Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/23816
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorFlores González, Leonardo-
dc.contributor.authorNizama Yamunaque, David Alexander-
dc.creatorNizama Yamunaque, David Alexander-
dc.date.accessioned2023-03-09T20:26:57Z-
dc.date.available2023-03-09T20:26:57Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/20.500.14076/23816-
dc.description.abstractLa presente tesis presenta un sistema de detección, clasificación y conteo vehicular mediante el uso de redes neuronales de aprendizaje profundo y el de la inteligencia artificial, específicamente del área de visión artificial, con el objetivo de realizar conteos y aforos vehiculares. Para ello, se utilizarán diversos algoritmos y redes neuronales previamente entrenadas que permiten dotar al ordenador la capacidad de ver y comprender el contenido de imágenes y videos a través del reconocimiento de patrones y características. El aforo vehicular es uno de los aspectos más importantes y primarios en un estudio de tráfico vehicular, debido a que a partir de estos datos se determina el grado de ocupación y condiciones en las que una vía funciona, así como, las futuras tendencias de crecimiento, lo que permite una correcta planificación y diseño de una construcción, rehabilitación o mejora de una obra vial. Por ello, la finalidad del presente trabajo de investigación es brindar una alternativa accesible, rentable y económica que permita realizar aforos vehiculares en una vía mediante las virtudes de la inteligencia artificial, las cuales en los últimos años han tenido un desarrollo y progreso destacable. Para la detección y clasificación de vehículos se utilizaron las redes neuronales convolucionales, las cuales están diseñadas para imitar la corteza visual del cerebro y reconocer objetos en imágenes y videos. Estás redes contienen una serie de capas jerarquizadas y especializadas que permiten identificar y diferenciar un objeto de otro, por lo que fue factible clasificar los vehículos de acuerdo a su tipología, esto aportó a obtener una data completa y confiable. Palabras claves: Inteligencia artificial, visión artificial, redes neuronales, aprendizaje profundo, aforo vehicular, estudio de tráfico vehicular, algoritmo de detección, reconocimiento de patrones, convoluciones.es
dc.description.abstractThis thesis presents a vehicle detection, classification and counting system through the use of deep learning neural networks and artificial intelligence, specifically in the area of artificial vision, with the objective of performing vehicle counting and gauging. For this purpose, several algorithms and previously trained neural networks will be used to provide the computer with the ability to see and understand the con-tent of images and videos through the recognition of patterns and features. The vehicle capacity is one of the most important and primary aspects in a study of vehicular traffic, because these data determine the degree of occupation and conditions in which a road works, as well as future growth trends, which allows a correct planning and design of a construction, rehabilitation or improvement of a road work. Therefore, the purpose of this research work is to provide an accessible, profitable and economical alternative that allows to perform vehicular gauging on a road through the virtues of artificial intelligence, which in recent years have had a remarkable development and progress. For the detection and classification of vehicles, convolutional neural networks we-re used, which are designed to imitate the visual cortex of the brain and recognize objects in images and videos. These networks contain a series of hierarchical and specialized layers that allow to identify and differentiate one object from another, so it was feasible to classify vehicles according to their typology, this contributed to obtain a complete and reliable data.en
dc.description.uriTesises
dc.formatapplication/pdfes
dc.language.isospaes
dc.publisherUniversidad Nacional de Ingenieríaes
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.sourceUniversidad Nacional de Ingenieríaes
dc.sourceRepositorio Institucional - UNIes
dc.subjectAutomatizaciónes
dc.subjectSistema vehiculares
dc.subjectTransporte vehiculares
dc.subjectIngeniería del tránsitoes
dc.subjectRedes neuronaleses
dc.titleSistema de detección y clasificación vehicular basado en redes neuronales de aprendizaje profundoes
dc.typeinfo:eu-repo/semantics/bachelorThesises
thesis.degree.nameIngeniero Civiles
thesis.degree.grantorUniversidad Nacional de Ingeniería. Facultad de Ingeniería Civiles
thesis.degree.levelTítulo Profesionales
thesis.degree.disciplineIngeniería Civiles
thesis.degree.programIngenieríaes
renati.advisor.orcidhttps://orcid.org/0000-0002-9290-5354es
renati.author.dni72454078-
renati.advisor.dni09857807-
renati.typehttp://purl.org/pe-repo/renati/type#tesises
renati.levelhttp://purl.org/pe-repo/renati/nivel#tituloProfesionales
renati.discipline732016-
renati.jurorSanta María Dávila, Edward-
renati.jurorMatías León, José Carlos-
dc.publisher.countryPEes
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#2.01.01es
Aparece en las colecciones: Ingeniería Civil

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
nizama_yd.pdf16,93 MBAdobe PDFVisualizar/Abrir
informe_de_similitud.pdf61,03 kBAdobe PDFVisualizar/Abrir
nizama_yd(acta).pdf108,17 kBAdobe PDFVisualizar/Abrir
carta_de_autorización.pdf135,08 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI