AMPLIACION DE CAPACIDAD Y SERVICIO IP PARA
OPERADORES E ISPs DE AMERICA UTILIZANDO UN BACKBONE
TIER 1

INFORME DE SUFICIENCIA
PARA OPTAR EL TÍTULO PROFESIONAL DE:
INGENIERO DE TELECOMUNICACIONES

PRESENTADO POR:
JESUS JARVIK GAMARRA ALVAREZ

PROMOCIÓN
2010-I

LIMA-PERÚ
2013
AMPLIACION DE CAPACIDAD Y SERVICIO IP PARA OPERADORES E ISPs DE AMERICA UTILIZANDO UN BACKBONE TIER 1
Dedicatoria

A mis padres con mucho cariño que con su gran apoyo incondicional y gran ejemplo lograron que sea un buen profesional.
Actualmente el negocio mayorista para algunos operadores o ISPs, cuenta con algunas dificultades a la hora de pensar en su crecimiento o inicio de operaciones debido a la alta demanda de datos por parte de los usuarios finales. Es por esto que plantean contratar los servicios de interconexión IP de un proveedor Tier 1 con lo cual pueden acceder a una gran cantidad de servicios y contenidos con un elevado número de usuarios conectados logrando de esta manera interconectarse al Backbone IP global del proveedor el cual es completamente redundado y con topología mallada, lo que asegura estar en todo momento con total disponibilidad y optimo transporte del tráfico. Para lograr esto un operador o ISP tiene que contratar el servicio de transito internet de un proveedor Tier 1 el cual le ofrece conectividad directa a Internet a través del backbone IP de cobertura internacional. Con este servicio los operadores o ISPs logran un acceso de alta velocidad a Internet contratando accesos desde los 2 Mbps hasta 100 Gbps a través de un ancho fijo o escalable. Hay casos de cliente que desean llegar al NAP de las américas para interconectarse a otros proveedores de Internet para este tipo de necesidades también pueden contratar el servicio de capacidad de un Tier 1 como Telefonica Global Solutions o Level 3 para contratar servicios de capacidad de acuerdo al estándar SDH y SONET o servicios EoSDH en el caso que necesiten interfaz GigaEthernet al revés de las tradicionales tarjetas ópticas SDH. El cliente puede optar por cualquier de los proveedores de acceso local coubicados en los PoPs para extender los circuitos hasta su destino final.
INDICE

Prologo ..1
Introducción ..2

CAPITULO I

PLANTEAMIENTO DEL PROYECTO ..3
1.1 Descripción del Problema ..3
1.2 Objetivos ...3
1.3 Alcances y Limitaciones ..4
1.3.1 Alcances ..4
1.3.2 Limitaciones ..4
1.4 Justificación ..4

CAPITULO II

MARCO TEORICO ...5
2.1 Antecedentes del problema ...5
2.1.1 Situación del Mercado ..8
2.2 Bases teóricas ..11
2.2.1 Cable Submarino ...11
2.2.1.1 Características de los sistemas de cable submarino de fibra óptica según UIT.16
2.2.1.2 Sistema de protección en cable submarino ...19
2.2.2 Servicio SDH/SONET ...23
2.2.3 Servicio DWDM (Longitud de onda) ..24
2.2.4 Internet ..25
2.2.4.1 Estructura Jerárquica Tradicional ...29
2.2.4.2 ¿Qué es un NAP o un IX? ..31
2.3 Definición de términos ...32
2.3.1 Definiciones Generales ...32
2.3.2 Definiciones específicas ...32
4.3.2 Requerimientos Funcionales ... 60
4.3.3 Requerimientos de Niveles de Servicio (SLA) .. 61
4.3.4 Requerimientos de Gestion y Monitoreo .. 61
4.3.5 Requerimientos de Seguridad .. 61
4.4 Entregables del proyecto ... 62
4.5 Condiciones de presentación de propuestas .. 62
4.6 Condiciones de Adquisición .. 63
4.7 Plazos de entrega ... 63
4.8 Requisitos de aceptación y certificación .. 63
4.9 Garantía y mantenimiento .. 63
4.10 Presupuesto y tiempo de ejecución .. 63
Conclusiones y Recomendaciones ... 67
Anexo A
Glosario .. 68
Bibliografía ... 71
PROLOGO

En el presente informe, detallo y explico el procedimiento que se debe tener en cuenta a la hora de trabajar en un proyecto de ampliación de capacidad, el cual se encuentra basado en mi experiencia profesional liderando diferentes proyectos para clientes como Netflix, Google, Facebook, Amazon, Edgecast, etc.

En los últimos tiempos, ha surgido gran demanda por parte de los clientes finales requiriendo que los principales operadores como ISPs trabajen en el crecimiento de sus anchos de banda. Esta gran demanda se relaciona directamente con el uso de los dispositivos móviles así como el acceso a contenido multimedia en donde encontramos videos en alta definición los cuales requieren un mayor ancho de banda.

Debido a esta problemática, actualmente es requerido contratar los servicios de las empresas proveedoras de cable submarino que permiten acceder a grandes capacidades a través de su backbone Tier1.

Cabe aclarar que el presente informe es una propuesta para adquirir servicios para la salida a Internet por parte de un cliente que se encuentra en el departamento de Lima. Para el presente caso se planteó que el cliente tenga infraestructura para llegar al PoP de Lince del proveedor Telefonica Global Solutions.
El problema planteado en el siguiente informe de suficiencia se sustenta en la problemática actual que sufren diferentes operadores como ISPs por el tema de demanda de ancho de banda para la salida a Internet.

El incremento de la demanda de ancho de banda, ha ocasionado que las redes basadas en cable submarino aumenten considerablemente dejando de usar las redes basadas en satélite que tenían la problemática del limitante en ancho de banda. Hoy en día la gran mayoría de las comunicaciones internacionales se hace a través de las redes submarinas que a su vez se conectan a la nube de Internet a través de un Tier 1.

Los cables submarinos en el mundo de las telecomunicaciones tienen la misión de unir todos los continentes haciendo uso de la fibra óptica.

En el caso que un cliente desee salir a la nube de Internet necesitará interconectarse a la red de un Tier 1 para poder brindar el servicio de acceso a Internet a todos sus usuarios. Actualmente en Perú tenemos 3 cables submarinos que llegan a nuestra costa ingresando por Lurín, de estos 3 los que son usados para la salida de grandes capacidades son los cables de Telefonica Global Solutions y Level 3 (antes Global Crossing).

En el presente informe se describirá los requisitos y características técnicas para contratar el servicio de Transito de Internet a través de un Tier 1 revisando las diferentes etapas de implementación del servicio logrando de esta manera satisfacer las demanda interna por usuarios de los operadores o ISPs.
CAPITULO I
PLANTEAMIENTO DEL PROYECTO

1.1 Descripción del Problema
Actualmente los usuarios cada vez están demandando más ancho de banda debido a que tenemos diferentes maneras de consumirlo, tenemos usuarios residenciales, usuarios corporativos y de pymes, usuarios rurales y usuarios de telefónica móvil; todo esto genera que la el caudal que tiene contratado un operador se sature motivo por el cual busca la manera de realizar la ampliación de su ancho de banda solicitando los servicios de un carrier Tier 1.
El aumento de volumen de tráfico voz, data y video debido a la nueva generación de aplicaciones, convergencia de servicios y una mayor demanda por parte del usuario por tener la información de manera actualizada lo cual hace que se requiera más ancho de banda y poca latencia en los servicios ofrecidos.
Esta situación origina a los operadores la necesidad de evaluar nuevas soluciones para satisfacer la demanda de ancho de banda por parte de sus clientes.
El principal beneficio que traerá este documento es dar a conocer los servicios que ofrecen los carrier Tier 1 y analizar la toma de decisiones en un futuro a la hora de realizar una ampliación a la capacidad de la salida internacional.

1.2 Objetivos
El presente documento tiene como finalidad describir las especificaciones técnicas y económicas requeridas por un operador de telefonía fija y móvil para contar con una solución que permita la interconexión del tráfico de usuarios domésticos a través de un Carrier Tier 1 hacia Internet. La conexión a Internet debe ser entregado en el PoP de Lince.
Así mismo realizar el levantamiento de información para determinar y analizar el requerimiento necesario para la implementación del proyecto teniendo en cuenta la necesidad del cliente.
Elaborar un plan para adquirir los servicios de un carrier Tier 1.
1.3 Alcances y Limitaciones

1.3.1 Alcances
La topología de la red de interconexión entre el Carrier Tier 1 y el operador de telefonía, la cual cumplirá con todas las necesidades presentes y futuras.
Análisis, evaluación técnica y resultados de los costos de implementación.

1.3.2 Limitaciones
Este documento está restringido a los lineamientos establecidos por el operador para entregar el servicio en Lince.
Este documento está enfocado al proceso a seguir para la activación/ampliación con un Tier1 para la salida a Internet.
La organización solicita la confidencialidad de cierta información (diagrama real de la topología), por lo que todo lo relativo a las mismas solo será referido en forma genérica.

1.4 Justificación
La implementación de un nuevo enlace para el operador permitirá que pueda satisfacer la demanda de sus clientes ofreciendo disponibilidad y calidad de servicio.
En este capítulo se describen los conceptos fundamentales de todas las tecnologías presentes en la ejecución del proyecto así como las definiciones necesarias para entender el presente informe.

2.1 Antecedentes del problema

Según estudios se estima que para el 2016 el tráfico anual mundial de IP será de 1,3 zettabytes (un zettabyte equivale a un sextillón de bytes o a un trillón de gigabytes). Como ejemplo solo el aumento de tráfico IP mundial estimado entre el 2015 y 2016 supera los 330 exabytes que viene a ser en promedio la cantidad total de tráfico IP mundial generado durante el 2011 (369 exabytes). Entre los factores que impulsan este crecimiento de tráfico y penetración de servicios tenemos los siguientes puntos:

1. Aumento de los dispositivos como tablets, celulares y otros dispositivos inteligentes, así como las conexiones entre máquinas (M2M) que generan el aumento de la demanda en conectividad. De acuerdo al pronóstico del año 2016 habrá casi 18900 millones de conexiones de red, lo que quiere decir un promedio de 2.5 conexiones por persona en todo el planeta.

2. Aumento de los usuarios de Internet, se estima que para el 2016 habrá 3400 millones de usuarios de internet, esto quiere decir un 45% de la población mundial proyectada por las Naciones Unidas.

3. Mayor velocidad en los servicios de banda ancha a nivel mundial: Se estima que la velocidad promedio del ancho de banda aumentara cuatro veces, de 9 Mbps en el 2011 a 34 Mbps en el 2016.

4. Mayor consumo de video: se proyecta que para el 2016 cursara por Internet 1200000 minutos por segundo de video lo que es equivalente a 833 días o más de dos años durante cada segundo.

5. Aumento de las conexiones Wi-Fi: Se estima que para el 2016 más de la mitad del tráfico mundial de internet se originara de conexiones Wi-Fi.
Aspectos destacados de los dispositivos y el tráfico IP mundial:

Tráfico IP mundial total en "bytes"
- Se calcula que para el año 2016 el tráfico mundial de IP llegara a 1,3 zettabytes por año, o 110 exabytes al mes; lo que significa que se cuadruplicara respecto a los 31 exabytes mensuales correspondientes al año 2011.
- Se calcula que para el 2016 el tráfico mundial IP en promedio llegara a 150 petabytes por hora, lo cual significa 278 millones de personas transmitiendo de forma simultanea una película en HD (a una velocidad promedio de 1,2 Mbps)

Tendencias regionales del tráfico IP
- Se calcula que para el 2016 la región de Asia-Pacifico generar la mayor cantidad de trafico IP (40,5 exabytes por mes), manteniendo su primer lugar y superando a Norteamérica (27,5 exabytes al mes) que genera la segunda mayor cantidad de tráfico.
- Las regiones en las cuales se observa un crecimiento más rápido del tráfico IP en el periodo 2011-2016 son el Medio Oriente y África (tasa de crecimiento compuesto anual de 58%, lo que significa un crecimiento de 10 veces), y Latinoamérica (tasa de crecimiento compuesto anual del 49% lo que significa un crecimiento de 7 veces).
- Respecto a los países con mayor crecimiento de tráfico IP, encontramos a la India que ocupara el primer lugar con una tasa de crecimiento compuesto anual del 62% en el periodo 2011-2016. Y en un segundo lugar tenemos a Brasil y Sudáfrica ambos con una tasa de crecimiento anual del 53% dentro del periodo analizado.

Un factor clave del crecimiento: video de consumidores
- Se calcula que para el 2016 en todo el mundo habrá unos 1500 millones de usuarios de video por Internet, mientras en el 2011 solo fueron 792 millones.

Crecimiento mundial de los dispositivos
- Según los pronósticos para el año 2016 habrá casi 18900 millones de conexiones de red, es decir aproximadamente 2,5 conexiones por cada persona en el planeta.
- En el año 2011, las PC generaron un total del 94% del tráfico de Internet de todos los consumidores. Se estima que para el 2016 este porcentaje disminuirá a 81% lo que significa el impacto que genera la gran cantidad de dispositivos móviles como las tablets, smartphones, etc debido a que es usado por los consumidores y empresas para acceder a Internet.
- Se calcula que para el 2016, La Televisión representara más del 6% del tráfico mundial de internet (en el año 2011 fue 4%) y más del 18% del tráfico de video por Internet (en el año
2011 fue de 7%), lo que significa el impacto de los televisores con Internet en el tráfico mundial.

Dispositivos y conexiones compatibles con IPv6
- Según el estudio se estima que en el 2016 habrá 8000 millones de dispositivos fijos y móviles compatibles con IPv6 a nivel mundial, en contraste con los 1000 millones del 2011.
- Además, en el 2016 se calcula que el 40% de todos los dispositivos fijos y móviles del mundo serán compatibles con IPv6, en comparación con el 10% del año 2011.

TV en 3 dimensiones (3D) y de alta definición (HD) (funciones avanzadas de video)
- Se calcula que entre el 2011 y 2016 aumentara cinco veces el tráfico mundial de video lo que incluye la TV 3D y los de alta definición (HDYV).

Banda ancha móvil
- Se estima que del 2011 al 2016 el tráfico mundial de internet móvil aumentara 18 veces con lo cual alcanzara los 10,8 exabytes mensuales (o 130 exabytes anuales).

Uso compartido de archivos en el mundo
- Se estima que para el 2016 el tráfico P2P a nivel mundial será el 54% del tráfico mundial de archivos compartidos en internet, mientras que en el 2011 solo fue el 77%. Pero desde un punto de vista cuantitativo se calcula que la cantidad de tráfico P2P aumentara de 4.6 exabytes mensuales en 2011 a 10 exabytes mensuales en el 2016.

Tráfico IP empresarial mundial
- Se estima que para el 2016 las videoconferencias IP a nivel empresarial aumentaran seis veces, a una velocidad dos veces mayor que todo el tráfico IP empresarial, a una tasa de crecimiento compuesto anual del 42% durante el periodo 2011 a 2016.

Aspectos destacados del mercado potencial y de la adopción de servicios en el mundo Residenciales
- En 2011 había 1700 millones de usuarios residenciales con acceso fijo a internet en todo el mundo, según el estudio pronostica que para el año 2016 habrá 2300 millones de usuarios de este tipo de acceso.
- Se estima que la TV Digital será el servicio con el más rápido crecimiento en el mundo, cuyos suscriptores aumentaran de 694 millones ahora en 2011 a 1300 millones para el 2016.
- Según los cálculos, el servicio de voz sobre IP (VoIP) será el servicio residencial de crecimiento más rápido en el mundo, ya que aumentara de 560 millones de usuarios en
2011 a 928 millones en 2016.
-Se calcula que el servicio de música en línea será el servicio de Internet residencial de mayor penetración: en 2011 había 1100 millones de usuarios (el 63% de los usuarios de Internet residenciales) y se prevé que para el 2016 habrá 1800 millones de usuarios (79% de los usuarios de Internet residenciales).

Movilidad de consumidores
-Se estima que el número de consumidores móviles a nivel mundial aumentará de 3700 millones en 2011 a 4500 millones en el 2016.
-Se calcula que el video móvil será el servicio móvil de más rápido crecimiento por parte de los consumidores, cuyos usuarios aumentarán de 271 millones en 2011 a 1600 millones en 2016.
-Se según estudio calcula que el servicio de SMS a nivel mundial será el servicio móvil de mayor penetración: en 2011 había 2800 millones de usuarios (74% de los usuarios móviles), mientras que en el 2016 aumentarán a 4100 millones (90% de los usuarios móviles).

Empresas
-Se estima que los usuarios empresariales de Internet aumentarán de 1600 millones en 2011 a 2300 millones en el 2016.
-Se estima que el servicio de videoconferencia de escritorio crecerá con más rapidez en el mundo, cuyos usuarios aumentarán de 36400 millones en 2011 a 218900 millones en 2016.

2.1.1 Situación del mercado
El tráfico internacional de Internet sigue creciendo anualmente a buen ritmo.
El motor de crecimiento es la consolidación de la banda ancha con tarifa plana en el segmento minorista. El despliegue de los servicios UMTS tendrá un impacto directo en el perfil de tráfico de Internet.
Los analistas de mercado apuntan que la caída de precios ha podido tocar fondo al haberse alcanzado niveles similares a los costes de reposición de fibra.
En el mercado mayorista IP aún no se han detectado signos de estabilización de precios. Aunque la erosión de precios es significativa, el crecimiento del tráfico ha compensado hasta ahora la posible caída de ingresos. La estrategia de fidelización de clientes se ha basado en sostener ingresos por mayores volúmenes de tráfico.
Los ISPs se están planteando cuestiones sobre la neutralidad de la red/calidades de servicio diferente a precios diferentes.
Aunque los precios bajan, el crecimiento del consumo compensa esta reducción, resultando, al fin y al cabo un aumento en los ingresos de los proveedores de IP.

A continuación tenemos la tabla 2.1 donde podemos observar el crecimiento mundial de Internet por regiones y el crecimiento en el periodo 2000-2012.

Tabla Nº2.1 Crecimiento mundial de Internet (fuente: internetworldstats)

<table>
<thead>
<tr>
<th>World Regions</th>
<th>Population (2012 Est.)</th>
<th>Dec. 31, 2000</th>
<th>Internet Users (Latest Data)</th>
<th>Internet Users Penetration (% Population)</th>
<th>Growth 2000-2012 %</th>
<th>Users % of Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>1,073,380,925</td>
<td>4,514,400</td>
<td>167,335,676</td>
<td>15.60%</td>
<td>3606.70%</td>
<td>7.00%</td>
</tr>
<tr>
<td>Asia</td>
<td>3,922,066,987</td>
<td>114,304,000</td>
<td>1,076,681,059</td>
<td>27.50%</td>
<td>841.90%</td>
<td>44.80%</td>
</tr>
<tr>
<td>Europe</td>
<td>820,918,446</td>
<td>105,096,093</td>
<td>518,512,109</td>
<td>63.20%</td>
<td>393.40%</td>
<td>21.50%</td>
</tr>
<tr>
<td>Middle East</td>
<td>223,608,203</td>
<td>3,284,800</td>
<td>90,000,455</td>
<td>40.20%</td>
<td>2639.90%</td>
<td>3.70%</td>
</tr>
<tr>
<td>North America</td>
<td>348,280,154</td>
<td>108,096,800</td>
<td>273,785,413</td>
<td>78.60%</td>
<td>153.30%</td>
<td>11.40%</td>
</tr>
<tr>
<td>Latin America / Caribbean</td>
<td>593,688,638</td>
<td>18,068,919</td>
<td>254,915,745</td>
<td>42.90%</td>
<td>1310.80%</td>
<td>10.60%</td>
</tr>
<tr>
<td>Oceania / Australia</td>
<td>35,903,569</td>
<td>7,620,480</td>
<td>24,287,919</td>
<td>67.60%</td>
<td>218.70%</td>
<td>1.00%</td>
</tr>
<tr>
<td>WORLD TOTAL</td>
<td>7,017,846,922</td>
<td>360,985,492</td>
<td>2,405,518,376</td>
<td>34.30%</td>
<td>566.40%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

En la figura 2.1 observamos que la mayor cantidad de usuarios de Internet en el mundo está en Asia con un 44.8% de los usuarios de internet en el mundo.

Figura 2.1 Usuarios de Internet en el mundo

A continuación en la figura 2.2 podemos observar que 1 de cada 3 personas en el mundo tienen acceso a Internet.

Figura 2.2 Internet en el mundo (Fuente: Internetworldstats)
De acuerdo a la figura 2.3 podemos determinar que 1 de cada 10 personas conectadas en el mundo es latinoamericano. Se observa que la región con mayor número de personas conectadas es Asia seguido de Europa.

Figura 2.3 Participación en el mundo (Fuente Internetworldstats)

Según la figura 2.4 observamos que la penetración de internet en la región Latinoamérica y el Caribe fue de 8.7% respecto al promedio mundial.

Figura 2.4 Penetración de internet por regiones

A continuación en la figura 2.5 observamos que el continente americano representa el 13.4% del total de usuarios de internet a nivel mundial.
2.2 Bases teóricas

2.2.1 Cable Submarino

Un cable submarino se apoya en el fondo marino del océano y se utiliza para transportar energía eléctrica o transmitir comunicaciones. En el caso de los cables modernos de telecomunicaciones el elemento portador es de fibra óptica, con multiplexación en longitud de onda (WDMA) que utiliza la propiedad de la diferente propagación de las ondas de luz en una fibra óptica para emplear diferentes lambdas y aumentar la capacidad de transporte. A continuación se observa la sección de un cable submarino con sus diferentes componentes:

1. Polietileno
2. Cinta de Mylar
3. Cable de alambre de acero
4. Aluminio, con barreras frente al agua
5. Policarbonato
6. Tubo de cobre o aluminio
7. Gel de petroleo
8. Fibras ópticas
Figura 2.6 Sección de un cable submarino de telecomunicaciones

Colocación del cable submarino

Los cables submarinos se instalan y mantienen mediante barcos específicos, barcos cableros. El proyecto ha de comenzar con un reconocimiento batimétrico, para localizar el trayecto ideal, el más corto que no ponga en riesgo el cable.

Figura 2.7 Instalación de un cable submarino

Trazado

Para seleccionar el trazado óptimo se comienza con un estudio de cartas de navegación, y batimétricas, leyes y reglamentos de las zonas que se van a atravesar, actividades humanas, (pesca, zonas petrolíferas y prospecciones) y perspectivas sísmicas.

Los puntos de amarre se seleccionan en función de la red terrestre y del entorno costero. Una vez elegido el trazado preliminar, comenzará una misión de sondeo por medio de un barco oceanográfico. Se suele estudiar un pasillo de 10 kms de anchura para poder detallar la batimetría con menos de un metro de error. En aquellas zonas donde se prevé que puedan hacerse zanjas, se hacen calas para determinar la naturaleza y dureza del suelo. Con esas informaciones se determina el trazado definitivo, el tipo de cables a emplear y las
longitudes precisas. También hay que tener en cuenta las particularidades de los fondos marinos y del tipo de cable para calcular el exceso u holgura de cable que conviene. Un cable escaso puede provocar tensiones y uno excesivamente largo generará coca.

Embarque
La operación de embarque consiste en cargar el cable y los repetidores en el barco. Se hace un plan de reparto de cargas en el barco, sobre todo basándose en la secuencia de trabajos, sentido de la colocación y orden de operaciones. El cable se estiba en las bodegas del barco y los repetidores se guardan en lugares climatizados. Al terminar el embarque y los empalmes, se verifica la calidad de estos mediante técnicas ecométricas y reflectométricas, para verificar la conformidad del sistema antes de hundirlo.

![Figura 2.8 Preparación del cable en la bodega](image1)

Colocación

Amarre a tierra: el barco se sitúa en el trazado deseado lo más próximo a la costa posible. Se remolca el cable a la playa sosteniéndolo mediante boyas, allí se amarra y conecta a la red terrestre. Falta por librar las boyas para que el cable se deposite en el fondo.

![Figura 2.9 Amarre de un cable submarino](image2)
Colocación en zanjas submarinas: en las zonas sensibles, cuando la naturaleza del terreno lo permita, el cable se coloca en zanjas de 80 cms, a una profundidad entre 20 a 1500 m. Para ello el barco cablero remolca una especie de arado que hace un surco. El cable se desenrolla desde el mismo barco, pasa por el arado y se deposita en la zanja.

Figura 2.10 Arado submarino para la instalación de zanjas

Colocación principal: Fuera de las zonas costeras, la técnica clásica de colocación "a fondo" se basa en una máquina que lleva el barco cablero. Ella extrae el cable de las bodegas, controla su longitud en función de la velocidad del barco y le da el exceso de longitud u holgura precisa para que se acople bien al fondo, sin tensiones.

Figura 2.11 Maquina lineal de instalación

Reparación de los cables
Los cables submarinos pueden averiarse por diversas causas, enganches con redes de pesca, con las anclas de barcos, debido a avalanchas submarinas, por movimientos sísmicos y por otras razones. Conviene recordar que en tiempos de guerra, las fuerzas enemigas trataban de cortar los cables de sus oponentes.
Para reparar un cable submarino, el barco cablero draga el fondo con un grampín. Si el cable está a gran profundidad, se ha de cortar en dos segmentos que habrán de izarse al barco. El tramo averiado se sustituye por otro de al menos dos veces la profundidad de agua.

Figura 2.12 Reparación de cable submarino

En las principales rutas de cable hay una serie de puertos que se han especializado en cableros. El trabajo de dichos barcos resultó fundamental para mejorar las técnicas de colocación y reparación, así como para desarrollar la colocación enterrada, por medio de un «arado» que hace un surco y entierra el cable en zonas sensibles.

Redes de cable en el mundo:

En la figura 2.13 podemos observar los diferentes cables submarinos que tenemos tendidos en el océano interconectando diferentes continentes.

Figura 2.13 Mapa mundial de cables submarinos
A continuación en la figura 2.14 observamos un el tráfico mundial de internet en donde encontramos que en la región de America todo el tráfico se concentra en Estados Unidos.

Figura 2.14 Mapa del tráfico mundial de internet

2.2.1.1 Características de los sistemas de cable submarino de fibra óptica según UIT

Un sistema de cable submarino de fibra óptica tiene las siguientes características técnicas específicas:

a) Un sistema de cable submarino debe tener una larga vida útil y una elevada fiabilidad; la Razón principal es que debido a la dificultad de acceso a la planta sumergida, la construcción y el mantenimiento de un enlace son largos y costosos; además, la mayoría de los enlaces submarinos tienen una importancia estratégica en la red de transmisión y la interrupción de un enlace normalmente provoca pérdidas muy significativas de tráfico y de ingresos.

b) Las características mecánicas de un sistema de cable submarino han de permitir que:

b.1) Se instale en el fondo del mar con exactitud, con la holgura correcta y teniendo debidamente en cuenta los aspectos relativos a la seguridad; las instalaciones en aguas profundas pueden alcanzar los 8000 metros. Por regla general, los sistemas de cable submarino deberán ser instalados, enterrados e inspeccionados por buques cableros y equipos sumergidos especialmente diseñados al efecto.

b.2) Resista las condiciones ambientales del mundo marino a la profundidad de su instalación y especialmente la presión hidrostática, la temperatura, la abrasión, la corrosión y la vida marina;

b.3) Esté protegido adecuadamente (blindándolo o enterrándolo) contra la agresión provocada, por ejemplo, por los palangres o las anclas;
b.4) Soporte la recuperación desde esas profundidades, la subsiguiente reparación y el nuevo tendido, con la atención debida a la seguridad.

c) Las características materiales de un sistema de cable submarino deben permitir a la fibra óptica:

c.1) Alcanzar la fiabilidad deseada durante toda su vida nominal;

c.2) Tolerar las pérdidas indicadas y los mecanismos de envejecimiento, sobre todo las curvaturas, la deformación, el hidrógeno, la tensión, la corrosión y la radiación.

d) La calidad de transmisión de un sistema de cable submarino debe ajustarse, como mínimo, a UIT-T G.821.

La figura 2.15 muestra el concepto básico de los sistemas de cable submarino de fibra óptica y los límites dentro del mismo. Pueden incluirse los repetidores submarinos ópticos o las unidades de derivación submarinas ópticas, dependiendo de los requisitos de cada sistema.

En dicha figura, A representa las interfaces del sistema en la estación terminal (donde el sistema puede interconectarse con enlaces digitales terrenales o con otros sistemas de cable submarino) y B representa uniones en playa o puntos de amarre. Los números de la figura, que aparecen entre paréntesis se refieren a términos definidos en UIT-T G.972 (Definición de términos pertinentes a los sistemas de cable submarino de fibra óptica.).

En la siguiente página se describe un sistema de cable submarino.
Figura 2.15 Ejemplo del sistema de cable submarino de fibra óptica

NOTA 1 - A representa una interfaz del sistema.
NOTA 2 - B representa puntos de amarrar o uniones de playa (1006).
NOTA 3 - X representa una caja de union de cables (5025).
NOTA 4 - Los números entre parentesis hacen referencia a UIT-T G.972.
2.2.1.2 Sistema de protección en cable submarino

El sistema de cable submarino está compuesto por pares de fibras en una “Configuración de Anillo” que han sido implementadas mediante el desarrollo de los últimos equipos disponibles en tecnología DWDM. Se conectan administradores de banda ancha a los anillos de fibra, y al anillo por donde fluye el tráfico se lo llama “WORKING” mientras que al otro anillo se lo denomina “PROTECTION”. Se forman dos anillos, uno Norte y uno Sur, este diseño mejora la capacidad de recuperación, haciendo posible, en el caso de una falla importante, intercambiarse independientemente, diferenciando de manera efectiva a la red en el mercado.

Configuración en anillo

Una configuración de anillo de cuatro fibras consiste en multiplexores add-drop (ADM) de cuatro fibras y opcionalmente regeneradores. El ADM de cuatro fibras es el tipo de elemento de red para un sistema de anillo de cuatro fibras. Cuando se configura el ADM como un ADM NE de cuatro fibras, se lo equipa con cuatro interfaces ópticas STM-64: dos en funcionamiento y dos de protección. Cada interface óptica STM-64 opera en un modo bi-direccional. Un sistema de anillo de cuatro fibras tal como el que se puede apreciar en la figura 2.16 incluye dos o más ADM de cuatro fibras.

![Figura 2.16 Anillo](image-url)
Conmutación de Protección en Anillo. (MS-SPRing)

La protección para tráfico en multiplexores add-drop MS-SPRing de cuatro fibras provee la capacidad de reparar y restaurar el tráfico a través del SPAN switching y el switching de anillos. Existe un periodo de espera para la restauración (WTR) en el SPAN switching y de anillos. Con el fin de ilustrar el funcionamiento de esos mecanismos de protección, presentamos el siguiente ejemplo donde existen 3 Módulos de Transporte Sincrónico-1 (STM-1) de tráfico entre el nodo A y el nodo D. Ningún switch de protección se encuentra en efecto y el anillo que aparece en la figura 2.17 funciona normalmente.

![Diagrama de ejemplo](imagen)

Figura 2.17 Anillo con 3 STM-1s entre Nodo A y Nodo D

Span Switch

Una falla de la fibra óptica o de los equipos ocasiona un SPAN switch. Este es un switch bi-direccional durante el cual el tráfico se mueve a los canales de protección a lo largo del SPAN. La figura 2.18 ilustra lo que sucede en caso de una falla en una de las interfaces ópticas STM-64 en funcionamiento. Esta misma situación se da también cuando un corte de fibra afecta la comunicación entre interfaces en funcionamiento. Es importante notar que otro tipo de tráfico entre el nodo A y el nodo D (por ejemplo, tráfico que pasa desde el nodo B a través del nodo A y que termina en el nodo D) también será cambiado al canal de protección STM-64. El proceso de span switching se lleva a cabo exactamente de esta manera en redes como la de proveedores de cable submarino donde se implementa el switching HERS (Head End Ring Switching).
Figura 2.18 Anillo con span switch entre nodo A y nodo D

Switch de Anillo

Una falla en un ADM de cuatro fibras o de una ruta de fibras (por ejemplo, si tanto los pares en funcionamiento como los de protección se cortan) ocasiona un switch de anillo. El switching de anillo desvía al tráfico fuera del punto de falla. En la figura 2.19 podemos observar un ejemplo de un anillo de cuatro fibras que lleva 3 STM-1 entre los nodos A y C. Analizaremos ahora lo que sucede en caso de un corte total de fibra en uno de los segmentos del anillo. Consideramos dos situaciones: un MS-SPRing de cuatro fibras sin HERS y uno con HERS.

Figura 2.19 Anillo con 3 STM-1s entre Nodo A y Nodo C
En el caso de un MS-SPRing “normal” de cuatro fibras, el tráfico afectado será re-dirigido al nodo que es adyacente al corte de fibra. En la figura 2.20, se puede observar que esto ocurre en el nodo D. La desventaja de esta implementación es que el tráfico es innecesariamente enviado a través del segmento A-D incrementando las demoras en la señal en los 3 STM-1 entre los nodos A y C. Estas demoras son relativamente insignificantes en anillos con una circunferencia típica de menos de 1200km. Sin embargo, los sistemas transoceánicos de anillo como la mayoría de proveedores de cable submarino por lo general poseen circunferencias de varios miles de kilómetros. El tamaño de estos sistemas significa que el uso de tecnología MS-SPRing “normales” de cuatro fibras retrasaría de manera significativa la propagación de la señal en el caso de un switch de anillo.

Figura 2.20 Fibra MS-SPRing con una conmutación de anillo.

La figura 2.21 muestra la misma red MS-SPRing de cuatro fibras utilizando HERS para evitar demoras en la señal.

Figura 2.21 Fibra MS-SPRing con conmutación de anillo usando HERS
HERS también le permite a los proveedores de cable submarino extender los servicios SDH que producen la menor demora en el switch; convirtiéndolo en la plataforma de Capa 1 ideal sobre la cual los servicios de las Capas 2 y 3 pueden funcionar.

2.2.2 Servicio SDH/SONET

Synchronous Digital Hierarchy (SDH) – Estándar Europeo
Synchronous Optical Network (SONET) – Estándar Americano

Estándares de transmisión de señales ópticas sincronizadas para el transporte de información digital a velocidades a partir de 45 Mbps (SONET) o 155 Mbps (SDH).

Está orientado a soluciones punto a punto en las que el cliente tiene establecidas sus necesidades de capacidad y desea concentrarse en el desarrollo de otros aspectos de sus recursos de comunicación, en contraste con soluciones basadas en el servicio de Longitud de Onda que requieren una mayor dedicación y control de red por parte del cliente.

En la figura 2.22 se muestra las diferentes velocidades que se ofrecen los servicios de capacidad por los proveedores de cable submarino para este caso se observa los servicios ofrecidos por Telefónica Global Solutions (TGS).

<table>
<thead>
<tr>
<th>VELOCIDADES</th>
<th>NEGOCIO</th>
<th>CAPACIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Gbps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5Mbps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Mbps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4Mbps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>45 OC3</td>
<td></td>
</tr>
<tr>
<td>622</td>
<td>2.500 OC48</td>
<td></td>
</tr>
<tr>
<td>10.000</td>
<td>10 Gbps</td>
<td></td>
</tr>
</tbody>
</table>

Figura 2.22 Tabla de velocidades SDH/SONET

Esquema del servicio

Se pueden diferenciar cotizaciones POP to POP y End to End dependiendo del interés del cliente en recibir la conectividad en el POP de entrega del proveedor o en su propia sede o POP, caso en el cual se debe incluir el “local tail” como un coste directo del proyecto.

En la figura 2.23 podemos observar el esquema para el servicio PoP to PoP en donde observamos 2 segmentos: El backbone del proveedor y el acceso local al PoP del cliente.

En el presente informe se describe local loop distribuidos en diferentes puntos de Lima con el proveedor local Telefónica del Perú.
- **Backbone**: Conectividad SDH/SONET entre POPs del proveedor en diferentes ciudades.
- **Red de Acceso (local tails)**: Se ofrece a los clientes el acceso a la Red del proveedor a través de rutas diversificadas físicamente entre Punto de Presencia (POP) del cliente y los Puntos de Presencia (PoP) del proveedor en cada ciudad.
- **Cobertura**: Los equipos y espacio necesarios para conexiones pueden adaptarse a las necesidades del cliente.

2.2.3 Servicio DWDM (Longitud de onda)

Es un servicio de capacidad que proporciona enlaces sin protección a nivel óptico con velocidades de 2,5 o 10 Gbps basados en tecnología DWDM (Multiplexación Densa por División de Longitud de Onda).

DWDM es una tecnología de comunicaciones ópticas que multiplexa diversas longitudes de onda (lambdas) sobre una misma fibra óptica.

Está orientado a facilitar conexiones ópticas punto a punto como solución singular o como constituyente de estructuras más complejas en las que el cliente tras definir sus necesidades de capacidad se responsabiliza del desarrollo de esa estructura. Es decir el cliente contrata la longitud de onda con los elementos de transmisión óptica asociados asumiendo el diseño, planificación y control de los elementos complementarios de su red.

Cabe resaltar que en cualquier caso es una solución que no incluye auto restauración por lo que ha de ser el propio cliente el que deba de dotarla.

A continuación en la figura 2.24 observamos el esquema basado en tecnología DWDM.
2.2.4 Internet

A continuación encontraremos los conceptos generales relacionados al Internet:

IP (Internet Protocol): Protocolo de conmutación de datos desarrollado por la Defense Advance Research Project Agency (DARPA) a mediados de los 70, para comunicar las instituciones de investigación de los EEUU.

La información a transmitir se fragmenta en trozos llamados paquetes. Cada paquete es enviado (enrutado) de manera independiente.

La implementación actual de la Internet pública se desarrolla sobre IP versión 4, si bien se han iniciado las primeras implementaciones comerciales de IP versión 6.

Cada elemento de red se identifica mediante una dirección IP.

Direccionamiento IP: Es un conjunto de 32 bits (grupos de 8 bits) lógicamente dividida en dos partes: Dirección de red y dirección de host (dentro de la red).

En función de los campos reservados para red o para elementos de red, se habla de familia de Clase A, Clase B, Clase C... La familia más común es la clase C.

```
194.224.55.24
```

Figura 2.25 Dirección IP

“Host”: cada una de las “máquinas” en una red IP.

Existen mecanismos para poder fraccionar una red en subredes, de manera que no se desperdicien numeraciones.

Las direcciones IP son asignadas por organismos oficiales regionales: RIPE (Europa & Norte de África), ARIN (USA), APNIC (Asia & Pacifico) y LACNIC (Latinoamérica).

DNS: Domain Name Service: Es un servicio que corre sobre protocolo IP para la resolución de nombres de dominio.

Un nombre de dominio es una cadena alfanumérica que identifica una máquina en una red (www.google.com.pe).

Los “domain names” son convertidos a direcciones IP mediante el DNS.

Figura 2.26 Nombres de dominio
Router: Los paquetes de información son conmutados a lo largo de una red IP gracias a los “routers” o encaminadores. Por definición, un router tiene que estar conectado a redes (o subredes) IP diferentes.

![Figura 2.27 Router](image)

De esta manera podemos imaginar la Internet pública como una red troncal constituida por “routers” que encaminan los paquetes de unos “hosts” a otros.

Protocolo de enrutamiento: Los routers aprenden los caminos por los que enrutar los paquetes gracias a los protocolos de enrutamiento.

Un protocolo de enrutamiento puede ser estático (fijo) o dinámico (el router va aprendiendo los caminos a partir de unas métricas).

La tabla de routing recoge los encaminamientos a todas las rutas posibles:

![Figura 2.28 Tabla de routing](image)

La tabla de routing es única para cada router.

En el caso de que exista más de un camino para alcanzar una ruta, se decidirá un camino óptimo en función de la métrica que utilice el protocolo en cuestión.

Posibles métricas (criterios para determinar el camino óptimo):

1. Número de saltos (“hops”) entre routers
2. Número de saltos entre AS
3. Ancho de banda
4. Carga de los enlaces
5. Retraso

6. Fiabilidad

El protocolo de routing estándar utilizado en el negocio de mayorista Internet es BGP v.4 (Border Gateway Protocol versión 4).

BGP: Border Gateway Protocol: BGP es un protocolo dinámico. Inicialmente los routers se intercambian las tablas completas de routing, y después exclusivamente se intercambian los cambios mediante “routing updates”.

Es imprescindible correr BGP v.4 cuando se tiene más de un proveedor de Internet.

Las sesiones BGP se establecen entre Sistemas Autónomos.

Un Sistema Autónomo es una colección de redes bajo una administración y que comparten una política de encaminamiento común.

Un Sistema Autónomo puede identificar a una organización, una red geográfica dentro de una organización, una red de servicio (VoIP), etc.

Un Sistema Autónomo se identifica por un número decimal entero menor de 65536 que es asignado por las mismas organizaciones que las direcciones IP. Por ejemplo, el Sistema Autónomo de la Red Internacional IP de Telefónica Wholesale es 12956.

BGP utiliza la métrica del salto entre los Sistemas Autónomos para determinar el camino óptimo. No tiene en cuenta parámetros relacionados con la calidad medida (retardos, fiabilidad...) en su determinación del camino óptimo.

Sentido del tráfico en Internet: Tráfico IP: Tráfico de los bits

“Entrante”/ “Saliente”: se refiere a la interfaz del router sobre el que se hacen las medidas.

El tráfico en el sentido usuario hacia Internet es denominado “upstream”; en el sentido contrario “downstream”.

![Figura 2.29 Trafico entrante y saliente](image)
En la actualidad la mayor parte del tráfico Internet es generado por aplicaciones de navegación en Internet, y sobre todo video.

Aplicaciones Peer to Peer (P2P): En aplicaciones de navegación en Internet, el tráfico en sentido downstream es sensiblemente mayor que el upstream. Sin embargo, en aplicaciones del tipo P2P el tráfico es balanceado.

Hace unos años el tráfico generado por las aplicaciones P2P era el predominante en la red., disparado con la aparición del ADSL, ya que en este tipo de accesos se conjuga un gran ancho de banda en servicio con una tarificación plana.

Se entiende por P2P la compartición de servicios y recursos de cliente (archivos, juegos...) de forma directa y descentralizada sin el uso de servidores centrales.

La comunicación es extremo a extremo, entre usuarios finales; los usuarios finales pasan a ser Servents (Server & Client a la vez), suministradores y consumidores de información de forma simultánea.

Se produce una distribución exponencial de los contenidos: cada usuario que se descarga el contenido pasa a su vez a ser transmisor; los usuarios descargan estas aplicaciones en sus PC’s y a partir de ahí no vuelven a interactuar más con los suministradores de software, sino con otros usuarios.

Los usuarios de estas aplicaciones constituyen comunidades virtuales que adoptan el nombre de la aplicación. Así, se habló de la red Napster, Gnutella (emule), FastTrak (protocolo usado por Kazaa, Grokster y otros).

![Figura 2.30 Aplicaciones P2P](image-url)
IPv6: Esta nueva versión se desarrolla para solventar ciertas limitaciones que presenta IPv4:

1. Espacio de direccionamiento
2. Inclusión de calidades de servicio: priorización de paquetes
3. Seguridad
4. Movilidad

Las comunidades científicas de todo el mundo han liderado el desarrollo de IPv6 en entornos piloto. Telefónica ha participado activamente en algunos de estos proyectos (Euro6x, 6net...), siendo pionera en la retransmisión de servicios multimedia sobre una red IPv6 transatlántica entre Sudamérica (Brasil) y Europa.

2.2.4.1 Estructura Jerárquica Tradicional

Tier1: No existe una definición oficial para este concepto, pero quiere decir que alcanza todas las rutas de Internet gracias a su propia red, la de sus peers o la de sus clientes. Según la definición estricta no tendrían que comprar tránsito a nadie. Ejemplo: Sprint, Level3, Telefonica Global Solutions.

Tier2: Necesita comprar tránsito de un Tier1 para completar la visibilidad de todas las rutas de internet.

ISP: Con cobertura y contenido menor a un Tier2.

En la figura 2.31 podemos observar la estructura jerárquica tradicional del Internet.

![Figura 2.31 Estructura Jerárquica tradicional](image-url)
Negocio Mayorista de Internet

Se trata de intercambiar volúmenes de tráfico IP.

Un ISP (Proveedor de Servicio Internet) se tiene que conectar con otros ISPs para garantizar a sus clientes visibilidad a todas las rutas de Internet.

Las relaciones de intercambio de tráfico son en general, desde el punto de vista del modelo de negocio, de dos tipos:

1. Peering
2. Tránsito

Peering/Transito

Peering

- No existen flujos económicos
- Se proporciona acceso a parte de las rutas de Internet (cada peer muestra ciertas rutas de sus clientes)
- No existen garantías de servicio (SLA’s)
- Interconexión entre proveedores del mismo “nivel jerárquico”
- Los dos “players” aportan el mismo valor en la relación (esto no significa que el trafico este balanceado en ambas direcciones)
- Un peering puede ser:

 Privado: Circuito de acceso privado entre los dos proveedores; normalmente para grandes volúmenes.

 Público: A través de un Internet Exchange Point (IX) or Neutral Point (NAP)

Transito

- Existen pagos del cliente al proveedor
- Se proporciona acceso a todas las rutas de Internet: “full routing”
- Se incluye garantía de servicios (SLA’s)
- Interconexión a un “nivel jerárquico superior” (cliente/proveedor)

El valor de un proveedor de Internet se medirá en función del tráfico que pueda generar basándose en dos criterios:

1. “Eyeballs” (Ojos): número de usuarios finales conectados a un proveedor (recientemente conexiones ADSL, debido a la importancia creciente de las aplicaciones P2P)
2. Contenidos: número e importancia de los contenidos en su red.

Dependiendo de estos dos criterios el “ranking” de este proveedor le permitirá hacer peering con o comprar tránsito de otro proveedor.
En el negocio mayorista de internet cada proveedor elabora su política de peering para aceptar/denegar solicitudes.

Peering de Pago

La evolución del negocio de Internet ha motivado la aparición de nuevos conceptos como el peering de pago o el acuerdo de compra/venta, que matizan la definición tradicional de Peering/Tránsito.

Ocasionalmente conexiones de peering podrían convertirse en clientes STI en la modalidad de peering de pago. Mantendrían las mismas características comerciales que tenían hasta ahora.

Este tipo de players suelen ser proveedores de contenidos, por lo que el perfil de tráfico es distinto al de los clientes ISP (tránsito): el tráfico que nos entregan es muy superior al que les entregamos. En los casos de ISP, como son la mayoría de los clientes STI, el tráfico que les entregamos es mayoritario.

Este tipo de clientes seguirán teniendo consideración de peers, aunque se les apliquen procedimientos de cliente, como es la facturación, atención de averías, etc.

Está orientado a proveedores de contenido en los que la relación entre el peer y Tier1 ya no es equitativa, bien porque el Tier1 aporta más que el peer, o porque el peer solicita una ampliación del acuerdo que supone un despliegue de infraestructuras (tarjetas, etc.).

Las opciones comerciales que presenta esta nueva tipología de cliente son heredadas de Clientes de transito internet, a las que se les incluirían unas opciones específicas: SLAs de servicio opcionales y una gestión proactiva y reactiva del balanceo de tráfico.

El servicio es equivalente al servicio transito internet, pero ofrecido a operadoras de peering con las que se llega un acuerdo de pago. Las únicas diferencias son:

- Cambio de la configuración del servicio, ya que el puerto se configura como peer y no como tránsito.

- Atención al cliente, requiere conocimientos específicos de tratamiento a peers.

2.2.4.2 ¿Qué es un NAP o un IX?

Son centros inicialmente concebidos para intercambio de tráfico de internet. De esta manera se optimiza el transporte de tráfico (se ahorrán costes en el acceso internacional a Internet).

Los NAPs están tradicionalmente gestionados por organizaciones independientes y sin ánimo de lucro en el negocio de Internet. Dependiendo de las políticas de cada NAP se puede, o no, comercializar servicios en ellos e intercambiar tráfico internacional.
Los ISPs pagan una cuota de socio por adherirse al NAP más los costes asociados al alojamiento de equipos y la puerta física a la red del NAP. Las sesiones BGPs se establecen exclusivamente con los ISPs, con los que previamente se haya llegado a un acuerdo comercial de peering. Algunos de los NAP’s más destacados en America son: Equinix Ashburn (Virginia.), Equinix Dallas, PAIX Palo Alto, Miami NAP. A continuación en la figura 2.32 observamos la infraestructura de Miami NAP que es el punto de interconexión de los diferentes operadores de America contra el resto del mundo.

![Miami NAP, Verizon Terremark](image)

2.3 Definición de términos
2.3.1 Definiciones Generales
Circuito On Net
Circuito que se transporta sobre la red de capacidad del proveedor Tier 1 sin emplear red de otros proveedores.

Circuito On + Off Net
Circuito en el cual un tramo se transporta sobre la red de capacidad del proveedor Tier 1 y uno o más tramos se transporta sobre redes de otros proveedores.

Circuito Off Net
Circuito que se transporta sobre redes de terceros.

STI
Servicio de transito internet ofrecido por el proveedor Tier 1.

2.3.2 Definiciones específicas
Ethernet
Familia de tecnologías que inicialmente fue diseñada para desplegar conectividad dentro de redes locales (LAN). Actualmente es usado en una gran variedad de equipos y se extiende a las redes metropolitanas y de largo alcance. Dentro del Modelo OSI ofrece servicios hasta la capa 2.
Gigabit Ethernet
Tecnología Ethernet con velocidad de transmisión de 1 Gbps. En este informe se abrevia como GE.

10 Gigabit Ethernet
Tecnología Ethernet con velocidades de transmisión alrededor de los 10 Gbps. Tiene 2 variantes: WAN y LAN. En este informe se abrevia como 10 GE.

IEEE 802.3
Estandarización de las tecnologías Ethernet propuesta por el Instituto de Ingenieros Eléctricos y Electrónicos. En el presente informe seguimos dicha estandarización.

SDH
Jerarquía Digital Síncrona (Synchronous Digital Hierarchy). Estándar de transmisión digital de datos. Las redes SDH se describen en la Recomendación G.803 de la UIT.

EoSDH
Ethernet sobre SDH (Ethernet over SDH). Servicios Ethernet transportados sobre una red SDH.

GFP
Procedimiento Genérico de Trama (Generic Frame Procedure). Técnica de mapeo que permite transportar una gran variedad de protocolos (Ethernet, HDLC, MPLS, IP, etc.) sobre SDH. Descrito en la recomendación G.7041/Y.1303 de la UIT.

VC
Contenedor Virtual (Virtual Container). Elemento de la trama SDH que contiene la información propiamente dicha (sin cabeceras ni punteros). Se denotan como VC-n, donde n es un número natural que indica su tamaño.

VCAT
Concatenación Virtual (Virtual Concatenation). Técnica que permite agrupar dos o más contenedores virtuales (VCs) para formar un contenedor de mayor capacidad. Con esta técnica los VCs no necesitan ser contiguos e incluso pueden seguir rutas distintas. El número de VCs que puede utilizarse en una concatenación virtual es flexible.

LCAS
Esquema de Ajuste de Capacidad de Enlace (Link Capacity Adjustment Scheme). Técnica que permite modificar de manera dinámica el ancho de banda de un enlace, variando el número de contenedores virtuales que lo conforman sin afectar el tráfico. Descrito en la recomendación G.7042/Y.1305 de la UIT.
WDM
Multiplexación por División de Longitud de Onda (Wavelength Division Multiplexing). Tecnología de multiplexación que consiste en transportar dos o más señales de luz por una misma fibra óptica. Esta tecnología se describe en la Recomendación G.671 de la UIT y se definen tres tipos: WWDM, CWDM y DWDM.

DWDM Multiplexación por División de Longitud de Onda (Dense Wavelength Division Multiplexing)
Multiplexación WDM con una separación entre canales ópticos igual o menor a 1000 GHz.

OTN
Red de Transporte Óptica (Optical Transport Network). Tecnología de redes utilizada para transportar señales a través de canales ópticos siguiendo el estándar G.709 de la UIT. Esta tecnología está estrechamente relacionada con DWDM.

Más definiciones y un listado de abreviaturas se encuentran en el Glosario del presente informe.

2.4 Servicios Ethernet
2.4.1 Servicios Ethernet sobre red SDH
Los proveedores Tier1 ofrecen enlaces Ethernet punto a punto sobre su red SDH. Las tarjetas GE de los proveedores Tier1 cumplen con la especificación G.7041/Y.1303 de la UIT, permitiendo el transporte de tramas Ethernet sobre SDH mediante procesos GFP. Los puertos ópticos GE cumplen con el estándar 1000 BASE LX y utilizan conectores LC. Su longitud de onda nominal es 1310 nm (2ª ventana) con alcance de hasta 10 Km usando fibras monomodo.

Existen dos variedades de 10 Gigabit Ethernet: 10 GE WAN y 10 GE LAN. Dependiendo del hardware utilizado, los equipos de transmisión pueden soportar una o ambas variantes. En todos los casos el medio de transmisión es óptico.

2.4.2 Tramas Ethernet, GFP y anchos de banda
La velocidad real de un servicio EoSDH es variable y depende del tipo de tráfico que transmita el cliente. Esto lo diferencia de un servicio SDH, cuya velocidad es fija e invariable.
La trama Ethernet básica consta de cabeceras (14 bytes), un código de detección de errores (FCS, de 4 bytes) y la carga útil (payload, de longitud variable). La carga útil transporta la información y su tamaño puede variar de 46 a 1500 bytes. De este modo, el tamaño total de
la trama fluctúa entre 64 y 1518 bytes. A continuación se muestra una trama Ethernet básica (sus variantes se describen en la publicación IEEE 802.3).

<table>
<thead>
<tr>
<th>DA (6 bytes)</th>
<th>SA (6 bytes)</th>
<th>L/T (2 bytes)</th>
<th>Payload (46 - 1500 bytes)</th>
<th>FCS (4 bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>← Cabeceras (14 bytes) →</td>
<td>← Carga útil →</td>
<td>← CRC →</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DA</th>
<th>SA</th>
<th>L/T</th>
<th>Payload Ethernet</th>
<th>FCS</th>
<th>GFP-FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Header (4 bytes)</td>
<td>Payload Header (4 bytes)</td>
<td>DA</td>
<td>SA</td>
<td>L/T</td>
<td>Payload Ethernet (46 - 1500 bytes)</td>
</tr>
<tr>
<td>← Trama GFP: Al transportar Ethernet su tamaño va desde 72 hasta 1530 bytes →</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 2.27 Trama Ethernet Básica

Para transportar Ethernet sobre SDH utiliza la técnica GFP, que añade bytes a la trama Ethernet para formar una trama GFP.

A continuación se muestra una trama GFP formada a partir de la trama Ethernet descrita previamente.

<table>
<thead>
<tr>
<th>Core Header (4 bytes)</th>
<th>Payload Header (4 bytes)</th>
<th>DA</th>
<th>SA</th>
<th>L/T</th>
<th>Payload Ethernet (46 - 1500 bytes)</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>← Cabeceras (8 bytes) →</td>
<td>← Client Payload: de 64 a 1518 bytes →</td>
<td>← Opcional →</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 2.28 Trama GFP

Se define la eficiencia como la relación entre la carga útil y el tamaño total de trama.

\[
\text{Eficiencia} = \frac{\text{Carga útil}}{\text{Tamaño de trama}} \tag{2.1}
\]

Como la longitud de las cabeceras y del código de corrección de errores es constante, la eficiencia será mayor si la trama es más grande.

De este modo, mientras mayor sea la trama el cliente percibirá una mayor velocidad, pues la proporción de la carga útil (el tráfico que realmente le importa al cliente) es mayor.

Mientras menores sean las tramas, las cabeceras ocuparán una mayor proporción del ancho de banda y el cliente percibirá una velocidad menor.

Existen tramas Ethernet mayores a 1518 bytes y son denominadas Tramas Jumbo. Estas tramas tienen hasta 9600 bytes de carga útil y 9618 bytes de tamaño total. Las tramas Jumbo son ampliamente utilizadas pero en la actualidad no forman parte del estándar IEEE 802.3.

Dentro de la trama SDH, la velocidad de un VC-4 es 149.760 Mbps.

A continuación se ofrece un listado de las velocidades nominales obtenidas con la concatenación virtual de VC-4s indicando su nomenclatura y denominación comercial el cual es usado en la fase de negociación por parte de los clientes.
Tabla 2.2 Velocidades nominales de la trama SDH

<table>
<thead>
<tr>
<th>Número de contenedores virtuales</th>
<th>Nomenclatura</th>
<th>Velocidad nominal VCAT (Mbps)</th>
<th>Denominación comercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VC-4-1v</td>
<td>149.760</td>
<td>150 MB</td>
</tr>
<tr>
<td>2</td>
<td>VC-4-2v</td>
<td>299.520</td>
<td>300 MB</td>
</tr>
<tr>
<td>3</td>
<td>VC-4-3v</td>
<td>449.280</td>
<td>450 MB</td>
</tr>
<tr>
<td>4</td>
<td>VC-4-4v</td>
<td>599.040</td>
<td>600 MB</td>
</tr>
<tr>
<td>5</td>
<td>VC-4-5v</td>
<td>748.800</td>
<td>750 MB</td>
</tr>
<tr>
<td>6</td>
<td>VC-4-6v</td>
<td>898.560</td>
<td>900 MB</td>
</tr>
<tr>
<td>7</td>
<td>VC-4-7v</td>
<td>1048.320</td>
<td>1G</td>
</tr>
</tbody>
</table>

El mapeo GFP utiliza parte del ancho de banda para sus cabeceras y códigos de corrección de errores. Por lo tanto, las velocidades reales serán menores y dependerán del tamaño de las tramas Ethernet.

Por ejemplo, veamos dos casos ideales, donde solo existen tramas de 1518 y 9618 bytes. Si el GFP-FCS está deshabilitado, obtenemos aproximadamente las siguientes velocidades de transmisión para las tramas Ethernet.

En la tabla 2.3 se observa las velocidades nominales con cabecera GFP para cada tamaño de trama de Ethernet junto con la denominación comercial.

Tabla 2.3 Velocidades nominales con cabecera GFP

<table>
<thead>
<tr>
<th>Tamaño de trama Ethernet (bytes)</th>
<th>Número de Contenedores Virtuales (N)</th>
<th>VC4-Nv (Mbps)</th>
<th>Denominación comercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1518</td>
<td>1</td>
<td>149.975</td>
<td>150 MB</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>299.950</td>
<td>300 MB</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>446.925</td>
<td>450 MB</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>595.900</td>
<td>600 MB</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>744.875</td>
<td>750 MB</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>893.850</td>
<td>900 MB</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1042.825</td>
<td>1G</td>
</tr>
<tr>
<td>9618</td>
<td>1</td>
<td>149.636</td>
<td>150 MB</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>299.272</td>
<td>300 MB</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>448.908</td>
<td>450 MB</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>598.544</td>
<td>600 MB</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>748.180</td>
<td>750 MB</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>897.816</td>
<td>900 MB</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1047.452</td>
<td>1G</td>
</tr>
</tbody>
</table>

Nota: Cálculos considerando 8 bytes de cabeceras GFP y tramas sin GFP-FCS.
En casos reales las tramas son variables y la velocidad dependerá de sus tamaños. Es necesario indicar que estas son velocidades a nivel Ethernet (en Capa 2 del modelo OSI). La velocidad siempre será menor en las capas superiores (por ejemplo, el tráfico IP en la Capa 3 del modelo OSI) porque cada capa introduce sus propias cabeceras. Es posible configurar enlaces de velocidades inferiores, como 45 MB o 100 MB, utilizando VCATs basadas en VC-3. Sin embargo, desaconsejamos esas configuraciones en la red On Net porque las tarjetas Ethernet GE EPL poseen un parámetro denominado Basic Rate, que generalmente se configura como VC-4. Mayores detalles se ofrecen más adelante. La restricción anterior no se aplica si las dos terminaciones del enlace son Off Net, porque en ese caso el circuito se configura en nuestra red como SDH.

2.4.3 10GE LAN y 10 GE WAN. Estándares, velocidades y comparación

Los equipos compatibles con Ethernet cuentan con dispositivos de capa física (physical layer devices) designados con el acrónimo PHY. Estos dispositivos PHY son las interfaces propias de cada equipo y pueden operar con pares trenzados de cobre, cables coaxiales o cables de fibra óptica.

En la red de los proveedores Tier1 se utilizan 2 familias PHY de interfaces ópticas para la tecnología 10 GE: LAN PHY y WAN PHY. Algunas interfaces pueden ser configurados como LAN PHY o WAN PHY, dependiendo del servicio que se desee brindar, mientras que otras solo soportan una de las dos configuraciones. En este informe describiremos los posibles escenarios de configuración.

Los servicios 10 GE, tanto LAN como WAN, se transmiten utilizando la codificación 64b/66b. Esto significa que los datos se transmiten en grupos de 64 bits a los que se añaden 2 bits que actúan como preámbulos. Esta codificación tiene consecuencias sobre la velocidad de los enlaces.

Tomando esto en cuenta, podemos definir los dos tipos de servicios 10 GE:

10 GE LAN

Son los servicios que usan interfaces LAN PHY. La velocidad del servicio Ethernet es 10 Gbps. Como los datos pasan por la codificación 64b/66b, la velocidad en el puerto LAN PHY se incrementa hasta 10.3125 Gbps (debido a que el puerto transmite datos y preámbulos).

10 GE WAN

Son los servicios que usan interfaces WAN PHY. Están diseñados para ser transportados sobre tramas SDH o SONET.
A diferencia de EoSDH, un servicio 10 GE WAN no utiliza VCAT para ser transportado por SDH. 10 GE WAN se transmite ocupando un STM-64 concatenado en su totalidad. Entonces, la velocidad está limitada por la carga útil de un STM-64, denominada VC-4-64c.

La velocidad de una trama STM-64 es 9.95328 Gbps, y dentro de ella la velocidad VC-4-64c es 9584.64 Gbps. Esta velocidad se utiliza para transportar la señal con la codificación 64b/66b, que incluye datos y preámbulos. Al quitar los 2 bits de preámbulos la velocidad Ethernet se reduce hasta 9.2942 Gbps.

Tener en cuenta que no es posible configurar enlaces con un tramo 10 GE LAN y otro tramo 10 GE WAN.

Los enlaces son de un solo tipo de extremo a extremo.

2.4.3.1 Comparación de velocidades en 10GE LAN y WAN

De acuerdo a lo explicado, las velocidades a nivel Ethernet (Capa 2 del Modelo OSI) de los servicios 10 GE se puede observar en la tabla comparativa 2.4

En la tabla 2.4 se detalla la velocidad para LAN y WAN-PHY indicando la velocidad de línea y velocidad Ethernet.

| Tabla 2.4 Comparación de 10 GE |
|------------------|------------------|------------------|
| Interfaz | Velocidad de línea | Velocidad Ethernet |
| 10 GE LAN | 10.3125 Gbps | 10 Gbps |
| 10 GE WAN | 9.95328 Gbps | 9.2942 Gbps |

En las capas superiores la velocidad será siempre menor (por ejemplo, el tráfico IP en la Capa 3 del modelo OSI) porque cada capa introduce cabeceras que afectan la velocidad percibida por el cliente.

Tener en cuenta que la carga útil VC-4-64c se entiende como la concatenación de 64 contenedores VC-4. Como la velocidad de un VC-4 es 149.760 Mbps, la velocidad de un VC-4-64c se obtiene multiplicando ese valor por 64.

2.4.3.2 Comparación general entre 10GE LAN y 10 GE WAN

Una breve comparación nos muestra lo siguiente.

Velocidad:

- 10 GE WAN: 9.2942 Gbps. Una parte de la velocidad de línea se emplea en cabeceras SDH.

- 10 GE LAN: 10 Gbps. Mayor velocidad debido a que no utiliza cabeceras SDH.

Esto significa que la velocidad del servicio 10 GE LAN es 7.59% superior a la del servicio 10 GE WAN.
Configuración de puertos:

- 10 GE WAN: El tráfico Ethernet se transporta dentro de tramas SDH, por lo tanto cualquier puerto con velocidad STM-64 es capaz de transportar 10 GE WAN. Es necesario confirmar que se usa SDH a lo largo de todo el enlace. La misma regla se aplica si se desea utilizar interfaces SONET OC-192.

- 10 GE LAN: Requiere que el puerto sea configurado explícitamente como 10 GE LAN. Esta diferencia refleja una mayor versatilidad de las interfaces 10 GE WAN.

Operación y mantenimiento:

- 10 GE WAN: Posee la calidad de SDH para detección de alarmas y Performance Monitoring, facilitando la gestión y el troubleshooting.

- 10 GE LAN: Tiene limitaciones en alarmas y Performance Monitoring. Al no poseer cabeceras SDH no es capaz de transmitir alarmas comunes en PDH/SDH/OTN. Esto complica la gestión y el troubleshooting. Las únicas alarmas que proporciona un 10 GE LAN son Link Down y Loss of Signal.

Si se utilizan interfaces 10 GE LAN en puntos intermedios, se pierde la información de las alarmas a lo largo del medio de transmisión. Por esta razón es recomendable que solo se utilicen interfaces 10 GE LAN en los extremos del enlace. Esto no siempre es posible debido a limitaciones de hardware que veremos más adelante.

2.4.4 Estándares del medio físico (interfaces)

Las interfaces ópticas destinadas a brindar servicios 10GE utilizan el acrónimo 10GBASE acompañado de dos letras adicionales para designar la longitud de onda y el tipo de servicio que soportan:

<table>
<thead>
<tr>
<th>Tabla 2.5 Estándares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud de onda</td>
</tr>
<tr>
<td>Designación</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>Tipo de servicio</td>
</tr>
<tr>
<td>Designación</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>W</td>
</tr>
</tbody>
</table>

De este modo, las interfaces 10GBASE que utilizamos en nuestra red llevan las siguientes denominaciones:
De la tabla anterior se desprende que:

Los puertos LAN-PHY cumplen con el estándar 10GBASE-R, con variantes de acuerdo a la longitud de onda nominal del puerto óptico.

Los puertos WAN-PHY cumplen con el estándar 10GBASE-W, con variantes de acuerdo a la longitud de onda nominal del puerto óptico.

2.5 Escenarios de conexión

Se recomienda el uso de tarjetas Ethernet solo en los extremos del enlace. Estos puntos extremos pueden ubicarse en un equipo de la red de capacidad del proveedor Tier 1 (tramo On Net) o en la red de un tercero (Off Net). Todos los puntos intermedios deben ser SDH. Se muestran los tres escenarios posibles a continuación.

Respecto a los servicios 10 GE se monta sobre una lambda de la red de capacidad.

Los esquemas de protección a los que pueden acceder los servicios 10 GE se configuran a nivel de lambdas. Los escenarios descritos en este informe son independientes de que un servicio cuente o no con protección.

Para describir los escenarios de conexión, nuevamente haremos una distinción entre enlaces 10 GE WAN y 10 GE LAN.

Los enlaces 10 GE WAN se transportan sobre SDH y todas sus interfaces son compatibles con SDH, por lo tanto no hace falta hacer recomendaciones especiales.

En el caso de enlaces 10 GE LAN, se recomienda el uso de tarjetas Ethernet solo en los extremos del enlace, siempre que sea posible. Estos puntos extremos pueden ubicarse en un equipo de la red de capacidad del proveedor Tier 1 (tramo On Net) o en la red de un tercero (Off Net).

Cuando es necesario conectar dos puertos en un punto intermedio, se recomienda evitar hacerlo con puertos 10 GE LAN. En su lugar es preferible realizar la conexión con puertos OTN de 10.7 Gbps. Las señales OTN llevan la información de los puertos de 10 Gbps (STM-64, OC-192 y 10 GE) y además las cabeceras OTN (esto explica el incremento de
velocidad a 10.7 Gbps). Las cabeceras OTN sí permiten la propagación de alarmas, facilitando la operación y el troubleshooting. Se muestran los tres escenarios a continuación:

Circuito 10 GE LAN On Net.

Se recomienda tener interfaces 10 GE LAN solo en las terminaciones. Todas las demás conexiones son OTN o DWDM.

![Diagrama de Circuito 10 GE LAN On Net](image)

Figura 2.29 Circuito 10 GE LAN On Net

Esto no siempre puede cumplirse debido a limitaciones propias del hardware disponible. Por ejemplo, cuando deben realizarse conexiones locales entre equipos de diferentes fabricantes.

En líneas generales, es posible configurar puertos OTN para conexiones locales en equipos Xtera y en algunas tarjetas Ciena, pero no con Infinera. Si no es posible realizar la conexión OTN, será necesario realizar la conexión usando 10 GE LAN.

Circuito 10 GE LAN On + Off Net con una terminación On Net.

Lo deseable es tener interfaces 10 GE LAN solo en las terminaciones, aunque a veces esto no es posible.

Por lo general los proveedores entregan interfaces 10 GE LAN en ambos extremos de su red, por lo tanto se interconectan con el Tier 1 a nivel 10 GE LAN. Esta solución funciona, pero lo recomendable es que la interconexión entre nuestra red y las de terceros sean con interfaces OTN siempre que sea posible.

![Diagrama de Circuito 10 GE LAN On + Off Net](image)

Figura 2.30 Circuito 10 GE LAN On + Off net
Circuito 10 GE LAN On + Off Net con dos terminaciones Off Net.

Lo deseable es tener interfaces 10 GE LAN solo en las terminaciones, aunque a veces esto no es posible, tal como se describió en el apartado anterior.

En este escenario es recomendable tener la menor cantidad posible de conexiones 10 GE LAN.

![Diagrama](image.png)

Figura 2.31 Circuito 10 GE LAN On + Off con extremos Off

2.6 Recomendación en la configuración en tramos Off Net y equipo de cliente

Las siguientes recomendaciones son válidas para los proveedores que llevan tramos Off Net a través de sus redes.

- De ser posible, el único punto donde se realiza una conexión Ethernet debe ser en el extremo de cliente.
- Para el caso de enlaces con puertos de 1 GE los contenedores virtuales (VC) pueden ir por rutas distintas, o incluso proveedores distintos, solo si las tarjetas Ethernet soportan LCAS. De otro modo, la caída de cualquiera de los VC afectará a la totalidad del enlace.
- En lo posible, conocer el retardo diferencial de las tarjetas del proveedor, para conocer el impacto que ocasionaría transportar los VCs por rutas distintas.
- En el caso de enlaces 10 GE LAN, comprobar que las alarmas están habilitadas en todos los puertos Ethernet. Si en algún puerto Ethernet las alarmas no están habilitadas, es posible que ante una avería no se detecte la caída del enlace.
- Verificar el máximo tamaño de trama (MTU o su equivalente).

Para los equipos de cliente y los routers de la red internacional que reciban servicios Ethernet, se recomienda:

- Configurar el parámetro hold-time down (Juniper), carrier delay down (Cisco) o su equivalente de acuerdo al fabricante en 5000 ms. Esto garantiza que ante interrupciones breves, tales como conmutaciones en la red de capacidad, el enlace permanece activo.
Si el enlace 10 GE se utiliza como troncal de la red de datos, los parámetros hold-time down (Juniper) y carrier delay down (Cisco) se configuran con 0 ms. Esto es debido a que la red troncal se protege a nivel MPLS.

Importante: El hold-time down o el carrier delay down deben ser configurados con 5000 ms en los servicios STI, a menos que exista una petición de cliente para no hacerlo. El cliente deberá ser advertido de nuestras recomendaciones.

2.7 Aceptación y pruebas

En la mayoría de los enlaces de la red de capacidad de los proveedores Tier1 pasan pruebas de 24 horas.

Adicionalmente, es deseable que todos los enlaces Ethernet pasen pruebas RFC 2544, las cuales han sido definidas y normalizadas por la IETF. Estas pruebas miden el desempeño del enlace Ethernet de extremo a extremo. Una prueba RFC 2544 exitosa es un sólido argumento técnico ante posibles reclamos de clientes que, debido a la naturaleza de su tráfico, tengan la percepción de velocidades bajas o crean estar descartando paquetes.

La prueba RFC 2544 mide los siguientes parámetros con diferentes tamaños de trama.
- Rendimiento (Throughput). La tasa máxima (en tramas por segundo) que puede transmitirse sin errores o descartes.
- Retardo (Round Trip Delay).
- Tasa de pérdida de tramas (Frame Loss Rate).
- Tramas contiguas (Back to Back frames). La mayor cantidad de tramas contiguas (ráfaga sin pausa) que es posible procesar. Es una medición del tamaño del búfer.
- Aunque no está incluido en el documento oficial de la IETF, las pruebas RFC 2544 para enlaces Ethernet suelen incluir una prueba de Jitter.

En los casos en que esta prueba no pudiera ser realizada, debe documentarse la causa que impidió su realización y también detallarse las pruebas que sí se llevaron a cabo.

En el caso de 10 GE LAN, si existe un punto intermedio del enlace con puertos configurados como 10 GE LAN no se podrá realizar una prueba RFC 2544 de extremo a extremo. La prueba deberá realizarse de manera segmentada, con una prueba para cada tramo entre dos puertos 10 GE LAN. La documentación del enlace debe indicar cuáles son estos puntos intermedios con interfaces LAN PHY.

Una prueba adicional se aplica para los enlaces 10 GE LAN: Es necesario comprobar que una caída se propaga a través de todo el enlace. Para esto se debe desconectar secuencialmente cada extremo del enlace y comprobar que el otro extremo cae. Si se
observa que el enlace no cae, será necesario revisar y configurar adecuadamente los puertos de la red On Net y/o de los proveedores hasta que se verifique que las caídas se propagan adecuadamente por el enlace.

2.8 Manejo de averías
Adicionalmente, cabe realizar las siguientes recomendaciones para enlaces 10 GE:
-El troubleshooting de los enlaces 10 GE WAN es similar al de los enlaces SDH.
-En los enlaces 10 GE LAN debe tenerse en cuenta que las interfaces LAN PHY no transmiten alarmas PDH/SDH/OTN. Esto significa que alarmas como AIS, LOF, UNEQ, LOP, etc, no aparecen en las interfaces 10 GE LAN y no se propagan a través de ellas. Esto hace necesario que al iniciar un troubleshooting se identifique claramente cuáles son las interfaces LAN PHY del enlace, para identificar el comportamiento esperado de las alarmas.
-En el caso de reclamos por pérdidas de paquetes, latencias altas, lentitud del enlace o caídas de tráfico; puede ser necesario tomar mediciones no intrusivas. Esto puede ser realizado con las herramientas de los equipos de transmisión o mediante el monitoreo no intrusivo con equipos de medición EXFO y JDSU.
3.1 Alternativas de Solución

Hoy en día los usuarios finales están requiriendo más ancho de banda. Pero debemos recordar que no solo la velocidad es el único factor a considerar cuando se evalúa la calidad del tránsito de internet sino también el acceso a diferentes contenidos y rutas más rápidas (reducir latencia) son importantes para una óptima conectividad IP. Por este motivo los proveedores de contenidos, ISPs, compañías de cable y empresas de telecomunicaciones están continuamente evaluando las rutas más eficientes y los proveedores que ofrecen estas rutas con el fin de obtener el mejor costo y calidad de servicio para sus usuarios finales.

A continuación en la figura 3.1 observamos a los diferentes cables submarinos que tenemos en Latinoamérica en donde encontramos que 4 de ellos llegan a territorio peruano.

<table>
<thead>
<tr>
<th></th>
<th>TMS</th>
<th>G.Cordia</th>
<th>L.A.Nautillus</th>
<th>Globenet</th>
<th>Panameric</th>
<th>Atlantis</th>
<th>Americas</th>
<th>Maya</th>
<th>Acor</th>
<th>Unsur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasil</td>
<td>O</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>O</td>
<td></td>
<td>O</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perú</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uruguay</td>
<td>P</td>
<td>O</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No tiene costas marítimas</td>
</tr>
<tr>
<td>Paraguay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No tiene costas marítimas</td>
</tr>
</tbody>
</table>

Referencias: O: Existente P: Proyectado

Figura 3.1 Principales Cables submarinos en Latinoamérica
Actualmente en el mercado peruano tenemos 4 cables submarino que llegan a nuestro territorio los cuales son: PAN-AM, SAM-1 y SAC/LAN.

En la figura 3.2 podemos observar los 4 cables submarinos que llegan a la costa peruana.

Figura 3.2 Cables submarinos que llegan a Peru

A continuación describiremos a cada uno de los cables submarinos que llegan al Peru describiendo alguna de sus características:

Pan American (PAN-AM)

RFS: Febrero 1999

Longitud del cable: 7,050 km

Propietarios: AT&T, Telefónica del Peru, Softbank Telecom, Telecom Italia Sparkle, Sprint, CANTV, Tata Communications, Telefónica de Argentina, Telstra, Verizon Business, PCCW, Telecom Argentina, Telconet, Cable & Wireless Communications, Corporacion Nacional de Telecommunicaciones

Landing Points

- Arica, Chile
- Baby Beach, Aruba
- Barranquilla, Colombia
-Colón, Panamá
-Lurín, Peru
-Panamá City, Panamá
-Punta Carnero, Ecuador
-Punto Fijo, Venezuela
-St. Croix, Virgin Islands, United States
-St. Thomas, Virgin Islands (U.S.)

Figura 3.3 Cable PAN-AM

South America-1 (SAm-1)
RFS: March 2001
Longitud del cable: 25,000 km
Propietarios: Telefonica
URL: http://www.globalsolutions.telefonica.com

Landing Points
-Arica, Chile
-Barranquilla, Colombia
-Boca Raton, Florida, Estados Unidos
-Fortaleza, Brasil
-Las Toninas, Argentina
-Lurín, Perú
-Mancora, Perú
-Puerto Barrios, Guatemala
-Puerto San José, Guatemala
-Punta Carnero, Ecuador
-Río de Janeiro, Brasil
-Salvador, Brasil
-San Juan, Puerto Rico, Estados Unidos
-Santos, Brasil
-Valparaíso, Chile

Figura 3.4 Cable Sam-1

South American Crossing (SAC)/Latin American Nautilus (LAN)

RFS: September 2000

Longitud del cable: 20,000 km

Propietarios: Level 3

URL: http://www.level3.com
Notas: Level 3 posee 3 pares de fibras en el sistema, que se llama South American Crossing. Telecom Italia posee un par de fibras conocido como Latin American Nautilus.

Landing Points

- Colón, Panamá
- Fort Amador, Panamá
- Fortaleza, Brasil
- Las Toninas, Argentina
- Lurín, Perú
- Puerto Viejo, Venezuela
- Rio de Janeiro, Brasil
- Santos, Brasil
- St. Croix, Virgin Islands, Estados Unidos
- Valparaiso, Chile

Figura 3.5 Cable SAC/LAN
Servicios ofrecidos por Telefonica Global Solutions (TGS):
En la figura 3.6 podemos observar los productos que ofrece la empresa Telefonica Global Solutions propietaria del cable SAM-I.
Entre los productos de nuestro interés para el presente informe podemos encontrar los servicios de capacidad e IP, así como el servicio de coubicacion en el caso que el cliente desea albergar equipos dentro de la infraestructura del proveedor.

![Diagrama de Servicios TGS](image)

Figura 3.6 Servicios ofrecidos por TGS
En la figura 3.7 podemos encontrar las diferentes latencias entre cada Landing Point del SAM-I. Ahi podemos encontrar que la latencia de Lima a Miami es de 61ms por la ruta corta.

![Tabla de Latencias SAM-I](image)

Figura 3.7 Latencias en el SAM-I
En la figura 3.8 observamos un mapa de Latinoamérica donde podemos encontrar cada uno de los PoP de Telefónica Global Solutions en la región así como los países donde tienen operaciones. Como podemos observar gran porcentaje de todo el continente tiene cobertura por parte del grupo Telefónica con lo cual cotizar servicios con ellos es más atractivo desde el punto de vista del costo así como la O&M.

Figura 3.8 PoPs en Latinoamérica de Telefónica Global Solutions

Servicios ofrecidos por el proveedor Level 3

A continuación podemos observar los diferentes servicios que ofrece el proveedor Level3 en donde también encontramos servicios de capacidad e IP que es parte de nuestro interés para el presente informe.
<table>
<thead>
<tr>
<th>Speed</th>
<th>Granularity</th>
<th>Topology</th>
<th>Routing</th>
<th>Transparency</th>
<th>Protection</th>
<th>CoS</th>
<th>Network</th>
<th>Billing</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAVES (Wavelengths)</td>
<td>GigE and 100GigE</td>
<td>2 Speeds</td>
<td>Customer Controlled</td>
<td>Layer 2</td>
<td>Optional</td>
<td>Dedicated</td>
<td>Ethernet over DWDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPL (Ethernet Private Line)</td>
<td>1 Mbit/s-1Gbps</td>
<td>37 Speeds</td>
<td>Full Layer 2 Transparency</td>
<td>Layer 2 Service</td>
<td>MPLS Fast Reroute, Backup LSPs</td>
<td>Shared</td>
<td>Ethernet over SONET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVPL (Ethernet Virtual Private Line)</td>
<td>1 Mbit/s-1Gbps</td>
<td>37 Speeds</td>
<td>MPLS Tags</td>
<td>Layer 2 Service</td>
<td>MPLS Fast Reroute, Backup LSPs</td>
<td>Shared</td>
<td>Ethernet over MPLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPLS (Multiprotocol Label Switching)</td>
<td>1 Mbit/s-1Gbps</td>
<td>37 Speeds</td>
<td>IP Addressing</td>
<td>Layer 3 Service</td>
<td>MPLS Fast Reroute, Backup LSPs</td>
<td>Shared</td>
<td>Ethernet over MPLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP VPN (IP Virtual Private Network)</td>
<td>1 Mbit/s-1Gbps</td>
<td>37 Speeds</td>
<td>Layer 3 Service</td>
<td>MPLS Fast Reroute, Backup LSPs</td>
<td>Shared</td>
<td>Ethernet over MPLS-TDM or Ethernet Handoff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSIP (High-Speed Internet)</td>
<td>FastE-10GigE</td>
<td>14 Speeds</td>
<td>Layer 3 Service</td>
<td>IP Addressing</td>
<td>IP Route</td>
<td>Best Effort</td>
<td>Public Internet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIA (Dedicated Internet Access)</td>
<td>FastE-10GigE</td>
<td>14 Speeds</td>
<td>Layer 3 Service</td>
<td>IP Route</td>
<td>Best Effort</td>
<td>Public Internet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above summarizes various network services and their features, including speed, granularity, topology, routing, transparency, protection, CoS, network, billing, and technology. The services include WAVES, EPL, EVPL, VPLS, MPLS, IP VPN, HSIP, and DIA. Each service is characterized by specific parameters such as speed, granularities, topology, routing, and features like customer control, transparency, protection, and CoS. The technology column lists options such as Ethernet over DWDM, Ethernet over SONET, Ethernet over MPLS, Ethernet over MPLS-TDM, or Ethernet Handoff.
3.2 Modalidades de Venta

Las opciones de comercialización, para las dos modalidades del servicio de capacidad, son:

3.2.1 Tipos de contrato para los servicios de capacidad

Los proveedores de cable submarino ofrecen la posibilidad de poseer los siguientes servicios de capacidad a corto y largo plazo:

- **Lease (Alquiler)**: Para atender a aquellos clientes que no desean comprometer a priori inversiones a largo plazo, el proveedor Tier 1 proporciona acuerdos a corto plazo. Para satisfacer estas necesidades el proveedor ofrece arrendamientos de 1, 3 y 5 años. Además, y para aumentar la capacidad de adaptación de los clientes al entorno tan cambiante al que se enfrentan, el proveedor también ofrece la opción de alquiler con opción de compra (Lease-to-buy) para algunos casos.

- **IRU (Derecho de uso irrevocable) + O&M**: El IRU ofrece un método eficiente de asegurar un alquiler a largo plazo de una parte de la red del proveedor Tier 1. Se otorga el derecho de uso de la capacidad normalmente durante la vida del cable (15 años), aunque se pueden solicitar cotizaciones de IRU por un tiempo inferior normalmente 5 y 10 años.

Compromiso para servicios IP

Debido a la importancia de este tipo de servicio los proveedores Tier 1 garantizan la calidad de servicio que incluye lo siguiente:

- 99.99% de compromiso de disponibilidad del servicio PoP a PoP.
- Flexibilidad y duración garantizadas de la red SDH.

3.3 Conceptos facturables

3.3.1 Servicios de capacidad

IRU (Indefensible Right of use)

- **Instalación**: Pago único tras la notificación de activación (NRC Non Recurring Cost)
- **Pago único**: del derecho de IRU (pago único por adelantado tras activación).
- **O&M (Operación y mantenimiento)**: Pago trimestral/anual calculado sobre una base anual (entre 3.5% y 5% del precio por el derecho de IRU).

Alquiler

Instalación: Pago único tras la notificación de activación (NRC Non recurring cost)

Pago mensual: de la cuota recorrente (MRC Monthly Recurring Cost).

3.3.2 Servicios IP

Facturación Fija: El cliente paga un monto fijo cada mes basado en la velocidad del puerto que haya contratado.
La factura está compuesta por:

- Costo fijo (MRC - X U$S por mes) basado en la velocidad de acceso de puerto contratado.
- Costo de instalación por Puerto (NRC).

Facturación burstable:

Este modelo es conocido como “pago por uso” debido a que al cliente se le ofrece la posibilidad de cambiar al acceso full de ancho de banda pero pagando por el uso efectivo del caudal.

Para calcular este “uso” se hace uso del algoritmo del percentil 95 de los megabits consumidos. El algoritmo permite controlar los picos de tráfico. La determinación del trafico consumido por parte del cliente se determina a través de un proceso en el cual se colectan todas las muestras tomadas en el mes de facturación cada 5 minutos, 7 días a la semana con lo cual llegamos a más de 8928 muestras.

Luego de recolectar todas las muestras se proceden a ordenarlas en orden ascendente y el 5% más alto se procede a extraer de la medición. Finalmente el valor más alto en Mbps de la muestra restante se redondea a la unidad y obtenemos la utilización del puerto por parte del cliente.

La factura está compuesta por:

- Costo fijo mensual (MRC - X U$S por mes) incluyendo el trafico mínimo de consumo.
- Un precio por Mbps por la utilización que exceda al mínimo.
- Un costo de instalación por puerto (NRC)

3.4 Acceso al servicio

Cualquier cliente situado en cualquier ciudad de América tiene acceso a un PoP del proveedor Tier 1 a través de una conexión directa desde la ubicación del cliente hasta el PoP del Proveedor Tier 1 más cercano.

3.5 Descripción y Característica de la Red

Parámetros de calidad para servicios ON-NET:

- Disponibilidad del servicio: 99,95% (entre POP’s de TIWS)
- Retardo de tránsito: Ejemplo Boca Ratón-Buenos Aires menor de 140ms (round-trip time)
- Troubleshooting: máximo 4 horas
- Tiempo de reparación averías (Dry Plant): 8 horas
- Tiempo de reparación averías (Wet Plant): 15 días
-Tiempo de instalación: menos de 20 días

El elemento más relevante del SLA de un servicio de capacidad es la Disponibilidad del Servicio.

La disponibilidad del servicio varía, lógicamente, según el grado de protección del circuito. Es importante la incidencia en la disponibilidad del servicio de “local tails” provistos por operadores incumbentes que no suelen tener disponible parámetros de calidad penalizados por incumplimiento.

A modo de ejemplo, los estándares de disponibilidad de servicio diferentes niveles de protección pueden ser:

<table>
<thead>
<tr>
<th>Tabla 3.1 Estándares de disponibilidad del servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcentaje Disponibilidad de Servicio</td>
</tr>
<tr>
<td>Total minutos Mes</td>
</tr>
<tr>
<td>Protegido POP a POP</td>
</tr>
</tbody>
</table>

3.6 Solución del problema

De acuerdo a lo descrito en el presente informe se observa que un Operador o ISP ubicado en Peru puede adquirir los servicios de 2 grandes Tier 1 como son Level 3 y Telefónica Global Solutions. En el presente informe se detalla la solución de un acceso con interfaz GigaEthernet en el PoP de Lince del proveedor TGS con ruta principal/backup. Según el plan de crecimiento del cliente que se encuentra descrito en la tabla 4.1 lo adecuado sería contratar un local loop con capacidad de un STM-4 con esta contratación logramos tener un ancho de banda adicional en caso que el cliente desee incrementar su tráfico antes de los 36 meses. En el siguiente capítulo se puede observar todos los requerimientos del cliente para implementar el servicio incluyendo los costos y plazos de tiempo.
CAPITULO IV
ANALISIS ECONOMICO DEL PROYECTO

4.1 Requerimiento del Proveedor o ISP
Contratar un servicio de tránsito hacia el backbone de Internet para el tráfico IP generado por sus usuarios del servicio de Internet.
Esta conexión permitirá ofrecer el servicio de Internet a los clientes del proveedor o ISP, el cual al ser un operador mayorista, requiere una solución redundante que ofrezca un alto nivel de disponibilidad del servicio.

4.2 Descripción del servicio requerido
4.2.1 Servicio de Transito Internet
Se entiende por Servicio de transito internet a la prestación del acceso y transporte de tráfico IP (IPv4 e IPv6) hacia el backbone de internet que requiere un ISP para la prestación de servicio a sus clientes y/o usuarios finales.
En este caso el Operador o ISP requiere de dos enlaces totalmente redundantes, con rutas diversificadas y routers de acceso distintos en el PoP del proveedor de tránsito, lo cual permitirá conformar un peering eBGP de alta disponibilidad hacia la red del mismo.
En este caso el Operador o ISP requiere de dos enlaces totalmente redundantes, con rutas
diversificadas y routers de acceso distintos en el Punto de Presencia (PoP) del proveedor de tránsito, lo cual permitirá conformar un peering eBGP de alta disponibilidad hacia la red del mismo.

A nivel de transporte IP hacia el backbone de Internet, el servicio debe ser ofrecido por un proveedor Tier-1, a fin de minimizar la cantidad de saltos y los retardos que agrega la red del Proveedor, y que garantice la prestación del servicio sin sobresuscripción.

En la siguiente figura se muestran las conexiones requeridas para la contratación del servicio:

![Diagrama de conexiones](image)

Figura 4.2 Requisitos de conexiones en el PoP del Operador o ISP

Como se puede apreciar en la figura anterior, el operador o cliente requiere contratar el servicio de tránsito a Internet, incluido los tramos de acceso al Punto de Presencia (PoP) del Proveedor. Estos accesos deben ser proporcionados mediante rutas diversificadas de Fibra Óptica, y tener conexión a distintos routers de acceso en la red del proveedor Tier 1.

4.2.2 Dirección de Instalación

Ambos enlaces, principal y redundante, del servicio de transito internet a brindarse, deberán ser instalados en las facilidades del PoP del ISP, en la siguiente dirección:

Lima, Peru

Av. Camino Real 155, San Isidro

4.2.3 Plano de Ubicación

Latitud: 12° 5'40.10"S

Longitud: 77° 2'5.71"O

A continuación en la figura 4.3 se puede observar la ubicación del cliente usando el aplicativo Google Earth.
4.2.4 Conectores e Interfaces

El Operador o ISP proporcionara 2 gabinetes de Fibra Óptica (ODFs) dentro de sus instalaciones donde deberán terminarse los 2 circuitos de Fibra Óptica proporcionados como Circuitos de Acceso por el proveedor.

Las terminaciones de las fibras ópticas en los ODFs del cliente deberán tener conectores ópticos FC.

Las interfaces físicas para ambos enlaces (Principal y Redundante) en los routers de borde del cliente será de tipo 1GE-LX, con la finalidad de garantizar escalabilidad en capacidades que cubra los requerimientos de ancho de banda a futuro.

4.2.5 Estimación de Ancho de Banda requerido

Se estima una evolución en el tráfico IP en Mbps que cursará desde el nodo de Camino Real hacia Internet desde Enero del 2014 hasta Diciembre del 2016:

Tabla 4.1 Crecimiento del ancho de banda

<table>
<thead>
<tr>
<th>Numero de Mes</th>
<th>Mes</th>
<th>Crecimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enero</td>
<td>1 STM1</td>
</tr>
<tr>
<td>2</td>
<td>Febrero</td>
<td>1 STM1</td>
</tr>
<tr>
<td>3</td>
<td>Marzo</td>
<td>1 STM1</td>
</tr>
<tr>
<td>4</td>
<td>Abril</td>
<td>1 STM1</td>
</tr>
<tr>
<td>5</td>
<td>Mayo</td>
<td>1 STM1+50</td>
</tr>
<tr>
<td>6</td>
<td>Junio</td>
<td>1 STM1+50</td>
</tr>
<tr>
<td>7</td>
<td>Julio</td>
<td>1 STM1+50</td>
</tr>
<tr>
<td>8</td>
<td>Agosto</td>
<td>1 STM1+50</td>
</tr>
<tr>
<td>9</td>
<td>Septiembre</td>
<td>2 STM1</td>
</tr>
</tbody>
</table>
4.3 Especificaciones técnicas

4.3.1 Requerimientos Generales

-El proveedor deberá proporcionar el servicio de transito internet con una red propia a nivel de Backbone IP de nivel Tier-1.

-El proveedor deberá contar con infraestructura propia de alta capacidad que permita un alto grado en la escalabilidad de capacidades de cara al crecimiento de tráfico IP de acuerdo a su demanda de tráfico.

-El proveedor deberá contar con acuerdos de Peering de conexión directa a los principales nodos de interconexión regionales o continentales para operadores Tier-1 de internet en Norteamérica y Europa.

-El proveedor de transito internet deberá contar con una demostrada experiencia en la prestación de servicios a Service Providers y Operadores Nacionales/Regionales. Deberá contar con una referencia de clientes de al menos 5 Service Providers.
4.3.2 Requerimientos Funcionales

- El proveedor deberá proporcionar dos accesos de Fibra Óptica Monomodo en modalidad 1+1 a través de rutas diversificadas.
- Las fibras ópticas deberán ser terminadas en dos ODFs distintos dentro de las instalaciones del cliente, mediante conectores FC.
- Los niveles de atenuación máximos proporcionados por las fibras de acceso conectado a los equipos del proveedor deben estar en el rango -6dB a -9dB.
- El tipo de interfaz proporcionado por el proveedor debe ser Gigabit Ethernet 1G-BASE L en ambos enlaces, principal y redundante, ya que esas son las interfaces de las que dispondrá los routers de borde del cliente.
- El proveedor deberá proporcionar accesos redundados desde 2 routers de acceso distintos dentro de su punto de presencia (PoP) más cercano.
- El proveedor deberá poder atender la capacidad de caudal IP requerido por el cliente, según se indica en el plan de crecimiento.
- La red del proveedor deberá soportar tránsito de tráfico IP mediante protocolos IPv4 e IPv6.
- Los routers de acceso del proveedor de transito deben soportar el establecimiento de peering BGP con numero de sistema autónomo (ASN) de 4 bytes (RFC 4893) de manera nativa.
- El proveedor de transito debe ser capaz de recibir y propagar hacia internet las redes anunciadas por el ASN del cliente, asegurando su enrutamiento global para los anuncios con prefijos /24 o menores.
- El proveedor debe ser capaz de entregar al cliente la totalidad de rutas existentes en Internet (Internet full routing) a través de la sesión BGP establecida.
- El proveedor deberá contar con la capacidad de estabilización de rutas en el caso de ocurrencia de flapping de rutas en internet.
- El proveedor debe estar en capacidad, en caso de ser requerido, de anunciar al cliente una ruta default por ambos enlaces, principal y redundante.
- El proveedor debe poder establecer atributos BGP como Local Preference, MED o AS PATH para diferenciar las rutas anunciadas/recibidas por el enlace principal y redundante establecido con el cliente.
- En caso de requerirse, el Proveedor debe estar en la capacidad de Implementar balanceo de carga (Load Balancing) entre ambos enlaces proporcionados al cliente, manteniendo
una configuración de alta disponibilidad en las mismas.
- La solución proporcionada por el Proveedor no deberá restringir al cliente la capacidad de peering BGP Multi-Homing en caso de que a futuro se decida incorporar un segundo Proveedor para su servicio de Transito a Internet.
- El proveedor de servicios de internet debe estar en capacidad de brindar el servicio de resolución de nombres “DNS” para activar los registros inversos (PTR) de las direcciones IP que se puedan entregar al cliente.
- De requerirse, el proveedor deberá estar en la capacidad de proporcionar al cliente, bloques de direcciones IP de los espacios administrados por ARIN (Norteamérica) y LACNIC (Latinoamérica y Caribe).
4.3.3 Requerimientos de Niveles de Servicio (SLA)
- El Retardo (Round Trip Delay) ofrecido por la red del Proveedor de Tránsito entre LATAM y USA debe ser como máximo 120ms, y entre USA y Europa debe ser inferior a 80ms.
- La pérdida de Paquetes máxima en el servicio de Tránsito proporcionado debe ser inferior al 0.1%.
- La comunicación de una avería o incidencia en la red del Proveedor debe realizarse en un plazo máximo de 15min desde la ocurrencia del mismo.
- En caso de avería, el tiempo medio de restauración del Servicio (MTTRS) debe ser como máximo 4 horas.
4.3.4 Requerimientos de Gestion y Monitoreo
- El Proveedor deberá contar con un Centro de Atención a Clientes para la atención de incidencias operativas, operando en modo 7x24 y con atención bilingüe (español e inglés).
- El Proveedor debe estar en la capacidad de entregar Informes y estadísticas a solicitud del cliente.
- El Proveedor debe proporcionar un acceso vía Portal Web donde se muestren gráficos del consumo de ancho de banda utilizadó y una línea roja en cada uno de los enlaces que indique el 80% del ancho de banda contratado (para determinar si hay saturación de ancho de banda). Los gráficos deben mostrar información del día, así como del mes y del año en curso.
4.3.5 Requerimientos de Seguridad
- El Proveedor debe estar en la capacidad de entregar al cliente, en caso de ser necesario, un sistema de Remote Triggered Black Hole Router (RTBH) mediante el cual se realice
bloqueos de redes desde los cuales provienen tráfico inusual o ataques que afecten a nuestros Clientes.

-El Proveedor debe contar con sistemas de detección y mitigación de ataques de denegación de servicio (DoS, DDoS) que reduzcan al mínimo el impacto de este tipo de incidencias en el servicio ofrecido al cliente.

4.4 Entregables del proyecto

A fin de garantizar una adecuada gestión y ejecución del proyecto, se definen los siguientes entregables durante las fases de Planeamiento e Implementación de este proyecto.

Entregables del proyecto:

- Lista de equipos, cantidad y accesorios indicando marca y modelo considerados en su solución.
- Lista de requisitos en las instalaciones de cliente verificando la dirección brindada (Site Survey & Site Preparation)
- Cronograma (Master Plan) del Proyecto, indicando en detalle cada actividad
- Matriz de Contactos y Escalado
- NIP (Network Implementation Plan). En este documento se deberá incluir especificaciones de la solución, reportes de estatus del proyecto, planes de pruebas, reportes de progreso de pruebas, pruebas de aceptación y reporte final.
- Informes semanales de Status y Avances
- Pruebas de aceptación e Informe final.

4.5 Condiciones de presentación de propuestas

El Proveedor deberá presentar su propuesta económica en Dólares Americanos, separando los costos de Instalación como Pago único, y los costos del servicio recurrentes en Pagos Mensuales.

La oferta económica deberá ser realizada por un período de 36 meses, pudiendo ser renovados por el cliente antes de la finalización de este Período.

El proveedor deberá presentar dos modalidades de contratación:

- Tarifa Plana por una capacidad contratada hasta los valores que se muestran en las estimaciones de tráfico de cliente (Tabla 4.1)
- Tarifa por uso, según el consumo mensual en Mbps realizado por el cliente.

Se deberá considerar una capacidad a contratar de 2xSTM-1 desde entre Enero 2015 en adelante, ofreciendo la posibilidad al cliente de realizar revisiones y/o modificaciones
anuales de la capacidad que tuvieses contratada.

4.6 Condiciones de Adquisición
La oferta económica se debe presentar bajo la modalidad de prestación de Servicios con Alquiler de Circuitos (OPEX).
Plazo de pago: 60 días, a partir de la recepción de la factura emitida por el Proveedor.

4.7 Plazos de entrega
El proveedor adjudicado deberá entregar el servicio en un plazo máximo de 75 días calendarios, a partir de recibir la Orden de Compra. Este periodo incluye todos los servicios de suministro, instalación y puesta en marcha de la solución.

4.8 Requisitos de aceptación y certificación
El proveedor deberá entregar un Protocolo de Aceptación de Sitio (SAT) que incluya pruebas de verificación del servicio funcionalidades que se están implementando. En caso exista alguna observación por parte de cliente, éstas deberán ser subsanadas en el menor tiempo posible, y dentro de un plazo máximo de 10 días útiles.

4.9 Garantía y mantenimiento
El proveedor garantizará la instalación y operatividad de los enlaces de Fibra Óptica proporcionados a cliente, durante todo el período de contratación del Servicio, obligándose a reponer en el corto plazo y sin costo alguno cualquiera de los enlaces que presentase fallas.
El proveedor deberá brindar el servicio de operación y mantenimiento de la solución instalada, cumpliendo con el acuerdo de servicio (SLA) comprometidos y firmado por el cliente.

4.10 Presupuesto y tiempo de ejecución
En esta sección describiremos la propuesta económica para poder implementar este servicio indicando el MRC (Monthly Recurring Charge) que significa el pago mensual por el servicio y NRC (Non-Recurring Charge) que es el pago inicial por el servicio e instalación.
En la siguiente tabla 4.2 observaremos la cotización del local loop en USD sin tener en cuenta el IGV. En esta tabla observamos los precios del proveedor local TdP en donde vemos la estimación de precios para cada grupo tarifario hasta el PoP de TGS en Lince para diferentes capacidades: E3, DS3, STM-1 y STM-4 incluyendo el plazo de instalación. En la tabla 4.2 se detalla el tarifario de Telefónica del Peru para el acceso a circuitos locales en donde se reparte en 3 diferentes grupos.
Tabla N°4.2 Tarifario de Telefónica del Peru para circuitos locales

<table>
<thead>
<tr>
<th>Grupo Tarifario</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de TGS Lince hasta Distrito</td>
<td>Montevideo (1, 2)</td>
<td>San Isidro Miraflorres Washington</td>
<td>Resto Distritos Lima</td>
</tr>
<tr>
<td>Protección</td>
<td>sin</td>
<td>con</td>
<td>sin</td>
</tr>
<tr>
<td>Pago único / PE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Renta Mensual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>800</td>
<td>1,120</td>
<td>1,600</td>
</tr>
<tr>
<td>DS3</td>
<td>1,000</td>
<td>1,400</td>
<td>2,000</td>
</tr>
<tr>
<td>STM1</td>
<td>2,000</td>
<td>2,800</td>
<td>3,000</td>
</tr>
<tr>
<td>STM4</td>
<td>6,400</td>
<td>8,960</td>
<td>9,600</td>
</tr>
<tr>
<td>Plazo instalación</td>
<td>30 - 45 días laborables</td>
<td>30 - 45 días laborables</td>
<td>Según PE</td>
</tr>
</tbody>
</table>

A continuación observaremos otra tabla con la cotización para 1xSTM-1, 100 Mbps y 1xGE dependiendo el tipo de configuración 1+0 o 1+1 por el periodo de 1 año.

Tabla 4.3 Cotización de Telefónica del Peru para circuitos locales

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>Config.</th>
<th>COTIZACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1xSTM1 - Lince / Lima</td>
<td>1+0</td>
<td>S/. 2,000</td>
</tr>
<tr>
<td>100Mbps - Lince / Lima</td>
<td>1+1</td>
<td>S/. 36,400</td>
</tr>
<tr>
<td>1xGE - Lince / Lima</td>
<td>1+1</td>
<td>S/. 8,000</td>
</tr>
<tr>
<td></td>
<td>1 año</td>
<td>S/. 3,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S/. 77,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S/. 20,200</td>
</tr>
</tbody>
</table>
Como se sabe el cliente va a contratar un servicio de capacidad + IP con puerto Giga en el PoP de Lince. En este caso el local loop sería contratado a TdP para el tramo San Isidro-Lince el cual tiene el siguiente costo:

Local loop TdP San Isidro-Lince para un STM-4:

- **NRC:** $ 5500 (este costo se traslada al cliente)
- **MRC:** $ 13400 (costo que TGS paga mensualmente al proveedor de local loop TdP)
- **Plazo de instalación por parte de TdP:** 35 días

De acuerdo a esta información podemos calcular el costo del NRC y MRC para el cliente según su plan de crecimiento. La propuesta económica se calcula en base a la estimación de ancho de banda descrito por el cliente en el presente informe (tabla 4.1).

En la siguiente tabla podemos observar la propuesta económica para un contrato a 36 meses:

Tabla 4.4 Propuesta económica para un contrato a 36 meses

<table>
<thead>
<tr>
<th>Numero mes</th>
<th>Mes</th>
<th>Crecimiento</th>
<th>BW comprometido (Mbps)</th>
<th>Total MRC</th>
<th>MRC/Mbps (Include IPT + Ge + LL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enero</td>
<td>1 STM1</td>
<td>155</td>
<td>$10,165.00</td>
<td>$ 65.58</td>
</tr>
<tr>
<td>2</td>
<td>Febrero</td>
<td>1 STM1</td>
<td>155</td>
<td>$10,165.00</td>
<td>$ 65.58</td>
</tr>
<tr>
<td>3</td>
<td>Marzo</td>
<td>1 STM1</td>
<td>155</td>
<td>$10,165.00</td>
<td>$ 65.58</td>
</tr>
<tr>
<td>4</td>
<td>Abril</td>
<td>1 STM1</td>
<td>155</td>
<td>$10,165.00</td>
<td>$ 65.58</td>
</tr>
<tr>
<td>5</td>
<td>Mayo</td>
<td>1 STM1+50</td>
<td>205</td>
<td>$13,444.03</td>
<td>$ 65.58</td>
</tr>
<tr>
<td>6</td>
<td>Junio</td>
<td>1 STM1+50</td>
<td>205</td>
<td>$13,444.03</td>
<td>$ 65.58</td>
</tr>
<tr>
<td>7</td>
<td>Julio</td>
<td>1 STM1+50</td>
<td>205</td>
<td>$13,444.03</td>
<td>$ 65.58</td>
</tr>
<tr>
<td>8</td>
<td>Agosto</td>
<td>1 STM1+50</td>
<td>205</td>
<td>$13,444.03</td>
<td>$ 65.58</td>
</tr>
<tr>
<td>9</td>
<td>Septiembre</td>
<td>2 STM1</td>
<td>310</td>
<td>$19,803.00</td>
<td>$ 63.88</td>
</tr>
<tr>
<td>10</td>
<td>Octubre</td>
<td>2 STM1</td>
<td>310</td>
<td>$19,803.00</td>
<td>$ 63.88</td>
</tr>
<tr>
<td>11</td>
<td>Noviembre</td>
<td>2 STM1</td>
<td>310</td>
<td>$19,803.00</td>
<td>$ 63.88</td>
</tr>
<tr>
<td>12</td>
<td>Diciembre</td>
<td>2 STM1</td>
<td>310</td>
<td>$19,803.00</td>
<td>$ 63.88</td>
</tr>
<tr>
<td>13</td>
<td>Enero</td>
<td>2 STM1</td>
<td>310</td>
<td>$19,803.00</td>
<td>$ 63.88</td>
</tr>
<tr>
<td>14</td>
<td>Febrero</td>
<td>2 STM1+50</td>
<td>360</td>
<td>$19,354.90</td>
<td>$ 62.44</td>
</tr>
<tr>
<td>15</td>
<td>Marzo</td>
<td>2 STM1+50</td>
<td>360</td>
<td>$22,476.65</td>
<td>$ 62.44</td>
</tr>
<tr>
<td>16</td>
<td>Abril</td>
<td>2 STM1+50</td>
<td>360</td>
<td>$22,476.65</td>
<td>$ 62.44</td>
</tr>
<tr>
<td>17</td>
<td>Mayo</td>
<td>2 STM1+50</td>
<td>360</td>
<td>$22,476.65</td>
<td>$ 62.44</td>
</tr>
<tr>
<td>18</td>
<td>Junio</td>
<td>2 STM1+50</td>
<td>360</td>
<td>$22,476.65</td>
<td>$ 62.44</td>
</tr>
<tr>
<td>19</td>
<td>Julio</td>
<td>2 STM1+50</td>
<td>360</td>
<td>$22,476.65</td>
<td>$ 62.44</td>
</tr>
<tr>
<td>20</td>
<td>Agosto</td>
<td>2 STM1+50</td>
<td>360</td>
<td>$22,476.65</td>
<td>$ 62.44</td>
</tr>
<tr>
<td>21</td>
<td>Septiembre</td>
<td>2 STM1+50</td>
<td>360</td>
<td>$22,476.65</td>
<td>$ 62.44</td>
</tr>
</tbody>
</table>
De acuerdo a lo descrito en la tabla las caracteristicas del circuito serian:

- NRC: $ 5500
- MRC: Se detalla en la tabla 4.4 de acuerdo al numero de mes.
- El plazo de entrega por parte de TGS es de 40 dias luego de firmado el contrato.

Tabla 4.5 Cronograma de actividades

<table>
<thead>
<tr>
<th>Responsable</th>
<th>Descripcion de la actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TGS</td>
<td>Site Survey</td>
</tr>
<tr>
<td>2 TGS</td>
<td>Trabajo de la TX Lince-San Isidro</td>
</tr>
<tr>
<td>3 TGS/Ciente</td>
<td>Pruebas de la TX Lince-San Isidro</td>
</tr>
<tr>
<td>4 TGS/Ciente</td>
<td>X en ambos extremos</td>
</tr>
<tr>
<td>5 TGS/Ciente</td>
<td>Pruebas de conectividad entre TGS y Cliente</td>
</tr>
<tr>
<td>6 TGS</td>
<td>Establecimiento de sesion BGP</td>
</tr>
<tr>
<td>7 Cliente</td>
<td>Aceptacion del servicio</td>
</tr>
</tbody>
</table>
CONCLUSIONES Y RECOMENDACIONES

1) Se observa que la población de usuarios de internet ha crecido considerablemente en todo el mundo, Latinoamérica y Perú que no ha sido la excepción. Todo esto debido al crecimiento de los dispositivos móviles como son las tablets, celulares y Smart TV, etc.

2) En Perú tenemos 2 grandes Tier 1 que son Level 3 y Telefonica Global Solutions. Con cualquiera de estos 2 proveedores es posible contratar servicios desde los 2 Mbps hasta 100Gbps.

3) En comparación con otros países de America, el Perú tiene un precio promedio de 60$ por Mbps mientras en EEUU podemos conseguir en promedio 4$ por Mbps sin incluir local loop. Es posible conseguir menor precio por Mbps cuando se contrata una gran capacidad.

4) El precio del acceso depende mucho en el volumen que maneja el cliente y del tipo de servicio así como el costo de la última milla para llegar al PoP del proveedor. Para que un proveedor o ISP consiga mejores precios se sugiere que llegue con su propia transmisión hasta el PoP del proveedor con lo cual evita el costo del local loop.

5) Para sobrevivir a la gran velocidad de cambio e innovación, los Operadores o ISPs deben trabajar con proveedores Tier 1 que posean un robusto backbone los cuales pueden ofrecerles un buena calidad de servicio para sus usuarios finales y el rendimiento adecuado para aplicaciones de banda ancha, redes Multiservicio, VoIP, etc. Actualmente parte de la innovación de los proveedores Tier 1 es ofrecer servicios de 100 Gbps.
ANEXO A
GLOSARIO
DA: Destination Address. Cabecera con la dirección de destino en la trama Ethernet.
FCS: Frame Check Sequence. Parte de la trama dedicada a la detección de errores.
GE: Gigabit Ethernet.
GFP: Procedimiento Genérico de Trama (Generic Frame Procedure). Técnica de mapeo que permite transportar una gran variedad de protocolos sobre SDH.
IEEE: Instituto de Ingenieros Eléctricos y Electrónicos.
IETF: Fuerza de Tareas de Ingeniería de Internet (Internet Engineering Task Force).
LC: Conector Lucent para puertos ópticos. (Lucent Connector).
LAN: Red de Área Local.
L/T: Length/Type. Cabecera Ethernet que puede indicar la longitud de la trama o el tipo de servicio que se transporta dentro de la carga útil.
MAC: Control de Acceso de Medios (Medium Access Control). Protocolo que gobierna el acceso de un dispositivo a una red. Pertenece a la Capa 2 (Datos) del Modelo OSI.
Modelo OSI: Modelo de Interconexión de Sistemas Abiertos (Open System Interconnection). Este modelo describe y estandariza las funciones de los sistemas de comunicaciones a través de 7 capas. Fue desarrollado por la Organización Internacional de Normalización.
NNI: Interfaz Red a Red (Network to Network Interface). En el contexto del presente documento, es un puerto Ethernet de nuestra red de capacidad que se conecta con otro puerto Ethernet de nuestra red o con un puerto Ethernet de la red de un tercero.
Retardo diferencial. Diferencia entre los retardos mínimo y máximo de un grupo de señales.
PHY: Acrónimo que designa a la Capa Física (PHYsical Layer) o Capa 1 del Modelo OSI. En el contexto de la tecnología 10 GE, se aplica a las interfaces 10 GE, diseñadas para la conexión a nivel físico.
RFC: Documento técnico publicado por la IETF para sistemas relacionados con Internet. (Las siglas significan Request For Comments).
RFC 2544: Documento RFC que define pruebas para describir y comparar performances de equipos y/o enlaces. El documento lleva el título «Metodología de evaluación comparativa para dispositivos de interconexión de redes» (Benchmarking Methodology for Network Interconnect Devices).
SA: Source Address. Cabecera con la dirección de la fuente en la trama Ethernet.
SFP: Modelo de transceiver utilizado ampliamente para SDH y Gigabit Ethernet.
UIT: Unión Internacional de Telecomunicaciones

UNI: Interfaz Red a Usuario (User to Network Interface). En el contexto del presente documento, es un puerto Ethernet que conecta nuestra red de capacidad con el puerto de cliente (o con un router de nuestra red internacional).

VC: Contenedor Virtual (Virtual Container). Elemento de la trama SDH que contiene la información propiamente dicha (sin cabeceras ni punteros).

VCAT: Concatenación Virtual (Virtual Concatenation). Técnica que permite agrupar dos o más contenedores virtuales (VCs) para formar un contenedor de mayor capacidad.

WAN: Red de Área Amplia (Wide Area Network).

XFP: Modelo de transceiver utilizado para 10 Gigabit Ethernet (10 Gigabit Small Form-Factor Pluggable)

BU: Unidad de derivación (branching unit)

CTE: Equipo de terminación del cable (cable terminating equipment)

PFE: Equipo de alimentación de energía (power feeding equipment)

TTE: Equipo terminal de transmisión (terminal transmission equipment)