Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/17639
Título : Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectors
Autor : Chavarría Rodríguez, Alberto Edgar
Asesor : Solano Salinas, Carlos Javier
Palabras clave : Neutrinos;Detector Test Beam;Detector Minerva TB2
Fecha de publicación : 2018
Editorial : Universidad Nacional de Ingeniería
Resumen : In the Neutrino Physics Field, a lot of careful measurements am made such as : cross section measure¬ment, neutrino oscillation, atmospheric neutrino. Etc. In such experimental measurements one has to get the most accurate numbers as possible but in doing so one meets a lot of constraints and variables. Such is the case of the Test Beam detector (a replica of the full MIN HR//A detector where we lest and compare new targets and devices to put them further in the MINERr/A detector). The way we detect some signal in the detector is by using a scintillator material attached to a photomultiplier (when a charged particle passes through the scintillator, this emits a photon of certain spectra and this light works as input for the PMT which uses the photoelectric effect to magnify the signal (gain)), in the same way the PMT is wired to the Data Acquisition System (DAQ) in order to process the raw data to give some human-readable numbers. In ideal laboratory conditions, one would expect to get accurate results just by carefully mount the electronics and understand the theory good enough. But nature likes to fool scientists. While making experiments involving fundamental particles, one uses electronic devices that have quantum and technological limita¬tions. One should not miss the effect of variables such as: temperature, moisture, dark current, etc that could impact over our data. In this work, it was explicitly studied the effect of temperature over a spe¬cial kind of data called Light Injection, which is a type of data used for calibration puiposes. Data was taken in two separate time intervals: April and May-July (2015 data already calibrated) which in between was a shutdown period (sometimes a temporal shutdown is done because cooling purposes, repairs in soft- w are/hard ware, etc). Two "thermometers" were used to get the temperature. One was a thermometer placed near the Test Beam IXtector. The other one is a chip built-in the PMT so that it can tell the temperature at all times. The first thermometer was used as a first approximation assuming that everything in the Test Beam IX tec tor was in thermal equilibrium. The second thermometer that was used shows a more realistic distribution of temperatures throughout the time the data was taken. Finally, plots of Gain vs Temperature are shown. These plots, indeed, tell the tempera turn effect over the data that was considered in this work. However, this temperature effect over the data was in principle ignored by the manufacturer because by- dealing w ith big amounts of data, one notices that this effect causes a decrease of less than 1% in gain of the data analyzed. Nevertheless, in high-accurate measurements this effect should not be neglected if one pursuits to get as close as possible to that number that nature tries to hide.
En el campo de la Física de Neutrinos se realizan muchas mediciones cuidadosas, tales como: medi-ción de la sección transversal, oscilación de neutrinos, neutrinos atmosféricos, etc. En tales mediciones experimentales, uno tiene que obtener los números más precisos posibles, pero al hacerlo uno se encuentra con muchas restricciones y variables. Tal es el caso del detector "Test Beam" (una réplica del detector MINERVA donde probamos y comparamos nuevos "targets" y dispositivos para ponerlos posteriormente en el detector MINERVA). La forma en que detectamos alguna señal en el detector es mediante el uso de un material centelleador conectado a un fotomultiplicador (cuando una partícula cargada pasa a través del centelleador, este emite un fotón de cierto espectro conocido y esta luz funciona como entrada para el PMT que usa el efecto fotoeléctrico para ampliar la señal (ganancia)), de la misma manera que el PMT está conectado al Sistema de Adquisición de Datos (DAQ) para procesar la data y conseguir números que sean entendibles para el humano. En condiciones ideales de laboratorio, uno esperaría obtener resultados pre- cisos simplemente con montar cuidadosamente la electrónica y entender la teoría lo suficientemente bien. Pero a la naturaleza le gusta engañar a los científicos. Al realizar experimentos que involucran partículas fundamentales uno usa dispositivos electrónicos que tienen limitaciones cuánticas y tecnológicas. Uno no debe ignorar el efecto de variables tales como: temperatura, la humedad, la "dark current", etc. que podrían afectar nuestros datos. En este trabajo, se estudió explícitamente el efecto de la temperatura sobre un tipo especial de datos llamado "Inyección de Luz" que es un tipo de datos utilizados para fines de calibración. Se tomó datos en dos intervalos de tiempo separados: abril y mayo-julio (datos de 2015 ya calibrados) donde hubo un período de apagado del detector (a veces se realiza un cierre temporal debido a propósitos de refrigeración, reparaciones en software / hardware, etc.). Se usó dos "termómetros" para obtener la temperatura. Uno era un termómetro colocado cerca del Detector "Test Beam". El otro es un chip incorporado en el PMT para que pueda detectar la temperatura en todo momento. Se usó el primer termómetro como una primera aproximación, suponiendo que todo en el detector "Test Beam" se encontraba en equilibrio térmico. El segundo termómetro que se utilizó muestra una distribución más realista de las temperaturas a lo largo del tiempo en que se tomaron los datos. Finalmente, se está mostrando gráficas de Ganancia vs Temperatura que, de hecho, indican el efecto de la temperatura sobre los datos que se consideraron en este trabajo. Sin embargo, este efecto de temperatura sobre los datos fue, en principio, ignorado por el fabricante porque al manejar grandes cantidades de datos se nota que este efecto causa menos de 1 % de disminución en ganancia de los datos analizados. Sin embargo, en mediciones de alta precisión, este efecto no debe descuidarse si uno intenta acercarse lo más posible a ese número (sección transversal, violación CP, etc.) que la naturaleza intenta esconder.
URI : http://hdl.handle.net/20.500.14076/17639
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones: Maestría

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
chavarria_ra.pdf9,54 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI