UNIVERSIDAD NACIONAL DE INGENIERÍA
FACULTAD DE INGENIERÍA ELECTRICA Y ELECTRONICA

PLANEAMIENTO DE LA EXPANSION A LARGO PLAZO DE LA RED DE TRANSMISION ELECTRICA DEL S.I.C.N.
PERIODO 1995-2010

TESIS

Para Optar El Título Profesional De

INGENIERO ELECTRICISTA

RONAL ANTARA ARIAS
PROMOCION 1984-1

LIMA – PERÚ
1987
A MIS PADRES
Y HERMANOS
CONTENIDO

<table>
<thead>
<tr>
<th>PROLOGO</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPITULO I - PRESENTACION DEL SICN</td>
<td></td>
</tr>
<tr>
<td>1.1. Descripción del SICN existente-1985</td>
<td></td>
</tr>
<tr>
<td>1.1.1. Ubicación Geográfica</td>
<td></td>
</tr>
<tr>
<td>1.1.2. Recursos Naturales y Energéticos</td>
<td></td>
</tr>
<tr>
<td>1.1.3. Sistema Eléctrico del SICN</td>
<td></td>
</tr>
<tr>
<td>1.1.4. Areas de concesión de las Empresas regionales de electricidad que conforman el SICN</td>
<td></td>
</tr>
<tr>
<td>1.1.5. Evolución cronológica del SICN</td>
<td></td>
</tr>
<tr>
<td>1.2. Proyección de la Demanda del SICN</td>
<td></td>
</tr>
<tr>
<td>1.2.1. Evolución cronológica de la demanda en el SICN</td>
<td></td>
</tr>
<tr>
<td>1.2.2. Proyección de la demanda por barras en el período de estudio 1995-2010.</td>
<td></td>
</tr>
<tr>
<td>1.3. Expansión de la Generación en el SICN</td>
<td></td>
</tr>
<tr>
<td>1.3.1. Modelos de optimización de la expansión de la generación del SICN utilizado en ELECTROPERU</td>
<td></td>
</tr>
<tr>
<td>1.3.2. Alternativas de expansión de la generación en el SICN</td>
<td></td>
</tr>
<tr>
<td>1.3.3. Características de las alternativas propuestas</td>
<td></td>
</tr>
<tr>
<td>1.4. Sistema existente en 1995 del SICN - Considerado el año inicial de estudio</td>
<td></td>
</tr>
<tr>
<td>1.4.1. Estudios efectuados del SICN en el período 1985-1995</td>
<td></td>
</tr>
<tr>
<td>1.4.2. Presentación del esquema base del SICN al año 1995</td>
<td></td>
</tr>
</tbody>
</table>
3.1.2.1. Alternativa N° 1 120
3.1.2.2. Alternativa N° 2 124
3.1.2.3. Alternativa N° 3 129

3.2. Análisis de Costos de Alternativas 132

3.2.1. Definición de Costos de líneas de transmisión, centros de transformación y Centrales Eléctricas 133
3.2.2. Definición de costos, de combustibles, lubricantes y otros costos incrementales de Centrales Térmicas 135
3.2.3. Criterios adicionales tomados para la evaluación económica de las alternativas 145
3.2.4. Resultado final de la evaluación económica de las alternativas 146

3.3. Planteamiento de una nueva alternativa de transmisión 147

3.3.1. Aspectos resaltantes de las alternativas de transmisión presentadas en 3.1 185
3.3.2. Consideraciones tomadas en cuenta para aumentar la confiabilidad del SICN 186
3.3.3. Balance de Demanda y Oferta de potencia a nivel de sub-sistemas de la nueva alternativa 191
3.3.4. Definición de la Alternativa nueva de transmisión del SICN 199
3.3.5. Análisis técnico de líneas de transmisión en mínima demanda 204

CAPITULO IV - ANALISIS TECNICO-ECONOMICO DE LA ALTERNATIVA SELECCIONADA PERIODO 1995-2010 212

4.1. Análisis de flujo de carga 212

4.1.1. Suposiciones e informaciones consideradas en el análisis de flujo de carga del SICN 213
4.1.2. Programa computacional utilizado para el estudio de flujo de potencia 215
4.1.3. Resultados obtenidos del flujo de potencia del SICN de la alternativa nueva 216

4.2. Análisis Económico 217
 4.2.1. Modelo Económico de Evaluación 241
 4.2.2. Modelo Económico del valor de depreciación y de recuperación 241
 4.2.3. Modelo económico de costos de combustibles, lubricantes y otros costos incrementales de Centrales Térmicas 242
 4.2.4. Modelo Económico del costo de pérdidas 243
 4.2.5. Determinación del costo total actualizado de una alternativa 247

CONCLUSIONES 252

BIBLIOGRAFIA 255

APENDICES

PLANOS
PROLOGO

La energía eléctrica representa un elemento importante a considerarse, cuando se debe atender las necesidades que permitan el bienestar social y desarrollo de un país.
La ubicación de los recursos energéticos bajo sus diferentes formas y su transformación correspondiente a energía eléctrica, ocasionan el abastecimiento de los centros de consumo que presenta un país.

En nuestro país la oferta de generación de energía eléctrica se obtiene bajo dos modalidades, a saber, mediante la transformación de la energía térmica y energía hidráulica. Los recursos hidráulicos se encuentran ubicados -generalmente a gran distancia de los centros de carga.

Por lo mismo, es necesario plantear el sistema de transmisión que permita evacuar la energía de los centros de generación eléctrica hacia los centros de consumo en forma oportuna, necesaria y conveniente, teniendo en cuenta que actualmente sólo se está aprovechando un 3 a 4% - del potencial hidráulico disponible en el país, podemos afirmar que en un período largo se tendría una buena perspectiva de generación hidroeléctrica.

Por lo tanto, para efectuar una distribución de la energía eléctrica generada conveniente hacia los centros de consumo, es necesario desarrollar la planificación del sistema de transmisión eléctrica de un país, en un hori
zonte a largo plazo, siendo ésta materia de estudio - del presente proyecto de Tesis.

El planeamiento de la red de transmisión de un sistema eléctrico a largo plazo, hace necesario la ubicación de nuevos centros de generación, debido al incremento anual del consumo de energía eléctrica y ésto implica realizar ampliaciones del sistema de transmisión. La ampliación - de las redes de transmisión significa adicionar nuevas líneas o reforzar las líneas existentes, dicho análisis presenta muchas alternativas, definiéndose el transporte de la energía eléctrica en base a un análisis técnico, económico y social.

En conclusión, en este Proyecto se analiza, evalúa las metodologías de planeamiento de la red de transmisión de un sistema eléctrico y su aplicación al Sistema Interconectado Centro Norte (SICN) y se plantea una alternativa de expansión a largo plazo de la red de transmisión del SICN - dentro del marco de los recursos y restricciones existentes en su área de influencia.

Cabe resaltar que el presente trabajo incide bastante en los criterios de reserva local, interacción del planeamiento de transmisión con el de generación, desarrollo regional y confiabilidad. Todo ello basado en las particularidades y características que presenta un sistema eléctrico.
De acuerdo a los requerimientos del estudio, el trabajo ha sido desarrollado en cuatro capítulos, en el Capítulo I, se hace una presentación general de lo que representa actualmente el Sistema Interconectado Centro Norte (SICN) adicionalmente con comentarios breves los estudios realizados acerca de la Demanda y Generación de este sistema.

En el Capítulo II, se define la metodología usada para el planeamiento de sistema de transmisión eléctrica, etapas y criterios, además se señalan las premisas para el estudio de la red de transmisión del Sistema Interconectado Centro Norte (SICN).

En el Capítulo III, se lleva a cabo la selección de alternativas posibles de transmisión, efectuando el análisis técnico-económico de tres alternativas de transmisión del SICN basados en tres alternativas de expansión de generación de este sistema presentados en el Plan Maestro de Electricidad de 1985. Definiéndose adicionalmente una nueva alternativa de transmisión de el SICN asociado a una nueva expansión de la generación de este sistema, teniendo en cuenta criterios regionales y de reserva local, todo ello desde el punto de vista de la transmisión necesaria para llevar la energía eléctrica de los centros de generación hacia los diferentes centros de carga del sistema.

En el Capítulo IV, se hace el análisis de flujo de carga de la alternativa seleccionada, así como el análisis eco
nómico de ésta, realizando de esta forma la evaluación del comportamiento técnico-económico del sistema, recomendándo
dose de esta manera la secuencia de adiciones y refuerzos
del SICN, en el período 1995-2010.

Finalmente, el autor deja constancia que la culminación -
del presente trabajo ha sido posible gracias a la invalo-
rable ayuda de muchas personas e Instituciones, los cuales
contribuyeron directa o indirectamente a la integración -
de esta tesis y, a todas ellas quiero hacerles llegar mi
más sincero y eterno agradecimiento.
En especial quiero darle las gracias al ingeniero Luis Ha-
o ro Zavaleta, por sus ideas, estímulo, comentarios y revi-
sión del texto, al ingeniero José Koc Rueda por su apoyo
y ayuda desinteresada.
Agradezco de igual manera a los integrantes de la Unidad
de Planeamiento de Transmisión de la Sub-Gerencia de Pla-
neamiento, de la Gerencia Técnica de la Empresa Electrici-
dad del Perú - ELECTROPERU y a los colegas de la UNIVERSI-
DAD NACIONAL DE INGENIERIA por la ayuda brindada.
Finalmente el autor hace presente de su total y exclusiva
responsabilidad por el contenido del proyecto en mención.
CAPITULO I

PRESENTACION DEL SISTEMA INTERCONECTADO CENTRO-NORTE

1.1. DESCRIPCION DEL SICN EXISTENTE - 1985

La presente sección tiene por objeto dar una breve -
información descriptiva de los aspectos más resaltantes de
la situación eléctrica y geográfica del SICN. Dichos ante-
cedentes son de importancia especial para plantear alterna-
tivas que permitan un desarrollo adecuado de dicho Sistema.

1.1.1. Ubicación Geográfica

En la Lámina N° 1.1 observamos la ubicación de la
región Centro-Norte del Perú, representando ésta el área
de influencia de trabajo del presente Proyecto.
Esta región tiene como característica principal el paso de
la Cordillera de los Andes, la cual está conformada por
- distintos ramales o cadenas de montañas, presentando nive-
les de altitud muy variado, comprendido entre 2,500 y 6,768
m.s.n.m. Predominantemente se encuentra los Andes del Nor-
te que, consta de tres cadenas: La occidental, la central
y la oriental.
Por el oeste, la Cordillera de los Andes cae abruptamente
sobre el Oceano Pacífico, pasando desde la Cordillera Occi-
dental hasta el Litoral, formando una estrecha faja coste-
ra, comprendida entre la orilla oceánica y una línea imaqui-
naria situada a 500 m.s.n.m. Por el contrario con el flán-
co andino oriental disminuye la altura gradualmente hasta
ESQUEMA DE UBICACION DE LA REGION CENTRO-NORTE DEL PERU-AREA DE INFLUENCIA
alcanzar el llano amazónico.

Por lo expuesto, la presencia de la Cordillera de los Andes origina un relieve o geografía muy accidentada de esta región. Ocasionando la necesidad de tomar este parámetro como una de las variables a considerar en la planificación de la distribución de los recursos energéticos en nuestro país.

1.1.2. Recursos Naturales y Energéticos

Esta región presenta el mayor porcentaje de recursos naturales que dispone el país, siendo también la región de mayor movimiento industrial y desarrollo cultural.

Un recurso muy importante explotado en esta zona son los yacimientos de metales, tales como el zinc, plomo, plata, hierro. Se han determinado grandes reservas de éstos y otros materiales, como por ejemplo las reservas de minerales de cobre en Michiquillay-Cajamarca. La ubicación de las zonas de explotación de estos minerales se encuentran en CENTROMIN - Zona Central, Marcona-Ica, Cobrizo-Huancavelica, etc.

Otro recurso natural es el potencial pesquero de la costa de la región a lo largo del Océano Pacífico, la causa de la riqueza pesquera está en primer lugar en la presencia de la corriente peruana que ocasiona el enfriamiento de las aguas costeras y en segundo lugar en la amplitud del zócalo continental.

En cuanto al sector agrícola no ha logrado un desarrollo
uniforme en toda la región. Siendo la zona costera el que ha alcanzado un alto desarrollo, la agricultura está concentrada en los valles de los ríos y prácticamente todas las tierras cultivables están en uso. Actualmente están en ejecución varios proyectos de irrigación de gran magnitud que transvarán agua de las pendientes orientales de los andes hacia las regiones de sierra y costa. Sien
do la zona de sierra de relieve muy variado, la agricultu
ra está muy atrasada, lo mismo ocurre en las tierras ba-
jas orientales.

En cuanto a los recursos energéticos, esta región tiene una fuente potencialmente grande en energía hidroeléctri-
ca, no obstante, debido a su accidentada geografía, la y
tilización de este recurso tiende a ser limitado por su -
deficiente accesibilidad a los centros de consumo. Con
respecto a los recursos de energía térmica, tal como el
gas, y petróleo, la producción está concentrada a lo largo de la costa norte.

1.1.3. **Sistema Eléctrico del SICN**

El sistema interconectado Centro Norte (SICN) se encuentra ubicado dentro del área de influencia de cinco Empresas Regionales de Electricidad: ELECTRO NORTE S.A. - NORTE MEDIO HIDRANDINA S.A. - ELECTROLIMA S.A. - ELECTRO CENTRO S.A. y SUR MEDIO S.A. ERSA. Sus ubicaciones rela-
tivas con sus respectivas áreas de concesión es mostrada
en la Lámina N° 1.2.

La localización geográfica de los centros de generación y
AREA DE INFLUENCIA DE LAS EMPRESAS REGIONALES EN LA REGIÓN CENTRO-NORTE

E.R. ELECTRONORTE S.A.

E.R. ELECTRO NORTE
MEDIO-HIDRAN-DINA S.A.

E.R. ELECTROLIMA S.A.

E.R. SUR MEDIO S.A. - ERSA

UNIVERSIDAD NACIONAL DE INGENIERÍA
FACULTAD DE INGENIERÍA ELECTRICA Y ELECTRONICA
PROYECTO: PARA OPTAR EL TÍTULO PROFESIONAL

PLANEAMIENTO DE LA EXPANSIÓN A LARGO PLAZO DE LA RED DE TRANSMISIÓN ELECTRICA DEL SISTEMA INTERCONECTADO CENTRO NORTE (SICN)
PERÍODO 1990 - 2010

NOMBRE: ANTARA ARIAS RCNAL
CÓDIGO: 780376-F
ESPECIALIDAD: INGENIERÍA ELECTRICA
principales sub-estaciones pertenecientes al SICN son mostradas en la Lámina N° 1.3. Asimismo la Lámina N° 1.4 muestra de manera simplificada la configuración eléctrica actual del sistema que se ha obtenido concentrando las redes de subtransmisión y distribución a barras troncales sin modificar su topología base. Además tratando de conservar las barras que permitirán interconexiones importantes en el sistema en el largo plazo, materia de estudio de este trabajo.

Un diagnóstico de la actual realidad eléctrica de esta región, mediante el estudio del estado de la situación del desarrollo eléctrico de esta zona en toda su integridad y una interpretación técnica, económica, geográfica y política de los problemas más importantes del desarrollo eléctrico y la forma cómo se generan, nos permitiría establecer en cierta forma las tendencias futuras y las medidas correlativas.

El sistema interconectado CENTRO-NORTE fué constituido a partir de Diciembre de 1980, con la puesta en servicio de la línea de transmisión Lima a Chimbote. Los centros de generación mayormente son de tipo hidráulico, siendo controladas por las Empresas regionales de acuerdo a su zona de influencia. La capacidad instalada correspondiente a Centrales Hidráulicas a fines de 1985 fué de 1919 Mw. Representando la C.H. Mantaro el 42% de la capacidad instalada de todo el sistema. La conexión de CENTROMIN PERU se ha constituido a este sistema a partir de una deriva -
CONFIGURACION ELECTRICA ACTUAL A NIVEL DE TRANSMISION DEL SISTEMA
INTERCONECTADO CENTRO NORTE
ción en la S.E. Pachachaca de la Línea de Transmisión Mantaro-Pachachaca-Callahuanca. Los sub-sistemas aislados y algunos ya interconectados (especialmente al Norte) reciben energía de plantas termoeléctricas con una capacidad efectiva, a fines de 1985, de 527 Mw, representando las centrales térmicas de los sistemas aislados el 36% de toda la potencia efectiva del sistema. El promedio de vida restante estimado de los grupos electrógenos es de 10 años.

Al observar la Lámina Nº 1.3 se puede apreciar que el SICN presenta una gran red longitudinal a un nivel de tensión de 220 KV, en la estrecha faja costera de esta región, ubicándose en ella las barras: Marcona, Ica, San Juan, Santa Rosa, Chavarría, Paramonga, Chimbote y Trujillo; la longitud de esta línea de transmisión es de 991 Kms. A lo largo de esta extensa red de transmisión se encuentran ubicados los centros de consumo, observándose entre ellas distancias significativas, predominando entre éstos, el sistema eléctrico de ELECTRO LIMA que provee de energía eléctrica primordialmente a Lima Metropolitana.

El suministro de energía eléctrica al Sistema ELECTRO LIMA se efectúa básicamente mediante energía hidroeléctrica proveniente de centrales cercanas a Lima, así como de las Centrales Hidroeléctricas Mantaro y Restitución, estas últimas a través de cinco circuitos a nivel de 220 KV. Las Centrales Hidroeléctricas Cañón del Pato y Cahua
suministran energía eléctrica esencialmente a los departamentos de Ancash y la Libertad. El sistema eléctrico de CENTROMIN se abastece de energía proveniente de las Centrales Hidroeléctricas Yaupi, Malpaso, Oroya y Pachachaca y adicionalmente de las CC.HH. Mantaro y Restitución.

La lejanía entre los centros de carga y la pequeña magnitud individual de las cargas concentradas a excepción de Lima, propician que el abastecimiento de la gran Lima sea la única carga concentrada que tenga un relativo buen nivel de confiabilidad. Pero la confiabilidad de abastecimiento de Energía Eléctrica, desde el punto de vista de transmisión a otros centros de carga, es muy reducida. De esta manera el SICN configura un sistema interconectado débil y de baja confiabilidad, en el cual no se manifiestan claramente las ventajas inherentes a los sistemas interconectados. Es decir, la economía de escala, reducción de los requerimientos de reserva para cada carga individual, aprovechamientos de recursos hidroeléctricos con diferente régimen hidrológico, posibilidades de satisfacer la demanda desde diferentes frentes.

En fin, un aprovechamiento conveniente y satisfactorio de la energía eléctrica disponible.

1.1.4. **Areas de concesión de las Empresas Regionales de Electricidad que conforman el SICN**

De acuerdo a lo dispuesto en "La Ley General de Electricidad" N° 23406, promulgada el 28 de Mayo de 1982,
el sistema interconectado Centro Norte estaría conformada por cinco Empresas Regionales, las cuales tendrían áreas de concesión que se indican a continuación:

EMPRESA REGIONAL ELECTRO-NORTE S.A.:
Departamento de Tumbes, Piura, Lambayeque y Amazonas en su integridad y las provincias de San Ignacio, Jaén, Cutervo, Chota, Sta. Cruz y San Miguel del Departamento de Cajamarca.

EMPRESA REGIONAL ELECTRO-NORTE MEDIO S.A. (HIDRANDINA S.A.)
Departamento de Ancash, la Libertad, las provincias de Contumaza, Cajamarca, Cajabamba, San Pablo Celendín y Hualgayoc del Departamento de Cajamarca la provincia de Marañón del departamento de Huánuco y el distrito de Pativilca de la provincia de Chancay en el departamento de Lima.

EMPRESA REGIONAL ELECTROLIMA S.A.:
Departamento de Lima.

EMPRESA REGIONAL ELECTRO-SUR MEDIO S.A.
Departamento de Ica, provincias de Castrovirreyna en Huancavelica, Lucanas y Parinacochas en el Departamento de Ayacucho.

EMPRESA REGIONAL ELECTRO-CENTRO S.A.:
Departamento de Ucayali, Pasco, Junin, las provincias de Leoncio Prado, Huamalíes, Dos de Mayo, Huánuco, Amboy y Pachitea del Departamento de Huánuco; las provincias de Huancavelica, Angaraes, Acohamba y Tayacaja del departamento de Huancaveli
ca y las provincias de Huanta, la Mar, Cangallo y Victor Fajardo del departamento de Ayacucho.

1.1.5. **Evolución Cronológico del Sistema Interconectado Centro-Norte (SICN)**

El Sistema Interconectado ha presentado la siguiente evolución cronológica en su constitución:

- En Setiembre 1973 con la puesta en servicio de la Central Hidroeléctrica Mantaro y el Centro de Transformación de San Juan, se interconectan los sistemas de Mantaro y ELECTROLIMA, conformándose el Sistema Interconectado del Centro.

- En Abril de 1976, se incorporó al Sistema Interconectado del Centro el Sistema Eléctrico de HIERRO PERÚ.

- En Octubre de 1980, con la puesta en servicio de la línea de transmisión Lima-Chimbote, se constituyó el Sistema Interconectado Centro Norte Medio conformado por los sistemas eléctricos de Santa, de Cahua-Paramonga y el sistema interconectado del Centro.

- En 1985, se incorpora al sistema interconectado Centro Norte Medio el Sistema Eléctrico de CENTROMIN.

Por tanto, este sistema está conformado actualmente por los siguientes centros de carga: Trujillo, Chimbote, Huallanga, Paramonga, Lima, Independencia, Ica, Marcona Huancayo y Mantaro. Esta disposición se puede apreciar en la Lámina N° 1.3.
1.2. PROYECCION DE LA DEMANDA EN EL SICN

El estudio de la Demanda Eléctrica se ha realizado con la finalidad de determinar las demandas de energía y potencia eléctrica de todos los centros de carga involucrados dentro del área de influencia del presente trabajo. Las proyecciones de la Demanda han sido proporcionadas por la Unidad de Mercado de la Empresa de Electricidad del Perú - ELECTROPERU S.A.

1.2.1. Evolución Cronológica de la Demanda en el SICN

La demanda a nivel Mercado (M) incluye cargas con servicio eléctrico, ya sea que estén conectadas a sistemas eléctricos o permanezcan aisladas. La demanda a nivel interconectable es la que considera sólo aquellas cargas que están o son factibles de ser conectadas a un centro de carga adyacente en el horizonte de planeamiento.

De esta manera a nivel actual las tasas de crecimiento de la demanda de energía resultaron y resultan muy variables debido a la incorporación gradual de los centros de carga al sistema interconectado. Así tenemos la evolución cronológica de la demanda a nivel interconectable:

En el año 1980, el SICN tuvo un crecimiento de 31.2 % - motivado por la entrada en servicio de la línea de transmisión Lima-Chimbote, la que permitió la incorporación de las cargas atendidas por los sistemas eléctricos del Cañón del Pato, Chimbote, Trujillo y Cahua-Paramonga.

- En el año 1981, se presentó un crecimiento de 8.4 %, de...
bido principalmente al suministro eléctrico a la Refinería de Zinc.

- En el año 1982, se registró un crecimiento de 5.8% como resultado de brindar suministro eléctrico a la Acería de Pisco, a la ampliación de la mina Cobriza y a la mina Monterrosas de CENTROMIN (Ica).

- En el año 1983, se presentó un decrecimiento de -2.3% debido a la disminución de los requerimientos de energía de los sectores minero e industrial como consecuencia de la menor producción registrada en el Perú.

En el año 1984, se ha registrado un crecimiento en la demanda de energía del orden de 6.4%, originado por una ligera recuperación en la producción de los sectores industrial y minera.

A continuación de estos años y dentro del período del trabajo, nuevamente se presenta el aumento brusco de la demanda en algunos centros de carga, así tenemos:

- En Chimbote los años 1995 y 2004, aumenta su demanda debido al proyecto de ampliación de la Siderúrgica de Chimbote.

- En Cajamarca los años 2004 y 2006, incrementa su demanda como consecuencia del desarrollo minero de Michiquillay.

- En Huallanca el año 1998, incrementa su demanda debido principalmente al desarrollo minero de Antamina, a más de 100 Km de la central hidroeléctrica Cañón del Pato.

- En CENTROMIN PERU después del año 2000, se incrementa su demanda, debido a que se tiene la perspectiva de desarrollarse una serie de proyectos mineros a partir de ese año.

En los años 1987 y 1999 como consecuencia del suministro a Ingenio y Caudalosa desde la S.E. Huancavelica y la interconexión de Pucallpa al SICN respectivamente, también se produce un incremento brusco de la demanda de este Sistema Interconectado.

Además cabe mencionar que la carga de Lima predomina fuertemente en este sistema, representando cerca del 62% en potencia y 68% en energía, respecto al total en 1985, en cuanto a la demanda que se prevé de esta carga se reducirá a 53% y 55% para la potencia y la energía respectivamente respecto al total del año 2010.

Los otros centros de carga del sistema, si bien tienen un mayor crecimiento relativo respecto a la carga de Lima su menor magnitud individual se mantiene a los largo del período de estudio.

Los resultados de la proyección de demanda se muestran en los cuadros Nros. 1.1 y 1.2, en ellos se puede apreciar que la tasa promedio de crecimiento anual de la demanda a nivel interconectado para el período 1985-2010 es de 6.0%
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumbes</td>
<td>1.188</td>
<td>1.175</td>
<td>2.04</td>
<td>2.01</td>
<td>2.10</td>
<td>2.10</td>
<td>2.17</td>
<td>2.25</td>
<td>2.31</td>
<td>2.39</td>
<td>2.45</td>
<td>2.50</td>
<td>2.56</td>
<td>2.61</td>
<td>2.67</td>
<td>2.72</td>
</tr>
<tr>
<td>Piura</td>
<td>0.929</td>
<td>0.921</td>
<td>0.921</td>
<td>0.923</td>
<td>1.072</td>
<td>1.125</td>
<td>1.124</td>
<td>1.127</td>
<td>1.141</td>
<td>1.200</td>
<td>1.256</td>
<td>1.311</td>
<td>1.367</td>
<td>1.422</td>
<td>1.477</td>
<td>1.532</td>
</tr>
<tr>
<td>Tolaro</td>
<td>0.502</td>
<td>0.493</td>
<td>0.503</td>
<td>0.505</td>
<td>0.506</td>
<td>0.508</td>
<td>0.509</td>
<td>0.511</td>
<td>0.513</td>
<td>0.515</td>
<td>0.517</td>
<td>0.519</td>
<td>0.522</td>
<td>0.525</td>
<td>0.527</td>
<td>0.530</td>
</tr>
<tr>
<td>Bayovar</td>
<td>3.207</td>
<td>3.204</td>
</tr>
<tr>
<td>Chicaoia</td>
<td>0.209</td>
<td>0.207</td>
</tr>
<tr>
<td>Pacasmayo</td>
<td>0.324</td>
</tr>
<tr>
<td>Cajamarca</td>
<td>0.256</td>
</tr>
<tr>
<td>Trujillo</td>
<td>0.256</td>
</tr>
<tr>
<td>Chimbo</td>
<td>0.347</td>
</tr>
<tr>
<td>Huallanca</td>
<td>0.256</td>
</tr>
<tr>
<td>Panamango</td>
<td>0.256</td>
</tr>
<tr>
<td>Lima</td>
<td>0.256</td>
</tr>
<tr>
<td>Pisac</td>
<td>0.256</td>
</tr>
<tr>
<td>Ica</td>
<td>0.256</td>
</tr>
<tr>
<td>Marcona</td>
<td>0.256</td>
</tr>
<tr>
<td>Pachacolla</td>
<td>0.256</td>
</tr>
<tr>
<td>La Oraya</td>
<td>0.256</td>
</tr>
<tr>
<td>Cerra de Pasco</td>
<td>0.256</td>
</tr>
<tr>
<td>Huancayo</td>
<td>0.256</td>
</tr>
<tr>
<td>Huancavelca</td>
<td>0.256</td>
</tr>
<tr>
<td>Mantaro</td>
<td>0.256</td>
</tr>
<tr>
<td>Pucallpa</td>
<td>0.256</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.256</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Tumbes</td>
<td></td>
</tr>
<tr>
<td>Piura</td>
<td></td>
</tr>
<tr>
<td>Távara</td>
<td></td>
</tr>
<tr>
<td>Ayaví</td>
<td></td>
</tr>
<tr>
<td>Chiclay</td>
<td></td>
</tr>
<tr>
<td>Pocasmayo</td>
<td></td>
</tr>
<tr>
<td>Cajamarca</td>
<td></td>
</tr>
<tr>
<td>Trujillo</td>
<td></td>
</tr>
<tr>
<td>Chimbote</td>
<td></td>
</tr>
<tr>
<td>Huánuco</td>
<td></td>
</tr>
<tr>
<td>Lambayeque</td>
<td></td>
</tr>
<tr>
<td>Limá</td>
<td></td>
</tr>
<tr>
<td>Pasco</td>
<td></td>
</tr>
<tr>
<td>Ica</td>
<td></td>
</tr>
<tr>
<td>Marañón</td>
<td></td>
</tr>
<tr>
<td>Páucallpa</td>
<td></td>
</tr>
</tbody>
</table>

NOTA: Información del SISTEMA INTERCONECTADO CENTRO - NORTE de acuerdo al Proyecto de la Demanda de Potencia (MW) en el período 1985-2010.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C. DE CARGA</td>
<td></td>
</tr>
<tr>
<td>Tumbes</td>
<td>66.6</td>
<td>69.7</td>
<td>72.6</td>
<td>75.5</td>
<td>78.6</td>
<td>81.7</td>
<td>84.7</td>
<td>88.2</td>
<td>91.4</td>
<td>94.7</td>
<td>0.3</td>
<td>104.9</td>
<td>109.6</td>
<td>114.9</td>
<td>121.3</td>
</tr>
<tr>
<td>Piura</td>
<td>56.8</td>
<td>69.7</td>
<td>72.6</td>
<td>75.5</td>
<td>78.6</td>
<td>81.7</td>
<td>84.7</td>
<td>88.2</td>
<td>91.4</td>
<td>94.7</td>
<td>0.3</td>
<td>104.9</td>
<td>109.6</td>
<td>114.9</td>
<td>121.3</td>
</tr>
<tr>
<td>Tacna</td>
<td>306.7</td>
<td>357.5</td>
<td>373.7</td>
<td>391.1</td>
<td>409.8</td>
<td>429.7</td>
<td>450.8</td>
<td>473.5</td>
<td>494.1</td>
<td>514.0</td>
<td>534.2</td>
<td>555.7</td>
<td>578.5</td>
<td>602.6</td>
<td>627.8</td>
</tr>
<tr>
<td>La Libertad</td>
<td>306.7</td>
<td>357.5</td>
<td>373.7</td>
<td>391.1</td>
<td>409.8</td>
<td>429.7</td>
<td>450.8</td>
<td>473.5</td>
<td>494.1</td>
<td>514.0</td>
<td>534.2</td>
<td>555.7</td>
<td>578.5</td>
<td>602.6</td>
<td>627.8</td>
</tr>
<tr>
<td>Ayacucho</td>
<td>310.6</td>
<td>332.9</td>
<td>338.7</td>
<td>348.8</td>
<td>359.4</td>
<td>370.8</td>
<td>382.0</td>
<td>390.6</td>
<td>395.3</td>
<td>406.7</td>
<td>415.2</td>
<td>423.6</td>
<td>434.8</td>
<td>448.4</td>
<td>463.2</td>
</tr>
<tr>
<td>Huancayo</td>
<td>325.4</td>
<td>324.2</td>
<td>338.7</td>
<td>348.8</td>
<td>359.4</td>
<td>370.8</td>
<td>382.0</td>
<td>390.6</td>
<td>395.3</td>
<td>406.7</td>
<td>415.2</td>
<td>423.6</td>
<td>434.8</td>
<td>448.4</td>
<td>463.2</td>
</tr>
<tr>
<td>Cusco</td>
<td>297.8</td>
<td>277.1</td>
<td>271.4</td>
<td>262.2</td>
<td>252.6</td>
<td>242.8</td>
<td>233.4</td>
<td>223.8</td>
<td>214.2</td>
<td>204.5</td>
<td>194.8</td>
<td>185.0</td>
<td>175.2</td>
<td>165.3</td>
<td>155.4</td>
</tr>
<tr>
<td>Arequipa</td>
<td>360.7</td>
<td>387.8</td>
<td>399.0</td>
<td>416.2</td>
<td>434.9</td>
<td>454.5</td>
<td>475.9</td>
<td>498.3</td>
<td>522.6</td>
<td>549.6</td>
<td>576.5</td>
<td>603.8</td>
<td>630.8</td>
<td>671.0</td>
<td>717.1</td>
</tr>
<tr>
<td>Madre de Dios</td>
<td>539.7</td>
<td>559.9</td>
<td>581.9</td>
<td>603.1</td>
<td>624.7</td>
<td>646.1</td>
<td>668.0</td>
<td>691.3</td>
<td>714.6</td>
<td>738.0</td>
<td>761.3</td>
<td>784.5</td>
<td>807.7</td>
<td>832.4</td>
<td>857.2</td>
</tr>
<tr>
<td>Tacna</td>
<td>34.6</td>
<td>36.6</td>
<td>39.3</td>
<td>42.5</td>
<td>45.8</td>
<td>50.0</td>
<td>54.7</td>
<td>59.3</td>
<td>64.0</td>
<td>68.7</td>
<td>73.3</td>
<td>78.1</td>
<td>82.9</td>
<td>87.8</td>
<td>92.7</td>
</tr>
<tr>
<td>Callao</td>
<td>51.9</td>
<td>56.1</td>
<td>58.9</td>
<td>61.7</td>
<td>64.6</td>
<td>68.1</td>
<td>71.8</td>
<td>76.5</td>
<td>82.7</td>
<td>89.3</td>
<td>96.2</td>
<td>103.4</td>
<td>110.9</td>
<td>118.5</td>
<td>126.1</td>
</tr>
<tr>
<td>Trujillo</td>
<td>532.7</td>
<td>559.4</td>
<td>587.7</td>
<td>615.6</td>
<td>643.5</td>
<td>671.4</td>
<td>698.3</td>
<td>726.2</td>
<td>754.0</td>
<td>782.3</td>
<td>810.7</td>
<td>839.1</td>
<td>867.5</td>
<td>895.9</td>
<td>924.2</td>
</tr>
<tr>
<td>Ancash</td>
<td>648.9</td>
</tr>
<tr>
<td>Chimbote</td>
<td>74.8</td>
<td>77.4</td>
<td>79.8</td>
<td>82.6</td>
<td>85.6</td>
<td>88.7</td>
<td>91.8</td>
<td>94.9</td>
<td>98.0</td>
<td>101.1</td>
<td>104.2</td>
<td>107.4</td>
<td>110.6</td>
<td>113.8</td>
<td>117.1</td>
</tr>
<tr>
<td>Huancavelica</td>
<td>136.9</td>
<td>159.6</td>
<td>162.3</td>
<td>165.0</td>
<td>167.7</td>
<td>170.5</td>
<td>173.4</td>
<td>176.3</td>
<td>179.2</td>
<td>182.1</td>
<td>185.0</td>
<td>187.9</td>
<td>190.8</td>
<td>193.7</td>
<td>196.6</td>
</tr>
<tr>
<td>Lambayeque</td>
<td>163.7</td>
<td>186.8</td>
<td>200.1</td>
<td>213.4</td>
<td>226.7</td>
<td>240.1</td>
<td>253.7</td>
<td>267.4</td>
<td>281.1</td>
<td>294.8</td>
<td>308.5</td>
<td>322.2</td>
<td>336.0</td>
<td>349.8</td>
<td>363.7</td>
</tr>
<tr>
<td>La Libertad</td>
<td>153.2</td>
<td>164.9</td>
<td>176.5</td>
<td>188.1</td>
<td>199.8</td>
<td>211.4</td>
<td>223.0</td>
<td>234.6</td>
<td>246.2</td>
<td>257.8</td>
<td>269.4</td>
<td>281.0</td>
<td>292.6</td>
<td>304.2</td>
<td>315.8</td>
</tr>
<tr>
<td>Chachapoyas</td>
<td>156.3</td>
<td>170.2</td>
<td>184.1</td>
<td>198.0</td>
<td>211.9</td>
<td>225.8</td>
<td>239.7</td>
<td>253.6</td>
<td>267.5</td>
<td>281.4</td>
<td>295.3</td>
<td>309.2</td>
<td>323.1</td>
<td>337.0</td>
<td>351.0</td>
</tr>
<tr>
<td>Amazonas</td>
<td>382.0</td>
<td>371.7</td>
<td>360.6</td>
<td>349.8</td>
<td>339.1</td>
<td>329.4</td>
<td>319.7</td>
<td>310.0</td>
<td>299.2</td>
<td>288.4</td>
<td>277.7</td>
<td>266.9</td>
<td>256.1</td>
<td>245.4</td>
<td>234.7</td>
</tr>
<tr>
<td>Casma</td>
<td>1078.2</td>
<td>1125.7</td>
<td>1173.2</td>
<td>1220.7</td>
<td>1268.2</td>
<td>1315.7</td>
<td>1363.2</td>
<td>1410.7</td>
<td>1458.2</td>
<td>1505.7</td>
<td>1553.2</td>
<td>1600.7</td>
<td>1648.2</td>
<td>1695.7</td>
<td>1743.2</td>
</tr>
<tr>
<td>Piura</td>
<td>1358.4</td>
<td>1425.6</td>
<td>1501.4</td>
<td>1578.2</td>
<td>1653.8</td>
<td>1730.4</td>
<td>1807.0</td>
<td>1883.6</td>
<td>1960.2</td>
<td>2036.8</td>
<td>2113.4</td>
<td>2190.0</td>
<td>2266.6</td>
<td>2343.2</td>
<td>2420.8</td>
</tr>
<tr>
<td>TOTAL INTERCON.</td>
<td>12345.6</td>
<td>14078.7</td>
<td>14900.5</td>
<td>15781.4</td>
<td>16668.0</td>
<td>17557.8</td>
<td>18476.3</td>
<td>19395.8</td>
<td>20325.3</td>
<td>21255.8</td>
<td>22186.3</td>
<td>23116.8</td>
<td>24047.3</td>
<td>24977.8</td>
<td>25908.3</td>
</tr>
</tbody>
</table>

Cuadro No. 12
Proyección de la Demanda de Energía (Gwh)
Periodo 1985 - 2010
Cuadro N° 12

PROYECION DE LA DEMANDA DE ENERGÍA (GWh)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumbes</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pura</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Talara</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Cayamayo</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Chialaya</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pocacamo</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Trujillo</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Chimbote</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Huallanca</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Paracanga</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Lima</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pisca</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Ico</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Marcona</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pachacá</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>La Oraya</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Cerro de Pasco</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Huancayo</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Huancavelica</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Mojón</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pucallpa</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>

* Interconectable

Cuadro preparado por: MINEM
para la energía y 5.7% para la potencia.

1.2.2. **Proyección de la demanda por barras en el Período de Estudio 1995-2010**

Debido al período utilizado en el presente trabajo (largo plazo) se ha considerado concentrado, de acuerdo al área de influencia los centros de consumo, en barras principales, conservando la topología esencial o base del sistema interconectado.

Para tal fin se ha elaborado un programa computacional de circuitos equivalentes, este programa permite reducir un sistema eléctrico en barras necesarias para el estudio y siendo el período de trabajo el largo plazo, podemos considerar este método como una buena ayuda, permitiéndonos una mejor visualización de la expansión de la transmisión a través de barras troncales.

En el Apéndice A se muestra la metodología del desarrollo de circuitos equivalentes. De esta manera se ha reducido el Sistema Eléctrico Centromin en dos barras CARHUAMAYO y YUNCAN. Luego en base a un análisis geográfico y de influencia eléctrica se ha concentrado la demanda eléctrica en las barras escogidas.

Asimismo en el Sistema Eléctrico de Electrólima se ha definido nueve barras como se muestra en la Lámina Nº 1.5 a nivel de 220 KV. Las cargas en dichas barras se han obtenido teniendo en cuenta el desarrollo poblacional de la gran Lima y de acuerdo al radio de acción de cada barra,
DISTRIBUCIÓN DE CARGA POR BARRAS DEL SUB-SISTEMA ELECTROLIMA-1995

- NARANJA
- SANTA MARINA
- PANDO
- PERSHING
- BARRSI
- SANTA ROSA
- GALVEZ
- S.E.F.
- TACNA
- PUENTE 50%
- HUACHIPA
- PLAMICIE
- Huampani
- NANA
- SAN MATEO 60%
- BURCO 60%
- CHOSICA 60%
- CALLAHUANCA
- DE PACHACHACA
- REFINERÍA DE ZINC
- R ZINC
- DE HUINCO
- DE POMACOCHA
- MALNEARIOS
- SAN JUAN
- SAN JUAN
- LURIN
- MALA
- CHILCA
- SAN BARTOLO
- VILLA EL SALVADOR
- ATOCONGO
- VILLA MARIA DEL TRIUNFO

<table>
<thead>
<tr>
<th>BARRAS</th>
<th>1995</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAPALLAL</td>
<td>283.94</td>
<td>23.30</td>
</tr>
<tr>
<td>CHAVARRIA</td>
<td>95.18</td>
<td>7.91</td>
</tr>
<tr>
<td>SANTAROSA</td>
<td>238.19</td>
<td>16.99</td>
</tr>
<tr>
<td>SAN JUAN</td>
<td>93.00</td>
<td>7.65</td>
</tr>
<tr>
<td>BARRSI</td>
<td>136.20</td>
<td>10.81</td>
</tr>
<tr>
<td>MALNEARIOS</td>
<td>318.41</td>
<td>26.19</td>
</tr>
</tbody>
</table>
dicho análisis porminorizado se ha efectuado en el año inicial de estudio 1995 como se muestra en la Lámina Nº 1.5. Considerando luego los porcentajes de cada barra respecto al total de la demanda de Lima, aproximadamente uniforme en el período de trabajo.

Los resultados de la proyección de demanda por barras en el período de estudio 1995-2010 se muestra en el cuadro - Nº 1.3.

Cabe señalar que la curva o diagrama de carga, no se preve que sufra variaciones significativas, permaneciendo una máxima demanda diaria entre las 19 y 21 horas con una duración promedio de la punta diaria de de 2.5 horas. La máxima demanda anual se seguiría presentando entre el tercer y cuarto trimestre del año entre Agosto y Setiembre.

En cuanto al factor de carga se incrementa el 60% en 1985 hasta el 63% en 1995, aumentando en un 0.9% respecto al anterior al finalizar el período de estudio (2010).

Siendo el largo alcance o largo plazo, período del presente trabajo se enfocará el Proyecto en cuatro etapas comprendidas entre ellas un intervalo de 5 años, a saber: los años 1995, 2000, 2005 y 2010.

1.3. EXPANSION DE LA GENERACION EN EL SICN

El objetivo principal del análisis de la expansión de generación, es la definición del programa de equipamiento que permita cubrir los requerimientos corresponderdientes que fueron previamente determinados en el estudio
Cuadro N° 1.3 - Demanda máxima en barras 220 kV

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHICLAYO SUR</td>
<td>74.0</td>
<td>73.1</td>
<td>80.7</td>
<td>84.5</td>
<td>88.4</td>
<td>92.7</td>
<td>97.2</td>
<td>102.0</td>
<td>107.2</td>
<td>112.8</td>
<td>118.7</td>
<td>130</td>
<td>138.4</td>
<td>147.9</td>
<td>159.5</td>
<td>172.5</td>
<td></td>
</tr>
<tr>
<td>PIURA OESTE</td>
<td>75.6</td>
<td>84.8</td>
<td>88.7</td>
<td>92.8</td>
<td>97.3</td>
<td>102.0</td>
<td>107.1</td>
<td>112.5</td>
<td>118.2</td>
<td>124.1</td>
<td>130.8</td>
<td>141.6</td>
<td>150.3</td>
<td>160.2</td>
<td>171.7</td>
<td>184.5</td>
<td></td>
</tr>
<tr>
<td>TALARA</td>
<td>-</td>
<td>-</td>
<td>52.2</td>
<td>55.6</td>
<td>57.4</td>
<td>59.3</td>
<td>62.0</td>
<td>63.0</td>
<td>61.0</td>
<td>63.1</td>
<td>66.6</td>
<td>67.8</td>
<td>69.8</td>
<td>72.1</td>
<td>74.9</td>
<td>77.9</td>
<td></td>
</tr>
<tr>
<td>TUMBES</td>
<td>-</td>
<td>-</td>
<td>20.4</td>
<td>21.0</td>
<td>21.7</td>
<td>22.5</td>
<td>23.1</td>
<td>23.0</td>
<td>24.7</td>
<td>25.4</td>
<td>26.1</td>
<td>27.7</td>
<td>28.7</td>
<td>30.0</td>
<td>31.4</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td>BAYOYAR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>34.2</td>
<td>34.2</td>
<td>34.2</td>
<td>34.2</td>
<td>34.2</td>
<td>36.1</td>
<td>36.6</td>
<td>37.2</td>
<td>38.3</td>
<td>39.5</td>
<td>40.1</td>
<td>40.8</td>
<td>40.6</td>
<td></td>
</tr>
</tbody>
</table>

Sistema Interconectado Norte Medio

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SANTA ROSA</td>
<td>245.3</td>
<td>258.9</td>
<td>273.3</td>
<td>287.4</td>
<td>301.9</td>
<td>319.5</td>
<td>336.5</td>
<td>354.3</td>
<td>373.3</td>
<td>393.3</td>
<td>413.9</td>
<td>435.8</td>
<td>459.4</td>
<td>483.9</td>
<td>505.5</td>
<td>536.1</td>
<td>561.6</td>
</tr>
<tr>
<td>CHIMBORazo</td>
<td>140.1</td>
<td>142.2</td>
<td>146.3</td>
<td>146.5</td>
<td>148.7</td>
<td>151.0</td>
<td>153.5</td>
<td>156.1</td>
<td>158.8</td>
<td>164.0</td>
<td>169.2</td>
<td>175.6</td>
<td>180.8</td>
<td>184.0</td>
<td>186.9</td>
<td>190.3</td>
<td>200.3</td>
</tr>
</tbody>
</table>

Sistema Interconectado Centro Norte Peru

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMINA N° 1.5</td>
<td>177.5</td>
<td>184.7</td>
<td>191.2</td>
<td>193.0</td>
<td>195.0</td>
<td>202.9</td>
<td>245.7</td>
<td>300.3</td>
<td>302.6</td>
<td>304.7</td>
<td>307.0</td>
<td>317.7</td>
<td>357.9</td>
<td>363.8</td>
<td>379.4</td>
<td>398.6</td>
<td></td>
</tr>
</tbody>
</table>

Electrolima

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HUANCAI</td>
<td>27.5</td>
<td>25.9</td>
<td>26.0</td>
<td>26.3</td>
<td>26.5</td>
<td>26.7</td>
<td>26.9</td>
<td>27.2</td>
<td>27.4</td>
<td>27.7</td>
<td>28.0</td>
<td>29.2</td>
<td>29.7</td>
<td>30.4</td>
<td>31.1</td>
<td>32.3</td>
<td>HUAVAYCAI</td>
</tr>
<tr>
<td>MARCAO</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
<td>64.3</td>
<td>64.3</td>
<td>78.6</td>
<td>78.7</td>
<td>78.9</td>
<td>79.0</td>
<td>79.2</td>
<td>79.4</td>
<td>81.8</td>
<td>82.6</td>
<td>83.6</td>
<td>85.1</td>
<td>86.8</td>
<td>MARCAO</td>
</tr>
<tr>
<td>ICA</td>
<td>50.9</td>
<td>52.1</td>
<td>53.2</td>
<td>56.5</td>
<td>55.7</td>
<td>57.0</td>
<td>58.4</td>
<td>59.8</td>
<td>61.3</td>
<td>62.9</td>
<td>64.4</td>
<td>67.8</td>
<td>70.0</td>
<td>72.5</td>
<td>75.5</td>
<td>78.8</td>
<td>ICA</td>
</tr>
<tr>
<td>INDEPENDI</td>
<td>80.6</td>
<td>83.4</td>
<td>86.2</td>
<td>89.2</td>
<td>92.3</td>
<td>95.7</td>
<td>99.0</td>
<td>102.7</td>
<td>104.5</td>
<td>110.5</td>
<td>114.6</td>
<td>122.4</td>
<td>128.0</td>
<td>134.2</td>
<td>141.5</td>
<td>149.6</td>
<td>PISCO</td>
</tr>
</tbody>
</table>

Fuente: Unidad de Mercado de la Empresa de Electricidad del Perú - ELECTROPERU
de mercado (Proyección de la demanda en el SICN).

La expansión de la generación de este sistema han sido proporcionadas por la Unidad de Generación de la Empresa de Electricidad del Perú - ELECTROPERU.

1.3.1. Modelos de optimización de la expansión de la generación del SICN utilizado en ELECTROPERU

La complejidad del futuro desarrollo de sistemas eléctricos, hace necesaria la utilización de métodos de simulación en computadoras para resolver el problema de la expansión óptima. Mediante el método computacional se puede analizar el mayor número de variables y datos que deben ser contemplados en las alternativas de solución del equipamiento de generación necesaria.

De esta manera ELECTROPERU S.A. para el caso de el Sistema Interconectado Centro Norte, cuyo análisis es muy complejo, utiliza los modelos computacionales SEQSI-INSIM y el WASP-III en forma complementaria. Ambos modelos simulan la operación futura de los sistemas de generación y tienen como función objetivo, la definición de un programa óptimo de generación. El modelo REDEX, programa computacional de diseño de la red correspondiente, ha sido utilizado adicionalmente para permitir el análisis dinámico del flujo de las inversiones y de los costos de operación y mantenimiento fijos en la expansión de la generación. La selección de la secuencia óptima ha sido analizada por el método del valor presente de los costos de inversión y operación, in
cluyendo los correspondientes a los sistemas de transmi-
sión asociados.

Es necesario mencionar las restricciones que presenta es-
te modelo al considerar a todo el sistema eléctrico con-
trado en un punto, un porcentaje igual de pérdidas para-
todas las alternativas, no asocia los criterios de trans-
misión y reserva local a las alternativas y no contempla-
los desarrollos regionales del sistema en estudio. Por-
tanto, siendo el SICN esencialmente longitudinal, una se-
cuencia de generación dada puede resultar en un sistema-
de transmisión de baja confiabilidad.

1.3.2. Alternativas de expansión de la generación en el
SICN

Teniendo en cuenta que el planeamiento es un proce-
so dinámico, una alternativa de generación no representa
un planteamiento rígido. Es razonable pensar que a corto,
mediano y más aún a largo plazo, esta alternativa sea mo-
dificada por razones técnicas, económicas, financieras y
porque no decirlo por razones políticas.

De esta manera ELECTROPERU S.A. ha planteado tres alterna-
tivas de programa de equipamiento que permita cubrir la-
Demanda de este Sistema (Plan Maestro 1985) Así tenemos:

ALTERNATIVA 1: Programa de equipamiento sin Proyectos Mul-
tisectoriales.

ALTERNATIVA 2: Programa de equipamiento con el proyecto
- de Gas de Zorritos.
ALTERNATIVA 3: Programa de equipamiento con el Proyecto Olmos.

Los resultados de las alternativas mencionadas, se muestran en el Cuadro N° 1.4. Además en los Cuadros Nros. 1.5, 1.6 y 1.7 se pueden apreciar estas alternativas en relación con la generación existente y la situación del grado de estudio que presentan cada uno de los nuevos proyectos a implementarse para hacer efectivo el programa de equipamiento del SICN en el período 1985-2010 (largo plazo).

Es conveniente señalar que la oferta de generación en los sub-sistemas aislados hasta la fecha de su interconexión al SICN son esencialmente de origen térmico. En el cuadro N° 1.8 se ilustra de manera localizada la oferta de generación existente en 1985 en el SICN, así como en los otros sub-sistemas aislados, cuya interconexión se realizará en el corto y mediano plazo. Los sub-sistemas aislados tienen una Generación Eléctrica conformada principalmente por pequeños grupos Diesel de baja afluencia, con excepción de los Diesel de Pacasmayo, turbo Gas de Malacas y nuevos grupos Diesel en Chiclayo, Paita y Piura.

Es decir, los centros de carga cuya interconexión se efectuará en el futuro hasta su interconexión, seguirán abasteciéndose con energía eléctrica de origen térmico y con templándose en ellas las puestas en operación de grupos -
CUADRO Nº 1.4 - SISTEMA INTERCONECTADO CENTRO NORTE ALTER NATIVAS DE EXPANSION DE LA GENERACION

<table>
<thead>
<tr>
<th>AÑO</th>
<th>ALT.1 SIN PRO YECTOS MULTI-SECTORIALES</th>
<th>ALT.2 CON GAS DE ZORRITOS</th>
<th>ALT.3 CON OLMDS</th>
<th>RETIROS PRE VISTOS GEN. TERMICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>Restitución</td>
<td>Restitución</td>
<td>Restitución</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>Carhuaquero</td>
<td>Carhuaquero</td>
<td>Carhuaquero</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>Der. y Pond. Quitaracsa 1 x TG 50</td>
<td>Der. y Pond. Quitaracsa Amp.C del Pato 1 x TG 50</td>
<td>Der. y Pond. Quitaracsa 1 x TG 50</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>Jicamarca 1 x TG 50</td>
<td>Jicamarca 1 x c.c 100 Zorritos 1 x TG 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>Yuncán y Af. Yaupi</td>
<td>Yuncán y Af. Yaupi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>Mayush 1 x TG 50</td>
<td>Mayush 1 x c.c 100 Zorritos 1 x TG 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>Quitaracsa</td>
<td>Quitaracsa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>Amp. Carhuaquero 2 x TG 100</td>
<td>Mayush 1 x TG x 100 G.D. Pacasamo y (21 MW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>Chaglla</td>
<td>Chaglla Olmos 11 1 x TV 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>1 x TV 150</td>
<td>2 x TG 50 Olmos 21 G.D. Piura (30 MW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Huauara</td>
<td>Huauara Olmos 12-Olmos 22 G.D. Chiclayo (30 MW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>1 x TV 150</td>
<td>1 x TV 150 1 x TG 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Pto. Prado 1</td>
<td>Pto. Prado 1 Chaglla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>1 x TG 100</td>
<td>1 x TG 100 1 x TG 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Pto. Prado 2</td>
<td>Pto. Prado 2 Pto. Prado 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T.G.S. Rosa Antigua (42 MW)
TV Pararonga (18 MW)
TV Marcona (50 MW)
G.D. Pacasamo y (21 MW)
TG. Truj-Chim bote (80 MW, 110 MW)
G.D. Piura (10 MW)
Continúa Cuadro N° 1.4

<table>
<thead>
<tr>
<th>AÑO</th>
<th>ALT. 1 SIN PROCEDEOS MULTISECTORIALES</th>
<th>ALT. 2 CON GAS DE ZORRITOS</th>
<th>ALT. 3 CON OLADS</th>
<th>RETIROS PREVISTOS GEN. TERMICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td>Puerto Prado 2</td>
</tr>
<tr>
<td>2006</td>
<td>1 x TG 100</td>
<td>1 x TG 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>Pto. Prado 3</td>
<td>Pto. Prado 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Pto. Prado 3</td>
<td></td>
<td></td>
<td>Puerto Prado 3</td>
</tr>
<tr>
<td>2009</td>
<td>Sunabeni 1</td>
<td>Sunabeni 1</td>
<td>1 x TV 150</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Sunabeni 2</td>
<td>Sunabeni 2</td>
<td>1 x TG 50</td>
<td></td>
</tr>
</tbody>
</table>
CUADRO Nº 1.5

ALTERNATIVA 1: PROGRAMA DE EQUIPAMIENTO SIN PROYECTOS MULTISECTORIALES
SISTEMA INTERCONECTADO CENTRO-NORTE

<table>
<thead>
<tr>
<th>AÑO</th>
<th>CENTRAL</th>
<th>TIPO</th>
<th>SITUACION</th>
<th>PI (MW)</th>
<th>PD-H/PE-T (MW)</th>
<th>ENERGIA (GWh)</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>CAHUA</td>
<td>H</td>
<td>Existente</td>
<td>40</td>
<td>27</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CALLAHUANCA</td>
<td>H</td>
<td>Existente</td>
<td>68</td>
<td>44</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDYOPAMPA</td>
<td>H</td>
<td>Existente</td>
<td>63</td>
<td>50</td>
<td>509</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAÑON DEL PATO</td>
<td>H</td>
<td>Existente</td>
<td>150</td>
<td>97</td>
<td>1002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATUCANA</td>
<td>H</td>
<td>Existente</td>
<td>120</td>
<td>100</td>
<td>655</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUAMPAI</td>
<td>H</td>
<td>Existente</td>
<td>31</td>
<td>18</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUINCO</td>
<td>H</td>
<td>Existente</td>
<td>258</td>
<td>251</td>
<td>979</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANTARO (S. ANT. DE MAYOLO)</td>
<td>H</td>
<td>Existente</td>
<td>798</td>
<td>580</td>
<td>4586</td>
<td>Con restricciones operativas en Mantaro y Restitución, Enero/Marzo (515+181 MW)</td>
</tr>
<tr>
<td></td>
<td>RESTITUCION</td>
<td>H</td>
<td>Existente</td>
<td>217</td>
<td>203</td>
<td>1608</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YAUPI</td>
<td>H</td>
<td>Existente</td>
<td>108</td>
<td>80</td>
<td>874</td>
<td>Se interconecta el Sistema - CENTROMIN el 2do. Semestre</td>
</tr>
<tr>
<td></td>
<td>MALPASO</td>
<td>H</td>
<td>Existente</td>
<td>54</td>
<td>47</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PACHACHACA</td>
<td>H</td>
<td>Existente</td>
<td>12</td>
<td>4</td>
<td>42</td>
<td>Se retira en el año 2002</td>
</tr>
<tr>
<td></td>
<td>OROYA</td>
<td>H</td>
<td>Existente</td>
<td>9</td>
<td>5</td>
<td>54</td>
<td>Se retira en el año 2002</td>
</tr>
<tr>
<td></td>
<td>TV. MARCONA</td>
<td>T</td>
<td>Existente</td>
<td>67</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TV. TRUPAL</td>
<td>T</td>
<td>Existente</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TV. PARAMOCHA</td>
<td>T</td>
<td>Existente</td>
<td>22</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TG. TRUJILLO-CHIMBOTE</td>
<td>T</td>
<td>Existente</td>
<td>82</td>
<td>80</td>
<td></td>
<td>20 MW efectivos son de Trujillo.</td>
</tr>
<tr>
<td></td>
<td>TG. STA. ROSA ANTIGUA</td>
<td>T</td>
<td>Existente</td>
<td>52</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AÑO</td>
<td>CENTRAL</td>
<td>TIPO</td>
<td>SITUACIÓN</td>
<td>PI (MW)</td>
<td>PD-H/PE-T (MW)</td>
<td>ENERGIA (GWh)</td>
<td>OBSERVACIONES</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>------</td>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>1985</td>
<td>TG. STA ROSA NUEVA</td>
<td>T</td>
<td>Existeante</td>
<td>112</td>
<td>110</td>
<td></td>
<td>Se interconecta Chiclayo el 2do. Semestre</td>
</tr>
<tr>
<td>1986</td>
<td>GD. CHICLAYO</td>
<td>T</td>
<td>Existeante</td>
<td>36</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>GD. PACASMAYO</td>
<td>T</td>
<td>Existeante</td>
<td>24</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARHUACUERO</td>
<td>H</td>
<td>En ejecución</td>
<td>78</td>
<td>78</td>
<td>556</td>
<td>Se paralizó avance de obra en Diciembre 1982</td>
</tr>
<tr>
<td>1989</td>
<td>GD. PIURA</td>
<td>T</td>
<td>Existeante</td>
<td>32</td>
<td>30</td>
<td></td>
<td>Se interconecta Piura</td>
</tr>
<tr>
<td></td>
<td>TG. MALACAS</td>
<td>T</td>
<td>Existeante</td>
<td>58</td>
<td>48</td>
<td></td>
<td>Se interconecta Talara</td>
</tr>
<tr>
<td></td>
<td>AFIANZ. YURACMAYO</td>
<td>H</td>
<td>Est. Definitivo</td>
<td>-</td>
<td>20</td>
<td>84</td>
<td>Se prevee inicio ejecución obra presa en 1986</td>
</tr>
<tr>
<td>1990</td>
<td>GD. PAITA</td>
<td>T</td>
<td>Existeante</td>
<td>11</td>
<td>10</td>
<td></td>
<td>Se interconecta Paita</td>
</tr>
<tr>
<td>1991</td>
<td>DERIV + FOD.QUITARACSA</td>
<td>H</td>
<td>Factibilidad *</td>
<td>-</td>
<td>53</td>
<td>215</td>
<td>Retiro TG. Sta Rosa Antigua</td>
</tr>
<tr>
<td></td>
<td>IXTG 50</td>
<td>T</td>
<td>Proyecto</td>
<td>50</td>
<td>50</td>
<td></td>
<td>Possible ubicación en Lima</td>
</tr>
<tr>
<td>1992</td>
<td>REGULACION LACJUNIN</td>
<td>H</td>
<td>Definitivo *</td>
<td>-</td>
<td>-</td>
<td>199</td>
<td>Se levantan restricciones Enero Marzo</td>
</tr>
<tr>
<td></td>
<td>AMPLIACION CAÑON DEL PATO</td>
<td>H</td>
<td>Factibilidad *</td>
<td>60</td>
<td>28</td>
<td>221</td>
<td>Sin restricciones operativas Enero/Marzo</td>
</tr>
<tr>
<td></td>
<td>IXTG 50</td>
<td>T</td>
<td>Proyecto</td>
<td>50</td>
<td>50</td>
<td></td>
<td>Possible ubicación en Lima</td>
</tr>
<tr>
<td>1993</td>
<td>JICAMARCA</td>
<td>H</td>
<td>Factibilidad *</td>
<td>67</td>
<td>47</td>
<td>269</td>
<td>Integración Cajamarca</td>
</tr>
<tr>
<td></td>
<td>IXTG 50</td>
<td>T</td>
<td>Proyecto</td>
<td>50</td>
<td>50</td>
<td></td>
<td>Possible ubicación en Lima</td>
</tr>
<tr>
<td>AÑO</td>
<td>CENTRAL</td>
<td>TIPO</td>
<td>SITUACION</td>
<td>PI (MW)</td>
<td>PD-H/PE-T (MW)</td>
<td>ENERGIA (GWh)</td>
<td>OBSERVACIONES</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>1994</td>
<td>YUNCAN</td>
<td>H</td>
<td>Definitivo</td>
<td>126</td>
<td>126</td>
<td>881</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AFIANZAMIENTO YAUPI</td>
<td></td>
<td>Definitivo</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>MAYUSH</td>
<td>H</td>
<td>Definitivo</td>
<td>100</td>
<td>84</td>
<td>695</td>
<td>Retiro TV Paramonga</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1XTG 50</td>
<td>T</td>
<td>Proyecto</td>
<td>50</td>
<td>50</td>
<td></td>
<td>Posible ubicación en Piura</td>
</tr>
<tr>
<td>1996</td>
<td>QUITARACSA 2</td>
<td>H</td>
<td>Pre-factibilidad</td>
<td>180</td>
<td>180</td>
<td>835</td>
<td>Retiro TV Marcona</td>
</tr>
<tr>
<td>1997</td>
<td>AMPLIACION CARHUAQUERO</td>
<td>H</td>
<td>Preliminar</td>
<td>47</td>
<td>47</td>
<td>243</td>
<td>Retiro GD Pacasmayo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2XTG 100</td>
<td>T</td>
<td>Proyecto</td>
<td>200</td>
<td>200</td>
<td></td>
<td>Retiro TG Trujillo-Chimbote</td>
</tr>
<tr>
<td>1998</td>
<td>CHAGLLA</td>
<td>H</td>
<td>Pre-factibilidad*</td>
<td>324</td>
<td>324</td>
<td>2245</td>
<td>Retiro TV Trupal</td>
</tr>
<tr>
<td>1999</td>
<td>1XTV 150</td>
<td>T</td>
<td>Proyecto</td>
<td>150</td>
<td>150</td>
<td></td>
<td>Retiro GD Piura</td>
</tr>
<tr>
<td>2000</td>
<td>HUARU20</td>
<td>H</td>
<td>Pre-factibilidad*</td>
<td></td>
<td>186</td>
<td>1148</td>
<td>Retiro GD Chiclayo</td>
</tr>
<tr>
<td>2001</td>
<td>1XTV 150</td>
<td>T</td>
<td>Proyecto</td>
<td>150</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>PUERTO PRADO 1</td>
<td>H</td>
<td>Preliminar *</td>
<td>443</td>
<td>443</td>
<td>3800</td>
<td>o Paquitzapango como alternativa</td>
</tr>
<tr>
<td>2003</td>
<td>1XTG 100</td>
<td>T</td>
<td>Proyecto</td>
<td>100</td>
<td>100</td>
<td></td>
<td>Retiro TG Sta. Rosa Nueva</td>
</tr>
<tr>
<td>2004</td>
<td>PUERTO PRADO 2</td>
<td>H</td>
<td>Preliminar *</td>
<td>591</td>
<td>591</td>
<td>4689</td>
<td>Retiro GD Piura</td>
</tr>
</tbody>
</table>
Cuadro Nº 1.5

<table>
<thead>
<tr>
<th>AÑO</th>
<th>CENTRAL</th>
<th>TIPO</th>
<th>SITUACIÓN</th>
<th>PI (MW)</th>
<th>(PD-H/PE-T) (MW)</th>
<th>ENERGIA (GWh)</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>IXTG 100</td>
<td>T</td>
<td>Proyecto</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>PUERTO PRADO 3</td>
<td>H</td>
<td>Preliminar *</td>
<td>591</td>
<td>591</td>
<td>2744</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>SUMABENI 1</td>
<td>H</td>
<td>Preliminar *</td>
<td>607</td>
<td>607</td>
<td>4773</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>SUMABENI 2</td>
<td>H</td>
<td>Preliminar *</td>
<td>486</td>
<td>486</td>
<td>1898</td>
<td></td>
</tr>
</tbody>
</table>

NOTA:
- PI: Potencia instalada
- PD-H: Potencia disponible hidráulica en el trimestre crítico de año seco (95% de persistencia)
- PE-T: Potencia Efectiva Térmica
- ENERGIA: Energía Anual de Año Medio
- H: Generación Hidráulica
- T: Generación Térmica
- *: Estudio en elaboración
CUADRO N° 1.6

ALTERNATIVA 2: PROGRAMA DE EQUIPAMIENTO CON EL PROYECTO DE GAS DE ZORRITOS
SISTEMA INTERCONECTADO CENTRO-NORTE

<table>
<thead>
<tr>
<th>AÑO</th>
<th>CENTRAL</th>
<th>TIPO</th>
<th>SITUACION</th>
<th>PI (MW)</th>
<th>PD-H/PE-T (MW)</th>
<th>ENERGIA (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>CAHUÁ</td>
<td>H</td>
<td>Existente</td>
<td>40</td>
<td>27</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>CALLAHUANCA</td>
<td>H</td>
<td>Existente</td>
<td>68</td>
<td>44</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>MOYOPAMPA</td>
<td>H</td>
<td>Existente</td>
<td>63</td>
<td>50</td>
<td>509</td>
</tr>
<tr>
<td></td>
<td>CAÑON DEL PATO</td>
<td>H</td>
<td>Existente</td>
<td>150</td>
<td>97</td>
<td>1002</td>
</tr>
<tr>
<td></td>
<td>MATUCANA</td>
<td>H</td>
<td>Existente</td>
<td>120</td>
<td>100</td>
<td>655</td>
</tr>
<tr>
<td></td>
<td>HUAMPAHI</td>
<td>H</td>
<td>Existente</td>
<td>31</td>
<td>18</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>HUINCO</td>
<td>H</td>
<td>Existente</td>
<td>258</td>
<td>251</td>
<td>979</td>
</tr>
<tr>
<td></td>
<td>MANTARO (S. ANT. DE MAYOLO)</td>
<td>H</td>
<td>Existente</td>
<td>798</td>
<td>580</td>
<td>4586</td>
</tr>
<tr>
<td></td>
<td>RESTITUCION</td>
<td>H</td>
<td>Existente</td>
<td>217</td>
<td>203</td>
<td>1608</td>
</tr>
<tr>
<td></td>
<td>YAUPI</td>
<td>H</td>
<td>Existente</td>
<td>108</td>
<td>80</td>
<td>874</td>
</tr>
<tr>
<td></td>
<td>MALPASO</td>
<td>H</td>
<td>Existente</td>
<td>54</td>
<td>47</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>PACHACHACA</td>
<td>H</td>
<td>Existente</td>
<td>12</td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>OROYA</td>
<td>H</td>
<td>Existente</td>
<td>09</td>
<td>05</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>TV MARCONA</td>
<td>T</td>
<td>Existente</td>
<td>67</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TV TRUPAL</td>
<td>T</td>
<td>Existente</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TV PARAMONGA</td>
<td>T</td>
<td>Existente</td>
<td>22</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TG TRUJILLO-CHIMBOTE</td>
<td>T</td>
<td>Existente</td>
<td>82</td>
<td>80</td>
<td>20 MW efectivos son de Trujillo</td>
</tr>
<tr>
<td></td>
<td>TG STA. ROSA ANTIGUA</td>
<td>T</td>
<td>Existente</td>
<td>52</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>AÑO</td>
<td>CENTRAL</td>
<td>TIPO</td>
<td>SITUACIÓN</td>
<td>PI (MW)</td>
<td>PD-H/PE-T (MW)</td>
<td>ENERGÍA (GWh)</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>------------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1986</td>
<td>GD CHICLAYO</td>
<td>T</td>
<td>Existente</td>
<td>112</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>GD PACASMAYO</td>
<td>T</td>
<td>Existente</td>
<td>36</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>CARHUACUERO</td>
<td>H</td>
<td>En ejecución</td>
<td>24</td>
<td>21</td>
<td></td>
<td>Se paralizó avance de obra en Diciembre 1982.</td>
</tr>
<tr>
<td>GD PIURA</td>
<td>T</td>
<td>Existente</td>
<td>32</td>
<td>30</td>
<td></td>
<td>Se interconecta Piura.</td>
</tr>
<tr>
<td>1989</td>
<td>TG MALACAS</td>
<td>T</td>
<td>Existente</td>
<td>58</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>GD PAITA</td>
<td>T</td>
<td>Existente</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>DERIV+PDD. QUITARACSA</td>
<td>H</td>
<td>Factibilidad *</td>
<td>–</td>
<td>53</td>
<td>215</td>
</tr>
<tr>
<td>AMPLIACION CAÑON DEL PATO</td>
<td>H</td>
<td>Factibilidad *</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Sin restricciones operativas Enero/Marzo.</td>
</tr>
<tr>
<td>1992</td>
<td>REGULACION LAGO JUNIN</td>
<td>H</td>
<td>Definitivo *</td>
<td>–</td>
<td>–</td>
<td>199</td>
</tr>
<tr>
<td>1XCC 100 ZORRITOS</td>
<td>T</td>
<td>Factibilidad</td>
<td>100</td>
<td>100</td>
<td></td>
<td>Por confirmar reservas y gas.</td>
</tr>
<tr>
<td>1993</td>
<td>1XCC 100 ZORRITOS</td>
<td>T</td>
<td>Factibilidad</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>YUNCAN</td>
<td>H</td>
<td>Definitivo</td>
<td>126</td>
<td>126</td>
<td>881</td>
</tr>
<tr>
<td>AFIANZAMIENTO YAUPI</td>
<td>H</td>
<td>Definitivo</td>
<td>–</td>
<td>28</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
CUADRO N° 1.6

<table>
<thead>
<tr>
<th>AÑO</th>
<th>CENTRAL</th>
<th>TIPO</th>
<th>SITUACION</th>
<th>PI (MW)</th>
<th>PD-H/PE-T (MW)</th>
<th>ENERGIA (GWh)</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>1XTG 100</td>
<td>T</td>
<td>Proyecto</td>
<td>100</td>
<td>100</td>
<td></td>
<td>Posible ubicación en Lima. Ret. TV Paramonga.</td>
</tr>
<tr>
<td></td>
<td>1XTG 50</td>
<td>T</td>
<td>Proyecto</td>
<td>50</td>
<td>50</td>
<td></td>
<td>Posible ubicación en Lima.</td>
</tr>
<tr>
<td>1996</td>
<td>QUITARACSA</td>
<td>H</td>
<td>Pre-fac-tibilidad.</td>
<td>80</td>
<td>180</td>
<td>835</td>
<td>Retiro TV Marcona.</td>
</tr>
<tr>
<td>1997</td>
<td>MAYUSH</td>
<td>H</td>
<td>Definitivo</td>
<td>100</td>
<td>84</td>
<td>695</td>
<td>Retiro GD Pacasmayo.</td>
</tr>
<tr>
<td></td>
<td>1XTG 100</td>
<td>T</td>
<td>Proyecto</td>
<td>100</td>
<td>100</td>
<td></td>
<td>Retiro TG Trujillo Chimbote.</td>
</tr>
<tr>
<td></td>
<td>1XTG 50</td>
<td>T</td>
<td>Proyecto</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>CHAGLLA</td>
<td>H</td>
<td>Pre-factibilidad *</td>
<td>324</td>
<td>324</td>
<td>2245</td>
<td>Retiro RV Trupal</td>
</tr>
<tr>
<td>1999</td>
<td>2XTG 50</td>
<td>T</td>
<td>Proyecto</td>
<td>100</td>
<td>100</td>
<td></td>
<td>Retiro GD Chiclayo</td>
</tr>
<tr>
<td>2000</td>
<td>HUAURA 20</td>
<td>H</td>
<td>Pre-factibilidad *</td>
<td>186</td>
<td>186</td>
<td>1148</td>
<td>Retiro GD Chiclayo</td>
</tr>
<tr>
<td>2001</td>
<td>1XTIV 150</td>
<td>T</td>
<td>Proyecto</td>
<td>150</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>PUERTO PRADO 1</td>
<td>H</td>
<td>Preliminar</td>
<td>443</td>
<td>443</td>
<td>3800</td>
<td>o Paquitzapango como Alternativa</td>
</tr>
<tr>
<td>2003</td>
<td>1XTG 100</td>
<td>T</td>
<td>Proyecto</td>
<td>100</td>
<td>100</td>
<td></td>
<td>Retiro TG Santa Rosa Nueva</td>
</tr>
<tr>
<td>2004</td>
<td>PUERTO PRADO 2</td>
<td>H</td>
<td>Preliminar</td>
<td>591</td>
<td>591</td>
<td>4689</td>
<td>Retiro GD Piura</td>
</tr>
<tr>
<td>2006</td>
<td>1XTG 100</td>
<td>T</td>
<td>Proyecto</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>PUERTO PRADO 3</td>
<td>H</td>
<td>Preliminar</td>
<td>591</td>
<td>591</td>
<td>2744</td>
<td></td>
</tr>
<tr>
<td>AÑO</td>
<td>CENTRAL</td>
<td>TIPO</td>
<td>SITUACIÓN</td>
<td>PI (MW)</td>
<td>PD-H/PE-T (MW)</td>
<td>ENERGIA (GWh)</td>
<td>OBSERVACIONES</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>2009</td>
<td>SUMABENI 1</td>
<td>H</td>
<td>Preliminar *</td>
<td>607</td>
<td>607</td>
<td>4773</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>SUMABENI 2</td>
<td>H</td>
<td>Preliminar *</td>
<td>486</td>
<td>486</td>
<td>1898</td>
<td></td>
</tr>
</tbody>
</table>

NOTA:
- **PI:** Potencia instalada
- **PD-H:** Potencia disponible hidráulica en el trimestre crítico de año seco (95% de persistencia)
- **PE-T:** Potencia Efectiva Térmica
- **ENERGIA:** Energía Anual de Año Medio
- **W:** Generación Hidráulica
- **T:** Generación Térmica
- ***:** Estudio en elaboración
CUADRO N° 1.7

ALTERNATIVA 3: PROGRAMA DE EQUIPAMIENTO CON EL PROYECTO OLMOS

SISTEMA INTERCONECTADO CENTRO-NORTE

<table>
<thead>
<tr>
<th>AÑO</th>
<th>CENTRAL</th>
<th>TIPO</th>
<th>SITUACIÓN</th>
<th>PI (MW)</th>
<th>PD-H/PE-T (MW)</th>
<th>ENERGIA (GWh)</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>CAHUA</td>
<td>H</td>
<td>Existente</td>
<td>40</td>
<td>27</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CALLAHUANCA</td>
<td>H</td>
<td>Existente</td>
<td>68</td>
<td>44</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M flooding</td>
<td>H</td>
<td>Existente</td>
<td>63</td>
<td>50</td>
<td>509</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAÑON DEL PATO</td>
<td>H</td>
<td>Existente</td>
<td>150</td>
<td>97</td>
<td>1002</td>
<td>Restricciones operativas Enero/ Marzo 100 MW</td>
</tr>
<tr>
<td></td>
<td>MATUCANA</td>
<td>H</td>
<td>Existente</td>
<td>120</td>
<td>100</td>
<td>655</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUAMPAI</td>
<td>H</td>
<td>Existente</td>
<td>31</td>
<td>18</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUINCO</td>
<td>H</td>
<td>Existente</td>
<td>258</td>
<td>251</td>
<td>979</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANTARO (S.ANT.DE MAYOLO)</td>
<td>H</td>
<td>Existente</td>
<td>798</td>
<td>580</td>
<td>4586</td>
<td>Con restricciones operativas en Mantaro y Restitución, Enero/Marzo (515 + 181 MW)</td>
</tr>
<tr>
<td></td>
<td>RESTITUCION</td>
<td>H</td>
<td>Existente</td>
<td>217</td>
<td>203</td>
<td>1008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YAUPI</td>
<td>H</td>
<td>Existente</td>
<td>108</td>
<td>80</td>
<td>874</td>
<td>Se interconecta al Sistema CEN- TROMIN el 2do. Semestre</td>
</tr>
<tr>
<td></td>
<td>MALPASO</td>
<td>H</td>
<td>Existente</td>
<td>54</td>
<td>47</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PACHACHACA</td>
<td>H</td>
<td>Existente</td>
<td>12</td>
<td>4</td>
<td>42</td>
<td>Se retira en el año 2002</td>
</tr>
<tr>
<td></td>
<td>ORAYA</td>
<td>H</td>
<td>Existente</td>
<td>9</td>
<td>5</td>
<td>54</td>
<td>Se retira en el año 2002</td>
</tr>
<tr>
<td></td>
<td>TV MARCONA</td>
<td>T</td>
<td>Existente</td>
<td>67</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TV TRUPAL</td>
<td>T</td>
<td>Existente</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TV PARANDNGA</td>
<td>T</td>
<td>Existente</td>
<td>22</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TG TRUJILLO CHIMPOTE</td>
<td>T</td>
<td>Existente</td>
<td>82</td>
<td>80</td>
<td></td>
<td>20 MW efectivos son de Trujillo</td>
</tr>
<tr>
<td></td>
<td>TG SANTA ROSA ANTIGUA</td>
<td>T</td>
<td>Existente</td>
<td>52</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AÑO</td>
<td>CENTRAL</td>
<td>TIPO</td>
<td>SITUACION</td>
<td>PI (MW)</td>
<td>PD-H/PE-T (MW)</td>
<td>ENERGIA (GWh)</td>
<td>OBSERVACIONES</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>------</td>
<td>------------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>1986</td>
<td>GD CHICLAYO</td>
<td>T</td>
<td>Existente</td>
<td>36</td>
<td>30</td>
<td></td>
<td>Se interconecta Chiclayo el 2do. Semestre.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARHUACOYO</td>
<td>H</td>
<td>En ejecución</td>
<td>78</td>
<td>78</td>
<td>556</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Se interconecta Piura</td>
</tr>
<tr>
<td>1989</td>
<td>GD PIURA</td>
<td>T</td>
<td>Existente</td>
<td>32</td>
<td>30</td>
<td></td>
<td>Se interconecta Talara.</td>
</tr>
<tr>
<td></td>
<td>TG MALACAS</td>
<td>T</td>
<td>Existente</td>
<td>58</td>
<td>48</td>
<td></td>
<td>Se prevee inicio ejecución de Obra presa en 1986.</td>
</tr>
<tr>
<td></td>
<td>AFIANZAMIENTO YURAGAYO</td>
<td>H</td>
<td>Est.Definitivo</td>
<td>53</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>GD PAITA</td>
<td>T</td>
<td>Existente</td>
<td>11</td>
<td>10</td>
<td></td>
<td>Se interconecta Paita.</td>
</tr>
<tr>
<td>1991</td>
<td>DERIV + POD.QUITARACSA</td>
<td>H</td>
<td>Factibilidad</td>
<td>60</td>
<td>28</td>
<td>221</td>
<td>Retiro TG Santa Rosa Antigua</td>
</tr>
<tr>
<td></td>
<td>1XTG 50</td>
<td>T</td>
<td>Proyecto</td>
<td>50</td>
<td>50</td>
<td></td>
<td>Posible ubicación en Lima.</td>
</tr>
<tr>
<td>1992</td>
<td>REGULACION LAGO JUNIN</td>
<td>H</td>
<td>Definitivo</td>
<td>67</td>
<td>47</td>
<td>269</td>
<td>Sin restricciones operativas Enero/Marzo.</td>
</tr>
<tr>
<td></td>
<td>AMPLIACION CAÑON DEL PATO</td>
<td>H</td>
<td>Factibilidad</td>
<td>60</td>
<td>28</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>JICAMARCA</td>
<td>H</td>
<td>Factibilidad</td>
<td>50</td>
<td>50</td>
<td></td>
<td>Posible ubicación en Lima.</td>
</tr>
<tr>
<td>1994</td>
<td>YUNCAN</td>
<td>H</td>
<td>Definitivo</td>
<td>126</td>
<td>126</td>
<td>881</td>
<td></td>
</tr>
<tr>
<td>AÑO</td>
<td>CENTRAL</td>
<td>TIPO</td>
<td>SITUACIÓN</td>
<td>PI (MW)</td>
<td>PD-H/PE-T (MW)</td>
<td>ENERGIA (GWh)</td>
<td>OBSERVACIONES</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>------</td>
<td>----------------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>1995</td>
<td>MAYUSH</td>
<td>H</td>
<td>Definitivo</td>
<td></td>
<td>100</td>
<td>84</td>
<td>695</td>
</tr>
<tr>
<td></td>
<td>1XTG 50</td>
<td>T</td>
<td>Proyecto</td>
<td>50</td>
<td>50</td>
<td>695</td>
<td>Retiro TV Paramonga</td>
</tr>
<tr>
<td>1996</td>
<td>QUITARACSA</td>
<td>H</td>
<td>Pre-factibilidad</td>
<td>180</td>
<td>180</td>
<td>835</td>
<td>Retiro TV Marcona</td>
</tr>
<tr>
<td>1997</td>
<td>AMPLIACION CARHUQUERO</td>
<td>H</td>
<td>Preliminar</td>
<td>47</td>
<td>47</td>
<td>835</td>
<td>Retiro GD Pacasmayo</td>
</tr>
<tr>
<td></td>
<td>2XTG 100</td>
<td>T</td>
<td>Proyecto</td>
<td>200</td>
<td>200</td>
<td>243</td>
<td>Retiro TG Trujillo Chimbote</td>
</tr>
<tr>
<td>1998</td>
<td>OLMDS 11</td>
<td>H</td>
<td>Definitivo</td>
<td>200</td>
<td>200</td>
<td>243</td>
<td>Retiro TV Trupal</td>
</tr>
<tr>
<td></td>
<td>1XTV 150</td>
<td>T</td>
<td>Proyecto</td>
<td>150</td>
<td>150</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>OLMDS 21</td>
<td>H</td>
<td>Definitivo</td>
<td>216</td>
<td>216</td>
<td>243</td>
<td>Retiro GD Piura</td>
</tr>
<tr>
<td>2000</td>
<td>OLMDS 12</td>
<td>H</td>
<td>Definitivo</td>
<td>100</td>
<td>100</td>
<td>243</td>
<td>Retiro GD Chiclayo</td>
</tr>
<tr>
<td></td>
<td>OLMDS 22</td>
<td>H</td>
<td>Definitivo</td>
<td>108</td>
<td>108</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>1XTG 50</td>
<td>T</td>
<td>Proyecto</td>
<td>50</td>
<td>50</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>CHACLLO</td>
<td>H</td>
<td>Pre-factibilidad*</td>
<td>324</td>
<td>324</td>
<td>2245</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>1XTG 100</td>
<td>T</td>
<td>Proyecto</td>
<td>100</td>
<td>100</td>
<td>2245</td>
<td>Retiro TG Santa Rosa Nueva</td>
</tr>
<tr>
<td>2004</td>
<td>PUERTO PRADO 1</td>
<td>H</td>
<td>Preliminar*</td>
<td>443</td>
<td>443</td>
<td>3800</td>
<td>o Paquitzapango. Retiro GD Piura.</td>
</tr>
<tr>
<td>2005</td>
<td>PUERTO PRADO 2</td>
<td>H</td>
<td>Preliminar</td>
<td>591</td>
<td>591</td>
<td>4689</td>
<td></td>
</tr>
</tbody>
</table>

* Datos no confirmados.
Cuadro N° 1.7

<table>
<thead>
<tr>
<th>AÑO</th>
<th>CENTRAL</th>
<th>TIPO</th>
<th>SITUACIÓN</th>
<th>PI (MW)</th>
<th>PD-H/PE-T (MW)</th>
<th>ENERGIA (GWh)</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>PUERTO PRADO 3</td>
<td>H</td>
<td>Preliminar*</td>
<td>591</td>
<td>591</td>
<td>2744</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1XIV 150</td>
<td>T</td>
<td>Proyecto</td>
<td>150</td>
<td>150</td>
<td>2744</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1XTG 50</td>
<td>T</td>
<td>Proyecto</td>
<td>150</td>
<td>150</td>
<td>2744</td>
<td></td>
</tr>
</tbody>
</table>

NOTA:
- PI: Potencia instalada
- PD-H: Potencia disponible hidráulica en el trimestre crítico de año seco (95% de persistencia)
- PE-T: Potencia Efectiva Térmica
- ENERGIA: Energía Anual de Año Medio
- H: Generación Hidráulica
- T: Generación Térmica
- *: Estudio en elaboración
CUADRO Nº 1.8 - OFERTA DE GENERACION DEL SISTEMA INTERCONECTADO CENTRO-NORTE
SUBSISTEMAS AISLADOS DE MANERA LOCALIZADA EN 1985

<table>
<thead>
<tr>
<th>SUBSISTEMAS AISLADOS</th>
<th>SISTEMA INTERCONECTADO CENTRO-NORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubi. Sub-Sist.</td>
<td>Tum.</td>
</tr>
<tr>
<td></td>
<td>Tala.</td>
</tr>
<tr>
<td></td>
<td>Piura</td>
</tr>
<tr>
<td></td>
<td>Chiclayo</td>
</tr>
<tr>
<td></td>
<td>Cajamarca</td>
</tr>
<tr>
<td></td>
<td>Guadal.</td>
</tr>
<tr>
<td></td>
<td>Trujillo</td>
</tr>
<tr>
<td></td>
<td>Chimb.</td>
</tr>
<tr>
<td></td>
<td>Param.</td>
</tr>
<tr>
<td></td>
<td>Lima</td>
</tr>
<tr>
<td></td>
<td>Mantaro</td>
</tr>
<tr>
<td></td>
<td>C.M.P.</td>
</tr>
<tr>
<td></td>
<td>Marcona</td>
</tr>
<tr>
<td>Centrales (ver nota)</td>
<td>G.D.Tum.</td>
</tr>
<tr>
<td></td>
<td>G.D.Tal.</td>
</tr>
<tr>
<td></td>
<td>G.D. Ch.</td>
</tr>
<tr>
<td></td>
<td>G.D.Ca.</td>
</tr>
<tr>
<td></td>
<td>G.D.Pa.</td>
</tr>
<tr>
<td></td>
<td>T.G.Tru.</td>
</tr>
<tr>
<td></td>
<td>C.H.C.</td>
</tr>
<tr>
<td></td>
<td>C.H.Ca.</td>
</tr>
<tr>
<td></td>
<td>C.C.HH.</td>
</tr>
<tr>
<td></td>
<td>C.H.Yaupi.</td>
</tr>
<tr>
<td></td>
<td>T.V. San Nicolás</td>
</tr>
<tr>
<td></td>
<td>T.G. Malpa so</td>
</tr>
<tr>
<td></td>
<td>T.G. Mala cas</td>
</tr>
<tr>
<td></td>
<td>G.D. Piura</td>
</tr>
<tr>
<td></td>
<td>T.V. Casma-yo</td>
</tr>
<tr>
<td></td>
<td>T.V. Santiago</td>
</tr>
<tr>
<td></td>
<td>T.G. Chimbote</td>
</tr>
<tr>
<td></td>
<td>T.V. Pararcho</td>
</tr>
<tr>
<td></td>
<td>C.H. Resituación</td>
</tr>
<tr>
<td></td>
<td>Moyopampa</td>
</tr>
<tr>
<td></td>
<td>T.G. Sta.</td>
</tr>
<tr>
<td></td>
<td>T.G. Sta.</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td></td>
<td>6 MW</td>
</tr>
<tr>
<td></td>
<td>63 MW</td>
</tr>
<tr>
<td></td>
<td>50 MW</td>
</tr>
<tr>
<td></td>
<td>33 MW</td>
</tr>
<tr>
<td></td>
<td>4 MW</td>
</tr>
<tr>
<td></td>
<td>31 MW</td>
</tr>
<tr>
<td></td>
<td>35 MW</td>
</tr>
<tr>
<td></td>
<td>213 MW</td>
</tr>
<tr>
<td></td>
<td>52 MW</td>
</tr>
<tr>
<td></td>
<td>684 MW</td>
</tr>
<tr>
<td></td>
<td>1015 MW</td>
</tr>
<tr>
<td></td>
<td>183 MW</td>
</tr>
<tr>
<td></td>
<td>67 MW</td>
</tr>
</tbody>
</table>

NOTA: La información entre paréntesis corresponde para las Centrales Hidroeléctricas a la potencia instalada y para las Centrales Térmicas a la Potencia Efectiva / vida restante estimada en años.

* Se considera que al momento de su interconexión al SICN, estos grupos térmicos pasan al retiro.
Diesel y turbo vapor adicionales a los ya existentes. Así tenemos:

- En Cajamarca: Un grupo Diesel de 2.5 Mw en 1989.

Cabe destacar que los pequeños grupos Diesel de Tumbes, Talara-Verdun, Cajamarca y otros se considera que pasarán al retiro al momento de su interconexión al SICN, mientras que los otros equipamientos térmicos se considera su retiro de acuerdo a la fecha previstas por las alternativas de programas de expansión de la generación, como se mencionana en los Cuadros Nros. 1.5, 1.6 y 1.7.

Con relación a los proyectos que presentan las tres alternativas de expansión de la generación en el SICN, merece señalar el grado de estudio en el que se encuentran, así tenemos:

- Proyectos de construcción: Centrales Hidroeléctricas (CC.HH) Carhuaquero y Restitución, afianzamiento, Yuracmayo.
- Proyectos listos para licitar: Centrales hidroeléctricas Mayush y Yuncán.
- Proyectos en estudio definitivo: Derivación Quitaracsa, Regulación Lago Junín.
- Proyecto con estudio de factibilidad: CC.HH. Olmos 1 y 2
- Proyectos en estudio de pre-factibilidad: CC.HH. Tambo: Puerto Prado, Ene-Paquitzapango y Sumabeni.
- Proyectos sin estudio: C.H. Quitacasca, ampliación Carhuaquero.
- Proyecto de aprovechamiento del gas natural de Zorritos (Central a Gas de Zorritos): Es necesario realizar actividades exploratorias a fin de determinar el volumen de gas existente y explotable, la inversión necesaria y el costo del gas para ELECTRO-PERU.

Los retiros considerados del equipamiento Termo-Eléctrico existente son los mismos para las tres alternativas los cuales se muestran en el Cuadro N° 1.4 y también en los Cuadros Nros. 1.5, 1.6 y 1.7. Asimismo en el Cuadro N° 1.9 -se muestra la disponibilidad máxima de potencia por trimestre en año hidrológico promedio y año seco de cada una de las Centrales Hidroeléctricas presentadas en las tres alternativas de expansión de la generación, anotándose en él algunas características operativas de las centrales.

1.3.3. Características de las Alternativas Propuestas

De acuerdo a las alternativas de expansión de la generación planteadas en el PLAN MAESTRO-85, cabe resaltar -las características principales que presentan cada alternativa-
CUADRO N° 1.9 - SISTEMA INTERCONECTADO CENTRO-NORTE CARAC
TERISTICAS DE LAS CENTRALES HIDROELECTRICAS POTENCIA DIS-
PONIBLE

| SUB SISTEMA | CENTRAL | AÑO HIDROLOGICO PROMEDIO | AÑO HIDROLOGICO SECO | OBSERVA-
| | | TRIMESTRE | TRIMESTRE | CIONES
| | | I II III IV | I II III IV | (CARACTERE-
| | | | | RISTICAS
| | | | | OPERATIVAS)
| MANTARO | Restitu-
| | ción | 181 206 206 206 | 181 205 205 206 | Incluye Reg. Lago
| | Mantaro | 519 590 590 590 | 519 590 590 590 | Junín.Opera-
| | | | | ción En Ba-
| | | | | se y Semi-
| | | | | Base. Regula-
| | | | | ción Estac.
| SUB-TOTAL | | 700 796 796 796 | 700 795 795 796 | Incluye Afi-
| MIN PERU | | | | Yaupi. Opera-
| | Yuncán | 126 126 126 126 | 126 126 126 126 | ción en ba-
| | | | | se y semi-
| | | | | base
| | Oroya-Pa-
| | chachaca | 11 11 12 11 | 10 9 8 10 | Operación en base
| | Malpaso | 47 47 47 47 | 47 47 47 47 | Operación con regu-
| | | | | lación horaria
| SUB-TOTAL | | 292 293 293 292 | 290 289 291 | Incluye en base sin
| LIMA | Huamaní | 23 22 22 23 | 22 21 18 19 | regulación
| | Matucana | 120 120 120 120 | 120 120 120 120 | Incluye reser-
| | | | | vorio Yuracma-
| | Moyopampa | 63 63 63 63 | 61 56 50 53 | yo. Operación con regu-
| | Callahuan-
| | ca | 58 59 49 58 | 56 51 44 49 | lación horaria
| | Huinco | 251 251 251 251 | 251 251 251 251 | Operación en base y semi-
| | | | | base (regulación limitada).
| | | | | Operación con regu-
| | | | | lación horaria, se-
Continúa Cuadro N° 1.9

<table>
<thead>
<tr>
<th>SUB SISTEMA</th>
<th>CENTRAL</th>
<th>AÑO HIDROLOGICO PROMEDIO</th>
<th>AÑO HIDROLOGICO SECO</th>
<th>OBSERVACIONES (CARACTERISTICAS OPERATIVAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TRIMESTRE</td>
<td>TRIMESTRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>Jicamarca</td>
<td></td>
<td>30</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>SUB-TOTAL</td>
<td></td>
<td>545</td>
<td>545</td>
<td>536</td>
</tr>
<tr>
<td>PARA-MONGA</td>
<td></td>
<td>40</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayush</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SUB-TOTAL</td>
<td></td>
<td>140</td>
<td>140</td>
<td>135</td>
</tr>
<tr>
<td>CHIM-BOTE</td>
<td>Cañón del</td>
<td>210</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Pato</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI-CLAYO</td>
<td>C.H. Carhuaquero</td>
<td>78</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Amp. Carhuaquero</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>SUB-TOTAL</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>PROYECTOS DE LARGO PLAZO</td>
<td>Quitaracsa</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Chaglla</td>
<td>324</td>
<td>324</td>
<td>324</td>
</tr>
</tbody>
</table>
Continúa Cuadro N° 1.9

<table>
<thead>
<tr>
<th>SUB SISTEMA</th>
<th>CENTRAL</th>
<th>AÑO HIDROLOGICO PROMEDIO</th>
<th>AÑO HIDROLOGICO SECO</th>
<th>OBSERVACIONES (CARACTERISTICAS OPERATIVAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TRIMESTRE</td>
<td>TRIMESTRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>Huaura</td>
<td></td>
<td>186</td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>Olmos 1.1</td>
<td></td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Olmos 2.1</td>
<td></td>
<td>216</td>
<td>216</td>
<td>216</td>
</tr>
<tr>
<td>Olmos 1.2</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Olmos 2.2</td>
<td></td>
<td>108</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>Puerto Prado 1</td>
<td></td>
<td>443</td>
<td>443</td>
<td>443</td>
</tr>
<tr>
<td>Puerto Prado 2</td>
<td></td>
<td>591</td>
<td>590</td>
<td>591</td>
</tr>
<tr>
<td>Puerto Prado 3</td>
<td></td>
<td>591</td>
<td>590</td>
<td>590</td>
</tr>
<tr>
<td>Sumabeni 1</td>
<td></td>
<td>606</td>
<td>607</td>
<td>607</td>
</tr>
<tr>
<td>Sumabeni 2</td>
<td></td>
<td>486</td>
<td>486</td>
<td>485</td>
</tr>
</tbody>
</table>

Operación en semibase y punta.

Operación en base. Gran capacidad de regulación.

Operación regulada en base y semibase.

Operación en base. Gran capacidad de regulación.
tiva, teniendo en cuenta dicho Plan Maestro. Así tenemos:

ALTERNATIVA N° 1 - Programa de equipamiento sin Proyectos Multisectoriales:

El programa de equipamiento incluye el desarrollo mixto de proyectos hidroeléctricos y termoeléctricos, donde prevalecen los primeros de acuerdo a los lineamientos del Subsector Electricidad.

En la década del 80 no habría la necesidad de instalar plantas termoeléctricas en el sistema, debiéndose contar con la primera turbo gas de 50 Mw en el año 1991, la segunda en 1992, la tercera en 1993 y una cuarta en 1995. Las tres primeras estarían ubicadas en Lima y deberán operar solamente en horas de punta, constituyendo una reserva importante para la gran Lima. La cuarta unidad turbo gas estaría ubicada en Piura o Talara - dependiendo ésta de la evolución de la demanda de la región norte durante los próximos años.

Considera el desarrollo de la cuenca del río Santa con la implementación del pondaje con la Derivación-Quita - racsa y la cuarta etapa de ampliación de la Central Cañón del Pato.

Aún considerando las restricciones vigentes en la opera
ción del reservorio de Tablachaca y el túnel de aduc-
ción de la C.H. Mantaro-Santiago Antúnez de Mayolo, el
Proyecto de afianzamiento de la regulación del Lago Ju
nín para fines hidroeléctricos, mantiene su importan-
cia dentro del SICN, ya que permitiría incrementar la
oferta de energía de la central en mención.
Los proyectos de afianzamiento Yuracmayo y C.H. Jicamar
ca son requeridos por el SICN en los años 1989 y 1993;
respectivamente y constituyen desarrollos hidroenergéti-
cos económicamente interesantes con fines de afianzar
la capacidad hidroenergética para el abastecimiento de
Lima.
A fines de la década del 90, deberá iniciarse el apro-
vechamiento de los recursos hidroenergéticos de la ver-
tiente oriental de los Andes, donde se encuentran los
mayores y probablemente más atractivos recursos energé-
ticos del país. En base a la evolución desarrollada -
se plantea que primera debería implementarse la C.H. -
Chaglla a partir de 1998, localizada en la cuenca del
ríó Haullaga en la zona entre Huánuco y Tingo María y
posteriormente deberá desarrollarse el potencial del -
ríó Ene a partir del año 2002.

ALTERNATIVA Nº 2 - Programa de equipamiento con el Proyec
to Gas de Zorritos:

Un desarrollo energético a base de gas natural de Zo-
rritos continua siendo interesante. De la simulación
de un plan de expansión considerando una central de ci
clo combinado que utilizaría este recurso, ha resultado que la fecha de entrada en operación de una primera unidad de 100 Mw se justificaría para el año 1992 y que la segunda unidad también de 100 Mw podría ser requerida para 1993.

La implementación de la Central de Gas de Zorritos podría diferir proyectos hidroeléctricos como Jicamarca o Mayush. Además dependiendo de la magnitud de las reservas de gas a encontrarse y de la evolución futura - de la demanda, podría postergar incluso la entrada del proyecto de la C.H. Yuncán.

Las características restantes son similares a la Alternativa Nº 1.

ALTERNATIVA Nº 3 - Programa de Equipamiento con el Proyecto Olmos.

Esta alternativa incluye el desarrollo hidroenergético de Olmos. La primera central en su fase 1 de equipamiento con una capacidad de 200 Mw debería entrar en funcionamiento en 1998 conjuntamente con la primera etapa de las obras comunes del proyecto multisectorial constituida por el hidráulico limón y el túnel trasandino. El desarrollo hidroeléctrico total es del orden de los 624 Mw. Su inclusión difiere proyectos como Chaglla y Huaura.

Las características de la oferta de potencia y energía de las Centrales Hidroeléctricas de Olmos operando a partir de 1998, se adaptarían mejor a los requerimientos-
tos del SICN, ya que dispone de adecuados reservorios de regulación horaria y estacional que permitirían una operación en base, carga media o punta. De esta manera las Centrales de Olmos podrían despachar al máximo su oferta energética, viéndose restringidas solamente por efectos de las pérdidas de transmisión al tener que transportar los excedentes de potencia y energía de la región norte hacia la región centro.

Las características restantes son similares a la Alternativa Nº 1.

En el Cuadro 1.4 se puede apreciar que las tres alternativas son semejantes hasta el año 1990, diferenciándose entre ellas a partir de 1991, primordialmente por los proyectos de la Central Térmica de Gas de Zorritos y las Centrales Hidroeléctricas Olmos. Siendo los demás proyectos similares, pero diferidos en el horizonte de estudio (período 1985-2010).

1.4. **SISTEMA EXISTENTE EN 1995 DEL SICN — CONSIDERADO EL AÑO INICIAL DE ESTUDIO**

La aplicación de la metodología de planeamiento de la expansión de la red de transmisión eléctrica del SICN del presente proyecto está definido para el período 1995-2010. Siendo llamado ésta un período a largo alcance o largo plazo. De esta manera el año 1995 representa el año inicial del presente trabajo, por ello la presente sección tiene por finalidad presentar las premisas básí-
cas y los estudios realizados para definir la situación eléctrica de la zona hasta el año arriba indicado.

1.4.1. **Estudios efectuados del SICN en el periodo 1985-1995**

ELECTROPERU S.A. en el corto y mediano plazo (período 1985-1995) ha realizado estudios por menorizados del SICN. Debemos tener en cuenta que en este periodo la oferta de generación está prácticamente definida y teniendo los estudios de proyección de demanda en este horizonte de tiempo, se ha efectuado el flujo de potencia y en base a criterios técnico-económicos se ha definido el sistema eléctrico en tre los años 1985-1995.

Para el desarrollo del presente proyecto se ha tomado la red propuesta por ELECTROPERU S.A. en el año 1995, considerado año inicial del presente trabajo. En consecuencia, se supone ya definido el esquema de transmisión hasta el año 1995, la localización geográfica de los centros de generación, principales subestaciones y líneas de transmisión del SICN en ese año, se muestra en la Lámina N° 1.6.

Por lo tanto los centros de carga que se integrarían al SICN hasta el año 1995, es como sigue:

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>CENTROS DE CARGA QUE SE INTEGRARÍAN AL SICN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985 (2do. Semestre)</td>
<td>Cerro de Pasco, La Oroya y Pachachaca</td>
</tr>
<tr>
<td>1986</td>
<td>Chiclayo y Huancavelica</td>
</tr>
<tr>
<td>1988</td>
<td>Piura</td>
</tr>
<tr>
<td>1989</td>
<td>Talara</td>
</tr>
</tbody>
</table>
LOCALIZACIÓN GEOGRÁFICA DE LOS CENTROS DE GENERACIÓN Y SUB-ESTACIONES DEL SICN. - AÑO INICIAL DE ESTUDIO 1993

LEYENDA
- CENTRAL HIDRÁULICA
- CENTRAL TÉRMICA
- SUB-ESTACIÓN
- 220 KV
- 138 KV
- 60/50 KV O SIMILAR
- PROYECTO

UNIVERSIDAD NACIONAL DE INGENIERÍA
FACULTAD DE INGENIERÍA ELECTRICA Y ELECTRÓNICA
PROYECTO: PARA OPTAR EL TITULO PROFESIONAL

PLANEAMIENTO DE LA EXPANSIÓN A LARGO PLAZO DE LA RED DE TRANSMISIÓN ELECTRICA DEL SISTEMA INTERCONECTADO CENTRO NORTE (SICN)
PERÍODO 1993 - 2010

NOMBRE: ANTARA ARIAS RONAL
CODIGO: 780376-F
ESPECIALIDAD: INGENIERÍA ELECTRICA
1.4.2. Presentación del esquema base del SICN al año 1995

Siendo materia de estudio del presente proyecto el largo plazo es conveniente reducir el sistema a una red base, lógicamente conservando su estructura topológica inicial. Para la transmisión se ha considerado los niveles de 220 KV, además los niveles de 138 y 60 KV en algunos casos, de acuerdo a la incidencia en el SICN, concentrándose de esta manera los centros de generación y consumo en barras troncales a niveles mencionados anteriormente.

El esquema base del SICN del año 1995 es mostrado en la Lámina Nº 1.7. Al observar la lámina Nº 1.6 se puede apreciar que la red longitudinal indicada para el año 1985, aumenta su extensión en una longitud de 540 Km. Las barras a nivel de 220 KV adicionadas son: GUADALUPE, CHICLAYO, PIURA Y TALARA. Considerándose en ese año en operación las CC.HH. Yuncán, Mayush y Carhuaquero.

La gran Lima continua siendo el centro de consumo más fuerte de este sistema, el suministro de energía eléctrica al sistema Electrolima de las Centrales Hidroeléctricas Mantaro y Restitución se habrá incrementado mediante dos circuitos adicionales, una es la línea de transmisión Mantaro-Lima y otra la segunda terna Lima-Pisco, aumentando así el nivel de confiabilidad de este sistema y del siste-
ma Eléctrico Sur-medio. Pero, aún así continua la lejanía entre los diferentes centros de carga y los consumos de éstas comparados con la de Lima, continuando configurando un sistema interconectado frágil y de baja confiabilidad. Además se habrá interconectado al SICN los centros de consumo Ingenio y Caudalosa desde la subestación eléctrica Huancavelica, también se habrán reforzado algunas líneas de transmisión como la de Lima-Paramonga Nva. Paramonga-Nva-Chimbote, Chimbote-Trujillo Norte, etc, todos ellos a un nivel de tensión igual a 220 KV. Asimismo para esa fecha deben haberse transformado el nivel de tensión de algunas subestaciones eléctricas de 60 y 138 KV a 220 KV, como el caso de la subestación CARHUAMAYO Y ZAPALLAL.
CAPÍTULO II

ESTUDIO DEL DESARROLLO TEÓRICO DE LA EXPANSIÓN

2.1. FILOSOFÍA DEL PLANTEAMIENTO

El planeamiento es un proceso continuo de acciones a tomar que trata de buscar la asignación propia, conveniente y eficiente de los recursos disponibles y es variable con el tiempo. La razón fundamental de la planificación viene a ser, los recursos limitados para atender las necesidades que conlleva al bienestar social y desarrollo de un país.

Para aprovechar convenientemente los recursos limitados - debe priorizarse y al priorizar se tendrán planes y programas. Siendo lo anterior consecuencia del planeamiento efectuado. Debemos tener en cuenta que la planificación no es exacta, presenta imperfecciones, por ejemplo, los datos no se encuentran disponibles debido a que no se conoce exactamente lo que se tendrá en el futuro, se tiene limitaciones técnica y matemática, es decir, solamente podemos contar con datos aproximados. Por ello para planificar se debe efectuar un conjunto de simulaciones y estas deben ser lo más cercanamente posibles a la realidad, obteniéndose un aprovechamiento adecuado de los recursos que dispone un país.

Si no se realiza una planificación, se produce un impacto económico en la realización de una buena distribución de
bienes, originándose mayores costos y un mayor tiempo en su ejecución. En conclusión, se planifica para efectuar una mejor asignación de recursos, contribuyendo a la obtención de una visión amplia de la óptima utilización de los bienes en un determinado periodo.

Debido a que la energía eléctrica es un elemento fundamental para alcanzar el bienestar de los pueblos, la planificación en este rubro es muy importante, porque la planificación eléctrica incide y está fuertemente ligada al desarrollo socio-económico de un país.

2.2. METODOLOGÍAS DEL PLANEAMIENTO DE TRANSMISIÓN

El planeamiento de Sistemas de Transmisión, debido a la universalidad de las leyes electromagnéticas que gobiernan los fenómenos en estudio, es analizada mediante metodologías también universales. Los métodos de cálculo pueden ser aplicados a cualquier Sistema Eléctrico independiente de su ubicación, tratándose únicamente de adecuar el método al problema.

De esta manera puede definirse actualmente dos metodologías resultantes dentro del planeamiento de Sistemas de Transmisión. Una de las metodologías sigue el procedimiento clásico que está basado en una secuencia de estudios - de simulación de flujo de carga, cortocircuito, estabilidad y estudios económicos y una integración con el planificador. La otra consiste en la aplicación de técnicas de optimización para la definición de la expansión del
sistema eléctrico de transmisión a las cuales se les pueden llamar metodologías clásica y moderna respectivamente.

2.2.1. **Metodología Clásica de planeamiento de transmisión**

Esta metodología es directa y determinística, es decir, se define el mercado a atender y el programa de expansión de generación, se formula las alternativas de la expansión de transmisión, llamándose a esta formulación un proceso de síntesis del sistema en estudio. Este proceso de síntesis se realiza en forma manual, siendo la parte crítica del trabajo de planeamiento donde predomina la imaginación, intuición, capacidad técnica, sensibilidad y creatividad del planificador. A continuación realizamos una secuencia de estudios de simulación de flujo de carga, cortocircuito, estabilidad y estudios económicos de las alternativas definidas anteriormente. De esta manera los programas alternativos son evaluados y comparados entre sí, en términos de confiabilidad y costos.

Por último se analiza profundamente el plan seleccionado, estableciéndose de esta manera los detalles del proyecto y especificaciones en el horizonte de estudio. Se puede apreciar que un plan de expansión representa un conjunto de decisiones coherentes entre sí, la formulación de estas decisiones, es decir la definición completa de una alternativa de expansión es un proceso laborioso y complejo, debido a que la adición de cada nuevo elemento al sistema propicia una nueva visión del comportamiento
del sistema. Por ello es necesario descomponer el sistema trabajando simultáneamente en diferentes niveles, asegurando la perfecta coordinación entre ellas.

De esta manera el problema básico del planeamiento es conservar el acoplamiento general del sistema, resultando esta conservación altamente interactiva. Por ejemplo, se tiene que ver la interacción entre el planeamiento de la generación y la transmisión entre el nivel de sistema interconectado y el nivel local, entre los horizontes de estudio, o sea, entre el largo y corto plazo.

2.2.2. Metodología Moderna de Planeamiento de Transmisión

Esta metodología también se caracteriza por ser directa y determinística, previamente se define las proyecciones de la demanda a atender y la expansión de generación. La formulación de alternativas se realiza mediante los métodos de técnicas de optimización. es decir, el proceso de síntesis se basa en la aplicación de estos métodos que, requieren de modelos simplificados que simulen las exigencias reales del sistema minimizando algunos parámetros mediante una función para un conjunto de restricciones. Actualmente se tiene un conjunto de programas computacionales que permiten realizar la selección de alternativas en base a un planeamiento óptimo, tales como: el TANIA, el SINTRA, REDEX y otros.

A continuación se efectúa un estudio pormenorizado de las alternativas propuestas por el método de técnicas de opti-
mización, mediante los estudios de flujo de carga, cortocircuito, estabilidad y estudios económicos se determina la expansión satisfactoria.

Cabe destacar que los métodos de optimización toman como criterios de optimidad, básicamente las características económicas y de comportamiento. También consideran los criterios de confiabilidad, flexibilidad, etc. Pero estos últimos criterios son difíciles de cuantificar, ello permite afirmar que la optimidad mencionada en cierta forma es incompleta. A pesar de los muchos esfuerzos que se han llevado a cabo en la idea de aplicar estas técnicas al campo de planeamiento, no se ha obtenido una solución óptima, de esta manera los resultados no representan un patrón de decisiones, sino una herramienta que ayuda a tomar mejores decisiones al profesional encargado de la planificación.

2.2.3. Etapas características del Planeamiento de Sistemas de Transmisión

El plan de expansión a desarrollarse tiene por finalidad el abastecimiento de energía eléctrica a las cargas lo más económicamente posible, por un determinado plazo o período. Luego, el período que se define para el estudio del plan, incluyendo el alcance que debe tener dicho estudio son factores predominantes para la toma de decisiones, herramientas y modelos a utilizar para realizar el planeamiento en cuestión. De esta manera en la plani-
ficación de la transmisión de un sistema se distinguen tres etapas basadas en el alcance y horizonte del proyecto, clasificándose de la siguiente manera:

i) Planeamiento de Transmisión a largo plazo

Abarca un horizonte de 20 a 25 años, tiene por finalidad analizar alternativas de expansión asociados a varias alternativas de expansión de generación.

El estudio consiste principalmente en el análisis de flujo de potencia para las condiciones de carga máxima en condiciones normales o en emergencia simple. Se puede realizar estudios de la determinación de los niveles de cortocircuito en las barras. Los estudios de estabilidad no son tan necesarios en esta etapa.

La interacción con la expansión de la generación es grande, debido a que, es conveniente la selección de alternativas de generación y transmisión simultáneamente. Los resultados obtenidos representan un programa referencial, definiéndose las características básicas y las fechas probables de las adiciones.

Para este horizonte de estudio se puede utilizar programas simplificados, tipo flujo de potencia linealizados (D.C. Flow Power), para el análisis preliminar de las alternativas. Permitiendo esta consideración la rapidez de decisiones en la selección inicial de las alternativas. Los estudios se pueden realizar únicamente al nivel de troncos de transmisión.
ii) Planeamiento de Transmisión a Mediano Plazo

Esta etapa se debe enfocar desde dos puntos de vista, así tenemos:

a) Asociado al Planeamiento de la Expansión de Generación:

Abarca un horizonte de 10 a 15 años, busca detallar en base a una referencia de la expansión de generación, la alternativa definida en la etapa anterior, adicionando mejoras en la programación en el horizonte mencionado.

Los estudios son efectuados sobre el sistema hasta el nivel de subtransmisión, se busca analizar básicamente los siguientes aspectos:

- Estudio del desempeño eléctrico del sistema, utilizando para ello programas de flujo de potencia y de estabilidad transitoria y/o dinámica. Los flujos de potencia se analizan para las condiciones de régimen normal y emergencia.

Análisis de los niveles de cortocircuito en las barras del sistema.

Análisis de la necesidad de optimizar los costos del sistema.

b) Asociado al Sistema de Transmisión propiamente dicho:

Abarca un horizonte de 05 a 10 años, permite definir los nuevos proyectos de expansión de transmisión a nivel de factibilidad. Está asociado a las
necesidades de abastecimiento de cargas, reforzamiento de la red, etc.
Los estudios son efectuados sobre el sistema hasta el nivel de subtransmisión, se busca analizar adicionalmente a lo indicado en a) los siguientes aspectos:
- Estudio de adiciones convenientes de potencia reactiva del sistema.
- Estudio del desempeño de los equipos a considerar en régimen estacionario y transitorio a frecuencia de trabajo normal (frecuencia industrial).
- Estudio de la variabilidad del sistema cuando es energizado y cuando se produce un rechazo de carga.

iii) Planeamiento de Transmisión a Corto Plazo (Para diseño y operación).
Abarca un intervalo de 03 a 05 años, en esta etapa del planeamiento es necesario la representación de la configuración del sistema con el mayor grado de detallamiento posible. Se emplean programas de flujo de potencia en corriente alterna, de estabilidad dinámica, de cortocircuito, de Ingeniería Económica y modelos sofisticados de transitorios electromagnéticos. La utilización de estas herramientas definen pormenorizadamente el sistema, su desempeño y las características principales de sus componentes, así como las fechas óptimas para la -
implementación de las nuevas obras.
Obteniéndose como resultado final un programa detallado y
realista de obras e inversiones y la definición de los pa-
rámetros básicos del sistema y de sus componentes consti-
tuyéndose a su vez estos datos son informaciones iniciales
base para los estudios a largo plazo.

2.2.4. Técnicas de Optimización para la Expansión de un -
Sistema de Transmisión

Hasta hace poco tiempo las herramientas computacio-
nales disponibles fueron los métodos de análisis, tales -
como los programas de flujo de carga, cortocircuito y es-
tabilidad; toda tarea de síntesis, esto es selección de -
alternativas, era hecha en forma manual por el profesio-
nal encargado de la planificación, predominando mucho la
visión y capacidad técnica del planificador.

El crecimiento de las dimensiones de los sistemas de trans-
misión hacen más laborioso y complejo el procedimiento
señalado, aparecen así los métodos de síntesis, general -
mente basados en técnicas de optimización, tales como:
La programación lineal, no lineal, búsqueda en gráficos,
etc.
En la aplicación de los métodos de optimización para el -
desarrollo del planeamiento de transmisión aparecen tres
componentes básicos que definen el proceso mismo de estos
todos, el cual se inicia definiendo el plan en estudio,
en función de la respuesta deseada, por ejemplo, se desea
un listado de los cambios a realizar en la red de transmisión, etapa por etapa, cuyas adiciones proporcionan un óptimo en la función a evaluar que está íntimamente relacionada con la inversión y el desempeño, llamándose esta primera componente RESPUESTA.

A continuación viene la MODELACION de las restricciones que se presentan en el estudio, por ejemplo, las restricciones pueden ser los límites de voltaje por barra de carga en las barras y físicos. El chequeo de estos límites requiere que la evaluación de los flujos de potencia sean hechos por anticipado para las condiciones futuras, este modelaje por sí es un problema difícil.

El tamaño del proyecto, es quien directamente interviene en tiempo de cálculo y participa principalmente en la definición de los algoritmos a usar, es decir de los METO - DOS DE OPTIMIZACION, tercer componente del proceso. El método de optimización recoge los resultados del "Modelo", las violaciones de las restricciones y ajusta la "respuesta", de tal modo de reducir las violaciones y costos. Finalmente se arriba a una secuencia de adiciones a la red, de mínimo costo y sin que las restricciones sean violadas.

Para poder apreciar la ubicación de los métodos de optimización de la expansión de una red de transmisión, dentro del planeamiento de un sistema de transmisión, como ya se
mencionó anteriormente, previamente se debe definir la proyección de la demanda y la expansión de la generación, los cuales son considerados como los DATOS necesarios para el inicio del estudio y el objetivo del proyecto es determinar el PLAN de equipamiento del sistema en el horizonte correspondiente. Para llegar al resultado se conocen herramientas Clásicas y Modernas, estando ubicadas las técnicas de optimización en estas últimas mostrándose en la Figura 2.1 un diagrama general de lo mencionado.

De esta manera se han desarrollado programas computacionales diversos que tratan de buscar la optimización real del problema. Dentro de ellas tenemos el TANIA, SINTRA, REDEX, etc, diferenciándose entre sí en los algoritmos usados, pero con un fin único, el de obtener un costo mínimo de las adiciones a realizarse en el plan propuesto. En el Cuadro Nº 2.1 se pueden apreciar las características más resaltantes de estos programas digitales.

Los métodos de optimización desde que se basan en procedimientos de búsqueda no garantizan un Plan "óptimo", debido a los modelos aproximados que se utilizan para tal fin, antes de ello se usan como estudio preliminar para la realización de un posterior planeamiento donde predomina la experiencia y criterios técnicos del planificador, en coordinación con las decisiones políticas que vive el país en mención.

Es necesario señalar que cuando se trate de realizar el planeamiento a largo plazo los procedimientos utilizados
fig N° 2.1 Diagrama de relación entre los métodos de optimización y el planeamiento de transmisión.
CUADRO N° 2.1
PROGRAMAS COMPUTACIONALES DE PLANEAMIENTO DE TRANSMISION

<table>
<thead>
<tr>
<th>CARACTERISTICAS</th>
<th>MODELO "TANIA"</th>
<th>MODELO "SINTRA"</th>
<th>MODELO "REDEX"</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODO DE OPERACION</td>
<td>EN LINEA</td>
<td>EN LINEA</td>
<td>EN LINEA</td>
</tr>
<tr>
<td></td>
<td>NO INTERACTIVO</td>
<td>INTERACTIVO</td>
<td>NO INTERACTIVO</td>
</tr>
<tr>
<td>OBJETIVO</td>
<td>MAXIMIZAR BENEFICIO DE ALTERNATIVAS DE ADICIONES</td>
<td>MINIMIZAR FUNCION DE COMPORTAMIENTO DEL SISTEMA</td>
<td>MINIMIZAR COSTO DE ADICIONES</td>
</tr>
<tr>
<td></td>
<td>MINIMO COSTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODELOS</td>
<td>ELECTRICO: FLUJO DE CARGA LINEALIZADO (CORRIENTE CONTINUA)</td>
<td>ELECTRICO: FLUJO DE CARGA LINEALIZADO</td>
<td>ELECTRICO: FLUJO DE REDES A MINIMO COSTO</td>
</tr>
<tr>
<td></td>
<td>ECONOMICO: COMPARACION EN UN AÑO DE REFERENCIA TASA DE DESCUENTO CONTINUA</td>
<td>ECONOMICO: CRITERIO DEL MINIMO ESFUERZO</td>
<td>ECONOMICO: COMPARACION EN UN AÑO DE REFERENCIA</td>
</tr>
<tr>
<td>METODO DE OPTIMIZACION</td>
<td>BASADO EN LA TEORIA DE LOS GRAFICOS</td>
<td>BASADO EN LA TEORIA DEL MINIMO ESFUERZO</td>
<td>BASADO EN LA TEORIA DE LAS REDES</td>
</tr>
<tr>
<td>MODO DE ADICION</td>
<td>DISCRETA</td>
<td>DISCRETA</td>
<td>DISCRETA</td>
</tr>
<tr>
<td>CARACTERISTICA DE COMPUTO</td>
<td>REQUIERE DE AMPLIA DISPONIBILIDAD DE MEMORIA</td>
<td>MEDIANA DISPONIBILIDAD DE MEMORIA</td>
<td>MEDIANA DISPONIBILIDAD DE MEMORIA</td>
</tr>
<tr>
<td></td>
<td>BUEN CONSUMO DE MEMORIA</td>
<td>CORTO TIEMPO DE EJECUCION POR ETAPA</td>
<td>BUEN Y MEDIANO TIEMPO DE EJECUCION</td>
</tr>
</tbody>
</table>
en estos métodos pueden resultar inconvenientes, dado su alto costo de evaluación y la naturaleza incierta del proyecto en este horizonte, debido a que los cambios que pueden producirse en la generación, demanda y niveles de tensión, no son raros para estas características de planeamiento.

Por otro lado, tener un sistema enmallado o en anillo y de grandes dimensiones ocasionaría la necesidad de tener que aplicar obligatoriamente estos métodos, porque presentaría un gran número de alternativas probables de solución. También siendo la confiabilidad un parámetro importante dentro de un sistema eléctrico, así como su flexibilidad, los métodos de optimización necesitan cuantificar estas variables, lo que es un problema difícil hasta ahora, no teniéndose un modelaje tendiente siquiera a lo razonable. Estas consideraciones permiten afirmar que estos métodos no resultan convenientes para la planificación de pequeños sistemas. Si involucramos en ella las características de las políticas de gobierno se ahondaría más en dar una respuesta positiva a esta conjetura. Lo mencionado no significa conservar lo tradicional, negando la necesidad de actualización de los métodos, sino que éstas se deben aplicar de acuerdo a las necesidades técnicas lógicas de la dimensión del problema.

2.2.5. Metodología para Planeamiento a largo plazo de Sistemas de Transmisión

Los métodos que estudian la expansión del sistema
de transmisión, como ya se mencionó, en general, supone co
nocidos las estimaciones del crecimiento de Demanda y pro
gramas alternativos de expansión de generación dentro de
un período dado, en este caso en un largo plazo.
Los estudios a largo plazo son afectados por una serie de
incertidumbres que se deben principalmente a:
- La imprecisión en la determinación de niveles y locali-
zación de nuevas cargas y nuevas unidades de generación.
- Criterios aproximados en la determinación de la poten-
cia máxima de líneas de transmisión (límites, térmico,
de nivel de tensión y de estabilidad) que deben ser de
terminados antes de plantear una configuración futura
del sistema.

En el planeamiento a corto plazo se cuenta con un nivel
de incertidumbre mucho menores que un planeamiento a lar
go plazo, en donde los resultados son seguidos con mayor
fidelidad que los planeamientos a plazos más largos. El
planeamiento a largo plazo tiene una finalidad un poco
distinta, en vez de responder precisamente preguntas sobre
donde, cuando, cuanto y que tipos de equipamiento deben -
ser instalados, busca soluciones de una manera indicativa
y conceptual, objetivamente se forma una perspectiva de -
largo plazo para la expansión del sistema y dentro del
cual debe ser orientado el propio planeamiento a corto
plazo. Un plan de expansión a corto plazo, que aparente-
mente es la solución más adecuada, podrá dejar de ser una
mejor alternativa de expansión del sistema cuando es ana
lizado de una perspectiva a largo plazo.

Otro tipo de problema que aparece en el planeamiento a largo plazo de sistemas de transmisión es de que, tanto la generación como la demanda no crecen uniformemente, esto ocasiona que, por ejemplo, algunas líneas que puedan ser necesarias en los años iniciales del planeamiento puedan resultar prácticamente ociosas o sobre el mismo se invierte el sentido del flujo de potencia en años siguientes.

Aquí aparece un problema de interacción entre los planeamientos de generación y transmisión, pues algunas líneas que serían construidas en años intermedios y que más tarde pasarían a ser ociosas, podrían dejar de ser construidas, si fuese factible plantear una nueva secuencia de entrada en operación de nuevas máquinas, teniendo en cuenta que la disminución de costos de transmisión compensen los eventuales aumentos de costos del programa de expansión de generación. Este tipo de problema puede afectar también a la localización de nuevos grupos térmicos, creando otro problema de interacción entre planeamientos de transmisión y de generación. Debido principalmente a las dimensiones del problema, la interacción entre la expansión de sistemas de transmisión y generación y las particularidades de cada sistema, hace indispensable la participación del planificador a través de programas interactivos, siendo necesaria la utilización de programas enteramente automáticos.
Por lo tanto, podemos afirmar que, difícilmente un problema de planeamiento a largo plazo puede ser resuelto eficientemente por un programa totalmente automático, o sea por un programa que elimine la intervención del planificador. Por el contrario, el planificador tendrá mejores herramientas para definir alguna estrategia o simulación.

Teniendo en cuenta que el sistema interconectado Centro Norte es un pequeño sistema eléctrico (problema de pequeña dimensión) con tendencia radial hacia el Sur y el Norte y presentando una carga representativa en el área de la Gran Lima, permite definir alternativas de transmisión de poca variabilidad, en donde es necesario básicamente los criterios del planificador en función del desarrollo regional de esta parte del país, adoptaremos la metodología clásica para el estudio del planeamiento a largo plazo del SICN - materia del presente trabajo.

Los datos básicos para el planeamiento a efectuarse son:
- Configuración de la red inicial (considerado año inicial del estudio – año 1995).
- Proyección de la Demanda.
- Alternativas de secuencia de generación.
- Parámetros eléctricos.
- Costos de equipamiento a ser adicionados al sistema.
- Costo total de inversiones.
- Costo de energía disipada por el sistema de transmisión
- Tasa de interés.
En esta metodología se realizará el estudio preliminar de las alternativas propuestas, desarrollándose el análisis de transmisión asociado a la secuencia de generación, para lo cual se efectuará un balance de potencia activa en forma manual de acuerdo a los criterios y premisas adoptadas, definiéndose de esta manera una nueva alternativa de la expansión del sistema de transmisión, luego se analizará el aspecto técnico en forma por minorización mediante el uso de programas de flujo de potencia en corriente alterna, teniendo en cuenta lo expuesto en 2.2.3. Definiendo finalmente el comportamiento técnico y económico de la alternativa de transmisión elegida, sin dejar de lado la interacción entre los planeamientos de transmisión y generación del sistema en estudio.

2.3. CRITERIOS DE PLANEAMIENTO DE SISTEMAS DE TRANSMISSION

El objetivo del planeamiento eléctrico es lograr el abastecimiento oportuno, garantizado, suficiente y económico de la demanda de energía eléctrica que permite dinamizar e incentivar el desarrollo socio-económico de un país. Por lo mismo, es necesario recalcar que se tiene que buscar la eliminación de la posibilidad de que un defecto en cualquier punto del sistema se propague a todo el conjunto, es decir, una falla de gran magnitud debe ser un evento de baja probabilidad de ocurrencia.

Podemos señalar que el sistema de transmisión tiene una participación especial en el logro del objetivo planteado...
De esta manera es conveniente definir los criterios a utilizar para una buena planificación de el sistema de transmisión de un sistema eléctrico.

2.3.1. Necesidad de Criterios de Planeamiento de Transmisión

Cuando se hace referencia a un planeamiento adecuado, éste necesariamente está ligado a un proceso de definir una alternativa que permita atender las necesidades - de energía al mínimo costo compatible con una calidad de servicio adecuado. Es obvio mencionar que la calidad de servicio está relacionada a su costo, es decir, la calidad de servicio puede ser optimizada a un costo económico. Puede entenderse que la calidad del servicio de electricidad está definida por la continuidad y por la estabilidad de frecuencia y tensión alrededor de valores definidos. Una forma de considerar la continuidad del servicio es utilizar el concepto de confiabilidad, definida como la probabilidad de pérdida de suministro. La confiabilidad no es algo que se incorpora al sistema eléctrico, sino algo que resulta del sistema cuando los componentes son buenos; su composición es correcta y su operación adecuada.

Un sistema eléctrico está sujeto a un sin numero de imprevistos; así tenemos: Incertidumbre de demanda, oscilaciones probabilísticas en las disponibilidades hidráulicas, salidas forzadas de instalaciones de generación y/o transmisión, etc. En estas condiciones, intentar garan-
zar a los usuarios perfecta calidad y confiabilidad de su ministro, bajo cualquier circunstancia, teóricamente, conduciría a costos infinitamente elevados. Se puede plantear que los atributos que deben estar implícitos en cualquier sistema eléctrico de potencia son:

a) La continuidad de servicio equivalente a la confiabilidad que debe presentar un sistema eléctrico.

b) La flexibilidad de operación, de mantenimiento y de expansión.

c) La definición de un costo óptimo de las instalaciones basados en los atributos mencionados en a) y b). Es decir una economía conveniente del sistema.

Uno de los atributos más importantes de cualquier sistema eléctrico viene a ser la confiabilidad. Al formular los criterios de confiabilidad se reconoce que:

El sistema de transmisión representa la herramienta principal para lograr la confiabilidad del sistema.

En sistemas interconectados, la transmisión tiene una función dual de transporte de energía e integración entre sistemas, permitiendo una mejor confiabilidad de los sistemas nuevos interconectados y del sistema general obtenido.

Ahora para lograr un desempeño confiable se deben satisfacer las siguientes consideraciones:

a) Preservar la seguridad del sistema planificando y simulando la operación del sistema de tal manera que las -
contingencias más probables puedan ser soportadas sin restricciones o sin cortes de cargas y sin necesidad de sobrecargar a los equipos.

b) Mantener la integridad del sistema planificando y simulando la operación del sistema, de tal manera que las contingencias más severas no ocasionarán la separación de partes importantes del sistema.

c) Limitar la extensión de fallas del sistema de transmisión mediante el uso de medios de separación controlada (rechazo de carga y desconexión de generación).

d) Promover rápida recuperación del sistema después de una interrupción del sistema mediante la utilización de medios de comunicación y medios de control seguros, servicios auxiliares independientes, planes de restauración y entrenamiento de personal.

Por tanto existe la necesidad de tener criterios generales que además de permitir una coherencia de todos los niveles considerados en el planeamiento de transmisión proporcionen una orientación común a las etapas subsecuentes de diseño y operación.

2.3.2. Tipos de criterios de Planeamiento de Transmisión

Los criterios que se mencionan a continuación se basan en la experiencia de planeamiento, diseño y operación de sistemas eléctricos. No se pretende que ellos sean muy amplios, de tal manera que se pueda incluir to-
das las particularidades existentes en un sistema de transmisión. Es decir, que las situaciones especiales, características regionales ... etc, deben tener un tratamiento especial.

Los criterios de planeamiento de transmisión pueden ser a grupados de la siguiente manera:

- Criterios de desempeño
- Criterios de diseño
- Criterios económicos
- Procedimientos para evaluación de alternativas

En los párrafos siguientes se define brevemente el alcance que debe tener cada uno de los criterios señalados.

1) **Criterios de desempeño o comportamiento**

 Permite fijar los niveles de desempeño deseables para el sistema de transmisión, el sistema planeado deberá satisfacer los niveles de desempeño establecido para régimen estacionario y transitorio a frecuencia industrial. Estas pruebas de comportamiento son simuladas en la computadora y la alternativa que resista a las pruebas de simulación de los disturbios especificados será técnicamente aceptable.

2) **Criterios de diseño**

 Estos criterios se refieren al diseño básico de los equipos e instalaciones y vienen a ser más detallados que los criterios de desempeño. De esta manera se fijan valores de determinados parámetros que permiten definir las características básicas de equipos e ins-
talaciones orientando su diseño y especificación.

iii) Criterios económicos

En el estudio de planeamiento de transmisión cuando varias alternativas son técnicamente análogos, uno de los factores de comparación para la toma de decisión es la ventaja económica de una alternativa con respecto a los demás.
Por tanto menciona las hipótesis básicas y establece los parámetros y la manera de evaluar económicamente las alternativas que satisfacen los criterios de desempeño.

iv) Procedimientos para la Evaluación de Alternativas

Los estudios de Planeamiento de Transmisión consisten esencialmente en comparaciones de alternativas previamente formuladas, obtenidas por la aplicación de técnicas de optimización o manualmente. Estas comparaciones son básicamente técnica-económicas, es decir tienen dos naturalezas:

- Naturaleza técnica o de desempeño, se comparan las alternativas desde el punto de vista eléctrico.
- Naturaleza económica, se comparan los costos de las alternativas, prevaleciendo el de costo mínimo.

Los procedimientos contienen las orientaciones e instrucciones que permiten la ejecución ordenada y lógica, de acuerdo a la metodología de los estudios del planeamiento en mención. Es decir, describe la metodología a seguir para la ejecución de los estudios,
descripción y empleo de datos básicos e hipótesis, empleo de programas de computadora, tipos de estudios y resultados que se buscan. En la Figura N° 2.2 se puede apreciar las consideraciones a tomar para lo mencionado.

Los criterios en referencia busca la concordancia entre -la naturaleza técnica y económica de las alternativas definidas en el planeamiento. Es decir, el desempeño desde el punto de vista eléctrico y del beneficio máximo (menor costo).

2.3.3. **Criterios para el estudio del planeamiento de transmisión del Sistema Interconectado Centro-Norte**

Siendo materia del presente estudio el planeamiento de transmisión a largo plazo, el estudio se limita al análisis de potencia en la red, en máxima demanda, en condiciones normales o en emergencia simple, verificándose -la potencia en líneas y transformadores y los niveles de tensión. Además, la interacción con los estudios de expansión de generación es grande, puesto que generalmente se quiere seleccionar alternativas de generación y transmisión, simultáneamente. Obteniéndose al final un programa de referencia de expansión del sistema, donde son definidas las características básicas de líneas de transmisión y subestaciones y las fechas probables de entrada en operación de las instalaciones.

Teniendo presente lo expuesto, para el presente trabajo se considerará los siguientes criterios basados en las de
fig N° 2.2 Diagrama básico del procedimiento para la evaluación de alternativas.
finiciones dadas en 2.3.2.

a) Criterios de Desempeño o Comportamiento:

a1. No debe existir pérdida de carga provocada por contingencia simple en el SICN.

a2. Las potencias transmitibles en las líneas no deben exceder el límite térmico y/o por estabilidad de los cables en condiciones de emergencia.

a3. Los transformadores no deben admitir sobrecargas dañinas en condiciones de emergencia.

a4. Los niveles de tensión deben estar comprendidas entre 0.95 y 1.05 p.u. de valores nominales en régimen normal y 0.90 y 1.05 p.u. en emergencia.

a5. Se considerará que las máquinas síncronas permanecen en sincronismo durante la transición de una condición operativa en régimen estable a otra causada por perturbaciones de cualquier naturaleza.

a6. Las proyecciones a ejecutarse presentan de todas maneras incertidumbre, por tanto no justifica estudios detallados de cortocircuito y estabilidad transitoria.

a7. El pronóstico de la carga reactiva se basa en los factores de potencia de las subestaciones existentes, el cual se muestra en el Cuadro N° 2.2.

b) Criterios de Diseño:

b1. Se considerará un nuevo nivel de tensión respecto al mayor existente, dadas las potencias y distancias en juego (3500 MW, 450 Km).
b2. Criterios de reserva:

El SICN está compuesto de varios subsistemas, — cada uno de ellos tendrá una reserva del 20% — de la potencia instalada en el subsistema. Se ha considerado este criterio determinístico debido a que en el SICN se tienen pequeños sistemas termoeléctricos, centrales hidráulicas con poca regulación y gran variabilidad hidrológica. Por otro lado, es conveniente tomar este criterio para estudios de planeamiento a largo plazo (orientativos). El porcentaje de reserva — considerado es una expresión empírica de prácticas en planeamiento que resultó razonable.

- En grupos generadores, el número de líneas será el suficiente para transportar toda la potencia máxima del grupo (más una línea).

b3. Los esquemas típicos de centros de transformación a utilizarse en la expansión de la transmisión, — así como los parámetros de línea, disposiciones — de estructuras y capacidad de transporte de líneas en varios niveles de transmisión se muestran en — el apéndice D.

c) Criterios Económicos:

c1. La alternativa más ventajosa será aquella que resulta con menor valor presente de las inversiones.

c2. Se tomará una tasa de interés comprendida entre — 10 y 14%.
d) Procedimientos para Evaluación de Alternativas:
 d1. Se desarrollará el desempeño de la alternativa -
 bajo el punto de vista eléctrico.
 d2. Se evaluará el costo de la alternativa.
 d3. Los procedimientos a efectuarse serán como ya se
 mencionó en 2.3.2.

2.4. PREMISAS PARA EL ESTUDIO DEL PLANEAMIENTO DE TRANS-
 MISION DEL SISTEMA INTERCONECTADO CENTRO-NORTE

El estudio del planeamiento de transmisión puede -
ser enfocado desde dos ángulos diferentes que están clara-
mente definidos y éstos son cuando se trata de corto -
plazo o de largo plazo.

Cuando se enfoca desde el punto de vista de corto plazo
se considera apenas una etapa de planeamiento con paráme-
tros fijos, lo cual simplifica grandemente el análisis.

Desde el punto de vista de largo plazo se tiene un análi-
sis de decisiones secuenciales con manipulación de pará-
metros y costos variables, pero aún así, estas decisiones
deben tomarse con reserva, puesto que, las característi-
cas de los requerimientos son cambiantes.

El presente trabajo enfoca el planeamiento de la expan-
sión a LARGO PLAZO, en cuyo tratamiento secuencial es ne-
esario plantear premisas de estudio que permitan defi-
nir las mejores alternativas de transmisión, las premi-
sas que se consideran para este estudio son las siguien-
tes:
Se han concentrado todas las cargas y generaciones a las barras principales, tratando así de conservar la topología particular o esencial del sistema al nivel de transmisión.

- Se considerará ya existente el sistema interconectado Centro Norte hasta el año inicial 1995 (Plan Maestro 1985)

Desde el aspecto de desarrollo se dará énfasis a los aspectos regionales.

Condición de máxima demanda, se ha considerado la máxima demanda anual, dado que ello ocasionaría los máximos requerimientos del Sistema de Generación y en algunos casos del Sistema de Transmisión.

- Máxima Generación de Energía Hidroeléctrica fin de determinar las máximas exigencias del Sistema de Generación se ha considerado la potencia disponible en PICO para las Centrales Hidroeléctricas, habiéndose adoptado la disponibilidad correspondiente al tercer o cuarto trimestre en un año hidrológico promedio.

- Mínima Transmisión de Energía a fin de reducir las distancias de transmisión y en consecuencia reducir las pérdidas y otros efectos en la operación del sistema.

- La confiabilidad del sistema estará determinada por la probabilidad de que el sistema eléctrico tenga desempeño satisfactorio durante el período mencionado y las condiciones de su operación permita un oportuno abastecimiento de la energía eléctrica.
- Debido al período de análisis Largo Plazo, las proyecciones a ejecutarse presentan de todas maneras incertidumbre, la cual no justifica estudios detallados de cortocircuito y estabilidad transitoria.

- Se definirá los equipamientos térmicos en función de los requerimientos de energía térmica y basado en una distribución adecuada de la reserva.

- La asignación de carga a subestaciones se basa fundamentalmente en las informaciones de ubicación geográfica y reparto porcentual suministrado por el estudio de mercado o por las Empresas Regionales correspondientes. En muchos casos hay solamente unas pocas subestaciones por "Barra", lo que permite que la asignación sea directa.
CUADRO N° 2.2
ASIGNACION DE CARGA POR SUBESTACIONES

<table>
<thead>
<tr>
<th>SISTEMA: ELECTRO NORTE</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BARRA</td>
<td>SUBESTACIONES</td>
<td>FP</td>
<td>CARGAS ASIGNADAS</td>
<td>OBSERVACIONES</td>
</tr>
<tr>
<td>TUMBES</td>
<td>Tumbes 138 kV</td>
<td>0.90</td>
<td>Tumbes</td>
<td>Asignación Total de la barra.</td>
</tr>
<tr>
<td>Piura Oeste 10 kV</td>
<td></td>
<td>0.87</td>
<td>1.0.16 (Sistema Piura)</td>
<td>2. COPSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Textil Piura</td>
</tr>
<tr>
<td>Piura Nueva 10 kV</td>
<td></td>
<td>0.87</td>
<td>1.0.45 (Sistema Piura)</td>
<td>2. Parque Indus. Piura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sullana 10 kV</td>
<td></td>
<td></td>
<td>1.0.24 (Sistema Piura)</td>
<td>2.0.42 (PCII)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Parque Indus. Sullana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Sistema H2O Sullana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5. Pima</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6. Tambo Grande</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>El Arenal 13.8 kV</td>
<td>0.87</td>
<td>1. Sistema de H2O</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Paita 60 kV</td>
<td>0.90</td>
<td>1. Pueblos Paita</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td>1.0.05 (Sistema Piura)</td>
<td>2. Base Naval</td>
</tr>
<tr>
<td>A</td>
<td>Paita 10 kV</td>
<td>0.87</td>
<td>3. Productos Marinos</td>
<td>4. Molinera Perú</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5. Coishco</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6. Pesquera del Mar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7. Terminal Pesquero Paita</td>
</tr>
<tr>
<td>Chulucanas 60 kV</td>
<td></td>
<td>0.90</td>
<td>1. Ciudad de Chulucanas</td>
<td>2.0.15 (PCII)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SISTEMA: ELECTRO NORTE

<table>
<thead>
<tr>
<th>BARRA</th>
<th>SUBESTACIONES</th>
<th>FP</th>
<th>CARGAS ASIGNADAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Malacas C.T.</td>
<td>0.90</td>
<td>1. Petro Malacas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.2 kV</td>
<td></td>
<td>2. 0.50 (Petro Port. - Organ.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Futuro Malacas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. PCII</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Talara C.T.</td>
<td>0.90</td>
<td>1. Ciudad Talara</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.2 kV</td>
<td></td>
<td>2. Petro Talara-Verdún.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. 0.50 (Petro Port. Organ.)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Bayóvar 220 kV</td>
<td>0.90</td>
<td>1. Bayóvar</td>
<td>Asignación Total de la barra.</td>
</tr>
</tbody>
</table>

Chiclayo Oeste 220 kV 0.90 1. CAP. Pomalca 2. CAP. Tumán 3. CAP. Pucala 4. CAP. Cayaltí

Chiclayo Norte 60 kV 0.90 1.0.14 (PCII)

Chiclayo Norte 10 kV 0.87 1.0.60 (Ciudad de Chiclayo) 2.0.63 (PCI)

Chiclayo Oeste 60 kV. 0.90 1.0.49 (PCIII).

Chiclayo Oeste 10 kV 0.87 1.0.40 (Ciudad de Chiclayo) 2.0.37 (PCI)

Carhuauquero 220 kV 0.90 1. La Granja

Lambayeque 60 kV 0.90 1. Cuidad de Lambayeque 2.0.49 (PCII)

Illimo 60 kV 0.90 1.0.37 (PCII) 2.0.51 (PCIII) 3. Cía. Cevecera del Norte
SISTEMA HIDRÁULICO

<table>
<thead>
<tr>
<th>BARRA</th>
<th>SUBESTACIONES</th>
<th>FP</th>
<th>CARGAS ASIGNADAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guadalupe 60</td>
<td>1. Chepen/Guadalupe 2.0.50 (PCII) 3. CAP. Limoncaro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 kV</td>
<td></td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACHO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacasmayo 60</td>
<td>1.0.50 (PCII) 2. Ciudad Pacasuyo/S.P.Lloc 3. Cimento Pacasmayo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 kV</td>
<td></td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAJAVARA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 kV</td>
<td>1. Ciudad de Caja marca 2. PCII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michiquillay</td>
<td>1. Michiquillay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220 kV</td>
<td></td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURURO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trujillo Sur</td>
<td>1.0.537 (Ciudad Trujillo) 2.0.537 (PCI) 3.0.537 (PCII) 4. Pescaperú 1102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 kV</td>
<td></td>
<td>0.90</td>
<td></td>
<td>El 50% de esta carga será asignada a la S.E. Trujillo Oeste.</td>
</tr>
<tr>
<td>JILO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trujillo Norte</td>
<td>1.0.249 (Ciudad Trujillo) 2.0.249 (PCI) 3.0.249 (PCII)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138 kV</td>
<td></td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motil 138 kV</td>
<td>1. Minera río Moche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porvenir 138</td>
<td>1.0.141 (Ciudad Trujillo) 2.0.141 (PCI) 3.0.141 (PCII) 4. CAP. Laredo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIRÚ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 kV</td>
<td>1.0.072 (Ciudad Trujillo) 2.0.072 (PCI) 3.0.072 (PCII)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stgo. Cao 138</td>
<td>1. CAP. Cartavio 2. CAP. Casagrande</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SISTEMA: HIDRANDINA

<table>
<thead>
<tr>
<th>BARRA</th>
<th>SUBESTACIONES</th>
<th>PP</th>
<th>CARGAS ASIGNADAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stgo. de Cao 138 kV</td>
<td>0.90</td>
<td>1. Papelera Trupal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Trupal-Pulpa T.M.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chimbote 2 13.8 kV</td>
<td>0.90</td>
<td>1. Amp. Sider-Perú</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chimbote Norte 13.8 kV</td>
<td>0.85</td>
<td>1.0.50 (Ciudad Chimbote)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. ENSA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chimbote Sur 13.8 kV</td>
<td>0.90</td>
<td>1.0.50 (Ciudad Chimbote)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nepeña 138 kV</td>
<td>0.90</td>
<td>1.0.25 (PCI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Complejo Pesquero Samanco</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casma 138 kV</td>
<td>0.90</td>
<td>1.0.50 (PCI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Jacinto 138 kV</td>
<td>0.90</td>
<td>1.0.25 (PCI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. CAP. San Jacinto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caraz 66 kV</td>
<td>0.90</td>
<td>1.0.35 (PCI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0.20 (PCII)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carhuaz 66 kV</td>
<td>0.90</td>
<td>1.0.35 (PCI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0.20 (PCII)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huaraz 66 kV</td>
<td>0.90</td>
<td>1.0.35 (PCI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0.20 (PCII)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mina El Aguila 66 kV</td>
<td>0.85</td>
<td>1. Mina El Aguila</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0.15 (PCII)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Minera Alianza</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Banco Minero</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Mina Millotingo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6. Mina Sto. Toribio</td>
<td></td>
</tr>
</tbody>
</table>
SISTEMA: HIDRANDINA

<table>
<thead>
<tr>
<th>BARRA</th>
<th>SUBESTACIONES</th>
<th>FP</th>
<th>CARGAS ASIGNADAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huallanca</td>
<td>138 kV</td>
<td>0.90</td>
<td>1. FM Santolalla</td>
<td>2. Magistral</td>
</tr>
<tr>
<td>San Marcos</td>
<td>138 kV</td>
<td>0.90</td>
<td>1.0.45 (PCII)</td>
<td></td>
</tr>
<tr>
<td>Antamina</td>
<td>138 kV</td>
<td>0.85</td>
<td>1. Antamina</td>
<td>2. Minera Pilar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Paramonga 13.8 kV</th>
<th>0.90</th>
<th>1. Sociedad Para(*)</th>
<th>Carga de Electrolima</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>2. Ciudades Supe/Barranca(*)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td>3. Paramonga Proy. M.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>4. Paramonga PVC</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td>1. Ciudad de Hua-cho</td>
<td>Cargas de Electrolima</td>
</tr>
<tr>
<td>O</td>
<td>Huacho 66 kV</td>
<td>0.90</td>
<td>2. PCI</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td>3. Indust. Paco-cha</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td>4. Carbonato de Sodio</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>5. R.Fu.Zn.100 KTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6. Terminal Pesquero Huacho</td>
<td></td>
</tr>
<tr>
<td>BARRA</td>
<td>SUBESTACIONES</td>
<td>FP</td>
<td>CARGAS ASIGNADAS</td>
<td>OBSERVACIONES</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>-----</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>PACHA-</td>
<td>Varias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHACA-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCARA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tarma 10 kV</td>
<td>0.90</td>
<td>1. Ciudad Tarma</td>
<td>El resto de</td>
</tr>
<tr>
<td></td>
<td>Tarma 60 kV</td>
<td>0.90</td>
<td>1. PSE Tarma</td>
<td>cargas de</td>
</tr>
<tr>
<td></td>
<td>Chanchamayo</td>
<td>0.90</td>
<td>1. Chanchamayo</td>
<td>esta barra</td>
</tr>
<tr>
<td></td>
<td>60 kV</td>
<td></td>
<td>2. Mina San Vicen</td>
<td>se asignan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>te.</td>
<td>de acuerdo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a la distr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bución de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cargas de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Centromin</td>
</tr>
<tr>
<td></td>
<td>Huánuco 138 kV</td>
<td>0.90</td>
<td>1. Ciudad Huánuco</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0.356 (PCII)</td>
<td></td>
</tr>
<tr>
<td>CERRO</td>
<td>Tingo María</td>
<td>0.90</td>
<td>1. Tingo María</td>
<td>Idem</td>
</tr>
<tr>
<td>DE</td>
<td>138 kV</td>
<td></td>
<td>Ciudad.</td>
<td>anterior</td>
</tr>
<tr>
<td>PASCO</td>
<td></td>
<td></td>
<td>2.0.335 (PCII)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Villa Rica</td>
<td>0.90</td>
<td>1. Ciudad Oxapan-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>138 kV</td>
<td></td>
<td>pa.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Ciudad de Vi-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lla Rica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huayucachi 60 kV</td>
<td>0.90</td>
<td>1. Mina Gran Bre-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>taña.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Mina cerca Pu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>quio.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. PCIII</td>
<td></td>
</tr>
<tr>
<td>HUAN</td>
<td>Saisleanos 60 kV</td>
<td>0.90</td>
<td>1.0.667 (Ciudad</td>
<td></td>
</tr>
<tr>
<td>CAYO</td>
<td></td>
<td></td>
<td>Huancayo)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0.50 (PCI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0.50 (PCII)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pque. Indus-</td>
<td>0.90</td>
<td>1.0.333 (Ciudad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trial 60 kV</td>
<td></td>
<td>Huancayo)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Cerveza Pilse-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jauja 60 kV</td>
<td>0.90</td>
<td>1.0.50 (PCI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0.50 (PCII)</td>
<td></td>
</tr>
<tr>
<td>HUAN</td>
<td>Huancavelica</td>
<td>0.90</td>
<td>1. PCI</td>
<td></td>
</tr>
<tr>
<td>CAVE</td>
<td>10 kV</td>
<td></td>
<td>2.0.3333 (PCII)</td>
<td></td>
</tr>
<tr>
<td>LICA</td>
<td></td>
<td></td>
<td>3. Mina El Brocal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ingenio 60 kV</td>
<td>0.85</td>
<td>1.0.3333 (PCII)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.S.E. Ingenio</td>
<td></td>
</tr>
<tr>
<td>BARRA</td>
<td>SUBESTACIONES</td>
<td>FP</td>
<td>CARGAS ASIGNADAS</td>
<td>OBSERVACIONES</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-----</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Caudalosa 60kV</td>
<td>0.85</td>
<td>1.0.3334 (PCII)</td>
<td>2.S.E. Caudalosa</td>
</tr>
<tr>
<td></td>
<td>Cobriza 69 kV</td>
<td>0.95</td>
<td>1. Centromin-Cobriza</td>
<td></td>
</tr>
<tr>
<td>MANTARO</td>
<td>Huanta 69 kV</td>
<td>0.90</td>
<td>1.0.50 (PCII)</td>
<td>2.0.80 (PCII)</td>
</tr>
<tr>
<td></td>
<td>Ayacucho 69 kV</td>
<td>0.90</td>
<td>1. Ciudad Ayacucho</td>
<td>2.0.50 (PCII)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0.20 (PCIII)</td>
<td></td>
</tr>
<tr>
<td>BARRA</td>
<td>SUBESTACIONES</td>
<td>FP</td>
<td>CARGAS ASIGNADAS</td>
<td>OBSERVACIONES</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>-----</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>P</td>
<td>Pisco 60 kV</td>
<td>0.90</td>
<td>1. Ciudad Pisco</td>
<td>2. Textil Progreso</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td>3. Comp.Pesquera Ica</td>
<td>4. Polisacos</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Chincha 60 kV</td>
<td>0.90</td>
<td>1. Ciudad de Chincha</td>
<td>2. Empac. del Sur</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Elect. Valle de Chincha</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ica 10 kV</td>
<td>0.90</td>
<td>1. Ciudad de Ica (*) 20% a partir de 2.0.50 (PCII)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0.25 (Electrif. Pozos) (*)</td>
<td>la entrada de S.E. Villacuri</td>
</tr>
<tr>
<td>I</td>
<td>Ica Norte 60 kV</td>
<td>0.85</td>
<td>1.0.10 (Electrif. Pozos)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0.50 (PCII)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Monterrosas 60 kV</td>
<td>0.87</td>
<td>1. Mina Monterrosa</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Sta. Margarita 60 kV</td>
<td>0.87</td>
<td>1. Coop. S. Margarita (*) 35% a partir en entrada Villacuri</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0.40 (Electrif. Pozos) (*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tacama 60 kV</td>
<td>0.85</td>
<td>1.0.25 (Electrif. Pozos) () () 20% a partir de entrada Villacuri</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Villacurí 60 kV</td>
<td>0.85</td>
<td>1.0.15 (Electrif. Pozos)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Nicolás 13.8 kV</td>
<td>0.90</td>
<td>1. Hierro Perú</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>San Nicolas 60 kV</td>
<td>0.90</td>
<td>1. Min.Transición</td>
<td>2. Sinterización</td>
</tr>
<tr>
<td></td>
<td>Nazca 60 kV</td>
<td>0.90</td>
<td>1. Nazca</td>
<td>2. Peq. Centros II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CAPÍTULO III

SELECCION DE ALTERNATIVAS DE TRANSMISION

3.1. ANALISIS DE TRANSMISION ASOCIADO A LAS SECUENCIAS DE GENERACION Y DEFINICION DE ALTERNATIVAS DE TRANSMISION DEL SICN

En la presente sección se trata de interaccionar los planeamientos de transmisión y generación, especialmente se tiene por finalidad analizar las secuencias alternativas de expansión de la generación del SICN mencionadas en 1.3.2. desde el punto de vista del sistema de transmisión necesaria para llevar la energía de las centrales hacia los diferentes centros de carga del sistema.

Este análisis se basa en la determinación preliminar del balance de potencia entre la oferta y la demanda, considerando las premisas planteadas en 2.4. Efectuando el cálculo del flujo de potencia en corriente alterna se determina la pérdida del SICN en las etapas consideradas para el presente Proyecto y para cada una de las alternativas.

3.1.1. Balance de Demanda y Oferta de Potencia a Nivel de Subsistema

Los subsistemas considerados dentro del Sistema Interconectado Centro Norte son:

- Electro Norte S.A.

Electro Norte Medio S.A.
- Electro Lima S.A.
- Centromin Perú
- Electro Centro S.A.
- Electro Sur Medio S.A.

Cada uno de estos subsistemas involucra a una cantidad de barras de la configuración del SICN, como se muestra en el cuadro 3.1. En base a la distribución de barras por subsistemas se determina la Demanda Máxima de cada subsistema y ésta se muestra en el cuadro 3.2. La oferta de generación hidráulica del SICN de acuerdo a las tres alternativas se muestran en los cuadros 3.3, 3.4 y 3.5.

Este balance de potencia entre Oferta y Demanda a nivel de subsistemas permite definir la ubicación de ofertas de generación térmica y el intercambio de potencia hidráulica disponible de un subsistema a otro, realizando una estrecha coordinación entre la expansión de la generación y demanda, debido a la influencia de uno sobre el otro y a la configuración esencialmente longitudinal del SICN.

En las figuras del 3.1 al 3.12 se muestran los balances efectuados, enmarcado dentro de las premisas dadas en 2.4. para los años 1995, 2000, 2005 y 2010. A continuación se desarrolla el análisis para cada alternativa y año considerado y en todas ellas no se consideran las pérdidas del SICN.

3.1.1.1. Alternativa Nº 1
- 1995 (Figura N° 3.1).

El subsistema Norte podría abastecerse de energía eléctrica independientemente de los demás subsistemas para ello se requeriría generar energía termoeléctrica.

En Lima sería necesario generar energía térmica y recibiría energía del subsistema Centro y Norte Medio. En las horas fuera de pico al bajar la carga de Electrolima, podría transmitirse los excedentes de energía a los subsistemas Norte y Norte Medio, quedando como reserva fría las centrales termoeléctricas.

- 2000 (Figura N° 3.2).

El subsistema Norte quedaría abastecida con recursos propios, necesitándose para ello generarse energía termoeléctrica del orden de 184 MW.

Electrolima seguiría requiriendo energía térmica y recibiría energía de dos subsistemas Centro y Norte Medio.

En horas fuera de pico podrá transmitirse los excedentes de energía de los subsistemas Electrolima y Norte Medio hacia el subsistema Norte. Así también Centromin recibiría energía del Centro para satisfacer su demanda.

- 2005 (Figura N° 3.3).

En todo el SICN se requeriría generar una energía termoeléctrica de 226.3 MW; el Norte necesitaría 210.3 MW recibiendo del subsistema Norte Medio una potencia de 39.1 MW.

El SICN sería prácticamente abastecida por energía hidráulica, debido a la entrada de grandes proyectos hid-
droeléctricos.

- 2010 (Figura Nº 3.4).

La oferta de generación termoeléctrica quedaría en su totalidad como reserva fría, distribuyéndose energía hidráulica en cada subsistema, obteniéndose una reserva hidráulica de 282.1 MW.

3.1.1.2. Alternativa Nº 2

- 1995 (Figura Nº 3.5).

Los excedentes de energía de los subsistemas Norte y Electrolima permitiría abastecer la demanda del subsistema Norte Medio, Lima requeriría de energía termoeléctrica del orden de 247.5 MW y Centromin entregaría una potencia de 42.9 MW al Centro, ocasionando una mayor oferta del Centro que abastecería con 587.7 MW a la gran Lima.

- 2000 (Figura Nº 3.6).

El Norte requeriría generar 30.8 MW de energía termoeléctrica. Electrolima recibiría energía de los subsistemas Centro y Norte Medio. Centromin requeriría de 5.6 MW para satisfacer su demanda.

- 2005 (Figura Nº 3.7).

Con la entrada de la C.H. Puerto Prado, Lima no requeriría de generación térmica, ésta quedaría como reserva fría, se transmitiría energía hacia el Norte llegando a esta última una potencia de 8.1 MW.

- 2010 (Figura Nº 3.8).

Con la entrada de los grandes proyectos hidro
eléctricos en el Centro, el SICN quedaría abastecida com-pletamente con Energía Hidráulica, obteniéndose una reser-va hidráulica de 404.1 MW.

3.1.1.3. Alternativa N° 3
- 1995 (Figura N° 3.9).
 Similar al de la Alternativa N° 1.
- 2000 (Figura N° 3.10).
 Los subsistemas Norte y Norte Medio satisface-ría su demanda únicamente con oferta de generación hidro eléctrica. Lima necesitaría una oferta térmica de 231 MW y recibiría energía del Norte y del Centro.
- 2005 (Figura N° 3.11).
 Con la entrada de la C.H. Puerto Prado el SICN satisface-ría su demanda esencialmente con energía hidráu-lica, quedando una reserva hidráulica de 226.5 MW, podría considerarse que la transmisión de potencia entre los sub sistemas Lima y Norte Medio es cero, pero en horas fuera-de punta, se tendrá la probabilidad de transmisión de ener-gía en ambos sentidos cumpliendo con las característi cas de una buena interconexión.
- 2010 (Figura N° 3.12).
 En los subsistemas Norte Medio y Electrolima - se requeriría generar energía térmica de 121.4 MW y 250.5 MW respectivamente.
Lima recibiría energía principalmente del Centro, en ho-ras fuera de pico tiene la probabilidad de recibir tam-
CUADRO Nro. 3.1

DISTRIBUCION DE HÁRFAS POR SUB-SISTEMAS

<table>
<thead>
<tr>
<th>SUB-SISTEMA</th>
<th>HÁRFAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRO-NOorte S.A.</td>
<td>JUMPER, TOCAY</td>
</tr>
<tr>
<td></td>
<td>PIURA, CESTE</td>
</tr>
<tr>
<td></td>
<td>ENCAYAP, CUMAC</td>
</tr>
<tr>
<td></td>
<td>CACHACO, CACHACO</td>
</tr>
<tr>
<td>ELECTRO-ORiente-Medio S.A.</td>
<td>CAJAMARCA</td>
</tr>
<tr>
<td></td>
<td>CHUCHUTO</td>
</tr>
<tr>
<td></td>
<td>CHUQUILLO, CHUQUILLO</td>
</tr>
<tr>
<td></td>
<td>CHUMACO</td>
</tr>
<tr>
<td></td>
<td>MALACRACA</td>
</tr>
<tr>
<td></td>
<td>PIRANTA, NUEVA</td>
</tr>
<tr>
<td></td>
<td>VIZCAYA</td>
</tr>
<tr>
<td>ELECTROLIMA S.A.</td>
<td>IMPALLAL</td>
</tr>
<tr>
<td></td>
<td>CHARACRA</td>
</tr>
<tr>
<td></td>
<td>BARI</td>
</tr>
<tr>
<td></td>
<td>SAHURO</td>
</tr>
<tr>
<td></td>
<td>HUINC</td>
</tr>
<tr>
<td></td>
<td>BACACARIOS</td>
</tr>
<tr>
<td></td>
<td>REFINERIA DE ZINC</td>
</tr>
<tr>
<td></td>
<td>CALLAMANCE</td>
</tr>
<tr>
<td></td>
<td>REFINERIA</td>
</tr>
<tr>
<td>CENTROMIN PERU</td>
<td>YUNGAY</td>
</tr>
<tr>
<td></td>
<td>CAYOSVAYAY</td>
</tr>
<tr>
<td></td>
<td>PACHACACA</td>
</tr>
<tr>
<td></td>
<td>HUAYACACHI</td>
</tr>
<tr>
<td></td>
<td>PONCEINA</td>
</tr>
<tr>
<td></td>
<td>MANTAPO</td>
</tr>
<tr>
<td></td>
<td>HUARAYELICA</td>
</tr>
<tr>
<td></td>
<td>SAN JUAN</td>
</tr>
<tr>
<td></td>
<td>CHAROLA</td>
</tr>
<tr>
<td></td>
<td>PUERTO PAZO</td>
</tr>
<tr>
<td></td>
<td>SUMABENI</td>
</tr>
<tr>
<td>ELECTRO CENTRO S.A.</td>
<td>INDEPENDENCIA</td>
</tr>
<tr>
<td></td>
<td>ICA</td>
</tr>
<tr>
<td></td>
<td>MARCONA</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>ELECTRO NORTE S.A.</td>
<td>217.4</td>
</tr>
<tr>
<td>ELECTRO NORTE MEDIO S.A.</td>
<td>392.1</td>
</tr>
<tr>
<td>ELECTROLIMA S.A.</td>
<td>1308.7</td>
</tr>
<tr>
<td>CENTROMIN</td>
<td></td>
</tr>
<tr>
<td>ELECTRO CENTRO S.A.</td>
<td>248.1</td>
</tr>
<tr>
<td>CENTRO</td>
<td>85.7</td>
</tr>
<tr>
<td>ELECTROSUR MEDIO S.A.</td>
<td>181.5</td>
</tr>
</tbody>
</table>
CUADRO No. 3.3

OFERTA DE GENERACIÓN HIDROELECTRICA-SON
ALTERNATIVA No. 1: S/. IN PROYECTOS MULTISECTORIALES

<table>
<thead>
<tr>
<th>EJE-SISTEMA</th>
<th>CENTRALES HIDROELECTRICAS</th>
<th>POTENCIA DISponible (Mw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRO-NORTE</td>
<td>CAJA JAQUEO (1966)</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>APALICION (CAJAJAQUEO, 1957)</td>
<td>47</td>
</tr>
</tbody>
</table>

ELECTRONORTE-	CAJA	40
MÉDIO	MÁS (1953)	140
	CULIAPACO (1956)	160

ELECTROLINA S.	HUINCO	151
	MÁTUCANA + A. MAHAIJO (1954)	140
	CALLAYUANCA 1	31
	CALLAYUANCA 2	27
	HUAPAYA	23
	MOLIPAM PA	63
	JICACHACA (1953)	31
	HUAPA-20 (2000)	186

CENTROMIN PERU	DROVA + PACHACHACA	11
	MALPAO	47
	YURIFI + A. YURIFI (1954)	108
	YUNCAR (1954)	126

ELECTROCENTRO	MALPAO + RESER. LAGO DE JUNIN (1992)	590
	RESTITUCION	206
	PUERTO PRADOS (2002)	443
	PUERTO PRADOS 2 (2004)	591
	FUERTO PRADOS (2007)	591
	SUMABENI (2007)	607
	SUMABENI2 (2010)	485
	CHABILLA (1998)	324

| E.H. EXISTENTE |
fig. Nº : 3.1

BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA Nº 1 - 1995

<table>
<thead>
<tr>
<th></th>
<th>ON</th>
<th>DM</th>
<th>BH</th>
<th>OT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norte</td>
<td>78.0</td>
<td>149.6</td>
<td>-71.6</td>
<td>131.0 +170x50(1993)</td>
<td>109.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ON</th>
<th>DM</th>
<th>BH</th>
<th>OT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norte Medio</td>
<td>350.0</td>
<td>392.1</td>
<td>-42.1</td>
<td>40 * 170x50(1995)</td>
<td>47.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ON</th>
<th>DM</th>
<th>BH</th>
<th>OT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lima</td>
<td>546.0</td>
<td>1308.7</td>
<td>-762.7</td>
<td>110 * 170x50(1991) 170x50(1992)</td>
<td>+93.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ON</th>
<th>DM</th>
<th>BH</th>
<th>OT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sur Medio</td>
<td>796.0</td>
<td>85.7</td>
<td>+710.3</td>
<td>0.0</td>
<td>---</td>
</tr>
</tbody>
</table>

EXISTENTE

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RH</td>
<td>RESERVA HIDRAULICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>OFERTA HIDRAULICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OT</td>
<td>OFERTA TÉRMICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH</td>
<td>BALANCE CON OFERTA HIDRAULICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>DEMANDA MÁXIMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>RESERVA TÉRMICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>NÚMERO DE UNIDADES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW</td>
<td>TIPO (TG= TURBOGAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>TURBOVAPOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>CAPACIDAD EN MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>AÑO DE PUESTA EN OPERACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XTWXYY (Z2): INCREMENTO DE POTENCIA TÉRMICA.
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA N° 1 - 2000

NORTE

<table>
<thead>
<tr>
<th>QH</th>
<th>125.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>308.8</td>
</tr>
<tr>
<td>BH</td>
<td>-183.8</td>
</tr>
<tr>
<td>OT</td>
<td>1TGx50 (1993)</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (1997)</td>
</tr>
<tr>
<td></td>
<td>1TVx150 (1998)</td>
</tr>
<tr>
<td>RT</td>
<td>116.2</td>
</tr>
</tbody>
</table>

NORTE MEDIO

<table>
<thead>
<tr>
<th>QH</th>
<th>530.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>499.5</td>
</tr>
<tr>
<td>BH</td>
<td>+30.5</td>
</tr>
<tr>
<td>OT</td>
<td>1TGx50 (1995)</td>
</tr>
<tr>
<td>RT</td>
<td>50</td>
</tr>
</tbody>
</table>

ELECTRO LIMA

<table>
<thead>
<tr>
<th>QH</th>
<th>732.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>1687.4</td>
</tr>
<tr>
<td>BH</td>
<td>-955.4</td>
</tr>
<tr>
<td>OT</td>
<td>1TGx50 (1991)</td>
</tr>
<tr>
<td></td>
<td>1TGx50 (1992)</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (1997)</td>
</tr>
<tr>
<td>RT</td>
<td>+148.8</td>
</tr>
</tbody>
</table>

CENTRO

<table>
<thead>
<tr>
<th>QH</th>
<th>292.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>297.6</td>
</tr>
<tr>
<td>BH</td>
<td>-5.6</td>
</tr>
<tr>
<td>OT</td>
<td>0.0</td>
</tr>
<tr>
<td>RT</td>
<td>--</td>
</tr>
</tbody>
</table>

SUR MEDIO

<table>
<thead>
<tr>
<th>QH</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>231.3</td>
</tr>
<tr>
<td>BH</td>
<td>-231.3</td>
</tr>
<tr>
<td>OT</td>
<td>16</td>
</tr>
<tr>
<td>RT</td>
<td>50</td>
</tr>
</tbody>
</table>

*EXISTENTE
R.H: RESERVA HIDRÁULICA
O.H: OFERTA HIDRÁULICA
O.T: OFERTA TÉRMICA
B.H: BALANCE CON OFERTA HIDRÁULICA
D.M: DEMANDA MAXIMA
R.T: RESERVA TÉRMICA
X: N° DE UNIDADES.
TW: TIPO (TG= TURBOGAS
 TV= TURBOVAPOR)
YY = CAPACIDAD EN MW
ZZ = AÑO DE PUESTA EN OPERACION.

XTWXYY (22): INCREMENTO DE POTENCIA TÉRMICA.
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA N° 1 - 2005

NORTE
- **OH**: 125.0
- **DM**: 374.4
- **BH**: -249.4
- RT: 89.7

CENTRO
- **OH**: 292.0
- **DM**: 415.2
- **BH**: -148.7
- **OT**: 0.0
- **RT**: 50

SUR
- **OH**: 732.0
- **DM**: 2169.7
- **BH**: -1437.7
- **OT**: 120.8
- **RT**: 300

ELECTRO LIMA
- **OH**: 2154.0
- **DM**: 162.9
- **BH**: +1991.1
- **OT**: 0.0
- **RT**: ---

EXISTENTE
- R.H: RESERVA HIDRAULICA
- O.H: OFERTA HIDRAULICA
- O.T: OFERTA TERMICA
- B.H: BALANCE CON OFERTA HIDRAULICA
- D.M: DEMANDA MAXINA
- R.T: RESERVA TERMICA
- X: N° DE UNIDADES.
- T.W: TIPO (TB = TURBOSAS
 TV = TURBOVAPOR)
- Y = CAPACIDAD EN MW
- ZZ = AÑO DE PUESTA EN OPERACION.

INCREMENTO DE POTENCIA TÉRMICA
- X TW X Y (ZZ): INCREMENTO DE POTENCIA TÉRMICA.
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA N° 1 - 2010

fig. Nº : 3.4

<table>
<thead>
<tr>
<th>NORTÉ</th>
<th>125.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMANDA</td>
<td>507.4</td>
</tr>
<tr>
<td>Baja</td>
<td>-382.4</td>
</tr>
<tr>
<td>OT</td>
<td>1TGx50 (1993)</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (1997)</td>
</tr>
<tr>
<td></td>
<td>1TVx150 (1999)</td>
</tr>
<tr>
<td>RT</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NORTÉ MEDIO</th>
<th>530.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMANDA</td>
<td>893.0</td>
</tr>
<tr>
<td>Baja</td>
<td>-363.0</td>
</tr>
<tr>
<td>OT</td>
<td>1TGx50 (1995)</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (2006)</td>
</tr>
<tr>
<td>RT</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTRO LIMA</th>
<th>732.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMANDA</td>
<td>2792.8</td>
</tr>
<tr>
<td>Baja</td>
<td>-2060.8</td>
</tr>
<tr>
<td>OT</td>
<td>1TGx50 (1991)</td>
</tr>
<tr>
<td></td>
<td>1TGx50 (1992)</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (1997)</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (2003)</td>
</tr>
<tr>
<td>RT</td>
<td>300.0</td>
</tr>
<tr>
<td>RH</td>
<td>282.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUR MEDIO</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMANDA</td>
<td>315.2</td>
</tr>
<tr>
<td>Baja</td>
<td>-315.2</td>
</tr>
<tr>
<td>OT</td>
<td>1TGx150 (2001)</td>
</tr>
<tr>
<td>RT</td>
<td>150.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CENTRO MIN</th>
<th>292.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMANDA</td>
<td>523.0</td>
</tr>
<tr>
<td>Baja</td>
<td>-231.0</td>
</tr>
<tr>
<td>OT</td>
<td>0.0</td>
</tr>
<tr>
<td>RT</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CENTRO</th>
<th>3837.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMANDA</td>
<td>218.5</td>
</tr>
<tr>
<td>Baja</td>
<td>3618.5</td>
</tr>
<tr>
<td>OT</td>
<td>0.0</td>
</tr>
<tr>
<td>RT</td>
<td>---</td>
</tr>
</tbody>
</table>

EXISTENTE
R.H: RESERVA HIDRÁULICA
O.H: OFERTA HIDRÁULICA
O.T: OFERTA TÉRMICA
B.H: BALANCE CON OFERTA HIDRÁULICA
D.M: DEMANDA MAXIMA
R.T: RESERVA TÉRMICA
XTXYY (ZZ) INCREMENTO DE POTENCIA TÉRMICA.

X: N° DE UNIDADES.
TW: TIPO (TB=TURBODAGAS
TV=TURBO VAPOR)
YY: CAPACIDAD EN MW
ZZ: AÑO DE PUESTA EN OPERACIÓN.
CUADRO No. 3.4
OFERTA DE GENERACION HIDROELECTRICA-SIDN
ALTERNATIVA Nro. 2: CON EAS DE ZORRITOS

<table>
<thead>
<tr>
<th>SUB-SISTEMA</th>
<th>CENTRALES HIDROELECTRICAS</th>
<th>POTENCIA DISponible (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRO-NORTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAHUAYUCALI (1998)</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>ZORRITOS (1992)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ZORRITOS (1997)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRONORTE-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIO</td>
<td>MAUYA</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>GUITARACES (1986)</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTROLIMA S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUANCO</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>KATUCAMA + AF. YUPACAYA (1997)</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>CALLAHUACA 1</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>CALLAHUACA 2</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>HUAPAN</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>KODOPARFA</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>HUAPAR-20 (2000)</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CENTROMIN PERU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OROYA + PAICHACHACA</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>MALFASO</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>YAUFI + AF. YAUFI (1994)</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>YUNCAN (1994)</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTROCENTRO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PANTARO + FEBUL. LAGO DE JULIN (1992)</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>RESTITUCION</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>PUERTO PRAO1 (2002)</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>PUERTO PRAO2 (2004)</td>
<td>591</td>
</tr>
<tr>
<td></td>
<td>PUERTO PRAO3 (2007)</td>
<td>591</td>
</tr>
<tr>
<td></td>
<td>SUMARENII (2009)</td>
<td>607</td>
</tr>
<tr>
<td></td>
<td>SUMARENII (2010)</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>CHAGOLA (1998)</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.M. EXISTENTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CENTRAL TERMICA CONSIDERADA COMO C.M.</td>
<td></td>
</tr>
</tbody>
</table>
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)

SICN - ALTERNATIVA Nº 2 - 1995

Norte

<table>
<thead>
<tr>
<th>OH</th>
<th>278.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>217.4</td>
</tr>
<tr>
<td>BH</td>
<td>+60.6</td>
</tr>
<tr>
<td>OT</td>
<td>131 *</td>
</tr>
<tr>
<td>RT</td>
<td>131.</td>
</tr>
</tbody>
</table>

Norte Medio

<table>
<thead>
<tr>
<th>OH</th>
<th>250.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>392.1</td>
</tr>
<tr>
<td>BH</td>
<td>-142.1</td>
</tr>
<tr>
<td>OT</td>
<td>40 *</td>
</tr>
<tr>
<td>RT</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Electro Lima

<table>
<thead>
<tr>
<th>OH</th>
<th>515.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>1308.7</td>
</tr>
<tr>
<td>BH</td>
<td>-793.7</td>
</tr>
<tr>
<td>OT</td>
<td>110 *</td>
</tr>
<tr>
<td>RT</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Sur Medio

<table>
<thead>
<tr>
<th>OH</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>181.5</td>
</tr>
<tr>
<td>BH</td>
<td>-181.5</td>
</tr>
<tr>
<td>OT</td>
<td>+16.0</td>
</tr>
<tr>
<td>RT</td>
<td>50.0</td>
</tr>
</tbody>
</table>

Centro

<table>
<thead>
<tr>
<th>OH</th>
<th>292.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>249.1</td>
</tr>
<tr>
<td>BH</td>
<td>+42.9</td>
</tr>
<tr>
<td>OT</td>
<td>0.0</td>
</tr>
<tr>
<td>RT</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OH</th>
<th>796.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>85.7</td>
</tr>
<tr>
<td>BH</td>
<td>+710.3</td>
</tr>
<tr>
<td>OT</td>
<td>0.0</td>
</tr>
<tr>
<td>RT</td>
<td>0.0</td>
</tr>
</tbody>
</table>

EXISTENTE

- RH: RESERVA HIDRÁULICA
- OH: OFERTA HIDRÁULICA
- OT: OFERTA TÉRMICA
- BH: BALANCE CON OFERTA HIDRÁULICA
- DM: DEMANDA MÁXIMA
- RT: RESERVA TÉRMICA

XTWXYY (ZZ): INCREMENTO DE POTENCIA TÉRMICA

X: NÚMERO DE UNIDADES.
TW: TIPO (TG=TURBOGAS

YY: CAPACIDAD EN MW
ZZ: AÑO DE PUESTA EN OPERACIÓN.
fig. N°: 3.6

BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA N° 2 - 2000

<table>
<thead>
<tr>
<th>OH</th>
<th>278.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>308.8</td>
</tr>
<tr>
<td>BH</td>
<td>-30.8</td>
</tr>
<tr>
<td>OT</td>
<td>1TGx100 (1997)</td>
</tr>
<tr>
<td>RT</td>
<td>119.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OH</th>
<th>530.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>499.5</td>
</tr>
<tr>
<td>BH</td>
<td>+30.5</td>
</tr>
<tr>
<td>OT</td>
<td>40 *</td>
</tr>
<tr>
<td>RT</td>
<td>40.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OH</th>
<th>701.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>1687.4</td>
</tr>
<tr>
<td>BH</td>
<td>-986.4</td>
</tr>
<tr>
<td>OT</td>
<td>110 *</td>
</tr>
<tr>
<td>RT</td>
<td>167.8</td>
</tr>
</tbody>
</table>

* EXISTENTE
R.H : RESERVA HIDRAULICA
O.H : OFERTA HIDRAULICA
O.T: OFERTA TERMICA
B.H : BALANCE CON OFERTA HIDRAULICA
D.M : DEMANDA MAXIMA
R.T : RESERVA TERMICA
X: N° DE UNIDADES.
TW: TIPO (TG = TURBOGAS, TV = TURBOVAPOR)
YY = CAPACIDAD EN MW
ZZ = AÑO DE PUESTA EN OPERACION.
XTWXYY (ZZ): INCREMENTO DE POTENCIA TÉRMICA.
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA N° 2 - 2005

NORTE

<table>
<thead>
<tr>
<th>OH</th>
<th>278.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>374.4</td>
</tr>
<tr>
<td>BH</td>
<td>-96.4</td>
</tr>
<tr>
<td>OT</td>
<td>156.8 MW</td>
</tr>
<tr>
<td>RT</td>
<td>161.7</td>
</tr>
</tbody>
</table>

CENTRO MEDIO

<table>
<thead>
<tr>
<th>OH</th>
<th>530.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>678.7</td>
</tr>
<tr>
<td>BH</td>
<td>-148.7</td>
</tr>
<tr>
<td>OT</td>
<td>156.8 MW</td>
</tr>
<tr>
<td>RT</td>
<td>15.0</td>
</tr>
</tbody>
</table>

ELECTRO LIMA

<table>
<thead>
<tr>
<th>OH</th>
<th>701.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>2169.7</td>
</tr>
<tr>
<td>BH</td>
<td>-1468.7</td>
</tr>
<tr>
<td>OT</td>
<td>156.8 MW</td>
</tr>
<tr>
<td>RT</td>
<td>250.0</td>
</tr>
</tbody>
</table>

SUR MEDIO

<table>
<thead>
<tr>
<th>OH</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>258.4</td>
</tr>
<tr>
<td>BH</td>
<td>-258.4</td>
</tr>
<tr>
<td>OT</td>
<td>156.8 MW</td>
</tr>
<tr>
<td>RT</td>
<td>150.0</td>
</tr>
</tbody>
</table>

CENTRO MIN

<table>
<thead>
<tr>
<th>OH</th>
<th>292.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>415.2</td>
</tr>
<tr>
<td>BH</td>
<td>-123.2</td>
</tr>
<tr>
<td>OT</td>
<td>0.0</td>
</tr>
<tr>
<td>RT</td>
<td>123.2 MW</td>
</tr>
</tbody>
</table>

EXISTENTE

R.H.: RESERVA HIDRAULICA
O.H.: OFERTA HIDRAULICA
O.T.: OFERTA TERMICA
B.H.: BALANCE CON OFERTA HIDRAULICA
D.M.: DEMANDA MAXIMA
R.T.: RESERVA TERMICA
X.T.W.X.YY (ZZ): INCREMENTO DE POTENCIA TERMICA

CÓDIGO

X: N° DE UNIDADES.
T.W.: TIPO (TG = TURBOGAS
 TV = TURBO VAPOR)
B.H.: Balance con oferta hidráulica
Y.Y.: Capacidad en MW
Z.Z.: Año de puesta en operación.
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)

SICN - ALTERNATIVA N° 2 - 2010

Norte

OH	278.0
DM	507.4
BH	-229.4
OT	1TGx100 (1995)
	1TGx50 (1995)
	1TGx50 (1999)
RT	200.0

Norte Medio

OH	530.0
DM	893.0
BH	-363.0
OT	1TGx100 (2006)
RT	100.0

Electrolima

OH	701.0
DM	2792.8
BH	-2091.8
OT	1TGx100 (1995)
	1TGx50 (1995)
	1TGx50 (1997)
	1TGx50 (1999)
RT	250.0
RH	404.1

Centro

OH	292.0
DM	523.0
BH	-231.0
OT	0.0
RT	---

Sur Medio

OH	+3837.0
DM	218.5
BH	+3618.5
OT	0.0
RT	---

EJEMPLO

- **R.H**: RESERVA HIDRAULICA
- **O.H**: OFERTA HIDRAULICA
- **O.T**: OFERTA TERMICA
- **B.H**: BALANCE CON OFERTA HIDRAULICA
- **D.M**: DEMANDA MAXIMA
- **R.T**: RESERVA TERMICA

X: N° DE UNIDADES
TW: TIPO (TG=TURBOGAS, TV=TURBO VAPOR)
YY: CAPACIDAD EN MW
ZZ: AÑO DE PUESTA EN OPERACION
<table>
<thead>
<tr>
<th>SUB-SISTEMA</th>
<th>CENTRALES HIDROELECTRICAS</th>
<th>POTENCIA</th>
<th>DISPOSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELETRONORTE</td>
<td></td>
<td>72</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>CANTO MAGRO (1998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIMÓN 1 (1993)</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIMÓN 21 (1991)</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIMÓN 12 (1990)</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIMÓN 22 (1991)</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td>ELETRONORTE-</td>
<td></td>
<td>44</td>
<td>13.6</td>
</tr>
<tr>
<td>MEDIA</td>
<td>CANTO MAGRO (1998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIMÓN 22 (1991)</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>ELECTROLITOS S.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MURO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NATUAPA + P. YANCA (1989)</td>
<td></td>
<td>120.8</td>
</tr>
<tr>
<td></td>
<td>CALLALLA 1</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CALLALLA 2</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>CENTROAMÉRICA PERÚ</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JUCAY + PACHACACHI</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MACHACO</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAQUI + P. NAQUI (1984)</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAQUI (1984)</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>ELECTROCENTRO</td>
<td></td>
<td>54.0</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td>RESTITUCION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FUERTE FRANCO (2004)</td>
<td>443.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FUERTE PIRACO (2005)</td>
<td>591.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEGUELA (2005)</td>
<td>33.0</td>
<td></td>
</tr>
</tbody>
</table>

S.H. EXISTENTE
fig. N° : 3.9

BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA N° 3 - 1995

<table>
<thead>
<tr>
<th>OH</th>
<th>78.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>149.6</td>
</tr>
<tr>
<td>BH</td>
<td>-71.6</td>
</tr>
<tr>
<td>OT</td>
<td>131.0</td>
</tr>
<tr>
<td></td>
<td>1TGx50(1993)</td>
</tr>
<tr>
<td>RT</td>
<td>109.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OH</th>
<th>350.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>392.1</td>
</tr>
<tr>
<td>BH</td>
<td>-42.1</td>
</tr>
<tr>
<td>OT</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>1TGx50(1993)</td>
</tr>
<tr>
<td>RT</td>
<td>47.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OH</th>
<th>546.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>1308.7</td>
</tr>
<tr>
<td>BH</td>
<td>-762.7</td>
</tr>
<tr>
<td>OT</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>1TGx50(1991)</td>
</tr>
<tr>
<td></td>
<td>1TGx50(1992)</td>
</tr>
<tr>
<td>RT</td>
<td>93.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OH</th>
<th>292.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>249.1</td>
</tr>
<tr>
<td>BH</td>
<td>+42.9</td>
</tr>
<tr>
<td>OT</td>
<td>0.0</td>
</tr>
<tr>
<td>RT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OH</th>
<th>796.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>85.7</td>
</tr>
<tr>
<td>BH</td>
<td>+710.3</td>
</tr>
<tr>
<td>OT</td>
<td>0.0</td>
</tr>
<tr>
<td>RT</td>
<td></td>
</tr>
</tbody>
</table>

EXISTENTE

R.H : RESERVA HIDRAULICA
O.H : OFERTA HIDRAULICA
O.T : OFERTA TERMICA
B.H : BALANCE CON OFERTA HIDRAULICA
D.M : DEMANDA MAXIMA
R.T : RESERVA TERMICA
X TWX YY (ZZ) : INCREMENTO DE POTENCIA TERMICA

X : N° DE UNIDADES.
TW : TIPO (TG = TURBOGAS
TV = TURBOVAPOR)
YY = CAPACIDAD EN MW
ZZ = AÑO DE PUESTA EN OPERACION.
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA Nº 3 - 2000

NORTE

<table>
<thead>
<tr>
<th>OH</th>
<th>749.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>308.8</td>
</tr>
<tr>
<td>BH</td>
<td>+440.2</td>
</tr>
<tr>
<td>OT</td>
<td>1TGx50 (1993)</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (1997)</td>
</tr>
<tr>
<td>RT</td>
<td>+150</td>
</tr>
</tbody>
</table>

CENTRO

<table>
<thead>
<tr>
<th>OH</th>
<th>292.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>297.6</td>
</tr>
<tr>
<td>BH</td>
<td>-5.6</td>
</tr>
<tr>
<td>OT</td>
<td>0.0</td>
</tr>
<tr>
<td>RT</td>
<td>-</td>
</tr>
</tbody>
</table>

NORTE MEDIO

<table>
<thead>
<tr>
<th>OH</th>
<th>530.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>499.5</td>
</tr>
<tr>
<td>BH</td>
<td>+30.5</td>
</tr>
<tr>
<td>OT</td>
<td>1TGx50 (1995)</td>
</tr>
<tr>
<td>RT</td>
<td>50</td>
</tr>
</tbody>
</table>

CENTRO MIN

ELECTRO LIMA

<table>
<thead>
<tr>
<th>OH</th>
<th>546.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>1687.4</td>
</tr>
<tr>
<td>BH</td>
<td>-1141.4</td>
</tr>
<tr>
<td>OT</td>
<td>1TGx50 (1991)</td>
</tr>
<tr>
<td></td>
<td>1TGx50 (1992)</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (1997)</td>
</tr>
<tr>
<td>RT</td>
<td>79.0</td>
</tr>
</tbody>
</table>

SUR MEDIO

<table>
<thead>
<tr>
<th>OH</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>231.3</td>
</tr>
<tr>
<td>BH</td>
<td>-231.3</td>
</tr>
<tr>
<td>OT</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>1TVx150 (1998)</td>
</tr>
<tr>
<td>RT</td>
<td>150</td>
</tr>
</tbody>
</table>

CENTRO

EXISTENTE

- RH: RESERVA HIDRÁULICA
- OH: OFERTA HIDRÁULICA
- OT: OFERTA TÉRMICA
- BH: BALANCE CON OFERTA HIDRÁULICA
- DM: DEMANDA MAXIMA
- RT: RESERVA TÉRMICA

NOTAS

- RH: RESERVA HIDRÁULICA
- OH: OFERTA HIDRÁULICA
- OT: OFERTA TÉRMICA
- BH: BALANCE CON OFERTA HIDRÁULICA
- DM: DEMANDA MAXIMA
- RT: RESERVA TÉRMICA

INCREMEN TO DE POTENCIA TÉRMICA

Nº DE UNIDADES

- TW: TIPO (TG= TURBOGAS
- TV= TURBO VAPOR)

CAPACIDAD EN MW

AÑO DE PUESTA EN OPERACION

X TW X YY (ZZ) INCREMENTO DE POTENCIA TÉRMICA
fig. N° : 3.11

BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA N° 3 - 2005

<table>
<thead>
<tr>
<th></th>
<th>OH</th>
<th>DM</th>
<th>BH</th>
<th>OT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTES</td>
<td>749.0</td>
<td>374.4</td>
<td>-374.6</td>
<td>1TGx50 (1993)</td>
<td>200.0</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (1997)</td>
<td>1TGx50 (2001)</td>
<td>226.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>OH</th>
<th>DM</th>
<th>BH</th>
<th>OT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIO</td>
<td>530.0</td>
<td>678.7</td>
<td>-148.7</td>
<td>1TGx50 (1995)</td>
<td>150.0</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (2003)</td>
<td>546.0</td>
<td>2169.7</td>
<td>1623.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>OH</th>
<th>DM</th>
<th>BH</th>
<th>OT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUR</td>
<td>546.0</td>
<td>2169.7</td>
<td>1623.7</td>
<td>1TGx50 (1991)</td>
<td>200.0</td>
</tr>
<tr>
<td></td>
<td>1TGx50 (1992)</td>
<td>1TGx100 (1997)</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*EXISTENTE

RH : RESERVA HIDRAULICA
OH : OFERTA HIDRAULICA
OT : OFERTA TERMICA
BH : BALANCE CON OFERTA HIDRAULICA
DM : DEMANDA MAXIMA
RT : RESERVA TERMICA

X : N° DE UNIDADES.
TW : TIPO (TG = TURBOGAS
TV = TURBOVAPOR)
YY = CAPACIDAD EN MW
ZZ = AÑO DE PUESTA EN OPERACION.

XTWXYY (ZZ) INCREMENTO DE POTENCIA TERMICA
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA N° 3 - 2010

fig. Nº : 3.12

<table>
<thead>
<tr>
<th>área</th>
<th>OH</th>
<th>DM</th>
<th>BH</th>
<th>OT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTE</td>
<td>749.0</td>
<td>507.4</td>
<td>+241.6</td>
<td>1TGx50 (1993)</td>
<td>200.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1TGx100 (1997)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1TGx50 (2001)</td>
<td></td>
</tr>
<tr>
<td>NORTE MEDIO</td>
<td>530.0</td>
<td>893.0</td>
<td>-363.0</td>
<td>1TGx50 (1995)</td>
<td>78.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1TGx100 (2003)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1TGx50 (2009)</td>
<td></td>
</tr>
<tr>
<td>ELECTRO LIMA</td>
<td>546.0</td>
<td>2792.8</td>
<td>-2246.8</td>
<td>1TGx50 (1991)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1TGx50 (1992)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1TGx100 (1997)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1TVx150 (2009)</td>
<td></td>
</tr>
<tr>
<td>SUR MEDIO</td>
<td>0.0</td>
<td>315.2</td>
<td>-315.2</td>
<td>16.0</td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1TVx150 (1998)</td>
<td></td>
</tr>
<tr>
<td>CENTRO</td>
<td>292.0</td>
<td>523.0</td>
<td>-231.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
* EXISTENTE

R.H : RESERVA HIDRÁULICA
O.H : OFERTA HIDRÁULICA
O.T : OFERTA TÉRMICA
B.H : BALANCE CON OFERTA HIDRÁULICA
D.M : DEMANDA MÁXIMA
R.T : RESERVA TÉRMICA
X = N° DE UNIDADES
T.W : TIPO (TG = TURBOGAS
TV = TURBOVAPOR
B = BALANCE C.O. HIDRÁULICA
Y = CAPACIDAD EN MW
Z = AÑO DE PUESTA EN OPERACIÓN
X.T.W.X.Y (Z) = INCREMENTO DE POTENCIA TÉRMICA
bién del subsistema Norte Medio.

3.1.2. Definición de Alternativas de Transmisión del SICN

Las alternativas de transmisión se ha definido en base al análisis de la transmisión asociado a las alternativas de expansión de la generación, desarrollando en primer lugar el balance de potencia entre la Oferta y la Demanda a nivel de cada centro de carga individual (barras troncales) conectado al sistema, considerando la oferta - local del centro de carga, así como la transmisión de energía hidroeléctrica, desde y hacia otros centros de carga a través de los enlaces existentes. Las pérdidas de cada alternativa se determina efectuando el flujo de carga en corriente alterna de las mismas, en el flujo de potencia no se ha desarrollado un pormenorizado análisis de operación, sino básicamente se ha buscado el cálculo del valor promedio de la pérdida de potencia de la alternativa de transmisión escogida, teniendo en cuenta las premisas expuestas en 2.4.

Es necesario recalcar que para la transmisión se han considerado los niveles de 220 y 500 kV (para el futuro) además de los niveles de 138 y 60 kV en algunos casos importantes.

En las láminas del 3.1 al 3.12 se muestran las alternativas de transmisión y el balance de potencia elaborado sin considerar las pérdidas. Las pérdidas como ya se mencionó anteriormente, se determinan mediante una corrida de flujo de carga, este último se desarrolla en base a di-
chos balances, variando el flujo de potencia en cada línea de transmisión en un porcentaje promedio de 3 a 4% respecto al balance indicado en las láminas. Además se ha considerado la ubicación geográfica de las cargas y la configuración presente y futura del SICN, todo ello enmarcado dentro de las premisas planteadas en el capítulo II 2.4. A continuación se analiza la alternativa de transmisión para los años 1995, 2000, 2005 y 2010.

3.1.2.1. Alternativa Nº 1
- 1995 (Lámina Nº 3.1).

En el norte se requeriría energía termoeléctrica para satisfacer la demanda en Talara, Piura oeste y la C.H. Carhuaquero generaría energía básicamente para abastecer la carga de Chiclayo.

En el Norte Medio se requeriría también de energía termoeléctrica para satisfacer la demanda en Guadalupe, Cajamarca y Trujillo Norte. La C.H. Cañón del Pato (incluyen do la ampliación) abastecería a las cargas de Huallanca, Chimbote y parte de Trujillo. Las CC.HH. Mayush y Cahua abastecerían a la carga de Paramonga Nueva.

En Lima será necesario generar energía térmica del orden de 116.8 MW, sin considerar las pérdidas, además recibiría energía de las CC.HH. Mantaro, Restitución y Mayush, la reserva térmica en Lima sería de 93.2 MW.

Desarrollando la corrida de flujo de potencia se obtiene en el SICN una pérdida de 53.04 MW, esto ocasionaría una pérdida de reserva en Lima.
De acuerdo a las necesidades de reserva y abastecimiento de energía en zonas alejadas, se ha definido la ubicación de los equipamientos termoelectricos, los cuales se pueden observar en la lámina en mención.

- 2000 (Lámina Nº 3.2).

En el Norte se requeriría generar energía termoeléctrica para satisfacer la demanda en Tumbes, Talara y Piura Oeste. La C.H. Carhuaquero (incluyendo la ampliación), abastecería a la carga de Chiclayo, parte de la carga de Piura y al Norte Medio (carga de Guadalupe).

En el Norte Medio, las CC.HH. Cañón del Pato, Quitaracsa abastecerían las cargas de Cajamarca, Guadalupe, Trujillo Norte, Chimbo y Huallanca. Las CC.HH. Cahuá y Mayush abastecerían a la carga de Paramonga Nueva y parte de la carga de Lima. Es necesario señalar la adición de un par de ternas para la transmisión de energía de la C.H. Quitaracsa a una barra conveniente que en este caso resulta Chimbo. Habría la posibilidad de cambiar el nivel de tensión de Huallanca de 138 KV a 220 KV, permitiendo la no adición de las líneas indicadas anteriormente.

En Lima, aún con el aporte de las CC.HH. Huaura y Chaglla, necesita generar energía termoeléctrica de 161.2 MW, sin considerar las pérdidas. Se requiere la adición de dos ternas más para evacuar la energía de la C.H. Chaglla a la gran Lima, siendo en una primera tentativa su llegada a la barra de Zapallal quedando una reserva térmica de 148.8 MW.
En horas fuera de punta, al disminuir la carga de Lima se tendría excedente de energía hidroeléctrica, especialmente debido a sus características y ubicación de las CC.HH. Chaglla, Huaura y Mayush que serían transmitidas hacia el Norte Medio, permitiendo sustituir parte de la energía termoeléctrica, considerándose nuevas reservas en el Norte Medio. Además de lo mencionado, la red del SICN permanece igual al año 1995, la pérdida real de este sistema sería de 70.48 MW, disminuyendo en un 4% las reservas previstas en cada subsistema.

- 2005 (Lámina Nº 3.3)
En el norte se sigue requiriendo generar termoeléctricidad para satisfacer la demanda en Tumbes, Talara, Bayovar y Piura Oeste. La C.H. Carhuaquero abastecería a la carga de Chiclayo y parte a la carga de Piura Oeste.

En el Norte Medio la oferta hidráulica abastecería totalmente a las cargas de Guadalupe, Trujillo Norte, Chimbote, Huallanca y Paramonga Nueva. La oferta hidráulica es generada por las CC.HH. Quitarasca, Cañón del Pato, Cahua, Mayush y los excedentes hidroeléctricos de la C.H. Puerto Prado. La transmisión de energía en estas condiciones ocasiona la sobrecarga de líneas existentes al año 2000, necesitándose adicionar nuevas ternas especialmente entre Chimbote, Trujillo - Norte y Trujillo'o Norte-Guadalupe. Estas líneas sería
conveniente diseñarlas a un nivel de 500 KV, operando en este año a nivel de 220 KV. Debido a que la puesta en operación de los desarrollos hidroeléctricos Puerto Prado sobre el río Tambo, harían necesario recurrir a un nuevo nivel de tensión que vendría a ser 500 KV para evacuar la energía a las cargas de mayor consumo.

Con la entrada de la C.H. Puerto Prado, la carga de Lima es ampliamente abastecida, incluyendo a Centromin y el Sur Medio. Como ya se mencionó anteriormente el nivel de transmisión para la potencia generada sería de 500 KV, siendo la gran Lima el centro de consumo mayor tendría que ubicarse dos centros de transformación de 500/220 KV en las zonas Norte y Sur de la gran Lima, prediciéndose que podrían estar ubicadas en Zapallal y San Juan ELP. Habría también la posibilidad de ubicar una subestación en Pachachaca o independientemente en Tarma, debido a que representaría una línea larga y el efecto capacitivo tendría una gran influencia en la pérdida de estabilidad del sistema.

La pérdida real obtenida para este año es 148.75 MW, a demás el incremento de la carga en el área de Cajamarca, debido al desarrollo minero de Michiquillay, hace necesario adicionar turnas a nivel de 60 KV o la elevación de la tensión del enlace Guadalupe-Cajamarca a 130 ó 220 KV.

La reserva térmica de Lima sería de 300 MW, represen
tando el 12% de la Demanda Máxima.

- 2010 (Lámina N° 3.4).

La entrada de más desarrollos hidroeléctricos de gran magnitud en la parte central (CC.HH. Puerto Prado y Sumabení) permiten sustituir completamente la generación termoeléctrica en el sistema. Debido a las grandes potencias transmitibles hace necesario que se tenga una línea costera a nivel de 500 KV, desde Zapallal hasta Chiclayo y es necesario la adición de dos ternas entre Chiclayo y Piura Oeste a un nivel de 220 KV, así también la adición de una nueva terna en la gran Lima entre Zapallal y Chavarría.

Las CC.HH. Puerto Prado y Sumabení evacuarían sus ofertas de generación a través de líneas a nivel de 500 KV, llegando a Pachachaca o independientemente a través de nuevas subestaciones que estarían ubicadas en Tarma y Concepción siendo necesaria la adición de nuevas líneas a este nivel para transmitir la energía de dichas CC.HH. La pérdida real obtenida para este año es 238.14 MW, como se tiene una reserva hidráulica de 282.1 MW, sin considerar pérdidas, podríamos afirmar que las CC.HH. abastecerían ampliamente a todo el sistema, los equipamientos térmicos permanecerían como reserva fría.

3.1.2.2. Alternativa N° 2

1995 (Lámina N° 3.5).

En el norte, la Central Térmica a Gas (C.T.G)
de Zorritos permitiría abastecer a las cargas de Tumbes, Talara, Piura Oeste y parte de la energía eléctrica generada se entregaría al Norte Medio, requiriéndose un doble circuito en 220 KV entre Tumbes-Talara y Talara - Piura Oeste. La C.H. Carhuaquero (sin ampliación) abastecería básicamente a la carga de Chimbote.

En el Norte Medio la energía recibida del Norte satisfaría la demanda de Guadalupe, Cajamarca y parte de Trujillo Norte. En Trujillo Norte se requiere generar energía térmica, pero resulta insuficiente, el déficit sería transmitida de Guadalupe y Chimbote. La C.H. Cañón del Pato abastecería a Huallanca, Chimbote y parte de Trujillo.

En Lima es necesario generar energía térmica en el orden de 247.5 MW sin considerar las pérdidas, recibiendo se energía de las CC.MM. Mantaro y Restitución y sería conveniente transmitir 41.8 MW a Paramonga Nueva. Bajo estas condiciones la reserva en Lima sería de 12.5 MW, por lo tanto habría la necesidad de generar mayor volumen de potencia térmica en Marcona y/o Chimbote para abastecer a Lima debido a las pérdidas no consideradas. La pérdida real del sistema sería de 63.57 MW, al disminuir la demanda en Lima en horas fuera de punta - los equipamientos térmicos serían considerados como reserva fría.

- 2000 (Lámina Nº 3.6).

En el Norte la C.T.G. de Zorritos abastecería a las cargas de Tumbes, Talara, Piura Oeste y parte de Bayovar -
requiriéndose generar energía termoeléctrica en Bayovar del orden de 16.1 MW.
La C.H. Carhuaquero abastecería parte de la demanda de Chiclayo y habría la necesidad de generar energía térmica del orden de 15 MW.
En el Norte Medio con la entrada de la C.H. Quitaracsa y la ya existente C.H. Cañón del Pato se abastecería completamente a Huallanca, Chimbote, Trujillo Norte, Cajamarca y parte de Guadalupe. Las CC.HH. Cahua y Mayush abastecerían a la carga de Paramonga Nueva y parte sería transmitida a Lima (aproximadamente 35 MW). En Guadalupe se requeriría generar una potencia térmica de 4 MW, en Lima aún con el aporte de las CC.HH. Chaglla y Huaura se requeriría generar termolectricidad del orden de 192.2 MW, sin considerar las pérdidas, quedando una reserva térmica de 167.8 MW. La C.H. Quitaracsa entregaría su potencia directamente a Chimbote y la C.H. Chaglla directamente a Zapallal.
En este año se tendría una pérdida real de 72.65 MW, en horas fuera de punta habrían excedentes, especialmente debido a su ubicación y características de las CC.HH. Chaglla, Huaura y Mayush que serían transmitidas al norte permitiendo sustituir energía térmica en dicho subsistema que quedaría como reserva fría.
El sistema de transmisión del SICN sería esencialmente la misma del año 1995, salvo la transmisión asociada a los nuevos proyectos de generación.
- 2005 (Lámina N° 3.7).

En el Norte la C.T.G. de Zorritos abastecería a Tumbes, Talara y parte de Piura Oeste, requiriéndose generar térmicos en Piura Oeste y Bayobar. La C.H. Carhuaquero satisfacería parte de la demanda de Chiclayo, necesitán
dose energía transmitida del Norte Medio. En este lu
gar la generación hidráulica abastecería completamente a todas las cargas ubicadas en este subsistema requirién
dose para ello de dos circuitos entre Chimbote-Trujillo Norte y Trujillo Norte-Guadalupe, el primero podría ser
diseñado a 500 KV para operar inicialmente a 220 KV.

El enlace entre Guadalupe y Cajamarca requeriría de cir
cuitos adicionales a 60 KV o un cambio del nivel de ten
sión a 138 KV ó 220 KV.

En Lima, la puesta en operación de las CC.HH. Puerto Prado, permitiría abastecer completamente las cargas de Lima, el Centro y el Sur, transmitiéndose los exceden
tes al Norte. La evacuación de la potencia generada en las CC.HH. Puerto Prado hacia Lima se efectuaría a tra-
vés de circuitos a nivel de 500 KV.

En este año la pérdida real del sistema sería de 160.26 MW, ocasionando la necesidad de generar energía termo-
eléctrica adicional en el sistema. Las posibles ubica-
ciones de las subestaciones de 550/220 KV serían en el norte de Lima-Zapallal y en el sur de Lima San Juan ELP existiendo la posibilidad de enlazar el circuito de 500 KV en la barra Pachachaca o dejar una subestación de
paso en Tarma, debido a las características de la línea a este nivel.

- 2010 (Lámina Nº 3.8).

En el Norte la C.T.G. de Zorritos abastecería a las cargas de Tumbes, Talara y parte de Piura Oeste. La C.H. Carhuaquero satisfacería parte de la demanda de Chiclayo, las demás cargas y los déficits, en alguna de las cargas de este subsistema serían abastecidas por los desarrollos hidroeléctricos del Centro, requiriéndose una terma adicional entre Chiclayo-Piura Oeste. El Norte-Medio sería abastecida por centrales hidroeléctricas únicamente, requiriéndose para ello una línea costera en 500 KV, desde Zapallal hasta Trujillo Norte para transmitir los excedentes de los grandes proyectos del Centro y además se necesitaría adicionar dos circuitos entre Trujillo Norte-Guadalupe y un circuito entre Guadalupe-Chiclayo.

La gran Lima se abastecería totalmente con energía hidroeléctrica debido a la puesta en operación de las CC. HH. Puerto Prado y Sumabeni. La reserva hidráulica en Lima y el Centro sería de 404.1 MW sin considerar las pérdidas, teniendo en cuenta que al desarrollarse el cálculo de pérdidas en este sistema sería de 219.93 MW, podría apreciarse que se tendría una reserva real hidráulica en el sistema de 184.17 MW. Por tanto, podría sustituirse parte de la generación térmica en Tumbes, necesitándose aumentar la línea costera en 500 KV hasta Chiclayo.
En horas fuera de pico se sustituiría totalmente la generación termoeléctrica del sistema. Asimismo se requiere se requiere reforzar con un circuito adicional el tramo Zapallal-Chavarría.

Los equipamientos termoeléctricos pasarían a conformar la reserva fría del SICN. Habría la posibilidad de ubicar -una subestación 500/220 kV en Pachachaca o ubicar subestaciones de paso en Tarma y Concepción, debido a las características que presentan las líneas de transmisión que - evacuarían la energía de las CC.HH. Puerto Prado y Sumabe ni hacia Lima que representa la mayor carga a satisfacer del SICN.

3.1.2.3. Alternativa N° 3
- 1995 (Lámina N° 3.9).

Este caso es semejante al correspondiente a la Alternativa N° 1 para el año 1995 (Lámina N° 3.1).

- 2000 (Lámina N° 3.10).

En el Norte, la entrada de la C.H. Olmos abastecería totalmente a las cargas de este subsistema y parte de las cargas del subsistema Norte Medio, requiriéndose un circuito adicional en el tramo Piura Oeste-Olmos y dos circuitos adicionales entre Olmos-Chiclayo.

El Norte Medio sería abastecida totalmente su demanda con energía hidroeléctrica y los excedentes serían transmitidos hacia Lima. Para ello es necesario reforzar dos tercias entre los tramos Chiclayo-Guadalupe, Guadalupe-Trujillo Norte, Chimbote-Paramonga Nueva y Paramonga-Zapallal
respectivamente. La C.H. Quitaracsa entregaría su potencia directamente en 220 KV a Chimbote. En Lima se requeriría generar 231 MW de energía térmica, quedando una reserva térmica de 79.0 MW sin considerar las pérdidas, recibiendo potencia hidroeléctrica del norte de la C.H. Olmos y de las CC.HH. Mantaro y Restitución. La pérdida real del sistema es 133.81 MW, considerando la reserva existente en cada subsistema, podría afirmarse que el SICN quedaría totalmente abastecida por energía hidroeléctrica, quedando especialmente en el Norte y Norte Medio capacidad termoeléctrica que conformarían la reserva fría del SICN.

- 2005 (Lámina N° 3.11).

En el norte la C.H. Olmos satisfacería totalmente la demanda máxima de este subsistema, transmitiéndose al Norte Medio una potencia de 148.7 MW aproximadamente, quedando como reserva hidráulica 225.9 MW sin considerar las pérdidas.

En el Norte Medio las CC.HH. consideradas en el año 2000 y la transmisión de energía excedente de la C.H. Olmos abastecería completamente de energía hidráulica a este subsistema. El enlace entre Guadalupe y Cajamarca requeriría de circuitos adicionales a nivel de 60 KV, en caso contrario sería necesario plantear una tensión superior que podría ser 138 KV ó 220 KV. Al disminuir la transmisión de potencia desde el norte (C.H. Olmos), las líneas de los subsistemas Norte y Norte Medio operarían holadamente. La entrada de las CC.HH. Chaglla y Puerto Prado permitirían
abastecer totalmente de energía hidráulica las cargas -
de Lima, el Centro y el Sur Medio. La transmisión de la
ergía generada en las CC.HH. Puerto Prado hacia Lima o
casiona la necesidad de recurrir a un nuevo nivel de ten-
sión igual a 500 KV, llegando a Lima a las barras Zapa-
llal y San Juan ELP utilizando subestaciones de 500/220
KV, habría la posibilidad de interconectar estas líneas
da la barra Pachacáca o poner una subestación de paso que
estaría ubicada en Tarma.
La pérdida real del sistema para este año es de 121.61 -
MW, disponiendo de una reserva hidráulica de 225.9 MW, -
de esta manera podría mencionarse que el SICN tendría -
una reserva hidráulica real de 64.69 MW. Por otro lado,
en horas fuera de pico habría mayores excedentes de ener-
gía hidráulica, los que tendrían que ser almacenados en
reservorios para su posterior utilización y los equipa-
mientos termoeléctricos quedarían como reserva fría del
sistema.
- 2010 (Lámina N° 3.12).
En el Norte la C.H. Olmos abastecería totalmente a las -
cargas del Norte y parte del subsistema Norte Medio, la
red sería la misma del año 2005. La mayor transferencia
de potencia entre Olmos y Piura Oeste ocasionaría la ne-
cesidad de una terna adicional en este tramo. La C.H. -
Carhuaquero (con ampliación) satisfacería únicamente par-
te de la demanda de Chiclayo.
En el Norte Medio las CC.HH. Cañón del Pato y Quitaracsa
abastecerían las cargas de Huallanca, Chimbote y parte de la carga de Trujillo Norte. Los excedentes de generación hidráulica (C.H. Olmos) del Norte satisfacería la demanda de Guadalupe, Cajamarca y parte de Trujillo Norte. requiriéndose generar termoelectricidad para satisfacer la demanda de Trujillo Norte. Para satisfacer la demanda de Paramonga Nueva se requeriría recibir excedentes de potencia del Centro, siendo ésta 54.1 MW sin considerar las pérdidas.

En Lima se requeriría generar termoelectricidad del orden de 250.5 MW sin considerar las pérdidas, quedando una reserva de 99.5 MW, recibiendo energía adicional debido al incremento de la capacidad de la C.H. Puerto Prado.

La pérdida real del sistema en este año es 248.59 MW, por consiguiente sería necesario generar energía térmica en Norte y Norte Medio. En horas fuera de pico al disminuir la carga de Lima, habría la posibilidad de transmitir pequeños excedentes de potencia hacia el Norte Medio desde el Centro.

3.2. **ANÁLISIS DE COSTOS DE ALTERNATIVAS**

Definido las alternativas de transmisión asociado a secuencias de generación, en esta oportunidad se evaluará el costo que representa cada Alternativa, para tal fin se utilizará el método de valor presente.

El método de valor presente de evaluación de alternativa, es utilizado en este proyecto, debido a que los gastos futuros se transforman en dólares equivalentes de ahora.
De esta manera se puede comparar y definir la ventaja económica de una alternativa sobre una o más alternativas.
Es necesario mencionar que los costos actualizados obtenidos se compararán con la alternativa nueva a plantear en 3.3 conjuntamente con las comparaciones técnicas de la expansión.

3.2.1. Definición de Costos de Líneas de Transmisión, Centros de Transformación y Centrales Eléctricas

Los costos de líneas de transmisión han sido estimados a partir de una tabla elaborada por personal de la unidad de planeamiento de transmisión ELECTRO PERÚ, en dicha tabla se puede apreciar los costos de líneas de 220 - KV, 138 KV y 60 KV para regiones de Costa y Sierra y para simple y doble terna, éstos se muestran en el cuadro Nº 3.2.1.

Los costos de subestaciones fueron obtenidos de presupuestos de proyectos realizados por Electro Perú actualizados a Diciembre de 1985. Estos costos están desagregados por niveles de tensión y por tipo de celda, éstos se pueden apreciar en los cuadros Nros. 3.2.2 y 3.2.3.

Para el caso de subestaciones los equipos agrupados por unidad de celda son:
- Equipos principales (interruptores, transformadores de tensión, de corriente, pararrayos, trampa de onda).
- Estructuras, aisladores, conductores, puesta a tierra, etc.
- Equipos de control, mando, protección y señalización.

Además, en costos de subestaciones (SS.EE) para el caso de la Sierra se ha estimado un 20% adicional por concepto de variación en costos de equipos, de transporte y de obras civiles debidas a la altitud y dificultad de acceso a las SS.EE. Los costos se muestran en el Cuadro Nº 3.2-4 por unidad de potencia y según relación de transformación.

Para obtener el costo de un transformador se ubica en el Cuadro de Costos el nivel de tensión requerido y el costo por unidad de potencia se multiplica por el valor requerido. A este resultado se le aplica el factor 1.12 que corresponde a montaje (10%) y obras civiles (2%) requeridos para la instalación del transformador.

Para obtener el valor de la inversión o costo de construcción de proyectos de transmisión se parte del cálculo de los costos directos que vendrían a representar los costos indicados anteriormente y que se pueden resumir en equipos electromecánicos, montaje, transporte y obras civiles. A este costo directo se le aplica un 16% que representa una estimación porcentual de los costos indirectos desagregados en:

- Gastos de Ingeniería y Supervisión 5%
- Gastos de Administración 3%
- Gastos por imprevistos 8%

Estos valores son estimados de costos indirectos de Proyectos de ELECTROPERU. El valor resultante de la suma de costos directos más costos indirectos dá el monto de la -
inversión en construcción de un sistema de transmisión. En cuanto a la estimación de costos para EXTRA ALTA TEN -
SION, en el país actualmente no hay líneas de este tipo. En el presente proyecto se considera que la tensión nueva del país sería al nivel de 500 KV, las líneas de trans-
misión de 500 KV evacuarían energía de las CC.HH. Sumabebi y Puerto Prado hacia las SS.EE. San Juan ELP y Zapa-
lla ubicadas en la gran Lima. Estas serían líneas de a-
proximadamente 500 Km que requerirían una extra alta ten-
sión para transportar una alta carga (aproximadamente 3000 MW). Los costos utilizados se basan en los datos de sistemas de transmisión en Brasil, estos costos actualiza-
dos a Diciembre de 1985 se muestran en los cuadros Nros. 3.2-5, 3.2-6, 3.2-7 y 3.2-9.

Los costos directos de Centrales Hidroeléctricas y Termi-
cas fueron obtenidos de presupuestos de proyectos realiza-
dos por ELECTROPERU, estos costos actualizados a Diciem-
bré de 1985 se muestran en los Cuadros Nros. 3.2-8 y 3.2-9

Al igual que el caso de líneas de transmisión a este cos-
to directo se le aplica 1.16 que corresponde 16% a costos
directos indicados anteriormente para obtener el monto
de la inversión en construcción de un Sistema de Genera-
ción.

3.2.2. Definición de Costo de Combustibles, lubricantes y
otros costos incrementales de Centrales Térmicas
Para definir el costo de este rubro que se genera
COSTOS POR KM DE LÍNEA DE TRANSMISIÓN
(US$ DOLÁR S A JIC. 1985)

<table>
<thead>
<tr>
<th>NIVEL DE TENSION</th>
<th>220 kV</th>
<th>138 kV</th>
<th>69 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGIÓN GEOGRÁFICA</td>
<td>COSTA</td>
<td>SIERRA</td>
<td>COSTA</td>
</tr>
<tr>
<td>CALIBRE PROMEDIO</td>
<td>150</td>
<td>240</td>
<td>152</td>
</tr>
<tr>
<td>DEL CONDUCTOR</td>
<td>400</td>
<td>726.12</td>
<td>150</td>
</tr>
<tr>
<td>N° DE CIRCUITOS</td>
<td>1T</td>
<td>2T</td>
<td>1T</td>
</tr>
<tr>
<td>COSTO/KM</td>
<td>45447</td>
<td>49124</td>
<td>53769</td>
</tr>
</tbody>
</table>

NOTA: Estos costos incluyen equipo electromecánico (60%), montaje (20%), transporte local (5%) y obras civiles (15%). (Porcentajes estimados)

FUENTE: Cuadernos de Trabajo - Unidad de Planeamiento de Transmisión - ELECTROPECU
CUADRO Nro. 3.2-2

COSTOS DE CELDAS POR TIPO Y NIVEL DE TENSION
(USO DÉLARES & DCC, 1985)
REGION COSTA

<table>
<thead>
<tr>
<th>NIVEL DE TENSION</th>
<th>220 kV</th>
<th>132 kV</th>
<th>66 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIPO DE CELDA</td>
<td>LÍNEA</td>
<td>TRÁFICO</td>
<td>ACOPLAM.</td>
</tr>
<tr>
<td>EQUIPO ELECTRÓMECANICO</td>
<td>1156061</td>
<td>65962</td>
<td>83425</td>
</tr>
<tr>
<td>MONTAJE</td>
<td>195745</td>
<td>135761</td>
<td>113324</td>
</tr>
<tr>
<td>TRANSPORTE</td>
<td>63165</td>
<td>42656</td>
<td>37622</td>
</tr>
<tr>
<td>OBRAS CIVILES</td>
<td>92610</td>
<td>49352</td>
<td>34710</td>
</tr>
<tr>
<td>COSTO TOTAL</td>
<td>1775781</td>
<td>1345383</td>
<td>1135409</td>
</tr>
</tbody>
</table>

* En caso de aplicaciones de subestaciones se considerara el 20% de las otras civiles.

CUADRO Nro. 3.2-3

COSTOS DE CELDAS POR TIPO Y NIVEL DE TENSION
(USO DÉLARES & DCC, 1985)
REGION SIERRA

<table>
<thead>
<tr>
<th>NIVEL DE TENSION</th>
<th>220 kV</th>
<th>132 kV</th>
<th>66 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIPO DE CELDA</td>
<td>LÍNEA</td>
<td>TRÁFICO</td>
<td>ACOPLAM.</td>
</tr>
<tr>
<td>EQUIPO ELECTRÓMECANICO</td>
<td>1106865</td>
<td>77991</td>
<td>66574</td>
</tr>
<tr>
<td>MONTAJE</td>
<td>203435</td>
<td>142550</td>
<td>122141</td>
</tr>
<tr>
<td>TRANSPORTE</td>
<td>75794</td>
<td>53110</td>
<td>45504</td>
</tr>
<tr>
<td>OBRAS CIVILES</td>
<td>555372</td>
<td>514646</td>
<td>416529</td>
</tr>
<tr>
<td>COSTO TOTAL</td>
<td>1943466</td>
<td>146657</td>
<td>1249524</td>
</tr>
<tr>
<td>RELACIÓN DE TRANSFORMACIÓN (kV)</td>
<td>POTENCIA (KVARONAF)</td>
<td>COSTO UNITARIO (COSTOS/MVAR ONAF)</td>
<td>SUMINISTRO</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------</td>
<td>----------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>220/136/10</td>
<td>10/10/12.5</td>
<td>(A)</td>
<td>5620</td>
</tr>
<tr>
<td>225/62/10</td>
<td>36/13/16</td>
<td>(A)</td>
<td>15331</td>
</tr>
<tr>
<td>220/136</td>
<td>120</td>
<td>(L)</td>
<td>13093</td>
</tr>
<tr>
<td>220/30/10</td>
<td>30/30/10</td>
<td>(L)</td>
<td>17983</td>
</tr>
<tr>
<td>220/60/10</td>
<td>30/30/10</td>
<td>(L)</td>
<td>22220</td>
</tr>
<tr>
<td>220/110/34.5</td>
<td>60/45/21</td>
<td>(L)</td>
<td>6723</td>
</tr>
<tr>
<td>138/69</td>
<td>10/12.5</td>
<td>(A)</td>
<td>17386</td>
</tr>
<tr>
<td>139/15.8</td>
<td>18.4/10</td>
<td>(F)</td>
<td>14406</td>
</tr>
<tr>
<td>136/115/46</td>
<td>50/50/16.66</td>
<td>(L)</td>
<td>7857</td>
</tr>
<tr>
<td>133/10</td>
<td>15/10/3</td>
<td>(L)</td>
<td>25596</td>
</tr>
<tr>
<td>130/10</td>
<td>20</td>
<td></td>
<td>23082</td>
</tr>
<tr>
<td>115/24.5/13.9</td>
<td>17.92/17.92/17.92</td>
<td>(A)</td>
<td>14428</td>
</tr>
<tr>
<td>115/34.5/13.9</td>
<td>20/15/15</td>
<td>(L)</td>
<td>11919</td>
</tr>
<tr>
<td>115/34.5/13.9</td>
<td>12/12/11.92</td>
<td>(F)</td>
<td>20022</td>
</tr>
<tr>
<td>115/34.5</td>
<td>30/40</td>
<td>(L)</td>
<td>11267</td>
</tr>
<tr>
<td>115/34.5</td>
<td>20/30</td>
<td>(L)</td>
<td>14290</td>
</tr>
<tr>
<td>115/12.5</td>
<td>15/20</td>
<td>(F)</td>
<td>10701</td>
</tr>
<tr>
<td>115/12.5</td>
<td>20/25</td>
<td>(F)</td>
<td>9017</td>
</tr>
<tr>
<td>115/25</td>
<td>7</td>
<td>(A)</td>
<td>27425</td>
</tr>
<tr>
<td>115/13.6</td>
<td>20/25</td>
<td>(F)</td>
<td>10835</td>
</tr>
<tr>
<td>115/13.2</td>
<td>7</td>
<td>(F)</td>
<td>20171</td>
</tr>
<tr>
<td>110/44/13.2</td>
<td>22.5/15/22.5</td>
<td>(L)</td>
<td>15449</td>
</tr>
<tr>
<td>110/44/13.75</td>
<td>30/26/30</td>
<td>(L)</td>
<td>13479</td>
</tr>
</tbody>
</table>

(A) Con regulación en vacío
(L) Con regulación bajo carga
(1) Autotransformadores
CUADRO: N° 3.2-5

COSTO DE SALIDA DE 500KV DESDE LA CENTRAL ELECTRICA

<table>
<thead>
<tr>
<th>EQUIPOS DE 500 KV</th>
<th>10^3 US $</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM</td>
<td>NOMBRE</td>
</tr>
<tr>
<td>1</td>
<td>Pararrayos</td>
</tr>
<tr>
<td>2</td>
<td>Div.Cap.Ten</td>
</tr>
<tr>
<td>3</td>
<td>Trampa de Onda</td>
</tr>
<tr>
<td>4</td>
<td>Secc.30T (CP)</td>
</tr>
<tr>
<td>5</td>
<td>Secc.30 (S.P)</td>
</tr>
<tr>
<td>6</td>
<td>Trafo.Corr.</td>
</tr>
<tr>
<td>7</td>
<td>Interruptor</td>
</tr>
<tr>
<td>8</td>
<td>Reactor 50 M</td>
</tr>
</tbody>
</table>

- Costo equipo (excepto reactores) CEQ 1,417.89
- Costo montaje y O.C., MEQ = 1.9 x CEQ 2,694.00
- Costo reactores (CR) 1,555.20
- Costo montaje y O.C. reactores = 0.3 x CR 466.56
* COSTO TOTAL = CEQ + CR + MEQ + 0.3 x CR: 6,133.65 x 10^3 US $

Ref: "Metodología para la determinación de costo y esquemas de desembolso para el sistema de transmisión" — Electrosul-Brasil, Actualizado a 1985.
CUADRO: N° 3.2-6

COSTO DE UNA SUB-ESTACION DE PASO EN 500 KV

<table>
<thead>
<tr>
<th>EQUIPOS</th>
<th>10^3 US $</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM</td>
<td>NOMBRE</td>
</tr>
<tr>
<td>1</td>
<td>Pararrayos</td>
</tr>
<tr>
<td>2</td>
<td>Div.Cap.Tens</td>
</tr>
<tr>
<td>3</td>
<td>Trampa de Onda</td>
</tr>
<tr>
<td>4</td>
<td>Seccionador(SP)</td>
</tr>
<tr>
<td>5</td>
<td>Seccionador(CP)</td>
</tr>
<tr>
<td>6</td>
<td>Trafo de cor.</td>
</tr>
<tr>
<td>7</td>
<td>Interruptor</td>
</tr>
<tr>
<td>8</td>
<td>Reactor 50 M</td>
</tr>
</tbody>
</table>

- Costo equipamiento (excepto reactores) CEQ 2,206.72
- Costo Reactores (CR) 3,110.40
- Costo montaje y O.C. MEQ = 1.9 x CEQ 4,192.77
- Costo montaje y O.C. reactores = 0.3 x CER 933.12

*COSTO TOTAL

\[\text{CEQ} + \text{CR} + 1.9 \times \text{CEQ} + 0.3 \times \text{CR} = 10,443.01 \times 10^3 \text{ US } \$

Donde:
- SP: Sin puesta a tierra
- CP: Con puesta a tierra
- 50M: reactor de 50 MVAR-10
COSTO DE LLEGADA DE LINEAS DE 500KV Y SUB-ESTACION DE TRANSFORMACION A 220KV

<table>
<thead>
<tr>
<th>EQUIPOS</th>
<th>10^3 US</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM</td>
<td>NOMBRE</td>
</tr>
<tr>
<td>1</td>
<td>Pararrayos</td>
</tr>
<tr>
<td>2</td>
<td>Div.Capac.Tens</td>
</tr>
<tr>
<td>3</td>
<td>Trampa de Onda</td>
</tr>
<tr>
<td>4</td>
<td>Seccionad.(SP)</td>
</tr>
<tr>
<td>5</td>
<td>Seccionad.(CP)</td>
</tr>
<tr>
<td>6</td>
<td>Trafo de Corr.</td>
</tr>
<tr>
<td>7</td>
<td>Interruptor</td>
</tr>
<tr>
<td>8</td>
<td>Reactor 50M</td>
</tr>
<tr>
<td>9</td>
<td>Autotrafo 1Ø-100M</td>
</tr>
</tbody>
</table>

- **Costo equipo (Excepto Reactores y Autotrofos) CEQ**: $2,055.09
- **Costo de Reactores y Autotrofos (CAR)**: $4,608.64
- **Montaje y O.C. MEQ = 1.9 x CEQ**: $3,904.67
- **Montaje reactores a autotrafo = 0.3 x CAR = MAR**: $1,382.59

COSTO TOTAL = CEQ + CAR + MEQ + MAR: $11,950.99 \times 10^3$ US
<table>
<thead>
<tr>
<th>NÚMERO</th>
<th>CHINCHÓN</th>
<th>CESARES</th>
<th>GUIA</th>
<th>GUAPES</th>
<th>CASCAJOS</th>
<th>PANGANDURO</th>
<th>JALCOMULCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.0</td>
<td>129.0</td>
<td>125.0</td>
<td>123.0</td>
<td>121.0</td>
<td>119.0</td>
<td>117.0</td>
</tr>
<tr>
<td>2</td>
<td>127.0</td>
<td>128.0</td>
<td>126.0</td>
<td>124.0</td>
<td>122.0</td>
<td>120.0</td>
<td>118.0</td>
</tr>
<tr>
<td>3</td>
<td>129.0</td>
<td>129.0</td>
<td>125.0</td>
<td>123.0</td>
<td>121.0</td>
<td>119.0</td>
<td>117.0</td>
</tr>
</tbody>
</table>

COSTOS DE PROYECTOS DE CENTRALES HIDROELECTRICAS DEL SICM

(1000 USA Dolares a Dic. 1985)

REDUCIS COSTO TOTAL

<table>
<thead>
<tr>
<th>NÚMERO</th>
<th>CENITA</th>
<th>COMALCALCO</th>
<th>CUCALCOR</th>
<th>CUMBILLO</th>
<th>DULCE</th>
<th>EL TAMARINDO</th>
<th>FLORENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>128.0</td>
<td>127.0</td>
<td>125.0</td>
<td>123.0</td>
<td>121.0</td>
<td>119.0</td>
<td>117.0</td>
</tr>
<tr>
<td>2</td>
<td>129.0</td>
<td>129.0</td>
<td>125.0</td>
<td>123.0</td>
<td>121.0</td>
<td>119.0</td>
<td>117.0</td>
</tr>
<tr>
<td>3</td>
<td>130.0</td>
<td>129.0</td>
<td>125.0</td>
<td>123.0</td>
<td>121.0</td>
<td>119.0</td>
<td>117.0</td>
</tr>
</tbody>
</table>

RESERVORIO YUCAYMAYO

130.0

COSTO TOTAL

117.0
COSTOS DE PROYECTOS DE CENTRALES TÉRMICAS DEL SIEC

(1000 US$ Dolares a Dic. 1985)

<table>
<thead>
<tr>
<th>NÚMERO</th>
<th>ESTUDES</th>
<th>OTROS CIVILES</th>
<th>EQUIPOS</th>
<th>OTROS</th>
<th>COSTO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.C.T. A GAS 200 MTS</td>
<td>5745.8</td>
<td>26366.6</td>
<td>97465</td>
<td>14045.2</td>
<td>143222.6</td>
</tr>
<tr>
<td>I.C.T. A VAPOR - 150 KW</td>
<td>6544.8</td>
<td>19766.9</td>
<td>82720.7</td>
<td>19364.7</td>
<td>119337.1</td>
</tr>
<tr>
<td>I.C.T. A GAS - 100 KW</td>
<td>1124.7</td>
<td>2220.6</td>
<td>24147.1</td>
<td>4426.5</td>
<td>31923.9</td>
</tr>
<tr>
<td>I.C.T. A GAS - 50 KW</td>
<td>766.8</td>
<td>1514.1</td>
<td>16643.9</td>
<td>3019.5</td>
<td>21764.3</td>
</tr>
</tbody>
</table>

COSTO ESTIMADO PARA LINEAS DE EXTRAF ALTA TENSION (US$/km)

(US$ Dolares a Dic. 1985)

| LINEA DE 500 KV | 11 | 21 |
| Conducto AACR 4 x 501 mm2 | 262142 | 336179 |
debido a la operación de Centrales Térmicas, se ha desarrollado para las etapas consideradas en el estudio. el despacho de potencia y energía de cada alternativa. Mediante este despacho se define la energía termoeléctrica necesaria para cubrir la demanda del SICN. En el Cuadro Nº 3.2-22 se puede apreciar los costos por MWh de los principales proyectos termoeléctricos de este sistema. Estos representan los costos de operación y mantenimiento variable de proyectos termoeléctricos.

Para efectuar el programa de despacho de potencia y energía se utiliza las Curvas de Duración de carga y generación del SICN, los cuales se muestran en las Figuras comprendidas entre las Figuras Nros. 3.1 y 3.16. Las curvas de duración de carga están definidas mediante ecuaciones de quinto orden, los cuales se indican en el cuadro Nº 3.2-23 determinadas por la Unidad de Mercado ELECTROPERU. Las curvas de duración de generación se basan en datos obtenidos de centrales equivalentes en punta y base de la Unidad de Planeamiento de transmisión ELECTROPERU de cada una de las Centrales Hidroeléctricas existentes y en proyecto del SICN. Estos resultados se muestran en los Cuadros del Nº 3.2-24 al Nº 3.2-37. Superponiendo ambas curvas de duración se determinan los GWh termoeléctricos necesarios para cubrir la Máxima Demanda del Sistema Interconectado Centro Norte (SICN), los resultados obtenidos se pueden apreciar en los cuadros Nros.
3.2-19, 3.2-20 y 3.2-21.

3.2.3. **Criterios adicionales tomados para la evaluación económica de las alternativas**

Se considera concentrado las adiciones de sistemas de transmisión y generación en las etapas correspondientes de estudio del presente trabajo, debido a que el estudio abarca un horizonte amplio (largo plazo) afecta de igual manera a cada una de las alternativas y será una estimación general o referencial para estudios de mediano y corto plazo.

Se toma una tasa de interés discreta igual a 12%.

No se evalúa los costos de seguridad o confiabilidad del sistema.

El costo promedio de pérdida de energía se ha estimado en 0.045 $ US/KWh.

La pérdida de potencia se ha considerado de crecimiento lineal entre las etapas consideradas en el Proyecto (ver Apéndice B).

El costo de operación y mantenimiento se estima en 1.5 % anual del valor de la inversión total del Proyecto, siendo este valor pequeño en comparación con otros costos, se ha considerado nulo este rubro debido a que no afectaría demasiado a los costos globales de las alternativas, más aún siendo referencial el estudio a largo plazo.
Se considera dos tipos de combustible, siendo éstos Diesel 2 y Residual 6 y sus costos son 36 dólares US/Barril y 26 dólares US/barril respectivamente.

3.2.4. **Resultado final de la evaluación económica de las alternativas**

El flujo de costos totales para cada etapa del período de análisis, se actualiza a una tasa de descuento del 12%, obteniéndose el valor presente del flujo de costos para cada alternativa. El flujo de costos se valúa en dólares constantes y no se consideran escalamientos, dentro de estas evaluaciones se incluyen la depreciación y el valor de recuperación de cada implementación. El estudio pormenorizado del método de valor presente, valor de recuperación, costo de pérdidas de energía anuales y el costo de combustible (más lubricantes y otros costos incrementales) se encuentran en el Capítulo IV - 4.2. Obteniéndose el costo global de la siguiente manera:

\[
\text{CAT} = \text{CAL} + \text{CAG} + \text{CAP} + \text{CAC}
\]

CAT Costo actualizado total de la alternativa
CAL Costo actualizado del sistema de transmisión
CAG Costo actualizado del sistema de generación
CAP Costo actualizado de pérdidas
CAC Costo total actualizado de combustible, lubricantes y otros costos incrementales.

donde: \(\text{CAG} = \text{COM}(\text{H+T})\) Existente + \(\text{COM}(\text{H+T})\) Nuevo + \(\text{CI}(\text{H+T})\) Nuevo.
siendo: COM(H+T) Costo actualizado de operación y mantenimiento.
CI(H+T) Costo actualizado de inversión
H Hidráulica
T Térmica

CAC = CC(T) Existe + CC(T) Nueva

siendo: CC(T) Costo actualizado de combustible y lubricantes y otros costos incrementales

Los resultados numéricos se muestran en los cuadros correspondientes entre los números 3.2-10 y 3.2-21. Finalmente el costo total actualizado de cada alternativa sería el que se muestra en el cuadro 3.2-38.

3.3. PLANTEAMIENTO DE UNA NUEVA ALTERNATIVA DE TRANSMISIÓN

De acuerdo al análisis desarrollado en 3.1 se puede apreciar que el SICN tiene una configuración eminentemente longitudinal, por tanto la expansión de la generación debe contemplar desarrollos regionales, debe existir una coordinación entre planeamientos de generación y transmisión, debe darse énfasis a los criterios de transmisión y a los criterios de reserva local, por otro lado se debe incrementar la confiabilidad del sistema, tomando en cuenta los criterios básicos para conseguir tal objetivo, por ello sería conveniente orientar la expansión de la transmisión a la conformación de anillos que permitan el abastecimiento de las cargas del sistema desde puntos diferentes por lo cual es necesario aprovechar las características -
fig. N° 3.1
CURVA DE DURACIÓN DE LA CARGA EN p.u.

SISTEMA INTERCONECTADO CENTRO – NORTE
ANO: 1996
MD = 2487

fig. N° 3.2
CURVA DE DURACIÓN DE LA CARGA EN p.u.

SISTEMA INTERCONECTADO CENTRO – NORTE
ANO: 2000
DM = 3252
fig N°3.3
CURVA DE DURACION DE LA CARGA EN p.u.

fig N°3.4
CURVA DE DURACION DE LA CARGA EN p.u.
ALTERNATIVA # 2 - 1995
CENTRALES HIDROELÉCTRICAS

ALTERNATIVA # 2 - 2000
CENTRALES HIDROELÉCTRICAS

fig. N°3.9

fig. N°3.10
ALTERNATIVA # 3 – 2005
CENTRALES MICROELECTRICAS

fig. N° 3.15

ALTERNATIVA # 3 – 2010
CENTRALES MICROELECTRICAS

fig. N° 3.16
<table>
<thead>
<tr>
<th></th>
<th>LÍNEA</th>
<th>TERRA</th>
<th>LARGITUD (km)</th>
<th>TENSIÓN (kV)</th>
<th>COSTO ACTUALIZ. 1995</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ITALAPA - TUNJES</td>
<td>1T</td>
<td>150</td>
<td>220</td>
<td>3.69%</td>
<td>22.714</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GUATAPES-CHIMOTTE</td>
<td>1T</td>
<td>140</td>
<td>220</td>
<td>3.66%</td>
<td>17.631</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHICLAYO-ICAPAALAL</td>
<td>2T</td>
<td>300</td>
<td>220</td>
<td>9.12%</td>
<td>83.233</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRUJILLO-NORTE-GUAJALUPE</td>
<td>1T</td>
<td>110</td>
<td>500</td>
<td>3.27%</td>
<td>50.335</td>
<td>17.362</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHICLAYO-TRUJILLO NORTE</td>
<td>1T</td>
<td>160</td>
<td>500</td>
<td>4.23%</td>
<td>41.034</td>
<td>17.663</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIPACO-IÑAPALLAL</td>
<td>1T</td>
<td>220</td>
<td>500</td>
<td>5.16%</td>
<td>71.512</td>
<td>71.512</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIPACO-SAN JUAN ELP</td>
<td>1T</td>
<td>220</td>
<td>500</td>
<td>6.35%</td>
<td>71.512</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUERTO PASCADE-TIPACO</td>
<td>2T</td>
<td>245</td>
<td>500</td>
<td>10.03%</td>
<td>122.454</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHICLAYO-PIJAR OESTE</td>
<td>2T</td>
<td>270</td>
<td>220</td>
<td>2.692</td>
<td>50.442</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EUÑACAS-GUAJALUPE-CHICLAYO</td>
<td>1T</td>
<td>60</td>
<td>500</td>
<td>1.301</td>
<td>17.124</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PARAMERO-CHIMOTTE</td>
<td>1T</td>
<td>220</td>
<td>500</td>
<td>2.611</td>
<td>86.465</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICAPAALAL-PARAMERO</td>
<td>1T</td>
<td>170</td>
<td>500</td>
<td>2.143</td>
<td>53.739</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUMABERI-COCEPCION</td>
<td>2T</td>
<td>180</td>
<td>500</td>
<td>3.667</td>
<td>96.956</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COCEPCION-SAN JUAN ELP</td>
<td>1T</td>
<td>240</td>
<td>500</td>
<td>3.039</td>
<td>76.102</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COCEPCION-TIPACO</td>
<td>1T</td>
<td>60</td>
<td>500</td>
<td>0.960</td>
<td>22.873</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COSTO TOTAL ACTUALIZADO: 85.162

(*) Se incluye costo de subestaciones de transformación
<table>
<thead>
<tr>
<th>CENTRAL</th>
<th>COSTO ACTUAL 1995</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1985)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. JICAMARCA</td>
<td>27.067</td>
<td>37.676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. HAYUAS</td>
<td>48.632</td>
<td>157.530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. QUITARAOSA</td>
<td>31.980</td>
<td>190.636</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPL. C.H.CARHUACERO</td>
<td>16.330</td>
<td>109.401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. HUAGRA-20</td>
<td>57.047</td>
<td>340.489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. CHAGALLA</td>
<td>105.334</td>
<td>652.563</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. PUERTO PRADO</td>
<td>113.078</td>
<td>1033.446</td>
<td>590.684</td>
<td></td>
</tr>
<tr>
<td>C.H. SUMABENI</td>
<td>58.245</td>
<td>1466.378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL 1 ACTUALIZADO</td>
<td>463.713</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.T. 4TG x 50</td>
<td>29.926</td>
<td>95.763</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.T. 4TG x 100</td>
<td>14.958</td>
<td>43.649</td>
<td>31.924</td>
<td>31.924</td>
</tr>
<tr>
<td>C.T. 21V x 150</td>
<td>36.784</td>
<td>119.337</td>
<td>119.337</td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL 2 ACTUALIZADO</td>
<td>75.648</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL ACTUALIZADO</td>
<td>539.361</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CUADRO 3.2-12
COSTOS DE FPECIDAE ANUALES SICH
ALTERNATIVA Rec. 1

<table>
<thead>
<tr>
<th>AÑO</th>
<th>iP</th>
<th>IE</th>
<th>IF</th>
<th>iE</th>
<th>COSTO ACTUALIZADO</th>
<th>COSTO (1100 U$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>53.06</td>
<td>0.622</td>
<td>0.459</td>
<td>277.59</td>
<td>404.29</td>
<td>500.95</td>
</tr>
<tr>
<td>1996</td>
<td>56.51</td>
<td>0.635</td>
<td>0.465</td>
<td>282.22</td>
<td>408.49</td>
<td>504.22</td>
</tr>
<tr>
<td>1997</td>
<td>60.02</td>
<td>0.635</td>
<td>0.476</td>
<td>287.14</td>
<td>413.41</td>
<td>504.21</td>
</tr>
<tr>
<td>1998</td>
<td>63.31</td>
<td>0.634</td>
<td>0.472</td>
<td>292.35</td>
<td>418.45</td>
<td>503.45</td>
</tr>
<tr>
<td>1999</td>
<td>66.98</td>
<td>0.634</td>
<td>0.472</td>
<td>297.59</td>
<td>423.48</td>
<td>502.55</td>
</tr>
<tr>
<td>2000</td>
<td>70.48</td>
<td>0.635</td>
<td>0.473</td>
<td>302.03</td>
<td>428.50</td>
<td>501.55</td>
</tr>
<tr>
<td>2001</td>
<td>66.13</td>
<td>0.635</td>
<td>0.474</td>
<td>307.43</td>
<td>433.51</td>
<td>500.55</td>
</tr>
<tr>
<td>2002</td>
<td>101.79</td>
<td>0.637</td>
<td>0.475</td>
<td>423.55</td>
<td>775.95</td>
<td>1505.75</td>
</tr>
<tr>
<td>2003</td>
<td>117.44</td>
<td>0.638</td>
<td>0.476</td>
<td>434.70</td>
<td>785.52</td>
<td>1515.72</td>
</tr>
<tr>
<td>2004</td>
<td>133.16</td>
<td>0.638</td>
<td>0.476</td>
<td>555.00</td>
<td>885.77</td>
<td>1525.77</td>
</tr>
<tr>
<td>2005</td>
<td>148.75</td>
<td>0.638</td>
<td>0.476</td>
<td>622.66</td>
<td>905.85</td>
<td>1535.80</td>
</tr>
<tr>
<td>2006</td>
<td>164.63</td>
<td>0.639</td>
<td>0.476</td>
<td>677.73</td>
<td>926.17</td>
<td>1535.85</td>
</tr>
<tr>
<td>2007</td>
<td>184.51</td>
<td>0.639</td>
<td>0.476</td>
<td>772.60</td>
<td>1026.23</td>
<td>1545.90</td>
</tr>
<tr>
<td>2008</td>
<td>202.39</td>
<td>0.639</td>
<td>0.476</td>
<td>847.46</td>
<td>1126.39</td>
<td>1555.95</td>
</tr>
<tr>
<td>2009</td>
<td>220.26</td>
<td>0.640</td>
<td>0.479</td>
<td>924.22</td>
<td>1226.55</td>
<td>1565.90</td>
</tr>
<tr>
<td>2010</td>
<td>238.14</td>
<td>0.640</td>
<td>0.479</td>
<td>999.25</td>
<td>1326.71</td>
<td>1575.95</td>
</tr>
</tbody>
</table>

COSTO TOTAL ACTUALIZADO 44669.25
CUADRO Nro. 3.2-13

COSTO ACTUALIZADO DE ADICIONES DE LÍNEAS SION - ALTERNATIVA Nro. 2
(Millones US$ Dólares a Dic. 1995)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ITALAPA - TUMBES</td>
<td>2T</td>
<td>170</td>
<td>12.370</td>
<td>39.345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITALAPA - PIURA OR.</td>
<td>1T</td>
<td>88</td>
<td>4.093</td>
<td>12.732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUIPAROSA - CHIMBOTE</td>
<td>1T</td>
<td>140</td>
<td>3.053</td>
<td>17.821</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZAPALLAL - CHAGOLA</td>
<td>2T</td>
<td>300</td>
<td>9.121</td>
<td>53.232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUADALUPE - TRUJ. OR.</td>
<td>1T</td>
<td>110</td>
<td>3.277</td>
<td>50.305</td>
<td>14.885</td>
<td></td>
</tr>
<tr>
<td>TIEMPEROS - CHIMBOTE</td>
<td>1T</td>
<td>160</td>
<td>4.273</td>
<td>42.070</td>
<td>13.863</td>
<td></td>
</tr>
<tr>
<td>Tarma - Zapallal (*)</td>
<td>1T</td>
<td>220</td>
<td>9.182</td>
<td>71.512</td>
<td>71.512</td>
<td></td>
</tr>
<tr>
<td>Tarma - San Juan ELP (**)</td>
<td>1T</td>
<td>220</td>
<td>6.330</td>
<td>71.512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puerto Prado - Tarma (**)</td>
<td>2T</td>
<td>215</td>
<td>9.344</td>
<td>105.564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iquique - Elqui</td>
<td>1T</td>
<td>270</td>
<td>1.219</td>
<td>30.344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elqui - Guadalupes</td>
<td>1T</td>
<td>270</td>
<td>1.219</td>
<td>30.344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalatenango - Coquimbo</td>
<td>1T</td>
<td>300</td>
<td>3.141</td>
<td>52.455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coquimbo - Param. Nueva (**)</td>
<td>1T</td>
<td>170</td>
<td>2.147</td>
<td>52.770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iquique - Coquimbo</td>
<td>2T</td>
<td>190</td>
<td>7.997</td>
<td>96.956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coquimbo - San Juan ELP (**)</td>
<td>1T</td>
<td>210</td>
<td>3.053</td>
<td>76.202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarma - Concepción</td>
<td>1T</td>
<td>60</td>
<td>0.900</td>
<td>22.573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL ACTUALIZADO</td>
<td></td>
<td></td>
<td></td>
<td>75.208</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) Se incluye costos de subestaciones de transformación
<table>
<thead>
<tr>
<th>CENTRAL</th>
<th>COSTO ACTUALIZADO</th>
<th>1995</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.T.E. TOFRITOS</td>
<td>44,627</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. CUMACASA</td>
<td>21,920</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. MAYUEN</td>
<td>24,393</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. MURVAR = 24</td>
<td>57,047</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. CHABLEA</td>
<td>109,334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. PUERTO PARDO</td>
<td>113,079</td>
<td>1073.448</td>
<td>596.694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. SUMAPEKII</td>
<td>52,245</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COSTO TOTAL ACTUALIZADO</td>
<td>440,960</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.697</td>
<td>23.941</td>
<td>21.622</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.494</td>
<td>31.924</td>
<td>31.924</td>
<td>31.924</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.494</td>
<td>31.924</td>
<td>31.924</td>
<td>31.924</td>
</tr>
<tr>
<td></td>
<td>COSTO TOTAL ACTUALIZADO</td>
<td>49,469</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>499,629</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(II) C.T. considerada como C.H.
CUADRO 3.2-15
COSTOS DE PECUNIAS ANUALES SIEM
ALTERNATIVA Nro.2

<table>
<thead>
<tr>
<th>AÑO</th>
<th>OP</th>
<th>fc</th>
<th>f5</th>
<th>f6</th>
<th>COSTO ACTUALIZADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td>(S/C) (100.00 U$E) (10.00 U$E)</td>
</tr>
<tr>
<td>1955</td>
<td>63.57</td>
<td>63.57</td>
<td>0.469</td>
<td>261.17</td>
<td>3766.84</td>
</tr>
<tr>
<td>1956</td>
<td>65.34</td>
<td>65.34</td>
<td>0.493</td>
<td>265.05</td>
<td>3975.77</td>
</tr>
<tr>
<td>1957</td>
<td>67.20</td>
<td>67.20</td>
<td>0.517</td>
<td>271.82</td>
<td>4195.79</td>
</tr>
<tr>
<td>1958</td>
<td>69.15</td>
<td>69.15</td>
<td>0.542</td>
<td>275.76</td>
<td>4425.83</td>
</tr>
<tr>
<td>1959</td>
<td>70.35</td>
<td>70.35</td>
<td>0.572</td>
<td>277.23</td>
<td>4475.90</td>
</tr>
<tr>
<td>2000</td>
<td>72.65</td>
<td>72.65</td>
<td>0.593</td>
<td>287.77</td>
<td>4637.71</td>
</tr>
<tr>
<td>2001</td>
<td>74.17</td>
<td>74.17</td>
<td>0.614</td>
<td>290.41</td>
<td>4756.58</td>
</tr>
<tr>
<td>2002</td>
<td>76.10</td>
<td>76.10</td>
<td>0.637</td>
<td>291.54</td>
<td>4877.33</td>
</tr>
<tr>
<td>2003</td>
<td>78.02</td>
<td>78.02</td>
<td>0.658</td>
<td>293.02</td>
<td>4980.12</td>
</tr>
<tr>
<td>2004</td>
<td>79.98</td>
<td>79.98</td>
<td>0.680</td>
<td>294.80</td>
<td>5075.90</td>
</tr>
<tr>
<td>2005</td>
<td>81.90</td>
<td>81.90</td>
<td>0.703</td>
<td>296.72</td>
<td>5164.15</td>
</tr>
<tr>
<td>2006</td>
<td>83.83</td>
<td>83.83</td>
<td>0.725</td>
<td>298.85</td>
<td>5244.36</td>
</tr>
<tr>
<td>2007</td>
<td>85.76</td>
<td>85.76</td>
<td>0.745</td>
<td>300.08</td>
<td>5316.71</td>
</tr>
<tr>
<td>2008</td>
<td>87.70</td>
<td>87.70</td>
<td>0.767</td>
<td>301.42</td>
<td>5381.40</td>
</tr>
<tr>
<td>2009</td>
<td>89.64</td>
<td>89.64</td>
<td>0.789</td>
<td>304.90</td>
<td>5440.45</td>
</tr>
<tr>
<td>2010</td>
<td>91.59</td>
<td>91.59</td>
<td>0.813</td>
<td>309.22</td>
<td>5503.74</td>
</tr>
</tbody>
</table>

COSTO TOTAL ACTUALIZADO: $7177.65
<table>
<thead>
<tr>
<th>Línea</th>
<th>Longitud</th>
<th>Tensión</th>
<th>Costo ActualIZADO</th>
<th>1993</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIURA OESTE - OLMO</td>
<td>IT 110</td>
<td>220</td>
<td>19.778</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLMO - CHICLAYO</td>
<td>IT 110</td>
<td>220</td>
<td>26.248</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHICLAYO - GUADALUFE</td>
<td>IT 30</td>
<td>220</td>
<td>21.157</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUADALUFE - TRUJ. NORTE</td>
<td>IT 119</td>
<td>220</td>
<td>26.248</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHIMBOR - PARAM. NUEVA</td>
<td>IT 220</td>
<td>220</td>
<td>44.286</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARAM. NUEVA - ZAPALLAL</td>
<td>IT 170</td>
<td>220</td>
<td>78.071</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUITO - CHIMBOR</td>
<td>IT 143</td>
<td>220</td>
<td>17.921</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHIMBOR - ZAPALLAL</td>
<td>IT 300</td>
<td>220</td>
<td>93.233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAPAL - ZAPALLAL</td>
<td>IT 220</td>
<td>500</td>
<td>71.512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAPAL - SAN JUAN EL.</td>
<td>IT 220</td>
<td>500</td>
<td>71.512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLERIO - TAPAL</td>
<td>IT 245</td>
<td>500</td>
<td>105.364</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COSTO TOTAL ACTUALIZADO: 59.369

(1): Incluye costos de subestaciones de transformación
CUADRO Nro. 3-17
COSTO ACTUALIZADO DE ADICIONES DE CENTRALES HIDROELECTRICAS Y TERMICAS SICIN
ALTERNATIVA Nro. 3
(Millones U$S Dolares a Est. 1965)

<table>
<thead>
<tr>
<th>CENTRAL</th>
<th>1965</th>
<th>1980</th>
<th>2000</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.H. JIEMIREA</td>
<td>27.687</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. MAYUSH</td>
<td>45.672</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. OLMOS</td>
<td>94.452</td>
<td>375.675</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPL. C.H. CAHUARUERO</td>
<td>16.338</td>
<td>160.801</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. GITRAMACER</td>
<td>31.926</td>
<td>180.876</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.H. CHIAGLLA</td>
<td>54.524</td>
<td></td>
<td></td>
<td></td>
<td>450.548</td>
</tr>
<tr>
<td>C.H. PUERTO FRADO</td>
<td>113.672</td>
<td></td>
<td>1133.446</td>
<td>590.684</td>
<td></td>
</tr>
<tr>
<td>TOTAL ACTUALIZADO</td>
<td>392.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.T. 515 x 50</td>
<td>32.925</td>
<td>95.763</td>
<td>23.941</td>
<td>23.941</td>
<td></td>
</tr>
<tr>
<td>C.T. 316 x 100</td>
<td>12.666</td>
<td>61.048</td>
<td>31.524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.T. 214 x 159</td>
<td>25.051</td>
<td>119.337</td>
<td>119.337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL ACTUALIZADO</td>
<td>71.707</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL ACTUALIZADO</td>
<td>463.772</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CUADRO 3.2-13
COSTOS DE PÉRDIDAS ANUALES SICN
ALTERNATIVA Are. 3

<table>
<thead>
<tr>
<th>AÑO</th>
<th>tP</th>
<th>fc</th>
<th>fp</th>
<th>tE</th>
<th>COSTO ACTUALIZADO (M$)</th>
<th>COSTO ACTUALIZADO (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>53.04</td>
<td>0.672</td>
<td>0.468</td>
<td>217.91</td>
<td>317.25</td>
<td>655.55</td>
</tr>
<tr>
<td>1996</td>
<td>60.77</td>
<td>0.672</td>
<td>0.469</td>
<td>371.64</td>
<td>428.82</td>
<td>1453.36</td>
</tr>
<tr>
<td>1997</td>
<td>52.71</td>
<td>0.673</td>
<td>0.470</td>
<td>381.71</td>
<td>448.96</td>
<td>1717.95</td>
</tr>
<tr>
<td>1998</td>
<td>104.64</td>
<td>0.674</td>
<td>0.472</td>
<td>452.66</td>
<td>444.15</td>
<td>1946.70</td>
</tr>
<tr>
<td>1999</td>
<td>116.57</td>
<td>0.674</td>
<td>0.472</td>
<td>481.95</td>
<td>445.74</td>
<td>2165.75</td>
</tr>
<tr>
<td>2000</td>
<td>133.61</td>
<td>0.675</td>
<td>0.473</td>
<td>554.64</td>
<td>455.24</td>
<td>2494.64</td>
</tr>
<tr>
<td>2001</td>
<td>159.29</td>
<td>0.676</td>
<td>0.474</td>
<td>578.77</td>
<td>474.51</td>
<td>2602.45</td>
</tr>
<tr>
<td>2002</td>
<td>144.77</td>
<td>0.677</td>
<td>0.475</td>
<td>602.39</td>
<td>3948.06</td>
<td>27107.55</td>
</tr>
<tr>
<td>2003</td>
<td>150.25</td>
<td>0.678</td>
<td>0.476</td>
<td>626.51</td>
<td>3654.20</td>
<td>28142.95</td>
</tr>
<tr>
<td>2004</td>
<td>155.73</td>
<td>0.679</td>
<td>0.476</td>
<td>649.36</td>
<td>3592.78</td>
<td>29221.20</td>
</tr>
<tr>
<td>2005</td>
<td>161.21</td>
<td>0.680</td>
<td>0.476</td>
<td>675.03</td>
<td>3149.02</td>
<td>30376.25</td>
</tr>
<tr>
<td>2006</td>
<td>178.69</td>
<td>0.681</td>
<td>0.476</td>
<td>748.23</td>
<td>3116.51</td>
<td>32570.35</td>
</tr>
<tr>
<td>2007</td>
<td>196.16</td>
<td>0.682</td>
<td>0.478</td>
<td>821.38</td>
<td>3054.64</td>
<td>34824.10</td>
</tr>
<tr>
<td>2008</td>
<td>213.64</td>
<td>0.683</td>
<td>0.478</td>
<td>894.57</td>
<td>2970.30</td>
<td>40255.65</td>
</tr>
<tr>
<td>2009</td>
<td>231.11</td>
<td>0.684</td>
<td>0.479</td>
<td>969.75</td>
<td>2875.01</td>
<td>45430.75</td>
</tr>
<tr>
<td>2010</td>
<td>248.59</td>
<td>0.684</td>
<td>0.479</td>
<td>1043.09</td>
<td>2761.11</td>
<td>46536.95</td>
</tr>
</tbody>
</table>

COSTO TOTAL ACTUALIZADO: 55496.12
CUADRO 3.2-19

COSTO DE COMBUSTIBLE, LUBRICANTES
Y OTROS COSTOS INCREMENTALES ANUALES

ALTERNATIVA N°1 - SICN

<table>
<thead>
<tr>
<th>AÑO</th>
<th>ºE (PUNTA)</th>
<th>COSTO ACTUALIZADO (S/.)</th>
<th>COSTO (100.000 US$)</th>
<th>(100.000 US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>163.600</td>
<td>259.250</td>
<td>1.105.480</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>169.350</td>
<td>313.000</td>
<td>1.655.780</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>157.200</td>
<td>274.150</td>
<td>1.620.070</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>154.240</td>
<td>240.010</td>
<td>1.647.290</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>151.190</td>
<td>216.060</td>
<td>1.026.560</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>145.140</td>
<td>193.770</td>
<td>1.095.270</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>128.760</td>
<td>142.610</td>
<td>974.260</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>109.326</td>
<td>108.170</td>
<td>742.650</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>90.000</td>
<td>75.470</td>
<td>611.100</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>70.610</td>
<td>55.670</td>
<td>479.440</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>51.230</td>
<td>38.060</td>
<td>347.650</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>40.820</td>
<td>25.760</td>
<td>278.250</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>30.740</td>
<td>17.250</td>
<td>208.730</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>20.490</td>
<td>16.270</td>
<td>139.130</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>10.250</td>
<td>4.590</td>
<td>65.600</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

COSTO TOTAL ACTUALIZ. 2058.070
CUADRO 5.2-20
COSTO DE COMBUSTIBLE, LUBRICANTES
Y OTROS COSTOS INCUMPLES ANUALES
ALTERNATIVA Nro. 2

<table>
<thead>
<tr>
<th>AÑO</th>
<th>E (PUNTA) (GWH)</th>
<th>E (C.T.)</th>
<th>COSTO ACTUALIZADO (1000 US$)</th>
<th>COSTO (1000 US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>163.400</td>
<td>175.200</td>
<td>525.330</td>
<td>1631.586</td>
</tr>
<tr>
<td>1996</td>
<td>150.78</td>
<td>175.200</td>
<td>444.410</td>
<td>1545.896</td>
</tr>
<tr>
<td>1997</td>
<td>138.150</td>
<td>175.200</td>
<td>370.760</td>
<td>1460.130</td>
</tr>
<tr>
<td>1998</td>
<td>125.550</td>
<td>175.200</td>
<td>314.996</td>
<td>1374.456</td>
</tr>
<tr>
<td>1999</td>
<td>112.900</td>
<td>172.500</td>
<td>263.690</td>
<td>1283.690</td>
</tr>
<tr>
<td>2000</td>
<td>100.210</td>
<td>175.200</td>
<td>219.780</td>
<td>1203.600</td>
</tr>
<tr>
<td>2001</td>
<td>88.370</td>
<td>175.200</td>
<td>180.830</td>
<td>1108.530</td>
</tr>
<tr>
<td>2002</td>
<td>72.460</td>
<td>175.200</td>
<td>147.700</td>
<td>1014.100</td>
</tr>
<tr>
<td>2003</td>
<td>58.560</td>
<td>175.200</td>
<td>119.620</td>
<td>919.726</td>
</tr>
<tr>
<td>2004</td>
<td>44.650</td>
<td>175.200</td>
<td>95.520</td>
<td>825.270</td>
</tr>
<tr>
<td>2005</td>
<td>30.740</td>
<td>172.500</td>
<td>75.760</td>
<td>660.210</td>
</tr>
<tr>
<td>2006</td>
<td>26.590</td>
<td>175.200</td>
<td>67.760</td>
<td>585.060</td>
</tr>
<tr>
<td>2007</td>
<td>18.440</td>
<td>175.200</td>
<td>53.500</td>
<td>443.306</td>
</tr>
<tr>
<td>2008</td>
<td>12.300</td>
<td>175.200</td>
<td>44.690</td>
<td>355.610</td>
</tr>
<tr>
<td>2009</td>
<td>6.150</td>
<td>175.200</td>
<td>37.150</td>
<td>293.560</td>
</tr>
<tr>
<td>2010</td>
<td>0.000</td>
<td>175.200</td>
<td>30.710</td>
<td>252.106</td>
</tr>
</tbody>
</table>

COSTO TOTAL ACTUALIZADO 2886.520
CUADRO 3.2-21
COSTO DE COMBUSTIBLE, LUBRICANTES Y OTROS COSTOS INCREMENTALES ANUALES
ALTERNATIVA Nro. 3 - SICN

<table>
<thead>
<tr>
<th>AÑO</th>
<th>E (PUNTA)</th>
<th>COSTO ACTUALIZADO (GWh)</th>
<th>COSTO (1000 US$)</th>
<th>COSTO (1000 US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>163.400</td>
<td>357.250</td>
<td>1105.490</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>147.81</td>
<td>285.520</td>
<td>1007.620</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>152.220</td>
<td>230.440</td>
<td>667.770</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>116.440</td>
<td>181.500</td>
<td>751.950</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>101.050</td>
<td>140.490</td>
<td>686.130</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>85.460</td>
<td>106.010</td>
<td>580.270</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>88.370</td>
<td>75.730</td>
<td>484.230</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>51.280</td>
<td>50.710</td>
<td>348.190</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>34.180</td>
<td>30.180</td>
<td>232.080</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>17.100</td>
<td>13.480</td>
<td>114.110</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>6.000</td>
<td>4.660</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>30.270</td>
<td>14.040</td>
<td>205.670</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>60.570</td>
<td>33.990</td>
<td>411.270</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>90.660</td>
<td>45.520</td>
<td>616.940</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>121.140</td>
<td>54.190</td>
<td>622.540</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>151.430</td>
<td>60.480</td>
<td>1026.210</td>
<td></td>
</tr>
</tbody>
</table>

COSTO TOTAL ACTUALIZADO: 1682420
CUADRO Nro. J.2-22
SISTEMA INTERCONECTADO CENTRO-NORTE
CARACTERÍSTICAS PRINCIPALES DE PROYECTOS TURBOELECTRICOS
(USS $ Dolares d Dec. 1985)

<table>
<thead>
<tr>
<th>TIPO DE CENTRAL</th>
<th>CAPACIDAD (MW)</th>
<th>TIPO DE COMBUSTIBLE</th>
<th>TIPO DE OPERACIÓN</th>
<th>COSTO DE O y M FIJO (1)</th>
<th>COSTO DE O y M VARIABLE (2)</th>
<th>COSTO DE GENERACION (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURBOVAPOR 1</td>
<td>150</td>
<td>PETROLEO R6</td>
<td>BASE</td>
<td>0.776</td>
<td>3.77</td>
<td>4.90</td>
</tr>
<tr>
<td>TURBOVAPOR 1</td>
<td>100</td>
<td>PETROLEO R6</td>
<td>BASE</td>
<td>0.274</td>
<td>3.77</td>
<td>5.46</td>
</tr>
<tr>
<td>TURBOVAPOR 1</td>
<td>50</td>
<td>PETROLEO R6</td>
<td>BASE</td>
<td>0.189</td>
<td>3.88</td>
<td>5.76</td>
</tr>
<tr>
<td>TURBOVAPOR 1</td>
<td>150</td>
<td>CARBON MAC</td>
<td>BASE</td>
<td>0.472</td>
<td>2.71</td>
<td>4.47</td>
</tr>
<tr>
<td>TURBOVAPOR 1</td>
<td>100</td>
<td>CARBON MAC</td>
<td>BASE</td>
<td>0.570</td>
<td>2.62</td>
<td>5.19</td>
</tr>
<tr>
<td>TURBOVAPOR 1</td>
<td>50</td>
<td>CARBON MAC</td>
<td>BASE</td>
<td>0.468</td>
<td>2.69</td>
<td>5.35</td>
</tr>
<tr>
<td>CICLO COMBINADO 1</td>
<td>150</td>
<td>PETROLEO D2</td>
<td>SEMIBASE</td>
<td>0.221</td>
<td>5.02</td>
<td>6.29</td>
</tr>
<tr>
<td>CICLO COMBINADO 1</td>
<td>100</td>
<td>PETROLEO D2</td>
<td>SEMIBASE</td>
<td>0.107</td>
<td>5.27</td>
<td>7.44</td>
</tr>
<tr>
<td>CICLO COMBINADO 1</td>
<td>100</td>
<td>GAS NATURAL</td>
<td>BASE</td>
<td>0.291</td>
<td>2.93</td>
<td>4.37</td>
</tr>
<tr>
<td>DE ZORRITOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURBOSAS 1</td>
<td>100</td>
<td>PETROLEO D2</td>
<td>PUNTA</td>
<td>0.109</td>
<td>6.63</td>
<td>9.60</td>
</tr>
<tr>
<td>TURBOSAS 1</td>
<td>50</td>
<td>PETROLEO D2</td>
<td>PUNTA</td>
<td>0.075</td>
<td>6.75</td>
<td>9.50</td>
</tr>
<tr>
<td>TURBOSAS 1</td>
<td>25</td>
<td>PETROLEO D2</td>
<td>PUNTA</td>
<td>0.059</td>
<td>71.30</td>
<td>9.64</td>
</tr>
</tbody>
</table>

O y M = Operación y mantenimiento
(1) = Comprende básicamente personal y seguros
(2) = Comprende combustibles, lubricantes y otros costos incrementales
(3) = Calculado tomando en cuenta: Base = 7500 horas,
Semibase = 5000 horas,
Punta = 7500 horas

Fuente: Cuadernos de Trabajo - Unidad de Planeamiento de Generación
ELECTROPERU
<table>
<thead>
<tr>
<th>kWh</th>
<th>CURVA DE DURACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,995</td>
<td>1.00608</td>
</tr>
<tr>
<td>1,996</td>
<td>1.00608</td>
</tr>
<tr>
<td>1,997</td>
<td>1.00608</td>
</tr>
<tr>
<td>1,998</td>
<td>1.00608</td>
</tr>
<tr>
<td>1,999</td>
<td>1.00608</td>
</tr>
<tr>
<td>2,000</td>
<td>1.00608</td>
</tr>
<tr>
<td>2,001</td>
<td>1.00608</td>
</tr>
<tr>
<td>2,002</td>
<td>1.00608</td>
</tr>
<tr>
<td>2,003</td>
<td>1.00608</td>
</tr>
<tr>
<td>2,004</td>
<td>1.00608</td>
</tr>
<tr>
<td>2,005</td>
<td>1.00608</td>
</tr>
<tr>
<td>2,006</td>
<td>1.00608</td>
</tr>
<tr>
<td>2,007</td>
<td>1.00608</td>
</tr>
<tr>
<td>2,008</td>
<td>1.00608</td>
</tr>
<tr>
<td>2,009</td>
<td>1.00608</td>
</tr>
<tr>
<td>2,010</td>
<td>1.00608</td>
</tr>
<tr>
<td>C.U. ANUAL</td>
<td>DATOS DE DISEÑO</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>NUEVA FICHA N 1</td>
<td>RESERVA ESTACIONAL EN LAS LAGUNAS 160 MILLONES DE M³</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MESES DEL AÑO HIDRÓLOGICO PROPUESTO</td>
<td>ENE</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>DIAS POR MES</td>
<td>31</td>
</tr>
<tr>
<td>CAUSAS MÚSCULAS POTENCIAL PROPUESTO = 336 m³</td>
<td></td>
</tr>
<tr>
<td>POTEICIA MÚSCULAS = 400 m³</td>
<td></td>
</tr>
<tr>
<td>HOPAS DE OPERACIÓN DE PICO AL MES = 200 m³</td>
<td></td>
</tr>
<tr>
<td>ENERGÍA MÚSCULAS = 50 m³</td>
<td></td>
</tr>
<tr>
<td>FACTOR DE PLANTA MUSICAL = 0,80</td>
<td></td>
</tr>
</tbody>
</table>

| CENTRAL EQUIVALENTE DE BASE = 336 m³ |
| HOPAS DE OPERACIÓN DE PICO AL MES = 200 m³ |
| ENERGÍA MUSICAL = 50 m³ |
| FACTOR DE PLANTA MUSICAL = 0,80 |

* Procedimiento de los 12 meses del año.
* Se considera el mes en que la lluvia de pico equivalente tiene la menor duración de pico.
* Se asume que los factores de utilización del caudal y de mantenimiento junto con el consumo máximo no afectan la máxima potencia de pico.
<table>
<thead>
<tr>
<th>C.N. Hidrom. Datos de Diseño</th>
<th>Altura de la Caja Neta</th>
<th>Potencia Instalada</th>
<th>EL RESERVOIR DE PECADO DE MEXICO DE 20000 X 3 ES USADO PARA CARGA ELÉCTRICA Y HIDROMANIPULACIÓN</th>
<th>QUE TRABAJAN EN CASA Y POR ESTA RAZÓN NO QUE TENER PRESENTES EL TIEMPO NECESARIO PARA EL MANEJO DE LA POTENCIA EN LOS TIEMPOS DE PICO LIBRE PARA EVITAR PECADO EN LAS TÁCTAS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meses del Año Hidrológico Promedio</td>
<td>Ene</td>
<td>Feb</td>
<td>Mar</td>
<td>Abr</td>
</tr>
<tr>
<td>17.62</td>
<td>17.85</td>
<td>17.85</td>
<td>17.85</td>
<td>17.49</td>
</tr>
<tr>
<td>63.00</td>
<td>63.00</td>
<td>63.00</td>
<td>63.00</td>
<td>63.00</td>
</tr>
<tr>
<td>62.79</td>
<td>63.00</td>
<td>63.00</td>
<td>63.00</td>
<td>63.00</td>
</tr>
<tr>
<td>44.37</td>
<td>40.59</td>
<td>44.95</td>
<td>43.50</td>
<td>43.50</td>
</tr>
<tr>
<td>95</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Horas de Operación de Base Al Mes</td>
<td>174.00</td>
<td>168.00</td>
<td>162.00</td>
<td>156.00</td>
</tr>
<tr>
<td>Potencia de la Central de Pico en Mw</td>
<td>0.94</td>
<td>0.98</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>Energía de Pico en Mw</td>
<td>0.36</td>
<td>0.42</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>Horas de Operación de Pico al Mes</td>
<td>174.00</td>
<td>168.00</td>
<td>162.00</td>
<td>156.00</td>
</tr>
<tr>
<td>Potencia de la Central de Pico en Mw</td>
<td>0.94</td>
<td>0.98</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>Energía de Pico en Mw</td>
<td>0.36</td>
<td>0.42</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>1) Se considera el mes en que la central equivalente de pico tiene la mayor duración de pico.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Se asume que los factores de utilización del agua y de mantenimiento junto con el consumo propio no afectan la potencia de pico en ensayo. El agua central trabaja todo el mes en base reducir la potencia para mantener la correcta el agua y energía distribuida al sistema.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro N° 32-26



#
#

  

.







#

.

-

  !.
 -. 
.
 .
 -

/


#

   

(/
 

 







#



#-

- !-"$%&'-

(.

. ". #$%&. '.
.).  *.




 - (- -


 
 


/ 

/  

"/

/ ! $/

 





   





#

  

     
#$%&'/


 


 



)- #

)*+/

,-/




(/

 



#





#












 

   


 









 *+
 







#




!#





 









+.

 /
#




. /
,-

-

      







 











 

 



 

  


   

.
  -,.
.
"#

#


-.


    -
#


<table>
<thead>
<tr>
<th>MESES DEL AÑO</th>
<th>HIDROLOGICO PROPIO</th>
<th>ENE</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SET</th>
<th>OCT</th>
<th>NOV</th>
<th>Dic</th>
<th>ANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSA MENSUAL PROPIO eN 42.23%</td>
<td>17.36</td>
<td>18.64</td>
<td>19.50</td>
<td>19.76</td>
<td>19.16</td>
<td>17.28</td>
<td>27.50</td>
<td>9.51</td>
<td>10.79</td>
<td>19.49</td>
<td>16.53</td>
<td>15.89</td>
<td>14.33</td>
</tr>
<tr>
<td>POTENCIA DISPONIBLE DE PICO EN MG</td>
<td>78.80</td>
</tr>
<tr>
<td>HORAS DE OPERACIÓN DE PICO AL DÍA</td>
<td>22.00</td>
</tr>
<tr>
<td>POTENCIA MENSUAL EN MG</td>
<td>69.94</td>
<td>74.96</td>
<td>78.02</td>
<td>78.92</td>
<td>74.51</td>
<td>61.17</td>
<td>37.40</td>
<td>13.16</td>
<td>7.79</td>
<td>6.17</td>
<td>5.36</td>
<td>5.30</td>
<td>5.30</td>
</tr>
<tr>
<td>ENERGÍA MENSUAL EN BAH</td>
<td>50.56</td>
<td>68.58</td>
<td>56.24</td>
<td>53.26</td>
<td>44.77</td>
<td>36.40</td>
<td>27.68</td>
<td>30.40</td>
<td>56.79</td>
<td>46.60</td>
<td>45.82</td>
<td>56.28</td>
<td>65.35</td>
</tr>
<tr>
<td>FACTOR DE PLANTA MENSUAL</td>
<td>54</td>
<td>93</td>
<td>67</td>
<td>90</td>
<td>59</td>
<td>67</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>90</td>
<td>83</td>
<td>89</td>
<td>61</td>
</tr>
<tr>
<td>CENTRAL EQUIVALENTE DE BASE</td>
<td></td>
</tr>
<tr>
<td>HORAS DE OPERACIÓN DE BASE AL MES</td>
<td>744.00</td>
<td>672.00</td>
<td>744.00</td>
<td>720.00</td>
<td>744.00</td>
<td>720.00</td>
<td>744.00</td>
<td>720.00</td>
<td>744.00</td>
<td>720.00</td>
<td>744.00</td>
<td>720.00</td>
<td>8760.00</td>
</tr>
<tr>
<td>POTENCIA DE BASE EN MG</td>
<td>13.71</td>
<td>6.96</td>
<td>20.19</td>
<td>30.00</td>
<td>33.29</td>
<td>14.03</td>
<td>28.16</td>
<td>22.41</td>
<td>24.33</td>
<td>37.94</td>
<td>14.27</td>
<td>17.34</td>
<td>22.38</td>
</tr>
<tr>
<td>ENERGÍA DE BASE EN BAH</td>
<td>10.20</td>
<td>6.07</td>
<td>15.02</td>
<td>22.21</td>
<td>27.54</td>
<td>15.02</td>
<td>22.21</td>
<td>15.02</td>
<td>22.21</td>
<td>15.02</td>
<td>22.21</td>
<td>15.02</td>
<td>194.73</td>
</tr>
</tbody>
</table>

CAUSA MENSUAL PROPIO eN 42.23%	45.67	42.31	49.75	46.99	49.99	40.70	45.78	39.66	40.70	44.63	46.80	46.00	46.00	
POTENCIA DISPONIBLE DE PICO EN MG	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00	
HORAS DE OPERACIÓN DE PICO AL DÍA	71.00	71.00	71.00	71.00	71.00	71.00	71.00	71.00	71.00	71.00	71.00	71.00	71.00	
POTENCIA MENSUAL EN MG	147.72	150.00	150.00	144.64	150.00	150.00	150.00	127.26	126.02	127.81	150.00	150.00	150.00	
ENERGÍA MENSUAL EN BAH	101.82	96.63	101.82	96.63	101.82	96.63	101.82	96.63	101.82	96.63	101.82	96.63	101.82	
FACTOR DE PLANTA MENSUAL	91	91	91	91	91	91	91	91	91	91	91	91	91	
CENTRAL EQUIVALENTE DE BASE														
HORAS DE OPERACIÓN DE BASE AL MES	744.00	672.00	744.00	720.00	744.00	720.00	744.00	720.00	744.00	720.00	744.00	720.00	8760.00	
POTENCIA DE BASE EN MG	44.83	1.79	2.33	2.66	2.33	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	
ENERGÍA DE BASE EN BAH	33.36	1.12	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	

CAUSA MENSUAL PROPIO eN 42.23%	175.17	145.73	147.67	157.54	147.67	147.67	157.54	147.67	147.67	157.54	147.67	157.54	152.54
POTENCIA DISPONIBLE DE PICO EN MG	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00	150.00
HORAS DE OPERACIÓN DE PICO AL DÍA	127.02	127.02	127.02	127.02	127.02	127.02	127.02	127.02	127.02	127.02	127.02	127.02	127.02
POTENCIA MENSUAL EN MG	65.46	95.65	125.29	77.82	125.29	125.29	125.29	125.29	125.29	125.29	125.29	125.29	125.29
ENERGÍA DE PICO EN BAH	65.46	95.65	125.29	77.82	125.29	125.29	125.29	125.29	125.29	125.29	125.29	125.29	125.29

1) PROMEDIO DE LOS 12 MESES DEL AÑO.
2) SE CONSIDERA EL AÑO DE LA MÁXIMA DURACIÓN DE PICO DE LA CENTRAL EQUIVALENTE.
3) SE MENCIONA QUE LOS FACTORES DE UTILIZACIÓN DEL AGUA Y DE MANUTENCIÓN INFLUYERON EN EL CONSUMO, POR lo que la PREGUNTA Y Elección DE LA CENTRAL EQUIVALENTE.
4) EN NA,
5) EN NA,
6) EN NA,
7) EN NA,
8) EN NA,
9) EN NA,
10) EN NA,
11) EN NA,
12) EN NA,
13) EN NA,
14) EN NA,
15) EN NA,
16) EN NA,
17) EN NA,
18) EN NA,
19) EN NA,
20) EN NA,
21) EN NA,
Datos de Diseño y Altura de la Caída Meta

| Meses del Año Hidrológico Primero | ENE | FEB | MAR | APR | MAY | JUN | JUL | AGO | SET | OCT | NOV | DICI | TOTAL |
|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|--------|
| Enero | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 600 |
| Febrero | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 363 |
| Marzo | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 363 |
| Abril | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 270 |
| Mayo | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 640 |

Potencia Instalada (Uso en 7 Días)

| Meses del Año Hidrológico Primero | ENE | FEB | MAR | APR | MAY | JUN | JUL | AGO | SET | OCT | NOV | DICI | TOTAL |
|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|--------|
| Enero | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 7440 |
| Febrero | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 3700 |
| Marzo | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 2700 |

Energía Mensual en kWh

| Meses del Año Hidrológico Primero | ENE | FEB | MAR | APR | MAY | JUN | JUL | AGO | SET | OCT | NOV | DICI | TOTAL |
|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|--------|
| Enero | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
| Febrero | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 363 |
| Marzo | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 363 |
| Abril | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 270 |
| Mayo | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 640 |

Energía de Operación de Pico en kWh

| Meses del Año Hidrológico Primero | ENE | FEB | MAR | APR | MAY | JUN | JUL | AGO | SET | OCT | NOV | DICI | TOTAL |
|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|--------|
| Enero | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 744 | 7440 |
| Febrero | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 3700 |
| Marzo | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 2700 |

Energía de Operación de Pico en kWh

| Meses del Año Hidrológico Primero | ENE | FEB | MAR | APR | MAY | JUN | JUL | AGO | SET | OCT | NOV | DICI | TOTAL |
|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|--------|
| Enero | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
| Febrero | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 363 |
| Marzo | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 515 | 363 |
| Abril | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 270 |
| Mayo | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 640 |

Energía de Operación de Pico en kWh

<p>	Meses del Año Hidrológico Primero	ENE	FEB	MAR	APR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DICI	TOTAL
Enero	744	744	744	744	744	744	744	744	744	744	744	744	7440	
Febrero	504	504	504	504	504	504	504	504	504	504	504	504	3700	
Marzo	375	375	375	375	375	375	375	375	375	375	375	375	2700	</p>
<table>
<thead>
<tr>
<th>MESES DEL AÑO</th>
<th>NÚMERO DE DÍAS</th>
<th>CENTRO EQUIVALENTE A PICO</th>
<th>CENTRO EQUIVALENTE A BASE</th>
<th>CENTRO EQUIVALENTE A PICO Y BASE</th>
<th>CENTRO EQUIVALENTE A PICO Y BASE Y DÍAS</th>
<th>CENTRO EQUIVALENTE A PICO Y BASE Y DÍAS Y NÚMERO DE DÍAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DÍAS POR MES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERO</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
<tr>
<td>FEBRERO</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
<tr>
<td>MARZO</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
<tr>
<td>ABRIL</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
<tr>
<td>MAYO</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
<tr>
<td>JUNIO</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
<tr>
<td>JULIO</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
<tr>
<td>AGOSTO</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
<tr>
<td>SETIEMBRE</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
<tr>
<td>OCTUBRE</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
<tr>
<td>NOVIEMBRE</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
<tr>
<td>DICIEMBRE</td>
<td>77</td>
<td>105</td>
<td>133</td>
<td>172</td>
<td>210</td>
<td>248</td>
</tr>
</tbody>
</table>

CENTRO EQUIVALENTE A PICO

- **HORAS DE OPERACIÓN DE PICO AL DIA**: 77 horas.
- **POTENCIA MENSUAL DE PICO**: 105 MW.
- **ENERGÍA MENSUAL DE PICO**: 133 GWh.

CENTRO EQUIVALENTE A BASE

- **HORAS DE OPERACIÓN DE BASE AL DIA**: 77 horas.
- **POTENCIA MENSUAL DE BASE**: 172 MW.
- **ENERGÍA MENSUAL DE BASE**: 248 GWh.

CENTRO EQUIVALENTE A PICO Y BASE

- **HORAS DE OPERACIÓN DE PICO AL DIA**: 77 horas.
- **POTENCIA MENSUAL DE PICO**: 105 MW.
- **ENERGÍA MENSUAL DE PICO**: 133 GWh.

CENTRO EQUIVALENTE A PICO Y BASE Y DÍAS

- **HORAS DE OPERACIÓN DE PICO AL DIA**: 77 horas.
- **POTENCIA MENSUAL DE PICO**: 105 MW.
- **ENERGÍA MENSUAL DE PICO**: 133 GWh.

CENTRO EQUIVALENTE A PICO Y BASE Y DÍAS Y NÚMERO DE DÍAS

- **HORAS DE OPERACIÓN DE PICO AL DIA**: 77 horas.
- **POTENCIA MENSUAL DE PICO**: 105 MW.
- **ENERGÍA MENSUAL DE PICO**: 133 GWh.

NOTA: Los valores se muestran en MW (megawatts) y GWh (gigawatt-hours).
<table>
<thead>
<tr>
<th>CENTRO</th>
<th>DÍAS DE CONSULTAS</th>
<th>DÍAS DE CONSULTAS DE PEDIATRA</th>
<th>DÍAS DE CONSULTAS DE PEDIATRA</th>
<th>DÍAS DE CONSULTAS DE PEDIATRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

NOTA: Se ha omitido el título y el subtítulo del documento. El contenido presenta una serie de valores numéricos en una tabla de 20 filas y 4 columnas, con encabezados en español.
Círculo 32-33

HOJAS DE OPERACIÓN DE LA CENTRAL DE PICO RECONOCIDAS A LA HORA INFERIOR

Dato de Diseño: Altura media de la carga 46.50 mts.

| Antigua Fecha N°: | 30.1 |

<table>
<thead>
<tr>
<th>Meses del Año Hidrológico Promedio</th>
<th>ENE</th>
<th>FEB</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SET</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
<th>ANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dias por Mes:</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>365</td>
</tr>
<tr>
<td>CAUDAL MENSUAL PROMEDIO en m³/seg</td>
<td>266.0</td>
<td>266.0</td>
<td>266.0</td>
<td>266.0</td>
<td>266.0</td>
<td>231.0</td>
<td>231.0</td>
<td>231.0</td>
<td>231.0</td>
<td>231.0</td>
<td>231.0</td>
<td>231.0</td>
<td>75.45*</td>
</tr>
<tr>
<td>POTENCIA DISponible de Pico en kW</td>
<td>108.0</td>
<td>108.0*</td>
</tr>
<tr>
<td>POTENCIA DE OPERACIÓN DE PICO AL DÍA</td>
<td>0.0</td>
</tr>
<tr>
<td>POTENCIA MENSUAL REAL en kW</td>
<td>108.0</td>
<td>108.0*</td>
</tr>
<tr>
<td>ENERGÍA MENSUAL REAL en GWh</td>
<td>77.88</td>
<td>77.88*</td>
</tr>
<tr>
<td>FACTOR DE PLANTA MENSUAL</td>
<td>0.97</td>
</tr>
<tr>
<td>CENTRAL EQUIVALENTE DE BASE:</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Horas de Operación de Base al Mes</td>
<td></td>
</tr>
<tr>
<td>POTENCIA DE BASE en kW</td>
<td>108.0</td>
<td>108.0*</td>
</tr>
<tr>
<td>ENERGÍA DE BASE en GWh</td>
<td>77.88</td>
<td>77.88*</td>
</tr>
</tbody>
</table>

CENTRAL EQUIVALENTE DE PICO:

Horas de Operación de Pico al Mes													
POTENCIA DE OPERACIÓN DE PICO													
ENERGÍA DE OPERACIÓN DE PICO													
CENTRAL EQUIVALENTE DE BASE:													1.00
Horas de Operación de Base al Mes													
POTENCIA DE BASE en kW													108.0
ENERGÍA DE BASE en GWh													77.88

Círculo 32-33

HOJAS DE OPERACIÓN DE LA CENTRAL DE PICO RECONOCIDAS A LA HORA INFERIOR

Dato de Diseño: Altura media de la carga 555 mts.

| Antigua Fecha N°: | 31 |

<table>
<thead>
<tr>
<th>Meses del Año Hidrológico Promedio</th>
<th>ENE</th>
<th>FEB</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SET</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
<th>ANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dias por Mes:</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>365</td>
</tr>
<tr>
<td>CAUDAL MENSUAL PROMEDIO en m³/seg</td>
<td>30.0</td>
<td>33.74*</td>
</tr>
<tr>
<td>POTENCIA DISponible de Pico en kW</td>
<td>126.0</td>
<td>126.0*</td>
</tr>
<tr>
<td>POTENCIA DE OPERACIÓN DE PICO AL DÍA</td>
<td>0.0</td>
</tr>
<tr>
<td>POTENCIA MENSUAL REAL en kW</td>
<td>126.0</td>
<td>126.0*</td>
</tr>
<tr>
<td>ENERGÍA MENSUAL REAL en GWh</td>
<td>89.96</td>
<td>89.96*</td>
</tr>
<tr>
<td>FACTOR DE PLANTA MENSUAL</td>
<td>0.83</td>
</tr>
<tr>
<td>CENTRAL EQUIVALENTE DE BASE:</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Horas de Operación de Base al Mes</td>
<td></td>
</tr>
<tr>
<td>POTENCIA DE BASE en kW</td>
<td>126.0</td>
<td>126.0*</td>
</tr>
<tr>
<td>ENERGÍA DE BASE en GWh</td>
<td>89.96</td>
<td>89.96*</td>
</tr>
</tbody>
</table>

CENTRAL EQUIVALENTE DE PICO:

Horas de Operación de Pico al Mes													
POTENCIA DE OPERACIÓN DE PICO													
ENERGÍA DE OPERACIÓN DE PICO													
CENTRAL EQUIVALENTE DE BASE:													1.00
Horas de Operación de Base al Mes													
POTENCIA DE BASE en kW													126.0
ENERGÍA DE BASE en GWh													89.96

* Se consideran los meses en el último cuarto de la carga de Pico. ** Se consideran los meses en el último cuarto de la carga de Pico. *** Se consideran los meses en el último cuarto de la carga de Pico.
Cuadro N°3.2 - 34

Horas de Operación de la Central de Pico Redondeadas a la Hora Inferior

<table>
<thead>
<tr>
<th>MESES DEL AÑO</th>
<th>HIDROLÓGICO PROMEDIO</th>
<th>ENE</th>
<th>FEB</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
<th>ANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Días por Mes</td>
<td></td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>31</td>
</tr>
</tbody>
</table>

Central Equivalente de Base:

<table>
<thead>
<tr>
<th>HORAS DE OPERACION DE BASE AL MES</th>
<th>744.00</th>
<th>744.00</th>
<th>744.00</th>
<th>744.00</th>
<th>744.00</th>
<th>744.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTENCIA BASE EN kW</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
</tr>
<tr>
<td>ENERGÍA DE BASE EN GVA</td>
<td>105.26</td>
<td>105.26</td>
<td>105.26</td>
<td>105.26</td>
<td>105.26</td>
<td>105.26</td>
</tr>
<tr>
<td>FACTOR DE PLANTA MENSUAL</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
</tr>
</tbody>
</table>

Central Equivalente de Pico:

<table>
<thead>
<tr>
<th>HORAS DE OPERACION DE PICO AL MES</th>
<th>713.00</th>
<th>713.00</th>
<th>713.00</th>
<th>713.00</th>
<th>713.00</th>
<th>713.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTENCIA DEL PICO EN kW</td>
<td>215.00</td>
<td>215.00</td>
<td>215.00</td>
<td>215.00</td>
<td>215.00</td>
<td>215.00</td>
</tr>
<tr>
<td>ENERGÍA DEL PICO EN GVA</td>
<td>153.50</td>
<td>153.50</td>
<td>153.50</td>
<td>153.50</td>
<td>153.50</td>
<td>153.50</td>
</tr>
<tr>
<td>FACTOR DE PLANTA MENSUAL</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
</tr>
</tbody>
</table>

Cuadro N°3.15 - 34

Horas de Operación de la Central de Pico Redondeadas a la Hora Inferior

<table>
<thead>
<tr>
<th>MESES DEL AÑO</th>
<th>HIDROLÓGICO PROMEDIO</th>
<th>ENE</th>
<th>FEB</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
<th>ANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Días por Mes</td>
<td></td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>31</td>
</tr>
</tbody>
</table>

Central Equivalente de Base:

<table>
<thead>
<tr>
<th>HORAS DE OPERACION DE BASE AL MES</th>
<th>744.00</th>
<th>744.00</th>
<th>744.00</th>
<th>744.00</th>
<th>744.00</th>
<th>744.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTENCIA BASE EN kW</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
<td>345.00</td>
</tr>
<tr>
<td>ENERGÍA DE BASE EN GVA</td>
<td>105.26</td>
<td>105.26</td>
<td>105.26</td>
<td>105.26</td>
<td>105.26</td>
<td>105.26</td>
</tr>
<tr>
<td>FACTOR DE PLANTA MENSUAL</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
</tr>
</tbody>
</table>

Central Equivalente de Pico:

<table>
<thead>
<tr>
<th>HORAS DE OPERACION DE PICO AL MES</th>
<th>713.00</th>
<th>713.00</th>
<th>713.00</th>
<th>713.00</th>
<th>713.00</th>
<th>713.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTENCIA DEL PICO EN kW</td>
<td>215.00</td>
<td>215.00</td>
<td>215.00</td>
<td>215.00</td>
<td>215.00</td>
<td>215.00</td>
</tr>
<tr>
<td>ENERGÍA DEL PICO EN GVA</td>
<td>153.50</td>
<td>153.50</td>
<td>153.50</td>
<td>153.50</td>
<td>153.50</td>
<td>153.50</td>
</tr>
<tr>
<td>FACTOR DE PLANTA MENSUAL</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
</tr>
</tbody>
</table>

Notas
1. **Proporcion de los 12 meses del año.**
2. **Se considera el factor de uso de pico con la central equivalente.**
3. **Se estima que los factores de utilización de las caudales de Mantenimiento se basan en el consumo propio durante la operación.**
 El consumo de energía que se agrega a la central equivalente.
4. **Se considera que la calma del viento no afecta la potencia de pico en el caso de que la central equivalente se mantenga en operación.**

Crédito:

- **Determination de caudales equivalentes de base y pico considerando regulación diaria y caudales promedio mensuales según las normas técnicas del PNE.**

Crédito:

- **Nueva Ficha N°16**

Crédito:

- **Nueva Ficha N°15**

Crédito:

- **Nueva Ficha N°15**

Crédito:

- **Nueva Ficha N°15**

Crédito:

- **Nueva Ficha N°15**
<table>
<thead>
<tr>
<th>Días por Mes</th>
<th>31</th>
<th>28</th>
<th>31</th>
<th>30</th>
<th>31</th>
<th>30</th>
<th>31</th>
<th>30</th>
<th>30</th>
<th>31</th>
<th>30</th>
<th>30</th>
<th>31</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia de Base en MW</td>
<td>79.4</td>
</tr>
<tr>
<td>Energía de Pico en GWh</td>
<td>4.76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meses del Año</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSA ESPECIAL</td>
<td>122.6</td>
</tr>
<tr>
<td>Potencia Mégalo en MW</td>
<td>124.45</td>
</tr>
<tr>
<td>Horas de Operación de Pico al Día</td>
<td>0.00</td>
</tr>
<tr>
<td>Energía Mégalo en GWh</td>
<td>0.04</td>
</tr>
<tr>
<td>Factor de Planta Mégalo</td>
<td>55.41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meses del Año</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUSA NORMAL</td>
<td>28.00</td>
</tr>
<tr>
<td>CAUSA ESPECIAL</td>
<td>82.45</td>
</tr>
<tr>
<td>Potencia Mégalo en MW</td>
<td>110.45</td>
</tr>
<tr>
<td>Horas de Operación de Pico al Día</td>
<td>0.00</td>
</tr>
<tr>
<td>Energía Mégalo en GWh</td>
<td>0.09</td>
</tr>
<tr>
<td>Factor de Planta Mégalo</td>
<td>51.41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CENTRAL EQUIVALENTE DE PICO (**)</th>
<th>Horas de Operación de Base al Mes</th>
<th>744.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia de Base en MW</td>
<td>72.00</td>
</tr>
<tr>
<td>Energía de Pico en GWh</td>
<td>4.76</td>
</tr>
<tr>
<td>CENTRAL EQUIVALENTE DE BASE</td>
<td>Horas de Operación de Base al Mes</td>
<td>744.05</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Potencia de Base en MW</td>
<td>72.00</td>
</tr>
<tr>
<td>Energía de Pico en GWh</td>
<td>4.76</td>
</tr>
</tbody>
</table>

(*) PROMEDIO DE LOS 12 MESES DEL AÑO
(**) SE CONSIDERA EL MÉS DE LA MÁXIMA DURACIÓN DE PICO DE LA CENTRAL EQUIVALENTE
(***+) SE ASUME QUE LOS FACTORES DE UTILIZACIÓN DEL CAUSA DE MANTENIMIENTO JUNTO CON EL CUADRO PREGUNTA SI HAY ACTIVIDADES DE MANTENIMIENTO QUE AFECTAN LA POTENCIA DE PICO.
<table>
<thead>
<tr>
<th>FÓRMULA 3 (en 1983)</th>
<th>FACTORES DE CORRECCIÓN</th>
<th>HÁBITO DE HOMBRE</th>
<th>HÁBITO DE MUJER</th>
<th>HÁBITO DE TODO EL MÉXICO</th>
<th>HÁBITO DE TODO EL MÉXICO</th>
<th>HÁBITO DE TODO EL MÉXICO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CENTRO: SIA</td>
<td>DETERMINACIÓN APROXIMADA DE CENTRALES EQUIVALENTES DE BASE Y PICO CONSIDERANDO REGULACIÓN DIURNA Y CAUSAS PROPIEDAD MENSUALES SEGÚN LAS FICHAS TÉCNICAS DEL PME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.M. MATRIZ</td>
<td>DATOS DE DISEÑO: ALTURA DE LA CAÍDA MÁXIMA = 45.00 mts. POTENCIA INSTALADA = 125 MW EN 2 GRUPOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro N° 3.2 - 37

<table>
<thead>
<tr>
<th>Número de Días del Año</th>
<th>Horas de Operación de la Central de Pico Reducidas a la Central de Pico Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meses del Año Hidrológico Proyectado:</td>
<td></td>
</tr>
<tr>
<td>ENE</td>
<td>FEB</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
</tr>
</tbody>
</table>

CUALITATIVO MENSUAL MENSUAL en 43hrs (en promedio)	24.9	25.0	25.0	25.0	27.1	17.8	17.3	14.9	14.7	19.7	21.4	23.4	20.56
POTENCIA DISponible de PICO en kW	100.0	100.0	100.0	100.0	100.0	100.0	95.5	86.8	81.3	82.6	100.0	100.0	95.27
HORAS DE OPERACIÓN DE PICO al Día	72.0	-	-	-	-	-	-	-	-	-	-	-	-
POTENCIA MENSUAL REAL en kW	99.7	100.0	100.0	100.0	100.0	100.0	95.5	86.8	81.3	82.6	100.0	100.0	95.27
ENERGÍA MENSUAL REAL en GHA	71.1	66.4	71.3	69.7	71.3	69.7	67.6	69.7	66.4	67.6	71.3	69.7	67.6
FACTOR DE PLANTA MENSUAL	-	-	-	-	-	-	-	-	-	-	-	-	-
CENTRAL EQUIVALENTE DE BASE	94.8	100.0	100.0	100.0	100.0	100.0	95.5	86.8	81.3	82.6	100.0	100.0	95.27
NORMAS DE OPERACIÓN DE BASE al MES	74.0	67.2	74.0	72.0	74.0	72.0	74.0	72.0	74.0	72.0	74.0	72.0	74.0
POTENCIA DE BASE en kW	94.8	99.4	99.4	99.4	99.4	99.4	97.9	92.8	87.5	87.5	99.4	99.4	97.9
ENERGÍA DE BASE en GHA	70.7	64.4	71.3	69.7	71.3	69.7	67.6	69.7	66.4	67.6	71.3	69.7	67.6
ENERGÍA DE PICO en GHA	35.4	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7

CENTRAL EQUIVALENTE DE PICO	94.8	100.0	100.0	100.0	100.0	100.0	95.5	86.8	81.3	82.6	100.0	100.0	95.27
NORMAS DE OPERACIÓN DE PICO al MES	68.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
POTENCIA DE LA CENTRAL DE PICO en kW	93.8	100.0	100.0	100.0	100.0	100.0	95.5	86.8	81.3	82.6	100.0	100.0	95.27
ENERGÍA DE PICO en GHA	35.4	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7

<table>
<thead>
<tr>
<th>GALLETOS: GLOBO</th>
<th>DATOS DE DISEÑO: ALTURA DE LA CAÍDA MÁXIMA = 80.0 y 103.55 mts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nueva Ficha 23-A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meses del Año Hidrológico Proyectado:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>FEB</td>
</tr>
<tr>
<td>31</td>
<td>28</td>
</tr>
</tbody>
</table>

CUALITATIVO MENSUAL MENSUAL en 43hrs (en promedio)	32.7	33.1	31.3	29.5	31.3	12.3	31.3	29.5	31.3	29.5	31.3	29.5	29.5
POTENCIA DISponible de PICO en kW	18.8	20.4	15.1	16.5	15.1	11.6	10.8	12.9	14.0	19.0	15.2	13.4	15.26
HORAS DE OPERACIÓN DE PICO DIARIOS	0.0	-	-	-	-	-	-	-	-	-	-	-	-
POTENCIA MENSUAL REAL en kW	18.8	20.4	15.1	16.5	15.1	11.6	10.8	12.9	14.0	19.0	15.2	13.4	15.26
ENERGÍA MENSUAL REAL en GHA	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3
FACTOR DE PLANTA MENSUAL	-	-	-	-	-	-	-	-	-	-	-	-	-
CENTRAL EQUIVALENTE DE BASE	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3
NORMAS DE OPERACIÓN DE BASE al MES	74.0	67.2	74.0	72.0	74.0	72.0	74.0	72.0	74.0	72.0	74.0	72.0	74.0
POTENCIA DE BASE en kW	18.8	20.4	15.1	16.5	15.1	11.6	10.8	12.9	14.0	19.0	15.2	13.4	15.26
ENERGÍA DE BASE en GHA	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3
ENERGÍA DE PICO en GHA	-	-	-	-	-	-	-	-	-	-	-	-	-

1) Promedio de los 12 meses del año.
2) Se consideran el mes en que la CENTRAL DE PICO EQUIVALENTE TIENE LA MEJOR OPERACIÓN DE PICO.
3) Se asume que los factores de utilización del agua, y de mantenimiento junto con el consumo propio no afectan a la POTENCIA DE PICO SIN EMPLEAR CUANDO LA CENTRAL TRABAJA TODO EL MES EN BASE LA POTENCIA DE REDUCE PARA MAINTENER LA CORRECTA REGULACION CON LA ENERGIA ENTREGADA AL SISTEMA.
Cuadro N° 3.2 - 38

COSTO ACTUALIZADO TOTAL (CAT)

(Miles US$ Dólares a Dic. 1965)

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>CAL</th>
<th>CAD</th>
<th>CEP</th>
<th>CAC</th>
<th>CAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kro. 1</td>
<td>65,462.00</td>
<td>539,565.00</td>
<td>44,481.25</td>
<td>2,956,07</td>
<td>652,720.77</td>
</tr>
<tr>
<td>Kro. 2</td>
<td>75,208.00</td>
<td>490,63</td>
<td>47,177.65</td>
<td>2,983,52</td>
<td>616,003.17</td>
</tr>
<tr>
<td>Kro. 3</td>
<td>59,569.00</td>
<td>463,772.00</td>
<td>56,496.12</td>
<td>1,687,42</td>
<td>533,524.54</td>
</tr>
</tbody>
</table>
que presenta el SICN.
Por lo expuesto se requeriría plantear una nueva alterna-
tiva de transmisión asociado a una nueva secuencia de ge-
eración, teniendo en cuenta lo estudiado y planteado en
el Capítulo II del presente Proyecto.

3.3.1. Aspectos resaltantes de las Alternativas de trans-
imisión presentadas en 3.1
Del análisis efectuado se puede apreciar que la con-
figuración del sistema durante el período de análisis
se mantendría como una red netamente radial, especialmen-
te dentro del Norte y Norte Medio, permitiendo que la con-
fiabilidad del suministro eléctrico a las cargas del sis-
tema sea reducido a excepción de la carga de Lima que ten-
dría un abastecimiento diversificado desde diferentes pun-
tos. Cabe recalcar en general, para las tres alternati-
vas analizadas que algunos años no se tendría reserva té-
mica suficiente en Lima. En el Norte, salvo el aporte de
las CC.HH. Carhuaquero, Cañón del Pato y Quitaracsa se re-
querría de generación térmica adicional, lo cual sería
primordialmente para abastecer cargas locales.
La C.H. Quitaracsa sería conveniente que evacúe su energía
directamente a Chimbote en 220 KV, así también el incre-
mento fuerte de la carga de Cajamarca ocasionado por el
proyecto minero de Michiquillay, haría necesario aumentar
ternas adicionales a nivel de 60 KV, habría también la po-
sibilidad de elevar el nivel de tensión del enlace entre
Guadalupe y Cajamarca a 138 KV ó 220 KV o se podría ali-
mentar a dicha carga directamente desde la C.H. Carhua - quero en 220 KV.
La C.T.G de Zorritos permitiría abastecer las cargas en el Norte, disminuyendo de acuerdo a las etapas de estudio su área de influencia hasta Piura Oeste.
Debido a la puesta en operación de los grandes desarro llos hidroeléctricos en los ríos Tambo y Ene (CC.HH. Puer to Prado y Sumaberí) se requeriría de líneas en 500 KV pa ra evacuar la energía de estas Centrales hacia Lima que representa todo el período de estudio más del 50% de la de manda total del sistema.
Las alternativas Nros. 1 y 2 mencionadas en 3.1 se carac terizan por presentar la probabilidad de transmitir volú menes importantes de potencia del Centro hacia el Norte, para ello se requeriría circuitos en la faja costera a un nivel de 500 KV, desde Lima hasta Chiclayo.
En la alternativa Nº 3, la C.H. Olmos permite abastecer la demanda del norte en forma total y parte del norte me dio, transmitiéndose los excedentes hacia Lima, para ello se necesita reforzar la línea costera con circuitos adicio nales en 220 KV, los mismos operarían dentro del perío do cada vez más holgadamente. Se aprecia que no se req uiriría de circuitos costeros en 500 KV.

3.3.2. Consideraciones tomadas en cuenta para aumentar la confiabilidad del SICN

En el presente trabajo no se pretende hacer un es-
tudio pormenorizado de la confiabilidad del sistema, aplicando por ejemplo métodos probabilísticos, sino trata de buscar el incremento de la confiabilidad del mismo desarrollando una nueva alternativa de la expansión del sistema de transmisión en anillos, aprovechando las particularidades y características a nivel de alta tensión (trópical) del SICN, por el que se ha tomado en cuenta lo siguiente:

b) Es conveniente que la C.H. Quitaracsa cuya puesta en operación esta prevista para 1997, evacüe directamente
su energía a Chimbote en 220 KV. De acuerdo al mercado eléctrico en el Norte Medio, específicamente en el departamento de Ancash se prevé la puesta en operación del desarrollo minero de Antamina cerca del emplaza miento de la C.H. Chaglla, este proyecto minero requeriría una potencia de 30.4 MW, podría aprovecharse la cercanía de esta carga con la C.H. Chaglla para poner en operación un circuito entre la C.H. Chaglla y la S. E. que estaría ubicada en Antamina en 220 KV, podría asimismo conectarse también esta carga mediante una línea en 220 KV desde la C.H. Quitarasca cerrando un anillo en el Norte Medio. Lo anterior permitiría interconectar Centromin y el Centro con el Norte Medio, lo que produciría una variabilidad de entrega de energía entre las cargas del SICN, sin incluir el subsistema Norte.

c) La interconexión del SICN de Pucallpa está prevista para 1999. La C.H. Chaglla abastecería completamente su demanda, por lo mismo se considera concentrado esta carga en la barra denominada Chaglla, aunque habría la posibilidad de abastecerla de energía mediante una línea desde Tingo María que a su vez estaría conectada en 138 KV desde la S.E. Paragsha (Cerro de Pasco) en el subsistema Centromin Perú mediante la línea Cerro de Pasco-Huánuco-Tingo María. La tensión que conven dría para abastecer a Pucallpa desde el SICN, sería 220 KV debido a la distancia y magnitud de la carga, por ello se consideraría que la S.E. Tingo María podría
ser otro punto de evacuación de la energía producida - en la C.H. Chaglla, pero debido a la simplificación efectuada en Centromin y el SICN a nivel de transmisión la configuración conveniente sería la mencionada inicialmente.

d) Para las fechas previstas de entrada en operación de la C.H. Chaglla, la carga principal del SICN seguiría concentrada en Lima; sin embargo debido a las características de la carga, con un factor de carga previsto entre 60 a 65% y con una variación significativa de la carga entre los momentos de no punta y punta (de 20 a 22% entre las 18 y 19 horas) y el hecho de que la generación en el Norte sería predominantemente termoeléctrica, es de prever que en horas fuera de punta haya un flujo significativo de energía hidroeléctrica de Lima y la región Central hacia el Norte y Norte Medio, por lo que podría llevarse parte de la energía de chaglla a Paramonga Nueva lo que incrementaría la confiabilidad del sistema.

e) Dadas las características geográficas de la región y la ubicación de la s.e. Antamina, sería conveniente evacuar la energía de la C.H. Chaglla a través de esta subestación, llegando luego a la barra Paramonga Nueva a un nivel de tensión de 220 KV. Además debido a la potencia a evacuar de esta C.H. podría plantearse una terna adicional y siendo la gran Lima la carga mayor del SICN, esta línea se uniría a la barra Zapallal a un nivel de 220 KV.
f) En el Norte debido a las características de la demanda y su ubicación geográfica, se tomará en cuenta esencialmente un desarrollo de la oferta de generación de tipo local y regional, siendo necesario la interconexión de Tumbes al SICN a fines del año 2000. Las cargas de Tumbes, Talara y Piura Oeste se abastecerían esencialmente de energía térmica. En horas fuera de punta se tendría excedentes hidráulicos en el Centro y Lima, lo que permitiría abastecer a este subsistema (Norte) con energía hidroeléctrica. De esta manera se tendría doble posibilidad de entrega de energía a este subsistema, siendo: una generación térmica local y una generación hidráulica del Sistema Interconectado, aumentando la seguridad de servicio del Norte.

g) Habría la posibilidad de utilizar restos fósiles aprovechables dentro del área de influencia del subsistema Norte, como: carbón, gas, etc., necesitando éstas un estudio más profundo para verificar y definir la factibilidad de su uso. Estas alternativas representarían posibles soluciones al problema energético de este subsistema.
3.3.3. Balance de Demanda y Oferta de Potencia a nivel de Subsistemas de la Nueva Alternativa

De acuerdo a las premisas planteadas en el Capítulo II, 2.4, las características que presenta el sistema a un desarrollo regional y a los criterios de reserva local se plantea un nuevo programa de equipamiento del SICN presentado en el Cuadro N° 3.6 y la oferta de Generación Hidráulica (potencia disponible) de cada central hidroeléctrica se muestra en el Cuadro N° 3.7.

En las figuras de los números 3.13 al 3.16 se muestran los balances efectuados para los años 1995, 2000, 2005 y 2010 de la Nueva Alternativa, a continuación se desarrolla el análisis a nivel de subsistemas de esta alternativa en los años indicados, sin considerar las pérdidas del SICN.

1995 (Figura N° 3.13).
En el Norte, Tumbes todavía no se encontraría interconectado al SICN, las demás cargas serían abastecidas esencialmente con generación térmica local, a excepción de Chiclayo.
En el Norte Medio se requeriría generar adicionalmente a la energía hidroeléctrica, energía termoeléctrica del orden de 81.5 MW.
En Lima se requeriría generar termoelectricidad que vendría a ser 175 MW.

2000 (Figura N° 3.14)
En el Norte se interconectaría la carga de Tumbes y de Bayovar, cada una de ellas tendría su propia genera-
ción térmica y las demás cargas también serían abastecidas mediante termoeléctricidad, a excepción de Chiclayo. En horas fuera de punta, parte de esta carga sería cubierta con los excedentes hidroeléctricos de los otros subsistemas: existiendo la posibilidad de transmitir energía a partir de Piura Oeste, en donde se encontraría ubicado una C.T. a vapor que operaría en base. El Norte Medio quedaría completamente abastecida de energía hidroeléctrica, con la puesta en operación de las - CC.HH. CHORRO y CHAGLLA.

En la Gran Lima, para abastecer su carga se tendría que generar termoelectricidad de 175 MW. CENTROMIN requeriría evacuar energía del Centro para quedar abastecida su demanda. Para mejorar su confiabilidad y no sobrecargar las líneas de Centromin sería conveniente el enlace entre Chaglla y Carhuamayo.

2005 (Figura No 3.15).

Debido a la puesta en operación de la C.H. Puerto Prado el SICN quedaría abastecida esencialmente con energía hidroeléctrica a excepción del Norte que requeriría su propia generación térmica. En horas fuera de pico ésta disminuiría esencialmente, debido a los excedentes del subsistema Centro. Sería necesario considerar un nuevo nivel de tensión debido a las características de potencia evacuadas de la C.H. Puerto Prado. resultaría conveniente una tensión de 500 KV.

- 2010 (Figura No 3.16).
<table>
<thead>
<tr>
<th>AÑO</th>
<th>GENERACIÓN ELECTRICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>C.H. CAPHUACURO</td>
</tr>
<tr>
<td>1990</td>
<td>AFIZAN, YURACAYO</td>
</tr>
<tr>
<td>1991</td>
<td>16 x 50</td>
</tr>
<tr>
<td>1992</td>
<td>DERIV. Y FOROJE GUITARACSA</td>
</tr>
<tr>
<td>1993</td>
<td>AMPLIACION CANON DEL FOTO</td>
</tr>
<tr>
<td>1993</td>
<td>REGULACION BASE JUNIN</td>
</tr>
<tr>
<td>1994</td>
<td>C.H. VINCAYRA</td>
</tr>
<tr>
<td>1994</td>
<td>TE 1 x 50</td>
</tr>
<tr>
<td>1994</td>
<td>C.H. YUNCAY Y AFIZAN, YAPACI</td>
</tr>
<tr>
<td>1995</td>
<td>TS 1 x 50</td>
</tr>
<tr>
<td>1995</td>
<td>TE 1 x 100</td>
</tr>
<tr>
<td>1995</td>
<td>TV 1 x 150</td>
</tr>
<tr>
<td>1996</td>
<td>C.H. KACHUM</td>
</tr>
<tr>
<td>1996</td>
<td>C.H. CAMAYETE (FAT-TAYAL)</td>
</tr>
<tr>
<td>1997</td>
<td>C.H. GUITARACSA</td>
</tr>
<tr>
<td>1998</td>
<td>C.H. CHACELA</td>
</tr>
<tr>
<td>1999</td>
<td>AMPL. CATHUACUERO</td>
</tr>
<tr>
<td>2000</td>
<td>TE 1 x 50</td>
</tr>
<tr>
<td>2000</td>
<td>TE 1 x 100</td>
</tr>
<tr>
<td>2001</td>
<td>C.H. CHIRPA</td>
</tr>
<tr>
<td>2002</td>
<td>C.H. HUARA 2K</td>
</tr>
<tr>
<td>2003</td>
<td>C.H. HUARA 4K</td>
</tr>
<tr>
<td>2004</td>
<td>16 x 50</td>
</tr>
<tr>
<td>2005</td>
<td>C.H. FUERTO FREGO 1</td>
</tr>
<tr>
<td>2006</td>
<td>TS 1 x 100</td>
</tr>
<tr>
<td>2007</td>
<td>C.H. FUERTO FREGO 2</td>
</tr>
<tr>
<td>2009</td>
<td>C.H. FUERTO FREGO 3</td>
</tr>
</tbody>
</table>
CUADRO N° 3.7

OFERTA DE GENERACIÓN HIDROELECTRICA ALTERNATIVA NUEVA

<table>
<thead>
<tr>
<th>SUB-SISTEMA</th>
<th>CENTRALES HIDROELECTRICAS</th>
<th>POTENCIA DISponible (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRO-NORTE</td>
<td>CAMPUJECHO (1928)</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>ALPUJARRA (1953)</td>
<td>47</td>
</tr>
<tr>
<td>ELECTRO-OESTE</td>
<td>CAMPO DEL RÍO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RÍO JAGUAY (1952)</td>
<td></td>
</tr>
<tr>
<td>ELECTRO-MEDIT.</td>
<td>CAMPO DEL RÍO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RÍO JAGUAY (1957)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(PROD. 1961)</td>
<td></td>
</tr>
<tr>
<td>ELECTRÓLITO</td>
<td>MURANO</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>MATUCAN + AF. YUGAYAYO (1960)</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>CALLAHUANCA 1</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>CALLAHUANCA 2</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>HUAYAPAI</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>HUAYAPAI</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>JIQUIJARCA (1953)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>CAYONTE (1996)</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>MACHUCA-26 (2001)</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>MACHUCA-49 (2007)</td>
<td>85</td>
</tr>
<tr>
<td>CENTROAMÉRICA</td>
<td>OFAYA + FICHACHACA</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>MURANO</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>YAMU + AF. YAMU (1994)</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>YANCAYAN (1996)</td>
<td>122</td>
</tr>
<tr>
<td>ELECTRÍCECUADRO</td>
<td>MURANO + FEGUL. LAGO DE JUNIN (1952)</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>FERITALIFICION</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>CHAYA (1948)</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>PUERTO FPS01 (2005)</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>PUERTO FPS02 (2007)</td>
<td>591</td>
</tr>
<tr>
<td></td>
<td>PUERTO FPS03 (2009)</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>C.H. EXISTENTES</td>
<td></td>
</tr>
</tbody>
</table>
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA NUEVA - 1995

NORTE

- OH: 78.0
- DM: 217.4
- BH: -139.4
- OT: 131.0
 - 1TGx 50 (1991)
 - 1TVx150 (1995)
- RT: 131.0

NORTE MEDIO

- OH: 250.0
- DM: 392.1
- BH: -142.1
- OT: 142.0
 - 1TGx 50 (1994)
- RT: -110.5

LIMA

- OH: 546
- DM: 1308.7
- BH: -762.7
- OT: 110
 - 1TGx50 (1993)
 - 1TGx100 (1994)
- RT: +85

CENTRO

- OH: 292
- DM: 249.1
- BH: +42.9
- OT: 0.0
- RT: 0.0

SUR MEDIO

- OH: 0.0
- DM: 181.5
- BH: -181.5
- OT: +16.0
 - 50.0
- RT: +50.0

EXISTENTE

R H: RESERVA HIDRÁULICA
OH: OFERTA HIDRÁULICA
OT: OFERTA TÉRMICA
BH: BALANCE CON OFERTA HIDRÁULICA
DM: DEMANDA MÁXIMA
RT: RESERVA TÉRMICA
XX: INCREMENTO DE POTENCIA TÉRMICA

X: NÚMERO DE UNIDADES
TW: TIPO (TG = TURBOGAS / TV = TURBOVAPOR)
YY: CAPACIDAD EN MW
ZZ: AÑO DE PUESTA EN OPERACIÓN
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA NUEVA - 2000

<table>
<thead>
<tr>
<th>OH</th>
<th>125.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>308.0</td>
</tr>
<tr>
<td>BH</td>
<td>-183.8</td>
</tr>
<tr>
<td>OT</td>
<td>131.0 *</td>
</tr>
<tr>
<td></td>
<td>1TGx50 (1991)</td>
</tr>
<tr>
<td></td>
<td>1TVx150 (1995)</td>
</tr>
<tr>
<td></td>
<td>1TGx50 (1999)</td>
</tr>
<tr>
<td>RT</td>
<td>181.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OH</th>
<th>530.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>499.5</td>
</tr>
<tr>
<td>BH</td>
<td>+30.5</td>
</tr>
<tr>
<td>OT</td>
<td>142.0 *</td>
</tr>
<tr>
<td></td>
<td>1TGx50 (1994)</td>
</tr>
<tr>
<td>RT</td>
<td>192.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OH</th>
<th>626.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>1687.4</td>
</tr>
<tr>
<td>BH</td>
<td>-1061.4</td>
</tr>
<tr>
<td>OT</td>
<td>110.0 *</td>
</tr>
<tr>
<td></td>
<td>1TGx50 (1993)</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (1994)</td>
</tr>
<tr>
<td></td>
<td>1TGx100 (2000)</td>
</tr>
<tr>
<td>RT</td>
<td>+185.0</td>
</tr>
</tbody>
</table>

EXISTENTE

<table>
<thead>
<tr>
<th>RH</th>
<th>RESERVA HIDRÁULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH</td>
<td>OFERTA HIDRÁULICA</td>
</tr>
<tr>
<td>OT</td>
<td>OFERTA TÉRMICA</td>
</tr>
<tr>
<td>BH</td>
<td>BALANCE CON OFERTA</td>
</tr>
<tr>
<td>DM</td>
<td>DEMANDA MAXIMA</td>
</tr>
<tr>
<td>RT</td>
<td>RESERVA TÉRMICA</td>
</tr>
</tbody>
</table>

X: N° DE UNIDADES
T: TIPO (TG = TURBOGAS
TV = TURBOVAPOR)
YY = CAPACIDAD EN MW
ZZ = AÑO DE PUESTA EN OPERACION

X TWX YY (ZZ) INCREMENTO DE POTENCIA TÉRMICA
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA NUEVA - 2005

EXISTENTE

<table>
<thead>
<tr>
<th></th>
<th>OH</th>
<th>DM</th>
<th>BH</th>
<th>OT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>125.0</td>
<td>374.4</td>
<td>-249.4</td>
<td>LTX50 (1991)</td>
<td>149.1</td>
</tr>
<tr>
<td>MED</td>
<td>720.0</td>
<td>678.7</td>
<td>41.3</td>
<td>LTX50 (1994)</td>
<td>242.0</td>
</tr>
<tr>
<td>SUR</td>
<td>897.0</td>
<td>2169.7</td>
<td>-113.7</td>
<td>LTX100 (1993)</td>
<td>1178.9</td>
</tr>
</tbody>
</table>

X N° DE UNIDADES

<table>
<thead>
<tr>
<th></th>
<th>OH</th>
<th>DM</th>
<th>BH</th>
<th>OT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>292.0</td>
<td>415.2</td>
<td>-123.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MED</td>
<td>1639.0</td>
<td>160.9</td>
<td>1476.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

R: RESERVA HIDRAULICA

O H: OFERTA HIDRAULICA

O T: OFERTA TERMICA

B H: BALANCE CON OFERTA HIDRAULICA

D M: DEMANDA MAXIMA

R T: RESERVA TERMICA

X TW X YY (ZZ) INCREMENTO DE POTENCIA TERMICA

T: TURBOVAPOR

YY: CAPACIDAD EN MW

ZZ: AÑO DE PUESTA EN OPERACION
BALANCE DE DEMANDA Y OFERTA DE LA POTENCIA (MW)
SICN - ALTERNATIVA NUEVA - 2010

NORTE

<table>
<thead>
<tr>
<th>OH</th>
<th>125.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>507.4</td>
</tr>
<tr>
<td>BH</td>
<td>-382.4</td>
</tr>
<tr>
<td>OT</td>
<td>141.1</td>
</tr>
</tbody>
</table>

1. TGx50 (1991)
2. TVx150 (1995)
3. TGx50 (1999)

NORTE MEDIO

<table>
<thead>
<tr>
<th>OH</th>
<th>275.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>678.7</td>
</tr>
<tr>
<td>BH</td>
<td>-173.0</td>
</tr>
<tr>
<td>OT</td>
<td>202.0</td>
</tr>
</tbody>
</table>

1. TGx50 (1994)

CENTRO MIN

<table>
<thead>
<tr>
<th>OH</th>
<th>292.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>523.0</td>
</tr>
<tr>
<td>BH</td>
<td>-231.0</td>
</tr>
<tr>
<td>OT</td>
<td>0.0</td>
</tr>
<tr>
<td>RT</td>
<td>0.0</td>
</tr>
</tbody>
</table>

CENTRO

<table>
<thead>
<tr>
<th>OH</th>
<th>2821.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>218.5</td>
</tr>
<tr>
<td>BH</td>
<td>+2602.5</td>
</tr>
<tr>
<td>OT</td>
<td>0.0</td>
</tr>
<tr>
<td>RT</td>
<td>0.0</td>
</tr>
</tbody>
</table>

SUR MEDIO

<table>
<thead>
<tr>
<th>OH</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>315.2</td>
</tr>
<tr>
<td>BH</td>
<td>-315.2</td>
</tr>
<tr>
<td>OT</td>
<td>16.0</td>
</tr>
<tr>
<td>RT</td>
<td>50.0</td>
</tr>
</tbody>
</table>

1. TGx100 (1993)
2. TGx100 (1994)
3. TGx100 (2000)
4. TGx100 (2006)

ELECTRO LIMA

<table>
<thead>
<tr>
<th>OH</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>315.2</td>
</tr>
<tr>
<td>BH</td>
<td>-315.2</td>
</tr>
<tr>
<td>OT</td>
<td>16.0</td>
</tr>
<tr>
<td>RT</td>
<td>50.0</td>
</tr>
</tbody>
</table>

- RH: Reserva Hidráulica
- OH: Oferta Hidráulica
- OT: Oferta Térmica
- BH: Balance Con Oferta Hidráulica
- DM: Demanda Máxima
- RT: Reserva Térmica
- X: N° de Unidades
- TW: Tipo (TG=Turbo GAS
- TV: Turbo Vapor
- YY: Capacidad en MW
- ZZ: Año de Puesta en Operación

INCORPORACIÓN DE POTENCIA TÉRMICA

EXISTENTE

| XTW XYY (ZZ) |

NOTAS:

- **OH**: Oferta Hidráulica
- **DM**: Demanda Máxima
- **BH**: Balance con Oferta Hidráulica
- **OT**: Oferta Térmica
- **RT**: Reserva Térmica
- **ITW XYY (ZZ)**: Incremento de Potencia Térmica

Fig. N° 3.16
Las características serían similares a la correspondiente al año 2005, con la diferencia de una mayor generación de la C.H. Puerto Prado debido a la puesta en operación de sus dos etapas adicionales y un reforzamiento de algunas líneas de transmisión.

3.3.4. Definición de la alternativa nueva de transmisión del SICN

El planteamiento de una alternativa nueva de transmisión del SICN se basa en los criterios de confiabilidad mencionados en 3.3.2, en las premisas planteadas en el Capítulo II - 2.4, en las características geográficas que presenta la región y en el desarrollo regional del SICN.

En las láminas del 3.13 al 3.16 se muestran las configuraciones de transmisión escogidas y el balance de potencia elaborado, sin considerar las pérdidas del SICN.

A continuación se analiza la expansión del sistema de transmisión planteado para los años 1995, 2000, 2005 y 2010 respectivamente.

- 1995 (Lámina Nº 3.13).

En el Norte, Tumbes todavía permanentemente aislado - del SICN se abastecería localmente. La puesta en operación de la C.T. a vapor en Piura Oeste que trabajaría en base, abastecería parte de la carga de Talara y Chiclayo, incluyendo la potencia generada por la C. H. Carhuaquero (sin ampliación), se tendría un exce-
dente de 60.6 MW que se transmitiría al Norte-Medio. En el Norte-Medio la C.H. Cañón del Pato satisfacería parte de la demanda de Chimbote y parte de Trujillo -Norte, el excedente de potencia del subsistema Norte sería entregada a las cargas de Guadalupe, Cajamarca y parte de Trujillo Norte, requiriéndose generar energía termoeléctrica en Trujillo y Chimbote de 39.7 y 41.8 MW respectivamente. La C.H. Cahua abastecería -parte de la carga de Paramonga Nueva, necesitándose una potencia de 41.8 MW para satisfacer completamente su demanda que sería transmitido desde la C.H. Cañón del Pato. En Lima sería necesario generar una potencia termoelectrica de 175 MW, quedando una reserva térmica de 85 MW, el resto de potencia que requeriría Lima sería abastecida por las CC.HH. ubicadas en Lima y las CC. HH. Mantaro y Restitución. Cuando disminuye la carga de la gran Lima, los excedentes de potencia a transmitirse desde el Centro hacia el Norte y Norte Medio permitiría reemplazar la generación térmica de estos subsistemas, quedando ésta como reserva fría del sistema.

En el Norte, la C.H. Carhuaquero (con ampliación) abastecería totalmente a Chiclayo, parte de Piura Oeste y Norte Medio. La carga de Tumbes se interconectaría al SICN. La C.T. a vapor de Piura Oeste abastece
ría parte de la carga de Piura Oeste, Tumbes y totalmente a la carga de Talara; requiriéndose generar termodinámica en Bayovar y Tumbes.

En el Norte Medio, debido a la puesta en operación del desarrollo minero Antamina, convendría satisfacer la demanda de esta carga desde la C.H. Chaglla, ubicándose de esta manera la S.E. denominada Antamina, así mismo sería conveniente enlazar Antamina y Paramonga Nueva, siendo ésta una terna que permitiría evacuar la energía de la C.H. Chaglla hacia el Norte Medio y Lima. Por otro lado debido a la magnitud de generación de esta C.H., ocurriría el planteamiento de dos ternas adicionales para la evacuación de su oferta, estas ternas serían Chaglla-Zapallal y Chaglla Carhua moay, por lo tanto se formarían dos anillos que permitirían mejorar la seguridad de servicio de Lima. Centromin y parte del Norte Medio, en general el Norte Medio quedaría abastecida de energía hidroeléctrica y los equipamientos térmicos representarían la reserva fría del subsistema. Es conveniente que la C.H. Quirwaca evacue directamente su energía en Chimbote a un nivel de 220 KV.

En Lima, sería necesario generar 175 MW de energía termodinámica, quedando una reserva térmica de 185 MW. Cabe recalcar que la carga de Lima quedaría abastecida desde diferentes puntos, así como las cargas de Chimbote y Paramonga Nueva.
- 2005 (Lámina N° 3.15).
En el Norte la C.H. Carhuaquero (con ampliación) satisfacería principalmente a la carga de Chiclayo, las de más cargas del Norte se abastecerían esencialmente de energía termoeléctrica local y en horas fuera de punta disminuirían debido a la transmisión de excedentes de potencia hidroeléctrica desde el centro. La C.T. a vapor de Piura Oeste continuaría trabajando en base.
En el Norte Medio con la puesta en operación de la C. H. Chorro, cercana geográficamente a la C.H. Quitaracona, quedaría totalmente abastecida de energía hidroeléctrica, quedando los equipamientos térmicos como reserva fría que estaría en el orden del 30% de la potencia total disponible del subsistema. Es necesario reforzar con un circuito adicional los tramos Guadalupe-Trujillo Norte y Trujillo Norte-Chimbote, conveniente para la evacuación de potencia desde el Centro hacia el Norte en horas fuera de punta, originando la disminución de generación termoeléctrica en el Norte. Debe al desarrollo minero de Michiquillay en Cajamarca sería necesario reforzar con ternas adicionales a nivel de 60 KV, el enlace entre Cajamarca y Guadalupe, pero se ha visto la posibilidad de no adicionar estas ternas, sino efectuar la interconexión de Carhuaquero con Cajamarca, mediante una línea de transmisión a nivel de 220 KV, mejorando la seguridad de servicio de esta carga, siendo factible la no operación del enlace
Guadalupe-Cajamarca, de esta manera se abastecería a Cajamarca directamente de Carhuaquero.

Con la entrada en operación de la C.H. Puerto Prado -con una potencia disponible de 443 MW, teniendo en cuenta la magnitud de potencia a transmitir y la distancia respecto al centro de consumo (aproximadamente 500 Km) que sería la gran Lima, se requeriría utilizar líneas de transmisión con un nivel de 500 KV, re-presentando el nuevo nivel de tensión más alto del Perú. Bajo estas condiciones, las cargas de Lima serían abastecidas totalmente de energía hidroeléctrica, necesitándose ubicar dos subestaciones de 500/220 KV en el norte y sur de Lima y un intermedio en Tarma o Pachachaca, siendo más confiable este último.

- 2010 (Lámina Nº 3.16).

La configuración del SICN sería semejante al correspondiente año 2005 con la diferencia de que se tendría reforzamientos de algunos tramos de líneas de transmisión, así tenemos:

* Chimbote-Trujillo-Norte - Guadalupe-Chiclayo - Piura Oeste.
* Zapallal - Chavarría
* San Juan ELP - San Juan ELL
* Chaglla - Antamina
* Chaglla - Zapallal
* Antamina - Paramonga Nueva
* Puerto Prado - Pachachaca o Tarma.
La primera línea de transmisión mencionada se prevé para transmitir excedentes hidroeléctricos del Centro y parte del Norte Medio hacia el Norte en horas fuera de punta.

La confiabilidad del Centro, Centromin, Electrolima, Sur Medio y Norte Medio sería muy buena, siendo diversos los puntos de entrega a estos subsistemas. El Norte representaría una red netamente radial, pero debido al desarrollo de la oferta térmica local y la transmisión de excedentes hidroeléctricos del centro hacia el norte, permitiría que este subsistema también sea una red de buena confiabilidad.

Por lo tanto el SICN tendría una buena seguridad de servicio, reforzaría aún más esta deducción final, las reservas locales que presentan cada subsistema estarían comprendidos entre el 10 al 20% de la potencia total disponible de cada subsistema. En conjunto el SICN tendría una reserva fría promedio del 15% de la potencia total disponible del sistema.

3.3.5. Análisis Técnico de Líneas de Transmisión en Mínima Demanda

Debido a la transmisión de energía hidroeléctrica excedente en horas fuera de punta, desde el centro hacia el norte y norte medio, es necesario verificar el número de ternas planteadas en el análisis de Máxima Demanda (efectuado en 3.3.4) en otras condiciones, en es-
te caso en la condición de mínima Demanda, esencialmente para las etapas 2005 y 2010 que resultan ser los años en los cuales se producen los mayores reforzamientos en el SICN. Para tal fin utilizaremos las curvas de duración de carga y generación.

Así tenemos en el año:

- 2005 (Alternativa Nueva)

Transformando el SICN en una configuración como el que se muestra en la Lámina 3.3-1, se puede apreciar la concentración de cargas y generaciones de acuerdo a su área de influencia en las barras Chimbote y Guadalupe. Considerando un 5% de pérdidas de transmisión - se muestra en la Lámina 3.17 la mínima Demanda Promedio del SICN. Las magnitudes de Demanda y Generación mínima fueron obtenidas a partir de las curvas de duración mostradas en las figuras Nº 3.3-1 y 3.3-2. Haciendo el balance de potencia correspondiente se transmitirá de Chimbote a Trujillo Norte una potencia de 274.4 MW y de Trujillo Norte a Guadalupe 148.1 MW. Además, se necesitaría generar en el Norte potencia termoeléctrica de 77.4 MW para cubrir la demanda del SICN en esas condiciones.

De acuerdo a los resultados obtenidos los circuitos planteados en Máxima Demanda y Generación, cumplen también con las condiciones de Mínima Demanda y Generación, por lo tanto los reforzamientos propuestos cumplen con las diferentes condiciones de trabajo del SICN.
- 2010 (Alternativa Nueva).

Aplicando el mismo procedimiento anterior y teniendo en cuenta las figuras Nros. 3.3-3, 3.3-4 y 3.3-5 se obtienen los resultados de Demanda y Oferta en condiciones mínimas, los cuales se muestran en la lámina 3.3-2 apreciándose de esta manera la potencia transmittible de Chim bote a Trujillo Norte igual a 506.7 MW y de Trujillo Norte a Guadalupe 306.6 MW, por otro lado se necesita ría generar en el Norte potencia termoeléctrica del orden de 75.4 MW para cubrir la Demanda del SICN.

En este caso los reforzamientos planteados en Máxima Demanda también cumplen en mínima demanda y en todas las condiciones de trabajo del SICN.
CARGA (MW)

<table>
<thead>
<tr>
<th>BARRA</th>
<th>GUADALUPE - E3</th>
<th>TRUJILLO NORTE</th>
<th>CHIMBOTE - E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.D.</td>
<td>456.7</td>
<td>185.1</td>
<td>3407.5</td>
</tr>
<tr>
<td>M.inD.</td>
<td>303.4</td>
<td>120.3</td>
<td>2214.9</td>
</tr>
<tr>
<td>Min D + Per</td>
<td>318.5</td>
<td>120.3</td>
<td>2325.9</td>
</tr>
</tbody>
</table>

GENERACIÓN HIDRÁULICA (MW)

<table>
<thead>
<tr>
<th>BARRA</th>
<th>GUADALUPE - E3</th>
<th>TRUJILLO NORTE</th>
<th>CHIMBOTE - E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min G</td>
<td>93.0</td>
<td>0.0</td>
<td>2600.0</td>
</tr>
</tbody>
</table>

Donde:
- M.D. = Máximo Demanda
- M.inD. = Mínima Demanda
- Min G = Mínima Generación
- Min D + Per = Mínima Demanda más Perdida
CARGA (MW)

<table>
<thead>
<tr>
<th>BARRA</th>
<th>GUADALUPE EO</th>
<th>TRUJILLO NORTE</th>
<th>CHIMBOROE EO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>646.3</td>
<td>250.3</td>
<td>434.3</td>
</tr>
<tr>
<td>Min D.</td>
<td>452.4</td>
<td>190.6</td>
<td>304.1</td>
</tr>
<tr>
<td>Min D + Per</td>
<td>475.0</td>
<td>200.1</td>
<td>3193.1</td>
</tr>
</tbody>
</table>

GENERACIÓN HIDRÁULICA (MW)

<table>
<thead>
<tr>
<th>BARRA</th>
<th>GUADALUPE EO</th>
<th>TRUJILLO NORTE</th>
<th>CHIMBOROE EO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min G</td>
<td>93.0</td>
<td>0.0</td>
<td>3700.0</td>
</tr>
</tbody>
</table>

Donde:

MD = Mínima Demanda
Min D = Mínima Demanda
Min G = Mínimo Generación
Min D + Per = Mínima Demanda más Pérdida
ALTERNATIVA NUEVA - 2010

fig. No 3.3-5
CAPÍTULO IV

ANÁLISIS TÉCNICO-ECONÓMICO DE LA ALTERNATIVA SELECCIONADA PERÍODO 1995 - 2010

4.1. ANALISIS DE FLUJO DE CARGA

El crecimiento de los centros de consumo ha obligado a la expansión y creación de nuevos centros de generación de energía eléctrica, líneas y subestaciones eléctricas que han complicado los sistemas eléctricos en cuanto a número de elementos y han hecho que su análisis requiera de técnicas avanzadas conjuntamente con el empleo de computadoras digitales. Con el estudio de flujos se puede investigar lo siguiente:

- Flujo en KW o KVAR en las barras de una red
- Tensión en las barras
- Efecto del rearreglo de circuitos e incorporación de nuevos circuitos de carga.
- Efectos de pérdidas temporales de generación o de circuitos de transmisión sobre las cargas del circuito.
- Condiciones óptimas de operación del sistema y de distribución del sistema.
- Pérdidas óptimas.
- Influencia del cambio de sección en los conductores.
- Posición óptima del cambiador de derivaciones de los transformadores.

La formulación de la técnica de solución puede ser consi
derada en tres etapas:

a) Selección del marco de referencia, Nodal o de Malla y de acuerdo con ésto trabajar en base a admitancias o impedancias.

b) Implementación de un método de Análisis Numérico.

c) Modificación de la técnica de solución básica para tener facilidades en la simulación, tales como, barras de voltaje controlado, cambiadores de derivación de transformadores, control del intercambio de MW entre áreas.

De esta manera para el análisis de flujo de carga de la alternativa nueva planteada en 3.3 (Capítulo III), se recurre a un programa computarizado de flujo de potencia que permite definir la operación óptima del sistema correspondiente.

4.1.1. Suposiciones e informaciones consideradas en el análisis de flujo de carga del SICN

I. Se ha empleado la red de secuencia positiva - debido a que el acoplamiento entre las redes de secuencia positiva y negativa o entre la secuencia positiva y cero es generalmente muy pequeña y además la carga se supone balanceada.

II. Debido a que el acoplamiento mutuo entre las redes de secuencia es despreciable, el efecto mutuo se considera también despreciable en el estudio del flujo de carga.
III. El estudio del flujo de carga se iniciará con un diagrama unifilar del sistema, en cada barra se tienen asociados cuatro cantidades que vienen a ser: Potencia activa (P), Potencia reactiva (Q), Voltaje (V) y ángulo de fase (δ).

IV. En el presente Proyecto se aplicará para el flujo de carga el método nodal y es necesario identificar tres tipos de barras, así tenemos:

a) Barra flotante o compensador
b) Barra de generación
c) Barra de carga.

V. La barra flotante o compensadora tomado en el flujo de carga del SICN, representa la central eléctrica más grande del sistema, de tal manera que en las etapas 1995 y 2000, la barra en mención vendría a ser MANTARO - y en las etapas 2005 y 2010 sería PUERTO PRADO, se ha hecho esta consideración debido a la facilidad de control y regulación de la carga del sistema en estudio.

VI. La capacidad de líneas de transmisión están enmarcadas dentro de un intervalo de potencia transmitible entre límites normal y de emergencia, basados en los datos obtenidos en la Unidad de Planeamiento de Transmisión - ELECTROPERU para los diferentes niveles de tensión considerados en el estudio.

VII. Además de lo mencionado, el flujo de carga de la alternativa nueva se basa en los criterios técni -
cos planteados en el Capítulo II - 2.3.

4.1.2. **Programa computacional utilizado para el estudio - de flujo de potencia**

Para el análisis de flujo de potencia del presente trabajo se ha utilizado el programa computacional desarrollado por la PHILADELPHIA ELECTRIC COMPANY (PECO) a partir del programa Power flow modificado por ELECTROBRAS, coordinado con la Gerencia Técnica de Planeamiento de Transmisión de ELECTROPERU.

A continuación se presenta las características resaltantes de dicho programa, utilizado en ELECTROPERU para el estudio de flujo de potencia del sistema eléctrico del Perú:

CAPACIDAD DEL PROGRAMA:

I. Solución a través del Método de Newton-Raphson.
 - 1500 barras, todas con representación de reactores/capacitores estáticos.
 - 2500 líneas, todas con representación de límites normal y emergencia.
 - 500 transformadores. Todos con cambio de taps bajo carga.
 - 25 transformadores desfasadores (fase-cuadratura).
 - 500 barras reguladas.
 - 40 áreas con control automático de intercambio.
 - 250 barras flotantes.
II. Solución a través del Método de Gauss-Seidel.
 - 300 transformadores con cambio de taps bajo carga.
 - 1500 líneas.
 10 transformadores desfasadores (fase-cuadratura)
 300 barras reguladas.
 300 capacitores/reactores
 998 barras
 250 barras flotantes.

DATOS NECESARIOS PARA LA CORRIDA DEL PROGRAMA:
 Datos de líneas y transformadores.
 - Datos de barras.
 - Datos de Área.

4.1.3. Resultados obtenidos del flujo de potencia del -
 SICN de la Alternativa Nueva

Teniendo en cuenta lo planteado en el Capítulo III
3.3, se pueden apreciar en las láminas Nros. 3.13, 3.14.
3.15 y 3.16 las configuraciones eléctricas de la alterna-
tiva nueva del SICN, analizado en base a las premisas
planteadas en el Capítulo II - 2.4, por tanto la configu-
ración del sistema de transmisión a nivel troncal del
SICN a tomarse en cuenta para desarrollar el flujo de po-
tencia sería la mostrada en las láminas mencionadas ante-
riormente.

Utilizando el programa computacional presentado en 4.1.2
se ha efectuado el flujo de potencia del SICN para la Al-
ternativa Nueva en las etapas consideradas en el presen-
te Proyecto, es decir, en los años 1995, 2000, 2005 y 2010, el flujo de potencia obtenido es para las condiciones de Máxima Demanda, se ha buscado en la operación del sistema el cumplimiento de los criterios planteados en el Capítulo II - 2.3, específicamente los criterios de desempeño, obteniéndose como resultado en cada etapa correspondiente los flujos de potencia que se muestran en los listados Nros. 4.1, 4.2, 4.3 y 4.4.

Por otro lado los parámetros eléctricos tomados en cuenta se basan en los archivos correspondientes de ELECTRO-PERU, los cuales se muestran en valores por ciento en el Apéndice D, las máximas demandas de cada barra troncal se mencionaron en los cuadros del Capítulo I y el despacho preliminar de la Oferta de Generación se pueden apreciar en las láminas Nros. 3.13, 3.14, 3.15 y 3.16, sin considerar las pérdidas del sistema.

4.2. ANALISIS ECONOMICO

El modelo económico definido para el presente Proyecto viene a ser el Método de Valor Presente. Mediante esta técnica se puede desarrollar un enfoque significativo y racional de evaluaciones de aspectos económicos de alternativas de un sistema eléctrico, además los modelos que se toman en cuenta en el análisis económico del presente Proyecto, tratarán de considerar lo más aproximadamente posible el comportamiento económico del sistema y que justifique una toma de decisiones adecuada.
<table>
<thead>
<tr>
<th>No.</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
<th>Column 6</th>
<th>Column 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data 1</td>
<td>Data 2</td>
<td>Data 3</td>
<td>Data 4</td>
<td>Data 5</td>
<td>Data 6</td>
<td>Data 7</td>
</tr>
<tr>
<td>2</td>
<td>Data 1</td>
<td>Data 2</td>
<td>Data 3</td>
<td>Data 4</td>
<td>Data 5</td>
<td>Data 6</td>
<td>Data 7</td>
</tr>
<tr>
<td>3</td>
<td>Data 1</td>
<td>Data 2</td>
<td>Data 3</td>
<td>Data 4</td>
<td>Data 5</td>
<td>Data 6</td>
<td>Data 7</td>
</tr>
<tr>
<td>4</td>
<td>Data 1</td>
<td>Data 2</td>
<td>Data 3</td>
<td>Data 4</td>
<td>Data 5</td>
<td>Data 6</td>
<td>Data 7</td>
</tr>
<tr>
<td>5</td>
<td>Data 1</td>
<td>Data 2</td>
<td>Data 3</td>
<td>Data 4</td>
<td>Data 5</td>
<td>Data 6</td>
<td>Data 7</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>7.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>17.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>18.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>19.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>21.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>22.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>23.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>24.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>25.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>26.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>27.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>28.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Line Flow:

- **Cap/Res:**
- **Line Flow:**
- **Node:**
- **Nap:**

Notes:

- **ELECTRIC**
- **Flow Diagram**
- **Graph:**
- **Diagram:**
- **Chart:**

Technical Details:

- **Current:**
- **Voltage:**
- **Resistance:**
- **Inductance:**
- **Capacitance:**

System Overview:

- **Network:**
- **Topology:**
- **Structure:**

Evaluation:

- **Analysis:**
- **Simulation:**
- **Verification:**

Conclusion:

- **Summary:**
- **Recommendations:**
- **Further Research:**
<table>
<thead>
<tr>
<th>Location</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0123330</td>
</tr>
<tr>
<td>10</td>
<td>ELECTRICAL</td>
</tr>
<tr>
<td>11</td>
<td>4 ITERATIONS 5 SAT. BUS 15 30</td>
</tr>
<tr>
<td>12</td>
<td>LINE F L J</td>
</tr>
<tr>
<td>13</td>
<td>11 CAPELLA CCU 21.00 11.00 11.00 30.00 21.00</td>
</tr>
<tr>
<td>14</td>
<td>CHAVAN 22.0 22.0 22.0 22.0 22.0</td>
</tr>
<tr>
<td>15</td>
<td>CHAVAN 22.0 22.0 22.0 22.0 22.0</td>
</tr>
<tr>
<td>16</td>
<td>CAMPANA 22.0 -23.0 -23.0 -23.0 -23.0</td>
</tr>
<tr>
<td>17</td>
<td>ALCAN 17.0 17.0 17.0 17.0 17.0</td>
</tr>
<tr>
<td>18</td>
<td>CAPALLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>19</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>20</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>21</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>22</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>23</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>24</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>25</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>26</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>27</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>28</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>29</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
<tr>
<td>30</td>
<td>CAPELLA 10.0 10.0 10.0 10.0 10.0</td>
</tr>
</tbody>
</table>
4.2.1. **Modelo Económico de Evaluación**

En el proceso de implementación de elementos de transmisión y generación de un sistema eléctrico durante el período de estudio, se presentan muchas alternativas técnicamente aceptables, de las cuales una de ellas tendrá que ser elegida atendiendo a su viabilidad económica. Como las implementaciones se realizan en diferentes etapas del período de estudio, para cualquier de las alternativas, es necesario tener un patrón de comparación, de tal manera que sobre todo el período, ocasione el mínimo costo. En este sentido, para este método se ha desarrollado el método de valor presente, para ello se debe referir a un año cualesquiera, convencionalmente se opta la primera etapa o el año inicial, en el presente proyecto se ha optado el año 1985.

La actualización al año referencial 1985 se lleva a cabo mediante una tasa de descuento discreta. El enfoque matemático de este modelo se presenta en el Apéndice C.1.

4.2.2. **Modelo Económico del Valor de Depreciación y de Recuperación**

El modelo en mención establece una depreciación lineal a partir de su valor de implementación. La vida útil de los subsistemas de generación y transmisión varían dependiendo del tipo de equipos eléctricos a
usar y la agresividad del medio ambiente.

En nuestro país el Ministerio de Energía y Minas acepta como vida promedio de los elementos de transmisión igual a 25 años, de los elementos de generación térmica igual a 30 años y de los elementos de generación hidráulica igual a 50 años.

El valor de recuperación de los sistemas de generación y transmisión se considera después de los 10 años de finalizado el período de análisis con el fin de compensar en algo las adiciones que se tengan que realizar en las últimas etapas, puesto que la actualización del costo residual de la etapa en referencia se expresa como un costo sustractivo, lo que puede influir en favor o desmedro de una alternativa.

El enfoque matemático de la misma se da en el Apéndice C.2.

4.2.3. Modelo Económico de costo de combustibles, lubricantes y otros costos incrementales de Centrales Térmicas.

La evaluación de la energía térmica necesaria para cubrir la demanda de un sistema eléctrico anualmente, se ha efectuado en base al conocimiento de las curvas de duración, tanto de carga como de generación, para tal fin se ha superpuso dichas curvas y teniendo en cuenta criterios de despacho se ha definido la energía mencionada anteriormente. Las curvas de duración de carga se -
pueden apreciar en el Capítulo III y de generación para la Alternativa Nueva se muestra en las figuras Nros. 4.1, 4.2, 4.3 y 4.4.

Teniendo en cuenta los costos de este rubro mostrado en el Cuadro 3.2-23 se determina los costos anuales de combustibles, lubricantes y otros costos incrementales de Centrales Térmicas en el período de estudio actualizados luego al año 1985, aplicando el Modelo Económico presentado en el Apéndice C.1 a una tasa de interés discreta - del 12%.

4.2.4. Modelo Económico del Costo de Pérdidas

En primer lugar mencionaremos que la magnitud de las pérdidas (LP) se ha determinado mediante el uso del programa computarizado de flujo de carga para las etapas de estudio del presente Proyecto y se ha definido las pérdidas en años intermedios mediante la metodología indicada en el Apéndice B.

Es difícil evaluar en forma precisa las pérdidas de energía de un sistema eléctrico, el primer escrillo que se tiene que librar es el factor de pérdidas, normalmente no es conocido, de allí que aproximadamente se calcule este factor en función del factor de carga, el cual junto con la potencia de pérdidas en horas de máxima demanda nos permite evaluar la energía perdida.

Se han planteado formas aproximadas para estimar el factor de pérdidas en función del factor de carga, la más -
ALTERNATIVA NUEVA - 2005
CENTRALES HÍDROELECTRICAS

fig. N°4.3

ALTERNATIVA NUEVA - 2010
CENTRALES HÍDROELECTRICAS

fig. N°4.4
difundida y sencilla es como sigue:

\[f_p = a f_c + b f_c^2 \]

\[a = K \quad b = 1 - K \]

Donde:
- \(f_p \): factor de pérdidas
- \(f_c \): factor de carga promedio del sistema
- \(a, c \): constantes que dependen de las características especiales del sistema

\(K = 0.3 \) para líneas de transmisión

\(K = 0.7 \) para líneas de distribución

Las pérdidas de energía pueden ser estimadas por:

\[\Delta E = 8.760 \Delta P f_p \]

Hay que considerarse el costo de la potencia máxima de pérdidas; siendo CPE el costo de pérdidas de energía en horas base, por tanto el costo para la máxima potencia de pérdidas será:

\[C_{P\text{max}} = \Delta P \times (8.760) \times (af_c + b f_c^2) \times \text{CPE} \]

Ahora aplicando el modelo económico planteado en el párrafo dice C.1. Si este costo se realiza \(n_i \) años después del año inicial, el costo actualizado será:

\[\text{CAP} = C_{P\text{max}} \times (1 + i)^{-n_i} \]

Donde \(\text{CAP} \) es el costo actualizado de las pérdidas del sistema a \(n_i \) años del año inicial con una tasa de interés \(i \).
4.2.5. Determinación del Costo total actualizado de una alternativa

En consecuencia, el costo total actualizado de una alternativa de implementación en el periodo de estudio del planeamiento eléctrico de un sistema será:

\[CAT = CAL + CAG + CAP + CAC \]

donde
- \(CAT \): Costo actualizado total de una alternativa
- \(CAL \): Costo actualizado del sistema de transmisión
- \(CAG \): Costo actualizado del sistema de generación
- \(CAP \): Costo actualizado de pérdidas
- \(CAC \): Costo actualizado de combustible, lubricantes y otros costos incrementables.

Para la Alternativa Nueva del SICN, planteado en el presente Proyecto, teniendo en cuenta los costos obtenidos de los equipamientos mostrados en los cuadros, Capítulo III - 3.2 y los cálculos matemáticos de valor presente precisados en 4.2.1, 4.2.2, 4.2.3 y 4.2.4, permiten evaluar el flujo de costo total actualizado de la alternativa nueva en las etapas de análisis consideradas.

El flujo de costo se evaluó en dólares constantes incluyendo la depreciación, valor de recuperación y operación de la implementación.

Los resultados totales de cada rubro mencionado se muestran en los Cuadros Nros. 4.7, 4.8, 4.9 y 4.10, el costo total actualizado de la Alternativa nueva se puede apreciar en el Cuadro No. 4.11.
<table>
<thead>
<tr>
<th>LÍNEA</th>
<th>TERRI</th>
<th>TENSION</th>
<th>COSTO ACTUALIZ.</th>
<th>1995</th>
<th>1997</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILE - TILAPRA</td>
<td>1T</td>
<td>150</td>
<td>220</td>
<td>7,692</td>
<td>8,272</td>
<td>8,852</td>
</tr>
<tr>
<td>CUITAPOLSA - CHIPESTE</td>
<td>1T</td>
<td>140</td>
<td>220</td>
<td>6,170</td>
<td>6,671</td>
<td>7,172</td>
</tr>
<tr>
<td>PATENICA - RAPA, NOS.</td>
<td>1T</td>
<td>140</td>
<td>220</td>
<td>5,094</td>
<td>5,548</td>
<td>6,045</td>
</tr>
<tr>
<td>PATENICA - CHIPESTE</td>
<td>1T</td>
<td>180</td>
<td>220</td>
<td>7,150</td>
<td>7,664</td>
<td>8,194</td>
</tr>
<tr>
<td>SCAULLA - ZAPALLAL</td>
<td>1T</td>
<td>220</td>
<td>220</td>
<td>7,071</td>
<td>7,627</td>
<td>8,204</td>
</tr>
<tr>
<td>ACAULLA - CAHUAYO</td>
<td>1T</td>
<td>150</td>
<td>220</td>
<td>4,590</td>
<td>5,060</td>
<td>5,580</td>
</tr>
<tr>
<td>CHANARECO - CAHUAYO</td>
<td>1T</td>
<td>225</td>
<td>220</td>
<td>3,103</td>
<td>3,560</td>
<td>4,020</td>
</tr>
<tr>
<td>ENIGALUPE - IRUN, NORTE</td>
<td>1T</td>
<td>130</td>
<td>220</td>
<td>1,512</td>
<td>1,938</td>
<td>2,360</td>
</tr>
<tr>
<td>IRUN, NORTE - CHIPESTE</td>
<td>1T</td>
<td>160</td>
<td>220</td>
<td>2,940</td>
<td>3,390</td>
<td>3,840</td>
</tr>
<tr>
<td>TERRA - ZAPALLAL (1)</td>
<td>1T</td>
<td>220</td>
<td>500</td>
<td>6,320</td>
<td>7,112</td>
<td>7,930</td>
</tr>
<tr>
<td>TERRA - PTO, PAPAYO (1)</td>
<td>1T</td>
<td>245</td>
<td>500</td>
<td>9,215</td>
<td>10,428</td>
<td>11,648</td>
</tr>
<tr>
<td>TERRA - SANTUAR, ELFI (1)</td>
<td>1T</td>
<td>230</td>
<td>500</td>
<td>6,320</td>
<td>7,112</td>
<td>7,930</td>
</tr>
<tr>
<td>CHILAPA - CHIPESTE</td>
<td>1T</td>
<td>270</td>
<td>220</td>
<td>1,518</td>
<td>1,938</td>
<td>2,360</td>
</tr>
<tr>
<td>CHILAPA - CAHUAYO</td>
<td>1T</td>
<td>270</td>
<td>220</td>
<td>1,518</td>
<td>1,938</td>
<td>2,360</td>
</tr>
<tr>
<td>CHILAPA - CAHUAYO</td>
<td>1T</td>
<td>270</td>
<td>220</td>
<td>1,518</td>
<td>1,938</td>
<td>2,360</td>
</tr>
</tbody>
</table>

COSTO TOTAL ACTUALIZADO | e6,067

(*) Se incluye costos de subestaciones de transformación
<table>
<thead>
<tr>
<th>CENTRAL</th>
<th>COSTO ACTUALIZ.</th>
<th>US$</th>
<th>2050</th>
<th>2060</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.C.M.</td>
<td>27.627</td>
<td>67.674</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.C.M.</td>
<td>26.390</td>
<td>68.626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.C.M.</td>
<td>24.484</td>
<td>44.727</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.C.M.</td>
<td>74.65</td>
<td>170.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.C.M.</td>
<td>159.294</td>
<td>450.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.M.L.</td>
<td>78.73</td>
<td>169.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.M.L.</td>
<td>34.471</td>
<td>63.278</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.M.L.</td>
<td>25.664</td>
<td>34.693</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.M.L.</td>
<td>15.468</td>
<td>67.781</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.M.L.</td>
<td>80.765</td>
<td>131.669</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL ACTUALIZADO</td>
<td>450.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.T. - 3 TE x 100</td>
<td>18.678</td>
<td>31.924</td>
<td>31.924</td>
<td>31.924</td>
<td>31.924</td>
</tr>
<tr>
<td>C.T. - 4 TV x 100</td>
<td>37.153</td>
<td>115.307</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL ACTUALIZADO</td>
<td>75.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL ACTUALIZADO</td>
<td>430.153</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLA 4.8

COSTOS DE FERRIDAS ANUALES SIN ELET

ALTERNATIVA NUEVA

<table>
<thead>
<tr>
<th>AÑO</th>
<th>P</th>
<th>P_0</th>
<th>P_1</th>
<th>E</th>
<th>COSTO ACTUALIZADO</th>
<th>COSTO ACTUALIZADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(P)</td>
<td>(P_0)</td>
<td>(P_1)</td>
<td>(E)</td>
<td>(P_0 US$)</td>
<td>(P_1 US$)</td>
</tr>
<tr>
<td>1975</td>
<td>55.53</td>
<td>0.632</td>
<td>0.469</td>
<td>222.24</td>
<td>7956.88</td>
<td>10524.45</td>
</tr>
<tr>
<td>1976</td>
<td>59.61</td>
<td>0.632</td>
<td>0.469</td>
<td>242.54</td>
<td>3177.62</td>
<td>1594.04</td>
</tr>
<tr>
<td>1977</td>
<td>62.46</td>
<td>0.633</td>
<td>0.470</td>
<td>257.49</td>
<td>2474.14</td>
<td>11587.19</td>
</tr>
<tr>
<td>1978</td>
<td>65.47</td>
<td>0.634</td>
<td>0.472</td>
<td>272.52</td>
<td>2210.44</td>
<td>12213.32</td>
</tr>
<tr>
<td>1979</td>
<td>69.45</td>
<td>0.634</td>
<td>0.472</td>
<td>286.65</td>
<td>2441.69</td>
<td>12574.24</td>
</tr>
<tr>
<td>2000</td>
<td>72.52</td>
<td>0.655</td>
<td>0.473</td>
<td>311.99</td>
<td>2452.74</td>
<td>15578.45</td>
</tr>
<tr>
<td>2001</td>
<td>76.57</td>
<td>0.676</td>
<td>0.474</td>
<td>317.90</td>
<td>2333.55</td>
<td>14595.57</td>
</tr>
<tr>
<td>2002</td>
<td>80.21</td>
<td>0.637</td>
<td>0.475</td>
<td>333.65</td>
<td>2169.06</td>
<td>15623.26</td>
</tr>
<tr>
<td>2003</td>
<td>83.83</td>
<td>0.638</td>
<td>0.476</td>
<td>349.52</td>
<td>2047.65</td>
<td>15746.56</td>
</tr>
<tr>
<td>2004</td>
<td>87.51</td>
<td>0.638</td>
<td>0.476</td>
<td>365.15</td>
<td>1909.83</td>
<td>14431.72</td>
</tr>
<tr>
<td>2005</td>
<td>91.15</td>
<td>0.639</td>
<td>0.478</td>
<td>381.29</td>
<td>1772.73</td>
<td>17158.10</td>
</tr>
<tr>
<td>2006</td>
<td>100.47</td>
<td>0.639</td>
<td>0.478</td>
<td>426.26</td>
<td>1750.53</td>
<td>18512.50</td>
</tr>
<tr>
<td>2007</td>
<td>109.80</td>
<td>0.639</td>
<td>0.478</td>
<td>459.31</td>
<td>1708.12</td>
<td>20665.76</td>
</tr>
<tr>
<td>2008</td>
<td>118.12</td>
<td>0.639</td>
<td>0.478</td>
<td>498.29</td>
<td>1654.56</td>
<td>22423.18</td>
</tr>
<tr>
<td>2009</td>
<td>126.44</td>
<td>0.640</td>
<td>0.479</td>
<td>538.62</td>
<td>1594.66</td>
<td>24335.10</td>
</tr>
<tr>
<td>2010</td>
<td>137.76</td>
<td>0.640</td>
<td>0.479</td>
<td>577.71</td>
<td>1529.22</td>
<td>25898.62</td>
</tr>
</tbody>
</table>

COSTO TOTAL ACTUALIZADO DE FERRIDAS-CAP 35445.62
<table>
<thead>
<tr>
<th>AÑO</th>
<th>E (FONDO)</th>
<th>E (C.I.)</th>
<th>COSTO ACTUALIZADO (1990 US$)</th>
<th>COSTO ACTUALIZADO (1000 US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>46,820</td>
<td>101,400</td>
<td>245,170</td>
<td>314,176</td>
</tr>
<tr>
<td>1996</td>
<td>35,37</td>
<td>131,400</td>
<td>204,150</td>
<td>255,150</td>
</tr>
<tr>
<td>1997</td>
<td>51,810</td>
<td>131,400</td>
<td>154,190</td>
<td>185,190</td>
</tr>
<tr>
<td>1998</td>
<td>24,245</td>
<td>131,400</td>
<td>188,260</td>
<td>228,260</td>
</tr>
<tr>
<td>1999</td>
<td>16,680</td>
<td>131,400</td>
<td>115,750</td>
<td>138,750</td>
</tr>
<tr>
<td>2000</td>
<td>5,120</td>
<td>131,400</td>
<td>92,210</td>
<td>109,210</td>
</tr>
<tr>
<td>2001</td>
<td>8,480</td>
<td>131,400</td>
<td>82,510</td>
<td>97,510</td>
</tr>
<tr>
<td>2002</td>
<td>10,160</td>
<td>131,400</td>
<td>74,540</td>
<td>85,540</td>
</tr>
<tr>
<td>2003</td>
<td>16,670</td>
<td>131,400</td>
<td>57,010</td>
<td>66,010</td>
</tr>
<tr>
<td>2004</td>
<td>11,190</td>
<td>131,400</td>
<td>60,240</td>
<td>70,240</td>
</tr>
<tr>
<td>2005</td>
<td>11,710</td>
<td>131,400</td>
<td>54,150</td>
<td>65,150</td>
</tr>
<tr>
<td>2006</td>
<td>12,480</td>
<td>131,400</td>
<td>46,780</td>
<td>55,780</td>
</tr>
<tr>
<td>2007</td>
<td>13,060</td>
<td>131,400</td>
<td>45,940</td>
<td>54,940</td>
</tr>
<tr>
<td>2008</td>
<td>13,770</td>
<td>131,400</td>
<td>39,570</td>
<td>46,570</td>
</tr>
<tr>
<td>2009</td>
<td>14,450</td>
<td>131,400</td>
<td>35,640</td>
<td>42,640</td>
</tr>
<tr>
<td>2010</td>
<td>15,140</td>
<td>131,400</td>
<td>32,100</td>
<td>38,100</td>
</tr>
</tbody>
</table>

Cuadro No. 4.11

COSTO TOTAL ACTUALIZADO ALTERNATIVA NUEVA
(Miles US$ Dólares a Dic. 1985)

<table>
<thead>
<tr>
<th>CAL</th>
<th>CAD</th>
<th>CAP</th>
<th>CAD</th>
<th>CFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>64,857.00</td>
<td>480,193.00</td>
<td>35,849.00</td>
<td>1,503.00</td>
<td>582,412.00</td>
</tr>
</tbody>
</table>
CONCLUSIONES

1. Se ha planteado la configuración eléctrica de la Alternativa Nueva del SICN, teniendo en cuenta la importancia de la interacción entre los planeamientos de generación y transmisión, definiendo de esta manera un nuevo programa de equipamiento de este sistema.

2. Mediante los criterios básicos de confiabilidad y características geográficas que presenta el sistema se forman arillos específicamente entre los subsistemas - Centro, Lima y Norte Medio que conllevan a una buena seguridad de servicio de estos subsistemas.

3. Utilizando modelos económicos y técnicos aproximados se ha definido el comportamiento técnico-económico de las tres primeras alternativas y la Nueva Alternativa, comparando esta última con las demás, resultó de menor costo y técnicamente viable. Esta comparación permite deducir la ventaja de esta nueva configuración del SICN en cuanto a la seguridad y calidad de servicio respecto a las demás alternativas.

4. La configuración de la Alternativa Nueva en el período de estudio (largo plazo) busca afianzar más el sistema existente e incide mucho en los desarrollos localizados, especialmente en el subsistema Norte en donde predominará la generación termoeléctrica local, pero en -
horas fuera de punta que resulta el mayor tiempo, en un año se alimentará con energía hidroeléctrica proveniente de los excedentes hidráulicos del centro.

5. La configuración propuesta en la Alternativa Nueva permite tomar la misma transmisión en caso de plantear grandes desarrollos hidroeléctricos (esencialmente en el Subsistema Centro).

En el Proyecto estudiado se ha interconectado estos desarrollos a las barras Pachachaca, Zapallal y San Juan. ELP, ocasionando una diversidad de posibilidades de entrega de energía eléctrica a los diferentes centros de consumo, principalmente a la gran Lima.

6. Se han definido barras troncales que permiten afianzar nuevas cargas que no se han previsto todavía en el período de estudio, como la barra Chaglla y Quitaracsa.

7. Definida la configuración de la Alternativa Nueva podemos afirmar que la confiabilidad del SICN ha aumentado respecto al año inicial de estudio, incluyendo el Norte que tendrá un desarrollo termoeléctrico local y podrá recibir energía del Centro mediante la interconexión propuesta, mayormente en horas fuera de punta.

8. Se ha previsto que en el futuro la C.H. Carhuaquero alimente directamente a Cajamarca a un nivel de 220 KV, con la puesta en operación del desarrollo minero de Míchiquillay, permitiendo formar un anillo entre los subsystems Norte y Norte Medio. Es necesario indicar
que se prevé la factibilidad de la no operación de la línea Guadalupe-Cajamarca en el momento de la operación de la línea de 220 KV mencionada anteriormente.

10. En el subsistema Centro se tiene una mayor probabilidad de formación de una red anillada, por lo que se ha previsto el enlace entre Chaglla-Carhuamayo, Chaglla-Antamina-Paramonga Nueva y Chaglla-Zapallal, sien do Chaglla una barra probable para el enlace de este subsistema con el oriente peruano.

11. Debido a la puesta en operación de grandes desarrollos hidroeléctricos, como es el caso de las CC.HH. - Puerto Prado y a la distancia respecto a los centros de consumo, se ha definido un nuevo nivel de tensión igual a 500 KV.

12. En el desarrollo de la expansión se puede apreciar que los grandes desarrollos hidráulicos se encuentran concentrados en un solo lado, específicamente en el Centro, debido a la ubicación de recursos hidroenergéticos de gran magnitud en este subsistema. Precisa esta aseveración la necesidad de desarrollar un estu
dio profundo y pormenorizado de líneas de transmisión a nivel de EXTRA ALTA TENSIÓN.

13. La proyección de la demanda en el Norte imposibilita hablar de grandes proyectos de generación, por ello -se ha propuesto en la Alternativa Nueva desarrollos -termoeléctricos locales, ocasionando el incremento de pérdidas en caso de transmitirse energía hidroeléctrica desde el Centro.

14. Podría plantearse desde Zapallal hacia el Norte hasta Guadalupe o Chiclayo una línea de transmisión a nivel de 500 KV, en este caso no se reforzarían las líneas a 220 KV, pero debido a una mayor confiabilidad y calidad de servicio se ha optado por adicionar líneas a nivel de 220 KV continuando de esta manera la línea en la faja costera a 220 KV.
BIBLIOGRAFÍA

1. "Análisis Moderno de Sistemas Eléctricos de Potencia"
 Gilberto Enriquez Harper
 Editorial LIMUSA S.A.

2. "Power System Planning"
 R.L. Sullivan

3. "Plan Maestro de Electricidad"

4. "Métodos de Optimización aplicados a Sistemas Eléctricos de Potencia"
 Eduardo Zolezzi

5. "Diseño de Líneas de Transmisión Aérea a Altas tensiones"
 Hernán Utiyeros Zaldivar
 Curso de Actualización Profesional – Lima 1983, AEP.

6. "Diseño de Subestaciones Eléctricas de Alta Tensión"
 Jorge Linares Olguín
 Curso Corto – Lima 1984 – AEP.

7. "Tópicos en el Planeamiento de Sistemas"
 Roger E. Clayton

8. "Estudio Preliminar de un nuevo Nivel de Tensión"

9. "Ingeniería Económica"
 George E. Taylor