Universidad Nacional de Ingeniería
Facultad de Ingeniería Eléctrica y Eléctronica

Diseño y Construcción de un Prototipo de Sistema de Transmisión / Recepción Digital Codificada en Ancho de Pulso

TESIS
Para Optar el Título Profesional de
INGENIERO ELECTRÓNICO
Miguel Angeles Araujo Bazan
Promoción 1978-1

Lima - Perú
1983
A la memoria de mi Padre,
Al recuerdo de mi Madre,
y a mis hermanos.
A mi esposa María Elena
y a mi hijo Miguel Ángel.
UNIVERSIDAD NACIONAL DE INGENIERIA
Facultad de Ingeniería Electrónica y Electrónica

"DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE SISTEMA DE
TRANSMISION/RECEPCIÓN DIGITAL CODIFICADO
EN ANCHO DE PULSO"

Tesis para optar el Título Profesional de:
INGENIERO ELECTRÓNICO

Presentado por
MIGUEL ANGELES ARAUJO BAZAN

Promoción 1978-1

Lima. - Perú
1985

EXTRACTO

El diseño y la construcción del prototipo de un sistema de Transmisión/Recepción digital codificado en ancho de pulso, constituye un aporte al desarrollo de la investigación y al diseño de sistemas para uso en la transferencia de información, entre dos lugares distantes, utilizando como medio de transmisión cable de dos hilos, radio enlaces, cable coaxial, etc.
La función primordial del prototipo de sistema de Transmisión/ Recepción digital codificada en ancho de pulso, es transmitir y recepcionar señales digitales, las cuales ingresan a un sub-sistema de transmisión que está compuesto básicamente de registros de corrimiento entrada paralelo - salida serie, un sistema de codificación, control de señales y un oscilador de onda cuadrada. Las señales digitales que han ingresado, sistema atraviesan un registro de corrimiento, entrando paralelo - salida serie de 16 bits, cada vez que aparece la señal de carga (LOAD) y esto se logra con cada inicio del oscilador de onda cuadrada; luego estas señales se codifican de la siguiente forma:

"0" cuando el ancho de señal es igual al ancho de pulso del Monoestable NO. 1T; y

"1" cuando el ancho de la señal es igual al tiempo entre pulsos del reloj.

Con el objeto de diferenciar la información en el paquete, es necesario contar con un guardia bit, por lo tanto, antes de que aparezca el siguiente bit se inhibe con un "0" después del pulso de reloj, aplicando a la salida negada del Monoestable NO: 2T a la puerta lógica NAND C (salida).

Con respecto a parte de recepción del prototipo de sistema de Transmisión/Recepción digital codificado en ancho de pulso, este ha sido diseñado utilizando registros de corrimiento del tipo entrada serie - salida paralelo, y entrada paralelo - salida serie. El sub-sistema funciona de la siguiente manera: las señales recibidas del sub-sistema de transmisión, de acuerdo a un protocolo de transferencia de datos del tipo Bracket (paquetes debidamente identificados), ingresan
al registro de corrimiento entrada serie - salida paralelo, y también aparecen en la entrada del monoestable NO. 1R, este monoestable acti-
va el reloj de corrimiento del registro, que provoca el desplazamien-
to de las señales en grupos que tienen una identificación al inicio y término de cada paquete; luego esta información es transferida a otro
registro de corrimiento entrada paralelo - salida paralelo, que es controlada por el circuito conformado por el monoestable NO. 2R y dos
puestas lógicas. Finalmente, las señales se encuentran en paralelo, aptas para ser utilizadas o descodificadas y exhibidas mediante dis-
play.

El presente trabajo de Tesis enfoca el diseño y la construcción de un
sistema de transmisión/recepción digital codificada en ancho de pulso,
describiendo al detalle cada uno de los circuitos diseñados e implemen-
tados.

Para el desarrollo del diseño de Ingeniería se emplearon las normas
CCITT, ISO y EIA. Asimismo, se ha descrito en forma detallada sus
aplicaciones, que llevadas a la práctica permitirán con su empleo,
un ahorro considerable en costo con relación al uso de cables múlti-
ple para la transferencia de señales. En la aplicación principal se ha utilizado el diseño de prototipo asociado a un radio Enlace UHF ,
Teclado y Exhibidor.

La realización física del diseño se efectuó en el laboratorio del Cen-
tro de Entrenamiento Aeronáutico de CORPAC S.A.
TABLA DE CONTENIDOS

INTRODUCCION

CAPITULO I : DISEÑO Y CONSTRUCCION DE UN PROTOTIPO DE SISTEMA DE TRANSMISION/RECEPCION DIGITAL CODIFICADO EN ANCHO DE PULSO

1.0 Sistema de Transmisión/Recepción Serie

1.1 Problemas en las Transmisiones Serie

 1.1.1 Sincronización de Bit
 1.1.2 Sincronización de Caracter

1.2 Métodos de Entrada/Salida Serie para Comunicaciones

 1.2.1 Método Asincrono
 1.2.2 Método Sincrono

1.3 Métodos para la Generación de la Señal de Reloj

1.4 Recomendaciones para las Comunicaciones Serie

1.5 Componentes para Comunicaciones Serie
1.5.1 Emisores y Receptores de Línea
1.5.2 Generadores de Reloj
1.5.3 Emisores y Receptores de Línea Larga

1.6 *Bracket*

1.7 Líneas de Transmisión

1.7.1 Líneas Asimétricas
1.7.2 Cables Multiconductores
1.7.3 Pares Trenzados
1.7.4 Cable Plano
1.7.5 Cable Coaxial
1.7.6 Líneas Balanceadas

1.8 Descripción del Sub - Sistema de Transmisión Digital Codificado en Ancho de Pulso

1.9 Descripción del Sub - Sistema de Recepción Digital Codificado en Ancho de Pulso

1.10 Ventajas de la Transmisión/Recepción Digital

CAPÍTULO II: CONCEPTOS Y CRITERIOS DE DISEÑO

2.1 Descripción del Circuito de Transmisión Digital Codificado en Ancho de Pulso
2.1.1 Diseño y Descripción del Registro de Corrimiento
Entrada Paralelo - Salida Serie, 16 Bits
2.1.2 Diseño del Monoestable NO. 1T
2.1.3 Diseño del Monoestable NO. 2T
2.1.4 Diseño del Contador Digital entre 32
2.1.5 Diseño del Monoestable NO. 3T
2.2 Descripción del Circuito de Recepción Digital Codificado en Ancho de Pulso
2.2.1 Diseño del Registro de Corrimiento Entrada Serie
Salida Paralelo, 16 Bits
2.2.2 Diseño del Registro de Corrimiento Entrada Paralelo
Salida Paralelo, 16 Bits
2.2.3 Diseño del Monoestable NO. 1R
2.2.4 Diseño del Monoestable NO. 2R
2.3 Diseño del Oscilador de Onda Cuadrada
2.3.1 Descripción del Circuito del Oscilador de Onda Cuadrada
2.3.2 Cálculo de los Períodos de Carga \((t_1) \) y Descarga \((t_2) \)
2.3.3 Cálculo del Ciclo de Trabajo Util (Duty Cycle)
2.3.4 Diseño del Inversor Lógico
2.4 Diseño y Descripción de la Fuente de Alimentación
2.4.1 Circuito Rectificador
- IV -

2.4.2 Fuente de Corriente
2.4.3 Amplificador de Salida
2.4.4 Regulador de Tensión
2.4.5 Limitador de Corriente
2.4.6. Regulador de Tensión de 12 VDC a 5 VDC

CAPÍTULO III : APLICACIONES Y COMPONENTES.

3.1 Aplicaciones

3.1.1 Sistema de Comunicaciones Digital

3.1.1.1 Unidad Transmisora

3.1.1.1.1 Teclado
 a) Pulsadores
 b) Formatos
 c) Modos
 d) Depresión Simultánea de Varias Teclas
 e) Codificación
 f) Interfaz

3.1.1.2 Sub-Sistema de Transmisión Digital Codificada en Ancho de Pulso

3.1.1.3 Generador de Tonos

3.1.1.4 Modulador y Transmisor

3.1.2 Unidad Receptora

3.1.2.1 Receptor y Demodulador
3.1.2.2 Discriminador de Frecuencias
3.1.2.3 Sub - Sistema de Recepción Digital, Codificado en Ancho de Pulso
3.1.2.4 Descodificador y Exhibidor

3.1.3 Otras Aplicaciones

3.2 Componentes

CONCLUSIONES

APENDICE

BIBLIOGRAFÍA
INTRODUCCIÓN

Teniendo en cuenta, que el avance tecnológico en el campo de la electrónica, en materia de transmisión de información, discurre por derroteros que conducen inexorablemente a la adopción de redes totalmente digitales, debido a las ventajas que ésta ofrece y que permite la transmisión de la información prácticamente sin ruidos; pero hasta hace poco tiempo no ha podido ser competitiva con los métodos analógicos convencionales, debido al alto costo de los dispositivos digitales de ese entonces.

Por otro lado, el desarrollo de los sistemas de conmutación y de los sistemas de procesamiento, ha creado la necesidad de la transmisión de informaciones digitales en gran cantidad, de tal modo que fue necesario desarrollar los sistemas de transmisión de señales digitales, los cuales han coincidido con el desarrollo de los dispositivos de circuitos de gran integración.

Podemos afirmar que actualmente, todos los sistemas de comunicación están inclinándose hacia la tecnología digital y se le puede atribuir principalmente a las ventajas inherentes que ésta ofrece, que consiste principalmente en su mayor facilidad para adaptarse a la demanda creciente del tráfico, mediante la construcción de redes de muy alta flexibilidad que puedan responder rápidamente a la variación de la cantidad de tráfico.
Además como es de conocimiento general, en el mundo de las informaciones, las comunicaciones constituyen el sistema nervioso de la sociedad, y conforme se desarrollan estas crece la demanda del intercambio de informaciones, cada vez más exigente tanto en calidad como en cantidad; para lograr este objetivo se cuenta con el aporte del desarrollo de la ciencia y la tecnología.

En la práctica se utiliza para el traslado de la información de alta capacidad, radio enlaces UHF & microondas, usando la modulación por frecuencia o multiplaje con división de frecuencia, debido a sus características favorables para su propagación y la posibilidad de transmitir gran cantidad de información. La implementación de estos sistemas requiere contar con una infraestructura adecuada (edificaciones, alimentación, etc.); aunque en los últimos tiempos se han diseñado equipos de bajo consumo de energía, que en algunos casos llega a solo 3.5 vatios, por transmisor/receptor. De todas maneras es un sistema muy costoso. El uso generalizado de sistemas de procesamiento, datos, etc. en gran escala y también el desarrollo de los sistemas de conmutación, hace necesaria la transmisión de información digital en grandes cantidades.

Por lo tanto, es necesario contar con un sistema de transmisión/recepción que realice esta función a bajo costo.
El presente trabajo trata sobre el diseño y la construcción de un prototipo de sistema de transmisión/recepción digital codificada en ancho de pulso, cuya función es transmitir señales digitales. Las cuales ingresan en el sub-sistema de transmisión a un registro de corrimiento entrada paralelo-salida serie, el cual está dispuesto en un arreglo de 16 bits; cada vez que aparece la señal de carga (LOAD), al inicio de ciclo. Posteriormente estas señales son desplazadas serialmente con el reloj de corrimiento y carga.

Para efectuar estas funciones fue necesario diseñar un circuito lógico el cual está conformado por oscilador de onda cuadrada, monoestables, contador y puertas lógicas.

La codificación en ancho de pulso se realiza de la siguiente manera:

"0" cuando el ancho del pulso es igual al tiempo de pulso del monoestable N°1T.

"1" cuando el ancho del pulso es igual al tiempo entre pulsos del reloj.

Para diferenciar la información en serie es decir entre un bit y otro bit, es necesario contar con un guarda bit, por lo tanto antes de presentar el siguiente bit se inhibe con un "0" después del pulso de reloj, aplicando la salida negada del monoestable N°2T a la puerta lógica correspondiente.
El diseño para la parte de recepción se realiza en base a registros de corrimiento del tipo entrada serie-salida paralelo y entrada paralelo-salida paralelo en arreglo de 16 bits, monoestables y puertas lógicas NAND.

Las señales son enviadas desde el sub-sistema de transmisión de acuerdo al protocolo de transferencia de datos tipo bracket. Mediante este protocolo se envía la información por paquetes, y cada paquete tiene una identificación al inicio y término de cada grupo de datos enviados. De esta manera el sub-sistema de recepción podrá distinguir cada paquete de información enviada sin ningún problema.

El sub-sistema de recepción funciona de la siguiente manera: la información enviada aparece en la entrada serie del registro de corrimiento entrada serie-salida paralelo y también en la entrada de un monoestable N°1R el cual activa al reloj del registro antes mencionado para provocar el corrimiento de las señales enviadas, los brackets cada vez que aparecen ingresan a una puerta lógica, la salida de dicha puerta lógica se invierte y activa al monoestable N°2R, la salida negada de este monoestable sirve de reloj de carga para el registro de corrimiento entrada paralelo -salida paralelo con el diseño efectuado se espera contribuir en algo, a la realización de la transferencia de información en gran escala, esto permitirá enviar cantidades apreciables de datos, usando solamente dos líneas telefónicas, o ser enviados mediante un
transmisor a grandes distancias

Si se usa líneas telefónicas, éstas deben estar protegidas -por mallas especiales para evitar las interferencias producidas por la inducción de otras líneas de transmisión.

Con el objeto de contar con un formato adecuado respecto a los datos transmitidos/recepteados se adopta un protocolo de control de línea, creando de esta manera un canal de comunicaciones libre de errores de transmisión entre dos puntos conectados a través del enlace físico.

Estas consideraciones sugieren la posibilidad de contemplar todo el sistema informático como un conjunto de unidades más o menos autónomas, con una función definida que colaboran entre sí para la consecución de tareas determinadas.

Los objetivos perseguidos con esta colaboración difieren radicalmente de un sistema a otro, existiendo sin embargo ciertos aspectos comunes a todos ellos. Desde el punto de vista que nos hemos situado puede señalarse como aspecto común de todos los sistemas la necesidad de intercambiar información entre los elementos que lo integran. Estos pueden ser circuitos, modems, concentradoras, terminales, computadoras, procesos, personas, etc.

El intercambio de información entre componentes de un siste-
ma se denomina comunicación. La forma en que se realiza la comunicación depende de múltiples factores; pero en cual quier caso, es indispensable establecer en forma clara las reglas que deben seguirse en el intercambio de información.

Se denomina protocolo de comunicación al conjunto de reglas que siguen las comunicaciones entre elementos de un sistema. Nótese que en estas definiciones no han impuesto ninguna restricción del tipo de información que intercambian los elementos del sistema. El concepto de comunicación se extiende desde el intercambio de datos, que involucra procesos complejos de software, hasta la simple señal que indica a un elemento el estado de otro.

El sistema de transmisión/recepción digital codificada, en ancho de pulso, es un sistema asincrónico, no necesita señales de reloj para seguir la secuencia de señales transmitidas/recepcionadas.

En el Capítulo I, nos referimos al sistema de transmisión/recepción digital codificada en ancho de pulso, hacemos una descripción del sistema transmisión/recepción, entrada-salida serie, descripción del sistema de transmisión/sistema de recepción y las ventajas de la transmisión/recepción digital. En el Capítulo II tratamos de la descripción y diseño del prototipo de sistema de transmisión/recepción digital codificado en ancho de pulso y en el Capítulo III da
mos la información referente a las aplicaciones, mediciones y componentes que se utilizan en este prototipo de sistema de transmisión/recepción digital codificada en ancho de pulso.
CAPÍTULO I

DISEÑO Y CONSTRUCCIÓN DE UN PROTO TIPO DE SISTEMA DE TRANSmisión/RECEPCIÓN DIGITAL CODIFICADO EN ANCHO DE PULSO

1.0. SISTEMAS DE TRANSmisión/RECEPCIÓN EN SERIE

La transferencia de información entre dos sistemas digitales, se realiza generalmente carácter a carácter utilizando códigos binarios. Otras veces la información que se transfiere no corresponde a ninguna codificación de caracteres numéricos o alfanuméricos sino que es puramente binaria.

De una forma o de otra la información se transmite en unidades de información denominadas palabras, que suelen ser de 5 a 8 bits. Existen dos formas de realizar la transmisión de estas palabras.

Método Paralelo: Transmitiendo simultáneamente, por líneas separadas, todos los bits de la palabra, junto con una señal de reloj que indica el momento en que está presente una palabra de información en las líneas de datos (fig. 1.1).

Método Serie: Transmitiendo en forma secuencial en el tiempo, todos los bits de la palabra, uno tras
otro por una sola línea de datos.

Eventualmente puede existir una línea adicional de reloj que marca los tiempos de bit (fig. 1.2).

El método paralelo es utilizado para transmisiones a alta velocidad entre dos sistemas; no obstante cuando la distancia entre ambos aumenta, el costo de línea y el de los amplificadores de transmisión y recepción puede llegar a crecer de forma tal que, desde el punto de vista económico, sea preferible utilizar un sistema serie de comunicaciones.

Por otra parte, como se verá más adelante, los sistemas de comunicaciones serie han alcanzado un alto grado de estandarización. Existen normas universalmente aceptadas que fijan completamente todos los detalles de la comunicación, incluyendo aspectos mecánicos (tipo de conector y distribución de señales en los terminales), aspectos eléctricos (niveles y formas de las señales) y aspectos lógicos (sistemas de codificación y sincronización, descripción de todos los circuitos de datos, control y temporizado).

Estos estándares han conducido a que la mayoría de fabricantes incorporen en sus equipos interfaces serie que cumplan las normas especificadas, de forma que se pueda realizar con toda facilidad la conexión indistinta de cualquier terminal.
1.1 Problemas en las Transmisiones Serie

Cuando se transmiten informaciones a través de una línea serie es necesario utilizar un sistema de codificación que permita resolver los siguientes problemas.

Sincronización de bit: El receptor necesita saber exactamente donde empieza y donde termina cada bit en la señal recibida.

Considérese el caso de transmisión en serie de la información 01110010. Si se utiliza un método NRZ (no retorno a cero) en que los bits 1 y 0 se representan por niveles 1 y 0 respectivamente, la señal en la línea sería como la representada en la Fig. 1.3.

La presencia de varios bits iguales, por ejemplo 3 "unos", hace que la línea no efectúe ninguna transición y el receptor puede perder la pista de donde empieza y donde acaba cada bit.

Si el número de bits iguales aumenta, se observa que la dificultad de reconstruir las celdas de bit aumenta también.

Sincronización de Carácter: La información en serie se transmite, por definición, bit a bit, pero la misma tiene sentido en palabras, por ejemplo de 8
bits.

El sistema de codificación usado debe permitir distinguir sin ambigüedades dentro de una corriente de bits cuáles son los 8 que forman una palabra.

Sincronización de Mensaje: En un sistema de comunicaciones generalmente las informaciones se transmiten en bloques de caracteres.

Por sincronización de mensaje entendemos el mecanismo por el cual un conjunto de palabras es interpretado correctamente. Este problema normalmente no incumbe a los circuitos de codificación, sino al receptor que lo utiliza.

El conjunto de reglas (protocolo) que permiten interpretar correctamente los mensajes suele estar controlado por una tarea software (un programa) que actualmente hay ciertos circuitos integrados LSI que efectúan algunas de estas tareas.

1.1.1 Sincronización de Bit

Para resolver el problema de la sincronización de bit pueden usarse varios métodos:

a) Enviar por una línea independiente de la de datos una señal de reloj que indique el centro de las celdas de bits de la línea de datos.

b) Enviar junto con cada bit transmitido en serie...
y por la misma línea una información adicional que permita al receptor extraer una señal de reloj.

c) Lograr mediante algún procedimiento que los relojes de transmisión y recepción se mantengan en fase continuamente.

Para que el receptor pueda interpretar adecuadamente estas señales, debe ser capaz de obtener o crear un reloj que se mantenga en perfecto sincronismo con el del transmisor. Este reloj marcará las celdas de bit y analizándolas verá si contienen un bit 1 o 0.

Como puede observarse en la figura 1.4 los datos no contienen información de reloj.

Efectivamente, las secuencias de ceros, en cualquiera de los sistemas (RZ, NRZ, NRZI), y las secuencias de unos, en el sistema NRZ, no contienen ninguna transición que permita al receptor determinar la situación de las celdas de bit.

Estos sistemas se dice que son no self-clock (es decir sin auto-reloj). La sincronización de bit en tales sistemas se consigue utilizando en la recepción el propio reloj de transmisión, enviado por una línea independiente de los datos o bien utilizando relojes de precisión y con dispositivos adicionales que aseguren que se -
mantiene a la misma frecuencia y fase que el de transmisión.

Frente a estos sistemas de codificación se encuentran los de auto-reloj (self-clock), que transmiten información de forma tal que permiten al receptor deducir la situación exacta de las celdas de bit y por tanto los datos, sin necesidad de disponer de un reloj sincrono con el de transmisión.

Hay varios métodos auto-reloj, siendo los más conocidos los utilizados en la figura 1.5. PE, codificación de fase, FSC, codificación por cambio de frecuencia; FM, modulación de frecuencia; MFM y M²FM, modulación de frecuencia modificadas.

En estos sistemas, el envío de la información adicional para determinación del reloj se hace a costa de la disminución de la cantidad de información útil enviada para un mismo ancho de banda.

En efecto, tal como se observa en las figs. 1.4 y 1.5, los métodos "no auto-reloj" permiten enviar una misma información a una frecuencia mitad que en los métodos "auto-reloj".

Dado que las características de una línea o ca-
nal de transmisión limitan la frecuencia máxima de la señal que se puede enviar por él, la cantidad que es posible enviar mediante una codificación "no auto-reloj" es doble que mediante una codificación "auto-reloj". No obstante hay campos de aplicación idóneos para cada método. Cuando el problema es de transmisión de una información serie entre dos puntos, es posible la utilización de una codificación "no auto-reloj" realizando la sincronización de bit con el propio reloj de transmisión o generando un reloj sincronizado con aquél.

Para realizar la grabación de la información serie en un soporte magnético giratorio (discos, cintas, etc), y luego reproducido, la posibilidad de usar el reloj de grabación o sincronizar un reloj de recepción es muy difícil, debido a que se introducen agentes perturbadores (fluctuaciones de velocidad de giro del soporte magnético) en los instantes de grabación y lectura. En estos casos se opta el método "auto-reloj" para lo cual el receptor debe disponer de un circuito que extraiga la señal de reloj de recepción de los datos (Fig: 1.6)

1.1.2 Sincronización de Carácter

Para obtener la sincronización de carácter pueden utilizarse diversos sistemas, unos se basan en la
utilización de líneas adicionales a las de datos para enviar impulsos que indican el inicio de un bloque de caracteres. Tal impulso identifica el primer bit del primer carácter de un bloque o mensaje, y cuenta los bits y caracteres determinando la frontera de los datos del bloque.

Otros sistemas, utilizados usualmente en los sistemas de comunicaciones serie, son:

Asíncrono: Cada carácter ya señalizado mediante dos bits, uno al principio, bit de arranque, y otro al final, bit de parada.

Estos bits permiten reconocer las fronteras de los caracteres.

Síncrono: Cada mensaje o bloque de transmisión va precedido por unos caracteres de sincronismo.

Cuando el receptor identifica una configuración de bits igual a la de los caracteres de sincronismo ha detectado el inicio de los datos y a continuación, contando los bits y caracteres identifica todos los caracteres del bloque.

1.2 Métodos de Entrada/Salida Serie para Comunicaciones

La Comunicación entre terminales se hace utilizar
do líneas o canales de transmisión, que pueden ser:

Simplex: Cuando son capaces de transmitir información en un solo sentido.

Semiduplex: (half-duplex), Cuando son capaces de transmitir información en ambos sentidos pero no en forma simultánea.

Duplex: (Full-duplex), Cuando son capaces de transmitir información en forma simultánea en ambos sentidos.

La codificación de las señales en estos sistemas se hace mediante uno de los siguientes métodos: asíncrono o síncrono.

1.2.1 Método Asíncrono

En el método asíncrono la transmisión se controla por bits de inicio y de final que enmarcan cada carácter transmitido, son los denominados bits de start y stop y son utilizados por el terminal receptor para sincronizar su reloj con el del transmisor en cada carácter.

La especificación RS404 de EIA (Electronic Industries Association) define las características del método asíncrono de transmisión serie.
La transmisión en asincróno se basa en las siguientes reglas:

a) Cuando no se envían datos por la línea, ésta se mantiene en estado 1.

b) Cuando se desea transmitir un carácter se envía primero un bit de inicio, que pone la línea a cero durante el tiempo de 1 bit.

c) A continuación se envían todos los bits del carácter a transmitir con los intervalos que marca el reloj de transmisión.

d) Continuación del último bit del carácter se envía el bit de final que hace que la línea se ponga a 1 por lo menos durante el tiempo de 1 bit.

Los datos codificados según estas reglas pueden ser detectados fácilmente por el receptor. Para ello deben seguirse los siguientes pasos:

1) Esperar una transición de 1 a 0 en la señal recibida.

2) Activar un reloj de frecuencia igual a la del transmisor.
3) Muestrear la señal recibida al ritmo de este reloj para formar el carácter.

4) Leer un bit más de la línea y comprobar si es 1 para confirmar que no ha habido error de sincronización.

En las figuras 1.7 y 1.8 se presentan los organigrama mas que definen con mayor precisión los métodos de transmisión y recepción asíncrano.

El bit de final tiene la misión de llevar la línea a estado 1 para que el bit de inicio del próximo carácter provoque la transición de 1 a 0 que permita al receptor sincronizar el siguiente carácter.

El bit de final sirve también para dar tiempo a que el sistema receptor acepte el dato recibido.

El método asíncrano de transmisión presenta las siguientes ventajas:

1) Permite enviar caracteres a ritmos variables ya que cada uno de ellos lleva incorporada la información de sincronismo.

2) Existen circuitos integrados de bajo costo, las UART, que simplifican enormemente la realización -
ción de sistemas de entrada/salida en este formato.

3) Es un método de comunicaciones estándar entre ordenadores y terminales de pantalla, impresoras lentas, etc.

Entre sus inconvenientes se puede citar, como más importante, su ineficiencia, ya que cada caracter va traído con dos bits de sincronización que no contienen información útil. Asumiendo caracteres de 8 bits, es necesario enviar por línea 10 bits para enviar un carácter, es decir sólo un 80% de la información transmitida es válida.

1.2.2 Método Síncrono

En el método síncrono, en vez de añadirse bits de sincronismo a cada palabra, lo que se hace es añadir caracteres de sincronismo a cada bloque de datos.

Los caracteres se transmiten en serie, bit a bit y sin ninguna separación entre uno y otro; no obstante, delante de cada bloque de datos se colocan unos caracteres de sincronismo que sirven al receptor para realizar la sincronización de carácter, es
decir, conocer las fronteras de carácter en una corriente de bits.

La sincronización de bit se consigue normalmente utilizando una señal externa de reloj. En una comunicación local entre dos dispositivos, el transmisor envía por una línea independiente de la de datos su señal de reloj, que es utilizada por el receptor como reloj de recepción.

La sincronización de bit queda de esta forma resuelta ya que el mismo reloj que el transmisor utiliza para serializar los bits de información sobre la línea de datos, es utilizada por el receptor para leer los datos recibidos. Será necesario únicamente tener en cuenta que el receptor debe mesurar la línea de datos con el blanco de reloj contrario al que el transmisor utilizó para enviarlos para que así el muestreo se efectúe en el centro de la celda de bit.

Las figuras 1.9 y 1.10 muestran en forma de organigrama el proceso detallado de transmisión y recepción en modo síncrono.

El método de comunicaciones síncrono se utiliza cuando el volumen de información a enviar es importante debido a su mayor eficiencia respecto al
método asíncrono.

En modo asíncrono cada palabra se envía precedida por un bit de inicio y seguida por 1 o 2 bits de final. Suponiendo palabras de 8 bits y utilización de 1 bit de final, se necesitan 10 bits para enviar una palabra de 8 bits.

En modo síncrono, cada mensaje se envía precedido por unos caracteres de sincronismo, normalmente dos caracteres SYN.

Para enviar un mensaje de N palabras serán necesarios:

\[(N+2) \times 8 \text{ bits en síncrono y} \]

\[10 \times N \text{ bits en asíncrono}\]

Comparando ambas cifras se observa que para mensajes de 512 octetos la eficiencia del método síncrono no es un 25% superior a la del método asíncrono.

1.3 Métodos para la Generación de la Señal de Reloj

En una comunicación remota utilizando modems la señal de reloj es extraída del canal de datos por el modem; para ello utiliza un reloj de la misma frecuencia que el transmisor y que mediante circuitos
de sincronización lo mantienen en la misma fase.

El sistema es inherente al principio de funcionamiento del modem. Precisamente los métodos de transmisión síncrono y asíncrano, aparte de sus diferencias de formato se distinguen también por el tipo de modems que utilizan.

Existen los llamados modems síncronos y modems asíncronos. Los modems asíncronos utilizan sistemas de codificación FSK cuya misión es generar una señal de distinta frecuencia para la marca y el espacio. Esta señal es de frecuencia apropiada para que pueda transmitirse a través de la red telefónica, ya que pertenece a la banda de audiofrecuencia.

El modem receptor recibe la señal de la línea telefónica y discrimina los dos tonos generando las señales marca y espacio que constituyen la señal digital primitiva.

Debido a este modo de funcionamiento, el modem en sí no está ligado a la frecuencia de transmisión de los datos y admite, sin necesidad de ningún ajuste, señales de frecuencias de transmisión comprendidas entre cero y el máximo.

En cambio, los modems síncronos utilizan sistemas
de codificación por cambio de fase y permiten transmitir mayor cantidad de bit por segundo, es decir, mayores frecuencias de transmisión sobre los mismos canales telefónicos. Para la demodulación de la señal, el receptor dispone de un reloj de la misma frecuencia que el transmisor y que lo mantiene en fase con aquel mediante un circuito PLL; la detección de los cambios de fase entre el reloj y los datos le permite reconstruir los datos binarios, obteniéndose además una señal de reloj que marca las fronteras de los bits y que por tanto permite la comunicación utilizando el método síncrono.

Para comunicaciones asíncronas se utilizan normalmente modems asíncronos, pero pueden utilizarse también los modems síncronos, esto permite aumentar la velocidad de transmisión por la línea, al utilizar modems de mayor velocidad, pero sin necesidad de cambiar el protocolo de comunicación. En tal tipo de comunicación llamada a veces isosíncrona o isocróna, se utiliza el reloj del modem como reloj interno de recepción x 1 o bien puede utilizarse un reloj interno de frecuencia x 16 y realizar la sincronización de bit por el método asíncrono.

Para transmisiones síncronas es necesario en principio utilizar modems síncronos, ya que el sistema de
recepción necesita el reloj de bit que el modem síncrono genera.

No obstante, se pueden utilizar modems asíncronos para transmisiones síncronas, de la misma forma que pueden realizarse comunicaciones síncronas entre dos terminales sin modems y sin que el terminal receptor reciba el reloj transmisor, es decir una comunicación síncrona con solo 3 hilos, como la indicada en la figura 1.11.

Para ello se utiliza en el receptor un reloj de alta estabilidad y que además se resincroniza con los flancos de las señales de datos.

La relación entre señales de datos y de reloj en el transmisor es la indicada en la figura 1.12

El objetivo es conseguir que el reloj del receptor esté en fase lo más exactamente posible con el reloj del transmisor y para ello se aprovecha cada blanco de la señal recibida para reiniciar el ciclo del reloj de recepción. En la figura 1.13 se ve este efecto de resincronización en el reloj de recepción cuya frecuencia ha derivado y se ha hecho mayor (en forma exagerada) que la del transmisor.
1.4 Recomendaciones para las Comunicaciones Serie

Los sistemas de comunicaciones serie tienen a su disposición un conjunto de recomendaciones elaboradas por asociaciones e institutos de normalización (ISO, EIA, CCITT...) que especifican con precisión todas las características del sistema de comunicaciones.

Las normas para comunicaciones serie están clasificadas por niveles, aquí interesa resaltar únicamente el NIVEL 1, que hace referencia a:

a) Las características eléctricas de las señales.

b) Las características mecánicas de la interfaz.

c) La descripción funcional de las señales.

La norma más ampliamente aceptada es la IEA RS-232-C, que define las características funcionales, eléctricas y mecánicas de la interfaz entre un terminal y un equipo de comunicaciones (p.ej. un modem).

La norma RS-232-C puede ser aplicada a la conexión entre dos terminales, aunque no se utilicen modems, como se verá a continuación.

Las especificaciones funcionales de la RS-232-C coinciden con la recomendación V.24 del CCITT (Comité
Consultatif International Téléphonique et Télégraphique y definen 21 circuitos con el siguiente significado. (se utiliza la numeración de circuitos según CCITT).

Circuito 101 Tierra de protección
Circuito 102 Retorno Común
Circuito 103 Dato transmitido
Circuito 104 Dato recibido
Circuito 105 Petición de emisión
Circuito 106 Preparado para emisión
Circuito 107 Preparado el equipo de comunicaciones.
Circuito 108 Terminal de datos preparado
Circuito 109 Detector de señal de línea recibida.
Circuito 110 Detector de calidad de señal
Circuito 111 Selector de velocidad transmisión en el terminal.
Circuito 112 Selector de velocidad transmisión en el modem.
Circuito 113 Elemento de sincronismo de señal de transmisión en el terminal.
Circuito 114 Elemento de sincronismo de señal de transmisión en el modem.
Circuito 115 Elemento de sincronismo de señal de receptor.
Circuito 118 Datos transmitidos (canal de retorno).
Circuito 120 Petición de transmisión (canal de retorno).
Circuito 121 Preparado el canal de retorno.
Circuito 122 Detector de señal de línea recibida (canal de retorno).
Circuito 125 Detector de llamada.

Estos son las 21 señales de RS-232-C y V.24 específicas para la comunicación entre un terminal y un modem.

Para la comunicación entre dos terminales, sin utilización de modems, se utiliza un subconjunto de 3, 5 o 7 señales solamente, aunque se respetan sus especificaciones funcionales, eléctricas y mecánicas. Las figuras 1.14 y 1.15 muestran dos conexiones RS-232-C entre terminales.

En cuanto a especificaciones mecánicas, la norma RS-232-C establece un conector de 25 patillas y fija todas sus dimensiones, así como la distribución de los 21 circuitos en el mismo.
Especificaciones Eléctricas:

Para la comunicación de dos terminales a través de una línea serie se utilizan diversas configuraciones de emisores y receptores, las que más se utilizan son las siguientes:

Señales TTL, envío directo por una línea unifilar o por pares trenzados de las señales de salida de las puertas TTL.

No es aconsejable su utilización para distancias mayores de 5 metros. Figura 1.16

Bucle de corriente, permite realizar comunicaciones mayores distancias, hasta 300 metros según la velocidad (normalmente 1200 bps a 30 m y 10 bps a 300 m.). Figura 1.17

Los niveles 1 y 0 se codifican por la ausencia o presencia de una corriente unidireccional de 20mA en la línea. Existen las siguientes posibles configuraciones de emisores y receptores para bucle de corriente. Figuras 1.18 y 1.19.

RS-232-C, utiliza emisores y receptores no balanceados, la señal 1 es una tensión ≤ -3V y la señal 0 es una tensión ≥ +3 V.
Se utiliza normalmente una señal de +12 y -12 V (la especificación indica ± 3 V a ± 25 V.).

La velocidad de subida de la señal se limita a 30 V/us. Esta interfaz está especificada para una velocidad máxima de transmisión de 20 Kbps y una distancia de 15 m. Figura 1.20.

RS-422 utiliza emisores y receptores balanceados (diferenciales) con lo que se consigue una importante mejora en la velocidad y distancia máxima (100 Kbps a 1200 m y 10 Mbps a 12 m).

Se utilizan señales de hasta 6 V y el receptor tiene un umbral de disparo de 200 mV. Figura 1.21

RS423, utiliza un receptor diferencial y un emisor que no lo es; de esta forma se permite su interconexión con emisores o receptores RS-232-C y RS-422.

Las ventajas que se consiguen son: 300 Kbps a 12 m y 3 Kbps a 1200 m. Figura 1.22.

1.5 Componentes para Comunicaciones Serie

Actualmente el mercado ofrece una serie de circuitos
integrados que simplifican la realización de sistemas de entrada/salida serie. Mediante estos componentes se puede construir un sistema de comunicaciones serie que desde el lado del procesador ofrece una simple interfaz paralela (figura 1.23).

El sistema de comunicaciones está compuesto por tres tipos de componentes básicos:

a) Receptores y emisores de línea
b) Generadores de reloj
c) Unidades de recepción y trasmisión o controladores de comunicaciones.

1.5.1 Emisores y Receptores de Línea

Son componentes que realizan la conversión de una señal compatible con circuitos integrados (p.ej.m. TTL) en una señal adecuada para el manejo de líneas de acuerdo con algún estándar. EIA RS-232, RS-422 etc. Realizan también la función inversa, conversión de una señal de línea en una compatible con los niveles de los circuitos integrados.

Generalizando un poco el objetivo de los emisores y receptores de línea podrían incluirse aquí los equipos de comunicación de datos o modems. Para comuni
caciones entre equipos separados por grandes dis-
tancias es útil usar líneas de las compañías tele-
fónicas, utilizando la red conmutada normal o bien
alquilando líneas permanentemente conectadas. Ta-
les líneas, diseñadas en principio para comunica-
ciones de voz, no son adecuadas para la transmi-
sión de señales digitales en forma de impulsos, siem-
d do precisamente la misión de los modems la conver-
sión de señales digitales en señales analógicas de
audiofrecuencia y viceversa.

Actualmente existen algunos modelos de modem de ba-
ya velocidad que están constituídos por un solo cir-
cuito integrado.

Cuando se elabora proyectos donde se utilizarán puer-
tas lógicas normales, se debe tener en cuenta que-
dichos dispositivos no son elaborados con capacidad
suficiente para transmitir datos digitales y además
activar memorias, lecturas, indicadores y demás equi-
pos periféricos asociados a los sistemas digitales.
Por esta razón en vez de construir cada puerta con
una gran capacidad de potencia y por lo tanto imple-
mentar circuitos empleando puertas sobredimensiona-
das para funciones lógicas llamadas accionadores.

Estos dispositivos se encuentran situados entre los
elementos cables, líneas de transmisión, núcleos de memoria, etc.

Actualmente se dispone de accionadores digitales en forma de CI, siendo capaces de adaptar líneas de transmisión, proporcionar corrientes intensas, tensiones elevadas o niveles de potencia altos. Muchos accionadores no son más que puertas lógicas a los cuales se ha añadido a su circuito de salida un amplificador inversor de un solo transistor, en otros casos, el circuito accionador es en todo análogo al de una puerta lógica normal.

1.5.2 **Generadores de Reloj**

Son circuitos que contienen un oscilador, sincronizado generalmente por un cuarzo externo, y una cadena divisora programable para generar una de las frecuencias de reloj normalizadas. Muchas veces la función del generador de reloj programable está incluida dentro del mismo circuito integrado del receptor y transmisor serie.

1.5.3 **Emisores y Receptores de Línea Larga**

Teniendo en cuenta que en diseño de sistemas digitales complejos, es necesario utilizar numerosos
componentes electrónicos y no es posible ubicarlos en un espacio reducido; en muchos casos los datos binarios es necesario transmitirlos a distancias superiores a centímetros. Cuando hay necesidad de enviar a distancias superiores al metro, el nivel de ruido ambiental suele ser tan grande que hay que tomar precauciones cuidadosas para asegurar una transmisión sin error. En estos casos el nivel de ruido puede reducirse un tanto tomando un tipo particular de cable, con una impedancia terminal adecuada; para el caso de distancias pequeñas (centímetros), da buen resultado el uso de cable coaxial. Cuando es necesario enviar señales digitales a distancias grandes se utiliza como línea de transmisión cable de dos hilos trenzados, porque el trenzado compensa las tensiones que se inducen en la línea. También pueden eliminarse las reflexiones de la señal, terminando la línea con su impedancia característica (menor que 100 OHM's).

En la figura 1.24, se muestra el esquema de bloques de un sistema de transmisión de datos por línea larga. Es conveniente el uso en la línea de transmisión de cable de dos hilos trenzados, porque para la supresión de señales de modo común podrán utilizarse circuitos diferenciales, como el accionador de línea y el receptor de línea.
En consecuencia vemos que la etapa receptora de en trada diferencial tendrá una razón de rechazo al modo común (CMRR) muy elevada. Además, la impedancia terminal de salida del accionador y la de en trada del receptor se deben diseñar de manera que se adapten a la línea de transmisión con su impedancia característica.

1.6 Protocolo Bracket

Es difícil traducir este término por algo distinto a 'abréviatura' o corchetes, por lo cual mantendremos el nombre original en inglés. Este protocolo está diseñado a fin de prever la posibilidad de que un determinado usuario o aplicación pueda tener iniciativas de diálogo paralelos e independientes entre sí y ofrecer una solución a los problemas de usar varias líneas, en este caso tenemos que solamente es necesario tener una línea.

El caso más claro de este tipo lo constituye una aplicación en múltiples procesos paralelos (multitasking) por única línea, con la que pueda estar en sesión otra línea única remota un momento dado (ej. un terminal).

Si cada uno de los procesos paralelos, por motivos
transacciones distintas, inicia por separado diálo
go paralelos con la segunda línea única, podría
crearse un caos absoluto para esta. En tal caso,pa
ra evitar este problema, el protocolo bracket per-
mite dividir cada proceso en estructuras de dura-
ción discreta (transacciones simples) y, al inicio
de cada una de ellas, abrir un bracket (parentesis)
durante el cual, y hasta que se cierre otro proceso
paralelo no puede iniciar diálogo con la misma lí-
nea única remota.

La implementación de los protocolos de inicio y ter
minación consisten unas reglas, indicadoras y co-
mando previstos para tal fin. En nuestro diseño he-
mos utilizado señales adecuadas de control con el
objeto de lograr un prototipo simple.

Un determinado bracket puede incluir diversas inter
acciones o procesos entre ambas líneas únicas, has-
ta que una de ellas tome la decisión de cerrarla,
dando paso a otros procesos paralelos que estuviesen
en espera de hacer su propio aporte dentro de la úni
cica sesión que existe entre ellas.

Líneas de Transmisión

Se denominan *líneas de transmisión* al conjunto de hilos que realizan el enlace físico, entendiendo que, según el tipo de líneas que se escojan, en base a la aplicación deseada, existirán unos circuitos terminales, emitores en un extremo y receptores en otro, que permitirán la correcta adaptación entre las señales procedentes de la lógica y las señales eléctricas precisas para atacar correctamente la línea y viceversa. Existe una gran variedad de líneas dependiendo del tipo de aplicación que se dé; el caso más simple está compuesto por líneas de características asimétricas, es decir con un hilo general de masa y otro hilo que transporta la información, aplicando tensiones respecto de este primer conductor; estas líneas pueden ser múltiples, que es el caso más general, tratándose de entrada / salida paralelo o bien pueden utilizarse sistemas balanceados en los cuales no existe un hilo de referencia de masa y otro de tensión y ambos hilos transportan la información en modo diferencial; en casos de sensibilidad extrema a parásitos o interferencias externas se acude a la utilización de cables coaxiales, uno por cada bit transmitido de información.
1.7.1 **Líneas asimétricas**

El concepto de líneas de transmisión asimétricas se aplica en todos aquellos casos en los cuales las señales transportan información están referidas a una línea común de masá; estas líneas de información entregan tensiones de valores variables asociados a los distintos niveles de información; físicamente pueden adoptar distintas estructuras, según se describen en los apartados siguientes.

1.7.2 **Cables multiconductores**

Se entiende por cables multiconductores a un conjunto de hilos, que pueden o no, estar arrollados entre sí, pero englobados todos en el interior de un tubo de plástico protector. En estas mangueras cuando se utiliza un solo hilo para la masa, existe una gran posibilidad de diafonía, es decir de acoplamiento tanto capacitivo como inductivo entre las diferentes señales de datos, de tal modo que existe una gran posibilidad de interferencia, debido a que, si por ejemplo estamos trabajando con informaciones de 8 bits, y 7 de ellos conmutan simultáneamente, el octavo sufrirá una fuerte influencia, de tal modo que presentará un impulso como señal diferencial de
las conmutaciones del resto de hilos. Las líneas -
de este tipo son bastante económicas pero no pueden
ser utilizadas para grandes distancias debido a
el efecto antes enunciado.

1.7.3 Pares Trenzados

La conexión por pares trenzados (Twisted Pair), es
un método bastante económico y mucho más confiable
que el de los cables multiconductor; este método
consiste en que a cada señal se le asocia su pro-
pia masa de referencia, de tal modo que ambos con-
ductores van arrolando entre sí dando una vuelta-
completa entre sí cada 2 a 6 cm de longitud. El he-
cho de este arrollamiento provoca un efecto si-
lar a un blindaje, de tal modo que las corrientes
de ida por el conductor de señal son canceladas
por la corriente de retorno por el conductor de ma-
sa, minimizando el campo externo generado y por tan-
to reduciendo las posibles interferencias a cables
vecinos. Por otra parte este efecto de blindaje ge-
nerado por la masa arrollada inmuniza bastante el
hilo de señal respecto a interferencias externas,
pues que cualquier señal acoplada se induce si-
multáneamente en ambos conductores, de modo tal que
la tensión diferencial aparecida es mínima. La posi
ble tensión en modo común es anulada por el hecho de la conexión a cero voltios del conductor de retorno.

Las líneas de pares trenzados presentan una impedancia característica comprendida normalmente entre 100 y 200 ohmios, según se puede observar en el gráfico (Fig. 1.25). En este gráfico se indica la impedancia característica de una línea en función de las relaciones entre el diámetro de los conductores y la distancia entre centros.

De todos modos la impedancia característica de cualquiera línea desconocida puede ser determinada utilizando un medidor RX, de tal modo que la impedancia Z de la línea se calcularía a partir de la impedancia medida de cortocircuito Z_{sc} y la impedancia medida en circuito abierto Z_{oc}, de tal modo que \(Z = \left(\frac{Z_{sc}}{Z_{oc}} \right)^{1/2} \). Normalmente la impedancia de la línea es considerablemente inferior a las impedancias de salida del emisor de entrada del receptor. Esto es de seable puesto que cuando se conecten múltiples emisores o receptores a una línea, no se afectará su impedancia, con lo que se impiden situaciones críticas de acoplamiento. Con el fin de prevenir reflexiones eléctricas en la línea, es conveniente intercalar una red terminal, cuya impedancia sea equivalente a la característica de la línea. Asimismo, es
to reduce la impedancia general del conjunto y por tanto aumenta la inmunidad contra inducciones externas.

1.7.4 Cable Plano

El cable plano (Flat Cable) es otro tipo de línea de conducción desarrollado inicialmente por 3M. Consiste en una serie de conductores paralelo formando una cinta plana, toda ella aislada por una envoltura de PVC. El tipo más comúnmente utilizado es el 3365 (Fig. 1.26), que presenta un diámetro de cada uno de los conductores de 0.32 mm., lo cual implica una sección de 0.08 mm². Existe en diferentes anchos hasta un máximo de 50 hilos. Su impedancia característica es de 100 ohmios. La velocidad de propagación de la señal eléctrica medida es de 4.6 ns por metro lineal. Dada la pequeña distancia entre conductores, presenta unas características muy similares a las de los pares trenzados, permitiendo un montaje mucho más limpio y cómodo, puesto que los conectores diseñados para este tipo de cable trabajan por un sistema de prensado, es decir el cable plano se sitúa sobre el conector, se prensa y los terminales del conector ya están diseñados para pinzar individualmente cada uno de los conductores atravesando la envol-
capítulo protectora. Cuando se deseen características similares a la de los pares trenzados, usualmente se van destinando conexiones contiguas alternativamente a señal y masa, de tal modo que entre cada dos señales existe una masa de blindaje intermedio. Asimismo, es de aplicación el comentario que se ha hecho sobre los pares trenzados respecto a la red terminal de resistencias para equilibrio de impedancias y por tanto supresión de reflexiones eléctricas en la línea.

1.7.5 Cable Coaxial

El cable coaxial no es excesivamente utilizado para transmisiones de múltiples bits en paralelo por cuanto exige un conductor individual por cada bit, haciéndose por tanto sumamente engorroso el proceso de construcción e instalación de cables múltiples. No obstante, en determinadas ocasiones puede llegar a ser imprescindible. La impedancia de los cables coaxiales usualmente es bastante inferior a la de los pares trenzados o los cables planos y está normalmente comprendida entre valores de 50 a 75 ohmios. El gráfico (1.27) indica la impedancia característica de estos cables coaxiales en función de los diá-
del conductor externo. Este tipo de conexión es el más confiable en cuanto a inmunidad a parásitos o ruidos, pero presenta el inconveniente de su elevada capacidad intrínseca, por lo que presenta, con gran facilidad atenuación de los componentes de frecuencias más elevadas.

1.7.6 Líneas Balanceadas

Un tipo distinto de transmisión es la que se efectúa por líneas balanceadas y en este caso no existe un conductor destinado a la masa y otro a la señal sino que ambos conductores transmiten la señal de modo diferencial. Evidentemente, tanto los emisores como los receptores deben estar diseñados a este efecto, lo cual implica la utilización de circuitos especiales terminales. Dado que la transmisión se efectúa en modo diferencial, las posibles inducciones externas sobre la línea, que generalmente son de modo común, no provocan alteración alguna en la calidad de la señal transmitida. Las propias características de este tipo de enlace exigen la utilización de conductores asimismo balanceados; por tanto pueden utilizarse cables planos o trenzados, pero no es recomendable la utilización de cables coaxiales por su asimetría intrínseca. En la figura se
ilustra una aplicación típica de transmisión en cable balanceado entre dos equipos de procesos de datos. Las resistencias terminales \(R_t \) deben adoptar un valor igual a la mitad de la impedancia característica del cable de transmisión (fig. 1.28).
1.8 Descripción del Sub-Sistema de Transmisión Digital Codificada en Ancho de Pulso

El sub-sistema de transmisión digital codificado en ancho de pulso es una de las formas más importantes de transferencia de señales, por las ventajas que ofrece en cuanto a inviolabilidad de las señales es la más importante. La información se ve constantemente afectada por interferencias, que provocan por lo tanto la aparición de códigos o datos erróneos falsificando los resultados esperados en el proceso de traslado de las señales.

Es preciso mencionar que un sistema de esta índole ofrece muchas ventajas, en especial cuando se desea o es necesario enviar un conjunto de señales, que utilizando cables independientes sería desventajoso porque se tendría que utilizar un cable de conductores múltiples para satisfacer los requerimientos. Mediante el uso del sistema diseñado es necesario únicamente un par de cables y solamente sería conveniente dimensionar adecuadamente las entradas del sub-sistema de transmisión.

A continuación realizamos la descripción del funcionamiento del sistema de transmisión digital codificado...
formada por varios bits en paralelo es introducida a un arreglo de registros de corrimiento entrada paralelo-salida serie de 16 bits, mediante la señal de carga (Load) cada inicio de ciclo, para luego desplazarlo serialmente con un reloj (oscilador de onda cuadrada).

La salida serie del arreglo de registros de corrimiento es introducida a un inversor (A), la señal invertida es llevada a una puerta lógica NAND(B), a la cual también llega la señal del monostable N°1T (MS1T), que es disparado con cada inicio del reloj (Oscilador de onda cuadrada); la salida de la puerta lógica NAND(B) es introducida a la puerta lógica NAND(C), a la cual también ingresa la señal del monostable N°2T (MS2T), finalmente la salida de la puerta lógica NAND(C) es introducida al inversor(D) y a la salida de éste dispositivo tenemos la señal apta para ser transmitida mediante cable telefónico o cualquier medio y darle el uso conveniente.

Con el objeto de diferenciar la información en serie a la salida del sub-sistema de transmisión digital, debemos tener en cuenta que a la salida del inversor tendremos siempre un pulso, el cual será en ancho igual al tiempo del pulso del monostable N°1T, cuando la información en serie es "cero" e
igual al tiempo entre pulsos del oscilador de onda cuadrada cuando la información en serie es "uno".
De este modo obtenemos la diferencia de cero y uno en anchos de pulsos.

Finalmente debemos explicar cómo se hace la diferencia entre un bit y otro bit en serie; para esto es necesario determinar un guarda bit, por lo tanto antes de presentar el siguiente bit es necesario inhibir mediante cero inmediatamente después del pulso de reloj; esto se logra con la salidá negada del monoestable N°2T que ingresa a un NAND (C), a donde también ingresa la salida de la otra puerta lógica NAND (B), (discutida anteriormente), por esta acción se inhibe la información durante todo el tiempo de duración del pulso del monoestable N°2T produciéndose de esta manera el guarda bit.

Para realizar el proceso de corrimiento /carga, se tiene en cuenta el inicio de pulso del oscilador de onda cuadrada, el cual activa al contador entre 32; dicha señal es invertida mediante el inversor (E) que activa al terminal corrimiento/carga y de igual manera a la puerta lógica NAND (F), a esta puerta lógica también ingresa la señal del oscilador de onda cuadrada; el contador entre 32 dispa-
ra al monoestable N°3 (MS3), cuya salida ingresa a la puerta lógica NAND(G), a la cual también ingresa la señal del oscilador de onda cuadrada.

Las salidas de las puertas lógicas NAND(F) y (G), ingresan a la puerta lógica NAND(H) que, finalmente, activa al terminal correspondiente al reloj para corrimiento y carga.

De esta manera se realiza el proceso de carga y corrimiento de las señales en el arreglo de registros de corrimiento entrada paralelo-salida serie.

El diagrama 1.2.9 muestra el procedimiento completo del funcionamiento del sub-sistema de transmisión digital de señales codificadas en ancho de pulso.

Descripción del Sub-Sistema de Recepción Digital
Codificada en Ancho de Pulso

El sub-sistema de recepción que vamos a describir está compuesto básicamente por registros de corrimiento del tipo entrada serie-salida paralelo, para la primera etapa y entrada paralelo-salida paralelo en la segunda etapa.

Para conformar un arreglo de 16 bits:
Se utiliza dos registros de corrimiento de 8 bits en la primera y segunda etapa. Por lo tanto tenemos que una palabra contiene 16 bits al ser recibida; asociado a los arreglos de registros de corrimientos están dos monoestables.

La salida negada del monoestable 1R está sincronizada a los datos de entrada, y cada inicio de los datos hacen disparar al monoestable 1R y este disparo activa al reloj que controla la salida de los datos del primer arreglo de registros de corrimientos.

La salida negada del monoestable 2R activa al reloj de carga del segundo arreglo de registros de corrimiento de 16 bits, entrada paralelo-salida paralelo de la siguiente manera: cada vez que aparecen el primer dato y el último dato a la salida del primer arreglo de registros de corrimiento entrada serie-salida paralelo, estos ingresan a un circuito lógico implementado que hará disparar al monoestable 2R, cuya salida negada activa al reloj de carga del segundo arreglo de registros de corrimiento de 16 bits entrada paralelo-salida paralelo. En este punto también se verifica la existencia del grupo o bracket.
En el sub-sistema de recepción no se hace uso de reloj (oscilador de onda cuadrada) debido a que las señales son enviadas desde el sub-sistema de transmisión digital en paquetes que tienen bracket al inicio que al final de cada grupo o paquete de señales transmitidas.

El procedimiento de recepción de señales digitales es como sigue: la entrada serie toma dos direcciones, una ingresa al arreglo de registros de corrimiento de 16 bits, entrada serie-salida paralelo de 16 bits y la otra va hacia la entrada del mono estable 1R, el cual es disparado, la salida negada de este monoestable 1R activa el reloj de corrimiento del arreglo de registros de corrimiento entrada serie-salida paralelo de 16 bits, el cual controlará la salida de los datos de este arreglo de registros de corrimiento.

Las salidas del primer arreglo de registros de corrimiento A₁ y G₂ ingresan a una puerta lógica NAND (\(\land \)), cuya salida se invierte mediante el inversor B, esta señal es la que activa al monoestable 2R, su salida negada se conecta al terminal reloj carga del segundo arreglo de registros de corrimiento de 16 bits entrada paralelo-salida paralelo. Este reloj controlará la salida de los datos
en el arreglo de registros de corrimiento - entrada paralelo - salida paralelo.

De esta manera tenemos las salidas en paralelo para su utilización de la forma más adecuada.

En el diagrama 1.30 , se muestra el diagrama de principio del sub-sistema de recepción digital codificado en ancho de pulso.
Las ventajas más notorias que presenta un sistema de comunicaciones digital, es su alta resistencia contra el ruido y la interferencia; pues teóricamente, este sistema con el uso del sistema de modulación por codificación de pulsos, o en nuestro caso por la codificación de en ancho de pulso, no es afectado por ruido de propagación, y si se produjera el ruido en el trayecto, este se eliminaría, toda vez que finalmente se regenera solamente en parte de la señal, lográndose así una reproducción exacta de esta libre de ruidos.

Si nos referimos a la transmisión por radio, podemos comparar con el caso de la transmisión analógica por medio de multiplexaje en frecuencia, en FM, y veremos que en este caso solamente se puede utilizar la misma frecuencia cuando el ángulo de bifurcación se hace mayor de 90 grados, dependiendo por lo tanto de la calidad de los irradiadores que se utilice para tal caso; mientras que en el caso de la transmisión por el sistema digital de modulación por codificación de pulsos se puede utilizar la misma frecuencia con una separación de apenas 15 a 30 grados, lo que significa que se puede lograr un empleo más eficiente de la frecuencia.
cuencia, la que presenta limitaciones, y que de esta manera se puede sacar mayor provecho.

La tecnología digital, se ha desarrollado prácticamente para todos los aspectos de las comunicaciones y en forma muy especial, está permitiendo la comunicación ya no solamente de persona a persona, sino -la transferencia de grandes cantidades de datos entre computadoras que permite el procesamiento rápido de los datos a grandes distancias, dando origen a la nueva era de la tecnología de la comunicación y computación.

Una muestra del desarrollo de este campo es la combinación de la conmutación telefónica con la tecnología digital por división del tiempo y el sistema de control por programación almacenada que creó un nuevo campo en la tecnología de la comunicación, incrementando en forma notable la ventaja del empleo de los medios de transmisión digital.

La información contenida en una señal eléctrica está representada por un código; que puede estar relacionado con la amplitud de la señal, o depender de la frecuencia o de cualquier otra función dependiente del tiempo. Por lo tanto para transportar la señal se utilizan dos clases de códigos: analógico
y digital.

Si se relacionara directamente valores instantáneos de una característica de la señal codificada con los valores de la señal original, el sistema usa código analógico.

La emisiones de radio AM y FM utilizan códigos analógicos; para la amplitud y frecuencia de la señal, conforme a las características de señales originales generadas en la estación o estudio.

Un sistema digital puede utilizar, para transportar la información, el número, duración o frecuencia de pulsos. Ejemplo: un código de duración de pulsos, el utilizado en telegrafía (puntos y rayas). En las calculadoras digitales se introducen las instrucciones y datos en código digital.

Los sistemas digitales y analógicos se diferencian en muchos aspectos.

La información digital se pierde cuando se retarda en el tiempo o cuando su amplitud es insuficiente para efectuar el disparo de un circuito regenerativo que restablezca la forma de su onda.
Los sistemas digitales son los llamados láneales porque utilizan en sus diseños puertas lógicas, conmutadores y otros circuitos que son diseñados utilizándose como conmutadores, en los cuales la cantidad de salida no es necesariamente proporcional a la entrada.

Los sistemas análogos son los llamados líneales es interesante notar que el proceso de las señales de este sistema, puede apoyarse en las alinealidades de los dispositivos electrónicos utilizados, podemos mencionar los procesos de modulación, detección y mezclado de señales.

FIG. 1.1 TRANSMISION PARALELO

FIG. 1.2 TRANSMISION SERIE
FIG. 1.3 CODIFICACION N.Z.R.

FIG. 1.4 CODIFICACIONES NO AUTO RELOJ

FIG. 1.5 CODIFICACIONES AUTO RELOJ
FIG. 1.6 SISTEMAS SERIE DE TRANSMISIÓN Y DE GRABACIÓN/REPRODUCCIÓN

FIG. 1.7 ORGANIGRAMA DE TRANSMISIÓN EN ASÍNCRONO
FIG. 18 ORGANIGRAMA RECEPCIÓN EN ASÍNCRONO
Figura 1.9 Organigrama Transmisión en Sincrono

1. Enviar caracteres de sincronismo
2. Inicializar contador de caracteres
3. Enviar caracter bit a bit
4. Final bloque?
 - Sí: Enviar caracter de control de errores del bloque
 - No: Ir al paso 3
FIG. 1.10 ORGANIGRAMA RECEPCIÓN EN SICRONO (UN SOLO CARACTER DE SINCRONIZACIÓN)
FIG. 1.11 COMUNICACION SINCRONA CON 3 HILOS

FIG. 1.12 RELACION SEÑALES RELOJ Y DATOS EN TRANSMISOR

FIG. 1.13 RESINCRONIZACION DE RELOJ EN RECEPTOR
FIG. 1.14 COM. ENTRE TERMINALES SIN USAR MODENS, 3 SEÑALES

FIG. 1.15 COM. ENTRE TERMINALES SIN USAR MODENS, 3,5 SEÑALES

FIG. 1.16 ENVIO SEÑALES TTL.

FIG. 1.17 BUCLE DE CORRIENTE
FIG. 1.18 BUCLE DE CORRIENTE EMISOR ACTIVO

FIG. 1.19 BUCLE DE CORRIENTE, RECEPTOR ACTIVO

FIG. 1.20 CONEXION RS-232-C
FIG. 1.21 RS 422

FIG. 1.22 CONEXION RS-423

FIG. 1.23 SISTEMAS DE COMUNICACIONES, SERIE
FIG. 1.24 DIAGRAMA DE BLOQUES DE UN SISTEMA DE TRANSMISIÓN DE DATOS POR LÍNEA LARGA.

FIG. 1.25 IMPEDANCIA CARACTERÍSTICA DE PARES TRENZADOS.
Fig. 1.26 Sección de cable plano 3365

Fig. 1.27 Impedancia característica de cables coaxiales

Z_o = \left(\frac{138}{\sqrt{2}}\right) \log_{10} \frac{D}{d}

Fig. 1.28 Terminación de líneas paralelas

R_T = \frac{Z_o}{2}
FIG. 1.29 DIAGRAMA DE PRINCIPIO DEL SUB SISTEMA DE TRANSMISION
FIG. 1.30 DIAGRAMA DE PRINCIPIOS DEL SUB SISTEMA DE RECEPCION DIGITAL CODIFICADA EN ANCHO DEL PULSO
CAPITULO II
CONCEPTOS Y CRITERIOS DE DISEÑO

2.1 DESCRIPCION DEL CIRCUITO DE TRANSMISION DIGITAL CODIFICADA EN ANCHO DE PULSO

La información digital conformada por varios bits en paralelo ingresan a un arreglo de registros de corrimiento de 16 bits, mediante la señal de carga (LOAD), a cada inicio de ciclo, luego dicha información es desplazada serialmente de acuerdo a los pulsos de reloj (oscilador de onda cuadrada), para lograr este cometido usamos para el reloj el terminal 7 y para el pulso de corrimiento/carga el terminal 15, de los C1 U1 y U2 (74166).

Para introducir la información se usan los terminales 2(A1), 3(B1), 4(C1), 5(D1), 10(E1), 11(F1), 12(G1), 14(H1), de los C1 U1 y U2.

El terminal 13 (salida serie), del CI U1, se conecta a la entrada serie terminal 1 del C1 U2 (74166) El terminal 1 (entrada serie) del C1 U1 (74166) se pone a nivel bajo (L). Se conecta a un nivel bajo (L) la entrada serie con el objeto de asegurar que no haya ninguna información en la entrada serie. Además durante el proceso de carga de datos en paralelo...
69.

lo, el flujo de datos en serie se inhibe. Se ha conectado también el terminal 9 (clear) a un nivel alto (H), con el objeto de tener siempre activado el clarificador de los flip-flops. El terminal 15 (corrimiento/carga) actúa de acuerdo a la señal de reloj (oscilador de onda cuadrada). El terminal 6 (clock input) está puesto a un nivel bajo (L), para habilitar al terminal 7 (clock) que actúa de acuerdo a los pulsos del reloj (oscilador de onda cuadrada), durante la transición positiva (↑), mediante el contador entre 32.

En el CIU₂ se realizan las mismas conexiones que en el CIU₁, a excepción del terminal 14 (entrada paralela, lo), que se pone a nivel bajo (L), para no confundir el paquete o bracket de los datos.

La salida serie de datos (16 bits), se invierten con el circuito lógico NAND A, estas señales son introducidas a la puerta lógica NAND B, a la cual también ingresa la salida negada del monoestable Nº1T el cual se dispara con cada pulso de reloj (oscilador de onda cuadrada); la salida de esta puerta lógica se introduce a la puerta lógica NAND C, a la cual también ingresa la señal negada del monoestable Nº2T, finalmente la señal es invertida en el inversor D.
2.1.1 Diseño y Descripción del Registro de Corrimiento

Entrada Paralelo-Salida Serie, 16 Bits.

El convertidor paralelo-serie está constituido por dos registros de desplazamiento (74166), cada registro de desplazamiento tiene 8 bits, por lo tanto tenemos un arreglo de 16 bits; y cada palabra contiene 16 bits.

Los registros de desplazamiento de entrada paralelo o serie y salida serie, usados en este diseño, están compuestos por un complejo conjunto de puertas lógicas (77 puertas lógicas), en un solo bloque muy pequeño. Se caracterizan por las puertas de entrada de reloj y el dominio del clarificador (clear) de entrada. El modo de entrada paralelo o serie está establecido por la entrada Desplazamiento/Carga, cuando es alta, habilita la entrada de datos serie y acopla los ocho flip-flops para desplazamiento en serie con cada pulso de reloj, cuando es baja, las entradas de datos en paralelo (blanco) son habilitados y el sincronismo de la carga ocurre en el siguiente pulso de reloj.

Durante la carga paralelo, el flujo de los datos en serie son inhibidas. Cada pulso de reloj es ejecutado sobre el borde del nivel bajo a alto.
a través de una puerta lógica positiva NOR de dos entradas, permitiendo una entrada para ser usada como una función para habilitar o inhibir el reloj. Enganchando cualquiera de las entradas altas \((H) \) de reloj, inhibe las entradas de reloj. Enganchando cualquier de las entradas bajas \((L) \) habilita la otra entrada de reloj. Este, por supuesto, permite al sistema de reloj, estar en carrera libre y el registro puede ser parado y gobernado por el otro reloj de entrada.

La entrada de reloj inhibida será cambiada al nivel alto \((H) \) solo cuando la entrada del reloj es alta \((H) \).

Un suavizador, entrada directa clarificador\((\text{clear}) \) domina todas las otras entradas incluyendo al reloj y pone a todos los flip-flops a cero. En la figura 2.1.1 a, b y c se muestra el arreglo del con vertidor entrada paralelo-salida serie de 16 bits.

2.1.2 Diseño del Monoestable N°1T

Para calcular la constante de tiempo del monoestable N°1T, debemos de tener en cuenta que este valor es función del condensador \(C_{xt} \) conectado al terminal 14 y la resistencia \(R_{xt} \) conectada al ter
minal 15. Además se recomienda que el valor del condensador utilizado debe ser \(C_{xt} \geq 1000 \, \text{pF} \).

Por lo tanto, el ancho del pulso de salida del monoestable N°1R \((tw) \) está definida por la fórmula:

\[
tw = K R_T \times C_{xt} \left(1 + \frac{0.7}{R_{xt}} \right) \quad \ldots \quad \text{(I)}
\]

utilizamos para el SN74123A el valor de \(K=0.28 \) de acuerdo a lo recomendado en el TTL DATA BOOK FOR \(\text{VICHEN ENGINEERS} \) (pág. 6.81) de Texas Instruments Inc. ensayamos con:

\[
R_T = 10 \, K \, \text{OHMS}
\]
\[
C_{xt} = 0.68 \, \mu F
\]

los valores convertidos a:

\[
R_T \rightarrow K \, \text{OHMS}
\]
\[
C_{xt} \rightarrow \mu F
\]

\(tw \) será en nanosegundos

Reemplazando estos valores en \(\text{(I)} \)

\[
tw_1 = 0.28 \times 10 \, K \, \text{OHMS} \times 0.68 \, \mu F \left(1 + \frac{0.7}{10 \, K} \right)
\]

\[
tw_1 = 0.28 \times 10 \times 0.68 \times 10^6 \, \text{nseg.}
\]

\[
tw_1 = 0.1904 \times 10^7 \, \text{nseg.}
\]
\[tw_1 = 1.904 \text{ nseg} = 2 \text{ nseg}. \]

Para prevenir la tensión inversa a través de \(C_{xt} \), cuando se usa condensadores electrolíticos y la función clarificador (clear), es necesario usar diodos.

En este caso se usa la fórmula:

\[tw = K_D R_T C_{xt} \left(1 + \frac{0.7}{R_T} \right) \]

con \(K_D = 0.25 \) y los demás recomendaciones anteriores.

En las figuras 2.1.2 a y b se muestran el diseño del monoestable N° IT y el diseño del monoestable N° IT cuando se utiliza diodos para la protección de la tensión inversa.

En la salida de la puerta lógica NAND D, se tendrá siempre un pulso, el cual tendrá un ancho igual tiempo \((tw_1) \) del pulso del monoestable N° IT cuando la información en serie es cero \((0) \), e igual al tiempo entre pulsos de reloj cuando la información en serie es uno \((1) \). De esta forma ya tenemos la diferencia de uno \((1) \) y cero \((0) \) en anchos de pulso.
Para diferenciar entre un bit de información
otro bit en serie necesitamos un guarda bit; por
lo tanto, antes de presentar el siguiente bit es
necesario inhibir mediante un cero inmediatamente
después del pulso de reloj. Este se logra median-
te la salida negada del monoestable N° 2T que in-
gresa a una puerta lógica NAND C, a la cual tam-
bién ingresa la salida de la puerta lógica NAND B.
Por lo tanto, se inhibe la información durante to-
do el tiempo de duración del pulso del monoestable
N° 2T produciéndose el guarda bit (separación
entre dos señales de información serie).

2.1.3 Diseño del Monoestable N° 2T

Con las pautas utilizadas en el diseño del monoes-
table N° 1T hacemos el cálculo del ancho de pulso
de salida (\(t_{w_2}\)) del monoestable N° 2T

Ensayamos con los valores:

\[R_T = 15 \ \text{K Ohms} \]
\[C_{xt} = 0.15 \ \text{uF} \]

En la fórmula (I) tenemos:

\[t_{w_2} = K \cdot C_{xt} \cdot \frac{1 + 0.7}{R_T} \]
\[tw_2 = 0.28 \times 15 K \times 0.15 \text{ uF} \]
\[tw_2 = 0.28 \times 15 \times 0.15 \times 10^6 \text{ nseg} \]
\[tw_2 = 0.63 \times 10^6 \text{ nseg.} \]
\[tw_2 = 0.63 \text{ msseg.} \]

Durante el tiempo \((tw_2)\) que se consigue en este diseño se tendrá inhibida la información, produciéndose el guarda bit (separación entre señales en serie).

En la figura 2.1.3 se muestra el cableado efectuado en los monoestables 1T y 2T.

2.1.4 Diseño del Contador Digital entre 32

Con el objeto de lograr el completo control de las funciones corrimiento/carga y reloj para corrimiento y carga se debe diseñar un contador entre 32.

Primeramente hacemos una breve descripción del circuito de control. Los pulsos del reloj (oscilador de onda cuadrada) ingresa al CIU_2 (7493A) por el terminal 14 (entrada A), se completa el circuito conectando el terminal 1 (entrada B) con el terminal 12 (salida B) y se tendrá un contador entre 16, se conectan los terminales 2 y 3 a nivel bajo (L), con la finalidad de aprovechar al circuito inte
grado en la función de contador. Se utiliza otro CIU₆ (7493A) para lograr el contador entre 32. La salida del contador entre 16 terminal 16 (salida D) se introduce al terminal 14 de CIU₆ (7493A) y se toma la señal del terminal 12 (QA), de igual manera en este CI unir los terminales 2 y 3 para aprovechar la función contador. En las figuras 2.1.4 a y b se muestran las conexiones efectuadas para obtener el contador entre 32.

2.1.5 Diseño del Monoestable N° 3T

Para efectuar el diseño de este monoestable, se toma las mismas pautas que se tuvieron en cuenta para el diseño de los monoestables 1T y 2T.

Pero antes es necesario hacer una descripción de la forma de como actúa el circuito. El contador entre 32 envía señales al mismo tiempo al monoestable N°3T terminal 2 CIU₇(74123A), al inversor E y a la puerta lógica NAND F. La salida del inversor E activa al terminal 15(corrimento/carga)y también ingresa a la puerta lógica NAND F, la señal del reloj(oscilador de onda cuadrada) ingresa a las puertas lógicas NAND F y NAND G a Esta última puerta ingresa la salida de monoestable N°3T que es disparado con el contador entre 32. Las salidas de las
puertas lógicas NAND F y NAND G ingresan a la puerta lógica NAND H, la salida de esta puerta activará al terminal 7 (reloj para corrimiento y carga).

Para el diseño ensayamos con:

\[R_T = 47 \text{ K OHMS} \]
\[C_{xt} = 0.68 \text{ } \mu \text{F} \]

En la fórmula (I) tenemos:

\[tw_3 = K C_{xt} R_T \left(1 + \frac{T}{T} \right) \]
\[tw_3 = 0.28 \times 47 \text{ K} \times 0.68 \text{ } \mu \text{F} \]
\[tw_3 = 0.1904 \times 47 \times 10^6 \text{ nseg.} \]
\[tw_3 = 8.9488 \times 10^6 \text{ nseg.} \]
\[tw_3 = 8.95 \text{ m.seg.} \]

Por lo tanto el ancho del pulso \(tw_3 \) nos da el tiempo de duración del pulso del reloj para corrimiento y carga del registro de corrimiento.

En la figura 2.1.5 se muestra el cableado del monostable 3T.

Las señales de todos los monostables y también la salida del circuito de transmisión digital codificada en ancho de pulso se muestra en la figura 2.1.
En el diagrama 2.1 a, se muestra el diagrama circuital del sistema de transmisión digital codificada en ancho de pulso.

En el diagrama 2.1 b, se muestra el diagrama del sistema de transmisión digital codificada en ancho de pulso.

La información digital codificada en ancho de pulso llega al circuito de recepción usando diversos medios de traslación de señales que pueden ser cable telefónico, radio enlace de pequeña capacidad, etc. La referida información llega al circuito de recepción en serie, por lo que es necesario convertirla en paralelo. Por lo tanto se puede decir que el circuito de recepción codificado en ancho de pulso, es capaz de convertir las señales serie en paralelo.

Para lograr este objetivo es necesario contar con registros de corrimiento serie-paralelo para la primera etapa y registros de corrimiento paralelo-paralelo para la segunda etapa del circuito; a los cuales se les adecúa una lógica conveniente para efectuar el disparo del reloj de carga de ambas etapas.

Los datos de entrada serie ingresan al mismo tiempo al terminal 1 (entrada A) del CIUₐ y a la entrada del monoestable N°1R [74123] del CIUₜ terminal 2, la segunda salida negada terminal 4 de dicho monoestable N°1R es conectada simultáneamente a los
terminales 8 de los C₆ I₅ U₄ y U₆ (74164), dicho pulso es el encargado del control del corrimiento de los datos.

Las salidas de los CIU₄ terminal 3 (A₁) y U₆ terminal 12 (G₂) son introducidos a la puerta lógica NAND A, luego este resultado es invertido mediante el inversor B, el cual activa al monoestable N° 2R (74123A). CIU₆ terminal 10, la salida negada terminal 12 está conectada a los terminales 13 (reloj) de los CIUₑ y U₆ (74199), dicho pulso usa el reloj de carga (clock load); el terminal 14 del Uₑ y U₆ es puesto a un nivel alto (H) con el objeto de tener el clarificador siempre activado; también los terminales 1 y 2 (entrada serie J, K) se ha puesto a nivel bajo (L), dándole al circuito interno de los C₆ I₅ Uₑ y U₆ la posibilidad de tener un nivel bajo (L), el terminal 11 se pone a un nivel bajo (L) (Reloj inhibidor), para utilizar el reloj terminal 13. Al terminal 23 se le da un nivel bajo (L), para que la función corrimiento/carga quede sin efecto. En los C₆ I₅ Uₑ y U₆, al terminal 2 (entrada B) se le da un nivel alto (H), para tener una sola entrada serie apta para recibir los datos y también al terminal 9 (clarificador), se le pone un nivel alto (H) para tener siempre activado el clarificador.
2.2.1 Diseño del Registro de Corrimiento Entrada Serie-Salida Paralelo

Para la primera etapa se instrumenta la unidad utilizando dos registros de corrimiento de 8 bits CI \(U_a \) y \(U_b \) (74164), estos dispositivos son registros de corrimiento entrada serie/salida paralelo y clavijador asincrono y funciona de la siguiente manera:

Las puertas de entrada serie \(\{A\bar{B}\} \) permiten el control completo sobre el ingreso de los datos; un nivel bajo \((L) \) a una o ambas entradas, inhibe el ingreso de nuevos datos y restablece al primer flip-flop a nivel bajo \((L) \), hasta el próximo pulso de reloj. Un nivel alto \((H) \) de entrada, habilita la otra entrada, que determinará el estado del primer flip-flop. Los datos de entrada serie pueden ser cambiados cuando el reloj está en nivel alto \((H) \) o bajo \((L) \), pero solamente la información encontrada ingresará.

El pulso de reloj que activa ocurre en la transición positiva \((\uparrow) \) de bajo a alto. Todas las entradas están asociadas a un diodo-clamped, con el objeto de minimizar los efectos de las líneas de transmisión.
El arreglo de los registros de corrimiento de 16 bits se implementa de la siguiente manera:

El terminal 13 (salida H.) se conecta al terminal 1 (entrada serie A), el reloj excita a los terminales 8 (clock) de los C_S I_s U_a y U_b; el terminal 2 (entrada serie B) se pone a nivel alto (H) con la finalidad de permitir el control de los datos a la entrada serie A, esto se realiza en los C_S I_s U_a y U_b, por último el terminal 9 se le da un nivel alto (H) con el objeto de tener el clarificador siempre activado.

En las figuras 2.2.1 a y b, se muestra las conexiones del arreglo de registros de corrimiento entra da serie-salida paralelo de 16 bits.

2.2.2 Diseño del Registro de Corrimiento Entrada Parale lo-Salida Paralelo 16 bits

Los C_S I_s utilizados en este caso son registros de corrimiento entrada serie y paralelo, salida paralelo SN 74199.

Estos dispositivos aceptan datos hasta 8 bits, tomando la entrada del control corrimiento/carga como un nivel bajo (L), cuando el reloj de entrada
no está inhibido. Los datos cargados al circuito están asociados a un flip-flop y aparecen en la salida después de la transición positiva (↑) del reloj de entrada. Durante la carga, el flujo de datos serie es inhibido.

El corrimiento es efectuando sincronizadamente cuando el terminal corrimiento/carga está a un nivel alto (H) y la entrada de reloj no está inhibida. Los datos serie para este modo son introducidos por las entradas J y K.

Ambas señales de reloj son idénticas en función y pueden ser intercambiadas para ser usadas como entradas de reloj o reloj inhibitor, enganchando - cualquiera de los dos relojes inhibidos a nivel alto (H), pero cuando uno es puesto a nivel bajo (L), una entrada de reloj es aplicada a la otra entrada, esto es pasada para los ocho flip-flops del registro. La entrada del reloj inhibido será cambiada a un nivel alto (H), solo si la entrada del reloj es un nivel alto (H).

Para nuestro diseño, el terminal 11 (reloj inhibidor) se a puesto a un nivel bajo (L) con el objeto de utilizar el terminal 13 (reloj) para el control de los datos. El terminal 23 (corrimiento/carga
se le pone a un venil bajo (L) con el objeto de
anular esta función. Por último, los terminales 1
y 2 de los C, Is Ue y Uf (74199) se da un nivel bajo
(L).

Estas conexiones se hacen con el propósito de lo
grar un arreglo de Registros de corrimiento entra
da paralelo-salida paralelo de 16 bits:

El diagrama de conexiones se muestra en las sigu
ras 2.2.2 a y b.

2.2.3 Diseño del Monoestable 1R

Con el objeto de disponer de un pulso capaz de ac
tivar al terminal 8 (clock) de los registros de co
rrimiento Ua y Ub (74164), teniendo en cuenta ade
más que el pulso debe ser de nivel bajo (L). Se ha
diseñado el monoestable 1R y tomóndose para estecaso de salida negada (Q) terminal 4, del CI 74123.

Tomándose como referencia los casos anteriores pa
ra $C_{ext} > 1000 \text{ pF}$.

Se ha probado el circuito con los siguientes valo
res normalizados.

\[R_{\text{ext}} = 10K \ \text{OHM} \]
\[C_{\text{ext}} = 0.47 \ \mu F \]
\[K = 0.28 \]
\[t_{w1} = K R_{\text{ext}} C_{\text{ext}} \left(1 + \frac{0.7}{R_{\text{ext}}} \right) \]
\[t_{w1} = 0.28 \times 10K \times 0.47 \ \mu F \]
\[t_{w1} = 0.28 \times 0.47 \times 10^7 \ \text{mseg.} \]
\[t_{w1} = 1.316 \ \text{mseg.} \]

2.2.4 Diseño del Monoestable 2R

El diseño del monoestable 2R tendrá como objetivo activar los terminales 13 de los C\(_I\), U\(_e\) y U\(_o\) (741 99), mediante la salida negada (Q) terminal 12 - del CI.74123.

De igual manera que para el caso anterior para
\[C_{\text{ext}} > 1000 \ \mu F. \]

Se ha ensayado con los valores normalizados

\[R_{\text{ext}} = 10 \ \text{KOHMS} \]
\[C_{\text{ext}} = 0.056 \ \mu F \]
\[K = 0.28 \]
\[t_{w1} = K R_{ext} C_{ext} \left(1 + \frac{0.7}{R_{ext}} \right) \]
\[t_{w2} = 0.28 \times 10K \times 0.056 \text{ uF} \]
\[t_{w2} = 0.01568 \times 10^7 \text{ mseg.} \]
\[t_{w3} = 0.1568 \text{ mseg.} \]

Las conexiones correspondientes a los monoestables 1R y 2R se muestran en la figura 2.2.3.

En el diagrama 2.2 a se muestra el diagrama circuital del sistema de recepción digital codificado en ancho de pulso.

En el diagrama 2.2 b se muestra el diagrama del sistema de recepción digital codificado en ancho de pulso.

2.3 DISEÑO DEL OSCILADOR DE ONDA CUADRADA

Para el diseño del oscilador de onda cuadrada de bemos de tener en cuenta que necesitamos una sucesión o secuencia de pulsos. En las calculadoras digitales, sistemas de control, sistemas de comunicaciones; las señales eléctricas que constituyen los datos solo toman dos niveles de tensión o intensidad. A dichas señales se les denomina señales binarios o datos binarios.

En nuestro diseño hemos utilizado un CI Timer 555 (circuito metrizador) que ofrece una excelente estabilidad y es capaz de funcionar como generador de retrasado de tiempo exacto y también como multivibrador estable, la frecuencia y el ciclo de trabajo son exactamente controlados por un condensador y dos resistencias externas. En el diagrama 2.3 se muestra los bloques que constituyen el CI Timer 555.

2.3.1 Descripción del Circuito del Oscilador de Onda Cuadrada

Cuando el CI Timer 555 es usado en el modo estable o disparo automático, con el fin de lograr una configuración de oscilador de onda cuadrada, se
debe adecuar componentes externos adicionales tales como resistencias y condensadores, como se muestra en el diagrama 2.3.1. conexiones del oscilador de onda cuadrada.

La resistencia de control R_T es dividida en dos secciones R_1 y R_2 con el terminal 7 (descarga), conectado en la unión de las dos resistencias. El terminal 2 (disparo) se une al terminal 6 (umbral) para asegurar la oscilación cuando la tensión es aplicada al circuito (instante $t=0$), el condensador C_T se carga hasta $\frac{2}{3}VCC$ a través de las resistencias R_1 y R_2 durante el tiempo t_1, y se descarga hasta $\frac{1}{3}VCC$ por la resistencia R_2 durante el tiempo t_2.

El retardo del ciclo puede ser controlado seleccionando los valores adecuados para R_1 y R_2, ya que la tensión en el condensador C_T, oscila entre $\frac{2}{3}$ VCC y $\frac{1}{3}VCC$, como se muestra en el diagrama 2.3.1.

Como el condensador C_T se carga hasta $\frac{2}{3}VCC$, entonces la salida será alta (H) y por lo tanto el período t_1 (seg.), será igual a $0.693 (R_1 + R_2)C_T$ y el período t_2 de descarga será bajo (L) e igual a $0.693 (R_2C_T)$. La frecuencia es la inversa del
período total \((T)\) donde \(t_1 + t_2 = T\).

La frecuencia de carrera libre del oscilador puede ser determinada del diagrama 2.3.1, con la frecuencia en Hz. Notamos que para tener los valores adecuados de las resistencias se debe cumplir con lo siguiente:

Si \(R_2\) es mayor que \(\frac{1}{2} R_1\) el circuito no oscilará, porque la tensión en el terminal 2 (disparo), no baja hasta \(\frac{1}{3} VCC\). Por lo tanto, el circuito puede redispararse.

2.3.2 Cálculo de los Periodos de carga \((t_1)\) y descarga \((t_2)\).

Para calcular el período de carga \((t_1)\) se debe tener en cuenta que:

\[
R_2 < \frac{1}{2} R_1 \quad \text{y} \quad R_1 + R_2 = R_T
\]

Con estas premisas, calculamos el tiempo de carga del condensador hasta \(V_C = \frac{2}{3} VCC\).

De la fórmula

\[
V_C = VCC - \left(VCC - V_o \right) \quad e^{-t/RCT} \quad \ldots \quad (1)
\]

Como \(C_T\) se carga entre \(\frac{1}{3} VCC\) y \(\frac{2}{3} VCC\), a través de las resistencias \(R_1\) y \(R_2\) donde:
\[V_C = \frac{2}{3} \text{ VCC} \]
\[V_o = \frac{1}{3} \text{ VCC} \]

Reemplazando estos valores en (1), tenemos

\[\frac{2}{3} \text{ VCC} = \text{ VCC} \left(\text{ VCC} - \frac{1}{3} \text{ VCC} \right) \cdot e^{-\frac{x_1}{R_T C_T}} \]
\[-\frac{1}{3} \text{ VCC} = -\frac{2}{3} \cdot e^{-\frac{x_1}{R_T C_T}} \cdot \frac{1}{2} \]

Aplicamos logaritmos neperianos \(\ln \)

\[\ln \left(\frac{1}{\frac{1}{3} \text{ VCC}} \right) = \frac{1}{R_T C_T} \ln 2 \]
\[-x_1 = R_T C_T \ln 1 \]
\[-x_1 = R_T C_T \ln 1 \]
\[x_1 = 0.693 \cdot R_T C_T \]

Con \(R_T = R_1 + R_2 \)

\[x_1 = 0.693 \left(R_1 + R_2 \right) \cdot C_T \] \((2) \)

Para lograr el cálculo del período \(x_2 \) (descarga), debemos de tener en consideración que el condensador \(C_T \) se descarga entre \(\frac{2}{3} \text{ VCC} \) y \(\frac{1}{3} \text{ VCC} \), a través de la resistencia \(R_2 \)
donde:

\[v_C = \frac{1}{3} \cdot v_{CC} \]
\[v_o = \frac{2}{3} \cdot v_{CC} \]

\[\frac{1}{3} \cdot v_{CC} = v_{CC} - (v_{CC} - \frac{2}{3} \cdot v_{CC}) \cdot \frac{t_2}{R_2 \cdot C_T} \]
\[- \frac{2}{3} = - \frac{1}{3} \cdot \frac{t_2}{R_2 \cdot C_T} \]

\[\frac{t_2}{R_2 \cdot C_T} = 2 \]

Aplicando logaritmos neperianos \(\ln \)

\[- t_2 = R_2 \cdot C_T \ln 2 \]
\[t_2 = - 0.693 \cdot R_2 \cdot C_T \quad \ldots \ldots \ldots \quad (3) \]

El signo menos (-) significa descarga.

El \(\text{periodo total} \) \(T = t_1 + t_2 \quad \ldots \ldots \quad (4) \)

Con (2) y (3) en (4)

\[T = 0.693 \cdot (R_1 + R_2) \cdot C_T + 0.693 \cdot R_2 \cdot C_T \]
\[T = 0.693 \cdot (R_1 + 2 \cdot R_2) \cdot C_T \]

Cálculo de la \(\text{frecuencia} \)

\[F = \frac{1}{T} \]
Por lo tanto

\[F = \frac{1.44}{(R_1 + 2R_2)C_T} \]

En el diseño del oscilador de onda cuadrada hemos ensayado con valores:

\[R_1 = 50 \text{ KOHMS} \]
\[R_2 = 220 \text{ OHMS} \]
\[C_T = 0.1 \text{ \(\mu\)F} \]

Con estos valores calculamos el período \(T \)

\[Dc = T = 0.693 \left(R_1 + 2R_2 \right) C_T \]

Reemplazando los valores antes indicados tenemos:

\[T = 0.693 \left(50K + 2 \times 220 \right) \times 0.1 \times 10^{-6} \]
\[T = 0.693 \times 50.44 \times 10^{-3} \times 0.1 \times 10^{-6} \]
\[T = 3.495 \times 10^{-3} \]
\[T = 4 \text{ mseg} \]

Además cumplimos con la relación \(R_2 \ll \frac{R_1}{2} \)
2.3.3 Cálculo del Ciclo de Trabajo Útil (DUTY CYCLE)

El ciclo de trabajo útil (D.C.) depende de los valores de \(R_1 \) y \(R_2 \)

\[
D.C. = \frac{R_2}{R_1 + 2R_2}
\]

Puede ser fijada desde el 50% hasta aproximadamente el 100%.

El ciclo de trabajo máximo se presenta cuando se divide el tiempo activo entre el tiempo total y es cercano al 100%, esto sucede cuando \(R_1 \) es pequeña, pero lo suficientemente grande para limitar la corriente de descarga que atraviesa el transistor \(Q_1 \) a un nivel que no exceda al valor especificado para dicho dispositivo, ver diagrama 2.3

Para ciclos de trabajo menores que el 50%, se conecta un diodo \(D_1 \) entre el terminal 7 (descarga) y el terminal 6 (umbral).

El condensador \(C_T \), ahora se cargará solamente a través de \(R_1 \) (\(R_2 \) es cortocircuitado por el diodo cuando conduce, durante el ciclo de carga), se descarga a través de \(R_2 \) de tal manera que el nuevo ciclo de trabajo será:
D.C. = \frac{R_1}{R_1 + R_2}

y puede ser variado desde 0 hasta aproximadamente 100 \%. El diagrama 2.3.3 muestra la forma de onda y ciclo de descarga abajo de 50\%.

El cálculo del ciclo de trabajo útil para nuestro diseño:

con \(R_1 = 50 \, \text{OHMS} \)
\(R_2 = 220 \, \text{OHMS} \)

\[
\text{D.C.} = \frac{50 \, K + 220}{50 \, K + 2 \times 220} = 0.99 = 99 \%
\]

2.3.4 **Diseño del Inversor Lógico**

Para realizar una función lógica mediante una red eléctrica, representando las variables binarias, deberá asignarse una cantidad eléctrica tal como una intensidad o una tensión, lo más conveniente es a asignar los valores binarios 1 y 0 a dos niveles de tensión diferentes. Por ejemplo, podemos asignar el nivel de tensión más positivo para corresponder al 1 lógico y el nivel menos positivo al 0 lógico. A esto se le llama lógica de tensión positiva.
Los niveles a que hemos hecho referencia en el párrafo anterior se consigue en una etapa de transistor con emisor común accionando el terminal de base mediante un generador de tensión adecuado.

La tensión de base \(V_b \) es igual a cero dará intensidad de colector nula y el nivel de tensión será \(V_c \) igual \(V_{cc} \); este es el estado lógico 1 o estado alto en el colector. En el caso de un transistor de silicio se requiere una tensión aproximada de +0.65 V para poner en conducción la unión de entrada. Para alcanzar la intensidad de colector de saturación se requieren +0.8 V aproximadamente. A este nivel de saturación de entrada lo simbolizamos por \(V_{BE} \) (sat) y en la tensión de colector en la saturación será. \(V_{CE}(sat) = 0 \) o sea el 0 lógico.

En nuestro diseño ensayamos con los valores normalizados:

\[
\begin{align*}
RB & = 1 \text{ K } \text{OHMS} \\
RL & = 2.7 \text{ K } \text{OHMS}
\end{align*}
\]

Como se muestra en el diagrama \(\text{n} \).3.4

2.4 FUENTE DE ALIMENTACIÓN

El circuito primario de la fuente de alimentación incluye un condensador C₁ que sirve para eliminar las vibraciones a través de la línea de entrada, fusable F₁, conmutador S₁, lámpara piloto PL₁ y resistencia reductora de tensión Rₐ. La línea de entrada es 220 VAC. El diagrama 2.4 a y b muestra las conexiones de entrada y salida.

2.4.1 Circuito Rectificador

El enrollamiento secundario del transformador provee una tensión AC, para el rectificador de onda completa diodos D₁ y D₂. La tensión rectificada es enviada a través del diodo de bloqueo D₃ y filtrada por el condensador C₃, la resistencia R₃ es una resistencia de drenaje, para la descarga del condensador C₃, cuando la fuente de alimentación es desconectada. Una tensión negativa es derivada a través de los diodos rectificadores D₄ y D₅. Esta tensión es filtrada por el condensador C₅ y enviada al regulador de tensión como se muestra en el diagrama 2.4.1.

2.4.2 Fuente de Corriente

La corriente fluye desde el lado positivo del con
densador \(C_3 \), a través del diodo Zener \(ZD_1 \) y la resistencia \(R_3 \) hasta el transistor \(Q_1 \).

La tensión desprendida desde \(R_4 \) es fija a un valor constante por \(ZD_1 \) y la tensión constante base emisor del transistor \(Q_2 \). De este modo, la corriente que circula por \(R_4 \) es constante; entonces la corriente de colector de \(Q_2 \) es aproximadamente igual a la corriente de emisor, está corriente también sería constante.

El transmisor \(Q_1 \), actúa como un conmutador, para conectar rápidamente cuando la fuente de alimentación es encendida. Sin embargo, al apagarse \(Q_1 \), se retarda por la acción del condensador \(C_1 \) para eliminar los transistores en la salida de la fuente de alimentación cuando es apagada, como se muestra en el diagrama 2.4.2

2.4.3 Amplificador de Salida

El amplificador de salida de la fuente de alimentación consiste de un transistor de potencia \(Q \), que es excitado por el transistor \(Q_3 \) en conexión Darlington.

La resistencia \(R_c \), estabiliza al amplificador de
salida en operación a altas temperaturas, como se muestra en el diagrama 2.4.3.

2.4.4 Regulador de Tensión

La tensión de referencia para el circuito regulador es derivado desde el diodo Zener ZD₃. La corriente constante para el ZD₃ es proveída por la resistencia R₁₄ y el diodo Zener ZD₂. El diodo Zener ZD₂ y la resistencia R₆ son un pre-regulador para la fuente de referencia.

La configuración diferencial formada por los transistores Q₇ y Q₈ compara una porción de la tensión de referencia fijada por el control R₈, con una porción de la tensión de salida muestreada entre las resistencias R₂₁ y R₂₂.

El circuito regulador actúa de la siguiente manera:

- Si la tensión de salida sube debido a la reducción de la carga, la tensión de la base del transistor Q₆ aumentará, la tensión de colector de Q₆ descendérra causando un incremento en la corriente de la base del transistor Q₆; esto causa un incremento en la corriente de base del transistor Q₅ y la corriente de colector también aumentará.

El transistor Q₂ entrega una corriente de salida
constante la cual está presente entre ambos transistores Q3 y Q5, cualquier incremento en la corriente de colector de Q5, causará una reducción en la corriente de base de Q3, como la corriente de base de Q3 decrece, la corriente de emisor también decrecerá y esta corriente del transistor Q también disminuirá.

Esta disminución en la corriente de Q disminuirá la corriente de la fuente de alimentación y bajará la tensión de salida al nivel correcto. El circuito regulador está diseñado para limitar la salida constante dentro de unos milivoltios para un rango completo de cargas en los terminales de salida.

El diodo D6, los condensadores C2 y C4 con el diodo D7 y el condensador C8 eliminan la sobre-tensión durante el proceso de encendido y apagado de la fuente de alimentación

La resistencia R12 fija una corriente negativa de polarización a través de la resistencia R9 del medidor de corriente, igual para la corriente positiva extraída por el regulador. Esto permite que el medidor indique la corriente de salida verdadera, cuando el conmutador está en la posición correcta, todo esto se muestra en el diagrama 2.44.a y b.
Limitador de Corriente

El transistor Q_4 detecta la tensión entregada a través de la resistencia R_9. Esta resistencia lleva la corriente de salida, cuando la tensión de la R_9 alcanza aproximadamente 0.55 voltios, Q_4 empieza a conducir tomando algo de la corriente desde la salida del transistor excitador Q_3. Como la tensión de R_9 aumenta ayudando, Q_4 conducirá completamente tomando toda la corriente desde la fuente transistor Q_2; esto causará que los transistores Q_3 y Q_4 se desconecten. De esta manera la corriente de salida limitada puede ser mantenida independientemente; como se muestra en el diagrama 2.4.5.

El diagrama 2.4 nos muestra el circuito general de la fuente de alimentación.

Características Técnicas

- Salida de Tensión: 0-20 VAC, 1 Amp (ajustable).
- Rizado: menor 5mV rms.
- Limitación de corriente: limita una corriente fija y provee protección a cualquier cortocircuito.
2.4.6 Regulador de Tensión de 12 VDC a 5 VDC

Todos los circuitos integrados que utilizamos requieren a menudo una fuente de alimentación de tensión continua, la cual a menudo es necesario que esté bien regulada.

La regulación es la posibilidad que tiene la fuente de mantener constante una tensión continua, aún cuando puede variar grandemente la intensidad de la corriente que de ella se tome o también cuando la tensión de línea esté sometida a variaciones.

La salida de la fuente de alimentación regulada es puesta en 12 VDC y conectada al regulador de tensión de 5 VDC para asegurar una tensión constante de polarización para los IC utilizados en el sistema diseñado. (Ver diagrama 2.4.6)
Fig. 2.1 FORMA DE SEÑALES CIRCUITO DE TRANSMISIÓN DIGITAL CODIFICADA EN ANCHO DE PULSO
FIG. 2.1.1a ENTRADA PARALELO SALIDA SERIE DE 16 BITS CONVERTIDOR.

FIG. 2.1.1b CONVERTIDOR ENTRADA PARALELO SALIDA SERIE DE 16 BITS
FIG. 2.1.1 C: CONVERTIDOR: ENTRADA PARALELO SALIDA SERIE DE 16 BITS.
FIG. 2.1.2a DISEÑO DEL MONOESTABLE N° 1 T.

FIG. 2.1.2b DISEÑO DEL MONOESTABLE 1T CON DIOODO DE POTENCIA PARA TENSION INVERSA.

FIG. 2.1.3 CABLEADO DE LOS MONOESTABLES N° 1T Y 2T.
FIG. 2.1.4 a CONTADOR DIGITAL * 32

FIG. 2.1.4 b CONTADOR DIGITAL * 32
FIG. 2.1.5 CABLEADO MONOESTABLE 3T

FIG. 2.2.1a CIRCUITO DE CONEXIONES DEL ARREGLO DE REGISTROS DE CORRIMIENTO DE 16 BITS
Fig. 2.2.1b Diagrama Circutal del Arreglo de Registros de Corrimiento Serie-Salida Paralelo de 16 Bits
FIG. 2.2.2a. CIRCUITO DE CONEXIONES DE ARREGLO DE REGISTROS DE CORRIMIENTO DE 16 BITS. ENTRADA PARALELO SALIDA PARALELO
DIAGRAMA CIRCUITAL DE ARREGLO DE REGISTROS DE CORRIMIENTO DE 16 BITS. ENTRADA PARALELO SALIDA PARALELO
FIG. 2.2.3 DIAG. CIRCUITAL DE LOS MONOESTABLES 1R Y 2R
DIAG. 2.3 DIAG. DE BLOQUE DEL C1 TIMER 555
DIAG. 2.3.1 CONEXIONES DEL OSCILADOR DE ONDA CUADRADA

DIAG. 2.3.1.1 FORMA DE ONDA DE SALIDA DEL OSCILADOR DE ONDA CUADRADA Y TENSION DEL CONDENSADOR
Diag. 2.3.2. - Gráfico F (Hz) vs Ct (μF) para determinar la frecuencia de oscilador de onda cuadrada

Diag. 2.3.3. - Formas de onda de salida del oscilador de onda cuadrada cuando el ciclo de trabajo es menor que el 50%.

Diag. 2.3.4. - Conexiones del inversor lógico.
CONEXIONES DE ENTRADA Y SALIDA DE LA FUENTE DE ALIMENTACIÓN
DIAG. 2.4.1 CIRCUITO RECTIFICADOR

DIAG. 2.4.2 FUENTE DE CORRIENTE

DIAG. 2.4.3 AMPLIFICADOR DE SALIDA
(a) REGULADOR DE TENSION
(b) DIAGRAMA DE BLOQUES AL REGULADOR DE TENSION
DIAG. 2.4.6 LIMITADOR DE TENSION

DIAG. 2.4.6 REGULADOR DE TENSION DE 12 Vcc A 5 Vcc
CAPITULO III

APLICACIONES Y COMPONENTES

3.1 APLICACIONES

El objetivo principal del diseño del sistema de transmisión/recepción codificada en ancho de pulso es facilitar la transferencia de información entre dos lugares distantes entre sí. Para este objeto se utilizan diversos medios o formas, cada uno de estos presenta particularidades que son inherentes a los factores que lo constituyen.

El envío de la información se hace a través de pares de hilos, cable coaxial y enlaces radioeléctricos - (micro-ondas, radioteléfono de alta frecuencia y satélites).

Cuando se envía información por pares de hilos de cobre retorcidos, esta puede ser transportada en ambas direcciones. Pero generalmente se agrupan gran cantidad de pares de hilos retorcidos dentro de un cable tendido o enterrado. Los pares de hilos se retuer- cen para reducir al mínimo la interferencia electromagnética.
Cuando la información es enviada mediante líneas coaxiales que consisten en un conductor central de cobre y el revestimiento exterior de cobre separado por aisladores, pueden transportar frecuencias mucho más altas que los pares de hilos retorcidos. Además, pueden transportar una cantidad mucho más elevada de ondas de transmisión en un solo cable, y no presentan formas de distorsión, la diafanía es insigñificante.

Cuando se usa para la transferencia de información enlaces radioeléctricos, es necesario tener en cuenta que previamente se debe realizar un análisis de costos de cantidad de cable, y sumarle el costo de la instalación. Por otro lado, el valor de los equipos e instalación.

Podemos notar que es conveniente el uso de enlaces radioeléctricos desde el punto de vista técnico-económico.

Por lo tanto, el sistema de transmisión/recepción digital codificada en ancho de pulso se asocia fácilmente con cualquiera de las formas de transferencia de señal descritos anteriormente.

3.1.1 Sistema de Comunicaciones Digital

El sistema de Comunicaciones digital que vamos a pro
sentar como aplicación de nuestro diseño, está destinado a transmitir datos desde una posición muy lejana.

Se puede usar también para telemedir la velocidad de un automóvil, transmitiendo la información desde el automóvil hasta una estación cercana, básicamente el sistema está destinado a transmitir la posición angular de un árbol; para esto se usa un codificador de árbol, cuya entrada es una variable analógica con una infinidad de valores posibles y la salida un palabra en código binario compuesta del número de bits necesarios para obtener la resolución deseada. Consideramos el caso de que un arco de 160° como escala del velocímetro y este debe descomponerse en 8 sub-divisiones cada una de 20°. Cada una de estas 8 sub-divisiones puede identificarse mediante una palabra de código compuesta de tres bits.

Para las codificaciones de árbol es conveniente usar el código de GRAY.

A continuación describimos un sistema de comunicaciones digital, destinado a enviar datos entre dos puntos muy distantes. Este sistema está conformado por la unidad transmisora y la unidad receptora.
3.1.1.1 Unidad Transmisora

La unidad transmisora está conformada por:

Teclado

Sub-sistema de transmisión digital codificado en ancho de pulso.
Generador de tonos
Modulador y transmisor

En el diagrama 3.1 se muestra el esquema de bloques de la unidad transmisora.

3.1.1.1.1 Teclado

Se denomina teclado al género de periféricos de entrada, constituidos, por un conjunto de botones pulsadores, de tal modo que cada botón se corresponda con determinado carácter, función, instrucción o idea.

El tipo de teclas, así como su número y distribución vendrán determinados por la aplicación concreta que se desee realizar, por lo que no existen modelos genéricos, sino desarrollos específicos.

a) Pulsadores

El componente básico de un teclado es el pulsa
don individual.

Generalmente, cada tecla controla un simple interruptor que permanece abierto mientras el pulsador está en descanso y se cierra cuando el pulsador es deprimido.

Existe un sinnúmero de variaciones, relacionándose más adelante los tipos más usuales.

El concepto de conmutación de estado sólido se aplica a veces al describir elementos sin contacto, aunque hablando con propiedad solamente se puede aplicar a una limitada variedad entre la que se cuentan los de efecto Hall o elementos fotosensibles.

Los pulsadores pueden ser:

Pulsadores Mecánicos Convencionales: Los interruptores mecánicos son utilizados básicamente por su economía. (fig. 3.2).

El movimiento mecánico actúa directamente sobre los contactos.

Permiten, sin grandes complicaciones, configuraciones de contactos múltiples.

- Pulsadores Mecánicos de Lámina Flexible: Este ti
po de interruptor (figura 3.3) formado por una serie de láminas sobrepuestas, se basa en la deformación de un diafragma flexible, dorado por su cara inferior, que permite establecer contacto con un circuito impreso a través de aperturas practicadas en un separador dielectrico.

Una cubierta de silicóna protege los contactos contra los contaminantes. Algunas versiones más económicas emplean láminas flexibles de silicóna conductora, que sustituyen la cubierta protectora y el diafragma dorado. En algunos casos se emplea una base serigrafiada de tinta conductora como sustrato.

Pulsadores mecánicos de bovedilla: Estos pulsadores (fig. 3.4) emplean unos discos metálicos embutidos en forma de casquete esférico que cuando son deprimidos pasan a una condición invertida, estableciendo el contacto requerido.

Emiten un clásico chasquido audible que advierte de su correcta operación.

Pulsadores de reed: Están formados por contactos inmersos en una atmósfera inerte, sellados por una cápsula de vidrio hermético (fig. 3.5)
El movimiento de la tecla desplaza un pequeño imán permanente que provoca el cierre de los contactos, dada la acción indirecta sobre estos últimos, no se transmiten sobrecargas mecánicas que provoquen fatiga y desgastes prematuros. Por lo anterior y por la hermeticidad del encapsulado que impide la contaminación de los contactos este tipo de pulsadores ofrecen una vida útil unas cinco veces superior al clásico pulsador mecánico.

Pulsadores capacitivos: Este tipo de pulsadores emplea un cambio en la capacidad de un condensador para entregar una salida (fig. 3.6). Emplean dos superficies vecinas sobre un mismo circuito impreso, estando una de ellas excitada por la señal alterna de un oscilador, si se aproxima paralelamente una placa conductorasobre ambas superficies, se provoca un acoplamiento entre ellas, con lo que aparece una fracción de la señal alterna en la salida. La señal de salida del pulsador debe ser convenientemente amplificada y convertida a niveles lógicos.

Existen múltiples variantes tales como los que utilizan contactos sensitivos, sin ningún ele
rento móvil. Otros diseños emplean bobinas de metal cóncavas como elemento de acoplamiento. Los pulsadores capacitivos ofrecen la ele vada fiabilidad de los interruptores sin contacto móviles.

Dado los bajos niveles de señal entregada por estos pulsadores se presenta una acusada sensibilidad a interferencias y unos serios condicionamientos en la estructura metálica soporte, trazado de pistas en el circuito impreso y electrónica de amplificación, detección y conversión. Por todo ello sólo aparecen disponibles formando parte de teclados completos producidos por fabricantes especializados.

Pulsadores de Núcleos Magnéticos: El elemento conmutador es un núcleo toroidal de ferrita empalado como transformador ([fig. 3.7]). El núcleo es atravesado normalmente por dos hilos: uno, energizado a alta frecuencia se emplea como primario; el segundo como secundario. El acoplamiento es muy bajo en la posición normal del pulsador, donde el núcleo está saturado por el campo del imán permanente. La depresión de la tecla desplaza el imán, desaturando el núcleo y generando una salida. Esta última es amplificada, rectificada y trasladada a niveles
lógicos.
Su fiabilidad es comparable a los pulsadores capacitivos, presentando del mismo modo que aquellos, una elevada criticidad en el trazado de las pistas del circuito impreso, por lo que generalmente se ofrece como parte integrante de un conjunto completo.

Pulsadores de efecto Hall: Los sensores de efecto de Hall [fig. 3.8] están formados por una pastilla semiconductora, recorrida por una corriente continua y un campo magnético perpendicular a ella que provoca una deformación de las líneas equipotenciales sobre la superficie semiconductor, apareciendo una tensión de salida proporcional al producto de la corriente de polarización por la intensidad del campo magnético aplicado.
La conmutación se obtiene al aproximarse un imán permanente al sensor, que desarrolla una tensión de salida que es amplificada y convertida en digital.
Generalmente el conjunto formado por el sensor, amplificador, disparador de Schmitt, monoestable opcional y paso de salida, forma un circuito integrado monolítico [fig. 3.9] asociado a cada pulsador.
Se distinguen dos tipos fundamentales: estático y dinámico. Los pulsadores estáticos conducen a su salida, mientras exista campo magnético a su entrada. Los pulsadores dinámicos conducen durante cierto período (típicamente 20 us) cuando el campo de entrada supera el nivel de conmutación, pero no lo hacen durante el resto del tiempo que dicho campo permanezca a nivel elevado, ni durante el alejamiento del imán; para ello incorporan un monoestable que dispara en el flanco de subida de la señal magnética.

La salida puede estar formada por un transistor de colector abierto, simple o doble, o bien por una puerta lógica (Y) aceptando señales exteriores de validación y sincronismo.

Dada la ausencia de contactos, la baja impedancia de todas las señales de interconexión y la insensibilidad a polvo, suciedad y contaminantes, este tipo de pulsadores ofrece la mayor fiabilidad (esencialmente duración infinita), sólo limitada por el desgaste del elemento móvil y el resorte de retorno. Este último, en algunos casos, es sustituido por un sistema magnético de retorno, que proporciona simultáneamente una rea limentación al tacto.
b) **Formatos**

El número de teclas y su distribución relativa es variable y sólo se diseña para cada aplicación particular; no obstante, existen en los catálogos de los fabricantes algunos modelos estándar que se adaptan a un elevado porcentaje de aplicaciones.

Uno de los tipos más comunes es el numérico, reducido de 12 teclas (fig. 3.10a). Está formado por 10 teclas asociadas a las cifras de 0 al 9, y dos teclas "disponibles" para cada aplicación, que se rotulan y emplean según sea esta. Existen leyendas estándar tales como (+) y (-) o (*#) y (#), o (SEND) y (CLEAR); aún cuando lo más usual es dejarlas en blanco o utilizar distintos colores identificados.

Su aplicación más usual (aparte de la telefonía) reside en equipos de control numérico y terminales simples de entrada de datos.

Una variante muy común del numérico reducido de 12 teclas, es el homónimo de 16 (fig. 3.10b) que usualmente mantiene las 10 teclas correspondientes a los dígitos decimales, asignando las 6 restantes bien sea a funciones específicas de la aplicación, bien sea a codificar los 6 últimos dígitos en numeración hexadecimal. Sus aplicaciones aparte de las ya mencionadas en el párrafo anterior, incluyen control
de microprocesadores, sistemas de seguridad, verificación de tarjetas de crédito, etc.

c). \textit{Modos}

Un teclado \textit{mono-modo} genera solamente un código por cada tecla. Los teclados de \textit{modos múltiples} generan más códigos por cada tecla en función de cómo se utilicen las teclas selectivas. El número de códigos generados por la depresión de una tecla es definido como el número de \textit{modos} de un teclado.

Los teclados \textit{mono-modo} son preferidos cuando el número de códigos es reducido, los de dos modos se emplean para disponer de mayúsculas y minúsculas alfabéticas.

Los conjuntos de \textit{modos múltiples} reducen la productividad del operador, puesto que debe utilizarse una mano para activar las teclas selectivas. Su ventaja consiste en la importante reducción en el número de teclas que lleva aparejado su empleo, siendo este factor primordial cuando no se exige elevada velocidad a la entrada de datos.

Los códigos estándar tales como ASCII y EBCDIC son
particularmente adecuados al empleo de múltiples
modos, puesto que por su propia estructura, se
obtienen los códigos de los diversos modos de cada
tecla con sólo modificar uno o dos bits.

d) Expresión Simultánea de Varias Teclas

Un problema común a cualquier tipo de teclado es
el que se provoca si se pulsan dos o más teclas si
multáneamente. Si no se toma ninguna precaución ,
lo más común es que se provoque una suma inclusiva
de bits dando lugar a la generación de un tercer có
digo que no corresponde a ninguna de las dos teclas
pulsadas, perdiendo asimismo la información corres
pondiente a estas últimas.

Aunque pueda parecer que éste es un problema de
operatoria ajena a los equipos, la tecnología ha
desarrollado una serie de soluciones que permiten
soslayar los defectos humanos de manipulación. Las
soluciones más usuales son las siguientes (fig.
3.11).

- Sobrepulsación de dos teclas.
- Inhibición de N teclas
 Sobrepulsación de N teclas.
Sobrepujación de dos teclas (2-Key rollover)

Cuando se pulsan varias teclas simultáneamente, sólo se transmite el código asociado a la primera, quedando la segunda y consecutivas bloqueadas hasta liberar la primera.

Si una segunda tecla fue pulsada tras la primera y liberada antes que ésta, no queda registrada, perdiéndose su información.

Éste método garantiiza que no aparezcan códigos erróneos, pero no impide pérdida de información.

Inhibición de N Teclas (N-Key Lockout)

Cuando se pulsan varias teclas simultáneamente no se generan códigos a la salida. Cuando una sola tecla está deprimida, el teclado genera su código, pero cuando se pulsa una segunda tecla mientras la primera permanece activa, el teclado no generará ningún código mientras no se libere la primera. Una vez está liberada, el código correspondiente a la segunda aparecerá a la salida. Por lo tanto si se pulsan N teclas simultáneamente permanecerá inhibida la codificación hasta que todas las teclas regresen a la posición.
de reposo, excepto una

Este procedimiento es muy similar al de sobre-pulsación de dos teclas, diferenciándose por el hecho de que en aquel durante la pulsación múltiple se dispone del código de la primera tecla mientras que en éste, durante la pulsación múltiple, la salida permanece inhibida.

Merece el mismo comentario respecto a posibles pérdidas de información.

Sobrepulsación de N Teclas (N-Key rollover)

Cuando se pulsa una tecla, se genera su código correspondiente. Si la primera tecla permanece deprimida mientras se pulsa una segunda, se generará la salida correspondiente a la segunda tecla.

Si se pulsa una tercera tecla mientras las dos primeras (o alguna de ellas) están todavía activadas, se genera el código correspondiente a ésta tercera tecla.

En un caso extremo, todas las teclas del teclado excepto una pueden ser pulsadas, cuando se ac...
tiva la última tecla, se generará su código asociado.
Este método se encuentra comúnmente en máquinas eléctricas de escribir, donde ha demostrado su virtud de poder incrementar notablemente la velocidad de teclado sin generación de errores, ni pérdidas de información.
Generalmente se acepta que los procedimientos de (inhibición de N teclas) o (sobrepulsación de dos teclas) son suficientes cuando aparece una indicación visual, tal como iluminación de una pantalla de TRC, impresión sobre papel o similares. El procedimiento de (sobrepulsación de N teclas) deseable en todos los casos, es absolutamente necesario cuando no se dispone de información visual asociada al teclado.

e) **Codificación**

Como señales de salida de un teclado pueden utilizarse las conexiones correspondientes a todos y cada uno de los distintos conjuntos tecla-pulsador que lo constituyen. Esto puede ser válido para teclados simples formados por un reducido número de teclas; pero es claramente engorroso si el número total de teclas supera ciertos umbrales.

Evidentemente se han buscado soluciones mucho más
efectivas que han sido centradas en la codificación de los datos de salida.

Esta codificación consiste en numerar de forma binaria cada uno de los distintos códigos emitidos por el teclado, de tal modo que el número total de bits precisos para expresar cualquier código no supera los umbrales de maniobrabilidad.

La codificación más usual para teclados numéricos reducidos es la hexadecimal (o su subconjunto BCD si nos limitamos a dígitos decimales); en el caso de teclados alfanuméricos se amplía la codificación, siendo el código más usual el ASCII de 6 o 7 bits y sea reducido o completo, o bien el EBCDIC de 8 bits.

Rebote de Contactos

Un factor a tener presente en los circuitos codificador es la presencia de rebotes en los contactos.

Cuando se cierra un interruptor, los contactos no se detienen inmediatamente, sino que dado que en el momento del establecimiento del contacto la parte móvil se desplaza a cierta velocidad, esta energía se restituye elásticamente, provo-
cando una oscilación mecánica. La frecuencia de
estos rebotes y el tiempo de amortiguación varían en función de las características propias del tipo de interruptor considerado. El tiempo de estabilización varía desde cero en los interruptores sin contactos, hasta 0.5 a 1 ms en tipos más económicos. Los efectos de los rebotes en las salidas codificadas pueden ser eliminados introduciendo un retardo adecuado en la señal de validación.

Como ejemplo de lo dicho anteriormente se ilustra la codificación de un teclado de 10 teclas, (fig. 3.12).Consta de 10 pulsadores, un codificador prioritario del tipo 74147 que entrega directamente la codificación BCD y un grupo de puertas para generar la señal de validación. La puerta 1 (representada como -AND- de 5 entradas, en la práctica sería una -AND- de 8, o bien una de 4 y otra de 2) suma lógicamente las salidas de los 4 bits de datos y de la tecla de (0) de modo que su salida baja a nivel 0 cuando es deprimida cualquier tecla. El diferenciador digital formado por las puertas 2 y 3; así como la constante RC, determina la generación de un impulso de duración t, superior al tiempo máximo de rebotes, de tal modo que durante el flanco
de subida de la señal de (validación) los datos serán estables.

Una ampliación inmediata es la precisa para generar los 16 códigos hexadecimales (fig. 3.13).
En este caso, en lugar de utilizar el codificador 147, se empleará el 148, que permite 8 en tradas con salida en 3 bits, más señales GS, EI y EO para encadenado y validación.
Para permitir la conexión de las 16 teclas, de berán utilizarse dos circuitos integrados encadenados para transmitir las prioridades de tal modo que si se pulsan simultáneamente dos o más teclas solamente aparecerá la codificación correspondiente a la tecla de numeración más alta entre las pulsadas, impidiendo por lo tanto mezcladas incorrectas. De forma similar a la ya aplicada para el teclado de 10 teclas, puede generar un impulso de validación que permita eliminar rebotes.

Conexión Matricial

Cuando el número de teclas sea más elevado (caso típico de teclados alfanuméricos) no es practicable seguir empleando los circuitos codificador res antes descritos.
La técnica más usual consiste en conectar las
en forma matricial, de tal modo que el número total de teclas conectables es igual al número de intersecciones.

Empleando teclas de efecto Hall dinámicas de doble salida puede realizarse un circuito codificador simple pero muy efectivo, tal como el empleado en los terminales T-1800 de telesincro (fig. 3.14).

Este teclado permite la conexión de hasta 128 teclas repartidas en una matriz de 8 filas por 16 columnas.

Mediante tres codificadores prioritarios del tipo 148 se obtiene un código de 7 bits, que no corresponde necesariamente a una codificación estándar tal como la ASCII. Con el fin de adaptar la codificación estándar a la norma deseada, así como para obtener un teclado de 4 modos se yacen los 7 bits antes obtenidos, junto con las salidas de las teclas estáticas (shift) y (control) a una PROM de 512 x 8 bits, que dará lugar a la salida de 8 bits transcodificada apropiadamente. La señal de validación se obtiene de modo similar al ya mencionado en casos anteriores.

Exploración secuencial

El ejemplo ilustrado en el párrafo anterior no
puede generalizarse, por cuanto a menudo los pulsadores empleados no disponen de las elevadas prestaciones del efecto Hall dinámico. En estos casos (que comprenden todos los pulsadores mecánicos así como los reed) se acude como norma general a realizar los circuitos codificadores empleando técnicas de exploración secuencial.

Un circuito clásico es el ilustrado en la fig. 3.15, basado en un contador de 7 bits, un multiplex y un decodificador de 4 a 16. Las teclas codificadas forman una matriz en la que cada tecla conecta una salida del decodificador con una entrada del multiplexor. El decodificador está seleccionado por los 4 bits menos significativos y el multiplexor por los 3 más significativos del contador. Cuando se pulsa una tecla, se cierra una conexión, de tal modo que cuando el contador alcanza el código apropiado, el multiplexor conmuta a su salida y dispara un monoestable redisableable, que detiene el contaje. El monoestable se redispara continuamente mientras la tecla está pulsada.

Una PROM o circuitería equivalente realiza la transcodificación y adaptación de modos, aunque esta función puede ser alizada por el procesador
mediante acceso a una tabla inserta en el micro-
programa.

Un esquema completo para codificar un teclado de
hasta 128 teclas por el método de exploración se-
cuencial resultaría bastante voluminoso si se rea-
liza mediante integrados simples SST y MSI, máxi-
me si se incorporan circuitos complicados de se-
lección de modos y protectores de sobrepulsacio-
nes.

Estos casos han sido resueltos mediante circui-
tos integrados MOS-LSI, que realizan todas estas
funciones. Es difícil dar una relación por cuan-
to cada fabricante dispone usualmente de varios
modelos, algunos programables, no existiendo ge-
neralmente compatibilidad entre distintas marcas.

Codificación por Microprocesador

Una técnica que se está expandiendo fuertemente
consiste en la utilización de microcomputadores
como elementos de lógica activa en la codifica-
ción de teclados. Esta técnica permite, con un mí-
nimo de componentes, realizar funciones que has-
ta el presente raramente eran llevadas a cabo di-
rectamente por el teclado como periférico. Entre-
estas funciones cabe mencionar exploración secuencial, protección contra pulsaciones simultáneas; transcodificación, modos múltiples, selecciones de modo complejo, salidas en paralelo o en serie, memoria FIFO en caso de pulsación más rápida que el posible acceso por parte de la CPU, autorrepetición en teclas seleccionadas (se denomina autorrepetición al hecho de que si se mantiene deprimida una tecla, pasado un tiempo prudencial, entre 0.5 a 1 segundo, se repiten las validaciones del código asociado a un ritmo aproximado de 10 Hz); repetición por tecla "REPITE" independiente de ciertas teclas o funciones, autorización o inhibición total o parcial del teclado, generación de señal audible para realimentación acústica, paridad, detección de errores de operatoria, etc.

Un caso de aplicación es el indicado en la figura 3.16, empleando exploración secuencial de teclas de efecto Hall cuyo esquema interno está representado en la figura 3.17.

Como microprocesador se emplea el Intel 8021. Este circuito opera a una tensión única de +5V, procesa palabras de 8 bits, dispone de una ROM...
de 1 K palabras, una RAM de 64 x 8 bits, 21 puertos de entrada/salida y un temporizador/contador, todo ello en una cápsula de 28 terminales.

Los módulos de pulsador de estado sólido disponen de una entrada y una salida, preparadas para exploración. La señal es válida cuando la entrada de interrogação (exploración) está activa y la tecla deprimida. Dado que el módulo pulsador es un interruptor de estado sólido, con salida digital, podrá conectarse directamente con el microprocesador. No es preciso prever rutinas para eliminación de rebotes, ni circuitos detectores especiales, tales como los que precisan los pulsadores capacitivos o de núcleos de ferrita; con todo ello se dispone de mayor espacio en la ROM para permitir incrementar sus prestaciones.

6) Interfaz

La conexión de un teclado completo a cualquier sistema informático, generalmente no plantea difíciles problemas por su simplicidad y baja velocidad de operación.

De hecho basta con tener presentes las señales que en torno, para deducir la interfaz precisa. El caso más
usual es el constituido por 7 u 8 bits de datos (depende si se incluye la paridad) y una señal de validación. En casos particulares aparecen señales asociadas a funciones especiales, tales como repetición, ruptura de secuencia, solicitud de identificación, u otras.

Al igual que cualquier otro sistema de entrada/salida en paralelo, puede realizarse la interconexión por medio de interrupciones, o bien por "polling".

Para definir la técnica idónea deben tenerse presentes varios factores, entre los cuales hay que contar con que la frecuencia de aparición de información no será jamás muy rápida, pues procede de la acción física de las manos del operador, por lo que difícilmente existirá un período inferior a 50 ms. entre las pulsaciones de mayor velocidad.

En sistemas que hagan uso extensivo de interrupciones puede ser ésta la solución más económica, aunque debe valorarse el tiempo de procesador destinado a atender al periférico, que evidentemente interrumpirá de forma asíncrona.

En muchos casos se prefiere actuar en polling, de tal modo que cuando el teclado dispone de una pala
bra, memoriza esta en los circuitos de interfaz y activa un bit físi
co de estado. El procesador, durante la ejecución de las rutinas básicas, explora los bits de estado de ciertos periféricos (tal como el teclado) y dispara una rutina de entrada en momentos en que su atención no está destinada prioritariamente a atender fenómenos que exigen mayor velocidad de reacción. La figura 3.18 indica un ejemplo de realización.

No obstante lo expuesto en los párrafos anteriores, la interconexión más usual de teclado es la serie, por cuanto estos periféricos forman parte, normalmente, de terminales interactivos, en los que los datos transmitidos constituyen la información generada a través del teclado. Teniendo en cuenta lo mencionado anteriormente, se ha diseñado el teclado, el cual se muestra en la página 3.19.

3.1.1.2 Sub-Sistema de Transmisión Digital Codificada en Ancho de Pulso

Se aplica el Capítulo II.1 del presente trabajo de Te
sis.

3.1.1.3 Generador de Tonos
Con el objeto de modular una frecuencia portadora se utilizan tonos audibles correspondientes a los niveles 0 y 1 además se utiliza un tercer tono que servirá como guardabits. Siendo por lo tanto las frecuencias:

\[\theta_0 : \text{Frecuencia correspondiente al nivel cero (0)} \]
\[\theta_1 : \text{Frecuencia correspondiente al nivel uno (1)} \]
\[\theta_{GB} : \text{Frecuencia correspondiente al guardabits.} \]

Con los datos obtenidos en los cálculos anteriores tenemos que:

\[T_0 : 2 \text{ mseg}, \]
\[T_1 : 4 \text{ mseg}. \]
\[T_{GB} : 0.63 \text{ mseg}. \]

A continuación efectuamos los cálculos de las frecuencias:

\[T = \frac{1}{6}, \quad \theta = \frac{1}{T} \]

La frecuencia para \(T_0 \) es:

\[\theta_0 = \frac{1}{T_0} = 2 \text{ mseg}. \]
\[F_0 = 500 \text{ Hz}. \]
La frecuencia para T_1 es:

$$
\theta_1 = \frac{1}{T_1} = \frac{1}{4 \text{ mseg.}} \quad \theta_1 = 250 \text{ Hz.}
$$

La frecuencia para T_{GB} es:

$$
\theta_{GB} = \frac{1}{T_{GB}} = \frac{1}{0.63 \text{ mseg.}} \quad \theta_{GB} = 1.587 \text{ Hz.}
$$

Vemos que:

$$
\tau_{w_1} < \tau_{w_0} < \tau_{w_{GB}}
$$

En la Fig. 3.20 se muestra las tonos de entrada y la señal de salida del generador de tonos.
3.3.1.1.4 **Modulador y Transmisor UHF, Mod. 9T90B4, Marca WR COMMUNICATIONS**

a) Especificaciones

Requerimientos de potencia de Tx : 13-6VDC, 1.3 A
Requerimientos de potencia reposo : 13.6VDC, 110 m A
Frecuencia : 406 hasta 512 MHz.
Potencia de salida RF : 4 Watts
Impedancia de salida : 50 Ohms.
Estabilidad de frecuencia : + 0.0005 %
Emisión Armónica : 65 dB
Modulación : 16F3
Respuesta de Audio : +1; -3dB de 6dB/oct.
Distorsión de Audio : 5%
Ruido y Zumbido : 50 dB de 3 MHz.

b) Descripción

El transmisor 9T90B4 está contenido en un módulo en chasisable. Esté utiliza modulación de fase y tiene un cristal cuya frecuencia es multiplicada 9 veces. Alimentación, control y conexiones de audio están hechos a través de conector de 15 pines montado en la parte posterior. En el panel frontal, un receptáculo de medición de 15 pines es provisto para pruebas y alineamiento empleando una Unidad de Prueba.
La salida de RF está alimentada a través de un conector coaxial en el panel posterior.

c) Conexiones Operativas

- + 13.6V Entrada de fuente de alimentación
- + 13.6V Entrada de fuente de alimentación
- SW Tx +9.5V Tx =9.5V conmutado por la llave reduc
tora de canal, esta salida es usada para habilitar la selección de línea de canal.
- PTT Aplicación de masa hacia el PTT activando el Tx.
- Tx + 9.5V Durante la etapa de transmisión este pin estará en + 9.5 VDC.
- TONE MOD. Entrada de tono de modulación. La red de componentes de interface de to
no, depende de la banda de frecuencia tondo. Ver diagrama 9T90B4, esquemati
co.

VOICEMOD. Entrada de modulación vocal.

OST 1 Oscilador de Control, Canal 1.
- GND Masa común

GND Masa común
d) Descripción del Circuito

d.1 Circuito de Audio

El amplificador de audio 1, compuesto de U3, amplifica el audio del micrófono hasta un nivel suficiente para el control instantáneo de desviación (IDC) CR7, 8. El circuito también provee pre-énfasis para la entrada de microfóno con R43 y C84. Señales externas de frecuencia vocal son aplicadas a C87. Esta es una entrada uniforme y señales tales como voz deben ser externamente pre-emplazados. El control de ajuste de desviación (DEVIATION ADJ), R54, fija los picos de desviación. El tono de modulación está conectado hacia la entrada del Amplificador de Audio 2 a través de una red de Interface consistente de R56 - 58 y C 97 - 98. Las señales de voz de R54 también son aplicadas hacia la entrada del amplificador de Audio 2 consistente de Q1 y Q2. La salida de esta etapa es suficiente para aplicarla al modulador a través del filtro pasa-bajo C88 - 91, L17, L18.

d.2 Oscilador - Modulador

01 y 02 son los osciladores de canal 1 y 2, respectivamente. Los cristales son del 3° sobre-tono y su frecuencia es 1/9 de la frecuencia de canal. RT1 y RT2 son
para compensación de baja temperatura. Para operación en 2 canales; el switch S1 es usado para seleccionar el canal localmente o permite una relación remota en la posición central mediante la aplicación de Tx +9.5V hacia el pin 3 de P1. Este voltaje es usado para habilitar la selección remota de canal. CR1 y CR2 son diodos de conmutación que aíslan el oscilador que no es empleado de L3. CR5 y CR6 conforman el modulador.

d.3 **Excitador**

Desde Q3 hasta Q8 alimentan la amplificación y multiplicación de frecuencia hasta llegar a la frecuencia portadora. La salida de Q8 es alimentada a través del filtro pasa-banda hacia el amplificador de potencia Q9. Este filtro reduce el nivel de los componentes de frecuencia indeseados en la salida del excitador.

d.4 **Etapa de Potencia**

Q9 es el amplificador de potencia. La salida del amplificador pasa a través del filtro armónico L24 hasta L26 antes de su salida del módulo en J1.

d.5 **Alimentación de Potencia**

El regulador Q2 provee una alimentación ajustable.
cia Q9 de modo que la potencia puede ser fijada en el nivel deseado. Este voltaje es ajustado usando el control del panel frontal indicado como AVR, R61.

El regulador U1 provee una alimentación fija de +9.5 voltios.

Q12 es el switch de PTT. Este transistor genera los Tx +9.5V, los cuales activan el oscilador del Tx.

El diodo LED, CR9, ubicado en el panel frontal y marcado como TRANSMIT encenderá cuando se está transmitiendo, empleando para ellos la corriente de base de Q12. La señal de Tx +9.5V es disponible en el pin 8 de P1 para aplicaciones externas tales como la activación de un switch de antena en estaciones de operación simplex.

e) Ajustes

e.1) Equipamiento

El siguiente equipo de prueba y herramientas son recomendadas para realizar diversos ajustes.

- Voltímetro, 50 Ohms, 5 watts.
- Generador de Audio.
- Monitor de Comunicaciones FM.
- Fuente de Alimentación, 11 hasta 16 VDC, 2 Amp.
- Micro de prueba.
WR M90 Conjunto de Prueba

Herramientas de sintonía, aisladas
Desarmadores, de ranura, tipo Philips y cabeza Robertson.

e.2 Alineamiento

Fijar la fuente de alimentación en 13.6 voltios, conectar la fuente de alimentación y el vatómetro hacia B1 y J1 en el módulo del transmisor 9T90B4, parte posterior, conecte el micro de prueba y el conjunto de prueba M90 hacia J3 y J2 en el panel frontal. Por medio del botón del PTT del micro o uno en el conjunto de prueba, se llevará el Tx al modo de transmisión. El tiempo de conmutación (Keying) deberá ser menor que 1 minuto hasta que el transmisor este totalmente alineado. Tabla 1: Alineamiento del Transmisor, da las pautas de sintonía. Los valores típicos mostrados para las lecturas del conjunto de prueba, están dados como una guía solamente. Optimo desempeño puede de obtenerse con lecturas diferentes de estas.

<table>
<thead>
<tr>
<th>PRUEBA DE PRUEBA, uA</th>
<th>LECTURA TÍPICA, uA</th>
<th>ALINEA</th>
<th>COLOCAR \ A</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>100</td>
<td>48</td>
<td>L3</td>
</tr>
<tr>
<td>02</td>
<td>50</td>
<td>37</td>
<td>L4</td>
</tr>
<tr>
<td>Vatímetro</td>
<td>5W</td>
<td>5W</td>
<td>5W</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

NOTA 1

Sintonice hasta lograr un pico y luego disminuya hasta un 80% del pico por incremento de la inductancia de L3. La lectura final del punto de prueba deberá ser cerca de 48 µA.

Si el indicado conjunto de prueba no es usado, los valores típicos dados no tienen aplicación. Algunos de estos puntos de prueba son fuentes de voltaje y la deflección del medidor no cambia por el mismo factor como el cambio para deflección de corriente en escala completa. La primera posición del conjunto de prueba (13. 6 V) mide la alimentación interna. La escala es 15 voltios a escala completa, lectura nominal 45.3 µA.

2.3 **Frecuencia del Cristal**

Selezione el canal correcto. Observe la frecuencia portadora en el monitor de comunicaciones FM. Ajuste el condensador C5 (C7) hasta media carrera. Fije la frecuencia portadora con el control L1 (L2) y el control fino con...
C5 (C7). Los componentes entre paréntesis se refieren al canal 2. Note que el ajuste posterior de L3 afectará la frecuencia del cristal ligeramente.

e.4 Desviación

El control de ajustes de desviación, R54, está ubicado en la tarjeta del circuito excitador del transmisor. Con el Monitor de Comunicaciones FM, monitoree la modulación del transmisor. Si el micro de prueba es usado para este ajuste, el control de ajuste de desviación deberá fijar se de modo que señales de voz elevadas a través del micro produzca picos de desviación no mayor que 5 KHz. Si generador de señales de audio es empleado, colocar el control de ajuste de Desviación al máximo y aplicar un tono de 1,000 Hz hacia el pin 3 de J3, del conector del micrófono. Aumente la salida del generador hasta 26 dB y reduzca el control de Ajuste de Desviación para desviación de 5 KHz. Aplicaciones de repetidora y base remota normalmente requieren que el micrófono de prueba no debe permanecer conectado a menos que el micrófono este cortocircuitado.

§ Opción Cima de Montaña

Esta opción habilita el transmisor para funcionar como una
unidad de Cima de Montaña (Mountain top). Una parte consistente de una modificación en el PTT del Transmisor, arreglos del circuito de Key, con lo cual el Transmisor es solamente activado luego de la commutación y que la corriente de reposo es reducida a cero.

La otra parte comprende de una red de compensación de frecuencia cuya necesidad a causa de que el transmisor no está constantemente activado y existiendo el arreglo del termistor responde también ligeramente a este efecto.

6.1 Commutación del Transmisor

El estado de Cr9 es desconectado de la línea de PTT y permanente conectado a masa, esto causa que Q12, el switch de PTT, conducirá y el transmisor estará activado cada vez que la alimentación es aplicada al Transmisor. No hay consumo de energía, cuando el Tx no está activado.

6.2 Red de Compensación de Frecuencia

R11 es retirada del módulo del Tx y la red de compensación es conectada a la unión de L1 y C5 del circuito oscilador del Tx. El diodo varactor CR2 debe tener conec
tado físicamente su ánodo hacia el punto de conexión y C1
en la red de compensación debe estar físicamente conec-
da hacia el cátodo de CR2.
En el caso que un tono CTCSS modula directamente en fre-
cuencia fundamental usando un diodo varactor, C5 no es
requerido y es retirado.
El valor de R1 es determinado durante pruebas ambientales
a fin de obtener una óptima compensación de frecuencia
considerando los cambios de temperatura. Fig. 3.21

6.3 Ajustes

Cuando se sintoniza la frecuencia del oscilador, el con-
densador variable C5 (si está presente) deberá ser puesto
inalmente a media carrera. El ajuste mayor de frecuen-
cia es realizado por la bobina variable L1 y el ajuste fi-
nó de frecuencia mediante C5 (si está presente).
Finalmente, mostramos los diagramas conformantes del
transmisor UHF.
Fig. 3.22 Diagrama Esquemático
Fig. 3.23 Conexión y Diagrama Pictórico
Fig. 3.24 Diagrama de Bloques y Ubicación de Partes para Alineamiento
3.1.2 Unidad Receptor

La unidad receptor está conformada por:
Receptor y Demodulador
Discriminador de Frecuencias
Sub - Sistema de Recepción Digital Codificado en Ancho de Pul

Descodificador y Exhibidor
En la figura 3.25 se muestra el esquema de bloques de la unidad receptor.

3.1.2.1 Receptor y Demodulador UHF, Mód. 9R90C marca WR COMMUNICATIONS

a) Especificaciones

Requerimiento de energía, para signal AF: 13,6VDC, 280 µA
Requerimiento de energía en reposo: 13,6VDC, 130 µA
Frecuencia: 406 hasta 512 MHz
Sensibilidad: 0,3 µV para 12 dB SINAD.
Selectividad EIA SINAD: 75 dB en ± 25 KHz
Estabilidad de Frecuencia: ± 0.0005%, -30° hasta 60°C
Intermodulación EIA SINAD: 65 dB
Respuesta Espuria: 85 dB (75 dB, 470 a 512 MHz)
Salida de Audio: 1 W. (8 Ohms.) con una distorsión menor que 5% THD

Respuesta de Audio (Salida en bajo nivel): +1, -2 dB de 6 dB/dec tabla. Desenfasis, 300 a 3,000 Hz

Ruido y Zumbido: -50 dB de 3 KHz de desviación en 1 KHz.

b) Descripción

El receptor modelo -R90C, es un equipo de modulación de frecuencia, de conversión simple, contenido en un módulo embalable. Alimentación, control, y conexiones de audio están hechas en un conector de 15 pines ubicados en la parte posterior del bastidor de montaje. En el panel frontal un receptáculo de 14 pines para fines de medición es provisto para pruebas y alineamiento empleando para ello el conjunto de Prueba modelo M90.

c) Conexiones Operativas (Por número de pin)

+ 13.6 voltios: Alimentación de entrada.
+ 13.6 V: Alimentación de entrada.
Sw. + 8.0 V: + 8.0 V conmutador por la llave selec
Ej: \(\text{\textit{tola de canal de línea/local; esta \text{\textit{salida es usada para controlar la selección del canal de línea}}}} \)

Parlante : Salida de audio para parlante

COS : Salida del squelch del receptor

Rx MUTING : Entrada del silenciamiento (muting) con +8v aplicados hacia este pin, el receptor quedará silenciado

Rx.AF : Salida de audio de bajo nivel del Rx Esta salida es usada para facilidades externas

OSC 1 : Control del oscilador del canal 1

OSC 2 : Control del oscilador del canal 2

GND : Masa común

GND : Masa común

d) Descripción del Circuito

d.1 Conversor

El amplificador de RF, Q1, amplifica la señal de entrada para superar las pérdidas introducidas por los cinco resonadores helicoidales L1, 2, 4 - 6 y el nivel de ruido del mezclador, Q2. El mezclador es un transistor bipolar del tipo mezclador de inyección por base el cual heterodina la señal reduciéndola hasta la frecuencia intermedia de 10.7 MHz.
Q6 (Q7) es el oscilador para el canal 1 (2). Los cristales V1 y V2 son del tipo del tercer sobretono en una frecuencia de:

\[
V1/V2 = \frac{\text{Frecuencia de Canal} - 10.7 \text{ MHz}}{9}
\]

El switch de canal S1 está instalado en los modelos de 2 canales. Este switch tiene 3 posiciones y está ubicado en el panel frontal. En la posición central, selección de canal externa es permitida a través del pin 3 de P1.

d.2 Amplificador de frecuencia Intermedia (FI)

El filtro FI1-2 provee la primera selectividad del receptor. El amplificador de frecuencia intermedia (Q3) determina la figura de ruido de FI y tiene un filtro FI3-5 para limitar el ancho de banda del ruido aplicado a las etapas posteriores. El Amplificador 3 de FI (U1) amplifica además la señal de 10.7 MHz. para su aplicación hacia el limitador, U2.

La demodulación de FM es llevada fuera con CR4, 5 y CH4 C45 retirando los componentes de 10.7 MHz a la salida del demodulador. La etapa amplificadora de FI está contenida en un compartimiento apantallado a fin de asegurar la estabilidad y reducir la captación de señales espúrias indeseadas.
d.3 Amplificador de Audio

El amplificador de audio, U4, amplifica el bajo nivel de la salida del demodulador para su procesamiento posterior. R48 y C47 forman una red de des-emfasis. La salida de U4 es acoplada a través de C94 hacia el control de volumen R83. Después de pasar por este control, la señal es amplificada finalmente por el amplificador U6.

El switch del parlante permite la reducción del flujo de la corriente de reposo por medio del silenciamiento de las etapas de potencia de audio usando el funcionamiento del altavoz no es requerido.

La salida del Buffer, U5, es un circuito separado que provee una alta calidad de salida de audio de bajo nivel (Rx AF) en el p inning 11 de P1. Esta salida es usada para funciones auxiliares.

d.4 Squelch

La salida del amplificador 1 de Ruido (Q10) es alimentada hacia un filtro pasa-altos C78, 79, 80 y CH 10, 11, el cual separa los componentes de banda vocal a la salida del demodulador... U3 amplifica el ruido restante con el detector CR11.

El control de Squelch - Key; R66, fija el voltaje del colector y la ganancia de Q10 y por lo tanto el no silenclamiento SINAD.
Q11 es el switch detector que activa el silenciamiento en u4 (pin 4) y la puerta de squelch Q15. La salida del inversor - Buffer es conectada hacia el pin 5 de P1 donde está disponible para circuitos externos que utilizan una portadora como switch de operación COS. CR8, CR14 y U8 silenciarán el receptor e inhabilitarán el oscilador de canal cuando + 8.0V es aplicado hacia el pin 8 de P1, Rx MUTING. Esta conexión es empleada para operación plex.

d.5 Alimentación de Potencia

U7 genera la alimentación de +8.0 voltios los cuales alimentan todos los circuitos excepto el amplificador final de audio. Este amplificador es alimentado directamente de los 13.6 voltios de entrada.

e) Ajustes

e.1 Equipamiento

El siguiente equipo de prueba y herramientas son recomendadas para la realización de los diversos ajustes:

Generador de Señales RF : -127dB hasta -27dBm
Analizador de Distorsión de Audiofrecuencia : 1 KHz, 8 Ohms. terminado
Fuente de Alimentación : 11 hasta 16 VDC en 0.5A

Generador marcador de FI : 10.7 MHz, control a cristal

Conjunto de Prueba : WRM90 Conjunto de Prueba

Calibradores : aislados

Desarmadores : De ranura, tipo Philips y de cabeza Robert son.

§1 Alineamiento.

Fijar el voltaje de la fuente de alimentación en 13.6V. Conecte la fuente y el generador de señales RF hacia el módulo del receptor en P1 y J1 respectivamente. Conectar la salida del altavoz, pin 4 de P1, hacia el analizador de Distorsión de AF. Enchufe el conjunto de Prueba a través del conector del panel frontal y seguir las instrucciones de la Tabla 1, alineamiento del Receptor.

<table>
<thead>
<tr>
<th>N° RADIO</th>
<th>CONJUNTO DE PRUEBA</th>
<th>LECTURA</th>
<th>ALINEAMIENTO</th>
<th>FIJAR A</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRUEBA</td>
<td>RANGO µA</td>
<td>TIPICA µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>50</td>
<td>16</td>
<td>L15</td>
<td>NOTA 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>55</td>
<td>L16</td>
<td>MAX</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>15</td>
<td>C1, 2, 6, 7, 8</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTA 2</td>
<td>70, 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTA 2</td>
<td>L8-10</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td></td>
<td>L11, 12</td>
<td>NOTA 4</td>
</tr>
</tbody>
</table>

NOTA 1

Sintonice hacia un pico, luego disminuya hasta el 80% del pico por aumento de la inductancia de L15. La lectura final en el puntero de prueba deberá estar cerca de 16 uA.

NOTA 2

Una lectura de 15 uA es para 10 uV en J1, después del alineamiento coax (aproximadamente).

NOTA 3

Después de sintonizar C1, 2, 6, 7, 8, el cristal V1 (V2) deberá estar colocado en su frecuencia, antes del alineamiento de la pa de FI (L8-10).

Fijar el generador de RF exactamente en la frecuencia y en un nivel que no sature la FI.

Acope el marcador de FI hacia la etapa de frecuencia intermedia para producir una nota de batido.
Fijar los controles de C48 (C53) para un vato do nulo. L13, 14 pro
veen el ajuste. Observe que la sintonía posterior de L15 varía la
frecuencia ligeramente.

NOTA 4

Fijar el volumen para 1 Vrms, en el altavoz para 1 mv [RF], 3.0
KHz de desviación, 1 KHz de señal de Tono en J1, que es exacta-
mente la frecuencia del canal.
Sintonice L11 para un pico en la salida del parlante.
Sintonice L12 para una lectura de 0mA en el punto de prueba 4
A continuación mostramos los diagramas del equipo:
3.26 Diagrama esquemático
3.27 Conexiónado y Diagrama Pictórico
3.28 Diagrama de Bloques y Ubicación de Partes para Alineamiento.

3.1.2.2 Discriminador de Frecuencias

Las señales de audiofrecuencia que salen del demodulador, ingresan
al discriminador de frecuencias, a una única línea y se convier-
ten en pulsos de tensión, estos pulsos son los datos y el sincro-
nismo.

El discriminador funciona de la siguiente manera:
La señal de audiofrecuencia que en cualquier instante es uno de
los tres tonos; se convierte en una serie de pulsos rectangulares
por acción del circuito de disparo de Schmitt; luego se lleva la onda resultante a un monostable que proporciona un pulso positivo con el borde de frente descendentede señal de entrada.

Al monostable sigue un circuito integrador R - C que sirve como e tapa de entrada al traductor de niveles, con un seguidor - emisor se reduce al mínimo el efecto de carga sobre el integrador. La salida del emisor - seguidor se aplica a una serie de diodos polarizados directamente para rebajar el nivel de tensión al valor que necesitan los detectores de nivel. Para extraer los niveles de tensión adecuados y accionar los detectores de nivel se utilizan otros dos emisores - seguidores.

Como detectores de nivel se utilizan disparadores de Schmitt. El circuito funciona de la siguiente manera:

Si se recibe el tono de frecuencia elevada, se disparaán los dos detectores de nivel. En cambio, si se recepciona la frecuencia media solo se dispara el detector de nivel 2, y por último, si se recibe la frecuencia menor, no se disparará ninguno.

En la figura 3.29 se muestra el esquema de bloques del discriminador de frecuencias.

En la figura 3.30 se muestra las formas de onda del discriminador de frecuencias.

En la figura 3.31 se presenta el circuito traductor de niveles.

3.1.2.3 Sub - Sistema de Recepción Digital Codificada En Ancho de Pulso

Se aplica el diseño efectuado en el capítulo 11.2 de pte. trabajo.
3.1.2.4 Descodificador y Exhibidor

La mayoría de los equipos digitales requieren una representación de información numérica o alfanumérica y en muchos casos incluso gráfica.

Para ello existen diversas técnicas, cuyas características permiten adaptarse a los requerimientos de cada caso: cantidad de información y calidad de representación.

La visualización de la información, puede efectuarse en forma electrómeánica, ya sea mediante impresoras o mediante trazados XY, que presenta la ventaja de permanecer escrita la información sobre papel. También se puede efectuar mediante un soporte electrónico, empleando indicadores numéricos y alfanuméricos, pantallas o tubos de rayos catódicos (TRC), que al no tener elementos mecánicos, permiten una mayor confiabilidad y un menor tiempo de acceso.

a) Indicadores Numéricos LED

Entre los indicadores numéricos de baja tensión de alimentación más utilizados están los que utilizan diodos emisores de luz (LED), por su relativa alta eficacia y baja tensión de alimentación. Esta luminosidad es obtenida de la energía liberada en la recombinación de los portadores minoritarios y mayoritarios de un semiconductor, en una unión cuando hay conducción de corriente. La energía liberada puede ser
en forma de luz, calor, o energía cinética proporcionada a otros portadores. Es posible reducir la absorción y las reflexiones internas a fin de conseguir una eficiencia lumínosa aceptable. La selección del material semiconductor es un factor muy importante, ya que determina la longitud de onda de la radiación obtenida (fig. 3.32) y su eficiencia, que puede ser en algunos casos superior al 30%. La Fig. 3.33 muestra las curvas características típicas de un LED. Los indicadores numéricos que utilizan diodos luminiscentes pueden estar ordenados en forma de siete segmentos, o ser un conjunto de diodos puntuales (fig. 3.34) que permite cierta mejora en la representación de algunos números.

Algunos indicadores numéricos incorporan el transcodificador del código BCD para el encendido de los distintos diodos, pero en la mayor parte de los casos debe utilizarse un transcodificador externo.

Existen diversas versiones de circuitos integrados para ejecutar el encendido adecuado de los siete segmentos, según el código BCD del número decimal deseado.

b) **Indicadores Numéricos de Cristales Líquidos**

Cuando se requiere una indicación numérica con reducido consumo, debe recurriarse al empleo de los cristales líquidos (LCD).

Estos visualizadores se basan en la anisotropía de las carac
terísticas ópticas de ciertos componentes orgánicos. La for-
ma lineal de estas moléculas y sus propiedades polares hacen
que en fase líquida presenten estructura cristalina. Cuando
todas las moléculas tienen sus ejes paralelos, corresponde
a una estructura "nemática" si además las moléculas están
dispuestas en planos paralelos, presentan la estructura de
nominada "esmética". También es posible una configuración de
nominada "colestérica" si los distintos planos poseen una
orientación girada respecto al anterior, formando las suce-
sivas direcciones una helicoidal.
La anisotropía eléctrica de las moléculas hace que pueda al-
ternarse su ordenación al aplicar un campo eléctrico.
Para la realización de indicadores numéricos mediante crista-
les líquidos, se disponen dos placas de vidrio que contie-
nen los electrodos transparentes, generalmente formados por
capas de óxido de indio y estaño, (fig. 3.35) y situadas a
una distancia comprendida entre 10 y 25 µm, que encierra el
componente orgánico utilizado.
La activación de los distintos electrodos produce zonas trans-
parentes y opacas, que producen las distintas estructuras nu-
méricas.
Los paneles pueden actuar por reflexión de una superfi-
cie metalizada posterior, o por transmisión de una fuente lumino-
sa colocada posteriormente.
La ventaja de los paneles por reflexión es un bajo consumo,
ya que la activación de cristal líquido requiere una
sía que puede ser inferior a 0.1 mW/cm² pero presenta el inconveniente de no poseer luz propia.

Actualmente, para efectuar el cambio de estado transparen-
to-opaco existen dos formas de funcionamiento: la denomi-
nada de "reflejo dinámico" y la de "efecto de campo".

Los cristales líquidos por reflejo dinámico se basan en la
interacción de las cargas libres producidas por la adición
de determinadas proporciones de elementos dopantes a un
cristal líquido en fase nemática. En ausencia de tensio-
nes de polarización, el líquido presenta una estructura or-
denada y es transparente.

Si se aplica una tensión entre los electrodos, se produ-
ce un desplazamiento de las cargas libres originadas por
la presencia del dopante. Si esta tensión es alterna y de
una frecuencia adecuada, que suele estar comprendida en-
tre 30 y 100 Hz, el movimiento de las cargas produce un
desorden en la estructura cristalina, produciendo una re-
flexión difusa de luz.

Este método, denominado de reflexión dinámica, es cada
vez menos utilizado debido a la necesidad del empleo de
tensiones alterna; y a su sensibilidad a las radiaciones
ultravioletas, que limitan el tiempo de vida.

Los cristales líquidos a efecto campo tienen la ventaja de
operar con corriente continua, y poseer una vida más lar-
ga.

Se basan en la propiedad que presentan las estructuras ne
máticas de cristales líquidos de producir un giro en su plano polar, al aplicar un campo eléctrico, ya que se produce un alineamiento de las moléculas perpendicular al campo creado. Si los cristales que contienen el cristal líquido son polarizados y están situados a 90°, en ausencia de tensión no se producirá paso de luz, mientras que al aplicar un campo eléctrico se producirá una rotación óptica, que permite el paso de la luz polarizada.
A pesar de que su tiempo de respuesta es relativamente elevado, este tipo de visualizadores ha alcanzado un gran desarrollo por su bajo consumo, lo que le hace especialmente apto para equipos portátiles.

c) Utilización de Multiplexado en el Encendido de Visualizadores Numéricos

Si consideramos el costo del elevado número de hilos necesarios para la alimentación de un panel numérico y la complejidad de un sistema de alimentación multiplexada que permita una notable reducción del número de hilos, se llega normalmente a la conclusión que resulta rentable utilizar las técnicas del multiplexado para visualizadores numéricos, a partir de las 4 décadas.
El multiplexado en el encendido de los paneles numéricos se basa en utilizar un único convertidor BCD/7 segmentos para el mundo simultáneo de todos los segmentos de las distintas décadas, pero iluminado únicamente un solo dígito durante
un corto intervalo de tiempo, y produciendo una rotación en el encendido de las sucesivas décadas, con suficiente veloci
cidad para que no sea perceptible el parpadeo. La entrada de información del convertidor BCD/7 segmentos debe irse con
mutando sincrónicamente con el encendido de cada dígito, pa
ra obtener la indicación numérica deseada.

Cuando estos sistemas de encendido multiplexado se aplican a
indicadores numéricos LED, se presentan dos tipos de circui
tos distintos según sean los indicadores utilizados, de ca
todo común o de ánodo común (fig. 3.38).

Un sistema de multiplexado para indicadores numéricos LED de
cátodo común consta de un oscilador que fija la frecuencia
del encendido secuencial de los indicadores. Es suficiente
una frecuencia de 1 kHz para eliminar el parpadeo (3.37).

Un contador mandado por dicho oscilador permite el direccion
amiento de la década iluminada en cada instante y al mismo tiempo constituye la dirección de la selección de los datos correspondientes al dígito iluminado.

El convertidor BCD/7 segmentos utilizado debe proveer una co
rriente de al menos 10 mA para obtener suficiente luminosidad. Si la tecnología empleada es TTL, puede utilizarse un elemento tipo 4368, que suministra 19 mA y si es MOS, el decodificador tipo 4511 puede proveer hasta 25 mA.

El decodificador de alimentación de cada década debe aceptar por cada una de sus salidas la corriente que resulta de po
der iluminar los 7 segmentos de la década seleccionada. El
decodificador TTL tipo 7445, por ejemplo, permite el multiplexado de hasta 10 indicadores, admitiendo por cada salida hasta 80 mA. El decodificador MOS tipo 8868 permite el multiplexado de hasta 12 elementos, admitiendo hasta 110 mA.

Cuando los indicadores numéricos utilizados son de cátodo común, el circuito utilizado es el de la fig. 3.38 en que el decodificador BCD/7 segmentos debe poder aceptar al menos, la corriente de 10 mA por cada una de sus salidas, como ocurre si se utiliza en tecnología TTL un elemento tipo 7447.

El decodificador de alimentación de los ánodos de los indicadores debe poder suministrar la corriente necesaria para la iluminación de cada década, por lo que suele utilizarse un amplificador independiente del decodificador, recurriendo en muchos casos al empleo de transistores PNP para obtener corrientes de hasta 200 mA.

Comparando los circuitos necesarios para el encendido multiplexado de indicadores numéricos LED, se infiere que resulta más conveniente el empleo de los indicadores con cátodo común.

d) Representación Alfanumérica

Si la información a representar es alfanumérica, también existen muy diversos métodos y tecnologías que en cada caso
so resultarán más adecuados según el número de caracteres que deben aparecer, tamaño y calidad de representación. Cuando el número de caracteres a visualizar es muy reducido, pueden emplearse elementos unitarios, pero si el volumen de información es muy elevado, es necesario el empleo de TRC.

d1. **Indicadores Alfanuméricos de 16 Segmentos**

Existen elementos indicadores análogos a los numéricos de siete segmentos, pero con un formato de 16 segmentos, que permite una representación alfanumérica.

Estos elementos pueden ser de incandescencia, o por descarga de gas. Los primeros presenta el inconveniente de la limitada vida de los filamentos, mientras que los segundos presentan el inconveniente del empleo de tensiones elevadas.

Dada su baja calidad de representación, su empleo se reduce a aquellos casos en que sólo se precisa visualizar un número muy reducido de caracteres.

d2. **Representación Alfanumérica por Matriz de Puntos**

También puede obtenerse la representación de cualquier carácter, iluminando un conjunto de puntos de una matriz. La calidad de representación que es po
sible obtener depende del formato de la matriz utili-
zada, debiéndose resolver en cada caso adecuadamen-
te el compromiso calidad-precio. Ello hace que el
formato más utilizado sea el de 5 x 7 puntos, (Fig.
3.39), o en algunos casos 7 x 9.

Este sistema de representación puede utilizar tres
distintos soportes: una matriz de diodos lumínis-
tes, un panel de plasma o un TRC.

Los diodos LED son utilizados en elementos indicado-
res individualizados cuando el número de elementos es
muy reducido.

Los paneles de plasma alfanuméricos se utilizan para
medianos volúmenes de información. Existen paneles
de 40 caracteres y de hasta 480. Actualmente son u-
tilizados dos tipos de paneles de plasma: los de di-
reccionamiento punto a punto, y los de barrido se-
cuencial.

Los paneles alfanuméricos de plasma de encendido por
direccionamiento punto a punto constan esencialmente
de un panel catódico emisor de electrones por efecto
termiónico, electrones que son atraídos hacia el
panel frontal fosfo-luminiscente, aplicando un poten-
cial adecuado. Entre ánodo y cátodo se disponen u-
nas placas perforadas, de forma que sus aberturas
queden alineadas formando las matrices de puntos ne-
cesarios para la representación del número deseado de
caracteres (fig. 3.40).
Cada una de estas placas perforadas que se interponen entre ánodo y cátodo, tienen franjas metalizadas que permiten el paso de los electrones si están a potencial positivo, mientras que si éste es negativo, interrumpe el paso del haz. De esta forma es posible decodificar un determinado carácter del panel y a su vez una fila y columna de él. Finalmente una última placa permite cortar o no el único haz correspondientemente al punto seleccionado.

Otro tipo de paneles de plasma, denominados de barrido secuencial, están constituidos por un cristal frontal que lleva adosadas una barradas anódicas de comutación (fig. 3.41), separadas por una lámina perforada, aislada de los ánodos. Estos están unidos entre sí, formando un bus de 3 fases, de forma que siempre uno de ellos está en tensión y producen un barrido secuencial. Un ánodo de mantenimiento permite iniciar el barrido mediante una barra de control.

La ola lumínosa producida no es visible, por quedar situada en la capa inferior, pero puede ser visible actuando sobre las barras catódicas del panel frontal, que producen la transferencia de ionización a la capa superior.
Cada punto se iluminará cuando se produzca la coinci
dencia de una barra superior activada, y el paso del barrido a través de los átomos.

Existen otras variantes de estos paneles, lográndose en algunos casos paneles de plasma con memoria propia, lo que evita el refresco, utilizando la histéresis de tensión producida en el cebado-descebado de la ionización.

d3. Representación Alfanumérica sobre TRC

Cuando el volumen de información a representar es elevado, resulta más rentable el empleo de la pantalla de un TRC, a pesar de su volumen y de la necesidad de utilizar alta tensión (fig. 3.42).

Los sistemas de visualización con TRC son de uso muy generalizado, como terminal alfanumérico de ordenador, incorporando generalmente un teclado. Estos equipos (Displays) poseen mayor luminosidad que los paneles de plasma, y son de coste reducido por utilizar elementos que son producidos en series muy largas para televisores.

Existen fundamentalmente dos formas de generación de los caracteres: por matriz de puntos o por vectores.

El trazado por matriz de puntos, es más utilizado, ya que requiere una ciruclitería relativamente más simple, empleándose el trazado vectorial únicamente cuando se
requiere mayor cantidad de representación, en equipos de elevado coste.

Para el trazado de los caracteres por matriz de puntos sobre el TRC, lo más usual es emplear un barrido horizontal tipo TV, ya que de esta forma el conjunto formado por pantalla, generador de alta tensión y sistema de deflexión es común a la de un televisor, lo que permite reducir su coste.

Para evitar el parpadeo de los caracteres en la pantalla se opera a 50 (o 60) imágenes por segundo, leyendo ciclicamente la memoria que contiene la información de los caracteres que debe aparecer en la pantalla (una página).

Esta memoria, denominada de refresco, es una RAM, que al ser leída cada 20 ms puede ser de tipo dinámico, y es direccionada por el contenido de un contador, que a su vez determina la posición del haz sobre la pantalla [fig. 3.43].

La capacidad de los contadores depende del formato a x b utilizado en la representación de dos caracteres (que pueden ser de $5 \times 7.7 \times 9$ o 9×13 puntos como en la [fig. 3.44]) de la distancia d entre caracteres en una misma fila, de la separación vertical h entre caracteres y finalmente del formato de presentación de los caracteres en la pantalla $m \times n$. Este formato varía de unos a otros equipos, siendo los más
usual: 10 x 64, 12 x 80, 16 x 64, 16 x 72, 20 x 64 y otros.

Después del trazado de cada fila de la matriz de un carácter, cada b + d impulsos de reloj (fig. 3.43) es leída nuevamente la memoria que contiene el código del que ocupa la posición barrida por el haz. Esta información, conjuntamente con la del contador de fila del carácter que se está representado, constituye el direccionamiento de la ROM generadora de caracteres de la que se obtienen los b bits correspondientes a la adecuada iluminación de cada fila de la matriz, para generar el correspondiente carácter. Estos bits obtenidos en paralelo se serializan mediante un registro de desplazamiento, de forma que se obtiene la señal de iluminación o apagado de cada punto de la pantalla.

Después del trazado de todos los caracteres que figuran en una página, la memoria es leída a veces por cada carácter, lo que obliga a utilizar memorias de acceso aleatorio (RAM).

Para reducir el coste de la memoria utilizada, en algunos equipos se utiliza una memoria intermedia de los caracteres contenidos en cada fila, junto a la memoria del contenido en cada página (fig. 3.45). De esta forma, la lectura de esta memoria es ordenada y cíclica, lo que permite utilizar memorias de circula
ción (registros de desplazamiento), que son más económic.
ómicas. La memoria de los caracteres de cada fila
también es una memoria de circulación en que se actualiza su contenido durante la lectura de la primera fila de cada matriz, y se recircula su contenido durante las restantes.
3.1.3 OTROS APLICACIONES

3.1.3.1 CONTROL REMOTO DE DOS HILOS PARA TRANSMISOR

El uso de antenas de transmisión/Recepción en la estación transmisora o receptora es inevitable. Las estaciones terrestres de radio comunicación de gran capacidad, requieren una distancia adecuada entre antenas. Sin embargo, si la distancia entre el transmisor y la antena es grande, las pérdidas de las líneas de control remoto son significativas. Por lo tanto, cuando se diseña una planta de transmisión, el control de la misma será colocado a una distancia corta del sistema transmisor/antena, usando líneas de baja pérdida y colocando la antena a una gran distancia, es factible implementar un sistema de transmisión.

El sistema de control remoto del transmisor consiste en dos unidades: Control Remoto de la Red - Interfaz Red (ISO), y Control Local del Receptor - Interfaz de Adaptación (ISI). Cuando se conecta a un circuito fijo duplex VHF/ UHF o hacia un sistema de radiocomunicación, permite el control remoto de los datos y señales transmitidas. Este sistema usa 24 tonos (canales) de 420 - 3180 Hz
(en intervalos de 120 Hz), y cambian solamente ajustando y midiendo los datos en las unidades ISO e ISI. Si el transmisor está sintonizado, la información que se transmite (voz, dos tonos, ARQ - Proceso de Teleimpresión o señales de MORSE), puede ser enviada en el rango de frecuencia de 300 - 3400 Hz. en la misma línea de conexión.
En paralelo con las señales de voz, serán también trasmitidas las siguientes funciones:

- **KEY/PTT**: Manipulación de transmisor
- **TX/ON**: Fuente de alimentación del transmisor
- **OFF/TUNE**: Sintonizador de ATU
- **ALARM**: Alarma indicadora "Interferencia en transmisión"
- **POWER**: Medida de la Transmisión
- **INDICATION**: Salida del Transmisor [VSOR]

Con estas funciones es posible controlar las condiciones de operación del transmisor durante la transmisión, como se muestra en la figura 3.46.
CARACTERÍSTICAS TÉCNICAS

Sistema de control a distancia

Adaptación recepción ISO ISI

Línea de transmisión...........Tiempo multiplex
Modem.........................Sistema multiplex de 24 canales de frecuencia

Nivel de la Línea de baja
Frecuencia...............Entrada/Salida: 27 dBm
 (100 mVss)
Ancho de banda............300 - 2400 Hz
Espacio de canal..........120 Hz (CCITT)
Entradas digitales...........Contactos: potencialmente libres
Entrada analógica...........0 - 20 mA
Salida analógica...........0 - 20 mA
Energía.......................220 V, 60 Hz +/- 10% Hz
3.1.3.2 CONTROL DE LÍNEAS MÚLTIPLES

El circuito de control de Líneas Multiples provee una salida direccionada a una entrada digital DTMF, y también direccionamiento a la salida para otras entradas (Tarjetas).

a) DESCRIPCIÓN CIRCUITAL

El audio recibido ingresa al circuito al PIN 2 y atraviesa C1 hasta el filtro DTMF, U5. Esta red separa los componentes altas y bajas de una señal de tono, dual y limita, resultando un par de señales sinusoidales para producir ondas cuadradas que tienen las mismas frecuencias que los componentes individuales de la señal DTMF.

El monitoreo de las salidas del filtro para limitarlo se puede hacer de los PINES 11 y 2 de U5.

Las componentes altas y bajas ingresan al Decodificador U7 a los PINES 4 y 13. Esta red provee un enganche de cuatro bits de salida PINES 5 a 8, correspondientes a la señal DTMF recibida. Este circuito consiste de C5, R5 y R6, y permite al decodificador ser programado para cortos periodos de desaparición de señal o excesivo ruido, cuando recibe un tono, exteriormente serán mal interpretado como dos tonos sucesivos DTMF.

Recepcionando la señalización del DTMF U7 excita al
inversor a las salidas bajas de los circuitos. U6, estas cambian sobre Q2, vía U60 y pone un nivel bajo en el borne del conector PIN Y, indicando que el sistema está ocupado. El nivel de salida bajo, desde U6C, también habilitada U4A, que descodifica los dos bits más significativos de U7, salidas 1 a 4, Q0 hasta Q3. Estas cuatro salidas, junto con los dos bits menos significativos de U7 ingresan a U10 (Hex D tipo Latch), los datos en las entradas de U10 D0 hasta D5, es enganchado hasta las salidas Q0 a Q5, mediante el schmitt Flip-Flop tipo NAND, U9C/D. El enganche de retardo de los datos es ligeramente mediante la red RC de R7/C7 en la entrada del Flip-Flop, para asegurar que la entrada de datos a U10 sea bien establecida, antes será enganchado el Suavizador U11 y las salidas de los inversores. U10 excitán al direccionador de línea y al selector de salida. La salida bajo desde U6C recepcionada la señalización de DTMF y también salida excitán a las salidas altas de U9A, dando una salida "DTMF DETECT" a "B".
El Flip-Flop U9C/D y el enganchador U10 se reactivan cuando "R, '14" va a nivel bajo, luego también la salida COS descenderá.

Un cristal de 3.58 MHZ trabaja con un oscilador en U5 para proveer el reloj para U5, U7 y U12. La línea y la tarjeta selectora de entradas son conectadas a los PINES "V, W, X, 18, 19 y 20", direccionando a la memoria PROM U8, de 32 x 8 bits, que programa el tono DTMF en
el codificador U12.

El tono de salida de U12, Pin 16, atraviesa R20 hasta el control R15, y luego a la salida "M". U12 PIN 10 va a nivel bajo cuando U12 se dirige hacia el codificador. Este nivel bajo en U12 PIN 10, cambia en Q2, vía U6D dando un nivel bajo "BUSY", indicación a "Y". La salida baja desde U12 PIN 10, es invertida mediante U6A, re retardada por el circuito RC, R16/C13, e invertida nuevamente por U6B, el cual saca la entrada "CE" de U12 vel bajo, vía CR6, para inhabilitar la generación del tono.

De este modo, el DTMF produce un destello de 300 mseg.

El tono generado por U12 es también inhabilitado cuando se recibe la salida del tono DTMF. Esto se consigue poniendo la entrada "CE" a nivel bajo en U12, vía CR5 y el Flip - Flop U9C/D.

El inicio de la actividad de los 300 mseg siguientes, la salida de U6B va a nivel bajo, cambiando el DTMF "TONE OUT" y en el mismo momento cambia la salida del OSC DIS Pin "21". El generador de reloj U9B provee de señales de reloj al contador binario U1, a una relación de 50 Hz. Los dos bits menos significativo Q0 y Q1 seleccionan las salidas del direccionamiento de Líneas en formato binario.

Las salidas de U1, Q2 y Q3 excitán al decodificador U4B, puntos 1 y 4, que seleccionan la salida de las tarjetas 1 y 4.
U3 y U2 son los reguladores de voltaje de 8V y 5V, de acuerdo a lo indicado en la figura 3.47.

b) AJUSTES

R15, controla el nivel de salida de DTMF, permitiendo una desviación ± 3KHz al Transmisor.

c) CARACTERÍSTICAS TÉCNICAS

- Fuente de Alimentación: 12 VDC, 57 mA en modo inactivo, 65 mA en modo codificador.

- Niveles de Señal Entrada: 50 - 1000 mVrms

- Nivel de Salida DTMF: 10 dBm MIN (R-load = 10K ohms)

- Tiempo de Respuesta: 45 mseg.

- Duración del Tono de Bestelko: 300 mseg.
Fig. 3.1 DIAGRAMA DE BLOQUES DE LA UNIDAD TRANSMISORA.
FIG. 3.5 PULSADOR DE LAMINAS (REED)

FIG. 3.6 PULSADOR CAPACITIVO

FIG. 3.7 PULSADOR DE NUCLEO MAGNETICO
FIG. 3.8 PULSADOR DE EFECTO DE HALL

FIG. 3.9 ESQUEMA DE BLOQUES DEL DETECTOR HALL

FIG. 3.10a TECLADO NUMÉRICO REDUCIDO DE 12 TECLAS

FIG. 3.10b TECLADO NUMÉRICO REDUCIDO DE 16 TECLAS
FIG. 3.11 DEPRESION SIMULTANEA DE VARIAS TECLAS

FIG. 3.12 CODIFICADOR DE 10 TECLAS

FIG. 3.13 CODIFICADOR DE 18 TECLAS
FIG. 3.14 CODIFICACION DEL TECLADO DEL TERMINAL T 1800

FIG. 3.15 EXPLORACION SECUENCIAL
Fig. 3.16 Codificación por Jumper
FIG. 3.17 TECLA DE EFECTO DE HALL PARA EXPLORACION SECUENCIAL

FIG. 3.18 INTERFAZ DE POLLING
Fig. 3.20 ONDAS DE ENTRADA Y SALIDA DEL GENERADOR DE TONOS.
Fig. 32: CIRCUITO DE COMPENSACION DE FRECUENCIA.
Fig. 3.24 - DIAGRAMA DE BLOQUES Y UBICACIÓN DE PARTES PARA ALINEAMIENTO DEL TRANSMISOR UHF MOD. 9T904B MARCA WR - COMMUNICATIONS
Fig. 3.25. ESQUEMA DE BLOQUES DE LA UNIDAD RECEPTORA.
Fig. 328 DIAGRAMA DE BLOQUES Y UBICACION DE PARTES PARA ALINEAMIENTO DEL RECEPTOR UHF, MODELO 9R90C MARCA -- WR COMMUNICATIONS.
Fig. 3.29
ESQUEMA DE BLOQUES DEL DISCRIMINADOR DE FRECUENCIAS.
Fig. 3.30 FORMAS DE ONDAS DEL DISCRIMINADOR DE FRECUENCIAS.
CIRCUITO TRADUCTOR DE NIVELES.

Fig. 3.31
FIG. 3.32 ESPECTROS DE EMISIÓN DE DISTINTOS DIODOS EMISORES
DE LUZ (LED)

FIG. 3.33 CURVAS CARACTERÍSTICA DE UN LED.

FIG. 3.34 TIPOS INDICADORES NUMÉRICOS LED
FIG. 3.35 INDICADOR NUMERICO POR CRISTAL LIQUIDO

FIG. 3.36 TIPOS DE INDICADORES NUMERICOS LED (a) ANODO COMUN (b) CATODO COMUN
3.37 ALIMENTACION MULTIPLEXADA DE INDICADORES LED CON CATODO COMUN

3.38 ALIMENTACION MULTIPLEXADA DE INDICADORES LED DE ANODO COMUN
FIG. 3.39 REPRESENTACION ALFANUMERICA POR MATRIZ
DE 5 X 7 PUNTOS
FIG. 3.40 PANEL DE PLASMA DE DIRECCIONAMIENTO PUNTO A PUNTO

FIG. 3.41 PANEL DE PLASMA DE ENCENDIDO POR BARRIDO SECUENCIAL
FIG. 3.42. COSTE POR NUMERO DE CARACTERES A VISUALIZAR POR DISTINTOS METODOS

3.43 ESQUEMA BASICO DE UN DISPLAY ALFANUMERICO (MEMORIA DE PAG. RAM)
FIG. 3.44 ESPACIADO ENTRE CARACTERES EN LA PANTALLA

3.45 ESQUEMA BASICO DE UN DISPLAY ALFANUMERICO (CON MEMORIA DE CIRCULACION)
Fig. 3.46 DIAGRAMA DE BLOQUES DEL CONTROL REMOTO DE DOS HILOS PARA TRANSMISOR.
Componentes del Sistema de Transmisión

<table>
<thead>
<tr>
<th>SÍMBOLO</th>
<th>COMPONETE</th>
<th>USO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>Resistencia</td>
<td>Tiempo del Monostable</td>
<td>10 KOHM, 1/4 W, 5% NO. 1</td>
</tr>
<tr>
<td>R_2</td>
<td>"</td>
<td>Tiempo del Monostable</td>
<td>10 KOHM, 1/4 W, 5% NO. 2</td>
</tr>
<tr>
<td>R_3</td>
<td>"</td>
<td>Tiempo del Monostable</td>
<td>47 KOHM, 1/4 W, 5% NO 3</td>
</tr>
<tr>
<td>R_4</td>
<td>"</td>
<td>Para Clear</td>
<td>1 KOHM, 1/4 W, 5%</td>
</tr>
<tr>
<td>R_{c_1}</td>
<td>"</td>
<td>Tiempo de Reloj</td>
<td>33 KOHM, 1/4 W, 5%</td>
</tr>
<tr>
<td>R_{c_2}</td>
<td>"</td>
<td>Tiempo de Reloj</td>
<td>220 OHM 1/4 W, 5%</td>
</tr>
<tr>
<td>R</td>
<td>"</td>
<td>Estabilizador de la onda de salida</td>
<td>1 KOHM, 1/4 W 5%</td>
</tr>
<tr>
<td>C_1</td>
<td>Condensador</td>
<td>Tiempo del Monostable</td>
<td>0.68 uF, 50 V NO. 1</td>
</tr>
<tr>
<td>C_2</td>
<td>"</td>
<td>Tiempo del Monostable</td>
<td>0.15 uF, 50 V NO. 2</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>Tiempo del Monostable</td>
<td>0.68 uF 50 V NO 3</td>
</tr>
<tr>
<td>C_{x}</td>
<td>"</td>
<td>Tiempo del Reloj</td>
<td>0.1 uF, 100 V</td>
</tr>
<tr>
<td>C_v</td>
<td>"</td>
<td>Control de Tensión</td>
<td>0.01 uF 50 V</td>
</tr>
</tbody>
</table>
u_1, u_2 : IC 74166 8-BIT SHIFT REGISTERS

u_3, u_8 : IC 74123 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

u_4, u_7 : IC 7400 QUADRUPLE 2-INPUT POSITIVE NAND GATES

u_5, u_6 : IC 7493A 4-BIT BINARY COUNTERS

u_9 : IC 555 TIMER
Componentes del Sistema de Recepción

<table>
<thead>
<tr>
<th>SIMBOLO</th>
<th>COMPONENETE</th>
<th>USO</th>
<th>DESCRIPCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia</td>
<td>Nivel Positivo a Entrada Serie</td>
<td>10 KOHM, 1/4 W, 5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivel Positivo a Clear de Registro</td>
<td>10 KOHM, 1/4 W, 5%</td>
<td></td>
</tr>
<tr>
<td>R₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivel Positivo a Entrada Serie de Registro</td>
<td>10 KOHM, 1/4 W, 5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivel Positivo a Clear</td>
<td>10 KOHM, 1/4 W, 5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivel Positivo a Clear Monostable N 1</td>
<td>10 KOHM, 1/4 W, 5%</td>
<td></td>
</tr>
<tr>
<td>R₆</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivel Positivo a Clear Monostable N 2</td>
<td>10 KOHM, 1/4 W, 5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivel Positivo a Clear del registro de Corrimiento V₅</td>
<td>10 KOHM, 1/4 W, 5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivel Positivo a Clear del Registro de Corrimiento V₆</td>
<td>10 KOHM, 1/4 W, 5%</td>
<td></td>
</tr>
<tr>
<td>R₉</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tiempo del Monostable No. 1</td>
<td>10 KOHM, 1/4 W, 5%</td>
<td></td>
</tr>
</tbody>
</table>
- 228 -

\[R_{10} \]
Tiempo del Monostable 10 KOHM, 1/4 W, 5%
NO. 2

\[C_1 \]
Condensador Tiempo del Monostable 0.47 \(\mu\)F, 50 V.
NO. 1

\[C_2 \]
" Tiempo del Monostable 0.056 \(\mu\)F, 60 V
NO. 2

\[u_1, u_2 \] : IC 74164 8 \times\) BIT PARALLEL \times\) OUT SERIAL SHIFT
REGISTERS

\[u_3 \] : IC 74123 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

\[u_4 \] : IC 7400 QUADRUPE 2 INPUT POSITIVE NAND GATES

\[u_5, u_6 \] : IC 74199 8 \times\) BIT SHIFT REGISTERS
3.2.3 Oscilación de Onda Cuadrada

<table>
<thead>
<tr>
<th>SIMBOLO</th>
<th>COMPONENTE</th>
<th>USO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td>Resistencia</td>
<td>Constante de Tiempo</td>
<td>50 KΩ, 1/2 W, 10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carga</td>
<td></td>
</tr>
<tr>
<td>R₂</td>
<td></td>
<td>Constante de Tiempo de Descarga</td>
<td>220 Ω, 1/2 W, 10%</td>
</tr>
<tr>
<td>R₀</td>
<td></td>
<td>Mejora Salida del Oscilador</td>
<td>1 KΩ, 1/2 W, 10%</td>
</tr>
<tr>
<td>C₁</td>
<td>Condensador</td>
<td>Control de Tensión</td>
<td>0.01 μF, 30 V.</td>
</tr>
<tr>
<td>C₇</td>
<td></td>
<td>Carga y Descarga del Oscilador</td>
<td>0.1 μF, 50 V.</td>
</tr>
<tr>
<td>CI</td>
<td>335</td>
<td>TIMER (CRONOMETRADOR)</td>
<td></td>
</tr>
</tbody>
</table>

3.2.4 Inversor Lógico

<table>
<thead>
<tr>
<th>R₆</th>
<th>Resistencia</th>
<th>Limita Corriente de Base</th>
<th>1 KΩ, 1/2 W 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td>Resistencia de Carga</td>
<td>2.7 KΩ, 1/2 W, 10%</td>
</tr>
<tr>
<td>T₁</td>
<td>Transistor NPN</td>
<td>Inversor</td>
<td>AC 123 A</td>
</tr>
</tbody>
</table>
3.2.5 Fuente de Alimentación

<table>
<thead>
<tr>
<th>SÍMBOLO</th>
<th>COMPONENTE</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_a)</td>
<td>resistencia</td>
<td>47 KOHM, 1/2 W, 10%</td>
</tr>
<tr>
<td>(R_b)</td>
<td>"</td>
<td>10 KOHM CONTROL</td>
</tr>
<tr>
<td>(R_c)</td>
<td>"</td>
<td>47 OHM, 1/2 W 10%</td>
</tr>
<tr>
<td>(R_d)</td>
<td></td>
<td>19.95 KOHM, 1/2 W, 7%</td>
</tr>
<tr>
<td>(R_1)</td>
<td></td>
<td>33 KOHM, 1/2 W, 10%</td>
</tr>
<tr>
<td>(R_2)</td>
<td></td>
<td>- 4700 OHM, 1/2 W, 10%</td>
</tr>
<tr>
<td>(R_3)</td>
<td></td>
<td>3900 OHM, 1/2 W, 10%</td>
</tr>
<tr>
<td>(R_4)</td>
<td></td>
<td>820 OHM, 1/2 W, 10%</td>
</tr>
<tr>
<td>(R_5)</td>
<td>"</td>
<td>1500 OHM 1 W, 10%</td>
</tr>
<tr>
<td>(R_6)</td>
<td>"</td>
<td>1 KOHM, 1/2 W, 10%</td>
</tr>
<tr>
<td>(R_7)</td>
<td>"</td>
<td>555 OHM, 1/4 W, 1%</td>
</tr>
<tr>
<td>(R_8)</td>
<td>"</td>
<td>470 OHM, 1/2 W, 5%</td>
</tr>
<tr>
<td>(R_9)</td>
<td>"</td>
<td>1.1 OHM 3 W, 5%</td>
</tr>
<tr>
<td>(R_{10})</td>
<td>"</td>
<td>2 KOHM, 1/2 W, 5%</td>
</tr>
<tr>
<td>(R_{11})</td>
<td>"</td>
<td>2 KOHM, 1/2 W, 5%</td>
</tr>
<tr>
<td>(R_{12})</td>
<td>"</td>
<td>1200 OHM, 1 W, 10%</td>
</tr>
<tr>
<td>(R_{13})</td>
<td>"</td>
<td>10 KOHM, 1/2 W, 10%</td>
</tr>
<tr>
<td>(R_{14})</td>
<td>"</td>
<td>390 OHM, 1/2 W, 10%</td>
</tr>
<tr>
<td>(R_{15})</td>
<td>"</td>
<td>500 OHM CONTROL</td>
</tr>
<tr>
<td>(R_{16})</td>
<td>"</td>
<td>470 OHM, 1/2 W, 5%</td>
</tr>
<tr>
<td>(R_{17})</td>
<td>"</td>
<td>33 KOHM, 1/2 W, 5%</td>
</tr>
<tr>
<td>(R_{18})</td>
<td>"</td>
<td>2400 OHM, 1/2 W, 5%</td>
</tr>
</tbody>
</table>
- 231 -

\[R_{19} \quad " \quad 33 \text{ KOHM} \ 1/2 \ W, \ 5\% \]
\[R_{20} \quad " \quad 62 \text{ KOHM}, \ 1/2 \ W, \ 5\% \]
\[R_{21} \quad " \quad 12.2 \text{ KOHM} \ 1/2 \ W, \ 1\% \]
\[R_{22} \quad " \quad 5 \text{ KOHM}, \ 1/2 \ W, \ 1\% \]

CONDENSADORES

\[C_A \quad 0.005 \mu F, \ 1.4 \text{ KV DISCO} \]
\[C_B \quad 0.01 \mu F \ \text{DISCO} \]
\[C_1 \quad 0.1 \mu F \]
\[C_2 \quad 50 \mu F \ \text{ELECTROLITICO} \]
\[C_3 \quad 2000 \mu F \ \text{ELECTROLITICO} \]
\[C_4 \quad 50 \mu F \ \text{ELECTROLITICO} \]
\[C_5 \quad 10 \mu F \ \text{ELECTROLITICO} \]
\[C_6 \quad 100 \ \text{PF DISCO} \]
\[C_7 \quad 0.05 \mu F \ \text{DISCO} \]
\[C_8 \quad 50 \mu F \ \text{ELECTROLITICO} \]
\[C_9 \quad 10 \mu F \ \text{ELECTROLITICO} \]

DIODOS

\[D_1 \quad \text{IN 4002} \]
\[D_2 \quad \text{IN 4002} \]
\[D_3 \quad \text{IN 4002} \]
\[D_4 \quad \text{IN 4002} \]
\[D_5 \quad \text{IN 4002} \]
\[D_6 \quad \text{IN 4002} \]
- 232 -

D_7 IN 4002
$2D_1$ DO - 7 ZENER
$2D_2$ IN 716A ZENER
$2D_3$ PS 18775 ZENER

TRANSISTORES

Q_1 MJ 2841
Q_1 MPSA 20
Q_2 X 29A829
Q_3 MPSA 42
Q_4 MPSA 20
Q_5 MPSA 20
Q_6 X 29A829
Q_7 T1S 87
Q_8 T1S 87

TRANSFORMADOR T_1 : 220 Vac 38 Vac con punto medio
MEDIDOR : M_1
FUSIBLE F_1 : 1/2 AMP
REGULADOR DE 12 VDC a 5 VDC
D_2 DIOODO ZENER 5.6 V, 1 W.
RG_1 : 560 OHM 1/2 W, 10%
RG_2 : 1 KOHM 1/2 W, 10%
TRANSISTOR
BD 135
<table>
<thead>
<tr>
<th>Ref</th>
<th>Description</th>
<th>Mfr</th>
<th>Mfr Part No</th>
<th>WR Part No</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0209</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>33 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0801</td>
<td>2</td>
</tr>
<tr>
<td>C3A</td>
<td>33 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0801</td>
<td>3</td>
</tr>
<tr>
<td>C3B</td>
<td>33 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0801</td>
<td>4</td>
</tr>
<tr>
<td>C3C</td>
<td>27 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0751</td>
<td>5</td>
</tr>
<tr>
<td>C4</td>
<td>4700 pF ceramic</td>
<td></td>
<td></td>
<td>24.2104</td>
<td>6</td>
</tr>
<tr>
<td>C5</td>
<td>20 pF ceramic adj</td>
<td></td>
<td></td>
<td>29.0257</td>
<td>7</td>
</tr>
<tr>
<td>C6</td>
<td>4700 pF ceramic</td>
<td></td>
<td></td>
<td>24.2104</td>
<td>8</td>
</tr>
<tr>
<td>C7</td>
<td>20 pF ceramic adj</td>
<td></td>
<td></td>
<td>29.0257</td>
<td>9</td>
</tr>
<tr>
<td>C8</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0209</td>
<td>10</td>
</tr>
<tr>
<td>C9</td>
<td>33 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0801</td>
<td>11</td>
</tr>
<tr>
<td>C10</td>
<td>4700 pF ceramic</td>
<td></td>
<td></td>
<td>24.2104</td>
<td>12</td>
</tr>
<tr>
<td>C11</td>
<td>4700 pF ceramic</td>
<td></td>
<td></td>
<td>24.2104</td>
<td>13</td>
</tr>
<tr>
<td>C12</td>
<td>68 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0852</td>
<td>14</td>
</tr>
<tr>
<td>C13A</td>
<td>27 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0751</td>
<td>15</td>
</tr>
<tr>
<td>C13B</td>
<td>27 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0751</td>
<td>16</td>
</tr>
<tr>
<td>C13C</td>
<td>18 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0748</td>
<td>17</td>
</tr>
<tr>
<td>C14</td>
<td>3 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0203</td>
<td>18</td>
</tr>
<tr>
<td>C15</td>
<td>1000 pF ceramic</td>
<td></td>
<td></td>
<td>24.3171</td>
<td>19</td>
</tr>
<tr>
<td>C16A</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0209</td>
<td>20</td>
</tr>
<tr>
<td>C17</td>
<td>1 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0201</td>
<td>21</td>
</tr>
<tr>
<td>C18</td>
<td>5 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0205</td>
<td>22</td>
</tr>
<tr>
<td>C19</td>
<td>4700 pF ceramic</td>
<td></td>
<td></td>
<td>24.2104</td>
<td>23</td>
</tr>
<tr>
<td>C20</td>
<td>4.7 uF elect. 25V</td>
<td></td>
<td></td>
<td>27.0023</td>
<td>24</td>
</tr>
<tr>
<td>C21A</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0209</td>
<td>25</td>
</tr>
<tr>
<td>C22</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0254</td>
<td>26</td>
</tr>
<tr>
<td>C23</td>
<td>68 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0852</td>
<td>27</td>
</tr>
<tr>
<td>C24A</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0254</td>
<td>28</td>
</tr>
<tr>
<td>C24B</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0254</td>
<td>29</td>
</tr>
<tr>
<td>C25</td>
<td>0.01 uF ceramic</td>
<td></td>
<td></td>
<td>24.2152</td>
<td>30</td>
</tr>
<tr>
<td>C26</td>
<td>0.01 uF ceramic</td>
<td></td>
<td></td>
<td>24.2152</td>
<td>31</td>
</tr>
<tr>
<td>C27</td>
<td>68 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0852</td>
<td>32</td>
</tr>
<tr>
<td>C28</td>
<td>33 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0801</td>
<td>33</td>
</tr>
<tr>
<td>C29</td>
<td>1000 pF ceramic</td>
<td></td>
<td></td>
<td>24.3171</td>
<td>34</td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>C30A</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td>24.0209</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>C30B</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td>24.0209</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>C30C</td>
<td>8 pF ceramic</td>
<td></td>
<td>24.0208</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>C31</td>
<td>4700 pF ceramic</td>
<td></td>
<td>24.2104</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>C32</td>
<td>1 pF ceramic NPO</td>
<td></td>
<td>24.0201</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>C33</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td>24.0209</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>C34A</td>
<td>22 pF ceramic N150</td>
<td></td>
<td>24.0750</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>C34B</td>
<td>22 pF ceramic N150</td>
<td></td>
<td>24.0750</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>C34C</td>
<td>10 pF ceramic N150</td>
<td></td>
<td>24.0701</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>C35</td>
<td>1000 pF ceramic</td>
<td></td>
<td>24.3171</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>C36</td>
<td>4.7 µF elect. 25V</td>
<td></td>
<td>27.0023</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>C37</td>
<td>4700 pF ceramic</td>
<td></td>
<td>24.2104</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>C38A</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td>24.0254</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>C38B</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td>24.0254</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>C38C</td>
<td>12 pF ceramic NPO</td>
<td></td>
<td>24.0210</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>C39</td>
<td>1 pF ceramic NPO</td>
<td></td>
<td>24.0201</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>C40A</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td>24.0254</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>C40B</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td>24.0209</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>C40C</td>
<td>8 pF ceramic NPO</td>
<td></td>
<td>24.0208</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>C41</td>
<td>0.01 µF ceramic</td>
<td></td>
<td>24.2152</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>C42A</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td>24.0254</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>C42B</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td>24.0209</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>C42C</td>
<td>8 pF ceramic NPO</td>
<td></td>
<td>24.0208</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>C43</td>
<td>0.01 µF ceramic</td>
<td></td>
<td>24.2152</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>C44</td>
<td>10 µF elect. 16V</td>
<td></td>
<td>26.0028</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>C45</td>
<td>0.01 µF ceramic</td>
<td></td>
<td>24.2152</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>C46</td>
<td>18 pF ceramic NPO</td>
<td></td>
<td>24.0255</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>C47</td>
<td>20 pF ceramic adj</td>
<td></td>
<td>29.0257</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>C48</td>
<td>18 pF ceramic NPO</td>
<td></td>
<td>24.0255</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>C49</td>
<td>47 pF ceramic NPO</td>
<td></td>
<td>24.0303</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>C50</td>
<td>5 pF ceramic NPO</td>
<td></td>
<td>24.0205</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>C51</td>
<td>20 pF ceramic adj N750</td>
<td></td>
<td>29.0256</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>C52</td>
<td>6800 pF ceramic</td>
<td></td>
<td>24.2180</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>C53</td>
<td>1000 pF feedthrough.</td>
<td></td>
<td>28.0001</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>----------</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>C54</td>
<td>4.7 uF tant. 25V</td>
<td></td>
<td></td>
<td>26.0042</td>
<td>69</td>
</tr>
<tr>
<td>C55</td>
<td>100 uF elect. 16V</td>
<td></td>
<td></td>
<td>27.0014</td>
<td>70</td>
</tr>
<tr>
<td>C56</td>
<td>100 uF elect. 16V</td>
<td></td>
<td></td>
<td>27.0014</td>
<td>71</td>
</tr>
<tr>
<td>C57</td>
<td>0.01 uF ceramic</td>
<td></td>
<td></td>
<td>24.2016</td>
<td>72</td>
</tr>
<tr>
<td>C58A</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0209</td>
<td>73</td>
</tr>
<tr>
<td>C58B</td>
<td>5 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0205</td>
<td>74</td>
</tr>
<tr>
<td>C58C</td>
<td>5 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0205</td>
<td>75</td>
</tr>
<tr>
<td>C59</td>
<td>13 pF ceramic adj N470</td>
<td></td>
<td></td>
<td>29.0254</td>
<td>76</td>
</tr>
<tr>
<td>C60</td>
<td>1 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0201</td>
<td>77</td>
</tr>
<tr>
<td>C61</td>
<td>6 pF ceramic adj N33</td>
<td></td>
<td></td>
<td>29.0253</td>
<td>78</td>
</tr>
<tr>
<td>C62</td>
<td>1 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0201</td>
<td>79</td>
</tr>
<tr>
<td>C63</td>
<td>1 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0201</td>
<td>80</td>
</tr>
<tr>
<td>C64</td>
<td>6 pF ceramic adj N33</td>
<td></td>
<td></td>
<td>29.0253</td>
<td>81</td>
</tr>
<tr>
<td>C65</td>
<td>5 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0205</td>
<td>82</td>
</tr>
<tr>
<td>C66</td>
<td>5 pF ceramic adj N33</td>
<td></td>
<td></td>
<td>29.0253</td>
<td>83</td>
</tr>
<tr>
<td>C67</td>
<td>22 pF ceramic chip</td>
<td></td>
<td></td>
<td>24.2200</td>
<td>84</td>
</tr>
<tr>
<td>C68</td>
<td>22 pF ceramic chip</td>
<td></td>
<td></td>
<td>24.2200</td>
<td>85</td>
</tr>
<tr>
<td>C69</td>
<td>0.01 uF ceramic</td>
<td></td>
<td></td>
<td>24.2152</td>
<td>86</td>
</tr>
<tr>
<td>C70</td>
<td>4.7 uF tant. 25V</td>
<td></td>
<td></td>
<td>26.0042</td>
<td>87</td>
</tr>
<tr>
<td>C71</td>
<td>1000 pF feedthrough</td>
<td></td>
<td></td>
<td>28.0001</td>
<td>88</td>
</tr>
<tr>
<td>C72</td>
<td>12 pF ceramic NPO</td>
<td></td>
<td></td>
<td>29.0253</td>
<td>89</td>
</tr>
<tr>
<td>C73</td>
<td>12 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0210</td>
<td>90</td>
</tr>
<tr>
<td>C74</td>
<td>6 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0206</td>
<td>91</td>
</tr>
<tr>
<td>C75</td>
<td>4 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0204</td>
<td>92</td>
</tr>
<tr>
<td>C76</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0209</td>
<td>93</td>
</tr>
<tr>
<td>C77</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0209</td>
<td>94</td>
</tr>
<tr>
<td>C78</td>
<td>1000 pF ceramic</td>
<td></td>
<td></td>
<td>24.3171</td>
<td>95</td>
</tr>
<tr>
<td>C79</td>
<td>5 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.0205</td>
<td>96</td>
</tr>
<tr>
<td>C80</td>
<td>0.01 uF ceramic</td>
<td></td>
<td></td>
<td>24.2152</td>
<td>97</td>
</tr>
<tr>
<td>C81</td>
<td>0.01 uF ceramic</td>
<td>Kemet</td>
<td>C320C103M1R5CA</td>
<td>24.4044</td>
<td>98</td>
</tr>
<tr>
<td>C82</td>
<td>1.5 uF tant. 35V</td>
<td></td>
<td></td>
<td>26.1032</td>
<td>99</td>
</tr>
<tr>
<td>C83</td>
<td>100 pF ceramic</td>
<td>Kemet</td>
<td>C312C101M2G5CA</td>
<td>24.4040</td>
<td>100</td>
</tr>
<tr>
<td>C84</td>
<td>0.01 uF polyester</td>
<td>Phil</td>
<td>344ABA10K</td>
<td>24.4080</td>
<td>101</td>
</tr>
<tr>
<td>C85</td>
<td>4.7 uF tant. 25V</td>
<td></td>
<td></td>
<td>26.1021</td>
<td>102</td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>86</td>
<td>1.5 uF tant. 35V</td>
<td></td>
<td></td>
<td>26.1032</td>
<td>103</td>
</tr>
<tr>
<td>87</td>
<td>0.68 uF tant. 35V</td>
<td></td>
<td></td>
<td>26.1031</td>
<td>104</td>
</tr>
<tr>
<td>88</td>
<td>0.033 uF polyester</td>
<td></td>
<td></td>
<td>24.3313</td>
<td>05</td>
</tr>
<tr>
<td>89</td>
<td>0.047 uF polyester</td>
<td></td>
<td></td>
<td>24.3314</td>
<td>06</td>
</tr>
<tr>
<td>90</td>
<td>0.033 uF polyester</td>
<td></td>
<td></td>
<td>24.3313</td>
<td>07</td>
</tr>
<tr>
<td>91</td>
<td>0.033 uF polyester</td>
<td></td>
<td></td>
<td>24.3313</td>
<td>08</td>
</tr>
<tr>
<td>92</td>
<td>47 uF tant. 6.3V</td>
<td></td>
<td></td>
<td>26.0015</td>
<td>09</td>
</tr>
<tr>
<td>93</td>
<td>0.068 uF polyester</td>
<td></td>
<td></td>
<td>24.3315</td>
<td>11</td>
</tr>
<tr>
<td>94</td>
<td>4.7 uF elect. 25V</td>
<td></td>
<td></td>
<td>27.0023</td>
<td>111</td>
</tr>
<tr>
<td>95</td>
<td>0.47 uF tant. 35V</td>
<td></td>
<td></td>
<td>26.0049</td>
<td>12</td>
</tr>
<tr>
<td>96</td>
<td>2200 pF polyester</td>
<td></td>
<td></td>
<td>24.3302</td>
<td>13</td>
</tr>
<tr>
<td>97</td>
<td>0.022 uF ceramic</td>
<td>Kemet C330C273M1R5CA</td>
<td>24.4050</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>0.33 uF tant. 35V</td>
<td>Kemet T368A334M035AS</td>
<td>26.1029</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>0.33 uF ceramic</td>
<td>Kemet C330C334M5U1CA</td>
<td>24.4051</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.1 uF ceramic</td>
<td>Kemet C320C104M5R5CA</td>
<td>24.4045</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>1000 pF feedthrough</td>
<td></td>
<td></td>
<td>28.0001</td>
<td>118</td>
</tr>
<tr>
<td>102</td>
<td>1000 pF feedthrough</td>
<td></td>
<td></td>
<td>28.0001</td>
<td>119</td>
</tr>
<tr>
<td>103</td>
<td>0.1 uF ceramic</td>
<td>Kemet C320C104M5R5CA</td>
<td>24.4045</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0.33 uF ceramic</td>
<td>Kemet C330C334M5U1CA</td>
<td>24.4051</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>1000 pF feedthrough</td>
<td></td>
<td></td>
<td>28.0001</td>
<td>122</td>
</tr>
<tr>
<td>106</td>
<td>1000 pF</td>
<td></td>
<td></td>
<td>"</td>
<td>123</td>
</tr>
<tr>
<td>107</td>
<td>1000 pF</td>
<td></td>
<td></td>
<td>"</td>
<td>124</td>
</tr>
<tr>
<td>108</td>
<td>1000 pF</td>
<td></td>
<td></td>
<td>"</td>
<td>125</td>
</tr>
<tr>
<td>109</td>
<td>1000 pF</td>
<td></td>
<td></td>
<td>"</td>
<td>126</td>
</tr>
<tr>
<td>110</td>
<td>1000 pF</td>
<td></td>
<td></td>
<td>"</td>
<td>127</td>
</tr>
<tr>
<td>111</td>
<td>1000 pF</td>
<td></td>
<td></td>
<td>"</td>
<td>128</td>
</tr>
<tr>
<td>112</td>
<td>1000 pF</td>
<td></td>
<td></td>
<td>"</td>
<td>129</td>
</tr>
<tr>
<td>113</td>
<td>470 pF ceramic</td>
<td>Kemet C312C471M2R5CA</td>
<td>24.4042</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>470 pF ceramic</td>
<td>Kemet C312C471M2R5CA</td>
<td>24.4042</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>4700 pF ceramic</td>
<td>Gencor CKD09YE472M50</td>
<td>24.2104</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>3.3 pF ceramic</td>
<td></td>
<td></td>
<td>24.0203A</td>
<td>279</td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>CH1</td>
<td>5.6 mH molded</td>
<td></td>
<td>31.0436</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>CH2</td>
<td>5.6 mH molded</td>
<td></td>
<td>31.0436</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>CH3</td>
<td>680 uH molded</td>
<td></td>
<td>31.0485</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>CR1</td>
<td>Si</td>
<td></td>
<td>1S1008J</td>
<td>37.1650</td>
<td>135</td>
</tr>
<tr>
<td>CR2</td>
<td>Si</td>
<td></td>
<td>1S1008J</td>
<td>37.1650</td>
<td>136</td>
</tr>
<tr>
<td>CR3</td>
<td>Ge</td>
<td></td>
<td>1N60</td>
<td>37.0100</td>
<td>137</td>
</tr>
<tr>
<td>CR4</td>
<td>Ge</td>
<td></td>
<td>1N60</td>
<td>37.0100</td>
<td>138</td>
</tr>
<tr>
<td>CR5</td>
<td>Si</td>
<td></td>
<td>1S2689A</td>
<td>37.2000</td>
<td>139</td>
</tr>
<tr>
<td>CR6</td>
<td>Si</td>
<td></td>
<td>1S2689A</td>
<td>37.2000</td>
<td>140</td>
</tr>
<tr>
<td>CR7</td>
<td>Si</td>
<td></td>
<td>1S2873</td>
<td>37.1900</td>
<td>141</td>
</tr>
<tr>
<td>CR8</td>
<td>Si</td>
<td></td>
<td>1S2473</td>
<td>37.1900</td>
<td>142</td>
</tr>
<tr>
<td>CR9</td>
<td>LED, orange</td>
<td>GI</td>
<td>MY5153</td>
<td>58.0022</td>
<td>143</td>
</tr>
<tr>
<td>CR10</td>
<td>Diode Si</td>
<td></td>
<td>1S2473</td>
<td>37.1900</td>
<td></td>
</tr>
<tr>
<td>CR11</td>
<td>Diode Si</td>
<td></td>
<td>37.0600</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>coaxial UHF panel</td>
<td>Amph</td>
<td>50-229</td>
<td>33.1502</td>
<td>145</td>
</tr>
<tr>
<td>J2</td>
<td>14-pin, panel</td>
<td>Amph</td>
<td>57-20140</td>
<td>33.1560</td>
<td></td>
</tr>
<tr>
<td>J3</td>
<td>4-pin, panel</td>
<td></td>
<td>33.0300</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>coil, adj</td>
<td></td>
<td>31.0725</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>"</td>
<td></td>
<td>31.0725</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>"</td>
<td></td>
<td>31.0726</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>"</td>
<td></td>
<td>31.0722</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>"</td>
<td></td>
<td>31.0700</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td>"</td>
<td></td>
<td>31.0701</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>L7</td>
<td>"</td>
<td></td>
<td>31.0702</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>L8</td>
<td>coil, adj</td>
<td></td>
<td>31.0703</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>L9</td>
<td></td>
<td></td>
<td>31.0704</td>
<td></td>
<td>155</td>
</tr>
<tr>
<td>L10</td>
<td></td>
<td></td>
<td>31.0705</td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>L11</td>
<td></td>
<td></td>
<td>31.0706</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>L12</td>
<td>coil, wound over R29</td>
<td></td>
<td>31.0707</td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>L13</td>
<td>coil, air</td>
<td></td>
<td>31.0708</td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>L14</td>
<td>coil, wound over R32</td>
<td></td>
<td>31.0730</td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>L15</td>
<td>coil, air</td>
<td></td>
<td>31.0709</td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>L16</td>
<td>coil, air</td>
<td></td>
<td>31.0720</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>L17</td>
<td>90 mH molded</td>
<td></td>
<td>31.0401</td>
<td></td>
<td>163</td>
</tr>
<tr>
<td>L18</td>
<td>90 mH molded</td>
<td></td>
<td>31.0401</td>
<td></td>
<td>164</td>
</tr>
<tr>
<td>L19</td>
<td>coil, air</td>
<td></td>
<td>31.0710</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>L20</td>
<td>coil, air</td>
<td></td>
<td>31.0711</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td>L21</td>
<td>ferrite bead</td>
<td>Phil</td>
<td>5695065/3B</td>
<td>31.1060</td>
<td>167</td>
</tr>
<tr>
<td>L22</td>
<td>coil, straight wire</td>
<td></td>
<td>31.0728</td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>L23</td>
<td>coil, straight wire 22AWG</td>
<td></td>
<td>31.0916</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>L24</td>
<td>coil, air</td>
<td></td>
<td>31.0716</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>L25</td>
<td>coil, air</td>
<td></td>
<td>31.0717</td>
<td></td>
<td>171</td>
</tr>
<tr>
<td>L26</td>
<td>coil, air</td>
<td></td>
<td>31.0723</td>
<td></td>
<td>172</td>
</tr>
<tr>
<td>L27</td>
<td>coil, air</td>
<td></td>
<td>31.0724</td>
<td></td>
<td>173</td>
</tr>
<tr>
<td>L28</td>
<td>coil, air</td>
<td></td>
<td>31.0721</td>
<td></td>
<td>174</td>
</tr>
<tr>
<td>L29</td>
<td>coil, air 0.187"ID 1T 22AWG</td>
<td></td>
<td>31.0915</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>15-pin, chassis</td>
<td>Ampp</td>
<td>133-051-21</td>
<td>33.1100</td>
<td>175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ref</th>
<th>Description</th>
<th>Mfr</th>
<th>Mfr Part No</th>
<th>WR Part No</th>
<th>Qty</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>NPN</td>
<td></td>
<td>2SC920</td>
<td>64.0940</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>NPN</td>
<td></td>
<td>2SC920</td>
<td>64.0940</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>O3</td>
<td>NPN</td>
<td></td>
<td>2SC460</td>
<td>64.0683</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>O4</td>
<td>NPN</td>
<td></td>
<td>2SC1906</td>
<td>64.1500</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>O5</td>
<td>NPN</td>
<td></td>
<td>2SC1906</td>
<td>64.1500</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Q6</td>
<td>NPN</td>
<td></td>
<td>2SC1906</td>
<td>64.1500</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>NPN HF</td>
<td></td>
<td>2SC998</td>
<td>64.0984</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>Q8</td>
<td>NPN HF</td>
<td></td>
<td>2SC2131</td>
<td>64.1679</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Q9</td>
<td>NPN HF power</td>
<td></td>
<td>2SC284</td>
<td>64.1700</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Q10</td>
<td>NPN</td>
<td></td>
<td>2SC945</td>
<td>64.0960</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Q11</td>
<td>NPN</td>
<td></td>
<td>2SC945</td>
<td>64.0960</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Q12</td>
<td>PNP</td>
<td></td>
<td>2N3906</td>
<td>64.0122</td>
<td>187</td>
<td></td>
</tr>
</tbody>
</table>

R1	8.2K ¥W 5% tol.	Rohm	R25J	55.2822	188
R2	3.3K				
R3	15K				
R4	820				
R5	8.2K				
R6	3.3K				
R7	15K				
R8	1K ¥W 10% tol.	IRC	GBT 1/4	55.5102	189
R9	6.8K ¥W 5% tol.	Rohm	R25J	55.2683	190
R10	3.3K ¥W 5% tol.	Rohm	R25J	55.2332	191
R11	1K ¥W 10% tol.	IRC	GBT 1/4	55.5102	192
R12	3.3K ¥W 5% tol.	Rohm	R25J	55.2332	193
R13	4.7K ¥W 5% tol.	Rohm	R25J	55.2472	194
R14	33 K				
R15	150				
R16	47				
R17	47K				
R18	2.2K				
R19	150				
R20	33K				
R21	47				
R22	10K ¥W 10% tol.	IRC	GBT 1/4	55.5103	195
R23	680 ¥W 5% tol.	Rohm	R25J	55.2681	196

Table Notes:

- ¥W: ±
- Qty: Quantity
- WR Part No: Working Reference Part Number
<table>
<thead>
<tr>
<th>Ref</th>
<th>Description</th>
<th>Mfr</th>
<th>Mfr Part No</th>
<th>WR Part No</th>
<th>Qty</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>R24</td>
<td>22 1/2W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td>55.2220</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>R25</td>
<td>47</td>
<td>"</td>
<td>"</td>
<td>55.2470</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>R26</td>
<td>120</td>
<td>"</td>
<td>"</td>
<td>55.2121</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>R27</td>
<td>1K 1/2W 10% tol.</td>
<td>"</td>
<td>"</td>
<td>55.2102</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>R28</td>
<td>0.5 1/2W 5% tol.</td>
<td>"</td>
<td>"</td>
<td>55.6508</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>R29</td>
<td>220 1/2W 10% tol.</td>
<td>"</td>
<td>with L12</td>
<td>31.0707</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>R30</td>
<td>100 1/2W 10% tol.</td>
<td>IRC</td>
<td>GBT 1/4</td>
<td>55.5101</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>R31</td>
<td>220 1W 5% tol.</td>
<td>"</td>
<td>"</td>
<td>57.0008</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>R32</td>
<td>10 1/2W 10% tol.</td>
<td>IRC</td>
<td>GBT 1/4</td>
<td>55.5331</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>R33</td>
<td>330 1/2W 10% tol.</td>
<td>IRC</td>
<td>GBT 1/4</td>
<td>55.5323</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>R34</td>
<td>0.5 1/2W 5% tol.</td>
<td>"</td>
<td>"</td>
<td>55.5508</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>R35</td>
<td>4.7 1/2W 5% tol.</td>
<td>"</td>
<td>"</td>
<td>55.5429</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>R36</td>
<td>0.1 1W 10% tol.</td>
<td>"</td>
<td>"</td>
<td>57.0001</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>R37</td>
<td>22K 1/2W 10% tol.</td>
<td>IRC</td>
<td>GBT 1/4</td>
<td>55.5223</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>R38</td>
<td>560 1/2W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td>55.2561</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>R39</td>
<td>3.3K</td>
<td>"</td>
<td>"</td>
<td>55.2332</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>R40</td>
<td>220K</td>
<td>"</td>
<td>"</td>
<td>55.2224</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>R41</td>
<td>43K</td>
<td>"</td>
<td>"</td>
<td>55.2433</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>R42</td>
<td>39K</td>
<td>"</td>
<td>"</td>
<td>55.2393</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>R43</td>
<td>3.9K</td>
<td>"</td>
<td>"</td>
<td>55.2392</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>R44</td>
<td>68K</td>
<td>"</td>
<td>"</td>
<td>55.2683</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>R45</td>
<td>22K</td>
<td>"</td>
<td>"</td>
<td>55.2723</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>R46</td>
<td>1K</td>
<td>"</td>
<td>"</td>
<td>55.2102</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>R47</td>
<td>100</td>
<td>"</td>
<td>"</td>
<td>55.2101</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>R48</td>
<td>150</td>
<td>"</td>
<td>"</td>
<td>55.2151</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>R49</td>
<td>15K</td>
<td>"</td>
<td>"</td>
<td>55.2153</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>R50</td>
<td>10K</td>
<td>"</td>
<td>"</td>
<td>55.2103</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>R51</td>
<td>100</td>
<td>"</td>
<td>"</td>
<td>55.2101</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>R52</td>
<td>10K</td>
<td>"</td>
<td>"</td>
<td>55.2103</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>R53</td>
<td>33K</td>
<td>"</td>
<td>"</td>
<td>55.2333</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>R54</td>
<td>4.7K pot.</td>
<td>"</td>
<td>"</td>
<td>54.0150</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>R55</td>
<td>4.7K 1/2W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td>55.2472</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>R56</td>
<td>33K</td>
<td>"</td>
<td>"</td>
<td>55.2333</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>R57</td>
<td>10K</td>
<td>"</td>
<td>"</td>
<td>55.2103</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
<td>Item</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>R58</td>
<td>4.7K 1/2W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td>55.2472</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>R59</td>
<td>1K</td>
<td>"</td>
<td>"</td>
<td>55.2102</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>R60</td>
<td>1K</td>
<td>"</td>
<td>"</td>
<td>55.2102</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>R61</td>
<td>5K panel control</td>
<td>Clar.388L 5K</td>
<td>"</td>
<td>54.5700</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>R62</td>
<td>2.2K 1/2W 2% tol.</td>
<td>IRC</td>
<td>RG07</td>
<td>56.0018</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>R63</td>
<td>5.1K 1/2W 2% tol.</td>
<td>IRC</td>
<td>RG07</td>
<td>56.0004</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>R64</td>
<td>300 1/2W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td>55.2301</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>R65</td>
<td>5.1K 1/2W 2% tol.</td>
<td>IRC</td>
<td>RG07</td>
<td>56.0003</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>R66</td>
<td>4.7K 1/2W 2% tol.</td>
<td>IRC</td>
<td>RG07</td>
<td>56.0003</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>R67</td>
<td>3.3K 1/2W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td>55.2332</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>R68</td>
<td>10K 1/2W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td>55.2103</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>RT1</td>
<td>2.2K posistor</td>
<td>Mur.</td>
<td>PTH60-222M</td>
<td>69.0002</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>RT2</td>
<td>2.2K posistor</td>
<td>Mur.</td>
<td>PTH60-222M</td>
<td>69.0002</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>RT3</td>
<td>2.2K posistor</td>
<td>Mur.</td>
<td>PTH60-222M</td>
<td>69.0002</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>toggle, panel ON-ON-ON</td>
<td>JBT</td>
<td>JMT-232</td>
<td>61.0802</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>TP1-3</td>
<td></td>
<td></td>
<td></td>
<td>33.0600</td>
<td>9</td>
<td>258</td>
</tr>
<tr>
<td>U1</td>
<td>4-term. reg.</td>
<td>Fair</td>
<td>UA78GU1C</td>
<td>41.2701</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>4-term. reg.</td>
<td>Fair</td>
<td>UA78GXC</td>
<td>41.2700</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>op. amp.</td>
<td>Mot.</td>
<td>MC1458CP1</td>
<td>41.1403</td>
<td>261</td>
<td></td>
</tr>
</tbody>
</table>

The table lists various electronic components with their manufacturers, part numbers, and quantities.
<table>
<thead>
<tr>
<th>Description</th>
<th>Mfr</th>
<th>Mfr Part No</th>
<th>WR Part No</th>
<th>Qty</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>sockets for Y1, Y2</td>
<td></td>
<td>33.0650</td>
<td>2</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>module chassis</td>
<td></td>
<td>23.1020</td>
<td>263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>front panel</td>
<td></td>
<td>23.1037</td>
<td>264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>left cover plate</td>
<td></td>
<td>23.1022</td>
<td>265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>right cover plate</td>
<td></td>
<td>23.1021</td>
<td>266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mtg. bracket 0.265"</td>
<td></td>
<td>23.1025</td>
<td>267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>heat sink 9"</td>
<td></td>
<td>23.2153</td>
<td>268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>front Tatch</td>
<td>South 49-10-101-10</td>
<td>40.1004</td>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.P.F. Case</td>
<td></td>
<td>23.0105</td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.P.F. cover</td>
<td></td>
<td>23.0106</td>
<td>271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exciter filter case</td>
<td></td>
<td>23.0107</td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>heat sink T-extrusion</td>
<td></td>
<td>23.0108</td>
<td>273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.C. board exciter</td>
<td></td>
<td>51.0027</td>
<td>274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.C. board P.A.</td>
<td></td>
<td>51.0028</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.C. board reg.</td>
<td></td>
<td>51.1278</td>
<td>276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.C. board reg. A.F.</td>
<td></td>
<td>51.1289</td>
<td>277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Oty</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>1 pF ceramic adj</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 pF ceramic adj</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1000 pF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4700 pF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1 pF ceramic adj</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1000 pF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1000 pF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.01 uF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.5 pF ceramic NPO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.1 pF ceramic adj</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.5 uF ceramic NPO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4 uF ceramic NPO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1000 pF feedthrough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.01 uF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.001 uF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>47 pF ceramic N220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.01 uF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>47 pF ceramic N150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.01 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.01 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>47 pF ceramic N140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.01 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.01 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.01 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.01 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.01 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4 pF ceramic N150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.01 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.01 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0.01 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0.01 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>5</td>
<td>0.01 µF polyester</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.0701</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.01 µF polyester</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.01 µF polyester</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.01 µF polyester</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.01 µF polyester</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.01 µF polyester</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.01 µF polyester</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>300 pF polystyrene</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>300 pF polystyrene</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.0022 µF polyester</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.01 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>20 pF ceramic variable N800</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>33 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.01 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>20 pF ceramic variable N800</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>33 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.01 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>27 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.01 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>47 pF ceramic N150</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>0.0047 µF ceramic</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>22 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>10 pF ceramic NPO</td>
<td></td>
<td></td>
<td>24.3311</td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty Item</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>65C</td>
<td>66F ceramic NPO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66A</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66B</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66C</td>
<td>18 pF ceramic NPO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>0.0047 uF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>0.0047 uF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>1 pF ceramic NPO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>6 pF ceramic adj N33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>10 uF elect.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>0.001 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>0.33 uF tant. 35 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>0.022 uF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>10uF elect. 16 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>1000 pF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1uF tant. 25 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>0.0015 uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>8.20 pF polystyrene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.0015uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>1 uF tant. 25 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>15 pF ceramic NPO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>0.00uF polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>100 pF ceramic N470</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>0.001 uF ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>3.3 uF tant. 10 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>0.1 uF tant. 35 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>3.3 uF tant. 10 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>10 uF elect. 16 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>10 uF elect. 16 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>10 uF elect. 16 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>100 uF elect. 10 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>47 uF elect. 10 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>47 uF elect. 10 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.01 ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>0.47 uF tant. 35 v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty Item</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>CH1</td>
<td>2 uH molded</td>
<td></td>
<td></td>
<td>31.0432</td>
<td></td>
</tr>
<tr>
<td>CH2</td>
<td>2 uH molded</td>
<td></td>
<td></td>
<td>31.0432</td>
<td></td>
</tr>
<tr>
<td>CH3</td>
<td>10 uH</td>
<td></td>
<td></td>
<td>31.0435</td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>10 uH</td>
<td></td>
<td></td>
<td>31.0435</td>
<td></td>
</tr>
<tr>
<td>CH5</td>
<td>10 uH</td>
<td></td>
<td></td>
<td>31.0435</td>
<td></td>
</tr>
<tr>
<td>CH6</td>
<td>10 uH</td>
<td></td>
<td></td>
<td>31.0435</td>
<td></td>
</tr>
<tr>
<td>CH7</td>
<td>air core</td>
<td></td>
<td></td>
<td>31.0473</td>
<td></td>
</tr>
<tr>
<td>CH8</td>
<td>air core</td>
<td></td>
<td></td>
<td>31.0473</td>
<td></td>
</tr>
<tr>
<td>CH9</td>
<td>10 uH molded</td>
<td></td>
<td></td>
<td>31.0435</td>
<td></td>
</tr>
<tr>
<td>CH10</td>
<td>12 mH molded P.C.</td>
<td></td>
<td>31.2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH11</td>
<td>12 mH molded P.C.</td>
<td></td>
<td>31.2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH12</td>
<td>680 uH molded</td>
<td></td>
<td></td>
<td>31.0485</td>
<td></td>
</tr>
<tr>
<td>CH13</td>
<td>2 uH molded</td>
<td></td>
<td></td>
<td>31.0432</td>
<td></td>
</tr>
<tr>
<td>CH14</td>
<td>220 uH</td>
<td>Del.</td>
<td>1025-76</td>
<td>31.1009</td>
<td></td>
</tr>
<tr>
<td>CH15</td>
<td>220 uH</td>
<td>Del.</td>
<td>1025-76</td>
<td>31.1009</td>
<td></td>
</tr>
<tr>
<td>CR1</td>
<td>Si</td>
<td>IS1588</td>
<td>37.1733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR2</td>
<td>Si</td>
<td>IS1588</td>
<td>37.1733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR3</td>
<td>Ge</td>
<td>LN60</td>
<td>37.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR4</td>
<td>Ge</td>
<td>LN60</td>
<td>37.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR5</td>
<td>Ge</td>
<td>LN60</td>
<td>37.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR6</td>
<td>Si</td>
<td>IS1008J</td>
<td>37.1650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR7</td>
<td>Si</td>
<td>IS1008J</td>
<td>37.1650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR8</td>
<td>Si</td>
<td>IS2473</td>
<td>37.1900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR9</td>
<td>Ge</td>
<td>LN60</td>
<td>37.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR10</td>
<td>Ge</td>
<td>LN60</td>
<td>37.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR11</td>
<td>Si</td>
<td>IS2473</td>
<td>37.1900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR12</td>
<td>Si</td>
<td>IS2473</td>
<td>37.1900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR13</td>
<td>Si</td>
<td>IS2473</td>
<td>37.1900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR14</td>
<td>Si</td>
<td>IS2473</td>
<td>37.1900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR15</td>
<td>Si</td>
<td>IS2473</td>
<td>37.1900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WRPart No</td>
<td>Qty</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>FL1</td>
<td>Crystal filter</td>
<td></td>
<td></td>
<td></td>
<td>38.0065</td>
</tr>
<tr>
<td>FL2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.0065</td>
</tr>
<tr>
<td>FL3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.0065</td>
</tr>
<tr>
<td>FL4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.0065</td>
</tr>
<tr>
<td>FL5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.0062</td>
</tr>
<tr>
<td>J1</td>
<td>Coaxial UHF panel</td>
<td>Amp</td>
<td>SO-239</td>
<td></td>
<td>33.1502</td>
</tr>
<tr>
<td>J2</td>
<td>14-pin, panel</td>
<td>Amp</td>
<td>57-20140</td>
<td></td>
<td>33.1560</td>
</tr>
<tr>
<td>L1A</td>
<td>helical res. s.p.</td>
<td></td>
<td></td>
<td></td>
<td>31.0733</td>
</tr>
<tr>
<td>L1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0733</td>
</tr>
<tr>
<td>L1C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0734</td>
</tr>
<tr>
<td>L2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0735</td>
</tr>
<tr>
<td>L2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0735</td>
</tr>
<tr>
<td>L2C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0726</td>
</tr>
<tr>
<td>L3</td>
<td>Part of R3</td>
<td></td>
<td></td>
<td></td>
<td>31.0739</td>
</tr>
<tr>
<td>L4A</td>
<td>helical res. s.p.</td>
<td></td>
<td></td>
<td></td>
<td>31.0737</td>
</tr>
<tr>
<td>L4B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0737</td>
</tr>
<tr>
<td>L4C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0738</td>
</tr>
<tr>
<td>L5A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0740</td>
</tr>
<tr>
<td>L5B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0740</td>
</tr>
<tr>
<td>L5C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0741</td>
</tr>
<tr>
<td>L6A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0742</td>
</tr>
<tr>
<td>L6B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0742</td>
</tr>
<tr>
<td>L6C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0743</td>
</tr>
<tr>
<td>L7</td>
<td>Coil, air</td>
<td></td>
<td></td>
<td></td>
<td>31.0744</td>
</tr>
<tr>
<td>L8</td>
<td>10.7 MHz coil, adj</td>
<td></td>
<td></td>
<td></td>
<td>31.0745</td>
</tr>
<tr>
<td>L9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0081</td>
</tr>
<tr>
<td>L10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0081</td>
</tr>
<tr>
<td>L11</td>
<td>10.7 MHz disc, pri.</td>
<td></td>
<td></td>
<td></td>
<td>31.0110</td>
</tr>
<tr>
<td>L12</td>
<td>10.7 MHz disc, sec.</td>
<td></td>
<td></td>
<td></td>
<td>31.0111</td>
</tr>
<tr>
<td>L13</td>
<td>coil, adj</td>
<td></td>
<td></td>
<td></td>
<td>31.0748</td>
</tr>
<tr>
<td>L14</td>
<td>coil, adj</td>
<td></td>
<td></td>
<td></td>
<td>31.0748</td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty Item</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>L15</td>
<td>coil, adj</td>
<td></td>
<td></td>
<td></td>
<td>31.0187</td>
</tr>
<tr>
<td>L16</td>
<td>coil, adj</td>
<td></td>
<td></td>
<td></td>
<td>31.0766</td>
</tr>
<tr>
<td>L17</td>
<td>coil, air</td>
<td></td>
<td></td>
<td></td>
<td>31.0747</td>
</tr>
<tr>
<td>P1</td>
<td>15-pin, chassis</td>
<td></td>
<td>Amph 133-015-21</td>
<td>33.1100</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>NPN HF</td>
<td>2SC1988</td>
<td>64.1550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>NPN HF</td>
<td>2SC2026</td>
<td>64.1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>N-chan MOSFET</td>
<td>3SK40</td>
<td>64.3201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>NPN</td>
<td>2SC839</td>
<td>64.0906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>NPN</td>
<td>2SC839</td>
<td>64.0906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q6</td>
<td>NPN</td>
<td>2SC839</td>
<td>64.0906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>NPN</td>
<td>2SC839</td>
<td>64.0906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q8</td>
<td>NPN HF</td>
<td>2SC1906</td>
<td>64.1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9</td>
<td>NPN HF</td>
<td>2SC1906</td>
<td>64.1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q10</td>
<td>NPN LN</td>
<td>2SC945 (L)</td>
<td>64.0960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q11</td>
<td>NPN</td>
<td>2SC945</td>
<td>64.0960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q12</td>
<td>NPN</td>
<td>2N3904</td>
<td>64.0120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q13</td>
<td>NPN</td>
<td>2N3904</td>
<td>64.0120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q14</td>
<td>PNP</td>
<td>2N3906</td>
<td>64.0122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q15</td>
<td>NPN LN</td>
<td>2SC945 (L)</td>
<td>64.0960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>100K 1/4 5% tol.</td>
<td>Rohm R25J</td>
<td>55.2104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>1.2K 1/4 5% tol.</td>
<td>Rohm R25J</td>
<td>55.2122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>39 1/4 5% tol.</td>
<td>IRC GBT 1/4</td>
<td>55.5390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>22K 1/4 5% tol.</td>
<td>Rohm R25J</td>
<td>55.2223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>10K "</td>
<td>"</td>
<td>55.2103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>1K "</td>
<td>"</td>
<td>55.2102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>2.2K "</td>
<td>"</td>
<td>55.2222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty Item</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>4.7K 1/8W 5% tol. comp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.2K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10K 1/8W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.8K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.3K 1/8W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.7K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6.8K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.8K 1/8W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6.8K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>10K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.5K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3.3K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.5K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.5K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3.3K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>15K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>820</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>R42</td>
<td>3.3K 1/2W 5% tol.</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R43</td>
<td>1K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R44</td>
<td>10</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R45</td>
<td>4.7K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R46</td>
<td>4.7K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R47</td>
<td>330</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R48</td>
<td>27K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R49</td>
<td>3.3K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R50</td>
<td>33K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R51</td>
<td>330</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R52</td>
<td>10K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R53</td>
<td>4.7K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R54</td>
<td>470K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R55</td>
<td>24K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R56</td>
<td>33K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R57</td>
<td>27K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R58</td>
<td>82K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R59</td>
<td>22K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R60</td>
<td>15K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R61</td>
<td>3.3K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R62</td>
<td>4.7K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R63</td>
<td>1K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R64</td>
<td>56K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R65</td>
<td>15K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R66</td>
<td>5K panel control</td>
<td>Clar</td>
<td>388L 5K</td>
<td>54.5200</td>
<td></td>
</tr>
<tr>
<td>R67</td>
<td>330K 1/2W 5% tol.</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R68</td>
<td>15K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R69</td>
<td>22K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R70</td>
<td>100K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R71</td>
<td>1K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R72</td>
<td>220</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R73</td>
<td>100K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R74</td>
<td>22K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>R75</td>
<td>22K</td>
<td>Rohm</td>
<td></td>
<td>55.2332</td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>R76</td>
<td>33K 1/8W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td>55.2333</td>
<td></td>
</tr>
<tr>
<td>R77</td>
<td>82K</td>
<td></td>
<td></td>
<td>55.2823</td>
<td></td>
</tr>
<tr>
<td>R78</td>
<td>12K</td>
<td></td>
<td></td>
<td>55.2123</td>
<td></td>
</tr>
<tr>
<td>R79</td>
<td>4.7K</td>
<td></td>
<td></td>
<td>55.27472</td>
<td></td>
</tr>
<tr>
<td>R80</td>
<td>1K</td>
<td></td>
<td></td>
<td>55.2102</td>
<td></td>
</tr>
<tr>
<td>R81</td>
<td>33K</td>
<td></td>
<td></td>
<td>55.2333</td>
<td></td>
</tr>
<tr>
<td>R82</td>
<td>470</td>
<td></td>
<td></td>
<td>55.2471</td>
<td></td>
</tr>
<tr>
<td>R83</td>
<td>5K panel control</td>
<td>Clar.</td>
<td>388L-5K</td>
<td>54.5700</td>
<td></td>
</tr>
<tr>
<td>R84</td>
<td>100K 1/8W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td>55.2104</td>
<td></td>
</tr>
<tr>
<td>R85</td>
<td>330K</td>
<td></td>
<td></td>
<td>55.2334</td>
<td></td>
</tr>
<tr>
<td>R86</td>
<td>68</td>
<td></td>
<td></td>
<td>55.2680</td>
<td></td>
</tr>
<tr>
<td>R87</td>
<td>5.6K</td>
<td></td>
<td></td>
<td>55.2562</td>
<td></td>
</tr>
<tr>
<td>R88</td>
<td>4.7 1W 10% tol.</td>
<td>Phil.</td>
<td>CR25</td>
<td>55.4497</td>
<td></td>
</tr>
<tr>
<td>R89</td>
<td>30K 1/4W 5% tol.</td>
<td>Rohm</td>
<td>R25J</td>
<td>55.2303</td>
<td></td>
</tr>
<tr>
<td>R90</td>
<td>1 M</td>
<td></td>
<td></td>
<td>55.2105</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>1.5K posistor</td>
<td>Mur.</td>
<td>PTH60T-152</td>
<td>69.0004</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>1.5K posistor</td>
<td>Mur.</td>
<td>PTH60T-152</td>
<td>69.0004</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>Toggle, panel ON-ON-ON</td>
<td>JBT</td>
<td>JMT-232</td>
<td>61.0802</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>Toggle, panel SWDT</td>
<td>JBT</td>
<td>JMT-123</td>
<td>61.0800</td>
<td></td>
</tr>
<tr>
<td>TP1-7</td>
<td>Test point terminal</td>
<td></td>
<td></td>
<td>33.0600</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>I.F. Amp</td>
<td>uPC577H</td>
<td></td>
<td>41.2922</td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>I.F. Amp</td>
<td>uPC577H</td>
<td></td>
<td>41.2922</td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>Amp.</td>
<td>TA7120P</td>
<td></td>
<td>41.2510</td>
<td></td>
</tr>
<tr>
<td>U4</td>
<td>Amp.</td>
<td>BA333</td>
<td></td>
<td>41.0030</td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>U5</td>
<td>Co. Imp.</td>
<td></td>
<td>MG1456CP1</td>
<td>41.1403</td>
<td></td>
</tr>
<tr>
<td>U6</td>
<td>A.F. P.A.</td>
<td></td>
<td>BAS42</td>
<td>41.0036</td>
<td></td>
</tr>
<tr>
<td>U7</td>
<td>8v Reg.</td>
<td></td>
<td>MC7908CT</td>
<td>41.1693</td>
<td></td>
</tr>
<tr>
<td>U8</td>
<td>Opto. Coupler</td>
<td></td>
<td>TLF 508</td>
<td>58.0055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Socket for YL, Y2</td>
<td></td>
<td></td>
<td>33.0650</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>module chassis</td>
<td></td>
<td></td>
<td>23.1040</td>
<td></td>
</tr>
<tr>
<td></td>
<td>front panel</td>
<td></td>
<td></td>
<td>23.1038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>left cover plate</td>
<td></td>
<td></td>
<td>23.1042</td>
<td></td>
</tr>
<tr>
<td></td>
<td>right cover plate</td>
<td></td>
<td></td>
<td>23.1041</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mfg. bracket 2.8"</td>
<td></td>
<td></td>
<td>23.1046</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mfg. bracket 0.28"</td>
<td></td>
<td></td>
<td>23.1024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>req. heat sink</td>
<td></td>
<td></td>
<td>23.1043</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AF PA heat sink</td>
<td></td>
<td></td>
<td>23.0800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AF PA adapter</td>
<td></td>
<td></td>
<td>23.0801</td>
<td></td>
</tr>
<tr>
<td></td>
<td>front latch</td>
<td></td>
<td></td>
<td>49-10-103-10</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td></td>
<td></td>
<td>40.10.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If cover top</td>
<td></td>
<td></td>
<td>23.0803</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If cover bottom</td>
<td></td>
<td></td>
<td>23.0804</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HF cover top</td>
<td></td>
<td></td>
<td>23.0103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HF cover bottom</td>
<td></td>
<td></td>
<td>23.0104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.C.board IF</td>
<td></td>
<td></td>
<td>51.0004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.C. board BX main</td>
<td></td>
<td></td>
<td>51.0026A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.C. board 'Reg.'</td>
<td></td>
<td></td>
<td>51.1294</td>
<td></td>
</tr>
</tbody>
</table>
2.8 COMPONENTES DEL CIRCUITO CONTROLADOR MULTILINEA, MARCA WR COMMUNICATIONS

<table>
<thead>
<tr>
<th>Ref</th>
<th>Description</th>
<th>Mfr</th>
<th>Mfr Part No</th>
<th>WR Part No</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cap. cerm. X7R 0.1uF 50V</td>
<td>Kemet</td>
<td>C320C104M5R5CA</td>
<td>24.4045</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Cap. cerm. X7R 470pF 20%</td>
<td>Kemet</td>
<td>C312C471M2R5CA</td>
<td>24.4042</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Cap. cerm. X7R 470pF 20%</td>
<td>Kemet</td>
<td>C312C471M2R5CA</td>
<td>24.4042</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Cap. tant. 10uF 25VDC</td>
<td>Hitachi</td>
<td>TD100M25</td>
<td>26.1023</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Cap. cerm. X7R 0.1uF 50V</td>
<td>Kemet</td>
<td>C320C104M5R5CA</td>
<td>24.4045</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Cap. cerm. X7R 0.1uF 50V</td>
<td>Kemet</td>
<td>C320C104M5R5CA</td>
<td>24.4045</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Cap. cerm. X7R 0.1uF 50V</td>
<td>Kemet</td>
<td>C320C104M5R5CA</td>
<td>24.4045</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Cap. cerm. 25U 0.33uf 50V</td>
<td>Kemet</td>
<td>C330C334M5U1CA</td>
<td>24.4051</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Cap. cerm. X7R 0.1uF 50V</td>
<td>Kemet</td>
<td>C320C104M5R5CA</td>
<td>24.4045</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Cap. tant. 1.5uF 35VDC</td>
<td>Hitachi</td>
<td>TD155M35</td>
<td>26.1032</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Cap. cerm. X7R 0.1uF 50V</td>
<td>Kemet</td>
<td>C320C104M5R5CA</td>
<td>24.4045</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Cap. cerm. X7R 0.1uF 50V</td>
<td>Kemet</td>
<td>C320C104M5R5CA</td>
<td>24.4045</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Cap. tant. 0.68uF 35VDC</td>
<td>Elna</td>
<td>35SC-68</td>
<td>26.1031</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Cap. cerm. X7R 0.1uF 50V</td>
<td>Kemet</td>
<td>C320C104M5R5CA</td>
<td>24.4045</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>R1-CR6 Diode si 75PIV 4ns</td>
<td>FSC</td>
<td>1N4148</td>
<td>37.0600</td>
<td>1</td>
</tr>
<tr>
<td>Q1</td>
<td>Transistor lo. pwr. si NPN</td>
<td>FSC</td>
<td>2N3904</td>
<td>64.0120</td>
<td>1</td>
</tr>
<tr>
<td>Q2</td>
<td>Transistor lo. pwr. si NPN</td>
<td>FSC</td>
<td>2N3904</td>
<td>64.0120</td>
<td>1</td>
</tr>
<tr>
<td>R1</td>
<td>Res. 1/4W 10% 3.3M ohms</td>
<td>Philips</td>
<td>R25J</td>
<td>55.2335</td>
<td>1</td>
</tr>
<tr>
<td>R2</td>
<td>Res. 1/4W 10% 3.3M ohms</td>
<td>Philips</td>
<td>R25J</td>
<td>55.2335</td>
<td>1</td>
</tr>
<tr>
<td>R3</td>
<td>Res. 1/4W 10% 3.3M ohms</td>
<td>Philips</td>
<td>R25J</td>
<td>55.2335</td>
<td>1</td>
</tr>
<tr>
<td>R4</td>
<td>Res. 1/4W 5% 560 ohms</td>
<td>Philips</td>
<td>R25J</td>
<td>55.2561</td>
<td>1</td>
</tr>
<tr>
<td>R5</td>
<td>Res. 1/4W 5% 5.1k ohms</td>
<td>R-OHM</td>
<td>R25J</td>
<td>55.2612</td>
<td>1</td>
</tr>
<tr>
<td>R6</td>
<td>Res. 1/4W 5% 300k ohms</td>
<td>R-OHM</td>
<td>R25J</td>
<td>55.2304</td>
<td>1</td>
</tr>
<tr>
<td>R7</td>
<td>Res. 1/4W 5% 150k ohms</td>
<td>XTR</td>
<td>R25J</td>
<td>55.2154</td>
<td>1</td>
</tr>
<tr>
<td>R8</td>
<td>Res. 1/4W 5% 27k ohms</td>
<td>Philips</td>
<td>25TOL5/27K</td>
<td>55.2273</td>
<td>1</td>
</tr>
<tr>
<td>R9</td>
<td>Res. 1/4W 5% 10k ohms</td>
<td>Philips</td>
<td>25TOL5/10K</td>
<td>55.2103</td>
<td>1</td>
</tr>
<tr>
<td>R10</td>
<td>Res. 1/4W 5% 10k ohms</td>
<td>Philips</td>
<td>25TOL5/10K</td>
<td>55.2103</td>
<td>1</td>
</tr>
<tr>
<td>Ref</td>
<td>Description</td>
<td>Mfr</td>
<td>Mfr Part No</td>
<td>WR Part No</td>
<td>Qty</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>R11</td>
<td>Res. 1/4W 5% 10k ohms</td>
<td>Philips</td>
<td>2STOL5/10K</td>
<td>55.2103</td>
<td>1</td>
</tr>
<tr>
<td>R12</td>
<td>Res. 1/4W 5% 10k ohms</td>
<td>Philips</td>
<td>2STOL5/10K</td>
<td>55.2103</td>
<td>1</td>
</tr>
<tr>
<td>R13</td>
<td>Res. 1/4W 5% 10k ohms</td>
<td>Philips</td>
<td>2STOL5/10K</td>
<td>55.2103</td>
<td>1</td>
</tr>
<tr>
<td>R14</td>
<td>Res. 1/4W 5% 27k ohms</td>
<td>Philips</td>
<td>2STOL5/27KR</td>
<td>55.2273</td>
<td>1</td>
</tr>
<tr>
<td>R15</td>
<td>Pot. trim lt 10k ohm 20%</td>
<td>Spec.</td>
<td>63X103</td>
<td>54.5201</td>
<td>1</td>
</tr>
<tr>
<td>R16</td>
<td>Res. 1/4W 5% 470k ohms</td>
<td>K-OHM</td>
<td>R25J</td>
<td>55.2474</td>
<td>1</td>
</tr>
<tr>
<td>R17</td>
<td>Res. 1/4W 5% 18k ohms</td>
<td>IOHM</td>
<td>2STOL/18KR</td>
<td>55.2183</td>
<td>1</td>
</tr>
<tr>
<td>R18</td>
<td>Res. 1/4W 5% 18k ohms</td>
<td>IOHM</td>
<td>2STOL/18KR</td>
<td>55.2183</td>
<td>1</td>
</tr>
<tr>
<td>R19</td>
<td>Res. 1/4W 5% 1M ohm</td>
<td>Philips</td>
<td>R25J</td>
<td>55.2105</td>
<td>1</td>
</tr>
<tr>
<td>R20</td>
<td>Res. 1/4W 5% 47k ohms</td>
<td>KTR</td>
<td>R25J</td>
<td>55.2473</td>
<td>1</td>
</tr>
<tr>
<td>U1</td>
<td>I.C. Dual binary counter</td>
<td>Moto</td>
<td>4520</td>
<td>41.1908</td>
<td>1</td>
</tr>
<tr>
<td>U2</td>
<td>I.C. Voltage reg. 5V pos.</td>
<td>Moto</td>
<td>7805</td>
<td>41.1600</td>
<td>1</td>
</tr>
<tr>
<td>U3</td>
<td>I.C. Voltage reg. 8V pos.</td>
<td>Moto</td>
<td>7808</td>
<td>41.1603</td>
<td>1</td>
</tr>
<tr>
<td>U4</td>
<td>I.C. Dual bin..to 1 of 4 dec.</td>
<td>Moto</td>
<td>4555</td>
<td>41.1945</td>
<td>1</td>
</tr>
<tr>
<td>U5</td>
<td>I.C. DTMF Filter</td>
<td>Mitel</td>
<td>MT8865</td>
<td>41.2005</td>
<td>1</td>
</tr>
<tr>
<td>U6</td>
<td>I.C. Quad 2input NAND S.T.</td>
<td>Moto</td>
<td>4093</td>
<td>41.1796</td>
<td>1</td>
</tr>
<tr>
<td>U7</td>
<td>I.C. DTMF Decoder</td>
<td>Mitel</td>
<td>MT8860</td>
<td>41.2000</td>
<td>1</td>
</tr>
<tr>
<td>U8</td>
<td>I.C. PROM(prog.for 14.1210)</td>
<td>INL/WR</td>
<td>5600</td>
<td>41.0750J</td>
<td>1</td>
</tr>
<tr>
<td>U9</td>
<td>I.C. Quad 2input NAND S.T.</td>
<td>Moto</td>
<td>4093</td>
<td>41.1796</td>
<td>1</td>
</tr>
<tr>
<td>U10</td>
<td>I.C. Hex type D flip/flop</td>
<td>Moto</td>
<td>4174</td>
<td>41.1804</td>
<td>1</td>
</tr>
<tr>
<td>U11</td>
<td>I.C. Hex Inverter</td>
<td>Mostek</td>
<td>4049</td>
<td>41.1750</td>
<td>1</td>
</tr>
<tr>
<td>U12</td>
<td>DTMF Encoder</td>
<td></td>
<td>4403</td>
<td>41.1854</td>
<td>1</td>
</tr>
<tr>
<td>Y1</td>
<td>Crystal HC 18/U</td>
<td>MPI</td>
<td>3.579545 MHz</td>
<td>34.1008</td>
<td>1</td>
</tr>
</tbody>
</table>

I.C. Socket 14 pin | Augat | 214 AG 29D | 33.1176 | 2 |
I.C. Socket 16 pin | Augat | 216 AG 29D | 33.1177 | 7 |
I.C. Socket 18 pin | TI | C8418-02 | 33.1270 | 1 |
<table>
<thead>
<tr>
<th>Description</th>
<th>Mfr</th>
<th>Mfr Part No</th>
<th>WR Part No</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handle for Control Card</td>
<td>WR</td>
<td>DWG 58-x0</td>
<td>23.1070</td>
<td>1</td>
</tr>
<tr>
<td>Silkscren. brkt. (A61-1-3)</td>
<td>WR</td>
<td>DWG 61-7</td>
<td>23.1212</td>
<td>1</td>
</tr>
<tr>
<td>Test point Terminal(orange)</td>
<td>Johnsn.</td>
<td>105-0856-001</td>
<td>33.1162</td>
<td>1</td>
</tr>
<tr>
<td>Printed Circuit Board</td>
<td>WR</td>
<td>C61-1</td>
<td>51.1210</td>
<td>1</td>
</tr>
<tr>
<td>Pan head Screw</td>
<td>Trasfl.</td>
<td>4-40x5/16</td>
<td>40.1307</td>
<td>2</td>
</tr>
<tr>
<td>Hex Nut pltd.</td>
<td>Pacifl.</td>
<td>4-40</td>
<td>40.1701</td>
<td>2</td>
</tr>
<tr>
<td>Lockwasher int. star</td>
<td>Malkpi</td>
<td>No 4</td>
<td>40.1801</td>
<td>2</td>
</tr>
<tr>
<td>Pan head Screw</td>
<td>Trasfl.</td>
<td>6-32x5/16</td>
<td>40.1320</td>
<td>2</td>
</tr>
<tr>
<td>Hex nut pltd.</td>
<td>Pacifl.</td>
<td>6-32</td>
<td>40.1702</td>
<td>2</td>
</tr>
<tr>
<td>Lockwasher int. star</td>
<td>Pacifl.</td>
<td>No 6</td>
<td>40.1802</td>
<td>2</td>
</tr>
</tbody>
</table>
CONCLUSIONES

El diseño del prototipo de sistemas de Transmisión/Recepción digital codificado en ancho de pulso, permite la transferencia de información en grandes cantidades, haciendo uso solamente de 2 hilos 0 en cable coaxial adecuado. Este diseño está de acuerdo a las normas y recomendaciones elaboradas por los sustitutos de normalización. (ISO, EIA, CCITT, etc.).

Para mayor confiabilidad del sistema, se utiliza en su diseño dispositivos totalmente de estado sólido.

El diseño incluye características deseables desde el punto de vista de instalación, operación y mantenimiento.

Todos los dispositivos de estado sólido (diodos, transistores, circuitos integrados) utilizados en el diseño de este prototipo, son unidos comerciales disponibles en el mercado nacional.

El prototipo de Sistema de Transmisión/Recepción digital codificado en ancho de pulso, tiene múltiples aplicaciones en el campo de la Electrónica (transferencia de datos, señales de manipulación, tonos etc). El diseño del prototipo del Sistema Transmisión/Recepción es del Tipo modular, esto simplifica la instalación y su mantenimiento.
APENDICE

"DISEÑO DE SISTEMA DE COMUNICACIONES DIGITALES POR RADIO"

Nippon Electric Co., Ltd.
TOKIO, JAPON
INDICE

DISEÑO DE SISTEMA DE COMUNICACIONES POR RADIO

INTRODUCCION.

HISTORIA DEL DESARROLLO DE LA TECNICA DE LAS COMUNICACIONES DIGITALES POR RADIO.

DESARROLLO DE DISPOSITIVOS ELECTRONICOS
METODOS DE MODULACION

DISEÑO DEL SISTEMA DE COMUNICACIONES DIGITALES POR MICROONDAS.

DEFINICION DE OBJETIVOS DEL COMPORTAMIENTO DE LA RED.
PLAN DE FRECUENCIAS

PROCEDIMIENTO PARA EL DISEÑO DE ENLACES DE MICROONDAS DIGITALES

CALCULO DEL COMPORTAMIENTO DEL RUIDO
CALCULO DE LOS PARAMETROS DEL SISTEMA
CALCULO DE LA INTERFERENCIA
DESVANECEMIENTO SELECTIVO
MEJORA POR DIVERSIDAD
INTERFERENCIA HACIA Y DESDE OTROS SISTEMAS

DIAGRAMAS TIPICOS DE ESTACIONES REPETIDORAS

INTERCONEXION ENTRE SISTEMAS

EQUIPOS DE TECNOLOGIA ANALOGICA
EQUIPOS DE TECNOLOGIA DIGITAL

RADIO ENLACES DE BAJA CAPACIDAD
RADIOENLACES MULTICANAL MULTIDIRECCIONAL DE MICROONDAS
SISTEMA DE RADIOENLACES PARA ABONADOS

SISTEMA DE SUPERVISION.

COMPARACION DE COSTOS DE DIFERENTES SISTEMAS.

NUEVO CONCEPTO DE INSTALACION DE EQUIPO DE MICROONDAS
DISEÑO DE SISTEMA DE COMUNICACIONES DIGITALES POR RADIO

INTRODUCCION

Como es muy bien conocido, en este mundo de informaciones, la comunicación constituye el sistema nervioso de la sociedad, y conforme se desarrolla esta, crece la demanda del intercambio de informaciones cada vez más exigente tanto en cantidad como en calidad y las telecomunicaciones ha tenido que ir desarrollándose para poder satisfacer esta demanda gracias al apoyo del desarrollo de la ciencia y la tecnología.

Ha sido práctica común para la realización de comunicaciones de alta capacidad el empleo de sistema de radio enlaces por microondas utilizando la modulación por frecuencia y multiplaje con división en frecuencia, dado a sus características muy favorables para su propagación y sus posibilidades para la transmisión de muy alta capacidad.

Fue así como se desarrolló el sistema de microondas del tipo PM-PDM dentro de la firma NIPPON ELECTRIC CO LTD, que hoy en día está produciendo equipos de capacidades de hasta 3600 canales telefónicos por una sola portadora de R.F. y también equipos transmisores receptores para estaciones repetidoras con consumo de energía tan bajo de solo 3.5 vatios por transmisor receptor, que permite la instalación de estaciones repetidoras con sistemas de alimentación del tipo no convencional, como son las baterías solares o termogeneradores, y baja enormemente el costo no solo de operación y de mantenimiento, por la ausencia de equipos electromecánicos como motores, generadores etc., sino también el de la construcción, pues siendo el equipo tan confiable, y no requiriendo el transporte de combustible en forma periódica, en muchos casos se puede obviar la construcción de carreteras de acceso u otras obras de infraestructura que muchas veces son de costos mucho más elevados que los propios equipos de radio.

En las figuras siguientes se muestran la forma como ha ido desarrollándose las capacidades; la disminución de los consumos de energías y la confiabilidad, indicadas por el número de canales telefónicos, consumo de potencia por repetidores en vatios y tiempo medio entre fallas en horas.

Fig 1 Historia del desarrollo de las capacidades
Fig. 2 Consumo de energía de transmisores receptores.

Fig. 3 Confiabilidad de equipos repetidores heterodinos

Conforme se ha ido desarrollando la técnica de las telecomunicaciones, se ha descubierto las ventajas de la transmisión por medio del sistema digital, empleando la modulación por impulsos codificados, que permite la transmisión de la información prácticamente sin ruidos, pero no ha podido ser competitivo con los métodos convencionales analógicos, debido al alto costo de los dispositivos digitales en ese entonces.

Por otro lado, el desarrollo de los sistemas de conmutación, y de los sistemas de procesamiento de datos, ha creado la necesidad de la transmisión de informaciones digitales en gran cantidad de tal modo que se hizo necesario desarrollar los sistemas de transmisión de señales digitales, los cuales coincidio felizmente con el desarrollo de los dispositivos de circuitos de gran integración.

El sistema PCM inventado muchos años atrás, ha podido ser puesto en práctica en forma competitiva, solo después del desarrollo de los dispositivos lógicos de muy alta velocidad e integración permitiendo la construcción de un sistema de telecomunicaciones económico y de muy alta confiabilidad.
Fig 4 Tendencia hacia la tecnología Digital

Se puede decir que actualmente, todo sistema de comunicaciones está inclinándose hacia la tecnología digital, y se le puede atribuir principalmente a las ventajas inherentes que tiene este sistema, que consiste principalmente en su mayor facilidad de adaptarse a la demanda creciente del tráfico, mediante la construcción de una red de muy alta flexibilidad que puede responder rápidamente a la variación del tráfico; permite la construcción de equipos de muy alta confiabilidad y de fácil mantenimiento debido a que goza de una característica excelente de ruido y permite la transmisión de grandes distancias y con muy alta capacidad a costos más económicos, gracias al desarrollo de la técnica de los circuitos de muy alta integración haciendo uso más eficiente del espectro electromagnético que cada día se está congestionando más y más.

Fig 5 Cambios en la composición de la Red
La tecnología de la transmisión digital al que nos estamos refiriendo, hace posible la transmisión simultánea de informaciones de voz, imagen, y datos para computación, que pueden ser seleccionados o conmutados mediante un sistema único de conmutadores electrónicos, gracias a la técnica de codificación y su multiplaje en división de tiempo, permitiendo así la constitución de una red integrada de comunicaciones.

Fig 7 Red Integrada de Servicios Digitales

VENTAJAS DE LA TRANSMISION DIGITAL

Entre las ventajas mas notorias del sistema de comunicación digital, se puede mencionar lo referente a su alta resistencia contra el ruido y la interferencia; pues teóricamente, este sistema, con el uso del sistema de modulación por codificación de pulsos, no es afectado por el ruido de propagación, y si se produjera el ruido en su trayecto, esta se elimina, ya que se regenera solamente la parte de la señal, lográndose así la reproducción de una señar libre de ruidos.

Por otra parte, si hablamos de transmisión por radio, podemos comparar con el caso por ejemplo de la transmisión analógica por medio de multiplaje en frecuencia, en FM, y veremos que en este caso solamente se puede utilizar la misma frecuencia cuando el ángulo de bifurcación se hace mayor de 90 grados, dependiendo de la calidad de los radiadores que se utilicen mientras que en el caso de la transmisión por el sistema digital por PCM, se puede utilizar la misma frecuencia con una separación de apenas 15 a 30 grados; lo que significa que se puede lograr un empleo mas eficiente de la frecuencia, que de por sí es un bien muy limitado.
La tecnología digital, se ha desarrollado prácticamente para todos los aspectos de las comunicaciones y en forma muy especial está permitiendo la comunicación ya no solamente de personas a personas, sino de transferencias de grandes cantidades de datos entre computadoras que permite el procesamiento rápido de los datos a través de grandes distancias, dando así origen a la nueva era de la tecnología de la COMUNICACION Y COMPUTACION.

Un ejemplo del desarrollo de este campo es la combinación de la conmutación telefónica con la tecnología digital por división de tiempo y el sistema de control por programación almacenada que creó un nuevo campo en la tecnología de la comunicación, con la puesta en práctica de los conmutadores telefónicos digitales de división de tiempo representado por el modelo NEAX 61 de la NEC, cambia por completo el concepto de la técnica de la conmutación telefónica que incrementa en forma notoria la ventaja del empleo de los medios de transmisión digital.

Fig. 6 Composición de un conmutador electrónico digital de división de tiempo y programación almacenada. (Modelo NEAX 61 de la NIPOON ELECTRIC CO.LTD)
CROSS POLARIZATION ON THE SAME FREQUENCY

NARROWEST BRANCHING ANGLE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PCM</th>
<th>FDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CROSS POLARIZATION</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>2 BRANCHING ANGLE</td>
<td>15~30° (11GHz)</td>
<td>MORE THAN 90°</td>
</tr>
</tbody>
</table>

![Diagram showing FDM/FM and PCM with angular relationships and signal levels](image)

Fig. 8 Alta resistencia contra la interferencia

La característica de umbral del sistema digital, permite el uso de niveles de recepción mucho más bajos, comparados por el sistema de FM-FDM, lo que hace mucho más resistente a los fenómenos de devanecimiento y al mismo tiempo permite el empleo de equipos de mucho menor potencia y niveles contribuyendo en esta forma a la construcción de instalaciones de comunicaciones más económicas.

REGENERATION—FREE FROM NOISE

AND/OR DISTORTION ACCUMULATION

![Graph showing effects of fading on FDM/FM and PCM/PSK](image)

Fig. 9 Comportamiento con respecto al ruido
HISTORIA DEL DESARROLLO DE TECNICA DE LAS COMUNICACIONES DIGITALES POR RADIO.

Fig. 10 Historia del desarrollo del Sistema Digital de Radio

La historia del desarrollo de las comunicaciones digitales por radio en la firma NIPPON ELECTRIC CO., es prácticamente la historia del desarrollo del sistema digital en el mundo, y puede ser observado en los cuadros que se acompaña y que de por si son explícitos.

Este desarrollo ha sido posible gracias al constante esfuerzo del personal científico y tecnológico de la firma en sus respectivos campos, de los cuales se destacan los siguientes:

DESARROLLO DE DISPOSITIVOS ELECTRONICOS.

La técnica no solo de las comunicaciones por radio, ha podido llegar al punto de desarrollo actual gracias a la creación de nuevos dispositivos electrónicos.

Entre los dispositivos electrónicos que más han contribuido al desarrollo del sistema de microondas, podemos contar los diodos varactores, los diodos Gunn, diodos IMPATT y los transistores de efecto de campo de GaAs, cuyas aplicaciones prácticas se ha hecho posible gracias a los adelantos en la técnica de su fabricación. Otro factor que no puede ser olvidado, es el desarrollo de nuevos tipos de tubos TWT, cuyo refinamiento le permite seguir siendo los mejores elementos de un equipo de radio, no solo desde el punto de vista de su comportamiento; sino también de su punto de vista de economía en su operación.
Los sistemas digitales por otro lado se han desarrollado gracias al adelanto de la técnica de producción de los circuitos integrados cuyo abaratamiento de su costo, ha permitido poder procesar la gran cantidad de información tridimensional en estos sistemas en forma muy económica.

Un resultado híbrido de estos desarrollos, es la forma como se han desarrollado los circuitos integrados para los sistemas de microondas, que han contribuido a aumentar su confiabilidad, disminuir su consumo de energía y hacer el sistema mas económico.

Un ejemplo de aplicación de estos dispositivos en los sistemas de microondas pueden verse en las figuras que se acompañan en las que se indican las figuras de ruido que se obtienen en los receptores, y las potencias de salida en los transmisores, según el tipo de dispositivos que se emplean.

Fig. 11 Comportamiento de figura de ruido de amplificadores de bajo ruido con transistores FET de GaAs, y de Potencias de salida según los dispositivos

MÉTODOS DE MODULACION

Normalmente se debe emplear un bito para poder enviar una información unitaria, y si la transmisión se hace por las vías de radio, se requeriría enviar el número de bits equivalentes al de la información a ser enviado.

Sin embargo, gracias a la facilidad de discriminación del ángulo de fase, en el caso del empleo de modulación por fase, es posible poder enviar una cantidad mayor de información si se hace una codificación

Gracias al uso de esta tecnología digital, es posible poder enviar mayor cantidad de información por cada uno de los impulsos, lográndose así obtener mayor eficiencia en la transmisión, contribuyéndose al uso más eficiente de los canales de radiofrecuencia.

A continuación se indican los tipos de modulación empleados para la transmisión digital
2 PH PSK

Fig. 12 Modulación en dos fases

4 PH PSK

Fig. 13 Modulación en cuatro fases

8 PH PSK

Fig. 14 Modulación en Ocho fases

16 QAM

Fig. 15 Modulación en el sistema 16QAM
El siguiente cuadro muestra el resumen de los diversos tipos de modulación empleados para la transmisión de las señales digitales, indicando la eficiencia del uso de la banda de frecuencia, en la que se puede ver que en el caso de la modulación del tipo 16QAM, se puede lograr la eficiencia tan alta de 3.5 bitios por cada hertz. Tambien se puede ver en el mismo cuadro, que cuanto mayor se hace la eficiencia, se requiere tener el valor de la relación de señales portadoras a ruido C/N mayores, si se requiere tener el mismo valor de la relación BER.

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Band Efficiency</th>
<th>Required C/N BER 10^-6</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>4P-PSK</td>
<td>1.4 bit/Hz</td>
<td>16 dB</td>
<td>11/15GHz 960/1440CH</td>
</tr>
<tr>
<td>8P-PSK</td>
<td>2.6 bit/Hz</td>
<td>20 dB</td>
<td>11GHz 1344CH</td>
</tr>
<tr>
<td>16 QAM</td>
<td>3.6 bit/Hz</td>
<td>25.6 dB</td>
<td>6GHz 1344CH</td>
</tr>
<tr>
<td>MSK</td>
<td>2.0 bit/Hz</td>
<td>20 dB</td>
<td>—</td>
</tr>
<tr>
<td>QPR</td>
<td>2.0 bit/Hz</td>
<td>27 dB</td>
<td>—</td>
</tr>
</tbody>
</table>

Fig. 16 EFICIENCIA SEGUN METODOS DE MODULACION

Fig. 18 Suministros de Equipos de Radio Digitales de la Nippon Electric Co. hasta Enero 1980
DISEÑO DEL SISTEMA DE COMUNICACIONES DIGITALES POR MICROONDAS

Al planificarse un sistema de comunicaciones por microondas, se deben de considerar diversos factores, como son los objetivos de la calidad del servicio, los parámetros de propagación, y la confiabilidad exigida al sistema. Siendo muy conocido la técnica de diseño de sistemas de microondas del tipo analógico FM-FDM, en el presente texto se describe principalmente los métodos de diseño para el sistema de radio digital, haciendo referencia al método clásico de diseño del sistema analógico.

BIT ERROR RATE

FOR DATA TRANSMISSION $1 \times 10^{-4} - 1 \times 10^{-4}$

FOR VOICE TRANSMISSION ... $1 \times 10^{-4} - 1 \times 10^{-3}$

Fig. 18 Diagrama de Flujos para el planeamiento de un sistema digital de microondas
DEFINICIÓN DE OBJETIVOS DEL COMPORTAMIENTO DE LA RED

Al igual que en caso del diseño de un sistema de microondas por la técnica analógica por FM-FDM, el diseño de un sistema digital, se empieza definiendo los objetivos del comportamiento de la red.

Normalmente, el objetivo de diseño en estos sistemas digitales, se establecen por medio del porcentaje de error en bits, BER, que viene a ser al equivalente de la potencia de ruido permisible en un sistema FM., que es el factor que decide la calidad del radioenlace que se va a planificar.

Por otro lado, el otro factor que se debe definir es también al igual que en el caso de FM, el porcentaje de tiempo que se le permite de que la calidad del radio enlace se degenera hasta el valor de BER establecido.

1. HYPOTHETICAL REFERENCE DIGITAL PATH
 (Long Haul, CCIR Rec 556)

 ![Diagrama de camino digital hipotético](image)

 Propagation Reliability: BER < 1×10^{-7} > 99.95% $^{CCIR}_{Rsp378-J}$
 BER < 1×10^{-7} > 95%

 Fig. 19 Recomendación CCIR No 556

 Este objetivo puede ser fijado por el usuario, dependiendo principalmente de la calidad que se espera obtener de la red.

 Siendo esta técnica de muy reciente desarrollo, todavía no se cuentan con las recomendaciones completas del CCITT o CCIR, como los hay para los sistemas analógicos, pero se puede tomar como base el caso del circuito hipotético de referencia recomendado por la Recomendación 556 de la CCIR, aplicándole las distancias en forma proporcional para los factores de BER y los porcentajes de tiempos recomendados para este circuito hipotético de referencia.

 En algunos países, en la cual se va a desarrollar por primera vez el sistema digital, se debe enfrentar con el problema de seleccionar el plan jerárquico de los canales, pues como no ha existido con tiempo una recomendación apropiada, existe hoy dos tipos de plan jerárquico de los canales, que son los correspondientes a los Estados Unidos y Canadá y los del grupo europeo, tal como pueden verse en el siguiente cuadro.
Fig. 20 Plan jerárquico de canales en el Mundo

Además puede verse que en el caso del Japón se tiene otro tipo de orden jerárquico, pero este puede considerarse un caso muy especial debido a situaciones de tráfico muy particulares del Japón.

Los factores principales que influyen en la decisión de la adopción de uno u otro sistema, es en general del tipo económico solamente, ya que siendo los Estados Unidos, Canada, y el Japón, los mayores productores y consumidores del equipo del sistema de 1,54Mb o de 24 canales, en muchos casos influye la alta producción de los equipos en sus precios, resultando en algunos casos, costos por canal mas bajos en equipos de este último sistema. Como una ilustración se muestran los equipos que se fabrican en la firma NEC, para poder satisfacer cualesquiera de las necesidades cualquiera que sea el sistema que se adopte.

Una vez que se adopta el sistema que se considere mas apropiado para el país, se debe armar ahora el plan de canales para la construcción de la configuración general del sistema tal como puede apreciarse en la figura, que ilustra el caso de adopción del sistema europeo o sea del sistema básico con 2.08MHz o 30 canales telefónicos.

Fig. 21 Configuración general de Canales
24 CH Hierarchy

<table>
<thead>
<tr>
<th>Transmission Capacity</th>
<th>Radio Frequency Band</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2GHz</td>
</tr>
<tr>
<td>Mbps/voice channel</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>86</td>
</tr>
<tr>
<td>6.3 x 2</td>
<td>192</td>
</tr>
<tr>
<td>14.5</td>
<td>316</td>
</tr>
<tr>
<td>4.7</td>
<td>572</td>
</tr>
<tr>
<td>72</td>
<td>1152</td>
</tr>
<tr>
<td>44.7 x 2</td>
<td>1244</td>
</tr>
<tr>
<td>44.7 x 3</td>
<td>2016</td>
</tr>
<tr>
<td>274.8</td>
<td>4032</td>
</tr>
</tbody>
</table>

30 CH Hierarchy

<table>
<thead>
<tr>
<th>Transmission Capacity</th>
<th>Radio Frequency Band</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2GHz</td>
</tr>
<tr>
<td>Mbps/voice channel</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>30</td>
</tr>
<tr>
<td>2.0 x 2</td>
<td>60</td>
</tr>
<tr>
<td>6.4</td>
<td>120</td>
</tr>
<tr>
<td>8.4 x 2</td>
<td>240</td>
</tr>
<tr>
<td>34.4</td>
<td>460</td>
</tr>
<tr>
<td>34.4 x 2</td>
<td>960</td>
</tr>
<tr>
<td>34.4 x 3</td>
<td>1440</td>
</tr>
<tr>
<td>139.3 (or 34.4 x 4)</td>
<td>1920</td>
</tr>
<tr>
<td>139.3 x 2</td>
<td>2880</td>
</tr>
</tbody>
</table>

Fig. 22 Equipos Digitales NEC Standard
Una vez que se fijen los objetivos se deben seleccionar los principales parámetros del sistema para poder proceder con los diversos pasos para el diseño de la ruta.

Demás está decir que previamente a los cálculos del diseño del radio enlace se deben hacer los estudios propios de la construcción de un radioenlace por microondas, como son el estudio de la ubicación óptima de las estaciones repetidoras, el cálculo del despeje necesario para poder asegurar un determinado radio de Fresnel, y el análisis de costos referentes a costos comparativos de infraestructura y costos de operación y mantenimiento.

Esta fase de los trabajos del diseño es exactamente la misma que la que se hace en el caso de un estudio de radioenlace de microondas tanto de FM, como de PCM, con la única diferencia en los margenes que se les puede dar al sistema para los efectos de desvanecimiento, e interferencia con los otros enlaces existentes.

También se debe definir en esta etapa la filosofía del mantenimiento y operación del sistema, ya que mucha parte del diseño de la instalación va a depender de ello como se piensa operar y mantener el sistema.

Según lo que se ha visto hasta el momento, para el diseño de un sistema digital de radio se hace necesario definir además de los parámetros de la propagación, los parámetros específicos del sistema PCM que serian:

Relación BER;
Disponibilidad que depende de:
- Longitud del circuito de referencia y
- Porcentaje permitido de tiempo
- Banda de frecuencia a utilizarse; y
- El plan de canales.

PLAN DE FRECUENCIAS...

Para establecer el plan de canales RF, es preferible tomar como referencia, las recomendaciones del CCIR, sobretodo para los casos de interconexiones internacionales, aunque cada administración, se encuentra en libertad de poder escoger el plan de canales que más le convenga.

![Diagrama de asignación de frecuencias](image_url)

Fig. 23 Plan de asignación de frecuencias del CCIR
En las figuras 23 y 24 se muestran algunos de los planes de frecuencias recomendados por el CCIR, y que en general son las mismas asignaciones hechas tanto para los sistemas de radio FM-FDM, como para el sistema PCM-TDM.

Fig. 24 Plan de asignación de Frecuencias del CCIR

Otro factor importante considerar en el caso del diseño de un sistema PCM digital, es la forma como se va a transmitir la señal, es decir al igual que el caso de la transmisión de FM, que existe la repetición en banda base, o heterodina, para el caso de PCM se debe definir si se emplea la repetición en este caso regenerativa o heterodina.

En general, se dice de que el sistema digital PCM, tiene la ventaja de que no se transmite el ruido debido a que en cada tramo se regenera solamente la señal, pero por consideraciones económicas, también es posible adoptar el método híbrido, es decir combinar la retransmisión regenerativa con la retransmisión heterodina, que permite disminuir el número de componentes y por ende bajar el costo tanto de la instalación como de operación ya que se puede bajar el consumo de energía de tal forma que se permite también el uso de alimentación no convencional en las estaciones repetidoras.
Sin embargo, este método de retransmisión híbrida tiene sus limitaciones, ya que en una forma se está renunciando a las ventajas de la retransmisión regenerativa, que regenerando la parte correspondiente solo a la señal pura y no arrastrando el ruido de la etapa anterior, cosa que no es posible en el caso de la repetición heterodina, y es inevitable la producción de degradación en el comportamiento de la relación BER, debido a la acumulación de la distorsión de la forma de onda, limitándose el número de etapas heterodinas, de acuerdo a la capacidad de la transmisión

En las figuras siguientes se muestran la composición de los equipos para los dos casos típicos de retransmisión, que son los casos de modulación directa y de modulación por frecuencia intermedia.

También se muestra la configuración general de los equipos en una estación terminal, y en una estación repetidora típica, así como los efectos que se producen en el comportamiento de la relación BER, y los números máximos de etapas de repetición heterodina permisibles.
Fig 26 Configuración general de una estación terminal típica

Fig 27 Configuración general de una estación repetidora típica

Fig 28 Comportamiento de un sistema de repetición híbrida
PROCEDEMIENTO PARA EL DISEÑO DE ENLACES DE MICROONDAS DIGITALES

Una vez que se haya determinado los objetivos del diseño, se debe realizar los cálculos necesarios para seleccionar los equipos necesarios para la construcción del radioenlace, y conocer de antemano si el radioenlace así construido se va a comportar de acuerdo a lo que se ha deseado.

En el caso del diseño del radio enlace con el sistema de FM-FDM, se debe confirmar si la relación de señal a ruido, generalmente en el peor canal, y los valores de potencia media del ruido para los promedios del 20%, 0.1% y 0.01% no excedan de los valores objetivos, tomándose como estos los valores recomendados por el CCIR.

En el caso de un radioenlace digital, se debe comprobar si el comportamiento del sistema cumpla el objetivo de diseño en cuanto a la relación BER y que el porcentaje de tiempo permitido para que este valor BER llegue a degradarse hasta el valor definido como objetivo sea menor que la que se ha previsto en el diseño.

En vista de que es muy difícil determinar la incidencia de cada uno de los elementos que conforman la red en el comportamiento general, en el caso del sistema FM-FDM, se asigna los valores permisibles a cada uno de los elementos que conforman la red, para poder así calcular el comportamiento del sistema total, que vendría a ser la suma de todos estos valores.

Pero en el caso del enlace digital de POM, es muy difícil hacer el cálculo basado en ruidos, por lo que se hace en base a tiempos de interrupción originado por cada uno de los factores.
Así, en el caso del sistema FM-FDM, se acostumbrará asignar los ruidos permisibles en la forma como se indica en el cuadro siguiente, repartiéndose en este caso los valores de la potencia media de ruido, generalmente en forma equitativa, entre los ruidos producidos por el ruido térmico, el ruido por distorsión y el ruido producido por la interferencia, separando en cada caso los correspondientes a la parte de propagación y a la parte del equipo propiamente.

Como es natural, en el caso de una transmisión digital, el factor de la distorsión, tiene que ser considerado en forma diferente al de FM-FDM, ya que se cuenta con el factor de la regeneración de la señal.

1. FDM MICROWAVE

TOTAL ALLOWABLE NOISE (FOR EX. 7500 PWP)
- THERMAL
 - DISTORTION
 - INTERFERENCE
 (ABOUT 1/3)
 TO EACH HOP

Fig 30 Asignación de ruidos en los sistemas FM

Como un ejemplo de esta asignación, se muestra en el cuadro siguiente, la asignación de ruidos en el caso típico de un enlace digital FCM de repetición regenerativa.

Fig 31 Asignación de ruidos en el sistema FCM
CALCULO DEL COMPORTAMIENTO DEL RUIDO

Para el cálculo del comportamiento del ruido, se requieren por lo menos los datos que se ilustran en los cuadros siguientes:

Fig 32 Parámetros de propagación del radio enlace

1. REFLECTION POINT (ROUGHLY ESTIMATE)

\[d_1 = \frac{h_1}{h_1 + h_2} \cdot d, \quad d_2 = d - d_1 \quad \text{(km)} \]

2. EFFECTIVE ANTENNA HEIGHT

\[h'_1 = h_1 - h_r - \frac{d_1^2}{2ka} \quad \text{(m)} \]
\[h'_2 = h_2 - h_r - \frac{d_2^2}{2ka} \quad \text{(m)} \]

3. RADIO PATH DIFFERENCE

\[\Delta = \sqrt{d^2 + (h'_1 + h_3)^2} - \sqrt{d^2 + (h'_2 - h_4)^2} \quad \text{(m)} \]

4. RADIO PATH PHASE DIFFERENCE

\[\delta = \frac{2\pi}{\lambda} \cdot \Delta \]

Where:
- \(k \): Effective Earth Radius Factor (4/3, 2/3 etc.)
- \(a \): Average Earth Radius (6,370km)
- \(\lambda \): Radio Wavelength (m)

Fig 33 Datos necesarios para el cálculo de la propagación

1. FIRST FRESEL ZONE (\(r_1 \)) AT RIDGE POINT

\[r_1 = \sqrt{300 \cdot \frac{d_1 \cdot d_2}{F \cdot d}} \quad \text{(m)} \]

Where:
- \(F \): Radio Frequency (GHz)

2. RIDGE CLEARANCE

\[h_c = \frac{(h_1 - h_r) \cdot d_1^2 + (h_2 - h_r) \cdot d_2^2}{d} - \frac{d_1 \cdot d_2}{2ka} - hs \quad \text{(m)} \]

3. INCIDENTAL ANGLE

\[\delta_1 = \frac{(h_1 - h_r)}{d_1} - \frac{(h_1 - h_2)}{2ka} \quad \text{(rad)} \]
\[\delta_2 = \frac{(h_2 - h_r)}{d_2} - \frac{(h_2 - h_1)}{2ka} \quad \text{(rad)} \]

(h, h, h, d, d, d, a: in meter)

Fig 33 Datos necesarios para el cálculo de la propagación
Una vez que se obtengan los datos sobre la propagación, se debe calcular la probabilidad de ocurrencia del desvanecimiento, que es en realidad difícil de prever. Sin embargo existe un estudio realizado por la administración japonesa de comunicaciones (NTTPC) que da una idea de la posibilidad de aparición del fenómeno conocido como Desvanecimiento Rayleigh, en función de la distancia y de la frecuencia.

Al valor obtenido por esta expresión, se le debe considerar un factor más que depende del lugar específico.

\[\text{LONG TERM FADING (NORMAL DISTRIBUTION)} \]
\[\text{SHORT TERM FADING} \quad \text{PCM MICROWAVE} \]
\[\text{RAYLEIGH FADING} \]

![Estimación de la ocurrencia del desvanecimiento Rayleigh](image)

ESTIMACIÓN DE RAYLEIGH FADING OCCURRENCE IN JAPAN

\[Pr = K \cdot \left(\frac{f}{D} \right)^{1.3} \cdot Q \cdot D^{2.5} \cdot 100 \% \]

- \(Pr \): Probability of Occurrence of Rayleigh Fading
- \(K \): Constant \((5.1 \times 10^{-3})\)
- \(f \): Frequency \((\text{GHz})\)
- \(Q \): Coefficient Determined by Path Condition
- \(D \): Radio Path Distance \((\text{Km})\)

Fig. 34 Probabilidad de ocurrencia de desvanecimiento

El otro factor que es muy importante para la propagación, es la atenuación producida por las precipitaciones, que se hacen mayores cuanto mas alta se hace la frecuencia, y se le debe considerar siempre que esta sea mayor que 10 GHz.

* RADIO FREQUENCY OF OVER 10GHZ
* FADEING DUE TO RAINFALL ATTENUATION

![Estimación de la atenuación por la lluvia](image)

ESTIMACIÓN DE RAINFALL ATTENUATION

\[L = K \int_0^D R(x)^a \, dx \quad (\text{dB}) \]

assuming uniform rainfall within total path

\[L = KR \cdot D^a \quad (\text{dB}) \]

Where:
- \(L \): Rain Attenuation \((\text{dB})\)
- \(K,a \): Constant, avariable dueto frequency
- \(R(x); \): Rainfall Rate at point "x"
- \(D \): Path Distance \((\text{km})\)

Fig. 35 Atenuación por la lluvia

Esta atenuación es en general proporcional a la cantidad de lluvia o precipitación que exista en el trayecto, tal como puede verse en la Fig 31.

Una vez determinado todos los factores de la propagación, se debe proceder a la selección del plan de canales y del establecimiento de la ruta del radio enlace.
Fig. 36 Atenuación por la lluvia

Para la confección del plan de canales de RF, se debe tener en cuenta las consideraciones siguientes:

- Capacidad requerida de canales;
- Banda de Radio Frecuencia a utilizar
- Anq.: mínimo de derivación permisible y la Interferencia dentro de la misma ruta

El plan de canales debe confeccionarse teniendo en cuenta no solo la demanda real actual, sino la estimación de la demanda futura.

La selección de la ruta de radio, debe hacerse teniendo en cuenta los factores siguientes:

- Plan de canales;
- Ubicación real de las estaciones
- Frecuencia de RF a utilizar; y
- El cálculo del comportamiento del ruido.

La figura siguiente da un ejemplo de asignación de canales de una red en estrella con derivaciones en 7 direcciones.

STAR NETWORK (7 Branching Routes)

- 2GHz Band
- Branching Angle
 - α, β, $\gamma < 30^\circ$
- Path Distance
- $D_a > D_g$

RF Channel assigned into
- F1 Group: Channels 1V, 3V, 5V, ...
- F2 Group: Channels 2V, 4V, 6V, ...
- F3 Group: Channels 2H, 4H, 6H, ...

Fig. 37 Ejemplo de plan de asignación de canales RF
CALCULO DE LOS PARAMETROS DEL SISTEMA

Como siguiente paso para el cálculo del ruido se debe determinar los parámetros del sistema que son los que se indican en las figuras siguientes que indican los casos tanto para las estaciones repetidoras normales como para los casos en que se empleen reflectores pasivos o estaciones repetidoras pasivas.

Fig 38 Parámetros del sistema

Habiendo reunido todos los elementos se procede con los trabajos del cálculo de cada uno de los parámetros del sistema, los cuales se resumen en el cuadro siguiente, cuyos resultados dan origen al diagrama de niveles que se indica en la Fig.35

Total Loss = \(F_s + L_f + L_f + L_r + L_m \)

or

\(F_{s1} + F_{s2} + L_f + L_f + L_r + L_m \)

or

\(F_{s1} + L_{s2} + L_f + L_f + L_r + L_r + L_m \)

Total Gain = \(P_t + G_a + G_a \)

or

\(P_t + G_a + G_a + G_a \)

\(P_t + G_a + G_a + G_{n1} + G_{n2} \)

Receiving Level \(R_{sl} = (\text{Total Gain}) - (\text{Total Loss}) \)

Fading Margin \(Fm = R_{sl} - R_{slm} \)

System Margin \(Sm = Fm - Fd \)

When \(Sm \leq 0 \) Change \(P_t, G_a, G_a, G_a, G_{n1}, G_{n2} \)

When \(3\text{dB} \leq Sm \leq 6\text{dB} \) Selection of Parameter

Fig.39 Cálculo de los parámetros del sistema
Fig. 40 Diagrama de niveles

Tanto en los casos del sistema FM-FDM como del sistema digital PCM, es necesario calcular la probabilidad de ocurrencia del desvanecimiento Rayleigh, para conocer, en el primer caso, el porcentaje de tiempo en que la potencia media de ruido llegue a los valores objetivos del CCFR o de diseño; y para el segundo caso, poder hallar la profundidad del decaimiento de la señal debido a la ocurrencia del desvanecimiento Rayleigh.

En el caso del cálculo para el sistema PCM, se debe tener en cuenta que los factores que más afectan el comportamiento del radioenlace, no es la falta de nivel de recepción como lo es en el caso del sistema analógico de FM, sino más bien son los factores como el desvanecimiento selectivo debido a la propagación multitrayecto los que degradan el comportamiento de la relación de BER.

Por esta razón, es preferible, asignar tentativamente una potencia de salida, como para obtener un determinado nivel de recepción, y luego calcular los tiempos de interrupción para dicho caso y si este valor no satisface los objetivos, volver a realizar los mismos cálculos con otro parámetro.

Si la frecuencia de trabajo es mayor que 10 GHz, se debe calcular también el desvanecimiento debido a la lluvia y precipitaciones, determinándose así las distancias máximas entre repetidoras, de acuerdo a las condiciones atmosféricas locales.

Fading Depth (Fd) due to Rainfall

\[F_d = L \cdot D \ (\text{dB}) \]

Where:
- \(L \) : Rainfall Attenuation (dB/km)
- \(D \) : Path Distance (km)

Fig 41 Efecto del desvanecimiento por lluvia

Se debe tener en cuenta que en el caso de existencia de lluvias muy fuertes o en el caso en que la profundidad del desvanecimiento debido a la lluvia sea muy grande, solo se considera a esta como causal del desvanecimiento, sin tomar en cuenta el causado por el desvanecimiento Rayleigh.
CALCULO DE LA INTERFERENCIA

En todos los sistemas de microondas, se debe tener en cuenta la interferencia que puede provenir, tanto de un sistema adyacente o desde el propio sistema, debido al uso de las mismas frecuencias en forma sucesiva.

En el caso del sistema de microondas del tipo FM-FDM, este problema de interferencia es más crítico, y en muchos casos se hace necesario el cambio de frecuencias en determinado tramo; o el empleo de antenas con relación de frente a espalda muy grandes.

En el caso del sistema digital por PCM, este problema ya no es muy grave, pero de toda manera, se debe asegurar una relación D/U de onda deseada a indeseada, dentro del valor prescrito, para no degradar la calidad de la señal de la comunicación.

Cualquier exista otra ruta de microondas en la misma estación o en rutas adyacentes, se debe escojer los parámetros principales, como son la directividad de la antena, la separación de frecuencia, las distancias de transmisión, y los parámetros del propio sistema, de tal modo de que en ningún momento se tenga la relación D/U menor que la que se ha asignado en el plan original.

REQUIRED D/U ≥ 30 dB (FROM NOISE ASSIGNMENT)

\[D/U = R_{29} \text{ (ANT D = ANT A)} = R_{24} \text{ (ANT F = ANT A)} \]

- PARAMETER
 - ANTENNA DIRECTIVITY
 - RF FREQUENCY & FREQUENCY SEPARATION
 - RADIO PATH DISTANCE
 - SYSTEM PARAMETER
 (ANT DIA., T POWER, Etc.)

Fig. 43 Interferencia de otras rutas
Para el cálculo de la interferencia, se debe proceder aplicando la expresión siguiente.

DESIRED SIGNAL LEVEL

\[D = \text{RSL (ANT D \rightarrow ANT A)} - \text{fd(STATIONS)} - \text{dBm} \]

UNDISIGNED SIGNAL LEVEL

\[U = \text{P} \text{L} \text{ Output Power at STATION} \]

\[+ G_{AF} \text{ Antenna Gain of ANT F} \]

\[+ G_{AD} \text{ Antenna Gain of ANT D} \]

\[- F_{L} \text{ Free Space Loss (ANT F \rightarrow ANT B)} \]

\[- L_{FC} \text{ Feeder Loss at STATION} \]

\[- L_{FA} \text{ Feeder Loss at STATION A (ANT A)} \]

\[- L_{BC} \text{ Branching Circuit Loss at STATION } \]

\[- L_{HA} \text{ Branching Circuit Loss at STATION A (ANT A)} \]

\[- D_{A} \text{ Antenna Directivity of ANT A} \]

\[- A_{R} \text{ Receiving Filter Attenuation at STATION A(ANT A)} \]

Fig. 44 Cálculo de la interferencia (de otras rutas)

El otro factor productor de interferencia, tal vez más crítico que de las rutas extranjeras, es la que produce el propio sistema, ya que al ir repitiéndose las frecuencias, se puede recibir la señal indeseada de una estación del sistema, que puede contener la misma información, no pudiendo ser discriminado por los equipos. Este es el caso que produce el hecho de la pobre relación de frente a espalda de las antenas o por el fenómeno de sobre alcance, cuyo efecto se debe estudiar desde el momento de la selección de la ubicación de la estación.

Fig. 45 Interferencia por relación Frente a Espalda de la antena y por sobre alcance.

Otro factor que también se debe considerar es el efecto de distorsión que es producido por el eco dentro del sistema de alimentadores de antena, debido a la deficiencia en la adaptación de impedancias.
DESVANECIMIENTO SELECTIVO

Siendo la transmisión digital de alta capacidad, un campo relativamente nuevo en la historia de las comunicaciones, se está realizando estudios extensivos sobre la propagación, y se ha visto de que entre los factores que más afecta el comportamiento de un sistema digital de microondas, se encuentra la distorsión dentro de banda que se produce por el desvanecimiento selectivo que tiene su origen en la propagación de multi trayecto o multi paso, como el factor de efecto mas serio ya que hace que el valor de la relación BER pueda degradarse a valores no aceptables inferiores a 10^{-3} aun cuando el nivel de entrada del receptor tiene suficiente margen hasta su nivel de umbral.

Existen hasta informes en que debido a este problema, se recomiendan distancias de salto de solo 25 a 30 Km para un enlace aún en el caso del empleo de la banda de 6 GHz, basado en datos tomados en áreas limitadas dentro de sistemas particulares, por lo que se puede decir de que hasta el momento no existe un método establecido para la predicción de la degradación del comportamiento del sistema digital de microondas debido a la existencia del desvanecimiento por trayecto múltiple.

Como medio para resolver este problema del desvanecimiento selectivo, se sugiere el empleo de la diversidad de espacio, al igual que en el caso de los radio enlaces de FM FDM, y además de ha desarrollado el equipo de ecualizador adaptivo, para compensar en forma automática la distorsión de amplitud dentro de la banda especialmente en los del modo lineal y cuadrática, que aparece durante el desvanecimiento de trayecto múltiple.

Las figuras 46 y 47 muestran el diagrama de bloques y la aplicación típica del ecualizador adaptivo.

Fig. 46 Diagrama de bloques del ecualizador adaptivo
Fig 47 Ejemplo de aplicación del ecualizador adaptivo

MEJORA POR DIVERSIDAD

En el caso en que no sea posible obtener el comportamiento del ruido del radio enlace esperado, ya sea por la necesidad del servicio, o para poder satisfacer las recomendaciones del CCIR o similares, se debe acudir a la utilización de parámetros de valores mejores o de la diversidad de espacio.

La mejora por diversidad en el caso del sistema FM-FDM, se encuentra bastante estudiado, pero para el caso del enlace PCM digital, aun no se cuenta con mucha bibliografía del caso, especialmente, cuando se produce la distorsión por trayecto multiples, debiendo estimarse sus valores de acuerdo a la experiencia.

Se pueden considerar dos tipos de diversidad de espacio:

1. Con combinación en la etapa de frecuencia intermedia IF; y
2. Combinación en banda base (combinación de bitios) empleándose para ambos casos la conmutación del tipo HIT LESS, es decir sin interrupción de información.

Solo como dato de referencia para el diseñador, se puede decir que la aplicación de un sistema de diversidad de espacio del tipo combinador de IF, provee un factor de mejora del orden de 6, mientras que el método de combinador de bitios puede hacerlo al doble. La aplicación del ecualizador adaptivo, ha probado ser eficiente con factor de mejora del orden de 3 a 5 en lo referente al tiempo de corte, existiendo informes en que se ha demostrado una mejora del orden de 175 veces con aplicación combinada del sistema de diversidad de espacio y de ecualizador adaptivo.

La figura siguiente indica un caso típico del empleo de la diversidad, y su comportamiento esperado.
Fig 48 Mejora por diversidad de espacio

INTERFERENCIA HACIA Y DESDE OTROS SISTEMAS

Al planificarse una nueva ruta de microondas, ya sea del tipo analógico o digital, se debe tener en cuenta no solo la interferencia que se puede recibir desde otros sistemas, sino también la interferencia que puede producir este nuevo sistema sobre los ya existentes.

Los factores principales que se deben estudiar son la interferencia que se produce desde y hacia otro sistema que puede ser analógico o digital.

En el caso en que los valores de estas interferencias se hagan de valores muy apreciables, se debe hacer diseños especiales de filtros, para evitar estos efectos, siendo en la mayoría de casos trabajos que tiene que tomar a cargo el fabricante del equipo; siendo pues ideal de que la planificación del sistema se haga de tal forma que no se haga necesario esta intervención.

Fig 49 Interferencia del Sistema FDM a PCM
Fig. 50 Interferencia del sistema PCM a FDM

Como una ilustración se muestra el espectro de potencia que se produce en un equipo transmisor digital de microondas NEC, que emplea los filtros del tipo roll off, que reduce de tal modo la emisión de potencia fuera de banda, que sumado a la técnica de modulación multifase, hace que el sistema de microondas digitales, pueda trabajar con la misma eficiencia de capacidad de canales como la que tiene el sistema analógico de modulación por frecuencia.

Fig. 51 Reducción del espectro de potencia por el filtro Roll-off
INTERCONEXION ENTRE SISTEMAS

Generalmente los sistemas de transmisión son utilizados como enlace entre punto a punto; entre centrales de conmutación telefónica interurbana

En estos casos normalmente es suficiente con interconexiones del tipo a nivel de canales de voz, debiéndose seleccionar los equipos de interconexión apropiados para cada caso de centrales de conmutación, como son por ejemplo los de paso a paso; barras cruzadas; etc, y sus respectivos sistemas de senalización, que consiste en realidad en la selección de equipos multiplex del nivel correspondiente.

Sin embargo, hoy en día se está haciendo cada día más popular el empleo de centrales telefónicas electrónicas cuyo mérito principal consiste en el multiplexaje por división de tiempo, ya que en esta forma se logra una gran economía comparado con la técnica convencional analógica con multiplexaje en espacio.

Actualmente la tendencia mundial está dirigida hacia la adopción de estas centrales telefónicas electrónicas de división temporal, pues el grado de economía que se logra con estos sistemas es tal que ya no pueden ser ni siquiera comparado con los métodos electromecánicos convencionales por sus grandes ventajas tanto del costo como de operación y mantenimiento, y en la actualidad no se puede concebir la instalación de un nuevo servicio telefónico por método electromecánico.

Ahora bien, si se adoptara aunque sea una sola central telefónica electrónica del tipo temporal, ya resulta más conveniente realizar la interconexión 'por medio de enlaces digitales por su impacto que representa en su costo.'

Por otro lado la transmisión de datos se está haciendo cada vez más común, y para ello también será más conveniente la transmisión digital.

Así, para la planificación de un nuevo radio enlace, se debe tener muy en cuenta estos factores, para la selección del sistema, aunque al momento se presenten algunos problemas para la interconexión con los sistemas convencionales existentes.

En los siguientes párrafos se describen los sistemas multiplex que sirven para la interconexión de los sistemas.

Equipos de tecnología analógica.

En los equipos multiplex de tecnología analógica se emplea la división de frecuencia para su multiplexaje, estando compuesto los equipos por amplificadores, filtros y osciladores, para traslado de cada canal telefónico a su posición o frecuencia correspondiente.

La figura siguiente muestra la composición de un equipo terminal multiplex de tecnología analógica FDM.

![Diagrama de interconexión](image)

Fig. 52 Composición de un sistema multiplex FDM,
Equipos de tecnología digital.

En el caso de la tecnología digital, se emplea la técnica de división de tiempo para el multiplaje de los canales, estando formado los equipos esencialmente por relojes, o medios que generan el tiempo necesario para el multiplaje de canales.

Este hecho es lo que da la ventaja más grande para el sistema de división de tiempo, ya que mientras que los filtros en el caso de los sistemas analógicos se encuentran ya prácticamente en su límite de desarrollo desde el punto de vista tanto del costo como de su tamaño, el caso del tipo digital TDM todavía tiene muchas posibilidades de desarrollo, para poder bajar su costo de fabricación.

En las siguientes figuras se muestran la composición de los equipos multiplex digitales, y las distintas etapas de multiplaje que se adoptan en estos sistemas, de acuerdo a las recomendaciones del CCITT.

Fig. 53 Composición de un sistema multiplex digital

<table>
<thead>
<tr>
<th>Orden</th>
<th>Velocidad</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>1er orden</td>
<td>2,048 kb/s (CCITT)</td>
<td>(30 CH) G732</td>
</tr>
<tr>
<td>2do orden</td>
<td>8,448 kb/s (CCITT)</td>
<td>(120 CH) G742</td>
</tr>
<tr>
<td>3er orden</td>
<td>34,368 kb/s (CCITT)</td>
<td>(480 CH) G751</td>
</tr>
<tr>
<td>4to orden</td>
<td>139,264 kb/s (CCITT)</td>
<td>(1.920 CH) G751</td>
</tr>
<tr>
<td>5to orden</td>
<td>~565 Mb/s</td>
<td>(under study)</td>
</tr>
</tbody>
</table>

Fig. 54 Etapas de multiplaje en el sistema digital.
Fig. 55 Interconexión entre sistemas Analógicos y Digitales

Los detalles de los equipos que se utilizan, pueden verse en la figura siguiente.

Fig. 56 Equipos para conversión Analógico/Digital.
En el caso de interconexión entre centrales se presenta otro problema más para el funcionamiento del servicio, que consiste en la interconexión entre servicios telefónicos con distintos tipos de señalización.

Las figuras siguientes indican las diversas combinaciones de señalizaciones del servicio telefónico, y los métodos para lograr estas adaptaciones.

(1) Applications for X'BAR Exchanges and/or STEP-By-STEP Exchanges.

Fig 57 Diversos tipos de interfaces para interconexión de centrales telefónicas

(2) Applications for Junction between E & M Trunks and Various Exchanges

(3) Other Applications
 Signalling interfaces for EMD and SXS with F1 signalling are also made available as option.

Fig 58 Diversos tipos de interfaces disponibles para interconexión de centrales telefónicas
Lógicamente el trabajo principal de la planificación, consiste solamente en seleccionar el equipo mas apropiado para cada caso. Se da como ejemplo, el caso de derivación de canales como la que se muestra en la figura siguiente.

1. Voice to Voice Connection
2. Through Filter Connection
 (G, SG, 15SG ASS, MG)
3. Baseband Split Filter Connection
4. Two-way Leaking Connection
5. Three-way Leaking Connection

Fig. 59 Sistemas de derivación de canales

Como en cualquier sistema de comunicaciones, cuanto mas se desarrolla el sistema, se hace necesario hacer ampliaciones, y en el caso del equipo de multiplex, estas casi siempre tienen que instalarse en las ciudades, en la que el problema de espacio puede hacerse muy critico.

Como ya se dijo antes, el sistema multiplex analógico FDM, ha sido reducido enormemente en su tamaño, comparado con los de generación anterior, creyéndose que ya se encuentra en su dimension mínima, mientras que los equipos digitales, tiene todavía esperanzas de ser disminuido mas en su tamaño.

Fig. 59 Reducción del espacio con equipos multiplex NEC.
RADIOENLACES DE BAJA CAPACIDAD.

En una red telefónica, siempre existen lugares de gran tráfico y otros lugares con muy poco tráfico, como son las pequeñas ciudades, pueblos, zonas rurales, etc., que por estar generalmente apartados de los grandes centros urbanos, exigen que se tengan mejores servicios de comunicaciones.

Para unir estos pequeños centros, normalmente se hace uso de enlaces de pequeña capacidad, que pueden realizarse ya sea por medio de líneas físicas o de radioenlaces.

Ha sido por mucho tiempo una práctica general, el establecer pequeños radioenlaces, en la banda de VHF o UHF, para unir pequeños centros poblados, pero se tiene el problema de la disponibilidad de canales de radio frecuencia, ya que cada enlace requiere el uso de un par de frecuencias independientes por cada radioenlace telefónico.

El diseño de un radioenlace de pequeña capacidad es igual a los casos estudiados previamente, diferenciándose solo en su capacidad, y casi siempre conviene el empleo de frecuencias mas bajas.

Por otro lado, cuando las necesidades de canales se hacen muy pequeños, especialmente para poblaciones o tal vez abonados remotos particulares, ya puede hacerse antieconómico, el establecer un enlace exclusivo, no solamente desde el punto de vista del costo, sino también desde el punto de vista de disponibilidad de frecuencias, ya que estas ocuparán los canales de RF, que tal vez los necesiten servicios más urgentes.

Para satisfacer este tipo de necesidades se han desarrollado sistemas de comunicaciones con frecuencias compartidas, que trabajan bajo la modalidad de canales compartidos.

Se puede clasificar estos servicios en dos:
Radio enlaces multicanal, multidireccional en microondas, y
Servicio de abonados por radio, en las bandas de VHF o UHF.

RADIOENLACES MULTICANAL MULTIDIRECCIONAL POR MICROONDAS.

El presente sistema consiste en compartir un solo canal de radiofrecuencia multicanal entre un número limitado de centros, con capacidades del orden de 6 a 8 canales cada uno, suficientes como para dar servicio a pequeñas poblaciones, o grandes oficinas.

Este servicio se caracteriza por que se hace uso de una estación maestra, quien hace de intermediario entre los abonados y los enlaces troncales hacia el exterior, dividiéndose la capacidad mínima de 60 canales entre un número de hasta 8 o 10 estaciones.

Esta división se hace posible gracias a la técnica digital de multiplaje en división de tiempo, desarrollado gracias a la experiencia obtenida en los sistemas TDMA empleado para las comunicaciones por satélites.

En este servicio, toda estación local, tendrá asignado un número de canales exclusivos para su servicio, en cualquier número, hasta cubrir la capacidad máxima del sistema.
La asignación de canales de cada una de las estaciones abonadas, pueden ser efectuados para su uso permanente, es decir en plan de canales pre-asignados o también en forma de canales asignados de acuerdo a demanda.

Otra particularidad del sistema, consiste en que en casos de comunicaciones rurales, en la que el tráfico hacia el exterior es relativamente pequeño, se puede utilizar la parte sobrante de la banda de cualquier radioenlace de microondas existente para su interconexión hacia los centros urbanos; es decir, sí este servicio va a ser implantado en una zona por donde pasa una red de microondas se puede efectuar una interconexión a través de ella sin comprometer su capacidad, con solo agregar un equipo combinador y separador de datos que es una especie de moduladores demoduladores en las estaciones terminales o repetidoras de microondas existentes.

La figura siguiente ilustra un ejemplo de aplicación de este sistema.

Fig. 60 Representación conceptual del sistema Multi direccional.

Fig. 61 Aplicación del sistema Multidireccional de Microondas.
SISTEMA DE RADIOENLACES PARA ABDONADOS

En el caso en que el número de abonados se hace más pequeño, es decir por ejemplo en el caso en que se hace necesario dar servicio por ejemplo de un solo teléfono por localidad o se tenga que dar servicio a abonados aislados, se hace más crítico aun la implantación del servicio debido a la disponibilidad de frecuencias.

En estos casos, si se considera de que el tráfico hacia estos abonados pueden ser muy pequeños, se hace posible dar el servicio compartiendo no solo el canal de radiofrecuencia, sino también el mismo canal telefónico entre varios abonados.

Con este objeto, se han desarrollado sistemas de radioenlaces para abonados en la que se hace uso común los canales telefónicos y de radio frecuencia entre un grupo de abonados.

El presente sistema, conocido como el sistema RSS, está formado por una estación base y un número de estaciones de abonados.

La estación base estará compuesto de un número de transmisores receptores de acuerdo al número de abonados y del tráfico de los mismos; y de un sistema de conmutación con funciones equivalentes al de un concentrador de línea y de central telefónica y de tránsito.

Las estaciones de abonados estarán instalados en los domicilios de los abonados, con la única limitación de tener vista libre hacia la antena de la estación base, y estará compuesto por las unidades necesarias para la transmisión y recepción del mensaje, utilizando el canal que en ese momento le asigna la estación base.

La estación base debe instalarse en un lugar que le de vista libre a todas las estaciones de abonados, por lo que generalmente se le ubica en un lugar alto y puede estar separado de la central telefónica, si se le conecta con otro enlace que puede ser físico o por radio.

La siguiente figura muestra un ejemplo de instalación de este servicio RSS con este sistema de radioenlace para abonados múltiples.

Fig. 62 Sistema RSS para abonados de radio
Las figuras siguientes muestran los diagramas de bloques de los equipos que forman el sistema RSS, para los casos de pequeña capacidad y otra para una capacidad mediana.

Fig. 63 Diagrama de bloques del sistema para 20 abonados

Fig. 64 Diagrama de bloques para un sistema RSS para 96 abonados
SISTEMAS DE SUPERVISION

Cualquiera que sea el sistema del radioenlace, se hace necesario contar con medios de supervisión y de control.

Es costumbre en este momento, emplear el método analógico para la transmisión de las señales de supervisión y de control, debido a su facilidad y economía.

En el caso en que se tenga una red del tipo híbrido, es decir de diferentes tecnologías y de diferentes fabricantes, es muy conveniente centralizar todos los indicadores de supervisión y de control, para que pueda ser atendido en forma automática por un personal reducido.

Con este objeto, se han desarrollado sistemas de supervisión centralizada, que haciendo uso intensivo de los micro procesadores, permiten poder controlar y supervisar cualquier sistema o combinación de sistemas de comunicaciones desde uno o varios centros de supervisión, permitiendo al operador, dar las instrucciones mas apropiadas al momento de producirse algún incidente.

Las siguientes figuras, indican dos ejemplos de la exhibición que se dispone en la pantalla de tubos de rayos catódicos a color en los puestos de operadores, y de los registros que se obtienen dentro de los procesadores, que pueden ser reproducidos en copias impresas.

Fig.65 Ejemplo de imagen del tubo CRT a colores del equipo de supervisión centralizada
Fig. 66 Ejemplo de Diagrama de bloques de Estación

<table>
<thead>
<tr>
<th>TIME</th>
<th>STATION</th>
<th>DESCRIPTION</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:19</td>
<td>ROI</td>
<td>DOOR</td>
<td>OPEN</td>
</tr>
<tr>
<td>07:19</td>
<td>ROI</td>
<td>MAINTENANCE</td>
<td>ON</td>
</tr>
<tr>
<td>08:50</td>
<td>ROI</td>
<td>MAINTENANCE</td>
<td>OFF</td>
</tr>
<tr>
<td>10:27</td>
<td>ROI</td>
<td>TOWER LIGHT</td>
<td>ALARM</td>
</tr>
<tr>
<td>17:08</td>
<td>RO2</td>
<td>ENGINE GENERATOR</td>
<td>OFF</td>
</tr>
<tr>
<td>17:08</td>
<td>RO2</td>
<td>DC POWER</td>
<td>NORMAL</td>
</tr>
<tr>
<td>END</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 67 Ejemplo de informe en la pantalla CRT

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>TX-1A</td>
<td>NORMAL</td>
</tr>
<tr>
<td>002</td>
<td>TX-1B</td>
<td>NORMAL</td>
</tr>
<tr>
<td>003</td>
<td>RX-1A</td>
<td>NORMAL</td>
</tr>
<tr>
<td>004</td>
<td>RX-1B</td>
<td>NORMAL</td>
</tr>
<tr>
<td>005</td>
<td>TX-2A</td>
<td>NORMAL</td>
</tr>
<tr>
<td>006</td>
<td>TX-2B</td>
<td>NORMAL</td>
</tr>
<tr>
<td>007</td>
<td>RX-2A</td>
<td>NORMAL</td>
</tr>
<tr>
<td>008</td>
<td>RX-2B</td>
<td>NORMAL</td>
</tr>
<tr>
<td>009</td>
<td>FIRE</td>
<td>NO</td>
</tr>
<tr>
<td>010</td>
<td>TEMPERATURE</td>
<td>NORMAL</td>
</tr>
<tr>
<td>011</td>
<td>TOWER LIGHT</td>
<td>NORMAL</td>
</tr>
<tr>
<td>012</td>
<td>DC POWER</td>
<td>NORMAL</td>
</tr>
<tr>
<td>013</td>
<td>AC POWER</td>
<td>NORMAL</td>
</tr>
<tr>
<td>014</td>
<td>ENGINE GENERATOR</td>
<td>OFF</td>
</tr>
<tr>
<td>015</td>
<td>MAINTENANCE</td>
<td>OFF</td>
</tr>
<tr>
<td>016</td>
<td>DOOR</td>
<td>CLOSE</td>
</tr>
</tbody>
</table>

Fig. 68 Ejemplo de Información de estado de alarmas en la pantalla CRT de colores.
COMPARACION DE COSTOS DE LOS DIVEROS SISTEMAS.

En general es muy difícil hacer comparación de costos de los sistemas, ya que depende de muchos factores, pero se puede decir que la tendencia actual está dirigida hacia la reducción de costos principalmente de los dispositivos electrónicos de los circuitos de alta integración.

 Esto hace inclinar la balanza a favor de los sistemas digitales, ya que tanto en los equipos de radio, multiplex, como de conmutación, se hace uso solamente de estos elementos, a comparación de los sistemas analógicos que requieren todavía de elementos convencionales como son los filtros, y otros, cuyo costo no podrá bajar en la forma como bajarían los circuitos integrados.

 En general se puede decir que como sistema total, se pueden obtener costos menores en los sistemas digitales, tanto en la etapa de su implementación, como en la etapa de operación y de mantenimiento.

NUEVO CONCEPTO DE INSTALACION DE EQUIPO DE MICROONDAS

In-Station Configuration for 1 + 1
Radio Relay System (Repeater Station)

Legend
TR: Transmitter-Receiver
IDB: Intermediate Distribution Bay
POB: Power Distribution Bay
NAR (RS): Supervisory and Control Equipment for Remote Station
NAS: Service Bay

Each component measures 130 (width) x 225 (depth) x 950 (height) mm.

How NEC's 500 Series Serves Time and Money

<table>
<thead>
<tr>
<th>In Factory</th>
<th>Transportation</th>
<th>On Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>Testing & Inspection</td>
<td>Unpacking</td>
</tr>
<tr>
<td>Conventional Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 Series Equipment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensional Drawings
BIBLIOGRAFÍA

- A. BRUCE CARLSON
 "Communication Systems"
 An Introduction to Signal and Noise in Electrical Communication
 Second Edition
 McGraw-Hill Book Company

- KENNETH K. CLARKE, DONALD T. HESS
 "Communication Circuits: Analysis and Design"
 ADDISON-WESLEY PUBLISHING COMPANY - Copyright 1971

- MODULACION
 F.R. CONNON
 EDWARD ARNOLD (PUBLISHERS) LTD. London 1975

- CIRCUITOS INTEGRADOS Y SISTEMAS
 FRANKLIN C. FITCHEN
 LITTON EDUCATIONAL PUBLISHING INC.

- ROGER L. Freeman
 "Telecommunication Transmission Handbook"
 Second Edition - Copyright August 1981
 John Wiley & Sons

- GEORGE KENNEDY
 "Electronic Communication Systems"
 INTERNATIONAL STUDENT EDITION

- HERBERT L. KRAUSS and CHARLES W. BOSTIAN, FREDERICK H. RAAB
 "Solid State Radio Engineering"
 Copyright 1980, by John Wiley & Sons; INC.

- ELECTRONICA Y AUTOMATICA INDUSTRIAL 1
 JOSE MOMPIN POBLET y Varios Autores de la Revista "Mundo
 Electrónico"
 MARCOMBO BOIXAREU, BARCELONA 1981

- INTERCONEXION DE PERIFERICOS A MICROPROCESADORES
 JOSE MOMPIN POBLET y Varios Autores de la Revista "Mundo
 Electrónico"
 MARCOMBO BOIXAREU EDITORES, BARCELONA 1981

- DENNIS RODDY, JOHN COOLEN
 "Electronic Communications"
 Reston, Virginia - A Prentice-Hall Company.
- MISCHA SCHWARTZ
 "Information Transmission, Modulation and Noise"
 THIRD EDITION, Copyright 1980
 McGraw-Hill Book Company

- HERBERT TAUB - DONALD SCHILLING
 "Electrónica Digital Integrada"
 Marcombo Boixareu Editores - Copyright 1980

- TEXAS INSTRUMENTS INCORPORATED
 Diseño con TTL (Designing with TTL Integrated Circuits)

- K. SAM SHANMUGAN
 "Digital and Analog Communication Systems"
 John Wiley & Sons - Copyright 1979

- R.E. ZIEMER Y W.H. TRANTER
 "Principios de Comunicaciones: Sistemas, modulación y ruido"

- ROBERT C. GENN JR.
 "Digital Electronics"
 A. Work Bench Guide to Circuits Experiments and Applications
 Prentice Hall, Inc.