Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.14076/1479
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Echegaray Castillo, William Carlos | - |
dc.contributor.author | Barraza Bernaola, Julio César | - |
dc.creator | Barraza Bernaola, Julio César | - |
dc.date.accessioned | 2016-01-09T14:25:41Z | - |
dc.date.available | 2016-01-09T14:25:41Z | - |
dc.date.issued | 2012 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.14076/1479 | - |
dc.description.abstract | Sea P(X) = Xm + AlXm-l + ... + Am-lX + Am, un polinomio matricial con Ai, X matrices complejas de orden n x n (i = 1,..., m). En el presente trabajo de tesis implementaremos el método de Newton basado en la descomposición de Schur y la derivada de Fréchet para la resolución númerica de la ecuación polinomial matricial P(X) = O, se da un teorema de existencia de la solvente de dicha ecuación y se prueba la convergencia del método cuando el punto inicial es próximo a una solvente simple. Presentamos un algoritmo y el programa que lo implementa, finalmente utilizaremos el método propuesto para resolver un problema donde se presenta este tipo de ecuaciones. | es |
dc.description.abstract | Let P(X) = Xm + AlXm-l + ... + Am-lX + Am, a polynomial matrix with Ai, X of complex matrix n x n (i = 1,..., m). This thesis will implement the Newton method based on the decomposition Schur and the derivative of Fréchet for the numerical resolution of equation polynomial matrix P (X) = O, we give an existence theorem that the solvent equation and proves the convergence of especially when the point initial is close to a simple solvent. We present an algorithm and program that implements it, finally we use the method proposed to resolve an issue where this type of equations. | en |
dc.description.uri | Tesis | es |
dc.format | application/pdf | es |
dc.language.iso | spa | es |
dc.publisher | Universidad Nacional de Ingeniería | es |
dc.rights | info:eu-repo/semantics/restrictedAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | es |
dc.source | Universidad Nacional de Ingeniería | es |
dc.source | Repositorio Institucional - UNI | es |
dc.subject | Método de Newton | es |
dc.subject | Descomposición de Schur | es |
dc.subject | Derivada de Fréchet | es |
dc.subject | Ecuaciones polinomiales | es |
dc.title | Solución de una ecuación polinomial matricial por el método de Newton | es |
dc.type | info:eu-repo/semantics/masterThesis | es |
thesis.degree.name | Maestro en Ciencias con Mención en Matemática Aplicada | es |
thesis.degree.grantor | Universidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de Posgrado | es |
thesis.degree.level | Maestría | es |
thesis.degree.discipline | Maestría en Ciencias con Mención en Matemática Aplicada | es |
thesis.degree.program | Maestría | es |
Aparece en las colecciones: | Maestría |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
barraza_bj.pdf | 316,39 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons
Indexado por: