UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA CIVIL

REFORZAMIENTO ESTRUCTURAL DE MUROS DE ADOBE

TESIS

PARA OPTAR POR EL TÍTULO PROFESIONAL DE:

INGENIERO CIVIL

LUCÍA ISABEL IGARASHI HASEGAWA

LIMA – PERÚ

2009
ÍNDICE

RESUMEN 4

LISTA DE TABLAS 5

LISTA DE FIGURAS 7

LISTA DE SÍMBOLOS Y SIGLAS 11

INTRODUCCIÓN 12

CAPÍTULO I: GENERALIDADES 15

I.1 ANTECEDENTES 15

I.2 PROCESO CONSTRUCTIVO DE MUROS DE ADOBE 17

I.2.A SELECCIÓN DEL SUELO 17

I.2.B FABRICACIÓN DE BLOQUES DE ADOBE 18

I.2.C CONSTRUCCIÓN CON ADOBE 21

I.3 COMPORTAMIENTO DE LAS ESTRUCTURAS DE ADOBE ANTE LA ACCIÓN DE SISMOS 22

CAPÍTULO II: PLANTEAMIENTO DE SOLUCIONES DE REFUERZO 24

II.1 EMPLEANDO ESTERAS 24

II.2 EMPLEANDO COSTALILLOS 25

CAPÍTULO III: ENSAYO DEL MODELO 27

III.1 FABRICACIÓN DEL ESPÉCIMEN DEL ENSAYO 27

III.1.A FABRICACIÓN DE LOS BLOQUES DE ADOBE 27

III.1.B CONSTRUCCIÓN DE LA BASE 29

III.1.C CONSTRUCCIÓN DEL MURO DE ADOBE 29
ÍNDICE

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.2 ENSAYO MONOTÓNICO</td>
<td>36</td>
</tr>
<tr>
<td>III.2.A PROCEDIMIENTO</td>
<td>36</td>
</tr>
<tr>
<td>III.2.B EQUIPO</td>
<td>38</td>
</tr>
<tr>
<td>III.2.C OBSERVACIONES</td>
<td>40</td>
</tr>
<tr>
<td>III.3 RESULTADOS DE LOS ENSAYOS</td>
<td>43</td>
</tr>
<tr>
<td>III.3.A MUROS NO REFORZADOS</td>
<td>43</td>
</tr>
<tr>
<td>III.3.B MUROS REFORZADOS</td>
<td>49</td>
</tr>
<tr>
<td>CONCLUSIONES</td>
<td>60</td>
</tr>
<tr>
<td>RECOMENDACIONES</td>
<td>63</td>
</tr>
<tr>
<td>BIBLIOGRAFÍA</td>
<td>64</td>
</tr>
<tr>
<td>ANEXO 1: MANUAL DIDÁCTICO</td>
<td>66</td>
</tr>
<tr>
<td>ANEXO 2: ENSAYOS COMPLEMENTARIOS</td>
<td>67</td>
</tr>
<tr>
<td>A.2.1 RESISTENCIA A LA COMPRESIÓN DE LAS UNIDADES DE ADOBE</td>
<td>67</td>
</tr>
<tr>
<td>A.2.2 RESISTENCIA A LA COMPRESIÓN DEL MORTERO SUELO-CEMENTO</td>
<td>69</td>
</tr>
<tr>
<td>A.2.3 RESISTENCIA A LA COMPRESIÓN DE PILAS DE ADOBE</td>
<td>73</td>
</tr>
<tr>
<td>A.2.4 RESISTENCIA AL CORTE DEL ADOBE</td>
<td>76</td>
</tr>
<tr>
<td>A.2.5 GRANULOMETRÍA DEL SUELO EMPLEADO EN LOS ENSAYOS</td>
<td>80</td>
</tr>
<tr>
<td>ANEXO 3: NORMA TÉCNICA DE EDIFICACIONES E.080 – ADOBE</td>
<td>83</td>
</tr>
<tr>
<td>ANEXO 4: PANEL FOTOGRAFÍCO</td>
<td>105</td>
</tr>
<tr>
<td>FABRICACIÓN DEL ADOBE</td>
<td>105</td>
</tr>
<tr>
<td>FABRICACIÓN DEL MURO SIN REFORZAR</td>
<td>106</td>
</tr>
<tr>
<td>ENSAYO DE LOS MUROS NO REFORZADOS</td>
<td>107</td>
</tr>
<tr>
<td>REFORZAMIENTO DEL MURO DE ADOBE</td>
<td>108</td>
</tr>
<tr>
<td>ENSAYO DE LOS MUROS REFORZADOS</td>
<td>112</td>
</tr>
</tbody>
</table>
RESUMEN

En la presente tesis se estudian dos alternativas para reforzar muros de adobe existentes. Una contempla el uso de estera como elemento de confinamiento y la otra costalillo plástico. Estos elementos de confinamiento van anclados a un par de listones de madera que se encuentran amarrados al muro de adobe.

Como primera etapa de la investigación, se ensayaron 4 muros de adobe en escala 1:1, los cuales fueron fabricados con condiciones desfavorables (esbeltos, sin confinamiento lateral ni viga collar). Estos muros sin refuerzo o MASR sirven de punto de comparación para verificar la efectividad de los refuerzos propuestos. La segunda etapa del estudio consistió en reparar y reforzar los MASR ensayados. Dos de estos muros fueron reforzados empleando costalillo y los otros dos, estera. Finalmente, estos muros reforzados o MAR fueron ensayados, obteniéndose resultados favorables en ambos casos.

En el caso de los MAR reforzados con estera, si bien el la resistencia al corte sólo aumentó en forma proporcional al aumento geométrico de la sección transversal del muro, se observó que la distorsión alcanzada por el muro fue 4 veces mayor que la obtenida con los MASR.

En el caso de los MAR reforzados con costalillo, el esfuerzo cortante máximo aumentó en 13%. Asimismo, la distorsión aumentó 400% con respecto a los MASR, en forma similar a la alternativa de refuerzo con estera.

En base a los resultados, se concluyó que la mejor alternativa es la que emplea costalillos, por tener mejor comportamiento, ser más económica y tener mayor disponibilidad del material a nivel nacional. Por ello se desarrolló un manual didáctico para la difusión de esta alternativa de refuerzo.
INTRODUCCIÓN

A inicios del Siglo XXI, la tecnología avanza cada vez en forma más acelerada. Los nuevos materiales y las nuevas técnicas constructivas generan estructuras que hasta hace unos años hubiesen sido imposibles de realizar. Sin embargo, no se debe dejar de lado la investigación y mejora de los materiales tradicionales, ya que en obras de pequeña envergadura resulta muchas veces costoso emplear las nuevas tecnologías.

Es por ello que en nuestro país aún es común ver pequeñas edificaciones de adobe o tapial, principalmente en las zonas rurales remotas, donde la topografía dificulta el intercambio comercial, y por consiguiente los pobladores deben subsistir empleando los recursos locales disponibles. También es posible ver estructuras de adobe en zonas geográficamente cercanas a polos de desarrollo, ya que el bajo costo del material y la facilidad que tiene para la autoconstrucción hacen que sea empleado generalmente por gente de recursos limitados. Asimismo, las casonas centenarias que han hecho que muchas ciudades del Perú sean consideradas como patrimonio histórico están construidas con este material tradicional. Todos estos motivos hacen que un material tan frágil como el adobe siga vigente.

Ante esta realidad se han desarrollado una serie de normas y recomendaciones para construir con adobe, pautas que limitan las dimensiones tanto de las unidades como de los muros, además de añadir refuerzos de madera o de caña entre las unidades, para lograr un mejor comportamiento de la estructura.

Pero no siempre es posible eliminar las edificaciones antiguas para erigir unas nuevas, reforzadas de acuerdo a los manuales del ININVI y la Norma E.060 – Adobe, y estabilizando las unidades para hacerlas más resistentes a la intemperización. Por la forma en que se desarrolla el núcleo familiar en nuestro
país, muchas veces varias generaciones de una familia viven bajo el mismo techo, siendo común que las casas pasen de una generación a otra.

Los sismos ocurridos en el país en los últimos años, en especial el que sacudió el sur del país el pasado 15 de agosto del 2007, han demostrado lo vulnerables que son las estructuras de adobe. Muchas viviendas construidas con este material sufrieron daños severos o colapsaron debido a no contar con refuerzos adecuados.

Los estudios realizados por el CISMID luego del sismo de Pisco del 2007 nos muestran los porcentajes de viviendas de adobe que sufrieron daños. El 50,6% de las edificaciones en Chinchana Baja eran de adobe, de las cuales, el 57% colapsó, 10% tuvo daño severo y 12% tuvo daño moderado. Asimismo, el 18,20% de las edificaciones en Pisco era de adobe, y de ellas, el 82,52% sufrió daño grave (colapsó) y 9,46% sufrió daño severo. En las figuras 1 y 2 se puede observar los niveles de daño causados por el sismo del 15 de agosto del 2007 en las edificaciones de adobe de Chinchana Baja y de Pisco. La mayoría de estas edificaciones presentaban muros sin reforzar, falta de dinteles en los vanos y carencia de vigas colar en la parte superior.

Figura 1: Niveles de Daño en Edificaciones de Adobe - Distrito de Chinchana Baja

Fuente: CISMID, UNI, FORSUR, BM. Informe Final del Estudio de Microzonificación Sismica y Zonificación por Peligro de Tsunami en Chinchana Baja y Tambo de Mora. 2006
Por lo tanto, la presente tesis se enfoca en el reforzamiento de estructuras de adobe existentes, tomando como punto de partida el hecho que un muro de mampostería debe estar confinado para que trabaje en forma óptima. El refuerzo se ha desarrollado considerando ciertos parámetros básicos: fácil disponibilidad de los materiales a emplear, proceso constructivo sencillo que permita la autoconstrucción, y bajo costo.

Asimismo, como complemento, se ha desarrollado un manual didáctico que explica los pasos del proceso de reforzamiento para su autoconstrucción, el cual puede ser repartido a diversas áreas donde abundan las viviendas de adobe.
CAPÍTULO I: GENERALIDADES

1.1 ANTECEDENTES

El uso del adobe como material de construcción ha sido desde la antigüedad ampliamente difundido alrededor del mundo. Las formas arquitectónicas varían en función de las condiciones características de cada lugar, pero el material es esencialmente el mismo: agua y tierra. Precisamente es la fácil disponibilidad de estos elementos en el medio lo que ha convertido al adobe en uno de los materiales más utilizados en la construcción. De acuerdo con el V Censo Nacional Vivienda del 2005, de 5 858 149 viviendas existentes en el Perú, el 37.00 % están hechas de adobe, siendo este porcentaje mayor en las áreas rurales, alcanzando el 69.96 %.

Tabla 1: Cantidad de Viviendas según material de las paredes

<table>
<thead>
<tr>
<th>Area</th>
<th>Ladillo o Bloques</th>
<th>Piedra con cal</th>
<th>Adobe o Tapia</th>
<th>Quincha</th>
<th>Piedra con barro</th>
<th>Madera</th>
<th>Estera</th>
<th>Otro</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbana</td>
<td>2633193</td>
<td>39787</td>
<td>1095437</td>
<td>102892</td>
<td>398</td>
<td>313004</td>
<td>62335</td>
<td>59037</td>
<td>4326071</td>
</tr>
<tr>
<td></td>
<td>60.87%</td>
<td>0.92%</td>
<td>25.32%</td>
<td>2.38%</td>
<td>0.01%</td>
<td>7.24%</td>
<td>1.90%</td>
<td>1.36%</td>
<td>100 %</td>
</tr>
<tr>
<td>Rural</td>
<td>54835</td>
<td>5682</td>
<td>1072184</td>
<td>73391</td>
<td>75172</td>
<td>152306</td>
<td>17555</td>
<td>80941</td>
<td>1532078</td>
</tr>
<tr>
<td></td>
<td>3.56%</td>
<td>0.37%</td>
<td>69.98%</td>
<td>4.79%</td>
<td>4.91%</td>
<td>9.94%</td>
<td>1.15%</td>
<td>5.28%</td>
<td>100 %</td>
</tr>
<tr>
<td>Total</td>
<td>2680018</td>
<td>45469</td>
<td>2167621</td>
<td>176263</td>
<td>75588</td>
<td>465312</td>
<td>99900</td>
<td>139978</td>
<td>5856149</td>
</tr>
<tr>
<td></td>
<td>45.89%</td>
<td>0.78%</td>
<td>37%</td>
<td>3.01%</td>
<td>1.29%</td>
<td>7.94%</td>
<td>1.71%</td>
<td>2.39%</td>
<td>100 %</td>
</tr>
</tbody>
</table>

El adobe, como todo material presenta sus ventajas y desventajas. A su favor tiene el bajo costo y fácil disponibilidad de los materiales. Además permite la autoconstrucción. Otra ventaja importante, especialmente para las edificaciones ubicadas en la región andina es el gran aislamiento térmico de este material. Sin
embargo, el adobe posee grandes limitaciones: es extremadamente vulnerable a la humedad, las unidades son frágiles y poco resistentes.

Las edificaciones de adobe sin refuerzo son muy vulnerables a los sismos debido a que los muros carecen de refuerzos o las dimensiones son inadecuadas. Por ello, se han escrito numerosos manuales con recomendaciones de refuerzo para la construcción de edificaciones de adobe. Pero aún queda el problema de las estructuras que ya han sido construidas sin refuerzos, que se ven en peligro de colapsar ante un sismo.

Ante este problema se han estudiado las siguientes soluciones:

- Cables o fajas horizontales exteriores, cuya función es evitar el volteo y el desplome de los muros. Estos normalmente se colocan en la parte superior de la estructura.

- La colocación de una viga solera en la estructura, que pese a ser efectiva, es una solución costosa.

- La colocación de cables o fajas verticales, principalmente para la reparación de muros esbeltos o delgados. Este método es de fácil colocación, pero altera la apariencia de los muros.

- La colocación de un núcleo central flexible (ya sea con barras de acero o fibra de vidrio), cuyo defecto es el elevado costo y la dificultad de ejecución.

- Colocación de grapas locales para controlar fisuras, la cual es más que nada una solución complementaria. Es bastante económica y simple.

- Colocación de malla electrosoldada o malla de polímeros (geomalla) de manera que se confina al muro formando unas pseudo vigas y pseudo columnas.
Se puede pensar al comparar los costos de la restauración con los costos de un muro nuevo, realizado tomando en cuenta las recomendaciones de refuerzo y dimensionamiento, que la mejor solución sería quizás volver a hacer la estructura. Esto es factible para una edificación de uso común.

Pero en muchos casos, la estructura que necesita reparación es un patrimonio cultural o histórico, por lo que se descarta la posibilidad de reconstrucción. La solución más adecuada es la que brinde la máxima eficiencia con la mínima inversión. Es por ello que en la presente tesis se analizan dos posibilidades de refuerzo de muros existentes, las cuales serán mostradas en el capítulo II.

1.2 PROCESO CONSTRUCTIVO DE MUROS DE ADOBE

A través de los años se han dado una serie de recomendaciones para construir edificaciones de adobe más resistentes, las cuales han sido recopiladas en su mayoría en los manuales y normas técnicas del ININVI. Las consideraciones a tomar en cada etapa del proceso constructivo de muros de adobe que se dan a continuación fueron presentadas por Morales, Torres, Rengifo e Iraula en el “Manual para la Construcción de Viviendas de Adobe” de 1993.

1.2.a Selección del Suelo

El suelo apropiado para la fabricación de los bloques de adobe debe tener entre 25 % y 45 % de arcillas y limos, y el porcentaje restante de arena. La proporción máxima de arcilla estará comprendida entre 15 % y 17 %. De una adecuada graduación del suelo depende la resistencia del adobe. El suelo no debe ser tipo orgánico ni nitroso, ya que ello afectaría la durabilidad del bloque. Ambos tipos de suelo son fáciles de identificar por su color: el suelo orgánico es negruzco y el nitroso es blanquecino. El suelo nitroso además posee un sabor salado. Es por ello que no se recomienda emplear suelos de cultivo.

Existen algunas pruebas de campo bastante sencillas para determinar si el suelo es apto para la fabricación de adobes:
- Ensayo de graduación del suelo: ayuda a determinar la proporción de arena, arcilla y limo de un suelo. El equipo necesario consiste en una botella de un litro de capacidad (de preferencia de forma cilíndrica y boca ancha), la cual es llenada hasta la mitad con el suelo y el resto con agua. La botella se tapa y se sacude hasta que todas las partículas del suelo queden en suspensión. Luego se coloca la botella sobre una superficie horizontal para que las partículas se sedimenten. Finalmente, se mide el espesor de cada capa de material. La primera corresponde a la arena y la segunda a la arcilla y el limo. El volumen de la arena debe ser entre 1,5 y 3 veces el de la arcilla con el limo.

- Ensayo de plasticidad, que determina si el suelo es arcilloso, arenoso o arcillo-arenoso. La prueba consiste en hacer un rollo de 1,5 cm de diámetro, lo más largo posible, con barro, el cual luego es sostenido por uno de sus extremos. Luego se mide la longitud de la parte rota. Si es menor de 5 cm, el suelo es arenoso, si está entre 5 y 15 cm, es arcillo-arenoso, y si es mayor de 15 cm, es arcilloso.

- Prueba de resistencia, que consiste en realizar discos de barro de 3 cm de diámetro y 1,5 cm de espesor. Estos discos se dejan secar por 48 horas y luego se tratan de romper. Si se aplastan con facilidad, el suelo no es adecuado porque su resistencia es muy baja. Si es difícil de aplastar o si se rompe emitiendo un sonido seco, la resistencia es adecuada para la fabricación de adobe.

1.2.b Fabricación de bloques de adobe

En primer lugar, el dimensionamiento de los bloques puede hacerse con las siguientes recomendaciones:

- La longitud del bloque no debe ser mayor a dos veces el ancho del mismo más el espesor de una junta.
- La altura no debe exceder los 10 cm.

- La relación entre longitud y altura debe ser 4 a 1, de manera que el traslape horizontal quede con una proporción de 2 a 1.

La fabricación de los bloques comienza con la elaboración del barro, teniendo cuidado que el suelo no tenga piedras de tamaño mayor a 5 cm. Para facilitar el proceso de mezclado, el barro se deja remojando por 24 horas antes. Esta etapa se muestra en la Figura 3.

Durante el proceso de mezclado, se le añade paja al barro, aproximadamente un 20 % en volumen, para controlar las fisuras. También se hace un reajuste al agua de manera que el barro quede trabajable, pero no demasiado suelto. Las herramientas empleadas en este proceso son las palas y los picos, pero es común emplear los pies, como se muestra en la Figura 4.

Figura 3: Hidratación del barro **Figura 4:** Mezclado del barro

Para dar forma a los bloques se emplea un molde de madera con o sin fondo, dimensionado tomando en cuenta la contracción del barro al secarse. Los pasos para moldear los adobes son:

1. Limpiar el molde antes de usarlo.
2. Hacer una gran bola de barro y arrojarla dentro del molde. La cantidad debe ser suficiente como para llenar el molde.

3. Enrasar la parte superior con una regla de madera.

4. Desmoldar con ligeras sacudidas verticales.

Figura 5: Pasos para moldear los adobes

Si luego del último paso, el bloque pierde su forma o se raja, es porque el barro tiene mucha o muy poco agua.

El bloque debe dejarse secando sobre una superficie horizontal. Luego de tres días se le puede dar vuelta, y a la semana se le puede apilar. Pasado un mes se realiza la prueba de resistencia. El bloque debe poder soportar el peso de un hombre adulto. Si esto no sucede, el suelo empleado necesita más arcilla.
1.2.c Construcción con adobe

Antes de empezar a construir una estructura de adobe, se debe seleccionar la ubicación más adecuada. Esto es, en un terreno firme (roca, suelos granulares con SPT > 30, suelos cohesivos con resistencia al corte mayor a 100 kPa). Se debe evitar construir sobre terrenos blandos con capacidad portante menor a 150 kPa. Además, el terreno sobre el que se va a construir no debe estar cerca de pantanos, ríos, lagos, rellenos, depresiones o suelos con gran pendiente.

La zanja para la cimentación debe tener por lo menos 40 cm de profundidad y un espesor 20 cm mayor al del muro. El material recomendado para la cimentación y el sobrecimiento es concreto ciclópeo (en proporción 1 de cemento : 4 de arena : 6 de grava), con 30 % de piedras grandes. El sobrecimiento debe tener por lo menos 25 cm de altura desde el nivel del terreno para evitar la erosión del muro a causa de las lluvias. Si se le va a colocar refuerzos al muro, éstos deben estar anclados al sobrecimiento.

Para dimensionar al muro, se puede seguir la Norma de Diseño de Adobe (Anexo 3).

El asentado de los bloques de adobe es bastante similar a otros tipos de albañilería. En primer lugar, los adobes deben haber culminado su periodo de secado, luego, antes de ser asentados, deben ser humedecidos, de manera que no absorban agua del mortero y la adherencia entre él y los bloques sea óptima.

El mortero se realiza de la misma manera que el barro para la fabricación de los bloques, pero con un contenido de paja igual en volumen al barro. Las juntas no deben exceder los 2 cm y deben estar completamente llenas. La máxima altura a construir por día debe ser 1,3 m, de manera que el muro no se asiente. Finalmente, se colocan maderas en la parte superior de los muros como vigas solera, las cuales servirán como arriostre y como base para un techo liviano.
El paso final luego de colocar el techo es dar acabado a las paredes, empleando barro, yeso, mortero suelo-cemento, o algún otro recubrimiento. Esto las protege de la humedad.

1.3 **COMPORTAMIENTO DE LAS ESTRUCTURAS DE ADOBE ANTE LA ACCIÓN DE SISMOS**

La falla en las estructuras de adobe se debe principalmente a la poca resistencia a la tracción y a la poca adherencia entre los bloques y el mortero. Las fallas más importantes que se presentan son:

- Falla por tracción en la intersección de los muros, causada por el esfuerzo directo a la tracción de uno de los muros generado cuando se comporta como arriostre de otros muros de la intersección. Esta falla se agrava cuando se presenta también un esfuerzo de flexión. Ver figura 6.

- Falla por flexión, generada por los efectos de la tracción por flexión, cuando los muros se comportan como una losa apoyada en la base y los elementos de arriostre verticales. Esta falla puede ser horizontal, vertical o diagonal. Ver figura 7.

Figura 6: Falla por Tracción

Figura 7: Falla por Flexión
- Falla por corte, generada cuando el muro trabaja como un muro de corte y se desarrolla el esfuerzo cortante en las juntas horizontales. Ver figura 8.

Figura 8: Falla por corte

- Falla por volteo, generada cuando el muro es sometido a la acción de cargas perpendiculares. Ver figura 9.

Figura 9: Falla por volteo
CAPÍTULO II: PLANTEAMIENTO DE SOLUCIONES DE REFUERZO

Sabemos que para que un muro pueda desarrollar una mayor resistencia, éste debe estar confinado, de manera que trabaje como un conjunto uniforme. Es por ello que el refuerzo planteado consiste en reparar la zona de falla del muro para luego reforzar únicamente sus extremos. En una primera tentativa se pensó en reforzar toda la superficie del muro para no tener que reparar las fisuras, pero esto quedó descartado por el excesivo costo.

Una vez definida la forma del refuerzo, aún quedaba la interrogante de los materiales a emplear. Se pensó entonces no en los materiales más resistentes, como el acero o la fibra de carbono, sino en los más accesibles en cualquier punto del país. Es así como se eligieron dos materiales: la estera y el costalillo.

II.1 EMPLEANDO ESTERAS

Es común observar en las zonas rurales y en los asentamientos humanos de nuestro país la presencia de viviendas precarias hechas con maderas que soportan unos paneles de carrizo o totora comúnmente conocidos como esteras. Este es un material no estructural bastante popular en nuestro medio debido a su bajo costo y fácil obtención. Las fibras están tejidas en una disposición perpendicular. Su tamaño estándar es de 2 m x 3 m, lo que corresponde aproximadamente a un muro pequeño.

La ventaja de este material es su flexibilidad y su buena adherencia al barro y a los morteros. Como en cierta manera puede soportarse, su instalación, ayudada por clavos o alambres, es bastante simple.
La idea básica de esta alternativa de refuerzo es colocar las esteras cubriendo los extremos del muro, para proporcionar confinamiento al muro de adobe. Las esteras son sujetadas a dos maderas ancladas a la base y amarradas al muro, las cuales proporcionan una rigidez adicional. Finalmente todo es recubierto con un mortero suelo cemento a fin de darle un buen acabado, proteger la estera y darle unidad a los elementos empleados en el refuerzo. Podemos observar un esquema de esta alternativa en la figura 10.

Figura 10: Esquema de refuerzo empleando estera

II.2 EMPLEANDO COSTALILLOS

El costalillo es un material que podemos encontrar con mucha frecuencia en los mercados de todo el país. Este tejido de polietileno por lo general se encuentra en forma de bolsas de distintas dimensiones, dependiendo del material que transportarán. Las de arroz son las más pequeñas con 0,55 m de ancho y 0,9 m de alto, mientras que las de maíz o tubérculos son por lo general de 0,7 m de ancho por 1,2 m de alto. En algunos casos también se les puede encontrar por rollos.

Este material es de alta durabilidad, por lo que puede reciclarse para otros usos, como en la fabricación de pequeños toldos. El costo de los costalillos de
segunda es muy bajo, pudiendo en algunos casos encontrársele hasta en la basura.

El planteamiento de la alternativa de refuerzo empleando costalillos tiene el mismo concepto que el de la estera, con la diferencia que por la flexibilidad extrema del material, se han podido reducir al máximo las dimensiones. De igual manera que la alternativa anterior, el costalillo se fija con clavos a dos maderas que han sido ancladas a la base y amarradas al muro con alambre pasante, para luego ser recubierto por mortero suelo cemento. El principal problema del empleo de este material dentro del sistema es su poca adherencia con el barro o el mortero. Por ello, se debe tener en cuenta la colocación adicional de clavos o alambres de manera de brindar una trabazón mecánica entre el recubrimiento final con mortero suelo cemento. Podemos observar el detalle de esta alternativa en la figura 11.

Figura 11: Esquema de refuerzo empleando costalillo
CAPÍTULO III: ENSAYO DEL MODELO

III.1 FABRICACIÓN DEL ESPÉCIMEN DEL ENSAYO

III.1.a Fabricación de los Bloques de Adobe

La fabricación de las unidades se realizó en enero del 2002. Lo favorable de trabajar en esta época del año es que permite que las unidades sequen rápidamente. Sin embargo se debe tener cuidado que el calor excesivo no genere fisuras en los bloques.

El objetivo principal a la hora de fabricar los adobes en el laboratorio fue realizarlos bajo las mismas condiciones que se presentan en la vida cotidiana. La materia prima empleada para realizar los adobes fue la tierra del CISMID. Se tuvo cuidado de separar las piedras de tamaño mayor a 5 cm que se encontraron durante el proceso de remoción de la tierra, pero no se usó ningún tamiz.

Figura 12: Barro empleado en la fabricación de los adobes
Con la ayuda de palas y picos se hizo una fosa de aproximadamente 4 m de diámetro, donde se acumuló el material suelto que se extraía. A esta tierra se le añadió paja de arroz, cortada en trozos de entre 10 y 15 cm de longitud, y agua en cantidad. Esto se dejó reposando por un día para que el suelo se hidrata. Para la elaboración del barro los encargados los batieron ayudados de palas y sus pies. De esta manera se homogeneiza la textura y adquiere una mejor consistencia (Ver figura 12).

Las dimensiones que se optaron para las unidades fueron 20 cm de espesor por 40 cm de longitud por 12 cm de altura. Al tener unidades de menores dimensiones a las recomendadas por el ININVI se puede jugar un poco más con la arquitectura al tener espesores de muros menores. Además el menor espesor de muros permite tener una mayor área efectiva en las edificaciones.

El molde empleado fue hecho de madera, sin fondo, para facilitar el proceso de desmoldado (Ver figura 13). La desventaja de ello es que al tener por tendal un terreno, si bien nivelado, la superficie es irregular. Es por ello que los adobes fabricados presentaban algunas irregularidades en sus superficies. Sin embargo, en campo es también difícil encontrar una superficie regular para emplear como tendal.

Figura 13: Molde empleado para la fabricación de adobes
Los adobes fueron dejados secar por un mes antes de empezar la elaboración de los muros. Para verificar su calidad, se realizaron ensayos de compresión axial a 10 unidades. Los resultados de estos ensayos se presentan en el Anexo 2 – A.2.1. La resistencia promedio al inicio de la fisuración es de 9,286 kg/cm² (0,09 kPa), y la resistencia última promedio es de 18,792 kg/cm² (0,19 kPa), la cual es mayor al mínimo de 12 kg/cm² (0,12 kPa) estipulado en la norma de adobe E – 080, que se muestra en el Anexo 3.

Para dar una mejor idea del desarrollo de esta etapa, se presenta un panel fotográfico en el Anexo 4.

III.1.b Construcción de la Base

Para dar soporte y un anclaje apropiado al muro al momento de ensayarlos, se construyó una base de concreto reforzado. Las dimensiones de esta base son estándar de manera que calcen correctamente con la losa del Laboratorio de Estructuras. Además, la base tiene embebidos tubos de PVC de 2" a cada 0,6 m, los cuales dejan un espacio libre para el paso de los pernos de anclaje. La sección de esta base fue de 0,30 m de altura por 0,90 m de ancho. Su longitud total fue de 2,95 m. El refuerzo colocado consistió en barras de acero #3 a cada 0,20 m amarradas a 6 barras #3 colocadas en forma longitudinal y separadas 0,40 m entre sí. El concreto empleado fue de 210 kg/cm². Las condiciones de vaciado y curado son las mismas que para cualquier estructura de concreto armado.

III.1.c Construcción del Muro de Adobe

Para la presente tesis se fabricaron 4 muros de adobe para ser sometidos a ensayo monotónico. Para verificar la efectividad de los métodos de refuerzo propuestos, se comparará el comportamiento de los muros no reforzados con el de los muros reforzados. Por ello, a construcción de los muros de adobe se divide en dos etapas: la fabricación de muros de adobe sin refuerzo (MASR) y la fabricación de los muros de adobe reforzados (MAR). Cabe resaltar el proceso...
de fabricación de los MAR corresponde al reforzamiento de los MASR previamente ensayados.

III.1.c.i Fabricación del Muro de Adobe no Reforzado

Cada muro fue construido en dos etapas para alcanzar la totalidad de sus dimensiones: 2,30 m de altura, 2,45 m de longitud y 0,20 m de espesor, lo que equivale a un muro de 17 hiladas con 6 adobes por hilada. Las juntas, tanto verticales como horizontales, son de 1,5 cm de espesor. Cabe resaltar que para el asentado de la primera hilada en la base de concreto, se empleó un mortero cemento – arena 1:4, de manera que la adherencia entre el muro y la base sea la más apropiada.

Para las juntas del muro, se emplea barro de consistencia y composición similar a la empleada para la fabricación de las unidades. Antes de ser asentadas, las caras de las unidades deben ser humedecidas para asegurar la óptima adherencia entre los bloques y el barro.

Figura 14: Etapas de Fabricación del muro de adobe sin refuerzo

Durante la primera jornada, la construcción del muro alcanzó aproximadamente la mitad de la altura total del muro (entre 6 y 10 hiladas). De manera que el peso propio no desalinee o desplome el muro, ya que al trabajar con mortero de barro, el proceso de ganar resistencia es mucho más lento que en un mortero enriquecido. En la segunda sesión se termina de levantar el muro en su totalidad.
El detalle de este proceso puede observarse en el panel fotográfico del Anexo 4.

III.1.c.ii Fabricación del Muro de Adobe Reforzado

Materiales empleados en el Refuerzo

Como se menciona en el Capítulo II, para reforzar cada extremo del muro se emplearán principalmente madera, costalillo (o estera) y mortero suelo-cemento. En esta sección se detallan las características de los materiales empleados para reforzar los muros no reforzados previamente ensayados:

- Dos maderas tornillo de sección cuadrada de 1 ½” de lado, de longitud igual a la altura del muro más 10 cm. Se prefirió que las barras no tengan las superficies cepilladas, para así mejorar la adherencia entre el mortero y la madera.

- En el caso de la alternativa empleando costalillo, las dimensiones corresponden a la de un saco estándar abierto por ambos lados, es decir, 70 cm de ancho y 2,40 de longitud. Por durabilidad, se prefirió el de polietileno sobre el de yute, pese a que la adherencia de este material con el mortero no es buena.

- En la alternativa empleando estera, donde cada panel tiene dimensión estándar es 2 m x 3 m, se cortó una sección de 1 m x 2,3 m.

- El mortero suelo-cemento empleado tanto para el recubrimiento de las pseudo columnas, como para reponer el material de las juntas que han fallado, es de proporción 7:1.

- Adicionalmente, para fijar estos elementos, se empleó alambre Nº 16 y clavos de acero de 1”.

A continuación se muestran los planos para ambas propuestas de refuerzo.
Figura 16: Plano E1 - Refuerzo empleando estera

Los listones de madera de 1 1/2" serán sujetados al muro con atornillado Nº 16 cada 4 listados. El arma se hará al pasar el atornillado por perforaciones hechas en medio de cada bloque, nunca por las juntas. Las maderas tendrán una sección cuadrada de 1 1/2" x 1 1/2". La longitud de anclaje será de 10 cm.
Los listones de madera de 1 1/2" serán sujetados al muro con atorniles N° 16 cada 4 listones. El ancho se hará al pasar el alambre por perforaciones hechas en medio de cada bloque, nunca por las juntas. Las listones tendrán una sección cuadrada de 1 1/2" x 1 1/2". La longitud de anclaje será de 10 cm.

Figura 16: Plano C1 - Refuerzo empleando costalillo
Proceso de Reparación

Luego de haber ensayado los especímenes sin reforzar, se inició su reparación siguiendo los siguientes pasos, siguiendo los planos E1 y C1 (figuras 15 y 16):

- Reemplazar el material en las juntas de mortero de barro falladas, por un mortero suelo – cemento en proporción 7:1. Para remover el material se empleó un taladro sin percutor provisto de una broca de $\frac{1}{4}''$ (figura 17). Este trabajo primero se realizó en los extremos de los muros, de manera que quede lista la zona donde se colocarán los refuerzos que confinarán al muro.

- Una vez reemplazado el mortero dañado, se perforó en la base orificios de 10 cm de profundidad que sirven para anclar las maderas usadas en el refuerzo. Para perforara las guías se usó un taladro con percutor, con una broca para concreto de $\frac{1}{2}''$. El agujero se terminó con comba y cincel.

- Las maderas se colocan en los agujeros y se aseguran en su posición (figura 18). Para ello, cada cuatro hiladas, se amarran una con otra con alambre N° 16, el cual se pasa a través de perforaciones hechas en el muro con una broca de $\frac{1}{4}''$. Cabe resaltar que se perforará en la unidad y no en la junta. Una vez fijadas las maderas, el resto del orificio se rellena con mortero arena – cemento 4:1.

Figura 17: Remoción de juntas
Figura 18: Detalle de madera fijada
Con mortero suelo-cemento se rellena el espacio comprendido entre el costalillo o la estera y el muro. En caso del primero, se rellena el prisma de sección triangular comprendido entre el borde de la madera y el borde del muro. Para el caso de la estera como solo se realizaran dos dobleces para no debilitar al material, la sección a rellenar será en forma de "U", con espesor igual a la madera, y de perímetro igual al ancho de la estera.

Una vez colocado el mortero, se coloca el segundo elemento de refuerzo, esto es el costalillo o la estera, como está indicado en los planos E1 y C1, respectivamente. Estos son fijados a las maderas empleando clavos de 1" en cantidad necesaria. Conviene realizar este proceso mientras el mortero aún está fresco. Antes de colocar la estera, se hacen guías para los dobleces, para facilitar la colocación. En el caso del costalillo, todo material excedente será doblado para encajar con la geometría.

Figura 19: Colocación de estera
Figura 20: Colocación de costalillo

En la alternativa empleando costalillo, para mejorar la adherencia entre éste y el mortero, se colocan aleatoriamente clavos (de 1" ó 2") con parte de su sección sobresaliendo. Posteriormente, se trenza alambre negro No. 16, como se muestra en la figura 20.
- Finalmente se completa la sección con mortero suelo-cemento, el cual es colocado pañeteándolo, para luego enrasar la superficie y darle acabado.

Figura 21: Detalle de para mejorar adherencia
Figura 22: Acaboado de muro

Las imágenes de este proceso se muestran en el Anexo 4.

III.2 ENSAYO MONOTÓNICO

III.2.a Procedimiento

El procedimiento para llevar a cabo el ensayo monotónico, fue una adaptación de la norma ASTM E564 - 00e1 Standard Practice for Static Load Test for Shear Resistance of Framed Walls for Buildings, ya que no existe una norma específica para muros de adobe sin reforzar en este aspecto.

Para obtener un parámetro de comparación para las alternativas de refuerzo propuestas, primero se sometió a cada espécimen sin reforzar al empuje de una carga lateral. No se colocó una carga vertical de confinamiento, ya que se asume que las edificaciones en las que se aplicará este refuerzo son de un piso (como se recomienda para las construcciones de adobe).
Luego de haber obtenido los valores del comportamiento de los muros sin reforzar, se procederá a reparar los muros – dos con cada sistema propuesto – para luego volverlos a ensayar y obtener así un índice de qué tanto se modifica su comportamiento con la incorporación de los refuerzos.

Para esta investigación se construyeron 4 muros sin reforzar, los cuales en una primera instancia se ensayaron para tener un patrón de comparación. A estos especímenes se les denominó MASR-01, MASR-02, MASR-03 y MASR-04, y sus dimensiones se muestran en la tabla 2.

Al ser el muro de adobe un elemento geométricamente irregular, se realizaron 10 mediciones por cada sentido a intervalos regulares, de tal manera que las dimensiones indicadas en la tabla 2 son los promedios de estas mediciones.

<table>
<thead>
<tr>
<th>Tabla 2: Dimensiones de los Muros No Reforzados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espéctmen</td>
</tr>
<tr>
<td>MASR - 01</td>
</tr>
<tr>
<td>MASR - 02</td>
</tr>
<tr>
<td>MASR - 03</td>
</tr>
<tr>
<td>MASR - 04</td>
</tr>
</tbody>
</table>

Luego de ensayarlos se procedió a ejecutar la reparación, primero reemplazando el mortero fallado, y finalmente colocando el material de confinamiento de acuerdo a las dos alternativas planteadas en el capítulo II. Así, se construyeron dos especímenes con refuerzo de costalillo y dos con refuerzo de estera. De esta manera, los MASR-01, MASR-02, MASR-03 y MASR-04 pasaron a denominarse MAR – Muro de Adobe Reforzado – en vez de MASR y la numeración sirve para identificar cada muro con su respectivo patrón sin reforzar. En la tabla 3 se muestran las dimensiones de estos especímenes.
Tabla 3: Dimensiones de los Muros Reforzados

<table>
<thead>
<tr>
<th>Espécimen</th>
<th>Espesor (m)</th>
<th>Longitud (m)</th>
<th>Altura (m)</th>
<th>Longitud Total (m)</th>
<th>Refuerzo (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR - 01</td>
<td>0.203</td>
<td>2.458</td>
<td>2.302</td>
<td>2.758</td>
<td>0.40 x 0.50</td>
</tr>
<tr>
<td>MAR - 02</td>
<td>0.203</td>
<td>2.452</td>
<td>2.312</td>
<td>2.752</td>
<td>0.40 x 0.30</td>
</tr>
<tr>
<td>MAR - 03</td>
<td>0.202</td>
<td>2.446</td>
<td>2.303</td>
<td>2.746</td>
<td>0.40 x 0.50</td>
</tr>
<tr>
<td>MAR - 04</td>
<td>0.203</td>
<td>2.461</td>
<td>2.313</td>
<td>2.761</td>
<td>0.40 x 0.30</td>
</tr>
</tbody>
</table>

III.2.b **Equipo**

En primer lugar, cabe resaltar que debido a la poca resistencia que presentan los muros de adobe, no fue necesario aplicar una carga de anclaje a la base del muro con una gata, como suele hacerse en algunos casos de ensayos de muros de albañilería. Sin embargo el anclaje del muro a la losa fue hecho mediante seis pernos pasantes de 1° de diámetro ajustados manualmente.

Empleando el mecanico del Laboratorio de Estructuras del CISMID, se montó un pórtico de acero donde se fijaron dos rodillos que evitarían que el muro se desplome en forma perpendicular a su eje. Este pórtico es fijado a la losa de reacción por medio de 4 pernos de anclaje de 1°. El actuador va soportado a una plancha de acero de 10 cm de espesor mediante 6 pernos. A su vez, la plancha esta anclada al muro de reacción mediante 4 pernos pasantes. Por motivo de seguridad, el actuador también va sujeto por una polea en la parte superior.

La carga de empuje lateral fue aplicada a 1,18 m por sobre la parte superior de la base del espécimen, lo que coincide con el centro de gravedad del muro. Para aplicar la dicha carga se utilizó un actuador electrohidráulico Shimadzu de 25 t, capaz de operar bajo un rango de cargas de ±5 t con deslizamientos de ± 200 mm. El equipo se maneja por medio de un controlador Shimadzu 9525 y una computadora IBM conectada a un convertidor análogo / digital con una tarjeta de GPIB. Los comandos son ingresados a la computadora y estos son enviados al controlador, que determina el desplazamiento del actuador.
Para adquirir los datos de desplazamiento en el ensayo monotónico, se emplearon 5 transductores conectados a un sistema universal de adquisición de datos UCAM SBT Kyowa el mismo que cuenta con conector GPIB que transfiere los datos a una computadora IBM donde se almacenan en cada paso las mediciones de los sensores.

Figura 24: Esquema de Ubicación de los Trasductores

<table>
<thead>
<tr>
<th>CH-0</th>
<th>CARGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-1</td>
<td>DESPLAZAMIENTO</td>
</tr>
</tbody>
</table>

CH-2

CH-3

CH-4

CH-5

CH-6
En total, el sistema cuenta con 7 canales de toma de datos, siendo el canal 0 y 1 para la carga y el desplazamiento del actuador, respectivamente. Los demás canales corresponden a los transductores dispuestos como se indica en la figura 24. Asimismo, los rangos de cada canal se muestran en la tabla 4.

<table>
<thead>
<tr>
<th>Canal</th>
<th>Elemento</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH - 0</td>
<td>Carga</td>
<td>5 t</td>
</tr>
<tr>
<td>CH - 1</td>
<td>Desplazamiento</td>
<td>200 mm</td>
</tr>
<tr>
<td>CH - 2</td>
<td>Transductor</td>
<td>100 mm</td>
</tr>
<tr>
<td>CH - 3</td>
<td>Transductor</td>
<td>50 mm</td>
</tr>
<tr>
<td>CH - 4</td>
<td>Transductor</td>
<td>10 mm</td>
</tr>
<tr>
<td>CH - 5</td>
<td>Transductor</td>
<td>25 mm</td>
</tr>
<tr>
<td>CH - 6</td>
<td>Transductor</td>
<td>25 mm</td>
</tr>
</tbody>
</table>

Cabe resaltar que en el caso del muro ya reforzado, los transductores verticales se colocaron en el muro, sin embargo los horizontales se colocaron en la pseudo columna.

III.2.c Observaciones

Al realizar la primera prueba de los muros no reforzados, la carga lateral fue ubicada en la parte superior del muro, como es común en los ensayos de muros de albañilería. Sin embargo, la fragilidad del espécimen (MASR-01) hizo que la carga tan solo arrastre las hiladas de adobe que estaban en contacto directo con la cabeza del actuador, es decir, la falla fue por corte en el mortero. Como los resultados buscados eran los del comportamiento de todo el muro, se montó una estructura metálica auxiliar en forma de marco que ayudaría a repartir la carga en el muro. Luego, el actuador fue colocado en la posición descrita en III.2.b (118 cm sobre la base), lo que corresponde al centro de gravedad del espécimen con el marco.
Figura 25: Montaje inicial del equipo de ensayo

En la figura 26 se puede observar la falla ocurrida a lo largo de la tercera hilada de MASR-01 en el primer ensayo. A continuación en la figura 27 se observa el marco metálico colocado para repartir la carga. Nótese que está apoyado únicamente sobre el muro y ambos no se encuentran en contacto en todo el perímetro, por lo que no hará ningún aporte de rigidez a la estructura.

Figura 26: Falla del MASR-01

Falla por corte directo en mortero de barro
Al momento de ensayar los muros reforzados, la colocación del marco ya no fue necesaria, debido a que la pseudo columna actúa como el elemento que distribuye la carga lateral al muro. Tampoco se colocaron rodillos laterales porque no era necesario mantener en pie el muro luego de la prueba, ya que el espécimen no volvería a ser ensayado, como el caso de los MASR. Adicionalmente, la presencia del reforzamiento confina al muro de manera que presenta una resistencia adicional a desplomarse fuera de su eje, en comparación con los MASR. La carga fue aplicada directamente sobre uno de los extremos reforzados, también a la altura del centro de gravedad (la mitad de la altura del muro).

Figura 27: Disposición del Marco Metálico
Figura 28: Montaje de equipo para ensayo de MAR

En el panel fotográfico del Anexo 4 se puede observar imágenes del desarrollo de los ensayos, tanto para muros reforzados (MAR) como no reforzados (MASR).

Durante los ensayos, se aplicó a los muros un patrón de distorsiones como se muestra en la tabla 5, siendo el máximo 1/400 para los muros no reforzados y 1/65 para los muros reforzados.
Tabla 5: Distorsiones Aplicadas

<table>
<thead>
<tr>
<th>Distorsión en MASR</th>
<th>Distorsión en MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3200</td>
<td>1/3200</td>
</tr>
<tr>
<td>1/1600</td>
<td>1/1600</td>
</tr>
<tr>
<td>1/800</td>
<td>1/800</td>
</tr>
<tr>
<td>1/400</td>
<td>1/400</td>
</tr>
<tr>
<td>-</td>
<td>1/200</td>
</tr>
<tr>
<td>-</td>
<td>1/100</td>
</tr>
<tr>
<td>-</td>
<td>1/85</td>
</tr>
</tbody>
</table>

III.3 RESULTADOS DE LOS ENSAYOS

III.3.a Muros no Reforzados

Los especímenes sin reforzar fueron ensayados con una edad de aproximadamente 4 meses. Como se anotó en III.2.c, la falla del primer muro no fue con el comportamiento esperado, por lo que no se consideraron los datos obtenidos en el presente análisis.

Luego de aplicar el patrón de distorsión indicado en la tabla 5 para los MASR, se obtuvo una carga máxima promedio de 1,153 t y un desplazamiento máximo de 7,561 mm. Las cargas y desplazamientos máximos resultantes para los MASR ensayados se muestran en la tabla 6. Asimismo, la figura 29 muestra la gráfica corte – desplazamiento en los MASR. En ella se puede observar que los muros tiene un comportamiento lineal hasta una carga de 0,6 t y un desplazamiento de 0,9 mm. A partir de ese momento el comportamiento de los MASR difieren uno del otro, sin embargo, el valor de la carga máxima que resiste presenta menos de 10% de variación respecto al promedio.
Tabla 6: Cargas y Desplazamientos Máximos de los Muros No Reforzados

<table>
<thead>
<tr>
<th>Muro</th>
<th>Carga máxima (t)</th>
<th>Desplazamiento máximo (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASR-02</td>
<td>1.052</td>
<td>6.856</td>
</tr>
<tr>
<td>MASR-03</td>
<td>1.170</td>
<td>7.537</td>
</tr>
<tr>
<td>MASR-04</td>
<td>1.237</td>
<td>8.487</td>
</tr>
<tr>
<td>Promedio</td>
<td>1.153</td>
<td>7.561</td>
</tr>
</tbody>
</table>

Figura 29: Gráfica Corte – Desplazamiento para MASR

Conociendo las dimensiones de los especímenes (indicados en la tabla 2), se calculó el esfuerzo cortante y la distorsión de los MASR. La tabla 7 muestra los valores máximos hallados para los MASR, donde se indica que el esfuerzo cortante máximo promedio es 0.232 kg/cm2, y la distorsión máxima promedio es 0.00356 (1/281). La figura 30 muestra la gráfica esfuerzo cortante – distorsión para los MASR.
Tabla 7: Esfuerzo Cortante y Distorsión Máximos de los Murros No Reforzados

<table>
<thead>
<tr>
<th>Muro</th>
<th>Esfuerzo Cortante máximo (kg/cm²)</th>
<th>Distorsión máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASR-02</td>
<td>0.211346</td>
<td>0.003163</td>
</tr>
<tr>
<td>MASR-03</td>
<td>0.236798</td>
<td>0.003538</td>
</tr>
<tr>
<td>MASR-04</td>
<td>0.247607</td>
<td>0.003985</td>
</tr>
<tr>
<td>Promedio</td>
<td>0.231918</td>
<td>0.003562</td>
</tr>
</tbody>
</table>

Figura 30: Gráfica Corte – Desplazamiento para MASR

Se puede observar en la figura 29 que los muros tiene un comportamiento similar hasta una carga de 0,6 t y una distorsión de 0,9 mm. A partir de ese momento el comportamiento de los MASR difieren uno del otro, sin embargo, el valor de la carga máxima que resiste presenta menos de 10% de variación respecto al promedio.
En la figura 29 también se puede observar un comportamiento lineal hasta una carga de 0,4 t. Por ello se realizó una regresión lineal y se determinó que la rigidez lateral k promedio de los MASR en este rango es 1,3587. La figura 31 muestra las regresiones lineales realizadas para los datos menores a 0,4 t y la tabla 8 indica la rigidez hallada para cada MASR.

Figura 31: Regresión lineal para valores de Cortante < 0,4 t

![Gráfico de regresión lineal](image)

Tabla 8: Rigidez k para cortantes menores a 0,4 t

<table>
<thead>
<tr>
<th>Especimen</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASR - O2</td>
<td>1,3631</td>
</tr>
<tr>
<td>MASR - O3</td>
<td>1,6248</td>
</tr>
<tr>
<td>MASR - O4</td>
<td>1,0882</td>
</tr>
<tr>
<td>k prom</td>
<td>1,3587</td>
</tr>
</tbody>
</table>

Durante los ensayos, la mayoría de las fisuras ocurrió para distorsiones entre 1/300 y 1/200. Salvo el ensayo de MASR-01, los muros sin reforzar presentaron una falla diagonal que se inicia en la zona de contacto con el actuador hasta la
esquina inferior opuesta. A continuación se muestra el patrón de falla final que presentó cada muro sin reforzar luego del ensayo:

Figura 32: Esquema del patrón de falla del MASR - 01

![Diagrama 1](image1)

Figura 33: Esquema del patrón de falla del MASR - 02

![Diagrama 2](image2)
Figura 34: Esquema del patrón de falla del MASR - 03

Figura 35: Esquema del patrón de falla del MASR - 04
Se puede observar que la mayor parte de las fisuras se producen en las juntas de mortero de barro, especialmente en el área de contacto entre el bloque de adobe y el mortero. Esto prueba que las juntas son las áreas más frágiles del muro por lo que al momento de realizar el reforzamiento, se tomó un especial cuidado al reparar estas zonas.

III.3.b Muros Reforzados

El proceso de reparación se realizó en Agosto 2002. Primero se reemplazó el mortero de las fisuras ubicadas en los extremos del muro, en longitudes menores a 40 cm. Luego se colocaron las maderas y la primera etapa del barro en las pseudo columnas. Se continuó reemplazando parte del mortero en las fisuras centrales del muro antes de colocar el costalillo o estera y terminar el pañeleo de mortero en las pseudo columnas. Finalmente se reemplaza el mortero de las fisuras remanentes. Al trabajar estas etapas en forma secuencial en los 4 muros, se permite que el mortero instalado frague antes de comenzar la actividad siguiente.

Como el proceso de reparación se realizó por etapas, no se define la edad de los especímenes. Cada MAR posee reparaciones de una antigüedad que varían entre 1 mes y 10 días. Las reparaciones fueron realizadas con mortero suelo: cemento, el cual a los 7 días presenta una resistencia a la compresión promedio de 22,122 kg/cm² (ver anexo 2 – A.2.2), mayor a los 18,792 kg/cm² de resistencia última que presentan las unidades de adobe. Por lo tanto, se puede considerar que el mortero suelo: cemento en el momento del ensayo se comporta en forma similar a un mortero de barro completamente fraguado.

Dos de los muros fueron reparados empleando esteras y dos empleando costalillos, como se indicó en la tabla 3. La carga máxima promedio que soportaron los muros reforzados con estera fue 1,623 t, y el desplazamiento máximo promedio fue 38,999 mm (ver tabla 9). Asimismo, el esfuerzo cortante máximo promedio fue 0,2258,25 kg/cm² y la distorsión máxima promedio fue 0,018374 (ver tabla 10). Las curvas carga - desplazamiento y las curvas esfuerzo cortante - distorsión se muestran en las figuras 36 y 37 respectivamente.
Tabla 9: Resultados de carga y desplazamiento máximos para MAR reforzados con esteras

<table>
<thead>
<tr>
<th>Espéctimen</th>
<th>Carga máxima (t)</th>
<th>Desplazamiento máximo (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR-01</td>
<td>1,692</td>
<td>39,568</td>
</tr>
<tr>
<td>MAR-03</td>
<td>1,554</td>
<td>36,429</td>
</tr>
<tr>
<td>Promedio</td>
<td>1,623</td>
<td>38,999</td>
</tr>
</tbody>
</table>

Figura 36: Gráfico Carga – Desplazamiento para MAR reforzados con esteras

Tabla 10: Resultados de esfuerzo cortante y distorsión máximos para MAR reforzados con esteras

<table>
<thead>
<tr>
<th>Espéctimen</th>
<th>Esfuerzo cortante máximo (kg/cm²)</th>
<th>Distorsión máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR-01</td>
<td>0.222668</td>
<td>0.018664</td>
</tr>
<tr>
<td>MAR-03</td>
<td>0.228682</td>
<td>0.018084</td>
</tr>
<tr>
<td>Promedio</td>
<td>0.225625</td>
<td>0.018374</td>
</tr>
</tbody>
</table>
La carga máxima promedio que soportaron los muros reforzados con costalillo fue 1.79 t, y el desplazamiento máximo promedio fue 38,781 mm, como se muestra en la tabla 11. La figura 38 muestra las curvas carga – desplazamiento para MAR-02 y MAR-04. Asimismo, la figura 39 muestra las curvas esfuerzo cortante – distorsión y la tabla 12 muestra los valores máximos promedios (esfuerzo cortante 0,263305 kg/cm² y distorsión 0,018199) para los MAR reforzados con costalillo.

Tabla 11: Resultados de carga y desplazamiento máximos para MAR reforzados con costalillos

<table>
<thead>
<tr>
<th>Espéculo</th>
<th>Carga máxima (t)</th>
<th>Desplazamiento máximo (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR-02</td>
<td>1.666</td>
<td>38,570</td>
</tr>
<tr>
<td>MAR-04</td>
<td>1.913</td>
<td>38,992</td>
</tr>
<tr>
<td>Promedio</td>
<td>1.790</td>
<td>38,781</td>
</tr>
</tbody>
</table>
Figura 38: Gráfico Carga – Desplazamiento para MAR con costalillos

Tabla 12: Esfuerzo cortante y distorsión máximos - MAR con costalillos

<table>
<thead>
<tr>
<th>Espécimen</th>
<th>Esfuerzo cortante máximo (kg/cm²)</th>
<th>Distorsión máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR-02</td>
<td>0.245485</td>
<td>0.018091</td>
</tr>
<tr>
<td>MAR-04</td>
<td>0.281124</td>
<td>0.018306</td>
</tr>
<tr>
<td>Promedio</td>
<td>0.263305</td>
<td>0.018199</td>
</tr>
</tbody>
</table>

Figura 39: Gráfico esfuerzo cortante – distorsión para MAR con costalillos
Podemos ver que en ambos casos, los MAR soportaron cargas mayores que los MASR. Sin embargo, al ver los resultados de los esfuerzos cortantes máximos en los MAR reforzados con esteras se concluye que dicho incremento de carga máxima se debe al incremento del área de la sección transversal del muro, logrado por las pseudo columnas, ya que el resultado obtenido para el promedio de MAR-01 y MAR-03 es 2,6% menor al promedio obtenido para los MASR. En el caso de los MAR reforzados con costalillos, se observa un incremento promedio de 13,5% en el esfuerzo cortante máximo, en comparación con los resultados de los MASR.

También podemos observar que los desplazamientos máximos alcanzados por los MAR son más de 400% mayores que los de los MASR (417% para los MAR con estera y 413% para los MAR con costalillo). Sin embargo, ninguno de los muros colapsó.

Cabe resaltar que luego de retirar la carga, los muros presentaron una ligera recuperación debido a la presencia de los listones de madera incluidos en el refuerzo.

En las gráficas carga – desplazamiento se puede observar que los MAR presentan un comportamiento lineal hasta una carga de 0,4 t para ambos materiales de refuerzo. Por lo tanto se realizó una regresión lineal para hallar la rigidez k1 en este rango para los MAR reforzados con estera y con costalillo (figuras 40 y 41). A diferencia de los resultados obtenidos para los MASR, se puede observar un tramo de deformación plástica para desplazamientos mayores a 5 mm, lo que corresponde a cargas entre 1,2 t y 1,4 t. También se hizo una regresión lineal para hallar la rigidez k2 en esta etapa (figuras 42 y 43). Las tablas 13 y 14 muestran los valores de K1 y K2 hallados para los MAR reforzados con estera y con costalillo, respectivamente.

En el caso de los MAR reforzados con estera, la rigidez inicial K1 fue de 1,4631 y la rigidez final K2 fue 0,00715, lo que equivale a 0,46% de K1. Para los MAR reforzados con costalillo, la rigidez inicial K1 fue de 0,9274 y la rigidez final K2
fue 0,0115 (1,24% de K1). Las figuras 44 y 45 muestran las gráficas de las rigideces promedios para ambas alternativas de refuerzo.

Figura 40: Regresión lineal para determinar K1 t en MAR con estera

Figura 41: Regresión lineal para determinar K1 en MAR con costalillo
Figura 42: Regresión lineal para determinar K2 en MAR con estera

Figura 43: Regresión lineal para determinar K2 en MAR con costalillo
Tabla 13: Rigidez K1 y K2 para MAR con estera

<table>
<thead>
<tr>
<th>MAR</th>
<th>K1</th>
<th>K2</th>
<th>K2 (% de K1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7866</td>
<td>0.0033</td>
<td>0.18 %</td>
</tr>
<tr>
<td>3</td>
<td>1.1368</td>
<td>0.0110</td>
<td>0.97 %</td>
</tr>
<tr>
<td>k prom</td>
<td>1.4631</td>
<td>0.00715</td>
<td>0.48 %</td>
</tr>
</tbody>
</table>

Tabla 14: Rigidez K1 y K2 para MAR con costalillo

<table>
<thead>
<tr>
<th>MAR</th>
<th>k</th>
<th>K2</th>
<th>K2 (% de K1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.7144</td>
<td>0.01080</td>
<td>1.51%</td>
</tr>
<tr>
<td>4</td>
<td>1.1404</td>
<td>0.01220</td>
<td>1.07%</td>
</tr>
<tr>
<td>k prom</td>
<td>0.9274</td>
<td>0.01150</td>
<td>1.24%</td>
</tr>
</tbody>
</table>

Figura 44: Regresión lineal para determinar K2 en MAR con estera
Figura 46: Regresión lineal para determinar K2 en MAR con costalillo

A continuación se muestra los esquemas de los patrones de fisuras presentados en los MARs. Se puede ver que a diferencia de los MARS que presentaban por lo general un solo plano de falla, los MARs presentan varios planos de falla paralelos, lo que muestra que se ha distribuido en forma más pareja la carga aplicada. Se observa que algunos planos de falla no sólo siguen las juntas, sino que atraviesan las unidades de adobe que conforman el muro. Esto se debe a que las juntas reparadas durante los primeros días de agosto 2002 presentan una mayor resistencia que las unidades de adobe, por lo que la falla atraviesa el elemento más débil.

Cabe resaltar que se pueden observar distintos patrones de falla en la zona de las pseudo columnas. En el caso de los MAR reforzados con estera, se puede ver que las fisuras son casi horizontales tanto en refuerzo adyacente al actuador como en el que se encuentra en el otro extremo del muro, y se presentan a la altura de la zona de contacto con el actuador. En los MAR reforzados con costalillo, además de las fisuras horizontales, las pseudo columnas presentan fisuras diagonales, que empiezan en la cara más próxima a la aplicación de la carga, a la altura del actuador, hasta el extremo inferior opuesto del refuerzo.
Figura 46: Esquema del patrón de falla del MAR – 01 (reforzado con esteras)

Figura 47: Esquema del patrón de falla del MAR – 03 (reforzado con esteras)

Figura 48: Esquema del patrón de falla del MAR – 03 (reforzado con esteras)
Figura 49: Esquema del patrón de falla del MAR – 02 (reforzado con costalillo)

Figura 50: Esquema del patrón de falla del MAR – 04 (reforzado con costalillo)
CONCLUSIONES

- Para el desarrollo de la presente tesis se ha tomado como base un muro de adobe con las condiciones más desfavorables: un muro esbelto, sin ningún tipo de confinamiento, hecho con adobes de resistencia ligeramente por debajo de lo normal. Sin embargo, éstas son condiciones que pueden darse en la vida real.

- El muro sin reforzar MASR-01 presentó una fisura en la tercera hilera superior debido a problemas con la posición del actuador. Como el muro no presentaba ningún elemento de confinamiento, la falla siguió la junta horizontal del mortero de barro que se encontraba en el extremo de la cabeza del actuador. Para corregir esto, se colocó el actuador a la altura del centro de gravedad del muro. Esto se mantuvo tanto para los ensayos de los MASRs restantes como para los MARs.

- Los muros sin reforzar MASR-02, MASR-03 y MASR-04 presentan la típica fisura diagonal por el esfuerzo de corte del muro, debido a la baja capacidad de carga del adobe, así como por la falta de confinamiento.

- El comportamiento elástico de los muros sin reforzar se presenta hasta aproximadamente 0.4 mm de desplazamiento lateral y una carga de 0.4 t. La rigidez lateral de estos muros se muestra a continuación:

<table>
<thead>
<tr>
<th>MASR</th>
<th>Rigidez Lateral K (t/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.3631</td>
</tr>
<tr>
<td>3</td>
<td>1.6248</td>
</tr>
<tr>
<td>4</td>
<td>1.0882</td>
</tr>
<tr>
<td>Promedio</td>
<td>1.3587</td>
</tr>
</tbody>
</table>
- Los valores máximos hallados en los MASR se dieron en el MASR-04, obteniéndose un desplazamiento lateral máximo de 8,487 mm, y una carga máxima de 1,237 t para una distorsión de 0,003562 (1/281).

- Ambas alternativas de reforzamiento planteadas en esta tesis obtuvieron resultados similares, tanto en carga como en desplazamiento. En promedio, los muros reforzados soportaron un 65% más de carga lateral que los no reforzados. Sin embargo, en el caso de los MAR reforzados con estera, este aumento de resistencia se debe al aumento del área de la sección, ya que el esfuerzo cortante máximo promedio (0,226 kg/cm2) fue 2,66% menor al obtenido para los MASR (0,232 kg/cm2). En el caso de los MAR reforzados con costillar, la resistencia al corte aumentó 13,49% respecto a los MASR. Por lo tanto, se puede afirmar que la alternativa con costillar constituye un mejor refuerzo que la alternativa con estera.

- La distorsión lateral al reforzar los muros aumenta de 0,003562 (1/281) hasta 0,018 (1/55), es decir 4 veces más. Por ello, se puede afirmar que a pesar que los métodos de reforzamiento no mejoraron la resistencia al corte de los muros, sí se mejoró el comportamiento.

- El comportamiento elástico de los MAR reforzados con estera se presenta hasta aproximadamente 0,4 mm de desplazamiento lateral y una carga de 0,4 t. Para este rango se calculó la rigidez lateral K1, que en promedio fue 1,4631 t/mm. La forma de la curva muestra una rigidez diferente a partir de un desplazamiento de 5mm y una carga de 1,4 t, por lo que se calculó un K2 promedio de 0,00715 t/mm para esta etapa. La rigidez lateral K1 y K2 de estos muros se muestra a continuación:

<table>
<thead>
<tr>
<th></th>
<th>MAR</th>
<th>K1 (t/mm)</th>
<th>K2 (t/mm)</th>
<th>K2 (% de K1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1,7896</td>
<td>0,0033</td>
<td>0,16%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1,1365</td>
<td>0,0110</td>
<td>0,97%</td>
</tr>
<tr>
<td></td>
<td>Promedio</td>
<td>1,4031</td>
<td>0,00715</td>
<td>0,49%</td>
</tr>
</tbody>
</table>
Asimismo, el comportamiento elástico de los MAR reforzados con costalillo se presenta hasta aproximadamente 0,5 mm de desplazamiento lateral y una carga de 0,4 t. Para este rango se calculó la rigidez lateral K1, que en promedio fue 0,9274 t/mm. La forma de la curva muestra una rigidez diferente a partir de un desplazamiento de 5mm y una carga de 1,2 t, por lo que se calculó un K2 promedio de 0,01150 t/mm para esta etapa. La rigidez lateral K1 y K2 de estos muros se muestra a continuación:

<table>
<thead>
<tr>
<th>MAR</th>
<th>K1 (t/mm)</th>
<th>K2 (t/mm)</th>
<th>K2 (% de K1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,7144</td>
<td>0,0108</td>
<td>1,51%</td>
</tr>
<tr>
<td>4</td>
<td>1,1404</td>
<td>0,0122</td>
<td>1,07%</td>
</tr>
<tr>
<td>Promedio</td>
<td>0,9274</td>
<td>0,0115</td>
<td>1,24%</td>
</tr>
</tbody>
</table>

De las dos alternativas propuestas, se puede afirmar que el costalillo es la mejor opción debido a su mejor comportamiento, menor costo, mayor disponibilidad a nivel nacional y por presentar una opción más estética al requerir una menor sección. Por lo tanto, el manual didáctico del Anexo 1 explica los pasos de autoconstrucción para esta alternativa.
RECOMENDACIONES

- Se recomienda que las futuras investigaciones de adobe que se realicen en Lima sean hechas durante el verano, para facilitar el proceso de secado del barro.

- Se ha comprobado que el refuerzo con costalillo funciona, por lo que se recomienda profundizar este tema. En la presente tesis sólo se ensayaron 2 muros reforzados con este sistema, y a pesar que los ensayos dieron como resultado curvas de comportamiento bastante similares, hubiera sido conveniente tener más datos para estimar en forma más exacta la rigidez lateral.

- Futuras investigaciones de este tema podrían incluir el comportamiento de muros reforzados con pseudos columnas cuando el muro presenta una viga solera. También se puede estudiar el comportamiento de los muros reforzados con distintas proporciones de mortero suelo-cemento.

- En caso sea posible, se deben desarrollar más de 3 especimenes de ensayo, no sólo para tener una mejor noción del comportamiento de los sistemas a estudiar, sino para tener datos suficientes en caso que alguno de los ensayos falte. Durante el desarrollo de esta tesis algunos ensayos tuvieron problemas, como el caso del MASR-01, o los ensayos complementarios en los que se desprendió el ángulo de apoyo de los transductores.
BIBLIOGRAFÍA

- INEI
 "Censo Nacional X Vivienda y V Población"
 INEI, Perú, 2005

- Minchola, Carlos; Guanilo, Horacio; Merino, Francisco
 "Estudio de muros de adobe sometidos a cargas horizontales parte 5"
 UNI, Perú, 1974

- Morales, Roberto; Torres, Rafael; Rengifo, Luis; Irala, Carlos
 "Manual para construcción de viviendas de Adobe"
 CISMID-UNI, Perú, 1992

- Oshiro Higa, Fernando
 "Libro de las reparaciones antisísmicas"
 Universo, Perú, 1980

- Otazzi Pasino, Gianfranco
 "Recomendaciones para la elaboración de Normas Técnicas de Edificaciones de adobe, tapial, ladrillos y bloques de suelo-cemento. Red Temática XIV.A Habiterra"
 CYTED – Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Perú, 1993

- Reglamento Nacional de Edificaciones
 "Norma E.080 - Adobe"
 Normas Legales del Diario El Peruano, Perú, 2006

- Vivar Dextre, Javier Francisco
 "Rehabilitación de viviendas deterioradas de adobe, barrio de Monserrate-Lima"
 UNI, Perú, 1982
- CISMID, UNI, FORSUR, Banco Mundial
 "Informe final de Microzonificación Sísmica y Zonificación por Peligro de Tsunami en Chincha Baja y Tambo de Mora"
 UNI, Perú, 2008