Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/18474
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorNoel, Julién Georges André-
dc.contributor.authorBlancas Sánchez, Jordan Darwin-
dc.creatorBlancas Sánchez, Jordan Darwin-
dc.date.accessioned2019-09-13T23:18:36Z-
dc.date.available2019-09-13T23:18:36Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/20.500.14076/18474-
dc.description.abstractLa presente tesis se enfocará en la aplicación del “razonamiento inductivo difuso” (FIR por sus siglas en inglés) al problema del pronóstico de la demanda eléctrica de corto plazo (Short Term Load Forecasting en inglés). El modelo FIR, que está basado en lógica difusa, aprende las relaciones pasadas de la demanda eléctrica (carga) y predice el comportamiento de la demanda a partir del último dato real agregado con el fin de establecer las desviaciones de la demanda programada versus la demanda real. El objetivo de este trabajo busca determinar el menor error de pronóstico mediante el indicador “error porcentual absoluto medio” (MAPE por sus siglas en inglés), por lo cual en primer lugar se desarrollan los fundamentos de lógica difusa como base para comprender la metodología FIR y se propone un método de pronóstico previo solo utilizando la lógica difusa como herramienta. Posteriormente se desarrolla la metodología FIR propuesta como mejora de la metodología con lógica difusa y que además es complementada con el uso de un algoritmo evolutivo denominado “algoritmo de rebotes simulados” (SRA en inglés) que servirá como un método de optimización (minimización del MAPE) para determinar las relaciones lineales y no lineales entre las variables y así identificar el conjunto de variables de entrada que mejoran la precisión de la predicción. Entonces, tanto la metodología con lógica difusa como la metodología FIR complementada con la implementación de SRA, se aplicarán al sistema energético peruano mediante la utilización de los datos históricos de la demanda eléctrica del Sistema Eléctrico Interconectado Nacional para determinar el pronóstico de la demanda eléctrica del día siguiente (corto plazo). Finalmente, se demuestra que la metodología FIR ofrece errores menores en el pronóstico de la demanda eléctrica en comparación la metodología con lógica difusa desarrollada inicialmente y con la metodología actualmente utilizada por el operador del sistema eléctrico nacional (COES-SINAC), que utiliza ajuste por mínimos cuadrados como herramienta de pronóstico.es
dc.description.abstractThis thesis will focus on the application of "fuzzy inductive reasoning" (FIR) to the problem of short term load forecasting. The FIR model, which is based on fuzzy logic, learns the past relationships of the electricity demanda (load) and predicts the behavior of the demand from the last real aggregate data in order to establish the deviations of the programmed demand versus the real demand. The objective of this work is to determine the lowest forecast error by means of the indicator "average absolute percentage error" (MAPE for its acronym in English), so first of all the foundations of fuzzy logic are developed as a basis to understand the FIR methodology and a previous forecasting method is proposed only using fuzzy logic as a tool. Later, the proposed FIR methodology is developed as an improvement of the methodology with fuzzy logic and which is also complemented by the use of an evolutionary algorithm called "simulated rebound algorithm" (SRA in English) that will serve as an optimization method (minimization of MAPE) to determine the linear and nonlinear relationships between the variables and thus identify the set of input variables that improve the accuracy of the prediction. Then, both the methodology with fuzzy logic and the FIR methodology complemented with the implementation of SRA, will be applied to the Peruvian energy system through the use of the historical data of the electrical demand of the National Interconnected Electric System to determine the forecast of the electricity demand of the next day (short term). Finally, it is shown that the FIR methodology offers minor errors in the forecast of electricity demand compared to the methodology with fuzzy logic developed initially and with the methodology currently used by the operator of the national electricity system (COES-SINAC), which uses adjustment for least squares as a forecasting tool.en
dc.description.uriTesises
dc.formatapplication/pdfes
dc.language.isospaes
dc.publisherUniversidad Nacional de Ingenieríaes
dc.rightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.sourceUniversidad Nacional de Ingenieríaes
dc.sourceRepositorio Institucional - UNIes
dc.subjectAnálisis de series de tiempoes
dc.subjectLógica difusaes
dc.subjectRazonamiento inductivo difusoes
dc.titleImplementación del método razonamiento inductivo difuso para el pronóstico de la demanda eléctrica a corto plazo en el SEINes
dc.typeinfo:eu-repo/semantics/masterThesises
thesis.degree.nameMaestro en Ciencias con Mención en Energéticaes
thesis.degree.grantorUniversidad Nacional de Ingeniería. Facultad de Ingeniería Mecánica. Unidad de Posgradoes
thesis.degree.levelMaestríaes
thesis.degree.disciplineMaestría en Ciencias con Mención en Energéticaes
thesis.degree.programMaestríaes
renati.advisor.orcidhttps://orcid.org/0000-0001-9284-9025es
renati.author.dni72766603-
renati.advisor.dni48506956-
renati.typehttp://purl.org/pe-repo/renati/type#tesises
renati.levelhttp://purl.org/pe-repo/renati/nivel#maestroes
renati.discipline713057-
renati.jurorLastra Espinoza, Luis Antonio-
renati.jurorAlva Dávila, Fortunato-
renati.jurorVargas Machuca Bueno, Juan Pablo-
renati.jurorGonzales Chávez, Salomé-
dc.publisher.countryPEes
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#2.03.02es
Aparece en las colecciones: Maestría

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
blancas_sj.pdf5,35 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI