Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/1788
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorVelásquez Castañón, Oswaldo José-
dc.contributor.authorPérez Sotelo, Edisson Alonso-
dc.creatorPérez Sotelo, Edisson Alonso-
dc.date.accessioned2016-08-12T00:44:01Z-
dc.date.available2016-08-12T00:44:01Z-
dc.date.issued2011-
dc.identifier.urihttp://hdl.handle.net/20.500.14076/1788-
dc.description.abstractLa noción de teorema lauberiano no es del lodo precisa, es descrita de forma filosófica más que por definición. La clasificación en teoremas abelianos (directos) y lauberianos (recíprocos) se da de la siguiente forma: leñemos un mapeo T : X —> Y (usualmente lineal con algunas propiedades de continuidad) entre espacios de funciones. Un teorema abeliano es un teorema que deduce una propiedad (usualmente asintótica) de T(f) a partir de una propiedad (usualmente asintótica) de /. Un teorema lauberiano es un teorema recíproco, es decir a partir de una propiedad de / de¬ducimos una propiedad de T(f). Uno podría objetar lo siguiente: Si T es inyectivo, entonces no hay una diferencia real entre estas clasificaciones, pero en la práctica esta clasificación surge en situaciones en las cuales la inversa de T carece de las propiedades necesarias para la conclusión deseada. Estas hipótesis extras y delicados argumentos son necesarios frecuentemente para los teoremas lauberianos. Es preciso señalar que los teoremas abelianos son rara vez identificados como tales, a menos que exista un correspondiente teorema lauberiano, mientras que los teoremas lauberianos son identificados como tales sin que exista su correspondiente teorema abeliano. Nuestra historia comienza con Abel y el prototipo de lodos los teoremas abelianos. Desde que las series e integrales divergentes aparecen frecuentemente en la práctica, es interesante intentar asignar algún significado a algunos de ellos. Existen muchas ideas interesantes, por ejemplo valores principales, parles finitas, o técnicas de sumación de Gauss, Weierslrass, Cesara, Abel, Poisson, etc. Una idea, debida a Abel, es la siguiente: supongamos (a„) una sucesión acolada. Entonces ∑ an puede diverger, pero la serie de potencias ∑ anZn tiene radio de convergencia al menos 1. El límite límr-1 ∑ an r10 puede o no existir y tener relación o no con ∑ an sin embargo cuando este límite existe es llamada la suma de Abel de ∑ an Como ejemplo, la suma de Abel de la serie divergente ∑ ( — 1)n es ½.es
dc.description.uriTesises
dc.formatapplication/pdfes
dc.language.isospaes
dc.publisherUniversidad Nacional de Ingenieríaes
dc.rightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.sourceUniversidad Nacional de Ingenieríaes
dc.sourceRepositorio Institucional - UNIes
dc.subjectTeorema Tauberiano de Landaues
dc.subjectTeoría de la medidaes
dc.subjectSeries de Dirichletes
dc.titleEl teorema Tauberiano de Landau y aplicaciónes
dc.typeinfo:eu-repo/semantics/bachelorThesises
thesis.degree.nameLicenciado en Matemáticaes
thesis.degree.grantorUniversidad Nacional de Ingeniería. Facultad de Cienciases
thesis.degree.levelTítulo Profesionales
thesis.degree.disciplineMatemáticaes
thesis.degree.programLicenciaturaes
Aparece en las colecciones: Matemáticas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
perez_se.pdf9,16 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI