotografía N°1. Se puede observar a los supervisores de obra conviviendo con el problema.

Fotografía N°3
Fotografía N°3: Correspondiente a una operación de carga y transporte con camiones de 150 toneladas de carga neta y pala frontal de 300 toneladas de peso. Se observa el mismo problema a una escala mayor.
Otro factor importante a tener en cuenta es el tipo de equipo que se empleará en una operación de carguío. Debe existir una armonía entre los equipos de carga y los de transporte.

![Fotografía N°4](image)

Fotografía N°4: Correspondiente a una operación de carguío y transporte en la cual se utiliza una excavadora de 33 toneladas de peso con un cucharon de 2,5 m³ para cargar camiones con una capacidad de 25 toneladas de carga neta. Con una excavadora de este tipo la carga se realiza utilizando cuatro paradas en promedio, esto permite que el camión complete su carga en cuatro tiempos reduciendo los tiempos de carguío.

1.2 Mantenimiento y Conservación de las Zonas de Trabajo

El mantenimiento consiste en tener la superficie de rodadura de las zonas de trabajo liso y compacto; esto se logra con material granular y equipos de esparcido y compactación.

Es importante tener una zona de trabajo a la que se realiza mantenimiento periódicamente, ya que no solo incrementará la productividad de la operación conjunta sino también aumentará la vida útil de los equipos de transporte.

Un aspecto fundamental y que en muchos casos no es tomado en cuenta por los responsables de las operaciones de carguío y transporte es el Factor de
Resistencia a la Rodadura FRR\(^1\). Este factor mide la fuerza que se debe vencer para alcanzar la rotación de una rueda sobre el suelo.

**Coeficiente de Resistencia a la Rodadura (CRR):**
Es una medida de la fuerza que habrá que vencer para conseguir la rotación de una rueda sobre el suelo. El resultado depende de las condiciones del terreno y de la carga de la máquina, pues mientras más se hunden las ruedas en el suelo, mayor es la resistencia a la rodadura. La fricción interna y las flexiones de los neumáticos también contribuyen a producir resistencia.

En el siguiente cuadro observamos el coeficiente de rodadura para diferentes tipos de terrenos\(^2\).

<table>
<thead>
<tr>
<th>Tipo de Terreno</th>
<th>% de Resistencia a la Rodadura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neumáticos</td>
</tr>
<tr>
<td></td>
<td>Tetas</td>
</tr>
<tr>
<td></td>
<td>Radiales</td>
</tr>
<tr>
<td></td>
<td>Cadena</td>
</tr>
<tr>
<td>Camino muy duro y liso de Hormigón, asfalto frio o tierra, sin penetración ni flexión de los neumáticos</td>
<td>1.50%</td>
</tr>
<tr>
<td></td>
<td>1.20%</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>Camino estabilizado, pavimentado duro y liso que no cede bajo el peso, regado y conservado</td>
<td>2.00%</td>
</tr>
<tr>
<td></td>
<td>1.70%</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>Camino firme y liso, de tierra o capa ligera, que cede poco bajo carga o irregular, conservado con regularidad, regado</td>
<td>3.00%</td>
</tr>
<tr>
<td></td>
<td>2.50%</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>Camino de tierra, desigual o que flexiona sin regar, flexión o penetración de los neumáticos de 1&quot;</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Camino de tierra, desigual o que flexiona sin regar, flexión o penetración de los neumáticos de 2&quot;</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Camino de tierra, desigual o que flexiona sin regar, flexión o penetración de los neumáticos de 4&quot;</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Arena o grava suelta</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>2%</td>
</tr>
<tr>
<td>Camino irregular, blando, sin conservación, sin estabilizar, flexión o penetración de los neumáticos de 6&quot;</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>Camino muy blando, fangoso, irregular, sin flexión pero con penetración de neumáticos de 12&quot;</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>8%</td>
</tr>
</tbody>
</table>


Tabla 01.- % Resistencia a la rodadura

---

\(^1\) Fuente: Caterpillar Performance Handbook – Edición 38

\(^2\) Esta tabla contiene valores referenciales ya que diferentes tamaños y presiones de inflado de neumáticos pueden aumentar o disminuir la resistencia a la rodadura.
Fotografía Nº5: Correspondiente a una zona de botadero. El CRR es menor a 5%, lo que facilita la operación del camión articulado.

Fotografía Nº6: Correspondiente a una zona de carguío. Debido a las condiciones climáticas y el poco mantenimiento de la zona de trabajo, el CRR es mayor a 5%. Esto no sólo incrementa el costo de la operación, sino que también la convierte en insegura y peligrosa.
2. EL CICLO DE TRANSPORTE Y CARGUÍO

La duración de un ciclo completo de transporte está compuesta por el tiempo consumido por un camión en la zona de carguío, en la zona de botadero y en el tramo de recorrido entre ambas. Así, el menor costo por tonelada cargada y transportada dependerá del tiempo promedio empleado para un ciclo completo y su correspondiente variabilidad.

Partiendo de este punto, analizaremos cada zona, su naturaleza y las restricciones que cada una conlleva.

2.1 ZONA DE CARGUÍO:

Es la zona de donde se extrae el material que se desea transportar. Dentro de las actividades que se realizan en esta zona encontramos carga de material, mantenimiento y limpieza de la zona y acumulación de material.

Carga de Material:

Es la actividad principal que se realiza en la zona de carguío (Labor productivo). Los equipos utilizados para esta actividad son la excavadora, cargador frontal o pala frontal y los camiones; el número y la capacidad de estos equipos estarán en función del volumen de trabajo, el tipo de material, altura del banco, área de trabajo y la distancia de transporte.

El tiempo total de carga de un camión dependerá del número de paladas y el tiempo por palada.

El número de paladas es un factor que depende de la carga o la cantidad de material por palada, lo cual a su vez depende de la capacidad de la excavadora y de lo colmado que esté el cucharón. Para obtener el máximo de carga durante una palada, la excavadora debe estar posicionada de manera que el brazo de la excavadora esté en posición vertical cuando la cuchara se colme.

Las siguientes fotografías muestran un ejemplo de ello:
El tiempo por palada depende del ángulo de giro de la excavadora, la altura de la excavadora respecto del camión, el tipo de material y la ayuda de tractores para el apilamiento de material. El tipo o marca de la excavadora no influye decisivamente en el tiempo por palada.

El ángulo de giro de una excavadora durante la carga del camión debe ser el mínimo para evitar consumir tiempo innecesario durante esta operación. En la siguiente sucesión de fotografías observamos que el ángulo de giro de la excavadora es de aproximadamente 90°; en este caso la excavadora emplea mucho tiempo sólo para dar el giro antes de colocar la carga en la tolva del camión.

En las siguientes fotografías podemos encontrar que el ángulo de giro de la excavadora es aproximadamente de 45°, por consiguiente emplea menos tiempo en dicha operación.
Para alcanzar la máxima producción, el ángulo de giro debe ser como máximo 30°, para lograr esta óptima posición los camiones deben estar posicionados lo más cerca del eje de giro de la excavadora. La fotografía N° 7 muestra lo anteriormente descrito.

![Fotografía N° 7](image)

La altura de la excavadora respecto del camión debe ser tal que el brazo de la excavadora realice el menor trabajo de traslación. Así, la excavadora puede estar posicionada en tres diferentes niveles: Al mismo nivel del camión (Fotografía N° 8), a nivel de fondo de la tolva del camión (Fotografía N° 9) o al nivel superior de la tolva del camión (Fotografía N° 10). Debido a que el brazo de la excavadora debe estar lo más horizontal posible, encontramos que de estas tres posiciones, la que realiza el menor trabajo de traslación es la última, ya que de esta manera la excavadora no tendrá que levantar todo el brazo para colocar la carga dentro de la tolva del camión. Otra ventaja es que el operador tiene un mejor ángulo visual de la tolva del camión y por ende puede compartir mejor la carga dentro de la tolva (Fotografía N° 11).
Fotografía N°8
Fotografía N°8: Excavadora a nivel de camión. En esta posición la excavadora tiene que levantar toda la extensión del brazo para lograr colocar la carga dentro de la tolva del camión. En este caso el ángulo α es superior a 0°.

Fotografía N°9
Fotografía N°9: Excavadora a nivel de fondo de tolva. En esta posición la excavadora levanta medianamente el brazo para colocar la carga dentro del camión. En este caso α es inferior a 0°.
Fotografía N° 10
Fotografía N° 10: Excavadora a nivel superior de tolva. En esta posición la excavadora realiza el menor desplazamiento del brazo para realizar el mismo trabajo.

Fotografía N° 11
Fotografía N° 11: El camión ha sido cargado de manera incorrecta. La carga no está repartida uniformemente en toda la tolva.
El tipo de material es un factor del cual dependerá el tamaño de excavadora y el cucharon a utilizar. Una incorrecta selección de equipo y cucharon ocasionarían una disminución de la producción. Debemos entender también que la elección del cucharon dependerá de la capacidad de carga de la excavadora; así si colocamos un cucharon con una capacidad de carga excesiva, tendremos problemas del tipo mecánico porque tanto las excavadoras como los cargadores frontales trabajan con contrapesos únicos por modelo, lo cual se convierte en una restricción.

La ayuda de tractores para el apilamiento de material permite aumentar el tiempo productivo de la excavadora, ya que de esta manera sólo realizaria el trabajo de cargar. En la fotografía N° 12 observamos que el tractor apila el material, facilitando la tarea de la excavadora. En la fotografía N° 13 observamos que la excavadora tiene que apilar el material sin la ayuda de tractores disminuyendo su tiempo productivo.

Fotografía N° 12
Fotografía N° 12: Tractor ayudando a apilar material para la excavadora. De esta manera la excavadora realiza sólo labor productiva (cargar). Cabe destacar que el mejor acoplamiento es cuando se apila con un tractor y un cargador frontal. Por seguridad el apilamiento debe hacerse hasta un punto alejado “L + 5°” metros, don de “L” es la longitud del brazo extendido de la excavadora. Entre camión y camión el tractor puede apilar el material junto a la excavadora.

Operación de Transporte y Carga en Minas a Tajo Abierto
Jorge Villanueva Yarna
Fotografía N° 13

Fotografía N° 13: La excavadora realiza labores de apilamiento y carga sin ayuda de tractores, lo que reduce su productividad.

Debemos tener en cuenta que para lograr estas posiciones, se debe contar con un adecuado plan de trabajo que permita planificar antes de la operación la disposición del material y los accesos a las zonas de trabajo para alcanzar la producción deseada

**Mantenimiento y Limpieza de la zona**

Esta actividad es contributiva; se utiliza una motorinveladora y un rodillo. Con esta actividad se busca tener una superficie libre de elementos que puedan cortar los neumáticos de los camiones y disminuir el coeficiente de resistencia a la rodadura, esto último se da a través de la colocación de material de base.

En muchos casos la zona en la cual que se desea extraer material tiene un coeficiente de resistencia a la rodadura del orden del 5% lo que dificulta el trabajo de los camiones, provocando en algunos casos el atascamiento o hasta el volteo de los mismos.

En muchas operaciones no se analiza el material que se utiliza como base de rodadura. Análisis de CBR y la prueba de desgaste de Los Ángeles son ignorados, lo cual incrementa los costos de la operación.
Acumulación de Material
Esta es una labor contributaria realizada por un (o más) tractor(es), que facilita la labor de la excavadora, de manera que ésta se dedica sólo a dos tareas:

- Carga de material (Labor productiva)
- Preparación del banco de la excavadora (Labor contributoria).

Hacemos notar que acumular material con tractor y usar un cargador frontal es más económico que con una excavadora, pues para similar producción existe un menor costo.

2.2 ZONA DE BOTADERO:

Es la zona donde se deposita el material producto de las excavaciones. Para la ubicación de un botadero se suele aprovechar terrenos próximos al yacimiento o la zona de donde se extrae el material y que presenten condiciones favorables para este efecto. Estas pueden ser laderas de pendiente suave y hondonadas formadas naturalmente. De las actividades que se dan en la zona de botadero, hay solamente tres que se pueden realizar y se deben medir:

2.2.1 Espera para descargar
Es el tiempo que tiene que esperar el camión en línea para poder descargar el material. Los puntos de descarga son un factor que dependerá de los procedimientos y normas que se fijen en la zona de trabajo, pudiendo ser uno, o más.
El tiempo de espera para descargar se podrá disminuir si se logra alcanzar un óptimo número de camiones y el espaciamiento entre cada uno para un circuito dado o que exista más de un punto de descarga.

2.2.2 Acomodo para descargar

Es el tiempo que requiere el camión para ubicarse y realizar la operación propiamente dicha.

El tiempo de acomodo para descargar dependerá en gran medida del mantenimiento de la zona de botadero y de la experiencia del operador para realizar la maniobra. Se puede reducir manteniendo frecuentemente la zona del botadero e instruyendo periódicamente a los operadores.

En la siguiente fotografía se puede observar al camión acomodándose para la descarga:

![Fotografía Nº 14: Camión acomodándose para la operación de descarga con la ayuda de los controladores.](image)

2.2.3 Tiempo de Descarga

Es el tiempo empleado por el camión para realizar la operación de descarga propiamente dicha.

El tiempo de descarga dependerá de las características del material transportado como son la cohesión, el ángulo de fricción interna, la densidad y humedad. No tener en cuenta este factor podría ocasionar que el camión tenga dificultad para la operación propia de descarga. En caso de que esto suceda, se recurre al auxilio de la retroexcavadora. Sin embargo este es un tiempo que se puede evitar ya que incrementa el tiempo del ciclo, disminuyendo la productividad del conjunto.
El mantenimiento de la zona de botadero se realiza por medio de tractores, que son los encargados de extender y nivelar el material transportado por los camiones. De acuerdo al tamaño del botadero, se utilizarán uno o más tractores. Para terrenos secos un tractor sobre llantas es el más adecuado.

Según el tipo de material que se elimine, el ingreso de los camiones debe ser dirigido por personal, ya que podría darse el caso de volteo del camión.

Fotografía N° 15
Fotografía N° 15: Camión realizando la descarga con la ayuda de controladores.

Fotografía N° 16
Fotografía N° 16: Cono colocado incorrectamente. Cono indicado incorrectamente. De esta manera el chefer debe “lantejar” su ubicación.
2.3 TRAMO DE RECORRIDO:

El tramo de recorrido corresponde a la trayectoria existente entre la zona de carga y la zona de botadero.

El tiempo empleado en el tramo de recorrido se mide de la siguiente manera:
En el tramo de ida la medición se inicia desde el momento que la excavadora da la orden de salida hasta que el camión llega a la zona de botadero en la posición de inicio de acomodo para descargar.
En el tramo de retorno la medición se inicia cuando, después de descargar, el operador toca la bocina como anuncio de inicio de recorrido y termina cuando se estaciona en la zona de carga o inicia el acomodo para ser cargado.

Las restricciones que se pueden encontrar en el tramo de recorrido son el estado y mantenimiento del camino, el permiso para sobrepasar, la diferencia de niveles entre zona de carga y zona de botadero, los cruces, curvas y el clima. De estos factores los tres últimos no se pueden eliminar, pero se deben tener en cuenta durante el planeamiento para minimizar su efecto.

El mantenimiento periódico en el tramo de recorrido es un factor que permite disminuir el tiempo de recorrido, además de aumentar la vida útil de los neumáticos de los vehículos.

Fotografía N° 17

Fotografía N° 17: Camino periódicamente en mantenimiento. Esto disminuye el tiempo de recorrido, tanto de ida como de regreso.
Fotografía N° 18

Fotografía N° 18: Camino con poco mantenimiento. En este caso no sólo aumenta el tiempo en el tramo de recorrido, también se corre el riesgo de volcamiento de los camiones.

Salvo que el tramo de recorrido sea de dos o más vías en cada sentido está prohibido sobrepasar en el tramo de recorrido. Esto se debe a un tema de seguridad, el cual es de vital importancia, ya que un accidente podría paralizar de manera total la operación.

Fotografía N° 19

Fotografía N° 19: Tramo de recorrido para camiones de gran peso (Haul Road). En este tramo está terminantemente prohibido sobrepasar.

Operación de Transporte y Carguio en Minas a Tajo Abierto
Jorge Villanueva Yarza
La diferencia de niveles y la pendiente efectiva entre la zona de carguío y la zona de botadero es un factor muy importante, y sumado a lo anteriormente mencionado determinarán el menor o mayor tiempo en el tramo de recorrido.

3. PRODUCTIVIDAD

Para medir una operación de carguío y transporte, debemos tener un parámetro que nos permita evaluar nuestro trabajo. Este parámetro es la productividad, que viene a ser la razón del producto terminado a los insumos que utiliza.

\[
\text{PRODUCTIVIDAD} = \frac{\text{CANTIDAD DE PRODUCTO}}{\text{CANTIDAD DE INSUMOS}}
\]

Podemos observar que la productividad aumentará en la medida que el numerador de esta ecuación aumente para una misma cantidad de insumos que participan en la operación. De esta manera la productividad mide lo bien que se utiliza los recursos para generar un producto.

Sin embargo, y en términos generales, la productividad alta es inútil si lo que se produce es defectuoso o no satisface las necesidades del cliente\(^1\). Es por ello que se debe incluir a la calidad en la medición de la productividad. De esta manera definiremos la productividad en los siguientes términos:

\[
\text{PRODUCTIVIDAD} = \frac{\text{CANTIDAD DE PRODUCTO ACEPTABLES}}{\text{CANTIDAD DE INSUMOS}}
\]

Teniendo en cuenta esta definición, existen muchas alternativas para lograr incrementar el numerador y/o disminuir el denominador de esta relación, tales como:

- Uso eficiente de los recursos, sean humanos o materiales
- Correcta asignación de los recursos
- Plan de trabajo adecuado y un sistema de control
- Etc.

---

\(^1\) Teniendo en cuenta que esta es una operación de transportar, el cliente serían los camiones y el servidor serían los equipos de carguío.
Ahora aplicaremos la definición de productividad para la operación de carga y transporte:

- **Cantidad de productos aceptables:**
  En este caso el producto sería el material cargado y transportado. El término "aceptable" tiene que ver con la forma en que realizamos la operación, es decir, el material siempre será cargado y transportado, sin embargo tendrá que ver con el uso racional de los recursos que utilizamos.
  El material cargado y transportado podrá ser cuantificado o expresado en volumen, cuya unidad más común es el metro cúbico (m³) o en peso, cuya unidad más común es la tonelada (Ton).

- **Cantidad de insumos:**
  Enumeraremos los recursos normalmente utilizados en una operación de esta naturaleza:
  
  - **Equipo de carguió,** que puede ser una excavadora, cargador frontal, pala frontal, dragadora, etc.
  - **Equipo de transporte,** que pueden ser camiones de volteo, camiones articulados etc.
  - **Equipos complementarios,** los cuales se usan comúnmente para el mantenimiento del área de trabajo y que son: tractores, motoniveladoras, camiones cisterna, rodillos, retroexcavadoras, camionetas de auxilio, etc.
  - **Recursos humanos,** que son los operadores de los equipos, controladores en las zonas de carguío, botadero y vías, supervisores de campo, etc. Como veremos en capítulos posteriores, el costo de los operadores de los equipos estarán incluidos dentro de la tarifa horaria.

Ya que no podemos sumar algebraicamente los recursos antes mencionados, uniformizaremos cada uno de ellos a través de su costo horario, el cual expresaremos en unidades monetarias; en este caso utilizaremos el dólar (US$).

De esta manera la unidad de la productividad estaría expresada de la siguiente manera:

---

4 El uso racional se obtiene cuando la ACTIVACION es similar a la UTILIZACIÓN.
Productividad = (Toneladas o metros cúbicos) / (Dólar)

Esta unidad nos indicaría cuántas toneladas o metros cúbicos somos capaces de cargar y transportar por cada dólar que cuesta la operación.

Si invertimos el orden del numerador y denominador de nuestra expresión de productividad, tendríamos lo siguiente:

Productividad⁻¹ = (Dólar) / (Toneladas o metros cúbicos)

Que nos indicaría cuánto nos cuesta cargar y transportar cada unidad. Si utilizamos el parámetro productividad de esta manera, nuestro objetivo será reducir dicho parámetro.

Haremos un ejemplo de la medida de la productividad en una operación de carguío y transporte:

Cantidad de producto aceptable:
En este caso el producto aceptable es el material cargado y transportado, cuyo valor es de 240 m³/hora.

Cantidad de insumos:

- **Equipo de carguío**, que en este caso es una excavadora de 33 toneladas de peso.
- **Equipo de transporte**, que son cuatro camiones de volteo con una capacidad de 12 m³.
- **Equipos complementarios**, que son un tractor de 165 HP, una motoniveladora de 140 HP, un camión cisterna de 5,000 galones, un ródillo de 10 Toneladas, una retroexcavadora de 85 HP y una camioneta.
- **Recursos humanos**, que son los operadores de los equipos, controladores en la zona de trabajo.

Expresando la cantidad de insumos utilizados en la operación en unidades monetarias, tenemos lo siguiente:
<table>
<thead>
<tr>
<th>Descripción</th>
<th>Tarifa</th>
<th>Cantidad utilizada</th>
<th>Costo Horario ($/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavadora de 33 Ton</td>
<td>90.00</td>
<td>1.00</td>
<td>90.00</td>
</tr>
<tr>
<td>Voltmetro</td>
<td>35.00</td>
<td>4.00</td>
<td>140.00</td>
</tr>
<tr>
<td>Tractor de 165 HP</td>
<td>52.00</td>
<td>1.00</td>
<td>52.00</td>
</tr>
<tr>
<td>Cisterna de 5,000 gín</td>
<td>35.00</td>
<td>0.25</td>
<td>8.75</td>
</tr>
<tr>
<td>Motoniveladora de 140 HP</td>
<td>55.00</td>
<td>0.25</td>
<td>13.75</td>
</tr>
<tr>
<td>Retroexcavadora de 65 HP</td>
<td>32.00</td>
<td>0.25</td>
<td>8.00</td>
</tr>
<tr>
<td>Rodillo de 10 Ton</td>
<td>32.00</td>
<td>0.25</td>
<td>8.00</td>
</tr>
<tr>
<td>Camióneta 4x4</td>
<td>4.50</td>
<td>0.25</td>
<td>1.13</td>
</tr>
<tr>
<td>Controlador</td>
<td>8.00</td>
<td>1.00</td>
<td>8.00</td>
</tr>
</tbody>
</table>

**Cantidad de Insumos (US$ / hora)** 329.63

**Tabla 02.** Costo horario de la unidad cargada y transportada

Luego, la productividad para esta operación sería:

\[
\text{Productividad} = \frac{(240 \text{ m}^3 / \text{hora})}{(329.63 \text{ US$ / hora})} = 0.728 \text{ m}^3 / \text{dólar}
\]

Invirtiendo el numerador y el denominador de esta expresión tendríamos:

\[
\text{Productividad}^{-1} = \frac{(329.63 \text{ US$ / hora})}{(240 \text{ m}^3 / \text{hora})} = 1.37 \text{ dólar / m}^3
\]

Esto nos indica que cargar y transportar un metro cúbico de material nos cuesta US$ 1.37.

Nota:

Los recursos cuyo uso es menor a la unidad son utilizados en otras zonas de trabajo hasta completar la unidad.
A partir de lo anteriormente expuesto en el *Estado del Arte en las Operaciones de Carga, Transporte y Descarga* resulta evidente que existe un campo para realizar mejoras, desde el punto de vista económico y productivo en este tipo de operaciones.

Cabe mencionar que las mediciones que se realizan actualmente incluyen todos los errores mencionados anteriormente; esto hace que dichos errores sean considerados como parte natural de las operaciones e incluidos dentro de sus costos, limitando la oportunidad de mejora.

Para esto el análisis detallado de los ciclos de transporte y sus elementos componentes nos permite conocer la naturaleza de la operación y sus restricciones.

De esta manera, y con una metodología de trabajo, podremos optimizar la operación conjunta.
CAPÍTULO II: HERRAMIENTAS PARA EL ANÁLISIS DE LA OPERACIÓN

Una vez conocido el estado del arte en las operaciones de carguío y transporte y la naturaleza de la operación y sus restricciones, es necesaria una metodología de trabajo que nos permita optimizar la operación. En este capítulo haremos una revisión del enfoque mecanicista para la medición de las operaciones de carguío y transporte, definiremos los sistemas y señalamos metodologías estadísticas para medición y análisis de lo que se hace.

1. EL ENFOQUE MECANICISTA

1.1 Mediciones Locales

Con la finalidad de disminuir el costo de las operaciones de transporte y carguío, las organizaciones han realizado mediciones separadas en las zonas de carguío, botadero y tramos de recorrido. Sin embargo también hemos podido observar que dichas mediciones no se han logrado plasmar en información que resulte útil para la organización, por tanto sólo se producen más pérdidas.
1.2 Causas

Para alcanzar mejoras debemos tener en cuenta el Objetivo Global (menor costo por unidad cargada y transportada) y que éste determinará las acciones de todos los componentes de la operación carguío – transporte.

Cuando realizamos mediciones por separado de cada una de las operaciones componentes, buscamos realizar mejoras locales, es decir, mejoras aisladas las cuales no necesariamente mejorarán el trabajo del conjunto.

1.3 Ejemplo

Daremos a conocer un ejemplo claro y que se ve con mucha frecuencia en este tipo de operaciones:

Muchas veces los responsables de movimiento de tierras tienen el concepto erróneo de que una excavadora no debe estar detenida mientras se realiza la operación de carguío y transporte. Para evitar este "problema" deciden aumentar el número de camiones.

Lo que logramos con esta aparente solución es, en efecto, que la excavadora se encuentre siempre en movimiento (mejora local). Sin embargo encontramos que ahora los camiones se encuentran más tiempo esperando, tanto en la zona de carga como en la zona de botadero, además del desorden creado y tráfico generado en el tramo de recorrido. Esto tiene como consecuencia un mayor costo por unidad transportada.

El siguiente caso corresponde a una operación de carguío y transporte, para el para el cual tenemos la siguiente información.

Una excavadora de 33 Ton de peso puede cargar 20 camiones por hora en promedio. Luego el tiempo promedio para cargar un camión será:

\[ \frac{60}{20} = 3 \text{ minutos. (') \}

Cada camión puede llevar 12 m³ de carga.

(*) Esto incluye el tiempo de acomodo del camión.
El tiempo consumido en el tramo de ida, la zona de botadero y en el tramo de regreso es de 7 minutos en promedio.

Entonces, el ciclo completo será de $3 + 7 = 10$ minutos.

Luego, el número teórico de camiones que necesito será:

$$20 \div (60/10) = 3.33 \approx 4$$ camiones.

Ahora veremos el número de camiones que se pueden cargar por hora a partir de la cantidad de camiones que hemos calculado:

$$4 \times (60/10) = 24$$ camiones por hora

Sin embargo la capacidad de la excavadora es sólo de 20 camiones por hora.
Por lo tanto sólo deberíamos utilizar 3 camiones.

Ahora analizaremos el mayor costo por unidad cargada y transportada:

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Tarifa ($)</th>
<th>Caso I (4 camiones)</th>
<th>Caso II (3 camiones)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cantidad</td>
<td>Costo Horario ($) / h</td>
<td>Cantidad</td>
</tr>
<tr>
<td>Excavadora de 33 Ton</td>
<td>90.00</td>
<td>1.00</td>
<td>90.00</td>
</tr>
<tr>
<td>Volquete 12 m³</td>
<td>35.00</td>
<td>4.00</td>
<td>140.00</td>
</tr>
<tr>
<td>Tractor de 165 HP</td>
<td>52.00</td>
<td>1.00</td>
<td>52.00</td>
</tr>
<tr>
<td>Catáma de 6.000 gln</td>
<td>35.00</td>
<td>0.25</td>
<td>8.75</td>
</tr>
<tr>
<td>Motorvibrator 140 HP</td>
<td>55.00</td>
<td>0.25</td>
<td>13.75</td>
</tr>
<tr>
<td>Retroexcavadora 85 HP</td>
<td>32.00</td>
<td>0.25</td>
<td>8.00</td>
</tr>
<tr>
<td>Rodillo de 10 Ton</td>
<td>32.00</td>
<td>0.25</td>
<td>8.00</td>
</tr>
<tr>
<td>Camineta 4x4</td>
<td>4.50</td>
<td>0.25</td>
<td>1.13</td>
</tr>
<tr>
<td>Controlador</td>
<td>8.00</td>
<td>1.00</td>
<td>8.00</td>
</tr>
</tbody>
</table>

Costo Horario: 329.83 / 294.63

Volumen por Hora (*): 240.00 / 216.00

Costo $ / m³: 1.37 / 1.36

Tabla 03: Análisis del costo por unidad cargada y transportada

-----

1. El rendimiento mostrado corresponde a una zona de trabajo en una mina al interior del país.

2. Rendimiento teórico.
Luego:

- Nuestra operación está conformada por los procesos de carguo, transporte y descarga.
- El objetivo de la operación es lograr el menor costo por unidad cargada y transportada.
- Al contar con cuatro camiones (proceso transporte y descarga) se explota al máximo el proceso carguo, ya que la excavadora siempre estará realizando el trabajo de cargar a los camiones. Esto se convierte en una mejora local.
- Sin embargo el proceso transporte y descarga se ven afectados por este incremento en sus recursos, ya que se empiezan a formar colas y la producción del conjunto disminuye. Este hecho genera que el objetivo del conjunto se vea afectado por la mejora en el proceso de carguo (mejora local).

Como se ha podido apreciar en la tabla 02, el costo horario de la operación, el cual es nuestro objetivo principal, en el caso I es mayor que el costo horario en el caso II.

La pregunta ahora es: ¿Habremos logrado una mejora global en el caso I? La respuesta es NO, sólo hemos realizado una mejora local.

Ahora realizaremos un análisis para observar cómo se comporta el costo por metro cúbico de acuerdo al número de camiones asignado para el equipo de carguo y complementarios indicados.

- Si utilizamos 01, 02 ó 03 camiones, nuestra producción será de 6, 12 ó 18 viajes por hora respectivamente.
- Si utilizamos más de cuatro camiones, la producción horaria no podrá ser mayor a 20 viajes, debido a la capacidad del equipo de carguo.
- Se debe tener en cuenta que si utilizamos un equipo de carguo de mayor tamaño, si bien podremos realizar la carga de los camiones en un menor tiempo, reduciríamos la vida útil del camión.
### Tabla 94. Análisis del costo por unidad cargada y transportada de acuerdo al número de camiones

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Tarifa</th>
<th>% de utilización</th>
<th>Costo horario de la operación de acuerdo al número de camiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavadora de 33 Ton</td>
<td>90.00</td>
<td>1.00</td>
<td>90.00 90.00 90.00 90.00 90.00 90.00 90.00</td>
</tr>
<tr>
<td>Volquete</td>
<td>35.00</td>
<td>1.00</td>
<td>35.00 70.00 105.00 140.00 175.00</td>
</tr>
<tr>
<td>Tractor de 165 HP</td>
<td>52.00</td>
<td>1.00</td>
<td>52.00 52.00 52.00 52.00 52.00 52.00</td>
</tr>
<tr>
<td>Cisterna de 5,000 gln</td>
<td>35.00</td>
<td>0.25</td>
<td>8.75 8.75 8.75 8.75 8.75 8.75 8.75</td>
</tr>
<tr>
<td>Motoniveladora de 140 HP</td>
<td>55.00</td>
<td>0.25</td>
<td>13.75 13.75 13.75 13.75 13.75 13.75 13.75</td>
</tr>
<tr>
<td>Retroexcavadora de 95 HP</td>
<td>32.00</td>
<td>0.25</td>
<td>8.00 8.00 8.00 8.00 8.00 8.00 8.00</td>
</tr>
<tr>
<td>Rodillo de 10 Ton</td>
<td>32.00</td>
<td>0.25</td>
<td>8.00 8.00 8.00 8.00 8.00 8.00 8.00</td>
</tr>
<tr>
<td>Camioneta 4x4</td>
<td>4.50</td>
<td>0.25</td>
<td>1.13 1.13 1.13 1.13 1.13 1.13 1.13</td>
</tr>
<tr>
<td>Controlador</td>
<td>8.00</td>
<td>1.00</td>
<td>8.00 8.00 8.00 8.00 8.00 8.00 8.00</td>
</tr>
</tbody>
</table>

| Viajes / hora                  | 6.00   | 12.00            | 18.00 20.00 20.00 20.00 20.00 | 20.00 | 20.00 |
| m³ / hora                      | 72.00  | 144.00           | 216.00 240.00 240.00 240.00 | 240.00 | 240.00 |
| Costo / m³                     | 3.12   | 1.80             | 1.36 1.37 1.37 1.52 1.52 | 1.52 | 1.52 |

#### Gráfico 01. - Costo / m³ vs Número de camiones

Nuestra elección sería el número de camiones de manera que obtenga el mínimo costo por metro cúbico, es decir:

Obtener $\text{Min}(k(x))$, donde:

- $F$: Costo / m³
- $X$: número de camiones
2. SISTEMAS

Es importante conocer que el éxito de la operación consiste en disminuir el costo del material cargado y transportado. Para esto debemos concebir y analizar a la operación conjunta como un Sistema.

2.1 Definición de Sistema

Definimos un sistema como un conjunto de políticas, normas, procesos y procedimientos dependientes entre sí, las cuales trabajan de manera coordinada para lograr un determinado objetivo.

El surgimiento del enfoque de sistemas en el estudio de las organizaciones es un reflejo de un avance teórico más amplio. La Teoría General de Sistemas representa la base para integrar y entender el conocimiento de una gran variedad de campos especializados; en muchos campos científicos, la atención
ha sido puesta en enfoques analíticos, de obtención de datos y en enfoques experimentales, en áreas específicas. Esto ha sido útil para ayudar a desarrollar el conocimiento y para entender los detalles de temas específicos pero limitados. Sin embargo en cierto momento debe haber un periodo de síntesis, reconciliación e integración, de tal manera que los elementos analíticos y de obtención de datos se unifiquen en teorías más amplias y multidimensionales. Hay pruebas de que todo campo del conocimiento humano pasa alternativamente por fases de análisis y de obtención de datos, a periodos de síntesis e integración. La teoría de sistemas ofrece este esquema en muchos campos, tales como el físico, biológico y social.

El estudio y difusión de la moderna perspectiva de sistemas puede ser atribuido en parte a la preocupación de varias disciplinas por tratar sus temas de estudio como un todo, una entidad propia, con propiedades únicas comprensibles solamente en términos del todo, especialmente frente al tradicional enfoque reduccionista o mecanicista sobre las partes separadas, y una noción simplista de la forma en que éstas se integran entre sí.

Otro punto de vista similar que influye en muchas ciencias es el concepto de holística, la posición de que todos los sistemas están compuestos de sub sistemas interrelacionados. El todo no es solamente la suma de sus partes, sino que el sistema puede ser explicado solamente como una totalidad. La holística es lo contrario del elementalismo, que considera al total como la suma de sus partes individuales. El punto de vista holístico es básico para el enfoque de sistemas. En la teoría tradicional de organización, así como en muchas de las ciencias, los sub sistemas han sido estudiados separadamente, con la intención de reunir después las partes de un todo. El enfoque de sistemas precisa que eso no es posible y que el punto de partida debe ser con el sistema total.

La argumentación anterior ha intentado mostrar de qué manera el enfoque de sistemas se ha convertido en el esquema operativo para muchas ciencias.

2.2 Tipos de Sistemas
Los sistemas pueden clasificarse de dos formas:

1. Por su constitución
2. Por su naturaleza
1. **Por su constitución**

Nos referimos a este tipo de sistema por la forma en que han sido estructurados. Los sistemas por su constitución pueden clasificarse como físicos o abstractos.

- **Sistemas Físicos**
  
  Estos sistemas se refieren a equipos, máquinas, etc. Un ejemplo claro se puede observar en el hardware de las computadoras.

- **Sistemas Abstractos**
  
  Estos sistemas se refieren a conceptos, ideas, etc. Un ejemplo de ello se ve en el software instalado en las memorias de las computadoras.

2. **Por su naturaleza**

Nos referimos a este tipo de sistema por la forma en que han sido conceptualizados. Los sistemas por su naturaleza pueden clasificarse como cerrados o abiertos.

- **Sistemas Cerrados**
  
  Son aquellos sistemas que no se ven afectados por el medio que los rodea. Son herméticos a cualquier cambio en el medio. Aplicamos este concepto a aquellos sistemas cuyo comportamiento está determinado, donde los procesos componentes alternan de una manera rígida, produciendo finalmente un producto invariable. Un ejemplo de esto pueden ser las máquinas ideales.

- **Sistemas Abiertos**
  
  Hablamos de aquellos sistemas que importan y procesan elementos, ya sean materia, energía, información, etc. del ambiente circundante, lo cual es una característica de los seres vivos. Esto significa que se establece un intercambio permanente con el medio ambiente, los cuales determinan su equilibrio, capacidad de reproducción o continuidad.
La teoría de la organización tradicional utilizaba un enfoque de sistema cerrado altamente estructurado. La teoría moderna ha avanzado hacia el enfoque de sistema abierto.

Los organismos (incluso empresas e instituciones) son sistemas abiertos que no pueden sobrevivir sin intercambiar de forma continua materia y energía.

El sistema abierto está en constante interacción con su medio ambiente y logra un "estado estable" o equilibrio dinámico, al tiempo que retiene la capacidad para trabajar o la transformación de energía. La supervivencia del sistema, en efecto, no sería posible sin un proceso continuo de flujo de entrada, transformación y un flujo de salida. En un sistema biológico o social se puede hablar de un proceso continuo de reciclamiento. El sistema debe recibir una entrada suficiente de recursos para mantener sus operaciones y también para exportar al medio ambiente los recursos transformados, en cantidades suficientes para continuar el ciclo. Todo sistema que sobrevive debe ofrecer algún producto aceptable, generalmente a un suprasistema o a un sistema colateral.

Por ejemplo, las organizaciones sociales tienen entradas de la sociedad en forma de gente, materiales, dinero, e información: las transforman en productos, servicios y recompensas para los miembros de la organización, lo suficientemente grandes para que sigan participando. Para las empresas, el dinero y el mercado representan un mecanismo para reciclar los recursos entre la compañía y su medio ambiente.

2.3 Conceptos Claves de la Teoría General de Sistemas\(^3\)

*Sub sistemas o componentes*

Un sistema, por definición, está compuesto de partes o elementos interrelacionados. Esto se aplica a todos los sistemas: mecánicos, biológicos y sociales. Todo sistema tiene cuando menos dos elementos, y estos elementos están interconectados.

---

Holismo, Sinergia, Organicismo
El todo no es solamente la suma de las partes; el sistema en sí puede ser explicado solamente como una totalidad. Holística es lo contrario a elementalismo, que considera el total como la suma de sus partes individuales.

Punto de Vista de Sistemas Abiertos
Los sistemas pueden ser considerados de dos maneras: 1. Abiertos o 2. Cerrados. Los sistemas abiertos intercambian información, energía o materia con su medio ambiente. Un ejemplo de ello son los sistemas sociales y biológicos. Los conceptos de sistemas abiertos y cerrados son difíciles de precisar en términos absolutos.

Modelo de Entrada – Transformación – Salida
El sistema abierto puede ser considerado como un modelo de transformación. En una relación dinámica con su medio ambiente, recibe varias entradas, las transforma de alguna manera y exporta sus productos.

Límites del Sistema
De ello resulta que los sistemas tienen límites que los separan de sus ambientes. El concepto de límites nos ayuda a entender la distinción entre los sistemas abiertos y cerrados. El sistema relativamente cerrado tiene límites rígidos e impenetrables, mientras que el sistema abierto tiene límites permeables entre sí mismo y un suprasistema más amplio. Los límites se definen con relativa facilidad entre los sistemas biológicos y físicos, pero son difíciles de delinear en los sistemas sociales, tales como las organizaciones.

Entropía

**Entropía**: Es una medida del orden (o desorden) de un sistema o los grados de libertad de la misma. La entropía se mide en términos relativos, es decir, hablaremos de una entropía inicial (E_i), una entropía final (E_f) y una Diferencia de Entropía (ΔE = E_f - E_i).

Desde el punto de vista físico, la entropía es una medida del desorden de las moléculas de un gas, y que nos permite dar cuentas del equilibrio termodinámico.

Desde el punto de vista estadístico, la entropía está dada como el número de estados en los cuales un sistema puede estar.
Los sistemas físicos están sujetos a la fuerza de entropía que va en aumento hasta que finalmente todo el sistema se desmorona. La tendencia hacia una máxima entropía es un movimiento hacia el desorden, la completa falta de transformación de recursos y la muerte. En un sistema cerrado, el cambio en la entropía siempre debe ser positivo; sin embargo en los sistemas abiertos, la entropía puede ser contenida e inclusive puede ser transformada en entropía negativa – un proceso de una organización más completa y capacidad para transformar los recursos – debido a que el sistema obtiene recursos de su medio ambiente.

**Estado estable, Equilibrio Dinámico y Homeostasis**
Un sistema cerrado eventualmente debe lograr un estado de equilibrio con máxima entropía: muerte o desorganización. Sin embargo, un sistema podría llegar a un estado en que se mantiene en equilibrio dinámico por medio de flujo continuo de materias, energía o información.

**Retroalimentación**
El concepto de retroalimentación es importante para obtener de qué manera un sistema mantiene un estado estable. En lo referente a la información, los productos o el proceso el sistema es retroalimentado en forma de entrada al sistema, quizá con cambios en el proceso de transformación y/o en los productos futuros. La retroalimentación puede ser positiva o negativa. La retroalimentación negativa es una entrada informativa que indica que el sistema se está desviando de un curso prescrito y debe reajustarse hacia un nuevo estado estable.

**Jerarquía**
Un concepto básico en el pensamiento de sistemas es el de relaciones jerárquicas entre los sistemas. Un sistema está integrado por subsistemas de menor orden y es también parte de un suprasistema. Por tanto, existe una jerarquía en los componentes del sistema.

**Elaboración Interna**
Los sistemas cerrados avanzan hacia la entropía y la desorganización. En contraste, los sistemas abiertos dan la impresión de avanzar en dirección de una mayor diferenciación, mayor desarrollo y un nivel de organización más alto.
Equifinalidad de los Sistemas Abiertos

En los sistemas mecánicos hay una relación directa de causa y efecto entre las condiciones iniciales y el estado final. Los sistemas sociales y biológicos operan de manera diferente. La equifinalidad sugiere que ciertos resultados podrán ser alcanzados con diferentes condiciones iniciales y por medios divergentes. Este punto de vista indica que las organizaciones sociales pueden lograr sus objetivos con entradas diversas y con actividades internas y variadas (procesos de conversión).

Aunque todos estos conceptos tienen su importancia, varios de ellos son particularmente importantes en el estudio de una organización.

El concepto de límites ayuda a entender la distinción entre los sistemas abiertos y cerrados. El sistema cerrado tiene límites rígidos e impenetrables, mientras que el sistema abierto tiene límites permeables entre sí y un suprasistema más amplio. Los límites fijan el ámbito de las actividades de la organización. En un sistema físico, mecánico o biológico los límites pueden identificarse. En una organización social, estos límites no son fácilmente definibles y están determinados primordialmente por las funciones y actividades de la organización. Dicha organización está caracterizada por límites vagamente delineados y permeables.

Muchos sistemas se desarrollaron mediante una elaboración interna. En el desarrollo y la evolución orgánicos, parece ocurrir una transición hacia estados de mayor orden y diferenciación.

La tendencia hacia una creciente compicción ha sido señalada como una característica básica de la vida, en contraposición a la naturaleza inanimada.

Ludwig Von Bertalanffy

Este mismo proceso parece aplicarse a la mayoría de los sistemas sociales. Hay una tendencia entre ellos a elaborar sus actividades y a alcanzar niveles más altos de diferenciación y organización. Hay una tendencia entre las organizaciones complejas a lograr una mayor diferenciación y especialización entre los sub sistemas internos. Es fácilmente apreciable el mayor número de departamentos y actividades especializadas en las complejas organizaciones.
empresariales. Otro ejemplo de diferenciación y elaboración es la gran proliferación de departamentos, cursos y materias en universidades.

La equipotencialidad es una característica importante en los sistemas sociales. En los sistemas físicos hay una relación directa de causa y efecto entre las condiciones iniciales y el estado final.

El concepto de equipotencialidad afirma que los resultados finales pueden ser logrados en condiciones iniciales diferentes y de distintas maneras. Este punto de vista sugiere que la organización social puede lograr sus objetivos con principios diversos con distintas actividades internas, de tal forma que el sistema social no está limitado por la simple relación de causa y efecto de los sistemas cerrados.

Las organizaciones utilizan muchos de los conceptos descritos anteriormente. Sin embargo, es importante reconocer que hay diferencias significativas entre los diversos tipos de sistemas. Las organizaciones sociales no son tan naturales como los sistemas físicos o biológicos; están limitados. Tienen una estructura, pero es la estructura de los sucesos, más que la de los componentes físicos, y no pueden ser separados de los procesos del sistema. El hecho de que las organizaciones sociales son ideadas o creadas por seres humanos sugiere que pueden ser establecidas para cumplir una variedad infinita de objetivos y no siguen el mismo esquema de ciclo vital de nacimiento, madurez y muerte, como los sistemas biológicos.

Es muy importante reconocer que el creciente cuerpo de conocimiento y aplicaciones del enfoque de sistemas a las organizaciones complejas es solamente una parte de la enorme tendencia en muchas de las ciencias físicas y sociales, y que este campo es parte de una difundida corriente de pensamiento. Además, entender que la Teoría General de Sistemas permite una creciente comunidad de intereses y entendimiento con disciplinas muy diversas.

Equipotencialidad
El principio de la equipotencialidad nos indica que partiendo de una situación o estado inicial podemos obtener resultados diferentes, por tanto no es posible realizar proyecciones respecto del resultado o estado final. Se puede decir que
con las mismas variables podemos obtener diferentes resultados, los cuales dependerán de cómo se desarrollen los procesos.

2.4 Características de un Sistema

**Objetivo Común:**
Un sistema debe tener claro lo que desea alcanzar, así, todas las acciones de los diferentes elementos componentes estarán subordinadas a la meta global.

Sean los sistemas “A” y “B” cada cual con componentes A1, A2, A3, ... An y B1, B2, B3, ... , Bn, con velocidades V1 y V2 y tiempos requeridos para alcanzar el objetivo T1 y T2 respectivamente.

**Sistema “A”:**

**Sistema “B”:**

Gráfico 02.- Características de un sistema
Observamos que tanto el sistema "A" como el sistema "B" tienen el mismo punto de partida y la misma meta global.

El Sistema "A" tiene componentes con objetivos locales que no están subordinados a la meta global. Esto se puede notar en los diferentes rumbos (objetivos locales) de cada componente del sistema que son diferentes al rumbo del sistema (objetivo global).

El Sistema "B" tiene componentes con objetivos locales que están subordinados a la meta global (Los rumbos de los componentes del sistema y los del sistema son los mismos).

En consecuencia:

\[
\begin{array}{c}
V2 \gg\gg \gg V1 \\
T1 \gg\gg T2
\end{array}
\]

Es importante entender que una mejora local en un proceso no necesariamente contribuye a una mejora global, sin embargo una mejora global si incrementará la performance del conjunto.

**Procesos Interdependientes con metas subordinadas:**

Un sistema está compuesto por procesos que responden a la naturaleza del conjunto.

Estos procesos tienen un orden lógico, congruente e invariable⁴. Cada proceso tiene un objetivo local, el cual debe guardar relación directa con el objetivo global.

**Proceso:** Una parte natural y sucesiva de la que se compone un sistema.

Los procesos se caracterizan por ser naturales, sucesivos, interdependientes entre sí, con un objetivo definido, recursos propios y una responsabilidad determinada y una variabilidad estadística.

Un sistema con procesos que no responden al objetivo global tiende al desorden y un posterior colapso.

---

⁴ Hablamos de la invarianza de la naturaleza de uno o más procesos durante su operación. Sin embargo esto podría variar con un cambio de tecnología que permita reducir el número de procesos o la manera en la que operan.
**Subsistema de Medición:**

Para alcanzar el objetivo global del sistema no es suficiente tener políticas, normas y procedimientos, es también necesario tener un subsistema de medición que nos permita medir la performance del conjunto, medir desviaciones y tomar decisiones que ayuden a mejorarl y alcanzar el objetivo global.

Las mediciones deben realizarse después de comprender la naturaleza de la operación y en un formato que responda a la actividad que se está analizando y a la necesidad de información que se requiera. Para esto, definiremos dos principales técnicas para realizar mediciones:

- Estudio de Tiempo – Movimiento
- Fotografías estadísticas a intervalos de tiempo

**Estudio de Tiempo – Movimiento**

Esta es una de las técnicas más utilizadas para realizar mediciones de procesos. Las mediciones realizadas con esa técnica contemplan los siguientes pasos:

**Descomposición de la operación a medir en elementos:** Un elemento es una parte delimitada de la operación, que se selecciona para facilitar la observación, la medición y el análisis de la misma. Es importante que los elementos sean de fácil identificación y de comienzo y fin claramente definidos, de modo que el observador pueda identificarlos una y otra vez.

**Toma de Tiempos:** Una vez delimitados y descritos los elementos se puede empezar a cronometrar. El modo más recomendable de hacerlo es el procedimiento del cronometraje acumulativo, en que sólo se registra el momento en que termina cada elemento, y posteriormente se obtiene el tiempo de cada elemento por la diferencia entre los dos instantes de término de dos elementos sucesivos. Es decir:

---

\[ D_i = IT_i - IT_{i-1} \]

Donde: 
- \( D_i \) : Duración del elemento \( i \)
- \( IT_i \) : Instante de término del elemento \( i \)
- \( IT_{i-1} \) : Instante de término del elemento \( i-1 \)

El número total de veces que se mide un elemento dependerá del grado de precisión requerido para el resultado, el cual puede validarse estableciendo un nivel de confianza deseado y utilizando los conceptos de estimación estadística.

Una desventaja del uso de este subsistema de medición es que se torna complicada la toma de datos o, lo que es más, resulta inutilizable cuando los procesos se traslan.

**Fotografías a Intervalos de Tiempo**

Esta técnica consiste en tomar “fotografías” a intervalos de tiempo que normalmente van de 15 a 30 segundos (Sin embargo el intervalo podría ser diferente dependiendo del tiempo total del evento que se desea analizar). Posteriormente al proyectar la sucesión de “fotografías” se puede analizar fácilmente la operación, y dado que el intervalo de tiempo es conocido, es posible calcular los tiempos de los componentes que son materia de estudio.

La ventaja de usar este subsistema de medición es que nos permite un ahorro considerable en la cantidad de tiempo necesario para registrar la operación.

Una manera de registro más completo es a través de películas y videos. Sin embargo existen desventajas tales como el costo en equipo y el tiempo requerido para el análisis.

**3. LEAN PRODUCTION: PRODUCCIÓN SIN PÉRDIDAS**

A través de los años la construcción ha venido evolucionando de manera continua. Esto se ha manifestado en el modo de la gestión para su realización, las cuales incorporan seguridad, calidad, especialización, productividad, tecnologías, métodos de comunicación, manejo de la información y subsistemas de control.
Lean Construction nace como la necesidad de adoptar una serie de estándares que parten de la industria manufacturera (Lean Production). Esta filosofía de producción ha demostrado que las nuevas técnicas, difundidas ampliamente en la industria automotriz, podían ser implementadas de forma exitosa en la industria de la construcción. Experiencias internacionales han demostrado que la implementación de la filosofía Lean Construction puede mejorar la coordinación de todos los agentes participantes en el proyecto y por ende aumentar la fiabilidad de éste.

Las primeras ideas de la nueva filosofía de producción se originan en Japón en el año 1950, las cuales fueron aplicadas en el Sistema Toyota. Las ideas básicas en el sistema de producción de Toyota es la reducción de inventarios y pérdidas, limitación de la producción a pequeñas partes, reducir o simplificar su estructura de producción, utilización de máquinas semiautomáticas, cooperación entre los proveedores, entre otras técnicas. Simultáneamente, los aspectos de calidad han sido implementados por la industria japonesa bajo la dirección de consultores americanos como Deming, Juran y Feigenbaum. La filosofía de calidad fue desarrollada basada en un método estadístico de garantía de calidad, fue un acercamiento mucho más amplio que los aplicados hasta ese momento, incluyendo ciclos de calidad y otras herramientas, para su desarrollo en las empresas.

Estas ideas han sido desarrolladas y refinadas por ingenieros industriales en un largo proceso de pruebas y errores; pero no establecieron una base teórica de fondo. Por consiguiente, hasta el principio de los años 80, la información que tenía el mundo Occidental fue muy limitada. Sin embargo, las ideas difundidas a Europa y Norteamérica comienzan aproximadamente en 1975, debidas al cambio de mentalidad de la industria automotriz.

Durante los años 1980, una serie de textos fueron publicados para explicar y analizar el acercamiento hacia la nueva filosofía en forma más detallada. A principios de los años 90 la nueva filosofía de producción, es conocida con diferentes nombres (la fabricación de clase mundial, producción flexible, nuevo sistema de producción), la cual ha sido practicada, al menos parcialmente, por grandes empresas de fabricación en América y Europa. El nuevo acercamiento también ha sido difundido a otros campos, como la producción personalizada, servicios, administración, y el desarrollo de nuevos productos. Mientras tanto, la nueva filosofía de producción ha sufrido un impulso en su desarrollo, principalmente
en Japón, nuevas herramientas han sido desarrolladas paralelamente para aumentar el desarrollo de la filosofía, como el Despliegue de Función de Calidad.

El Lean Production ha servido de base para la elaboración de las cadenas críticas, teoría de las restricciones y mejoramiento continuo, que ha revolucionado la administración de negocios y por extensión a la construcción. Paralelo a estas propuestas se crea una nueva filosofía de planificación de proyectos, que nace a comienzos de los años 90 en Finlandia, teniendo como modelo el Lean Production Japonés, donde Lauri Koskela sistematiza los conceptos más avanzados de la administración moderna (Benchmarking, Mejoramiento Continuo, Justo a Tiempo), junto con la ingeniería de métodos reformula los conceptos tradicionales para planificar y controlar obras.

3.1 Lean Production: Producción sin pérdidas

Al finalizar la década de los años 20 se presenta en Estados Unidos una crisis de sobreproducción, manifestada en un subconsumo de masas frente a la capacidad productiva real de la sociedad, lo que hace necesario implementar ajustes que den paso al establecimiento de un modelo productivo y distributivo innovador, ya que logra generar un mercado de masas para la gran producción acumulada. Anteriormente la forma organizacional o el control del proceso de trabajo se daba a través de las normas incorporadas al dispositivo automático de las máquinas, o sea, es el propio movimiento de las máquinas (caso de la cadena de montaje) quien dicta la operación requerida y el tiempo asignado para su realización. Las reglas generales para eliminar el trabajo sobre asignado y la escala de producción cambian por completo.

En efecto, gracias a los transportadores de materiales se eliminan los tiempos muertos del taller y con ello se logra una mayor efectividad de la jornada de trabajo. De la misma manera se reduce el trabajo complejo al lograr una importante parcelación de la ejecución, una máxima de la subdivisión del trabajo. Aquí la producción de partes estandarizadas y en grandes cantidades se convierte en la norma, el resultado es una mayor producción, la producción en masa, y una combinación de aumento de productividad y de intensidad de trabajo.

Después de la segunda guerra mundial la expansión de las organizaciones de producción en masa fue notable, la estabilidad de sus mercados generó
grandes estructuras burocráticas: rígidas, pesadas, previsibles, que respondían totalmente a dichos mercados; sin embargo, a fines de los 60 el modelo empezó a erosionarse con la ostensible disminución de productividad.

El modelo llegaba a su límite y habría que readecuarlo, y justamente en las innovaciones que incorpora el sistema Toyota a la organización del proceso de trabajo, se encuentran algunas salidas a la inflexibilidad de la estructura burocrática de la producción en masa, aunque el problema de reactivación económica aún no se resuelve. Aquí hay que destacar que el Sistema Toyota tuvo su origen en la necesidad particular de Japón de producir pequeñas cantidades de muchos modelos de productos. Por tanto el sistema que se deriva de esta necesidad es fundamentalmente competitivo en la diversificación, por su flexibilidad, en contraposición al sistema de producción en serie, contrario al cambio.

El aporte principal de Toyota es haber generado un sistema, una forma de organización del trabajo para lograr producir a bajos costos y volúmenes limitados de productos bien diferenciados.

Su fundador el Ingeniero Ohno consideraba las diferencias con el método estadounidense al indicar que en la rama automotriz norteamericana se utiliza un método de reducción de costos al producir automóviles en cantidades constantemente crecientes y en una variedad restringida de modelos, mientras que en Toyota se fabrica a un buen precio pequeños volúmenes de muchos modelos diferentes. En esa vertiente el reto para los japoneses fue lograr ganancias de productividad que no usaran los recursos de las economías de escala. La racionalización del proceso de trabajo implicó el principio de costo mínimo o "fábrica mínima", que aduce a la reducción de stocks, materiales, equipos, espacios y trabajadores y se complementa con el principio de "fábrica flexible" sustentada en la flexibilidad del trabajo, en la asignación de las operaciones de fabricación para lograr un flujo continuo y pronta atención a la demanda.

El resultado es un nuevo tipo de fábrica: la fábrica ligera, transparente y flexible, sus pilares son la producción en el momento preciso y la auto - activación; de estas ideas nace el término "Lean" que ya lo podemos definir como un sinónimo de mínimo, ligero, flexible u otros muchos términos afines, tales como; pobre, magra o sin pérdidas. Las características del modelo japonés han sido resumidas en los términos siguientes:
1. Eliminación de los recursos redundantes considerados como pérdidas y la implantación del Lean Production. El suministro justo a tiempo (JIT) de los materiales que se van a utilizar o ensamblar es la forma de conseguir esos objetivos. El JIT regula también la relación con el cliente final y los programas de producción que son elaborados con el objeto de que presenten la mayor flexibilidad y sensibilidad posible a las variaciones del mercado.

2. Los subcontratistas son elegidos no por el costo total de su trabajo, sino dependiendo de su capacidad para colaborar con la empresa líder en proyectos a largo plazo. El resultado es el desarrollo de una compacta red cooperativa basada en relaciones de confianza, de reciproca transparencia y contratos a largo plazo.

3. La participación del personal en las decisiones sobre producción, lo que presupone una elevada capacidad profesional de los trabajadores, la cual no se limita a la destreza en las operaciones rutinarias sino que se manifiesta en la "multiespecialización de los trabajadores", en la decisión autónoma de interrumpir el flujo cada vez que se observan anomalías y defectos, a fin de eliminarlos de inmediato y en la colaboración para solucionar los problemas planteados por la introducción de innovaciones tecnológicas.

4. El objetivo de la Calidad Total o Cero Defectos, sin aumento de costos, se basa en el concepto de que la eliminación de un defecto es tanto más rápida y económica cuanto más próximo se está al momento en que se ha detectado el defecto. La consecuencia es que la calidad se incorpora al proceso productivo con la progresiva eliminación de los controles posteriores. Las diversas fases del proceso productivo se conciben como una relación entre el proveedor y el cliente regulada por la autocertificación de la calidad del material o de la prestación efectuada.

Hay mejoramiento continuo (Kaizen) pues cada uno de los aspectos del proceso de producción está sujeto a discusión y experimentación de posibles soluciones.

Finalmente el sistema de premios se basará en incentivos grupales por innovación y producción de alta calidad de la producción en lugar de incentivos
para producción individual. El control debe ser por autorregulación, tendiendo a disminuir los controles externos, tales como inspecciones técnicas y controles de calidad posteriores a la ejecución.

3.2 EL FLUJO EN LOS PROCESOS DE PRODUCCIÓN

La producción debe ser vista como un conjunto de procesos compuestos por una serie de flujos. Entonces, daremos una mirada inicial a los proyectos de construcción basados en flujos, enfocados en su valor y pérdidas asociadas.

El modelo de proceso de producción según los principios de Lean Production se basa en la consideración de los flujos de un proceso (actividades que no agregan valor), como las actividades de conversión (actividades que agregan valor) permitiendo enfatizar el análisis mediante la minimización y/o eliminación de las actividades de flujo, puesto que constituyen la mayor parte de los pasos en los procesos de producción en la construcción.

3.3 MEDICIONES

La toma de datos y su análisis se requiere por dos motivos: para conducir el mejoramiento interno de la organización, y para comparar la información obtenida con los indicadores escogidos. Para las organizaciones el primer motivo es el principal, mientras que para el cliente final el segundo pasa a ser mucho más importante.

Los indicadores más importantes enfocados en los flujos, según la visión de Lean Production, deben ser:

Pérdidas: Tales como la cantidad de defectos, adaptaciones, el número de errores de diseño u omisiones, la cantidad de órdenes de cambio, gastos en seguridad, el exceso de materiales y el porcentaje de tiempo que no agrega valor al ciclo total.

Valor: El valor se define como el grado de satisfacción del cliente final, o sea que todos sus requerimientos sean cumplidos sin inconvenientes. El valor debe ser medido por un proceso de medición post venta o post construcción.

Tiempo de Ciclos: Los tiempos del ciclo principal y de sus subprocesos son uno de los indicadores más poderosos.
Variabilidad: La producción en la construcción variará con alguna desviación estándar, por ejemplo, debido a la variación en tamaño y peso de los componentes instalados, facilidad de instalación, tolerancias de fabricación y elevación, etc. Esta desviación de lo planificado representa lo que se ha pasado a denominar "variabilidad". Ausencia de variabilidad significa producción confiable.

En la filosofía de Lean Production, como marco conceptual, clasificaremos los indicadores de desempeño en tres categorías: Por resultados, por procesos y por variables. Estos indicadores deben cumplir los siguientes requisitos:

- Especificidad: Deben estar relacionados con aspectos, etapas y resultados claves del proyecto o del proceso.
- Simplicidad: Deben ser de fácil aplicación, comprensión y medición.
- Bajo costo: El costo de la medición debe ser significativamente menor que el potencial ahorro.
- Representatividad: Debe dar información veraz y confiable del proceso evaluado.

3.4 PÉRDIDAS, CADENAS DE VALOR Y LOGÍSTICA

Como fuente principal de mejoramiento de la producción, Lean Production se centra en el mejoramiento de la logística de la producción, tanto de la cadena de los suministros como de la secuencia de actividades del proceso. En este sentido los conceptos de pérdidas, valor, logística y compromisos cobran una gran importancia para cualquier intento de mejoramiento del proceso, sin importar el sector productivo al cual la empresa pertenezca.

Los conceptos mencionados anteriormente, en el marco del estudio realizado por el autor, serán definidos a continuación:

Pérdidas
La filosofía de "Producción sin pérdidas" acepta el concepto adoptado por Ohno como: "Todo lo que sea distinto de la cantidad mínima de equipos, materiales, piezas, y tiempo laboral absolutamente esenciales para la producción".
Para eliminar pérdidas en la producción, primero debemos saber las fuentes de ellas. Para esto clasificaremos las pérdidas de la siguiente manera:

- Pérdidas por esperas (inactividad)
- Pérdidas por traslados
- Pérdidas por trabajo lento
- Pérdidas por trabajo inefectivo
- Pérdidas por trabajo rehacho

A su vez pueden ser clasificadas de acuerdo a su fuente según al área a la que pertenecen:

**Administración:** Requerimientos innecesarios, exceso o falta de control, mala planificación o excesiva burocracia.

**Uso de Recursos:** Exceso o falta de cantidad, falta de cantidad, mal uso, mala distribución o disponibilidad.

**Sistemas de información:** No necesaria, defectuosa, atrasada o poco clara.

El enfoque Lean Production propone herramientas de diagnóstico, medición y mejoramiento para este propósito. Encuestas de detección a los capataces, métodos de muestreo del trabajo, registros de materiales y otras herramientas han sido desarrolladas para permitir la toma de decisiones para el mejoramiento de la productividad en la organización. El principal objetivo de estas herramientas es reducir las demoras, interrupciones y mejorar el almacenamiento de recursos.

El objetivo fundamental es eliminar "las restricciones de la organización" propias de la naturaleza de la producción en la organización.

**Cadena de Valor**
Definiremos en un principio las actividades que agregan y no agregan valor:

**Actividad que agregan valor:** La actividad que convierte un material y/o la información hacia los requerimientos del cliente. En suma, son las actividades que el cliente reconoce en un estado de pagos del proyecto como ejecutadas.

**La actividad que no agregan valor (pérdidas):** aquellas que produciendo un costo, ya sea directo o indirecto, no agregan valor ni avance a un proyecto.
Se define a la dirección de la cadena de valor como la manera de controlar, manejar y de dirigir una secuencia de actividades que una empresa realiza para crear productos o servicios que aumenten beneficio, disminuyan tiempo y costo, y mejoren la calidad para la empresa y generan beneficio para el cliente. Usar el término de dirección de la cadena de valor, implica que el valor tiene que ser agregado en todos los puntos del proceso.

Logística
El proceso de producción se entiende no solamente como secuencia de las actividades de la conversión sino también como un proceso del flujo de materiales y de información y como proceso de generación de valor para el cliente.

De este concepto, se deduce que en un proceso de producción, la ventaja competitiva no puede venir solamente de mejorar la eficacia de las actividades de conversión, sino también reducir los tiempos de espera, del almacenaje, de movimientos improductivos e inspecciones. Todas estas actividades son inherentes a un proceso logístico.

El concepto de dirección basada en la logística está definido como "el proceso de planificación, implementación, control de la ejecución eficiente de los flujos, el almacenamiento y aprovisionamiento de materiales, y de la administración eficiente de la información relacionada desde el punto de origen del flujo hasta el punto de ejecución con el fin de satisfacer los requisitos del cliente".

En términos de la producción, la logística se puede entender como un proceso multidisciplinario que intenta garantizar en el tiempo exacto, el costo y la calidad del proceso:

- Suministro de materiales, su almacenaje, procesamiento y dirección
- Suministro de mano de obra
- Control del los programas de trabajo
- Movimiento de la maquinaria
- Dirección de los flujos de producción
- Dirección de los flujos de información relacionada con los flujos en el proceso de ejecución.
4. TEORÍA DE COLAS

Experiencias comunes a todos son el esperar para pagar en el supermercado, banco, aparato de ejercicio en un gimnasio, etc. La formación de una cola se da cuando existe un desequilibrio temporal entre la demanda de un servicio y la capacidad del sistema para atenderla. La teoría de colas es el estudio analítico de estas colas o líneas de espera.

4.1 Elementos existentes en la teoría de colas

Todos los sistemas de colas tienen tres elementos en común:

- **Clientes** que esperan el servicio. No necesariamente son persona, pueden ser máquinas que esperan a ser reparadas, aviones que esperan para el despegue, programas de cómputo, o llamadas telefónicas por contestar de atención al cliente de alguna empresa. Normalmente los clientes llegan de forma individual, sin embargo en algunos casos pueden acumularse en lotes, como por ejemplo en la industria fabril.
- **Servidores** que suministran el servicio. Al igual que en los clientes, éstos no necesariamente son personas.
- **Cola o línea de espera.** Es el conjunto de clientes que esperan el servicio. Las colas pueden ser físicas, tales como las que se presentan en un supermercado o banco, y pueden no ser visibles o tener una ubicación exacta como por ejemplo las llamadas telefónicas en espera o los programas de cómputo que esperan su procesamiento.

4.2 Estructuras típicas

Los clientes, servidores y colas dentro de un sistema se acomodan siguiendo una configuración, las cuales normalmente son:

- Un solo servidor y una sola cola
- Más de un servidor y una sola cola
- Más de un servidor y más de una cola
- Una cola con servidores en serie
En una operación de carga y transporte, tendríamos lo siguiente:

- **Cliente**: Serían los camiones que requieren ser cargados o realizarán la descarga.
- **Servidor**: Sería el equipo de carga y/o el controlador que da la autorización para la descarga en el botadero.
- **Cola**: Vendrían a ser los camiones que esperan a ser cargados o están en cola en el botadero.

Las estructuras de formación de colas que típicamente encontramos en una operación de carga y transporte son:

- Un solo servidor y una sola cola
- Más de un servidor y más de una cola
5. METODOLOGÍA ESTADÍSTICA PARA LA TOMA DE DATOS

Un método funcional para la toma de datos de las operaciones de carguío y transporte de material es el de "fotografías estadísticas" a intervalos de tiempo.

**Condicion es para la toma de datos:**

- La toma de datos más importante se realizará en la zona de carguío.

- Los datos que se tomarán serán el número de camiones que esperan en la zona de carguío para ser cargados y los camiones que están siendo cargados, para lo cual usaremos los siguientes códigos:

  ➢ El primer código nos indicará el número de camiones que se encuentran esperando para ser cargados, el cual puede ser 1, 2, 3 hasta el número total de camiones asignados para la operación.

  ➢ El segundo código indica el número de camiones que se encuentran cargando, el cual puede ser "0" si es que la excavadora o cargador no está cargando ningún camión, o puede ser "1" si es que está cargando un camión.

- La toma de datos se realizará de manera continua a intervalos de tiempo de quince segundos. Sin embargo el intervalo de medición puede variar según el objeto de medición.

El siguiente cuadro muestra un ejemplo de toma de datos:

<table>
<thead>
<tr>
<th>N° Fotografía</th>
<th>Hora</th>
<th>Ce</th>
<th>Cc</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>07:00:00</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>07:00:15</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>07:00:30</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>07:00:45</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>07:01:00</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>07:01:15</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>07:01:30</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>07:01:45</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>07:02:00</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>07:02:15</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 05.- Formato para la toma de datos en zona de carguío
Donde:

Ce : Número de camiones esperando a ser cargados.
Cc : Número de camiones siendo cargados.
A  : Salida del camión de la zona de carga.
B  : Llegada del camión a la zona de carga.
C  : Placa o código del camión
D  : Observaciones

Información obtenida

La toma de estos datos nos permite convertirla en la siguiente información:

1. Tiempo de Observación
2. Nº de Camiones Cargados
3. Número de Camiones Cargados por Hora.
4. Tiempo Total de Carga
5. Tiempo de Carga de Camión
   - Promedio
   - Desviación Estándar
   - Coeficiente de Variación
6. Tiempo Total de Acomodo de Camión
   - Promedio
   - Desviación Estándar
   - Coeficiente de Variación
7. Tiempo Total de los Camiones en Espera
8. Tiempo Total de Espera de la Excavadora

Así mismo podremos saber cuál es el equipo más rápido, el más lento y el que induce mayor variabilidad al sistema. Debemos tener en cuenta que la idea sería que todos los camiones mantengan una misma velocidad, de manera que evitemos la formación de colas.
Para alcanzar un óptimo uso de los recursos a utilizar en una operación se debe entender y comprender primeramente su naturaleza, luego en función a esta se realiza la planificación, organización y control antes, durante y después de cada proceso. Realizamos un control ANTES para establecer un parámetro de medición; luego realizamos un control DURANTE para verificar que las actividades se están realizando dentro de lo que se ha planificado y realizamos un control DESPUÉS para determinar la efectividad de nuestra operación.

Con el uso de la Teoría de Sistemas entendemos a la operación como un todo y con un objetivo global que supedita a todos los componentes del sistema. La Teoría de Colas nos permite conocer las líneas de espera en la operación e identificar su origen. Finalmente Lean Production, a través de la medición de los procesos involucrados, nos proporciona las herramientas para identificar las actividades que no agregan valor al sistema y que por tanto se constituyen en pérdidas para la operación.
CAPÍTULO III: PRODUCTIVIDAD EN CICLOS DE TRANSPORTE

En este capítulo daremos un ejemplo real correspondiente a una operación de carguío y transporte de material orgánico que se realizó en una mina ubicada al interior de nuestro país.

1. CONDICIONES Y CARACTERÍSTICAS DE TRABAJO

Para esta operación en particular las condiciones y características de trabajo fueron las siguientes:

1.1 Condiciones Geográficas y Climatológicas

- La operación se realizó a mediados del año 2008 en un período seco, a una altitud aproximada de 3,400.00 msnm.

1.2 Del Material Transportado

- El material transportado fue de composición orgánica (Top Soil) con las siguientes características (*):
Densidad Saturada : 17.60 KN/m³.
Cohesión : 20.00 KPa
Ángulo de Fricción Interna : 16°

(*) Información tomada del Laboratorio de Mecánica de Suelos de la empresa minera.

1.3 Condiciones en la Zona de Trabajo

- El volumen a cargar y transportar es de 800,000.00 m³ en banco en un plazo de tres (03) meses.

- Se determinó una zona de botadero ubicado a una distancia aproximada de 2.4 Km. El botadero tenía capacidad para dos puntos de descarga.

- Los equipos para carguio fueron excavadora hidráulicas de 30 a 35 toneladas de peso de diferentes marcas. El número de excavadoras asignadas a la operación fue variable cada día de trabajo, así, un día se podía trabajar con cinco excavadoras y otro día se podía trabajar con dos excavadoras.

- Los equipos para el transporte fueron camiones volquetes de 20 a 25 toneladas de carga neta de diferentes marcas. Al igual que los equipos de carguio, el número de camiones asignados a la operación fue variable durante el tiempo de trabajo.

- El horario de trabajo fue de 7:30 a.m. hasta las 5:30 p.m. con un receso de una hora (de 12:00 p.m. hasta la 1:00 p.m.) para refrescar.

- Los choferes deciden tanto el punto de carga en la zona de carguio como el punto de descarga en la zona de botadero, todo en función de la facilidad para el carguio o la descarga.

- Se utilizaron tractores de 140 HP de potencia para la acumulación de material.

- El mantenimiento de la zona de carguio fue realizado con rodillos vibradores, motoniveladoras y camiones cisternas, la cual estaba a cargo de la compañía minera.
Fotografía N°21

Fotografía N°21: Correspondiente a la zona de cargar

Fotografía N°22

Fotografía N°22: Correspondiente a la zona de cargar

Operación de Transporte y Cargado en Minas a Tajo Abierto
Jorge Villanueva Yarza

62
2. MEDICIÓN DE LA OPERACIÓN DE CARGUÍO Y TRANSPORTE

El método para la medición de la operación de carguío y transporte se define a partir de las condiciones y características de trabajo. Los pasos para definir el método de medición fueron los siguientes:

- **Inspección ocular a la zona de trabajo.**
  Se realizó una visita a las zonas de carguío, tramo de recorrido y botadero con la finalidad de conocer la naturaleza y las condiciones del trabajo de la operación.

- **Definición del método de medición a utilizar.**
  A partir de la inspección ocular y conocer la naturaleza y condiciones del trabajo se definió el método de medición, que para este caso fue el de “Fotografías Estadísticas”, las cuales se tomaron desde la zona de carguío; debido al número de puntos para carguío se utilizaron tres estaciones de medición.

- **Elaborar el formato de medición.**
  El método de las “Fotografías Estadísticas” requiere de códigos que permitan describir lo que sucede en la zona de carga. Para esta operación el formato de medición tuvo dos códigos y seis datos adicionales:

  **Códigos:**
  - Ce: Número de camiones esperando a ser cargados.
  - Cc: Número de camiones que están siendo cargados.

  **Datos Adicionales:**
  - Número de fotografía
  - Hora en la que se está tomado la “fotografía estadística”.
  - Salida del camión de la zona de carguío
  - Llegada del camión de la zona de carguío
  - Placa o código del camión
  - Observaciones, si es que sucediera algún hecho relevante para la medición.
De esta manera el formato de medición fue de la siguiente manera:

<table>
<thead>
<tr>
<th>Nº Fotografía</th>
<th>Hora</th>
<th>Ce</th>
<th>Cc</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Donde:

Ce : Número de camiones esperando a ser cargados.
Cc : Número de camiones siendo cargados.
A  : Salida del camión de la zona de carga.
B  : Llegada del camión a la zona de carga.
C  : Placa o código del camión
D  : Observaciones

Adicionalmente al formato de medición se debe realizar un Protocolo de Medición, en el cual se indique la información referente a las condiciones de trabajo, tal como la fecha de medición, el tipo y número de equipos de carguío, el tipo y número de equipos de transporte, la zona de trabajo, los puntos de carga y descarga, la distancia entre ambas, el material transportado y la altura; esto nos permite establecer correlaciones distancia – tiempo.

- **Validación del formato de medición.**

  Una vez establecido el formato de medición, se regresó a la zona de trabajo para verificar que dicho formato responde a la naturaleza de lo que se quiere medir.
- **Toma de datos.**
  Con el formato validado, se empezó con la toma de datos. En este caso realizamos mediciones durante tres meses.

- **Análisis de los datos obtenidos**
  Los datos obtenidos se llevaron a gabinete con la finalidad de convertirla en información.

3. RESULTADOS OBTENIDOS

Los resultados obtenidos son el producto de un período de tres meses de toma de datos, los cuales se realizaron desde la zona de carga y con tres estaciones de medición. Adicionalmente se capturaron imágenes digitales para tener una idea visual de las mediciones.

Es importante resaltar que en ningún día durante los cuales se realizaron las mediciones se pudo determinar el número exacto de camiones que participaron en la operación y a que éstos variaban en cualquier momento.

El siguiente cuadro muestra la información obtenida a partir de las mediciones realizadas:
## ANÁLISIS DE LA ZONA DE CARGA

### Zona de Carga

<table>
<thead>
<tr>
<th>Localización</th>
<th>Hasta Ocho</th>
<th>Distancia</th>
<th>2.40 Km</th>
</tr>
</thead>
</table>

### Zona de Botadero

<table>
<thead>
<tr>
<th>Material</th>
<th>Top Soil</th>
</tr>
</thead>
</table>

### Tabla 26.01

<table>
<thead>
<tr>
<th>Descripción</th>
<th>CAT 320 E</th>
<th>CAT 322 B</th>
<th>CAT 320 CL</th>
<th>CAT 322 CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo Total de Observación</td>
<td>459.75</td>
<td>517.50</td>
<td>512.75</td>
<td>512.75</td>
</tr>
<tr>
<td>Nro Total Volumen Cargados</td>
<td>96.00</td>
<td>154.00</td>
<td>159.00</td>
<td>159.00</td>
</tr>
<tr>
<td>Tiempo de Carga</td>
<td>138.65</td>
<td>245.14</td>
<td>261.65</td>
<td>261.39</td>
</tr>
<tr>
<td>Tiempo de Acomodo de Canón</td>
<td>113.68</td>
<td>164.39</td>
<td>161.14</td>
<td>185.39</td>
</tr>
<tr>
<td>Tiempo de Espera de Excavadora</td>
<td>129.46</td>
<td>100.96</td>
<td>94.71</td>
<td>45.90</td>
</tr>
<tr>
<td>Tiempo Promedio de Carga</td>
<td>2.07</td>
<td>1.68</td>
<td>1.71</td>
<td>1.77</td>
</tr>
<tr>
<td>Nro Volumen cargados por hora</td>
<td>12.53</td>
<td>18.86</td>
<td>17.74</td>
<td>18.61</td>
</tr>
<tr>
<td>Espera de Camiones</td>
<td>199.33</td>
<td>324.33</td>
<td>284.67</td>
<td>845.87</td>
</tr>
</tbody>
</table>

### Tabla 26.02

<table>
<thead>
<tr>
<th>Descripción</th>
<th>CAT 320 E</th>
<th>CAT 322 B</th>
<th>CAT 320 CL</th>
<th>CAT 322 CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo Total de Observación</td>
<td>403.73</td>
<td>405.75</td>
<td>401.00</td>
<td>382.25</td>
</tr>
<tr>
<td>Nro Total Volumen Cargados</td>
<td>81.95</td>
<td>103.00</td>
<td>88.00</td>
<td>117.00</td>
</tr>
<tr>
<td>Tiempo de Carga</td>
<td>102.60</td>
<td>135.14</td>
<td>144.64</td>
<td>137.09</td>
</tr>
<tr>
<td>Tiempo de Acomodo de Canón</td>
<td>118.19</td>
<td>174.64</td>
<td>157.14</td>
<td>128.10</td>
</tr>
<tr>
<td>Tiempo de Espera de Excavadora</td>
<td>112.72</td>
<td>76.97</td>
<td>71.23</td>
<td>115.94</td>
</tr>
<tr>
<td>Tiempo Promedio de Carga</td>
<td>2.96</td>
<td>1.89</td>
<td>3.91</td>
<td>1.18</td>
</tr>
<tr>
<td>Nro Volumen cargados por hora</td>
<td>12.54</td>
<td>10.23</td>
<td>12.97</td>
<td>18.36</td>
</tr>
<tr>
<td>Espera de Camiones</td>
<td>346.33</td>
<td>505.00</td>
<td>383.33</td>
<td>107.33</td>
</tr>
</tbody>
</table>

### Tabla 26.03

<table>
<thead>
<tr>
<th>Descripción</th>
<th>CAT 320 E</th>
<th>CAT 322 B</th>
<th>CAT 320 CL</th>
<th>CAT 322 CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo Total de Observación</td>
<td>74.00</td>
<td>82.25</td>
<td>82.00</td>
<td>82.00</td>
</tr>
<tr>
<td>Nro Total Volumen Cargados</td>
<td>26.00</td>
<td>22.00</td>
<td>19.38</td>
<td>19.38</td>
</tr>
<tr>
<td>Tiempo de Carga</td>
<td>45.85</td>
<td>39.38</td>
<td>37.24</td>
<td>37.24</td>
</tr>
<tr>
<td>Tiempo de Acomodo de Canón</td>
<td>27.13</td>
<td>42.83</td>
<td>42.83</td>
<td>42.83</td>
</tr>
<tr>
<td>Tiempo de Espera de Excavadora</td>
<td>1.19</td>
<td>3.74</td>
<td>3.74</td>
<td>3.74</td>
</tr>
<tr>
<td>Tiempo Promedio de Carga</td>
<td>1.79</td>
<td>1.79</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>Nro Volumen cargados por hora</td>
<td>20.94</td>
<td>16.00</td>
<td>16.00</td>
<td>16.00</td>
</tr>
<tr>
<td>Espera de Camiones</td>
<td>71.67</td>
<td>156.67</td>
<td>156.67</td>
<td>156.67</td>
</tr>
</tbody>
</table>

### Tabla 06.- Composición del tiempo de camiones
CAPÍTULO IV: EVALUACIÓN DE LOS RESULTADOS

La toma de datos de la operación de carguío y transporte nos permitió convertir la información que pueda analizarse y evaluarse.

1. ANTECEDENTES

Se realizaron mediciones de la operación de carguío y transporte en una mina ubicada al interior de nuestro país a una altitud aproximada de 3,400 msnm en un período seco a mediados de año.

El material transportado es de composición orgánica (Top Soil) con una densidad saturada de 17.60 KN/m³.

Los equipos utilizados son excavadoras hidráulicas de 30 a 35 Ton de peso y camiones de 20 a 25 Ton de carga neta. El horario siempre fue diurno y la distancia entre las zona de carguío y botadero es de 2.40 Km aproximadamente.

Las mediciones se realizaron durante tres días continuos.
2. INFORMACIÓN OBTENIDA

2.1 Factores a analizar.

Desde el punto de vista de la excavadora existen tres actividades que pueden ocurrir en la zona de carguio y que fueron medidas:

- Tiempo de Carga
- Tiempo de Acomodo de Camiones
- Tiempo de Espera de la Excavadora

Así mismo, se pudo determinar el tiempo total de espera de los camiones en la zona de carguio.

Los siguientes cuadros muestran la composición del tiempo consumido en la zona de carguio durante tres días:

**Gráfico 04:** composición del tiempo de la excavadora 25/07

**Gráfico 05:** composición del tiempo de la excavadora 26/07
3. EVALUACIÓN DE LOS RESULTADOS

A partir de la información obtenida podemos encontrar dos grandes problemas que afectan la operación:

- Se generan constantes y continuas colas de espera de los camiones en la zona de carguío.
- Se consume un gran porcentaje del tiempo en la zona de carguío para el acomodo de los camiones.

¿Por qué sucede esto?

Analizando la información obtenida y revisando las fotografías digitales podemos afirmar que el motivo de este problema es el exceso de camiones para la operación, que a su vez tiene su origen en la falta de un adecuado plan de trabajo, en el que se pueda conocer con certeza los elementos (equpos y mano de obra) que intervendrán en la operación y la tarea que cada uno realizará. De esta manera se puede determinar el costo de la operación.

Adicionalmente y tal como mencionamos en el capítulo anterior, el número de camiones asignados a esta operación fue variable a cada hora del día de trabajo, lo que hace a la operación más inestable.

Las siguientes fotografías dan una muestra de lo sucedido en la zona de carguío:
Fotografía Nº 23
Fotografía Nº 23: Primer día de medición a las 10:52 am. Se puede observar las colas de camiones en los diferentes puntos de carga.

Fotografía Nº 24
Fotografía Nº 24: Primer día de medición a las 03:36 pm. Las colas de camiones no cesan.
Si observamos la composición del tiempo de la excavadora en la zona de carguío, veremos que, efectivamente, la excavadora consume gran parte de su tiempo realizando una labor productiva que es la de carga de camiones (mejora local). Sin embargo vemos también que la producción de la excavadora no puede superar los 20 camiones por hora y el tiempo de espera en cola de los camiones es alta (en total 4 horas aproximadamente).

El siguiente cuadro muestra el tiempo total de carga en comparación con el tiempo de acomodo de los camiones y el tiempo que los camiones consumen esperando en cola:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>25-Jul</th>
<th>26-Jul</th>
<th>27-Jul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de Carga (min)</td>
<td>987.83</td>
<td>706.47</td>
<td>85.26</td>
</tr>
<tr>
<td>Tiempo de Acomodo (min)</td>
<td>642.57</td>
<td>607.45</td>
<td>69.76</td>
</tr>
<tr>
<td>Tiempo de Espera de Camiones (min)</td>
<td>1,452.00</td>
<td>1,480.00</td>
<td>267.33</td>
</tr>
</tbody>
</table>

**Gráfico 07. - Composición del tiempo de camiones**

Observamos que desde el punto de vista de los camiones, éstos ocupan más de la mitad de su tiempo en la zona de carguío realizando labores no productivas (tiempo de espera).

El siguiente cuadro nos permite apreciar la cantidad de minutos consumidos por los camiones por cada minuto que sucede en la zona de carga:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>25-Jul</th>
<th>26-Jul</th>
<th>27-Jul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de Espera de Camiones (min)</td>
<td>1,452.00</td>
<td>1,480.00</td>
<td>267.33</td>
</tr>
<tr>
<td>Tiempo de Observación (min)</td>
<td>517.50</td>
<td>405.75</td>
<td>82.25</td>
</tr>
<tr>
<td>Espera Camión / T Observación</td>
<td>2.91</td>
<td>3.65</td>
<td>3.13</td>
</tr>
</tbody>
</table>

Operación de Transporte y Carguío en Minas a Tajo Abierto

Jorge Villanueva Yarce
Observamos que la relación Espera de Camión – Tiempo de Observación es en promedio de 3. Este valor nos da una idea del tiempo que desperdician los camiones en esta zona, agregando desorden e incrementando costos a la operación, sin embargo la productividad disminuye.

4. PROCEDIMIENTO PARA EL DIMENSIONAMIENTO DE LA FLOTA ASIGNADA A UNA OPERACIÓN DE CARGUÍO Y TRANSPORTE.

El dimensionamiento de la flota asignada a una operación de carguío y transporte es fundamental, ya que el costo dependerá de ello y de su correcta implementación.

Para ello se debe seguir el siguiente procedimiento:

1. Información General de las condiciones de trabajo

   - Volumen y peso a cargar y transportar
   - Plazo de ejecución
   - Horario de trabajo (turnos, horas por turno, días por mes)
   - Número de puntos de carguío
   - Distancia promedio entre la zona de carguío y botadero

Para la operación a analizar tenemos la siguiente información:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen Total (m³)</td>
<td>800,000.00</td>
</tr>
<tr>
<td>Densidad Promedio (Tn / m³)</td>
<td>1.76</td>
</tr>
<tr>
<td>Plazo (meses)</td>
<td>3.00</td>
</tr>
<tr>
<td>Distancia (Km)</td>
<td>2.40</td>
</tr>
<tr>
<td>Nº Puntos de Carguío¹</td>
<td>2.00</td>
</tr>
<tr>
<td>Nº meses / año</td>
<td>12.00</td>
</tr>
<tr>
<td>Nº días / mes</td>
<td>25.00</td>
</tr>
<tr>
<td>Nº Hores / día</td>
<td>9.00</td>
</tr>
</tbody>
</table>

¹ De acuerdo a las condiciones en la zona de trabajo, se pueden tener hasta cinco (05) puntos de carguío. Para nuestro análisis hemos considerado dos (02) puntos de carguío, de esta manera podremos utilizar de manera eficiente los dos (02) puntos de descarga en la zona de botadero.
2. **Producción horaria por punto de carguo**

Con la información obtenida debemos determinar la producción horaria por punto de carguo necesaria para alcanzar el plazo establecido. Para ello debemos calcular el peso del material a cargar y transportar:

\[
(Volumen) \times (densidad) = \\
800,000 \times 1.76 = 1'408,000.00 \text{ Ton.}
\]

Luego determinaremos la producción horaria por cada punto de carguo de acuerdo a la siguiente expresión:

\[
\frac{(Peso)}{(Pts \text{ de carguo}) \times (Plazo \text{ en horas})} = \\
1'408,000 / (2) \times (3 \text{ meses } \times 25 \text{ días } \times 9 \text{ horas}) = 348.00 \text{ Ton / hora / pto de carguo}
\]

<table>
<thead>
<tr>
<th>Nº Toneladas Totales</th>
<th>1'408,000.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº Ton / mes / pto. de carguo</td>
<td>469,333.00</td>
</tr>
<tr>
<td>Ton / hora / pto. de carguo</td>
<td>348.00</td>
</tr>
</tbody>
</table>

3. **Selección de los equipos para el carguo y transporte**

Una vez determinada la producción horaria por punto de carguo, debemos estimar la duración de un ciclo de transporte. Es conveniente realizar pruebas en campo antes de iniciar la operación que nos permita obtener un valor estimado. En este caso no se realizaron dichas pruebas; sin embargo luego de realizar mediciones durante la misma operación se obtuvo que el ciclo de transporte fue en promedio veinte (20) minutos.

Como se ha podido apreciar en el punto nro. 03 de este capítulo, uno de los problemas que generan pérdidas en la operación es la formación de colas en la zona de carguo. Esto se debe al desconocimiento por parte de los responsables de estas operaciones de la separación de tiempo que debe existir entre los camiones. Las fotografías N° 1 y 2 muestran que en la operación la separación
entre los camiones no es un factor a considerar (la separación real es el tiempo de carguio), formándose colas en la zona de carguio, ocasionando pérdidas económicas.

Haciendo uso del gráfico N° 06 2 obtendremos la separación entre camiones, considerando como datos de ingreso el tiempo del ciclo y el coeficiente de variación de la zona de trabajo.

![Frecuencia de camiones](image)

Gráfico 06. Tiempo de ciclo vs coeficiente de variación

Teniendo en cuenta las condiciones de la zona de trabajo consideramos un coeficiente de variación de 15%. Así mismo con un tiempo de ciclo promedio de veinte (20) minutos obtenemos que la separación entre camiones debe ser de cuatro (04) minutos.

Los factores a tomar en cuenta para estimar el coeficiente de variación son: condiciones del tramo de recorrido, frecuencia de mantenimiento de caminos, capacidad para sobrepasar, facilidades en las zonas de carguio y botadero, factores climáticos, entre otros.

Luego, el número máximo de camiones cargados por hora será:

\[
\frac{(60)}{(\text{Separación})} = \frac{60}{04} = 15 \text{ camiones / hora}
\]

2 Fuente: Tesis de Maestría José Luis Vilteri
Ahora, si tenemos que la producción horaria por punto de carguio debe ser de 348 Ton / hora y el número máximo de camiones cargados por hora es de 15 entonces la capacidad teórica de los camiones será:

\[
(\text{Producción horaria}) / (\text{Camiones cargados por hora}) = \frac{348}{15} = 23.20 \text{ Ton}
\]

Por lo tanto consideraremos camiones de 25 toneladas de carga neta para esta operación. Una vez obtenida la capacidad de los camiones a utilizar, se debe calcular la cantidad de camiones por punto de carguio requeridos para alcanzar la producción.

1. Capacidad del camión = 25 Ton
2. Puntos de carguio = 02 Ptos
3. Producción horaria = 348 Ton /hora
4. Ciclos por hora / camión = 03 ciclos / hora
5. Producción horaria / camión (1 x 4) = 75 Ton / hora
6. N° de camiones / pto carguio (3 + 5) = 05 camiones

Por lo tanto:

\[
\text{N° total de camiones} = (2) \times (6) = 10 \text{ camiones}
\]

Para determinar el tamaño de la excavadora y en función de la producción horaria requerida podremos utilizar la tabla 06.³

³ Fuente: Tesis de Maestría José Luis Vitteri
Gráfico 09: Producción horaria vs peso de excavadora
De esta manera el peso de la excavadora a utilizar debe ser de 35 Ton.

Por lo tanto la flota requerida para esta operación será de 10 camiones de 25 toneladas de carga neta y dos excavadoras de 35 toneladas de peso.

5. COSTO HORARIO DE LA OPERACIÓN

Una vez obtenida la cantidad y las características de los equipos a utilizar se requerirá buscar en el mercado los equipos que cumplan con dichos requerimientos; de esta manera podremos obtener el costo horario de la operación.

Para el caso de los equipos para transporte utilizaremos camiones de la marca Volvo, modelo FM12 con las siguientes características:

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>VOLVO FM 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>D12D</td>
</tr>
<tr>
<td>N° de cilindros</td>
<td>6</td>
</tr>
<tr>
<td>Potencia</td>
<td>420 HP</td>
</tr>
<tr>
<td>Máxima Capacidad Neta</td>
<td>26 Tn</td>
</tr>
<tr>
<td>Volumen de tolva (a ras)</td>
<td>17m³</td>
</tr>
<tr>
<td>Tracción</td>
<td>6x4</td>
</tr>
<tr>
<td>Neumáticos</td>
<td>12.00R24* Radiales</td>
</tr>
</tbody>
</table>

Tabla 07.- Especificaciones técnicas del equipo de transporte

Para el caso del equipo de carguío utilizaremos una excavadora de la marca Caterpillar, modelo 330D con las siguientes características:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca</td>
<td>Caterpillar</td>
</tr>
<tr>
<td>Modelo</td>
<td>330D</td>
</tr>
<tr>
<td>Costo (US$)</td>
<td>340,000.00</td>
</tr>
<tr>
<td>Peso en orden de trabajo (Ton)</td>
<td>34.60</td>
</tr>
<tr>
<td>Capacidad del cucharón colmado (m³)</td>
<td>2.30</td>
</tr>
<tr>
<td>Potencia al volante (HP)</td>
<td>243.00</td>
</tr>
<tr>
<td>N° de cilindros</td>
<td>6.00</td>
</tr>
<tr>
<td>Máxima velocidad de desplazamiento (Km/h)</td>
<td>5.00</td>
</tr>
<tr>
<td>Capacidad del tanque de combustible (L)</td>
<td>518.00</td>
</tr>
</tbody>
</table>

Tabla 08.- Especificaciones técnicas del equipo de carguío
1. Información general de los camiones

Para el cálculo del costo horario de los camiones debemos tener en cuenta los siguientes aspectos:

a. El costo del camión es de US$ 120,000.00 y la tolva es de US$ 20,000.00 ambos sin el Impuesto General a las Ventas. Luego el costo total del camión será US$ 140,000.00.
b. De acuerdo a las especificaciones del fabricante la vida útil de los camiones es de 15,000.00 horas.
c. El valor de rescate de estos equipos es de 25%.
d. El consumo horario de combustible de los camiones es de tres (03) galones para una ruta similar.
e. El costo de los seguros de los camiones es de 2% del costo del equipo.
f. El costo del dinero es de 8%.
g. Los gastos de reparación y mantenimiento representan para estos equipos el 100% del costo horario por depreciación y gastos financieros.

De esta manera tenemos la siguiente información:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Volvo FM12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo del camión</td>
<td>140,000.00</td>
</tr>
<tr>
<td>Vida Útil</td>
<td>15,000.00</td>
</tr>
<tr>
<td>Valor de Rescate</td>
<td>25%</td>
</tr>
<tr>
<td>Costo del Dinero</td>
<td>8%</td>
</tr>
<tr>
<td>Costo Combustible</td>
<td>3.50</td>
</tr>
<tr>
<td>GI / hora</td>
<td>3.00</td>
</tr>
<tr>
<td>Seguro</td>
<td>2%</td>
</tr>
<tr>
<td>Gastos de Reparación + Mantenimiento</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabla 09.- Información económica – financiera del equipo de transporte

2. Costo horario de los equipos de transporte

El costo horario de los camiones estará dado por la suma de depreciación + gastos financieros, reparación y mantenimiento, neumáticos, combustible, operador y seguros.
2.1 Depreciación + gastos financieros

Para el cálculo de los costos por depreciación más gastos financieros debemos determinar la vida útil expresada en años y el valor aparente de compra del equipo.

Si consideramos que la vida útil de los camiones es de 15,000 horas, que el horario de trabajo es de nueve (09) horas por día y veinticinco (25) días por mes, tendremos que la vida útil expresada en años será:

\[
15,000 / (9 \times 25 \times 12) = 5.50 \text{ años}
\]

El valor aparente de compra lo obtendremos a partir de la diferencia del costo del camión menos el valor de rescate a valor presente.

Valor aparente de compra = Costo del equipo – Valor presente del valor de rescate

Valor rescate (VR) = 25% costo equipo = 0.25 \times 140,000 = US $ 35,000.00

Valor presente de VR = VR / (1 + i)^n

Donde,

\( i \): costo del dinero
\( n \): número de años

Entonces,

Valor presente de VR = 35,000 / (1 + 0.08)^{5.5} = US $ 22,921.20

Por lo tanto el valor aparente de compra será:

\[
140,000.00 - 22,921.20 = US \$ 117,078.80
\]
Haciendo uso de las matemáticas financieras obtenemos la cuota mensual del valor aparente de compra: US $ 3,668.82.

Luego el costo horario de depreciación más gastos financieros será de la siguiente manera:

\[
\text{Cuota mensual} / (\text{horas por día}) \times (\text{días por mes}) = 3,668.82 / 9 \times 25 = \text{US$ 16.31.}
\]

2.2 Reparación y mantenimiento

Los costos por depreciación y mantenimiento serán equivalentes al 100% del costo por depreciación más gastos financieros.

\[
100\% \times (\text{Depreciación + financieros}) = 100\% \times (16.31) = \text{US$ 16.31.}
\]

2.3 Neumáticos

<table>
<thead>
<tr>
<th>Vida útil de un neumático</th>
<th>35,000 Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo de un neumático</td>
<td>US$ 500.00</td>
</tr>
<tr>
<td>Número de neumáticos</td>
<td>10 unidades</td>
</tr>
</tbody>
</table>

Considerando que en una hora un camión realiza tres ciclos, la distancia recorrida será: \(3 \times (2 \times 2.4) = 14.40\) Km. Así mismo consideraremos que el camión consume 20% de este recorrido para realizar maniobras en la zona de cajiguio y botadero.

De esta manera el camión recorrerá en una hora \(14.40 \times 1.20 = 15.60\) Km. Por lo tanto un neumático tendrá una vida útil de \(35,000 / 15.60 = 2,244\) horas.

Luego, el costo horario por concepto de neumáticos será:

\[
500 \times 10 / 2,244 = \text{US$ 2.23/hora.}
\]
2.4 Combustible

Considerando el costo del combustible a US$ 3.50 (sin IGV) y que el consumo horario de los camiones en esta zona de trabajo es de 3.00 gal / hora, el costo horario de combustible será: 3.50 x 3.00 = US$ 10.50.

2.5 Operador

De acuerdo a la información obtenida en la mina donde se realiza la operación, el costo horario de un operador es de US$ 5.00.

2.6 Seguros

Así mismo el seguro tiene un costo anual equivalente al 2% del costo del equipo. Luego el costo horario por concepto de seguros será:

\[
2\% \ (\text{costo del camión}) \ / \ (12) \ x \ (\text{horas por día}) \ x \ (\text{días por mes}) = \\
2\% \ (140,000) \ / \ 12 \ x \ 9 \ x \ 25 = \\
\text{US$ 1.04.}
\]

Luego el costo horario de un camión será:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Volvo FM 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depreciación + Financiero</td>
<td>16.31</td>
</tr>
<tr>
<td>Reparación + Mantenimiento</td>
<td>16.31</td>
</tr>
<tr>
<td>Neumático</td>
<td>2.23</td>
</tr>
<tr>
<td>Combustible</td>
<td>10.50</td>
</tr>
<tr>
<td>Operador</td>
<td>5.00</td>
</tr>
<tr>
<td>Seguro</td>
<td>1.04</td>
</tr>
<tr>
<td><strong>Costo Horario</strong></td>
<td><strong>51.38</strong></td>
</tr>
</tbody>
</table>

Tabla 10.- Costo horario del equipo de transporte
3. **Información general de la excavadora**

Para el cálculo del costo horario de la excavadora debemos tener en cuenta los siguientes aspectos:

a. El costo de la excavadora seleccionada es de US$ 340,000.00 sin el Impuesto General a las Ventas. El valor de rescate de este tipo de equipo es de 20%.

b. De acuerdo a las especificaciones del fabricante la vida útil de la excavadora es de 15,000.00 horas.

c. El consumo horario de combustible es de 9.50 galones.

d. El costo de los seguros es de 2% del costo del equipo.

e. El costo del dinero es de 8%.

f. Los gastos de reparación y mantenimiento representan para estos equipos el 100% del costo horario por depreciación y gastos financieros.

De esta manera tenemos la siguiente información:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>CAT 330</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo del equipo</td>
<td>340,000.00</td>
</tr>
<tr>
<td>Vida Útil</td>
<td>15,000.00</td>
</tr>
<tr>
<td>Valor de Rescate</td>
<td>20%</td>
</tr>
<tr>
<td>Costo del Dinero</td>
<td>8%</td>
</tr>
<tr>
<td>Costo Combustible</td>
<td>3.50</td>
</tr>
<tr>
<td>GL / hora</td>
<td>9.50</td>
</tr>
<tr>
<td>Seguro</td>
<td>2%</td>
</tr>
<tr>
<td>Gastos de Reparación + Mantenimiento</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabla 11.- Información económica – financiera del equipo de carguío

4. **Costo horario de los equipos de carguío**

El costo horario de la excavadora estará dado por la suma de depreciación + gastos financieros, reparación y mantenimiento, combustible, operador y seguros.
4.1 Depreciación + gastos financieros

Para el cálculo de los costos por depreciación más gastos financieros debemos determinar la vida útil expresada en años y el valor aparente de compra del equipo.

Si consideramos que la vida útil de la excavadora es de 15,000 horas, que el horario de trabajo es de nueve (09) horas por día y veinticinco (25) días por mes, tendremos que la vida útil expresada en años será:

\[
15,000 / (9 \times 25 \times 12) = 5.50 \text{ años}
\]

El valor aparente de compra lo obtendremos a partir de la diferencia del costo del equipo menos el valor de rescate a valor presente.

Valor aparente de compra = Costo del equipo – Valor presente del valor de rescate

Valor rescate (VR) = 20% costo equipo = 0.20 x 340,000 = US $ 68,000.00

Valor presente de VR = VR / (1 + i)^n

Donde,

i: costo del dinero
n: número de años

Entonces,

Valor presente de VR = 68,000 / (1 + 0.08)^5.5 = US $ 44,532.62

Por lo tanto el valor aparente de compra será:

340,000.00 – 44,532.62 = US $ 295,467.38
Haciendo uso de las matemáticas financieras obtenemos la cuota mensual del valor aparente de compra: US $ 9,258.87.

Luego el costo horario de depreciación más gastos financieros será de la siguiente manera:

\[
\text{Cuenta mensual} \times (\text{horas por día}) \times (\text{días por mes}) = 9,258.87 \times 9 \times 25 = \text{US$ 20.58.}
\]

4.2 Reparación y mantenimiento

Los costos por depreciación y mantenimiento serán equivalentes al 100% del costo por depreciación más gastos financieros.

\[
100\% \times (\text{Depreciación} + \text{financieros}) = 100\% \times (20.58) = \text{US$ 20.58.}
\]

4.3 Combustible

Considerando el costo del combustible a US$ 3.50 (sin IGV) y que el consumo horario de la excavadora en esta zona de trabajo es de 9.50 gal / hora, el costo horario de combustible será: 3.50 x 9.50 = US$ 33.25.

4.4 Operador

De acuerdo a la información obtenida en la mina donde se realiza la operación, el costo horario de un operador es de US$ 5.00.

4.5 Seguros

Así mismo el seguro tiene un costo anual equivalente al 2% del costo del equipo. Luego el costo horario por concepto de seguros será:

\[
2\% \times (\text{costo de la excavadora}) \times (\text{horas por día}) \times (\text{días por mes}) = 2\% \times 340,000 \times 12 \times 9 \times 25 = \text{US$ 2.52.}
\]
Luego el costo horario de la excavadora será:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>CAT 330</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depreciación + Financiero</td>
<td>20.58</td>
</tr>
<tr>
<td>Reparación + Mantenimiento</td>
<td>20.58</td>
</tr>
<tr>
<td>Combustible</td>
<td>33.25</td>
</tr>
<tr>
<td>Operador</td>
<td>5.00</td>
</tr>
<tr>
<td>Seguro</td>
<td>2.52</td>
</tr>
<tr>
<td><strong>Costo Horario</strong></td>
<td><strong>61.82</strong></td>
</tr>
</tbody>
</table>

Tabla 12.- Costo horario del equipo de carguio

Obtenido el número y el costo de los equipos podemos determinar el costo horario de la operación:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Costo horario (US$)</th>
<th>Parcial (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavadora</td>
<td>2.00</td>
<td>81.92</td>
<td>163.84</td>
</tr>
<tr>
<td>Camión</td>
<td>10.00</td>
<td>51.38</td>
<td>513.79</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td><strong>677.63</strong></td>
</tr>
</tbody>
</table>

Teniendo en cuenta que la producción horaria requerida es de (02 puntos de carguio) \times (348 Ton) = 696 Ton, entonces el costo por unidad cargada y transportada será:

\[
\text{US$677.63} / 696 \text{ Ton} = \text{US$0.97} / \text{Ton (')}
\]

(\text{'}): Costo directo.
Como se ha podido apreciar en la evaluación de los resultados, la operación tal como se llevó a cabo no contaba con un adecuado plan de trabajo que permita determinar el tipo y la cantidad de equipos a utilizar, así como también conocer el costo por unidad de medición, que en este caso es la tonelada cargada y transportada.

El origen de las colas tanto en la zona de carguío como en la zona de botadero se debe al excesivo número de camiones utilizados en la operación y la variable separación de tiempo entre camiones.

Un factor importante a tener en cuenta durante el control en campo de la operación es mantener la separación de tiempo entre camiones, ya que el dimensionamiento de los equipos se realizó bajo esta consideración. Una manera de mantener esta separación de tiempo es a través de un dispositivo electrónico colocado en la cabina del operador del equipo de carguío que emita una alarma; de esta manera el operador puede mantener el periodo entre camión y camión.

Hemos podido apreciar en este capítulo la secuencia lógica y natural que se debe seguir para determinar el número y cantidad de equipos en este tipo de operaciones; así mismo se entrega una alternativa para la medición y el control en campo de la operación.
CONCLUSIONES

A través de estos cuatro capítulos hemos dado una revisión a las operaciones de carguío y transporte, desde el estado del arte, conociendo y describiendo su naturaleza y restricciones, mostrando un caso de la vida real y analizando los datos obtenidos en campo.

Es así que en este paso nos podemos dar cuenta que operaciones de este tipo se constituyen en un basto campo de estudio. Sin embargo, debemos tener en cuenta lo siguiente:

1. Determinación del Objetivo
   Como hemos podido ver en los capítulos anteriores, el objetivo de una operación de carguío y transportes es la de trasladar material de un lado a otro al menor costo. De esta manera el objetivo principal es obtener el menor costo por tonelada cargada y transportada.

   En una operación de carguío y transporte encontramos tres zonas que son la zona de carguío, zona de botadero y el tramo de recorrido. El objetivo local de cada una en estas zonas debe estar supeditado al objetivo global.

   En el caso presentado en el capítulo III, pudimos observar que las acciones tomadas por los responsables de la operación estaban orientadas a realizar una mejora local, sin embargo esta decisión perjudicó a la operación conjunta.
2. Plan de Trabajo

Una operación que no cuenta con un plan de trabajo adecuado, en el que se definan los objetivos y alcances establecidos, estará condenado al fracaso en términos económicos y productivos.

La información mínima que debe tener un plan de trabajo es la siguiente:

- Objetivo del Trabajo
- Metodologías para asegurar la calidad del trabajo
- Recursos Utilizados
- Entregable del Trabajo por proceso
- Organigrama de funciones
- Temas relacionados a la salud, medio ambiente y seguridad
- Formas de Comunicación

3. Costos de la Operación

Si bien es cierto que las operaciones mineras, debido a las condiciones favorables del mercado, tienen márgenes de utilidad considerables, no debemos desperdiciar los recursos utilizados en la operación. El mercado de los minerales se ha incrementado en estos últimos años en gran parte al crecimiento de algunos países del oriente, sin embargo esta época de bonanza puede decaer. Es por ello que debemos tener como meta hacer las cosas bien promoviendo un uso racional de los recursos.

\[
\text{MARGEN} = \text{VENTA} - \text{COSTO}
\]

Como se puede observar, el margen de ganancia depende de dos factores: La Venta y el Costo. Ya que la venta depende de factores externos sobre el cual no tenemos influencia, nuestra labor es alcanzar márgenes de ganancia mayores, disminuyendo los costos, eliminando en la medida de lo posible todo aquel que no agregue valor a la operación.

El siguiente cuadro muestra la composición del costo horario por tipo de equipos indicado en el capítulo IV:
### Composición del costo horario por tipo de equipo

![](image)

**Gráfico 10**: Composición del costo horario

Haciendo un análisis del costo de la operación de acuerdo al número de camiones utilizados, tenemos lo siguiente:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Costo horario (US$)</th>
<th>% de utilización</th>
<th>Costo horario de la operación de acuerdo al número de camiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavadora (2 uds)</td>
<td>81.92</td>
<td>1.00</td>
<td>163.84 163.84 163.84 163.84</td>
</tr>
<tr>
<td>Camión</td>
<td>51.38</td>
<td>1.00</td>
<td>103.56 207.12 414.27 621.03 613.79 615.56</td>
</tr>
<tr>
<td>Total costo horario</td>
<td>385.35</td>
<td>472.11</td>
<td>574.87 677.63 780.35</td>
</tr>
</tbody>
</table>

- **Vías / hora**: 12.00 18.00 24.00 30.00 30.90
- **Ton / hora**: 300.00 450.00 600.00 750.00 750.30
- **Costo 1 ton cargada y transportada**: 1.23 1.05 0.96 0.90 1.04

Gráficamente:
Luego, nuestra elección será aquella cantidad de camiones que minimice nuestra función objetivo.

Si consideramos que en dicha operación se utilizó doce (12) camiones para el transporte podemos afirmar que nuestra propuesta mejoraría la productividad del conjunto en:

\[
\frac{(1.04 - 0.90)}{0.90} \times 100 \% = 15\%
\]

Como se puede apreciar en este caso bajo estudio, lo cual sucede casi en el 100% de los casos, la mayor incidencia del costo se refleja en los camiones, por lo tanto debemos minimizar su tiempo no productivo, de esta manera lograremos optimizar, en términos productivos y económicos, la operación de transporte y carguio. Esto concuerda con el concepto de sistema, en el cual todo el conjunto trabaja para el objetivo global: lograr el mejor costo por unidad cargada y transportada.

Como se ha podido apreciar en el primer y segundo capítulo, el enfoque mecanicista con objetivos locales tiene el concepto inverso: se debe optimizar el uso de la excavadora, para lo cual agregan camiones a la operación, lo cual sólo trae menor productividad y consecuentemente, mayores costos.
También debemos considerar un factor prácticamente olvidado por los responsables de operaciones de transporte y carga: El factor de resistencia a la rodadura FRR; un valor alto de este factor provoca lo siguiente:

- **Incremento del tiempo del ciclo de transporte de los camiones**, lo cual se traduce en menor producción horaria y mayor costo por unidad cargada y transportada.

- **Deterioro prematuro de los camiones**, lo cual disminuye el valor de rescate de las unidades.
RECOMENDACIONES

PROCEDIMIENTO PARA EL DIMENSIONAMIENTO DE UNA OPERACIÓN DE CARGUÍO Y TRANSPORTE

Para el caso de operaciones de carguío y transporte, tenemos lo siguiente:

Objetivo:
Transportar material al menor costo y en un plazo determinado. Para esto nuestra unidad de medida será la tonelada cargada y transportada.

Datos de entrada

N : Número de toneladas a ser excavadas, cargadas y transportadas.
D : Número de días totales que se tiene para ejecutar N.
H : Número posible de horas por día de trabajo.
F : Número de frentes de trabajo.
L : Distancia Promedio.
Plan de Trabajo:

1. Determinar el volumen de trabajo (toneladas de material a transportar) y el plazo. Con estos datos podemos calcular la demanda horaria que debemos transportar por cada punto de carguio.

\[ T = \frac{N}{(D \times H \times F)} \]

2. Considerando lo indicado en el punto 1 y las condiciones de la zona de trabajo determinaremos el tipo y la cantidad de equipos a utilizar. Así mismo determinaremos la separación necesaria entre camiones para reducir el efecto de la variabilidad de los ciclos de transporte de los camiones; de esta manera evitaremos la formación de colas en las zonas de carguio y de botadero. Para ello, haremos uso de la siguiente tabla:

Tabla 01: Separación entre camiones en función del tiempo del ciclo y la variabilidad en la zona de trabajo
El uso de la tabla N° 01 nos proporcionará la separación "S" que existirá entre camiones; de esta manera podremos determinar el número máximo de camiones cargados por hora:

\[
\text{N° máximo de camiones cargados por hora} : 60' / S \text{ (minutos)}
\]

Luego la capacidad teórica de carga de camiones será:

\[
\text{Producción horaria} / \text{Número máximo de camiones}
\]

Obtenida la capacidad teórica de carga de los camiones buscaremos en el mercado un modelo que se adecue a nuestro requerimiento.

Luego, la cantidad camiones totales a utilizar en la operación será la siguiente:

\[
\left( \text{N° Ptos. de carga} \right) \times \text{(Producción horaria)} / \text{(capacidad teórica de carga)}
\]

La tabla N° 02 nos permitirá determinar el tamaño de la excavadora.

Tabla 02: Tamaño de excavadora en función de su producción horaria
BIBLIOGRAFÍA

Libros


**Manuales Técnicos**


**Páginas web**

1. www.leanconstruction.org

2. www.wikipedia.org

3. www.cat.com

4. www.komatsu.com