Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/22837
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorMetzger Alván, Roger Javier-
dc.contributor.authorChulluncuy Centeno, Andrés Vicente-
dc.creatorChulluncuy Centeno, Andrés Vicente-
dc.date.accessioned2022-10-21T18:28:19Z-
dc.date.available2022-10-21T18:28:19Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/20.500.14076/22837-
dc.description.abstractEn el presente trabajo desarrollamos algunos aspectos teóricos respecto a la GH- estabilidad topológica para homeomorfismos, por ello el presente trabajo está basado en los aportes de A. Arbieto y C. Morales [1], y en los aportes dados por R. Cubas [3]. El concepto de GH-estabilidad topológica para homeomorfismos fue dado por Arbieto y Morales en [1], en 2017. Esencialmente, ellos combinan la noción de distancia de Gromov-Hausdorff con la distancia C0 usual, y obtienen una "distancia" que permite relacionar dinámicas discretas que actúan en espacios métricos posiblemente diferentes. De este modo definen la distancia C0-Gromov-Husdorff dGH0. Y combinando la noción de estabilidad topológica de Walters (para homeomorfismos), con esta distancia dGH0, En [1], los autores introducen la noción de GH- s o o para homeomorfismos. Y, siguiendo la prueba dada por Walters del teorema 4 de [2], Arbieto y Morales prueban que todo homeomorfismo expansivo con la propiedad de sombreamiento satisface la GH-estabilidad topológica. También consideramos los aportes dados por R. Cubas sobre la GH-estabilidad topológica, dados en 3. De este modo estudiamos la densidad de puntos periódicos asociados a homeomorfismos transitivos topológicamente GH-estables, y algunas con- secuencias de la GH-estabilidad topológica en espacios métricos disconexos. También estudiamos el hecho de que la GH-estabilidad topológica preserva entropía positiva en dinámicas sobre la circunferencia S1, y la relación entre la GH-estabilidad topológica y el Lema de aproximación de Anosov.es
dc.description.abstractIn the present work we study some theoretical aspects about the topological GH- stab l ty for homeomorphisms. For this reason, this work is based on the contributions of A. Arbieto and Morales [1], and the contributions given by Cubas [3]. The concept of topological GH-stab l ty for homeomorphisms was given by Arbieto and Morales in [1], in 2017. Essentially, they comb ne the not on of Gromov-Hausdorff metric with the usual C0-d stance. So, they obtain ad stance that allows relate discrete dynamics of possibly different metric spaces. In this way they define the C0-Gromov-Hausdorff d stance. On the other hand, n [1] the authors comb ne the not on of Walters s topological stab l ty (for homeomorphisms), with the C0-Gromov-Hausdorff d stance. So, they introduce the not on of topological GH-stab l ty for homeomorphisms. Afterwards, follow ng the proof given by Walters of theorem 4 in [2], Arbieto and Morales prove that every expansive homeomorphism with the pseudo-orb t trac ng property satisfies the topological GH-stab l ty. We also consider the contributions given by Cubas on GH-topological stab l ty, given in [3]. In this way we study the dens ty of periodic points associated to topologically GH-stable transitive homeomorphisms, and some consequences of topological GH-stab l ty n disconnected metric spaces. We also study the fact that the topological GH-stab l ty preserves positive entropy n dynamics on the circle S1, and the relationship between the topological GH-stab l ty and the Anosov Closing Lemma.en
dc.description.uriTesises
dc.formatapplication/pdfes
dc.language.isospaes
dc.publisherUniversidad Nacional de Ingenieríaes
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.sourceUniversidad Nacional de Ingenieríaes
dc.sourceRepositorio Institucional - UNIes
dc.subjectHomeomorfismoses
dc.subjectGH-estabilidad topológicaes
dc.subjectDistancia de Gromov-Hausdorffes
dc.titleEstabilidad topológica de Gromov-Hausdorff para Homeomorfismoses
dc.typeinfo:eu-repo/semantics/bachelorThesises
thesis.degree.nameLicenciado en Matemáticaes
thesis.degree.grantorUniversidad Nacional de Ingeniería. Facultad de Cienciases
thesis.degree.levelTítulo Profesionales
thesis.degree.disciplineMatemáticaes
thesis.degree.programLicenciaturaes
renati.advisor.orcidhttps://orcid.org/0000-0002-8437-0118es
renati.author.dni43431074-
renati.advisor.dni06445690-
renati.typehttp://purl.org/pe-repo/renati/type#tesises
renati.levelhttp://purl.org/pe-repo/renati/nivel#tituloProfesionales
renati.discipline541026-
renati.jurorGuimaray Huerta, Héctor Carlos-
renati.jurorOstos Cordero, Benito Leonardo-
dc.publisher.countryPEes
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.01.02es
Aparece en las colecciones: Matemáticas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
chulluncuy_ca.pdf1,41 MBAdobe PDFVisualizar/Abrir
chulluncuy_ca(acta).pdf116,63 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI